

IEC 61158-4-8
Edition 1.0 2007-12

INTERNATIONAL
STANDARD

Industrial communication networks – Fieldbus specifications –
Part 4-8: Data-link layer protocol specification – Type 8 elements

IE
C

 6
11

58
-4

-8
:2

00
7(

E
)

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2007 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
 Catalogue of IEC publications: www.iec.ch/searchpub

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
 IEC Just Published: www.iec.ch/online_news/justpub

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
 Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
 Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch

IEC 61158-4-8
Edition 1.0 2007-12

INTERNATIONAL
STANDARD

Industrial communication networks – Fieldbus specifications –
Part 4-8: Data-link layer protocol specification – Type 8 elements

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION XF
ICS 35.100.20; 25.040.40

PRICE CODE

ISBN 2-8318-9435-2

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 2 – 61158-4-8 © IEC:2007(E)

CONTENTS

FOREWORD...7
INTRODUCTION...9
1 Scope... 10

1.1 General ...10
1.2 Specifications ..10
1.3 Procedures..10
1.4 Applicability ...10
1.5 Conformance...11

2 Normative references ...11
3 Terms, definitions, symbols and abbreviations.. 11

3.1 Reference model terms and definitions.. 11
3.2 Service convention terms and definitions... 12
3.3 Common terms and definitions .. 13
3.4 Additional Type 8 definitions.. 14
3.5 Symbols and abbreviations.. 15

4 DL-protocol ..18
4.1 Overview ...18
4.2 DL-service Interface (DLI) ...18
4.3 Peripherals data link (PDL).. 22
4.4 Basic Link Layer (BLL) .. 58
4.5 Medium Access Control (MAC) .. 74
4.6 Peripherals network management for layer 2 (PNM2) .. 108
4.7 Parameters and monitoring times of the DLL ... 116

Annex A (informative) – Implementation possibilities of definite PNM2 functions 122
A.1 Acquiring the current configuration .. 122
A.2 Comparing the acquired and stored configurations prior to a DL-subnetwork

error .. 126
Bibliography.. 132

Figure 1 – Relationships of DLSAPs, DLSAP-addresses and group DL-addresses 13
Figure 2 – Data Link Layer Entity ..18
Figure 3 – Location of the DLI in the DLL ..18
Figure 4 – State transition diagram of DLI ... 20
Figure 5 – Location of the PDL in the DLL... 22
Figure 6 – PDL connection between slave and master .. 23
Figure 7 – Interface between PDL-user (DLI) and PDL in the layer model 24
Figure 8 – Overview of the PDL services .. 24
Figure 9 – PDL_Data_Ack service between master and only one slave 26
Figure 10 – Parallel processing of PDL_Data_Ack services .. 26
Figure 11 – PSM and GSM service for buffer access ..26
Figure 12 – Buffer_Received service to indicate successful data transfer.............................. 27
Figure 13 – Data flow between PDL-user, PDL and BLL of a PDL_Data_Ack service 30
Figure 14 – Interface between PDL and PNM2 in the layer model ... 30
Figure 15 – Reset, Set Value and Get Value PDL services ... 32

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 3 –

Figure 16 – Event PDL service..32
Figure 17 – Transmit and receive FCBs on the master and slave sides 35
Figure 18 – Data transmission master → slave with SWA Message 36
Figure 19 – Time sequence of the data transmission master → slave with SWA

Message ...36
Figure 20 – Data transmission slave → master with SWA/RWA Message.............................. 37
Figure 21 – Time sequence of the data transmission slave → master with SWA/RWA

Message ...37
Figure 22 – Allocation of actions of the PDL protocol machines and data cycles 38
Figure 23 – Message transmission: master → slave..39
Figure 24 – Message transmission: slave → master..39
Figure 25 – Code octet of a PDLPDU..40
Figure 26 – Structure of a message with a size of one word..41
Figure 27 – Structure of a SPA Message ..41
Figure 28 – Structure of a SVA Message ..42
Figure 29 – Structure of a FCB_SET Message .. 42
Figure 30 – Structure of a RWA Message ... 42
Figure 31 – Structure of a SWA Message ... 43
Figure 32 – Structure of a confirmation for SPA or SVA Messages.. 43
Figure 33 – Structure of a FCB_SET as confirmation .. 43
Figure 34 – Structure of the data octet for FCB_SET as requests and confirmations 43
Figure 35 – Structure of a message with a size of more than one word 44
Figure 36 – PDL base protocol machine..45
Figure 37 – Locations of the PDL and the PDL protocol machines in the master and

slaves ...48
Figure 38 – PDL protocol machine ..49
Figure 39 – TRANSMIT protocol machine ...52
Figure 40 – RECEIVE protocol machine..55
Figure 41 – Location of the BLL in the DLL ...58
Figure 42 – Interface between PDL and BLL in the layer model .. 59
Figure 43 – BLL_Data service ...60
Figure 44 – Interface between PNM2 and BLL in the layer model.. 62
Figure 45 – Reset, Set Value and Get Value BLL services .. 64
Figure 46 – Event BLL service ..64
Figure 47 – BLL operating protocol machine of the master.. 68
Figure 48 – BLL-BAC protocol machine .. 70
Figure 49 – BLL operating protocol machine of the slave .. 73
Figure 50 – Location of the MAC in the DLL..74
Figure 51 – Model details of layers 1 and 2...75
Figure 52 – DLPDU cycle of a data sequence without errors ... 76
Figure 53 – DLPDU cycle of a data sequence with errors..76
Figure 54 – Data sequence DLPDU transmitted by the master ..77
Figure 55 – Data sequence DLPDU received by the master .. 77
Figure 56 – Check sequence DLPDU ..77

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 4 – 61158-4-8 © IEC:2007(E)

Figure 57 – Loopback word (LBW) ..77
Figure 58 – Checksum status generated by the master ... 80
Figure 59 – Checksum status received by the master ... 80
Figure 60 – MAC protocol machine of a master: transmission of a message 81
Figure 61 – MAC protocol machine of a master: receipt of a message 84
Figure 62 – MAC sublayer of a master: data sequence identification..................................... 88
Figure 63 – Data sequence DLPDU received by a slave.. 91
Figure 64 – Data sequence DLPDU transmitted by a slave ...91
Figure 65 – Checksum status received by the slave .. 91
Figure 66 – Checksum status generated by the slave ... 92
Figure 67 – State transitions of the MAC sublayer of a slave: data sequence........................ 93
Figure 68 – State transitions of the MAC sublayer of a slave: check sequence 94
Figure 69 – Interface between MAC-user and MAC in the layer model 99
Figure 70 – Interactions at the MAC-user interface (master) ... 100
Figure 71 – Interactions at the MAC-user interface (slave) .. 101
Figure 72 – Interface between MAC and PNM2 in the layer model 104
Figure 73 – Reset, Set Value and Get Value MAC services... 106
Figure 74 – Event MAC service... 106
Figure 75 – Location of the PNM2 in the DLL .. 108
Figure 76 – Interface between PNM2-user and PNM2 in the layer model 109
Figure 77 – Reset, Set Value, Get Value and Get Active Configuration services 111
Figure 78 – Event PNM2 service ... 111
Figure 79 – Set Active Configuration, Get Current Configuration service............................. 111
Figure 80 – The active_configuration parameter ... 115
Figure 81 – Device code structure .. 118
Figure 82 – Relations between data width, process data channel and parameter

channel ... 120
Figure 83 – Structure of the control code .. 121
Figure A.1 – DL-subnetwork configuration in the form of a tree structure 122
Figure A.2 – State machine for the acquisition of the current configuration 124
Figure A.3 – State machine for comparing two configurations ... 128
Figure A.4 – State machine for comparing one line of two configuration matrices................ 130

Table 1 – Primitives issued by DLS-/DLMS-user to DLI ... 19
Table 2 – Primitives issued by DLI to DLS-/DLMS-user ...19
Table 3 – DLI state table – sender transactions .. 20
Table 4 – DLI state table – receiver transactions .. 21
Table 5 – Function GetOffset ..22
Table 6 – Function GetLength ...22
Table 7 – Function GetRemAdd .. 22
Table 8 – Function GetDlsUserId ..22
Table 9 – PDL_Data_Ack ..27
Table 10 – PDL_Data_Ack L_status values...27

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 5 –

Table 11 – PSM .. 28
Table 12 – GSM.. 28
Table 13 – PDL_Reset ..32
Table 14 – PDL_Set_Value ...32
Table 15 – PDL variables ..33
Table 16 – PDL_Get_Value...33
Table 17 – PDL_Event ..34
Table 18 – Events ... 34
Table 19 – Encoding of the L_status ... 40
Table 20 – FCT code (PDLPDU-Types) ..40
Table 21 – State transitions of the PDL base protocol machine ... 46
Table 22 – Counters of the PDL protocol machines... 48
Table 23 – Meaning of the "connection" flag ... 49
Table 24 – State transitions of the PDL protocol machine ... 50
Table 25 – State transitions of the TRANSMIT protocol machine .. 53
Table 26 – State transitions of the RECEIVE protocol machine ... 55
Table 27 – BLL_Data ..61
Table 28 – BLL_Data ..64
Table 29 – BLL_Reset ..65
Table 30 – BLL_Set_Value ...65
Table 31 – BLL variables ..66
Table 32 – BLL_Get_Value ...66
Table 33 – BLL_Event...66
Table 34 – BLL_Event...67
Table 35 – State transitions of the BLL operating protocol machine of the master 69
Table 36 – State transitions of the BLL-BAC protocol machine.. 71
Table 37 – State transitions of the BLL operating protocol machine of the slave 73
Table 38 – FCS length and polynomial..78
Table 39 – MAC_Reset ... 106
Table 40 – MAC_Set_Value .. 106
Table 41 – MAC variables ... 107
Table 42 – MAC_Get_Value.. 107
Table 43 – MAC_Event ... 107
Table 44 – MAC_Event ... 108
Table 45 – PNM2_Reset ... 112
Table 46 – M_status values of the PNM2_Reset ... 112
Table 47 – PNM2_Set_Value .. 112
Table 48 – M_status values of the PNM2_Set_Value .. 113
Table 49 – PNM2_Get_Value.. 113
Table 50 – M_status values of the PNM2_Get_Value .. 113
Table 51 – PNM2_Event ... 114
Table 52 – MAC Events .. 114
Table 53 – PNM2_Get_Current_Configuration .. 114

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 6 – 61158-4-8 © IEC:2007(E)

Table 54 – PNM2_Get_Active_Configuration .. 115
Table 55 – PNM2_Set_Active_Configuration ... 116
Table 56 – Data direction .. 118
Table 57 – Number of the occupied octets in the parameter channel................................... 119
Table 58 – Device class .. 119
Table 59 – Control data .. 119
Table 60 – Data width ... 120
Table 61 – Medium control.. 121
Table A.1 – DL-subnetwork configuration in the form of a matrix ... 123
Table A.2 – Acquire_Configuration.. 123
Table A.3 – State transitions of the state machine for the acquisition of the current

configuration ... 125
Table A.4 – Check_Configuration.. 126
Table A.5 – Compare_Slave ... 127
Table A.6 – State transitions of the state machine for comparing two configurations 129
Table A.7 – State transitions of the state machine for comparing one line of two

configuration matrixes ... 131

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 7 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS –
FIELDBUS SPECIFICATIONS –

Part 4-8: Data-link layer protocol specification – Type 8 elements

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all
cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits
a particular data-link layer protocol type to be used with physical layer and application layer protocols in Type
combinations as specified explicitly in the IEC 61784 series. Use of the various protocol types in other
combinations may require permission from their respective intellectual-property-right holders.

IEC draws attention to the fact that it is claimed that compliance with this standard may involve the use of patents
as follows, where the [xx] notation indicates the holder of the patent right:

Type 8 and possibly other Types:

DE 41 00 629 C1 [PxC] Steuer- und Datenübertragungsanlage

IEC takes no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured IEC that they are willing to negotiate licences under reasonable
and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of
the holders of these patent rights are registered with IEC. Information may be obtained from:

[PxC]: Phoenix Contact GmbH & Co. KG
Referat Patente / Patent Department
Postfach 1341
D-32819 Blomberg
Germany

Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights
other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 8 – 61158-4-8 © IEC:2007(E)

International Standard IEC 61158-4-8 has been prepared by subcommittee 65C: Industrial
networks, of IEC technical committee 65: Industrial-process measurement, control and
automation.
This first edition and its companion parts of the IEC 61158-4 subseries cancel and replace
IEC 61158-4:2003. This edition of this part constitutes an editorial revision.
This edition of IEC 61158-4 includes the following significant changes from the previous
edition:
a) deletion of the former Type 6 fieldbus, and the placeholder for a Type 5 fieldbus data link

layer, for lack of market relevance;
b) addition of new types of fieldbuses;
c) division of this part into multiple parts numbered -4-1, -4-2, …, -4-19.
The text of this standard is based on the following documents:

FDIS Report on voting

65C/474/FDIS 65C/485/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under http://webstore.iec.ch in the
data related to the specific publication. At this date, the publication will be:

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.
NOTE The revision of this standard will be synchronized with the other parts of the IEC 61158 series.

The list of all the parts of the IEC 61158 series, under the general title Industrial
communication networks – Fieldbus specifications, can be found on the IEC web site.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

http://webstore.iec.ch/

61158-4-8 © IEC:2007(E) – 9 –

INTRODUCTION

This part of IEC 61158 is one of a series produced to facilitate the interconnection of
automation system components. It is related to other standards in the set as defined by the
“three-layer” fieldbus reference model described in IEC/TR 61158-1.

The data-link protocol provides the data-link service by making use of the services available
from the physical layer. The primary aim of this standard is to provide a set of rules for
communication expressed in terms of the procedures to be carried out by peer data-link
entities (DLEs) at the time of communication. These rules for communication are intended to
provide a sound basis for development in order to serve a variety of purposes:

a) as a guide for implementors and designers;
b) for use in the testing and procurement of equipment;
c) as part of an agreement for the admittance of systems into the open systems environment;
d) as a refinement to the understanding of time-critical communications within OSI.

This standard is concerned, in particular, with the communication and interworking of sensors,
effectors and other automation devices. By using this standard together with other standards
positioned within the OSI or fieldbus reference models, otherwise incompatible systems may
work together in any combination.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 10 – 61158-4-8 © IEC:2007(E)

INDUSTRIAL COMMUNICATION NETWORKS –
FIELDBUS SPECIFICATIONS –

Part 4-8: Data-link layer protocol specification – Type 8 elements

1 Scope

1.1 General

The data-link layer provides basic time-critical messaging communications between devices in
an automation environment.

This protocol provides a highly-optimized means of interchanging fixed-length input/output
data and variable-length segmented messages between a single master device and a set of
slave devices interconnected in a loop (ring) topology. The exchange of input/output data is
totally synchronous by configuration, and is unaffected by the messaging traffic.

Devices are addressed implicitly by their position on the loop. The determination of the
number, identity and characteristics of each device can be configured, or can be detected
automatically at start-up.

1.2 Specifications

This standard specifies

a) procedures for the timely transfer of data and control information from one data-link user
entity to a peer user entity, and among the data-link entities forming the distributed data-
link service provider;

b) the structure of the fieldbus DLPDUs used for the transfer of data and control information
by the protocol of this standard, and their representation as physical interface data units.

1.3 Procedures

The procedures are defined in terms of

a) the interactions between peer DL-entities (DLEs) through the exchange of fieldbus
DLPDUs;

b) the interactions between a DL-service (DLS) provider and a DLS-user in the same system
through the exchange of DLS primitives;

c) the interactions between a DLS-provider and a Ph-service provider in the same system
through the exchange of Ph-service primitives.

1.4 Applicability

These procedures are applicable to instances of communication between systems which
support time-critical communications services within the data-link layer of the OSI or fieldbus
reference models, and which require the ability to interconnect in an open systems
interconnection environment.

Profiles provide a simple multi-attribute means of summarizing an implementation’s
capabilities, and thus its applicability to various time-critical communications needs.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 11 –

1.5 Conformance

This standard also specifies conformance requirements for systems implementing these
procedures. This standard does not contain tests to demonstrate compliance with such
requirements.

2 Normative references

The following referenced documents are indispensable for the application of this standard. For
dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments) applies.

IEC 61158-2 (Ed.4.0), Industrial communication networks – Fieldbus specifications – Part 2:
Physical layer specification and service definition

IEC 61158-3-8, Digital data communications for measurement and control – Fieldbus for use
in industrial control systems – Part 3-8: Data link service definition – Type 8 elements

ISO/IEC 7498-1, Information technology – Open Systems Interconnection – Basic Reference
Model: The Basic Model

ISO/IEC 7498-3, Information technology – Open Systems Interconnection – Basic Reference
Model: Naming and addressing

ISO/IEC 10731, Information technology – Open Systems Interconnection – Basic Reference
Model – Conventions for the definition of OSI services

3 Terms, definitions, symbols and abbreviations

For the purposes of this standard, the following terms, definitions, symbols and abbreviations
apply.

3.1 Reference model terms and definitions

This standard is based in part on the concepts developed in ISO/IEC 7498-1 and ISO/IEC
7498-3, and makes use of the following terms defined therein.

3.1.1 DL-address [7498-3]

3.1.2 DL-address-mapping [7498-1]

3.1.3 DL-connection [7498-1]

3.1.4 DL-connection-end-point [7498-1]

3.1.5 DL-connection-end-point-identifier [7498-1]

3.1.6 DL-data-source [7498-1]

3.1.7 DL-name [7498-3]

3.1.8 DL-protocol [7498-1]

3.1.9 DL-protocol-connection-identifier [7498-1]

3.1.10 DL-protocol-control-information [7498-1]

3.1.11 DL-protocol-data-unit [7498-1]

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 12 – 61158-4-8 © IEC:2007(E)

3.1.12 DL-service-connection-identifier [7498-1]

3.1.13 DL-service-data-unit [7498-1]

3.1.14 DL-user-data [7498-1]

3.1.15 layer-management [7498-1]

3.1.16 (N)-entity
 DL-entity
 Ph-entity

[7498-1]

3.1.17 (N)-interface-data-unit
 DL-service-data-unit (N=2)
 Ph-interface-data-unit (N=1)

[7498-1]

3.1.18 (N)-layer
 DL-layer (N=2)
 Ph-layer (N=1)

[7498-1]

3.1.19 (N)-service
 DL-service (N=2)
 Ph-service (N=1)

[7498-1]

3.1.20 (N)-service-access-point
 DL-service-access-point (N=2)
 Ph-service-access-point (N=1)

[7498-1]

3.1.21 (N)-service-access-point-address
 DL-service-access-point-address (N=2)
 Ph-service-access-point-address (N=1)

[7498-1]

3.1.22 Ph-interface-control-information [7498-1]

3.1.23 Ph-interface-data [7498-1]

3.1.24 primitive name [7498-3]

3.1.25 reset [7498-1]

3.1.26 systems-management [7498-1]

3.2 Service convention terms and definitions

This standard also makes use of the following terms defined in ISO/IEC 10731 as they apply
to the data-link layer:

3.2.1 confirm (primitive);
 requestor.deliver (primitive)

3.2.2 DL-service-primitive;
 primitive

3.2.3 DL-service-provider

3.2.4 DL-service-user

3.2.5 indication (primitive)
 acceptor.deliver (primitive)

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 13 –

3.2.6 request (primitive);
 requestor.submit (primitive)

3.2.7 response (primitive);
 acceptor.submit (primitive)

3.3 Common terms and definitions
NOTE This subclause contains the common terms and definitions used by Type 8.

3.3.1
link, local link
single DL-subnetwork in which any of the connected DLEs may communicate directly, without
any intervening DL-relaying, whenever all of those DLEs that are participating in an instance
of communication are simultaneously attentive to the DL-subnetwork during the period(s) of
attempted communication

3.3.2
DLSAP
distinctive point at which DL-services are provided by a single DL-entity to a single higher-
layer entity.

NOTE This definition, derived from ISO/IEC 7498-1, is repeated here to facilitate understanding of the critical
distinction between DLSAPs and their DL-addresses. (See Figure 1.)

PhSA P PhSA P

DL-entity

DLS-user-entity DLS-user-entity

DLSAP DLSAP DLSAP

DLSAP-
addresses

group DL-
address

DLSAP-
address

Ph-layer

DL-layer

DLS-users

DLSAP-
address

NOTE 1 DLSAPs and PhSAPs are depicted as ovals spanning the boundary between two adjacent layers.

NOTE 2 DL-addresses are depicted as designating small gaps (points of access) in the DLL portion of a DLSAP.

NOTE 3 A single DL-entity may have multiple DLSAP-addresses and group DL-addresses associated with a
single DLSAP.

Figure 1 – Relationships of DLSAPs, DLSAP-addresses and group DL-addresses

3.3.3
DL(SAP)-address
either an individual DLSAP-address, designating a single DLSAP of a single DLS-user, or a
group DL-address potentially designating multiple DLSAPs, each of a single DLS-user

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 14 – 61158-4-8 © IEC:2007(E)

NOTE This terminology is chosen because ISO/IEC 7498-3 does not permit the use of the term DLSAP-address to
designate more than a single DLSAP at a single DLS-user.

3.3.4
extended link
DL-subnetwork, consisting of the maximal set of links interconnected by DL-relays, sharing a
single DL-name (DL-address) space, in which any of the connected DL-entities may
communicate, one with another, either directly or with the assistance of one or more of those
intervening DL-relay entities

NOTE An extended link may be composed of just a single link.

3.3.5
frame
denigrated synonym for DLPDU

3.3.6
receiving DLS-user
DL-service user that acts as a recipient of DL-user-data

NOTE A DL-service user can be concurrently both a sending and receiving DLS-user.

3.3.7
sending DLS-user
DL-service user that acts as a source of DL-user-data

3.4 Additional Type 8 definitions

3.4.1 bus coupler

PhL entity which includes or excludes Ph-segments into or from the network

3.4.2 device

slave or master

3.4.3 device code

two octets which characterize the properties of a slave

3.4.4 DLPDU cycle

transaction initiated from the master in which user data or identification/status information is
sent to all slaves and – within the same cycle - received from all slaves

3.4.5 IN data

data received by the master and sent by the slaves

3.4.6 master

DL-entity controlling the data transfer on the network and initiating the media access of the
slaves by starting the DLPDU cycle

3.4.7 OUT data

data sent by the master and received by the slaves

3.4.8 parameter channel

acyclic transmission path using a client/server communication model

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 15 –

3.4.9 process data channel

conveyance path allowing a very efficient, high-speed and cyclic transmission of process-
relevant data, between slaves and master

3.4.10 receive update memory

memory area containing the data, which was received from the network

3.4.11 ring segment

group of slaves in consecutive order

3.4.12 ring segment level

nesting level number of a ring segment

3.4.13 slave

DL-entity accessing the medium only after being initiated by the preceding slave or master

3.4.14 transmit update memory

memory area containing the data to be sent across the network

3.4.15 update time

time which passes between two consecutive starts of DLPDU cycles used for data transfer

3.5 Symbols and abbreviations

3.5.1 Type 8 reference model terms

BLL basic link layer

BLLSDU BLL service data unit

BLL_TSDU BLL transmit service data unit

BLL_RSDU BLL receive service data unit

MACSDU MAC service data unit

PDL peripherals data link

PDLSDU PDL service data unit

PhMS Ph-management service

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 16 – 61158-4-8 © IEC:2007(E)

3.5.2 Local variables, timers, counters and queues

add_wait See Table 15

BLL_access_control See Table 31

bus_timeout See Table 31

Ccerr See Table 22

Cconf See Table 22

Ccycle See Table 22

Creq_retry See Table 22

Cswa See Table 22

configuration_valid See Table 31

loopback_word (LBW) See Table 41

max_dlsdu_size_from_req See Table 15

max_dlsdu_size_from_res See Table 15

max_receiving_queue_depth See Table 15

max_sending_queue_depth See Table 15

max_spa_retry See Table 15

max_swa_count See Table 15

start_bus_cycle See Table 15

time_timeout See Table 41

trigger_mode See Table 15

update_time See Table 31

3.5.3 DLPDU classes

DATA data See Table 20

FCB_SET frame count bit See Table 20

IDL idle See Table 20

RWA read word again See Table 20

SPA send parameter with acknowledge See Table 20

SVA send value with acknowledge See Table 20

SWA send word again See Table 20

3.5.4 Miscellaneous

AT application triggered

BAC basic access control

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 17 –

CO confirmation

CRC cyclic redundancy check

DL-Ph Data Link-Physical (interface)

DLI DL-interface

DSAP destination service access point

FCB frame count bit

FCT function

FMS fieldbus message specification

GSM get shared memory

IN input

L_status link status

LBW loopback word

lsb least significant bit

M, (m) mandatory

msb most significant bit

NT network triggered

O, (o) optional

OUT output

PDL peripherals data Link

PM protocol machine

PNM1 peripherals network management of Layer 1

PNM2 peripherals network management of Layer 2

PSM put shared memory

RUM receive update memory

S selection

SM state machine

TUM transmit update memory

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 18 – 61158-4-8 © IEC:2007(E)

4 DL-protocol

4.1 Overview

The DLL is modelled as a Four-Level model (see Figure 2).

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS-user DLMS-user

Layer 1

Figure 2 – Data Link Layer Entity

4.2 DL-service Interface (DLI)

4.2.1 General

The Data Link service Interface (DLI) provides service primitives to the DLS-user and DLMS-
user (see Figure 3).

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS-user DLMS-user

Layer 1

Figure 3 – Location of the DLI in the DLL

The DLI translates and issues the primitives received from the DLS-/DLMS-user to the local
PDL and PNM2 interface. It also translates and issues the primitives received from the local
PDL or PNM2 interface and delivers it to the DLS-/DLMS-user.

The DLI protocol has only a single state called “ACTIVE”.

4.2.2 Primitive definitions

4.2.2.1 General

Table 1 and Table 2 show the primitives exchanged between DLS-/DLMS-user and DLI.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 19 –

4.2.2.2 Primitives exchanged between DLS-/DLMS-user and DLI

Table 1 – Primitives issued by DLS-/DLMS-user to DLI

Primitive name Source Associated parameters Functions

DL-PUT request DLS-
user

Buffer DL-identifier,
DLS-user-data

Requests the DLE to write a
DLSDU into the transmit buffer

DL-GET request DLS-
user

Buffer DL-identifier Requests the DLE to read a
DLSDU from the receive buffer

DL-DATA request DLS-
user

DLCEP DL-identifier,
DLS-user-data

Requests the DLE to write a
DLSDU into the send queue

DLM-RESET request DLS-
user

(<none>) Requests the DLE to execute a
reset.

DLM-SET-VALUE request DLMS-
user

Variable-name,
Desired-value

Requests the DLE to overwrite a
local variable

DLM-GET-VALUE request DLMS-
user

Variable-name This Primitive is issued to
request the DLL to read the
content of a local variable

DLM-GET-CURRENT-CONFIGURATION request DLMS-
user

Desired-configuration Requests the DLE to read out
the current configuration of the
DL-subnetwork.

DLM-GET-ACTIVE-CONFIGURATION request DLMS-
user

(<none>) Requests the DLE to read out
the active configuration of the
DL-subnetwork

DLM-SET_ACTIVE_CONFIGURATION request DLMS-
user

Active-configuration Requests the DLE to execute a
certain active configuration of
the DL-subnetwork

Table 2 – Primitives issued by DLI to DLS-/DLMS-user

Primitive name Source Associated parameters

DL-PUT confirm DLI Status

DL-GET confirm DLI Status,
DLS-user-data

DL-BUFFER-RECEIVED indication DLI Status

DL-DATA confirm DLI Status

DL-DATA indication DLI DLCEP DL-identifier,
DLS-user-data

DLM-RESET confirm DLI Status

DLM-EVENT indication DLI Event-identifier,
Additional-information

DLM-SET-VALUE confirm DLI Status

DLM-GET-VALUE confirm DLI Status,
Additional-information

DLM-GET-CURRENT-CONFIGURATION confirm DLI Status,
Additional-information

DLM-GET-ACTIVE-CONFIGURATION confirm DLI Status,
Additional-information

DLM-SET-ACTIVE-CONFIGURATION confirm DLI Status,
Additional-information

4.2.2.3 Parameters of DLS-/DLMS-User and DLI primitives

All parameters used in the primitives exchanged between the DLS-/DLMS-user and the DLI
are specified in IEC 61158-3-8.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 20 – 61158-4-8 © IEC:2007(E)

4.2.3 DLI State Tables

4.2.3.1 General

Figure 4 show a state transition diagram of the DLI.

ACTIVE All transactions

Figure 4 – State transition diagram of DLI

The transitions of the DLI protocol are specified in Table 3 and Table 4. Service primitive
names are mixed-case with underscores (“_”) replacing dashes (“-“), and with a dot-separated
suffix indicating the underlying type of primitive: request, confirm or indication.

Table 3 – DLI state table – sender transactions

Current state Event
 Action Next state

S1 ACTIVE DL_Put.request

 PSM.request{
 offset := GetOffset(Buffer DL-identifier)
 length := “length of DLS-user-data”
 data := DLS-user-data }

ACTIVE

S2 ACTIVE DL_Get.request

 GSM.request{
 offset := GetOffset(Buffer DL-identifier)
 length := GetLength(Buffer DL-identifier) }

ACTIVE

S3 ACTIVE DL_Data.request{

 PDL_Data_Ack.request{
 rem_add := GetRemAdd (DLCEP DL-identifier)
 DLSDU := DLS-user-data }

ACTIVE

S4 ACTIVE DLM_Reset.request

 PNM2_Reset.request{ }

ACTIVE

S5 ACTIVE DLM_Set_Value.request

 PNM2_Set_Value.request {
 variable_name := Variable-name,
 desired_value := Desired-value }

ACTIVE

S6 ACTIVE DLM_Get_Value.request

 PNM2_Get_Value.request{
 variable_name := Variable-name }

ACTIVE

S7 ACTIVE DLM_Get_Current_Configuration.request

 PNM2_Get_Current_Configuration.request{
 network_configuration := Desired Configuration }

ACTIVE

S8 ACTIVE DLM_Get_Active_Configuration.request

 PNM2_Get_Active_Configuration.request{ }

ACTIVE

S9 ACTIVE DLM_Set_Active_Configuration.request

 PNM2_Set_Active_Configuration.request{
 active_configuration := Active-configuration }

ACTIVE

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 21 –

Table 4 – DLI state table – receiver transactions

Current state Event
 Action Next state

R1 ACTIVE PSM.confirm

 DL_Put.confirm{
 Status := status }

ACTIVE

R2 ACTIVE GSM.confirm

 DL_Get.confirm{
 Status := status,
 DLS-user-data := data }

ACTIVE

R3 ACTIVE Buffer_Received.indication

 DL_Buffer_Received.indication{
 Status := status }

ACTIVE

R4 ACTIVE PDL_Data_Ack.confirm

 DL_Data.confirm{
 Status := L_status }

ACTIVE

R5 ACTIVE PDL_Data_Ack.indication

 DL_Data.indication{
 DLCEP DL-identifier
 := GetDlsUserId(local_add),
 DLS-user-data := DLSDU }

ACTIVE

R6 ACTIVE PNM2_Reset.confirm

 DLM_Reset.confirm{
 Status := M_status }

ACTIVE

R7 ACTIVE PNM2_Event.indication

 DLM_Event.indication {
 Event-identifier := event,
 Additional-information := add_info }

ACTIVE

R8 ACTIVE PNM2_Set_Value.confirm

 DLM_Set_Value.confirm {
 Status := M_status}

ACTIVE

R9 ACTIVE PNM2_Get_Value.confirm

 DLM_Get_Value.confirm{
 Status := M_status
 Current-Value := current_value }

ACTIVE

R10 ACTIVE PNM2_Get_Current_Configuration.confirm

 DLM_Get_Current_Configuration.confirm{
 Status := status,
 Current-configuration := current_configuration }

ACTIVE

R11 ACTIVE PNM2_Get_Active_Configuration.confirm

 DLM_Get_Active_Configuration.confirm{
 Status := status,
 Active-configuration := active_configuration }

ACTIVE

R12 ACTIVE PNM2_Set_Active_Configuration.confirm

 DLM_Set_Active_Configuration.confirm{
 Status := status,
 Additional-information := add_info }

ACTIVE

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 22 – 61158-4-8 © IEC:2007(E)

4.2.3.2 Functions used by DLI

The functions used by DLI are given in Table 5 to Table 8. The details of these functions is
not specified by of this standard. These functions use information which was stored by the
local DL-management when establishing the DLCs.

Table 5 – Function GetOffset

Name GetOffset Used in DLI

Input Buffer DL-identifier Output Offset address

Function Returns a value that can unambiguously identify the offset address from the transmit buffer

Table 6 – Function GetLength

Name GetLength Used in DLI

Input Buffer DL-identifier Output Length of data

Function Returns the size of the DLSDU which can be held by the buffer named by Buffer DL-identifier.

Table 7 – Function GetRemAdd

Name GetRemAdd Used in DLI

Input DLCEP DL-identifier Output Remote address

Function Returns a value that can unambiguously identify the remote address from the remote device

Table 8 – Function GetDlsUserId

Name GetDlsUserId Used in DLI

Input Local address Output DLCEP DL-identifier

Function Returns a value that can unambiguously identify the DLCEP DL-identifier from the DLS user

4.3 Peripherals data link (PDL)

4.3.1 Location of the PDL in the DLL

The Peripherals Data Link (PDL) is part of the Data Link Layer and uses the Basic Link Layer.
Figure 5 shows its location.

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS-user DLMS-user

Layer 1

Figure 5 – Location of the PDL in the DLL

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 23 –

By means of the PDL layer each slave can establish a communication link with the master
(see Figure 6).

Master

Slave Slave

Figure 6 – PDL connection between slave and master

4.3.2 Functionality of the PDL

The PDL performs the following tasks.

— Processing of PDL_Data_Ack service
— Conversion of the non-cyclic PDL_Data_Ack service to cyclic BLL_Data services and vice

versa
— Conversion of several DLSDUs of the PDL_Data_Ack.request primitives into a PDLSDU of

the BLL_Data.request primitive
— Implementation of two trigger_modes within the PDL (bus master only)

— Control of the local PDL protocol machine(s)
— Update of the receive update memory and starting of the PDL protocol machines after a

PDLSDU which was received from the BLL has been accepted,
— Generation of a PDLSDU from the transmit update memory as well as by means of the

PDL protocol machines and transfer of this PDLSDU to be sent to the BLL
— Implementation of a direct access for PDL-user to the PDL receive and transmit update

memory.
NOTE A PDLSDU of the master contains all cyclic data via PSM service to be transmitted in a data cycle and PDL
message segments. The PDLSDU of a slave is a subset of the PDLSDU of the master and contains only the cyclic
data to be transmitted in one data cycle and the PDL message segment of this slave

The PDL translates these functions by means of the four following protocol machines.

— PDL base protocol machine
— PDL protocol machine
— TRANSMIT protocol machine
— RECEIVE protocol machine.

4.3.3 DLI-PDL interface

4.3.3.1 General

The PDL provides service primitives for the PDL-user (see Figure 7).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 24 – 61158-4-8 © IEC:2007(E)

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS-user DLMS-user

Layer 1

Figure 7 – Interface between PDL-user (DLI) and PDL in the layer model

4.3.3 describes the data transmission services which are available to the PDL-user, together
with their service primitives and their associated parameters. These PDL services are
mandatory.

4.3.3.2 Overview of the services

4.3.3.2.1 Available services

The following service for data transfer shall be available to the PDL-user:

— Send Parameter with Acknowledge (PDL_Data_Ack).

Furthermore, the PDL-user can use the following services to directly access the update
memory.

— Put Shared Memory (PSM)
— Get Shared Memory (GSM).

Figure 8 shows an overview of the services of the PDL.

PDL PDL PDL

PhL PhL PhL

PDL_Data_Ack PDL_Data_AckPSM GSM GSMPSM

Master Slave Slave

Figure 8 – Overview of the PDL services

4.3.3.2.2 Send parameter with acknowledge (PDL_Data_Ack)

This service allows a local PDL-user to send user data (DLSDU) to a single remote PDL-user.
The remote PDL transfers the DLSDU to its PDL-user, provided that the DLSDU was received
without errors. The local PDL-user receives a confirmation on the receipt or non-receipt of the
DLSDU of the remote PDL.

The PDL_Data_Ack service shall only be used to transfer data from a queue.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 25 –

Service primitives:

— PDL_Data_Ack.request
— PDL_Data_Ack.indication
— PDL_Data_Ack.confirm

4.3.3.2.3 Put shared memory (PSM)

This service allows a PDL-user to write data of a certain length into the transmit update
memory. The BLL shall transmit this data in the next bus cycle.

Service primitives:

— PSM.request
— PSM.confirm

4.3.3.2.4 Get shared memory (GSM)

This service allows a PDL-user to read data of a certain length from the receive update
memory.

Service primitives:

— GSM.request
— GSM.confirm

4.3.3.2.5 Buffer received (Buffer_Received)

The PDL uses this service to indicates the local PDL-user, that the contents of

 Transmit Update Memory is transmitted, and the contents of
 Receive Update Memory is updated with new received data.

Service primitive:

 Buffer_Received.indication

4.3.3.3 Overview of the interactions

The services are provided by several service primitives (beginning with PDL_…). In order to
request a service, the PDL-user uses a request primitive. A confirmation primitive is returned
to the PDL-user after the service has been completed. The arrival of a service request is
indicated to the remote PDL-user by means of an indication primitive.

Figure 9, Figure 10, Figure 11 and Figure 12 show the sequences of service primitives to
handle the data transfer between master and slave:

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 26 – 61158-4-8 © IEC:2007(E)

(LSDU)

(LSDU)

(LPDU)

(LPDU)

Master Slave

(LSDU)

(LSDU)

(LPDU)

(LPDU)

: :

PDL PDLNetwork
PDL_Data_Ack.req

PDL_Data_Ack.con
PDL_Data_Ack.ind

PDL_Data_Ack.con

PDL_Data_Ack.req

PDL_Data_Ack.ind

Figure 9 – PDL_Data_Ack service between master and only one slave

PDL_Data_Ack.req

PDL_Data_Ack.req

PDL_Data_Ack.req

DLLDLL

Master Slave 1
DLL

DLLSlave 2

Slave 3

PDL_Data_Ack.ind

PDL_Data_Ack.ind

PDL_Data_Ack.ind

PDL_Data_Ack.con

PDL_Data_Ack.con

PDL_Data_Ack.con

Figure 10 – Parallel processing of PDL_Data_Ack services

PDL user PDL

PSM/GSM.req

PSM/GSM.con

Figure 11 – PSM and GSM service for buffer access

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 27 –

Buffer_Received.ind

PDLPDL user

Figure 12 – Buffer_Received service to indicate successful data transfer

4.3.3.4 Formal description of the services and parameters

4.3.3.4.1 PDL_Data_Ack Service

Table 9 shows the parameters of the PDL_Data_Ack service.

Table 9 – PDL_Data_Ack

Parameter name Request Indication Confirm

Argument
 rem_add
 local_add
 DLSDU

Result
 rem_add
 L_status

M
M

M

M

M
M(=)

M
M
M

rem_add:
The rem_add parameter defines the PDL address of the remote device. The rem_add
corresponds to the physical position of the device in the ring.

local_add:
The local_add parameter conveys the PDL address of the device where the PDL_Data_Ack
service was invoked.

DLSDU:
The DLSDU parameter contains the PDL-user data to be transmitted.

L_status:
The L_status parameter indicates the success or failure of the preceding
PDL_Data_Ack.request. The following values are defined for this parameter in Table 10:

Table 10 – PDL_Data_Ack L_status values

Value Meaning

OK Positive acknowledgement, service executed successfully

RR Negative acknowledgement, resources of the remote PDL not available or insufficient

LR Resources of the local PDL not available or insufficient

NA No or not a plausible response (acknowledge response) from the remote device

DS PDL layer not synchronized at the moment

IV Invalid parameter in the request call

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 28 – 61158-4-8 © IEC:2007(E)

4.3.3.4.2 PSM service

Table 11 shows the parameters of the PSM service.

Table 11 – PSM

Parameter name Request Confirm

Argument
 offset
 length
 data

Result(+)

Result(-)
 error_type

M
M
M
M

S

S
M

offset:
This parameter specifies the offset address, beginning from the start address of the PDL
transmit update memory, where the data should be written.

length:
This parameter specifies the amount of the data, which should be written into the PDL
transmit update memory of layer 2.

data:
This parameter conveys the data, which should be written into the PDL transmit update
memory of the layer 2.

error_type:
This parameter indicates the reason, why the service could not be executed successfully.

Possible errors are:

IV Invalid parameters in the request call
Data to write into the transmit update memory are not allowed, because the given
parameter(s) of offset and/or length is/are invalid.

4.3.3.4.3 GSM service

Table 12 shows the parameters of the GSM service.

Table 12 – GSM

Parameter name Request Confirm

Argument
 offset
 length

Result(+)
 data

Result(-)
 error_type

M
M
M

S
M

S
M

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 29 –

offset:
This parameter specifies the offset address, beginning from the start address of the PDL
receive update memory, from where the data should be read.

length:
This parameter specifies the amount of the data, which should be read from the PDL receive
update memory.

data:
This parameter conveys the data, which was read from the PDL receive update memory.

error_type:
This parameter indicates the reason, why the service could not be executed successfully.
Possible error sources:

IV Invalid parameters in the request call
Data to be read from the receive update memory are not allowed, because the
given parameter(s) of offset and/or length is/are invalid.

4.3.3.5 Detailed description of the interactions

4.3.3.5.1 Send parameter with acknowledge (PDL_Data_Ack)

The local PDL-user prepares a DLSDU which is transmitted by a PDL_Data_Ack.request
primitive to the local PDL. The PDL accepts this service request and tries to send the DLSDU
to the requested remote PDL. The local PDL sends a confirmation to its PDL-user with the
PDL_Data_Ack.confirm primitive, which indicates a correct or incorrect data transfer.

Before the local PDL sends a confirmation to its user, a confirmation from the remote PDL is
mandatory. If this confirmation is not received within the timeout period TTO_SPA_ACK, the local
PDL retries to send the DLSDU to the remote PDL. If the confirmation does not come after the
Nth repetition (max_retry_count), then the local PDL sends a negative confirmation to its user.

If the data message was received without errors, the remote PDL transfers the DLSDU with a
PDL_Data_Ack.indication primitive through the PDL-user interface.

The coding of the DLSDU is described in 4.3.5.3. Figure 13 shows the data flow between
PDL-user, PDL and BLL for a PDL_Data_Ack service:

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 30 – 61158-4-8 © IEC:2007(E)

PDL_Data_Ack.ind (LSDU)

PDL_Data_Ack.con (LSDU)

BLL_Data.ind (PDLSDU)
(Slave only)

BLL_Data.res (PDLSDU)
(Slave only)

BLL_Data.req (PDLSDU)
(Master only)

PDL_Data_Ack.req (LSDU)

PDL

PDL-user

BLL

BLL_Data.con (PDLSDU)
(Master only)

Figure 13 – Data flow between PDL-user, PDL and BLL of a PDL_Data_Ack service

4.3.3.5.2 Put shared memory (PSM)

The PDL-user uses this service to write user data directly to the transmit update memory. The
service is locally processed after the PSM.request primitive has arrived. The PDL
communicates the successful processing of the service to its PDL-user by means of a
PSM.confirm primitive (immediate confirmation).

4.3.3.5.3 Get shared memory (GSM)

The PDL-user uses this service to read user data directly from the PDL receive update
memory. The service is locally processed after the GSM.request primitive has arrived. The
PDL communicates the successful processing of the service to the PDL-user by means of a
GSM.confirm primitive (immediate confirmation).

4.3.4 PDL-PNM2 interface

4.3.4.1 General

This subclause defines the administrative PDL management services which are available to
the PNM2, together with their service primitives and the associated parameters.

The PDL management is a part of the PDL that provides the management functions of the
PDL requested by the PNM2. The PDL management handles the initialization, monitoring and
error recovery in the PDL. Figure 14 shows the interface between PDL and PNM2 in the layer
model.

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS-user DLMS-user

Layer 1

Figure 14 – Interface between PDL and PNM2 in the layer model

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 31 –

The service interface between PDL and PNM2 provides the following functions.

— Reset of the PDL protocol machine.
— Request and change of the current operating parameters of the PDL protocol machine.
— Indication of unexpected events, errors and status changes which occurred or are

detected in the PDL.

4.3.4.2 Overview of the services

4.3.4.2.1 Available services

The PDL makes the following services available to the PNM2:

— Reset PDL,
— Set Value PDL or Get Value PDL,
— Event PDL.

The PDL services are described with service primitives (beginning with PDL_…).

4.3.4.2.2 Reset PDL

The PNM2 uses this required service to reset the PDL. Upon execution, the PNM2 receives a
confirmation.

Service primitives:

— PDL_Reset.request
— PDL_Reset.confirm

4.3.4.2.3 Set Value PDL

The PNM2 uses this optional service to set new values to the PDL variables. Upon
completion, the PNM2 receives a confirmation from the PDL whether the defined variables are
assumed with the new value.

Service primitives:

— PDL_Set_Value.request
— PDL_Set_Value.confirm

4.3.4.2.4 Get Value PDL

The PNM2 uses this optional service to read the actual value of the PDL variables. The
current value of the defined variable is transmitted with the confirmation from the PDL.

Service primitives:

— PDL_Get_Value.request
— PDL_Get_Value.confirm

4.3.4.2.5 Event PDL

The PDL uses this required service to inform the PNM2 about certain detected events or
errors in the PDL.

Service primitive:

— PDL_Event.indication

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 32 – 61158-4-8 © IEC:2007(E)

4.3.4.3 Overview of the interactions

Figure 15 and Figure 16 show the time relations of the service primitives:

PDL_XXX.req

PNM 2PDL

PDL_XXX.con

Figure 15 – Reset, Set Value and Get Value PDL services

PNM 2PDL

PDL_Event.ind

Figure 16 – Event PDL service

4.3.4.4 Detailed definition of the services and interactions

4.3.4.4.1 PDL_Reset

The PDL_Reset service is mandatory. The PNM2 transmits a PDL_Reset.request primitive to
reset the PDL protocol machine (see Table 13).

Table 13 – PDL_Reset

Parameter name Request Confirm

Argument

Result(+)

M

M

4.3.4.4.2 PDL_Set_Value

The PDL_Set_Value service is optional. The PNM2 transfers a PDL_Set_Value.request
primitive to the PDL to set a defined PDL variable with a desired value. After receipt of this
primitive, the PDL tries to select the variable and to set the new value. Upon execution, the
PDL transfers a PDL_Set_Value.confirm primitive to the PNM2 (see Table 14).

Table 14 – PDL_Set_Value

Parameter name Request Confirm

Argument
 variable_name
 desired_value

Result(+)

M
M
M

M

variable_name:
This parameter defines the PDL variable which is set to a new value.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 33 –

desired_value:
This parameter declares the new value for the PDL variable.

Table 15 provides information on which PDL variable may be set to which new value.

Table 15 – PDL variables

Name of PDL variable Value range Default

max_spa_retry 0,2,4,6, … 14 14

max_swa_count 0 … 255 128

add_wait 1, 2, 3, 4 4

start_bus_cycle ON, OFF OFF

trigger_mode network_triggered (NT),
application_triggered (AT)

NT

max_dlsdu_size_from_req 1 … 256 (see note) 256

max_dlsdu_size_from_res 1 … 256 (see note) 256

max_receiving_queue_depth 1 … 256 (see note) 256

max_sending_queue_depth 1 … 256 (see note) 256

NOTE Only for PDL_Data_Ack services and each link.

4.3.4.4.3 PDL_Get_Value

The PDL_Get_Value service is optional. The PNM2 transfers a PDL_Get_Value.request
primitive to the PDL to read out the current value of a defined PDL variable. After the PDL has
received this primitive, it tries to select the defined variable and to transfer its current value to
the PNM2 by means of a PDL_Get_Value.confirm primitive (see Table 16).

Table 16 – PDL_Get_Value

Parameter name Request Confirm

Argument
 variable_name

Result(+)
 current_value

M
M

M
M

variable_name:
This parameter defines the PDL variable, whose value should be read.

current_value:
This parameter contains the desired value of this PDL variable.

Only those PDL variables can be read, which can also be written by the service
PDL_Set_Value.request.

4.3.4.4.4 PDL_Event

The PDL_Event service is mandatory. The PDL transfers a PDL_Event.indication primitive to
the PNM2 to inform it about detected events or errors in the PDL (see Table 17).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 34 – 61158-4-8 © IEC:2007(E)

Table 17 – PDL_Event

Parameter name Indication

Argument
 event

M
M

event:
This parameter defines the value of the detected event or error cause in the PDL according to
Table 18:

Table 18 – Events

Name Meaning Mandatory/optional

PDL_cycle_end The receive update memory was updated,
and the contents of the transmit update
memory are transmitted to the BLL

O

4.3.5 Data transfer procedures from a queue

4.3.5.1 Bus access and data transfer mechanism

4.3.5.1.1 Synchronization cycle

Before starting of data transfer between the master and the slave(s), the PDL layers on all
devices shall start with a synchronization cycle. In this cycle, a synchronization message
resets the frame count bit flags in all devices to a defined value. In addition, the master
started with the transmit of configure data to all slaves. After receiving the new configure
data, all slaves shall initialize themselves with the new received configure values.

The frame count bits prevent a multiplication of messages at the confirming and/or responding
device (responder), as these would cause the loss of positive acknowledgements.

A synchronization cycle only takes place for one communication relationship, that is, between
the PDL protocol machine of the master and the PDL protocol machine of a slave. A
synchronization cycle is initiated in the following cases:

— after a hardware reset,
— after a reset of the PDL layer by the PDL-user,
— after the detection of protocol errors,
— after a multiple data cycle error (max_swa_count time expired), and
— after a multiple SPA_acknowledge_timeout (the SPA acknowledge timeout occurred

max_spa_retry-times).

In the first two cases the buffers and queues of the protocol layer for sending and receiving of
messages are cleared from the concerned devices. Thus, all requests, confirmations and
indication stored in these buffers are lost. In the remote device, however, no buffers are
cleared. After the synchronization cycle this device tries to transmit the interrupted send
message again.

In all other cases no buffers are cleared in any device. Upon a successful synchronization,
both devices re-try to carry out orders of the application which have not yet been completed.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 35 –

4.3.5.1.2 SVA message

Upon a successful synchronization and before interrupted messages are sent again, the
master sends a SVA Message ("Send Value with Acknowledge") to the slave. The SVA
Message transfers variables for the parameterisation of the PDL protocol machine.

The SVA Message transmits max_swa_count. The max_swa_count variable has a default
value of 128 and can be parameterized by means of PDL_Set_Value. The slave accepts this
value as its own max_swa_count.

The max_swa_count variable shall be transferred. In addition, other variables may be
specified.

4.3.5.1.3 Frame count bit

The frame count bit (FCB) prevents a multiplication of messages at the confirming and/or
responding device (responder), as this would cause the loss of positive acknowledgements.

If a positive acknowledgement is lost for whatever reason, the requester tries to sent the
previous message again. When this message has already been correctly received by the
responder, this is indicated by an unchanged FCB. In this case the responder again sends the
acknowledgement to the requester, directly after the receipt of the first message segment.
Then, the requester stops the repeated sending.

If a new message is to be sent the FCB shall be changed. To ensure that the requester FCB
(transmit FCB) and the responder FCB (receive FCB) of the remote device have the same
initial value after the initialization of the layer 2 and after protocol errors, there will be a
synchronization with FCB_SET messages. The FCBs are set to '1' if the synchronization was
successful.

There is a FCB pair for both transmission directions (one transmit and one receive FCB for
each direction) (see Figure 17).

 Master Slave

Transmit FCB

Transmit FCBReceive FCB

Receive FCB

Figure 17 – Transmit and receive FCBs on the master and slave sides

4.3.5.1.4 Data transmission of bus cycles with errors

If a data cycle error occurs during the transmission of a SPA or SVA Message, the queue is
not completely transmitted again. The transmission is rather continued with the queue parts
that follow the error.

The master responds to cycle errors. Thus, a distinction is to be made between the two
transmission directions master → slave and slave → master. If a cycle error occurs, this
does not have any influence on the PDL protocol machine.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 36 – 61158-4-8 © IEC:2007(E)

1) Data transmission: master → slave

If the master detects a data cycle error while queue is transmitted, the transmission shall be
repeated from the error onwards. In this case the master communicates the error to the slave
by means of a SWA Message.

Figure 18 and Figure 19 clarify the transmission master → slave with SWA Message. The
numbering corresponds to the time sequence:

Master Slave

2) Cycle error

1) DATA PDU
 ...

3) SWA PDU
4) DATA PDU repeated

Figure 18 – Data transmission master → slave with SWA Message

Slave

IBS ring

MasterI
O

O
I

--
--

--
-- ---- ---- -- --

-- -- -- -- -- --

---- ----

-- -- -- -- -- --
IDL

IDL

IDL

0 SWA W1 W2 W3

W1

W1 W2

0

SWA

SWA

W1

W1

W2

W2

W3

W3

W4

W4

W5 ...

...

...

A1 A2 A3 A4 A5 A6 A7 A8

C1 C2 C3 C5C4 C6 C7 C8 C9Cycle:

Master detected a
cycle error

Cycle C3 does not cause a start of the PDL
machine, as this cycle contains an error.

Start of
PDL

Figure 19 – Time sequence of the data transmission master → slave with SWA Message

2) Data transmission: slave → master:

If the master detects a cycle error when it receives a PDU, the slave will be announced
immediately from the master by means of a RWA PDU. The slave shall confirm this RWA PDU
with a SWA PDU, before the DATA PDU is sent again. The master uses the SWA PDU to
mark the beginning of repeated data transmission.

An outstanding data transmission sequence from master → slave is interrupted during the
RWA Message transfer and after the exception handling the data transmission can be
continued.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 37 –

Figure 20 and Figure 21 clarify the transmission slave → master with RWA Message or SWA
Message:

Master Slave

2) Cycle error

1) DATA PDU ...

4) SWA PDU
5) DATA PDU

3) RWA PDU

repeated

Figure 20 – Data transmission slave → master with SWA/RWA Message

Slave

Bus

MasterI
O

O
I

--

--

-- ---- ---- ----

-- -- -- -- --

---- ----

---- -- -- -- --
IDL

IDLIDL

SWA W1 W2 W3

W1

W1 W2

RWA

RWA

(W1)

W1

W2

W2

W3

W3

--

W4W4

...

...

...

A1 A2 A3 A4 A5 A6

C1 C2 C3 C5C4 C6 C7 C8 C9Cycle:

Cycle C3 does not cause a start of the PDL
machine, as this cycle contains an error.

RWA

W4 SWA W2

C10

IDL IDL W3 W4 SWA W1

A7

--

Master detects
a bus cycle with errors

Figure 21 – Time sequence of the data transmission slave → master with SWA/RWA
Message

4.3.5.2 Description of the time sequences

Master:
After each data cycle the PDL protocol machine is started once in the master for each slave in
the ring having a parameter channel.

Among others, the protocol machine knows the following parameters:

Input parameters:

— The message segment which has been received during the last intact data cycle from the
slave.

— The information whether a bus cycle error occurred during the last data cycle.
Output parameters:
— The message segment which is to be sent in the next cycle to the slave.

In Figure 22 these parameters are shown for each PDL protocol call A1…An, where I0…In
identify the receive data for the master and the send data for the slave. Accordingly, O0…On
are send data of the master and receive data of the slave.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 38 – 61158-4-8 © IEC:2007(E)

Slave:
After the completion of a data cycle the PDL protocol machine is started on the slave, if the
slave determined that the master did not send an IDL PDU and/or there is an outstanding
send data request on the slave. IDL PDU are transmitted whenever there is no further user
data are to be transmit. The last received message can be read and/or one outstanding send
message can be prepared in the PDL protocol machine. The PDL pass the PDLPDU to the
BLL for transmitting within the next data cycle to the master. The third line of the
representation shows the starts of the PDL protocol machine of the slave (A1…A9) and the
associated send and receive messages.

Bus:
In Figure 22, the middle row shows the cycles (C1…C9) and the messages which are
transmitted in these cycles from the slave to the master and vice versa.

The transmission of a message from the TRANSMIT protocol machine of the master to the
RECEIVE protocol machine of the slave requires two cycles, and the transmission from the
TRANSMIT protocol machine of the slave to the RECEIVE protocol machine of the master
requires three cycles.The TRANSMIT and RECEIVE protocol machines are components of the
PDL protocol machine.

Slave

Bus

MasterI
O

O
I

...

...

...

A1 A2 A3 A4 A5 A6 A7 A8

C1 C2 C3 C5C4 C6 C7 C8 C9Cycle:

A9

I 0

I 1

I 2 I 3 I 4 I 5 I 6 I 7 I 8

I 5 I 6 I 7I 4I 3 I 8 I 9 I 10 I 11

I 1

I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

O 2 O 3 O 4 O 5 O 6 O 7 O 8 O 9 O 10

O 2

O 2 O 3

O 3

O 4

O 4

O 5

O 5

O 6

O 6

O 7

O 7

O 8

O 8

O 9O 1

O 0 O 1

Start of the PDL
machine

Start of the PDL
machine

A1 A2 A4A3 A6A5 A8A7 A9

Figure 22 – Allocation of actions of the PDL protocol machines and data cycles

In the slave, the start of the PDL protocol machine for the sending and receiving of PDLPDU
shall be completed before a further cycle end was indicated. Otherwise received data can be
lost. The DLPDU cycle time depends with the respect from the number of slaves and from the
data width of each slave which are connected to the DL-subnetwork.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 39 –

Slave

Bus

MasterI
O

O
I

-- --
---- ----

-- -- -- -- --

--
-- ---- -- --

IDL

IDL

W2 W3

W1

W1 W2

W2 W3

W4

...

...

...

A1 A2 A3 A4 A5 A6

C1 C2 C3 C5C4 C6 C7 C8 C9Cycle:

W4

C10

W3 W4

A7

CO
IDL

CO

CO

--
IDLIDL IDL IDL

-- IDL IDL IDL IDL

-- --
IDL W1

-- -- --
IDL IDLIDL

--

A8 A9

A1 A2 A3 A4 A5 A6 A7

Figure 23 – Message transmission: master → slave

Slave

Bus

MasterI
O

O
I

-- -- -- --

-- -- -- ----

---- ------

IDL

IDL

W2

W1

W1 W2

W2 W3

W4

...

...

...

A1 A2 A3 A4 A5

C1 C2 C3 C5C4 C6 C7 C8 C9Cycle:

W4

C10

W3 W4
CO

IDL

CO

CO

--
IDLIDL IDLIDL

IDL

IDL

IDL IDL

-- --
W1

-- -- --
IDL IDLIDL

--

W3 IDL IDL

--

IDLIDL

A6

A1 A2 A3 A4 A5 A6 A7 A8 A9

Figure 24 – Message transmission: slave → master

Figure 23 and Figure 24 show that at least DIST = 5 data cycles are needed between the
sending of the last message, until a confirmation (CO) for this message is received.

Delays while confirmations may be also taken into the account, so the protocol need
additional cycles for waiting of a confirmation. This number of additional cycles is stored in
the variable "add_wait". On the master side the variable add_wait can be parameterized with
the PDL_Set_Value (value range: 1 to 4). The contents of the variable add_wait is transmitted
from the master to the slave within the FCB_SET PDU while the PDL protocol machines are
synchronized.

4.3.5.3 Coding of the messages

4.3.5.3.1 Overview

The message length for a slave with the parameter channel consists at least one octet for
FCT and additional the length of the data 1, 3 or 7 octets, depending from the size of the
message for transmission.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 40 – 61158-4-8 © IEC:2007(E)

4.3.5.3.2 Structure of the code octet

4.3.5.3.2.1 General

Figure 25 shows the structure of a code octet, Table 19 shows the L_status encoding and
Table 20 the FCT code.

B16 B15 B14 B13 B12 B11 B10 B9

L_status FCT code FCB IDL

Figure 25 – Code octet of a PDLPDU

Table 19 – Encoding of the L_status

L_status
(B16 B15 B14)

Generation
(Local/Remote)

Meaning

0 0 0 – No confirmation

0 0 1 L / R Acknowledgement positive

0 1 0 R Acknowledgement negative,
no resource available (buffer full)

0 1 1 L / R Acknowledgement negative,
multiple data cycle error
(transmission via the bus only from
the master to the slave)

1 0 0 R Acknowledgement positive
(repeated)

1 0 1 R Acknowledgement negative,
no resource available (repeated)

1 1 0 L Acknowledgement negative,
acknowledge_timeout

1 1 1 R FCB_SET confirmation, the FCT
code equals 0; FCB = 1!

Table 20 – FCT code (PDLPDU-Types)

Function code PDL-PDU Types Meaning

0 0 0 IDL PDU The IDL PDU do not contain any information (except for a FCB_SET
confirmation).

0 0 1 DATA PDU The DATA PDU contains segments of user data or PDL variables.

0 1 0 SPA PDU The SPA PDU defines the start of a new queue data transmission and
contains at least the length information of DLSDU in octets-1 and segments
of user data.

0 1 1 SVA PDU The SVA PDU defines the start of a new variable data transmission and
contains at least the length information of variable data in octets-1 and
possibly PDL variables.

1 0 0 Don’t spare Reserved

1 0 1 RWA PDU RWA PDU (Receive Word Again): The data octets of the message contain at
least the amount of successfully received data octets+1 and possibly DLSDU
data or PDL variables.

1 1 0 SWA PDU SWA PDU (Send Word Again): The data octets of the message contain at
least the amount of successfully sent data octets + 1 and possibly DLSDU
data or PDL variables.

1 1 1 FCB_SET PDU The FCB_SET PDU contains L_status = 0 and FCB = 1, for an FCB_SET
request from the master to the slave. The first data octet of the message
contains user data for the PDL protocol machine of the slave.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 41 –

4.3.5.3.2.2 FCB

Frame count bit : 0/1, alternating bit.
The FCB is only relevant within the start segment of SPA Message and SVA Messages.

4.3.5.3.2.3 Idle message

If the IDL-Bit (see Figure 25; Bit 9) equals 0, the message does not contain any information
and is called IDLE message.

4.3.5.3.3 Messages with a size of one word

4.3.5.3.3.1 General

Figure 26 shows the structure of a message with a size of one word.

Code octet Data octet

B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1

X X X X X X X 0 X X X X X X X X

Figure 26 – Structure of a message with a size of one word

4.3.5.3.3.2 Call messages
1) SPA Message (PDLPDU-Type for transmission of queued user data):

In the L_status of the code octets, a confirmation for a SPA Message of the remote device
can be transmitted at the same time (see Figure 27).

Code octet Data octet

B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1

X X X 0 1 0 FC
B

1 n-1: DLSDU length in octets-1:

1 ≤ = n ≤ 256

X X X 0 0 1 X 1 1st DLSDU octet

X X X 0 0 1 X 1 2nd DLSDU octet

X X X 0 0 1 X 1 Nth DLSDU octet

Figure 27 – Structure of a SPA Message

2) SVA Message (DLPDU-Type for transmission of configuration data):

After a confirmed FCB_SET, further variables are transmitted from the master to the slave
with the 'Send Value with Acknowledge' message. On the master side these variables can be
set with the PDL_Set_Value.request and are also valid for the slave after the transmission of
the SVA Message. The number of variable octets-1 is transmitted in the data octet of the start
segment.

The swa_count variable shall be transferred. In addition, further variables may be specified
(see Figure 28).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 42 – 61158-4-8 © IEC:2007(E)

Code octet Data octet

B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1

X X X 0 1 1 FC
B

1 n-1: number of variable octets-1

X X X 0 0 1 X 1 Swa_count (mandatory)

X X X 0 0 1 X 1 2nd variable octet (optional)

…

X X X 0 0 1 X 1 Nth variable octet (optional)

Figure 28 – Structure of a SVA Message

3) FCB_SET Message:

This message is used to synchronize the PDL protocol machines of a parameter channel on
the master and on the slave, that is, to set the FCBs to a defined value (see 4.3.5.1.3).

In the first data octet, the master also transmits the protocol specific parameters which have
been set with the PDL_Set_Value service (see Figure 29).

Code octet Data octet

B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1

0 0 0 1 1 1 1 1 Coding see below

Figure 29 – Structure of a FCB_SET Message

4.3.5.3.3.3 Control segments
1) RWA Message:

With the RWA (Read Word Again) message the master indicates to the slave during a SPA
Message that the slave has received one message without errors. In the first data octet the
RWA Message contains the number of DLSDU octets which have been received without
errors (see Figure 30).

Code octet Data octet

B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1

X X X 1 0 1 X 1 k Number of correctly received DLSDU
octets during the current SPA Messages

Figure 30 – Structure of a RWA Message

2) SWA Message:

For the SWA Message a difference between master and slave has to be observed, as only the
master can immediately detect a bus cycle with errors (see Figure 31).

— When a SPA Message is sent from the slave to the master, its identifies the beginning of
repeated data transmission. Here, the SPA Message is sent after a RWA Message.

— If the master detects a data cycle with errors when a SPA or SVA Message is
sent to the slave, the transmission is repeated from the error onwards. This
error-1 = number of PDU sent without errors is communicated to
the slave by means of a SWA Message.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 43 –

Code octet Data octet

B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1

X X X 1 1 0 X 1 k Number of data octets sent without errors

X X X 0 0 1 X 1 (k+1)th data octet

X X X 0 0 1 X 1 (k+2)th data octet

…

X X X 0 0 1 X 1 N-th data octet

Figure 31 – Structure of a SWA Message

4.3.5.3.3.4 Response messages

1) Data confirmation (confirmation for SPA or SVA Messages):

The higher three bits of the code octet contain the confirmation for the call messages
described above. This confirmation can also be transmitted together with a message start
segment of SPA or SVA, control or user data segment (exception: FCB_SET PDU) (see
Figure 32).

Code octet Data octet

B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1

L_status X X X X 1 X X X X X X X X

Figure 32 – Structure of a confirmation for SPA or SVA Messages

2) FCB_SET confirmation:

The FCB_SET confirmation acknowledges a FCB_SET request (see Figure 33).

Code octet Data octet

B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1

1 1 1 0 0 0 1 1 Coding see below

Figure 33 – Structure of a FCB_SET as confirmation

Coding of the data octet for FCB_SET Message as request and confirmation

In the data octet of the FCB_SET as request or the FCB_SET as confirmation, the master
transmits the protocol specific parameters which have been set with the PDL_Set_Value
service (see Figure 34):

Code octet Data octet

B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1

X X X X X X X X a) b) c)

Figure 34 – Structure of the data octet for FCB_SET as requests and confirmations

a) B8-B6: err_max
 The contents of the variable err_max should be multiplied with 2, accordingly to get
 the number of attempts for sending a same message

b) B5-B3: Reserved

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 44 – 61158-4-8 © IEC:2007(E)

c) B2-B1: add_wait
 The variable add_wait-1 gives the number of cycles that is additionally waited for a
 confirmation.

4.3.5.3.4 Queue data with a segment size of more than one word

Example: Queue data size = 2 words, data transmission with SWA Message after a cycle
error (see Figure 35).

Code octet 1st data octet 2nd data octet 3rd data octet

X X X 1 1 0 X 1 k number of message
octets sent without an
error

(k+1)th message octet (k+2)th message octet

X X X 0 0 1 X 1 (k+3)th message octet (k+4)th message octet (k+5)th message octet

X X X 1 1 0 X 1 (N-1)th message octet N-th message octet X X X X X X X X

Figure 35 – Structure of a message with a size of more than one word

Number of segments to be transmitted for a message (DLSDU):

Calculation: Gm(N) = (N-1)/m + 1

where

N is the user data quantity (including the number of octets sent/received without errors
or the data length)

M is the number of data octets per segment (PDU)

Gm(N) is the number of PDU.

NOTE (N-1) / m is a not rounding integer division

Example:

A queue data with 13 octets is to be transmitted. N = 14, including the data length. The
segment size is two words, that is, three data octets are available in the segment (m = 3):

G3(14) = (14-1) / 3 + 1 = 4 + 1 = 5

4.3.6 PDL protocol machines

4.3.6.1 PDL base protocol machine

4.3.6.1.1 Description of the states

The PDL base protocol machine provides the functionality of the PDL and has the following
five states:

4.3.6.1.2 PDL_INIT

State after power on. This state is only left when all required PDL protocol machines have
been generated by means of the communication relationship list entries and the PDL receive
and transmit update memories are initialized.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 45 –

4.3.6.1.3 PDL_RECEIVE_UPDATE

In this state the PDL takes the user data out of the PDLSDU which was received from the BLL
and updates the PDL receive update memory of layer 2.

4.3.6.1.4 PDL_PM_ACTIVE

With the transition into this state all protocol machines are initiated at the same time. This
state shall only be left after all protocol machines have been processed.

4.3.6.1.5 PDL_TRANSMIT_UPDATE

In this state the PDL takes the user data out of the transmit update memory of layer 2,
generates the user data part of the PDLSDU to be sent to the BLL and transmits the PDLSDU
with a BLL_Data.request (master side) or BLL_Data.response (slave side) primitive to the
BLL.

4.3.6.1.6 PDL_WAIT_FOR_PDLSDU

In this state the PDL base protocol machine (see Figure 36) waits for a
BLL_Data.confirm(master side) or BLL_Data.indication (slave side) primitive of the BLL.

In all states (except PDL_INIT) the PDL_Data_Ack.request primitives, which are passed from
the PDL-user to the PDL, are processed as follows:

First, the service request is locally confirmed by means of a PDL_Data_Ack.confirm primitive.
Then at the receiving side, the PDL generates a PDL_Data_Ack.indication primitive that is
passed on to the PDL-user, which can be identified by the remote address.

A reset generally causes a transition to the PDL_INIT state.

PDL_

PDL_PDL_

PDL_

PDL_INIT

PM_ACTIVE

TRANSMIT_
UPDATE

UPDATE
RECEIVE_

WAIT_FOR_

0

2

1

8

3

4

5

6

7

9

2a

PDLSDU

Figure 36 – PDL base protocol machine

The state transitions from every state (except PDL_INIT) to the same state when a
PDL_Data_Ack.request primitive arrives from the PDL-user are not shown to simplify matters.
However, they are listed in the state transition table.

4.3.6.1.7 Description of the transitions

Table 21 shows the state transitions of the PDL base protocol machine.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 46 – 61158-4-8 © IEC:2007(E)

Table 21 – State transitions of the PDL base protocol machine

Initial state
 event
 \ condition
 ⇒ action

Transition Follow-up state

 After Power on 0 PDL_INIT

PDL_INIT
 \ initialization of the PDL protocol machines and
 the update memories are not yet completed

1 PDL_INIT

PDL_INIT (master side only)
 \ initialization completed
 ⇒ start of all PDL protocol machines

2 PDL_PM_ACTIVE

PDL_INIT (slave side only)
 \ initialization completed

2a PDL_WAIT_FOR_PDLSDU

PDL_TRANSMIT_UPDATE
 ⇒ copy of user data from TUM to the
 PDLSDU AND send PDLSDU to BLL with
 BLL_Data.request/response

3 PDL_WAIT_FOR_PDLSDU

PDL_WAIT_FOR_PDLSDU
 \ no BLL_Data.confirm/indication received

4 PDL_WAIT_FOR_PDLSDU

PDL_WAIT_FOR_PDLSDU
 BLL_Data.confirm/indication received
 \ update_info == OK

5 PDL_RECEIVE_UPDATE

PDL_WAIT_FOR_PDLSDU
 BLL_Data.confirm received
 \ update_info == NOK
 ⇒ start of all PDL protocol machines
 ⇒ if trigger_mode == AT,
 then start_bus_cycle = OFF

6 PDL_PM_ACTIVE

PDL_RECEIVE_UPDATE
 ⇒ copy user data from PDLSDU to RUM
 ⇒ start all PDL protocol machines
 ⇒ if trigger_mode == AT,
 then start_bus_cycle = OFF

7 PDL_PM_ACTIVE

PDL_PM_ACTIVE
 \not all PDL protocol machines are stopped
 OR (master side only)
 start_bus_cycle == OFF

8 PDL_PM_ACTIVE

PDL_PM_ACTIVE
 \ all PDL protocol machines are stopped
 AND (master side only)
 start_bus_cycle == ON

9 PDL_TRANSMIT_UPDATE

Any_state
 PDL_Reset.request received
 ⇒ PDL_Reset.confirm

 PDL_INIT

Any_state
 PDL_Data_Ack.request (..,rem_add,..)
 ⇒ PDL_Data_Ack.confirm
 ⇒ PDL_Data_Ack.indication to PDL-user with rem_add

 same_state

Any_state
 all PDL management services
 ⇒ process and confirm the services

 same_state

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 47 –

4.3.6.2 PDL protocol machine

4.3.6.2.1 Overview

For each slave with a parameter channel in the ring, the PDL base protocol machine of the
master manages a PDL protocol machine. The PDL base protocol machine of a slave with a
parameter channel, however, has only one PDL protocol machine for this parameter channel.

A PDL protocol machine processes all PDL_Data_Ack services which are transmitted via the
parameter channel to the PDL and has, in particular, the following tasks:

Connection:

— Establishing the PDL connection to the remote device.

Sending side:

— Testing the send requests (PDL_Data_Ack.request) for plausibility
— Process the send requests
— Confirming the send requests (PDL_Data_Ack.confirm)
— Segmentation of the DLSDU to data segments
— Error detection while data transfer
— Passing the Message segments and confirmations with the BLL_Data.request/response to

the Basic Link Layer (BLL).

Receiving side:

— Receiving confirmations and data segments with the BLL_Data.confirm
— Re-assembling the data segments to DLSDU
— Transferring received DLSDU to the PDL-user with PDL_Data_Ack.indication.

Figure 37 explains the PDL protocol machine in general for a master and a slave. The
differences between master and slave are given. Each PDL protocol machine controls and
uses a TRANSMIT and a RECEIVE protocol machine.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 48 – 61158-4-8 © IEC:2007(E)

PDL1 2 3

 Master

I/O
module

I/O
module

Slave with

1 2 3

parameter
Slave with Slave with

parameterparameter

PDL protocol machines

PDL protocol machines

channel channelchannel

User
FAL

BLL

MAC

User

FAL

PDL

BLL

MAC

User

FAL

PDL

BLL

MAC

User

FAL

PDL

BLL

MAC

User

FAL

PDL

BLL

MAC

User

FAL

PDL

BLL

MAC

Figure 37 – Locations of the PDL and the PDL protocol machines
in the master and slaves

4.3.6.2.2 Counters and flags in the protocol machines

4.3.6.2.2.1 Counters

The counters described in the following are used in the PDL protocol machines for the
parameter channel (see Table 22):

Table 22 – Counters of the PDL protocol machines

Counter Description Used in protocol
machine

Ccycle Counter for the number of data cycles since the start
signal of a SPA or SVA Message has been sent. This
counter checks the correctness of repeated
confirmations.

TRANSMIT

Ccerr Counter for the number of defective data cycles after
another while a message is sent.

TRANSMIT

Cconf Counter for the number of cycles during which a
confirmation is awaited.

PDL protocol and
TRANSMIT

Creq_retry Counter for the attempts to send messages when
confirmations were lost due to defective data cycles.

TRANSMIT

CSWA Counter for the number of cycles during which a
SWA Message is awaited.

RECEIVE

4.3.6.2.2.2 Flags

connection

The PDL protocol machine manages a flag called "connection". This flag is the same as
DISCONN, when the PDL protocol machine of the master is not synchronized with that of a

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 49 –

slave. In this case, the master or slave continuously sends synchronization messages until
one message is confirmed by the remote device. Then connection == READY is set, that is,
the PDL protocol machines are synchronized (see Table 23).

Table 23 – Meaning of the "connection" flag

Connection Description

DISCONN The PDL protocol machines are not synchronized

READY The PDL protocol machines are synchronized. The PDL layer is ready
to transmit a message

4.3.6.2.3 Description of the states

4.3.6.2.3.1 Overview

Figure 38 shows the PDL protocol machine.

INIT
WAIT_
FCB_

RECEIVE

TRANSMIT

0 1

2, 3

4, 5

6

7, 8

9, 10

11

12

13

14

15

1)

2)

1) Master only
2)

Slave only

1)

RES

WAIT_
IBS_
CYCLE_
END

Figure 38 – PDL protocol machine

Transitions as a result of a received PDL_Reset.request primitive always go from every state
to the INIT state. These transitions are not shown individually but are described by the
transition 0.

4.3.6.2.3.2 INIT

Initialization of the PDL protocol machine

4.3.6.2.3.3 WAIT_FCB_RES

Synchronization

4.3.6.2.3.4 WAIT_IBS_CYCLE_END

The PDL protocol machine is synchronized. This state controls whether the RECEIVE and/or
the TRANSMIT protocol machine is started.

4.3.6.2.3.5 RECEIVE

The RECEIVE protocol machine is started.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 50 – 61158-4-8 © IEC:2007(E)

4.3.6.2.3.6 TRANSMIT

The TRANSMIT protocol machine is started.

4.3.6.2.4 Description of the transitions

The PDL protocol machine is started by the PDL base protocol machine when a data cycle
has been completed and new received data (PDLSDU) from the BLL is available. If the
received data has been processed, and new transmit data is not available, the PDL protocol
machine stops itself. In the stopped state, the protocol machine does not respond to events.
Only a PDL_Reset.request causes a reset of the protocol machine at any time (see Table 24).

Table 24 – State transitions of the PDL protocol machine

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

 PDL_Reset.request received
 ⇒ initialize PDL protocol machine,
 reject non-processed PDL_Data_Ack services

0 Reset INIT

INIT
 initialization of the PDL protocol machine completed
 Cconf = 0,
 stop PDL protocol machine

1 TFCB_Req1 WAIT_FCB_RES

WAIT_FCB_RES
 Cconf ≤ DIST+add_wait
 \neither FCB_SET request (slave side only) sent nor
 FCB_SET confirmation received
 ⇒ increment Cconf,
 stop PDL protocol machine

2 Wait1 WAIT_FCB_RES

WAIT_FCB_RES
 Cconf > DIST+add_wait
 \neither FCB_SET request (slave side only) nor
 FCB_SET confirmation received
 ⇒ send FCB_SET request,
 Cconf = 0,
 stop PDL protocol machine

3 TFCB_Req2 WAIT_FCB_RES

WAIT_FCB_RES
 FCB_SET request received
 ⇒ send FCB_SET confirmation,
 set receive and transmit FCB-Fag,
 connection = READY,
 reset TRANSMIT and RECEIVE protocol machine,
 master side only: send enable of SVA PDU
 (see TRANSMIT protocol machine),
 stop PDL protocol machine

4 RFCB_Req1 WAIT_IBS_CYCLE_END

WAIT_FCB_RES
 FCB_SET confirmation received
 ⇒set receive and transmit FCB,
 connection = READY,
 reset TRANSMIT and RECEIVE protocol machine.,
 master side only: send enable SVA PDU
 (see TRANSMIT protocol machine),
 stop PDL protocol machine

5 RFCB_Conf WAIT_IBS_CYCLE_END

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 51 –

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

WAIT_IBS_CYCLE_END
 FCB_SET as request received
 ⇒ send FCB_SET as confirmation,
 set receive and transmit FCB,
 connection = READY,
 reset TRANSMIT and RECEIVE protocol
 machines,
 master side only: send enable SVA Message
 (see TRANSMIT protocol machine),
 stop PDL protocol machine

6 RFCB_Req2 WAIT_IBS_CYCLE_END

WAIT_IBS_CYCLE_END
 receipt of a confirmation and/or a message
 segments except FCB_SET request and FCB_SET
 confirmation, (slave side only), no RWA PDU
 ⇒ start RECEIVE protocol machine

7 Recv_Req RECEIVE

WAIT_IBS_CYCLE_END (master side only)
 status of RECEIVE protocol machine == WAIT_SWA
 ⇒ start RECEIVE protocol machine

8 Wait_SWA RECEIVE

WAIT_IBS_CYCLE_END
 receipt of an IDLE message
 ⇒ start TRANSMIT protocol machine

9 Send_Req TRANSMIT

WAIT_IBS_CYCLE_END (slave side only)
 RWA PDU received
 ⇒ start TRANSMIT protocol machine
 (to send a SWA PDU)

10 Recv_RWA TRANSMIT

RECEIVE
 RECEIVE protocol machine stopped AND
 connection == DISCONN
 ⇒ send FCB_SET request,
 Cconf = 0,
 stop PDL protocol machine

11 TFCB_Req3 WAIT_FCB_RES

RECEIVE (master side only)
 RECEIVE protocol machine stopped AND
 connection == READY
 AND RECEIVE protocol machine has sent
 RWA PDU
 ⇒ stop PDL protocol machine

12 TM_Disable WAIT_IBS_CYCLE_END

RECEIVE
 RECEIVE protocol machine stopped AND
 connection == READY
 AND RECEIVE protocol machine
 (master side only) has not sent a RWA PDU
 ⇒ start TRANSMIT protocol machine

13 Recv_OK2 TRANSMIT

TRANSMIT
 TRANSMIT protocol machine stopped AND
 connection == DISCONN
 ⇒ send FCB_SET request,
 Cconf = 0,
 stop PDL protocol machine

14 TFCB_Req4 WAIT_FCB_RES

TRANSMIT
 TRANSMIT protocol machine stopped AND
 connection == READY
 ⇒ stop PDL protocol machine

15 Transm_OK WAIT_IBS_CYCLE_END

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 52 – 61158-4-8 © IEC:2007(E)

4.3.6.3 TRANSMIT protocol machine

4.3.6.3.1 Description of the states

4.3.6.3.1.1 Overview

Figure 39 shows the TRANSMIT protocol machine.

T_IDLE SEND_
FRAME

WAIT_
CONF

1

2

4, 5, 6, 8

7, 9

10
0

11, 12, 15, 18, 19

13, 17, 20

14, 16

3

Figure 39 – TRANSMIT protocol machine

Transitions as a result of a PDL_Reset primitive always go from every state to the T_IDLE
state. These transitions are not shown individually but are described by the transition 0.

4.3.6.3.1.2 T_IDLE

No message is being sent.

4.3.6.3.1.3 SEND_FRAME

A message is being sent.

4.3.6.3.1.4 WAIT_CONF

A message was sent. The confirmation of the remote device is being waited for.

4.3.6.3.2 Description of the transitions

The TRANSMIT protocol machine is started by the higher-level PDL protocol machine. Then
the TRANSMIT protocol machine merely carries out one transition and stops itself. In the
table which describes the state transitions the 'stop TRANSMIT protocol machine' action was
not included for all transitions to simplify matters. In the stopped state the protocol machine
does not respond to events. Only a PDL_Reset.request causes a reset of the protocol
machine at any time (see Table 25).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 53 –

Table 25 – State transitions of the TRANSMIT protocol machine

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

 PDL_Reset.request
 ⇒ reset TRANSMIT protocol machine

0 Reset T_IDLE

T_IDLE
 there is no send enable for a SVA PDU (master only)
 and no PDL_Data_Ack.request
 ⇒ no action (waiting)

1 Wait1 T_IDLE

T_IDLE
 send enable for SVA PDU (master only) or
 PDL_Data_Ack.request
 \PDU shall be transmitted with more than
 one segment
 ⇒ enter start segment of the SPA/SVA PDU,
 Ccycle = Ccerr = Creq_reply = 0

2 Request1 SEND_FRAME

T_IDLE
 send enable for SVA PDU (master only) or
 PDL_Data_Ack.request
 \PDU can be transmitted with one segment
 ⇒ enter start segment of the SPA/SVA PDU,
 Ccycle = Ccerr = Creq_reply = 0,
 Cconf = 0

3 Request2 WAIT_CONF

SEND_FRAME
 repeated confirmation for SPA PDU received
 (repeated positive or repeated queue full)
 \DIST ≤ Ccycle ≤ DIST+add_wait
 ⇒ change transmit FCB,
 sent SPA confirmation

4 Recv_Conf1 T_IDLE

SEND_FRAME
 repeated confirmation for SVA PDU received
 (repeated positive or repeated queue full)
 \DIST ≤ Ccycle ≤ DIST+add_wait
 ⇒ change transmit FCB

5 Recv_Conf2 T_IDLE

SEND_FRAME
 repeated confirmation for SPA or SVA PDU
 received (repeated positive or repeated queue full)
 \Ccycle < DIST OR Ccycle > DIST+add_wait
 ⇒ connection = DISCONN

6 Disconn1 T_IDLE

SEND_FRAME
 last data cycle contained errors
 \Ccerr ≤ max_swa_count
 ⇒ increment Ccerr ,
 enter SWA PDU,
 increment Ccycle

7 Cycl_Err1 SEND_FRAME

SEND_FRAME
 last data cycle contained errors
 \Ccerr > max_swa_count
 ⇒ connection = DISCONN

8 Mult_Err1 T_IDLE

SEND_FRAME
 last data cycle completed without errors
 \more than one data segment to be sent
 ⇒ enter DATA PDU,
 increment Ccycle

9 Send_Segm1 SEND_FRAME

SEND_FRAME
 last data cycle completed without errors
 \last data segment to be sent
 ⇒ enter DATA PDU,
 Cconf = 0

10 Send_Segm2 WAIT_CONF

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 54 – 61158-4-8 © IEC:2007(E)

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

WAIT_CONF
 confirmation SPA received (positive,
 repeated pos., queue full or repeated queue full)
 ⇒ change transmit FCB,
 enter SPA PDU

11 Recv_Conf3 T_IDLE

WAIT_CONF
 confirmation for SVA PDU received (positive, repeated
 pos., queue full or repeated queue full)
 ⇒ change transmit FCB

12 Recv_Conf4 T_IDLE

WAIT_CONF
 no confirmation received
 \Cconf > DIST+add_wait AND
 Creq-retry ≤ max_req_retry AND queued data can be
 transmitted with one segment
 ⇒ increment Creq_retry ,
 enter start segment of SPA or SVA PDU,
 Ccycle = Ccerr = 0,
 Cconf = 0

13 Timeout1 WAIT_CONF

WAIT_CONF
 no confirmation received
 \Cconf > DIST+add_wait AND
 Creq_retry ≤ max_req_retry AND queued data shall be
 transmitted with more than one segment
 ⇒ increment Creq_retry ,
 enter start segment of the SPA or SVA PDU,
 Ccycle = 0, Ccerr = 0

14 Timeout2 SEND_FRAME

WAIT_CONF
 no confirmation received
 \Cconf > DIST+add_wait AND
 Creq_retry > max_req_retry
 ⇒ connection = DISCONN

15 Mult_TO T_IDLE

WAIT_CONF
 last data cycle contained errors
 \Ccerr ≤ max_swa_count AND more than one data
 segment is to be sent repeatedly
 ⇒ increment Ccerr ,
 enter SWA PDU

16 Cycle_Err2 SEND_FRAME

WAIT_CONF
 last data cycle contained errors
 \Ccerr ≤ max_swa_count AND SWA PDU can
 accept all data which is to be sent repeatedly
 ⇒ increment Ccerr,
 enter SWA PDU in PDLSDU,
 Cconf = 0

17 Cycle_Err3 WAIT_CONF

WAIT_CONF
 last data cycle contained errors
 \Ccerr > max_swa_count
 ⇒ connection = DISCONN

18 Mult_Err2 T_IDLE

WAIT_CONF
 repeated confirmation for SPA or SVA PDU
 received (repeated positive or repeated queue full)
 \Ccycle < DIST OR Ccycle > DIST+add_wait
 ⇒ connection = DISCONN

19 Disconn2 T_IDLE

WAIT_CONF
 no queue received
 \Cconf ≤ DIST+add_wait
 ⇒ increment Cconf and Ccycle

20 Wait2 WAIT_CONF

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 55 –

4.3.6.4 RECEIVE Protocol Machine

4.3.6.4.1 Description of the states

4.3.6.4.1.1 Overview

Figure 40 shows the RECEIVE protocol machine.

14 , 15, 16, 17

R_IDLE RECEIVE_
FRAME

WAIT_
SWA

1, 2, 3, 5, 6, 7

4

8, 9, 10, 12, 13,

11, 18, 19

0

22, 24, 25, 26

21

20
1)

1) The WAIT_SWA state as well as the transitions from
 and to WAIT_SWA are for the master only

2) 2)

2)

2) For a slave only

23

Figure 40 – RECEIVE protocol machine

Transitions as a result of PDL_Reset.request primitive always go from every state to the
R_IDLE state. These transitions are not shown individually but are described by the transition
0.

4.3.6.4.1.2 R_IDLE

No message is being received.

4.3.6.4.1.3 SEND_FRAME

A message is being received.

4.3.6.4.1.4 WAIT_SWA (master side only)

A RWA PDU was sent. The responding SWA PDU is being waited for.

4.3.6.4.2 Description of the transitions

The RECEIVE protocol machine is started by the higher-level PDL protocol machine. Then,
the RECEIVE protocol machine merely carries out one transition and stops itself. In Table 26
which describes the state transitions, the stop 'RECEIVE protocol machine' action was not
included for all transitions to simplify matters. In the stopped state the protocol machine does
not respond to events. Only a PDL_Reset.request causes a reset of the protocol machine at
any time.

Table 26 – State transitions of the RECEIVE protocol machine

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

 PDL_Reset.request received
 ⇒ reset RECEIVE protocol machine

0 Reset R_IDLE

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 56 – 61158-4-8 © IEC:2007(E)

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

R_IDLE
 no SVA (slave only) or SPA PDU received
 ⇒ no action (waiting)

1 Wait1 R_IDLE

R_IDLE
 SVA (slave only) or SPA PDU received
 \receive FCB ≠ await FCB AND
 no confirmation has yet been sent for this receive FCB
 ⇒ connection = DISCONN

2 Disconn1 R_IDLE

R_IDLE
 SVA (slave only) or SPA PDU received
 \receive FCB ≠ await FCB AND
 a confirmation has already been sent for this receive
 FCB
 ⇒ enter repeated confirmation in PDLSDU
 (repeated positive or repeated queue full)

3 Rep_Recept1 R_IDLE

R_IDLE
 SVA (slave only) or SPA PDU received
 \start segment does not contain the complete message
 ⇒ accept data octets

4 RStart_Sgm1 RECEIVE_FRAME

R_IDLE
 SPA PDU received
 \start segment does not contain a complete message
 AND memory available
 ⇒ accept data octets,
 enter positive confirmation in PDLSDU,
 change receive FCB,
 PDL_Data_Ack.indication to the PDL-user

5 RStart_Sgm2 R_IDLE

R_IDLE
 SPA PDU received
 \start segment contains complete message AND
 no more memory available
 ⇒ enter negative confirmation (queue full) in PDLSDU,
 change receive FCB

6 RStart_Sgm3 R_IDLE

R_IDLE (slave only)
 SVA PDU received
 \start segment contains complete message
 ⇒ accept data octets,
 enter positive confirmation in PDLSDU,
 change receive FCB

7 RStart_Sgm4 R_IDLE

RECEIVE_FRAME
 no DATA PDU, no SWA PDU
 and no SVA (slave only) or SPA PDU received
 ⇒ stop the sending of a message

8 Segm_Err1 R_IDLE

RECEIVE_FRAME
 SVA (slave only) or SPA PDU received
 \receive FCB ≠ FCB in start segment AND
 no confirmation was sent for the received PDU
 ⇒ connection = DISCONN

9 Disconn2 R_IDLE

RECEIVE_FRAME
 SVA (slave only) or SPA PDU received
 \receive FCB ≠ await FCB in start segment AND
 a confirmation has already been sent for the PDU
 ⇒ enter repeated confirmation in PDLSDU
 (repeated positive or repeated queue full)

10 Rep_Recept2 R_IDLE

RECEIVE_FRAME
 SVA (slave only) or SPA PDU received
 \receive FCB == await FCB in start segment AND
 start segment does not contain the complete message
 ⇒ accept data octets

11 RStart_Sgm5 RECEIVE_FRAME

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 57 –

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

RECEIVE_FRAME
 SPA PDU received
 \receive FCB == await FCB in start segment AND
 start segment contains a complete message AND
 memory available
 ⇒ accept data octets,
 enter positive confirmation in PDLSDU,
 change receive FCB,
 PDL_Data_Ack.indication to the PDL-user

12 RStart_Sgm6 R_IDLE

RECEIVE_FRAME
 SPA PDU received
 \receive FCB == await FCB in start segment AND
 start segment contains a complete message
 AND no more memory available
 ⇒ enter negative confirmation (queue full) in PDLSDU,
 change receive FCB

13 RStart_Sgm7 R_IDLE

RECEIVE_FRAME (slave only)
 SVA PDU received
 \receive FCB == await FCB in start segment AND
 start segment contains a complete message
 ⇒ accept data octets,
 enter positive confirmation in PDLSDU,
 change receive FCB

14 RStart_Sgm8 R_IDLE

RECEIVE_FRAME
 DATA PDU received
 \last data segment of SAP AND memory available
 ⇒ accept data octets,
 enter positive confirmation in PDLSDU,
 change receive FCB,
 PDL_Data_Ack.indication to PDL-user

15 RData_Sgm1 R_IDLE

RECEIVE_FRAME
 DATA PDU received
 \last data segment of a SPA PDU AND
 no more memory available
 ⇒ enter negative confirmation (queue full) in PDLSDU,
 change receive FCB

16 RData_Sgm2 R_IDLE

RECEIVE_FRAME (slave only)
 DATA PDU received
 \last data segment of SVA
 ⇒ accept data octets,
 enter positive confirmation in PDLSDU,
 change receive FCB

17 RData_Sgm3 R_IDLE

RECEIVE_FRAME
 DATA PDU received
 \not last data segment of a SVA (slave only)
 or SPA PDU
 ⇒ accept data octets

18 RData_Sgm4 RECEIVE_FRAME

RECEIVE_FRAME (slave only)
 SWA PDU received
 ⇒ accept data octets (observe new position in the
 data flow)

19 RSWA_Sgm1 RECEIVE_FRAME

RECEIVE_FRAME (master only)
 last data cycle contained errors
 ⇒ enter RWA PDU in PDLSDU (correct position in
 the message),
 CSWA = 0

20 Cycle_Err WAIT_SWA

WAIT_SWA (master only)
 no SWA PDU received
 \CSWA ≤ DIST+add_wait
 ⇒ increment CSWA

21 WAIT2 WAIT_SWA

WAIT_SWA (master only)
 no SWA PDU received
 \CSWA > DIST+add_wait

22 Time_Out R_IDLE

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 58 – 61158-4-8 © IEC:2007(E)

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

WAIT_SWA (master only)
 SWA PDU received
 \SWA PDU does not contain the last data
 ⇒ accept data octets (observe new position in the
 data flow)

23 RSWA_Sgm2 RECEIVE_FRAME

WAIT_SWA (master only)
 SWA PDU received
 \SWA PDU contains the last data
 of a SPA AND memory is available
 ⇒ accept data octets (observe new position in
 the data flow),
 enter positive confirmation in PDLSDU,
 change receive FCB,
 PDL_Data_Ack.indication to PDL-user

24 RSWA_Sgm3 R_IDLE

WAIT_SWA (master only)
 SWA PDU received
 \SWA PDU contains the last data
 of SPA AND no more memory available
 ⇒ enter negative confirmation (queue full) in PDLSDU,
 change receive FCB

25 RSWA_Sgm4 R_IDLE

WAIT_SWA (master only)
 SWA PDU received
 \SWA PDU contains the last data of SVA
 ⇒ accept data octets (observe new position in the
 data flow),
 enter positive confirmation in PDLSDU,
 change receive FCB

26 RSWA_Sgm5 R_IDLE

4.4 Basic Link Layer (BLL)

4.4.1 Functionality of the BLL

The Basic Link Layer is the component of a device that is responsible for the controlled bus
access.

In the case of the master it makes the BLL_Data service available at its interface to the PDL.
This service allows to run specific data cycles and to exchange data between PDL and BLL.
In the slave the BLL ensures that received data is passed to the PDL and that new data are to
be sent is accepted from the PDL (see Figure 41).

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS-user DLMS-user

Layer 1

Figure 41 – Location of the BLL in the DLL

The BLL can be parameterized and reset via the interface to the PNM2.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 59 –

The Basic Link Layer of the master is subdivided into the "BLL operating protocol machine"
and "BLL-BAC protocol machine". A slave has only a simplified BLL operating protocol
machine.

4.4.2 PDL-BLL interface

4.4.2.1 General

4.4.2 describes the BLL_Data data transmission service, which is available to the PDL, with
its service primitives and the associated parameters. The BLL_Data service is mandatory.
Figure 42 shows the interface between PDL and BLL in the layer model.

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS-user DLMS-user

Layer 1

Figure 42 – Interface between PDL and BLL in the layer model

4.4.2.2 Overview of the service and interactions

4.4.2.2.1 BLL_Data

The BLL makes the BLL_Data service available to the PDL. With this service and a PDLSDU
the PDL of the master transfers the OUT data within a data cycle to the slaves and receives
simultaneous all IN data from the slaves with a PDLSDU. The OUT and IN data are separated
with respect to time, that is, the OUT and IN data which are sent or received with a service
call, need not belong to one and the same data cycle. Thus, PDL and PhL can operate
independently of each other.

The slave behavior is similar to the master:
The BLL of a slave provides the new received OUT data to the PDL by means of indication.
The PDL transmits the IN data for sending within next data cycle to the BLL by means of a
response. The IN data will be sent in one of the next bus cycles over the physical medium to
the master.

The BLL_Data service is provided by using four service primitives. The master uses a request
primitive to request a service. A confirmation primitive is returned to the master after the
service has been executed. The BLL sends new IN data with the indication primitive to the
PDL. The PDL responds to this indication with a response primitive.

Service primitives:

— BLL_Data.request (master side only)
— BLL_Data.confirm (master side only)
— BLL_Data.indication (slave side only)
— BLL_Data.response (slave side only).

4.4.2.3 Overview of the interactions

Figure 43 shows the time relations of the primitives for the BLL_Data service:

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 60 – 61158-4-8 © IEC:2007(E)

Master Slave
(Initiator) (Responder)

BLL_Data.req (PDLSDU) M

BLL_Data.ind (PDLSDU)S

BLL_Data.res (PDLSDU)S

BLL_Data.con (PDLSDU)M

BLL_Data.con (PDLSDU)M

BLL_Data.con (PDLSDU)M

BLL_Data.con (PDLSDU)M

BLL_Data.req (PDLSDU) M

BLL_Data.req (PDLSDU) M

BLL_Data.req (PDLSDU) M

BLL_Data.ind (PDLSDU)S

BLL_Data.ind (PDLSDU)S

BLL_Data.res (PDLSDU)S

BLL_Data.res (PDLSDU)S

Figure 43 – BLL_Data service

4.4.2.4 Detailed definitions of the services and interactions

4.4.2.4.1 BLL_Data

The BLL_Data service is mandatory.

Using BLL_Data.request (master side only), the PDL of the master shall use this service
primitive for sending of a PDLSDU within next data cycle. The PDLSDU shall contain all data
which is to be transmitted over the bus in a data cycle. If the BLL of the master received new
data, it passes this data as a PDLSDU to the PDL using a BLL_Data.confirm. The update_info
parameter contains the information whether the data is valid. The received data is not valid
when a data cycle contained errors. The BLL immediately confirms a BLL_Data.request by
means of a BLL_Data.confirm with result (-), provided that no valid bus configuration exists or
the BLL cannot accept further OUT data owing to a shortage of resources.

The BLL of a slave transfers new received data as a PDLSDU to the PDL using the
BLL_Data.indication primitive. The BLL does not get any received data when there are any
errors in the data cycles and accordingly does not generate a BLL_Data.indication. Using a
BLL_Data.res primitive, the PDL of the slaves sends new transmit data in a PDLSDU to the
BLL (see Table 27).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 61 –

Table 27 – BLL_Data

Parameter name Request Indication Response Confirm

Argument
 PDLSDU

Result(+)
 PDLSDU
 update_info

Result(-)
 error_code

M
M

M
M

M
M

S
M
M

S
M

argument:
The argument contains the service-specific parameters of the service call.

PDLSDU:

Request:
The PDLSDU parameter contains the OUT data to all slaves, which is to be transferred in
one data cycle. The BLL passes the data on to the subordinate MAC layer.

Indication:
The PDLSDU parameter contains the OUT data which was received in the last data cycle
without errors.

result(+):
This parameter indicates that the service was executed successfully.

Confirmation:
This parameter contains the IN data which the master received in the last data cycle.

Response:
The PDLSDU contains the IN data of a slave which is to be transmitted in a data cycle.

update_info:
This parameter describes the validity of the IN data. Possible codes are:

a) OK — the PDLSDU contains valid IN data.
b) NOK — the PDLSDU does not contain any valid IN data.

result(–):
This parameter indicates that the service could not be executed successfully.

error_code:

This parameter indicates the reason why the service could not be executed successfully.
Possible error codes are:

STATE_CONFLICT
The PDL sent a BLL_Data.request, although no valid bus configuration exists.

NO_RESRC
The PDL sent a BLL_Data.request, although the BLL is not ready to accept new OUT data.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 62 – 61158-4-8 © IEC:2007(E)

4.4.3 PNM2-BLL interface

4.4.3.1 General

The management of the BLL is the part of the BLL that provides the management functionality
of the BLL requested by the PNM2. The management of the BLL handles the initialization, the
monitoring, and the error recovery in the BLL.

4.4.3 defines the administrative BLL management services which are available to the PNM2,
together with their service primitives and associated parameters. Figure 44 shows the
interface between PNM2 and BLL in the layer model.

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS-user DLMS-user

Layer 1

Figure 44 – Interface between PNM2 and BLL in the layer model

The service interface between PNM2 and BLL provides the following functions.

— Reset of the BLL
— Request and change of the current operating parameters of the BLL
— Indication of unexpected events, errors, and status changes which occurred or were

detected in the BLL.

4.4.3.2 Overview of the services

4.4.3.2.1 Available services

The BLL makes the following services available to the PNM2.

— BLL_ID (acquire bus configuration)
— Reset BLL
— Set Value BLL
— Get Value BLL
— Event BLL.

The BLL services are described with the primitives (beginning with BLL_…).

4.4.3.2.2 BLL_ID

The BLL (master side only) makes the required BLL_ID service available to the PNM2. With
this service and a BLLSDU the PNM2 of the master transfers the control codes for an
identification cycle to the slaves and receives all device codes of an identification cycle from
the slaves with a BLLSDU.

Service primitives:

— BLL_ID.request (master only)

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 63 –

— BLL_ID.confirm (master only)

4.4.3.2.3 BLL_Reset

The PNM2 uses this required service to reset the BLL. Upon execution of the service the
PNM2 receives a confirmation.

Service primitives:

— BLL_Reset.request
— BLL_Reset.confirm

4.4.3.2.4 BLL_Set_Value

The PNM2 uses this optional service to set a new value to the variables of the BLL. Upon
completion, the PNM2 receives a confirmation from the BLL whether the defined variables
accepted the new value.

Service primitives:

— BLL_Set_Value.request
— BLL_Set_Value.confirm

4.4.3.2.5 BLL_Get_Value

The PNM2 uses this optional service to read the variables of the BLL. The current value of the
defined variable is transmitted in the response of the BLL.

Service primitives:

— BLL_Get_Value.request,
— BLL_Get_Value.confirm.

4.4.3.2.6 BLL_Event

The BLL uses this required service to inform the PNM2-user about certain events or errors in
the BLL.

Service primitive:

— BLL_Event.indication

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 64 – 61158-4-8 © IEC:2007(E)

4.4.3.3 Overview of the interactions

Figure 45 and Figure 46 show the time relations of the service primitives:

PNM 2BLL

BLL_XXX.req

BLL_XXX.con

Figure 45 – Reset, Set Value and Get Value BLL services

PNM 2BLL

BLL_Event.ind

Figure 46 – Event BLL service

4.4.3.4 Detailed definitions of the services and interactions

4.4.3.4.1 BLL_ID (master side only)

Using a BLL_ID.request, PNM2 transfers a BLLSDU to the BLL. The BLL shall initiate an
identification cycle when it receives this request. The BLLSDU shall contain all data which is
to be transmitted over the bus in an identification cycle. If the BLL of the master received new
received data in an identification cycle, it passes this data as a BLLSDU to the PNM2 using a
BLL_ID.confirm. The received data is not valid when an identification cycle contained errors
(see Table 28).

Table 28 – BLL_Data

Parameter name Request Confirm

Argument
 SDU

Result(+)
 SDU

Result(-)
 error_code

M
M

S
M

S
M

argument:

The argument contains the service-specific parameters of the service call.

SDU:

Request: The SDU parameter contains the control codes to all slaves, which is to be
transferred in one identification cycle. The BLL passes the data on to the subordinate MAC
layer.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 65 –

result(+):

This parameter indicates that the service was executed successfully.

Confirmation: This parameter contains the device codes which the master received in the
last identification cycle.

result(-):

This parameter indicates that the service could not be executed successfully.

error_code:

This parameter indicates the reason why the service could not be executed successfully.

4.4.3.4.2 BLL_Reset

The BLL_Reset service is mandatory. The PNM2 transfers a BLL_Reset.request to the BLL to
reset it (see Table 29).

Table 29 – BLL_Reset

Parameter name Request Confirm

Argument

Result(+)

M

M

4.4.3.4.3 BLL_Set_Value

The BLL_Set_Value service is mandatory. The PNM2 transfers a BLL_Set_Value.request
primitive to the BLL to set a defined BLL variable to a desired value. After receipt of this
primitive, the BLL tries to select the variable and to set the new value. Upon completion, the
BLL transmits a BLL_Set_Value.confirm primitive to the PNM2 (see Table 30).

Table 30 – BLL_Set_Value

Parameter name Request Confirm

Argument
 variable_name
 desired_value

Result(+)

M
M
M

M

variable_name:

This parameter defines the BLL variable which is set to a new value.

desired_value:

This parameter declares the new value for the BLL variable.

Table 31 provides information on which BLL variables may be set to which new values.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 66 – 61158-4-8 © IEC:2007(E)

Table 31 – BLL variables

Name of BLL variable Value range Default

update_time TUP (0..215) * 0,1 ms

bus_timeout TTO_BUS (0..215) * 1 ms

Configuration_valid true, false false

BLL_access_control locked, req_to_lock, unlocked locked

4.4.3.4.4 BLL_Get_Value

The BLL_Get_Value service is optional. The PNM2 transfers a BLL_Get_Value.request
primitive to the BLL to read out the current value of a specified BLL variable. After receipt of
this primitive, the BLL tries to select the specified variable and transmit its current value to the
PNM2 with a BLL_Get_Value.confirm primitive (see Table 32).

Table 32 – BLL_Get_Value

Parameter name Request Confirm

Argument
 variable_name

Result(+)
 current_value

M
M

M
M

variable_name:

This parameter specifies the BLL variable the value of which is to be read out.

desired_value:

This parameter contains the read-out value of the BLL variable.

The BLL variables to be read are exactly those variables that can be written to with
BLL_Set_Value.

4.4.3.4.5 BLL_Event

The BLL_Event service is mandatory. The BLL transfers a BLL_Event.indication primitive to
the PNM2 to inform it about important events or errors in the BLL (see Table 33 and Table
34).

Table 33 – BLL_Event

Parameter name Indication

Argument
 event

M
M

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 67 –

event:

This parameter specifies the event which occurred or the error source in the BLL and can
assume the following values:

Table 34 – BLL_Event

Name Meaning Mandatory /
optional

BLL_bus_timeout There is a bus timeout tTO_BUS, that is, the time between two data cycles
completed without errors was too long. The BLL declared the bus
configuration invalid.

O

BLL_update_timeout The was an update timeout before the next data cycle was started. O

BLL_cycle_error Identifies cycles with errors, BLL interrupts data cycles, waits for the
enabling of PNM2 by means of the BLL_Set_Value (variable:
BLL_access_control = unlocked)

M

4.4.4 Protocol machines of the BLL

4.4.4.1 BLL protocol machines of the master

4.4.4.1.1 Overview

The BLL operating protocol machine of the master receives the OUT data of the higher-level
PDL layer and passes it to the BLL-BAC-PM. The BLL-BAC-PM then starts a data cycle which
is controlled by a timer. Moreover, after a data cycle the BLL operating protocol machine
receives the IN data from the BLL-BAC-PM and passes it to the higher-level PDL. It is capable
of initiating the next data cycle while the PDL is still processing the data of the last cycle.
Another functionality is the monitoring of the bus timeout tO_BUS. After a data cycle with errors,
existing PDLSDUs in the BLL are rejected owing to the method of functioning of the PDL
protocol machines.

In the master, the BLL-BAC-PM (BAC: 'Basic Access Control') ensures that the update_time
tUP is kept for data cycles. For this, it passes, initiated by a timer, BAC_Cycle.requests from
the BLL operating protocol machine to the MAC layer as MAC_Cycle.requests. Furthermore,
the BLL_Access_Control variable can be used to interrupt the starting of bus cycles by the
PNM2 in order to start ID cycles there. As the diagnostic application will possibly run an
identification cycle after a data cycle with errors, the BLL-BAC-PM sets the
BLL_Access_Control variable after a data cycle error automatically to locked. Upon
completion of the ID cycle, the PNM2 shall again enable the starting of the data cycles with a
BLL_Set_Value service.

4.4.4.1.2 BLL-internal functions

The BLL-MAC-PM makes the BAC_Cycle service available to the BLL operating protocol
machine of the master. In the BLL-MAC-PM the service is mapped onto the MAC_Cycle
service of the MAC sublayer. The structure of the BAC_Cycle service exactly corresponds to
that of the MAC_Cycle service.

The difference between the two services is that with the BAC_Cycle a bus cycle is not
immediately started after the service call, but the cycle start is synchronized with the clock of
a timer. The PNM2 can also prevent the start of the cycle with the BLL_Set_Value service
(BLL_access_control variable).

4.4.4.1.3 BAC_Reset

After a BLL_Reset, the operating protocol machine resets the BAC-PM with the BAC_Reset
service. The service is immediately confirmed.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 68 – 61158-4-8 © IEC:2007(E)

4.4.4.1.4 BLL operating protocol machine

Figure 47 shows the BLL operating protocol machine of a master.

READY

NO_BUS_CONFIG

DATA_CYCLE

1a

5

7

13, 15

6, 8 1b 10, 17

11, 12, 14, 16

 3

0

BLL_INIT

Figure 47 – BLL operating protocol machine of the master

Transitions as a result of BLL_Reset primitive always go from every state to the
NO_BUS_CONFIG state. These transitions are not specified individually but are described
with the transition 0.

States of the BLL operating protocol machine of the master

4.4.4.1.4.1 BLL_INIT

The Basic Link Layer, including the BLL_access_control and configuration_valid variables, is
initialized and/or reset.

4.4.4.1.4.2 NO_BUS_CONFIG

There is no valid active bus configuration. No data cycles can be run.

4.4.4.1.4.3 READY

There is no valid active bus configuration. A data cycle can be initiated with a
BLL_Data.request.

4.4.4.1.4.4 DATA_CYCLE

A data cycle was initiated with a BLL_Data.request.

Table 35 describes the state transitions.

The following events may occur in each state and shall be taken into consideration.

— Change of the value of the configuration_valid variable (The PNM2 can change this value
with BLL_Set_Value).

— BLL_Data.request.
— BAC_Cycle.confirm (if a BAC_Cycle.request was sent before).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 69 –

— Time t1 expired, that is, the bus timeout tTO_BUS is exceeded.

— BLL_Reset.request.

Receive- and transmit BLLSDU:

In the BLL operating protocol machine a distinction is made between receive and transmit
BLLSDU. The receive BLLSDU (BLL_RSDU) contains the data which was received by the
MAC sublayer after a data cycle, while the transmit BLLSDU (BLL_TSDU) contains all data
which was sent to the MAC sublayer prior to a data cycle. As BLL_RSDU is not necessarily
passed on to the PDL immediately after the cycle end, the BLL_RSDU is buffered together
with a SDU_statusBLL_RSDU in the BLL:

SDU_statusBLL_RSDU

a) OK — there is valid input data since a data cycle was completed without errors.
b) NOK — there is no valid input data since a data cycle has not yet been run or because the

last data cycle contained errors.

Table 35 – State transitions of the BLL operating protocol machine of the master

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

 After power on 0 BLL_INIT

BLL_INIT
 ⇒ Initialize operating PM,
 reject BLL_TSDUs and BLL_RSDUs which have not
 yet been processed

1a NO_BUS_CONFIG

NO_BUS_CONFIG
 configuration_valid == true (edge)
 ⇒ generate BLL_RSDU with SDU_statusBLL_RSDU =
NOK

1b READY

NO_BUS_CONFIG
 BLL_Data.request
 ⇒ BLL_Data.confirm (-) with error_code =
 STATE_CONFLICT

3 NO_BUS_CONFIG

READY
 configuration_valid == false (edge)

6 BLL_INIT

READY
 BLL_Data.request
 ⇒ accept PDLSDU as BLL_TSDU ,
 BLL_Data.confirm(+) with PDLSDU = BLL_RSDU
 and update_info = SDU_statusBLL_RSDU,
 BAC_Cycle.request with BLLSDU = BLL_TSDU

7 DATA_CYCLE

READY
 timer T1 expired
 ⇒ BLL_Event.indication with event = BLL_bus_timeout

8 BLL_INIT

DATA_CYCLE
 configuration_valid == false (edge)

10 BLL_INIT

DATA_CYCLE
 BLL_Data.request
 \still resources available
 ⇒ accept PDLSDU as BLL_TSDU

11 DATA_CYCLE

DATA_CYCLE
 BLL_Data.request
 \no more resources available
 ⇒ BLL_Data.confirm (-) with error_code = NO_RESRC

12 DATA_CYCLE

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 70 – 61158-4-8 © IEC:2007(E)

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

DATA_CYCLE
 BAC_Cycle.confirm with BLLSDU and result == OK
 \no further BLL_TSDU available
 ⇒ set timer T1 to value TTO_BUS,
 buffer BLLSDU as BLL_RSDU with
 SDU_statusBLL_RSDU = OK

13 READY

DATA_CYCLE
 BAC_Cycle.confirm with BLLSDU and result == OK
 \further BLL_TSDU available
 ⇒ set timer T1 to the value TTO_BUS,
 BLL_Data.confirm(+) with PDLSDU = BLLSDU and
 update_info = OK,
 BAC_Cycle.request with BLLSDU = BLL_TSDU

14 DATA_CYCLE

DATA_CYCLE
 configuration_valid == false (edge)

15 READY

DATA_CYCLE
 BLL_Data.request
 \still resources available
 ⇒ accept PDLSDU as BLL_TSDU

16 DATA_CYCLE

DATA_CYCLE
 BLL_Data.request
 \no more resources available
 ⇒ BLL_Data.confirm (-) with error_code = NO_RESRC

17 BLL_INIT

DATA_CYCLE
 BAC_Cycle.confirm with BLLSDU and result == OK
 \no further BLL_TSDU available
 ⇒ set timer T1 to value TTO_BUS,
 buffer BLLSDU as BLL_RSDU with
 SDU_statusBLL_RSDU = OK

 same_state

DATA_CYCLE
 BAC_Cycle.confirm with BLLSDU and result == OK
 \further BLL_TSDU available
 ⇒ set timer T1 to the value TTO_BUS,
 BLL_Data.confirm(+) with PDLSDU = BLLSDU and
 update_info = OK,
 BAC_Cycle.request with BLLSDU = BLL_TSDU

 BLL_INIT

4.4.4.1.5 BLL-BAC protocol machine

Figure 48 shows the BLL-BAC protocol machine.

READY

CYCLE_RUN

LOCKED

0

1, 6

7

19

9, 11

2, 5

8, 10

10, 12

17, 18

13, 15

Figure 48 – BLL-BAC protocol machine

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 71 –

Transitions as a result of a BLL_Reset.request primitive always go from every state to the
READY state. These transitions are not shown individually but are described by the transition
0.

States of the BLL-BAC-PM (protocol machine)

4.4.4.1.5.1 READY

The initiating of bus cycles is enabled. No cycle is run because the BLL operating protocol
machine and diagnostic application did not send a BAC_Cycle.request or because the update
time tUP has not yet expired. tUP is considered for data cycles only.

4.4.4.1.5.2 CYCLE_RUN

The initiating of bus cycles is enabled. A bus cycle is running. In this state the protocol
machine waits for the end of the bus cycle.

4.4.4.1.5.3 LOCKED

The initiating of bus cycles is locked. However, a running bus cycle can still be completed. If
there is a BAC_Cycle.request in this state, the BLLSDU transferred with the request is
buffered. Only after the enabling of the bus cycles will a new bus cycle be started. Only one
BLLSDU can be buffered.

Table 36 describes the state transitions.

The following events may occur and shall be taken into consideration.

— BAC_Cycle.request.
— MAC_Cycle.confirm (if a MAC_Cycle.request was sent before).
— Timer T2, that is, the update_time TUP expired.

— Change of the BLL_access_control variable.
— BAC_Reset.request.

Table 36 – State transitions of the BLL-BAC protocol machine

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

 After power on
 ⇒ reset BAC-PM

0 READY

READY
 BAC_Cycle.request (data_cycle, BLLSDU)
 \T2 started and not yet expired
 ⇒ retain BLLSDU

1 READY

READY
 BAC_Cycle.request (data_cycle, BLLSDU)
 \T2 expired or not started
 ⇒ MACSDU = BLLSDU,
 MAC_Cycle.request (data_cycle, MACSDU),
 set T2 to TUP , start T2

2 CYCLE_RUN

READY
 T2 expired
 \BAC_Cycle request already received but not yet executed
 ⇒ MACSDU = BLLSDU,
 MAC_Cycle.request (data_cycle, MACSDU),
 set T2 to TUP, start T2

5 CYCLE_RUN

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 72 – 61158-4-8 © IEC:2007(E)

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

READY
 T2 expired
 \no pending BAC_Cycle service available
 ⇒ BLL_Event.indication with event = BLL_update_timeout

6 READY

READY
 BLL_access_control == req_to_lock (edge)

7 LOCKED

CYCLE_RUN
 BAC_Cycle.request
 ⇒ BAC_Cycle.confirm with result = NO

8 CYCLE_RUN

CYCLE_RUN
 MAC_Cycle.confirm with result == OK
 ⇒ BAC_Cycle.confirm with result = OK to
 BLL operating protocol machine

9 READY

CYCLE_RUN
 MAC_Cycle.confirm with result == NO
 ⇒ BAC_Cycle.confirm with result = NO to
 BLL operating protocol machine,
 BLL_access_control == locked,
 BLL_Event: BLL_cycle_error

10 LOCKED

CYCLE_RUN
 T2 expired
 ⇒ BLL_Event.indication with event = BLL_update_timeout

11 CYCLE_RUN

CYCLE_RUN
 BLL_access_control == req_to_lock (edge)

12 LOCKED

LOCKED
 BAC_Cycle.request (data_cycle, BLLSDU)
 \no pending BAC_Cycle service available
 ⇒ retain BLLSDU

13 LOCKED

LOCKED
 MAC_Cycle.confirm with result == OK/NO
 ⇒ BAC_Cycle.confirm with result == OK/NO to
 BLL operating protocol machine,
 BLL_access_control = locked,

 Result == NO → BLL_Event.indication with
 event = BLL_cycle_error

15 LOCKED

LOCKED
 BLL_access_control == unlocked (edge)
 \bus cycle not yet been completed

17 CYCLE_RUN

LOCKED
 BLL_access_control == unlocked (edge)
 \bus cycle completed, but BAC_Cycle service is still
 pending
 ⇒ MACSDU = BLLSDU,
 MAC_Cycle.request (data_cycle, MACSDU)

18 CYCLE_RUN

LOCKED
 BLL_access_control == unlocked (edge)
 \bus cycle completed AND no BAC_Cycle service is
 pending

19 READY

any_state
 BAC_Reset.request
 ⇒ reset BAC-PM,
 BAC_Reset.con

 READY

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 73 –

4.4.4.2 BLL protocol machine of the slave

4.4.4.2.1 Overview

The BLL-BAC protocol machine does not exist in the slave, since only the master can initiate
bus cycles. The BLL operating protocol machine of the slave is greatly simplified. It only
passes the data from the MAC to the PDL and vice versa.

4.4.4.2.2 BLL operating protocol machine

Figure 49 shows the BLL operating protocol machine of a slave.

READY

1, 2

Figure 49 – BLL operating protocol machine of the slave

States of the BLL operating protocol machine of the slave

4.4.4.2.2.1 READY

The BLL operating protocol machine is ready to accept new output data in form of a MACSDU
from the MAC and passes it to the PDL as a BLLSDU. IN data is also passed from PDL
(BLLSDU) to the MAC (MACSDU). The BLL is only responsible for the transmission of data by
means of data cycles.

Table 37 describes the state transitions.

The following events may occur in every state and shall be taken into consideration:

— BLL_Data.res
— MAC_Cycle_ind

The MAC_Cycle_ind is a combination of the following interactions at the MAC ↔ MAC-user
interface.

a) MAC_Data.indication (Data_Cycle).
b) MAC_Get_Data.request (Data_Receive).
c) MAC_Get_Data.confirm (Data_Receive, OK, MACSDU).

Table 37 – State transitions of the BLL operating protocol machine of the slave

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

READY
 MAC_Cycle_ind with MACSDU
 ⇒ BLLSDU = MACSDU,
 BLL_Data.indication (BLLSDU)

1 READY

READY
 BLL_Data.res (BLLSDU)
 ⇒ MACSDU = BLLSDU,
 MAC_Cycle_res (MACSDU)

2 READY

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 74 – 61158-4-8 © IEC:2007(E)

MAC_Cycle_res is a combination of the following interactions at the MAC-MAC-user interface:

1) MAC_Put_Data.request (Data_Transmit, MACSDU)
2) MAC_Put_Data.confirm (Data_Transmit, OK).

4.5 Medium Access Control (MAC)

4.5.1 Location of the MAC in the DLL

The Medium Access Control (MAC) is the lowest sublayer of the Data Link Layer (DLL) and is
based on the PhL (PhL) (see Figure 50).

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS-user DLMS-user

Layer 1

Figure 50 – Location of the MAC in the DLL

As shown in Figure 51, the PhL is also subdivided into several sublayers, the functionality of
which follows from Figure 51 as well. The sublayer is called MAC-user and corresponds to the
BLL sublayer.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 75 –

MAC

Medium

MDS MDS

MAU

Medium

MIS

MAU

Router

BLL
Layer 2
Data Link
Layer
(DLL)

Layer 1
Physical
Layer
(PhL)

MAC user interface

Control system
Ring access

DL-Ph interface

MIS-MDS interface

Coding
Transmission frame
Time response

MDS-MAU interface

Conversion
logical signals <>
physical signals

Interface to medium

Transmission medium

Figure 51 – Model details of layers 1 and 2

4.5.2 Functionality of the MAC

The MAC sublayer controls the access to the transmission medium and ensures that the
received and transmitted user data is checked in the form of a 16-bit CRC polynomial.

The MAC sublayer transmits the data, which are received the MAC-user, in one DLPDU cycle
as a sequence of binary data units via the DL-Ph interface to the PhL. At the same time the
MAC sublayer receives data units via the DL-Ph interface from the PhL. If the PhL has
received these data units without errors it makes them available to the MAC-user. It is always
the master that initiates a DLPDU cycle, so that a difference is to be made between the active
MAC sublayer of a master and the passive MAC sublayer of the slave.

A DLPDU cycle consists of a data sequence which may follow a check sequence (see
Figure 52 and Figure 53).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 76 – 61158-4-8 © IEC:2007(E)

Data sequence
(user data or control data)

Check sequence
(FCS)

 Data sequence
(user data or
control data)

DLPDU cycle (without errors) Next DLPDU cycle

Figure 52 – DLPDU cycle of a data sequence without errors

Data sequence
(user data or control data)

 Data sequence
(control data)

DLPDU cycle (with errors) Next DLPDU cycle

Figure 53 – DLPDU cycle of a data sequence with errors

A data sequence may either include a data cycle for the transmission of user data from the
process data channel and, if applicable, from the parameter channel, or an identification cycle
for the transmission of data for configuration and error diagnostics. If the data sequence was
transmitted without any errors, a check sequence follows which is initiated by the master. This
check sequence first transmits the CRC polynomial (checksum) of the data transmitted in the
data sequence before, followed by the receive status (checksum status). Should there be an
error in the data sequence, and this sequence is followed by another data sequence, the
check sequence is omitted and another data sequence is sent, which shall be part of an
identification cycle.

The Medium Access Control (MAC) sublayer is a part of the DLL and controls the secured
data transmission between the devices over the transmission medium. It transmits the
MACSDU from the MAC-user, generates the accordingly DLPDU and transmits it via the
DL-Ph interface to the PhL. Conversely, it receives a DLPDU via the DL-Ph interface, and
generates the MACSDU from it and transmits it to the MAC-user.

To secure the data transmission, the MAC sublayer generates the checksum of the DLPDU to
be transmitted in the form of a CRC polynomial and transmits this sum via the DL-Ph interface
to the PhL. Conversely, the MAC sublayer generates the checksum of a received DLPDU in
the form of a CRC polynomial and compares it with the received checksum.

4.5.3 Master

4.5.3.1 DLPDU Structure

A distinction is made between the following DLPDU formats: data sequence DLPDU and
check sequence DLPDU.

4.5.3.1.1 Data Sequence DLPDU

The MAC sublayer of a master shall generate the data sequence DLPDU according to
Figure 54 by adding the loopback word (LBW) to the MACSDU. The DLPDU thus generated is
transmitted from left to right to the PhL in the form of PhIDUs so that the LBW is transmitted
first, followed by the MACSDU.

When the number of the data bits transmitted by the BLL cannot be divided by eighth without
a remainder, the loopback word (LBW) shall be preceded by extra bits of any contents. The
number of these extra bits is 8 bits minus the number of remainder bits.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 77 –

LBW OUT (n) OUT (n-1) OUT (1)

Extra bits MACSDU

Figure 54 – Data sequence DLPDU transmitted by the master

Conversely, the MAC sublayer of a master shall remove the LBW from a data sequence
DLPDU received according to Figure 55 and compare it with the LBW and the extra bits of the
last data sequence DLPDU transmitted to the PhL. If both words are identical, the MAC
sublayer shall transmit the received MACSDU via the MAC-user interface to the MAC-user.
The data sequence DLPDU is received from left to right, starting with the MACSDU.

LBWIN (n) IN (n-1) IN (1)

Extra bits

MACSDU

Figure 55 – Data sequence DLPDU received by the master

4.5.3.1.2 Check sequence DLPDU

For a secured transmission of the data sequence DLPDU, the MAC sublayer shall generate a
check sequence DLPDU according to Figure 56 after the data sequence DLPDU was
transmitted successfully. For this, the MAC sublayer generates a checksum for the
transmitted data sequence DLPDU and transmits it together with the checksum status in a
check sequence as a check sequence DLPDU via the DL-Ph interface to the PhL.

Checksum(k) Checksum status (k)

Figure 56 – Check sequence DLPDU

Conversely, the MAC sublayer of the master compare the checksum of a received check
sequence DLPDU according to Figure 56 with the checksum calculated for the data sequence
DLPDU that was received immediately before. Then it has to evaluate the checksum status of
the received check sequence DLPDU. The result is communicated to the MAC-user.

4.5.3.2 Loopback word (LBW)

To secure the data transmission, the MAC shall generate a loopback word (LBW) with a
structure as shown in Figure 57.

LBW field FC field

1 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

msb lsb

Figure 57 – Loopback word (LBW)

The loopback word is transmitted from right to left, starting with the least significant bit (lsb),
and ending with the most significant bit (msb).

In every transmitted LBW the binary value of b3…b0 are used as frame counter (FC), with b3
as the msb and b0 as the lsb, is decremented by the value 1 compared with the value
represented by b3…b0 of the last LBW, without considering a possible carry. The MAC-user

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 78 – 61158-4-8 © IEC:2007(E)

defines the values for b14…b4 via the management interface by means of the loopback word
variable of the MAC.

4.5.3.3 Checksum

To secure the transmission of a data sequence DLPDU against errors, the MAC sublayer of a
master generates an independent checksum in the form of a 16-bit FCS value of the data
sequence DLPDU to be transmitted as well as of a received data sequence DLPDU. The FCS
value is the division remainder resulting from a continuous division of the DLPDU, starting
with the lsb, by the standard CCITT polynomial X16 + X12 + X5 + 1 with pre- and post-division
adjustment, all as specified in 4.5.3.3.1.

The checksum is transmitted in a check sequence DLPDU, beginning with the lsb and ending
with the msb.

NOTE 2 The checksum may be generated synchronously with the transmission or receipt of the data sequence
DLPDU.

NOTE 3 If a transmission error is detected when a data sequence DLPDU is received, the checksum for the
received data sequence DLPDU is set to its initial value, L(X), as specified in 4.5.3.3.1.

4.5.3.3.1 Frame check sequence field

Within this subclause, any reference to bit K of an octet is a reference to the bit whose weight
in a one-octet unsigned integer is 2K.

NOTE This is sometimes referred to as “little endian” bit numbering.

Table 38 – FCS length and polynomial

Item Value

n-k 16

G(X) X16 + X12 + X5 + 1 (notes 1, 2, 3)

NOTE 1 Code words D(X) constructed from this G(X) polynomial have Hamming distance 4 for lengths ≤ 4095
octets, and all errors of odd weight are detected.

NOTE 2 This G(X) polynomial is relatively prime to all, and is thus not compromised by any, of the primitive
scrambling polynomials of the form 1 + X-j + X-k sometimes used in DCEs (modems). However, it is severely
compromised by use of differential coding, which uses an encoding polynomial of 1 + X-1 (a factor of G(X)), and
therefore it should be used with PhLs which do not employ differential coding.

NOTE 3 This is the same polynomial as specified in ISO/IEC 3309 (HDLC). However, the method of checking
differs. As a consequence, the error detection properties implied by the Hamming distance apply only
approximately to Type 8’s use.

For this standard, as in other International Standards (for example, ISO/IEC 3309, ISO/IEC
8802 and ISO/IEC 9314-2), DLPDU-level error detection is provided by calculating and
appending a 16-bit frame check sequence (FCS) to the other DLPDU fields during
transmission to form a "systematic code word"1) of length n consisting of k DLPDU message
bits followed by n - k (equal to 16) redundant bits, and by checking on reception that the FCS
field of the prior data sequence DLPDU is equal to that of the just-received check sequence
DLPDU. The mechanism for this computation is as follows:

The generic form of the generator polynomial for this FCS construction is specified in
equation (4). The specific polynomial for this DL-protocol is specified in Table 38.

The original message (that is, the DLPDU without an FCS), the FCS, and the composite
message code word (the concatenated DLPDU and FCS) shall be regarded as vectors M(X),

1) W. W. Peterson and E. J. Weldon, Jr., Error Correcting Codes (2nd edition), MIT Press, Cambridge, 1972.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 79 –

F(X), and D(X), of dimension k, n - k, and n, respectively, in an extension field over GF(2). If
the message bits are m1 … mk and the FCS bits are fn-k-1 … f0, where

m1 … m8 form the first octet sent,

m8N-7 … m8N form the Nth octet sent,

f7 … f0 form the last octet sent, and

m1 is sent by the first PhL symbol(s) of the message and f0 is sent by the
last PhL symbol(s) of the message (not counting PhL framing
information).

NOTE This “as transmitted” ordering is critical to the error detection properties of the FCS.

then the message vector M(X) shall be regarded to be
M(X) = m1Xk-1 + m2Xk-2 + … + mk-1X1 + mk (1)

and the FCS vector F(X) shall be regarded to be
F(X) = fn-k-1Xn-k-1 + … + f0 (2)

= f15X15 + … + f0

The composite vector D(X), for the complete DLPDU, shall be constructed as the
concatenation of the message and FCS vectors

D(X) = M(X) Xn-k + F(X) (3)
= m1Xn-1 + m2Xn-2 + … + mkXn-k + fn-k-1Xn-k-1 + … + f0
= m1Xn-1 + m2Xn-2 + … + mkX16 + f15X15 + … + f0 (for the case of k = 15)

The DLPDU presented to the PhL shall consist of an octet sequence in the specified order.

The redundant check bits fn-k-1 … f0 of the FCS shall be the coefficients of the remainder
F(X), after division by G(X), of L(X) (Xk + 1) + M(X) Xn-k
where G(X) is the degree n-k generator polynomial for the code words

G(X) = Xn-k + gn-k-1Xn-k-1 + … + 1 (4)

and L(X) is the maximal weight (all ones) polynomial of degree n-k-1
L(X) = (Xn-k + 1) / (X+1) = Xn-k-1 + Xn-k-2 + … + X + 1 (5)

= X15 + X14 + X13 + X12 + … + X2 + X + 1 (for the case of k = 15)

That is,
F(X) = L(X) (Xk + 1) + M(X) Xn-k (modulo G(X)) (6)

NOTE 1 The L(X) terms are included in the computation to detect initial or terminal message truncation or
extension by adding a length-dependent factor to the FCS.

NOTE 2 As a typical implementation when n-k = 16, the initial remainder of the division is preset to all ones. The
transmitted message bit stream is multiplied by Xn-k and divided (modulo 2) by the generator polynomial G(X),
specified in equation (4). The ones complement of the resulting remainder is transmitted as the (n-k)-bit FCS, with
the coefficient of Xn-k-1 transmitted first.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 80 – 61158-4-8 © IEC:2007(E)

4.5.3.4 Checksum status

The MAC sublayer of a master generates a checksum status as shown in Figure 58.

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

msb lsb

Figure 58 – Checksum status generated by the master

In a check sequence DLPDU transmission takes place immediately after the transmission of
the checksum, starting with the lsb and ending with the msb.

In the same way the MAC sublayer of a master shall evaluate a checksum status received in a
check sequence DLPDU as shown in Figure 59.

0 0 0 0 0 0 0 0 r7 r6 r5 r4 r3 r2 r1 r0

msb lsb

Figure 59 – Checksum status received by the master

For the logical binary values r7…r0 means: r7=r6=r5=r4=r3∧r2∧r1∧r0, where "∧" represents
the bit-by-bit AND operator.

NOTE 1 If the expression r3∧r2∧r1∧r0 assumes the value logical 1, both the data sequence DLPDUs and the
checksum between two devices was transmitted without errors.

NOTE 2 If the expression r3∧r2∧r1∧r0 assumes the value 0, then a transmission error occurred either when the
data sequence DLPDUs were transmitted or the checksums between two devices.

The checksum status is received from right to left in a check sequence DLPDU immediately
after the checksum. The lsb is transmitted first and the msb last.

4.5.3.5 Bus access control

The data transmission is described with separate protocol machines for the send and receive
part.

4.5.3.5.1 Sender

Figure 60 shows the state transitions of the MAC sublayer for the transmission of a message
in a data sequence (identification cycle or data cycle) from the master to the passive slaves
as well as the mechanisms for the data transmission security (check sequence).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 81 –

 Reset

Data
sequence

Check
sequence

 Data_Transfer

 Data_Idle

 Check_LBW

 Check_
 Sequence_

 Transfer

 CRC_Idle

Data_Cycle_
Request

ID_Cycle_
Request

Idle

Figure 60 – MAC protocol machine of a master: transmission of a message

4.5.3.5.1.1 Data Sequence

4.5.3.5.1.1.1 Idle

In this state the MAC sublayer of a master shall wait for the request to start a DLPDU cycle
through the MAC-user by means of a MAC_Data.request primitive.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 82 – 61158-4-8 © IEC:2007(E)

If the MAC sublayer receives the request to start an identification cycle (cycle=ID_cycle) from
the MAC-user by means of a MAC_Data.request primitive, it shall generate the MACSDU to
be transmitted from the data which is available in the ID_transmit buffer for the transmission
and assume the ID_cycle_request state. While data is accepted, any other access to the
ID_transmit buffer is locked.

If the MAC sublayer receives the request to start a data cycle (cycle=data_cycle) from the
MAC-user by means of a MAC_Data.request primitive, it shall generate the MACSDU to be
transmitted from the data which is available in the data_transmit buffer for the transmission
and assume the Data_Cycle_Request state. While data is accepted, any other access to the
data_transmit buffer is locked.

4.5.3.5.1.1.2 ID_Cycle_Request

In this state the MAC sublayer shall first generate the data sequence DLPDU to be
transmitted and then start an identification cycle via the DL-Ph interface by means of a
Ph-DATA.request primitive (PhICI=start_ID_cycle). After the confirmation through the PhL by
means of a Ph-DATA.confirm primitive, the MAC sublayer shall assume the Data_Transfer
state.

4.5.3.5.1.1.3 Data_Cycle_Request

In this state the MAC sublayer shall first generate the data sequence DLPDU to be
transmitted and then start a data cycle via the DL-Ph interface by means of a
Ph-DATA.request primitive (PhICI=start_data_cycle). After the confirmation through the PhL by
means of a Ph-DATA.confirm primitive, the MAC sublayer shall assume the Data_Transfer
state.

4.5.3.5.1.1.4 Data_Transfer

In this state the MAC sublayer shall first transmit sequentially the data sequence DLPDU by
means of the Ph-DATA.request primitives (PhICI=user_data) via the DL-Ph interface to the
PhL. The MAC sublayer receives a confirmation for every Ph-DATA.request primitive through
the PhL by means of a Ph-DATA.confirm primitive. At the same time the check sequence
DLPDU is generated synchronously.

After a complete transmission of the data sequence DLPDU, the MAC sublayer shall assume
the Data_Idle state.

4.5.3.5.1.1.5 Data_Idle

In this state the MAC sublayer requests a Ph-DATA.request (PhICI=User_Data_Idle) and waits
until the data sequence DLPDU has been completely received. If the receive time monitoring
circuit responded, since an identification or data cycle has been started and before the data
sequence DLPDU has been completely received, the MAC sublayer shall terminate the data
sequence with a corresponding MAC_Data.confirm primitive to the MAC-user and assume the
Idle state.

After the data sequence DLPDU has been completely received, the MAC sublayer shall
assume the Check_LBW state.

NOTE If a transmission error was detected during the data sequence, the MAC-user started with an identification
cycle in the next DLPDU cycle.

4.5.3.5.1.1.6 Check_LBW

In this state, the MAC sublayer first checks whether a transmission error has been detected
between the start of an identification or data cycle and the complete receipt of the data

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 83 –

sequence DLPDU. If this is the case, it shall end the data sequence with a corresponding
MAC_Data.confirm primitive to the MAC-user and assume the Idle state.

If no receive error was detected, the received loopback word is compared with the loopback
word transmitted from the MAC sublayer. If both words are identical, the MAC sublayer
terminates the data sequence, generates the check sequence DLPDU and assumes the
Check_Sequence_Transfer state.

If the received loopback word is not identical with the sent word, a transmission error
occurred and the MAC sublayer shall terminate the data sequence with a corresponding
MAC_Data.confirm primitive to the MAC-user and assume the Idle state.

4.5.3.5.1.2 Check sequence

4.5.3.5.1.2.1 Check_Sequence_Transfer

In this state, the MAC sublayer shall transmit the check sequence DLPDU sequentially via the
DL-Ph interface to the PhL. The transmission starts with the checksum, which is transmitted
by means of the Ph-DATA.request primitives (PhICI=CRC_data), followed by the checksum
status which is transmitted by means of the Ph-DATA.request primitives (PhICI=CRC_status).

After the check sequence DLPDU has been completely transmitted the MAC sublayer shall
assume the CRC_Idle state.

4.5.3.5.1.2.2 CRC_Idle

In this state the MAC sublayer requests a Ph-DATA.request (PhICI=CRC_Data_Idle) and waits
until the check sequence DLPDU has been completely received. If the receive time monitoring
circuit responded, since the transmission of the check sequence DLPDU started and before
the complete receipt of the check sequence DLPDU, the MAC sublayer shall terminate the
check sequence with a corresponding MAC_Data.confirm primitive to the MAC-user and
assume the Idle state.

After the check sequence DLPDU has been completely received, the MAC sublayer checks
whether a transmission error was detected in the check sequence. If no transmission error
was detected, the MAC sublayer makes the received MACSDU available to the MAC-user in
the ID_receive buffer, when the MACSDU was received in an identification cycle, or in the
data_receive buffer, when the MACSDU was received in a data cycle. Afterwards, it
completes the DLPDU cycle with a MAC_Data.confirm primitive (status=OK) to the MAC-user
and assumes the Idle state. During the data transfer any other access to the corresponding
buffer is locked.

If the check sequence detected a transmission error, the MAC sublayer completes the DLPDU
cycle with a corresponding MAC_Data.confirm primitive to the MAC-user and assumes the
Idle state.

NOTE If a transmission error was detected during the check sequence, the MAC-user started with an
identification cycle in the next DLPDU cycle.

4.5.3.5.2 Receiver

The receive part of the MAC sublayer is described with two protocol machines: one protocol
machine describes the receipt of a message, consisting of a data sequence and a check
sequence, and the second protocol machine describes the identification of a data sequence
as an identification or data cycle.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 84 – 61158-4-8 © IEC:2007(E)

4.5.3.5.2.1 Message receiver

Figure 61 shows the state transitions in the MAC sublayer when a message is received in a
data sequence (identification cycle or data cycle) by the master and the mechanisms for
checking a secured data transmission (check sequence).

Check_
Receive_Error

Data sequence
Check sequence

Reset

Idle

Await_
Data_

Transfer
Data_Transfer Await_

ID_Transfer

End_Data_
Sequence

CRC_Data_
Transfer

End_Check_
Sequence

Check_CRC

CRC_
Status_
Transfer

Figure 61 – MAC protocol machine of a master: receipt of a message

4.5.3.5.2.1.1 Data sequence

4.5.3.5.2.1.1.1 Idle

In this state the MAC sublayer shall wait until the MAC-user starts an identification or data
cycle. If the MAC-user requests an identification cycle by means of a MAC_Data.request
primitive (cycle=ID_cycle), the MAC sublayer assumes the Await_ID_Transmit state. If the

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 85 –

MAC-user requests a data cycle by means of a MAC_Data.request primitive
(cycle=data_cycle), it assumes the Await_Data_Cycle state.

If the MAC sublayer receives characters of a data sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=user_data) via the DL-Ph interface before an
identification or data cycle is started, there is a transmission error which is reported to the
MAC-user with MAC_Event.indication primitive (event=data_noise). The received characters
are rejected.

In this case the MAC-user shall request an identification cycle to restore the data consistency.

If the MAC sublayer receives characters of a check sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=CRC_data) via the DL-Ph interface before an
identification or data cycle is started, there is a transmission error which is reported to the
MAC-user with MAC_Event.indication primitive (event=CRC_noise). The received characters
are rejected.

In this case the MAC-user shall request an identification cycle to restore the data consistency.

4.5.3.5.2.1.1.2 Await_ID_Transfer

In this state the MAC sublayer waits for the beginning of the data sequence DLPDU. If it
receives the first character of a data sequence DLPDU by means of a Ph-DATA.indication
primitive (PhICI=user_data) via the DL-Ph interface, it shall assume the Data_Transfer state.

If the receive time monitoring responds, there is a transmission error and the MAC sublayer
shall stop the receipt of the data sequence DLPDU and assume the Idle state. This
transmission error is communicated to the MAC-user in the MAC_Data.confirm primitive after
the transmission of the data sequence DLPDU has been completed.

If the MAC sublayer receives characters of a data sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=CRC_data) via the DL-Ph interface, there is a
transmission error which is reported to the MAC-user with MAC_Event.indication primitive
(event=CRC_noise). The received characters are rejected. In this case the MAC-user shall
request an identification cycle to restore the data consistency.

4.5.3.5.2.1.1.3 Await_Data_Transfer

In this state the MAC sublayer waits for the beginning of the data sequence DLPDU. If it
receives the first character of a data sequence DLPDU by means of a Ph-DATA.indication
primitive (PhICI=user_data) via the DL-Ph interface, it shall assume the Data_Transfer state.

If the receive time monitoring responds, there is a transmission error and the MAC sublayer
shall stop the receipt of the data sequence DLPDU and assume the Idle state. This
transmission error is communicated to the MAC-user in the MAC_Data.confirm primitive after
the transmission of the data sequence DLPDU has been completed.

If the MAC sublayer receives characters of a data sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=CRC_data) via the DL-Ph interface, there is a
transmission error which is reported to the MAC-user with MAC_Event.indication primitive
(event=CRC_noise). The received characters are rejected. In this case the MAC-user shall
request an identification cycle to restore the data consistency.

4.5.3.5.2.1.1.4 Data_Transfer

In this state the MAC sublayer shall receive the data sequence DLPDU which is transmitted
character by character with the Ph-DATA.indication primitive (PhICI=user_data) via the DL-Ph

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 86 – 61158-4-8 © IEC:2007(E)

interface to the MAC sublayer. After the data sequence DLPDU has been completely received
it shall assume the End_Data_Sequence state.

NOTE The quantity of characters which the MAC sublayer of a master received from the PhL in a data sequence
DLPDU is always equal to the quantity of characters which is transmitted from this MAC sublayer in a data
sequence DLPDU to the PhL.

There is a transmission error if the receive time monitoring circuit responds before the data
sequence DLPDU has been completely received. The MAC sublayer shall stop the receipt of
the data sequence DLPDU and assume the Idle state. This transmission error is
communicated to the MAC-user in the MAC_Data.confirm primitive after the data sequence
DLPDU has been completed.

If the MAC sublayer receives characters of a data sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=CRC_data) via the DL-Ph interface, there is a
transmission error which is reported to the MAC-user with a MAC_Event.indication primitive
(event=CRC_noise). The received characters are rejected. In this case the MAC-user shall
request an identification cycle to restore the data consistency.

4.5.3.5.2.1.1.5 End_Data_Sequence

In this state the MAC sublayer shall terminate the receipt of the data sequence DLPDU,
generate the received MACSDU, and wait for the beginning of a check sequence DLPDU or
the start of a new data sequence by the MAC-user.

If the MAC sublayer receives the first character of a check sequence DLPDU via the DL-Ph
interface by means of a Ph-DATA.indication primitive (PhICI=CRC_data), it shall assume the
CRC_Data_Transfer state and start to receive the check sequence DLPDU.

If the receive time monitoring circuit responds, there is a transmission error and the MAC
sublayer shall assume the Idle state. This transmission error is communicated to the MAC-
user in the MAC_Data.confirm primitive after the transmission of the check sequence DLPDU
has been completed.

There is a transmission error if the MAC sublayer receives a character of a data sequence
DLPDU via the DL-Ph interface with a Ph-DATA.indication primitive (PhICI=user_data). This
transmission error is communicated to the MAC-user with a MAC_Event.indication primitive
(event=data_noise) and, if necessary, in the MAC_Data.confirm primitive after the check
sequence DLPDU has been completely transmitted. The MAC sublayer shall reject this
character.

If the received and sent loopback word are not identical the MAC sublayer assumes the Idle
state.

4.5.3.5.2.1.2 Check sequence

4.5.3.5.2.1.2.1 CRC_Data_Transfer

In this state the MAC sublayer shall receive the checksum transmitted via the DL-Ph interface
to the MAC sublayer. The checksum is received with Ph-DATA.indication primitives
(PhICI=CRC_data). After the checksum has been completely received, the MAC sublayer
shall assume the Check_CRC state.

If the receive time monitoring circuit responds, there is a transmission error and the MAC
sublayer shall assume the Idle state. This transmission error is communicated to the MAC-
user in the MAC_Data.confirm after the transmission of the check sequence DLPDU has been
completed.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 87 –

There is a transmission error if the MAC sublayer receives a character of a data sequence
DLPDU via the DL-Ph interface by means of a Ph-DATA.indication primitive
(PhICI=user_data). This transmission error is communicated to the MAC-user in the
MAC_Data.confirm primitive after the transmission of the check sequence DLPDU has been
completed. The MAC sublayer shall treat this character like a character of a check sequence
DLPDU and continue to receive the checksum.

4.5.3.5.2.1.2.2 Check_CRC

In this state the MAC sublayer shall compare the received checksum with the one it previously
generated of the last data sequence DLPDU. If the two checksums are identical, the data
sequence DLPDU received last was received without errors. Otherwise, there is a
transmission error which is communicated to the MAC-user after the end of the check
sequence in the MAC_Data.confirm primitive.

If the MAC sublayer receives the first character of a checksum status (PhICI=CRC_status) via
the DL-Ph interface by means of a Ph-DATA.indication primitive, the MAC sublayer shall
assume the CRC_Status_Transfer state and start to receive the checksum status.

If the receive time monitoring responds, there is a transmission error and die MAC sublayer
shall assume the Idle state. This transmission error is communicated to the MAC-user in the
MAC_Data.confirm primitive after the transmission of the check sequence DLPDU has been
completed.

4.5.3.5.2.1.2.3 CRC_Status_Transfer

In this state the MAC sublayer shall receive the checksum status transmitted via the DL-Ph
interface to the MAC sublayer. The checksum status is received character by character with
the Ph-DATA.indication primitives (PhICI=CRC_status). After the first four characters of the
checksum status (r0…r3) have been completely received, the MAC sublayer shall assume the
Check_Receive_Error state.

If the receive time monitoring responds, there is a transmission error and the MAC sublayer
shall assume the Idle state. This transmission error is communicated to the MAC-user in the
MAC_Data.confirm primitive after the transmission of the check sequence DLPDU has been
completed.

4.5.3.5.2.1.2.4 Check_Receive_Error

In this state, the MAC sublayer shall evaluate the logic state of the first four characters r0…r3
of the received checksum status. If the bit-by-bit logical AND combination r3∧r1∧r0 assumes
the binary value of logical 1, the data sequence DLPDU received last was received without
errors. Otherwise, there is a transmission error which is communicated to the MAC-user in the
MAC_Data.confirm primitive after the check sequence has been completed.

If the MAC sublayer received a character of a check sequence via the DL-Ph interface by
means of a Ph-DATA.indication primitive (PhICI=CRC_status), it shall assume the
End_Check_Sequence state and continue to receive the checksum status.

4.5.3.5.2.1.2.5 End_Check_Sequence

In this state the MAC sublayer shall continue to receive the checksum status. After the
checksum status has been completely received, the MAC sublayer shall terminate the receipt
of the check sequence DLPDU and assume the Idle state.

If the receive time monitoring responds, there is a transmission error and the MAC sublayer
shall assume the Idle state. This transmission error is communicated to the MAC-user in the
MAC_Data.confirm primitive after the check sequence DLPDU has been completely
transferred.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 88 – 61158-4-8 © IEC:2007(E)

4.5.3.5.2.2 Data sequence identification

Figure 62 shows the state transitions in the MAC sublayer of a master for the identification of
a data sequence as an identification cycle or data cycle.

e

Reset

ID_Cycle Data_Cycle

ID_Cycle_
Request

Await_ID_
Cycle

Await_
Data_Cycle

ID_Cycle_
Idle

Data_Cycle_
Idle

Figure 62 – MAC sublayer of a master: data sequence identification

4.5.3.5.2.2.1 Identification cycle

4.5.3.5.2.2.1.1 ID_Cycle

In this state, the MAC sublayer shall wait for the MAC-user to start an identification or data
cycle. If the MAC-user requests an identification cycle by means of a MAC_Data.request
primitive (cycle=ID_cycle), the MAC sublayer assumes the ID_Cycle_Request state. If the
MAC-user requests a data cycle by means of a MAC_Data.request primitive
(cycle=data_cycle), it assumes the Await_Data_Cycle state.

If the MAC receives the beginning of a data cycle via the DL-Ph interface by means of a
Ph-DATA.indication primitive (PhICI=data_transfer), there is an error and the MAC sublayer
assumes the Data_Cycle state.

4.5.3.5.2.2.1.2 ID_Cycle_Request

If the MAC sublayer receives in this state the request for a data cycle (PhICI=data_transfer)
via the DL-Ph interface by means of a Ph-DATA.indication primitive, it assumes the
Await_ID_Cycle state.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 89 –

If the receive time monitoring circuit responds, there is a transmission error and the MAC
sublayer shall assume the ID_Cycle state. This transmission error is communicated to the
MAC-user in the MAC_Data.confirm primitive after the transmission of the data sequence
DLPDU has been completed.

If the MAC sublayer receives the first character of a data sequence DLPDU
(PhICI=user_data), there is a transmission error and the MAC sublayer shall assume the
ID_Cycle state. This transmission error is communicated to the MAC-user in the
MAC_Data.confirm primitive after the transmission of the data sequence DLPDU has been
completed.

If the MAC sublayer receives the first character of a check sequence DLPDU
(PhICI=CRC_data), there is also a transmission error and the MAC sublayer shall assume the
ID_Cycle state. This transmission error is communicated to the MAC-user in the
MAC_Data.confirm primitive after the data sequence DLPDU has been completed.

4.5.3.5.2.2.1.3 Await_ID_Cycle

In this state the MAC sublayer waits for the beginning of an identification cycle. If the MAC
sublayer receives the beginning of an identification cycle via the DL-Ph interface by means of
a Ph-DATA.indication primitive (PhICI=ID_transfer), it assumes the ID_Cycle_Idle state.

If the receive time monitoring responds, there is a transmission error and the MAC sublayer
shall assume the Data_Cycle state. This transmission error is communicated to the MAC-user
in the MAC_Data.confirm primitive after the transmission of the data sequence DLPDU has
been completed.

If the MAC sublayer receives the first character of a data sequence DLPDU
(PhICI=user_data), there is a transmission error and the MAC sublayer shall assume the
Data_Cycle state. This transmission error is communicated to the MAC-user in the
MAC_Data.confirm primitive after the data sequence DLPDU has been completely
transmitted.

If the MAC sublayer receives the first character of a check sequence DLPDU
(PhICI=CRC_data), there is also a transmission error and the MAC sublayer shall assume the
Data_Cycle state.

4.5.3.5.2.2.1.4 ID_Cycle_Idle

In this state the MAC sublayer waits for the beginning of the data transmission. If it receives
the first character of a data sequence DLPDU (PhICI=user_data) via the DL-Ph interface by
means of a Ph-DATA.indication primitive, it assumes the ID_Cycle state. There is a
transmission error if the layer receives the first character of a check sequence DLPDU
(PhICI=CRC_data). The MAC sublayer shall also assume the ID_Cycle state.

If the MAC sublayer receives the request for an identification cycle (PhICI=data_transfer) via
the DL-Ph interface by means of a Ph-DATA.indication primitive there is an error, and the MAC
sublayer assumes the Await_ID_Cycle state.

If the receive time monitoring circuit responds, there is a transmission error and the MAC
sublayer shall assume the ID_Cycle state. This transmission error is communicated to the
MAC-user in the MAC_Data.confirm primitive after the transmission of the data sequence
DLPDU has been completed.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 90 – 61158-4-8 © IEC:2007(E)

4.5.3.5.2.2.2 Data cycle

4.5.3.5.2.2.2.1 Data_Cycle

In this state, the MAC sublayer shall wait for the MAC-user to start an identification or data
cycle. If the MAC-user requests an identification cycle by means of a MAC_Data.request
primitive (cycle=ID_cycle), the MAC sublayer assumes the Await_ID_Request state. If the
MAC-user requests a data cycle by means of a MAC_Data.request primitive
(cycle=data_cycle), it assumes the Data_Cycle_Idle state.

If the MAC receives the beginning of a data cycle via the DL-Ph interface by means of a
Ph-DATA.indication primitive (PhICI=data_transfer), there is an error and the MAC sublayer
assumes the ID_Cycle state.

4.5.3.5.2.2.2.2 Await_Data_Cycle

In this state, the MAC sublayer waits for the beginning of a data cycle. If the MAC sublayer
receives the beginning of a data cycle via the DL-Ph interface by means of a
Ph-DATA.indication primitive (PhICI=data_transfer), it assumes the Data_Cycle_Idle state.

If the receive time monitoring responds, there is a transmission error and the MAC sublayer
shall assume the ID_Cycle state. This transmission error is communicated to the MAC-user in
the MAC_Data.confirm primitive after the transmission of the data sequence DLPDU has been
completed.

If the MAC sublayer receives the first character of a check sequence DLPDU
(PhICI=CRC_data), there is also a transmission error and the MAC sublayer shall assume the
ID_Cycle state.

If the MAC sublayer receives the first character of a data sequence DLPDU
(PhICI=user_data), there is a transmission error and the MAC sublayer shall assume the
ID_Cycle state. This transmission error is communicated to the MAC-user in the
MAC_Data.confirm primitive after the data sequence DLPDU has been completely
transmitted.

4.5.3.5.2.2.2.3 Data_Cycle_Idle

In this state the MAC sublayer waits for the beginning of the data transmission. If it receives
the first character of a data sequence DLPDU (PhICI=user_data) via the DL-Ph interface by
means of a Ph-DATA.indication primitive, it assumes the Data_Cycle state. There is a
transmission error if the layer receives the first character of a check sequence DLPDU
(PhICI=CRC_data). The MAC sublayer shall also assume the Data_Cycle state.

If the MAC sublayer receives the beginning of an identification cycle with a Ph-DATA.indication
primitive (PhICI=ID_transfer) via the DL-Ph interface, there is an error and the MAC sublayer
assumes the Await_Data_Cycle state.

If the receive time monitoring circuit responds, there is a transmission error and the MAC
sublayer shall assume the Data_Cycle state. This transmission error is communicated to the
MAC-user in the MAC_Data.confirm primitive after the transmission of the data sequence
DLPDU has been completed.

4.5.4 Slave

4.5.4.1 DLPDU structure

The following DLPDU formats are distinguished: data sequence DLPDU and check
sequence DLPDU.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 91 –

4.5.4.1.1 Data sequence DLPDU

The MAC sublayer of a slave with the address k shall remove the MACSDU (shown at the
right of Figure 63) from a data sequence DLPDU received via the DL-Ph interface as shown in
Figure 63 and, if the transmission was error-free, transmit this MACSDU via the MAC-user
interface to the MAC-user. The data sequence DLPDU is received from left to right.

LBWIN(k-1) IN(k-2) IN(1) OUT(n) OUT(n-1) OUT(k)

MACSDU

Figure 63 – Data sequence DLPDU received by a slave

Conversely, the MAC sublayer of a slave with the address k shall generate the data sequence
DLPDU as shown in Figure 64, by removing the MACSDU destined for its MAC-user from the
received data sequence DLPDU and transmitting the rest of the received data sequence
DLPDU together with the MACSDU (shown at the left of Figure 64) via the DL-Ph interface to
the PhL. This MACSDU was transmitted via the MAC-user interface to the MAC sublayer
before. The data sequence DLPDU is transmitted from left to right in the form of PhIDUs, so
that first the MACSDU sent from the MAC-user is transmitted to the MAC sublayer and then
the received DLPDU without the MACSDU destined for the MAC-user.

LBWIN(k) IN(k-1) IN(1) OUT(n) OUT(n-1) OUT(k+1)

MACSDU

Figure 64 – Data sequence DLPDU transmitted by a slave

4.5.4.1.2 Check sequence DLPDU

For a secured transmission of the data sequence DLPDU the MAC sublayer of a slave
transmits a check sequence DLPDU. For this purpose, the MAC sublayer for the transmitted
data sequence DLPDU generates a checksum as specified in 4.5.3.3.1, but transmits the 16
redundant check bits together with the checksum status of a check sequence as a check
sequence DLPDU via the DL-Ph interface to the PhL.

Conversely, the MAC sublayer of a slave shall compare the 16-bit checksum of a check
sequence DLPDU with the checksum generated for the data sequence DLPDU received
immediately prior and evaluate the checksum status. The result is communicated to the MAC-
user.

4.5.4.2 Checksum

See 4.5.3.3.

4.5.4.3 Checksum status

The MAC sublayer of a slave shall evaluate a checksum status according to Figure 65 that
was received in a check sequence DLPDU.

0 0 0 0 0 0 0 0 r7 r6 r5 r4 r3 r2 r1 r0

msb lsb

Figure 65 – Checksum status received by the slave

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 92 – 61158-4-8 © IEC:2007(E)

For the logical binary values r7…r0 is: r7=r6=r5=r4=r3∧r2∧r1∧r0, where "∧" represents the bit-
wise AND operator.

NOTE 1 If the expression r3∧r2∧r1∧r0 assumes the value logical 1, both the data sequence DLPDUs and the
checksum between the master and the evaluating device were transmitted without errors.

NOTE 2 If the expression r3∧r2∧r1∧r0 assumes the value 0, then a transmission error occurred either when the
data sequence DLPDUs were transmitted or the checksums between the master and the evaluating device.

The checksum status is received from right to left in a check sequence DLPDU immediately
after the checksum has been received. The lsb is transmitted first and the msb last.

Conversely, the MAC sublayer of a slave shall generate a checksum status according to
Figure 66.

0 0 0 0 0 0 0 0 t7 t6 t5 t4 t3 t2 t1 t0

msb lsb

Figure 66 – Checksum status generated by the slave

The logical binary values t7…t0 mean the following:
t0 = CRC_receive_error∧r0∧RxSL_Error
t1 = t0∧r1
t2 = t1∧r2
t3 = t2∧r3
t7 = t6=t5=t4=t3

Here r3…r0 represent the corresponding binary values of the received checksum status and
"∧" the bit-by-bit AND operator.

NOTE 3 If the data sequence DLPDU received last did not contain any errors, that is, the checksum received next
in a check sequence DLPDU is identical with the checksum generated from the data sequence DLPDU received
last, the CRC_receive_error assumes the value logical 1 and otherwise the value logical 0.

The checksum status is transmitted in a check sequence DLPDU immediately after the
checksum has been transmitted, starting with the lsb and ending with the msb.

4.5.4.4 Bus access control

Figure 67 and Figure 68 together show the protocol machine of the MAC sublayer of a slave
for the bus access control.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 93 –

_

Data sequence

Check sequence

Reset

Idle

Data_Cycle_
Request

ID_Cycle_
Request

Data_Transfer

Data_Idle

CRC_Data_
Transfer

Figure 67 – State transitions of the MAC sublayer of a slave: data sequence

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 94 – 61158-4-8 © IEC:2007(E)

Data sequence
Check sequence

Data_Idle

CRC_Data_
Transfer

CRC_Data_
Idle Check_CRC

CRC_Status_
Transfer

IBS_
Cycle_End

CRC_Status_
Idle

Check_
Receive_

Error

Figure 68 – State transitions of the MAC sublayer of a slave: check sequence

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 95 –

4.5.4.4.1 Basic state

Idle

In this state the MAC sublayer shall first set the checksums for the data sequence DLPDU to
be received via the DL-Ph interface and the data sequence DLPDU to be transmitted to its
initial value and then wait for the receipt of a Ph-DATA.indication primitive.

If the MAC sublayer receives the request for an identification cycle (PhICI=ID_transfer) via the
DL-Ph interface by means of a Ph-DATA.indication primitive, it shall assume the
ID_Cycle_Request state. If it receives the request for a data cycle (PhICI=data_transfer), is
shall assume the Data_Cycle_Request state.

If the MAC sublayer receives the first character of a data sequence DLPDU via the DL-Ph
interface by means of a Ph-DATA.indication primitive (PhICI=user_data), it shall take the
MACSDU to be transmitted from the Data_Transmit buffer, generate the data sequence
DLPDU to be transmitted and assume the Data_Transfer state. While the MACSDU is
accepted, any other access to the Data_Transmit buffer is locked.

An error occurred if the MAC sublayer receives a character of a check sequence DLPDU by
means of a Ph-DATA.indication primitive (PhICI=CRC_data) via the DL-Ph interface. The MAC
sublayer shall assume the CRC_Data_Transfer state in order to start to receive and transmit
the check sequence DLPDU.

NOTE The MAC sublayer also assumes this state after power on or a reset.

4.5.4.4.2 Data sequence

ID_Cycle_Request

In this state the MAC sublayer shall request an identification cycle by means of a
Ph-DATA.request primitive (PhICI=ID_transfer). The PhL confirms the request with a
Ph-DATA.confirm primitive. Before that, the management is informed by means of a
MAC_Event.indication primitive (ID_Cycle_Request).

If the MAC sublayer receives the first character of a data sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=user_data) via the DL-Ph interface, it shall assume the
Data_Transfer state. While the MACSDU is accepted.

If the MAC sublayer receives the request for a data cycle (PhICI=data_transfer) via the DL-Ph
interface by means of a Ph-DATA.indication primitive, it shall assume the Data_Cycle_Request
state.

An error occurred if the MAC sublayer received a character of a check sequence DLPDU by
means of a Ph-DATA.indication primitive (PhICI=CRC_data) via the DL-Ph interface. The MAC
sublayer shall assume the CRC_Data_Transfer state in order to begin to receive and transmit
the check sequence DLPDU.

Data_Cycle_Request

In this state the MAC sublayer shall request a data cycle by means of a Ph-DATA.request
primitive (PhICI=data_transfer). The PhL confirms the request with a Ph-DATA.confirm
primitive. Before that, the management is informed by means of a MAC_Event.indication
primitive (Data_Cycle_Request).

If the MAC sublayer receives the first character of a data sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=user_data) via the DL-Ph interface, it shall assume the
Data_Transfer state.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 96 – 61158-4-8 © IEC:2007(E)

If the MAC sublayer receives the request for an identification cycle (PhICI=ID_transfer) via the
DL-Ph interface by means of a Ph-DATA.indication primitive, it shall assume the
ID_Cycle_Request state and accept the data from the ID_Transmit_Buffer.

An error occurred if the MAC sublayer received a character of a check sequence DLPDU by
means of a Ph-DATA.indication primitive (PhICI=CRC_data) via the DL-Ph interface. The MAC
sublayer shall assume the CRC_Data_Transfer state in order to begin to receive and transmit
the check sequence DLPDU.

Data_Transfer

In this state, the MAC sublayer shall receive the data sequence DLPDU to be transmitted bit-
by-bit via DL-Ph interface to the MAC sublayer by means of Ph-DATA.indication primitives
(PhICI=user_data) and on its part transmit the data sequence DLPDU to be sent bit-by-bit by
means of Ph-DATA.request primitives (PhICI=user_data) via the DLL–PhL interface to the PhL.
The transmission of a character is confirmed to the MAC sublayer with a Ph-DATA.confirm
primitive.

The data sequence DLPDU to be sent is transmitted synchronously with the receipt of a data
sequence DLPDU, that is, each Ph-DATA.indication primitive with PhICI=user_data causes the
sending of a Ph-DATA.request primitive with PhICI=user_data.

If the MAC sublayer receives the beginning of an identification cycle (PhICI=ID_transfer) via
the DL-Ph interface by means of a Ph-DATA.indication primitive, the MAC sublayer shall first
terminate the receipt and the transmission of the data sequence DLPDUs and then assume
the ID_Cycle_Request state.

If the MAC sublayer receives the beginning of a data cycle (PhICI=data_transfer), the MAC
sublayer shall first complete the receipt and the transmission of the data sequence DLPDUs
and then assume the Data_Cycle_Request state.

If the MAC sublayer is notified with a Ph-DATA.indication primitive (PhICI=user_data_idle) via
the DL-Ph interface that the Data_Idle state was detected on the bus, it completes the receipt
and transmission of the data sequence DLPDUs and assumes the Data_Idle state.

If the MAC sublayer receives the first character of a check sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=CRC_data) via the DL-Ph interface, it shall terminate the
receipt and the transmission of the DLPDUs, generate the received MACSDU and assume the
CRC_Data_Transfer state.

Data_Idle

If the MAC sublayer receives the character of a data sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=user_data) via the DL-Ph interface, it shall assume the
Data_Transfer state and continue to receive and transmit the data sequence of DLPDUs.

If the MAC sublayer receives the beginning of an identification cycle (PhICI=ID_transfer) via
the DL-Ph interface by means of a Ph-DATA.indication primitive, the MAC sublayer shall
terminate the reception and the transmission of the DLPDUs by means of data sequence.
Additional the MAC turns into the ID_Cycle_Request state.

If the MAC sublayer receives the beginning of a data cycle (PhICI=data_transfer), the MAC
sublayer shall first terminate the receipt and the transmission of the data sequence DLPDUs
and then assume the Data_Cycle_Request state. In addition, the error flag RxSL_Error is set.

If the MAC sublayer receives the first character of a check sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=CRC_data) via the DL-Ph interface, it shall terminate the

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 97 –

receipt and transmission of the DLPDUs, generate the received MACSDU and assume the
CRC_Data_Transfer state. In addition, the error flag RxSL_Error is set.

4.5.4.4.3 Check sequence

CRC_Data_Transfer

In this state, the MAC sublayer shall receive the checksum transmitted by means of the
Ph-DATA.indication primitive (PhICI=CRC_data) via the DL-Ph interface to the MAC sublayer
and on its part transmit the checksum to be sent by means of Ph-DATA.request primitive
(PhICI=CRC_data) via the DL-Ph interface to the PhL. The checksums are received and
transmitted character by character in a check sequence DLPDU. The transmission of a
character is confirmed to the MAC sublayer with a Ph-DATA.confirm primitive.

An error occurred if the MAC sublayer receives a character of a data sequence DLPDU
instead of a checksum character with a Ph-DATA.indication primitive (PhICI=User_Data). In
this case, the MAC sublayer shall treat the received character like the character of a
checksum, transmit on its part the next character to be sent of its checksum by means of a
Ph-DATA.request primitive (PhICI=CRC_data) via the DL-Ph interface to the PhL and continue
to receive and transmit the checksums.

The transmission of the check sequence DLPDU to be sent is done synchronously with the
receipt of the check sequence DLPDU, that is, each Ph-DATA.indication primitive with
PhICI=CRC_data causes the sending of a Ph-DATA.request primitive with PhICI=CRC_data.

After the checksums have been completely received and transmitted, the MAC sublayer shall
assume the Check_CRC state to compare the received checksum with the one generated by
the layer itself.

If the MAC sublayer is notified via the DL-Ph interface by means of a Ph-DATA.indication
primitive (PhICI=CRC_data_idle) that the CRC_Data_Idle state was detected on the bus, it
interrupts the receipt and the transmission of the check sequence DLPDUs and assumes the
CRC_Data_Idle state.

CRC_Data_Idle

In this state, the MAC sublayer shall request the CRC_Data_Idle state on the bus by means of
a Ph-DATA.request primitive (PhICI=CRC_data_idle) via the DL-Ph interface. The PhL
confirms the request with a Ph-DATA.confirm primitive.

If the MAC sublayer receives a character of a check sequence DLPDU via the DL-Ph interface
by means of a Ph-DATA.indication primitive, it shall assume the CRC_Data_Transfer state, if it
was a checksum character (PhICI=CRC_data), and continue to transmit the checksums. If it
was the first character of a checksum status (PhICI=CRC_status) the MAC sublayer shall
assume the CRC_Status_Transfer state and begin to receive and transmit the checksum
status.

An error occurred if the MAC sublayer receives a character of a data sequence DLPDU. In
this case the MAC sublayer shall treat the received character like the character of a checksum
and assume the CRC_Data_Transfer state.

Check_CRC

In this state the MAC sublayer shall compare the received checksum with the one previously
generated of the last data sequence DLPDU. If both checksums are identical, the data
sequence DLPDU received last was received without errors, and the CRC_receive_error flag
assumes the value logical 1. Otherwise, there is a transmission error and the
CRC_receive_error flag assumes the value logical 0.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 98 – 61158-4-8 © IEC:2007(E)

If the MAC sublayer receives the first character of the checksum status (PhICI=CRC_status)
via the DL-Ph interface by means of a Ph-DATA.indication primitive, the MAC sublayer shall
assume the CRC_Status_Transfer state and begin to receive and transmit the checksum
status.

If the MAC sublayer is communicated via the DL-Ph interface by means of a
Ph-DATA.indication primitive (PhICI=CRC_data_idle) that the CRC_Data_Idle state was
detected on the bus, then it interrupts the receipt and the transmission of the check sequence
DLPDUs and assumes the CRC_Data_Idle state.

CRC_Status_Transfer

In this state the MAC sublayer shall receive the checksum status transmitted by means of
Ph-DATA.indication primitive (PhICI=CRC_status) via the DL-Ph interface to the MAC sublayer
and transmit on its part the checksum status to be sent by means of Ph-DATA.request
primitive (PhICI=CRC_status) via the DL-Ph interface to the PhL. The checksum statuses are
received and transmitted character by character in a check sequence DLPDU. The
transmission of a character is confirmed in the MAC sublayer with a Ph-DATA.confirm
primitive.

The check sequence DLPDU to be sent is transmitted synchronously with the receipt of the
check sequence DLPDU, that is, each Ph-DATA.indication primitive with PhICI=CRC_status
causes the sending of a Ph-DATA.request primitive with PhICI=CRC_status.

After the first four characters of the checksum statuses (r0…r3 and t0…t3) have been
completely received, the MAC sublayer shall assume the Check_Receive_Error state in order
to transfer the received MACSDU to the MAC-user when the transmission of the data
sequence DLPDU received last contained an error.

After the first eight bits of the checksum status (r0…r7 and t0…t7) have been completely
received and transmitted, the MAC sublayer shall assume the IBS_Cycle_End state to report
the end of a DLPDU cycle to the MAC-user.

If the MAC sublayer is communicated via the DL-Ph interface by means of a
Ph-DATA.indication primitive (PhICI=CRC_status_idle) that the CRC_Data_Idle state was
detected on the bus, it interrupts the receipt and the transmission of the check sequence
DLPDUs and assumes the CRC_Status_Idle state.

Check_Receive_Error

In this state, the MAC sublayer shall evaluate the logic state of the fourth character t3 that
was transmitted last of the checksum status to be transmitted. If the binary value logical 1
was transmitted with the character t3, the data sequence DLPDU received last was
transmitted without errors. In this case, the MAC sublayer shall generate the MACSDU from
the received data sequence DLPDU, make it available to the MAC-user and communicate this
event to the user by means of a MAC_Data.indication primitive. If the data sequence DLPDU
originates in an identification cycle, the MACSDU is transmitted in the ID_Receive_Buffer,
otherwise in the Data_Receive_Buffer.

A transmission error was recognized when the binary value of logical 0 was transmitted with
the character t3. The MAC sublayer shall first destroy the data sequence DLPDU received last
and, in this case, shall send no message to the MAC-user.

If the MAC sublayer receives a character of a check sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=CRC_status) via the DL-Ph interface it shall assume the
CRC_Status_Transfer state and continue to receive the transmission of the check sequence
DLPDUs with the checksum status.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 99 –

IBS_Cycle_End

In this state the MAC sublayer shall report to its MAC-user the end of a DLPDU cycle on the
DL-subnetwork by means of a MAC_Event.indication primitive (IBS_Cycle_End) and then set
the checksums for the data sequence DLPDU to be received via the DL-Ph interface and for
the data sequence DLPDU to be transmitted to their initial values. In addition the flags
CRC_Receive_Error and RxSL_Error are to be set to false.

If the MAC sublayer receives the Ph-DATA.indication primitive (PhICI=ID_Transfer) upon the
complete receipt of the check sequence DLPDU, it assumes the ID_Cycle_Request state.

If the MAC sublayer receives the Ph-DATA.indication primitive (PhICI=Data_Transfer) upon the
complete receipt of the check sequence DLPDU, it assumes the Data_Cycle_Request state.

If the MAC sublayer receives the Ph-DATA.indication primitive (PhICI=User_Data) upon the
complete receipt of the check sequence DLPDU, it assumes the Data_Transfer state.

NOTE This message is used to synchronize the MAC-users of the devices.

CRC_Status_Idle

In this state, the MAC sublayer shall request the CRC_Status_Idle state on the bus by means
of a Ph-DATA.request primitive (PhICI=CRC_status_idle) via the DL-Ph interface. The PhL
confirms the request with a Ph-DATA.confirm primitive.

If the MAC sublayer receives a character of a check sequence DLPDU by means of a
Ph-DATA.indication primitive (PhICI=CRC_status) via the DL-Ph interface, it shall accept the
data from the Data_Transmit_Buffer, assume the IBS_Cycle_End state and continue to
receive and transmit the check sequence DLPDUs with the checksum status.

4.5.5 MAC-User – MAC interface

4.5.5.1 General

4.5.5 describes the services which the MAC makes available to the MAC-user. Figure 69
shows the interface between the MAC-user and the MAC in the layer model.

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS-user DLMS-user

Layer 1

Figure 69 – Interface between MAC-user and MAC in the layer model

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 100 – 61158-4-8 © IEC:2007(E)

4.5.5.2 Overview of the services

The MAC makes the MAC_Cycle service available to the MAC-user. This service is described
through the following service primitives:

MAC_Cycle

— MAC_Put_Data.request
— MAC_Put_Data.confirm
— MAC_Get_Data.request
— MAC_Get_Data.confirm
— MAC_Data.request
— MAC_Data.confirm
— MAC_Data.indication

4.5.5.3 Interactions at the MAC-user interface

Figure 70 and Figure 71 show exemplary sequences of interactions at the MAC-user interface
for an identification cycle and subsequent data cycle.

MAC user MAC

MAC_Put_Data.req(ID_transmit, MACSDU)

MAC_Put_Data.con(ID_transmit, OK)

MAC_Data.req(ID_cycle)

MAC_Data.con(ID_cycle, OK)

 MAC_Get_Data.req(ID_receive)

MAC_Get_Data.con(ID_receive, OK, MACSDU)

MAC_Put_Data.req(data_transmit, MACSDU)

MAC_Put_Data.con(data_transmit, OK)

MAC_Data.req(data_cycle)

MAC_Data.con(data_cycle, OK)

 MAC_Get_Data.req(data_receive)

MAC_Get_Data.con(data_receive, OK, MACSDU)

Figure 70 – Interactions at the MAC-user interface (master)

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 101 –

MAC user MAC

MAC_Put_Data.req(ID_transmit, MACSDU)

MAC_Put_Data.con(ID_transmit, OK)

MAC_Data.ind(ID_cycle)

 MAC_Get_Data.req(ID_receive)

MAC_Get_Data.con(ID_receive, OK, MACSDU)

 MAC_Get_Data.req(data_receive)

MAC_Get_Data.con(data_receive, OK, MACSDU)

MAC_Put_Data.req(data_transmit, MACSDU)
MAC_Put_Data.con(data_transmit, OK)

MAC_Put_Data.req(ID_rransmit, MACSDU)

MAC_Put_Data.con(ID_transmit, OK)

MAC_Data.ind(data_cycle)

MAC_Put_Data.req(data_transmit, MACSDU)
MAC_Put_Data.con(data_transmit, OK)

Figure 71 – Interactions at the MAC-user interface (slave)

4.5.5.4 Detailed definitions of the services and interactions

4.5.5.4.1 MAC_Put_Data.request (buffer, MACSDU)

With this service primitive the MAC-user makes the data to be transmitted available to the
MAC sublayer. The parameters have the following meanings:

buffer:

This parameter determines the memory area which is to store the data transmitted by the
MAC-user. Two memory areas are defined:

buffer = ID_transmit
This memory area is available to the management of the master for the transmission of
control codes and the slave for the device codes and is transmitted in an identification
cycle.

buffer = data_transmit
This memory area is available for the transmission of user data and is transmitted in a
data cycle.

MACSDU:

This parameter contains the data to be transmitted. The data quantity depends on the number
and type of devices in the one-total-DLPDU.

4.5.5.4.2 MAC_Put_Data.confirm (buffer, status)

This service primitive is the confirmation of the MAC sublayer for a MAC_Put_Data.request
primitive. The parameters have the following meanings:

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 102 – 61158-4-8 © IEC:2007(E)

buffer:

This parameter has the same meaning as for the MAC_Put_Data.request primitive.

status:

This parameter indicates the result of the data transfer and can assume the following values:

status = OK
The data passed on with the MAC_Put_Data.request primitive could be accepted by the
MAC sublayer.

status = NO
The data passed on with the MAC_Put_Data.request primitive could not be accepted by
the MAC sublayer, since the requested memory area was occupied when the data was
transmitted.

The MAC-user is responsible for the response to this service primitive.

4.5.5.4.3 MAC_Get_Data.request (buffer)

With this service primitive the MAC-user requests data from the MAC sublayer which has
been transmitted from one device via the medium to the MAC sublayer. The data is
transmitted by means of a MAC_Get_Data.confirm primitive from the MAC sublayer to the
MAC-user.

The parameters have the following meanings:

buffer:

This parameter determines the memory area which contains the data to be transmitted to the
MAC-user. Two memory areas are defined:

buffer = ID_receive
This memory area is available to the MAC-user on the slave for the storage of control
codes and the master for device codes which were transmitted in an identification cycle.

buffer = data_receive
This memory area is available to the MAC-user for the storage of user data which was
transmitted in a data cycle.

4.5.5.4.4 MAC_Get_Data.confirm (buffer, status, MACSDU)

This service primitive is the confirmation of the MAC sublayer to a MAC_Get_Data.request
primitive. With this primitive the MAC sublayer transmits the received MACSDU from last
DLPDU cycle to the MAC-user.

The parameters have the following meanings:

buffer:

This parameter has the same meaning as for the MAC_Get_Data.request primitive (as
specified in 4.5.5.4.3).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 103 –

status:

This parameter indicates the MAC-user the result of the data transmission and can assume
the following values:

status = OK
The data could be transmitted to the MAC-user.

status = NO
The requested data could not be transmitted to the MAC-user.

MACSDU:

If status = OK this parameter contains the data read in during the last message transmission
service.

The MAC-user is responsible for responding to this service primitive.

4.5.5.4.5 MAC_Data.request (cycle)

With this service primitive the MAC-user of an active device (master) starts a message
DLPDU cycle. The data to be transmitted was previously transferred to the MAC sublayer by
means of a MAC_Put_Data.request primitive before.

The parameters have the following meanings:

cycle:

cycle = ID_cycle
An identification cycle is started to transmit the control codes to the slaves and to request
the device codes of the slaves.

cycle = data_cycle
A data cycle for the transmission of user data between the master and the slaves.

4.5.5.4.6 MAC_Data.confirm (cycle, status)

This service primitive is the confirmation of the MAC sublayer for a MAC_Data.request
primitive. It indicates that the DLPDU cycle, started by means of the MAC_Data.request
primitive, was terminated positively or negatively.

The parameters have the following meanings:

cycle:

This parameter has the same meaning as for the MAC_Data.request primitive.

status:

This parameter indicates whether the requested data transmission could be carried out
successfully (status = OK), or whether an error occurred during the data transmission (status
= NO).

The MAC-user is responsible for the response to this service primitive.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 104 – 61158-4-8 © IEC:2007(E)

4.5.5.4.7 MAC_Data.indication (cycle)

With this service primitive the MAC sublayer indicates to the MAC-user that new data is
available from a valid identification cycle or a valid data cycle. The MAC-user can use this
data by means of a MAC_Get_Data.request primitive.

The parameter has the following meaning:

cycle:

This parameter indicates whether the received data stems from an identification cycle or a
data cycle and in which memory area it is available to the MAC-user. Two values are defined:

cycle = ID_cycle
Control and/or ID data was received in an identification cycle. This data is available to the
MAC-user in the ID_receive buffer.

cycle = data_cycle
User data for the process data channel and the Parameter data channel was received in a
data cycle. This data is available to the MAC-user in the data_receive buffer.

The MAC-user is responsible for responding to this service primitive.

4.5.6 MAC-PNM2 interface

4.5.6.1 General

The management of the MAC is part of the MAC that provides the management functionality
of the MAC requested by the PNM2. The management of the MAC handles the initialization,
the monitoring and the error recovery in the MAC.

4.5.6 defines the administrative MAC management services which are available to the PNM2,
together with their service primitives and the associated parameters. Figure 72 shows the
interface between MAC and PNM2 in the layer model.

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS-user DLMS-user

Layer 1

Figure 72 – Interface between MAC and PNM2 in the layer model

The service interface between MAC and PNM2 makes the following functions available.

— Reset of the MAC.
— Request and change of the current operating parameters of the MAC.
— Indication of unexpected events, errors, and status changes which occurred or were

detected in the MAC.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 105 –

4.5.6.2 Overview of the services

The MAC makes the following services available to the PNM2.

— Reset MAC.
— Set Value MAC or Get Value MAC.
— Event MAC.

The MAC services are described by primitives (beginning with MAC_…).

4.5.6.2.1 Reset MAC

The PNM2 uses this required service to reset the MAC. The reset is equivalent to power on.
Upon execution, the PNM2 receives a confirmation.

Service primitives:

— MAC_Reset.request
— MAC_Reset.confirm

4.5.6.2.2 Set Value MAC

The PNM2 uses this optional service to set a new value to the MAC variables. Upon
completion, the PNM2 receives a confirmation from the MAC whether the defined variables
assumed the new value.

Service primitives:

— MAC_Set_Value.request
— MAC_Set_Value.confirm

4.5.6.2.3 Get Value MAC

The PNM2 uses this optional service to read the variables of the MAC. The current value of
the defined variable is transmitted in the response of the MAC.

Service primitives:

— MAC_Get_Value.request
— MAC_Get_Value.confirm

4.5.6.2.4 Event MAC

The MAC uses this required service to inform the MAC-user about certain events or errors in
the MAC.

Service primitive:

— MAC_Event.indication

4.5.6.3 Overview of the interactions

Figure 73 and Figure 74 show the time relations of the services primitives:

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 106 – 61158-4-8 © IEC:2007(E)

MAC_XXX.req

MAC_XXX.con

PNM 2 MAC

Figure 73 – Reset, Set Value and Get Value MAC services

PNM 2 MAC

MAC_Event.ind

Figure 74 – Event MAC service

4.5.6.4 Detailed definitions of the services and interactions

4.5.6.4.1 MAC_Reset

The MAC_Reset service is mandatory. The PNM2 transfers a MAC_Reset.request primitive to
the MAC to reset it (see Table 39).

Table 39 – MAC_Reset

Parameter name Request Confirm

Argument

Result(+)

M

M

4.5.6.4.2 MAC_Set_Value

The MAC_Set_Value service is optional. The PNM2 transfers a MAC_Set_Value.request
primitive to the MAC in order to set a defined MAC variable to a desired value. After receipt of
this primitive, the MAC tries to select the variable and to set the new value. Upon completion,
the MAC transmits a MAC_Set_Value.confirm primitive to the PNM2 (see Table 40).

Table 40 – MAC_Set_Value

Parameter name Request Confirm

Argument
 variable_name
 desired_value

Result(+)

M
M
M

M

variable_name:

This parameter defines the MAC variable which is set to a new value.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 107 –

desired_value:

This parameter declares the value for the new MAC variable.

Table 41 provides information on which MAC variables may be set to which new values.

Table 41 – MAC variables

Name of MAC variable Value range Remarks

Loopback_word (LBW) Bit 15 = 1,
Bit 14 to Bit 4 are used for setting the LBW,
Bit 3 to Bit 0 are used as DLPDU counter
(see 4.5.3.2)

master side only

Time_timeout Value will be defined from the system
management and depends from the actual
configuration of the DL-subnetwork

master side only

4.5.6.4.3 MAC_Get_Value

The MAC_Get_Value service is optional. The PNM2 transfers a MAC_Get_Value.request
primitive to the MAC to read out the current value of a specified MAC variable. After receipt of
this primitive, the MAC tries to select the specified variable and to transmit its current value to
the PNM2 with a MAC_Get_Value.confirm primitive (see Table 42).

Table 42 – MAC_Get_Value

Parameter name Request Confirm

Argument
 variable_name

Result(+)
 current_value

M
M

M
M

variable_name:

This parameter defines MAC variable the value of which is to be read out.

desired_value:

This parameter contains the read-out value of the MAC variable.

The MAC variables to be read are exactly those variables that can be written to with the
MAC_Set_Value.

4.5.6.4.4 MAC_Event

The MAC_Event service is mandatory. The MAC transfers a MAC_Event.indication primitive to
the PNM2 to inform it about important events or errors in the MAC (see Table 43).

Table 43 – MAC_Event

Parameter name Indication

Argument
 event

M
M

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 108 – 61158-4-8 © IEC:2007(E)

event:

This parameter defines the event which occurred or the error source in the MAC and can
assume the following values (see Table 44):

Table 44 – MAC_Event

Name Meaning Mandatory/optional

data_cycle_request The request for a data cycle was detected on the transmission
medium.

O

ID_cycle_request The request for an identification data cycle was detected on the
transmission medium.

O

IBS_cycle_end A DLPDU cycle is ended. M

data_noise Before an identification or data cycle was started, characters of a
data sequence DLPDU had been received. (bus master only)

M

CRC_noise Before an identification or data cycle was started, characters of a
check sequence DLPDU had been received. (bus master only)

M

4.6 Peripherals network management for layer 2 (PNM2)

4.6.1 Functionality of the PNM2

The management for layer 2 (PNM2) handles the initialization, the monitoring and the error
recovery between PNM2-user and the logical functions in the MAC, BLL and PDL (see
Figure 75).

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS user DLMS user

Layer 1

Figure 75 – Location of the PNM2 in the DLL

4.6.2 PNM2-User-PNM2 interface

4.6.2.1 General

4.6.2 defines the administrative PNM2 (Peripherals Network Management for the layer 2)
services which are available to the PNM2-user, together with their service primitives and the
associated parameters. Figure 76 shows the interface between PNM2-user and PNM2 in the
layer model.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 109 –

Layer 2

DLL

PDL

BLL

MAC

PhL

PNM2

PNM1

DLI

DLS user DLMS user

Layer 1

Figure 76 – Interface between PNM2-user and PNM2 in the layer model

The service interface between PNM2-user and PNM2 makes the following functions available.

— Reset of the layer 2 (local)
— Request and change of the current operating parameters of PDL, BLL, MAC (local)
— Indication of unexpected events, errors, and status changes (local and remote)
— Read-out of the active DL-subnetwork configuration
— Read-out of the current DL-subnetwork configuration
— Setting of a certain DL-subnetwork configuration.

4.6.2.2 Overview of the services

4.6.2.2.1 Available services

The PNM2 makes the PNM2-user the following services available.

— Reset PNM2
— Set Value PNM2 or Get Value PNM2
— Event PNM2
— Get Current Configuration PNM2 (master only)
— Get Active Configuration PNM2 (master only)
— Set Active Configuration PNM2 (master only).

4.6.2.2.2 Reset PNM2

The PNM2-user uses this required service to cause the PNM2 to reset Layer 2 (DLL) and
itself. The reset is equivalent to power on. The PNM2-user receives a confirmation for this
service.

Service primitives:

— PNM2_Reset.request
— PNM2_Reset.confirm

4.6.2.2.3 Set value PNM2

The PNM2-user uses this optional service to set a new value to the variables of the layers 1
or 2. It receives a confirmation on whether the defined variables assumed the new value.

Service primitives:

— PNM2_Set_Value.request
— PNM2_Set_Value.confirm

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 110 – 61158-4-8 © IEC:2007(E)

4.6.2.2.4 Get value PNM2

The PNM2-user uses this optional service to read out variables of the layer 2. The current
value of the defined variable is transferred in the response of the PNM2.

Service primitives:

— PNM2_Get_Value.request
— PNM2_Get_Value.confirm

4.6.2.2.5 Event PNM2

The PNM2 uses this required service to inform the PNM2-user on certain events or errors in
the layer 2.

Service primitive:

— PNM2_Event.indication

4.6.2.2.6 Get current configuration PNM2 (master only)

The PNM2-user of the master uses this required service to read out the current
DL-subnetwork configuration.

Service primitives:

— PNM2_Get_Current_Configuration.request
— PNM2_Get_Current_Configuration.confirm

4.6.2.2.7 Get active configuration PNM2 (master only)

The PNM2-user of the master uses this required service to read out the active DL-subnetwork
configuration.

Service primitives:

— PNM2_Get_Active_Configuration.request
— PNM2_Get_Active_Configuration.confirm

4.6.2.2.8 Set active configuration PNM2 (master only)

The PNM2-user of the master uses this required service to set a certain DL-subnetwork
configuration.

Service primitives:

— PNM2_Set_Active_Configuration.request
— PNM2_Set_Active_Configuration.confirm

4.6.2.3 Overview of the interactions

The PNM2 services are described by the following primitives (beginning with PNM2_…):

Figure 76, Figure 77, Figure 78 and Figure 79 show the time relations of the services
primitives:

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 111 –

Master Slave

PNM2_XXX.req

PNM2_XXX.con

Figure 77 – Reset, Set Value, Get Value and Get Active Configuration services

 Master Slave

PNM2_Event.ind

Figure 78 – Event PNM2 service

Master Slave 1
PNM1/2_Set_Active_Configuration.req

PNM1/2_Event.ind

Slave 2

Slave n

PNM1/2_Event.ind

PNM1/2_Event.ind

PNM1/2_Event.indPNM1/2_Set_Active_Configuration.con

PNM1/2_Event.ind

PNM1/2_Event.ind

PNM1/2_Event.ind

.

.

.

Figure 79 – Set Active Configuration, Get Current Configuration service

4.6.2.4 Detailed definition of the services and interactions

4.6.2.4.1 PNM2_Reset

The PNM2_Reset service is mandatory. The PNM2-user passes a PNM2_Reset.request
primitive to the PNM2 to cause it to reset the layer 2.

After the confirmations of the PDL, BLL and MAC by means of corresponding confirmation
primitives the PNM2 resets itself and communicates a PNM2_Reset.confirm primitive to the
PNM2-user (see Table 45).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 112 – 61158-4-8 © IEC:2007(E)

Table 45 – PNM2_Reset

Parameter name Request Confirm

Argument

Result(+)
 M_status (=OK)

Result(-)
 M_status (NOK)

M

S
M

S
M

M_status:

This parameter contains a confirmation on the execution of the service. The following possible
values are defined (see Table 46):

Table 46 – M_status values of the PNM2_Reset

Value Meaning

OK Positive confirmation; the reset function was carried out successfully.

NOK Failure

4.6.2.4.2 PNM2_Set_Value

The PNM2_Set_Value-Service is optional. The PNM2-user transfers a
PNM2_Set_Value.request primitive to the PNM2 to set a defined variable of the layer 2 to a
requested value. The management transmits the individual PDL, BLL, MAC and/or Ph-SET-
VALUE.request primitives to the corresponding layers and sends a PNM2_Set_Value.confirm
primitive to the PNM2-user after it has received all associated confirmation primitives (see
Table 47).

Table 47 – PNM2_Set_Value

Parameter name Request Confirm

Argument
 variable_name
 desired_value

Result(+)
 M_status (=OK)

Result(-)
 M_status (≠OK)

M
M
M

S
M

S
M

variable_name:

This parameter contains a variable of the PDL, BLL or MAC. The selectable variables are
defined in the corresponding subclauses of the individual layers.

desired_value:

This parameter contains a value for the selected variable. The permitted values or value
ranges are determined in the corresponding subclauses of the individual layers.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 113 –

M_status

This parameter contains a confirmation on the execution of the service. The following possible
values are determined (see Table 48):

Table 48 – M_status values of the PNM2_Set_Value

Value Meaning

OK Positive confirmation; the variable has the new value.

NO The variable does not exist or could not assume the new value.

IV Invalid parameters in the request

4.6.2.4.3 PNM2_Get_Value

The PNM2_Get_Value service is optional. The PNM2-user transfers a
PNM2_Get_Value.request primitive to the PNM2 in order to read out the current value of a
specified variable of the layer 2. The management transfers the individual PDL, BLL, MAC
and/or Ph_Get_Value.request primitives to the corresponding layers and sends a
PNM2_Get_Value.confirm primitive with requested values to the PNM2-user after all
associated confirmation primitives have been received (see Table 49).

Table 49 – PNM2_Get_Value

Parameter name Request Confirm

Argument
 variable_name

Result(+)
 current_value
 M_status (=OK)

Result(-)
 M_status (≠OK)

M
M

S
M
M

S
M

variable_name:

This parameter contains a variable of the PDL, BLL, MAC or PhL. The selectable variables
are defined in the corresponding subclauses of the individual layers.

current_value:

This parameter receives the current value for the selected variable.

M_status:

This parameter contains a confirmation about the execution of the service. The following
possible values are defined (see Table 50).

Table 50 – M_status values of the PNM2_Get_Value

Value Meaning

OK Positive confirmation; the variable could be read.

NO The variable does not exist or could not be read.

IV Invalid parameters in the request

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 114 – 61158-4-8 © IEC:2007(E)

4.6.2.4.4 PNM2_Event

The PNM2_Event-Service is mandatory. After receipt from PDL, BLL and MAC a indication
the PNM2 transfers a PNM2_Event.indication primitive to the PNM2-user to inform it about
important events or errors in the layers. After DL-subnetwork errors have been reported, the
PNM2 carries out a configuration check. If the configuration differs from the configuration prior
to the DL-subnetwork error, the PNM2 automatically generates an event with information on
the configuration change (see Table 51)

Table 51 – PNM2_Event

Parameter name Indication

Argument
 event
 add_info

M
M
C

event:

This parameter defines the event which occurred or the error cause. The possible values are
defined in the corresponding subclauses of the respective layers. The possible values of the
errors which occurred in the PNM2 are defined in Table 52.

Table 52 – MAC Events

Name Meaning

Configuration_change The configuration of the DL-subnetwork changed during operation

add_info:

This parameter contains additional information about the events or errors which occurred.

4.6.2.4.5 PNM2_Get_Current_Configuration

The PNM2-user of the master uses this service to read out the current configuration of the
DL-subnetwork. To do so, the PNM2 carries out ID cycles to detect the currently connected
slaves and transfers the detected configuration to the PNM2-user in the current_configuration
parameter. The configuration of the DL-subnetwork after the service has been executed can
be determined with the network_configuration parameter(see Table 53).

Table 53 – PNM2_Get_Current_Configuration

Parameter name Request Confirm

Argument
 network_configuration

Result(+)
 current_configuration

Result(-)
 error_type

M
M

S
M

S
M

current_configuration:

This parameter contains the current configuration of the DL-subnetwork. The parameter is
equivalent to the active_configuration parameter of the Get_Active_Configuration service.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 115 –

network_configuration:

This parameter defines the configuration of the DL-subnetwork after the service has been
carried out.

Closed: The outgoing interfaces of all slaves are closed.

Open: The outgoing interfaces of all slaves are open.

error_type:

This parameter specifies why the service could not be executed successfully. Possible error
causes:

— An error was detected when a ring segment was connected.
— No ID cycles could be run (DL-subnetwork error).

add_info:

This parameter provides additional information about the error cause (for example, ring
segment number when the outgoing interface could not be opened)

4.6.2.4.6 PNM2_Get_Active_Configuration

The PNM2-user of the master uses this service to read out the active configuration of the
DL-subnetwork. The PNM2 transfers the currently active configuration in the
active_configuration parameter to the PNM2-user. To provide the service, the PNM2 does not
need to run ID cycles. The service is locally responded to. The PNM2 logs all changes of the
configuration, so that the active_configuration parameter which is kept locally is always up to
date (see Table 54).

Table 54 – PNM2_Get_Active_Configuration

Parameter name Request Confirm

Argument

Result(+)
 active_configuration

Result(-)
 error_type

M

S
M

S
M

active_configuration:

This parameter contains the active configuration of the DL-subnetwork. The entries in the list
are ordered according to the physical order of the slaves in the ring. The parameter has the
following structure according to Figure 80:

ID code of the 1st slave Ring segment level of the 1st slave

ID code of the 2nd slave Ring segment level of the 2nd slave

… …

ID code of the nth slave Ring segment level of the nth slave

Figure 80 – The active_configuration parameter

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 116 – 61158-4-8 © IEC:2007(E)

error_type:

This parameter indicates why the service could not be executed successfully.

4.6.2.4.7 PNM2_Set_Active_Configuration

The PNM2-user of the master uses this service to generate a certain active configuration of
the DL-subnetwork. The PNM2 converts the target configuration in control commands for the
switching on or off of certain ring segments. If the new configuration cannot be accepted, the
exact error cause is communicated to the PNM2-user and the old configuration is retained
(see Table 55).

Table 55 – PNM2_Set_Active_Configuration

Parameter name Request Confirm

Argument
 active_configuration

Result(+)

Result(-)
 error_type
 add_info

M
M

S

S
M
C

active_configuration:

This parameter contains the new active configuration of the DL-subnetwork to be generated.
The structure corresponds to the structure of the Active_Configuration parameter of the
Get_Active_Configuration service.

error_type:

This parameter indicates why the service could not be executed successfully. Possible error
causes:

— An error was detected when a ring segment was connected to the ring. The new
configuration could not be generated.

— No ID cycles could be run; a fatal bus error.

add_info:

This parameter provides additional information about the error cause (for example, ring
segment number when the outgoing interface could not be opened).

4.7 Parameters and monitoring times of the DLL

The DLL parameters and times described below are used to monitor the DL-subnetwork
operation in the DLL of the master. The monitoring times are measured either in seconds (s)
or in the number of bus cycles.

4.7.1 PDL parameters

4.7.1.1 SPA_acknowledge_timeout TTO_SPA_ACK

The SPA_acknowledge_timeout is the time which the local PDL waits for the associated
PDL_Data_Ack.confirm primitive after the sending of a PDL_Data_Ack.request primitive. If

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 117 –

there is a timeout, the local PDL shall attempt up to max_spa_retry-times to send the DLSDU
to the remote PDL. If no attempt was successful, the PDL shall return a negative
acknowledgement to the user. In addition, this communication relationship shall be locally
disconnected and the PDL shall attempt to synchronize itself again with the corresponding
PDL of the communication partner.

The SPA_acknowledge_timeout can be calculated as follows:

tTO_SPA_ACK = (DIST + add_wait) * tUP

where

DIST is a constant number of 5 bus cycles;

add_wait is an additional redundancy of 1 to 4 bus cycles;

tUP is the update time.

4.7.1.2 max_spa_retry

This DLL parameter specifies the maximum number of repeated attempts to send SPA PDUs.
It can be parameterized by means of a PNM2_Set_Value.request primitive.
Value range : 0, 2, 4, 6 …14

4.7.1.3 max_swa_count

This DLL parameter specifies the maximum number of successive data cycles with errors
which are allowed before the PDL protocol machine reports a multiple data cycle error and
carries out a synchronization with the protocol machine of the remote device.
Value range : 0 … 255

4.7.2 BLL parameters

4.7.2.1 update_time tUP

The update time is the time which passes between two starts of bus cycles. By setting the
update time with a PNM2_Set_Value.request primitive the time-equidistance of the
DL-subnetwork can be obtained. The update time shall be greater or equal to the bus cycle
time (except zero) and is preset by the system to the value zero (default).

The value zero means that the update time is not defined. Thus, the automatic start of a bus
cycle merely depends on the end of the previous bus cycle and the complete processing of
the PDL protocol machines and not of the timeout of the update timer. That means, the time
aquidistance is deactivated by the default setting.

Parameter size: 4 octets

Settable values: tUP × 0,1 ms

4.7.2.2 bus_timeout tTO_BUS

The bus timeout is the maximum time which may pass between two valid data cycles. If this
time is exceeded, there is a fatal bus error, which could not be repaired independently (for
example, environment with strongly interference or broken cable). The bus timeout can be
parameterized with a PNM2_Set_Value.request primitive. If the bus timeout is set to the value
zero, the bus monitoring is disabled.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 118 – 61158-4-8 © IEC:2007(E)

Parameter size: 4 octets

Settable values: tTO_BUS × 1 ms

4.7.3 MAC parameters

4.7.3.1 Device code

Figure 81 shows the structure of the device code:

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

octet quantity of the
parameter channel

Data direction and/or

Device class

Data width

Messages

Figure 81 – Device code structure

Bits 0 and 1 have to be interpreted differently for devices with or without parameter channel.
For devices without parameter channel the bits indicate the direction of the user data. For
devices with parameter channel the bits indicate the number of octets which are used for the
parameter channel.

Bits 6 and 7 of the device code distinguish whether the device has a parameter channel or
not. For devices with a parameter channel the bits 6 and 7 shall have only the value
combination Bit6 =1 and Bit7 =1.

4.7.3.2 Data direction (bit 0 and bit 1 ≠ 1)

If bits 6 and 7 ≠ 1, the bits indicate whether the device occupies input and/or output
addresses (see Table 56).

Table 56 – Data direction

Bit 1 Bit 0 Meaning

0 0 No data address (for example, bus coupler)

0 1 Only output addresses occupied

1 0 Only input addresses occupied

1 1 Input and output addresses occupied

4.7.3.3 Number of octets occupied in the parameter channel (bit 7 = 1 and bit 6 = 1)

If bits 7 and 6 are both 1, bits 1 and 0 indicate how many octets of the parameter channel the
device occupies (see Table 57).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 119 –

Table 57 – Number of the occupied octets in the parameter channel

Bit 1 Bit 0 Number of occupied words of the parameter channel

0 0 4 octets

0 1 8 octets

1 0 Reserved

1 1 2 octets (standard)

4.7.3.4 Device class

Certain bit combinations of the bits 2 through 7 indicate the device class (see Table 58). The
other combinations are reserved for the identification of device functions. These specifications
should be described in device profiles.

Table 58 – Device class

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Device class

0 0 0 0 1 0 0 0 Bus coupler with local bus branch

0 0 0 0 1 1 0 0 Bus coupler with remote bus branch

0 0 0 0 1 0 1 1 Bus coupler with I/O data

0 1 1 1 1 1 x x Analog local bus device

1 0 1 1 1 1 x x Digital local bus device

1 1 0 1 1 1 x x Local bus device with parameter
channel

0 0 0 0 0 0 x x Digital remote bus device

0 0 1 1 0 0 x x Analog remote bus device

1 1 1 1 0 0 x x Remote bus device with parameter
channel

where
x "don't care".

4.7.3.5 Control data

Bits 13 to 15 return control data from the device to the master (see Table 59).

Table 59 – Control data

Bit 15 Bit 14 Bit 13 Meaning

x x 1 Reserved

x 1 X CRC receive error

1 x X Reserved

where
x "don't care".

4.7.3.6 Data width

The data width specifies how many bits the device occupies on the bus. If a device has, for
example, 16 bit inputs and 32 bit outputs, it occupies 32 bit (4 octets) in the ring (the higher
value is decisive) (see Figure 82 and Table 60).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 120 – 61158-4-8 © IEC:2007(E)

Data width = 6 octets

Process data channel
4 octets

Parameter channel
2 octets

Figure 82 – Relations between data width, process data channel and parameter channel

Table 60 – Data width

Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Data width

0 0 0 0 0 0

0 1 1 0 0 1 bit

0 1 1 0 1 2 bits

0 1 0 0 0 4 bits

0 1 0 0 1 1 octet

0 1 0 1 0 12 bits

0 0 0 0 1 2 octets

0 1 0 1 1 3 octets

0 0 0 1 0 4 octets

0 0 0 1 1 6 octets

0 0 1 0 0 8 octets

0 0 1 0 1 10 octets

0 1 1 1 0 12 octets

0 1 1 1 1 14 octets

0 0 1 1 0 16 octets

0 0 1 1 1 18 octets

1 0 1 0 1 20 octets

1 0 1 1 0 24 octets

1 0 1 1 1 28 octets

1 0 0 1 0 32 octets

1 0 0 1 1 48 octets

1 0 0 0 1 52 octets

1 0 1 0 0 64 octets

1 0 0 0 0 Reserved

1 1 x x x Reserved

where
x = "don't care".

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 121 –

4.7.3.7 Control code

Figure 83 shows the structure of the control code:

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Invalid

Medium control

Figure 83 – Structure of the control code

4.7.3.8 Invalid

Bit 15 defines whether the control code is effective. If bit 15 equals 0, the code is effective.

4.7.3.9 Medium control (Bit 8 to Bit 11)

Bits 8 to 11 control the MAU of the outgoing interfaces (see Table 61).

Table 61 – Medium control

Bit 11 Bit 10 Bit 9 Bit 8 Meaning

X x X 1 Reset of the ring segment which is connected to the outgoing
interface 1

X x 1 X Reset of the ring segment which is connected to the outgoing
interface 2

X 1 X X Outgoing interface 1 disabled

1 x X x Outgoing interface 2 disabled

where
x "don't care".

NOTE The remaining bits of the control code are reserved.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 122 – 61158-4-8 © IEC:2007(E)

Annex A
(informative)

 –
Implementation possibilities of definite PNM2 functions

A.1 Acquiring the current configuration

A.1.1 Configuration data memory in the master

The configuration data is stored with slave information code as an image of the ring in the
sequence of the position of the slaves in the ring. The ring segment level contains the level of
the slave if the bus configuration is depicted as a tree structure. Figure A.1 shows a
DL-subnetwork configuration in the form of a tree structure and the ring segment level of the
individual branches. The positions of the slaves in the ring correspond to their numbering:

Slave 1

a

w2

w2

w1

w1

w2

w2

w2

w2

Master

w

Slave 2

Slave 4

Slave 3

Slave 5

Slave 6Slave 7

w2

Bus level Bus level
== 0 == 1

a
w1
w2

incoming interface of a slave
first outgoing interface of a slave
second outgoing interface of a slave

w outgoing interface of the master

Explanations:

The ring segment level is increased when the devices
are connected to w1.

a

a

a

a

a

a

Figure A.1 – DL-subnetwork configuration in the form of a tree structure

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 123 –

The DL-subnetwork configurations are stored in the master as matrices (see Table A.1):

Table A.1 – DL-subnetwork configuration in the form of a matrix

Device code Ring segment level No. of the slave

… … 1

… … 2

… … 3

… … 4

… … …

… … n

A.1.2 Acquire_Configuration function

The function is described with the Acquire_Configuration.request and Acquire_
Configuration.confirm primitives. The Acquire_Configuration.request primitive does not
contain any parameters, the Acquire_Configuration.confirm primitive contains the
configuration to be acquired with a result (+) or the error_code with a result (-) (see
Table A.2).

Table A.2 – Acquire_Configuration

Parameter name Request Confirm

Argument

Result (+)
 current_configuration

Result (-)
 error_code

M

S
M

S
M

result (+):

A current configuration could be acquired.

current_configuration:

This parameter contains the currently acquired configuration in the form of the device codes
and the ring segment level as matrix.

result (-):

No configuration could be acquired.

error_code:

The error_code describes the error cause. Possible errors are:

— Too many cycles with errors when the configuration was acquired.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 124 – 61158-4-8 © IEC:2007(E)

A.1.3 State machine for the acquisition of the configuration

A.1.3.1 General

The current configuration is acquired by connecting the outgoing interfaces of the slaves step
by step. In order to get an algorithm that is as fast as possible and has short bus cycle times,
the interfaces are closed again when the end of a branch is reached.

As the procedure is repeated for every outgoing interface, the acquisition of the configuration
can be described by a recursion. The Acquire_Configuration.request primitive is called again
for every outgoing interface. Thus, the state machine shown in Figure A.2 applies to every call
of the Acquire_Configuration.request primitive:

READY

0

OPEN_W1

1 7

2 5, 8

GET_SLAVES

OPEN_W2

4

3, 6

Figure A.2 – State machine for the acquisition of the current configuration

A.1.3.2 States of the state machine

READY

The state machine is ready to respond to an Acquire_Configuration.request primitive.

GET_SLAVES

The state machine runs ID cycles without connecting the outgoing interfaces to identify the
slaves which are already in the ring.

OPEN_W1

The state machine opens the outgoing interface W1 of the last identified slave and acquires
the configuration at W1 by means of an Acquire_Configuration.request primitive.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 125 –

OPEN_W2

After the configuration has been acquired the state machine closes the outgoing interface W1,
opens the outgoing interface W2 of the last identified slave and acquires the configuration at
W2 by means of an Acquire_Configuration.request primitive.

Table A.3 describes the state transitions.

Table A.3 – State transitions of the state machine for the acquisition of the current
configuration

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

 Power on 0 READY

READY
 Acquire_Configuration.request
 ⇒ run ID cycles without opening or closing the outgoing
 interfaces, to identify slaves which already exist
 in the ring.

1 GET_SLAVES

GET_SLAVES
 ID cycles ended
 \at least one new slave could be detected
 ⇒ open W1,
 Acquire_Configuration.request

2 OPEN_W1

GET_SLAVES
 ID cycles completed
 \no new slave could be detected
 ⇒ Acquire_Configuration.confirm (+)

3 READY

OPEN_W1
 Acquire_Configuration.confirm (+)
 ⇒ close W1, open W2,
 Acquire_Configuration.request

4 OPEN_W2

OPEN_W2
 Acquire_Configuration.confirm (+)
 ⇒ close W2,
 Acquire_Configuration.confirm (+)

5 READY

GET_SLAVES, OPEN_W1 or OPEN_W2
 Acquire_Configuration.confirm (-) or several ID cycles could
 no be completed without errors
 ⇒ Acquire_Configuration.confirm (-)

6 - 8 READY

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 126 – 61158-4-8 © IEC:2007(E)

A.2 Comparing the acquired and stored configurations prior to a DL-subnetwork error

A.2.1 General

After the current configuration has been acquired, the data of two configurations is stored in
the master: the stored configuration, and the currently acquired configuration. Then these two
configurations are compared. The example stops the configuration after the first error has
been detected. The comparison may provide the following results.

— No error has been detected, that is, the two configurations are identical.
— No current configuration could be detected, that is, the second configuration list is empty.
— The configuration became longer.
— The configuration became shorter.
— A ring segment became longer.
— A ring segment became shorter.
— At a certain DL-subnetwork position there is a slave with another device code.

A comparison is carried out by the Check_Configuration function.

A.2.2 Check_Configuration function

The Check_Configuration function is described with the Check_Configuration.request and
Check_Configuration.confirm primitives.

The Check_Configuration.request primitive has no parameters. Besides the result (+ or -), the
confirmation contains in the event of an error an error_code and an add_code with the error
position in the ring (see Table A.4).

Table A.4 – Check_Configuration

Parameter name Request Confirm

Argument

Result (+)

Result (-)
 error_code
 slave_position

M

S

S
M
M

result (+):

No error has been detected, that is, the two configurations are identical.

result (-):

An error has been detected, that is, the two configurations are not identical.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 127 –

error_code:

This parameter describes the type of error. Possible errors are the respective meanings of the
slave_position.

— No configuration available; slave_position does not have a meaning.
— The configuration became shorter; slave_position indicates the first missing slave.
— The configuration became larger; slave_position indicates the first additional slave.
— Additional slave to W1 of slave_position.
— The slave with the slave_position number is missing.
— The slave with the slave_position number is a slave with an incorrect device code.

slave_position:

Slave_position contains the error position in the ring.

A.2.3 Compare_Slave function

The Compare_Slave function compares the device code and the ring segment level of two
slaves and returns the result of the comparison in the result and error_code parameters (see
Table A.5).

Table A.5 – Compare_Slave

Parameter name Request Confirm

Argument
 saved_data
 current_data

Result (+)

Result (-)
 error_code

M
M
M

S

S
M

saved_data:

This parameter contains the ID code and the ring segment level of a slave which is stored in
the master's configuration.

current_data:

This parameter contains the ID code and the ring segment level of a slave of the currently
acquired configuration.

result (+):

The two slaves have the same ID code and ring segment level.

result (-):

The two slaves have different ID codes and/or ring segment levels.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 128 – 61158-4-8 © IEC:2007(E)

error_code:

Error_code describes the type of distinction. The following is possible.

— The ring segment level of the slave in the currently acquired configuration is higher.
— The ring segment level is lower.
— The ID codes are different.

A ring segment level which is too high or too low has a higher priority than an invalid ID code.
Thus, error_code gives no information on the ID code when the ring segment level is
incorrect. However, if a wrong ID code is reported, the ring segment level is definitely okay.

A.2.4 State Machine for Comparing the Configuration Data

A.2.4.1 General

Figure A.3 shows the state machine for comparing two configurations.

READY

CHECK_CONFIG

0

1

2

3

4, 5, 6,
7, 8, 9

Figure A.3 – State machine for comparing two configurations

A.2.4.2 States of the state machine

READY

The state machine is ready to execute the Check_Config function.

CHECK_CONFIG

The configurations are being compared by means of the Check_Config function.

Table A.6 describes the state transitions.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 129 –

Table A.6 – State transitions of the state machine for comparing two configurations

Initial state
 event
 \condition
 � action

Transition Follow-up state

 Power_On 0 READY

READY
 Check_Config.request
 \quantity of current identified slaves == 0
 ⇒ Check_Config.confirm (-) with error_code = 'no
 configuration available'

1 READY

READY
 Check_Config.request
 \quantity of identified slaves != 0
 ⇒ slave_no = 1,
 m = slave quantity in current configuration,
 n = slave quantity in stored configuration,
 Compare_Slave.request(saved_config.[slave_no],
 current_config.[slave_no])

2 CHECK_CONFIG

CHECK_CONFIG
 Compare_Slave.confirm (+)
 \slave_no < n AND slave_no < m
 ⇒ slave_no++,
 Compare_Slave.request(saved_config.[slave_no],
 current_config.[slave_no])

3 CHECK_CONFIG

CHECK_CONFIG
 Compare_Slave.confirm (+)
 \slave_no == n AND slave_no == m
 ⇒ Check_Config.confirm (+)

4 READY

CHECK_CONFIG
 Compare_Slave.confirm (+)
 \slave_no < n AND slave_no == m
 ⇒ Check_Config.confirm (-) with
 error_code = 'the configuration became shorter' and
 slave_position = slave_no + 1

5 READY

CHECK_CONFIG
 Compare_Slave.confirm (+)
 \slave_no == n AND slave_no < m
 ⇒ Check_Config.confirm (-) with
 error_code = 'the configuration became longer' and
 slave_position = slave_no + 1

6 READY

CHECK_CONFIG
 Compare_Slave.confirm (-)
 \error_code == 'ring segment level higher than expected'
 ⇒ Check_Config.confirm (-) with
 error_code = 'additional slave at W1 of slave_-
 position'
 and slave_position = slave_no - 1

7 READY

CHECK_CONFIG
 Compare_Slave.confirm (-)
 \error_code == 'ring segment level lower than expected'
 ⇒ Check_Config.confirm (-) with
 error_code = 'slave missing' and
 slave_position = slave_no

8 READY

CHECK_CONFIG
 Compare_Slave.confirm (-)
 \error_code == 'different ID codes'
 ⇒ Check_Config.confirm (-) with
 error_code = 'wrong slave' and
 slave_position = slave_no

9 READY

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 130 – 61158-4-8 © IEC:2007(E)

A.2.4.3 State Machine for Comparing One Line of Two Configuration Matrices

Figure A.4 shows the state machine for comparing one line of two configuration matrices.

READY

CHECK_RING_

0

SEGMENT_

CHECK_ID

1 2, 3

4

5, 6
LEV EL

Figure A.4 – State machine for comparing one line of two configuration matrices

A.2.4.4 States of the state machine

READY

The state machine is ready to execute the Compare_Slave function.

CHECK_RING_SEGMENT_LEVEL

The Compare_Slave function was called. The ring segment levels are compared.

CHECK_ID

After the comparison of the ring segment levels the ID codes are compared as well. This
comparison only takes place when the ring segment levels are identical.

Table A.7 describes the state transitions.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

61158-4-8 © IEC:2007(E) – 131 –

Table A.7 – State transitions of the state machine for comparing one line of two
configuration matrixes

Initial state
 event
 \condition
 ⇒ action

Transition Follow-up state

 Power on 0 READY

READY
 Compare_Slave.request
 ⇒ compare ring segment levels

1 CHECK_RING_

SEGMENT_LEVEL

CHECK_RING_SEGMENT_LEVEL
 ring segment level higher than expected
 ⇒ Compare_Slave.confirm (-) with
 error_code = 'ring segment level higher than expected'

2 READY

CHECK_RING_SEGMENT_LEVEL
 ring segment level lower than expected
 ⇒ Compare_Slave.confirm (-) with
 error_code = 'ring segment level lower than expected'

3 READY

CHECK_RING_SEGMENT_LEVEL
 ring segment level are not identical
 ⇒ compare the ID codes

4 CHECK_ID

CHECK_ID
 ID codes are identical
 ⇒ Compare_Slave (+)

5 READY

CHECK_ID
 ID codes are not identical
 ⇒ Compare_Slave (-) with
 error_code = 'different ID codes'

6 READY

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 132 – 61158-4-8 © IEC:2007(E)

Bibliography

IEC/TR 61158-1 (Ed.2.0), Industrial communication networks – Fieldbus specifications –
Part 1: Overview and guidance for the IEC 61158 and IEC 61784 series

IEC 61158-5-8, Industrial communication networks – Fieldbus specifications – Part 5-8:
Application layer service definition – Type 8 elements

IEC 61158-6-8, Industrial communication networks – Fieldbus specifications – Part 6-8:
Application layer protocol specification – Type 8 elements

IEC 61784-1(Ed.2.0), Industrial communication networks – Profiles – Part 1: Fieldbus profiles

IEC 61784-2, Industrial communication networks – Profiles – Part 2: Additional fieldbus
profiles for real-time networks based on ISO/IEC 8802-3

EN 50254, High efficiency communication subsystem for small data packages

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

3, rue de Varembé
P.O. Box 131
CH-1211 Geneva 20
Switzerland

Tel: + 41 22 919 02 11
Fax: + 41 22 919 03 00
info@iec.ch
www.iec.ch

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	1.1 General
	1.2 Specifications
	1.3 Procedures
	1.4 Applicability
	1.5 Conformance

	2 Normative references
	3 Terms, definitions, symbols and abbreviations
	3.1 Reference model terms and definitions
	3.2 Service convention terms and definitions
	3.3 Common terms and definitions
	3.4 Additional Type 8 definitions
	3.5 Symbols and abbreviations

	4 DL-protocol
	4.1 Overview
	4.2 DL service Interface (DLI)
	4.3 Peripherals data link (PDL)
	4.4 Basic Link Layer (BLL)
	4.5 Medium Access Control (MAC)
	4.6 Peripherals network management for layer 2 (PNM2)
	4.7 Parameters and monitoring times of the DLL

	Annex A (informative) Implementation possibilities of definite PNM2 functions
	Bibliography
	Figures
	Figure 1 – Relationships of DLSAPs, DLSAP-addresses and group DL addresses
	Figure 2 – Data Link Layer Entity
	Figure 3 – Location of the DLI in the DLL
	Figure 4 – State transition diagram of DLI
	Figure 5 – Location of the PDL in the DLL
	Figure 6 – PDL connection between slave and master
	Figure 7 – Interface between PDL user (DLI) and PDL in the layer model
	Figure 8 – Overview of the PDL services
	Figure 9 – PDL_Data_Ack service between master and only one slave
	Figure 10 – Parallel processing of PDL_Data_Ack services
	Figure 11 – PSM and GSM service for buffer access
	Figure 12 – Buffer_Received service to indicate successful data transfer
	Figure 13 – Data flow between PDL user, PDL and BLL of a PDL_Data_Ack service
	Figure 14 – Interface between PDL and PNM2 in the layer model
	Figure 15 – Reset, Set Value and Get Value PDL services
	Figure 16 – Event PDL service
	Figure 17 – Transmit and receive FCBs on the master and slave sides
	Figure 18 – Data transmission master ---> slave with SWA Message
	Figure 19 – Time sequence of the data transmission master ---> slave with SWA Message
	Figure 20 – Data transmission slave ---> master with SWA/RWA Message
	Figure 21 – Time sequence of the data transmission slave ---> master with SWA/RWA Message
	Figure 22 – Allocation of actions of the PDL protocol machines and data cycles
	Figure 23 – Message transmission: master ---> slave
	Figure 24 – Message transmission: slave ---> master
	Figure 25 – Code octet of a PDLPDU
	Figure 26 – Structure of a message with a size of one word
	Figure 27 – Structure of a SPA Message
	Figure 28 – Structure of a SVA Message
	Figure 29 – Structure of a FCB_SET Message
	Figure 30 – Structure of a RWA Message
	Figure 31 – Structure of a SWA Message
	Figure 32 – Structure of a confirmation for SPA or SVA Messages
	Figure 33 – Structure of a FCB_SET as confirmation
	Figure 34 – Structure of the data octet for FCB_SET as requests and confirmations
	Figure 35 – Structure of a message with a size of more than one word
	Figure 36 – PDL base protocol machine
	Figure 37 – Locations of the PDL and the PDL protocol machines in the master and slaves
	Figure 38 – PDL protocol machine
	Figure 39 – TRANSMIT protocol machine
	Figure 40 – RECEIVE protocol machine
	Figure 41 – Location of the BLL in the DLL
	Figure 42 – Interface between PDL and BLL in the layer model
	Figure 43 – BLL_Data service
	Figure 44 – Interface between PNM2 and BLL in the layer model
	Figure 45 – Reset, Set Value and Get Value BLL services
	Figure 46 – Event BLL service
	Figure 47 – BLL operating protocol machine of the master
	Figure 48 – BLL-BAC protocol machine
	Figure 49 – BLL operating protocol machine of the slave
	Figure 50 – Location of the MAC in the DLL
	Figure 51 – Model details of layers 1 and 2
	Figure 52 – DLPDU cycle of a data sequence without errors
	Figure 53 – DLPDU cycle of a data sequence with errors
	Figure 54 – Data sequence DLPDU transmitted by the master
	Figure 55 – Data sequence DLPDU received by the master
	Figure 56 – Check sequence DLPDU
	Figure 57 – Loopback word (LBW)
	Figure 58 – Checksum status generated by the master
	Figure 59 – Checksum status received by the master
	Figure 60 – MAC protocol machine of a master: transmission of a message
	Figure 61 – MAC protocol machine of a master: receipt of a message
	Figure 62 – MAC sublayer of a master: data sequence identification
	Figure 63 – Data sequence DLPDU received by a slave
	Figure 64 – Data sequence DLPDU transmitted by a slave
	Figure 65 – Checksum status received by the slave
	Figure 66 – Checksum status generated by the slave
	Figure 67 – State transitions of the MAC sublayer of a slave: data sequence
	Figure 68 – State transitions of the MAC sublayer of a slave: check sequence
	Figure 69 – Interface between MAC-user and MAC in the layer model
	Figure 70 – Interactions at the MAC-user interface (master)
	Figure 71 – Interactions at the MAC-user interface (slave)
	Figure 72 – Interface between MAC and PNM2 in the layer model
	Figure 73 – Reset, Set Value and Get Value MAC services
	Figure 74 – Event MAC service
	Figure 75 – Location of the PNM2 in the DLL
	Figure 76 – Interface between PNM2-user and PNM2 in the layer model
	Figure 77 – Reset, Set Value, Get Value and Get Active Configuration services
	Figure 78 – Event PNM2 service
	Figure 79 – Set Active Configuration, Get Current Configuration service
	Figure 80 – The active_configuration parameter
	Figure 81 – Device code structure
	Figure 82 – Relations between data width, process data channel and parameter channel
	Figure 83 – Structure of the control code
	Figure A.1 – DL subnetwork configuration in the form of a tree structure
	Figure A.2 – State machine for the acquisition of the current configuration
	Figure A.3 – State machine for comparing two configurations
	Figure A.4 – State machine for comparing one line of two configuration matrices

	Tables
	Table 1 – Primitives issued by DLS-/DLMS-user to DLI
	Table 2 – Primitives issued by DLI to DLS-/DLMS-user
	Table 3 – DLI state table – sender transactions
	Table 4 – DLI state table – receiver transactions
	Table 5 – Function GetOffset
	Table 6 – Function GetLength
	Table 7 – Function GetRemAdd
	Table 8 – Function GetDlsUserId
	Table 9 – PDL_Data_Ack
	Table 10 – PDL_Data_Ack L_status values
	Table 11 – PSM
	Table 12 – GSM
	Table 13 – PDL_Reset
	Table 14 – PDL_Set_Value
	Table 15 – PDL variables
	Table 16 – PDL_Get_Value
	Table 17 – PDL_Event
	Table 18 – Events
	Table 19 – Encoding of the L_status
	Table 20 – FCT code (PDLPDU-Types)
	Table 21 – State transitions of the PDL base protocol machine
	Table 22 – Counters of the PDL protocol machines
	Table 23 – Meaning of the "connection" flag
	Table 24 – State transitions of the PDL protocol machine
	Table 25 – State transitions of the TRANSMIT protocol machine
	Table 26 – State transitions of the RECEIVE protocol machine
	Table 27 – BLL_Data
	Table 28 – BLL_Data
	Table 29 – BLL_Reset
	Table 30 – BLL_Set_Value
	Table 31 – BLL variables
	Table 32 – BLL_Get_Value
	Table 33 – BLL_Event
	Table 34 – BLL_Event
	Table 35 – State transitions of the BLL operating protocol machine of the master
	Table 36 – State transitions of the BLL-BAC protocol machine
	Table 37 – State transitions of the BLL operating protocol machine of the slave
	Table 38 – FCS length and polynomial
	Table 39 – MAC_Reset
	Table 40 – MAC_Set_Value
	Table 41 – MAC variables
	Table 42 – MAC_Get_Value
	Table 43 – MAC_Event
	Table 44 – MAC_Event
	Table 45 – PNM2_Reset
	Table 46 – M_status values of the PNM2_Reset
	Table 47 – PNM2_Set_Value
	Table 48 – M_status values of the PNM2_Set_Value
	Table 49 – PNM2_Get_Value
	Table 50 – M_status values of the PNM2_Get_Value
	Table 51 – PNM2_Event
	Table 52 – MAC Events
	Table 53 – PNM2_Get_Current_Configuration
	Table 54 – PNM2_Get_Active_Configuration
	Table 55 – PNM2_Set_Active_Configuration
	Table 56 – Data direction
	Table 57 – Number of the occupied octets in the parameter channel
	Table 58 – Device class
	Table 59 – Control data
	Table 60 – Data width
	Table 61 – Medium control
	Table A.1 – DL subnetwork configuration in the form of a matrix
	Table A.2 – Acquire_Configuration
	Table A.3 – State transitions of the state machine for the acquisition of the current configuration
	Table A.4 – Check_Configuration
	Table A.5 – Compare_Slave
	Table A.6 – State transitions of the state machine for comparing two configurations
	Table A.7 – State transitions of the state machine for comparing one line of two configuration matrixes

