NORME INTERNATIONALE INTERNATIONAL STANDARD

Deuxième édition Second edition 2006-06

Fibres optiques -

Partie 1-49: Méthodes de mesure et procédures d'essai – Retard différentiel de mode

Optical fibres –

Part 1-49: Measurement methods and test procedures – Differential mode delay

Numéro de référence Reference number CEI/IEC 60793-1-49:2006

Numérotation des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000. Ainsi, la CEI 34-1 devient la CEI 60034-1.

Editions consolidées

Les versions consolidées de certaines publications de la CEI incorporant les amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2.

Informations supplémentaires sur les publications de la CEI

Le contenu technique des publications de la CEI est constamment revu par la CEI afin qu'il reflète l'état actuel de la technique. Des renseignements relatifs à cette publication, y compris sa validité, sont disponibles dans le Catalogue des publications de la CEI (voir ci-dessous) en plus des nouvelles éditions, amendements et corrigenda. Des informations sur les sujets à l'étude et l'avancement des travaux entrepris par le comité d'études qui a élaboré cette publication, ainsi que la liste des publications parues, sont également disponibles par l'intermédiaire de:

- Site web de la CEI (www.iec.ch)
- Catalogue des publications de la CEI

Le catalogue en ligne sur le site web de la CEI (www.iec.ch/searchpub) vous permet de faire des recherches en utilisant de nombreux critères, comprenant des recherches textuelles, par comité d'études ou date de publication. Des informations en ligne sont également disponibles sur les nouvelles publications, les publications remplacées ou retirées, ainsi que sur les corrigenda.

IEC Just Published

Ce résumé des dernières publications parues (www.iec.ch/online_news/justpub) est aussi disponible par courrier électronique. Veuillez prendre contact avec le Service client (voir ci-dessous) pour plus d'informations.

Service clients

Si vous avez des questions au sujet de cette publication ou avez besoin de renseignements supplémentaires, prenez contact avec le Service clients:

Email: <u>custserv@iec.ch</u> Tél: +41 22 919 02 11 Fax: +41 22 919 03 00

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

IEC Web Site (<u>www.iec.ch</u>)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to search by a variety of criteria including text searches, technical committees and date of publication. Online information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

IEC Just Published

This summary of recently issued publications (<u>www.iec.ch/online_news/justpub</u>) is also available by email. Please contact the Customer Service Centre (see below) for further information.

Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email:	<u>cust</u>	ser	<u>v@i</u>	ec.c	<u>ch</u>
Tel:	+41	22	919	02	11
Fax:	+41	22	919	03	00

NORME INTERNATIONALE INTERNATIONAL STANDARD

Deuxième édition Second edition 2006-06

Fibres optiques -

Partie 1-49: Méthodes de mesure et procédures d'essai – Retard différentiel de mode

Optical fibres –

Part 1-49: Measurement methods and test procedures – Differential mode delay

© IEC 2006 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

Pour prix, voir catalogue en vigueur For price, see current catalogue

SOMMAIRE

– 2 –

AV	ANT-F	ROPOS	4
1	Doma	aine d'application	8
2	Réféi	ences normatives	8
3	Term	es et définitions	10
4	Арра	reillage	12
	4.1	Source optique	12
	4.2	Stabilité	12
	4.3	Système d'injection	12
	4.4	Système de détection	14
	4.5	Equipement de calcul	16
5	Echa	ntillonnage et éprouvettes	16
	5.1	Echantillon d'essai	16
	5.2	Faces d'extrémités d'éprouvettes	16
	5.3	Longueur d'éprouvette	16
	5.4	Emballage de l'éprouvette	16
	5.5	Positionnement de l'éprouvette	16
6	Proce	édure	16
	6.1	Régler et mesurer la réponse du système	16
	6.2	Régler le système de détection	18
	6.3	Mesurer l'échantillon d'essai	18
7	Calcu	Ils et interprétation des résultats	20
	7.1	Retard différentiel de mode (DMD)	20
	7.2	Largeur de bande modale efficace minimale calculée	20
	7.3	Normalisation de la longueur	24
8	Docu	mentation	24
	8.1	Consigner les informations suivantes pour chaque essai:	24
	8.2	Les informations suivantes doivent être disponibles sur demande:	24
9	Inforr	nations relatives à la spécification	24
Anr	nexe A	(normative) Limite de la largeur spectrale source	28
Anr	nexe E	(informative) Discussion des détails de mesure	34
Anr	nexe C	; (informative) Détermination des pondérations de DMD pour le calcul de l'EMBc.	42
Anr	nexe D	(informative) Informations relatives aux calculs de EMBc	48
Anr	nexe E	(informative) Comparaison entre cette norme et les recommandations UIT	. 54
Bib	liogra	phie	56
Fig	ure B.	1 – Données DMD idéales	34
Tak	leau	A 1 – Dispersion attendue la plus élevée pour toute fibre de la catégorie A1	
dis	onibl	e sur le marché	32
Tab	leau l	D.1 Pondérations de DMD - Exemple 1	48

Tableau D.2 – Pondérations de DMD – Exemple 2......50

CONTENTS

FOI	REWORD	5
1	Scope	9
2	Normative references	9
3	Terms and definitions	11
4	Apparatus	13
	4.1 Optical source	13
	4.2 Stability	13
	4.3 Launch system	13
	4.4 Detection system	15
	4.5 Computational equipment	17
5	Sampling and specimens	17
	5.1 Test sample	17
	5.2 Specimen endfaces	17
	5.3 Specimen length	17
	5.4 Specimen packaging	17
~	5.5 Specimen positioning	/1
6	Procedure	17
	6.1 Adjust and measure system response	1/
	6.2 Adjust detection system	19 10
7	Calculations and interpretation of results	19 21
'	7.1 Differential mode delay (DMD)	ا ک 21
	7.1 Differential mode delay (DMD)	ا ک 21
	7.2 I enoth normalization	21 25
8		20
•	8.1 Report the following information for each test:	25
	8.2 The following information shall be available upon request:	20
9	Specification information	25
Anr	ex A (normative) Source spectral width limitation	29
Anr	ex B (informative) Discussion of measurement details	20
Anr	ex C (informative) Determining DMD weights for EMPs calculation	
Ann	ex C (informative) EMPs calculation information	43
Ann	ex D (Informative) EMBC calculation information	
Anr	ex E (informative) Comparison between this standard and ITU recommendations	55
Bib	iography	57
Fig	re B 1 – Idealized DMD data	35
iigi		
Tab	le A.1 –Highest expected dispersion for any of the commercially available	
Cat	egory A1 fibres	33
Tab	le D.1 – DMD weightings – Example set 1	49
Tab	le D.2 – DMD weightings – Example set 2	51

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

FIBRES OPTIQUES -

Partie 1-49: Méthodes de mesure et procédures d'essai – Retard différentiel de mode

AVANT-PROPOS

- 1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI n'a prévu aucune procédure de marquage valant indication d'approbation et n'engage pas sa responsabilité pour les équipements déclarés conformes à une de ses Publications.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 60793-1-49 a été établie par le sous-comité 86A: Fibres et câbles, du comité d'études 86 de la CEI: Fibres optiques.

Cette deuxième édition annule et remplace la première édition, publiée en 2003, dont elle constitue une révision technique. Dans cette nouvelle édition, la largeur de bande modale efficace minimale calculée (calculated effective modal bandwidth – EMBc) a été ajoutée aux procédures d'essai, étayant ainsi la CEI 60793-2-10.

Le texte de cette norme est issu des documents suivants:

FDIS	Rapport de vote
86A/1061/FDIS	86A/1077/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPTICAL FIBRES –

Part 1-49: Measurement methods and test procedures – Differential mode delay

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60793-1-49 has been prepared by subcommittee 86A Fibres and cables, of IEC technical committee 86: Fibre optics.

This second edition cancels and replaces the first edition published in 2003, of which it constitutes a technical revision. This edition adds minimum calculated effective modal bandwidth (EMBc) to the test procedures, supporting IEC 60793-2-10.

The text of this standard is based on the following documents:

FDIS	Report on voting
86A/1061/FDIS	86A/1077/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

La présente norme doit être lue conjointement à la CEI 60793-1-1 et à la CEI 60793-2-10.

La CEI 60793-1-4X comprend les parties suivantes, regroupées sous le titre général *Fibres optiques*:

- 6 -

- Partie 1-40: Méthodes de mesure et procédures d'essai Affaiblissement
- Partie 1-41: Méthodes de mesure et procédures d'essai Largeur de bande
- Partie 1-42: Méthodes de mesure et procédures d'essai Dispersion chromatique
- Partie 1-43: Méthodes de mesure et procédures d'essai Ouverture numérique
- Partie 1-44: Méthodes de mesure et procédures d'essai Longueur d'onde de coupure
- Partie 1-45: Méthodes de mesure et procédures d'essai Diamètre du champ de mode
- Partie 1-46: Méthodes de mesure et procédures d'essai Surveillance des variations de transmission optique
- Partie 1-47: Méthodes de mesure et procédures d'essai Perte de macrocourbure
- Partie 1-48: Méthodes de mesure et procédures d'essai Dispersion en mode polarisation
- Partie 1-49: Méthodes de mesure et procédures d'essai Retard différentiel de mode

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de maintenance indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

This standard is to be read in conjunction with IEC 60793-1-1 and IEC 60793-2-10.

IEC 60793-1-4X consists of the following parts, under the general title Optical fibres:

- Part 1-40: Measurement methods and test procedures Attenuation
- Part 1-41: Measurement methods and test procedures Bandwidth
- Part 1-42: Measurement methods and test procedures Chromatic dispersion
- Part 1-43: Measurement methods and test procedures Numerical aperture
- Part 1-44: Measurement methods and test procedures Cut-off wavelength
- Part 1-45: Measurement methods and test procedures Mode field diameter
- Part 1-46: Measurement methods and test procedures Monitoring of changes in optical transmittance
- Part 1-47: Measurement methods and test procedures Macrobending loss
- Part 1-48: Measurement methods and test procedures Polarization mode dispersion
- Part 1-49: Measurement methods and test procedures Differential mode delay

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

FIBRES OPTIQUES -

Partie 1-49: Méthodes de mesure et procédures d'essai – Retard différentiel de mode

1 Domaine d'application

La présente partie de la CEI 60793 s'applique uniquement aux fibres multimodales à cœur en verre à gradient d'indice (catégorie A1). Cette méthode d'essai, qui est généralement utilisée dans les installations de production et de recherche, n'est pas facilement réalisée sur le terrain.

Cette norme décrit une méthode de caractérisation de la structure modale d'une fibre multimodale à gradient d'indice. Cette information est utile pour évaluer les performances de largeur de bande d'une fibre, en particulier lorsque la fibre est destinée à supporter une variété de conditions d'injection telles que celles produites par les émetteurs laser normalisés.

Avec cette méthode, la sortie d'une fibre qui est monomodale à la longueur d'onde d'essai excite la fibre multimodale en essai. La tache de la sonde explore la face d'extrémité de la fibre en essai et le retard de l'impulsion optique est déterminé à des positions de décalage spécifiées.

Deux résultats peuvent être fournis à partir des mêmes données. Tout d'abord, la différence de temps de propagation de l'impulsion optique entre le mode le plus rapide et le mode le plus lent de la fibre en essai peut être déterminée. L'utilisateur spécifie les limites supérieure et inférieure des positions de décalage radial pour lesquelles la fibre sonde est positionnée afin de spécifier les limites désirées de structure modale. Les données de retard différentiel de mode (DMD) sont ensuite comparées aux spécifications DMD qui ont été déterminées par modélisation et expérimentation pour correspondre à une largeur de bande modale efficace (EMB) pour une gamme d'émetteurs. En second lieu, les formes d'impulsions optiques peuvent être combinées en utilisant des poids spécifiques pour déterminer une largeur de bande modale efficace calculée (EMBc) et en calculant une séquence de valeurs EMBc avec différents jeux de poids, une EMBc minimale peut être calculée, correspondant à une gamme d'émetteurs.

L'essai quantifie les effets des interactions de la structure modale de fibre et des caractéristiques modales de source, à l'exclusion des interactions spectrales de source, avec la dispersion chromatique de fibre. L'ajout des effets de la dispersion chromatique et de la largeur spectrale de source réduira la largeur de bande de transmission globale, mais il s'agit d'un calcul séparé dans la plupart des modèles de transmission. Dans cet essai, les effets de largeur spectrale non nulle sont minimisés mais tout effet résiduel tendra à augmenter la valeur du retard différentiel de mode (DMD) et à augmenter la valeur EMBc.

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

OPTICAL FIBRES –

Part 1-49: Measurement methods and test procedures – Differential mode delay

1 Scope

This part of IEC 60793 applies only to multimode, graded-index glass-core (category A1) fibres. The test method is commonly used in production and research facilities, but is not easily accomplished in the field.

This standard describes a method for characterizing the modal structure of a graded-index multimode fibre. This information is useful for assessing the bandwidth performance of a fibre especially when the fibre is intended to support a variety of launch conditions such as those produced by standardized laser transmitters.

With this method, the output from a fibre that is single-mode at the test wavelength excites the multimode fibre under test. The probe spot is scanned across the endface of the fibre under test, and the optical pulse delay is determined at specified offset positions.

Two results can be produced from the same data. First, the difference in optical pulse delay time between the fastest and slowest mode groups of the fibre under test can be determined. The user specifies the upper and lower limits of radial offset positions over which the probe fibre is scanned in order to specify desired limits of modal structure. The DMD data is then compared to DMD specifications that have been determined by modeling and experimentation to correspond to a minimum EMB for a range of transmitters. Second, the optical pulse shapes can be combined using specific weights to determine a calculated effective modal bandwidth (EMBc), and by calculating a sequence of EMBc values with different sets of weights, a minimum EMBc can be calculated, corresponding to a range of transmitters.

The test quantifies the effects of interactions of the fibre modal structure and the source modal characteristics excluding the source spectral interactions with fibre chromatic dispersion. Adding the effects of chromatic dispersion and source spectral width will reduce the overall transmission bandwidth, but this is a separate calculation in most transmission models. In this test, the effects of non-zero spectral width are minimized but any residual effects will tend to increase the DMD value and decrease the EMBc value.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. CEI 60793-1-1: Fibres optiques – Partie 1-1: Méthodes de mesure et procédures d'essai – Section 1: Généralités et guide

CEI 60793-1-22: Fibres optiques – Partie 1-22: Méthodes de mesure et procédures d'essai – Mesure de la longueur

CEI 60793-1-41: Fibres optiques – Partie 1-41: Méthodes de mesure et procédures d'essai – Largeur de bande

CEI 60793-1-42: Fibres optiques – Partie 1-42: Méthodes de mesure et procédures d'essai – Dispersion chromatique

CEI 60793-1-45: Fibres optiques – Partie 1-45: Méthodes de mesure et procédures d'essai – Diamètre du champ de mode

CEI 60793-2-10: Fibres optiques – Partie 2-10: Spécifications de produits – Spécification intermédiaire pour les fibres multimodales de la catégorie A1

CEI 61280-1-4: Procédures d'essai des sous-systèmes de télécommunication à fibres optiques – Partie 1-4: Procédures d'essai des sous-systèmes généraux de télécommunication – Recueil et réduction de données à deux dimensions de champs proches pour les émetteurs de laser à fibres multimodales (disponible en anglais seulement)

3 Termes et définitions

Pour les besoins du présent document, les termes et définitions suivants s'appliquent.

NOTE L'utilisateur de cette norme spécifie soit le retard différentiel de mode (DMD) maximal pour les limites extérieure (R_{OUTER}) et intérieure (R_{INNER}) de position de décalage radial explorées par la tache de la sonde, soit la largeur de bande modale efficace minimale calculée (EMBc) parmi les valeurs EMBc calculées à partir d'une série de pondération de DMD.

3.1

retard différentiel de mode

DMD

différence évaluée des temps de propagation de l'impulsion optique entre le mode le plus rapide et le mode le plus lent excité pour toutes les positions de décalage radial entre R_{INNER} et R_{OUTER} inclus

3.2

largeur de bande modale efficace EMB (effective modal bandwith)

largeur de bande associée à la fonction de transfert, H(f), d'une combinaison particulière laser/fibre

3.3 limite intérieure *R*_{INNER} limite extérieure

ROUTER

limites des positions de décalage radial sur la face d'extrémité de la fibre en essai balayée par le point de la sonde

IEC 60793-1-1: Optical fibres – Part 1: Measurement methods and test procedures –- General and guidance

IEC 60793-1-22: Optical fibres – Part 1-22: Measurement methods and test procedures – Length measurement

IEC 60793-1-41: Optical fibres – Part 1-41: Measurement methods and test procedures – Bandwidth.

IEC 60793-1-42: Optical fibres – Part 1-42: Measurement methods and test procedures – Chromatic dispersion

IEC 60793-1-45: Optical fibres – Part 1-45: Measurement methods and test procedures - Mode field diameter

IEC 60793-2-10: Optical fibres – Part 2-10: Product specifications – Sectional specification for category A1 multimode fibres

IEC 61280-1-4: Fibre optic communication subsystem test procedures – Part 1-4: General communication subsystems – Collection and reduction of two-dimensional nearfield data for multimode fibre laser transmitters

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

NOTE The user of this standard specifies either the maximum DMD for the outer (R_{OUTER}) and inner (R_{INNER}) limits of radial offset position over which the probe spot is scanned, or the minimum EMBc among the EMBc values calculated from a sequence of DMD weightings.

3.1 differential mode delay DMD

the estimated difference in optical pulse delay time between the fastest and slowest modes excited for all radial offset positions between and including R_{INNER} and R_{OUTER}

3.2

effective modal bandwith

bandwidth associated with the transfer function, H(f), of a particular laser/fibre combination

3.3 inner limit R_{INNER} outer limit R_{OUTER} limits of radial offset positions on the endface of the fibre under test over which the probe spot is scanned

4 Appareillage

4.1 Source optique

Utiliser une source optique qui injecte des impulsions de courte durée et de largeur spectrale étroite dans la fibre sonde.

L'impulsion optique doit avoir une durée suffisamment courte pour mesurer le temps de propagation différentiel prévu. La durée maximale autorisée pour l'impulsion optique, caractérisée pleine largeur à 25 % de l'amplitude maximale, dépendra à la fois de la valeur de DMD qui est à déterminer et de la longueur d'échantillon. Par exemple, si la limite de DMD désirée normalisée par rapport à la longueur est de 0,20 ps/m, dans le cas d'un échantillon d'une longueur de 500 m, le DMD à mesurer est de 100 ps et une impulsion de durée inférieure à ~110 ps est nécessaire. Des essais à la même limite DMD sur une longueur de 10 000 m de fibre impliquent la mesure d'un DMD de 2 000 ps et une impulsion d'une largeur de ~2 200 ps peut être utilisée. Les limites détaillées sont données en 6.1 et peuvent dépendre de la largeur spectrale de la source.

L'élargissement induit par la dispersion chromatique provenant de la largeur spectrale source doit se situer dans les limites indiquées à l'Annexe A. L'exigence concernant la largeur spectrale peut être satisfaite soit en utilisant une source spectralement étroite, soit par l'utilisation d'un filtrage optique approprié soit au niveau de la source, soit au niveau de l'extrémité de détection.

La longueur d'onde centrale doit être dans les limites de ± 10 nm de la longueur d'onde nominale spécifiée.

Un laser titane-saphir à mode bloqué constitue un exemple de source utilisable pour cette application.

4.2 Stabilité

Les dispositifs doivent être en mesure de positionner les extrémités d'entrée et de sortie de l'éprouvette d'essai avec une stabilité et une reproductibilité suffisantes pour satisfaire aux conditions de 4.3 et 4.4.

4.3 Système d'injection

La fibre sonde placée entre la source de lumière et l'échantillon d'essai doit propager seulement un mode unique à la longueur d'onde de mesure. Le diamètre de champ de mode de la fibre sonde à λ doit être de $(8,7\lambda - 2,39) \pm 0,5 \mu m$, où λ est la longueur d'onde de mesure en micromètres et le diamètre de champ de mode est déterminé en utilisant la CEI 60793-1-45. Cette équation produit un diamètre de champ de mode de 5 λm à 850 nm et de 9 λm à 1 310 nm, qui correspond aux fibres monomodales disponibles sur le marché.

S'assurer que la sortie de la fibre sonde est à un seul mode. Une méthode pour réaliser cette action consiste à retirer des modes d'ordre supérieur en enroulant la fibre sonde par trois tours autour d'un mandrin de 25 mm de diamètre.

La tache de sortie de la fibre sonde doit balayer la face d'extrémité de l'échantillon d'essai avec une précision de position inférieure ou égale à $\pm 0.5 \ \mu m$.

Le faisceau de sortie de la fibre sonde doit être perpendiculaire à la face d'extrémité de l'échantillon d'essai dans les limites d'une tolérance angulaire inférieure à 1,0 degré.

Le système d'injection doit être capable de centrer de manière reproductible la tache de sortie de la fibre sonde dans les limites de \pm 1,0 µm.

4 Apparatus

4.1 Optical source

Use an optical source that introduces short duration, narrow spectral width pulses into the probe fibre.

The temporal duration of the optical pulse shall be short enough to measure the intended differential delay time. The maximum duration allowed for the optical pulse, characterized as full width at 25 % of maximum amplitude, will depend both on the value of DMD to be determined and the sample length. For example, if the desired length-normalized DMD limit is 0,20 ps/m over a sample of length 500 m, the DMD to be measured is 100 ps, and a pulse of duration less than ~110 ps is needed. Testing to the same DMD limit in a 10 000 m length of fibre requires measuring a DMD of 2 000 ps, and a pulse a wide as ~2 200 ps may be used. Detailed limits are given in 6.1, and may depend on the source spectral width.

Chromatic dispersion induced broadening resulting from source spectral width shall be within the limits indicated in Annex A. The requirement on spectral width may be met either by using a spectrally narrow source, or alternatively by the use of appropriate optical filtering at either the source or detection end.

The centre wavelength shall be within ± 10 nm of the nominal specified wavelength.

A mode locked titanium-sapphire laser is an example of a source usable for this application.

4.2 Stability

Devices shall be available to position the input and output ends of the test specimen with sufficient stability and reproducibility to meet the conditions of 4.3 and 4.4.

4.3 Launch system

The probe fibre between the light source and test sample shall propagate only a single mode at the measurement wavelength. The mode field diameter of the probe fibre at λ shall be $(8,7\lambda - 2,39) \pm 0.5 \mu$ m, where λ is the measurement wavelength in micrometers, and the mode field diameter is determined using IEC 60793-1-45. This equation produces a mode field diameter of 5 μ m at 850 nm and 9 μ m at 1 310 nm, which corresponds to commercially available single-mode fibres.

Ensure that the output of the probe fibre is single-mode. One method to do this is to strip higher order modes by wrapping the probe fibre three turns around a 25-mm diameter mandrel.

The output spot of the probe fibre shall be scanned across the endface of the test sample with a positional accuracy less than or equal to $\pm 0.5 \ \mu$ m.

The output beam from the probe fibre shall be perpendicular to the endface of the test sample to within an angular tolerance of less than or equal to 1,0 degree.

The launch system shall be capable of reproducibly centring the output spot of the probe fibre to within $\pm 1,0~\mu$ m.

Dans le cas d'un couplage direct avec l'échantillon d'essai, l'espace entre l'extrémité de sortie de la fibre sonde et l'extrémité de l'échantillon d'essai ne doit pas être supérieur à 10 μ m.

Un système optique en espace libre constitué de lentilles ou de miroirs peut être utilisé pour créer l'image du point de sortie de la fibre sonde sur la face d'extrémité de l'échantillon en essai. Lorsqu'on utilise ce type de système d'injection, il convient de s'assurer qu'en grande partie ce sont les mêmes modes qui sont excités dans la fibre en essai que ceux qui l'auraient été si le faisceau avait été couplé directement à la sortie de la fibre sonde à un seul mode. Par exemple, un système de lentilles ou de miroirs peut être utilisé pour créer l'image de la sortie d'une fibre à un seul mode sur la face d'extrémité de l'échantillon d'essai.

Fournir des moyens pour éliminer la lumière de la gaine de l'échantillon en essai. Le revêtement de fibre est souvent suffisant pour assurer cette fonction. Sinon, utiliser les extracteurs de modes de gaine à proximité des deux extrémités de l'échantillon en essai. Si la fibre est retenue sur le ou les extracteur(s) de modes de gaine avec de petits poids, on doit veiller à éviter toute microcourbure à ces emplacements.

4.4 Système de détection

Utiliser un appareil de détection optique adapté à la longueur d'onde d'essai. L'appareil de détection doit coupler tous les modes guidés de l'échantillon en essai à la zone active du détecteur de telle manière que la sensibilité de détection ne dépende pas du mode de manière significative. Le détecteur, ainsi que tout pré-amplificateur de signal, doit répondre de manière linéaire (dans les limites de ± 5 %) sur la plage de la puissance détectée.

La réponse temporelle du système détecteur, y compris un affaiblisseur optique facultatif, ne doit pas dépendre du mode de manière significative.

Un essai spécifique concernant la dépendance par rapport au mode est donné en 6.1. Sinon, la réponse temporelle du détecteur peut être une fonction de décalage tant qu'elle est stable au cours de la mesure (c'est-à-dire que $\Delta T_{\text{PULSE}}(r)$ doit satisfaire à l'exigence de ±5 % de 6.1).

L'anneau de garde du système détecteur doit être limité de manière que le dépassement positif ou négatif maximal soit inférieur à 5 % de l'amplitude de crête du signal optique détecté tel qu'il est mesuré sur la référence.

La forme d'onde du signal optique détecté doit être enregistrée et affichée sur un appareil adapté par exemple un oscilloscope d'échantillonnage à grande vitesse avec balayage temporel étalonné. Il convient que le système d'enregistrement soit capable de faire la moyenne de la forme d'onde détectée pour des impulsions optiques multiples.

Utiliser un retardateur, par exemple un générateur de retard numérique, pour disposer d'un moyen permettant de déclencher l'électronique de détection au moment correct. Le retardateur peut déclencher la source optique ou être déclenché par elle. Le retardateur peut être interne ou externe à l'appareil d'enregistrement.

L'effet combiné de l'instabilité de synchronisation et du bruit dans le système de détection doit être suffisamment faible pour que la différence entre mesures successives de temps de propagation optique pour toute injection fixée utilisée dans la mesure soit inférieure à 5 % de la valeur mesurée du DMD. Le moyennage de la forme d'onde détectée pour les impulsions optiques multiples peut être utilisé pour réduire les effets d'instabilité de synchronisation et de bruit. Si on utilise le moyennage, chaque forme d'onde doit être enregistrée en utilisant au moins le nombre de moyennes utilisées lors de la détermination de ΔT_{PULSE} en 6.1. Le système doit maintenir ce niveau de stabilité au cours de la mesure.

If directly coupled to the test sample, the gap between the output end of the probe fibre and the endface of the test sample shall be no more than 10 μ m.

A free space optics system of lenses or mirrors may be used to image the output spot of the probe fibre onto the endface of the test sample. When using this type of launch system, care should be taken to ensure that substantially the same modes are excited in the test fibre as would be if the beam were coupled directly from the output of the single-mode probe fibre. For example, a system of lenses or mirrors may be used to image the output of a single-mode fibre onto the end face of the test sample.

Provide means to remove cladding light from the test sample. Often the fibre coating is sufficient to perform this function. Otherwise, use cladding mode strippers near both ends of the test sample. If the fibre is retained on the cladding mode stripper(s) with small weights, care shall be taken to avoid microbending at these sites.

4.4 Detection system

Use an optical detection apparatus suitable for the test wavelength. The detection apparatus shall couple all of the guided modes from the test sample onto the detector's active area, such that the detection sensitivity is not significantly mode dependent. The detector, along with any signal preamplifier, shall respond linearly (within ± 5 %) over the range of power detected.

The temporal response of the detector system, including any optional optical attenuator, shall not be significantly mode dependent.

A specific test for mode dependence is given in 6.1. Alternatively, the detector's temporal response may be a function of offset as long as it is stable over the course of the measurement (i.e. $\Delta T_{\text{PULSE}}(r)$ shall fulfil the ±5 % requirement of 6.1).

Ringing of the detector system shall be limited such that maximum overshoot or undershoot shall be less than 5 % of the peak amplitude of the detected optical signal as measured on the reference.

The waveform of the detected optical signal shall be recorded and displayed on a suitable instrument, such as a high-speed sampling oscilloscope with calibrated time sweep. The recording system should be capable of averaging the detected waveform for multiple optical pulses.

Use a delay device, such as a digital delay generator, to provide a means of triggering the detection electronics at the correct time. The delay device may trigger the optical source, or be triggered by it. The delay device may be internal or external to the recording instrument.

The combined effect of timing jitter and noise in the detection system shall be small enough that the difference between successive measurements of optical delay times for any fixed launch used in the measurement shall be less than 5 % of the measured value of DMD. Averaging the detected waveform for multiple optical pulses may be used to reduce the effects of timing jitter and noise. If averaging is used, each waveform shall be recorded using at least the number of averages used when determining ΔT_{PULSE} in 6.1 The system shall maintain this level of stability over the course of the measurement.

4.5 Equipement de calcul

Cette méthode d'essai nécessite généralement un ordinateur pour stocker les données intermédiaires et calculer les résultats d'essai.

5 Echantillonnage et éprouvettes

5.1 Echantillon d'essai

L'éprouvette doit être une fibre multimodale à cœur en verre à gradient d'indice (catégorie A1).

5.2 Faces d'extrémités d'éprouvettes

Préparer les faces terminales pour qu'elles soient planes au niveau des extrémités d'entrée et de sortie de l'éprouvette.

5.3 Longueur d'éprouvette

La longueur de la fibre doit être mesurée en utilisant une méthode précise bien appropriée telle que celle de la CEI 60793-1-22.

5.4 Emballage de l'éprouvette

Placer la fibre en essai de façon que la tension soit dissipée pour réduire les microcourbures.

5.5 Positionnement de l'éprouvette

Positionner l'extrémité d'entrée de l'échantillon d'essai de manière à ce qu'il soit aligné avec l'extrémité de sortie du système d'injection comme décrit en 4.3.

Positionner l'extrémité de sortie de l'échantillon d'essai de manière à ce qu'il soit aligné avec le système de détection comme décrit en 4.4.

6 Procédure

6.1 Régler et mesurer la réponse du système

Coupler la sortie de la fibre sonde dans l'appareil de détection. Ceci peut être réalisé en montant la fibre sonde dans l'appareil de détection ou en utilisant une longueur courte (<10 m) de fibre montée entre le système d'injection et le système de détection ou en couplant directement la sortie de sonde au détecteur par l'intermédiaire d'un système de lentilles et de miroirs. Si on utilise une fibre de longueur courte, elle peut être du même type que la fibre d'essai ou d'un type différent.

Régler l'amplitude de l'impulsion optique pour s'adapter à la plus faible amplitude de crête attendue de la fibre en essai pendant la mesure. L'amplitude de crête la plus faible de la fibre en essai apparaîtra généralement pour le décalage radial le plus important.

Régler l'échelle de temps du système de détection pour l'adapter à l'échelle de temps utilisée pour acquérir des données de l'échantillon en essai pour assurer que l'impulsion complète sera capturée (voir 6.2).

Mesurer la forme d'onde de l'impulsion optique et déterminer sa largeur temporelle à 25 % de l'amplitude de crête. Cette valeur sera utilisée pour calculer les résultats d'essai et sera appelée ΔT_{PULSE} . L'interpolation linéaire peut être utilisée entre des points temporels successifs pour calculer ΔT_{PULSE} pour une précision améliorée.

4.5 Computational equipment

This test method generally requires a computer to store the intermediate data and calculate the test results.

5 Sampling and specimens

5.1 Test sample

The test sample shall be graded-index glass-core (category A1) multimode fibre.

5.2 Specimen endfaces

Prepare flat endfaces at the input and output ends of the specimen.

5.3 Specimen length

The length of the fibre shall be measured using a suitably accurate method such as that of IEC 60793-1-22.

5.4 Specimen packaging

Support the test fibre in a manner that relieves tension and minimizes microbending.

5.5 Specimen positioning

Position the input end of the test sample such that it is aligned to the output end of the launch system as described in 4.3.

Position the output end of the test sample such that it is aligned with the detection system, as described in 4.4.

6 Procedure

6.1 Adjust and measure system response

Couple the output of the probe fibre into the detection apparatus. This may be accomplished by mounting the probe fibre in the detection apparatus, or by using a short (<10 m) length of fibre mounted between the launch system and the detection system, or by directly coupling the probe output to the detector via a system of lenses and mirrors. If using a short fibre, it shall be of the same type fibre as the test fibre.

Adjust the amplitude of the optical pulse to match the smallest peak amplitude expected from the test fibre during the measurement. The smallest peak amplitude from the test fibre will usually occur for the largest radial offset.

Adjust the time scale of the detection system to match the time scale used in acquiring data from the test sample to ensure that the entire pulse is captured (see 6.2).

Measure the waveform of the optical pulse, and determine its temporal width at 25 % of the peak amplitude. This value will be used to calculate the test results, and will be called $\Delta T_{\rm PULSE}$. Linear interpolation may be used between successive time points to calculate $\Delta T_{\rm PULSE}$ for improved accuracy.

- Des mesures répétées de $\Delta T_{\rm PULSE}$ ne doivent pas différer de plus de 5 % de la valeur mesurée du DMD
- Si on utilise une longueur courte de fibre ou un système de lentilles et de miroirs, les valeurs de ΔT_{PULSE} ne doivent pas différer de plus de 5 % des valeurs obtenues en couplant la fibre sonde directement dans l'appareil de détection.
- Pour faire l'essai et vérifier que l'appareil de détection ne dépend pas du mode de manière significative, préparer un échantillon en essai spécial de longueur courte du même type que la fibre à soumettre à l'essai. Mesurer la valeur de ΔT_{PULSE} pour chaque décalage radial devant être utilisé dans la mesure. Cette valeur doit satisfaire à l'exigence de 6.1.

Utiliser l'Annexe A pour calculer une valeur de ΔT_{REF} appropriée aux valeurs de ΔT_{PULSE} , de la largeur spectrale de la source et de la dispersion chromatique de la fibre.

6.2 Régler le système de détection

Injecter la lumière à partir de la fibre sonde dans la fibre en essai. Régler l'échelle de temps et le temps de déclenchement du système de détection de telle manière qu'une impulsion optique complète soit affichée pour tous les décalages concernés du point de sonde, y compris tous les fronts et flancs arrières d'une amplitude supérieure ou égale à 1 % de l'amplitude de crête. Toutes les données de la fibre d'essai doivent être obtenues sans réglage supplémentaire du temps de propagation et de l'échelle de temps.

Trouver le centre du cœur de la fibre en essai. Une méthode pour trouver le centre consiste à balayer la position du point de sonde sur la face de la fibre en essai. Trouver les deux bords du cœur de la fibre le long d'un axe "x" arbitraire, avec le bord défini comme la position pour laquelle la puissance totale reçue atteint un seuil d'environ 15 % du maximum. Centrer la tache de sonde le long de l'axe "x". Ensuite, balayer la tache de sonde le long de l'axe orthogonal "y", en trouvant les bords de cœur de la fibre et en centrant le long de l'axe"y". Répéter, si cela est nécessaire pour obtenir la tolérance de position nécessaire. Lorsque la tache de sonde est centrée, la valeur du DMD sera symétrique entre les décalages positif et négatif le long des axes "x" ou "y". La CEI 61280-1-4 décrit également une autre méthode pour trouver le centre optique de la fibre (voir 5.4 de la CEI 61280-1-4).

6.3 Mesurer l'échantillon d'essai

Mesurer la réponse de l'échantillon d'essai, U(r,t), pour des décalages radiaux, r, du point de sonde. Pour la mesure du DMD, *r* est compris entre $R_{\text{INNER}} \le r \le R_{\text{OUTER}}$ à des intervalles de $\le 2 \ \mu\text{m}$. R_{INNER} et R_{OUTER} doivent être donnés dans la spécification (voir le point 3 de l'article 9). En fonction des valeurs spécifiées pour R_{INNER} et R_{OUTER} , des intervalles inférieurs à 2 μ m peuvent être exigés.

Exemple: Si la spécification demande que R_{INNER} = 0 et R_{OUTER} = 17 μm, le nombre le plus faible de décalages radiaux sera égal à 10. (0, 2, ..., 16, 17) μm ou (0, 1, ..., 15, 17) μm satisferait à l'exigence minimale. En variante, on pourrait utiliser 18 décalages à (0, 1, 2, ..., 16, 17) μm.

Pour les mesures EMBc, balayer à partir du centre optique dans les limites de 1 µm du rayon de cœur nominal. Des décalages radiaux supplémentaires peuvent être utilisés. Pour les mesures EMBc des fibres multimodales A1a.2 de diamètre de cœur de 50 µm, mesurer U(r,t) sur la plage $0 \le r \le 24$ µm à des intervalles de ≤ 2 µm.

A chaque décalage radial, mesurer la forme d'onde de l'impulsion optique et déterminer la position temporelle des fronts et flancs arrière à 25 % de l'amplitude maximale de la forme d'onde qui en résulte (voir Annexe B). L'interpolation linéaire peut être utilisée entre des points temporels successifs pour estimer les fronts et flancs arrière pour une précision améliorée. Enregistrer les durées de front et de flanc arrière pour chaque position de décalage radial.

- Repeated measurements of ΔT_{PULSE} shall differ by no more than 5 % of the value of DMD being measured
- If using either a short length of fibre, or a system of lenses and mirrors, the values of ΔT_{PULSE} shall differ by no more than 5 % from the values obtained by coupling the probe fibre directly into the detection apparatus.
- To test and verify that the detector apparatus is not significantly mode dependent, prepare a special short-length test sample of the same type as the fibre to be tested. Measure the value of ΔT_{PULSE} for each radial offset to be used in the measurement. This value shall meet the requirement of 6.1.

Use Annex A to calculate a value of ΔT_{REF} appropriate for the values of ΔT_{PULSE} , source spectral width, and fibre chromatic dispersion.

6.2 Adjust detection system

Launch light from the probe fibre into the test fibre. Adjust the time scale and trigger delay of the detection system such that one entire optical pulse is displayed for all relevant offsets of the probe spot, including all leading and trailing edges having amplitude greater than or equal to 1 % of the peak amplitude. All data from the test fibre shall be obtained without further adjustment of the delay and time scale.

Find the centre of the core of the test fibre. One method for finding the centre is to scan the position of the probe spot across the face of the test fibre. Find both edges of the core of the fibre along some arbitrary "x" axis, with the edge defined as the position for which the total received power reaches a threshold of about 15 % of maximum. Centre the probe spot along the "x" axis. Now scan the probe spot along the orthogonal "y" axis, finding the fibre core edges and centering along the "y" axis. Iterate, as necessary, to achieve the required positional tolerance. When the probe spot is centred, the DMD will be symmetric between positive and negative offsets along the "x" or "y" axes. IEC 61280-1-4 also describes another method for finding the optical centre of the fibre (see 5.4 of IEC 61280-1-4).

6.3 Measure the test sample

Measure the response of the test sample, U(r,t), for radial offsets, r, of the probe spot. For measurement of DMD, r ranges from $R_{\text{INNER}} \le r \le R_{\text{OUTER}}$ at intervals of $\le 2 \ \mu\text{m}$. R_{INNER} and R_{OUTER} shall be provided in the specification (see item 3 in clause 9). Depending on the values specified for R_{INNER} and R_{OUTER} , intervals less than 2 μ m may be required.

Example: If the specification calls for $R_{\text{INNER}} = 0$ and $R_{\text{OUTER}} = 17 \,\mu\text{m}$, the fewest number of radial offsets will be ten. Either (0, 2, ..., 16, 17) μm or (0, 1, ..., 15, 17) μm would meet the minimum requirement. Alternatively, one could use 18 offsets at (0, 1, 2, ..., 16, 17) μm .

For EMBc measurements, scan from the optical centre to within 1 μ m of the nominal core radius. Additional radial offsets may be used. For 50 μ m core diameter A1a.2 multimode fibre EMBc measurements, measure U(r,t) over the range $0 \le r \le 24 \mu$ m at intervals of $\le 2 \mu$ m.

At each radial offset, measure the waveform of the optical pulse, and determine the temporal position of the leading and trailing edges at 25 % of the maximum amplitude of the resulting waveform (see Annex B). Linear interpolation may be used between successive time points to estimate the leading and trailing edge times for improved accuracy. Record the leading and trailing edge times for each radial offset position.

7 Calculs et interprétation des résultats

La *largeur de bande modale efficace* (EMB) minimale d'une fibre est la largeur de bande minimale correspondant à l'excitation des émetteurs conformes aux conditions d'injection définies. Par exemple, l'EMB minimale spécifiée dans la CEI 60793-2-10 est applicable aux conditions d'injection également spécifiées dans la CEI 60793-2-10. L'EMB minimale est déterminée en calculant soit le DMD soit l'EMB minimale calculée (EMBc). L'objet de l'un ou l'autre calcul est d'assurer que l'EMB de la fibre dépassera les exigences pour toute distribution de puissance de mode cohérente avec les émetteurs conformes. La conformité des émetteurs peut être définie, par exemple, en encerclant les exigences de flux telles que celles qui figurent dans la CEI 60793-2-10 mesurées par la CEI 61280-1-4.

7.1 Retard différentiel de mode (DMD)

Trouver T_{FAST} , le minimum des durées de front pour l'excitation entre R_{INNER} et R_{OUTER} à partir des impulsions de sortie enregistrées en 6.3.

Trouver T_{SLOW} , le maximum des durées de flanc arrière pour l'excitation entre R_{INNER} et R_{OUTER} à partir des impulsions de sortie enregistrées en 6.3.

Calculer DMD:

- Option 1 (Voir l'Annexe B):

En utilisant la valeur de ΔT_{REF} de 6.1, *DMD* = ($T_{\text{SLOW}} - T_{\text{FAST}}$) - ΔT_{REF}

La limite inférieure pour le DMD en utilisant cette équation est $0.9(\Delta T_{\text{REF}})$ en raison des problèmes pratiques de mesure exposés à l'Annexe B. En conséquence, si la valeur calculée pour le DMD en utilisant l'équation ci-dessus est inférieure à $0.9(\Delta T_{\text{REF}})$, enregistrer le résultat comme étant "inférieur à $0.9(\Delta T_{\text{REF}})$ ".

- Option 2

Le DMD peut être calculé alternativement en réalisant une déconvolution de l'impulsion de référence des impulsions obtenues en sortie de la fibre en essai. Pour utiliser la déconvolution, l'algorithme ne doit pas introduire d'erreur significative pour les formes d'impulsions rencontrées dans la mesure, en particulier provenant du choix d'un filtre de bruit à haute fréquence.

Valeurs DMD multiples

Une fibre peut être caractérisée par des valeurs DMD multiples avec chaque valeur évaluée pour une plage différente de R_{INNER} et R_{OUTER} . Dans ce cas, toutes les valeurs DMD peuvent être évaluées à partir des impulsions de sortie enregistrées en 6.3, dans la mesure où les exigences de décalage radial de 6.3 sont satisfaites pour chacune des plages de R_{INNER} et R_{OUTER} .

7.2 Largeur de bande modale efficace minimale calculée

L'*EMBc minimale* est la valeur minimale de l'EMBc déterminée pour une fibre spécifique en utilisant le jeu complet des pondérations correspondant à une gamme de distributions de puissance de mode en utilisant les calculs de 7.2.1 à 7.2.4.

Les *pondérations* du *DMD* correspondent à la gamme de distributions de puissance de mode cohérente avec les exigences de flux encerclés des émetteurs optiques utilisés dans l'application. Elles sont stipulées dans la spécification détaillée de l'utilisateur. L'utilisateur peut également spécifier un multiplicateur supplémentaire utilisé pour aligner la EMBc à la largeur de bande modale efficace exigée par l'application. Un jeu par défaut de pondérations applicables, par exemple, à IEEE 802.3 10GBASE-S et INCITS 364 10GFC est spécifié dans la CEI 60793-2-10 et se trouve également inclus en tant qu'exemple dans l'Annexe D de ce document. L'Annexe C fournit une procédure pour produire des poids DMD à partir des données de flux encerclés.

7 Calculations and interpretation of results

The minimum effective modal bandwidth (EMB) of a fibre is the minimum bandwidth corresponding to excitation from transmitters conforming to defined launch conditions. For example, the minimum EMB specified in IEC 60793-2-10 is applicable to launch conditions also specified in IEC 60793-2-10. The minimum EMB is determined by calculating either the DMD or the minimum calculated EMB (EMBc). The purpose of either calculation is to ensure that the EMB of the fibre will exceed the requirement for any mode power distribution consistent with conforming transmitters. The conformance of the transmitters may be defined, for example, by encircled flux requirements such as those found in IEC 60793-2-10 measured by IEC 61280-1-4.

7.1 Differential mode delay (DMD)

Find T_{FAST} , the minimum of the leading edge times for excitation between R_{INNER} and R_{OUTER} from among the output pulses recorded in 6.3.

Find T_{SLOW} , the maximum of the trailing edge times for excitation between R_{INNER} and R_{OUTER} from among the output pulses recorded in 6.3.

Calculate DMD:

- Option 1 (See Annex B):

Using the value of ΔT_{REF} from 6.1, DMD = $(T_{\text{SLOW}} - T_{\text{FAST}}) - \Delta T_{\text{REF}}$

The lower reporting limit for DMD using this equation is $0,9(\Delta T_{REF})$ because of the practical measurement problems discussed in Annex B. Consequently, if the value calculated for DMD using the above equation is less than $0,9(\Delta T_{REF})$, report the result as being "less than $0,9(\Delta T_{REF})$ ".

- Option 2

DMD can alternatively be calculated by deconvolving the reference pulse from the pulses gathered exiting the test fibre. To utilize deconvolution, the algorithm shall not introduce significant error for the pulse shapes encountered in the measurement, especially arising from the choice of a high-frequency noise filter.

Multiple DMD values

A fibre may be characterized by multiple DMD values, with each value evaluated for a different range of $R_{\rm INNER}$ and $R_{\rm OUTER}$. In this case, all DMD values may be evaluated from among the output pulses recorded in 6.3, provided that the radial offset requirements of 6.3 are met for each of the ranges of $R_{\rm INNER}$ and $R_{\rm OUTER}$.

7.2 Minimum calculated effective modal bandwidth

The *minimum EMBc* is the minimum value of EMBc determined for a specific fibre using the full set of weightings corresponding to a range of mode power distributions using the calculations of 7.2.1 to 7.2.4.

The *DMD* weightings correspond to the range of mode power distributions consistent with the launch condition specifications of the optical transmitters utilized in the application. They are specified by the user's detailed specification. The user may also specify an additional multiplier that is used to align EMBc to the theoretical effective modal bandwidth required by the application. A default set of weightings applicable to, for example, IEEE 802.3 10GBASE-S and INCITS 364 10GFC is specified in IEC 60793-2-10 and is also included as an example in Annex D of this document. Annex C provides a procedure for generating DMD weights from encircled flux data.

Les calculs suivants concernent l'utilisation des fonctions de poids qui sont dérivées des données de flux encerclés en champ proche des sources laser qui sont caractéristiques des applications. Pour une fibre donnée, l'application de plusieurs fonctions de pondération produira un nombre de valeurs EMBc, dont le minimum est la EMBc minimale pour la fibre.

NOTE Lorsque les données DMD sont rassemblées au niveau des décalages séparés par 2 μ m, les valeurs U(r,t) au niveau des décalages de 1 μ m intervenant peuvent être interpolées dans le cadre de ces calculs.

7.2.1 Calculer l'impulsion de sortie

Calculer une réponse temporelle de sortie qui en résulte, $P_{o}(t)$ en utilisant les informations d'impulsion de sortie de fibre et une fonction de pondération.

$$P_o(t) = \sum_r W(r)U(r,t) \tag{1}$$

оù

- *U* (*r*,*t*) est l'impulsion de sortie échantillonnée mesurée à chaque décalage radial *r* en fonction du temps mesuré *t*. Chaque impulsion de sortie est brute (non-normalisée en amplitude), après soustraction appropriée du bruit de ligne de base.
- W(r) est la fonction de pondération DMD correspondant à l'émetteur utilisé dans l'application (voir l'Annexe C pour les détails relatifs au calcul de W(r), et voir l'Annexe D pour des exemples de valeurs de W(r) correspondant à des conditions particulières d'injection.)

7.2.2 Calculer la fonction de transfert

Réaliser une déconvolution de la réponse temporelle de référence, R(t), à partir de la réponse de sortie qui en résulte, $P_0(t)$, d'une manière analogue à celle effectuée dans les mesures de largeur de bande décrites dans la CEI 60793-1-41. Cela donne la réponse fréquentielle de fibre, $H_{\text{Fib}}(f)$, également désignée sous le nom de *fonction de transfert de fibre*.

$$H_{\text{Fib}}(f) = FT\{P_{O}(t)\} / FT\{R(t)\}$$
(2)

оù

- $P_{o}(t)$ est l'impulsion de sortie résultant de 7.2.1;
- *R*(*t*) est l'impulsion de référence résultant de 6.1;
- *FT* est la fonction de transformée de Fourier.

NOTE Ces calculs produisent un ensemble de nombres complexes.

7.2.3 Largeur de bande modale efficace calculée (EMBc)

Calculer la largeur de bande optique de -1,5 dB. Elle est déterminée par la fréquence la plus basse où la magnitude de la fonction de transfert est de 1,5 dB à partir de la valeur de fréquence de zéro. La valeur optique de -1,5 dB est ensuite extrapolée à -3 dB au moyen des hypothèses gaussiennes en la multipliant par 1,414.

NOTE La largeur de bande peut être déterminée par la définition 3 dB traditionnelle (le premier point auquel la fonction de transfert, $H_{Fib}(f)$ atteint 50 % ou 3 dB). Cependant, des réponses hautement non-gaussiennes peuvent être produites au moyen d'une fibre réelle et de sources réelles. Pour ces réponses, la valeur 3 dB mesurée s'est avéré ne pas fournir une bonne corrélation avec la performance du système. La valeur 1,5 dB aborde certaines des limites d'une fonction de transfert ondulé et de son effet sur la valeur de –3 dB.

The following calculations involve the use of weight functions that are derived from near-field encircled flux data of laser sources that are characteristic of applications. For a given fibre, the application of several weight functions will yield a number of EMBc values, the minimum of which is the minimum EMBc for the fibre.

NOTE When DMD data are collected at offsets separated by 2 μ m, the U(r,t) values at the intervening 1 μ m offsets may be interpolated for the purpose of these calculations.

7.2.1 Calculate the output pulse

Calculate a resultant output temporal response, $P_o(t)$ utilizing the fibre output pulse information and a weighting function.

$$P_{\rm o}(t) = \sum_{r} W(r) U(r, t) \tag{1}$$

where

- U(r,t) is the sample output pulse measured at each radial offset *r* as a function of time *t*. Each output pulse is raw (un-normalized in amplitude), after an appropriate subtraction of baseline noise;
- W(r) is the DMD weighting function corresponding to the transmitter used in the application (see Annex C for details on calculating W(r), and see Annex D for example W(r) values corresponding to a particular launch specification)

7.2.2 Calculate the transfer function

Deconvolve the reference temporal response, R(t), from the resultant output response, $P_0(t)$, in a similar fashion to that done in bandwidth measurements described in IEC 60793-1-41. This gives the fibre frequency response, $H_{Fib}(f)$, also called the *fibre transfer function*.

$$H_{\text{Fib}}(f) = FT\{P_{O}(t)\} / FT\{R(t)\}$$
(2)

where:

 $P_{0}(t)$ is the resultant output pulse from 7.2.1;

- R(t) is the resultant reference pulse from 6.1;
- *FT* is the Fourier transform function.

NOTE These calculations yield an array of complex numbers.

7.2.3 Calculated effective modal bandwidth (EMBc)

Calculate the -1,5 dB optical bandwidth. It is determined from the lowest frequency where the magnitude of the transfer function is 1,5 dB down from the zero frequency value. The -1,5 dB optical value is then extrapolated to -3 dB using Gaussian assumptions by multiplying it by 1,414.

NOTE The bandwidth can be determined by the traditional 3 dB definition (the first point at which the transfer function, $H_{Fib}(f)$ reaches 50 % or 3 dB). However, highly non-Gaussian responses can be generated using real fibre and real sources. For these responses, the measured 3 dB value has been shown not to provide a good correlation to system performance. The 1,5 dB metric addresses some of the limitations of a wavy transfer function and its effect on the –3 dB value.

7.2.4 Limite de fréquence de stabilité du système (SSFL)

$$G_{\text{ref}}(f) = \frac{FT(R_A(t))}{FT(R_B(t))}$$
(3)

où R_A et R_B sont deux impulsions de référence indépendantes

La limite de fréquence de stabilité du système (SSFL) où |G(f)| dépasse 1,0 ± 0,05 (Voir la CEI 60793-1-41).

- 24 -

Si la EMBc calculée pour une combinaison fibre/laser dépasse la SSFL, consigner la valeur de la largeur de bande normalisée comme étant *supérieure à la longueur • SSFL*.

7.3 Normalisation de la longueur

Il peut être souhaitable de normaliser la valeur du DMD ou de la EMBc à une longueur d'unité, telle que ps/m ou MHz·km. Si la normalisation est utilisée à une longueur d'unité, la formule concernant la dépendance par rapport à la longueur doit être consignée.

8 Documentation

- 8.1 Consigner les informations suivantes pour chaque essai:
- identification de l'échantillon d'essai;
- longueur de l'échantillon d'essai;
- formule de normalisation de la longueur, si utilisée;
- date d'essai;
- longueur d'onde source (nominale ou réelle);
- décalages radiaux minimaux et maximaux, R_{INNER}, R_{OUTER};
- résultat d'essai: DMD (R_{INNER}, R_{OUTER}) et/ou EMBc minimale.
- 8.2 Les informations suivantes doivent être disponibles sur demande:
- la méthode de mesure utilisée;
- une description de l'équipement d'essai, y compris: type de source et longueur d'onde de source centrale réelle, largeur spectrale maximale spécifiée ou réelle (valeur efficace);
- pour la mesure du DMD, la documentation de la méthode utilisée pour calculer ∆T_{REF}.
 Pour l'EMBc minimale, les caractéristiques de fonction de transfert qui sont utilisées pour déterminer la largeur de bande et le jeu des pondérations utilisées;
- le type de détecteur et les conditions de fonctionnement;
- le diamètre de champ de mode de la fibre sonde à la longueur d'onde de mesure (nominale ou réelle);
- la méthode d'extraction de la lumière de gaine;
- la date du dernier étalonnage de l'équipement d'essai.

9 Informations relatives à la spécification

Lorsqu'on spécifie les performances de fibre en utilisant cette méthode d'essai, les informations suivantes doivent être spécifiées:

- le nombre et le type d'échantillons à soumettre aux essais;
- la procédure d'essai (CEI 60793-1-49);
- la(les) longueur(s) d'onde d'essai;

7.2.4 System stability frequency limit (SSFL)

Define

$$G_{\text{ref}}(f) = \frac{FT(R_A(t))}{FT(R_B(t))}$$
(3)

where

 R_A and R_B are two independent reference pulses;

SSFL is the minimum frequency where |G(f)| exceeds 1,0 ± 0,05 (see 60793-1-41).

If the EMBc calculated for a fibre/laser combination exceeds the SSFL, report the normalized bandwidth value as greater than $SSFL \times length$.

7.3 Length normalization

It may be desirable to normalize the value of DMD or EMBc to a unit length, such as ps/m or MHz·km. If normalization to a unit length is used, the length dependence formula shall be reported.

8 Documentation

8.1 Report the following information for each test:

- test sample identification;
- test sample length;
- length normalization formula, if used;
- test date;
- source wavelength (nominal or actual);
- minimum and maximum radial offsets, R_{INNER}, R_{OUTER};
- test result: DMD(R_{INNER}, R_{OUTER}) and/or minimum EMBc.
- 8.2 The following information shall be available upon request:
- the measurement method used;
- description of the test equipment, including: source type and actual source centre wavelength, maximum specified or actual spectral width (r.m.s.);
- for DMD measurement, documentation of method used to calculate ΔT_{REF} . For minimum EMBc, the transfer function features that are used to determine bandwidth, and the set of weightings used;
- detector type and operating conditions;
- mode field diameter of probe fibre at measurement wavelength (nominal or actual);
- method of stripping cladding light;
- date of latest calibration of test equipment.

9 Specification information

When specifying fibre performance using this test method, the following information shall be specified:

- number and type of samples to be tested;
- test procedure (IEC 60793-1-49);
- test wavelength(s);

 les exigences de DMD: la valeur DMD exigée pour une plage indiquée de décalage radial minimal et maximal, DMD(R_{INNER}, R_{OUTER}); l'évaluation de plusieurs valeurs DMD différentes pour différentes plages indiquées en R_{INNER} et R_{OUTER} peut être prescrite.

- 26 -

- Pour les mesures DMD, option de la méthode de consignation à utiliser par rapport à 7.1.
- Pour les exigences EMBc: Valeur EMBc minimale exigée.
- Pour les exigences EMBc: Jeu exigé de poids selon l'Annexe C.

- DMD requirements: Required DMD value for a stated range of minimum and maximum radial offsets, DMD(R_{INNER}, R_{OUTER}). Evaluation of several different DMD values for different stated ranges in R_{INNER} and R_{OUTER} may be required;
- for DMD measurements, reporting method option from 7.1;
- for EMBc requirements: Required minimum EMBc value;
- for EMBc requirements: Required set of weights per Annex C.

Annexe A

(normative)

Limite de la largeur spectrale source

A.1 Limitation de l'effet de la dispersion chromatique sur la valeur du DMD

L'effet des erreurs introduites par la dispersion chromatique sur la valeur du DMD doit être inférieur à 10 %. Cette exigence peut être satisfaite soit en utilisant une source présentant une largeur spectrale suffisamment faible pour pouvoir ignorer la dispersion chromatique, soit en déterminant de manière précise la forme spectrale de la source et en calculant la valeur appropriée de ΔT_{REF} .

La dispersion chromatique $D(\lambda)$ peut être estimée en utilisant les données indiquées à l'Article A.2. En variante, on peut utiliser $D(\lambda)$ obtenue en utilisant la CEI 60793-1-42 pour le type particulier de fibre en essai. L'exigence de largeur spectrale peut être satisfaite en utilisant soit une source spectralement étroite soit un filtre optique à la source ou à l'extrémité de détection.

Plusieurs exemples de méthodes sont donnés pour satisfaire à l'exigence de cette annexe.

A.1.1 Utiliser une source avec une largeur spectrale suffisamment étroite de manière que la valeur de

$$\Delta t_{\rm chrom} = 4 \cdot \sqrt{\ln(2)} \cdot \delta \lambda \cdot D(\lambda) \cdot L \tag{A.1}$$

soit inférieure à 10 % du DMD à mesurer. Ceci génère une contrainte sur la largeur spectrale efficace $\delta \lambda$,

$$\delta \lambda \leq \frac{0.1 \cdot \text{DMD}_{\min}}{4\sqrt{\ln(2)} \cdot D(\lambda) \cdot L} = 0.030 \cdot \frac{\text{DMD}_{\min}}{D(\lambda) \cdot L}$$
(A.2)

Dans ce cas, DMD_{min} est la valeur la plus faible du DMD à déterminer, $D(\lambda)$ est la dispersion chromatique et *L* est la longueur de l'échantillon. En partant de l'hypothèse typique selon laquelle les retards modaux d'une fibre suivent linéairement la longueur, cette contrainte ne dépend aucunement de la longueur.

Utiliser $\Delta T_{\text{REF}} = \Delta T_{\text{PULSE}}$ de 6.1 et pour le calcul de la valeur du DMD.

Exemple: Les valeurs DMD d'une valeur faible telle que 100 ps doivent être soumises aux essais sur des longueurs de fibres de 0,5 km à une longueur d'onde de 850 nm. D'après le Tableau A.1, la valeur de $D(\lambda)$ à 850 nm est de 107 ps/nm-km. Si on substitue cette information dans l'équation A.2, il convient que la largeur spectrale efficace de la source $\delta\lambda$ soit $\leq (0,03 \times 100 \text{ ps})/(107 \text{ ps/nm-km} \times 0,5 \text{ km}) = 0,056 \text{ nm}$. La même source conviendrait pour une longueur d'essai de 10 km avec des valeurs DMD d'une valeur faible telle que 2000 ps.

Annex A

(normative)

Source spectral width limitation

A.1 Limiting the effect of chromatic dispersion on the value of DMD

The effect of errors introduced by chromatic dispersion on the value of DMD shall be less than 10 %. This requirement may be met either by using a source with a spectral width small enough that chromatic dispersion can be ignored, or by accurately determining the spectral shape of the source and calculating the appropriate value of ΔT_{RFF} .

The chromatic dispersion $D(\lambda)$ may be estimated using the data given in Clause A.2. Alternatively, one may use $D(\lambda)$ obtained using IEC 60793-1-42 for the particular type of fibre being tested. The requirement on spectral width may be met either by using a spectrally narrow source, or by using an optical filter at either the source or detection end.

Several examples of methods for meeting the requirement of this annex are now given.

A.1.1 Use a source with sufficiently narrow spectral width such that the value of

$$\Delta t_{\rm chrom} = 4 \cdot \sqrt{\ln(2)} \cdot \delta \lambda \cdot D(\lambda) \cdot L \tag{A.1}$$

is less than 10 % of the DMD to be measured. This gives a constraint on r.m.s. spectral width $\delta\lambda$,

$$\delta \lambda \leq \frac{0,1 \cdot \text{DMD}_{\min}}{4\sqrt{\ln(2)} \cdot D(\lambda) \cdot L} = 0,030 \cdot \frac{\text{DMD}_{\min}}{D(\lambda) \cdot L}$$
(A.2)

Here, DMD_{min} is the smallest value of DMD to be determined, $D(\lambda)$ is the chromatic dispersion, and *L* is the sample length. Under the typical assumption that the modal delays of a fibre scale linearly with length, this constraint has no length dependence.

Use $\Delta T_{\text{REF}} = \Delta T_{\text{PULSE}}$ in 6.1. and for calculating the value of DMD.

Example: DMD values as small as 100 ps are to be tested on fibre lengths of 0,5 km at a wavelength of 850 nm. From Table A.1 in A.2, the value of $D(\lambda)$ at 850 nm is 107 ps/nm-km. Substituting this information in equation (A.2), the source r.m.s. spectral width $\delta\lambda$ should be $\leq (0,03 \times 100 \text{ ps})/(107 \text{ ps/nm-km} \times 0,5 \text{ km}) = 0,056 \text{ nm}$. The same source would work for a 10 km test length with DMD values as low as 2 000 ps.

A.1.2 Utiliser une source avec une valeur spectrale suffisamment étroite qui en ignorant Δt_{chrom} par rapport à ΔT_{PULSE} modifie la valeur de ΔT_{REF} de moins de 10 %. Ceci génère une contrainte sur la largeur spectrale efficace $\delta \lambda$,

$$\delta\lambda \leq \frac{\sqrt{0.21} \cdot \Delta T_{\text{PULSE}}}{4\sqrt{\ln(2)} \cdot D(\lambda) \cdot L} = 0.138 \cdot \frac{\Delta T_{\text{PULSE}}}{D(\lambda) \cdot L}$$
(A.3)

Utiliser $\Delta T_{\text{REF}} = \Delta T_{\text{PULSE}}$ de 6.1 et pour le calcul de la valeur du DMD.

Dans ce cas, il n'y a pas de dépendance explicite entre la largeur spectrale de la source $\delta \lambda$ et la valeur de DMD mesurée. A la place, la valeur minimale de DMD qui peut être mesurée est fixée directement par ΔT_{PULSE} . Noter qu'il existe une dépendance explicite entre la largeur spectrale maximale autorisée et la longueur d'échantillon. Pour une largeur spectrale fixée, l'élargissement chromatique deviendra trop important pour être ignoré au-delà d'une certaine longueur d'échantillon.

Exemple: Une source laser particulière et un détecteur optique ayant la valeur ΔT_{PULSE} = 60 ps sont utilisés pour mesurer des échantillons de 0,5 km à 850 nm. En substituant cette information dans l'équation A.1-3, il convient que la largeur spectrale efficace de la source $\delta \lambda$ soit \leq (0,138 × 60 ps)/(107 ps/nm-km × 0,5 km) = 0,15 nm.

A.1.3 Calculer la valeur appropriée de ΔT_{REF} pour la source utilisée. ΔT_{REF} est la pleine largeur à 25 % de chaque mode à la sortie de la fibre en essai. Pour une impulsion et des formes spectrales quasi gaussiennes, utiliser

$$\Delta T_{\mathsf{REF}} = \left(\Delta T_{\mathsf{PULSE}}^2 + \Delta t_{\mathsf{chrom}}^2 \right)^{1/2} \tag{A.4}$$

Dans ce cas, la limite supérieure sur la largeur spectrale de la source est fixée indirectement par l'exigence de 7.1 indiquant que la valeur minimale de DMD consignée par la mesure est de $0.9(\Delta T_{\text{REF}})$.

Si une source a des crêtes spectrales multiples ou si elle est suffisamment non-gaussienne, cette formule peut s'avérer imprécise. Si l'équation A.4 est utilisée pour calculer la valeur de ΔT_{REF} , l'erreur introduite dans le calcul du DMD doit être inférieure à 10 %.

A.2 Dispersion chromatique dans les fibres multimodales

Les données du Tableau A.1 représentent la dispersion attendue la plus élevée pour toute fibre de la catégorie A1 disponible sur le marché, sur la base de la performance de dispersion nominale et de l'ouverture numérique (NA). A des longueurs d'ondes inférieures à 1 200 nm, la dispersion est plus importante avec une fibre de λ_0 maximale (fibre à 0,29 d'ouverture numérique). A des longueurs d'ondes supérieures à 1 400 nm, la dispersion est plus importante de λ_0 minimale (fibre à 0,20 d'ouverture numérique). Le fibre de λ_0 minimale (fibre à 0,20 d'ouverture numérique). Le tableau A.1 n'est pas utilisé pour des longueurs d'ondes comprises entre 1 200 nm et 1 400 nm. Utiliser à la place D = 16,6 ps/nm-km.

A.1.2 Use a source with sufficiently narrow spectral width that ignoring Δt_{chrom} in relation to ΔT_{PULSE} changes the value of ΔT_{REF} by less than 10 %. This gives a constraint on r.m.s. spectral width $\delta \lambda$,

$$\delta\lambda \leq \frac{\sqrt{0.21} \cdot \Delta T_{\text{PULSE}}}{4\sqrt{\ln(2)} \cdot D(\lambda) \cdot L} = 0,138 \cdot \frac{\Delta T_{\text{PULSE}}}{D(\lambda) \cdot L}$$
(A.3)

Use $\Delta T_{\text{REF}} = \Delta T_{\text{PULSE}}$ in 6.1, and for calculating the value of DMD.

In this case, there is no explicit dependence of source spectral width $\delta\lambda$ on the value of DMD being measured. Instead, the minimum value of DMD that can be measured is set directly by ΔT_{PULSE} . Note that there is an explicit dependence of the maximum allowed spectral width on sample length. For fixed spectral width, chromatic broadening will become too large to ignore above a certain sample length.

Example: A particular laser source and optical detector having the value ΔT_{PULSE} = 60 ps are used to measure 0,5 km samples at 850 nm. Substituting this information into equation (A.3), the source r.m.s. spectral width $\delta\lambda$ should be \leq (0,138 \times 60 ps)/(107 ps/nm-km \times 0,5 km) = 0,15 nm.

A.1.3 Calculate the appropriate value of ΔT_{REF} for the source being used. ΔT_{REF} is the full width at 25 % of each mode at the output of the fibre under test. For near-Gaussian pulse and spectral shapes use,

$$\Delta T_{\mathsf{REF}} = \left(\Delta T_{\mathsf{PULSE}}^2 + \Delta t_{\mathsf{chrom}}^2\right)^{1/2} \tag{A.4}$$

In this case, the upper limit on the spectral width of the source is set indirectly by the requirement in 7.1 that the minimum value of DMD reported by the measurement is $0.9(\Delta T_{\text{REF}})$.

If a source has multiple spectral peaks, or is otherwise sufficiently non-Gaussian, this formula may be inaccurate. If equation (A.4) is used to calculate the value of ΔT_{REF} , the error introduced to the calculation of DMD must be less than 10 %.

A.2 Chromatic dispersion in multimode fibres

The data in Table A.1 represents the highest expected dispersion for any of the commercially available Category A1 fibres, based on nominal dispersion performance and numerical aperture (NA). At wavelengths lower than 1 200 nm, dispersion is greatest with fibre having maximum λ_0 (0,29 NA fibre). At wavelengths greater than 1 400 nm, dispersion is greatest with fibre having minimum λ_0 (0,20 NA fibre). Here λ_0 is the zero-dispersion wavelength. Table A.1 is not used for wavelengths between 1 200 and 1 400 nm. Instead, use D = 16,6 ps/nm-km.

λ	D	λ	D	х	D
(nm)	(ps/nm-km)	(nm)	(ps/nm-km)	(nm)	(ps/nm-km)
780	146				
790	140				
800	133	1 000	54.2	1 400	8.28
810	128	1 010	51.8	1 410	9.08
820	122	1 020	49,2	1 420	9,85
830	117	1 030	46,9	1 430	10,6
840	112	1 040	44,7	1 440	11,4
850	107	1 050	42,5	1 450	12,1
860	102	1 060	40,3	1 460	12,8
870	98,0	1 070	38,2	1 470	13,5
880	93,7	1 080	36,2	1 480	14,2
890	89,7	1 090	34,3	1 490	14,9
900	85,7	1 100	32,4	1 500	15,6
910	82,1	1 110	30,6	1 510	16,2
920	78,4	1 120	28,9	1 520	16,9
930	75,0	1 130	27,2	1 530	17,5
940	71,6	1 140	25,5	1 540	18,1
950	68,6	1 150	23,9	1 550	18,8
960	65,5	1 160	22,4	1 560	19,4
970	62,5	1 170	20,8	1 570	20,0
980	59,6	1 180	19,4	1 580	20,6
990	57,0	1 190	17,9	1 590	21,1
				1 600	21.7

Tableau A.1 – Dispersion attendue la plus élevée pour toute fibre de la catégorie A1 disponible sur le marché

- pour λ < 1 200 nm: S₀ = 0,095 62 ps/(nm² ·km); λ_0 = 1 344,5 nm pour une fibre multimodale nominale d'ouverture numérique de 0,29

- pour $\lambda < 1400$ nm: $S_0 = 0,101$ ps/(nm² ·km); $\lambda_0 = 1310$ nm pour une fibre multimodale nominale d'ouverture numérique de 0,20

λ	D	λ	D	λ	D
(nm)	(ps/nm-km)	(nm)	(ps/nm-km)	(nm)	(ps/nm-km)
780	146				
790	140				
800	133	1 000	54,2	1 400	8,28
810	128	1 010	51,8	1 410	9,08
820	122	1 020	49,2	1 420	9,85
830	117	1 030	46,9	1 430	10,6
840	112	1 040	44,7	1 440	11,4
850	107	1 050	42,5	1 450	12,1
860	102	1 060	40,3	1 460	12,8
870	98,0	1 070	38,2	1 470	13,5
880	93,7	1 080	36,2	1 480	14,2
890	89,7	1 090	34,3	1 490	14,9
900	85,7	1 100	32,4	1 500	15,6
910	82,1	1 110	30,6	1 510	16,2
920	78,4	1 120	28,9	1 520	16,9
930	75,0	1 130	27,2	1 530	17,5
940	71,6	1 140	25,5	1 540	18,1
950	68,6	1 150	23,9	1 550	18,8
960	65,5	1 160	22,4	1 560	19,4
970	62,5	1 170	20,8	1 570	20,0
980	59,6	1 180	19,4	1 580	20,6
990	57,0	1 190	17,9	1 590	21,1
				1 600	21,7

Table A.1 –Highest expected dispersion for any of the commercially available Category A1 fibres

Assumptions:

- for λ < 1 200 nm: S₀ =0,09562 ps/(nm²·km); λ_0 = 1 344,5 nm for a nominal multimode fibre with 0,29 NA;

for $\lambda > 1400$ nm: S₀ =0,101 ps/(nm² ·km); λ_0 = 1310 nm for a nominal multimode fibre with 0,20 NA.

Annexe B (informative)

Discussion des détails de mesure

B.1 DMD

La présente norme examine la détermination de la différence des durées de temps de propagation entre les groupes de mode les plus rapides et les plus lents excités pour une gamme indiquée de conditions d'excitation comme indiqué à la Figure B.1. Les données de retard différentiel de mode pour ces mesures peuvent être comparées aux spécifications DMD qui ont été déterminées par modélisation et expérimentation pour correspondre à une largeur de bande modale efficace (EMB) minimale pour une gamme d'émetteurs.

Les durées de front et de flancs arrière (25 % seuil) sont identifiées par « + ». Les tracés sont décalés pour différentes positions d'excitation. La cartouche représente ΔT_{PULSE} .

Figure B.1 – Données DMD idéales

Pour toute position donnée de décalage, la tache provenant de la sonde à un seul mode excite plusieurs groupes de modes différents. La forme d'onde de sortie qui en résulte U(r,t), présente une dépendance temporelle compliquée, montrant normalement des crêtes multiples et sans garantie que les groupes de modes individuels seront clairement résolus. Le niveau de détection pour le front et le flanc arrière est choisi à 25 % de l'amplitude de crête d'une forme d'onde donnée. Ceci est valable pour des exemples pour lesquels le groupe de mode excité au maximum par la tache de sonde à un décalage donné est séparé dans le temps des autres groupes de modes excités au même décalage. Le niveau de 25 % assure la détection du groupe de mode séparé même lorsque les autres modes ont tous le même temps de propagation, provoquant le dépassement de l'amplitude du groupe de mode séparé par leur amplitude combinée.

La différence entre T_{SLOW} et T_{FAST} sera supérieure au DMD dans une proportion qui dépend de la largeur temporelle de l'impulsion optique, de la largeur de bande limitée du détecteur optique et de l'élargissement de chaque mode dû à la largeur spectrale de la source et à la dispersion chromatique de la fibre en essai.

Annex B

(informative)

Discussion of measurement details

B.1 DMD

This standard focuses on determining the difference in delay times between the fastest and slowest mode groups excited for a stated range of excitation conditions, as illustrated in Figure B.1. The DMD data resulting for these measurements may be compared to DMD specifications that have been determined by modeling and experimentation to correspond to a minimum EMB for a range of transmitters.

Leading and trailing edge times (25% threshold) are identified with "+". Traces are offset for different excitation positions. Inset shows ΔT_{PULSE} .

Figure B.1 – Idealized DMD data

For any given offset position, the spot from the single-mode probe excites several different mode groups. The resulting output waveform, U(r,t), exhibits a complicated time dependence, typically showing multiple peaks, and with no guarantee that the individual mode groups will be clearly resolved. The detection level for the leading and trailing edges is chosen at 25 % of peak amplitude of a given waveform. This accounts for instances when the mode group maximally excited by the probe spot at a given offset is separated in time from the other mode groups excited at the same offset. The 25 % level assures detection of the separated mode group even when the other modes all have the same delay time, causing their combined amplitude to exceed that of the separated mode group.

The difference between T_{SLOW} and T_{FAST} will be greater than the DMD by an amount that depends on the temporal width of the optical pulse, the finite bandwidth of the optical detector, and the broadening of each mode due to the source spectral width and the chromatic dispersion of the fibre under test.

La largeur temporelle de l'impulsion optique et la largeur de bande limitée du détecteur sont caractérisées comme ΔT_{PULSE} . Dans la limite de la valeur faible de ΔT_{PULSE} , et en partant de l'hypothèse d'une forme gaussienne pour le spectre de la source, la largeur temporelle à 25 % du maximum de chaque mode à la sortie de la fibre en essai sera

- 36 -

$$\Delta t_{\rm chrom} = 4 \cdot \sqrt{\ln(2)} \cdot \delta \lambda \cdot D(\lambda) \cdot L , \qquad (B.1)$$

où

 $\delta \lambda$ est la largeur spectrale efficace de la source (en nm),

 $D(\lambda)$ est la dispersion chromatique (en ps/(nm-km) et

L est la longueur de l'éprouvette (en km)

Le facteur $4 \cdot \sqrt{\ln(2)}$ provient de l'utilisation de 25 % de l'amplitude maximale comme seuil pour évaluer le DMD, avec l'utilisation de la largeur spectrale efficace en caractérisant la source.

La pleine largeur à 25 % de chaque mode à la sortie de la fibre en essai est alors

$$\Delta T_{\mathsf{REF}} = \left(\Delta T_{\mathsf{Pulse}}^2 + \Delta t_{\mathsf{chrom}}^2 \right)^{1/2} \tag{B.2}$$

et la valeur du DMD est donnée par

$$DMD = (T_{SLOW} - T_{FAST}) - \Delta T_{REF}$$
(B.3)

Noter que tandis que ΔT_{PULSE} est fixé par la durée de l'impulsion optique et la largeur de bande du détecteur, la valeur de $\Delta t_{\text{chrom}}^2$ varie avec la longueur d'échantillon. Limiter l'effet de la dispersion chromatique implique l'utilisation d'une source avec une valeur de ΔT_{PULSE} qui dépend de la valeur du DMD mesuré, de la longueur de l'échantillon mesurée et de la valeur de ΔT_{PULSE} , comme indiqué à l'Annexe A.

Dans la mesure où la détermination du DMD implique la comparaison des durées de propagation de différentes formes d'ondes provenant de mesures réalisées à différentes positions de décalage, l'instabilité de la synchronisation ou la durée de l'impulsion de sonde est un problème potentiel. La limite inférieure de consignation pour le DMD, $0.9(\Delta T_{\text{REF}})$, assure une erreur <10 %, limitée essentiellement par l'instabilité totale du système.

Au cours de l'élaboration de la présente méthode de mesure, l'utilisation de la déconvolution de la réponse du système avec les impulsions optiques détectées a été considérée comme une méthode d'évaluation de T_{FAST} et T_{SLOW} . Cependant, compte tenu de la limite relativement grossière sur la valeur la plus faible du DMD qui peut être mesurée, il n'y a pas d'avantage à utiliser une méthode de déconvolution plus complexe. Les erreurs provenant de l'utilisation de la simple soustraction de ΔT_{REF} sont inférieures à 1 % pour le DMD $\geq 0.9(\Delta T_{\text{REF}})$.

The temporal width of the optical pulse and the finite detector bandwidth are characterized as ΔT_{PULSE} . In the limit of small ΔT_{PULSE} , and assuming a Gaussian shape for the spectrum of the source, the temporal width at 25 % of maximum of each mode at the output of the fibre under test will be

$$\Delta t_{\rm chrom} = 4 \cdot \sqrt{\ln(2)} \cdot \delta \lambda \cdot D(\lambda) \cdot L , \qquad (B.1)$$

where

 $\delta \lambda$ is the r.m.s. spectral width of the source (in nm),

 $D(\lambda)$ is the chromatic dispersion (in ps/(nm-km) and

L is the sample length (in km).

The factor $4 \cdot \sqrt{\ln(2)}$ comes from the use of 25 % of maximum amplitude as the threshold for evaluating DMD, along with the use of r.m.s.. spectral width in characterizing the source.

The full width at 25 % of each mode at the output of the fibre under test is then

$$\Delta T_{\mathsf{REF}} = \left(\Delta T_{\mathsf{Pulse}}^2 + \Delta t_{\mathsf{chrom}}^2\right)^{1/2} \tag{B.2}$$

and the DMD is given by

$$DMD = (T_{SLOW} - T_{FAST}) - \Delta T_{REF}$$
(B.3)

Note that while ΔT_{PULSE} is fixed by the duration of the optical pulse and the detector bandwidth, the value of Δt_{chrom} varies with the sample length. Limiting the effect of chromatic dispersion involves using a source with a value of $\delta\lambda$ that depends on the value of DMD being measured, the length of sample being measured, and the value of ΔT_{PULSE} , as detailed in Annex A.

Since the determination of DMD involves comparing the delay times from different waveforms from measurements made at different offset positions, jitter in the timing or duration of the probe pulse is a potential problem. The lower reporting limit for DMD, $0.9(\Delta T_{\text{REF}})$, assures an error of <10 %, limited primarily by the total system jitter.

In the course of developing this measurement procedure, use of deconvolution of the system response with the detected optical pulses was considered as a method of evaluating T_{FAST} and T_{SLOW} . However, given the relatively coarse limit on the smallest value of DMD that can be measured, there is no advantage to be gained from using a more complicated deconvolution method. Errors from using simple subtraction of ΔT_{REF} are less than 1 % for DMD $\geq 0.9(\Delta T_{\text{REF}})$.

B.2 Calcul de EMBc

L'idée sous-jacente au calcul de EMBc est d'utiliser les informations d'impulsion DMD pour prédire l'effet d'extension d'impulsion en raison de la dispersion intermodale lorsque la fibre est utilisée avec les émetteurs réels. En générant une somme pondérée des impulsions DMD, les effets de distributions de puissance de groupes de mode différents de différents émetteurs peuvent être examinés pour déterminer une forme d'impulsion représentative la plus défavorable par la Transformée de Fourier au domaine fréquentiel. En incluant une gamme de distributions de puissance de mode réelle, mais uniquement celles correspondant aux émetteurs conformes aux spécifications d'injection, la performance de la fibre peut être mesurée pour une telle spécification d'injection sans restreindre inutilement la fibre.

La largeur de bande modale efficace (EMB) d'une fibre dépend par définition uniquement des retards modaux et de la pondération de puissance modale. On prend généralement comme hypothèse qu'il existe un couplage complet dans un groupe de modes de sorte que les retards de groupe de mode détermineront l'EMB (et en fait, la performance d'une fibre réelle avec un émetteur réel). On suppose encore qu'il n'existe aucun couplage entre les groupes de modes. Si les retards de groupe de modes et leur puissance relative pour le groupe g sont indiqués, respectivement, par τ_g et P_g , alors la fonction de transfert complexe à partir de laquelle l'EMB est déterminée a une forme relativement simple

$$H(f) = \sum_{g} P_g \exp(i2\pi f \Delta \tau_g)$$
(B.4)

où

 $\Delta \tau_g = \tau_g - \tau_{ave}$ et

 $au_{\rm ave}~~{
m est}$ le centroïde des groupes de modes donnés par $~ au_{
m ave}~=\sum_g P_g au_g$.

L'amplitude |H(f)| à partir de laquelle la largeur de bande est ordinairement calculée a la forme suivante:

$$|H(f)| = \sqrt{\left[\left(\sum_{g} P_g \cos(2\pi f \Delta \tau_g)\right)^2 + \left(\sum_{g} P_g \sin(2\pi f \Delta \tau_g)\right)^2\right]}$$
(B.5)

La définition normalisée de la largeur de bande (CEI 60793-1-41) pour les fibres multimodales est la fréquence f de -3 dB où |H(f)| atteint d'abord 0,5. En pratique, en fonction des retards de mode et de leur puissance relative, |H(f)| peut avoir des ondes et plateaux tels que la largeur de bande de -3 dB peut ne pas être robuste face aux petites modifications de la distribution de puissance de mode rencontrée en pratique. Ceci est parfaitement connu $[1,2]^{1}$. La largeur de bande de -1,5 dB est plus robuste par rapport à ces caractéristiques.

Le calcul de EMBc comporte trois étapes:

- (1) On attribue un poids relatif W_r à chaque impulsion de mesure du DMD U(r,t) relevée au niveau d'un décalage de $r \mu m$ et la somme des impulsions pondérées donne une impulsion de sortie pondérée $P_0(t)$.
- (2) L'effet de la référence sur l'impulsion de sortie est supprimé au moyen d'une déconvolution analogue à celle utilisée dans la mesure de la largeur de bande (CEI 60793-1-41). Cela fournit la réponse fréquentielle de fibre ou la fonction de transfert, la fonction complexe H(f) ci-dessus.

¹⁾ Les chiffres indiqués entre crochets renvoient à la bibliographie.

B.2 EMBc Calculation

The idea behind the EMBc calculation is to use the DMD pulse information to predict the effect of pulse spread due to intermodal dispersion when the fibre is used with actual transmitters. By generating a weighted sum of the DMD pulses, the effects of different mode group power distributions of different transmitters can be examined to determine a representative worst-case pulse shape via Fourier Transform to the frequency domain. By including a range of actual mode power distributions, but only those corresponding to transmitters conforming to a launch specification, the performance of the fibre can be measured for such launch specification without unnecessarily restricting the fibre.

The effective modal bandwidth (EMB) of a fibre depends by definition only on the modal delays and the modal power weighting. It is usually assumed that there is complete coupling within a mode group so that mode group delays will determine the EMB (and in fact, the performance of an actual fibre with an actual transmitter). It is further assumed that there is no coupling between mode groups. If the mode group delays and their relative power for group g are denoted by τ_g and P_g , respectively, then the complex transfer function from which the EMB is determined has the relatively simple form

$$H(f) = \sum_{g} P_{g} \exp(i2\pi f \Delta \tau_{g})$$
(B.4)

where

 $\Delta \tau_g = \tau_g - \tau_{ave}$ and

 τ_{ave} is the centroid of the mode groups given by $\tau_{ave} = \sum_{g} P_{g} \tau_{g}$.

The amplitude |H(f)| from which the bandwidth is customarily calculated has the form:

$$|H(f)| = \sqrt{\left[\left(\sum_{g} P_{g} \cos(2\pi f \Delta \tau_{g})\right)^{2} + \left(\sum_{g} P_{g} \sin(2\pi f \Delta \tau_{g})\right)^{2}\right]}$$
(B.5)

The standard definition of bandwidth (IEC 60793-1-41) for multimode fibres is the -3 dB frequency f where |H(f)| first reaches 0,5. In practice, depending on the mode delays and their relative power, |H(f)| may have waves and plateaus so that the -3 dB bandwidth may not be robust to small changes in the mode power distribution seen in practice. This is well known $[1, 2]^{1}$. The -1.5 dB bandwidth is more robust with respect to these characteristics.

The calculation of EMBc has three steps:

- (1) Each DMD measurement pulse U(r,t) taken at an offset of $r \mu m$ is given a relative weight W_r and the sum of the weighted pulses gives a weighted output pulse $P_0(t)$.
- (2) The effect of the reference on the output pulse is removed using a deconvolution similar to that used in the bandwidth measurement (IEC 60793-1-41). This gives the fibre frequency response or transfer function, the complex function H(f) above.

¹⁾ Figures in squares brackets refer to the Bibliography.

(3) L'EMBc est déterminée par la fonction de transfert complexe décrite en 7.2.2 en utilisant la valeur de la largeur de bande de –1,5 dB.

Pour une fibre spécifique, les étapes (1) à (3) sont répétées avec un jeu de pondérations, correspondant à un jeu de distributions de puissance de mode et l'EMBc minimale déterminée à partir du jeu est une mesure de la performance minimale de la fibre avec une série d'émetteurs correspondant aux pondérations. Il n'est pas nécessaire que chaque pondération corresponde à un émetteur réel.

L'approche pour la spécification de performance pour une fibre donnée en termes de EMBc est rendue robuste par l'utilisation des minima et l'utilisation d'une largeur de bande réglée. Effectivement, cela fournit une estimation de l'EMB du cas le plus défavorable (et de ce fait, dans le modèle de liaison, de la performance de pénalité ISI (Inter Symbol Interference) à condition qu'un jeu suffisamment large de pondérations soit inclus et que la gamme de distributions d'injection s'étende sur la plage autorisée pour une application donnée. Généralement, si les distributions d'injection de l'émetteur sont suffisamment uniques et distribuées à travers la plage de distribution d'injection autorisée, 5 à 10 pondérations (correspondant grossièrement à 5 à 10 émetteurs) sont suffisantes pour déterminer l'EMBc minimale.

(3) EMBc is determined from the complex transfer function as described in 7.2.2 using the -1,5 dB bandwidth value.

For a specific fibre, steps 1-3 are repeated with a set of weightings, corresponding to a set of mode power distributions, and the minimum EMBc determined from the set is a measure of the minimum performance of the fibre with a set of transmitters corresponding to the weightings. It is not necessary that every weighting correspond to an actual transmitter.

The approach to specifying performance for a given fibre in terms of EMBc is made robust by the use of minimums and the use of an adjusted bandwidth. Effectively, this provides an estimate of the worst case EMB (and hence, in the link model, of inter-symbol interference (ISI) penalty performance) as long as a broad enough set of weightings is included and the range of launch distributions spans the range allowed for a given application. Typically, if the transmitter launch distributions are sufficiently unique and distributed across the allowed launch distribution range, 5-10 weightings (corresponding roughly to 5-10 transmitters) are sufficient to determine the minimum EMBc.

Annexe C (informative)

Détermination des pondérations de DMD pour le calcul de l'EMBc

C.1 Sélection d'un jeu de pondérations

Les pondérations pour un calcul de EMBc individuelle peuvent être indiquées par le vecteur W_r , où r est le décalage du DMD. Le jeu de pondérations nécessaires pour calculer l'EMBc minimale peut être indiqué par une matrice W_rL , où L correspond à une pondération spécifique. La pondération spécifique peut être liée à un émetteur spécifique qui est 'modélisé', ou il peut s'agir d'une pondération purement théorique. La connexion à un émetteur spécifique nécessite d'être comprise comme approximative car la pondération duplique uniquement une caractéristique de l'émetteur, la distribution de la puissance de mode. Néanmoins, en calculant l'EMBc minimale avec une large gamme de pondérations, approchant une large gamme d'émetteurs, la fibre peut être assurée d'une EMB minimale avec des émetteurs réels.

Le jeu de pondérations doit être spécifique aux spécifications d'émetteurs et aux exigences de débit binaire (exigences de largeur de bande). L'Annexe D contient une série d'exemples de pondération de DMD.

C.2 Procédure pour générer des pondérations de DMD liées aux données des flux encerclés

Pour générer la pondération de DMD appropriée correspondant aux données de flux encerclés pour un émetteur particulier, prélevées conformément à la CEI 61280-1-4:

- a) convertir les données de flux encerclés pour une distribution de puissance de mode calculée P_a ;
- b) convertir la distribution de puissance de mode P_q en une pondération de DMD P_q .

Les méthodes résumées ici prévoient le calcul d'une distribution de puissance de mode (MPD) à partir de données de flux encerclés et le calcul des pondérations de DMD à partir de la distribution de puissance de mode. Etant donné la pondération de DMD, il est simple d'inverser le calcul et de calculer la distribution de puissance de mode à partir des pondérations de DMD et ensuite l'intensité en champ proche (ou les flux encerclés) à partir de la distribution de puissance de mode. Les méthodes prennent pour hypothèse que le flux encerclé mesuré à l'extrémité distale d'un segment de fibre de 10 m représente correctement la distribution de puissance de mode de la source.

Le flux encerclé mesuré conformément à la CEI 61280-1-4 et l'intensité en champ proche sont liés par l'équation suivante

$$EF(r) = \frac{\int_{0}^{r} I(r)rdr}{\int_{0}^{r_{max}} I(r)rdr}$$
(C.1)

Annex C

(informative)

Determining DMD weights for EMBc calculation

C.1 Selecting a set of weightings

The weightings for an individual EMBc calculation can be denoted by the vector W_r , where r is the offset of the DMD. The set of weightings needed to calculate the minimum EMBc can be denoted by a matrix W_rL , where L corresponds to a specific weighting. The specific weighting may be linked to a specific transmitter which is being 'modelled', or it may be a purely theoretical weighting. The connection to a specific transmitter needs to be understood as approximate because the weighting only duplicates one feature of the transmitter, the mode power distribution. Nevertheless, by calculating the minimum EMBc with a broad range of weightings, approximating a broad range of transmitters, the fibre can be assured of a minimum EMB with actual transmitters.

The set of weightings shall be specific for the transmitter specifications and for the bit rate requirements (bandwidth requirements). Annex D contains an example set of DMD weightings.

C.2 Procedure for generating DMD weightings given encircled flux data.

To generate the appropriate DMD weighting corresponding to encircled flux data for a particular transmitter, taken according to IEC 61280-1-4:

- a) convert the encircled flux data to a calculated mode power distribution P_q ;
- b) convert the mode power distribution P_g to a DMD weighting W_r .

The methods summarized here provide for the calculation of a mode power distribution (MPD) from encircled flux data, and for calculation of DMD weightings from the mode power distribution. Given DMD weightings, it is straightforward to reverse the calculation and calculate the mode power distribution from the DMD weightings and then the near field intensity (or encircled flux) from the mode power distribution. The methods assume that the encircled flux measured at the far end of a 10 m piece of fibre adequately represents the mode power distribution of the source.

The encircled flux measured according to IEC 61280-1-4 and the near field intensity are related by the equation

$$EF(r) = \frac{\int_{0}^{r} I(r)rdr}{\int_{0}^{r_{max}} I(r)rdr}$$
(C.1)

où

r est le décalage radial

 r_{max} est généralement égal au rayon du cœur \times 1,15

Le calcul de la pondération de DMD, W_r , est un processus en deux étapes:

1) A partir de l'intensité en champ proche, I_r , calculer la distribution de puissance de mode, P_q .

- 44 -

2) A partir de la distribution de puissance de mode, P_g , calculer la fonction de pondération, W_r .

La MPD est estimée par la mesure en champ proche, en prenant pour hypothèse le couplage complet dans un groupe, l'incohérence et en supposant que le champ proche émis est bien approximé par le champ proche mesuré sur une courte longueur de fibre. Dans ce cas il existe une connexion entre l'intensité en champ proche I(r) et les fonctions de pondérations modales de l'équation d'onde scalaire:

$$I(r) = \sum_{m} P_m \Psi^2_m(r)$$
(C.2)

Ici la MPD est écrite en termes de modes individuels avant que tout couplage ne se produise. Du fait du grand nombre de modes individuels (et pour d'autres raisons) il n'est pas possible de résoudre pour les modes individuels, mais si on prend pour hypothèse le couplage au sein d'un groupe, alors:

$$P_g \Psi^2_g(r) = \sum_{m \in G} P_m \Psi^2_m(r)$$
(C.3)

et il est nécessaire de résoudre pour P_g par l'équation:

$$I(r) = \sum_{g} P_{g} \Psi^{2}_{g}(r)$$
(C.4)

 $\Psi^2_g(r)$ est connu théoriquement, et P_g peut être résolu par une procédure des moindres carrés étant donné un P_g connu.

Une fois P_g connu, la fonction de pondération W_r est liée à lui par une matrice, P_{rg} , donnant la puissance relative dans le groupe de mode g pour un décalage de DMD au niveau de la position r [3], [4]. A ce point, il est nécessaire de résoudre une seconde équation des moindres carrés:

$$P_g = \sum_r W_r P_{rg} \tag{C.5}$$

Cette approche et ses variantes ci-dessous sont alignées sur la modélisation 10 GbE EMB, qui a utilisé la distribution de puissance modale P_g pour 2 000 lasers théoriquement construits.

NOTE 1 Il convient que le W_r calculé de cette manière annule la Puissance de Mode P_g des deux derniers groupes de mode (groupes 18 & 19 du modèle 10 GbE) pour rendre compte de façon normalisée de l'affaiblissement de mode différentiel, comme cela a été le cas dans la modélisation TIA.

where

r is the radial offset

 r_{max} is typically 1,15 the core radius

The calculation of the DMD weighting, W_r , is a two-step process:

(1) from the near field intensity, I_r , calculate the mode power distribution, P_q .;

(2) from the mode power distribution, P_a , calculate the weighting function, W_r .

The MPD is estimated from the near field measurement, assuming full coupling within a group, incoherence, and that the transmitted near field is well approximated by the measured nearfield on a short length of fibre. In this case there is a connection between the nearfield intensity I(r) and the modal weighting functions of the scalar wave equation:

$$I(r) = \sum_{m} P_m \Psi^2_m(r)$$
(C.2)

Here the MPD is written in terms of the individual modes before any coupling occurs. Because of the large number of individual modes (and other reasons) it is not feasible to solve for the individual modes, but if coupling within a group is assumed, then:

$$P_g \Psi^2_g(r) = \sum_{m \in G} P_m \Psi^2_m(r)$$
(C.3)

and we need to solve for P_g from the equation:

$$I(r) = \sum_{g} P_{g} \Psi^{2}_{g}(r)$$
(C.4)

 $\Psi^2_g(r)$ is known theoretically, and the P_g can be solved by a least squares procedure given a known I(r).

Once P_g is known, the weighting function W_r is related to it by a matrix, P_{rg} , which gives the relative power in mode group g for a DMD offset at position r [3, 4]. At this point, a second least squares equation needs to be solved:

$$P_g = \sum_r W_r P_{rg} \tag{C.5}$$

This approach and its variants below are aligned with the 10 GbE EMB modelling, which used the modal power distribution P_g for 2 000 theoretically constructed lasers .

NOTE 1 The W_r calculated in this way should zero the Mode Power P_g in the last two mode groups (groups 18 and 19 in 10 GbE model) to account in a standard way for differential mode attenuation, as was done in the TIA modelling.

NOTE 2 Si au cours du calcul P_g on rencontrait des valeurs négatives, il conviendrait de les régler sur zéro avant de calculer W_r . Si, à leur tour, des valeurs négatives de W_r devaient apparaître, il conviendrait de les régler également sur zéro. Une procédure des moindres carrés itérative contraignant W_r et P_g à être positifs évite ce problème.

NOTE 2 If in the course of calculating P_g negative values should arise, they should be set to zero before calculating W_r . If, in turn, negative values of W_r should arise, they should be set equal to zero. An iterative least squares procedure constraining W_r and P_g to be positive will avoid this problem.

Annexe D

(informative)

Informations relatives aux calculs de EMBc

D.1 Pondération de DMD par défaut pour les émetteurs conformes à la CEI 60793-2-10

La série d'exemples de pondérations dans les tableaux D.1 et D.2 sont spécifiques aux émetteurs satisfaisant aux exigences de la CEI 60793-2-10:2004, Annexe D.1, telles que celles de l'application de IEEE 802.3 pour 10GBASE-SR et l'application du Canal de Fibre (*Fibre Channel*) de INCITS 364 10GFC. Les pondérations sont fournies pour un DMD mesuré à intervalles de 1µm, pour 10 lasers correspondant à la gamme réellement vue.

	ID laser				
r	1	2	3	4	5
0	0	0	0	0	0
1	0,033 023	0,023 504	0	0	0
2	0,262 463	0,188 044	0	0	0
3	0,884 923	0,634 634	0	0	0
4	2,009 102	1,447 235	0,007 414	0,005 637	0,003 034
5	3,231 216	2,376 616	0,072 928	0,055 488	0,029 856
6	3,961 956	3,052 908	0,262 906	0,200 05	0,107 634
7	3,694 686	3,150 634	0,637 117	0,483 667	0,258 329
8	2,644 369	2,732 324	1,197 628	0,896 95	0,458 494
9	1,397 552	2,060 241	1,916 841	1,402 833	0,661 247
10	0,511 827	1,388 339	2,755 231	1,957 805	0,826 035
11	0,110 549	0,834 722	3,514 797	2,433 247	1,000 204
12	0,004 097	0,419 715	3,883 317	2,639 299	1,294 439
13	0,000 048	0,160 282	3,561 955	2,397 238	1,813 982
14	0,001 111	0,047 143	2,617 093	1,816 953	2,506 95
15	0,005 094	0,044 691	1,480 325	1,296 977	3,164 213
16	0,013 918	0,116 152	0,593 724	1,240 553	3,572 113
17	0,026 32	0,219 802	0,153 006	1,700 02	3,618 037
18	0,036 799	0,307 088	0,012 051	2,240 664	3,329 662
19	0,039 465	0,329 314	0	2,394 077	2,745 395
20	0,032 152	0,268 541	0	1,952 429	1,953 241
21	0,019 992	0,166 97	0	1,213 833	1,137 762
22	0,008 832	0,073 514	0	0,534 474	0,494 404
23	0,002 612	0,021 793	0	0,158 314	0,146 517
24	0,000 282	0,002 679	0	0,019 738	0,018 328
25	0	0	0	0	0

Tableau D.1-- Pondérations de DMD - Exemple 1

Annex D

(informative)

EMBc calculation information

D.1 Default DMD weightings for transmitters conforming to IEC 60793-2-10

The example set of weightings in Tables D.1 and D.2 are specific to transmitters meeting the requirements of Annex D.1 of IEC 60793-2-10:2004, such as those of the IEEE 802.3 application for 10GBASE-SR and the fibre channel application of INCITS 364 10GFC. Weightings are provided for a DMD measured at 1 μ m intervals, for 10 lasers corresponding to the range actually seen.

	Laser ID				
r	1	2	3	4	5
0	0	0	0	0	0
1	0,033 023	0,023 504	0	0	0
2	0,262 463	0,188 044	0	0	0
3	0,884 923	0,634 634	0	0	0
4	2,009 102	1,447 235	0,007 414	0,005 637	0,003 034
5	3,231 216	2,376 616	0,072 928	0,055 488	0,029 856
6	3,961 956	3,052 908	0,262 906	0,200 05	0,107 634
7	3,694 686	3,150 634	0,637 117	0,483 667	0,258 329
8	2,644 369	2,732 324	1,197 628	0,896 95	0,458 494
9	1,397 552	2,060 241	1,916 841	1,402 833	0,661 247
10	0,511 827	1,388 339	2,755 231	1,957 805	0,826 035
11	0,110 549	0,834 722	3,514 797	2,433 247	1,000 204
12	0,004 097	0,419 715	3,883 317	2,639 299	1,294 439
13	0,000 048	0,160 282	3,561 955	2,397 238	1,813 982
14	0,001 111	0,047 143	2,617 093	1,816 953	2,506 95
15	0,005 094	0,044 691	1,480 325	1,296 977	3,164 213
16	0,013 918	0,116 152	0,593 724	1,240 553	3,572 113
17	0,026 32	0,219 802	0,153 006	1,700 02	3,618 037
18	0,036 799	0,307 088	0,012 051	2,240 664	3,329 662
19	0,039 465	0,329 314	0	2,394 077	2,745 395
20	0,032 152	0,268 541	0	1,952 429	1,953 241
21	0,019 992	0,166 97	0	1,213 833	1,137 762
22	0,008 832	0,073 514	0	0,534 474	0,494 404
23	0,002 612	0,021 793	0	0,158 314	0,146 517
24	0,000 282	0,002 679	0	0,019 738	0,018 328
25	0	0	0	0	0

Table D.1 – DMD weightings – Example set 1

	ID laser				
r	6	7	8	9	10
0	0	0	0	0	0
1	0,015 199	0,0162 53	0,022 057	0,0104 3	0,015 681
2	0,120 91	0,129 011	0,176 39	0,083 496	0,124 978
3	0,407 702	0,434 844	0,595 248	0,281 802	0,421 548
4	0,925 664	0,987 184	1,351 845	0,650 28	0,957 203
5	1,488 762	1,587 6	2,174 399	1,130 599	1,539 535
6	1,825 448	1,946 614	2,666 278	1,627 046	1,887 747
7	1,702 306	1,815 285	2,486 564	2,044 326	1,762 955
8	1,218 378	1,299 241	1,780 897	2,291 72	1,292 184
9	0,643 911	0,686 635	0,945 412	2,280 813	0,790 844
10	0,238 557	0,255 85	0,360 494	1,937 545	0,559 38
11	0,098 956	0,131 429	0,163 923	1,383 006	0,673 655
12	0,204 274	0,327 091	0,318 712	0,878 798	1,047 689
13	0,529 982	0,848 323	0,778 983	0,679 756	1,589 037
14	1,024 948	1,567 513	1,383 174	0,812 36	2,138 626
15	1,611 695	2,224 027	1,853 992	1,074 702	2,470 827
16	2,210 689	2,555 06	1,914 123	1,257 323	2,361 764
17	2,707 415	2,464 566	1,511 827	1,255 967	1,798 213
18	2,938 8	2,087 879	0,908 33	1,112 456	1,059 264
19	2,739 32	1,577 111	0,386 991	0,879 309	0,444 481
20	2,090 874	1,056 343	0,111 76	0,608 183	0,123 304
21	1,261 564	0,595 102	0,014 829	0,348 921	0,012 552
22	0,552 14	0,256 718	0,001 818	0,151 12	0
23	0,163 627	0,076 096	0,000 54	0,044 757	0
24	0,020 443	0,009 446	0	0,005 639	0
25	0	0	0	0	0

 Tableau D.2 – Pondérations de DMD – Exemple 2

D.2 Exemple de méthode pour déterminer si une valeur BW réglée est appropriée

Une méthode pour déterminer si une valeur BW réglée est appropriée consiste à faire usage du travail de modélisation TIA 10GbE [5] et de la simulation des 40 000 liaisons, y compris EMB et ISI. La fonction de plein transfert peut être calculée pour chacune des 10 000 liaisons droites sans connecteurs. Si l'EMB, calculée avec –3 dB ou un BW réglé, est supérieure à 2 000 MHz·km alors il convient que la fibre satisfasse également à l'exigence ISI de 2,6 dB. Un certain nombre de fibres soit satisfont à –3 dB BW > 2 000 MHz·km et échouent à la ISI, soit échouent aux 2 000 MHz·km et réussissent à l'ISI. Une valeur M1 réglée BW constitue une amélioration sur la valeur M2 si elle décale la distribution de fibres de sorte que principalement toutes les fibres réussissant aux 2 000 MHz·km réussissent également à l'ISI, mais sans subir une pénalité additionnelle de fibres supplémentaires satisfaisant à l'ISI décalées en dessous de 2 000 MHz·km. Le juste équilibre entre ces deux objectifs dépend d'autres exigences, mais la valeur BW réglée idéalement ne comportera aucune fibre dans l'une ou l'autre catégorie.

	Laser ID				
r	6	7	8	9	10
0	0	0	0	0	0
1	0,015 199	0,0162 53	0,022 057	0,0104 3	0,015 681
2	0,120 91	0,129 011	0,176 39	0,083 496	0,124 978
3	0,407 702	0,434 844	0,595 248	0,281 802	0,421 548
4	0,925 664	0,987 184	1,351 845	0,650 28	0,957 203
5	1,488 762	1,587 6	2,174 399	1,130 599	1,539 535
6	1,825 448	1,946 614	2,666 278	1,627 046	1,887 747
7	1,702 306	1,815 285	2,486 564	2,044 326	1,762 955
8	1,218 378	1,299 241	1,780 897	2,291 72	1,292 184
9	0,643 911	0,686 635	0,945 412	2,280 813	0,790 844
10	0,238 557	0,255 85	0,360 494	1,937 545	0,559 38
11	0,098 956	0,131 429	0,163 923	1,383 006	0,673 655
12	0,204 274	0,327 091	0,318 712	0,878 798	1,047 689
13	0,529 982	0,848 323	0,778 983	0,679 756	1,589 037
14	1,024 948	1,567 513	1,383 174	0,812 36	2,138 626
15	1,611 695	2,224 027	1,853 992	1,074 702	2,470 827
16	2,210 689	2,555 06	1,914 123	1,257 323	2,361 764
17	2,707 415	2,464 566	1,511 827	1,255 967	1,798 213
18	2,938 8	2,087 879	0,908 33	1,112 456	1,059 264
19	2,739 32	1,577 111	0,386 991	0,879 309	0,444 481
20	2,090 874	1,056 343	0,111 76	0,608 183	0,123 304
21	1,261 564	0,595 102	0,014 829	0,348 921	0,012 552
22	0,552 14	0,256 718	0,001 818	0,151 12	0
23	0,163 627	0,076 096	0,000 54	0,044 757	0
24	0,020 443	0,009 446	0	0,005 639	0
25	0	0	0	0	0

Table D.2 – DMD weightings – Example set 2

- 51 -

D.2 Example method to determine if an adjusted BW metric is adequate

One method to determine if an adjusted BW metric is adequate is to make use of the TIA 10 GbE modelling work [5] and the simulation of the 40 000 links, including EMB and ISI. The full transfer function can be calculated for each of the 10 000 straight links with no connectors. If the EMB, calculated with -3 dB BW or an adjusted BW, is greater than 2 000 MHz·km, then the fibre should also pass the ISI requirement of 2,6 dB. A number of fibres either pass -3 dB BW >2 000 MHz·km and fail ISI, or fail 2 000 MHz·km and pass ISI. An adjusted BW metric M1 is an improvement over metric M2 if it shifts the distribution of fibres so that essentially all fibres passing 2 000 MHz·km also pass ISI, but without incurring an additional penalty of extra ISI-passing fibres being shifted below 2 000 MHz·km. The exact balance between these two goals depends on other requirements, but the ideal adjusted BW metric will have no fibres in either category.

Comme la modélisation a recours à d'autres débits binaires et longueurs, une valeur particulière réglée BW sera privilégiée si elle s'applique dans de multiples situations et est de ce fait "*extensible*."

Afin d'obtenir un accord entre une valeur de performance telle que la largeur de bande efficace mesurée qui inclut les effets de dispersion chromatique et des caractéristiques spectrales de la source et l'EMBc minimale prédite, il peut être nécessaire de corriger la fonction de transfert calculée pour l'effet de la dispersion chromatique causée par le contenu spectral de la source. Si l'impact de la dispersion chromatique est significatif, la fonction de transfert de la dispersion chromatique créée par le spectre de source est soumise à une convolution avec la fonction de transfert de la fibre calculée en 7.2.2. La fonction de transfert de la dispersion chromatique est calculée en relevant le spectre de la source et le multipliant par le retard mesuré en fonction de la longueur d'onde.

As modelling proceeds to other bit rates and lengths, a particular adjusted BW metric will be preferred if it applies in multiple situations and thus is *"scalable."*

In order to achieve agreement between a performance metric such as measured effective bandwidth, which includes the effects of chromatic dispersion and source spectral characteristics, and predicted minimum EMBc, it may be necessary to correct the calculated transfer function for the effect of chromatic dispersion caused by the source's spectral content. If the impact of chromatic dispersion is significant, the chromatic dispersion transfer function created by the source spectrum is convolved with the fibre transfer function calculated in 7.2.2. The chromatic dispersion transfer function is calculated by taking the source spectrum and multiplying it by the measured delay as a function of wavelength.

Annexe E (informative)

Comparaison entre cette norme et les recommandations UIT

La recommandation UIT-T G.650.1 ne contient aucune information sur la façon de mesurer le DMD d'une fibre multimodale à gradient d'indice.

Annex E (informative)

Comparison between this standard and ITU recommendations

ITU-T Recommendation G.650.1 contains no information on how to measure the DMD of a graded-index multimode fibre.

Bibliographie

- [1] SCHICKETANZ, D. Fitting of a Weighted Gaussian Lowpass Filter to the Transfer Function of Graded-Index Fibres to Reduce Bandwidth Ambiguities. *Elec. Lett.*, 19, 1983, 17, pp. 651-652.
- [2] STONE, FT. Problems in Bandwidth Measurement and a Suggested Solution. *J. Lightwave Tech.* 1, 1983, 1, p. 207.
- [3] JEUNHOMME, L. and POCHOLLE, JP. Selective mode excitation of graded index optical fibres. *Applied Optics*, 17, 1978, 3, p. 463.
- [4] SNYDER, AW. and LOVE, JD. *Optical Waveguide Theory*. London: Chapman and Hall, 1984.
- [5] PEPELJUGOSKI, P., GOLOWICH, S., RITGER, J., KOLESAR, P., RISTESKI, A. Modeling and Simulation of the next generation multimode fibre. *IEEE J. Lightwave Technol.*, vol. 21, No. 5, May 2003, pp. 1242-1255.
- [6] PEPULJUGOSKI, P., HACKERT, M., ABBOTT, J., SWANSON, S., GOLOWICH, S., RITGER, J., KOLESAR, P., CHEN, YC., and PLEUNIS, P. Development of System Specification for Laser-Optimized 50-um Multimode Fibre for Multigigabit Short-Wavelength LANs. *IEEE J.Lightwave Technol.* Vol. 21, No. 5, May 2003, pp. 1256-1275.

CEI 60825-1, Sécurité des appareils à laser – Partie 1: Classification des matériels, prescriptions et guide de l'utilisateur

CEI 60825-2, Sécurité des appareils à laser – Partie 2: Sécurité des systèmes de télécommunication par fibres optiques

Bibliography

- [1] SCHICKETANZ, D. Fitting of a Weighted Gaussian Lowpass Filter to the Transfer Function of Graded-Index Fibres to Reduce Bandwidth Ambiguities. *Elec. Lett.*, 19, 1983, 17, pp. 651-652.
- [2] STONE, FT. Problems in Bandwidth Measurement and a Suggested Solution. *J. Lightwave Tech.* 1, 1983, 1, p. 207.
- [3] JEUNHOMME, L. and POCHOLLE, JP. Selective mode excitation of graded index optical fibres. *Applied Optics*, 17, 1978, 3, p. 463.
- [4] SNYDER, AW. and LOVE, JD. *Optical Waveguide Theory.* London: Chapman and Hall, 1984.
- [5] PEPELJUGOSKI, P., GOLOWICH, S., RITGER, J., KOLESAR, P., RISTESKI, A. Modeling and Simulation of the next generation multimode fibre. *IEEE J. Lightwave Technol.*, vol. 21, No. 5, May 2003, pp. 1242-1255.
- [6] PEPULJUGOSKI, P., HACKERT, M., ABBOTT, J., SWANSON, S., GOLOWICH, S., RITGER, J., KOLESAR, P., CHEN, YC., and PLEUNIS, P. Development of System Specification for Laser-Optimized 50-um Multimode Fibre for Multigigabit Short-Wavelength LANs. *IEEE J.Lightwave Technol.* Vol. 21, No. 5, May 2003, pp. 1256-1275.

IEC 60825-1, Safety of laser products – Part 1: Equipment classification, requirements and user's guide

IEC 60825-2 Safety of laser products – Part 2: Safety of optical fibre communication systems.

LICENSED TO MECON Limited. - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

The IEC would like to offer you the best quality standards possible. To make sure that we continue to meet your needs, your feedback is essential. Would you please take a minute to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission 3, rue de Varembé 1211 Genève 20 Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

Nicht frankieren Ne pas affranchir

Non affrancare No stamp required

RÉPONSE PAYÉE SUISSE

Customer Service Centre (CSC) International Electrotechnical Commission 3, rue de Varembé 1211 GENEVA 20 Switzerland

Q1	Please report on ONE STANDARD and ONE STANDARD ONLY . Enter the exact number of the standard: (<i>e.g. 60601-1-1</i>)			If you ticked NOT AT ALL in Question 5 the reason is: <i>(tick all that apply)</i>		
		,		standard is out of date		
				standard is incomplete		
				standard is too academic		
Q2	Please tell us in what capacity(ies) yo	u		standard is too superficial		
	bought the standard (tick all that apply	y).		title is misleading		
				I made the wrong choice		
	purchasing agent			other		
	librarian					
	researcher					
	design engineer		07	Please assess the standard in the		
	safety engineer		Q (1	following categories, using		
	testing engineer			the numbers:		
	marketing specialist			(1) unacceptable,		
	other			(2) below average, (3) average		
				(4) above average.		
03	Lwork for/in/ac a:			(5) exceptional,		
Q.)	(tick all that apply)			(6) not applicable		
				timolinoco		
	manufacturing			quality of writing		
	consultant			technical contents		
	government			logic of arrangement of contents		
	test/certification facility			tables, charts, graphs, figures		
	public utility			other		
	education					
	military					
	other		Q8	I read/use the: (tick one)		
04	This standard will be used for:			French text only		
44	(tick all that apply)			English text only		
				both English and French texts		
	general reference					
	product research					
	product design/development					
	specifications		Q9	Please share any comment on any		
	tenders			aspect of the IEC that you would like		
	quality assessment			us to know.		
	certification					
	technical documentation					
	thesis					
	manufacturing					
	other					
Q5	This standard meets my needs:				•••••	
	(tick one)					
	not at all					
	fairly well					
	exactly					

La CEI ambitionne de vous offrir les meilleures normes possibles. Pour nous assurer que nous continuons à répondre à votre attente, nous avons besoin de quelques renseignements de votre part. Nous vous demandons simplement de consacrer un instant pour répondre au questionnaire ci-après et de nous le retourner par fax au +41 22 919 03 00 ou par courrier à l'adresse ci-dessous. Merci !

Centre du Service Clientèle (CSC)

Commission Electrotechnique Internationale 3, rue de Varembé 1211 Genève 20 Suisse

ou

Télécopie: CEI/CSC +41 22 919 03 00

Nous vous remercions de la contribution que vous voudrez bien apporter ainsi à la Normalisation Internationale.

Veuillez ne mentionner qu'UNE SEULE Q5 **NORME** et indiquer son numéro exact: (une seule réponse) (*ex.* 60601-1-1) En tant qu'acheteur de cette norme, quelle est votre fonction? Q6 (cochez tout ce qui convient) Je suis le/un: (cochez tout ce qui convient) agent d'un service d'achat bibliothécaire chercheur ingénieur concepteur ingénieur sécurité ingénieur d'essais spécialiste en marketing autre(s)..... Q7 Veuillez évaluer chacun des critères ci-Je travaille: (cochez tout ce qui convient) dans l'industrie comme consultant pour un gouvernement pour un organisme d'essais/ certification dans un service public dans l'enseignement comme militaire autre(s)..... Q8 Je lis/utilise: (une seule réponse) Cette norme sera utilisée pour/comme (cochez tout ce qui convient) ouvrage de référence une recherche de produit une étude/développement de produit des spécifications Q9 des soumissions une évaluation de la qualité une certification une documentation technique une thèse la fabrication autre(s).....

Q1

Q2

Q3

Q4

Cette norme répond-elle à vos besoins:

pas du tout	
à peu près	
assez bien	
parfaitement	

Si vous avez répondu PAS DU TOUT à Q5, c'est pour la/les raison(s) suivantes:

la norme a besoin d'être révisée	
la norme est incomplète	
la norme est trop théorique	
la norme est trop superficielle	
le titre est équivoque	
je n'ai pas fait le bon choix	
autre(s)	

 dessous en utilisant les chiffres (1) inacceptable, (2) au-dessous de la moyenne, (3) moyen, (4) au-dessus de la moyenne, (5) exceptionnel, (6) sans objet
publication en temps opportun qualité de la rédaction contenu technique disposition logique du contenu tableaux, diagrammes, graphiques, figures autre(s)

uniquement le texte français	
uniquement le texte anglais	
les textes anglais et français	

Veuillez nous faire part de vos observations éventuelles sur la CEI:

.....

LICENSED TO MECON Limited. - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

ICS 33.180.10