LICENSED TO MECON Limited. - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU

RAPPORT TECHNIQUE TECHNICAL REPORT

CEI IEC 61000-2-7

> Première édition First edition 1998-01

Compatibilité électromagnétique (CEM) -

Partie 2:

Environnement -

Section 7: Champs magnétiques basse fréquence en environnements divers

Electromagnetic compatibility (EMC) -

Part 2:

Environment -

Section 7: Low frequency magnetic fields

in various environments

Numéros des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000.

Publications consolidées

Les versions consolidées de certaines publications de la CEI incorporant des amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2.

Validité de la présente publication

Le contenu technique des publications de la CEI est constamment revu par la CEI afin qu'il reflète l'état actuel de la technique.

Des renseignements relatifs à la date de reconfirmation de la publication sont disponibles dans le Catalogue de la CFI.

Les renseignements relatifs à ces révisions, à l'établissement des éditions révisées et aux amendements peuvent être obtenus auprès des Comités nationaux de la CEI et dans les documents ci-dessous:

- Bulletin de la CEI
- Annuaire de la CEI Accès en ligne*
- Catalogue des publications de la CEI
 Publié annuellement et mis à jour régulièrement
 (Accès en ligne)*

Terminologie, symboles graphiques et littéraux

En ce qui concerne la terminologie générale, le lecteur se reportera à la CEI 60050: Vocabulaire Electrotechnique International (VEI).

Pour les symboles graphiques, les symboles littéraux et les signes d'usage général approuvés par la CEI, le lecteur consultera la CEI 60027: Symboles littéraux à utiliser en électrotechnique, la CEI 60417: Symboles graphiques utilisables sur le matériel. Index, relevé et compilation des feuilles individuelles, et la CEI 60617: Symboles graphiques pour schémas.

Publications de la CEI établies par le même comité d'études

L'attention du lecteur est attirée sur les listes figurant à la fin de cette publication, qui énumèrent les publications de la CEI préparées par le comité d'études qui a établi la présente publication.

* Voir adresse «site web» sur la page de titre.

Numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series.

Consolidated publications

Consolidated versions of some IEC publications including amendments are available. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Validity of this publication

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology.

Information relating to the date of the reconfirmation of the publication is available in the IEC catalogue.

Information on the revision work, the issue of revised editions and amendments may be obtained from IEC National Committees and from the following IEC sources:

- IEC Bulletin
- IEC Yearbook
 On-line access*
- Catalogue of IEC publications
 Published yearly with regular updates
 (On-line access)*

Terminology, graphical and letter symbols

For general terminology, readers are referred to IEC 60050: International Electrotechnical Vocabulary (IEV).

For graphical symbols, and letter symbols and signs approved by the IEC for general use, readers are referred to publications IEC 60027: Letter symbols to be used in electrical technology, IEC 60417: Graphical symbols for use on equipment. Index, survey and compilation of the single sheets and IEC 60617: Graphical symbols for diagrams.

IEC publications prepared by the same technical committee

The attention of readers is drawn to the end pages of this publication which list the IEC publications issued by the technical committee which has prepared the present publication.

* See web site address on title page.

LICENSED TO MECON Limited. - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU

RAPPORT TECHNIQUE – TYPE 3

IEC

CEI

TECHNICAL REPORT – TYPE 3 61000-2-7

Première édition First edition 1998-01

Compatibilité électromagnétique (CEM) -

Partie 2:

Environnement –

Section 7: Champs magnétiques basse fréquence en environnements divers

Electromagnetic compatibility (EMC) -

Part 2:

Environment –

Section 7: Low frequency magnetic fields in various environments

© IEC 1998 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission 3, rue de Varembé Geneva, Switzerland Telefax: +41 22 919 0300 e-mail: inmail@iec.ch IEC web site http://www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

CODE PRIX
PRICE CODE

SOMMAIRE

			Pages			
AVA	ANT-P	ROPOS	4			
INT	RODU	JCTION	8			
Artic						
1		aine d'application	10			
2		rence normative	10			
3		S	10			
4		omènes naturels	12			
5		onnements des réseaux d'alimentation électrique – Champs magnétiques à lence industrielle	20			
	5.1	Lignes aériennes	20			
		5.1.1 Lignes triphasées à courant alternatif	20			
		5.1.2 Lignes haute tension à courant continu	28			
	5.2	Câbles souterrains	30			
		5.2.1 Câbles à un conducteur	30			
		5.2.2 Câbles multiconducteurs	34			
	5.3	Locaux haute et moyenne tension des compagnies d'électricité	36			
	5.4	Locaux basse tension des compagnies d'électricité	40			
6	Envir	onnement des réseaux de traction de chemin de fer	42			
7	Envir	onnement industriel	46			
	7.1	Matériel de soudage	46			
	7.2	Fours à acier	48			
	7.3	Matériel industriel d'usage général	50			
8	Envir	onnement des bureaux commerciaux	52			
9	Environnement résidentiel – Appareils domestiques					
	9.1	Câblage intérieur des immeubles d'habitation	54			
	9.2	Appareils domestiques	56			
10	Environnement des hôpitaux					
	10.1	Généralités	60			
	10.2	Traitement des malades	60			
	10.3	Zones de services des hôpitaux	62			
11	Résu	mé et comparaisons des champs magnétiques générés par différentes sources	62			
12 Bibliographie						

CONTENTS

			Page			
FOI	REWC	ORD	5			
INT	RODU	JCTION	9			
Clau	ise					
1	Scop	e	11			
2	Norm	native reference	11			
3	Units		11			
4	Natu	ral phenomena	13			
5	Powe	er supply system environments – Power frequency magnetic fields	21			
	5.1	Overhead lines	21			
		5.1.1 AC, three-phase lines	21			
		5.1.2 HVDC lines	29			
	5.2	Underground cables	31			
		5.2.1 Single-conductor cables	31			
		5.2.2 Multi-conductor cables	35			
	5.3	Power supply authorities' medium and high voltage premises	37			
	5.4	Power supply authorities' low voltage premises	41			
6	Tract	ion system environment	43			
7	Indus	strial environment	47			
	7.1	Welding equipment	47			
	7.2	Steel furnaces	49			
	7.3	Industrial equipment in general use	51			
8	Com	mercial office environment	53			
9	Resid	dential environment – Household appliances	55			
	9.1	Internal wiring in residential buildings	55			
	9.2	Residential appliances	57			
10	Hosp	ital environment	61			
	10.1	General	61			
	10.2	Treatment of patients	61			
	10.3	Ward areas	63			
11	Sumi	mary and comparisons of the magnetic fields produced by various sources	63			
12	2 Bibliography 6					

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

COMPATIBILITÉ ÉLECTROMAGNÉTIQUE (CEM) -

Partie 2: Environnement – Section 7: Champs magnétiques basse fréquence en environnements divers

AVANT-PROPOS

- 1) La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes Internationales. Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de la CEI concernant les questions techniques, représentent, dans la mesure du possible un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés sont représentés dans chaque comité d'études.
- 3) Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiés comme normes, rapports techniques ou guides et agréés comme tels par les Comités nationaux.
- 4) Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer de façon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière.
- 5) La CEI n'a fixé aucune procédure concernant le marquage comme indication d'approbation et sa responsabilité n'est pas engagée quand un matériel est déclaré conforme à l'une de ses normes.
- 6) L'attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La tâche principale des comités d'études de la CEI est d'élaborer des Normes internationales. Exceptionnellement, un comité d'études peut proposer la publication d'un rapport technique de l'un des types suivants:

- type 1, lorsque, en dépit de maints efforts, l'accord requis ne peut être réalisé en faveur de la publication d'une Norme internationale;
- type 2, lorsque le sujet en question est encore en cours de développement technique ou lorsque, pour une raison quelconque, la possibilité d'un accord pour la publication d'une Norme internationale peut être envisagée pour l'avenir mais pas dans l'immédiat;
- type 3, lorsqu'un comité d'études a réuni des données de nature différente de celles qui sont normalement publiées comme Normes internationales, cela pouvant comprendre, par exemple, des informations sur l'état de la technique.

Les rapports techniques des types 1 et 2 font l'objet d'un nouvel examen trois ans au plus tard après leur publication afin de décider éventuellement de leur transformation en Normes internationales. Les rapports techniques du type 3 ne doivent pas nécessairement être révisés avant que les données qu'ils contiennent ne soient plus jugées valables ou utiles.

La CEI 61000-2-7, rapport technique de type 3, a été établie par le sous-comité 77A: Phénomènes basse fréquence, du comité d'études 77 de la CEI: Compatibilité électromagnétique.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTROMAGNETIC COMPATIBILITY (EMC) -

Part 2: Environment – Section 7: Low frequency magnetic fields in various environments

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical report of one of the following types:

- type 1, when the required support cannot be obtained for the publication of an International Standard, despite repeated efforts;
- type 2, when the subject is still under technical development or where for any other reason there is the future but no immediate possibility of an agreement on an International Standard:
- type 3, when a technical committee has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

Technical reports of types 1 and 2 are subject to review within three years of publication to decide whether they can be transformed into International Standards. Technical reports of type 3 do not necessarily have to be reviewed until the data they provide are considered to be no longer valid or useful.

IEC 61000-2-7, which is a technical report of type 3, has been prepared by subcommittee 77A: Low frequency phenomena, of IEC technical committee 77: Electromagnetic Compatibility.

Le texte de ce rapport technique est issu des documents suivants:

Projet de comité	Rapport de vote
77A/134/CDV	77A/151A/RVC

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de ce rapport technique.

Le présent document est publié dans la série des rapports techniques de type 3 (conformément au paragraphe G.3.2.3 de la partie 1 des Directives CEI/ISO) comme document à caractère entièrement informatif.

Ce document ne doit pas être considéré comme une Norme internationale.

The text of this technical report is based on the following documents:

Committee draft	Report on voting
77A/134/CDV	77A/151A/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This document is issued in the type 3 technical report series of publications (according to G.3.2.3 of part 1 of the IEC/ISO Directives) as a purely informative document.

This document is not to be regarded as an International Standard.

INTRODUCTION

La présente norme fait partie de la série CEI 61000, selon le plan suivant:

Partie 1: Généralités

Considérations générales (introduction, principes fondamentaux)

Définitions, terminologie

Partie 2: Environnement

Description de l'environnement

Classification de l'environnement

Niveaux de compatibilité

Partie 3: Limites

Limites d'émission

Limites d'immunité (dans la mesure où elles ne relèvent pas des comités de

produits)

Partie 4: Techniques d'essais et de mesures

Techniques de mesures

Techniques d'essais

Partie 5: Guides d'installation et d'atténuation

Guides d'installation

Méthodes et dispositifs d'atténuation

Partie 6: Normes génériques

Partie 9: Divers

Chaque partie est à son tour subdivisée en sections, qui doivent être publiées soit sous forme de Normes internationales soit sous forme de rapports techniques.

Ces normes et rapports seront publiés par ordre chronologique et numérotés en conséquence.

La présente partie constitue un rapport technique de type 3.

LICENSED TO MECON Limited. - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU

INTRODUCTION

IEC 61000 is published in separate parts according to the following structure:

Part 1: General

General considerations (introduction, fundamental principles)

Definitions, terminology

Part 2: Environment

Description of the environment

Classification of the environment

Compatibility levels

Part 3: Limits

Emission limits

Immunity limits (in so far as they do not fall under responsibility of product

committees)

Part 4: Testing and measurement techniques

Measurement techniques

Testing techniques

Part 5: Installation and mitigation guidelines

Installation guidelines

Mitigation methods and devices

Part 6: Generic standards

Part 9: Miscellaneous

Each part is further subdivided into sections which are to be published either as International Standards or as technical reports.

These standards and reports will be published in chronological order and numbered accordingly.

This section is a technical report of type 3.

COMPATIBILITÉ ÉLECTROMAGNÉTIQUE (CEM) -

Partie 2: Environnement – Section 7: Champs magnétiques basse fréquence en environnements divers

1 Domaine d'application

Les champs magnétiques ont été l'objet d'un regain d'intérêt au cours de ces dernières années en raison des effets physiologiques qu'ils peuvent avoir sur les êtres humains et les animaux et des effets défavorables qu'ils ont sur le fonctionnement de certains équipements électriques, notamment les écrans de visualisation. Les résultats des recherches sont présentés dans ce rapport comme valeurs de référence.

NOTE 1 – La Directive CEM de la Commission Européenne a suscité de faire des mesures de champs magnétiques, particulièrement dans des environnements de bureaux commerciaux à proximité de postes appartenant à des compagnies d'électricité ainsi que dans des environnements de réseaux de distribution d'électricité à l'intérieur des bâtiments. Les distributeurs d'électricité ont supporté financièrement la plupart des travaux et les résultats se situent généralement dans la gamme de fréquence allant de 50 Hz à 2 kHz et sont présentés comme des valeurs efficaces. Il est toutefois nécessaire de connaître quelque peu les champs magnétiques jusqu'à 150 kHz car ils interfèrent avec certains types d'appareils.

NOTE 2 – La plupart des valeurs de champs magnétiques indiquées dans ce rapport correspondent à des sources de courant sinusoïdal et on peut les considérer comme des valeurs efficaces sauf indications contraires. Les réseaux d'alimentation de tensions inférieures ou égales à 1 000 V sont considérés comme des réseaux basse tension, ceux exploités à des tensions supérieures à 1 000 V allant jusqu'à 35 kV comme des réseaux moyenne tension et enfin ceux exploités à des tensions supérieures à 35 kV comme des réseaux haute tension.

2 Référence normative

Le document normatif suivant contient des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour le présent rapport. Au moment de sa publication, l'édition indiquée était en vigueur et les parties prenantes aux accords fondés sur le présent rapport sont invitées à rechercher la possibilité d'appliquer l'édition la plus récente du document normatif indiqué ci-après. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur.

CEI 60050(161):1990, Vocabulaire Electrotechnique International (VEI) – Chapitre 161: Compatibilité électromagnétique

3 Unités

Les valeurs indiquées dans ce rapport correspondent soit à des champs magnétiques exprimés en ampère par mètre, A/m, soit à des inductions magnétiques exprimées en micro Tesla, μT . Lorsque l'ancienne unité d'induction magnétique "milligauss", mG, apparaissait dans des documents de référence, elle a été convertie en μT selon la relation suivante:

$$1 \mu T = 10 mG \approx 0.796 A/m$$

Les unités suivantes s'appliquent à ce rapport:

Champ magnétique: H en A/m

Induction magnétique: $B = \mu \times H$ en T (Tesla)

où la perméabilité $\mu = \mu_r \times \mu_0$ avec $\mu_0 = 1,256 \cdot 10^{-6}$ (Wb/Am)

dans l'air la perméabilité relative $\mu_r = 1$ et $B(\mu T) = 1,256 H (A/m)$

NOTE - 1 T = 1 Wb/m² = 10^4 G et B = $1,256 \cdot 10^{-9}$ G (dans l'air)

ELECTROMAGNETIC COMPATIBILITY (EMC) -

Part 2: Environment – Section 7: Low frequency magnetic fields in various environments

1 Scope

Interest in magnetic fields has been stimulated in recent years by concern over the physiological effects they may have on humans and animals and the deleterious effects they have on the performance of some electrical equipment, particularly video display units. Investigations have yielded results which are presented in this report as reference values.

Note 1 – The European Union EMC Directive has prompted magnetic field measurements, particularly in respect of the commercial office environments associated with supply authority substations and electrical distribution systems within buildings. Supply authorities have sponsored most of the work and the results are generally within the frequency range of 50 Hz to 2 kHz, and presented as r.m.s. values. There is, however, a need to have some knowledge about d.c. fields and the fields up to 150 kHz as they may interfere with some types of equipment.

Note 2 — Most of the magnetic field data in this report is associated with sinusoidal current sources and r.m.s. values may be assumed unless otherwise stated.

Power supply systems operating at voltages less than or equal to 1 000 V are designated low-voltage, those above 1 000 V and up to 35 kV are designated medium-voltage, and those in excess of 35 kV are designated high-voltage.

2 Normative reference

The following normative document contains provisions which, through reference in this text, constitute provisions of this technical report. At the time of publication, the edition indicated was valid. All normative documents are subject to revision, and parties to agreements based on this technical report are encouraged to investigate the possibility of applying the most recent edition of the normative document indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 60050(161):1990, International Electrotechnical Vocabulary (IEV) – Chapter 161: Electromagnetic compatibility.

3 Units

Magnetic field values in this report are either expressed in field strengths of amperes per metre, A/m, or in flux densities of microtesla, μT . Where the older flux density unit of milligauss, mG, has appeared in reference documents it has been converted to μT by the following relationship:

1
$$\mu T$$
 = 10 mG \approx 0,796 A/m

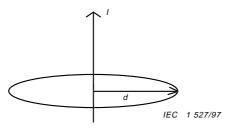
The following units are applied in the present report:

Magnetic field strength: H in A/m

Magnetic flux density: $B = \mu \times H$ in T (Tesla)

whereby the permeability $\mu = \mu_r \times \mu_0$ and $\mu_0 = 1,256 \cdot 10^{-6}$ (Wb/Am)

in air the relative permeability $\mu_r = 1$ and $B(\mu T) = 1,256 H(A/m)$


NOTE $- 1 T = 1 \text{ Wb/m}^2 = 10^4 \text{ G} \text{ and } B = 1,256 \cdot 10^{-9} \text{ G} \text{ (in air)}$

Exemple: Champ magnétique d'un conducteur simple

La relation entre le champ magnétique et l'induction magnétique à une distance d d'un conducteur simple parcouru par un courant l est exprimée de la façon suivante:

$$H = \frac{I}{2\pi d}$$
 (A/m)

$$B = 1,256 \frac{I}{2\pi d} (\mu T)$$

Un courant alternatif génère un champ magnétique alternatif et, dans le cas d'un câble à plusieurs phases ou d'une ligne aérienne, le champ magnétique alternatif effectue une rotation car il résulte de la somme vectorielle des champs produits par les différents courants de phase.

Un champ magnétique alternatif suscitera une force électromotrice dans tout conducteur électrique auquel il est exposé. Cet effet est utilisé par des compteurs ayant des bobines exploratrices. De tels compteurs sont fréquemment utilisés.

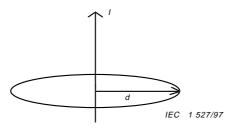
D'autres types de compteurs destinés à effectuer des mesures en basse fréquence utilisent l'effet Hall. Ces compteurs ne sont pas vraiment appropriés pour mesurer des champs à partir de sources de l'environnement mais ils sont très utiles pour mesurer des points dans l'espace et des champs magnétiques statiques.

4 Phénomènes naturels

Trois types de champs magnétiques naturels doivent être pris en considération:

- le champ magnétique terrestre (champ statique);
- les champs magnétiques produits par des orages et l'activité solaire (variable dans le temps à très basses fréquences);
- les champs magnétiques ayant pour origine des coups de foudre (impulsions).

Les premières mesures et l'utilisation des champs magnétiques pour la navigation ainsi que l'étude approfondie des champs magnétiques terrestres ont permis de réaliser une cartographie des champs magnétiques dont on trouvera un exemple sur la figure 1 [1]*. Tout conducteur non pourvu d'écran se déplaçant dans le champ magnétique terrestre génère une tension à ses extrémités dont l'amplitude est fonction de la vitesse et de la direction de son mouvement. Une telle tension peut perturber les circuits sensibles des dispositifs électroniques. Le matériel électrique statique n'est normalement pas affecté par le champ terrestre.


^{*} Les chiffres entre crochets se réfèrent à la bibliographie.

Example: Magnetic field of a single conductor

The relationship between the magnetic field strength and magnetic induction at a distance *d* from a single conductor carrying a current *I* is given by the following expressions:

$$H = \frac{I}{2\pi d}$$
 (A/m)

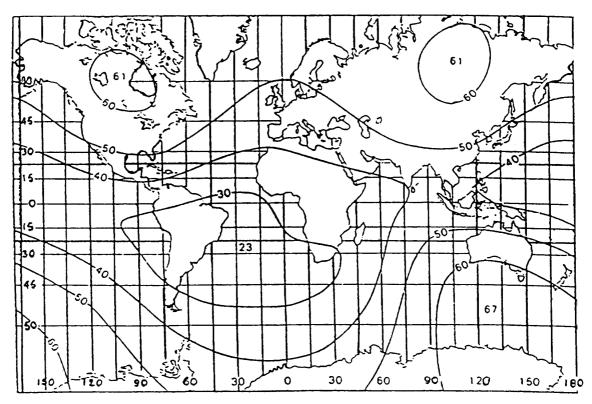
$$B = 1,256 \frac{I}{2\pi d} (\mu T)$$

An alternating current produces an alternating magnetic field, and in the case of a multi-phase cable or overhead line, the alternating magnetic field rotates as it results from the vector sum of the fields produced by individual phase currents.

An alternating magnetic field will induce an electromotive force in any electrical conductor to which it is exposed. This effect is utilised by meters which have search coils. Such meters are in common use.

Other types of meter used for low frequency measurements utilise the Hall effect. These meters are not so good for measuring the fields from environmental sources, but they are very useful when measuring points in space and static magnetic fields.

4 Natural phenomena


Three kinds of natural magnetic fields have to be considered:

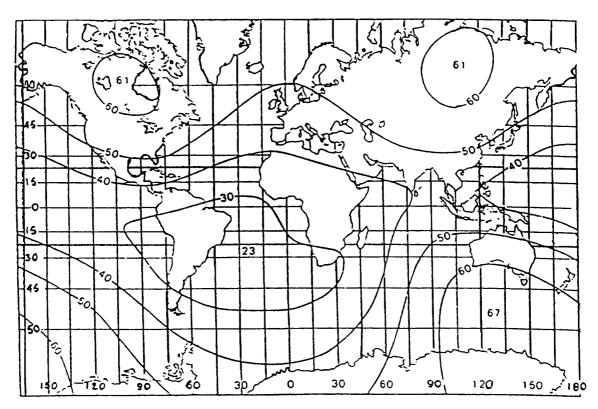
- the earth's magnetic field (a static field);
- magnetic fields produced by thunderstorms and solar activity (time-varying with very low frequencies);
- magnetic fields caused by lightning strokes (pulses).

The first measurements and use of magnetic fields related to navigation and intense study of the earth's magnetic fields has resulted in the production of field maps, an example of which is given in figure 1 [1]*. All unscreened conductors moving in the earth's magnetic field will generate a voltage across their ends of a magnitude related to the speed and direction of movement. Such voltage may disturb sensitive electronic devices in associated circuits. Static electrical equipment is not normally affected by the earth's field.

^{*} Figures in square brackets refer to the bibliography.

A la lecture des mesures réalisées sur site, le champ magnétique terrestre est presque toujours présent sous forme d'un bruit de fond permanent à 0 Hz. Près des pôles, les valeurs de l'induction magnétique atteignent 60 μT alors qu'elles ne sont que de 30 μT à l'équateur. La valeur prise généralement en compte pour effectuer les calculs est de 50 μT [1]. Voir la figure 1.

IEC 1 528/97


Figure 1 – Champ magnétique terrestre total à la surface de la terre en μT

Les phénomènes naturels comme les orages et l'activité solaire produisent des champs magnétiques variant dans le temps dans la gamme des très basses fréquences. Ces champs ont généralement une valeur faible d'environ $0,01~\mu T$ (8 mA/m) bien que, pendant des orages magnétiques intenses, ils puissent atteindre des intensités d'environ $0,5~\mu T$ (0,4~A/m).

On ne dispose que de très peu de données sur le nombre annuel de coups de foudre pouvant frapper un point particulier. Toutefois, la carte kéraunique de la figure 2 [2] indique le niveau d'activité et la probabilité de rencontrer les champs magnétiques les plus élevés.

The earth's static magnetic field is nearly always present as a steady state background reading at 0 Hz to site measurements. Near the poles flux densities are as high as 60 μT whilst at the equator they are only 30 μT .

A normal value assumed for the purpose of calculations is 50 μT [1]. See figure 1.

IEC 1 528/97

Figure 1 – The earth's total magnetic field at the surface in µT

Natural phenomena, such as thunderstorms and solar activity, produce time-varying magnetic fields in the extra-low-frequency range. Such fields are generally of low strength, up to 0,01 μ T (8 mA/m), although during intense magnetic storms, they can reach intensities of about 0,5 μ T (0,4 A/m).

Very little data is available regarding the number of lightning strokes that a particular location may receive in a year. However the ceraunic map in figure 2 [2] does indicate the level of activity and the probability of the highest fields being achieved.

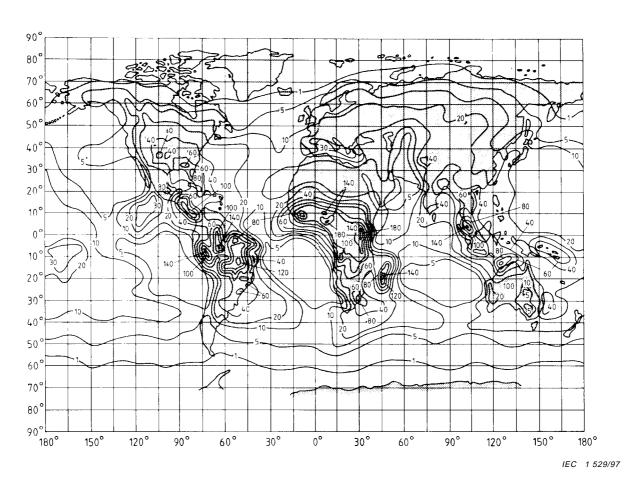


Figure 2 – Carte du nombre annuel de jours d'orage dans le monde

NOTE – Cette carte est issue d'informations fournies par l'Organisation Météorologique Mondiale pour l'année 1955.

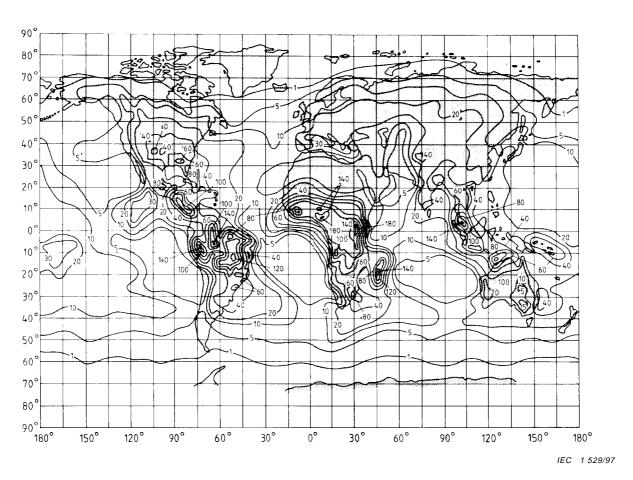


Figure 2 – Map showing thunderstorm days per year throughout the world

NOTE – This map is based on information of the World Meteorological Organization for 1955.

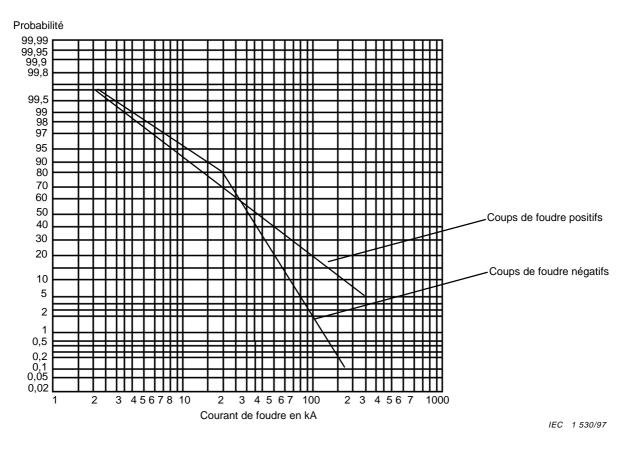


Figure 3 - Fréquence cumulée du courant de foudre-source CEI 61024-1-1

Les valeurs suivantes de référence concernant la fréquence cumulée du courant de foudre proviennent de la figure 3:

	Coup de foudre négatif	Coup de foudre positif		
5 %	80 kA	250 kA		
50 %	33 kA	35 kA		
95 %	7 kA	5 kA		

Le coup de foudre crée une impulsion de champ magnétique avec un temps de montée d'environ 1 μs et une durée d'environ 100 μs entre la valeur de crête et la moitié de cette valeur.

Il en résulte que le champ magnétique peut être calculé d'après la relation suivante:

$$H_{\text{crête}} = \frac{I}{2\pi d}$$
 par exemple avec $I = 200 \text{ kA}$ et $d = 1 \text{ km}$: $H = 32 \text{ A/m}$ et $B = 40 \mu\text{T}$

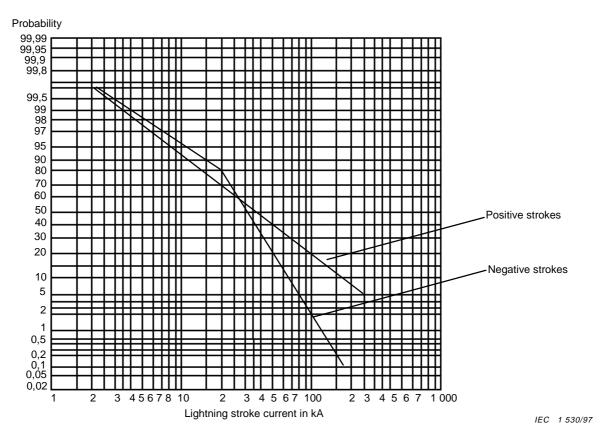


Figure 3 - Cumulative frequency of lightning current from IEC 61024-1-1

The following reference values for the cumulative frequency of lightning current (see figure 3):

	Negative stroke	Positive stroke
5 %	80 kA	250 kA
50 %	33 kA	35 kA
95 %	7 kA	5 kA

The lightning stroke creates magnetic field pulses with a rise time of about 1 μ s and a mid-magnetic duration of about 100 μ s.

The resulting magnetic field can be calculated according to the relationship:

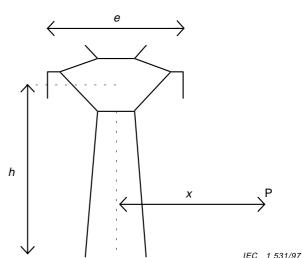
$$H_{\text{peak}} = \frac{I}{2\pi d}$$
 e.g. with $I = 200 \text{ kA}$ and $d = 1 \text{ km}$: $H = 32 \text{ A/m}$ and $B = 40 \mu\text{T}$

5 Environnements des réseaux d'alimentation électrique – Champs magnétiques à fréquence industrielle

Les valeurs de champs magnétiques en environnement de réseaux d'alimentation électrique dépendent du courant de charge au moment de la mesure, de la tension du réseau qui détermine les distances d'isolement entre les conducteurs des lignes aériennes et la terre, ainsi que de la profondeur et de la construction des câbles souterrains. Autant que possible, les valeurs indiquées dans ce chapitre sont rapportées à la tension du réseau et aux conditions de charge maximale ou bien elles sont exprimées par kiloampère, kA, de courant du conducteur.

5.1 Lignes aériennes

Les champs magnétiques produits par un courant s'écoulant à travers les lignes aériennes de distribution dépendent essentiellement de l'amplitude du courant, de la configuration électrique des phases et de la configuration physique des conducteurs. La tension à laquelle on exploite la ligne électrique est un paramètre important car il détermine la hauteur des conducteurs par rapport au sol ainsi que la distance entre conducteurs de phase et par rapport à la charpente métallique mise à la terre du pylône.


Il existe dans le monde tellement de tensions de réseaux, de capacités nominales de courant pour les conducteurs et de normes de construction que l'on ne peut fournir de valeurs de champ magnétique pour chaque type d'installation. Toutefois, on pourra se baser sur les valeurs de champs magnétiques des installations types données ci-dessous pour extrapoler les valeurs de champs magnétiques induits par des installations particulières.

Pour obtenir des valeurs détaillées d'induction magnétique, il convient de prendre en compte des caractéristiques des différentes lignes comme la configuration des conducteurs, la hauteur au-dessus du sol et le courant des lignes. La formule approximative suivante peut être appliquée:

$$H = 140 \frac{e}{h^2 + x^2}$$
 en A/m pour 1 kA

οù

- e est la distance entre les conducteurs externes;
- h est la hauteur au-dessus du sol;
- x est la distance entre le conducteur central et le point P considéré.

5.1.1 Lignes triphasées à courant alternatif

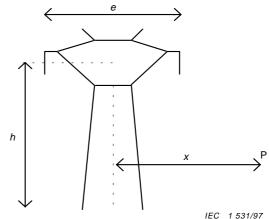
L'induction magnétique créée par une ligne électrique étant proportionnelle au courant traversant la ligne, on peut facilement la calculer pour différentes valeurs de ce courant. Dans des conditions normales d'exploitation, le courant maximal des lignes peut être pris à:

5 Power supply system environments - Power frequency magnetic fields

Magnetic field values relevant to power supply systems are dependent on the load current at the time measurements are taken, the system voltage, which determines the clearances of overhead line conductors to ground, and the depth and construction of underground cables. Wherever possible, the values stated in this section have been referenced to the system voltage and maximum load conditions, or expressed in terms per kiloampere, kA, of conductor current.

5.1 Overhead lines

Magnetic fields produced by current flowing through electricity distribution overhead lines are influenced principally by the magnitude of the current, the electrical phase configuration and the physical configuration of the conductors. The voltage at which a power line operates is significant because it determines the height of conductors above ground and also the phase separation between conductors and to earthed metal used for construction purposes.


There are so many system voltages, conductor current ratings and construction standards in use throughout the world that magnetic field data cannot be provided for every particular type of installation. However, the typical installations and magnetic field characteristics that are defined in the following text are good models on which to base predictions of fields for other particular installations.

If detailed values of flux density for particular lines are required, it would be necessary to consider the conditions of the individual lines such as wire configurations, height above ground and line current. The following approximate formula applies:

$$H = 140 \frac{e}{h^2 + x^2}$$
 in A/m for 1 kA

where:

- e is the distance between external conductors;
- h is the height above ground;
- x is the distance from central conductor to the point P to be considered.

5.1.1 AC, three-phase lines

As the flux densities associated with power lines are linearly related to line current it is easy to deduce values for particular values of current. The maximum line currents under normal operating conditions are approximately as follows:

lignes basse tension
lignes moyenne tension
lignes 110 kV et 220 kV
lignes 380 kV
lignes 750 kV
3,0 kA

On peut éventuellement obtenir des valeurs de courant plus précises auprès des distributeurs d'électricité et des sociétés de chemin de fer. Toutefois, lors de conditions de défaut telles que des courts-circuits monophasés ou biphasés, les champs magnétiques des trois conducteurs ne sont pas équilibrés et le champ magnétique résultant peut être multiplié par un facteur 20. On peut s'attendre à ce que ces conditions ne durent que quelques secondes sur des réseaux basse et moyenne tension et moins de 0,2 seconde sur des réseaux haute tension.

La figure 4, sur le côté gauche, montre le profil enveloppe de l'induction magnétique maximale par kA de courant de ligne, dans le cas des lignes de transport haute tension triphasées à simple circuit, à mi-portée, à une distance x du centre du système de conducteurs et à une hauteur de 1 m au-dessus du sol d'après les données VDE [3].

La figure 4, sur le côté droit, montre le profil enveloppe de l'induction magnétique par kA de courant de ligne, dans le cas des lignes de distribution moyenne tension et basse tension triphasées exploitées respectivement à 20 et 0,4 kV, à une distance x du centre du système de conducteurs, à mi-portée et à une hauteur de 1 m au-dessus du sol d'après les données VDE [3].

On peut observer que les courbes des profils:

- sont plus faibles pour les tensions d'exploitation plus élevées en raison de la hauteur plus élevée des conducteurs au-dessus du sol,
- et s'élargissent pour des tensions d'exploitation plus élevées en raison de l'augmentation de la distance entre les conducteurs.

L'induction magnétique réelle dépend de la valeur du courant de ligne. En se reportant aux profils de la figure 4 et aux courants de ligne maximum indiqués plus haut, les valeurs maximales d'induction magnétique sont mentionnées au tableau 1; elles indiquent une plage de 3 à 44 μT .

Le profil de l'induction magnétique dépend également de la configuration de la ligne. La figure 5 [4] présente des exemples pratiques de constructions typiques de lignes à haute tension avec les niveaux de champ magnétique correspondants.

Pour les lignes de 765 kV et de 400 kV les trois phases ont une configuration type en nappe et les lignes de 132 kV et 220 kV ont une configuration type en triangle. Cette dernière configuration conduit à des valeurs de champ magnétique beaucoup plus basses.

La figure 6 [3] montre la relation entre l'induction magnétique et la hauteur par rapport au sol, à mi-portée pour les lignes correspondant à la figure 4. On peut en déduire l'induction magnétique à des hauteurs au-dessus du sol dépassant 1 m en les appliquant aux valeurs mentionnées à la figure 4.

61000-2-7 © IEC:1998	- 23 -
 low voltage lines 	0,4 kA
 medium voltage lines 	0,6 kA
 110 kV and 220 kV lines 	1,0 kA
- 380 kV lines	2,0 kA
- 750 kV lines	3,0 kA

If necessary, more accurate current values may be obtained from supply utilities and railway companies. However, under fault conditions such as single phase or double phase short circuits, the magnetic fields of three conductors are not balanced, and the magnetic field may be increased by a factor of 20; such conditions may be expected to endure for a few seconds for low and medium voltage networks and for less than 0,2 seconds for high voltage networks.

Figure 4, left side, shows the envelope of the profile of the maximum magnetic flux density per kA of line current, for high voltage, single three-phase transmission lines, at mid-span at a distance x from the centre of the conductor system, and at a height of 1 m from ground level based on VDE data [3].

Figure 4, right side, shows the envelope of the profile of the magnetic flux density per kA of line current for medium and low voltage single three-phase distribution lines operating at 20 and 0,4 kV respectively, at a distance *x* from the centre of the conductor system at mid-span, and at a height of 1 m from ground level based on VDE data [3].

It can be observed that the profile curves:

- are lower at higher voltages because of the higher levels of the conductors above ground,
- and become broader at higher voltages because of the increasing distance between the conductors.

The actual magnetic flux density depends on the line current. Referring to the envelope profiles in figure 4 and to the maximum line currents given above, the range of the actual maximum magnetic flux is summarized in table 1; it indicates a range of 3 μ T to 44 μ T.

The magnetic flux profile depends also on the line configuration. Figure 5 [4] shows practical examples of actual high voltage lines (with an "oscillation" of the maximum value).

The 765 kV and 400 kV lines have a flat configuration of three phases and the 132 kV and 220 kV lines have a trifoil configuration. The latter configuration leads to significantly lower magnetic field values.

Figure 6 [3] shows the dependence of the magnetic flux density on the height above ground at mid-span of the lines considered in figure 4. It may be used to deduce the magnetic flux density at heights above ground in excess of 1 m by application of the values given in figure 4.

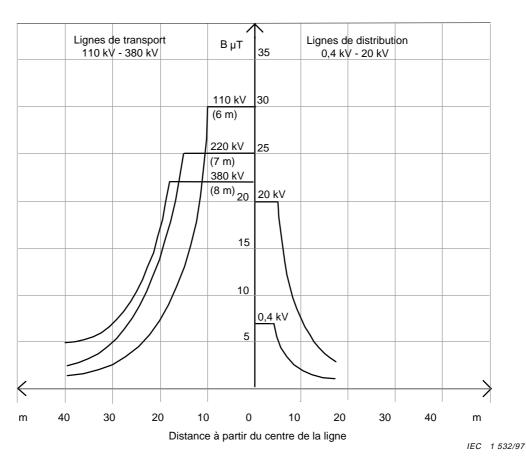


Figure 4 – Profil enveloppe de l'induction magnétique maximale de lignes aériennes à simple circuit et à configuration en nappe mesurées horizontalement à partir du centre de la ligne à 1 m au-dessus du sol et à la distance d'isolement minimale à mi-portée

Tableau 1 - Valeurs de l'induction magnétique maximale générée par les lignes électriques

Tension de la ligne	Induction maximale par kA	Courant maximal	Induction magnétique maximale réelle
kV	ВμТ	kA	ΒμΤ
380	22	2	44
220	25	1	25
110	30	1	30
20	20	0,6	12
0,4	7	0,4	3

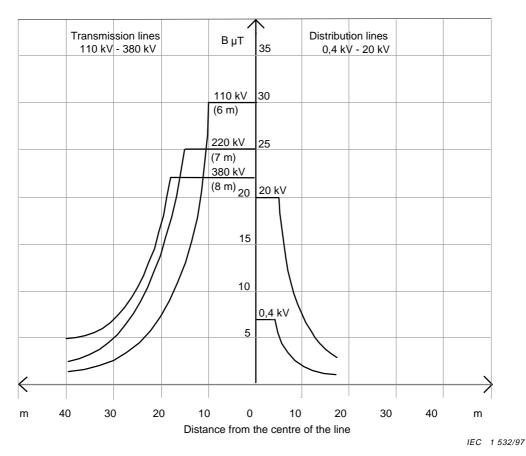


Figure 4 – Envelope of the maximum magnetic flux of single circuit, flat configuration overhead lines measured horizontally from the centre of the line 1 m above ground level at minimum ground clearances at mid-span

Table 1 – Range of magnitude of the maximum magnetic flux density produced by power lines

Line voltage	Maximum flux per kA	Maximum current	Maximum actual magnetic flux
kV	ВμТ	kA	ВμТ
380	22	2	44
220	25	1	25
110	30	1	30
20	20	0,6	12
0,4	7	0,4	3

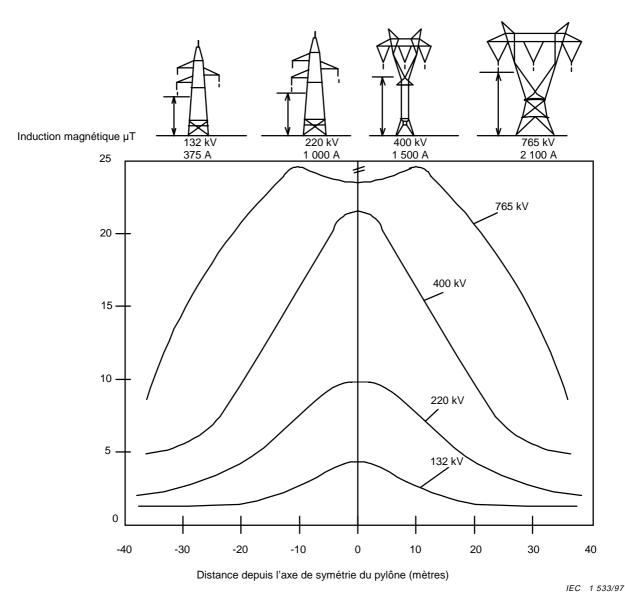


Figure 5 – Valeurs de l'induction magnétique des lignes haute tension dans des conditions de charge moyenne à 1 m au-dessus du sol

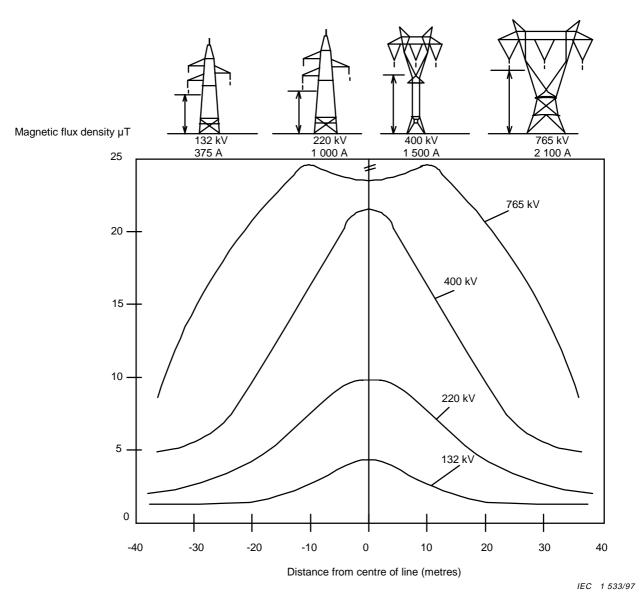


Figure 5 – Examples of magnetic flux densities, 1 m above ground, associated with HV lines under average load conditions

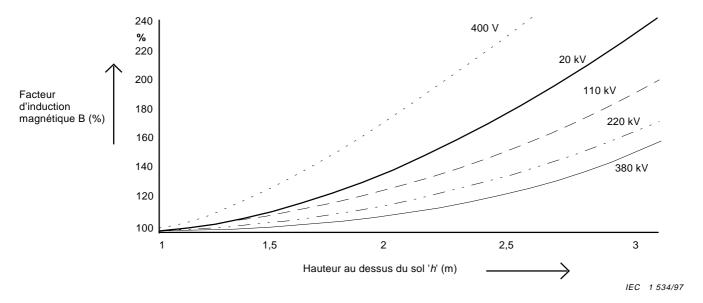


Figure 6 – Relation entre l'induction magnétique et la hauteur au-dessus du sol jusqu'à la distance minimum autorisée pour des lignes triphasées de 400 V à 380 kV et des câbles conducteurs de chemins de fer de 20 kV.

La valeur de l'induction magnétique est donnée en pourcentage par rapport à l'induction magnétique maximale à un point situé à 1 m au dessus du sol à mi-portée.

Cette relation n'est valable que pour des configurations en nappe des conducteurs de phase.

5.1.2 Lignes haute tension à courant continu

Les figures 7 [3] et le tableau 2 présentent les valeurs d'induction magnétique caractéristiques de lignes aériennes haute tension type à courant continu. La figure 6 [3] présente les facteurs de multiplication en pourcentage pour des points de référence situés à une hauteur de h m au-dessus du sol. Toutes les caractéristiques des lignes à courant continu sont utilisées de la même manière que dans le cas des lignes à courant alternatif.

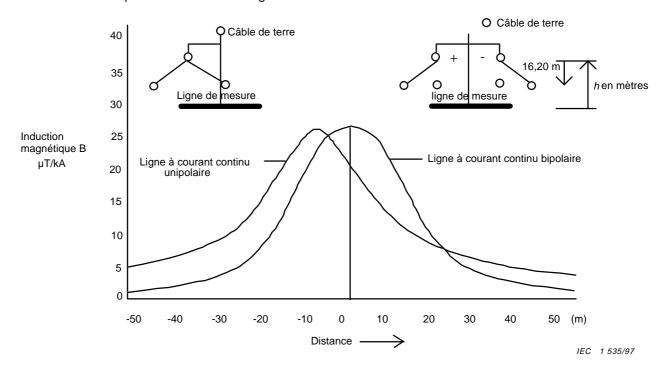


Figure 7 – Courbe de l'induction magnétique maximale par kA de courant de charge au voisinage d'une ligne aérienne haute tension à courant continu exploitée à une tension de +450 kV ou de ±450 kV en un point situé à 1 m au-dessus du sol

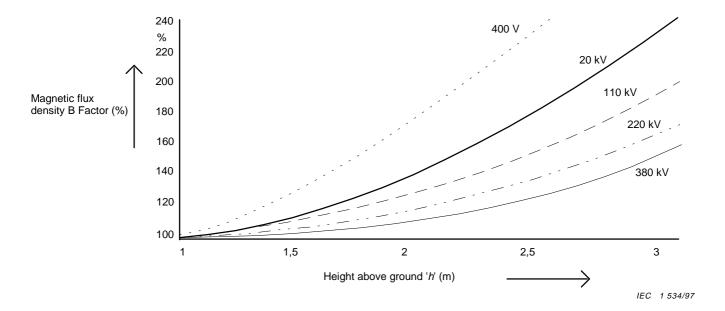


Figure 6 – Dependence of the magnetic flux density on the height above ground up to the minimum permitted distance from 400 V to 380 kV three-phase lines and 20 kV railway contact wires at minimum ground clearances in mid-span referred to the maximum magnetic flux density at 1 m above ground and valid only for flat configuration of phase conductors

5.1.2 HVDC lines

Figure 7 [3] gives magnetic flux density characteristics of typical high-voltage d.c. overhead lines and figure 6 [3] gives the multiplying factors in terms of percentage for reference points at height h m above ground level. All the d.c. characteristics are used in the same manner as the a.c. line characteristics.

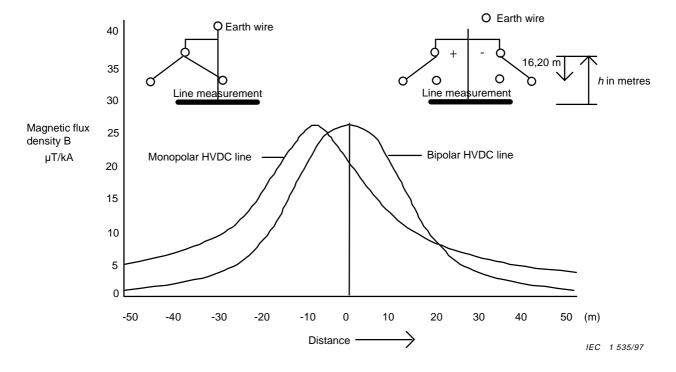


Figure 7 – Curve of the magnetic flux density per kA operating current in the vicinity of a high-voltage d.c. overhead line with an operating voltage of +450 kV or ±450 kV at a point 1 m above the ground

Tableau 2 – Induction magnétique en μT par kA de courant de charge pour des lignes aériennes haute tension pour différentes tensions d'exploitation et de hauteurs de pylône

		Ligne monopolaire			L	igne bipolair	е
Tension kV	Hauteur m	Max.	Distance -10 m	Distance -20 m	Max.	Distance ±10 m	Distance ±20 m
250	23	31	25	13	31	15	5
450	30	25	23	14	25	19	8
600	30	21	21	10	21	18	9

5.2 Câbles souterrains

5.2.1 Câbles à un conducteur

Le tableau 3 présente des valeurs typiques d'induction magnétique pour des environnements de réseaux d'alimentation équipés de systèmes de câbles à un conducteur.

Tableau 3 – Valeurs typiques de l'induction magnétique en μT en environnement de systèmes d'alimentation de câbles à un conducteur

	Distance horizontale à partir de l'installation			
Réseau d'alimentation	0 m	10 m	20 m	30 m
Alimentation des logements en 240/415 V	1,3	0,3	Inférieur à 0,1 μT	
Réseau de distribution à 66 kV	2,1	0,7	0,3 0,1	
Câble 220 kV	15,0	0,6	0,2	< 0,1
Ligne aérienne 220 kV à deux circuits	5,0	1,2	0,2	< 0,1

Dans le cas de la configuration en nappe de la figure 8, à différentes profondeurs (h) et distances (a) entre les câbles, sans prendre en compte l'effet d'écran des gaines des câbles, les valeurs d'induction magnétique du tableau 4 sont des valeurs représentatives correspondant à un courant d'exploitation de 500 A par phase. On fixe l'origine x=0 m à partir de laquelle on mesure les distances des emplacements, au niveau du câble du milieu.

Table 2 – Magnetic flux density in μT per kA operating current of high-voltage overhead lines at various line voltages and tower heights

	Monopolar line				Bipolar line		
Voltage kV	Height m	Max.	Distance -10 m	Distance -20 m	Max.	Distance ±10 m	Distance ±20 m
250	23	31	25	13	31	15	5
450	30	25	23	14	25	19	8
600	30	21	21	10	21	18	9

5.2 Underground cables

5.2.1 Single-conductor cables

Table 3 gives typical environment flux densities for locations associated with supply networks having single-conductor cable systems.

Table 3 – Typical magnetic flux density in μT , associated with supply network single-conductor cable systems

	Horizontal distance from installation			
Supply network	0 m	10 m	20 m	30 m
240/415 V house supplies	1,3	0,3	Less than 0,1 μT	
66 kV distribution supply	2,1	0,7	0,3	0,1
220 kV cable	15,0	0,6	0,2	Less than 0,1
220 kV overhead double circuit	5,0	1,2	0,2	Less than 0,1

For the flat configuration shown in figure 8, and for different depths (h) and spacings (a) between the individual cables, without taking account of the screening effect on the cable sheaths, the magnetic flux densities shown in table 4 are representative of typical values associated with an operating current of 500 A per phase. The reference point x = 0 m, from which location distances are measured, is assigned to the centre cable.

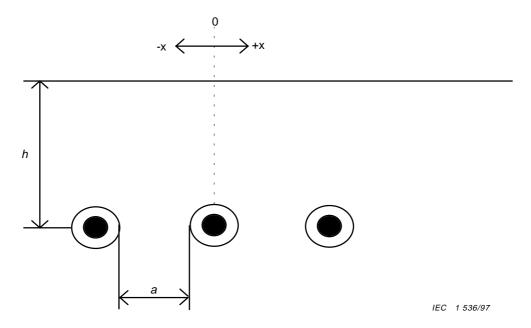


Figure 8 - Configuration de câbles à un seul conducteur posés en nappe

On rencontre des champs semblables à ceux donnés dans ce chapitre au voisinage des câbles basse tension à configuration en nappe reliés à des transformateurs moyenne tension installés à l'intérieur des bâtiments ainsi qu'au voisinage des câbles principaux de distribution qui font partie des installations électriques des consommateurs.

La courbe qualitative de la figure 9 [3] représente l'induction magnétique dans le cas du tableau 4, ligne 5, et montre que celle-ci peut être atténuée en posant les câbles à une plus grande profondeur et en réduisant les distances entre conducteurs.

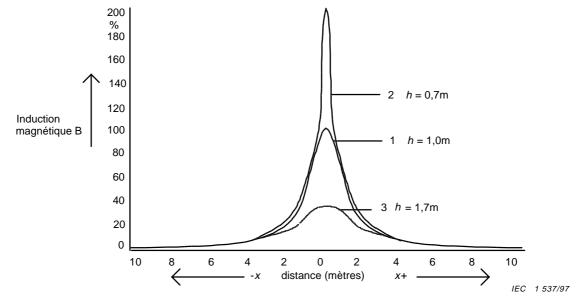


Figure 9 – Comparaison des valeurs d'induction magnétique des câbles à un seul conducteur posés à des profondeurs de 0,7 m (courbe 2), 1,7 m (courbe 3), avec un câble posé à une profondeur de 1 m (courbe 1).

Les valeurs d'induction magnétique sont exprimées en pourcentage de la valeur maximum correspondant à la courbe 1. La configuration du câble est celle présentée en figure 9 avec les dimensions correspondant aux caractéristiques fournies dans le tableau 4, ligne 5.

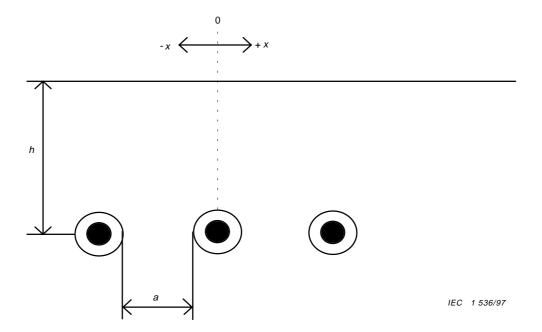


Figure 8 - Configuration of single-conductor cables laid in flat formation

Similar fields to those defined in this section occur in the vicinity of low-voltage flat configuration cables connected to medium voltage transformers installed within buildings, and main distribution cables forming part of consumers' electrical installations.

Figure 9 [3] gives a qualitative curve of magnetic flux densities on the basis of values in table 4, line 5, and demonstrates the reductions achieved by laying cables at greater depth and reduced spacing.

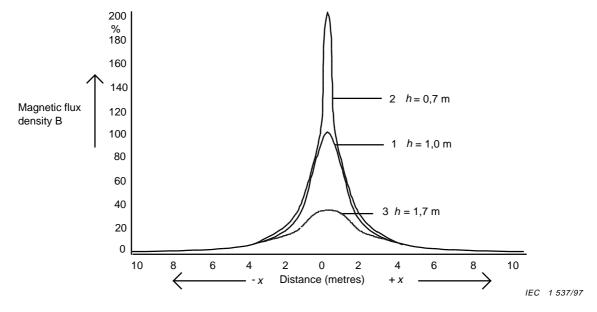


Figure 9 – Comparison of magnetic flux density characteristics of single core cables laid at depths of 0,7 m (curve 2), 1,7 m (curve 3), with a cable laid at a depth of 1 m (curve 1)

Magnetic flux densities are expressed as a percentage of the maximum value associated with curve 1. The cable configuration is as figure 9 with dimensions corresponding to table 4, line 5.

Tableau 4 – Induction magnétique des réseaux de câbles triphasés à un seul conducteur par câble en configuration de type nappe et à des courants d'exploitation de 500 A (voir figure 8)

Diamètre du câble	Profondeur <i>h</i>	Distance entre les câbles <i>a</i>	Induction magnétique µT à une distance +x ou -x du centre du câble m					
m	m	m						
			0	2	4	6	8	10
	1	0,02	8,6	1,7	0,5	0,2	0,1	0,09
0,03	0,7	0,02	17,6	1,9	0,5	0,2	0,1	0,09
(BT	1	0,05	13,8	2,8	0,8	0,4	0,2	0,1
MT)	0,7	0,05	28	3,1	0,8	0,4	0,2	0,1
	1*	0,07*	17,2	3,5	1	0,5	0,3	0,2
	0,7	0,07	34,7	3,9	1,1	0,5	0,3	0,2
0,1	1,7	0,18	17,5	7,6	2,8	1,3	0,8	0,5
(HT)	1	0,18	48,5	10,5	3,1	1,4	0,8	0,5

On peut déduire proportionnellement les valeurs d'induction magnétique pour d'autres courants d'exploitation.

Dans le cas de faisceaux de câbles à un seul conducteur et posés en triangle, les inductions magnétiques sont à peu près équivalentes à celles des câbles multiconducteurs triphasés.

5.2.2 Câbles multiconducteurs

Les tableaux 5 et 6 [3] donnent des valeurs d'induction magnétique dans le cas de câbles composites triphasés avec neutre alimentant respectivement des charges équilibrées et déséquilibrées. Une comparaison entre ces tableaux montre que, dans le cas d'une charge équilibrée, le champ magnétique est plus élevé à proximité du câble alors que, dans le cas d'une charge déséquilibrée, il est plus élevé à une distance plus éloignée.

Tableau 5 – Induction magnétique des câbles multiconducteurs posés à des profondeurs de 0,7 m et 1 m avec des courants d'exploitation symétriques de 500 A par phase

Profondeur h	Induction magnétique µT						
m	à une distance de +x ou -x à partir du centre du câble m						
	0	2	4	6	8	10	
1	3,2	0,6	0,19	0,09	0,05	0,04	
0,7	6,4	0,7	0,2	0,09	0,05	0,04	

Table 4 – Magnetic flux densities of three-phase systems with single-conductor cables in flat configuration at operating currents of 500 A (figure 8 refers)

Cable diameter		Spacing between the individual conductor cables	Magnetic flux density μΤ					
m	m	a m	at distance +x or -x from the centre of the cable					able
			0	2	4	6	8	10
	1	0,02	8,6	1,7	0,5	0,2	0,1	0,09
0,03	0,7	0,02	17,6	1,9	0,5	0,2	0,1	0,09
(LV	1	0,05	13,8	2,8	0,8	0,4	0,2	0,1
MV)	0,7	0,05	28	3,1	0,8	0,4	0,2	0,1
	1*	0,07*	17,2	3,5	1	0,5	0,3	0,2
	0,7	0,07	34,7	3,9	1,1	0,5	0,3	0,2
0,1	1,7	0,18	17,5	7,6	2,8	1,3	0,8	0,5
(HV)	1	0,18	48,5	10,5	3,1	1,4	0,8	0,5
* See figur	re 9.	•						

The magnetic flux densities can be converted on a linear basis for other operating currents.

With bundled single-conductor cables in a triangular configuration, the magnetic flux densities are approximately the same as multi-conductor cables with three-phase conductors.

5.2.2 Multi-conductor cables

Tables 5 and 6 [3] contain magnetic flux density values appropriate to three-phase with neutral composite cables carrying balanced and unbalanced loads respectively. Comparison of these tables demonstrates that magnetic fields are higher both in proximity to cables with balanced loads, and where remote from cables with unbalanced loads.

Table 5 – Magnetic flux densities of multi-conductor cables laid at depth of 0,7 m and 1 m with symmetrical operating currents of 500 A per phase

Depth <i>h</i>	Magnetic flux density μΤ						
m	at distance + x or - x from the centre of the cable						
	0	2	4	6	8	10	
1	3,2	0,6	0,19	0,09	0,05	0,04	
0,7	6,4	0,7	0,2	0,09	0,05	0,04	

Tableau 6 – Induction magnétique de câbles multiconducteurs basse tension posés à des profondeurs de 0,7 m et 1 m avec des courants de phase asymétriques de 500 A, 450 A, 400 A et un courant de neutre de 90 A

Profondeur h	Induction magnétique µT à une distance de +x ou -x à partir du centre du câble m							
m								
	0	2	4	6	8	10		
1	2,6	0,66	0,26	0,15	0,10	0,08		
0,7	5,4	0,75	0,27	0,15	0,11	0,08		

Dans le cas des câbles triphasés basse tension, le maillage du conducteur de neutre peut avoir pour effet que la somme des courants ne soit pas égale à zéro. Ceci a pour conséquence un déséquilibre de la charge des câbles. Le tableau 6 présente un exemple de valeurs d'induction magnétique pour des câbles multiconducteurs basse tension ayant une charge déséquilibrée.

5.3 Locaux haute et moyenne tension des compagnies d'électricité

Sur le plan pratique, ne sont significatives que les valeurs maximales de champ magnétique à l'intérieur de sites fermés ou clôturés et dans des lieux adjacents à des sites dont l'accès est public. Dans les zones à l'intérieur de sites, occupées régulièrement par du personnel qui utilise du matériel de type résidentiel, les valeurs des champs magnétiques sont par expérience typiquement inférieures à 1 μ T.

Le tableau 7 [5] présente des valeurs d'induction magnétique dans des conditions de charge normales à proximité de matériels haute tension.

Table 6 – Magnetic flux densities of multi-conductor low-voltage cables laid at depths of 0,7 m and 1 m with asymmetric phase currents of 500 A, 450 A, 400 A; and a neutral conductor current of 90 A

Depth h	Magnetic flux density μΤ								
m		at distance +x or -x from the centre of the cable							
	0	2	4	6	8	10			
1	2,6	0,66	0,26	0,15	0,10	0,08			
0,7	5,4	0,75	0,27	0,15	0,11	0,08			

In the case of low-voltage three-phase cables, intermeshing of the neutral conductor can have the effect that the sum of the currents within a three-phase cable is not zero. This results in an unbalanced loading on the cables. Table 6 gives the magnetic flux densities for an example relating to unbalanced loading of multi-conductor low-voltage cables.

5.3 Power supply authorities' medium and high voltage premises

Only the maximum magnetic field values within enclosed or fenced sites, and the values adjacent to the sites where there is public access, are of practical significance. Areas within sites which are occupied regularly by staff, who use residential type equipment, experience magnetic fields typically below 1 μT .

Table 7 [5] contains values of magnetic field flux densities under normal loading conditions, associated with typical plant contained in high-voltage premises.

Tableau 7 – Valeurs typiques maximales d'induction magnétique au niveau du sol dans les locaux haute tension des compagnies d'électricité

	Emplacement	Tension du réseau	Induction magnétique maximale	Induction magnétique au périmètre de l'installation
		kV	μΤ	μΤ
1	Appareillage principal du poste			
(a)	Jeu de barres rigide de faible hauteur équipé d'un appareillage conventionnel extérieur	500 220 66	20 32 35	5
(b)	Jeu de barres tendu en hauteur et équipé d'un appareillage conventionnel extérieur	500	16	5
(c)	Jeu de barres fermé équipé d'un appareillage à isolation gazeuse	500	110	5
2	Postes électriques			
(a)	Câble à appareillage conventionnel de l'appareillage de poste principal extérieur	500 220 220	25 60 30	5
(b)	Appareillage à isolation gazeuse	220	20	
(c)	Enceinte de transformateurs	220 500	240 230	10 10
(d)	Local de turbine, d'alternateur			
	Jeu de barres à phases isolées	14	100	
	Tableau de tranche	-	60	
	Alternateur	-	22	
	Gros moteurs	-	88	
(e)	Salle de commande		45	
	Salle de relayage		35	
3	Zones des postes intérieurs 66/11 kV			
	Poste en général		13	
	Transformateur		25	
	Derrière l'appareillage		35	
4	Installation particulière – compensateur statique d'énergie réactive (à la clôture d'enceinte)		1 000	50

NOTE – Ces valeurs correspondent aux zones normales d'accès du personnel d'exploitation; elles peuvent être supérieures d'un ordre de grandeur au voisinage de l'installation et des conducteurs.

Table 7 – Typical maximum magnetic flux density levels at ground level in power supply authorities' high-voltage premises

Location		System voltage	Maximum flux density	Magnetic flux density at the installation perimeter
		kV	μΤ	· μΤ
1	Main system station switchyards			
(a)	Outdoor conventional switchgear exposed low level rigid bus	500 220 66	20 32 35	5
(b)	Outdoor conventional switchgear strung high level bus	500	16	5
(c)	Gas insulated switchgear enclosed bus	500	110	5
2	Power Stations			
(a)	Main station switchyard outdoor conventional switchgear cable	500 220 220	25 60 30	5
(b)	Gas insulated switchgear	220	20	
(c)	Transformer enclosure	220 500	240 230	10 10
(d)	Turbine – Generator Housing			
	Phase isolated bus	14	100	
	Unit board	_	60	
	Generator	_	22	
	Large motors	_	88	
(e)	Control room		45	
	Relay room		35	
3	Indoor Zone Substations 66/11 kV			
	Substation General		13	
	Transformer		25	
	Behind switchgear		35	
4	Specific Plant – Static var compensator (at surrounding fence)		1 000	50

NOTE – Values relate to the normal access areas of operating staff; they can be higher by an order of magnitude adjacent to plant and conductors.

5.4 Locaux basse tension des compagnies d'électricité

Les locaux basse tension dont il est question dans ce chapitre sont les postes électriques qui abritent un appareillage moyenne tension, des transformateurs et des tableaux de distribution basse tension avec des raccordements de câbles. Leur surface au sol varie généralement entre 12 m² et 26 m² et leur hauteur varie de 3 m à 5 m. Ils servent à alimenter les consommateurs basse tension et, dans le cas de clients commerciaux et industriels importants, ils sont souvent situés dans leurs bâtiments. Ces postes génèrent un environnement électromagnétique industriel dont l'influence peut s'étendre sur environ 10 m au-delà de leur enceinte physique et influencer le matériel commercial ou résidentiel. Voir figure 10.

Des mesures effectuées à l'aide de bobines de champ sont influencées considérablement par la présence de courants harmoniques et c'est pourquoi, pour chaque emplacement, on indique deux valeurs, l'une à 50/60 Hz et l'autre entre 0 kHz et 2 kHz. Le tableau 8 présente des valeurs maximales caractéristiques de champ magnétique pour un tel environnement.

Tableau 8 – Valeurs de champ magnétique dans les locaux des installations basse tension des compagnies d'électricité

Lieu	Valeur du champ magnétique A/m	
	50 Hz	0 kHz – 2 kHz
A proximité de l'appareillage moyenne tension	50	60
A proximité des raccordements d'un transformateur	200	300
Au-dessus d'un transformateur	15	60
A proximité de câbles basse tension	20	70
A proximité du toit mais à l'extérieur	5	30

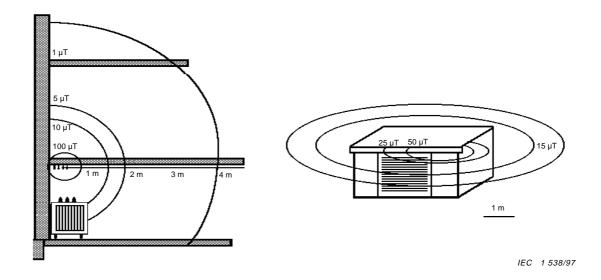


Figure 10 – Distribution du champ magnétique correspondant à un poste équipé d'un transformateur MT/BT de 315 kVA

5.4 Power supply authorities' low voltage premises

The low-voltage premises considered in this section are substations containing medium-voltage switchgear, transformers and low-voltage distribution boards with cable connections. Generally they have a floor area of 12 m² to 26 m² and a height of 3 m to 5 m. They are used to afford supply at low-voltage to consumers' premises and, in the case of large commercial and industrial consumers, they are often integrated into their buildings. These substations can produce industrial electromagnetic environments which extend for approximately 10 m from their physical enclosures and influence commercial or residential equipment; see figure 10.

Measurements taken with field coils are influenced considerably by the presence of harmonic currents and for this reason two values are stated for each location, one at 50/60 Hz and one at 0 kHz to 2 kHz. Table 8 contains typical maximum values of magnetic field for this environment.

Table 8 – Typical magnetic field values associated with supply authorities' low-voltage premises

Location	Magnetic field value A/m		
	50 Hz	0 kHz – 2 kHz	
Adjacent to medium-voltage switchgear	50	60	
Adjacent to transformer connections	200	300	
Above a transformer	15	60	
Adjacent to low-voltage cables	20	70	
Adjacent to but outside the roof	5	30	

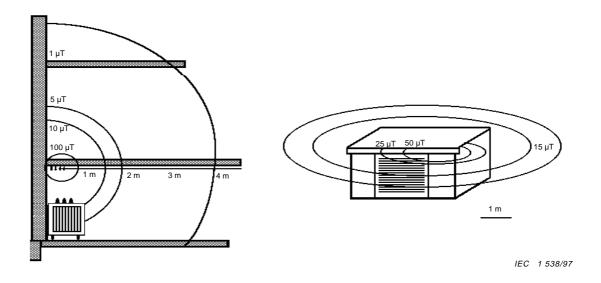


Figure 10 – Magnetic field distribution associated with a substation equipped with an MV/LV transformer 315 kVA

6 Environnement des réseaux de traction de chemin de fer

On peut diviser les réseaux de traction électriques en deux grandes catégories.

a) Réseaux basse tension à courant continu

La traction électrique s'est développée avec les moteurs à courant continu fonctionnant dans la plage de tension 500 V – 3 000 V. Le courant est acheminé par un rail d'alimentation (troisième rail) ou encore par un câble aérien et retourne en partie par les rails normaux et en partie par la terre. Voir figure 11 [3]. Le réseau de traction est alimenté à partir du réseau moyenne tension par l'intermédiaire de redresseurs triphasés générant une tension d'ondulation de fréquence égale à six fois la fréquence du réseau.

Les valeurs de champ magnétique pour les systèmes à courant continu à troisième rail sont identiques à celles des réseaux de traction aériens présentés à la figure 11.

b) Réseaux moyenne tension à courant alternatif

Les tensions d'exploitation de ces réseaux varient de 15 kV à 25 kV et leur fréquence est de 16 2/3 Hz, 50 Hz ou 60 Hz. Le courant est acheminé par un câble aérien avec ou sans utilisation d'autotransformateurs ou de transformateurs boosters qui permettent de diriger le courant de retour des rails vers le câble de retour aérien. Les valeurs de champ magnétique sont équivalentes pour les deux types d'alimentation et sont présentées graphiquement à la figure 12 [3].

Il faut noter que le champ magnétique en un point particulier, sur ou au voisinage d'une voie de chemin de fer électrique varie énormément selon la position de la locomotive par rapport aux points d'alimentation électrique. Les valeurs de champ des figures 11 et 12 sont des valeurs maximales par kA de courant de traction. Une augmentation du nombre de voies n'augmente pas l'induction magnétique étant donné que l'allongement du trajet du courant provoque l'annulation ou la réduction des champs.

On peut déduire proportionnellement les valeurs d'induction magnétique pour d'autres valeurs de courants de traction. Les courants de traction maximum pour un fonctionnement normal sont les suivants:

Réseaux alternatifs monophasés:

sur des lignes secondaires à voie unique: jusqu'à environ 0,5 kA
 sur des lignes principales à deux voies: jusqu'à environ 2,0 kA

sur des lignes de banlieue: jusqu'à environ 2,5 kA (ligne principale et ligne

de banlieue côte à côte)

Réseaux à courant continu:

lignes de tramway: jusqu'à environ 1 kAlignes de métro: jusqu'à environ 4 kA

6 Traction system environment

Electrical traction systems may be broadly divided into two categories.

a) Low-voltage d.c. systems

Traction power is developed by d.c. motors operating in the voltage range $500 \text{ V} - 3\,000 \text{ V}$. Current is supplied via a live feed rail (third rail system) or overhead wire and returns partly through the normal rails, partly through the earth; see figure 11 [3]. The system is supplied from the medium-voltage network through three-phase rectifiers giving a ripple fundamental at six times the network frequency.

Magnetic field values for d.c. third rail systems are similar to those presented graphically for overhead wire systems as presented in figure 11.

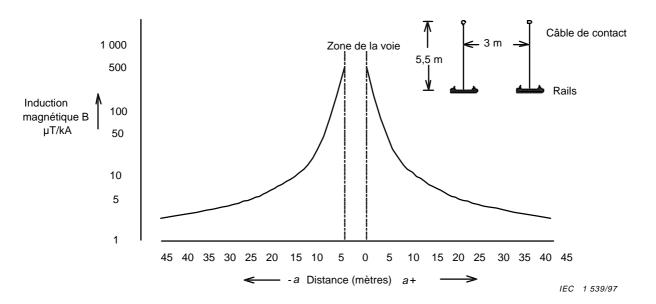
b) Medium-voltage a.c. systems

Operating voltages range from 15 kV to 25 kV, the supply frequency being 16 2/3 Hz, 50 Hz or 60 Hz. Current is supplied via overhead wire with or without the use of auto or booster transformers to direct the return current from the rails to the overhead return wire. Magnetic field values are similar for both types of supply system and are presented graphically in figure 12 [3].

It should be noted that the magnetic field at any particular place, on or adjacent to a traction route, will vary considerably according to the position of the moving traction engine relative to the points of electricity supply. The field values in figures 11 and 12, are maximum values per kA of traction current. Increasing the number of tracks in a route does not increase field flux densities as the increase in current paths causes fields to be cancelled out or reduced.

Linear conversion of the magnetic flux density is allowable for other traction currents. Typical maximum traction currents appropriate to normal running conditions are as follows.

Single-phase a.c. systems:

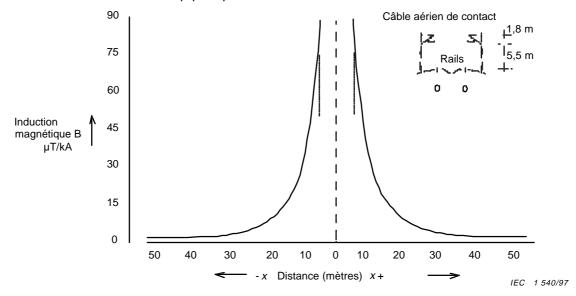

on single track branch lines: up to about 0,5 kAon double track main lines: up to about 2,0 kA

on suburban lines:
 up to about 2,5 kA (main line and suburban line

running side by side)

DC systems:

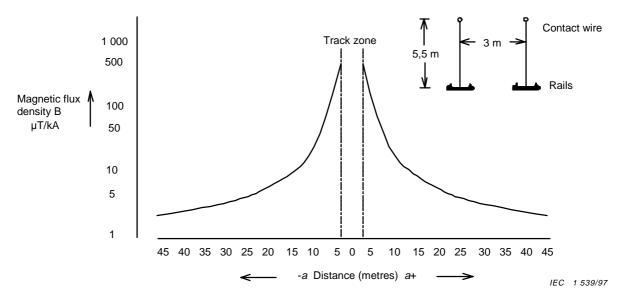
tram lines: up to about 1 kAunderground lines: up to about 4 kA



NOTE - Cette figure suppose que 50 % du courant de traction passe par les rails.

Figure 11 – Courbe montrant l'induction magnétique maximale par kA de courant de traction au voisinage d'une ligne de chemin de fer électrique à courant continu alimentée par un conducteur de contact aérien

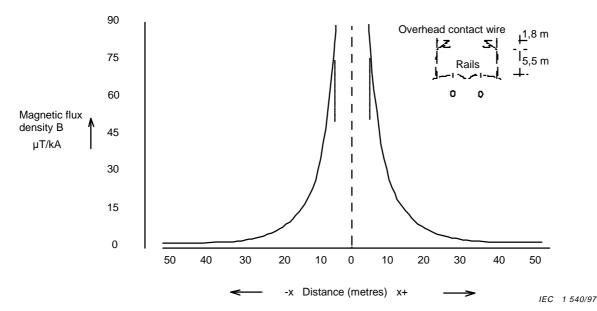
Pour x = 0: le conducteur de contact est situé au-dessus du milieu de la voie; le point situé au-dessus du niveau du sol se trouve dans chaque cas à une distance x et à 1 m au-dessus de la surface supérieure du rail (en dehors de la voie).


La courbe de l'induction magnétique dans le cas des systèmes à rail de contact se situe entre la courbe correspondant à 1,0 kA de la figure 11 et celle équivalente correspondant à 0,5 kA, étant donné la distance beaucoup plus petite entre le rail sous tension et les rails de retour.

NOTE – Les valeurs et la forme de la courbe varient en amplitude avec le temps et dépendent de la distance à partir du poste d'alimentation et de la proportion de courant passant par les rails et par la terre. Dans cette figure, la proportion de courant passant par les rails est estimée à 50 % du courant de traction.

Figure 12 – Courbe montrant l'induction magnétique maximale par kA de courant de traction au voisinage d'une ligne de chemin de fer électrique à courant alternatif (16 2/3 Hz et 50/60 Hz) alimentée par un conducteur aérien

Pour x = 0: le conducteur de contact est situé au-dessus du milieu de la voie; le point situé au-dessus du niveau du sol se trouve dans chaque cas à une distance x et à 1 m au-dessus de la surface supérieure du rail (en dehors de la voie).



NOTE - The calculation was carried out for the assumption that 50 % of the current is passing through the rails.

Figure 11 – Curve for maximum magnetic flux density per kA traction current in the vicinity of a d.c. railway line with overhead contact-wire system

For x = 0: The contact wire is above the centre of the track; the above-ground point in each case is at a distance x and 1 m above the top surface of the rail (outside the track zone).

The curve for the magnetic flux density in the case of contact rail systems lies between the 1,0 kA curve and 0,5 kA equivalent curve of figure 11, because of the significantly smaller distance between the live rail and the return rails.

NOTE – The values and the curve shape vary in magnitude with time and are dependent on the distance from the feeding sub-station and the proportion of current passing through the running rails and through the earth. For this figure, the proportion of the current passing through the running rails is assumed to be 50 % of the traction current.

Figure 12 – Curve showing maximum magnetic flux density per kA traction current in the vicinity of a railway line with a.c. overhead contact wire system (16 2/3 Hz and 50/60 Hz)

For x = 0: The contact wire is above the centre of the track; the above-ground point in each case is at a distance x and 1m above the top surface of the rail (outside the track zone).

7 Environnement industriel

Les environnements industriels se caractérisent par des charges fluctuantes monophasées et triphasées importantes qui conditionnent fortement l'environnement de champ magnétique. Les installations de câbles sont normalement protégées par un écran qui peut être un feuillard métallique, un blindage des fils ou une gaine métallique. Il existe toutefois des installations où l'on rencontre des jeux de barres ouverts, en particulier dans des usines d'électrogalvanisation. Des ponts roulants peuvent également utiliser des conducteurs d'alimentation nus.

La zone d'influence d'un champ magnétique rayonné par un matériel particulier dépend de l'importance du courant consommé et il est donc nécessaire de rapporter les valeurs de champ magnétique à la taille du matériel.

Des valeurs de champ magnétique issues de mesures effectuées sur site sur du matériel industriel sont données ci-dessous.

7.1 Matériel de soudage

Le terme «soudure à l'arc» recouvre un grand nombre de techniques de soudage. La méthode la plus couramment utilisée pour le soudage des petits objets est la soudure à l'arc manuelle qui consomme des courants continu ou alternatif pouvant atteindre 600 A.

Dans la soudure par fusion sous flux, on établit un arc électrique entre une électrode nue continue et la pièce à souder. On recouvre le cordon de soudure d'une poudre qui enveloppe entièrement l'arc et la fusion qui ne sont ainsi pas visibles pendant la procédure. Ce type de soudure utilise des courants relativement élevés (jusqu'à 1 100 A).

Une forme particulière de soudure à résistance est appelée soudure par étincelage et est utilisée pour souder des plats, des profilés et des tôles. Ce type de soudure utilise presque toujours des courants alternatifs allant jusqu'à 100 kA.

La soudure par points et la soudure continue sont basées sur le même principe que la soudure par étincelage et sont réalisées sans adjuvant.

L'affinage sous laitier électroconducteur est un type de soudage automatique de lingot conçu à l'origine pour souder de très grosses pièces. Le matériel utilisant du courant continu est beaucoup plus fréquent que le matériel utilisant du courant alternatif.

Le matériel de soudage correspond normalement à des environnements industriels sévères. Le tableau 9 [8] donne des plages de valeurs représentatives de champ magnétique pour différents procédés de soudage.

7 Industrial environment

Industrial environments are characterised by large single- and three-phase fluctuating loads which are almost entirely responsible for the magnetic field environment. Cable installations are normally screened by sheet metal trunking or wire armouring or metal sheaths, although there are situations, especially in electro-plating factories when open bus-bars are used; overhead travelling cranes may also use open wire supply conductors.

The extent to which a type of equipment creates a magnetic field depends on the magnitude of the current taken from the electricity supply and therefore it is necessary to relate magnetic field data to the size of the equipment.

Magnetic field data which has been obtained from measurements at operator locations associated with industrial equipment is presented in the following clauses.

7.1 Welding equipment

The term arc welding covers a large number of welding techniques. The most common welding method for small objects is manual metal arc welding (MMA welding), in which currents of up to 600 A, a.c. or d.c., are used.

In submerged melt welding an electric arc is established between a continuous, bare electrode and the workpiece. The seam is coated with a powder that totally envelopes the arc and melt, which are thus not visible during the procedure. This type of welding uses relatively large currents (up to 1 100 A).

A special form of resistance welding is called flash welding and is used for joining bars, profiled rods, and sheet iron. Alternating currents of up to 100 kA are almost invariably used.

Spot and seam welding are based on the same principle as flash welding and are carried out without additives.

Electroslag refining (ESR) is a type of automatic ingot welding and was originally designed for welding very large objects. Direct current equipment is far more common than alternating current.

Welding equipment is normally associated with heavy industrial environments. Representative ranges of magnetic field levels for various types of welding processes are listed in table 9 [8] as follows:

100-3 000

200-10 000 3 500-4 000

400-1 300

Courant Plage de valeurs du Fréquence Distance de la source champ magnétique kΑ Hz m μΤ 0,24-0,43 0,50 0-0,8 100-5 000 0,65-1,05 500-2 500 0.50 0,1-0,5

0,2-3,0

0,2-1,0

0,4-0,5

0,2-0,9

Tableau 9 - Soudage électrique

Note – Les mesures de champ magnétique incluent la fréquence fondamentale et les fréquences harmoniques dans la gamme 0 kHz – 10 kHz.

50

50

50

50

7.2 Fours à acier

Source de champ

Soudage par fusion

Soudage par points

Soudage sous laitier électroconducteur

Soudage continu

0.13-50

15-106

12

1,6-1,7

magnétique Soudage à l'arc

manuel

sous flux

Soudage par

étincelage

Dans un four à arc, la chaleur est produite par des arcs établis entre une électrode et le métal en fusion.

On utilise des fours à poche pour l'affinage. On obtient un acier de haute qualité grâce à une combinaison d'agitation par induction, de chauffage par arc et de dégazage par aspiration.

Dans un four à induction, la chaleur est produite par un courant alternatif qui génère des courants de Foucault dans le métal en fusion. Il existe deux types de fours à induction fonctionnant respectivement à la fréquence du secteur (50/60 Hz) et à haute fréquence (600 Hz). Le four à lit est également un autre type de four à induction.

On construit généralement des réchauffeurs à induction pour des applications spécifiques. Leur principe de chauffage repose sur l'utilisation de courants induits. Ils utilisent des fréquences jusqu'à 10 kHz.

La présence de fréquences élevées et de champs magnétiques intenses a pour conséquence que l'énergie du champ magnétique est élevée par rapport à d'autres types de fours. Ce type de matériel correspond normalement à des environnements industriels sévères. Le tableau 10 [8] présente des valeurs représentatives de champ magnétique pour différents types de four.

Table 9 - Electric welding

	Current	Frequency	Distance from source	Representative magnetic field range
Source of magnetic field	kA	Hz	m	μТ
Manual metal arc welder	0,24-0,43	0,50	0-0,8	100-5 000
Submerged melt welder	0,65-1,05	0,50	0,1-0,5	500-2 500
Flash welder	0,13-50	50	0,2-3,0	100-3 000
Spot welder	15-106	50	0,2-1,0	200-10 000
Seam welder	12	50	0,4-0,5	3 500-4 000
Electroslag	1,6-1,7	50	0,2-0,9	400-1 300

NOTE - Magnetic field measurements include fundamental and harmonic frequencies in the range 0 kHz - 10 kHz.

7.2 Steel furnaces

In an arc furnace the heat is generated by arcs that are established between an electrode and the molten metal.

Ladle furnaces are used for refining. High-class steel is obtained with a combination of inductive stirring, arc heating, and vacuum degassing.

In an induction furnace the heat is produced by alternating current, and this, in turn, causes eddy currents in the melt. Two types of induction furnace exist, driven by mains (50/60 Hz) and by high frequency (600 Hz), respectively. The channel furnace is also a type of induction furnace.

Induction heaters are usually built for specific purposes. The principle is that the heat in the material is obtained from induced currents. Frequencies of up to 10 kHz are used.

The combination of high frequency with high magnetic fields implies that the energy in the magnetic field is high compared with other types of furnace. This type of equipment is normally associated with heavy combination industrial environments. Representative ranges of magnetic field levels for various furnaces are listed in table 10 [8] as follows:

Tableau 10 - Fours à acier électrique

	Courant	Fréquence	Distance de la source	Valeurs type de champ magnétique	Remarques
Source des rayonnements	kA	Hz	m	μΤ	
Four à arc	3 × 8 à 3 × 40	50	2,0	100-1 000	
Agitateur à induction	2x0,6	10	2,0	200-300	Utilisé éventuellement en combinaison avec un four à arc
Four à poche	3 × 13 à 3 × 15	50	0,5-1,0	200-8 000	
Agitateur magnétique	2 × 0,8	1,6	1,0	100-200	Utilisé éventuellement en combinaison avec un four à arc
Four à induction	3 × (0,3 à 0,4)	50	0,6-0,9	100-900	
	3 × (0,6 à 1,2)	600	0,8-2,0		
Four à lit	2 × 1,2 à 2 × 1,5	50	0,6-3,0	100-400	
Four d'affinage sous laitier électro- conducteur	6	50	1,0-4,0	100-400	
Réchauffeur à induction	1-4	50-10 000	0,1-1,0	900-70 000	

NOTE – Les mesures de champ magnétique incluent la fréquence fondamentale et les fréquences harmoniques dans la gamme 0 kHz – 10 kHz.

7.3 Matériel industriel d'usage général

Le tableau 11 [9] ci-dessous présente une liste d'équipements que l'on peut trouver dans tous les environnements industriels ainsi que les valeurs correspondantes de champ magnétique.

Tableau 11 – Induction magnétique mesurée sur site correspondant à différents équipements et machines industriels

Sources	Courant nominal	Induction magnétique au courant nominal
	Α	μT
Machines à souder conventionnelles	20-280	5-350
Machines à souder sur lignes de production avec différents cycles de fonctionnement (fractions de seconde de marche/plusieurs secondes d'arrêt)	7 000-14 500	180-4 100
Tours	10,0	0,1
Broyeuses	10,0	0,5
Meuleuses	1,4-10,10	2,3-17,3
Machines à cisailles	6,6	21,0
Appareil pour électroérosion	3,5	1,4
Scies	2,2	0,2
Compresseurs	1,4	0,3
Machines à façonner	5,7	~0
Machines à roder	9,0	60,0
Cintreuses	5,2	0,5-5,9

Table 10 - Electric steel furnace

	Current	Frequency	Distance from source	Representative magnetic field range	Notes
Source of radiation	kA	Hz	m	μΤ	
Arc furnace	3×8 to 3×40	50	2,0	100-1 000	
Induction stirrer	2x0,6	10	2,0	200-300	Used when required in combination with an arc furnace
Ladle furnace	3×13 to 3×15	50	0,5-1,0	200-8 000	
Magnetic stirrer	2 × 0,8	1,6	1,0	100-200	Used when required in combination with an arc furnace
Induction furnace	$3 \times (0,3 \text{ to } 0,4)$	50	0,6-0,9	100-900	
	3 × (0,6 to 1,2)	600	0,8-2,0		
Channel furnace	$2 \times 1,2$ to $2 \times 1,5$	50	0,6-3,0	100-400	
Electroslag refining furnace	6	50	1,0-4,0	100-400	
Induction heater	1-4	50-10 000	0,1-1,0	900-70 000	

NOTE - Magnetic field measurements include fundamental and harmonic frequencies in the range 0 kHz-10 kHz.

7.3 Industrial equipment in general use

Table 11 [9] which follows, lists equipment which may be found in all industrial environments together with characteristic values of magnetic field.

Table 11 – Magnetic flux density measured at the operator locations associated with various machines and other industrial equipment

Sources	Rated current A	Flux density at rated current μT
Conventional welding machines	20-280	5-350
Welding machines in production lines with different duty cycles (fractions of a second on / seconds off)	7 000-14 500	180-4 100
Lathes	10,0	0,1
Milling machines	10,0	0,5
Grinding machines	1,4-10,10	2,3-17,3
Shearing machines	6,6	21,0
Apparatus for electroerosion	3,5	1,4
Saws	2,2	0,2
Compressors	1,4	0,3
Shaping machines	5,7	~0
Lapping machines	9,0	60,0
Bending machines	5,2	0,5-5,9

8 Environnement des bureaux commerciaux

Les petits bureaux à un seul étage sont soumis généralement à des champs magnétiques du même ordre de grandeur que ceux des environnements résidentiels. Dans le cas de bureaux à plusieurs étages, on rencontre un bruit de fond de champ magnétique plus élevé car les installations électriques transportent des courants importants et se comportent davantage comme des réseaux de distribution; il existe souvent une composante importante du courant harmonique de rang 3 dans les conducteurs de neutre. Dans les zones urbaines, les postes de distribution sont souvent situés à l'intérieur de locaux commerciaux et ceci a pour conséquence de créer des champs magnétiques très importants dans des bureaux situés à une distance de 10 m d'un poste électrique; voir 5.4 et figure 10. La valeur de 1 µT est représentative de l'induction magnétique présente au centre d'un bureau et non à proximité d'appareils électriques.

Le tableau 12 [9] présente des valeurs représentatives de champ magnétique pour diverses applications électriques. Le tableau 13 [12] complète le tableau 12 « pour l'environnement résidentiel », mais il faut noter que l'on a mesuré les valeurs de l'induction magnétique à proximité du matériel et non aux postes de travail.

Tableau 12 – Valeurs de l'induction magnétique mesurées au poste de travail de machines de bureau types

Sources	Plage de valeurs d'induction magnétique mesurées μΤ
Machine à écrire	3,2
Photocopieur	1,0-1,2
Terminal vidéo	1,2-1,4
Ordinateur personnel	0,2-0,7
Imprimantes	0,6-1,4

8 Commercial office environment

Small single-storey offices experience general levels of magnetic fields similar to those present in residential environments. Multi-storey offices experience higher background levels of magnetic fields because their electrical installations carry high currents and behave more like power distribution networks; often there is a large component of third harmonic current in neutral conductors. In urban areas it is common for distribution substations to be sited within commercial premises and this practice often produces very high levels of magnetic field in offices within 10 m of a substation; see 5.4 and figure 10. 1 μ T is representative of flux density in the centre of an office and not in proximity to any electrical appliances.

Representative values of magnetic field for various appliances are listed in table 12 [9]. Table 13 [12] in the residential environment section supplements table 12 but it should be noted that the flux densities have been measured in close proximity to equipment and not at operator locations.

Table 12 – Magnetic flux density measured at the operator location of typical office machinery

Sources	Range of measured flux density μT
Typewriter	3,2
Photostat machine	1,0-1,2
Video terminal	1,2-1,4
Personal computer	0,2-0,7
Printers	0,6-1,4

Tableau 13 - Valeurs types d'induction magnétique à proximité d'un matériel commercial

Source	Induction magnétique μΤ	Distance (3 cm sauf indication contraire)
Moniteur VGA n° 1	7,0	
Moniteurs à écran vert	4,4	
Moniteur VGA n° 2	4,4	
Terminal vidéo	4,4	
Fax	0,4	
Photocopieur n° 1	0,4	
Photocopieur n° 2	7,9	9
Lecteur CD	7,9	
Ventilateur	7,0	
Bouilloire	7,9	
Amplificateur audio à boucle inductive (complet)	2,0	
Amplificateur audio à boucle inductive (couvercle supérieur enlevé)	5,7	
Amplificateur de ligne 50 W 100 V (dans son châssis principal)	7,9	
Alimentation "ouverte" alimentant l'appareil ci-dessus	7,9	
Baie PA d'usine	0,8	
Appareil d'effacement Eprom	7,9	
Oscilloscope à double faisceau n° 1	7,9	10
Oscilloscope à double faisceau n° 2	7,9	
Générateur de signaux audio n° 1	7,9	
Générateur de signaux audio n° 2	5,0	
Générateur de fréquences radio	7,9	5

9 Environnement résidentiel - Appareils domestiques

9.1 Câblage intérieur des immeubles d'habitation

En général, le câblage intérieur et le matériel dans une habitation ne contribuent pas de manière importante au bruit de fond du champ magnétique. Toutefois, dans les immeubles contenant plusieurs appartements, les conditions peuvent être identiques à celles rencontrées dans les bâtiments commerciaux à plusieurs étages où des colonnes montantes et un poste électrique sont adjacents aux logements.

Le bruit de fond du champ magnétique à l'intérieur d'une résidence dépend de la proximité et de la charge des câbles du réseau d'alimentation et des lignes aériennes voisines. D'une manière générale, les valeurs sont dans la plage 0,01 $\mu T-10~\mu T.$ Dans certaines zones à forte population comme au Japon, des lignes aériennes sont autorisées à passer très près de bâtiments résidentiels à plusieurs étages et les champs peuvent par conséquent atteindre 100 $\mu T.$ Voir figure 13.

Dans les zones urbaines, il n'est pas rare que des postes de distribution se trouvent à l'intérieur d'immeubles de plusieurs appartements et cette pratique génère souvent des niveaux élevés de champs magnétiques dans les appartements situés dans un périmètre de 10 m autour du poste; voir figure 10.

Table 13 - Typical values of magnetic flux density adjacent to commercial equipment

Source	Field strength	Distance (3 cm unless
	μТ	otherwise stated) cm
VGA monitor No. 1	7,0	
Green screen monitors	4,4	
VGA monitor No. 2	4,4	
Video terminal	4,4	
Fax machine	0,4	
Photocopier No. 1	0,4	
Photocopier No. 2	7,9	9
CD player	7,9	
Extraction fan	7,0	
Kettle	7,9	
Audio frequency induction loop amplifier (complete)	2,0	
Audio frequency induction loop amplifier (top cover removed)	5,7	
50 W 100 V line amplifier (enclosed in mainframe)	7,9	
Open frame PSU supplying above	7,9	
Factory PA rack	0,8	
EPROM eraser	7,9	
Twin beam oscilloscope No. 1	7,9	10
Twin beam oscilloscope No. 2	7,9	
Audio signal generator No. 1	7,9	
Audio signal generator No. 2	5,0	
RF generator	7,9	5

9 Residential environment - Household appliances

9.1 Internal wiring in residential buildings

In general the internal wiring and equipment within a house do not contribute significantly to the background level of magnetic field. However, in apartment blocks the conditions may be similar to those encountered in multi-storey commercial buildings where rising mains and a substation are adjacent to dwellings.

The background level of magnetic field within a residence is dependent on the proximity and loading of adjacent power supply network cables and overhead lines. In general strengths are within the range of 0,01 to 10 μT . In some high density population areas, such as Japan, overhead lines are permitted to be very near to residential multi-storey buildings and fields may, as a consequence, be as high as 100 μT . See figure 13.

In urban areas it is common for distribution substations to be sited within apartment blocks and this practice often produces high levels of magnetic fields in apartments within 10 m of a substation; see figure 10.

9.2 Appareils domestiques

Contrairement aux champs magnétiques provoqués par des réseaux d'alimentation électrique qui s'atténuent d'un facteur égal au carré de la distance de la source, les champs magnétiques ayant pour origine le matériel domestique s'atténuent d'un facteur égal au cube de la distance.

Les tableaux 12 [9] ainsi que les tableaux 13, 14, 15 [12] ci-après présentent des valeurs représentatives de champ magnétique pour différents appareils domestiques.

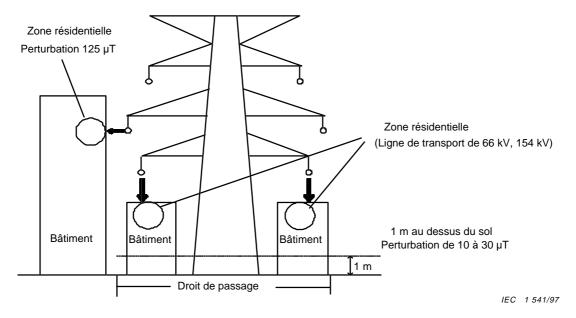


Figure 13 – Champs magnétiques créés par des lignes haute tension adjacentes à un immeuble résidentiel à plusieurs étages (au Japon, par exemple, il existe des bâtiments situés au-dessous de lignes de transport de 66 kV et 154 kV)

9.2 Residential appliances

Unlike magnetic fields associated with power supply systems which attenuate by the square of the distance from the source, magnetic fields associated with residential equipment attenuate by the cube of the distance.

Representative values of magnetic field are listed for various residential appliances in table 12 [9], and in tables 13, 14, 15 [12].

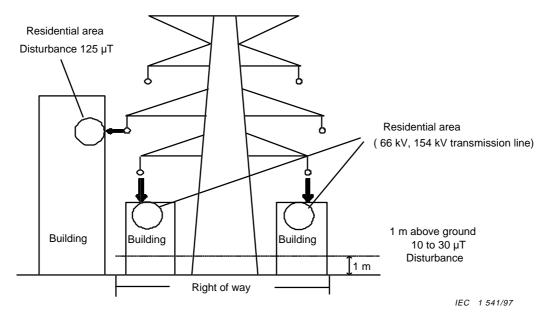


Figure 13 – Magnetic fields produced by HV lines adjacent to residential multi-storey buildings (In Japan, for example, there are buildings under 66 kV and 154 kV transmission lines.)

Tableau 14 – Inductions magnétiques (gamme de valeurs pour trois à cinq modèles) à 60 Hz à proximité de différents appareils

Appareil	Induction magnétique à une distance z μT		
	z = 3 cm	z = 30 cm	z = 1 m
Mélangeurs	25-130	0,6-2	0,03-0,12
Ouvre-boîtes	1 000-2 000	3,5-30	0,07-1
Sèche-linge	0,3-8	0,08-0,3	0,02-0,06
Machines à laver	0,8-50	0,15-3	0,01-0,15
Cafetières	1,8-25	0,08-0,15	0,01
Poteries	1,5-8	0,08-0,15	0,01
Lave-vaisselle	3,5-20	0,6-3	0,07-0,3
Perceuses	400-800	2-3,5	0,08-0,2
Couvertures électriques	1		
Fours électriques	1-50	0,15-0,5	0,01-0,04
Cuisinières électriques (brûleurs)	6-200	0,35-4	0,01-0,1
(>10 kW)			
Rasoirs électriques	15-1 500	0,08-9	0,01-0,3
Ventilateurs et soufflantes	2-30	0,03-4	0,01-0,35
Lampes de bureau fluorescentes	40-400	0,5-2	0,02-0,25
Accessoires fluorescents	15-200	0,2-4	0,01-0,3
Vide-ordures	80-250	1-2	0,3-0,1
Sèche cheveux	6-2 000	0,01-7	0,01-0,3
Fers à repasser	8-30	0,12-0,3	0,01-0,025
Fours à micro-ondes	75-200	4-8	0,25-0,6
Mixers	60-700	0,6-10	0,02-0,25
Appareils de chauffage portatifs	10-180	0,15-5	0,01-0,25
Réfrigérateurs	0,5-1,7	0,01-0,25	0,01
Scies sauteuses et circulaires	250-1 000	1-25	0,01-1
Télévision	2,5-50	0,04-2	0,01-0,15
Grille-pain	7-18	0,06-0,7	0,01
Aspirateurs	200-800	2-20	0,13-2

Table 14 – Magnetic flux densities (range of values for three to five models) at 60 Hz near various appliances

Appliance	Magnetic flux density at distance z μT		
	z = 3 cm	z = 30 cm	z = 1 m
Blenders	25-130	0,6-2	0,03-0,12
Can openers	1 000-2 000	3,5-30	0,07-1
Clothes dryers	0,3-8	0,08-0,3	0,02-0,06
Clothes washers	0,8-50	0,15-3	0,01-0,15
Coffee makers	1,8-25	0,08-0,15	0,01
Crock pots	1,5-8	0,08-0,15	0,01
Dishwashers	3,5-20	0,6-3	0,07-0,3
Drills	400-800	2-3,5	0,08-0,2
Electric blankets	1		
Electric ovens	1-50	0,15-0,5	0,01-0,04
Electric ranges (burners) (over 10 kW)	6-200	0,35-4	0,01-0,1
Electric shavers	15-1 500	0,08-9	0,01-0,3
Fans and blowers	2-30	0,03-4	0,01-0,35
Fluorescent desk lamps	40-400	0,5-2	0,02-0,25
Fluorescent fixtures	15-200	0,2-4	0,01-0,3
Garbage disposals	80-250	1-2	0,3-0,1
Hair dryers	6-2 000	0,01-7	0,01-0,3
Irons	8-30	0,12-0,3	0,01-0,025
Microwave ovens	75-200	4-8	0,25-0,6
Mixers	60-700	0,6-10	0,02-0,25
Portable heaters	10-180	0,15-5	0,01-0,25
Refrigerators	0,5-1,7	0,01-0,25	0,01
Sabre and circular saws	250-1 000	1-25	0,01-1
Television	2,5-50	0,04-2	0,01-0,15
Toasters	7-18	0,06-0,7	0,01
Vacuum cleaners	200-800	2-20	0,13-2

Tableau 15 – Valeurs typiques de champs magnétiques à 60 Hz mesurés à des distances différentes pour plusieurs appareils ménagers (d'après Gauger 1985)

Champ magnétique μT (mG) [dB(μA/m)]			
	3 cm 1,2 inches	30 cm 12 inches	1 m 39 inches
Four micro-onde	75 – 200	4 – 8	0,3 - 0,8
	(750 – 2 000)	(40 – 80)	(3 – 8)
	[159,5 – 168]	[134 – 140]	[111,5 – 120]
Machine à laver	0,8 - 40	0,2 - 3	0,01 - 0,2
	(8 – 400)	(2 – 30)	(0,1 – 2)
	[120 – 154]	[108 – 131,5]	[82 – 108]
Cuisinière électrique	6 – 200	0,4 - 4	0,01 - 0,1
	(60 – 2 000)	(4 – 40)	(0,1 – 1)
	[102,5 – 168]	[114 – 134]	[82 – 102]
Rasoir électrique	15 – 1 500	0,1 – 9	0,04 - 0,3
	(150 – 15 000)	(1 – 90)	(0,4-3)
	[145,5 – 185,5]	[102 – 141]	[94 – 111,5]
Lampe fluorescente	40 – 400	0,5 – 2	0,01 - 0,3
	(400 – 4 000)	(5 – 20)	(0,1-3)
	[154 – 174]	[116 – 128]	[82 – 111,5]
Sèche-cheveux	6 – 2 000	0,1 - 7	0,01 - 0,3
	(60 – 20 000)	(1 – 70)	(0,1-3)
	[102,5 – 188]	[102 – 139]	[82 – 111,5]
Télévision	2,5 – 50	0,04 - 2	0,01 - 0,2
	(25 – 500)	(0,4 - 20)	(0,1 – 2)
	[130 – 156]	[94 – 128]	[82 – 108]

10 Environnement des hôpitaux

10.1 Généralités

Un hôpital moderne présente un environnement électromagnétique complexe. Il comprend de nombreux émetteurs de grande puissance tels que le matériel d'imagerie à résonance magnétique ainsi que des dispositifs sensibles. En plus des émetteurs caractéristiques des environnements résidentiels et commerciaux, un hôpital possède souvent un matériel de service important tel que le relayage de contrôle des moteurs des monte-charges et des machines à rayons X qui produisent des courants à impulsions élevées.

10.2 Traitement des malades

Les champs magnétiques les plus élevés se rencontrent probablement à proximité du matériel d'imagerie à résonance magnétique. Des valeurs allant jusqu'à 2 T sont fréquentes en raison des champs intenses émis par les systèmes spectroscopiques, la plupart de ces champs étant continus.

Les dispositifs de consolidation des os que l'on garde souvent à l'endroit d'une blessure pendant plusieurs semaines ont des valeurs d'induction magnétique dans une plage de 1 μT - 30 μT et de fréquence de 1 Hz à 75 Hz.

Table 15 – Typical 60 Hz magnetic fields measured at various distances from some electrical appliances (adapted from Gauger 1985)

	Magneti μT (mG) [d		
	3 cm 1,2 inches	30 cm 12 inches	1 m 39 inches
Microwave oven	75 – 200	4 – 8	0,3 - 0,8
	(750 – 2 000)	(40 - 80)	(3 – 8)
	[159,5 – 168]	[134 – 140]	[111,5 – 120]
Clothes washer	0,8 - 40	0,2 - 3	0,01 - 0,2
	(8 – 400)	(2 – 30)	(0,1 - 2)
	[120 – 154]	[108 – 131,5]	[82 – 108]
Electric range	6 – 200	0,4 - 4	0,01 - 0,1
	(60 – 2 000)	(4 - 40)	(0,1 - 1)
	[102,5 – 168]	[114 – 134]	[82 – 102]
Electric shaver	15 – 1 500	0,1 - 9	0,04 - 0,3
	(150 – 15 000)	(1 – 90)	(0,4-3)
	[145,5 – 185,5]	[102 – 141]	[94 – 111,5]
Fluorescent lamp	40 – 400	0,5 - 2	0,01 - 0,3
	(400 – 4 000)	(5 – 20)	(0,1 - 3)
	[154 – 174]	[116 – 128]	[82 – 111,5]
Hair dryer	6 – 2 000	0,1 - 7	0,01 - 0,3
	(60 – 20 000)	(1 – 70)	(0,1 - 3)
	[102,5 – 188]	[102 – 139]	[82 – 111,5]
Television	2,5 – 50	0,04 – 2	0,01 - 0,2
	(25 – 500)	(0,4-20)	(0,1 - 2)
	[130 – 156]	[94 – 128]	[82 – 108]

10 Hospital environment

10.1 General

A modern hospital has a complex electromagnetic environment. It contains many high power emitters such as magnetic resonance imaging equipment as well as sensitive devices. In addition to those emitters characteristic of the residential or commercial environment, a hospital often has heavy duty equipment such as relays controlling elevator motors and X-ray machines generating high pulse currents.

10.2 Treatment of patients

The highest magnetic fields are probably related to magnetic resonance imaging equipment. Values of up to 2 T are not uncommon, with stronger fields being used in a few spectroscopy systems, most of these fields are d.c.

Bone healing devices, which are often kept on the site of a wound for several weeks, have associated flux densities in the range of 1 μ T-30 μ T at a frequency of 1 Hz-75 Hz.

10.3 Zones de services des hôpitaux

Peu d'informations sont disponibles concernant les niveaux des champs magnétiques basse fréquence dans les zones de service. Les valeurs de champ varient énormément selon l'emplacement. Dans une zone normale d'hôpital, les champs magnétiques ne sont vraisemblablement pas plus élevés que dans un environnement résidentiel. Toutefois, le matériel de diagnostic opératoire du personnel peut se trouver exposé à des champs beaucoup plus élevés comme indiqué en 10.2 ci-dessus. Le tableau 13 présente des valeurs mesurées sur du matériel tels que des oscilloscopes souvent utilisés dans les zones de services des hôpitaux et dans les centres de traitement et qui sont placés à proximité d'autres matériels électriques.

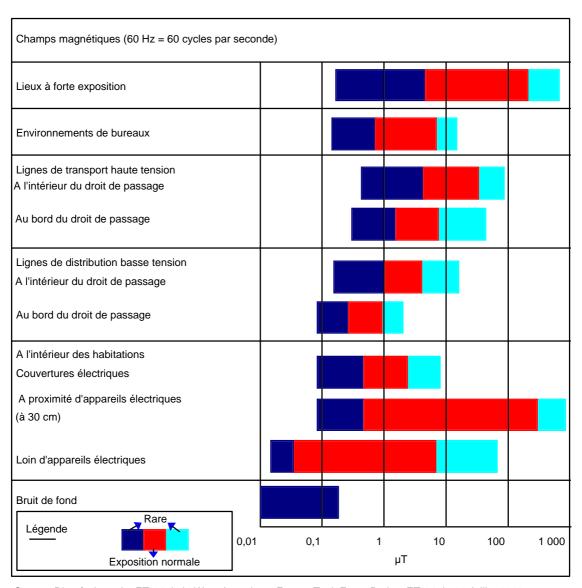
Pour l'estimation des effets éventuels de compatibilité électromagnétique, il est conseillé de prendre les valeurs d'induction magnétique maximales qui sont proches des valeurs correspondant à l'environnement industriel, voir 7.1, 7.2 et 7.3.

11 Résumé et comparaisons des champs magnétiques générés par différentes sources

Les figures 14 [7] et 16 [6] donnent une comparaison générale entre les plages des valeurs d'induction magnétique correspondant aux lignes aériennes et celles concernant les équipements de type résidentiel et les environnements de bureaux. On peut remarquer la présence d'un important chevauchement des niveaux en fonction des différents environnements. Il convient toutefois de remarquer que le matériel de type résidentiel générant des valeurs élevées de champ magnétique est utilisé par intermittence et en général pendant une courte période.

La figure 15 [5] fournit une comparaison des champs magnétiques correspondant à différents types de réseaux de distribution d'énergie.

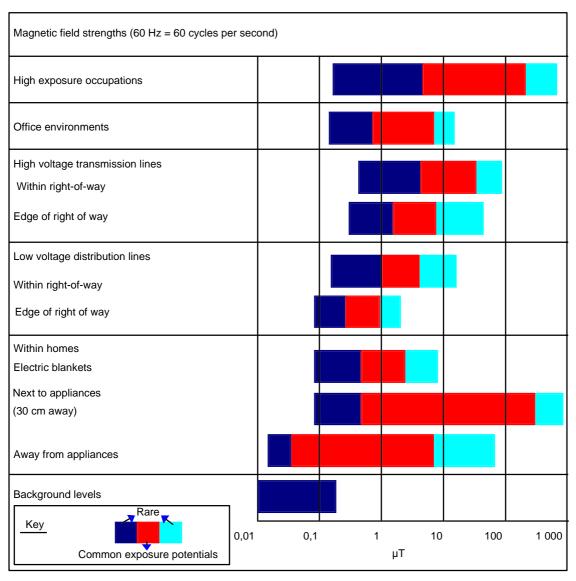
10.3 Ward areas


There is little published information on the levels of low frequency magnetic fields in ward areas. Field strengths vary greatly depending on location. In a non acute hospital ward field strengths are likely to be no greater than in the domestic environment. However, staff operating diagnostic equipment may be exposed to much higher fields, such as those stated in 10.2 above. Table 13 contains some measurement data relative to equipment, such as oscilloscopes, which is frequently used in hospital wards and treatment centres and placed in proximity to other electrical equipment.

It is recommended that in assessing possible EMC effects maximum flux densities should be assumed to be similar to those of the industrial environment, indicated in 7.1, 7.2 and 7.3.

11 Summary and comparisons of the magnetic fields produced by various sources

Figures 14 [7] and 16 [6] give a general comparison of the ranges of magnetic flux density levels associated with overhead lines with those of residential appliances and office environments. It can be seen that there is considerable overlap of levels for the different environments. However, it should be noted that residential appliances which produce high field values are used intermittently and generally for a short time.


Figure 15 [5] gives a comparison of the magnetic field strengths associated with different types of power distribution systems.

Source: D'après le projet ET-84 de la West Associates Energy Task Force Project ET-84 du 11 Juillet 1986

IEC 1 542/97

Figure 14 – Comparaison générale entre les plages de valeurs de l'induction magnétique des lignes aériennes et celles concernant les appareils résidentiels et les environnements de bureaux

Source: Adapted from West Associates Energy Task Force Project ET-84 11 July 1986

IEC 1 542/97

Figure 14 – General comparison of the ranges of magnetic flux density levels associated with overhead lines with those of residential appliances and office environments

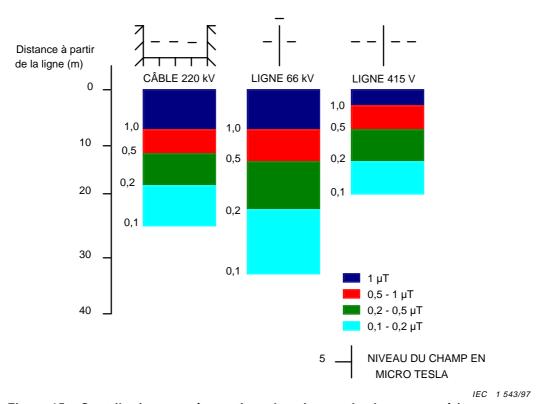


Figure 15 – Contributions représentatives des niveaux de champ magnétique – réseaux de distribution

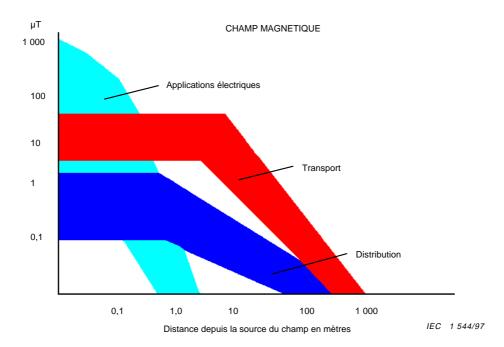


Figure 16 – Exemples pratiques d'induction magnétique de lignes haute tension (1 m au-dessus du sol)

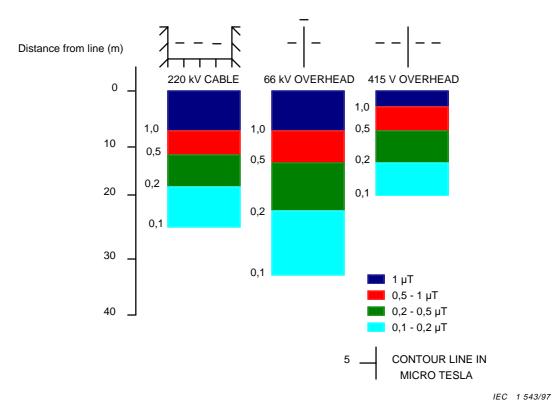


Figure 15 – Typical contributions to magnetic field levels – distribution supplies.

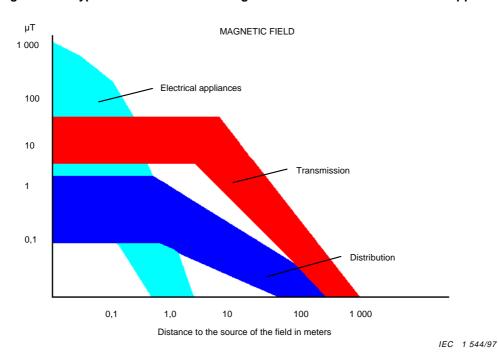


Figure 16 - Practical examples of the magnetic field flux of HV lines (1 m above ground)

12 Bibliographie

Numéro	Titre du document de référence
1	American Geographical Union, 1980
2	World Meteorological Organisation, 1955
3	DIN VDE 0228 Part 6, 1991, Beeinflussung von Einrichtungen der Informationstechnik.
4	Publication CIGRE No.74, Transport d'électricité et environnement: Champs, bruit et interférences 1993.
5	Publication CIGRE 1990, 36-103, Effets du champ magnétique sur le système de transport de Victoria, A.T. Wilson, P.J. Wallace, D.C. Smith.
6	Symposium CEM, Zurich 1993, 5A5, Champs électrique et magnétique à proximité des lignes aériennes de transport d'électricité, H.J. Haubrich, T. Seitz.
7	Projet ET-84 de la West Associates Energy Task Force, 1986.
8	Radio Science Vol.17, September 1982, <i>ELF Magnet Fields in Electrosteel and Welding Industries</i> , P. Lovsund, P.A. Oberg.
9	Publication CIGRE, 1990, 36-107, Mesure des champs électriques et magnétiques à la fréquence industrielle à proximité de différentes sources industrielles et domestiques, D. Armanini, R. Conti, A. Mantini, P. Nicolini
10	Millbank Electronics, Report to BSI, EEL 32/-/3, Stray Electromagnetic Field Tests.
11	Health Physics Vol.51 No.2, August 1986, Human Exposure to Static and Time-Varying Magnetic Fields, M.A. Stuchly.
12	GAUGER, 1985

12 Bibliography

Reference number	Document title
1	American Geographical Union, 1980
2	World Meteorological Organisation, 1955
3	DIN VDE 0228 Part 6, 1991, Beeinflussung von Einrichtungen der Informationstechnik.
4	CIGRE publication No. 74, Electric power Transmission and the Environment: Fields, Noise and Interference, 1993.
5	CIGRE Proceedings 1990, 36-103, <i>Magnetic Field Effects in the Victoria Transmission System</i> , A.T. Wilson, P.J. Wallace, D.C. Smith.
6	EMC Symposium Zurich 1993, 5A5, <i>Electrical and Magnetic Fields Around Overhead Transmission Lines</i> , H.J. Haubrich, T. Seitz.
7	West Associates Energy Task Force Project ET-84, 1986.
8	Radio Science Vol. 17, September 1982, <i>ELF Magnet Fields in Electrosteel and Welding Industries</i> , P. Lovsund, P.A. Oberg.
9	CIGRE Proceedings, 1990, 36-107, Measurement of Power Frequency Electric and Magnetic Fields around Different Industrial and Household Sources, D. Armanini, R. Conti, A. Mantini, P. Nicolini.
10	Millbank Electronics, Report to BSI, EEL 32/-/3, Stray Electromagnetic Field Tests.
11	Health Physics Vol. 51 No. 2, August 1986, <i>Human Exposure to Static and Time-Varying Magnetic Fields</i> , M.A. Stuchly.
12	GAUGER, 1985

We at the IEC want to know how our standards are used once they are published.

The answers to this survey will help us to improve IEC standards and standard related information to meet your future needs

Would you please take a minute to answer the survey on the other side and mail or fax to:

Customer Service Centre (CSC)

International Electrotechnical Commission

3, rue de Varembé Case postale 131

. 1211 Geneva 20

Switzerland

or

Fax to: CSC at +41 22 919 03 00

Thank you for your contribution to the standards making process.

A Prioritaire

Nicht frankieren Ne pas affranchir

Non affrancare No stamp required

RÉPONSE PAYÉE SUISSE

Customer Service Centre (CSC)
International Electrotechnical Commission
3, rue de Varembé
Case postale 131
1211 GENEVA 20
Switzerland

1.	7.	13.
No. of IEC standard:	Please rate the standard in the following areas as (1) bad, (2) below average, (3) average, (4) above average, (5) exceptional, (0) not applicable:	If you said yes to 12 then how many volumes:
2.	☐ clearly written	14.
Tell us why you have the standard.	☐ logically arranged	Which standards organizations
(check as many as apply). I am:	☐ information given by tables	published the standards in your
☐ the buyer	☐ illustrations	library (e.g. ISO, DIN, ANSI, BSI, etc.):
☐ the user	□ technical information	610.).
☐ a librarian	8.	
☐ a researcher	I would like to know how I can legally	15.
an engineer	reproduce this standard for:	My organization supports the
☐ a safety expert	internal use	standards-making process (check as
involved in testing	sales information	many as apply):
with a government agency	product demonstration	☐ buying standards
in industry	☐ other	using standards
other	9.	membership in standards
3.	In what medium of standard does your organization maintain most of its	organization
This standard was purchased from?	standards (check one):	serving on standardsdevelopment committee
	☐ paper	other
	microfilm/microfiche	16.
4.	mag tapes	My organization uses (check one)
This standard will be used	☐ CD-ROM	_
(check as many as apply):	☐ floppy disk	French text only
for reference	□ on line	☐ English text only
in a standards library	9A.	Both English/French text
□ to develop a new product	If your organization currently maintains	17.
□ to write specifications	part or all of its standards collection in electronic media, please indicate the	Other comments:
□ to use in a tender	format(s):	
☐ for educational purposes	☐ raster image	
for a lawsuit	☐ full text	
☐ for quality assessment	10.	
for certification	In what medium does your organization	
for general information	intend to maintain its standards collection in the future (check all that apply):	
☐ for design purposes	paper	
☐ for testing	microfilm/microfiche	
other	mag tape	
5.	☐ CD-ROM	18.
This standard will be used in conjunction	floppy disk	Please give us information about you
with (check as many as apply):	□ on line	and your company
☐ IEC		
□ ISO	For electronic media which format will be	name:
☐ corporate	chosen (check one)	job title:
other (published by)	☐ raster image	
other (published by)	☐ full text	company:
other (published by)	11.	address:
6	My organization is in the following sector	
6. This standard meets my needs	(e.g. engineering, manufacturing)	
This standard meets my needs (check one)		
not at all	12.	
almost	Does your organization have a standards	
fairly well	library:	No. employees at your location:
□ exactly	□ no	
		turnover/sales:

Enquête sur les normes

La CEI se préoccupe de savoir comment ses normes sont accueillies et utilisées.

Les réponses que nous procurera cette enquête nous aideront tout à la fois à améliorer nos normes et les informations qui les concernent afin de toujours mieux répondre à votre attente.

Nous aimerions que vous nous consacriez une petite minute pour remplir le questionnaire joint que nous vous invitons à retourner au:

Centre du Service Clientèle (CSC)

Commission Electrotechnique Internationale

3, rue de Varembé

Case postale 131

1211 Genève 20

Suisse

Télécopie: IEC/CSC +41 22 919 03 00

Nous vous remercions de la contribution que vous voudrez bien apporter ainsi à la Normalisation Internationale

A Prioritaire

Nicht frankieren Ne pas affranchir

Non affrancare No stamp required

RÉPONSE PAYÉE SUISSE

Centre du Service Clientèle (CSC)

Commission Electrotechnique Internationale
3, rue de Varembé
Case postale 131
1211 GENÈVE 20
Suisse

1.		7.		13.	
Numéro de la Norme CEI:		Nous vous demandons maintenant de donner une note à chacun des critères ci-dessous (1, mauvais; 2, en-dessous de la moyenne; 3, moyen; 4, au-dessus de la moyenne; 5, exceptionnel; 0, sans objet)			combien de volumes dans le cas matif?
2.		Π	clarté de la rédaction	14.	
	rquoi possédez-vous cette norme?		logique de la disposition		lles organisations de normalisation
(piu:	sieurs réponses possibles). Je suis: l'acheteur		tableaux informatifs		oublié les normes de cette othèque (ISO, DIN, ANSI, BSI, etc.):
	l'utilisateur		illustrations	DIDII	outledge (199, 2114, 74161, 291, 918.).
	bibliothécaire		informations techniques		
	chercheur	8.	<u>·</u>	15.	
	ingénieur	-	merais savoir comment je peux		société apporte sa contribution à
	expert en sécurité		oduire légalement cette norme pour:		boration des normes par les rens suivants
	chargé d'effectuer des essais		usage interne		sieurs réponses possibles):
	fonctionnaire d'Etat		des renseignements commerciaux	П	on achatant das narmas
	dans l'industrie		des démonstrations de produit		en achetant des normes en utilisant des normes
	autres		autres		
		9.		Ц	en qualité de membre d'organi- sations de normalisation
3. Où a	avez-vous acheté cette norme?		I support votre société utilise-t-elle r garder la plupart de ses normes?		en qualité de membre de comités de normalisation
			papier		autres
			microfilm/microfiche	16.	_
4.			bandes magnétiques	Ma	société utilise (une seule réponse)
	nment cette norme sera-t-elle uti-		CD-ROM	П	das narmas an francia cauloment
lisée	e? (plusieurs réponses possibles)		disquettes		des normes en français seulement
	comme reférence		abonnement à un serveur électronique		des normes en anglais seulement des normes bilingues anglais/
	dans une bibliothèque de normes	9A.		ш	français
	pour développer un produit nouveau		otre société conserve en totalité ou en	17.	
	pour rédiger des spécifications		e sa collection de normes sous forme tronique, indiquer le ou les formats:	Autr	es observations
	pour utilisation dans une soumission		format tramé (ou image balayée		
	à des fins éducatives		ligne par ligne)		
	pour un procès		texte intégral		
	pour une évaluation de la qualité	10.	_		
	pour la certification		quels supports votre société prévoit- de conserver sa collection de normes		
	à titre d'information générale		venir (plusieurs réponses possibles):		
	pour une étude de conception		papier		
	pour effectuer des essais		microfilm/microfiche		
	autres		bandes magnétiques	18.	
5.			CD-ROM		rriez-vous nous donner quelques
Cette norme est-elle appelée à être utilisée conjointement avec d'autres normes? Lesquelles? (plusieurs réponses possibles):			disquettes	info	rmations sur vous-mêmes et votre
			abonnement à un serveur électronique	SOCI	été?
	CEI	10A	•	nom	
	ISO		I format serait retenu pour un moyen tronique? (une seule réponse)	fonc	tion
	internes à votre société		format tramé		
	autre (publiée par))		texte intégral	nom	de la société
	autre (publiée par))	11.	toxic integral	adre	esse
	autre (publiée par))		al sactour d'activité appartient votre société?	uuic	
6.		A quel secteur d'activité appartient votre société? (par ex. ingénierie, fabrication)			
Cette norme répond-elle à vos besoins?					
	pas du tout	12.			
	à peu près		e société possède-t-elle une		
	assez bien	ווטוט	othèque de normes? Oui	nom	bre d'employés
	parfaitement		Non	chiff	re d'affaires:
		_	- •	CHILL	10 a ananos

Publications de la CEI préparées par le Comité d'Etudes n° 77

(suite)

IEC publications prepared by Technical Committee No. 77

60725 (1981)	Considérations sur les impédances de références à utiliser pour la détermination des caractéristiques de perturbation des appareils électrodomestiques et analogues.	60725 (1981)	Considerations on reference impedances for use in determining the disturbance characteristics of household appliances and similar electrical equipment.	
60816 (1984)	Guide sur les méthodes de mesure des transitoires de courte durée sur les lignes de puissance et de contrôle basse tension.	60816 (1984)	Guide on methods of measurement of short duration transients on low-voltage power and signal lines.	
60827 (1985)	Guide relatif aux limites des fluctuations de tension dues aux appareils électrodomestiques.	60827 (1985)	Guide to voltage fluctuation limits for household appliances.	
60868 (1986)	Flickermètre. Spécifications fonctionnelles et de conception. Amendement n° 1 (1990).	60868 (1986)	Flickermeter. Functional and design specifications. Amendment No. 1 (1990).	
60868-0 (1991)	Partie 0: Evaluation de la sévérité du flicker.	60868-0 (1991)	Part 0: Evaluation of flicker severity.	
61000: — Compatib	pilité électromagnétique (CEM).	61000: — Electromagnetic compatibility (EMC).		
61000-1-1 (1992)	Partie 1: Généralités. Section 1: Application et interprétation de définitions et termes fondamentaux.	61000-1-1 (1992)	Part 1: General. Section 1: Application and interpretation of fundamental definitions and terms.	
61000-2-1 (1990)	Partie 2: Environnement. Section 1: Description de l'environnement – Environnement électromagnétique pour les perturbations conduites basse fréquence et la transmission de signaux sur les réseaux publics d'alimentation.	61000-2-1 (1990)	Part 2: Environment. Section 1: Description of the environment – Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems.	
61000-2-2 (1990)	Partie 2: Environnement. Section 2: Niveaux de compatibilité pour les perturbations conduites basse fréquence et la transmission de signaux sur les réseaux publics d'alimentation à basse tension.	61000-2-2 (1990)	Part 2: Environment. Section 2: Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems.	
61000-2-3 (1992)	Partie 2: Environnement. Section 3: Description de l'environnement – Phénomènes rayonnés et phénomènes conduits à des fréquences autres que celle du réseau.	61000-2-3 (1992)	Part 2: Environment. Section 3: Description of the environment – Radiated and non-network-frequency related conducted phenomena.	
61000-2-4 (1994)	Partie 2: Environment. Section 4: Niveaux de compatibilité dans les installations industrielles pour les perturbations conduites à basse fréquence.	61000-2-4 (1994)	Part 2: Environment. Section 4: Compatibility levels in industrial plants for low-frequency conducted disturbances.	
61000-2-5 (1995)	Partie 2: Environnement. Section 5: Classification des environnements électromagnétiques. Publication fondamentale en CEM.	61000-2-5 (1995)	Part 2: Environment. Section 5: Classification of electromagnetic environments. Basic EMC publication.	
61000-2-6 (1995)	Partie 2: Environnement – Section 6: Evaluation des niveaux d'émission dans l'alimentation des centrales industrielles tenant compte des perturbations conduites à basse fréquence.	61000-2-6 (1995)	Part 2: Environment – Section 6: Assessment of the emission levels in the power supply of industrial plants as regards low-frequency conducted disturbances.	
61000-2-7 (1998)	Partie 2: Environnement – Section 7: Champs magnétiques basse fréquence en environnements divers.	61000-2-7 (1998)	Part 2: Environment – Section 7: Low frequency magnetic fields in various environments.	
61000-2-9 (1996)	Partie 2: Environnement – Section 9: Description de l'environnement IEMN-HA – Perturbations rayonnées – Publication fondamentale en CEM.	61000-2-9 (1996)	Part 2: Environment – Section 9: Description of HEMP environment – Radiated disturbance – Basic EMC publication.	
61000-3-2 (1995)	Partie 3: Limites – Section 2: Limites pour les émissions de courant harmonique (courant appelé par les appareils ≤ 16 A par phase). Amendement 1 (1997).	61000-3-2 (1995)	Part 3: Limits – Section 2: Limits for harmonic current emissions (equipment input current ≤ 16 A per phase). Amendment 1 (1997).	
61000-3-3 (1994)	Partie 3: Limites – Section 3: Limitation des fluctuations de tension et du flicker dans les réseaux basse tension pour les équipments ayant un courant appelé $\leq 16~\text{A}$.	61000-3-3 (1994)	Part 3: Limits – Section 3: Limitation of voltage fluctuations and flicker in low-voltage supply systems for equipment with rated current ≤16 A.	
61000-3-5 (1994)	Partie 3: Limites – Section 5: Limitations des fluc-tuations de tension et du flicker dans les réseaux basse tension pour les équipements ayant un courant appelé supérieur à 16 A.	61000-3-5 (1994)	Part 3: Limits – Section 5: Limitation of voltage fluctuations and flicker in low-voltage power supply systems for equipment with rated current greater than 16 A.	
61000-3-6 (1996)	Partie 3: Limites – Section 6: Evaluation des limites d'émission pour les charges déformantes raccordées aux réseaux MT et HT – Publication fondamentale en CEM.	61000-3-6 (1996)	Part 3: Limits – Section 6: Assessment of emission limits for distorting loads in MV and HV power systems – Basic EMC publication.	

(continued)

Publications de la CEI préparées par le Comité d'Etudes n° 77 (suite)

IEC publications prepared by Technical Committee No. 77 (continued)

61000-3-7 (1996)	Partie 3: Limites – Section 7: Evaluation des	61000-3-7 (1996)	Part 3: Limits – Section 7: Assessment of
01000 3 7 (1550)	limites d'émission des charges fluctuantes sur les réseaux MT et HT – Publication fondamentale en CEM.	01000 3 7 (1770)	emission limits for fluctuating loads in MV and HV power systems – Basic EMC publication.
61000-3-8 (1997)	Partie 3: Limites – Section 8: Transmission de signaux dans les installations électriques à basse tension – Niveaux d'émission, bandes de fréquences et niveaux de perturbations électromagnétiques.	61000-3-8 (1997)	Part 3: Limits – Section 8: Signalling on low-voltage electrical installations – Emission levels, frequency bands and electromagnetic disturbance levels.
61000-4-1 (1992)	Partie 4: Techniques d'essai et de mesure – Section 1: Vue d'ensemble sur les essais d'immunité. Publication fondamentale en CEM.	61000-4-1(1992)	Part 4: Testing and measurement techniques – Section 1: Overview of immunity tests. Basic EMC publication.
61000-4-2 (1995)	Partie 4: Techniques d'essai et de mesure – Section 2: Essai d'immunité aux décharges électrostatiques. Publication fondamentale en CEM. Amendement 1 (1998).	61000-4-2 (1995)	Part 4: Testing and measurement techniques. Section 2: Electrostatic discharge test. Basic EMC publication. Amendment 1 (1998).
61000-4-4 (1995)	Partie 4: Techniques d'essai et de mesure – Section 4: Essais d'immunité aux transitoires électriques rapides en salves. Publication fondamentale en CM.	61000-4-4 (1995)	Part 4: Testing and measurement techniques. Section 4: Electrical fast transient/burst immunity test. Basic EMC publication.
61000-4-6 (1996)	Partie 4: Techniques d'essai et de mesure – Section 6: Immunité aux perturbations conduites, induites par les champs radioélectriques.	61000-4-6 (1996)	Part 4: Testing and measurement techniques – Section 6: Immunity to conducted disturbances, induced by radio-frequency fields.
61000-4-7 (1991)	Partie 4: Techniques d'essai et de mesure – Section 7: Guide général relatif aux mesures d'harmoniques et d'interharmoniques, ainsi qu'à l'appareillage de mesure, applicable aux réseaux d'alimentation et aux appareils qui y sont raccordés.	61000-4-7 (1991)	Part 4: Testing and measurement techniques – Section 7: General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto.
61000-4-8 (1993)	Partie 4: Techniques d'essai et de mesure – Section 8: Essai d'immunité au champ magnétique à la fréquence du réseau. Publication fondamentale en CEM.	61000-4-8 (1993)	Part 4: Testing and measurement techniques – Section 8: Power frequency magnetic field immunity test. Basic EMC publication.
61000-4-9 (1993)	Partie 4: Techniques d'essai et de mesure – Section 9: Essai d'immunité au champ magnétique impulsionnel. Publication fondamentale en CEM.	61000-4-9 (1993)	Part 4: Testing and measurement techniques – Section 9: Pulse magnetic field immunity test. Basic EMC publication.
61000-4-10 (1993)	Partie 4: Techniques d'essai et de mesure – Section 10: Essai d'immunité au champ magnétique oscillatoire amorti. Publication fondamentale en CEM.	61000-4-10 (1993)	Part 4: Testing and measurement techniques – Section 10: Damped oscillatory magnetic field immunity test. Basic EMC publication.
61000-4-11 (1994)	Partie 4: Techniques d'essai et de mesure – Section 11: Essai d'immunité aux creux de tension, coupures brèves et variations de tension.	61000-4-11 (1994)	Part 4: Testing and measurement techniques – Section 11: Voltage dips, short interruptions and voltage variations immunity tests.
61000-4-12 (1995)	Partie 4: Techniques d'essai et de mesure – Section 12: Essai d'immunité aux ondes oscillatoires. Publication fondamentale en CEM.	61000-4-12 (1995)	Part 4: Testing and measurement techniques – Section 12: Oscillatory waves immunity test. Basic EMC publication.
61000-4-15 (1997)	Partie 4: Techniques d'essai et de mesure – Section 15: Flickermètre – Spécifications fonctionnelles et de conception.	61000-4-15 (1997)	Part 4: Testing and measurement techniques – Section 15: Flickermeter – Functional and design specifications.
61000-4-16 (1997)	Partie 4: Techniques d'essai et de mesure – Section 16: Essai d'immunité aux perturbations conduites en mode commun dans la gamme de fréquences de 0 Hz à 150 kHz.	61000-4-16 (1997)	Part 4: Testing and measurement techniques – Section 16: Test for immunity to conducted, common mode disturbances in the frequency range 0 Hz to 150 kHz.
61000-4-24 (1997)	Partie 4: Techniques d'essai et de mesure – Section 24: Méthodes d'essais pour les dispositifs de protection pour perturbations conduites IEMN-HA. Publication fondamentale en CEM.	61000-4-24 (1997)	Part 4: Testing and measurement techniques – Section 24: Test methods for protective devices for HEMP conducted disturbance. Basic EMC publication.
61000-5-1 (1996)	Partie 5: Guides d'installation et d'atténuation – Section 1: Considérations générales.	61000-5-1 (1996)	Part 5: Installation and mitigation guidelines – Section 1: General considerations.
61000-5-2 (1997)	Partie 5: Guides d'installation et d'atténuation – Section 2: Mise à la terre et câblage.	61000-5-2 (1997)	Partie 5: Installation and mitigation guidelines – Section 2: Earthing and cabling.
(suite)		(continued)	

Publications de la CEI préparées par le Comité d'Etudes n° 77 (suite)

IEC publications prepared by Technical Committee No. 77 (continued)

61000-5-4 (1996)	Partie 5: Guides d'installation et d'atténuation – Section 4: Immunité à l'IEM-HA – Spécifications des dispositifs de protection contre les perturbations rayonnées IEM-HA. Publication fondamentale en CEM.	61000-5-4 (1996)	Part 5: Installation and mitigation guidelines – Section 4: Immunity to HEMP – Specifications for protective devices against HEMP radiated disturbance. Basic EMC publication.
61000-5-5 (1996)	Partie 5: Guides d'installation et d'atténuation – Section 5: Spécification des dispositifs de protection pour perturbations conduites IEMN-HA – Publication fondamentale en CEM.	61000-5-5 (1996)	Part 5: Installation and mitigation guidelines – Section 5: Specification of protective devices for HEMP conducted disturbance – Basic EMC publication.
61000-6-1 (1997)	Partie 6: Normes génériques – Section 1: Immunité pour les environnements résidentiels, commerciaux et de l'industrie légère.	61000-6-1 (1997)	Part 6: Generic standards – Section 1: Immunity for residential, commercial and light-industrial environments.

ISBN 2-8318-4087-2

ICS 33.100