
TECHNICAL
REPORT

IEC
 TR 61131-8

Second edition
2003-09

Programmable controllers –

Part 8:
Guidelines for the application and implementation
of programming languages

Automates programmables –

Partie 8:
Lignes directrices pour l'application et la mise en oeuvre
des langages de programmation

Reference number
IEC/TR 61131-8:2003(E)

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:

• IEC Web Site (www.iec.ch)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to
search by a variety of criteria including text searches, technical committees
and date of publication. On-line information is also available on recently issued
publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/ justpub)
is also available by email. Please contact the Customer Service Centre (see
below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/ justpub
mailto:custserv@iec.ch

TECHNICAL
REPORT

IEC
TR 61131-8

Second edition
2003-09

Programmable controllers –

Part 8:
Guidelines for the application and implementation
of programming languages

Automates programmables –

Partie 8:
Lignes directrices pour l'application et la mise en oeuvre
des langages de programmation

PRICE CODE

 IEC 2003  Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

XD
For price, see current catalogue

Commission Electrotechnique Internationale
International Electrotechnical Commission
Международная Электротехническая Комиссия

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 2 – TR 61131-8 © IEC:2003(E)

CONTENTS

FOREWORD ..6
INTRODUCTION ..8

1 General ..9

1.1 Scope ...9
1.2 Normative references ..9
1.3 Abbreviated terms ...9
1.4 Overview ...10

2 Introduction to IEC 61131-3 ..10
2.1 General considerations..10
2.2 Overcoming historical limitations..12
2.3 Basic features in IEC 61131-3 ...13
2.4 New features in the second edition of IEC 61131-3 ..14
2.5 Software engineering considerations ...14

2.5.1 Application of software engineering principles ..14
2.5.2 Portability ..17

3 Application guidelines...17
3.1 Use of data types ..17

3.1.1 Type versus variable initialization...18
3.1.2 Use of enumerated and subrange types ...18
3.1.3 Use of BCD data ..19
3.1.4 Use of REAL data types ...21
3.1.5 Use of character string data types ..21
3.1.6 Use of time data types ...22
3.1.7 Declaration and use of multi-element variables...22
3.1.8 Use of bit-string functions ..23
3.1.9 Strongly typed assignment ...24

3.2 Data passing ...25
3.2.1 Global and external variables ...25
3.2.2 In-out (VAR_IN_OUT) variables ...26
3.2.3 Formal and non-formal invocations and argument lists28

3.3 Use of function blocks ...30
3.3.1 Function block types and instances ..30
3.3.2 Scope of data within function blocks...31
3.3.3 Function block access and invocation ..32

3.4 Differences between function block instances and functions.................................33
3.5 Use of indirectly referenced function block instances ...33

3.5.1 Establishing an indirect function block instance reference34
3.5.2 Access to indirectly referenced function block instances35
3.5.3 Invocation of indirectly referenced function block instances35
3.5.4 Recursion of indirectly referenced function block instances38
3.5.5 Execution control of indirectly referenced function block instances38
3.5.6 Use of indirectly referenced function block instances in functions38

3.6 Recursion within programmable controller programming languages39
3.7 Single and multiple invocation ...39

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 3 –

3.8 Language specific features ..40
3.8.1 Edge-triggered functionality ...40
3.8.2 Use of EN/ENO in functions and function blocks.......................................41
3.8.3 Use of non-IEC 61131-3 languages ..42

3.9 Use of SFC elements...42
3.9.1 Action control...42
3.9.2 Boolean actions ...44
3.9.3 Non-SFC actions ...47
3.9.4 SFC actions ...48
3.9.5 SFC function blocks ...48
3.9.6 “Indicator” variables ...49

3.10 Scheduling, concurrency, and synchronization mechanisms50
3.10.1 Operating system issues ..50
3.10.2 Task scheduling...51
3.10.3 Semaphores ..52
3.10.4 Messaging ...53
3.10.5 Time stamping ...53

3.11 Communication facilities in ISO/IEC 9506/5 and IEC 61131-554
3.11.1 Communication channels ...54
3.11.2 Reading and writing variables ..54
3.11.3 Communication function blocks ..55

3.12 Deprecated programming practices..56
3.12.1 Global variables ...56
3.12.2 Jumps in FBD language ...56
3.12.3 Multiple invocations of function block instances in FBD56
3.12.4 Coupling of SFC networks..56
3.12.5 Dynamic modification of task priorities ...57
3.12.6 Execution control of function block instances by tasks57
3.12.7 Incorrect use of WHILE and REPEAT constructs57

3.13 Use of TRUNC and REAL_TO_INT functions ...58
4 Implementation guidelines ..58

4.1 Resource allocation ...59
4.2 Implementation of data types ...59

4.2.1 REAL and LREAL data types..59
4.2.2 Bit strings ..59
4.2.3 Character strings ...59
4.2.4 Time data types ...60
4.2.5 Multi-element variables ..60

4.3 Execution of functions and function blocks ...60
4.3.1 Functions...60
4.3.2 Function blocks..61

4.4 Implementation of SFCs ..62
4.4.1 General considerations ..62
4.4.2 SFC evolution ..62

4.5 Task scheduling ..63
4.5.1 Classification of tasks ..63
4.5.2 Task priorities ..63

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 4 – TR 61131-8 © IEC:2003(E)

4.6 Error handling ...64
4.6.1 Error-handling mechanisms..64
4.6.2 Run-time error-handling procedures ...65

4.7 System interface ...67
4.8 Compliance ...67

4.8.1 Compliance statement ...67
4.8.2 Controller instruction sets ..68
4.8.3 Compliance testing ..68

5 PSE requirements ..68
5.1 User interface..68
5.2 Programming of programs, functions and function blocks69
5.3 Application design and configuration..70
5.4 Separate compilation ...70
5.5 Separation of interface and body ...71

5.5.1 Invocation of a function from a programming unit......................................71
5.5.2 Declaration and invocation of a function block instance72

5.6 Linking of configuration elements with programs ..73
5.7 Library management ..75
5.8 Analysis tools ..75

5.8.1 Simulation and debugging ..75
5.8.2 Performance estimation ...76
5.8.3 Feedback loop analysis..76
5.8.4 SFC analysis ...76

5.9 Documentation requirements ...79
5.10 Security of data and programs ...79
5.11 On-line facilities ..79

Annex A (informative) Changes to IEC 61131-3, Second edition ...80
Annex B (informative) Software quality measures ...90
Annex C (informative) Relationships to other standards..92

INDEX ..93

Bibliography ...105

Figure 1 – A distributed application ...11
Figure 2 – Stand-alone applications ..11
Figure 3 – Cyclic or periodic scanning of a program ..12
Figure 4 – Function block BCD_DIFF ..20
Figure 5 – Function block SBCD_DIFFF..20
Figure 6 – ST example of time data type usage ...22
Figure 7 – Example of declaration and use of “anonymous array types”23
Figure 8 – Examples of VAR_IN_OUT usage...28
Figure 9 – Hiding of function block instances ..32
Figure 10 – Graphical use of a function block name ..35
Figure 11 – Access to an indirectly referenced function block instance35

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 5 –

Figure 12 – Invocation of an indirectly referenced function block instance37
Figure 13 – Timing of edge triggered functionality ...40
Figure 14 – Execution control example..42
Figure 15 – Timing of Boolean actions ..47
Figure 16 – Example of a programmed non-Boolean action ...47
Figure 17 – Use of the pulse (P) qualifier ..48
Figure 18 – An SFC function block ..49
Figure 19 – Example of incorrect and allowed programming constructs58
Figure 20 – Essential phases of POU creation ..69
Figure 21 – Essential phases of application creation ...70
Figure 22 – Separate compilation of functions and function blocks70
Figure 23 – Compiling a program accessing external or directly represented variables71
Figure 24 – Compiling a function that invokes another function..71
Figure 25 – Compiling a program containing local instances of function blocks72
Figure 26 – Separate compilation example..73
Figure 27 – The configuration process ..74
Figure 28 – Reduction steps ...77
Figure 29 – Reduction of SFCs ...78

Table 1 – IEC 61131-3 elements supporting encapsulation and hiding15
Table 2 – Examples of textual invocations of functions and function blocks29
Table 3 – Differences between multi-user and real-time systems ...51
Table 4 – Recommended run-time error-handling mechanisms ..64
Table A.1 – Changes in usage to achieve program compliance ...89

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 6 – TR 61131-8 © IEC:2003(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PROGRAMMABLE CONTROLLERS –

Part 8: Guidelines for the application

and implementation of programming languages

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising

all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to
technical committees; any IEC National Committee interested in the subject dealt with may participate in this
preparatory work. International, governmental and non-governmental organizations liaising with the IEC also
participate in this preparation. IEC collaborates closely with the International Organization for Standardization
(ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a
technical committee may propose the publication of a technical report when it has collected
data of a different kind from that which is normally published as an International Standard, for
example “state of the art”.

IEC 61131-8, which is a technical report, has been prepared by subcommittee 65B: Devices,
of IEC technical committee 65: Industrial-process measurement and control.

This second edition cancels and replaces the first edition, published in 2000, and constitutes
a technical revision.

The main changes with respect to the previous edition are to make IEC 61131-8 consistent
with IEC 61131-3, 2nd edition.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 7 –

The text of this technical report is based on the following documents:

Enquiry draft Report on voting

65B/478/DTR 65B/492/RVC

Full information on the voting for the approval of this technical report can be found in the
report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until
2008. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.

A bilingual version of this publication may be issued at a later date.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 8 – TR 61131-8 © IEC:2003(E)

INTRODUCTION

This part of IEC 61131 is being issued as a technical report in order to provide guidelines for
the implementation and application of the programming languages defined in IEC 61131-3:
2003, second edition.

 Its contents answer a number of frequently asked questions about the intended application
and implementation of the normative provisions of IEC 61131-3, second edition and about its
differences from IEC 61131-3:1993, first edition.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 9 –

PROGRAMMABLE CONTROLLERS –

Part 8: Guidelines for the application
and implementation of programming languages

1 General

1.1 Scope

This part of IEC 61131, which is a technical report, applies to the programming of program-
mable controller systems using the programming languages defined in IEC 61131-3. It also
provides guidelines for the implementation of these languages in programmable controller
systems and their programming support environments (PSEs).

IEC 61131-4 should be consulted for other aspects of the application of programmable
controller systems.

NOTE Neither IEC 61131-3 nor this technical report explicitly addresses safety issues of programmable controller
systems or their associated software. The various parts of IEC 61508 should be consulted for such considerations.

1.2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 61131-1:1992, Programmable controllers – Part 1: General information

IEC 61131-2:2003, Programmable controllers – Part 2: Equipment requirements and tests

IEC 61131-3:2003, Programmable controllers – Part 3: Programming languages

IEC 61131-5:2000, Programmable controllers – Part 5: Communications

1.3 Abbreviated terms

FB Function Block
FBD Function Block Diagram
LD Ladder Diagram
IL Instruction List
POU Program Organization Unit
PSE Programming Support Environment
SFC Sequential Function Chart
ST Structured Text

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 10 – TR 61131-8 © IEC:2003(E)

1.4 Overview

The intended audience for this technical report consists of

– users of programmable controller systems as defined in IEC 61131-3, who must program,
configure, install and maintain programmable controllers as part of industrial-process
measurement and control systems; and

– implementors of programming languages, as defined in IEC 61131-3, for programmable
controller systems. This may include vendors of software and hardware for the
preparation and maintenance of programs for these systems, as well as vendors of the
programmable controller systems themselves.

IEC 61131-3 is mainly oriented toward the implementors of programming languages for
programmable controllers. Users who wish a general introduction to these languages and
their application should consult any of several generally available textbooks on this subject.
Subclause 1.4 of IEC 61131-3 should be consulted by those who wish a “top-down” overview
of the contents of that standard.

Clause 2 of this technical report provides a general introduction to IEC 61131-3, while Clause
3 provides complementary information about the application of some of the programming
language elements specified in IEC 61131-3. Clause 4 provides information about the
intended implementation of some of these programming language elements, while Clause 5
provides general information about requirements for hardware and software for program
development and maintenance. Hence, it is expected that users of programmable controllers
will find Clauses 2 and 3 of this technical report most useful, while programming language
implementors will find Clauses 4 and 5 more useful, referring to the background material in
Clauses 2 and 3 as necessary.

2 Introduction to IEC 61131-3

2.1 General considerations

In the past, the limited capabilities of expensive hardware components imposed severe
constraints on the design process for industrial-process control, measurement and
automation systems. Software design and implementation were tightly tailored to the selected
hardware. This required specialists who were highly skilled, both in solving process
automation problems and in dealing with complicated, often hardware-specific computer
programming constructs.

With the rapid innovation in microelectronics and related technologies, the cost/performance
ratio of system hardware has decreased dramatically. At present, a small programmable
controller may cost many times less than the cost of programming it.

Driven by rapidly decreasing hardware cost, a trend has become established of replacing
large, centrally installed process computers or other comparatively large, isolated controllers
by systems with spatially and functionally distributed parts.

As illustrated in Figure 1, the essential backbone of such systems is the communication
subsystem, which provides the mechanism for information exchange between the distributed
automating devices. Connected to this backbone are the devices, such as programmable
controllers, which deliver the distributed processing power of the system. Each device, under
the control of its own software, performs a dedicated subtask to achieve the required overall
system functionality. Each device is chosen with the size and performance required to meet
the demands of its particular subtask.

In a different environment, programmable controllers are used in stand-alone applications as
illustrated in Figure 2. Users of these applications also stand to gain by the evolution outlined
above. Due to the present low cost of hardware components, many new, relatively small,
automation tasks can be solved profitably and flexibly by programmable controllers.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 11 –

Operating
monitoring

Loop
control

Automated process

I
O Logic

control

I
O

Mixed
control

I
O

I
O

Communication subsystem

Figure 1 – A distributed application

Operating
monitoring

Press

Logic
control

I
O

Mixed
control

I
O

I
O

Pump

Operating
monitoring

Figure 2 – Stand-alone applications

In addition to their low hardware price, the intensive use of programmable controllers in
solving automation tasks is also advanced by their straightforward operating and
programming principles, which are easily understood and applied by the shop-floor personnel
involved in programming, operation and maintenance.

Programmable controllers typically employ the principles of cyclic or periodic program
execution illustrated in Figure 3. Cyclically running programs restart execution as fast as
possible after they have terminated execution. Periodic execution of a program is triggered
by a clock mechanism at equidistant points in time.

These principles are well known and applied in the operation of digital signal processing
systems to simulate the operation of continuously operating analog or electromechanical
systems. Process values are read into the device and written out to the process as discrete
samples at random or equidistant points in time, depending on the control task that has to be
fulfilled.

IEC 2060/03

IEC 2061/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 12 – TR 61131-8 © IEC:2003(E)

The advantage of these operating principles is that they allow the construction of programs
for programmable controllers using elements closely related to the principles of hard-wired
logic or continuous control circuits previously used for the same purpose.

The operating principles of programmable controllers thus enable the provision of application-
specific, graphical programming languages. Combined with appropriate man-machine inter-
faces, these languages enable the control engineer to concentrate on solving the problems of
the application, without extensive training in software engineering. The control engineer’s
technological specifications can be mapped direct to the corresponding language elements.

Another particular advantage of such programming languages is that the representation they
offer can be used not only for program input and documentation, but also for on-line test and
diagnosis as well. Thus, programming support environments (PSEs) for programmable
controllers are able to provide the graphically oriented representation and documentation that
are already familiar to the application engineer and shop-floor personnel.

Read
inputs

Execute
algorithms

Write
outputs

Read
inputs

Execute
algorithms

Write
outputs

Cyclic
execution

Periodic
execution

OR

Clock trigger:
e.g. every 80 ms

Figure 3 – Cyclic or periodic scanning of a program

2.2 Overcoming historical limitations

Automation system designers are often required to use programmable controllers from
various manufacturers in different automation systems, or even in the same system.
However, the hardware of programmable controllers from different manufacturers may have
very little in common. In the past, this has resulted in significant differences in the elements
and methods of programming the software as well. This has led to the development of
manufacturer-specific programming and debugging tools, which generally carried very
specialized software for programming, testing and maintaining particular controller “families”.

Changing from one controller family to another often required the designer to read large
manuals for both the hardware and software of the new family. Often, the manual had to be
reviewed several times in order to understand the exact meaning and to use the new
controller family in an appropriate way. Due to the concentrated, tedious work necessary to
read and understand the new, vendor-specific material, few people did it. For this reason,
many people regarded the design and the programming of such controllers as some black
magic to be avoided. Thus, the knowledge of how to use such systems effectively was
concentrated in one or a few specialists and could not be transferred effectively to those
responsible for system operation, maintenance, and upgrade.

IEC 2062/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 13 –

A major goal of IEC 61131-3 was to remove such barriers to the understanding and
application of programmable controllers. Thus, IEC 61131-3 introduced numerous facilities to
support the advantages of programmable controllers described in 2.1, even if controllers of
different vendors are concerned. It has turned out that the resulting expansion of the
application domains of programmable controllers, and the increasing demand of customers
fed through this expansion, stimulated a lot of vendors to make their programming systems
compliant to the standard.

Vendor and user organizations like PLCopen accelerated this process by promoting the
benefits and advantages of standardizing PLC programming to a large extent.

2.3 Basic features in IEC 61131-3

From the point of view of the application engineer and the control systems configurator, the
most important features introduced by IEC 61131-3 can be summarized as follows.

a) Well-structured, “top-down” or “bottom-up” program development is facilitated by
language constructs for the definition of typed functional objects (program organization
units) such as functions, function blocks and programs.

b) Strong data typing is not only supported but inherently required, thus eliminating a major
source of programming errors.

c) A sufficient set of features for the execution control of program organization units is
included; those features associated with steps, transitions and action blocks offer
excellent means to represent complicated sequential control solutions in a concise form.

d) The necessary functionalities for designing the communication between application
programs are provided. Independent of the mapping of programs onto a single device or
different devices, identical communication features can be used between two programs.
This facilitates the reuse of software in different environments.

e) Two graphical languages and two textual languages may be chosen by the designer,
according to the requirements of the application. These languages, plus a set of textual
and graphical common elements, support software design methodologies based on well-
understood models.
1) The graphical Ladder Diagram (LD) language models networks of simultaneously

functioning electromechanical elements such as relay contacts and coils, timers,
counters, etc.

2) The graphical Function Block Diagram (FBD) language models networks of
simultaneously functioning electronic elements such as adders, multipliers, shift
registers, gates, etc.

3) The Structured Text (ST) language models typical information processing tasks such
as numerical algorithms using constructs found in general-purpose high level
languages such as Pascal.

4) The Instruction List (IL) language models the low-level programming of control
systems in assembly language.

5) A set of graphical and textual common elements provides rules for defining values and
variables, features for software configuration and object declaration. The common
elements include graphical and textual elements for the construction of

6) Sequential Function Charts (SFCs), which model time- and event-driven sequential
control devices and algorithms.

f) Flexibility in the selection of languages suited for programming application-specific
functionalities will increase the reuse of software solutions to process control problems.

g) Each application specialist on a project team can use a programming style and language
suited for the particular functionality in question, with the assurance that the results of the
work of the individual specialists will integrate smoothly together.

In summary, the principal goal of IEC 61131-3 is to introduce all the necessary standardized
language concepts and constructs to solve the technological problems of each application

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 14 – TR 61131-8 © IEC:2003(E)

and to provide principles for the construction of vendor-independent software elements. This
facilitates the reusability of control software designs for different controller types, even
though some effort will almost always be required in order to move control programs from one
controller family to another.

2.4 New features in the second edition of IEC 61131-3

Since 1993, the publication date of the first edition of IEC 61131-3, its environment has
changed greatly. During the first phase, a large amount of experience with the practical
application of the standard was gained. A number of inconsistencies, contradictions and
unresolved questions as well as features, which were unnecessarily difficult to implement,
were discovered. The industrial end-users, often represented by software companies,
supplied many proposals for changes and amendments.

To maintain the value of investment by the former IEC 61131 users and by today’s users of
IEC 61131-3 control software as far as possible for the future, the IEC has decided to use the
review of existing standards, which is due every five years, for a two-step revision.

Step 1: Elimination of inconsistencies within IEC 61131-3 (corrigendum)
Step 2: Amelioration of specific items in need of improvement within IEC 61131-3 and the

integration of features regarded as particularly relevant in practice (amendment).

For every individual item to be altered, changes were kept upward-compatible, i.e. a user
program compliant with the first edition is also compliant with the new edition, with the
exceptions noted in Clause A.4.

A summary of the corrections and amendments is given in Annex A of this technical report.

2.5 Software engineering considerations

2.5.1 Application of software engineering principles

2.5.1.1 Encapsulation and hiding

A number of software engineering principles were employed in the development of IEC
61131-3 in order to promote increased software quality. A few of the more important
principles, their contributions to software quality, and their embodiment in IEC 61131-3 are
discussed below.

NOTE See Annex B of this technical report for descriptions of the software engineering quality measures
referenced in this subclause, for example, reliability, maintainability, etc.

Encapsulation is the “packaging” of functionally related data and/or procedures in a single
software entity. Encapsulation contributes to software reliability, maintainability, usability, and
adaptability.

Associated with encapsulation is the notion of hiding of procedures and data, in which the
only knowledge that the user has of a software entity is its external interface and specified
functionality. Details of internal data structure and procedure implementation are intentionally
hidden. Hiding contributes to software maintainability, integrity, usability, portability and
reusability.

The elements of IEC 61131-3 that support encapsulation and hiding, and their main
subclauses in IEC 61131-3, are listed in Table 1.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 15 –

Table 1 – IEC 61131-3 elements supporting encapsulation and hiding

Encapsulation Hiding Element
(subclause) Data Procedures Data Procedures

Structure (2.3.3) Yes No No No

Function (2.5.1) No Yes Yes Yes

Function block (2.5.2) Yes Yes Yes Yes

Program (2.5.3) Yes Yes Yes Yes

Action (2.6.4) No Yes No No

Access path (2.7.1) Yes No Yes No

2.5.1.2 Explicit representation of state

The SFC elements defined in 2.6 of IEC 61131-3 enable the state of the control system to be
determined at any point in time as the set of active steps and actions. Without this
representation, the state of the system must be inferred from data such as system inputs,
outputs, and some set of “state” (Boolean) variables. The use of SFC elements thus
contributes to software maintainability, usability and portability. Furthermore, system
responsiveness and processing capacity are enhanced by performing only those portions of
the software algorithm relevant to the current state.

2.5.1.3 Mapping to the application domain

The direct mapping of the elements of IEC 61131-3 to well-understood concepts in industrial-
process measurement, automation and control has already been noted in 2.1 and 2.3 of this
technical report. This characteristic contributes to software maintainability, usability and
adaptability.

2.5.1.4 Mapping of design to implementation

IEC 61131-3 supports a style of system realization known as “top-down design” (or “design
by functional decomposition”) followed by “bottom-up implementation“ (or “implementation by
functional composition”). This contributes to software reliability, maintainability, usability and
adaptability.

This style of system design and implementation is characterized by the following sequence of
steps.

a) The desired functionality and external interface of the system are specified. For instance,
the basic functionality of a machining cell might be to accept a rough part from a material
handling system, produce a finished part from the rough blank, measure the finished part,
pass it back to the material handling system, and report the results of the operation to a
manufacturing information system. External interfaces in this cell would include the
material handling and information system interfaces. The configuration elements
described in 2.7 of IEC 61131-3 can be used in this step.

b) A first decomposition of the system design is made by allocating the required functionality
into one or more elements, typically programs (2.5.3 of IEC 61131-3). The interfaces
among the programs, and between the programs and the external interfaces of the
system, are defined, and the functionality allocated to each program is defined. Such a
decomposition will often follow the physical partitioning of the system; for instance, in the
machining cell described above, separate programs might be defined for the machining
station, the measuring station, and for the material handling robot of the cell, if any.

c) Each element defined in the preceding step is further decomposed into more basic
functional units. If the functionality of the element is essentially sequential, the first step in
the decomposition may be the formulation of an SFC (2.6 of IEC 61131-3) expressing the
sequence of operations to be performed and the conditions for repeating the cycle of

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 16 – TR 61131-8 © IEC:2003(E)

operations. Each action (2.6.4 of IEC 61131-3) of the SFC is then further decomposed,
typically into interconnected function blocks (2.5.2 of IEC 61131-3), i.e., an FBD (4.3 of
IEC 61131-3). For instance, the main program for the machining station in the cell
described above may be an SFC describing the sequence of machining operations to be
performed, while the actions might contain function blocks performing the required motion
control functions.

d) This functional decomposition process is performed recursively until all functionality can
be identified as belonging to existing library elements (see 1.4.3 of IEC 61131-3), or can
be expressed algorithmically in one of the textual or graphic languages in IEC 61131-3,
i.e. IL (3.2 of IEC 61131-3), ST (3.3 of IEC 61131-3), LD (4.2 of IEC 61131-3), or FBD
(4.3 of IEC 61131-3).

e) The system is then implemented by “bottom-up” functional composition, i.e., by compiling
and adding to the library the newly defined elements in the reverse order in which they
have been defined in the preceding steps. With some attention to design for reusability,
many of the new library elements may be usable in future system designs.

f) Finally, the allocation of programs to resources, and resources to configurations is
completed, program execution tasks are set up, and access paths are established for
communication with information systems, using the configuration elements defined in 2.7
of IEC 61131-3.

2.5.1.5 Structured programming

The contribution of structured programming techniques to software reliability, maintainability
and adaptability is well known. The ST language defined in 3.3 of IEC 61131-3 provides a full
set of constructs to support this style of programming, while retaining full compatibility with
the other graphical and textual languages and elements in IEC 61131-3. Whereas the first
edition of IEC 61131-3 still contained deficiencies concerning this compatibility (for example,
EN/ENO usage), the second edition introduces the necessary extensions and adaptations in
the syntax and semantics of function calls and function block invocations, to ensure mutual
language interchange.

2.5.1.6 Software reuse

The programming model described in 1.4.3 of IEC 61131-3 and shown in Figure 3 of
IEC 61131-3 strongly supports the reuse of software elements. These may be developed by
the user in the “bottom-up” implementation process described in 2.5.2.4 above or may be
supplied as “libraries” by software vendors. This method of system construction may be
unfamiliar to users who have previously developed automation system applications as a
single, large ladder diagram. Hence, some training may be required in order to realize the
large potential gains in software quality and productivity presented by the new approach to
software reuse presented in IEC 61131-3.

As described in 1.4.3 of IEC 61131-3 and Clause B.0 of IEC 61131-3, the software elements
that may be placed in libraries for reuse include, in order of increasing complexity and
functionality:

– data types;
– functions;
– function blocks;
– programs;
– configurations.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 17 –

2.5.2 Portability

2.5.2.1 Inter-language portability

As noted in Annex B of this technical report, portability is defined as the ease with which
system functionality can be moved from one system to another. This may be considered from
the point of view of

– inter-language portability, i.e. the ease of converting a program organization unit type
specification from one language to another; or

– inter-system portability, i.e. the ease of converting a program organization unit type
specification from one programming support environment (PSE) to another.

As noted in 2.5.2.1 of this technical report, the encapsulation and hiding facilities of IEC 61131-3
provide a high degree of reusability of functions, function blocks, and data types among all
the defined languages. However, as noted in item 5) of 2.3 of this technical report, each of
the IEC 61131-3 languages is specialized to some extent for a particular model of the
problem domain. This limits the ease with which an algorithm written in one of the IEC
languages can be translated into another programming language. For instance,

– the selection and iteration constructs of the ST language are difficult to translate
efficiently into FBD or LD;

– textual expressions can only be used in the ST language, not in the LD or FBD language.

The problems in the first edition of IEC 61131-3 with the different support of EN/ENO in
graphical languages and textual languages are solved in the second edition, as already
mentioned in 2.5.1.5.

Due to the remaining limitations, the user should choose the language most appropriate to
the type of algorithm to be developed in the body of a function or function block.

2.5.2.2 Inter-system portability

IEC 61131-3 neither defines nor requires a common exchange format for interchange of
program organization unit (POU) type definitions written in graphical languages; but it does
specify a textual syntax in its Annex B for the common elements and for the two textual
languages ST and IL. The minimally required encoding for the export and import of library
elements written in this textual format is also defined in item j) of 1.5.1 of IEC 61131-3. This
is a new requirement in the second edition of IEC 61131-3, which will improve inter-system
portability.

Consequently, compliant POUs, as defined in 1.5.2 of IEC 61131-3, may only be portable if
they are written in a textual language (ST or IL). Even if written in textual language, compliant
POUs will not be portable unless the set of features supported in the target system is equal
to or a superset of the features supported in the source system. Compliant POUs may also
not be portable if the set of implementation-dependent parameters of the two systems differ
in important values. A typical example is the support of a different number of characters used
in distinguishing two identifiers.

3 Application guidelines

3.1 Use of data types

Subclause 2.3.2 of IEC 61131-3 offers many elementary data types. The user can also define
new data types, as described in 2.3.3 of IEC 61131-3, as necessary to meet the data
representation needs of the application. All data types, including user-defined types, are
made available for use in a “library” of data types as described in 1.4.3 of IEC 61131-3. The
user then declares the data type to be used for each variable.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 18 – TR 61131-8 © IEC:2003(E)

The selection of a type for a variable should be appropriate to the range of values and
operations to be performed on the variable. For instance,

– if a variable can only hold the values 0 or 1, and is only to be operated on by Boolean
operations, then the elementary type BOOL should be chosen;

– if a programmable controller program has to count something and the counts are
expected to be in the range from 0 to 1000, a variable of type SINT or USINT cannot be
used, since their value ranges only extend from -128 to +127 for SINT and from 0 to 255
for USINT. A reasonable data type for this purpose would be UINT. This has a sufficient
value range and the usage of an unsigned integer type also makes it clear that negative
values are not expected.

3.1.1 Type versus variable initialization

In a program that complies with IEC 61131-3, each variable has to be initialized, either
explicitly by programming or implicitly by the default mechanisms defined in the standard.
Uninitialized values should never occur. To ease the declaration of variables, all elementary
types have default initial values specified in the standard. If no initialization of a variable is
specified by the user, then that variable will have the default initial value. Most default initial
values are defined as the representation of the value of zero for the type.

IEC 61131-3 also allows the user to specify default initial values for user-defined types. For
instance, consider a type declared by

TYPE TempLimit : REAL:= 250.0; END_TYPE

Any declared variable of this new type TempLimit is initialized with the default value of 250.0
instead of 0.0 as would be the normal case for all REAL data. Thus, in the following
declaration, the variable BoilerMaxTemperature is initialized to 250.0, while the variable
PipeMaxTemperature is initialized to 0.0. If the value of zero is not a reasonable maximum
temperature for the pipeline, its correct value has to be set before the first usage of the
variable. Forgetting this will cause problems. In the present example, the maximum
temperature for the boiler is initialized with a proper default initial value. There is no need for
a set-up before the first usage, which greatly simplifies a programmable controller program
and increases software reliability.

VAR_GLOBAL
 BoilerMaxTemperature: TempLimit;
 PipeMaxTemperature: REAL;
END_VAR

3.1.2 Use of enumerated and subrange types

IEC 61131-3 provides mechanisms for the definition of enumerated and subrange types.
These types can make a program more readable and thus act as documentation aids. In
addition, these types can contribute to program reliability by helping to avoid the use of
unintended values of variables as well as by explicitly expressing the intended semantics of
the values of enumerated variables.

An enumerated data type restricts the values of variables of the type to a user-defined set of
identifiers. As an example consider

TYPE Color : (Red, Yellow, Green); END_TYPE
...
VAR_GLOBAL brickColor : Color; END_VAR

Here a new type Color is defined. It may only have three values – Red, Green, or Blue.
IEC 61131-3 does not define numerical values to which these enumerated values may
correspond. There also is no conversion function to and from enumerated types to integral
types. The values only have to be distinct and reproducible. An assignment of a value to the
variable brickColor is possible only if one of the defined colour values is used. All other
values are flagged as errors.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 19 –

IEC 61131-3 provides standard functions for multiplexing, selection, and comparison (equality
and inequality) of enumerated data types.

IEC 61131-3, 2nd edition, also provides for the typing of enumerated values to distinguish,
for instance, between the values brickColor#Red and paintColor#Red. The second edition
also allows the use of an enumerated value as a selector in a CASE statement.

The syntax given in B.1.4 and B.1.3.3 of IEC 61131-3 allows the creation of “anonymous
subrange data types” and “anonymous enumerated data types” in the declaration of variables
and of elements of structured data types. An “anonymous subrange data type” is
characterized by its base type and subrange. Similarly, an “anonymous enumerated data
type” is characterized by the number, order, and identifiers of its enumerated values.

EXAMPLE 1

Given the type and variable declarations below, the variable Y is considered to be of the
same anonymous enumerated type as the CURRENT_COLOR component of the variable X and
the assignment statement shown is valid. However, an assignment of the value of the
variable brickColor shown above to either Y or X.CURRENT_COLOR is not allowed because
the type Color is not anonymous.

TYPE TRAFFIC_LIGHT:
 STRUCT
 POWER_STATE: BOOL;
 CURRENT_COLOR: (Red, Yellow, Green);
 END_STRUCT
END_TYPE
VAR X: TRAFFIC_LIGHT;
 Y: (Red, Yellow, Green);
END_VAR
...
Y := X.CURRENT_COLOR;

EXAMPLE 2

See 3.1.9 below for an example of the definition and use of an “anonymous subrange type”.

3.1.3 Use of BCD data

Users should be aware of the fact that “BCD” is not a data type in IEC 61131-3. Rather, it
represents an encoding option for the bit-string types BYTE, WORD, DWORD, and LWORD,
where data of these types might be encoded as 2, 4, 8, or 16 BCD digits, respectively. This is
in recognition of the fact that BCD is rarely used in modern systems except for transfer of
data in bit-string form to and from external devices such as multi-segment displays and
thumbwheel switches.

Since compliant systems are not required to support BCD arithmetic, BCD encoded data must
be converted to one of the integer types (SINT, INT, DINT, LINT, USINT, UINT, UDINT, or
ULINT) using one of the BCD_TO_** conversion functions defined in 2.5.1.5.2 of IEC 61131-
3, in order to be manipulated arithmetically. Similarly, the **_TO_BCD functions are provided
to convert integer data to BCD encoded form for transfer to external devices.

Users should be aware of the potential errors that may be caused in the encoding of BCD
data.

a) Since no standard BCD encoding is defined for the “minus” sign, the use of a negative
number as an input to a **_TO_BCD conversion may cause a conversion error.

b) The range of an integer variable is larger than the range of a BCD-encoded bit string
variable with the same number of bits. For instance, the range of a variable of type SINT

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 20 – TR 61131-8 © IEC:2003(E)

is (–128..127), while the range of numbers that can be encoded in a bit string of type
BYTE is only (0..99).

The example shown in Figure 4 illustrates precautions that may be necessary to avoid these
errors. In this example, the function block BCD_DIFF takes the difference between two two-
digit BCD-encoded inputs THUMB1 and THUMB2 and outputs the result as a two-digit BCD
encoded bit string plus a Boolean sign, which could be used for example to drive a “two-digit
plus sign” BCD display.

 +------------+
 | BCD_DIFF |
 BYTE---|THUMB1 SGN|---BYTE
 BYTE---|THUMB2 DIFF|---BYTE
 +------------+

Figure 4a − External interface

 +---+
 +----| < |---SGN
 | +--| |
 | | +---+
 | |
 +-------------+ | | +---+ +-----+ +-------+
THUMB1--| BCD_TO_SINT |-+-|--| - |--| ABS |--| SINT_ |--DIFF
 +-------------+ +--| | +-----+ | TO_ |
 | +---+ | BCD |
 +-------------+ | +-------+
THUMB2--| BCD_TO_SINT |---+
 +-------------+

Figure 4b − Body

Figure 4 – Function block BCD_DIFF

A different solution to this problem would be to define a new structured data type containing
both the sign and BCD-encoded data, such as type SBCD_BYTE shown in Figure 5a.
Functions such as SBCD_DIFF, as shown in Figure 5b and c, could then be defined which
produce values of this new type as the result of their execution.

TYPE SBCD_BYTE: STRUCT
 DATA: BYTE; SGN: BOOL;
END_STRUCT; END_TYPE

Figure 5a − Definition of structured data type SBCD_BYTE

 +-------------+
 | SBCD_DIFF |
 BYTE---|THUMB1 |---SBCD_BYTE
 BYTE---|THUMB2 |
 +-------------+

Figure 5b − External interface

 +---+
 +----| < |---SBCD_DIFF.SGN
 | +--| |
 | | +---+
 | |
 +-------------+ | | +---+ +-----+ +-------+
THUMB1--| BCD_TO_SINT |-+-|--| - |--| ABS |--| SINT_ |--SBCD_DIFF.DATA
 +-------------+ +--| | +-----+ | TO_ |
 | +---+ | BCD |
 +-------------+ | +-------+
THUMB2--| BCD_TO_SINT |---+
 +-------------+

Figure 5c − Body

Figure 5 – Function block SBCD_DIFFF
IEC 2064/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 21 –

3.1.4 Use of REAL data types

The 32-bit REAL data type described in 2.3.1 of IEC 61131-3 can be used for holding the
majority of decimal values such as control loop set-points, and process values. The REAL
data type supports a wide range of values within the range ±10±38 , with a precision of 1 part
in 223, i.e., 1 part in 8388608.

Where a higher value range or higher precision is required, the 64-bit (long) format LREAL
can be used with a range of ±10±308 and precision of 1 part in 252.

NOTE 1 In some algorithms, rounding errors may be magnified by the calculations performed. Data types with
higher precision than initially apparent may be required in order to avoid such errors.

NOTE 2 See 4.2.1 of this technical report for additional considerations in the implementation of REAL types.

3.1.5 Use of character string data types

The STRING data type provides storage for variable length textual data consisting of 8-bit
characters, which is required in the majority of application programs, for example, for holding
process batch identifiers, recipe names, operator security codes.

IEC 61131-3, second edition, also provides the WSTRING data type for strings of 16-bit
(“Unicode”) characters.

IEC 61131-3 provides means for defining non-printable characters within a character string.
This is often required when constructing messages for external devices. For example, in
order to format a report it may be necessary to embed “form feed” and similar control
characters in messages sent to a printer.

Length of character strings
According to IEC 61131-3, a character string is characterized by its maximum length and its
current length. The maximum length is determined by the declaration of a string variable or
the usage of a string constant.

• Implementation-dependent maximum length, Lmi

• Implementation-dependent default length, Ldi ≤ Lmi

• Declared maximum length, Lmd ≤ Lmi

– Lmd = Ldi when length is not explicitly declared for string variables

– Lmd = Actual string length for string constants

 The current length of a string constant does not change, but the current length of a string
variable may be changed by an assignment of a new value to the string.

• Current length, Lc

– Lc ≤ Lmd for string variables

– Lc = Lmd for string constants

IEC 61131-3 does not specify what may happen when an assignment operation tries to
assign a new value of current length Lc,new to a string variable with declared maximum length
Lmd < Lc,new. Users should be aware that implementation dependencies may cause an error
or may truncate the assigned value to the length Lmd in this case.

NOTE Truncation rather than error is the recommended option for implementers.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 22 – TR 61131-8 © IEC:2003(E)

3.1.6 Use of time data types

IEC 61131-3 provides a number of data types for holding time of day, date and duration.
Recording the times activities occur, measuring process durations, and triggering actions at
prescribed times of day or on particular dates are typical and, in some cases, essential
features of most process, production and manufacturing application programs.

Typical usage of time includes

a) accurate definition of the duration of a process phase, for example, in heat treatment
where the annealing time of some materials is critical;

b) recording the date and time of alarm conditions for process audit and maintenance
purposes;

c) controlled switch-on of a process according to the time of day, for example, to initiate pre-
heating of a reactor vessel before the first shift of the week;

d) recording the calibration date of critical analog inputs so that the system can warn when
re-calibration is required;

e) recording the times of power failure and power resumption, to calculate the down-time
duration. This can be used with an application to define a power-fail strategy. For
example, if power fails for a few minutes, the application may be able to continue because
the process vessels are still warm; however, after a long power failure, the application
should abort the process and take whatever action is necessary to put the plant into a
safe state;
NOTE 1 This example assumes that the programmable controller is able to retain the date and time of power
failure in non-volatile memory.

f) defining time-outs for certain operations to complete. For example, if a communications
transaction with a serial device is not complete by a certain time, the operation is
assumed to have failed.

The time data types TIME, TIME_OF_DAY, DATE and DATE_AND_TIME, can be used in
expressions with the numeric operators ADD (+), SUB (-), MUL (*), DIV (/), and also with
the concatenation function CONCAT. An example of such usage is given in Figure 6.

processDuration := phaseDuration * phaseCount;
endTime := startTime + processDuration;
endDateAndTime := CONCAT_DATE_TOD(todayDate,
endTime);

Figure 6 – ST example of time data type usage

There are also type conversion functions to support all the required manipulation between
dates, time of day and duration. For example, it is possible to extract the TIME_OF_DAY from a
DATE_AND_TIME variable.

NOTE 2 IEC 61131-3, secon edition, modified the naming conventions for several functions of time data types in
Table 30 of IEC 61131-1, in order to make them consistent with the definition of overloaded functions given in
2.5.1.4 of IEC 61131-3. Previous function names not consistent with this definition are deprecated, i.e. they will
not be included in IEC 61131-3, third edition.

3.1.7 Declaration and use of multi-element variables

There is provision within IEC 61131-3 for multi-element (“aggregate“) variables, including
arrays and structures. Arrays are useful in a wide range of programs. Their use can avoid
repetition of code and in many cases can make the program easier to understand. An
example of the usage of an array variable is given in Figure 7. In this example, speeds is an

IEC 2065/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 23 –

array of permitted line speeds, and lineState is an integer (INT) giving state of the line such
as 0 for stopped, 1 to 3 for graded increases in speed.

According to the IEC 61131-3 definition of aggregate, each definition of an array in a variable
or structure declaration creates a data type. Such “anonymous array types” are characterized
by their element types and subscript range(s). For instance, the aggregate accelerations as
declared in Figure 7 would be considered to be of the same type as the aggregate speeds,
while the aggregate positions would not be considered to be of the same type. Hence the
values of all elements of the aggregate accelerations can be assigned the values of all
elements of the aggregate speeds in a single assignment, while the assignment of values
from speeds to the elements of positions has to be done by component-wise assignment as
shown in Figure 7.

VAR_IN lineState: INT; END_VAR;

VAR_OUT lineSpeed: REAL; END_VAR;

VAR
 speeds: ARRAY[0..3] OF REAL:= (0.0, 1.0, 3.0, 9.0);
 accelerations: ARRAY[0..3] OF REAL;
 positions: ARRAY[1..4] OF REAL;
 I: INT;
END_VAR;

lineSpeed:= speeds[lineState];
accelerations:= speeds; (* accelerations[0]:= speeds[0], etc.
*)
FOR I:= 0 TO 3
 positions[I+1]:= speeds[I]; (* element-wise assignment *)
END_FOR

Figure 7 – Example of declaration and use of “anonymous array types”

3.1.8 Use of bit-string functions

The selection and comparison functions in Tables 27 and 28 of IEC 61131-3 are defined to
operate on data of the bit-string data types BOOL, BYTE, WORD, DWORD and LWORD as well as
on numeric data types such as INT. Comparisons of bit-string data are made bitwise from the
most significant to the least significant bit, and shorter bit strings are considered to be filled
on the left with zeros when compared to longer bit strings; that is, comparison of bit-string
variables has the same result as comparison of unsigned integer variables.

EXAMPLES – The following expressions all evaluate to TRUE:
GT(TRUE,FALSE)
GT(TRUE, DWORD#0)
GT(WORD#1FF, BYTE#FF)

The operation of MIN and MAX functions on bit-string types can be considered as an
application of the comparison functions. For mathematical details, see 4.2.2.

 EXAMPLES
MAX(BYTE#5, BYTE#F0, BYTE#EF) = BYTE#F0 because
BYTE#F0 ≥ BYTE#5 and BYTE#F0 ≥ BYTE#EF;
similarly,
MIN(BYTE#5, BYTE#F0, BYTE#EF) = BYTE#5 because
BYTE#5 ≤ BYTE#F0 and BYTE#5 ≤ BYTE#EF .

IEC 2066/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 24 – TR 61131-8 © IEC:2003(E)

3.1.9 Strongly typed assignment

Although not explicitly stated in IEC 61131-3, it was the intention of the standard to specify
that assignment of the result of evaluating an expression to a variable be “strongly typed”;
that is, that assignment should only take place when the result is of the same type as the
variable. This is implied, for instance, by the discussion of the assignment statement in
3.3.2.1 of IEC 61131-3. In this interpretation, a result is considered to be of the same type as
a variable when

– its type name is the same as the type name of the variable to which it is to be assigned;
or

– both the result and the variable to which it is to be assigned are “anonymous array types”
as discussed in 3.1.7, whose element type and subscript range(s) exactly match each
other; or

– both the result and the variable to which it is to be assigned are “anonymous enumerated
types” as discussed in 3.1.2 , whose enumerated value sets exactly match each other in
number, order and identifiers of the enumeration elements.

In contrast, the assignment of a result to the value of a variable is allowed as long as the
type of the result is the same as the “parent” type of the subrange type of the variable;
however, a run-time check must be made to determine that the value is within the specified
subrange limits of the variable.

These conditions apply not only to the assignment of values to variables in assignment
statements but also to the use of the ST (store) operator in the IL language defined in 3.2.2
of EC 61131-3, data flow connections in the LD and FBD languages defined in Clause 4 of
IEC 61131-3, and data passing as discussed in 3.2.

EXAMPLE 1

Consider the variables defined in the statements

VAR X : ARRAY[1..16] OF ANALOG_CHANNEL_CONFIGURATION;
 (* A variable of an anonymous array type *)
 Y : ANALOG_16_INPUT_CONFIGURATION;
 Z : SINT(5..95) ; (* A variable of an anonymous subrange type *)
END_VAR

Where the applicable data types are defined as in Table 12 of IEC 61131-3:

TYPE
 ANALOG_CHANNEL_CONFIGURATION :
 STRUCT
 RANGE : ANALOG_SIGNAL_RANGE ;
 MIN_SCALE : ANALOG_DATA ;
 MAX_SCALE : ANALOG_DATA ;
 END_STRUCT ;

 ANALOG_16_INPUT_CONFIGURATION :
 STRUCT
 SIGNAL_TYPE : ANALOG_SIGNAL_TYPE ;
 FILTER_PARAMETER : SINT (0..99) ;
 (* An anonymous subrange data type *)
 CHANNEL : ARRAY [1..16] OF ANALOG_CHANNEL_CONFIGURATION;
 (* An anonymous array type *)
 END_STRUCT ;
END_TYPE

Then an assignment statement of the form

X:= Y.CHANNEL;

is valid and would cause an assignment of the values Y.CHANNEL[1] through
Y.CHANNEL[16] to the variable elements X[1] through X[16], respectively.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 25 –

Similarly, an assignment statement of the form

Z := Y.FILTER_PARAMETER;

is valid and could cause an assignment of the value of the FILTER_PARAMETER element of the
structured variable Y to the variable Z. However, a run-time error would occur if the value of
the FILTER_PARAMETER element were less than 5 or greater than 95.

EXAMPLE 2

See 3.1.2 for an example and use of an “anonymous enumerated type”.

3.2 Data passing

There are several methods for passing data into and out of POUs including functions,
function blocks, and programs.

NOTE 1 The term “parameter passing” is not used in this subclause, because the term parameter is not used in
IEC 61131-3 except in the narrow sense of “A variable that is given a constant value for a specified application
and that may denote the application” as defined in ISO/IEC 2382-02 and cited in IEC 61499-1. Therefore, the term
parameter is only used in IEC 61131-3 in the context of “implementation-dependent parameters” and “configuration
parameters”. The term variable is used instead in all other contexts to mean “A software entity that may take
different values, one at a time” as defined in IEC 61499-1.

The most restricted methods to access data are defined for functions. Inside functions, only
reading of input variables is allowed and a function has to return a value which may be of an
aggregate type (for example, array, string or structure). Functions do not have any access to
globally defined variables, nor may they access directly represented variables. As another
design goal the standard requires functions to have no static variables. This means a function
cannot save any of its computed or input values from one invocation to the next. Each
invocation will receive a set of freshly initialized local variables, possibly with default values if
not stated differently by the function definition. These restrictions ensure that operation of the
function is independent of any previous execution, depending only on the set of argument
values from its current invocation.

NOTE 2 IEC 61131-3, second edition, now allows functions to access in-out variables (see 3.2.2), and output
variables in addition to input and internal variables and the single variable denoting the function output.

NOTE 3 IEC 61131-3, second edition, has also introduced additional flexibility in the means for textual
invocations of functions; see 2.5.1.1 of IEC 61131-3 and 3.2.3 .

Within a function block body, the reading of input variables and reading or writing of output
variables is permitted. Function blocks also may have in-out variables, which can be read or
written. All global variables that were defined within a configuration, resource, or program by
use of the VAR_GLOBAL keyword can be accessed from the inside of the function block, if
these global variables are redeclared in the function block definition by use of the
VAR_EXTERNAL keyword.

NOTE 4 IEC 61131-3, second edition, now allows function blocks in addition to programs, configurations and
resources to access directly represented variables.

The values of directly represented variables can be passed to a function block as input
variables from the program outside that function block. The same holds for output values
from a function block, which can be copied to directly represented variables in a program. A
function block may declare static storage that it can use to save any data from one invocation
to the next. Function block execution can therefore have many effects upon data, including
external data, which may be essential to the operation of the function block.

Programs have access to data as function blocks have and can contain declarations of global
variables and access paths; see 2.5.3 of IEC 61131-3. These have to be declared within the
program and thereafter can be freely read or written.

3.2.1 Global and external variables

Global variables can be defined and initialized within a configuration, resource, or program by
use of the VAR_GLOBAL keyword. Each program or function block that needs access to one or

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 26 – TR 61131-8 © IEC:2003(E)

more of these global variables has to redeclare the variables by use of the VAR_EXTERNAL
keyword.

The following example shows how to define a variable TEMP outside a function block and
access it within a function block.

(* Within a CONFIGURATION, RESOURCE or PROGRAM *)
 VAR_GLOBAL TEMP: INT; END_VAR
(* Access from inside a FUNCTION_BLOCK *)
 VAR_EXTERNAL TEMP: INT; END_VAR
 ...
 TEMP:= ... ;

As global variable declarations include directly represented variables, aliases may be
declared. These aliases could be referenced by external variable declarations in function
blocks and programs.

In the following example a global variable TEMP is declared to be of type INT located at input
word %IW22. Within a function block the variable name TEMP is used as an alias for this input
word.

A function block may not directly read the input word %IW22 but may indirectly use the alias
instead.

(* Within a CONFIGURATION, RESOURCE or PROGRAM *)
 VAR_GLOBAL TEMP AT %IW22: INT; END_VAR

(* Access from inside a FUNCTION_BLOCK *)
 VAR_EXTERNAL TEMP: INT; END_VAR
 ...
 ... := TEMP;

3.2.2 In-out (VAR_IN_OUT) variables

In-out variables are a special kind of variable used with POUs, i.e., functions, function blocks
and programs. They do not represent any data directly but reference other data of the
appropriate type. They are declared by use of the VAR_IN_OUT keyword. In-out variables may
be read or written to.

NOTE IEC 61131-3, second edition, now permits the use of in-out variables with functions.

Inside a POU, in-out variables allow access to the original instance of a variable instead of a
local copy of the value contained in the variable. Consider, for instance, the function block
ACCUM illustrated in Figure 8a. Upon each invocation of an instance of the function block, the
current value of the input X is added to the in-out variable A. If an instance of this function
block is declared and invoked as shown in Figure 8b, the variable ACC itself will be
augmented by the product X1*X2 at each invocation of an instance of the function block
SUM_PROD. There is no need to copy the output value from ACC1.A back into the variable ACC.
Similarly, in Figure 8c, the variable ACC will be augmented by the sum of products X1*X2 +
X3*X4 at each invocation of an instance of the function block SUM_2_PROD.

Figure 8d) illustrates the use of a VAR_IN_OUT variable in a function which sums the elements
of an array and then resets the array values to zero.

NOTE This is a new feature introduced in IEC 61131-3, second edition.

Since the output of a function does not have permanent storage associated with it, the output
of a function cannot be used as a VAR_IN_OUT variable, as illustrated in Figure 8e. Since an
in-out variable may be written to, it follows that literals, for example, 2.0, or constants that
have been allocated in VAR CONSTANT declarations, cannot be assigned as in-out variables,
as illustrated in Figure 8f.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 27 –

 +-------+
 | ACCUM |
 INT---|A-----A|---INT
 INT---|X |
 +-------+

 +---+
 A---| + |---A
 X---| |
 +---+

FUNCTION_BLOCK ACCUM

VAR_IN_OUT A : INT ; END_VAR
VAR_INPUT X : INT ; END_VAR

A := A + X ;

END_FUNCTION_BLOCK

Figure 8a − Declaration of a FB type using VAR_IN_OUT

 +----------+
 | SUM_PROD |
 INT---|ACC----ACC|---INT
 INT---|X1 |
 INT---|X2 |
 +----------+

 ACC1
 +-------+
 | ACCUM |
 ACC----------|A-----A|---ACC
 +---+ | |
 X1---| * |---|X |
 X2---| | +-------+
 +---+

FUNCTION_BLOCK SUM_PROD

VAR_INPUT X1, X2: INT; END_VAR
VAR_IN_OUT ACC : INT ; END_VAR
VAR ACC1: ACCUM; END_VAR

ACC1(A := ACC, X := X1 * X2);

END_FUNCTION_BLOCK

Figure 8b − Usage of an instance of a FB type using VAR_IN_OUT

 +------------+
 | SUM_2_PROD |
 INT---|ACC------ACC|---INT
 INT---|X1 |
 INT---|X2 |
 INT---|X3 |
 INT---|X4 |
 +------------+

 ACC1
 +-------+
 | ACCUM |
 ACC----------|A-----A|--+
 +---+ | | |
 X1---| * |---|X | |
 X2---| | +-------+ |
 +---+ |
 +----------------------+
 | ACC2
 | +-------+
 | | ACCUM |
 +-----------|A-----A|---ACC
 +---+ | |
 X3---| * |---|X |
 X4---| | +-------+
 +---+

FUNCTION_BLOCK SUM_2_PROD

VAR_INPUT X1,X2,X3,X4: INT;
END_VAR

VAR_IN_OUT ACC: INT; END_VAR
VAR ACC1, ACC2: ACCUM; END_VAR

ACC1(A:= ACC, X:= X1 * X2);
ACC2(A:= ACC, X:= X3 * X4);

END_FUNCTION_BLOCK

Figure 8c − Usage of two instances of a FB type using VAR_IN_OUT

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 28 – TR 61131-8 © IEC:2003(E)

 +-------+
 | ASUM |
 | |--INT
INT[1..10]--|A-----A|--INT[1..10]
 +-------+

FUNCTION ASUM: INT
 VAR_IN_OUT
 A: INT[1..10];
 END_VAR
 VAR
 I1: INT;
 Sum: INT:= 0;
 END_VAR
 FOR I1:= 1 TO 10 DO
 Sum:= A[I1] + Sum;
 A[I1]:= 0;
 END_FOR;
 ASUM:= Sum;
END_FUNCTION

Figure 8d − Declaration of another FB type using VAR_IN_OUT

 ACC1
 +---+ +-------+
 X1---| * | | ACCUM |
 X2---| |---|A-----A|---ACC
 +---+ | |
 X3-----------|X |
 +-------+

ILLEGAL USAGE:
In-out A is not a variable
or function block name

Figure 8e − Example of illegal usage

 ACC1
 +-------+
 | ACCUM |
 2.0---|A-----A|---2.0
 | |
 ---|X |
 +-------+

ILLEGAL USAGE:
In-out A is not a variable
or function block name

Figure 8f − Example of illegal usage

Figure 8 – Examples of VAR_IN_OUT usage

3.2.3 Formal and non-formal invocations and argument lists

The content of this subclause refers to invocations in textual languages only.

IEC 61131-3, second edition, introduces extensive improvements in the specifications of
functions and function blocks as described below.

NOTE See A.3 of this technical report for a description of the rationale for these changes with respect to
IEC 61131-3, first edition.

a) According to 2.5.1 of IEC 61131-3, functions are able to yield not only a single result –
passed to the invoking expression by the function name − but they can – like function
blocks – pass values through output variables and/or in-out variables. Functions still
contain no internal state information, i.e., invocation of a function with the same
arguments (input variable values and in-out variable values) will always yield the same
output values (output variables, in-out variables and function result). The introduction of
output variables now allows for example to pass ENO additionally to the function result in
textual invocations of standard functions. ENO is the only additional output variable
provided by standard functions; user-defined functions may declare an arbitrary number
of additional output or in-out variables.

b) According to 3.3.2.2 of IEC 61131-3, which refers to 2.5.1.1 and Table 19a, function block
invocations now use the same rules and features as function calls. This means especially
that the argument list of a function block invocation may also have the form of a
parenthesized list of the complete set of actual input arguments – like in the above-
mentioned invocation variant for extensible standard functions in IEC 61131-3, first
edition.

IEC 2067/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 29 –

c) Subclause 3.6.2.2 of IEC 61131-3 introduces the terms “formal argument list” and “non-
formal argument list” for the two invocation variants with formal argument assignment and
without formal argument assignment. In 2.5.1.1 of IEC 61131-3 (Table 19a), these two
variants are introduced as features for the invocation of functions, and through the
reference in 3.3.2.2 of IEC 61131-3 for the invocation of function blocks, too. The usage
of feature 1 (formal invocation) or feature 2 (non-formal invocation) is left to the choice of
the programmer, who may, however, have to satisfy the requirements of the actual
application (for example, usage of ENO necessary).

d) Many standard functions did not explicitly define input variable names inside their
declarations in IEC 61131-3, first edition. To allow the usage of formal argument lists for
calls of these functions, corresponding rules for formal input variable naming are now
introduced for all declarations of standard functions in 2.5.1.5 of IEC 61131-3.

e) The usage of the operator "=>" introduced in 2.7.1 of IEC 61131-3 for program
configurations is extended to formal argument lists. This allows the assignment of output
variables inside the formal argument list of a function call or a function block invocation.
For function calls, this mechanism of output variable assignment is the only possible one,
since there is no construct to access output variables of functions from the calling
program organization unit, as it exists for output variables of function blocks. The typical
usage of this operator is the assignment of ENO in a function call to a variable in the
calling POU. An output variable may be prefixed by a NOT operator, to allow the
representation of a negated output, as introduced in 2.5.1.1 of IEC 61131-3 (Table 19) for
graphical languages, in textual invocations.

f) A formal argument list has the form of a set of assignments of actual argument values to
the input and in-out variables using the ":=" operator, and of the values of output
variables to variables located in the calling POU using the "=>" operator. It is not
necessary to provide an assignment for every declared variable of the function or function
block: any variable not assigned a value in the list shall have the default value, if any,
assigned in the function or function block specification, or the default value for the
associated data type. The ordering of argument assignments in the list is not significant.
NOTE 1 All rules in the foregoing paragraph – except for the introduction of the operator "=>" – are
unmodified compared to the provisions of IEC 61131-3, first edition.

g) In contrast to the rules for formal argument lists, for non-formal argument lists of function
calls and function block invocations, the actual arguments inside the list have to be
ordered as prescribed by the order of variables defined in the function or function block
declaration. Actual arguments have to be provided for the complete set of declared
variables, not including the execution control variables EN and ENO – these variables
cannot be handled by non-formal argument lists. Concerning the completeness of the set,
there is one exception for textual invocations of functions in IL: in this textual language
the first argument of the function call is expected as the current result, and the non-formal
argument list starts with the second argument (see 3.2.3 of IEC 61131-3).
NOTE 2 All rules in the foregoing paragraph are unmodified compared to the provisions of IEC 61131-3, first
edition.

Table 2 illustrates function calls and function block invocations with non-formal and formal
argument lists in the two textual languages ST and IL.

Table 2 – Examples of textual invocations of functions and function blocks

 DESCRIPTION EXAMPLE (Note 8)

a) Formal function call in ST (Note 1) A:= LIMIT(EN:= COND,
 IN:= B,
 MX:= 5,
 ENO => TEMP);

b) Non-formal function call in ST A:= LIMIT(1, B, 5);

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 30 – TR 61131-8 © IEC:2003(E)

Table 2 – Examples of textual invocations of functions and function blocks

c) Formal function call in ST (Note 2) A:= LIMIT(EN:= TRUE,
 MN:= 1,
 IN:= B,
 MX:= 5);

d) Non-formal function block invocation
in ST

CMD_TMR(%IX5, T#300ms, OUT, ELAPSED);

e) Formal function block invocation in ST
(Note 3)

CMD_TMR(IN:= %IX5,
 PT:= T#300ms,
 Q => OUT,
 ET => ELAPSED,
 ENO => ERR);

f) Formal function block invocation in ST
(Note 4)

MYTON(EN := NOT(X <> Y),
 IN := START,
 NOT Q => OUT);

g) Non-formal function call in IL (Note 5) LD 1
LIMIT B,5
ST A

h) Formal function call in IL (Note 6) LIMIT(
 EN:= COND,
 IN:= B,
 MN:= 0,
 MX:= 5,
 ENO => TEMP
)
ST A

i) Non-formal function block invocation
in IL

CAL C10(%IX10, FALSE, A, OUT, B)

j) Formal function block invocation in IL
(Note 7)

CAL C10(CU:= %IX10, Q => OUT)

NOTE 1 Illustrates assignments of EN and ENO; uses default value MN:= 0.
NOTE 2 Yields the same result as example b).
NOTE 3 Exhibits the same behaviour as example d); additionally assigns ENO to ERR.
NOTE 4 Illustrates negated input EN and negated output Q.
NOTE 5 Yields the same result as example b); loads value of MN into current result.
NOTE 6 Exhibits the same behaviour as example a).
NOTE 7 Counts like example i); uses PV:= A from a previous call, but does not assign to B.
NOTE 8 A declaration such as

VAR
 CMD_TMR, MYTON: TON;
 C10: CTU;
 A, B: INT;
 X, Y: REAL;
 ELAPSED: TIME;
 COND, TEMP, OUT, ERR, START: BOOL;
END_VAR

is assumed in the above examples.

3.3 Use of function blocks

3.3.1 Function block types and instances

A function block type is a POU. This POU describes the input and output variables and the
local data area for instances of the function block. It further contains the rules for processing
this data when an instance of the function block is invoked. Variables cannot be read from, or

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 31 –

written to, the function block type itself, nor can the function block type itself be invoked;
these operations are reserved for instances of the function block.

Multiple function block instances based on this type of declaration can be used. The
individual instances are independent from each other. Each function block instance has a
unique identifier (the instance name) and a private data area used for input, output, and
internal variables of this function block instance. A function block instance can be accessed
and invoked via its instance name.

These qualities of function blocks are related to object oriented programming (OOP). The
function block type is similar to a class, which defines the data structure and computational
method within the body of the function block. Individual objects are represented by the private
data areas of the individual function block instances. This data can only be modified from
outside the function block body in a controlled manner. This enforces the software
engineering principles of encapsulation and information hiding, a key element of OOP.

Typical function block instances are timers or counters, which keep their values from one
invocation to the next and determine whether a final value has been reached or not. Another
field of interest for using function blocks is the access to a shared device in a controlled
manner. Here, a single function block instance gets the exclusive control of that device and
acts like a semaphore, where the device can be accessed only if the corresponding function
block instance is invoked.

The advantage of using function block instances is that the functionality associated with a
defined data structure only has to be declared once, and can then be used independently in
multiple instances within a programmable controller program. This “prototype” is kept in the
function block type and it can be reused as many times as necessary by declaring instances
of this type. Thus, the user is assured that there are no errors in any function block instance
as long as there are no errors in the associated function block type.

Function block instances can also be helpful for testing and debugging, since the entire set of
current state data for the instance is easily accessible for monitoring and on-line modification.

Function block instances are a special feature of function blocks as defined in IEC 61131-3.
There is no equivalent in procedural programming languages such as Pascal or C.

Instantiation of function blocks is an extension to the capabilities of today’s programmable
controllers. In many current implementations, there is only a fixed number of instances of
each function block type available, and additional instances cannot be created. User-defined
function blocks that can be instantiated in an unlimited way are also an extension to most
existing systems.

3.3.2 Scope of data within function blocks

The principle of data encapsulation and hiding of variable names discussed in the preceding
subclause may be unfamiliar to users of traditional programmable controller systems. This
principle also applies to instances of function blocks, which are declared in the same manner
as variables in a VAR..END_VAR construct. Hence, function block instances that appear inside
another function block are not visible outside the containing function block, contrary to the
practice in some traditional programmable controller systems. This principle is expressed in
2.5.2 of IEC 61131-3 in the statement:

 “The scope of an instance of a function block shall be local to the program
organization unit in which it is instantiated, unless it is declared to be global in a
VAR_GLOBAL block as defined in 2.7.1.”

This requirement might be considered to contradict the assertion in 2.5.2 of IEC 61131-3 that
“any function block which has already been declared can be used in the declaration of
another function block or program as shown in Figure 3”. However, it is clear by reference to

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 32 – TR 61131-8 © IEC:2003(E)

Figure 3 of IEC 61131-3 that this latter assertion refers to function block types, not function
block instances; hence, the two requirements are not contradictory.

Figure 9 illustrates the application of this principle. Here, an instance named FB1 of function
block type FBy will occur in each instance of function block type FBx. When function block
type FBx is instantiated twice in an instance of program type A, two separate and distinct
instances of function block type FBy are created. As illustrated in Figure 9c), each such
instance forms part of the private data area of an associated instance of FBx (FB1 and FB2,
respectively), and is hence invisible outside of this instance.

FUNCTION_BLOCK FBx
 VAR FB1: FBy; END_VAR; (* FBy is a function block type *)
...
 FB1(...); (* Invoke instance FB1 *)
...
END_FUNCTION_BLOCK

Figure 9a − Declaration of contained function block type

PROGRAM A
 VAR FBA: FBx; (* Two instances of type FBx *)
 FBB: FBx; (* Each contains an instance FB1 of type FBy
*)
 END_VAR;
...
 FBA(...); (* Invoke instance FBA *)
 FBB(...); (* Invoke instance FBB *)
...
END_PROGRAM

Figure 9b − Declaration of containing program type

FBA FBB

PROGRAM A

...

FBx

FBy

FB1
...

visible

FBx

FBy

FB1
...

visible
invisible

Figure 9c − Visibility of function block instances

NOTE Suppression of irrelevant detail is shown by the ellipsis (...).

Figure 9 – Hiding of function block instances

3.3.3 Function block access and invocation

There is a difference between read access to a variable of a function block instance and the
invocation of the function block instance itself. Reading an output variable of a function block
instance is equivalent to reading the value of an element of a structured variable. However, in
contrast to structured variables, an explicit assignment to the function block output variables
is not allowed. The assignment of values to output variables of a function block instance is
allowed only within the body of the function block instance (see IEC 61131-3, Table 32).

NOTE 1 In general, it is possible to invoke a single instance of a function block several times (“multiple
assignment”) within a POU. However, depending on the programmable controller implementation, this possibility
may be restricted to a single invocation of each function block instance within a POU. A POU that uses multiple
invocations of a single function block instance may be non-portable to such implementations. See 3.7 of this
technical report for more details.

IEC 2068/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 33 –

All the values of the private data area of a function block instance persist from one invocation
to the next. Thus, the private data area of this instance can be seen to be a “memory”
recording a current state. For this reason, different invocations of the same function block
instance with the same input variable values may yield different values of the data area of
this instance.

The assignment of values to input variables is allowed only as part of the invocation of the
function block instance. However, not all the input variables of a function block instance have
to be set explicitly in order to enable an invocation. This is true because no undefined values
of variables are possible for the following reasons:

– standard default values are defined for initialization of variables of all possible data types;
– the initial value of any variable can be specified in its declaration;
– all variables keep their values from one invocation of a function block instance to the next.
NOTE 2 The formal invocation of a function block has to be used, if not all input variables of a function block
instance are assigned. A non-formal invocation of a function block requires the complete set of actual arguments
in its argument list.

NOTE 3 IEC 61131-3, second edition, has introduced specific initializations of inputs for single instances of a
function block (see IEC 61131-3, second edition, Table 18, feature 10). See A.3 of this technical report for the
rationale for this change.

3.4 Differences between function block instances and functions

Although both function blocks and functions are POUs, there are significant differences
between function blocks and functions (see 2.5.1 of IEC 61131-3).

a) The invocation of a function has one result.
NOTE In IEC 61131-3, second edition, the invocation of a function may affect the values of its associated
output variables or in-out variables as well as its result.

b) The result of invoking a function can be used as a value in an expression or an
assignment statement but cannot be used as the target of an assignment operation.

c) A function does not possess a private memory (i.e., internal state information) which is
affected by the history of previous invocations. Thus each call of a function with identical
arguments yields the same result.

d) The scope of a function name, like that of a function block type, is global, as opposed to
the scope of a function block instance name.

3.5 Use of indirectly referenced function block instances

A function block instance is referenced for the purpose of reading via its output variables or
for invoking the referenced instance. These operations can also be performed on a function
block instance whose instance name is passed as an argument to a POU. In this case, the
function block instance is not referenced directly by using a fixed name for the function block
instance; rather, the reference is indirect via an input or external variable of the POU. The
instance name of the referenced function block is assigned to an appropriate variable from
“outside” of the POU in which it is referenced.

This mechanism allows access to, or invocation of, different instances of a specified function
block type within the body of another program or function block.

The technique of using function block instance names as arguments offers the user many
new possibilities in programming. These features make it possible to access or invoke the
instance of a function block type without defining the particular instance of the referenced
function block need in the declaration section of the referencing POU. Furthermore, the
referenced instance can change from one invocation of the referencing POU to another.

Useful applications for this mechanism can be found in connection with problems handling
several machines with the same behaviour, each represented by a single function block
instance.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 34 – TR 61131-8 © IEC:2003(E)

3.5.1 Establishing an indirect function block instance reference

Items 6) and 7) of 2.5.2.2, Table 33, B.1.4.3 and B.1.5.2 of IEC 61131-3 define the
mechanisms for establishing an indirect reference to an instance of a function block. As
illustrated in Figure 10 below, the function block reference may be established as

a) a variable declared in a VAR_INPUT declaration;
b) a variable declared in a VAR_IN_OUT declaration;
c) an external variable.

In each example in Figure 10, the interface definition of a block that references a function
block instance is shown, followed by an example of the passing of the referenced function
block instance as part of the invocation of the referencing function block.

 +--------------+ (* Referencing block type *)
 | INSIDE_A |
 TON---|I_TMR EXPIRED|---BOOL
 +--------------+

FUNCTION_BLOCK (* Reference-passing block *)
 +--------------+ (* External interface *)
 | EXAMPLE_A |
 BOOL---|GO DONE|---BOOL
 +--------------+

 (* Function Block body *)
 (* Referenced Block *)
 E_TMR (* Referencing Block *)
 +-----+ I_BLK
 | TON | +--------------+
 GO---|IN Q| | INSIDE_A |
 t#100ms---|PT ET| E_TMR---|I_TMR EXPIRED|---DONE
 +-----+ +--------------+
END_FUNCTION_BLOCK

Figure 10a − Function block name used as an input variable

 +--------------+ (* Referencing block type *)
 | INSIDE_B |
 TON---|I_TMR----I_TMR|---TON
 BOOL--|TMR_GO EXPIRED|---BOOL
 +--------------+

FUNCTION_BLOCK (* Reference-passing block *)
 +--------------+ (* External interface *)
 | EXAMPLE_B |
 BOOL---|GO DONE|---BOOL
 +--------------+

 (* Function Block body *)
 (* Referenced Block *)
 E_TMR (* Referencing Block *)
 +-----+ I_BLK
 | TON | +---------------+
 |IN Q| | INSIDE_B |
 t#100ms---|PT ET| E_TMR---|I_TMR-----I_TMR|--- E_TMR
 +-----+ GO------|TMR_GO EXPIRED|---DONE
 +---------------+
END_FUNCTION_BLOCK

Figure 10b − Function block name used as an in-out variable

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 35 –

FUNCTION_BLOCK (* Referencing block type *)
 +--------------+ (* External interface *)
 | INSIDE_C |
 BOOL--|TMR_GO EXPIRED|---BOOL
 +--------------+

VAR_EXTERNAL X_TMR: TON; END_VAR
END_FUNCTION_BLOCK

PROGRAM (* Reference-passing program *)
 +--------------+ (* External interface *)
 | EXAMPLE_C |
 BOOL---|GO DONE|---BOOL
 +--------------+
 VAR_GLOBAL X_TMR: TON; END_VAR (* Referenced block *)

 (* Program body *)
 I_BLK (* Referencing block *)
 +---------------+
 | INSIDE_C |
 GO------|TMR_GO EXPIRED|---DONE
 +---------------+
END_PROGRAM

Figure 10c − Function block name used as an external variable

Figure 10 – Graphical use of a function block name

3.5.2 Access to indirectly referenced function block instances

Access to an indirectly referenced function block instance means reading (i.e., using without
modifying) its output variables. The private data area of the function block instance remains
unchanged (see Table 32 and 2.5.2.2, item 4, of IEC 61131-3).

Examples of this usage are given in Figures 11a through 11c, corresponding to the interface
and variable declarations given in Figures 10a through 10c, respectively. In each case, the Q
output of the referenced TON function block is passed to the EXPIRED output of the
referencing function block.

EXPIRED:= I_TMR.Q;

Figure 11a −Referenced input block

 I_TMR
 +-----+
 | TON |
 TMR_GO---|IN Q|---EXPIRED
 |PT ET|
 +-----+

Figure 11b − Referenced in-out block

 X_TMR
 +-----+
 | TON |
 TMR_GO---|IN Q|---EXPIRED
 |PT ET|
 +-----+

Figure 11c − Referenced external block

NOTE See Figure 10 for corresponding variable and interface definitions.

Figure 11 – Access to an indirectly referenced function block instance

3.5.3 Invocation of indirectly referenced function block instances

As described in item 5 of 2.5.2.2 of IEC 61131-3, the invocation of an indirectly referenced
function block instance means the invocation of the function block instance from inside

IEC 2069/03

IEC 2070/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 36 – TR 61131-8 © IEC:2003(E)

another function block. Using this capability, the private data area (and therefore also the
output variables) of this function block instance can be modified.

The general rules for an invocation of a function block instance given in IEC 61131-3, Table
32 are valid in this case.

– The assignment of a value to an input variable of the indirectly referenced function block
instance is allowed only as part of the invocation of this function block.

– The output variables of this function block instance cannot be modified from outside.

As defined in B.1.4.3 and B.1.5.2 of IEC 61131-3, the reference to the invoked function block
instance can be established via

– a variable declared in a VAR_IN_OUT declaration, as illustrated in Figure 12;
– an external variable.

Examples of this usage are shown in Figures 12b and 12c, respectively.

An invocation of an indirectly referenced function block instance established via an input
variable is not allowed, since an invocation of this function block instance may change the
values of the private data area. The modified values may have effects outside the invoked
function block. This behaviour is prohibited for input variables. As noted in 3.5.2, this
precludes the graphical representation (which implies invocation) of indirectly referenced
function block instances established via input variables.

FUNCTION_BLOCK B
 VAR_IN_OUT COUNTER_FB: CTU; END_VAR
 VAR REACHED: BOOL; END_VAR
 ...
 (* Invocation of the variable COUNTER_FB *)
 COUNTER_FB (...);
 (* Access to output Q of the variable COUNTER_FB *)
 REACHED:= COUNTER_FB.Q;
 ...
END_FUNCTION_BLOCK

Figure 12a − Textual declaration and invocation

 COUNTER_FB
 +----------+
 | CTU |
 | |
--->CU Q |---REACHED
 | |
---|R |
 | |
---|PV CV |
 +----------+

Figure 12b − Graphical invocation

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 37 –

PROGRAM P2
...
 VAR REACHED: BOOL;
 B1: B;
 COUNTER1: CTU;
 COUNTER2: CTU;
 END_VAR
 ...
 (* Access value of COUNTER1.Q before invocation *)
 REACHED := COUNTER1.Q;
 ...
 (* Invocation of B1 causes invocation of COUNTER1 *)
 B1 (COUNTER_FB := COUNTER1);
 ...
 (* Access value of COUNTER1.Q after invocation *)
 REACHED := COUNTER1.Q;
 ...
 (* Invocation of B1 causes invocation of COUNTER2 *)
 B1 (COUNTER_FB := COUNTER2);
 ...
END_PROGRAM

Figure 12c − Textual passing of instance name

COUNTER1.Q---REACHED
...
 B1
 +-----------------------+
 | B |
COUNTER1---|COUNTER_FB---COUNTER_FB|--- COUNTER1
 | |
 | |
 +-----------------------+
...
COUNTER1.Q---REACHED
...
 +-----------------------+
 | B |
COUNTER2---|COUNTER_FB---COUNTER_FB|--- COUNTER2
 | |
 | |
 +-----------------------+

Figure 12d − Graphical passing of instance name

NOTE Suppression of irrelevant detail is shown by the ellipsis (...)

Figure 12 – Invocation of an indirectly referenced function block instance

In the example shown in Figure 12, different instances of CTU function blocks can be invoked
within the body of function block B. An indirect reference to a CTU function block instance is
established as a variable declared in a VAR_IN_OUT declaration to function block B. In Figure
12c) and d), several invocations of instance B1 of function block B with different instance
names of function block COUNTER_FB as a variable result in invocations of different CTU
instances corresponding to the variable instance names.

As shown in IEC 61131-3, Figure 11c), a function block instance can be declared as a global
variable in a program, and the function block instance name can then be used as an external
variable in function blocks of other types. Although the particular instances of such function
blocks may vary between programs, the referenced function block instance does not vary
from one invocation to the next of the referencing function block (the block containing the
external reference). Such a function block instance may be used, for example, to provide
means for externally setting the values of variables of all instances of a function block type
that contains the function block name as an external reference.

IEC 2071/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 38 – TR 61131-8 © IEC:2003(E)

Thus, the use of external variables for function block instance names differs from the use of
VAR_IN_OUT variables for function block instance names as described above. While
VAR_IN_OUT variables can be changed from one invocation of a function block instance to the
next, external function block instance references will not change, although their variable
values may change.

This fact has implications for the validity checking provided by the PSE for the scope of a
function block instance. It is strongly recommended that this scope check should be done
during edit time, so that there is no need for the user to wait until run time for a scope check.
The consequence of this requirement is that the function block instance names used as
arguments are fixed and not kept within a variable. Also, there is neither a chance to
concatenate this string at run time nor to access a string array keeping this function block
instance name.

3.5.4 Recursion of indirectly referenced function block instances

According to 2.5 of IEC 61131-3, invocations of POUs shall not be recursive. This is also true
for invocations of function blocks.

Since IEC 61131-3 defines the POU as the function block type and not the function block
instance, the check for recursive invocations of function blocks can be made by checking the
body of a function block type. This is true even when the mechanism of using function block
instance names as arguments is supported, because the instance name but not the type of
an invoked function block can vary from one invocation to the next. The type of the invoked
function block is determined by the declaration in the body of the invoking POU.

Recursion within programmable controller programming languages is discussed in more
detail in 3.6 of this technical report.

3.5.5 Execution control of indirectly referenced function block instances

The following measures are recommended to avoid ambiguity in determining the execution
control of indirectly referenced function block instances.

a) Direct association of tasks to such function blocks, as described in 2.7.2 of IEC 61131-3,
should be avoided.

b) Use of such function blocks should be restricted if possible to algorithms written in the ST
language defined in 3.3 of IEC 61131-3, which has explicit function block invocation
statements.

c) Where an application makes graphic use of such function blocks unavoidable, the PSE
should provide tools for establishing unambiguous execution control.

3.5.6 Use of indirectly referenced function block instances in functions

As mentioned in 2.5.2 of IEC 61131-3, a function block instance name can be used as an
input variable of a function. Within the body of this function, the output variables of the
indirectly referenced function block instance can be read.

At a first view this seems to be contrary to the definition of a function in 2.5.1 of IEC 61131-3.
A call of a function with the same input variables always has to yield the same output value.
This may not be true, if the same function block instance name is passed to a function and
this function block instance has been invoked in the meantime. A more detailed investigation
of this fact, however, shows that the read access to a function block instance is similar to a
read access of a structured variable. To get the same function value, it is therefore not
enough to ensure that the name of a function block instance is identical from one function call
to the next but also that the values of all output variables of the referenced function block
instance are identical.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 39 –

3.6 Recursion within programmable controller programming languages

As stated in 2.5 of IEC 61131-3, recursive calls of POUs are not allowed. That means that a
POU shall not contain or invoke another POU of the same type. This is true also if the
recursion is not direct but indirect, for example, if a POU A calls a POU B and this POU B
calls POU A again.

Because of run-time performance, it is recommended that the program be checked for
possible recursion by the PSE during edit time. This requires the ability to detect possible
recursion by traversing and checking the static call hierarchy tree. In every possible
combination of the path from the PROGRAMS associated with a TASK to the deepest level
call of a POU, no name of a POU may occur more than once.

The edit time check for recursion is possible also in connection with the use of function block
instance names as arguments as the recursion is bound to function block types rather than to
function block instances.

3.7 Single and multiple invocation

Some programmable controllers allow assignment of only one value to any input of a function
or function block, while others allow multiple assignments to any input. If a programmable
controller system is regarded as a replacement for electrical circuitry, no multiple
assignments may exist as these would introduce “short circuits” of outputs, equivalent to the
“wired or” of outputs in FBDs. On the other hand, there is no reason why a function block
implemented in a digital computing entity could not be invoked from different locations, with
different input values in each invocation.

An appropriate example for the usage of multiple invocations of function block instances is
the implementation of code synchronization means, such as semaphores, monitors or
rendezvous.

NOTE These function blocks have to be manufacturer- or user-defined since there are no standard function
blocks for code-synchronization provided in IEC 61131-3.

An example of multiple invocation in ST is as follows:

VAR aFB: FUNCTION_BLOCK_TYPE; END_VAR
...
IF aBooleanExpression
THEN aFB(IN:= 1, ...);
ELSE aFB(IN:= 0, ...);
END_IF;
...

Here a function block named aFB is expected to have a Boolean input variable named “IN”.
Depending on the current value of some Boolean expression this function block is invoked
with either a value of 0 or a value of 1 for this input. There are two invocations of the function
block aFB with different values assigned to an input. In a system that allows multiple
assignment this would not cause any problems; but in a strict single assigning system the IF
statement would have to be reformulated to

aFB(IN:= aBooleanExpression, ...);

Depending on the complexity of a function block and the number of inputs that depend on
calculated values, the invocation of function blocks becomes more and more complicated and
hides the intended purpose of the function block. If in the example above the input IN would
not have the type BOOL but the type INT, a binary selection function SEL would have been
required.

aFB(IN1:= SEL(G:= aBooleanExpression, IN0:= 0, IN1:= 1), IN2:=...);

Strict single assignment might also increase the number of intermediate variables necessary
to decouple the assignment of values to the inputs of function blocks.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 40 – TR 61131-8 © IEC:2003(E)

Similar examples of multiple assignment may be found in SFCs where an instance of a
function block may be invoked in more than one action.

IEC 61131-3 does not stipulate whether a system uses strict single invocation or allows
multiple invocations. Both have advantages and shortcomings. With a single invocation rule
there is one, and only one, place where the input variable of a function block will be assigned
a value, which increases the reliability and maintainability of the software. With multiple
invocation, programmable controller programs may be maintained more easily because of a
lower level of nesting of functions, and may have better responsiveness and processing
capacity by avoiding superfluous calculations.

NOTE See 3.12.3 for a description of additional situations in which multiple invocations should not be used.

3.8 Language specific features

3.8.1 Edge-triggered functionality

Several mechanisms for rising and falling edge-triggered functionality are defined in IEC
61131-3:

– as function block inputs in 2.5.2.2;
– as R_TRIG and F_TRIG function blocks in 2.5.2.3.2;
– as positive (P) and negative (N) transition-sensing contacts and coils for the LD language

in 4.2.3, Table 61, and 4.2.4, Table 62, respectively.

3.8.1.1 Edge-triggering in LD language

As noted in 2.1 of this technical report, many programmable controller systems use cyclic
execution to implement sampled-data control. In the IEC 61131-3 notation, this is
accomplished by associating the program that implements the control algorithm with a
periodic TASK as described in 2.7.2 of IEC 61131-3. Users should be aware that in such
systems, in worst-case conditions, the effect of a change of state in an edge-triggered input
may not appear at the system outputs until two scan cycles later, as noted in Figure 3 above.
This can be illustrated by the simple LD network and timing diagram shown in Figure 13.

| IN1 OUT1 |
+----|P|------()---+
| |
Figure 13a − Example network

 +--------------------------...
IN1 |
---------+

Input ++ ++ ++ ++
Scan || || || ||
-------++-------++-------++-------++--
...

Program +---+ +---+ +---+
Scan | | | | | |
---------+ +----+ +----+ +---...

Output ++ ++ ++
Scan || || ||
--------------++-------++-------++--...

 +--------+
OUT1 | |

---------*---------------+ +--...

 |<--- Delay --->|
Figure 13b − Worst-case timing

Figure 13 – Timing of edge triggered functionality IEC 2072/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 41 –

3.8.1.2 Use of edge-triggered function blocks

The R_TRIG and F_TRIG function blocks defined in 2.5.2.3.2 of IEC 61131-3 exhibit different
behaviour following “cold restart” as described in 2.4.2 of that document. The Q output of an
R_TRIG instance can be set to 1 on the first invocation but the Q output of an F_TRIG instance
always requires at least two invocations before being set to 1. This behaviour can be
explained as follows.

– Since the default value of Boolean variables is 0, then if the CLK input is 1 on the first
invocation, it means that the input has changed its value from 0 to 1 i.e. a rising edge has
been detected and thus the Q of an R_TRIG instance is set to 1.

– In the case of an F_TRIG instance, the CLK input must first be detected as being a 1
before a change of state from 1 to 0 can be detected. Thus, at least two invocations are
needed.

An interesting use of R_TRIG as a “first-cycle detection mechanism” follows from the above
description. If the CLK input to an R_TRIG instance is the constant 1 (or TRUE), the output Q
will be true only on the first invocation since no subsequent change of state from 0 to 1 will
be possible. This may be used as a first-cycle detect mechanism, for example,

VAR firstCycle: R_TRIG; END_VAR
firstCycle(CLK:= TRUE);
IF firstCycle.Q THEN (* first cycle only *)

ELSE
 ...
END_IF;
....

3.8.2 Use of EN/ENO in functions and function blocks

Subclause 2.5.1.2 of IEC 61131-3 defines the Boolean input EN and output ENO, which can be
used to control the execution of functions. Typically, these variables are used to provide
Boolean “power flow” through the functions in the LD language. However, they can also be used
in the FBD language and are especially useful in eliminating ambiguities that might be caused
by the use of the graphical execution control elements described in 4.1.4 of IEC 61131-3.

NOTE IEC 61131-3, second edition, now allows the use of EN and ENO in textual languages as well as graphical
languages and also in the declaration of function blocks types as well as function types.

Figure 14 shows an application of this principle to portions of the FBD body of the STACK_INT
function block example given in IEC 61131-3, Clause F.4. Combinations of the Boolean
inputs PUSH, POP, and R1 are used in conjunction with the EN and ENO variables to achieve
unambiguous execution control without jumps and labels.

According to rule 3 of 2.5.2.1 of IEC 61131-3, the ENO output of a function is to be reset to
FALSE (0) upon the occurrence of an error condition in the execution of the function. This
feature can be used to prevent the propagation of erroneous values through subsequent
functional evaluations. However, the use of ENO for extensive run-time error reporting and
diagnosis is not recommended; instead, the procedures described in 4.6.2 of this technical
report should be employed.

IF R1 THEN OUT := 0; PTR := -1; ...etc.
ELSIF (POP & NOT EMPTY) THEN PTR := PTR - 1; EMPTY := (PTR < 0);
 ...etc.
ELSIF (PUSH & NOT OFLO) THEN PTR := PTR + 1; OFLO := (PTR = NI);
 ...etc.
END_IF;

Figure 14a − ST language without EN/ENO

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 42 – TR 61131-8 © IEC:2003(E)

 +------+ +------+
 | := | | := |
R1---|EN ENO|------------|EN ENO|--------...etc.
 0---| |--OUT -1--| |--PTR
 +------+ +------+

 +------+ +------+
 +---+ | - | | < |
R1-----O| & |--------|EN ENO|-------|EN ENO|---------...
POP-----| | PTR--| |--PTR--| |--EMPTY--...etc.
EMPTY--O| | 1--| | 0--| |
 +---+ +------+ +------+

 +------+ +------+
 +---+ | + | | = |
R1-----O| & |--------|EN ENO|-------|EN ENO|---------...
PUSH----| | PTR--| |--PTR--| |--OFLO---...etc.
OFLO---O| | 1--| | NI--| |
 +---+ +------+ +------+

Figure 14b − FBD language with EN/ENO

Figure 14 – Execution control example

3.8.3 Use of non-IEC 61131-3 languages

Subclause 1.4.3 of IEC 61131-3 states that other programming languages such as Pascal
and C may be used, in addition to those defined by IEC 61131-3, in the programming of
functions and function blocks. Regardless of which language is used for such programming,
interface information as discussed in 5.5 of this technical report must be provided in order to
permit the use of these program organization unit types in the PSE.

3.9 Use of SFC elements

SFC language elements allow a clear graphical and logical representation of the sequential
structure of control programs and parts of control programs.

An SFC consists of one or more networks of steps and transitions. Associated with each step
is a set of actions. An action represents the operations associated with one or more steps,
and may consist of

– a collection of instructions in the IL language;
– a collection of statements in the ST language;
– a collection of rungs in the LD language;
– a collection of networks in the FBD language;
– a sequential function chart; or
– a Boolean variable.

3.9.1 Action control

The execution of an action is affected by the states of its associated steps combined with the
effects of their action qualifiers.

As defined in 2.6.4.5 of IEC 61131-3, the action control block contains a logic description of
the effects and interactions of action qualifiers. In order to gain a better understanding of the
action control, a copy (instance) of the action control block is assigned to each action.
Therefore, the action control block is a constituent part of an action: it defines the execution
of the action (one could also say that it “controls” the execution).

IEC 2073/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 43 –

In this way, the execution of an action can be enabled for the duration of a step, executed
just once (“pulsed”), enabled for an indefinite time (“set” or “stored”), disabled (“reset”),
enabled after a time delay, or enabled for a limited time.

IEC 61131-3 requires that the functionality of action control blocks, but not necessarily the
blocks themselves, must be implemented in an SFC-compliant programmable controller
system. This functionality can be described informally by the following rules.

a) The behaviour (function) of an action in parts of the program is mainly determined by the
following features:
– status of step flag;
– action qualifier;
– action;
– action control block.

b) The action control block describes (logically) the operating method (function) and
interplay of action qualifiers. (An action can be defined with different action qualifiers
within one program or part of a program.) Action qualifiers are

N non-stored;
S set/stored;
R overriding reset;
P pulse;
L time-limited;
D time-delayed;
DS delayed and stored;
SD stored and time-delayed;
SL stored and time-limited;
P1 rising edge pulse (when entering step);
P0 falling edge pulse (when leaving step).

 Figures 15a) and 15b) of IEC 61131-3 represent the logical flow of the activation as a
wiring diagram. Table 45a of IEC 61131-3 defines two action control features: 1) with
“final scan” as shown in Figure 15a) and 2) without “final scan” as shown in Figure 15b).
NOTE 1 A typical use of the P0 qualifier is to substitute for a “final scan” where needed in systems which do
not implement feature (1) of Table 45a.

NOTE 2 The existence of two types of permissible action control (“final scan” versus no “final scan”) limits
program portability. Users should check that the action control features supported are identical between two
different programmable controller systems before attempting to port an SFC from one system to another.

NOTE 3 The influence of the P0 and P1 actions on the “Q” output of the action control block is inconsistent
between the “final scan” and “no final scan” implementations in Figures 15a) and 15b) of IEC 61131-3, second
edition, respectively. That is, the Q output is false (0) during the action of P1 or P0 in Figure 15a), and true (1)
during the action of P1 and P0 in Figure 15b). Users should be especially careful of this difference before
attempting to port an SFC between systems providing different treatment of “final scan”.

 Any section of an SFC network usually comprises a succession of action blocks, which
often only differ in the choice of the attribute. Furthermore, several different actions can
be connected to one step, as illustrated in Figure 16a) of IEC 61131-3. Therefore, the
following general observations can be made.
– Each step can be connected to several action blocks.
– However, each action block is connected to one step.
– Each action is connected with exactly one action control block.
– Each action control block is connected with one or more action blocks.

 Figure 16b) of IEC 61131-3 illustrates the transformation of the SFC net in Figure 16a)
into a block wiring diagram, corresponding to the realization of the action blocks of the

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 44 – TR 61131-8 © IEC:2003(E)

SFC as an (optimized) wiring net. The actual executable code generated need not be
identical to this figure, as long as its behaviour is functionally equivalent.

c) There may only occur one activation of a time-dependent action qualifier (D, L, SD, DS,
SL) per action block.

d) The activation of an SL qualifier in one action block does not allow the processing of an
SD qualifier in the same block, and vice versa.

Timing diagrams of the functional characteristics of the various qualifiers are given in the
following subclause.

3.9.2 Boolean actions

An action that operates on a Boolean variable only is called a Boolean action. In this special
case, the behaviour of an action is established by the direct assignment of the status of
output Q to the Boolean variable.

Figure 15 shows all the qualifier functions for Boolean variables, based on the description of
action qualifiers in IEC 60848. In these figures, it is assumed that test has been declared as
a variable of type BOOL.

NOTE 1 If a combination of various qualifiers is required, it is recommended to refer to the detailed description of
the action control block in 2.6.4.5 of IEC 61131-3 in order to gain a better understanding of the resulting
operations.

NOTE 2 The use of P1 and P0 qualifiers will always result in a false value of an associated Boolean action when
“final scan” (feature 1 of Table 45a of IEC 61131-3) is implemented. When “no final scan” (feature 2 of Table 45a
of IEC 61131-3) is implemented, the associated Boolean action will be true for the single scan when the step is
entered or exited, respectively. Therefore, the use of these qualifiers for Boolean actions is not recommended.

 |
+---+ +---+------+ S12.X +-------------+
|S12|--| N | test | ------+ +------
+---+ +---+------+ c +------
 | --------------------+
 + c test +-------------+
 | ------+ +------

N (non-stored) action
The Boolean variable “test” is set as long as the step S12 is active.

 |
 |
+---+ +---+------+ S16.X +---------------+
|S16|--| P | test | ------+ +-------
+---+ +---+------+ g +-------
 | ----------------------+
 + g test ++
 | ------++----------------------

P (pulse) action
As soon as the step is active, the Boolean variable is set for one operating

cycle.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 45 –

 |
+---+ +---+------+ S20.X +---+
|S20|--| S | test | ----- + +------------------
+---+ +---+------+ d +------------------
 | ----------+
 + d test +-------------+
 | ------+ +--------
 : S25.X +---+
 : --------------------+ +----
 | k +----
 | ------------------------+
+---+ +---+------+
|S25|--| R | test |
+---+ +---+------+
 |
 + k
 |

S/R (set/reset) action
The Boolean variable is set and stored as soon as the step is active.

It can only be reset by means of the R-qualifier.

 | S13.X +-------------+
 | ------+ +--------
+---+ +-----+------+ e +--------
|S13|--| L | test | --------------------+
+---+ |T#5s | | test +--------+
 | +-----+------+ ------+ +-----
 + e <-------->
 | 5s
 S13.X +----+
 ------+ +-----------------
 e +-----------------
 -----------+
 test +----+
 ------+ +-----------------
 <-------->
 5s

L (time-limited) action
The Boolean variable is set for a preset length of time,

as long as the corresponding step is active.

 |
 |
+---+ +-----+------+ S15.X +---------------+
|S15|--| D | test | ------+ +-------
+---+ |T#5s | | f +-------
 | +-----+------+ ----------------------+
 + f test +------+
 | ------+--------+ +-------
 <-------->
 5s
 S15.X +---+
 ------+ +-------------------
 f +-------------------
 ----------+
 test
 ------+--------+--------------
 <-------->
 5s

D (time-delayed) action
The Boolean variable is set after a preset time has elapsed and remains set for

as long as the corresponding step is active.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 46 – TR 61131-8 © IEC:2003(E)

 : S20.X +------------------+
 | ------+ +-----
+---+ +------+------+ S25.X +---
|S20|--| SD | test | ------+--------------------+
+---+ | T#5s | | test +---+
 | +------+------+ ------+----------------+ +---
 + c |<-------------->|
 | 5s
 : S20.X +----+
 : ------+ +----------------------

 : S25.X +----+
 : ------+--------------------+ +-

 : test +---+
 : ------+----------------+ +------

 : |<-------------->|
 : 5s
 : S20.X +----+
 | ------+ +-------------------
+---+ +---+------+ S25.X +--+
|S25|--| R | test | ------+-----------+ +---------
+---+ +---+------+ test
 | ------+----------------+------
 -+- k |<-------------->|
 | 5s

SD (stored and time-delayed)
The action is stored, and the Boolean variable is set when a preset period of

time has elapsed after step activation, even if the step becomes inactive.
This condition persists until the action is reset.

 | S14.X +--------------------+
+---+ +------+------+ ------+ +-----
-
|S14|--| DS | test | S19.X +--
-
+---+ | T#5s | | ------+-----------------------+
 | +------+------+ test +-----+
 + l ------+-----------------+ +--
-
 | |<--------------->|
 : 5s
 | S14.X +----+
+---+ +---+------+ ------+ +-------------------
|S19|--| R | test | test
+---+ +---+------+ ------+-----------------+------
 | |<--------------->|
 + r 5s
 | (S19.X = don't care if S14.X falls before 5 sec.)

DS (time-delayed and stored)
In this case, as for the SD qualifier, the Boolean variable is set with a time

delay.
It differs from the SD qualifier in that the corresponding step must remain active

during the time delay.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 47 –

 : S32.X +-------------------+
 | ------+ +------
-
+---+ +------+------+ S38.X +--+
|S32|--| SL | test | ------+---------------------+ +-
-
+---+ | T#5s | | test +-----------------+
 | +------+------+ ------+ +-------
 + a |<--------------->|
 | 5s
 : S32.X +----+
 : ------+ +---------------------
 : S38.X +--+
 : ------+---------------------+ +-
-
 : test +-----------------+
 : ------+ +--------
-
 : |<--------------->|
 : 5s
 : S32.X +----+
 | ------+ +-------------------
+---+ +---+------+ S38.X +------+
|S38|--| R | test | ------------------+ +-----
+---+ +---+------+ test +-----------+
 | ------+ +-----+------
 + d |<--------------->|
 | 5s

SL (stored and time-limited) action
The Boolean variable is set and stored for a preset length of time

as soon as the corresponding step is active.
Figure 15 – Timing of Boolean actions

3.9.3 Non-SFC actions

In addition to Boolean variables, more complex algorithms can also be programmed within
actions, as illustrated in Figure 16.

 | STIR_ACTION |

 Stirring
| +-------+ |
| End_T | TP | Motor_on |
+--| |---------------|IN Q|------()------+
| T#10s-|PT ET| |
| +-------+ |
| |
| Hopper_1 Motor_on Message |
+--+----|/| ----+-----| |------------(S)-----+
	Hopper_2	
+----	/	-----+

Figure 16 – Example of a programmed non-Boolean action

The processing of such actions is dependent on the status of the Q output of the
corresponding action control block. While output Q is TRUE, the code of the action is
continuously enabled to be executed, under the control of the enclosing program organization
unit such as a program or function block. Upon the transition of Q from TRUE to FALSE, the

IEC 2074/03

IEC 2075/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 48 – TR 61131-8 © IEC:2003(E)

code is executed one final time. During this final execution, the corresponding step flag is
already set to 0.

In the development of IEC 61131-3, the above specification for programming of actions was
formulated in order to maximize user control of the following aspects:

– maintaining the consistency of computed data by assuring that the programmed action
cannot be interrupted prematurely;

– assuring that a computed output bit can be forced to the correct value, for example, by
evaluating a step flag, when the action is terminated.

In order to avoid unexpected results, programmers must bear in mind that each action is
evaluated at least twice (once with Q = 1 and once with Q = 0). Figure 17 illustrates this
point in the context of the P (pulse) qualifier. In this example, the purpose is to maintain an
integer count, S15_CT, of the number of times step S15 is activated. As shown in Figure 17a),
this is to be accomplished by action A15. Figure 17b) illustrates an incorrect body for this
action, which will result in S15_CT being equal to twice the number of activations, since A15
will be invoked once upon activation of S15 and again in the next scan. Figures 18c) and d)
illustrate possible solutions to this problem in the ST and FBD languages, respectively.

 |
+-----+ +---+-----+
| S15 |---| P | A15 |
+-----+ +---+-----+
 |

Figure 17a − SFC fragment

S15_CT := S15_CT + 1;

Figure 17b − Incorrect body for action A15 (ST language)

S15_CTR(CU := S15.X) ;
S15_CT := S15_CTR.CV ;

Figure 17c − Correct body for action A15 (ST language)

 S15_CTR
 +-----+
 | CTU |
S15.X--->CU Q|---
 ...---|R |
 ...---|PV CV|---S15_CT
 +-----+

Figure 17d − Correct body for action A15 (FBD language)

Figure 17 – Use of the pulse (P) qualifier

3.9.4 SFC actions

An SFC action is an action that contains one or more complete SFC networks. Just as with
other actions, an SFC action can be associated with several steps (see 2.6.4 of IEC 61131-
3).

NOTE The use of SFC actions is NOT RECOMMENDED due to the possibility of independent operation of “child”
SFC actions even when execution of the “parent” has been suspended. Deletion of this feature from future editions
of IEC 61131-3 is anticipated.

3.9.5 SFC function blocks

The body of a function block can be defined by an SFC; this will be denoted as an SFC
function block. The use of such function blocks follows the rules common to all function
blocks. The user can declare several instances of the same function block type; each will
have a private data area, which also contains information about the current state of the SFC.

IEC 2076/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 49 –

Each instance then can work independently, using the same SFC algorithm but with separate,
hidden internal state variables.

A declaration of a simple SFC function block is shown in Figure 18. It will be noted that the
SFC contained in an SFC function block is defined in the same (textual or graphical) way and
under the same restrictions as for ordinary SFCs. In particular, each SFC network of an SFC
function block must contain an initial step.

Instances of SFC function blocks can be invoked in the same manner as all other function
blocks. Input variables that control the evolution of the SFC can be declared and used. For
example, a Boolean transition condition for starting the evolution can be passed via input
variables such as T11 in Figure 18. An action declared locally in the body of the SFC function
block can also access these function block variables.

Execution of an instance of an SFC function block is invoked in the same way as for any
function block, depending on the invocation mechanisms available in the language used for
programming the instance of the function block. The body of the function block is then
executed using an SFC scan algorithm such as the one outlined in 3.9.4.

Due to the restriction that no recursion of program organization units is allowed, an SFC
function block may not contain an invocation of any function block instance of the same type.

+--->--+
| |
| +=======+
| || S11 ||(* Initial Step *)
| +=======+
| |
| + T11
| |
| +-----+ +---+-----+
| | S12 |--| N | RUN |
| +-----+ +---+-----+
| |
| + T12
| |
| +-----+ +---+------+
| | S13 |--| N | DONE |
| +-----+ +---+------+
| |
| + T13
| |
+--<---+

 +---------+
 | SFC_FB1 |
BOOL--|T11 RUN|---BOOL
BOOL--|T12 DONE|---BOOL
BOOL--|T13 |
 +---------+

Figure 18a − External interface

Figure 18b − Body

Figure 18 – An SFC function block

3.9.6 “Indicator” variables

As shown in 2.6.4.3 of IEC 61131-3, an “indicator” variable can be specified in an action
block in order to indicate the correct or incorrect execution of an action and to pass on the
information for further processing, for instance, as a transition enabling condition.

The main purpose of the representation of “indicator” variables in an action block is to
improve the clarity and the documentation of the program.

The programming of an “indicator” variable is done in the content of an action by the user.

As the “indicator” variables are freely programmable, they can be used in a very flexible way.
For instance, the variable may be associated with the first occurrence of a defined status. It

IEC 2077/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 50 – TR 61131-8 © IEC:2003(E)

can also be associated with the fulfilment of a condition over a longer period of time or a
time-delayed available status. This flexibility would be lost if the “indicator” variable’s
functionality were fixed as part of the run-time library of a programmable controller.

3.10 Scheduling, concurrency, and synchronization mechanisms

3.10.1 Operating system issues

Programmable controllers have always served the purpose of controlling a multitude of
parallel industrial processes in real time. Prior program execution strategies assumed that
the controller can execute its entire program as quickly as necessary to meet the real-time
constraints of the fastest process being controlled. This approach is easy to implement and
use, and is appropriate for many control systems. However, a single controller may no longer
be able to meet ever-increasing requirements for speed and complexity with a
straightforward, single program scan.

IEC 61131-3 offers additional language elements to aid the user in controlling program
execution to meet these new requirements. In order to assist the programmer in making most
effective use of these features, the most important terms are briefly explained below.

In this discussion, the term task refers to a set of programs or function blocks that runs
independently of and (quasi-)parallel to other tasks.

The term TASK is used as a key word in IEC 61131-3 in order to define the temporal
activation of tasks, i.e., a TASK statement specifies the run-time features of the associated
tasks. The following short example is adapted from Figure 20 of IEC 61131-3:

TASK SLOW_1 (INTERVAL:=t#20ms, PRIORITY:= 2);
TASK FAST_1 (INTERVAL:=t#10ms, PRIORITY:= 1);
TASK PER_2 (INTERVAL:=t#50ms, PRIORITY:= 3);
TASK INT_2(SINGLE:= z2, PRIORITY:= 1);
PROGRAM P1 WITH SLOW_1: F(x1:= %IX1.1,...);
PROGRAM P2: G(FB1 WITH SLOW_1, FB2 WITH FAST_1);
PROGRAM P4 WITH INT_2: H(FB1 WITH PER_2);

The characteristics of four tasks are defined explicitly by the first four lines. The first three
define the characteristics of tasks whose execution is to be scheduled periodically at the
specified intervals, while the fourth specifies a task triggered by the rising edge of a Boolean
variable z2.

Thus, program P1 and function block FB1 in program P2 are associated with a task that is
running every 20 ms with priority of 2, defined as SLOW_1. The faster task FAST_1 only
consists of function block FB2. Program P2 belongs to a task that is always active when no
other task is executable (see 2.7.2 of IEC 61131-3). Program P4 is associated with task
INT_2, triggered on the rising edge of variable z2, while function block FB1 in P4 is
associated with the periodically executing task PER_2.

The strategy by which tasks are selected for execution determines the responsiveness of the
system and the efficiency with which its processing capacity is utilized. Responsiveness and
efficiency are usually improved when a running task can be interrupted by another one
(“preemptive scheduling”). These aspects are addressed in 3.10.2.

Other issues in multi-processing are the control of exclusive access to operational equipment
and the provision of data transfer between tasks. These aspects are addressed in 3.10.3 and
3.10.4, respectively.

As shown in Table 3, multi-user/multitasking systems and real-time responsiveness and
efficiency are usually mutually exclusive.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 51 –

Table 3 – Differences between multi-user and real-time systems

Multi-user systems Real-time systems

Fair distribution of the processor time on the running
tasks yields high production rate of the system

The task execution has to keep up with the external
process. Prompt reaction to external events and the
execution of the responding task before a new occurrence
is necessary

Program running times cannot be calculated Bounds on program running times (for example, response
time) have to be guaranteed

Storage administration can swap out a task onto
secondary storage (dynamic allocation of resources)

Allocation of resources is fixed (the reloading of a
swapped-out task into the primary storage takes time)

The task priority changes dynamically, for example,
according to the CPU time usage

Priorities are fixed. The task with the highest priority gets
the processor for as long as it requires. The task can only
be interrupted by another task of higher priority or when it
explicitly relinquishes control

Data files are usually in directories as tree structures.
Large data files may be distributed on non-contiguous
disc sectors

High disc I/O speed requirements typically dictate the
storage of data on contiguous sectors

Bus throughput is likely to be a bottleneck Bus interrupt response is likely to be a bottleneck

3.10.2 Task scheduling

Subclause 2.7.2 of IEC 61131-3 introduces two methods to schedule the execution of tasks,
called preemptive and non-preemptive scheduling. Both methods are employed in many real-
time systems. Preemptive scheduling is mostly used by large programmable controllers and
process computers, while non-preemptive scheduling can be found in smaller programmable
controllers.

Non-preemptive scheduling expects that a programmable controller processor can change
from one task to another (usually called a context switch) only after a complete execution of
all POUs associated with the current task. After complete execution of all such POUs, the
next task that will be activated is the one that currently has the highest priority or has waited
the longest time if several tasks are waiting at the same priority level. Preemptive scheduling
allows a context switch at any time. Whenever a task of higher priority than the current task is
enabled, depending on the inputs of the associated TASK block, the entire state of the
currently executing task will be saved by the processor and the task will be suspended. Then
the other task of higher priority will execute. This procedure is called a “preemptive context
switch” as the processor (or at least all its registers) has to be emptied in favour of the task
with higher priority. At a later time the new task is expected to relinquish the processor.
Thereafter, the suspended task will regain its context (all register values as they had been at
the preemption point) and will resume execution. Preemptive scheduling may even have
nested contexts: at a given point in time there can be several lower priority tasks that have
been suspended.

3.10.2.1 Performance effects

Both methods of scheduling (preemptive and non-preemptive) try to execute pending tasks
with higher priority before tasks with lower priority levels. The main difference is the amount
of time a higher priority task has to wait when it requests execution. With preemptive
scheduling this time is usually very short. Depending on the underlying operating system and
processor speed, the necessary housekeeping time for a context switch ranges from several
microseconds to milliseconds. This implies that the reaction time (i.e., the time from setting a
task ready to execute by means of its TASK block to the beginning of execution) of a system
using preemptive scheduling is short, at the expense of some additional processing time to
save and restore context data.

When a non-preemptive programmable controller switches from one task to another, there is
a negligible amount of data in the processor that has to be saved. The context switch itself
would be short, probably shorter than in the case of a preemptive context switch; but this

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 52 – TR 61131-8 © IEC:2003(E)

changeover from one task to another will never be done while a POU is still executing.
Hence, with non-preemptive scheduling, the worst-case reaction time is at least as long as
the time the longest running function block or program might need for a complete execution.
As this not only holds for standard FBs but also for all user-defined FBs and programs, it may
be difficult to determine a maximum limit for the reaction time of a non-preemptive scheduling
system.

NOTE The use of scheduling mechanisms other than those defined in IEC 61131-3 may be needed in some
applications which require a guaranteed maximum reaction time.

Usually, preemptive task switching causes a small performance degradation (as the context
switches consume time) but improves the reaction time significantly. This can be seen by
comparing the second column of Example 1 in Table 50 of IEC 61131-3 with the
corresponding column in Example 2. Here it can be seen that with preemptive scheduling
(Example 2), the high-priority function block FB2 in program P2 (P2.FB2@1) never has to wait,
while with non-preemptive scheduling (Example 1) it has to wait for 4 ms in two out of three
activations (at t = 10 ms and t = 20 ms).

3.10.2.2 Concurrency effects

Satisfying the rules for data concurrency given in item (7) of 2.7.2 of IEC 61131-3 may be
substantially more complex in a programmable controller system with preemptive task
scheduling than in a system with non-preemptive scheduling. In some configurations and
programs, a preemptive system may not be able to guarantee that these rules are satisfied.
The manufacturer of a programmable controller should provide sufficient information to
enable a user to determine the means and extent to which these rules are satisfied.

3.10.3 Semaphores

NOTE 1 The semaphore (SEMA) function block has been deleted from IEC 61131-3, 2nd edition, due to the
difficulty of addressing this construct in this standard. This subclause addresses the nature of these difficulties.

NOTE 2 Manufacturers are encouraged to encapsulate means (such as semaphores) to control shared access to
operational equipment within function blocks if possible and to submit such implementations through their National
Committees for inclusion in future editions of IEC 61131-3.

3.10.3.1 General

Semaphores serve the purpose of controlling the access to certain commonly used
equipment (printer, disc, etc.). Only one task at a time can have access to such a resource.
Other accesses are rejected or delayed according to the principle that first the program tests
if the semaphore is already assigned; if not, the program requests it. With a successful
assignment of a semaphore to a task, this task will be given permission to have access to the
associated data or equipment. The semaphore is then released after conclusion of the
operations.

According to 3.3.2.4 of IEC 61131-3, “the WHILE and REPEAT statements shall not be used
to achieve inter-process synchronization, for example, as a ‘wait loop’ with an externally
determined termination condition. The SFC elements defined in 2.6 shall be used for this
purpose”. This interdiction applies to semaphores, which are also an “inter-process
synchronization” mechanism. Violation of this rule can lead to severe degradation in software
reliability, portability and reusability; in the case of semaphores, it may lead to unanticipated
and untraceable suspension of the execution of a program organization unit.

3.10.3.2 Deadlocks

Incorrect use of semaphores may result in a task waiting for operational equipment that
another task is using at that moment and vice versa. As a consequence, both tasks will in
principle wait forever, which is called a deadlock.

Four conditions are necessary for a deadlock.

a) The deadlocked tasks have exclusive access to the corresponding operational equipment.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 53 –

b) The deadlocked tasks already have operational equipment assigned to them while they
wait for further operational equipment.

c) It is not possible to remove the assignment of operational equipment to any task until the
task releases it.

d) There is a closed chain of tasks, in which each task is assigned operational equipment
which is required by the next task in the chain.

Programmable controller PSEs may eventually support methods for the avoidance,
prevention, detection and/or removal of deadlocks. In the meantime, the programmer and
system designer should be aware of the potential existence of deadlocks.

NOTE Encapsulation of semaphores in function blocks may simplify the search for deadlocks when they do occur
and will facilitate the future application of deadlock prevention algorithms.

3.10.4 Messaging

Messaging (inter-process communication) describes methods for tasks to exchange data with
each other and (possibly) synchronize their operations. In general there are three methods
for such data transfer, namely, global storage, mailboxes and queues. Semaphores can also
be used for communication; however, this can be regarded as a special case of mailboxes.

3.10.4.1 Global storage

Two tasks can exchange data via a storage area that is available for both. The protocol of the
accesses has to be included explicitly in the program. Apart from this, there is great liberty
for the implementation of a data transfer. This facility is implemented by the VAR_GLOBAL
and VAR_EXTERNAL constructs defined in 2.4.3 and 2.7.1 of IEC 61131-3.

3.10.4.2 Mailboxes and queues

A mailbox is a kind of a “letter-box” for data to be transferred. In contrast to data transfer via
global storage, there is a protocol for transferring the data to the mailbox and making it
available to other partners. The transfer of the data can be carried out via various media, for
example, common storage areas, backplanes, or communication networks.

The characteristic of queues is that data elements are read in the same order as they were
entered. An example is the character buffer of a terminal, which contains the characters in
the same order than the user entered them.

Either mailboxes or queues, or both, may be used by the communication function blocks
described in 3.11 of this technical report. However, the particular mechanism employed is
completely invisible to the user, who need only be concerned with the externally specified
interface and functionality of these function blocks.

3.10.5 Time stamping

The term “time stamping” comes originally from the field of data bases. With time stamping,
each data element of the data base contains not just the value of the data, but also
information on the time of input. If the data changes, the old element is not removed from the
data base; instead, the old element is marked invalid and the new element is entered along
with its time stamp. The advantage of this approach is that changes within the data base can
be traced relatively easily by following the time stamps; also, new values that are in error can
be deleted and older, correct values restored.

Time stamps have also been used extensively in distributed control systems for continuous
industrial processes for similar reasons, namely, for establishing historical process log data;
for determining the validity of data by its age; and for restoring erroneous data to a previously
valid value.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 54 – TR 61131-8 © IEC:2003(E)

Time stamping of data is easily supported by including the value of the data in a variable of a
structured data type that also includes its time stamp. For instance, a time-stamped data type
that can contain REAL values could be declared according to the rules given in 2.3.3 of
IEC 61131-3 as

TYPE STAMPED_REAL:
 STRUCT
 VALUE: REAL;
 STAMP: DATE_AND_TIME;
 END_STRUCT;
END_TYPE

3.11 Communication facilities in ISO/IEC 9506/5 and IEC 61131-5

NOTE The term variable is used throughout this clause in place of the term parameter used in IEC 61131-5, for
the reasons given in Note 1 of 3.2 .

IEC 61131-5 defines a set of standard function blocks that can be used in the IEC 61131-3
languages for communication among programmable controllers as well as for communication
with host devices. This will enable the user to program network-independent communication
functionality in any programmable controller system complying to IEC 61131-3 and IEC 61131-5.

ISO/IEC 9506/5 will specify the requirements for a programmable controller serving as a
Virtual Manufacturing Device (VMD) in the Manufacturing Message Specification (MMS)
context, including the mapping of certain IEC 61131-3 elements into the MMS context.

3.11.1 Communication channels

A programmable controller can establish communication with a remote programmable
controller device using IEC 61131-5 by opening a communication channel.

Lower layers within the network protocol software stack ensure that data is transferred to and
from the remote node without error if possible. For example, if a communication error occurs
and data is corrupted, it may be re-transmitted automatically.

All of the details concerning the low-level control of the network such as messaging queuing,
framing, etc. are hidden by the IEC 61131-5 function blocks. The applications programmer
need only be concerned with the application-specific details of the channel.

The specifications in ISO/IEC 9506/5 and IEC 61131-5 allow only a one-level hierarchy for
addressing loadable objects like IEC 61131-3 programs at a remote controller. Therefore,
unique program instance names are required inside a configuration to guarantee unique
addressing of remote programs through a given channel, although resource scope allows the
use of equal names in different resources.

3.11.2 Reading and writing variables

A programmable controller can read from, and write to, variables within other remote
programmable controllers supporting IEC 61131-5, providing they are either directly
represented variables as defined in 2.4.1.1 of IEC 61131-3 or variables declared to be
accessible using the VAR_ACCESS ... END_VAR construction defined in 2.7.1 of IEC 61131-
3. This reading and writing are performed using the READ and WRITE FBs, respectively, as
described below.

It is recommended that the VAR_ACCESS method always be used when accessing variables
in remote programmable controllers because it is then possible to use meaningful names for
variables. There is always the likelihood that I/O physical addresses will be changed if the
remote programmable controller program is modified. It may be convenient to fix
VAR_ACCESS names for a number of different programmable controller programs.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 55 –

3.11.3 Communication function blocks

IEC 61131-5 defines a set of function blocks that can be controlled and accessed within an
IEC 61131-3 program in exactly the same manner as other blocks. These function blocks
provide the following functionality.

CONNECT – provides a local “channel ID” (not an “identifier” in the IEC 61131-3 sense) for
communicating with a remote device. The remote device should have a unique name. The
channel ID provided by this function block can be used by other communication function
blocks to identify remote devices.

STATUS – polls a remote device for device verification information. It is important that a
programmable controller check the status of a remote device periodically to ensure that the
remote programmable controller is behaving correctly.

USTATUS – allows a programmable controller to receive the remote device’s verification
information, including its physical and logical status. The remote device must have the
capability to send its device verification information whenever it changes.

READ – polls a remote device for the values of one or more variables. A list of variables can
be given as inputs to the block. After a short delay due to the time to transfer the request and
response across the network, the values of the remote variables are presented on the
function block outputs.

NOTE The READ block does not provide an input variable to control the poll rate. The application program should
re-trigger the block to initiate a new poll.

WRITE – writes one or more values to one or more variables in a remote device. A list of
variable names can be specified to identify variables in a remote device. The remote device
is selected by the R_ID variable obtained from the CONNECT block.

USEND – sends the values of one or more variables to a URCV block in a remote application
program. The remote application program can use the values transferred to the URCV
function block in the normal way. An R_ ID variable ensures that the local USEND block
sends values to the correct URCV block in the remote device.

URCV – receives the values of one or more variables from an associated USEND block.

SEND – provides an interlocked data exchange with an RCV block in a remote device. The
SEND block sends the values of one or more variables to a remote RCV block corresponding
to the channel ID from a CONNECT block and the R_ID variable. The remote programmable
controller application program, on receiving the values, loads a set of values as a response,
which is then returned to the SEND block. The SEND and RCV blocks are provided for
applications where there is a requirement for interlocking as well as data exchange between
the local and remote programs.

RCV – receives the values of one or more variables from an associated SEND block.

NOTE The time between the NDR (New Data Ready) indication from the RCV block and the request to transmit
the response is determined by the application program. Since, in many communication systems, the
communication channel may block if too many responses are pending, programming constructs that respond as
quickly as possible to the NDR signal are recommended.

ALARM – sends values of one or more variables to a remote device identified by the channel
ID and an event identifier when an event condition is detected. The alarm can be
characterized by severity level. This block expects the remote device to acknowledge the
reception of the alarm.

NOTIFY – this is the same as the ALARM block except an acknowledgement from the remote
device is not expected.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 56 – TR 61131-8 © IEC:2003(E)

3.12 Deprecated programming practices

The effects of programming technique on software quality should be considered when
choosing among the options made available in IEC 61131-3. This subclause indicates some
of the more significant of these effects and recommends programming practices to achieve
higher software quality.

3.12.1 Global variables

Excessive use of global variables contradicts the principles of encapsulation and hiding
discussed in 2.4.2.1 and can greatly reduce software reliability, maintainability and
reusability. In particular, the writing of global variables from more than one program location
should be avoided. It is recommended that global variables should be used (if at all) only for

– defining access paths for open communication;
– supplying values of “global” interest to other program organization units.

Global variables should never be used for communicating data between asynchronously
running programs if data concurrency is an important issue. SEND/RCV or USEND/URCV
FBs should be used in such cases to assure concurrency.

3.12.2 Jumps in FBD language

As noted in 2.3, the FBD language is modelled on connected hardware circuits (ICs), i.e.,
function block instances in networks are modelled as working in parallel. In such a context,
jumps over or between networks can be confusing to the user who may be thinking in
hardware terms, thus reducing software reliability, maintainability and adaptability. It is
recommended that conditional execution of FBD networks should be controlled by placing
such networks in SFC actions as described in 2.6.4 of IEC 61131-3, or by using the EN
(enable) input and ENO output of functions as described in 2.5.1.2 of IEC 61131-3. This
corresponds more closely to the concept of conditionally disabling or enabling portions of
hardware circuits; proper operation can then be verified more easily than locating and
checking the state of jump conditions.

3.12.3 Multiple invocations of function block instances in FBD

For the same reasons as given above, the body of a program organization unit written in the
FBD language should not contain multiple copies of the same function block instance.
Hardware-oriented users will not understand “circuit diagrams” containing several copies of
the same “chip”, and it may be impossible to determine the sequence of execution of multiple
copies of the same function block instance, thus reducing software reliability and
maintainability.

3.12.4 Coupling of SFC networks

When multiple SFC networks exist in the body of a program or function block, they are
typically interlocked together in some fashion. An example of this is given in program AGV
shown in Clause F.8 of IEC 61131-3, where the interlocking is performed via the Boolean
variable CYCLE and the step flags READY.X and DONE.X.

Unexpected effects can arise among coupled state machines of any kind, including SFCs.
One of the most common is the deadly embrace, analogous to the deadlock condition
described in 3.10.3.2 above, where each SFC is waiting for a transition clearing condition
from another in a deadlocked chain. The following measures are recommended to enhance
the avoidance and diagnosis of such conditions, thus increasing software reliability and
maintainability.

a) Avoid the use of step flags in transition conditions to detect the completion of actions
associated with other steps, especially if action qualifiers other than “N” (Non-stored) are
used.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 57 –

b) Whenever possible, avoid the use of SFC actions as described in 3.9.4 above; this
introduces coupling via the action control mechanism in addition to possible coupling
through transition conditions.

c) Whenever possible, encapsulate individual SFC networks into SFC function blocks as
described in 3.9.5 above, and use an FBD to express the coupling among the SFC
function blocks. This explicit coupling greatly enhances the readability and hence the
maintainability of the software, as well as providing the potential for reuse of the
encapsulated SFCs via the function block instantiation mechanism.

d) Ensure that each SFC network is “reachable”, i.e., a closed path exists from the initial
step to any other step in the network and back to the initial step, and is “safe”, i.e.,
uncontrolled generation of tokens is not possible (see 2.6.5 of IEC 61131-3 for further
discussion of this point).

3.12.5 Dynamic modification of task priorities

It is well known from the theory of operating systems that the dynamic modification of task
priorities may have unpredictable effects on the execution of parallel programs, including the
generation of deadlocks. Since 2.7 of IEC 61131-3 TASKS are not necessarily mapped direct
to operating system tasks, additional implementation dependent effects may occur.
Therefore, it is highly recommended that the application programmer not use dynamic task
priority modification in an IEC 61131-3 compliant system.

3.12.6 Execution control of function block instances by tasks

The association of tasks with function block instances and its effects on data concurrency are
described in 2.7.2 of IEC 61131-3. The programmer should be aware of the fact that use of
this feature may produce data consistency errors during program run time. The guidelines
provided by the IEC 61131-3 implementor should be consulted to determine the mechanisms
provided to assure data consistency. Since these mechanisms are implementation-
dependent, programs using this feature may not be portable between different IEC 61131-3
compliant systems.

3.12.7 Incorrect use of WHILE and REPEAT constructs

According to 3.3.2.4 of IEC 61131-3, “the WHILE and REPEAT statements shall not be used
to achieve interprocess synchronization, for example, as a ‘wait loop’ with an externally
determined termination condition. The SFC elements defined in 2.6 shall be used for this
purpose”. In order to avoid unanticipated and potentially dangerous effects, users are
strongly cautioned to extend this prohibition to any case of inter-code synchronization. For
instance, suppose it is desired to perform a scaling calculation at the rising edge of a SAMPLE
input of the function block shown in Figure 19a) and provide a rising edge at a DONE output
when the calculation is complete. Then the programming construct shown in Figure 19b)
should not be used. To avoid this usage, the SAMPLE input can be changed to a rising-edge
trigger as shown in Figure 19c) and the function block body shown in Figure 19d) can be
used, or the SFC shown in Figure 19e) can be used with the interface shown in Figure 19a).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 58 – TR 61131-8 © IEC:2003(E)

(* DEPRECATED!!! *)
WHILE TRUE (* DO FOREVER *)
 WHILE NOT SAMPLE (* WAITING *)
 END_WHILE;
 OUT := IN*GAIN+ZERO;
 DONE := TRUE;
 WHILE SAMPLE (* WAIT AGAIN *)
 END_WHILE;
DONE := FALSE;
END_WHILE;

 +-----------+
 | SCALE |
BOOL---|SAMPLE DONE|---BOOL
REAL---|IN OUT|---REAL
REAL---|ZERO |
REAL---|GAIN |
 +-----------+

Figure 19a − Example interface

Figure 19 − Incorrect construct

IF SAMPLE THEN
 OUT := IN*GAIN+ZERO;
 DONE := TRUE;
ELSE DONE := FALSE;

 +-----------+
 | SCALE |
BOOL--->SAMPLE DONE|---BOOL
REAL---|IN OUT|---REAL
REAL---|ZERO |
REAL---|GAIN |
 +-----------+

Figure 19c − Alternative interface
Figure 19d − FB body for interface c)

+------+
| |
| +-------+
| ||START||
| +-------+
| |
| + SAMPLE
| |
| +----------+ +--+----------------------+
| | SAMPLING |--|P1| OUT := IN*GAIN+ZERO; |
| +----------+ +--+----------------------+
| + | | S| DONE |
| | +--+----------------------+
| + NOT SAMPLE
| |
| +--------+ +-+------+
| | ENDING |--|R| DONE |
| +--------+ +-+------+
| |
| + 1
| |
+------+

Figure 19e − Allowed SFC function block body for interface a)

Figure 19 – Example of incorrect and allowed programming constructs

3.13 Use of TRUNC and REAL_TO_INT functions
Footnote (a) of Table 22 of IEC 61131-3 states that “Conversion from type REAL or LREAL
to SINT, INT, DINT or LINT shall round according to the convention of IEC 60559,
according to which, if the two nearest integers are equally near, the result shall be the
nearest even integer....” It should be noted that the rounding procedure specified by IEC
60559 may not operate in the same manner as the rounding function defined in other
programming languages. The examples given in Table 22 of IEC 61131-3 should be
consulted for clarification.

4 Implementation guidelines

This clause describes implementation techniques consistent with the intent of IEC 61131-3.
Other implementations are possible and allowed, as long as the functional requirements
imposed by IEC 61131-3 are met.

IEC 2078/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 59 –

4.1 Resource allocation

The resource, as described in 1.4 and 2.7.1 of IEC 61131, is the basic unit of IEC 61131-3 for
storage of data and program code, the scheduling of code for execution, and the execution of
the appropriate code when a POU, i.e., a program, function or function block, is invoked.

It is possible for an implementation to store in a resource just one copy of the executable
code associated with each type of POU currently resident in the resource. On the other hand,
a separate data area must be provided for each instance of a function block or program. This
includes sufficient data for all the variables and (possibly) SFC state information associated
with the program or function block. In contrast, storage of variables for a function is
temporary and only lasts for the duration of the function’s execution; hence, storage for such
data is typically dynamically allocated from a “stack” (first-in, last-out queue) or a “heap”
(memory reserved for temporary allocation).

4.2 Implementation of data types

4.2.1 REAL and LREAL data types

In order to reduce the loss in precision that can occur with floating-point calculations, it may
be necessary to convert all floating-point values stored in REAL data types into the double-
width (LREAL) format before initiating a sequence of arithmetic operations, particularly if
such calculations could involve the computation of relatively small differences between
floating-point numbers. The results are then converted back to REAL format for storage.

There is a wide range of microprocessors, particularly digital signal processors (DSPs), that
have their own internal floating-point formats. In such cases, the implementor must limit the
range of values supported by the REAL and/or LREAL implementation to those specified in
2.3.1 of IEC 61131-3 or must specify new implementation-dependent data types, say
DSP_REAL and DSP_LREAL for the native floating-point formats in addition to supporting the
standard REAL and LREAL types, in order to meet the compliance requirements of items a)
and h) of 1.5.1 of IEC 61131-3.

4.2.2 Bit strings

Implementation of bit-string comparison operations should correspond to the explanation
given in 3.1.8.

To eliminate ambiguity in the interpretation of the MIN and MAX functions, it is considered
that their semantics can be derived from the comparison functions through the application of
the following definitions.

• Let Μ be a set of bit-string data {b1, b2, b3, ...bn}.

• (B = MAX(b1, b2, b3, ...bn)) ≡ ((B ∈ Μ) & ∀ 1 ≤ j ≤ n, bj∈Μ: (B ≥ bj)); that is, saying that B
is the maximum value of the set is equivalent to saying that it is a member of the set and
it is greater than, or equal to, the value of any member of the set.

• (B = MIN(b1, b2, b3, ...bn)) ≡ ((B ∈ Μ) & ∀ 1 ≤ j ≤ n, bj∈Μ: (B ≤ bj)); that is, saying that B
is the minimum value of the set is equivalent to saying that it is a member of the set and it
is less than, or equal to, the value of any member of the set.

See the examples given in 3.1.8.

4.2.3 Character strings

The maximum length and format of variable length strings is implementation-dependent. This
implies that function blocks and algorithms using character-string data types may not be
portable between programmable controllers, particularly if the maximum string length is
significantly different.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 60 – TR 61131-8 © IEC:2003(E)

There are two main techniques used for defining the character string length: 1) a null
character terminator is used, or 2) the length is stored at the head of the string. The null
character technique, as used in the ‘C’ language, may not be convenient if there is also a
requirement to have null characters embedded within the string but does have the advantage
that indefinitely long strings can be stored. Storing the length in a byte or word limits the
maximum string length to 255 or 65535 respectively, but does allow strings to hold null
characters.

NOTE See also the discussion of character string data types in 3.1.5 of this technical report.

4.2.4 Time data types

The storage and length of the time data types are implementation-dependent. This poses the
possibility that functions and function blocks that use time-data types may not be portable. It
is therefore required by IEC 61131-3 that the range and precision of values of time-data
types be clearly specified by the implementor.

For example, the TIME (duration) data type might be represented by a 32-bit unsigned double
integer storing the duration as a count of milliseconds. This allows a TIME data type to define
accurately any duration from 1 ms to 49 days. However, this would not allow the computation
of small time differences (less than 1 ms) between events, or to manipulate time differences
that might be negative.

The use of floating-point representation for time data is not recommended because of the
lack of precision in the fractional part of the value. For example, using a 32-bit unsigned
double integer, the duration of 30 days, 10 min, and 200 ms, i.e., T#30d10m300ms can be
represented accurately; this is not possible with a 32-bit floating-point value.

It may be convenient to store DATE, TIME_OF_DAY and DATE_AND_TIME in the UNIX
format in which the DATE value is held in a 32-bit unsigned double integer as the number of
seconds from midnight, 1 January 1970, and the TIME_OF_DAY value is held as the number
of seconds from midnight. This gives dates and time of days up to the year 2106. However,
this format does not allow events to be time-stamped with a precision better than 1 s.

4.2.5 Multi-element variables

Implementations of IEC 61131-3 will need to limit the number and size of array dimensions to
accommodate performance and memory limitations of the programmable controller. A
reasonable limitation for most applications is to limit array variables to no more than three
dimensions.

Deeply nested array indexing may also need to be limited due to the increased complexity
involved in resolving memory addresses within the programmable controller, especially if the
variables use complex derived data types. An example of such deeply nested indexing is

loop.sp:= spList[loopParams[phase[recipe[job1]]]];

4.3 Execution of functions and function blocks

This clause provides general guidelines for the execution of functions and function blocks. In
addition, when the bodies of user-defined functions or function blocks are programmed in one
of the graphical languages (LD or FBD) defined in Clause 4 of IEC 61131-3, the
implementation should assure that execution obeys the rules for evaluation of networks in
4.1.3, 4.2.6 and 4.3.3 of IEC 61131-3 as well as the rules for evaluation of LD elements given
in 4.2.2 through 4.2.5 of IEC 61131-3.

4.3.1 Functions

A function is defined as a program organization unit which, when executed, yields exactly one
data element (which may be multi-valued). A function’s internal data is dynamically initialized

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 61 –

for each activation, i.e., invocation of a function with the same arguments (input variables)
shall always yield the same value (output).

NOTE 1 Certain standard functions defined in 2.5.1.5 of IEC 61131-3 are allowed to be extensible, i.e., to have a
variable number of inputs.

A function invocation establishes a list of actual variables corresponding to the list of formal
variables specified in the function’s type declaration and causes execution of the program
code corresponding to the function body. Depending on the implementation, the list of
variables may consist of the actual variable values, addresses at which to locate the actual
variable values, or a combination of the two, and may be passed to the executing code on a
stack or by some other means. Typically, the result of function execution will also be returned
on the stack.

Function execution may be made conditional on the EN input described in 2.5.1.2 of IEC
61131-3. By rules (1) and (2) of 2.5.1.2 of IEC 61131-3, the initial system action upon
invocation of a function is to copy the EN input to the ENO output. This variable acts as a
“power flow” through the function.

If an error occurs during the processing of a function, the minimum required system action is
that the ENO output of the function be reset to FALSE. Depending on the implementation, an
error condition may also trigger the execution of a system- or user-defined error task at the
end of function execution. The user may associate a special error-processing program with
this task.

NOTE 2 The effect of ENO at the end of function execution should be the same for all languages in a given
implementation.

NOTE 3 The reading of the EN input within the body of a function will (in effect) always deliver the Boolean value
TRUE, since the function will not be evaluated when EN is FALSE.

4.3.2 Function blocks

A function block is defined in IEC 61131-3 as a program organization unit which, when
executed, yields one or more output values; moreover, a function block can have multiple
instances, each with its own private data. A function block’s internal data persists from one
execution to the next; therefore, successive invocations of a function block may yield different
results, even with the same arguments (input variables).

A number of standard function blocks are defined in IEC 61131-3. Typically, at least counter
and timer function blocks are implemented in the controller firmware.

A function block invocation establishes values for the function block’s input variables and
causes execution of the program code corresponding to the function block body. These
values may be established graphically by connecting variables or the outputs of other
functions or function blocks to the corresponding inputs, or textually by listing the value
assignments to input variables. If no value is established for a variable in the function block
invocation, a default value is used. Depending on the implementation, input variables may
consist of the actual variable values, addresses at which to locate the actual variable values,
or a combination of the two. These values are always passed to the executing code in the
data structure associated with the function block instance. The results of function block
execution are also returned in this data structure. Hence, if the function block invocation is
implemented as a procedure call, only a single argument – the address of the instance data
structure – need be passed to the procedure for execution.

NOTE 1 When a function block instance in a program is associated with a separate task (features 3b and 4b of
IEC 61131-3, Table 50), invocation of the function block from the program should establish values for the function
block’s input variables, but should not cause execution of the program code associated with the function block
body. Execution of this code should be under the exclusive control of the associated task as required by Rule (5)
of 2.7.2 of IEC 61131-3.

NOTE 2 When a function block instance is used to interface to high-speed hardware, such as counters or flash
A/D converters, or when the function block instance is executed preemptively by a high-speed periodic or interrupt-
driven task, the actual output values of the function block may change while computations involving those outputs

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 62 – TR 61131-8 © IEC:2003(E)

are proceeding in the program containing the function block instance. In such cases, the implementation must
provide means of effectively “freezing” such outputs while such computations are taking place, for example, by
providing a temporary buffer for the actual output value.

Additional data-type qualifiers R_EDGE and F_EDGE are available for function block input
variables only. These data types provide rising (0-->1) or falling (1-->0) edge detection,
respectively, of Boolean inputs, upon invocation of the function block. The variable condition
is only TRUE when the specified edge is detected and is FALSE otherwise.

NOTE 3 See 2.5.2.2 of IEC 61131-3 for additional descriptions of this feature.

4.4 Implementation of SFCs

4.4.1 General considerations

A number of points relevant to the implementation of SFCs have already been discussed in
previous portions of this technical report. These points are recapitulated below.

a) Action control may be implemented either as an action control block or its functional
equivalent in optimized code and data structures; see 3.9.1 above and 2.6.4.5 of IEC
61131-3.

b) A consistent method, such as the four-step algorithm described in 3.9.4 above, should be
utilized for execution of SFC evolution, whether the SFC occurs in programs, FBs, or SFC
actions.

c) It is recommended that the “indicator” variables described in 2.6.4.3 of IEC 61131-3 be
supported as a notational convenience, and not with any specific implementation-
dependent functionality, in order to maximize flexibility and portability in the use of this
feature, as discussed in 3.9.6 above.

d) It may be useful for an implementation to enforce the SFC programming disciplines
described in 3.12.4 above.

e) As noted in 4.1 above, when allocating storage for a program or function block containing
SFCs, it is necessary to consider the requirements for storage of SFC state information as
well as for the variables used by the program or function block. Such SFC state
information includes the step flags and action control block states (if any), step elapsed
times (if supported), and other state information as required by the implementation.

4.4.2 SFC evolution

There is no defined termination to the evolution of an SFC. This is different from programs
using languages that can be scanned in a defined order from start to end. Thus, a definition
is required for the meaning of one “scan” of an SFC, whether this SFC constitutes the “top
level” of a program organization unit or an SFC action. One possible algorithm for scanning
an SFC is

a) determine the currently active set of steps. This is the set of initial steps for the first scan
following system initialization. Otherwise, this set is determined by deactivating the steps
preceding and activating the steps following the current list of transitions to be cleared;

b) determine the state of all action control block Q outputs and perform the final scan of any
actions associated with a falling edge Q;

c) scan all actions with action control block Q values of Boolean 1;
d) determine the transitions to be cleared (if any) on the next scan.

This definition of scans recognizes the fact that there is no implicit looping to the initial step
whenever a final step has been reached. All loops have to be programmed explicitly, for
example, the loop from ENDING to START in Figure 19e). In this way, there is no chance to
lose the token of an SFC network as all transitions have to be succeeded by a step.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 63 –

4.5 Task scheduling

The TASK construct is defined in 2.7 of IEC 61131-3 to enable the user to specify the
requirements for scheduling the execution of programs and FBs, without having to develop by
hand a detailed cyclic executive. These requirements can be combined with modern
scheduling techniques for real-time systems to determine in advance whether the system can
be scheduled to meet the expressed user requirements, especially in systems where
preemptive scheduling is supported (see 3.10.2 above for a discussion of preemptive versus
non-preemptive scheduling). Implementors should be aware of these techniques and
consider their implementation and support in IEC 61131-3 compliant systems.

4.5.1 Classification of tasks

When a task is triggered, it schedules the execution of the associated programs and FBs.
Hence, IEC 61131-3 tasks can be characterized by their triggering mechanisms.

– A periodic task is triggered regularly at a determined time interval. This is configured by
the user by connecting the SINGLE input of the task block to Boolean FALSE (or just
leaving it disconnected), and setting the INTERVAL input to a non-zero value of TIME
type, representing the periodic triggering interval.

– An aperiodic task is triggered by an external or internal event that does not necessarily
occur at a regular interval. This is configured by the user by connecting the SINGLE input
of the task block to a Boolean variable whose rising edge represents the triggering event,
and setting the INTERVAL input to t#0s (or just leaving it disconnected).

– The default task is automatically associated with programs that have no explicit task
association and schedules its associated programs in round-robin fashion at the lowest
system priority. This task may also handle the scanning of inputs and outputs as
discussed in 2.1 above.

Aperiodic tasks can be classified according to the nature of the triggering event. Such events
may include

– “cold restart” or “warm restart” as discussed in 2.4.2 of IEC 61131-3;
– run-time error conditions as discussed in item d) 4) of 1.5.1 of IEC 61131-3 and listed in

Annex E of IEC 61131-3;
– events detected or generated by implementation-dependent hardware or software

mechanisms (sometimes called “interrupt events”), such as the rising edge of an electrical
signal or the terminal count of a high-speed hardware counter.

Implementors should consider specifying Boolean variable names or directly represented
Boolean variables (as described in 2.4.1.1 of IEC 61131-3) whose rising edges represent
events such as those described above for a particular resource type or instance as defined in
2.7.1 of IEC 61131-3. This will facilitate the association of these events with tasks which can
schedule programs to respond to the event occurrence. Implementors should also consider
providing default programs to process the more frequently occurring types of events such as
restarts and run-time errors.

4.5.2 Task priorities

The interaction between the assignment of task priorities, the scheduling intervals of periodic
tasks, the arrival rates of aperiodic events, and task execution times can have profound
effects on the responsiveness and schedulability of real-time systems. Implementors of IEC
61131-3 compliant systems should provide adequate scheduling tools and facilities for the
tasking features supported by the implementation.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 64 – TR 61131-8 © IEC:2003(E)

4.6 Error handling

4.6.1 Error-handling mechanisms

Items c) and d) of 1.5.1 of IEC 61131-3 specify the treatment of errors in compliant systems.
Item c) typically applies to syntax or configuration errors in the source program. These errors
may be detected at the time they are entered into the PSE by the user, during the parsing of
the program in the compilation phase (if any), during the linking of program organization units
into a configuration, or during the loading of the configured software into the controller for
execution.

Item d) of 1.5.1 of IEC 61131-3 refers to the errors listed in Annex E of IEC 61131-3, which
are for the most part errors that may occur during execution of the user program, i.e., “run-
time errors”. Item d) lists four possibilities for dealing with these errors:

“ 1) there shall be a statement in an accompanying document that the error is not reported;
 2) the system shall report during preparation of the program for execution that an

occurrence of that error is possible;
 3) the system shall report the error during preparation of the program for execution;
 4) the system shall report the error during execution of the program and initiate appropriate

system- or user-defined error handling procedures.”
NOTE 1 The use of option 1) is not recommended for run-time errors.

NOTE 2 Option 3) is typically mutually exclusive with options 2) and 4). However, options 2) and 4) are not
mutually exclusive and should be used in combination whenever possible. That is, if the error cannot be detected
before run time per option 3), the user should be warned that the error may occur and the error should also be
detected at run time.

NOTE 3 Items (f) and (g) of 1.5.1 of IEC 61131-3 require that extensions and implementation-dependent features
be treated by the system hardware and/or software in the same manner as errors as listed above. However, the
implementor may supply a software switch by means of which the user can disable such processing.

Table 4 recommends the error-handling mechanisms that should be applied to the error
conditions listed in Table E.1 of IEC 61131-3.

Table 4 – Recommended run-time error-handling mechanisms

Subclause Error conditions
(Notes 1 and 2)

Mechanisms
(Note 3)

2.3.3.1 Value of a variable exceeds the specified subrange RT

2.4.2 Length of initialization list does not match number of array entries ED

2.4.3 Attempt by a program organization unit to modify a variable which has
been declared CONSTANT

ED

2.5.1.5.1 Type conversion errors ED

2.5.1.5.2 Numerical result exceeds range for data type
Division by zero

RT
ED, RT

2.5.1.5.3 N input is less than zero in a bit-shift function EW,RT

2.5.1.5.4 Mixed input data types to a selection function
Selector (K) out of range for MUX function

ED
RT

2.5.1.5.5 Invalid character position specified
Result exceeds maximum string length
ANY_INT input is less than zero in a string function

EW, RT

2.5.1.5.6 Result exceeds range for data type RT

2.5.2.2 No value specified for a function block instance used as input variable ED

2.5.2.2 No value specified for a VAR_IN_OUT variable ED

2.6.2 Zero or more than one initial steps in SFC network
User program attempts to modify step state or time

ED

2.6.3 Side-effects in evaluation of transition condition ED

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 65 –

Table 4 – Recommended run-time error-handling mechanisms

Subclause Error conditions
(Notes 1 and 2)

Mechanisms
(Note 3)

2.6.4.5 Action control contention error EW, RT

2.6.5 Simultaneously true, non-prioritized transitions in selection divergence
Unsafe or unreachable SFC

EW,RT
ED

2.7.1 Data type conflict in VAR_ACCESS ED

2.7.2 Tasks require too many processor resources
Execution deadline not met
Other task scheduling conflicts

ED, RT
ED, RT
EW, RT

3.2.2 Numerical result exceeds range for data type EW, RT

3.3.1 Division by zero
Numerical result exceeds range for data type
Invalid data type for operation

ED, EW, RT
EW, RT
ED

3.3.2.1 Return from function without value assigned ED

3.3.2.4 Iteration fails to terminate ED, EW, RT

4.1.1 Same identifier used as connector label and element name ED

4.1.3 Uninitialized feedback variable ED

NOTE 1 This table does not include all entries from Table E.1 of IEC 61131-3, but only those entries that
may be identified as run-time errors.

NOTE 2 This table is not an exhaustive listing of all possible run-time errors. Implementors may extend
this table and the corresponding error-handling facilities.

NOTE 3 ED = Early detection per item d) 3) of 1.5.1 of IEC 61131-3;

 EW = Early warning per item d) 2) of 1.5.1 of IEC 61131-3;

 RT = Run-time detection per item d) 4) of 1.5.1 of IEC 61131-3.

4.6.2 Run-time error-handling procedures

This subclause contains recommendations for the implementation of rule (d)(4) in subclause
1.5.1 of IEC 61131-3:2003, “the system shall report the error during execution of the program
and initiate system- or user-defined error-handling procedures....”

NOTE The scope of this provision in IEC 61131-3 is limited to errors in user programs; however, implementors
may consider providing similar procedures for the handling of errors from other sources such as I/O or
communication subsystems.

4.6.2.1 Reporting of errors

The information to be reported upon occurrence of an error should include

– notification of the fact that an error has occurred;
– classification of the type of error (for example, “division by zero”);
– identification of the source of the error (for example, a program organization unit).

In order to provide a uniform style of error reporting, implementors should consider the
encoding of this information into variables of a single type such as the following.

TYPE ERROR_REPORT:
 STRUCT FLAG: BOOL;
 CLASS: STRING(...);
 SOURCE: STRING(...);
 END_STRUCT;
END_TYPE

NOTE 1 The length of the STRING elements above will be implementation-dependent.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 66 – TR 61131-8 © IEC:2003(E)

NOTE 2 The new WSTRING data type defined in IEC 61131-3, 2nd edition, should be considered for the
reporting of errors in various national languages.

NOTE 3 The use of integer or enumerated types for the error class element may be considered if higher
efficiency is required in subsequent error processing.

Such error-reporting variables would typically be made available as implementation-specific
default declarations, for example, as global variable declarations for a particular resource
type, or as outputs of programs or tasks. For instance, a set of default declarations for a
resource might be

VAR_GLOBAL
 MATH_ERROR: ERROR_REPORT; (* Table 23 *)
 ARITHMETIC_ERROR: ERROR_REPORT; (* Table 24 *)
 SFC_ERROR: ERROR_REPORT; (* 2.6.4.5(4) *)
 ...
END_VAR

NOTE 1 In this example, the comments refer to the locations in IEC 61131-3 where the features that may give
rise to the particular error are described.

NOTE 2 A single error-reporting variable may be used; however, higher performance of error-handling procedures
may be achieved by using a larger number of error-reporting variables to provide higher resolution of error
classification.

4.6.2.2 System-defined error-handling procedures

The handling of run-time errors generally consists of the following steps.

a) The normal flow of program execution is suspended.
b) Action appropriate to the error type is taken, for instance,

– the error may be corrected if possible;
– if correction is not possible, default values may be substituted for the erroneous

variables;
– the occurrence of the error and any corrective actions taken may be reported to an

operator or logged to a file for future reference.
c) Program execution is resumed at an appropriate point. Depending on the error type and

the possibility of corrective action, such resumption may be immediate or contingent upon
a system event such as “warm restart”, “cold restart”, or a command from the
communication network or from an operator.

The implementor should specify the corrective and reporting actions taken by the system, and
the procedure for program resumption, for each type of run-time error processed by the
system. If the reporting of errors is modelled by global variables as discussed in the
preceding subclause, the handling of errors could be modelled by preemptive scheduling of
error processing tasks as defined in 2.7.2 of IEC 61131-3. For the example given in the
preceding subclause, the resource-specific specification of the error processing tasks could
have the form:

TASK MATH_ERROR_TASK
 (SINGLE := MATH_ERROR.FLAG, PRIORITY :=...);
TASK ARITHMETIC_ERROR_TASK
 (SINGLE := ARITHMETIC_ERROR.FLAG, PRIORITY :=...);
TASK SFC_ERROR_TASK
 (SINGLE := SFC_ERROR.FLAG, PRIORITY :=...);
...

NOTE 1 The implementor should specify the priority levels at which various errors are to be processed. These
priorities will usually be higher than those of user program tasks in order to assure that user programs will be
interrupted for error processing.

NOTE 2 The occurrence and processing of errors may have severe impacts on the ability of the system to meet its
task scheduling deadlines.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 67 –

With the above model, error correction and reporting procedures could be specified by
associating the error processing tasks with appropriate system-defined error processing
programs. In the above example, the declarations of such associations could be

PROGRAM PROCESS_MATH_ERROR WITH MATH_ERROR_TASK:
 SYSTEM_MATH_ERROR_PROCEDURE;
PROGRAM PROCESS_ARITHMETIC_ERROR WITH ARITHMETIC_ERROR_TASK:
 SYSTEM_ARITHMETIC_ERROR_PROCEDURE;
PROGRAM PROCESS_SFC_ERROR WITH SFC_ERROR_TASK:
 SYSTEM_SFC_ERROR_PROCEDURE;
...

The implementor could then specify the actions to be taken by the specified error-handling
program for each possible error classification in the associated global ERROR_REPORT
variable, for example, the actions to be taken by the SYSTEM_MATH_ERROR_PROCEDURE
program for each of the possible values of MATH_ERROR.CLASS, etc.

4.6.2.3 User-defined error-handling procedures

An IEC 61131-3 implementation may provide for user-defined error-handling procedures. In
the examples given in the preceding subclause, this could be accomplished by the
substitution or augmentation of system-defined error handling programs by user-defined
programs associated with the appropriate error handling tasks.

If user-defined error handling procedures are supported, the implementor should provide
facilities for such procedures to specify the same types of error handling and reporting
mechanisms, as well as user program resumption options, as employed by the system-
defined procedures. Such facilities could take the form, for instance, of global variables that
could be set, or function blocks that could be invoked by the user-defined error handling
procedure.

4.7 System interface

Implementors should consider the provision of global variables (which may include function
block instances) within resources for the purpose of interface to system functions. For
instance, as described in 4.5.1 above, global Boolean variables may be used to represent
system-specified status or events, for example, BATTERY_LOW or POWER_ABOUT_ TO_FAIL.
Alternatively, system entities may be represented as instances of system-specific function
blocks, for example, BATTERY or POWER_SUPPLY, with defined input and output variables
representing their status or control interfaces.

4.8 Compliance

IEC 61131-3 contains numerous requirements in addition to the general compliance
requirements enumerated in 1.5.1 of IEC 61131-3. Implementors should pay attention to any
occurrence of the word “shall” in IEC 61131-3, since each such occurrence indicates a
requirement.

The following subclauses deal with a number of the more important provisions that
implementors should bear in mind in the development of IEC 61131-3 compliant systems.

4.8.1 Compliance statement

The first requirement enumerated in 1.5.1 of IEC 61131-3 is that a compliance statement be
included in the documentation or produced by the system itself, for example, as a readable
and printable file included with the system. This consists of a statement of compliance and a
series of tables enumerating the features supported by the system; the exact form of these
tables is prescribed in 1.5.1 of IEC 61131-3.

NOTE The compliance statement is not the only documentation requirement imposed by IEC 61131-3; see, for
instance, items b), d)1), e) and i) of 1.5.1 of IEC 61131-3.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 68 – TR 61131-8 © IEC:2003(E)

This format for statement of compliance was considered to be more practical than the
enumeration of compliance classes, given the wide range of application of programmable
controllers. Accumulation of experience in the use of the elements of IEC 61131-3 may make
it possible for compliance classes to be defined in future revisions.

4.8.2 Controller instruction sets

Subclause 1.1 of IEC 61131-3 specifically limits its scope to “the printed and displayed
representation...of the programming languages to be used for programmable controllers....”.
In particular, it is not required that the IL language defined in 3.2 of IEC 61131-3 be
considered an instruction set for any real or virtual machine. Rather, the IL language is
considered a way to express most of the functionality available in the other IEC 61131-3
languages in an assembly-language format familiar to a large number of users of existing
systems.

In principle, the IEC 61131-3 language elements can be compiled to a large number of
machine instruction sets. PSEs must be capable of presenting the programming of the
programmable controller system to the user in the formats prescribed by IEC 61131-3 and
should hide the details of machine instruction sets from the user. This will allow the evolution
of programmable controller architectures while protecting the user’s investment in software
and training.

It is a natural consequence of this flexibility in instruction sets that compliant programs, as
defined in 1.5.2 of IEC 61131-3, will only be portable at the source code level.

4.8.3 Compliance testing

The development and execution of compliance test suites for the IEC 61131-3 languages will
depend on the accumulation of practical experience in their application; hence, this is a topic
for future standardization.

5 PSE requirements

5.1 User interface

The user interface is the principal means of making the features and functionality of a
programmable control system visible to the user, and is often the primary basis for the user’s
opinion of the system. Therefore, the development of the user interface is a major issue for
creators of programmable controller software and hardware.

There will obviously be different means of implementation and design of user functions even
though the same programming language standard is used. However, an understanding of
how the language elements in the standard are intended to be used should lead to more
satisfactory PSE design and implementation.

For any software product, it is critical to know which information is useful, when it is useful,
and how it must be displayed. The design of the PSE must respect fundamental ergonomic
principles, for instance:

– the more complex the PSE is, the more the user has to be guided and informed about its
use;

– the PSE should guide the user through the steps of a systematic software development
methodology. However, it should be possible for the user to perform these steps in a
user-determined order;

– the PSE can guide the user with appropriate cues on a screen and window organization
and with a set of dialogues appropriate to the step of the software methodology currently
being performed;

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 69 –

– when available, contextual on-line help should be given in response to user requests.
Help information that is presented when not requested will typically not be read;

– recent studies show that the user does not want time-consuming and exhaustive training.
On-line tutorial material should be available that will enable the user to perform the most
commonly used functions within a short learning period, and to learn advanced methods
as necessary in the normal course of productive work;

– the use of paper documents is uneconomical for both the PSE vendor and user; therefore,
they should only be used for reference material as a supplement to on-line
documentation.

When a multi-windowing user interface system is used, the ergonomic guidelines of the
supplier of the windowing system should be followed in order to assure high user productivity
and low error rates in the shortest possible training time. Such guidelines typically include

– correspondences between pointing device (mouse, etc.) and keyboard operations;
– conventions for selecting and deselecting objects;
– rules for using special windows such as message boxes, list boxes, dialogue boxes, etc.;
– the order of items in menus.

5.2 Programming of programs, functions and function blocks

The user must perform a similar set of tasks in programming any POU, whether it be a
function, function block, or program. Programming is the structuring of POUs, using either a
top-down or a bottom-up approach, or both. As shown in Figure 20, a POU contains
declarations of variables and a body programmed in any language. The means of declaring
variables can be independent of the language in which they are used. IEC 61131-3
standardizes the textual syntax of data declarations but does not require that it be presented
or entered by the user in this form while programming.

Figure 20 – Essential phases of POU creation

Serious consideration should be given to the provision of features, such as syntax-directed
editors, for the immediate detection and (possibly) correction of syntax errors during the
declaration and programming of POUs. Such features improve the productivity and quality of
programming in any language. However, this advantage will be especially pronounced in
PSEs for the IEC 61131-3 languages for the following reasons.

– Each POU can be programmed in a different textual or graphic language. Immediate
detection and correction of errors can assist the user in learning the syntax of a less
familiar language.

– When a POU is programmed in a graphical language, it is easier to make errors such as
connection of variables of incompatible types. Immediate detection and correction of such
invalid connections can prevent the generation of a large number of confusing error
messages at compile time.

– The tasks of declaration, editing and compilation of a POU may be performed at different
times, and even by different users. It is thus imperative that syntactic errors be detected
and prevented as early in the programming activity as possible.

It should be possible for the user to turn the automatic detection of syntax errors on and off
as desired.

Programming
of the body

Declarations
of variables

IEC 2079/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 70 – TR 61131-8 © IEC:2003(E)

5.3 Application design and configuration

As illustrated in Figure 21, IEC 61131-3 separates the configuration of an application from its
programming. Therefore, the PSE must also distinctly separate these two phases without
necessarily ordering them. That is, it must be possible to program up to a certain level before
making a configuration.

Figure 21 – Essential phases of application creation

The PSE must assist the user in performing system configuration as described in IEC 61131-
3. This includes such tasks as the description of resources, declaration of global variables,
assigning programs to be called by tasks, managing program libraries, defining
communications between the application and external entities, etc. For instance, to assist the
user in the configuration of access paths as described in 2.7 of IEC 61131-3, a graphical
editor could be provided to enable the user to specify access paths in the format of Figure 19
of IEC 61131-3. Such an editor could automatically generate the required
VAR_ACCESS...END_VAR statements with syntactically and semantically correct type
declarations.

5.4 Separate compilation

The separate compilation of POUs can be analysed in terms of dependency. A POU that
declares a variable becomes dependent on the type declaration of the variable. To simplify
the explanations and figures given below, dependencies on data types are assumed but not
explicitly described in each case.

The simplest case to be considered, as illustrated in Figure 22, consists of a POU that is not
dependent on other POUs. For instance, a function that does not call any other function can
be compiled alone. Similarly, a function block whose declared variables are not instances of
function blocks, and whose body does not contain a call to any other function, can be
compiled alone. Compilation can proceed directly from a textual or graphical source of the
POU. In this case, the benefits of separate compilation are obvious.

– Scanning, parsing, semantic analysis, and independent testing are sufficient to verify and
validate an independent POU.

– Re-use of POUs is simplified if the relocatable generated code can be associated with the
source.

Figure 22 – Separate compilation of functions and function blocks

The separate compilation of function blocks or of programs that use either VAR_EXTERNAL
or directly represented variables inside their body is similarly straightforward, as shown in
Figure 23. It is possible to compile these POUs and to resolve the unknown links upon
configuration of the application.

Programming Configuration

compilFUNCTION_BLOCK B
source code FUNCTION_BLOCK B

compiled code

FUNCTION
compiled code

FUNCTION
source code compil

IEC 2080/03

IEC 2081/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 71 –

Figure 23 – Compiling a program accessing external or directly represented variables

In this first level of separate compilation, the compiler works from a source that has no links
with other POUs. In more complex cases, a POU may invoke another function, or an FB or
program may contain the declaration of an instance of another FB. These cases require the
introduction of the concept of interfaces.

5.5 Separation of interface and body

5.5.1 Invocation of a function from a programming unit

To program the invocation of function B in the example shown in Figure 24a), it is necessary
to know the name and the type of this function, and also the named and typed list of its input
variables (VAR_INPUT). If also present, the output variables (VAR_OUTPUT) or the in-out
variables (VAR_IN_OUT) of the function have to be known. This set of information constitutes
the function’s external interface. Function B in the example has a single input variable only.
To compile function A, it is sufficient to know the external interface of function B, as shown in
Figure 24b), even if the source or compiled code of function B is not known.

FUNCTION A: REAL
 VAR_INPUT C,D: REAL; (* External interface *)
 A:= B(C) + D;
 END_FUNCTION

Figure 24a − Declaration of example function

FUNCTION A

interface

FUNCTION A

code

compile

compilation
FUNCTION B

interface
compilation

compiled
FUNCTION A

code
source

Figure 24b − Compilation of example function

Figure 24 – Compiling a function that invokes another function

This example illustrates the importance of a clear separation of the POU interface from its
body. However, if the use of separate compilation is too difficult, the user (who is not
necessarily a computer scientist) could reject it. Therefore, the PSE should assist the user by
constructing the interface automatically to the maximum extent possible.

PROGRAM H
compiled code

PROGRAM H
source code compil

IEC 2083/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 72 – TR 61131-8 © IEC:2003(E)

5.5.2 Declaration and invocation of a function block instance

To program the invocation of function block instances, it is necessary to know the name of
this function block and the names and the types of its VAR_INPUT, VAR_OUTPUT, and
VAR_IN_OUT variables. This set of information constitutes the function block’s external
interface. For compilation, the total memory size required for each instance must be
determined. This is calculated from the function block’s external interface and from its local
(VAR) and external (VAR_EXTERNAL) declarations. This set of information constitutes the
compilation interface. In the following discussion, the term “interface” will refer to the
compilation interface.

To compile the program F illustrated in Figure 25a), the interface of the function blocks FB1
and FB2 must be known in order to allocate memory for each of their declared instances in
program F. In this example, there are two instances of FB1 and one instance of FB2.
However, as shown in Figure 25b), the bodies of these function blocks are not required in
order to compile program F.

Compared to the compilation interface for a function, the compilation interface for a function
block additionally consists of the names and the types of the declarations of its internal and
external variables (VAR and VAR_EXTERNAL).

 PROGRAM F
 ...
 (* local declarations *)
 VAR X1: FB1;
 X2: FB1;
 X3: FB2;
 ...

Figure 25a − Declaration of example program

FUNCTION_BLOCK FB2
compilation interface

PROGRAM F
source code

compile
PROGRAM F

compiled code

FUNCTION_BLOCK FB1
compilation interface

PROGRAM F
compilation

interface

Figure 25b − Compilation of example program

Figure 25 – Compiling a program containing local instances of function blocks

Figure 26 provides an example of the application of the principles developed above. In this
example, it is assumed that

– the functions F1 and F2 do not invoke any other function;
– function block FB1 invokes functions F1 and F2;
– program G invokes function F1 and uses an instance of the function block FB1;
– program G does not use any global or directly represented variables, and does not

contain a VAR_ACCESS declaration.

IEC 2084/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 73 –

 PROGRAM G
 (* external
 interface *)
...VAR toto: FB1;
...END_VAR
...(* body *)
...(* invoke F1 *)
 X:= F1(Y,Z);
...(* use of toto *)
 toto(d:= X);
...END_PROGRAM

 FUNCTION F2: REAL
 ...
 END_FUNCTION

 FUNCTION F1: INT
 ...
 END_FUNCTION

 FUNCTION_BLOCK FB1

...(* external
 interface *)
...(* body *)
...(* invoke F1 *)
 A:= F1(B,C);
...(* invoke F2 *)
 Q:= F2(R);
...END_FUNCTION_BLOCK

Figure 26a − Sketch of programming units to be compiled

PROGRAM G
source code compile

FUNCTION_BLOCK FB1
compilation interface

FUNCTION_BLOCK FB1
source code compile

FUNCTION_BLOCK FB1
compiled code

FUNCTION F2
source code compile

FUNCTION F2
compiled code

FUNCTION F2
compilation

PROGRAM G
compiled code

PROGRAM G

interface

FUNCTION_BLOCK FB1
compilation interface

interface

FUNCTION F1
source code compile

FUNCTION F1
compiled code

FUNCTION F1
compilation

interface

FUNCTION F2
compilation

interface

FUNCTION F1
compilation

interface

compilation

Figure 26b − Separate compilation

Figure 26 – Separate compilation example

5.6 Linking of configuration elements with programs

In an application configuration, a program is a particular named use (an instance) of a POU
of program type. For example, given a program G as illustrated in 5.5, an application can be
composed of two programs, P1 and P2, which are both instances of the same program G. As
illustrated in Figure 27, it is only necessary to compile program G once, and to resolve the
unknown links when P1 and P2 are mapped onto the configuration.

IEC 2085/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 74 – TR 61131-8 © IEC:2003(E)

 CONFIGURATION V

 RESOURCE R1 ON PROCESSOR_TYPE_1

 PROGRAM P1: G(...) ;

 END_RESOURCE
 RESOURCE R2 ON PROCESSOR_TYPE_2

 PROGRAM P2: G(...) ;

 END_RESOURCE
 END_CONFIGURATION

Figure 27a − Declaration of the configuration

PROGRAM G
compilation interface

FUNCTION F1
compiled code

FUNCTION F2
compiled code

FUNCTION_BLOCK FB1
compiled code

link
PROGRAM G

compiled code

CONFIGURATION V
source code

CONFIGURATION V
linked application

Figure 27b − Production of the linked application

Figure 27 – The configuration process

In order to map a program into a resource, its compilation interface must be known. Similarly,
to map a program that uses a global instance of a function block (declared with
VAR_EXTERNAL) into a resource, the compilation interface of the function block must be
known.

When the configuration description is complete, it can be merged with the POUs in the library
to produce the application program for the configuration. This merging can be done in various
ways. For instance, if all POUs are already separately compiled, the production of the
application code can be generated as illustrated in Figure 27b). This figure represents a
monolithic phase of production of the application code, which is similar to a classic link
resolution. In this phase unresolved function or function block calls are resolved if possible,
interface errors are detected, and links between the different POUs are established.

Many implementation-dependent options are possible in the production and use of the
application program. For example,

– the application program may contain the actual address assignments to be used upon
loading, or it may be relocatable, with the calculations of real addresses taking place
during the transfer of the application program to the PLC;

– the application program may contain single or multiple copies of the code for different
types of POUs;

– the production of the application code may be an incremental operation that takes place
either off line or during the loading onto the PLC.

IEC 2086/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 75 –

Whichever option is selected, it must not affect the functional characteristics of the program
as seen by the user. However, depending on the technical choices of the manufacturer, the
execution time of POUs may vary, and some functions may be impossible or incomplete, for
example, the management of a distributed application.

The loading of the application program into the programmable controller is dependent on the
programmable controller’s hardware and software implementation.

5.7 Library management

As illustrated in Figure 3 of IEC 61131-3, the user must accomplish two major tasks in the
programming of programmable controller systems.

– Re-use management, i.e., the creation, modification, and deletion of reusable program
elements. These consist of derived POUs, i.e., functions, function blocks, and
(sometimes) programs and the associated derived data types. Program elements may be
stored in a library that is available to several applications, or in a library of derived
program elements to be used only in a specific application.

– Application management, i.e., the creation, modification, and deletion of one or more

configurations to be used in each application. A program that is used in a resource of a
particular configuration may not be reusable, particularly if it utilizes global and/or directly
represented variables.

The user must be able to switch easily between these tasks, and the PSE must assist the
user in keeping track of the dependencies between library elements. Also, the PSE must
support the updating of libraries with minimal disruption to existing elements and
dependencies in the user library.

The PSE should support the software engineering processes of top-down design by
functional decomposition and bottom-up implementation by functional composition described
in 2.5.2.4 of this technical report. In particular, it should be easy for the user to define the
interfaces to functions and function blocks in an ad hoc manner while performing functional
decomposition; to store and reuse these interface definitions in a library; and to defer the
definition of the bodies of these program organization units until a subsequent stage in the
design or implementation process.

The PSE should support the management of the separate compilation process described in
5.4 and 5.5 of this technical report by maintaining the relationships among the source code,
compiled code, external interfaces, and compilation interfaces of POUs and configurations
that use them.

5.8 Analysis tools

5.8.1 Simulation and debugging

User productivity and software quality can be significantly enhanced if the PSE provides
facilities for simulation and debugging of software without having to be physically connected
to the actual programmable controller system. Such facilities may be provided for

– individual program organization units (functions, function blocks, and programs);
– system configurations (partial or complete).

Further enhancements in productivity can be realized if the PSE provides facilities for
debugging such that those portions of a configuration that are already debugged can be
loaded into a controller system and operated in conjunction with simulation of those portions
of the configuration that are still being developed and debugged.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 76 – TR 61131-8 © IEC:2003(E)

5.8.2 Performance estimation

Information to determine execution times of POUs is identified as an implementation
dependency in Annex D of IEC 61131-3; additionally, item 3)b) of 2.7.2 of IEC 61131-3
requires that “the manufacturer shall provide information to enable the user to determine
whether all deadlines will be met in a proposed configuration.” Since the rules for determining
this information may be quite complex and difficult to apply systematically, it is to the benefit
of both the implementer and the user if algorithms for making such determinations are
provided as an integral part of the PSE.

5.8.3 Feedback loop analysis

When the FBD language defined in 4.3 of IEC 61131-3 is supported, the PSE should provide
tools for the detection and resolution of feedback loops as discussed in 4.1.3 of IEC 61131-3.

5.8.4 SFC analysis

Subclause 2.6.5 of IEC 61131-3 mentions the possibility of unsafe SFCs and unreachable
branches in SFCs. Nesting of AND (simultaneous) branches and mixing of AND and OR
(selection) branches can cause such SFCs. The PSE can assist the user by providing early
detection of possible unsafe and unreachable SFCs. One possible algorithm for such
detection is described below.

NOTE ”Safety” in this context does not refer to the safety of the programmable controller application. However,
an “unsafe” SFC can be expected to degrade the safety of the application.

The reduction algorithm is based on the provable assertion that an SFC is executable (in the
sense of safe and reachable) if one derives after a number of reduction steps at an
SFC consisting of one step and one transition. The possible reduction steps are illustrated
in Figure 28.

The reductions are repetitively applied starting from the initial step, even if this step is not at
the top of the SFC. The algorithm concludes that the SFC is safe and reachable if either of
the following termination conditions are detected.

1) The SFC consists only of OR branches; or
2) the SFC contains only AND branches and the initial step is not located in one of the

branches.

 |
+-----+
| |
+-----+ |
 | +-----+
 + ===> | |
 | +-----+
+-----+ |
| |
+-----+
 |

Figure 28a − A sequence consisting of
a step, a transition and a step is

replaced by one step

 |
 +
 |
+-----+ |
| | ===> +
+-----+ |
 |
 +
 |

Figure 28b − A sequence consisting of a transition, a
step and a transition is replaced by one transition

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 77 –

 |
+----+----+
| | |
+ + ===> +
| | |
+----+----+
 |

Figure 28c − A selection sequence
(OR branch) is replaced by

one transition

 |
 +
 | |
 =+====+====+= +
 | | |
+-----+ +-----+ +-----+
| | | | ===> | |
+-----+ +-----+ +-----+
 | | |
 =+====+====+= +
 | |
 +
 |

Figure 28d − A simultaneous sequence
(AND branch) is replaced by one step

 |
 +
 |
+------+
| |
| +-----+ |
| | | ===> +
| +-----+ |
| |
| +---+
| | |
| + +
| | |
+--+ |

Figure 28e − A loop is replaced by one transition

Figure 28 – Reduction steps

Figures 29a and 29b illustrate SFCs that are a priori safe and reachable by application of the
termination rules (1) and (2), respectively. Figure 29c illustrates an irreducible and unsafe
SFC derived from Figure 18a of IEC 61131-3 through the application of rules (a) and (b).
Figure 29d illustrates an irreducible and unreachable SFC similarly derived from Figure 18b)
of IEC 61131-3. In both cases, the algorithm will produce a warning since no further reduction
is possible but neither termination condition applies.

NOTE This algorithm can detect all possible unsafe and unreachable SFCs; however, there are cases where this
algorithm rejects complex but still valid SFCs. That is, this algorithm provides a sufficient but not necessary
condition for safe and reachable SFCs.

IEC 2087/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 78 – TR 61131-8 © IEC:2003(E)

+------------+
| |
| +=============+
| || INIT_STEP ||
| +=============+
| |
| + t0
| |
| +---------+
| | |
| | +-------+
| | | STEP2 |
| | +-------+
| | |
| | +------+
| | | |
| | +t22 +t20
| | | |
| +--+ |
+------------+

+------------+
| |
| +=============+
| || INIT_STEP ||
| +=============+
| |
| + t0
| |
| =+=====+=====+=
| | |
| +-------+ +-------+
| | STEP2 | | STEP3 |
| +-------+ +-------+
| | |
| =+=====+=====+=
| |
| +t30
| |
+------------+

Figure 29a − No reduction required
per termination rule 1

Figure 29b − No reduction required
per termination rule 2

+----------+
| |
| +=====+
| || A ||
| +=====+
| |
| + t1
| |
| ===+====+======+===
| | |
| +-----+ +-----+
| | B | | C |
| +-----+ +-----+
| | |
| | *-----+
| | | |
| | + t2 + t35
	+---+		
		D	
	+---+		
===+====+======+===			
+ t4			
+---+ +-----+			
	F		E_G
+---+ +-----+			
==+====+=======+===			
+ t6			
+---------------+

+----------+
| |
| +=====+
| || A ||
| +=====+
| |
| + t1
| |
| ===+====+===+===
| | |
| +-----+ +-----+
| | B | | C |
| +-----+ +-----+
| | |
| | *-----+
| | | |
| | + t2 + t357
	+---+		
		D	
	+---+		
===+====+===+===			
+ t46			
+----------+---------+

Figure 29c − An irreducible (unsafe) SFC

Figure 29d − An irreducible
(unreachable) SFC

Figure 29 – Reduction of SFCs IEC 2088/03

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 79 –

5.9 Documentation requirements

In providing facilities for the production of software documentation by the PSE, the
implementer should consider the following requirements.

1) Listings of the declarations and bodies of POUs should be produced in the same form in
which they were entered by and displayed to the user on the PSE.

2) Listings should include comments in the same form and location in which they were
entered by and displayed to the user.

3) The PSE should be capable of producing an index and cross-reference of usage of global
and directly represented variables and access paths (if any).

The PSE should be capable of producing a mapping between the symbolic representations of
variables and their physical locations (for example, in the I/O subsystem).

As an implementation-dependent feature, the PSE may also be capable of handling the
mapping between the directly represented variables of a configuration and reference
designations for signals and tags, as defined in IEC 61346-1.

6) If supported, version control information should be provided with the listings.

5.10 Security of data and programs

The implementer should consider

– which items in the PSE and the programmable controller system should be capable of
protection from user access; and

– which classes of users should have access to the various items in the system.

For instance, the following types of access protection (among others) may be specified.

– Permission to use the contents of a specified library.
– Permission to use the interface to a specified POU.
– Permission to view the body of a specified POU.
– Permission to modify the body of a specified POU.
– Permission to modify the interface of a specified POU.

5.11 On-line facilities

Facilities which may be provided by a PSE when connected to a programmable controller
system are described in the following subclauses of IEC 61131-1.

– Loading of application programs (4.6.2.1)
– Memory access (4.6.2.2)
– Adapting the programmable controller system (4.6.2.3)
– Indicating the automated system status (4.6.2.4)
– Testing the application program (4.6.2.5)
– Modifying the application program (4.6.2.6)
– Archiving the application program (4.6.4)

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 80 – TR 61131-8 © IEC:2003(E)

Annex A
(informative)

Changes to IEC 61131-3, Second edition

A.1 Reasons for the second edition of IEC 61131-3

Since the publication of the first edition of IEC 61131-3 in 1993, the environment of the
standard has changed greatly. During this time, a large amount of experience with the
practical application of the standard was gained. A number of inconsistencies, contradictions
and unresolved questions as well as features which were unnecessarily difficult to implement
were discovered. The industrial end-users, often represented by software companies,
supplied many proposals for changes and amendments.

To maintain the value of investment by IEC 61131-3 users and to extend the usefulness of
existing IEC 61131-3 compliant control software as far as possible for the future, IEC SC65B
decided to use the review of existing standards, which is due every five years, for a two-step
revision.

Step 1) Elimination of inconsistencies within the standard (corrigendum)
Step 2) Amelioration of specific items in need of improvement within the standard and the

integration of features regarded as particularly relevant in practice (amendment)

For every individual item to be altered, changes must be upward-compatible, i.e. as a rule,
a program compatible with the current standard must also be in accordance with the new
one.

A.2 Corrigendum

The first step was intended to eliminate real errors within IEC 61131-3. In addition to simple
misprints, this includes especially semantic contradictions in the main part and
inconsistencies between the main part and the annexes, in particular the syntax definition in
Annex B. During the first phase, the changes to be incorporated were collected and
evaluated by the IEC task force in a corrigendum. This was achieved with the active help of
many experts.

In the following list, the most important corrections are briefly described giving the clause
number of the clauses which are almost identical in the two editions of IEC 61131-3.

1.3 Some terms which are written in italics in the text but not previously defined
are now included in this “Definitions” subclause.

1.4.1 Correction of the figure which explains the software model
2.3.3.2 Corrections in the syntax of examples, especially concerning the use of

parentheses (Tables 14, 17, 18, 22, 50, Figure 20).
2.3.3.2, 2.3.3.3 Semantic corrections of examples (Tables 14, 17, 18).
2.4.1.2 Language-specific treatment of array subscripts according to the language

definitions for IL, ST, LD and FBD.
2.5.1.1 Correction of the general variable assignment description of function calls

in ST (Table 27).
2.5.1.4, 2.5.2.2 More precise definition of the applicability of overloading to standard

functions, function block types, operators and instructions (Table 21).

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 81 –

2.5.1.5.1 Precise description of the operation of the type conversion function features
according to IEC 60559 (rounding to the next integer value, Table 22).

2.5.1.5.3 Correction of the variable assignment description of standard functions
(Tables 25, 29, 30, 31).

2.5.1.5.7 The symbol for “is equal to” is “=” and not “–” (Table 31).
2.5.2. Correction of description of the function block AND_EDGE (rising edge

input, Table 33).
2.5.2.3.1 Deleting of the unsafe semaphore example (Figure 13, Table 34).
2.5.2.3.3 Correction of the CTUD example (Table 36).
2.5.2.3.4 Correction of the RTC example (Table 37).
2.6.3 Syntax correction of the SFC description (Tables 41 and 42).
2.6.4.5 With an active Q output of the action control block, SFC actions are

executed only with every invocation of the POU and not permanently; thus,
the contradiction to rule 6 in 2.7.2 is resolved.

4.3.3 Elimination of the possible deadlock situation during mutual reading and
writing of variables in different networks (Annex D).

Annex B Correction of BNF productions.
Annex C Correction of delimiters and keywords.
Annex F Correction of the examples.

None of these corrections leads to an incompatibility of existing control software in
accordance with the current standard with the “corrected” IEC 61131-3.

A.3 Amendment

A.3.1 Background

As a second step for the evaluation of possible standard improvements, a Type 2 technical
report was prepared soon after the official release of IEC 61131-3. This technical report
proposed trial-use extensions to the programming languages with the goal of arriving at a
consensus on a common set of features to be defined in a future edition of IEC 61131-3.
These proposals could conflict with each other, with the normative provisions of IEC 61131-3,
or both.

Using this technical report as a starting point, the improvements which appeared most urgent
were included in an amendment. These amendments were to be integrated in the standard on
the basis of the IEC 61131-3 corrections in step 1. They only refer to improvements of the
utmost importance.

The committee draft of the amendment was divided into two main groups of alterations and
supplements and a collection of minor changes.

The general goals of all changes in the amendment were

• an increased acceptance of the IEC 61131-3 languages by the application programmers
due to harmonized language possibilities which are better adapted to practice, for
example, new function concept and function block instance-specific initialization of local
variables;

• a more efficient utilization of the control hardware by means of application programs
written in the standard languages, for example, temporary variables in function blocks;

• increased actual semantic portability of control software due to the elimination of possible
misunderstandings concerning the effects of certain language constructs, for example,
EN/ENO behaviour, retentive/non-retentive behaviour of variables and I/Os;

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 82 – TR 61131-8 © IEC:2003(E)

• elimination of error sources due to the mixed use of different control languages, for
example, identical treatment of EN/ENO by different languages.

NOTE The parenthesized references in the headings of the following subclauses refer to the subclause of
IEC 61131-3, 2nd edition, that is mainly affected by the changes described; for instance, A.3 below describes
changes mainly affecting 2.2.1 of IEC 61131-3, 2nd edition.

A.3.2 Numeric literals (2.2.1) – typed literals

In the first edition, there are situations where the type of data represented by literal values
such as 12.43, 73, 2#1001 is ambiguous. This is a particular problem in the IL language; for
example, when a literal value is used with a load (LD) instruction, the type of data loaded into
the IL register cannot be specified.

The amendment proposed that all literals can be prefixed with their data type in the form
'<data type> #'. This feature is added to 2.2.1 of IEC 61131-3, 2nd edition.

A.3.3 Elementary data types (2.3.1) – double-byte strings

The amendment proposes an additional data type WSTRING to allow strings to be defined to
hold double-byte characters in accordance with ISO/IEC 10646. These are required for
handling messages in languages with complex character sets, such as Japanese. The string
handling functions will be overloaded so that they can be used with double byte strings. This
feature is added to 2.3.1, 2.3.2 and 2.5.1.5.5 of IEC 61131-3, 2nd edition.

A.3.4 Derived data types (2.3.3) – enumerated data types

There are several deficiencies with the use of enumerated data types in the first edition of
IEC 61131-3. As with literals, the data type of a particular enumerated value is ambiguous.
For example, there may be several enumerated type definitions using the enumeration string
'ON'. It was therefore proposed in the amendment and included in 2.3.3.1 of IEC 61131-3,
2nd edition, that the data type of a particular enumeration literal can be specified using a
prefix in the form <data type>#.

Examples are:

TYPE
 VALVE_MODE: (OPEN, SHUT, FAULT);
 PUMP_MODE: (RUNNING,OFF,FAULT);
END_TYPE;
...
IF AX100 = PUMP_MODE#FAULT THEN
 XV23 = VALVE_MODE#OPEN;

The syntax of structured text in Annex B of IEC 61131-3, 2nd edition is extended to allow
enumerated variables to be used in CASE statements, for example:

TYPE
 BATCH_TYPE: (SMALL, LARGE, CUSTOM);
END_TYPE;
VAR
 NEW_BATCH: BATCH_TYPE;
END_VAR;
...
CASE NEW_BATCH OF
 SMALL: ... (* Small batch *)
 LARGE: ... (* Large batch *)
 CUSTOM: ... (* Custom size batch *)
ELSE
...

A.3.5 Single element variables (2.4.1.1) – “wild-card” direct addresses

The definition of direct addresses for some variables, i.e. addresses used with the AT
construct, is another aspect of a configuration which may require redefinition when a
configuration is modified to work on a different physical system.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 83 –

For example, a sensor connected to a programmable controller input may be at a particular
physical input channel and I/O rack position in one system but be connected to completely
different physical input channel and rack in another. In order to use the same software, i.e.
the same IEC 61131-3 configuration in the two systems, it is necessary to redefine the direct
address used for the input. In the first edition of IEC 61131-3, changing direct addresses of
variables can only be achieved by modifying various variable declarations throughout the
configuration and then recompiling the configuration.

The amendment proposed that each variable for which the direct address is to be redefined is
declared using a ‘wild-card’ address specified as an asterisk ('*'). Such variables are
considered to be ‘not located’. This feature is now included in 2.4.1.1 of IEC 61131-3, 2nd
edition.

Examples are:

 VAR INPUT1 AT %IX*:BOOL;(*Boolean input not located *)
 VAR VALV1 AT %QW*: INT;(*Integer output not located *)

The location of such variables can be specified in the VAR_CONFIG construct. For example,
the following statements will define the location of these variables; assume that INPUT1 and
VALV1 are declared within resource RES1.

VAR_CONFIG
 RES1.INPUT1 AT %IX100: BOOL;(* Locate input1 *)
 RES1.VALV1 AT %QW210: INT;(* Locate valve 1 *)
END_VAR

It is assumed that initial values for the variables specified in the VAR_CONFIG will be applied
as the last process before creating the program object data that is downloaded into the PLC.

NOTE An error will be reported when the configuration is built if any variable declared with an unlocated direct
address is not given a valid direct address.

A.3.6 Declaration (2.4.3) – Temporary variables

In the first edition of IEC 61131-3, there was no provision to create variables within programs
and function blocks to hold temporary values. Values held in variables declared using the VAR
construct within POUs always persist between POU invocations. Using such variables for
temporary values can result in an inefficient use of memory.

The amendment proposed, and 2.4.3 of IEC 61131-3, 2nd edition provides, that temporary
variables can be declared using a VAR_TEMP construct. Such variables will be placed in a
temporary memory area, such as on a stack, which is cleared when the POU invocation
terminates.

For example:

VAR_TEMP
 RESULT: REAL;
END_VAR;

RESULT:= AF18 * XV23 * XV767 + 54.2;
OUT1:= SQRT(RESULT);

A.3.7 RETAIN and NON_RETAIN Variable attributes (2.4.3.1)

The use of the RETAIN attribute with multi-element variables such as structures and function
block instances is modified in IEC 61131-3, 2nd edition. When RETAIN is used with a multi-
element variable it applies to all contained variables except those that are declared with a
NON_RETAIN attribute.

NON_RETAIN is a new attribute and indicates that the variable’s value is not retained during a
powerfail and its default initial value is to be used after a warm restart. If NON_RETAIN is

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 84 – TR 61131-8 © IEC:2003(E)

applied to a multi-element variable, then it applies to all contained variables that are not
declared with a RETAIN attribute.

A.3.8 Invocations and argument lists of functions (2.5.1)

IEC 61131-3, 1st edition, had introduced two variants for function calls and one variant for
function block invocations in textual languages.

For function calls, the variant to be used depended on the declaration of the respective
function: if the declaration of a function does not explicitly specify input variable names, the
function had to be called by providing the full set of actual input arguments in the
parenthesized argument list. This was true, for example, for all extensible standard functions
defined in 2.5.1.5 of IEC 61131-3, but also for some of the non-extensible functions. If the
declaration of a function specifies input variable names, the function had to be called with an
argument list, which contained assignments of actual input arguments to the declared input
variables. Since user-defined functions always declare input variable names, they had to be
generally invoked according to the latter variant.

This was also true for function block invocations. Their argument list generally had to contain
assignments of actual input arguments to the declared input variables.

The rules in IEC 61131-3, 1st edition, had two implications.

a) There was a different handling of function calls and function block invocations from the
user’s point of view.

b) Some features available in the graphical languages were not available in the textual
languages: extensible functions (for example, ADD, MUL) could be used with EN/ENO in
the graphical languages, but not in the textual languages – no assignment of EN or ENO
was possible in ST or IL.

IEC 61131-3, 2nd edition, overcomes these deficiencies by introducing identical conventions
for invocations of functions and function blocks. These changes occur mainly in subclause
2.5 of IEC 61131-3, 2nd edition and its subclauses. A detailed description of the additional
features and their application is given in 3.2.3 of this technical report.

A.3.9 Type conversion functions (2.5.1.5.1)

In the first edition of IEC 61131-3, there are a number of BCD (binary coded decimal) data
type conversion functions where the name of the function is not consistent with the data type
of the initial or converted variable. Subclause 2.5.1.5.1 of IEC 61131-3, 2nd edition now
provides BCD conversion functions that include the data type of the BCD value in their name.

Examples of some new BCD type conversion functions are:

WORD_BCD_TO_UINT() Converts a word bit string containing a BCD
value to an unsigned integer.

UINT_TO_BCD_DWORD() Converts a unsigned integer to a BCD value in a
double-word bit string.

Data type conversion functions are provided for BCD values held in BYTE, WORD, DWORD and
LWORD variables.

A.3.10 Functions of time data types (2.5.1.5.6)

Subclause 2.5.1.5.6 now defines functions of time data types that resolve conflicts that
existed in the previous edition with the rules for overloading functions for time and date
calculations. Except as noted in A.4, the changes have been made ‘backward compatible’
and do not impact existing programming systems.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 85 –

A.3.11 Function blocks (2.5.2) – Extended initialization facilities

One major shortcoming of the first edition of IEC 61131-3 was the lack of facilities to define
configuration parameters for function blocks, programs and complete configurations.
Complex function blocks such as for an advanced PID controller, generally require a large
number of configuration parameters, for example, for defining tuning parameters, operating
modes and time constants. In order to make such blocks general-purpose, all configuration
parameters required for the internal algorithm need to be brought out to the block’s outer
interface. In many cases, this results in having a function block with an overly complex
interface with many inputs only required once when the block is first called.

For these reasons, the syntax in B.1.4.3 of IEC 61131-3, 2nd edition, now allows initial values
for inputs and internal variables to be defined directly when the function block instance is
declared.

For example, setting the initial input values for an instance of the ramp function block:

VAR PressureRamp:
 RAMP:= (CYCLE:= T#1S, (* Set initial values for *)
 TR:= T#30M); (* Cycle and Ramp durations *)
END_VAR

NOTE Initial values for variables given in the function block instance declaration will overwrite any default initial
values defined in the function block type definition.

A.3.12 Pulse action qualifiers (2.6.4.4)

The pulse action qualifier P actually causes an action to execute twice, once when the action
is first activated and again after the action’s associated qualifier Q is cleared. To provide a
more consistent single-pulse behaviour, two further action qualifiers are added in 2.6.4.4 of
IEC 61131-3, 2nd edition:

Qualifier Description

P1 Single-pulse action when the action qualifier becomes true (rising edge)

P0 Single-pulse action when the action qualifier becomes false (falling edge)

A.3.13 Action control (2.6.4.5)

Subclause 2.6.4.5 of IEC 61131-3, 2nd edition, now permits the action qualifier Q to be tested
within an action. This allows an action to detect when it is executing for the last time, i.e. on
the falling edge of Q.

Subclause 2.6.4.5 of IEC 61131-3, 2nd edition now permits action control in SFCs to be
performed with or without a “final scan” (features 1 and 2, respectively, in the new Table
45a). The second feature permits a simplified and more straightforward implementation of
action control; however, programs implemented with “final scan” will not be compatible with
systems without “final scan”. See 3.9.1 and 3.9.2 of this technical report for a description of
the differences.

A.3.14 Configuration initialization (2.7.1)

Most large IEC 61131-3 configurations will generally necessitate the definition of many
constants and I/O addresses in order to uniquely tailor the configuration for use with a
specific PLC system or application. Users have found that there is sometimes a requirement
to re-configure a proven IEC 61131-3 configuration for use on different hardware or on a
different application, for example, to change a configuration to work on a slightly different set
of PLCs, or on a slightly different production line or process. In such cases, the
configurations may only differ in terms of configuration parameters such as algorithm tuning
parameters and the addresses of I/O points.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 86 – TR 61131-8 © IEC:2003(E)

To support this requirement, 2.4.3.2 and 2.7.1 of IEC 61131-3, 2nd edition, allow a ‘baseline’
configuration to be created. Configuration-specific values can then be defined in a single
construct called VAR_CONFIG. This defines specific values that are used to redefine the initial
values of specified program inputs, program internal variables and function blocks.

Consider the following example:

CONFIGURATION LINE_3
...
RESOURCE MACHINE1 ON PROC_486
...
 PROGRAM PRG1: PRG1_TYPE (...
...
 PROGRAM PRG2: PRG2_TYPE (...
...
END_RESOURCE

 (* Define Line 3 specific data *)
 VAR_CONFIG
 MACHINE1.PRG1.LINE_LENGTH: INT:= 20;
 MACHINE1.PRG1.SPEED: REAL:= 6.6;
 MACHINE1.PRG2.RATE1: TON:= (PT:= T#1M);
 END_VAR
END_CONFIGURATION

This example shows how the initial values of variables LINE_LENGTH and SPEED declared
within program PRG1, and resource MACHINE1 can be initialized to specific values. RATE1,
which is declared within program PRG2, is an instance of a on-delay timer (TON) that is
initialized with a specific time duration for input PT. The VAR_CONFIG can contain the initial
values for any variable within a program, except variables declared using VAR_TEMP, VAR
CONSTANT or VAR_IN_OUT. Each variable must be identified by concatenating the resource
name, program name, FB instance name and so on, down through the block hierarchy.

A.3.15 Instruction list (3.2)

 A group of alterations concerned IL. The first edition contains a number of weak points,
inconsistencies and contradictions. This IL revision was carried through mainly by some
members of the PLC open association and can be regarded as compatible with the first
edition of the standard.

Instructions
Operands with data representations of enumerated values are added.
Empty lines can be inserted between instructions.
Operators, modifiers and operands
The modifier “N” indicates bitwise Boolean negation (one’s complement) of the operand. For
instance, the instruction ANDN %IX2 is interpreted as

result:= result AND NOT %IX2

The examples below show two equivalent forms of a parenthesized sequence of instructions.
Both features shall be interpreted as

result:= result AND (%IX1 OR %IX2)
1. Parenthesized expression beginning with explicit operator:

AND(
LD %IX1 (NOTE 1)
OR %IX2
)

2. Parenthesized expression (short form):
AND(%IX1
OR %IX2
)

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 87 –

The operators AND, OR, Exclusive OR, Negation, and Modulo Division, are now defined as
Logical (versus BOOL), where the operators shall be either overloaded or typed.

Functions and function blocks
The invocation for Functions and function blocks has been extended and clarified, creating a
wider choice. For instance, based on a declaration such as

VAR
 C10: CTU;
 CMD_TMR: TON;
 A, B: INT;
 ELAPSED: TIME;
 OUT, ERR, TEMPL: BOOL;
END_VAR

the following invocations are now possible:

1 CAL of FB with formal
argument list:

CAL of FB with non-
formal argument list

 CAL CMD_TMR(%IX5,
T#300ms, OUT, ELAPSED)

CAL CMD_TMR(
 %IX5,
 T#300ms,
 A,
 ELAPSED,
 ERR)

2 CAL of function block with
load/store of arguments

LD A
ADD 5
ST C10.PV
LD %IX10
ST C10.CU
CAL C10

3 Use of function block input
operators

LD A
ADD 5
PV C10
LD %IX10
CU C10

4 Function invocation with formal
argument list

LIMIT(
 EN:= COND,
 IN:= B,
 MN:= 1,
 MX:= 5,
 ENO=> TEMPL
)
ST A

5 Function invocation with non-
formal argument list

LD 1
LIMIT B, 5
ST A

The method of invocation as feature 3 above is equivalent to a CAL with an argument list,
which contains only one variable with the name of the input operator. Arguments, which are
not supplied, are taken from the last assignment or, if not present, from initialization. This
feature supports problem situations, where events are predictable and therefore only one
variable can change from one call to the next.

Together with the declaration

VAR C10: CTU; END_VAR,
 the instruction sequence

LD 15
PV C10

gives the same result as

CAL C10(PV:=15)

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 88 – TR 61131-8 © IEC:2003(E)

The missing inputs R and CU have values previously assigned to them. Since the CU input
detects a rising edge, only the PV input value will be set by this call; counting cannot happen
because an unsupplied argument cannot change. In contrast to this, the sequence

LD %IX10
CU C10

results in counting at maximum in every second call, depending on the change rate of the
input %IX10. Every call uses the previously set values for PV and R.

With bistable function blocks, taking a declaration like: VAR FORWARD: SR; END_VAR,

this results in an implicit conditional behaviour. The sequence

LD FALSE
S1 FORWARD

does not change the state of the bistable FORWARD. A following sequence

LD TRUE
R FORWARD

resets the bistable.

A.3.16 Formal specification of language elements (Annex B)

Many of the new features have resulted in changes to the syntax and semantics for the
textual languages in Annex B of IEC 61131-3, 2nd edition. Except as noted in Clause A.4, the
changes have been made “backward compatible” and do not impact existing programming
systems.

A.3.17 Further amendments

The following additional changes have been made to IEC 61131-3, 2nd edition:

• initialization of structured variables;

• precise definition of the syntactic and semantic usage of the CONSTANT, RETAIN and AT
qualifiers;

• 2.5.1.5.1 revision of the variable assignment of type conversion functions (Table 22);

• introduction of the FB instance-specific initialization of variables and of the contents and
addresses of local variables; for example, I/O. Variables could only be initialized in the FB
type declaration; the definition of variable addresses on the FB level was not possible.

Except for the function name alterations in Table 30, all of these changes can be regarded as
upward-compatible as well.

A.4 Program compliance issues

Programs that use certain features of IEC 61131-3, 1st edition, will be non-compliant with
IEC 61131-3, 2nd edition. Changes that must be made to these programs in order to achieve
compliance with IEC 61131-3, 2nd edition are identified in Table A.1.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 89 –

Table A.1 – Changes in usage to achieve program compliance

Feature in IEC 61131-3, 1st edition Change for compliance with
IEC 61131-3, 2nd edition

Use of parentheses for array subscripts.

EXAMPLES
TYPE ANALOG_16_INPUT_DATA:
 ARRAY(1..16) OF ANALOG_DATA;
END_TYPE

TYPE ANALOG_16_INPUT_DATAI:
 ARRAY(1..16) OF ANALOG_DATA
 := (8(-4095), 8(4095));
END_TYPE

VAR RETAIN RTBT:
 ARRAY(1..2,1..3) OF INT
 := (1,2,3(4));
END_VAR

RTBT(1,1):= 1; RTBT(1,2):= 2;

Use square brackets for array subscripts.

EXAMPLES
TYPE ANALOG_16_INPUT_DATA:
 ARRAY[1..16] OF ANALOG_DATA;
END_TYPE

TYPE ANALOG_16_INPUT_DATAI:
 ARRAY [1..16] OF ANALOG_DATA
 := [8(-4095), 8(4095)];
END_TYPE

VAR RETAIN RTBT:
 ARRAY[1..2,1..3] OF INT
 := [1,2,3(4)];
END_VAR

RTBT[1,1]:= 1; RTBT[1,2]:= 2;

Name of function for concatenation variables
of type DATE and TIME_OF_DAY is CONCAT

Use CONCAT_DATE_TOD.

A.5 Clarification of normative vs. informative elements

The placement and labelling of normative vs. informative elements has been improved in the
second edition of IEC 61131-3 to comply with the rules for such elements given in Part 2 of
the ISO/IEC directives, specifically the rules that:

• NOTES and EXAMPLES cannot contain requirements.

• FOOTNOTES (identified and referenced by superscript letters) to tables and figures can
contain requirements, but footnotes to the body of the text cannot.

As a consequence, many NOTES to tables were changed to footnotes when they contained
requirements.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 90 – TR 61131-8 © IEC:2003(E)

Annex B
(informative)

Software quality measures

The quality of software-driven systems is measured by a number of attributes1. Among the
most important quality measures of industrial-process measurement, control and automation
systems are:

a) Capability: The extent to which the system performs its intended function. Typical
measures of capability include:
1) Responsiveness: The time required for the system to produce appropriate responses

to specified combinations of external events.
2) Processing capacity: The extent to which the system can meet scheduling deadlines

under specified sets of conditions.
3) Storage capacity: The extent to which the system can retain in memory all the

required programs and data under specified sets of conditions.

b) Availability: The proportion of the total process operating time the system is capable of
performing its intended function. Availability is affected by factors such as
1) Reliability: The ability of the system to continue to perform all its intended functions

over a specified period of time and range of conditions. An inverse measure of
reliability is Mean Time Between Failures (MTBF).

2) Maintainability: The ease with which the system can be restored to full capability after
the occurrence of one or more faults from a specified set. An inverse measure of
maintainability is Mean Time To Repair (MTTR); availability is often defined by the
expression MTBF/(MTBF+MTTR).

3) Integrity: The degree to which the system can continue to perform all its intended
functions over a specified range of threats, including unintended user actions,
intentionally hostile actions and potentially hazardous application and system events.

c) Usability: The ease with which a specified set of users can acquire and exercise the
ability to interact with the system in order to perform its intended functions. Usability is
affected by factors such as

 1) Entry requirements: The level of formal and informal training required before the user
can learn to interact with the system (for example, educational level, training in the
use of operating systems, windowing systems, etc.)

2) Learning requirements: The training required for a user meeting a specified set of
entry requirements to learn to interact with the system to perform a specified set of
system functions.

3) User productivity: The number of system-related operations per unit time which can be
performed by a user with a specified level of training and experience.

4) Congeniality: The extent to which a user prefers to utilize the system software to
perform the intended system functions, with respect to alternative activities that may
or may not be system-related.

d) Adaptability: The ease with which the functionality of the system may be changed in
various ways such as
1) Improvability: The ease with which existing system capability, availability, and/or

usability can be upgraded without basic changes in the system’s functionality.

1 T.Gilb, Principles of Software Engineering Management, Addison-Wesley, 1988, ISBN 0-201-19246-2

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 91 –

2) Extensibility: The ease with which functionality can be added to the system.
3) Portability: The ease with which system functionality can be moved from one system

to another.
4) Reusability: The ease with which the functional capabilities of an existing software

element can be used to add capability to a new or existing system.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 92 – TR 61131-8 © IEC:2003(E)

Annex C
(informative)

Relationships to other standards

This annex provides a shortened scope description and and analysis of relevance for each of
a number of standards that have been suggested as possibly having a relationship to IEC 61131-
3. Formal references to these standards are listed in the Bibliography.

IEC 61499-1,-2,-3 and -4 specify respectively an architecture, software tool requirements,
tutorial information and rules for compliance profiles for the use of function blocks in
distributed industrial-process measurement and control systems. The relationship of IEC
61499 to IEC 61131-3 is elucidated in Annex D of IEC 61499-1.

IEC 61506 defines the requirements for the documentation of software in industrial process
measurement and control systems. Since IEC 611131-3 specifies the software-implemented
functionality of such systems, the requirements of IEC 61506 should be taken into account in
the documentation of systems utilizing the IEC 61131-3 programming languages.

IEC PAS 61804-1 defines overall requirements for function blocks to provide control, and to
facilitate maintenance and technical management of applications, which interact with
actuators and measurement devices in digital process control systems. IEC 61804-1 denotes
function blocks as defined in IEC 61131-3 as “elementary function blocks (EFBs)” and
specifies that the behaviors of such blocks are to be defined in the IEC 61131-3 ST language.

The elements of IEC 61131-3 were established to be as compatible as possible with IEC
60617-12, IEC 60617-13 and IEC 60848. At the same time, IEC 61131-3 had to be as
consistent as possible with existing practice for programming of programmable controllers,
and was subject to the restrictions of the ISO 646 character set (now ISO/IEC 10646).

Implementors of IEC 61131-3 compliant systems with graphic and semigraphic representation
of programs should consider extending such representations to achieve greater compatibility
with the graphic representations in IEC 60617 and IEC 60848.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 93 –

INDEX

access path, 16, 25, 54
configuration of, 70
cross-reference list, 79
encapsulation, 15
hiding, 15
to global variables, 56

access protection, 79

action, 15, 42
Boolean, 44–47
conditional execution, 56
control, 42–44, 62
control, 62
decomposition, 15
encapsulation, 15
errors, 65
function block invocation in, 40
in SFC function block, 49
indicator variable in, 49
non-SFC, 47–48
qualifier, 42–49
SFC, 48, 62

undesirable coupling in, 57

action block, 13, 43
indicator variable in, 49

anonymous array types, 23

anonymous data types, 24

anonymous enumerated data type, 19

anonymous subrange data type, 19

anonymous subrange type, 24

arrays, 60

arrays, 22

assignment
action control value, 44
address, 74
enumerated value, 18
input value, 33, 36, 39, 61
multiple, 32, 39, 40
semaphore to task, 52
single, 39
task priority, 63

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 94 – TR 61131-8 © IEC:2003(E)

BCD data
manipulation, 19
not a data type, 19
potential errors, 19
signed, 20
use of, 19–20

bit string, 23

bottom-up
implementation, 15, 16
implementation, 75
program development, 13
programming, 69

call
function, 70, 74
function, 33
function block, 74

as procedure, 61
hierarchy, 39
program

by tasks, 70
recursive, 39
semaphore (SEMA), 39

class, 31

cold restart, 63

comments, 79

common elements, 13

communication, 54

compilation, 64, 69
interface, 72, 75
interface, 74
separate, 70, 71, 73, 75

compliance, 59, 67–68
statement, 67
testing, 68

concurrency, 52, 56, 57

configuration, 16, 69–70
debugging, 75
errors, 64
global variables in, 25
linking, 70, 73–75
management, 75
preemptive scheduling in, 52
reuse, 16
scheduling, 76
simulation, 75

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 95 –

configuration elements, 73

configuration elements, 15, 16

constant, 26

cross-reference, 79

cyclic executive, 63

cyclic program execution, 11

data type
BCD data in, 20
bit string, 19
character string, 21, 59
date, 22
default initial values, 18, 33
dependencies on, 70
derived, 60, 75
duration, 22
elementary, 17
enumerated, 18–19
errors, 64
F_EDGE, 62
integer, 19
LREAL, 59
R_EDGE, 62
REAL, 20, 59
reuse, 16, 75
structured

for time stamping, 53
subrange, 18–19
time, 22, 60
time of day, 22
use of, 17–23
user-defined, 17, 18

Data type
conversion, 84

deadlock, 52

deadlock, 56

debugging, 75

documentation, 79

Double byte strings, 82

edge triggered functionality, 40

encapsulation, 17, 31, 56

encapsulation, 14–15

Enumerated data
amendments, 82

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 96 – TR 61131-8 © IEC:2003(E)

errors
communication, 54
conditions, 63
correction, 69
correction by time-stamping, 53
data consistency, 57
detection, 69
effect on ENO output, 41
handling, 64–67
in BCD-encoded data, 19
in enumerated variables, 18
in functions, 61
instance vs. type, 31
interface, 74
messages, 69
prevention, 13, 69
run-time, 64, 65, 66
syntax, 69
type conversion, 19

execution
conditional, 56
control, 13, 38, 41

elements, 41
function block, 63
program, 63

control, 57
cyclic, 40, 63
errors, 64–67
function block, 56, 59, 60, 63
of functions, 59
of functions, 60
program, 50, 57, 59, 63
scheduling, 59
SFC, 62
SFC action, 42, 47, 49
SFC function block, 49
task, 16, 50, 51
timing, 52, 63, 75, 76

feedback loops, 76

function, 17
**_TO_BCD, 19
BCD arithmetic, 20
compilation, 70
concatenation, 22
conversion, 18, 19
data import and export, 25
development, 13

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 97 –

encapsulation, 15
error handling, 64
execution, 59, 60
external interface, 71
indirectly referenced FBs in, 38
input value assignment, 39
interface, 75
invocation, 33
invocation, 61, invocation, 71
languages for programming, 42
linking, 74
local variables in, 25
of time data types, 60
output usage, 26
programming, 69
reuse, 16, 17, 75
scope, 33
simulation and debugging, 75
storage of variables, 59
type conversion, 22
use of EN/ENO, 41, 56
value, 38
vs. function block instance, 33

function block
access, 32
action control, 42, 62
BCD arithmetic, 19
character strings in, 59
communication, 53, 55, 56
compilation, 70, 72
compilation interface, 72, 74
data import and export, 25
development, 13
edge triggered inputs, 40, 62
encapsulation, 15
error handling, 67
errors, 64
execution, 59, 60, 61
execution control, 63
external interface, 72
external variables, 26
global instance, 74
in SFC actions, 16
indirectly referenced, 33

accessing, 35
establishing, 33
execution control, 38

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 98 – TR 61131-8 © IEC:2003(E)

in functions, 38
invocation, 35
recursion, 38

in-out variables, 26
instance name, 31, 33–38, 39
instances, 56
instances, 33
interface, 75
invocation, 32, 33, 39, 61
languages for programming, 42
linking, 74
multiple invocations, 56
portability, 17
programming, 69
R_TRIG and F_TRIG, 40
reuse, 16, 75
scope of data, 31
SFC, 48, 57, 62
SFC actions in, 47
SFC networks in, 56
simulation and debugging, 75
standard, 61
storage of variables, 59, 62
system interface, 67
task association

effects, 50, 57
time data types in, 60
types and instances, 30
vs. function, 33

function block diagram, 39
SFC function blocks in, 57

Function Block Diagram (FBD) language, 16, 41
jumps in, 56

Function Block Diagram (FBD) language, 13, 76

hiding, 14–15, 31

hiding, 17, 31, 56

initial step, 48, 62, 76
error, 64

initial step, 57, 62

Initialisation
configurations, 85
function blocks, 85

initialization
errors, 64
of variables, 33
system, 62

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 99 –

type vs. variable, 18

instance
action control function block, 42
function block, 26, 30, 31, 32, 33, 35, 39, 40, 48, 56, 57, 59, 61, 70, 71, 72

errors, 64
global, 74
system interface, 67

function block, 31
function block, 56
program, 31, 73
resource, 63
variable, 26

Instruction List (IL) language, 16
not a virtual machine, 68

Instruction List (IL) language, 13

invocation
function, 25, 33, 61, 71
function block, 25, 26, 30, 31, 32, 33, 49, 61, 62, 67
function block, 72
multiple, 39, 56
program organization unit (POU), 59
recursive, 39
SFC actions, 48

Ladder Diagram (LD) language, 13, 16, 41

Ladder Diagram (LD) language, 40

ladder diagrams, 16

library, 16, 17, 49, 70
access privileges, 79
elements, 16
management, 75
vendor-supplied, 16

library, 74, 75

listings, 79

literal, 26

Literals
data types defined, 82

mailbox, 53

messaging, 53

NON_RETAIN, 83

object, 13, 31, 69

power flow, 41, 61

preemptive
context switch, 51
execution, 61

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 100 – TR 61131-8 © IEC:2003(E)

scheduling, 50, 51
scheduling, 52, 63, 66
system, 52
task switching, 52

priority, 50, 51, 52, 57, 63, 66

program
access paths in, 25, 54
archiving, 79
character strings in, 21
communication, 13
communication FBs in, 55
compilation, 70, 72
compilation interface, 74
compliance, 18
cyclic execution, 40
data import and export, 25
design, 15
development, 13
directly represented variables in, 25
documentation, 18, 49
encapsulation, 15
error handling, 65
error processing, 61
errors, 64
execution, 50, 59
execution control, 50, 63
external variables in, 25
function block instances in, 31, 37, 72
function block types in, 31
global variables in, 25, 37, 53
initialization, 18
in-out variables, 26
libraries, 70
linking, 73
modifying, 79
portability, 14, 57
programming, 12, 69
recursion in, 39
reuse, 16, 75
scan, 50
scheduling, 52
semaphores in, 52
SFC actions in, 43, 47
SFC in, 62
SFC networks in, 56
simulation and debugging, 75
storage of variables, 59

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 101 –

task association, 16, 40, 50, 57, 63
testing, 79
time data in, 22

PSE (programming support environment), 9, 12, 17, 38, 39, 42, 53, 64, 68–91

queue, 53

recursion, 38, 39, 49

resource, 16, 25
allocation, 59
description of, 70
error processing tasks in, 66
error variables in, 66
events in, 63
global function blocks in, 74
global variables in, 25, 66
program mapping in, 74
program use in, 75
system interface in, 67
task scheduling in, 52

restart, 63

RETAIN, 83

scan, 12, 40, 50, 62

semaphore, 52–53

Sequential Function Chart
Action

pulse qualifiers, 85

Sequential Function Chart (SFC), 13, 52, 57
analysis, 76–78
coupling, 56–57
implementation, 62
interlocking, 56
multiple invocation in, 40
unreachable, 76
unsafe, 76

Sequential Function Chart (SFC), 15, 42–49

SFC function block, 48

simulation, 75

software configuration, 13

software design, 10, 13, 14

step, 13, 15, 42, 76
action association, 42, 43, 48
activation, 62
active set, 62
deactivation, 62

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 102 – TR 61131-8 © IEC:2003(E)

flag, 43, 47, 56, 62
in transition conditions, 56

step elapsed times, 62

String handling
double bytes, 82

strongly typed assignment, 24

Structured Text (ST) language, 16
multiple invocation in, 39
time data types in, 22

Structured Text (ST) language, 13

Structured Text (ST) language, 38

structures, 22

TASK, 39, 40, 50, 51, 57, 63, 66

time stamping, 53

top-down
design, 15, 75
development, 13
programming, 69

transition, 13, 42
clearing, 56, 62
reduction, 76

transition condition
step flag in, 56

transition-sensing contact, 40

user interface, 68–69

user-defined
data types, 18
error handling procedures, 64, 65, 67
error task, 61
function blocks, 60
functions, 60
identifiers, in enumerated types, 18

VAR CONSTANT, 26

VAR_ACCESS, 54, 70, 72
errors, 65

VAR_EXTERNAL, 25, 53, 72, 74

VAR_GLOBAL, 25, 31, 53

VAR_IN_OUT, 26, 34, 36, 37, 72
errors, 64

VAR_TEMP, 83

variable, 13
access to, 32
aggregate, 22

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 103 –

alarm, 55
array, 22

maximum dimensions, 60
Boolean, 44

in action blocks, 42
communication access, 54
data type declaration, 17
declaration, 31, 33, 69, 70
default value, 66
directly represented, 25, 70
directly represented, 75, 79
edge-triggered, 62
EN/ENO, 41, 61
enumerated, 18
error handling, 66
error-reporting, 65, 66
errors, 64
event, 63
external, 25–26, 33, 34, 36, 37, 53
function block instance name, 33
global, 25–26, 37, 53, 56, 66, 67, 70, 75, 79
indicator, 49, 62
initial value, 33
initialization, 18, 33
in-out, 25, 34, 36, 37
input, 25, 30, 32, 33, 34, 36, 38, 40, 49, 61
integer vs. BCD, 19
intermediate, 39
internal, 31
local, 25, 30, 69
mapping, 79
multi-element, 22, 60
name, 31
output, 25, 30, 32, 33, 35, 36, 38
range, 19
reading, 33, 55
reading, 35
reading and writing, 30
receiving, 55
sending, 55
SFC state, 48
state, 15
storage allocation, 59, 62
structure, 22, 32

time stamping, 53
system interface, 67

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 – 104 – TR 61131-8 © IEC:2003(E)

time
manipulation, 22

undefined value, 33
value, 33
writing, 55

Variable
temporary, 83

warm restart, 63

Warm re-start
retaining values, 83

WSTRING, 82

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

TR 61131-8 © IEC:2003(E) – 105 –

Bibliography

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems

IEC 60617-12:1997, Graphical symbols for diagrams – Part 12: Binary logic elements

IEC 60617-13:1983, Graphical symbols for diagrams – Part 13: Analog elements

IEC 60848:2002, GRAFCET specification language for sequential function charts

IEC 61131-4:1995, Programmable controllers – Part 4: User guidelines

IEC 61346-1:1996, Industrial systems, installations and equipment and industrial products –
Structuring principles and reference designations – Part 1: Basic rules

IEC/PAS 61499-1:2000, Function blocks for industrial-process measurement and control
systems – Part 1: Architecture

IEC/PAS 61499-2:2001, Function blocks for industrial-process measurement and control
systems – Part 2: Software tool requirements

IEC/PAS 61499-4:2002, Function blocks for industrial-process measurement and control
systems – Part 4: Rules for compliance profiles

IEC 61508 (all parts), Functional safety of electrical/electronic/programmable electronic
safety-related systems

IEC/PAS 61804-1:2002, Function blocks (FB) for process control – Part 1: Overview of
system aspects

ISO/IEC 2382-2:1976, Data processing – Vocabulary – Section 2: Arithmetic and logic
operations

ISO/IEC 9506-5:1999, Industrial automation systems − Manufacturing message specification
– Part 5: Companion standard for programmable controllers

ANSI/IEEE Std 754-1985, Binary floating-point arithmetic

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

Standards Survey

The IEC would like to offer you the best quality standards possible. To make sure that we
continue to meet your needs, your feedback is essential. Would you please take a minute
to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to
the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission
3, rue de Varembé
1211 Genève 20
Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

Non affrancare
No stamp required

Nicht frankieren
Ne pas affranchir

 A Prioritaire

RÉPONSE PAYÉE

SUISSE

Customer Service Centre (CSC)
International Electrotechnical Commission
3, rue de Varembé
1211 GENEVA 20
Switzerland

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

Q1 Please report on ONE STANDARD and
ONE STANDARD ONLY . Enter the exact
number of the standard: (e.g. 60601-1-1)

...

Q2 Please tell us in what capacity(ies) you
bought the standard (tick all that apply).
I am the/a:

purchasing agent R

librarian R

researcher R

design engineer R

safety engineer R

testing engineer R

marketing specialist R

other...

Q3 I work for/in/as a:
(tick all that apply)

manufacturing R

consultant R

government R

test/certification facility R

public utility R

education R

military R

other...

Q4 This standard will be used for:
(tick all that apply)

general reference R

product research R

product design/development R

specifications R

tenders R

quality assessment R

certification R

technical documentation R

thesis R

manufacturing R

other...

Q5 This standard meets my needs:
(tick one)

not at all R

nearly R

fairly well R

exactly R

Q6 If you ticked NOT AT ALL in Question 5
the reason is: (tick all that apply)

standard is out of date R

standard is incomplete R

standard is too academic R

standard is too superficial R

title is misleading R

I made the wrong choice R

other ..

Q7 Please assess the standard in the
following categories, using
the numbers:
(1) unacceptable,
(2) below average,
(3) average,
(4) above average,
(5) exceptional,
(6) not applicable

timeliness ...
quality of writing....................................
technical contents.................................
logic of arrangement of contents
tables, charts, graphs, figures
other ..

Q8 I read/use the: (tick one)

French text only R

English text only R

both English and French texts R

Q9 Please share any comment on any
aspect of the IEC that you would like
us to know:

..

..

..

..

..

..

..

..

..

..

..

..

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

 ISBN 2-8318-7210-3

-:HSMINB=]\WVUU:
ICS 25.040.40; 35.240.50

Typeset and printed by the IEC Central Office
GENEVA, SWITZERLAND

L
IC

E
N

SE
D

 T
O

 M
E

C
O

N
 L

im
ited. - R

A
N

C
H

I/B
A

N
G

A
L

O
R

E
FO

R
 IN

T
E

R
N

A
L

 U
SE

 A
T

 T
H

IS L
O

C
A

T
IO

N
 O

N
L

Y
, SU

PPL
IE

D
 B

Y
 B

O
O

K
 SU

PPL
Y

 B
U

R
E

A
U

.

