

Edition 3.0 2016-04

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Semiconductor devices – Part 2: Discrete devices – Rectifier diodes

Dispositifs à semiconducteurs – Partie 2: Dispositifs discrets – Diodes de redressement

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2016 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue IEC - webstore.iec.ch/catalogue

Application autonome pour consulter tous les renseignements bibliographiques sur les Normes internationales, Spécifications techniques, Rapports techniques et autres documents de l'IEC. Disponible pour PC, Mac OS, tablettes Android et iPad.

Recherche de publications IEC - www.iec.ch/searchpub

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et aussi une fois par mois par email.

Electropedia - www.electropedia.org

Le premier dictionnaire en ligne de termes électroniques et électriques. Il contient 20 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans 15 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

65 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: csc@iec.ch.

Edition 3.0 2016-04

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Semiconductor devices – Part 2: Discrete devices – Rectifier diodes

Dispositifs à semiconducteurs – Partie 2: Dispositifs discrets – Diodes de redressement

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 31.080.10

ISBN 978-2-8322-3295-8

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

Registered trademark of the International Electrotechnical Commission
Copyright International Electrotechnicae Internationale

CONTENTS

FC	DREWO	RD.		5
1	Scop	e		7
2	Norm	nativ	e references	7
3	Term	ns an	d definitions	7
	3.1	Ger	neral terms and definitions	7
	3.2	Volt	tages	8
	3.3	Cur	rents	9
	3.4	Pov	ver dissipation	10
	3.5	Swi	tching characteristics	11
4	Lette	ersyn	mbols	14
	4.1	Ger	neral	14
	4.2	List	of letter symbols	14
	4.2.1		Voltages	14
	4.2.2	2	Currents	14
	4.2.3	3	Powers	15
	4.2.4	Ļ	Switching	15
5	Esse	ential	ratings and characteristics	16
	5.1	Ger	neral	16
	5.2	Rat	ings (limiting conditions)	16
	5.2.1		Storage temperature (<i>T</i> _{stg})	16
	5.2.2	2	Operating ambient or heatsink or case or junction temperature (T_a or T_s or T_a or T_{s}	. 16
	5.2.3	3	Non-repetitive peak reverse voltage (VpsM)	16
	5.2.4	Ļ	Repetitive peak reverse voltage (V_{RRM}) (where appropriate)	16
	5.2.5	5	Continuous (direct) reverse voltage ($V_{\rm R}$) (where appropriate)	16
	5.2.6	5	Mean forward current $(I_{F(AV)})$	16
	5.2.7	,	R.M.S forward current (<i>I</i> _{F(R.M.S.)})	16
	5.2.8	3	Repetitive peak forward current (<i>I</i> _{FRM}) (where appropriate)	16
	5.2.9)	Non-repetitive surge forward current (I _{FSM})	16
	5.2.1	0	Continuous (direct) forward current (<i>I</i> _F)	17
	5.2.1	1	Peak case non-rupture current (<i>I</i> RSMC) (where appropriate)	17
	5.2.1	2	Non-repetitive surge reverse power dissipation (<i>P</i> RSM) (for avalanche rectifier diodes)	17
	5.2.1	3	Repetitive peak reverse power dissipation (<i>P</i> _{RRM}) (for avalanche rectifier diodes)	17
	5.2.1	4	Mean reverse power dissipation $(P_{R(AV)})$ (for avalanche rectifier diodes) 17	
	5.2.1	5	Mounting torque (M) (where appropriate)	17
	5.2.1	6	Clamping force (F) for disc type diodes (where appropriate)	17
	5.3	Cha	aracteristics	17
	5.3.1		General	17
	5.3.2	2	Forward voltage (V _F)	17
	5.3.3	}	Peak forward voltage (V_{FM}) (where appropriate)	18
	5.3.4	ļ	Breakdown voltage ($V_{(BR)}$) (of an avalanche rectifier diode)	18
	5.3.5	5	Continuous (direct) reverse current (<i>I</i> _{R(D)})	18
	5.3.6	5	Repetitive peak reverse current (<i>I</i> _{RRM}) (where appropriate)	18
	5.3.7	•	Recovered charge (Q_r) (where appropriate)	18

5.3.8	Total capacitive charge ($\mathcal{Q}_{\mathbf{C}}$) (where appropriate)	18
5.3.9	Peak reverse recovery current (<i>I</i> _{rrm}) (where appropriate)	18
5.3.10	Reverse recovery time (<i>t</i> _{rr}) (where appropriate)	19
5.3.11	Reverse recovery energy (<i>E</i> _{rr}) (where appropriate)	19
5.3.12	Forward recovery time (<i>t</i> fr) (where appropriate)	19
5.3.13	Peak forward recovery voltage (V _{FRM}) (where appropriate)	19
5.3.14	Reverse recovery softness factor (Srr) (where appropriate)	19
5.3.15	Thermal resistance (R _{tb})	19
5.3.16	Transient thermal impedance $(Z_{+b}(t))$ (where appropriate)	
6 Measu	ing and test methods	19
6.1 N	easuring methods for electrical characteristics	19
6.1.1	General	19
6.1.2	Forward voltage (V _F , V _{FM})	20
6.1.3	Breakdown voltage ($V_{(BR)}$) of avalanche rectifier diodes	23
6.1.4	Reverse current (<i>I</i> _P)	23
6.1.5	Repetitive peak reverse current (/ppm)	24
6.1.6	Recovered charge, reverse recovery time, reverse recovery energy and softness factor (<i>On the Fig. Sur</i>)	25
617	Forward recovery time (t_{r}) and neak forward recovery voltage $(V_{t_{rrec}})$	20
618	Total capacitive charge (Ω_{c})	32
62 M	essuring methods for thermal characteristics	33
621	Ganaral	
622	Thermal resistance (R_{ij}, c_{ij}) and transient thermal impedance (T_{ij}, c_{ij})	
0.2.2	$(z_{th}(j-r))$ and transient thermal impedance $(z_{th}(j-r))$	33
6.3 V	erification test methods for ratings (limiting values)	35
6.3.1	Surge (non-repetitive) forward current (IESM)	35
6.3.2	Non-repetitive peak reverse voltage (Vpsm)	
6.3.3	Peak reverse power (repetitive or non-repetitive) (P_{RRM} , P_{RSM}) of	20
0.0.4		
6.3.4	Peak case non-rupture current (IRSCM)	41
/ Require	ements for type tests, routine tests and endurance tests; marking of	43
7 1 T	una tasta	
7.1 1		43
7.2 R	outilie tests	43
7.3 IV	easuring and test methods	44
7.4 IV	arking of rectifier diodes	44
7.0 E	List of and wanted tests	44
7.5.1	Conditions for and unance tests	44
7.5.2	Conditions for endurance tests	44
7.5.3	endurance tests	44
7.5.4	Acceptance-defining characteristics and acceptance criteria for reliability tests	45
Figure 1 _ \	oltage waveform during forward recovery specification method I	11
	(altage waveform during forward receivery, specification method !!	
		۱۱ م
⊢igure 3 – 0	Surrent waveform during reverse recovery	12
Figure 4 – E	Diode turn-off, voltage, current and recovered charge	13
Figure 5 – F	Reverse voltage ratings	14

Figure 6 – Forward current ratings15	5
Figure 7 – Recovered charge Q_r , peak reverse recovery current I_{rrm} , reverse recovery	_
time t _{rr} (idealized characteristics)18	3
Figure 8 – Circuit diagram for the measurement of forward voltage (d.c. method))
Figure 9 – Circuit diagram for the measurement of forward voltage (oscilloscope	1
Figure 10 Orachia anna antation of an atata will be a compared all and the second states of a state of the second states of the second	1
Figure 10 – Graphic representation of on-state voltage versus current characteristic	1
Figure 11 – Circuit diagram for forward voltage measurement (pulse method)22	2
Figure 12 – Circuit diagram for breakdown voltage measurement23	3
Figure 13 – Circuit diagram for reverse current measurement	4
Figure 14 – Circuit diagram for peak reverse current measurement25	5
Figure 15 – Circuit diagram for recovered charge measurement, half sinusoidal wave method	3
Figure 16 – Current waveform through the diode D during recovered charge measurement, half sinusoidal wave method	6
Figure 17 – Circuit diagram for recovered charge measurement, rectangular wave	R
Figure 18 Current waveform through the diade D recovered, charge measurement	,
rectangular wave method	3
Figure 19 – Circuit diagram for forward recovery time measurement	C
Figure 20 – Current waveform forward recovery time measurement	C
Figure 21 – Voltage waveform forward recovery time measurement	1
Figure 22 – Circuit diagram for total capacitive charge measurement	2
Figure 23 – Circuit diagram for thermal impedance measurement	3
Figure 24 – Calibration curve showing a typical variation of the forward voltage V_F at	
a low measuring current I_2 with the case temperature T_c (when heated from outside,	
i.e. $T_{c} = T_{vj}$)	1
Figure 25 – Circuit diagram for surge forward current measurement	5
Figure 26 – Circuit diagram for peak reverse voltage measurement	7
Figure 27 – Circuit to verify peak reverse power of avalanche rectifier diodes	3
Figure 28 – Triangular reverse current waveform	9
Figure 29 – Sinusoidal reverse current waveform	9
Figure 30 – Rectangular reverse current waveform40)
Figure 31 – Verification of <i>P</i> _{RSM} reverse power versus breakdown4 ²	1
Figure 32 – Circuit diagram for case non-rupture current measurement42	2
Figure 33 – Waveform of the reverse current i_{R} through the diode under test42	2
Table 1 – Minimum type and routine tests for rectifier diodes 44	4
Table 2 – Acceptance-defining characteristics for acceptance after endurance tests	5

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SEMICONDUCTOR DEVICES –

Part 2: Discrete devices – Rectifier diodes

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60747-2 has been prepared by subcommittee 47E: Discrete semiconductor devices, of IEC technical committee 47: Semiconductor devices.

This third edition cancels and replaces the second edition published in 2000. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) Schottky barrier diodes and its properties are added;
- b) Clauses 3, 4, 5 and 7 were amended with some deletions of information no longer in use or already included in other parts of the IEC 60747 series, and with some necessary additions;
- c) Clause 6 was moved and added to Clause 7 of this third edition;
- d) some parts of Clause 7 were moved and added to Clause 7 of this third edition;

e) Annex A was deleted.

This standard is to be used in conjunction with IEC 60747-1:2006 and Amendment 1: 2010.

The text of this standard is based on the following documents:

FDIS	Report on voting	
47E/531/FDIS	47E/537/RVD	

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 60747 series, published under the general title *Semiconductor devices*, can be found on the IEC website.

Future standards in this series will carry the new general title as cited above. Titles of existing standards in this series will be updated at the time of the next edition.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

SEMICONDUCTOR DEVICES -

Part 2: Discrete devices – Rectifier diodes

1 Scope

This part of IEC 60747 provides standards for the following categories or sub-categories of rectifier diodes, including:

- line rectifier diodes;
- avalanche rectifier diodes;
- fast-switching rectifier diodes;
- Schottky barrier diodes.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-521, International Electrotechnical Vocabulary – Part 521: Semiconductor devices and integrated circuits (available at http://www.electropedia.org)

IEC 60747-1:2006, *Semiconductor devices – Part 1: General* IEC 60747-1:2006/AMD1: 2010

IEC 60749-23, Semiconductor devices – Mechanical and climatic test methods – Part 23: High temperature operating life

IEC 60749-34, Semiconductor devices – Mechanical and climatic test methods – Part 34: Power cycling

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60747-1, in IEC 60050-521 (except for definitions 521-05-18, 521-05-25, 521-05-26) and the following apply.

3.1 General terms and definitions

3.1.1

forward direction

direction of the flow of continuous (direct) current in which a semiconductor diode has the lower resistance

3.1.2

reverse direction

direction of the flow of continuous (direct) current in which a semiconductor diode has the higher resistance

3.1.3

anode terminal

<semiconductor rectifier diode> terminal to which forward current flows from the external circuit

- 8 -

3.1.4

cathode terminal

<semiconductor rectifier diode> terminal from which forward current flows to the external circuit

3.2 Voltages

3.2.1

forward voltage

 V_{F}

voltage across the terminals which results from the flow of current in the forward direction

3.2.2

peak forward voltage

crest forward voltage

 $V_{\rm FM}$

voltage across the terminal which results from a $\boldsymbol{\pi}$ times higher current than the specified mean current

3.2.3 forward recovery voltage

 $V_{\rm fr}$

varying voltage occurring during the forward recovery time after instantaneous switching from zero or a specified reverse voltage to a specified forward current

3.2.4

reverse voltage

 V_{R}

constant voltage applied to a diode in the reverse direction

3.2.5

repetitive peak reverse voltage

 V_{RRM}

highest instantaneous value of the reverse voltage, including all repetitive transient voltages, but excluding all non-repetitive transient voltages

Note 1 to entry: See Figure 5.

3.2.6

non-repetitive peak reverse voltage

peak transient reverse voltage

 V_{RSM}

highest instantaneous value of any non-repetitive transient reverse voltage

Note 1 to entry: The repetitive voltage is usually a function of the circuit and increases the power dissipation of the device. A non-repetitive transient voltage is usually due to an external cause and it is assumed that its effect has completely disappeared before the next transient arrives.

3.2.7 breakdown voltage

 $V_{(BR)}$ voltage in the region where breakdown occurs

3.3 Currents

3.3.1

forward current

 $I_{\rm F}$ current flowing through the diode in forward direction

3.3.2

mean forward current

 $I_{F(AV)}$ value of the forward current averaged over the full cycle

3.3.3

r.m.s. forward current

I_{F(R.M.S.)}

r.m.s value of the forward current over one complete cycle of the operating frequency

Note 1 to entry: Where no ambiguity arises, $I_{F(RMS)}$ may be used.

3.3.4

peak forward current

 I_{FM}

maximum value of forward current time function

3.3.5

repetitive peak forward current

*I*_{FRM} peak value of the forward current including all repetitive transient currents

Note 1 to entry: See Figure 6.

3.3.6

non-repetitive surge forward current

 I_{FSM}

forward current pulse of short time duration and specified waveshape, whose application causes or would cause the maximum rated junction temperature to be exceeded, but which is assumed to occur rarely and with a limited number of such occurrences during the service life of the device and to be a consequence of unusual circuit conditions (for example a fault)

Note 1 to entry: See Figure 6.

3.3.7

reverse current

 I_{R}

current flowing through the diode when reverse voltage is applied

3.3.8

reverse recovery current

 I_{rr}

part of the reverse current which occurs during the reverse recovery until quasi static conditions have been reached

3.3.9

I²t value

integral of the square of a surge forward current over the duration of the current surge

3.3.10

peak case non-rupture current

IRSMC

peak value of reverse current that should not be exceeded in order to avoid bursting of the case or the emission of a plasma beam under specified conditions of current, waveshape and time

- 10 -

Note 1 to entry: This definition implies that a fine crack in the case might be found in a device subjected to the peak case non-rupture current, provided that no plasma beam was emitted. Parts of the case shall not break away, nor shall the device melt externally or burst into flames.

3.4 **Power dissipation**

3.4.1

total power dissipation

P_{tot}

sum of the dissipations due to current in the forward and reverse direction and during switching

3.4.2

forward power dissipation

 P_{F}

power dissipation due to the flow of forward current

3.4.3

mean forward power dissipation

 $P_{\mathsf{F}(\mathsf{AV})}$

mean value of the product of the instantaneous forward voltage and the instantaneous forward current averaged over a full cycle

3.4.4

reverse power dissipation

 P_{R}

power dissipation resulting from the flow of reverse current

3.4.5

forward recovery dissipation

 P_{fr}

power dissipated within the diode during the change between reverse voltage and forward current when the diode is switched from a reverse voltage to a forward current

3.4.6

reverse recovery dissipation

 $P_{\rm rr}$

power dissipated within the diode during the change between forward current and reverse voltage when the diode is switched from a forward current to a reverse voltage

3.4.7

surge reverse power dissipation

P_{RSM}

<avalanche rectifier diodes> power which is dissipated within the diode resulting from surges occurring when it is operating in the reverse direction

3.4.8

repetitive peak reverse power dissipation

 P_{RRM}

<avalanche rectifier diodes> power which is dissipated within the diode resulting from repetitive peak currents when it is operating in the reverse direction

3.4.9

mean reverse power dissipation

 $P_{\mathsf{R}(\mathsf{AV})}$

<avalanche rectifier diodes> power which is dissipated within the diode resulting from constant reverse current or as a mean value of a periodical function when it is operating in the reverse direction

3.5 Switching characteristics

3.5.1

forward recovery time

t_{fr}

time interval between the instant when the forward voltage rises through a specified first value and the instant when it falls from its peak value $V_{\rm frm}$ to a specified second value close to the final stable value of forward voltage (as shown in Figure 1), or when the extrapolated forward voltage reaches zero (as shown in Figure 2), upon the application of a specified step of forward current following a zero-voltage or other specified reverse-voltage condition

Figure 2 – Voltage waveform during forward recovery, specification method II

Note 1 to entry: Specification method I: The specified first and second values referred to in the definition are usually 10 % and 110 %, respectively, of the final stable value ($V_{\rm F}$ in Figure 1).

Note 2 to entry: Specification method II: The extrapolation is carried out with respect to specified points A and B where A and B are usually 90 % and 50 % of $V_{\rm frm}$ as shown in generalized form in Figure 2.

Note 3 to entry: Method I is preferred for V_{frm} values up to about 10 V; method II for values considerably higher.

[SOURCE: IEC 60050-521:2002, 521-05-25, modified — revised to relate only to forward voltage; notes to entry and figures added]

- 12 -

3.5.2

reverse recovery time

t_{rr}

time interval between the instant when the current passes through zero, when changing from the forward direction to the reverse direction, and the instant when the extrapolated reverse current reaches zero (as shown in Figure 3)

Figure 3 – Current waveform during reverse recovery

Note 1 to entry: The extrapolation is carried out with respect to specified points A and B as shown in generalised form in Figure 3. Point A is often specified at 90 % of $I_{\rm rrm}$, and point B at 25 % of $I_{\rm rrm}$.

[SOURCE: IEC 60050-521:2002, 521-05-26, modified — revised to relate only to current with specified limits of the time function; notes to entry and figures added]

3.5.3

reverse recovery current rise time

t_{rrr}

time interval between the beginning of the reverse recovery time and the instant when the reverse recovery current reaches its peak value after instantaneous switching from a specified forward current to a specified reverse voltage

3.5.4

reverse recovery current fall time

t_{rrf}

time interval between the instant when the reverse recovery current reaches its peak value and the end of reverse recovery time after instantaneous switching from a specified forward current to a specified reverse voltage

3.5.5

recovered charge

Q_{r}

total charge recovered from the diode during a specified integration time after switching from a specified forward current condition to a specified reverse condition:

$$Q_{\mathsf{r}} = \int_{t_0}^{t_0 + t_{\mathsf{i}}} i \cdot \mathsf{d}t$$

where

- t_0 is the instant when the current passes through zero;
- t_i is the specified integration time from t_0 to a time where i_{rr} has fallen to 2 % of I_{rrm} (as shown in Figure 4).

Figure 4 – Diode turn-off, voltage, current and recovered charge

Note 1 to entry: This charge includes components due to both carrier storage and depletion layer capacitance.

[SOURCE: IEC 60050-521:2002, 521-05-18, modified — revised to relate only to diode and added integration time; formula and figure added]

3.5.6 capacitive charge

 Q_{C}

<Schottky barrier diodes> the charge required to raise the cathode-anode voltage from zero to a specified value

3.5.7 reverse recovery energy

 $E_{\rm rr}$

switching energy which results from the integration of the product from device voltage and current during the integration time t_i of recovered charge

Note 1 to entry: t_i is shown in Figure 4.

3.5.8

reverse recovery softness factor

 $S_{\rm rr}$

absolute value of the ratio of the rate of rise of the reverse recovery current when passing through zero to the maximum rate of fall of the recovery current

$$S_{\rm rr} = \frac{(di_{\rm rrr}/dt)_{i=0}}{(di_{\rm rrf}/dt)_{\rm max}}$$

Note 1 to entry: (d_{rrr}/dt) and (d_{rrf}/dt) are shown in Figure 3.

4 Letter symbols

4.1 General

The rules given in IEC 60747-1:2006, Clause 4 apply.

4.2 List of letter symbols

4.2.1 Voltages

Name and designation	Letter symbol	Remark
Forward voltage	V _F	
Peak forward voltage	V _{FM}	
Reverse voltage	V _R	
Repetitive peak reverse voltage	V _{RRM}	
Non-repetitive peak reverse voltage	V _{RSM}	
Breakdown voltage	V _(BR)	
Forward recovery voltage	V _{fr}	
Peak value of forward recovery voltage	V _{frm}	
		t

4.2.2 Currents

Name and designation	Letter symbol	Remark
Forward current	Ι _F	
Mean forward current	I _{F(AV)}	
Repetitive peak forward current	I _{FRM}	
r.m.s forward current	I _{F(R.M.S.)}	I _{F(RMS)} may be used
Non-repetitive surge forward current	I _{FSM}	
Reverse current	I _R	
Maximum reverse current	I _{RM}	
Peak reverse recovery current	<i>I</i> _{rrm}	
Reverse recovery current	I _{rr}	
Peak case non-rupture current	I _{RSMC}	

4.2.3 Powers

Name and designation	Letter symbol	Remark
Forward power dissipation	P _F	
Mean forward power dissipation	P _{F(AV)}	
Reverse power dissipation	P _R	
Total power dissipation	P _{tot}	
Surge reverse power dissipation	P _{RSM}	
Repetitive peak reverse power dissipation	P _{RRM}	
Mean reverse power dissipation	P _{R(AV)}	
Forward recovery dissipation	P _{fr}	
Reverse recovery dissipation	P _{rr}	

4.2.4 Switching

Name and designation	Letter symbol	Remark
Forward recovery time	t _{fr}	
Reverse recovery time	t _{rr}	
Reverse recovery current rise time	t _{rrr}	
Reverse recovery current fall time	t _{rrf}	
Recovered charge	$Q_{\sf r}$	
Capacitive charge	\mathcal{Q}_{C}	
Reverse recovery energy	E_{rr}	
Reverse recovery softness factor	S _{rr}	

5 Essential ratings and characteristics

5.1 General

Many of the ratings and characteristics are required to be quoted at a temperature of 25 $^\circ \rm C$ and at one other specified temperature.

- 16 -

5.2 Ratings (limiting conditions)

5.2.1 Storage temperature (T_{sta})

Minimum and maximum values.

5.2.2 Operating ambient or heatsink or case or junction temperature (T_a or T_s or T_c or T_{vj})

Minimum and maximum values.

NOTE The case temperature is normally measured on the body of the device. For some rectifier diodes, the temperature is specified on one of the terminals .

5.2.3 Non-repetitive peak reverse voltage (V_{RSM})

Maximum value of a pulse of reverse voltage with a half-wave sinusoidal waveform, the duration of which has to be specified.

5.2.4 Repetitive peak reverse voltage (*V*_{RRM}) (where appropriate)

Maximum value of repetitive reverse voltage pulses, with half-wave sinusoidal waveform, whose duration and repetition rate have to be specified.

5.2.5 Continuous (direct) reverse voltage (V_R) (where appropriate)

Maximum value.

5.2.6 Mean forward current $(I_{F(AV)})$

A curve showing maximum values versus ambient or case temperature for single-phase half-wave circuit with resistive load at a specified frequency. Alternatively curves for other wave forms may be given.

5.2.7 R.M.S forward current (*I*_{F(R.M.S.)})

Maximum value at a specified ambient or sink or case and virtual junction temperature.

5.2.8 Repetitive peak forward current (I_{FRM}) (where appropriate)

Maximum value at a specified ambient or sink or case and virtual junction temperature.

5.2.9 Non-repetitive surge forward current (*I*_{FSM})

Maximum value at initial conditions corresponding to maximum virtual junction temperature, a specified duration and a subsequently applied reverse voltage. In addition, figures corresponding to lower initial virtual junction temperatures may be given.

Surge current ratings should be given for the following time periods:

 a) For times smaller than one half-cycle (at 50 Hz or 60 Hz), but greater than approximately 1 ms, in terms of maximum rated value of $\int i^2 dt$

These ratings may be given by means of a curve or by specified values. No immediate subsequent application of reverse voltage is assumed.

b) For times equal to, or greater than, one half-cycle and smaller than 15 cycles (at 50 Hz or 60 Hz) in the form of a curve showing the maximum rated surge current versus time.

These ratings should preferably be given for a reverse voltage of 80 % of the maximum repetitive peak reverse voltage. Additional ratings may be given for reverse voltage. Additional ratings may be given for reverse voltages of 50 % or 100 % of the maximum repetitive peak reverse voltage.

c) For a time equal to one cycle with no reverse voltage applied.

5.2.10 Continuous (direct) forward current (*I*_F)

Maximum value at a specified ambient or sink or case and virtual junction temperature.

5.2.11 Peak case non-rupture current (I_{RSMC}) (where appropriate)

Maximum value for a specified pulse duration and shape and at a specified starting case temperature, preferably maximum.

5.2.12 Non-repetitive surge reverse power dissipation (P_{RSM}) (for avalanche rectifier diodes)

Maximum value for a specified wave shape (triangular, sinusoidal or rectangular) and duration, at maximum virtual junction temperature.

5.2.13 Repetitive peak reverse power dissipation (P_{RRM}) (for avalanche rectifier diodes)

Maximum value for a specified wave shape (triangular, sinusoidal or rectangular), duration and duty cycle and a specified ambient or case temperature with zero forward dissipation.

5.2.14 Mean reverse power dissipation $(P_{R(AV)})$ (for avalanche rectifier diodes)

Maximum value at specified wave shape (triangular, sinusoidal or rectangular), duration and duty cycle and a specified ambient or case temperature with zero forward dissipation.

5.2.15 Mounting torque (*M*) (where appropriate)

Minimum and maximum values.

5.2.16 Clamping force (*F*) for disc type diodes (where appropriate)

Minimum and maximum values and the stiffness of the mounting surface shall be specified.

5.3 Characteristics

5.3.1 General

Characteristics shall be given at T_{vj} = 25 °C except where otherwise stated and at one other specified temperature.

5.3.2 Forward voltage ($V_{\rm F}$)

Maximum value at the rated continuous (direct) forward current.

5.3.3 Peak forward voltage (V_{FM}) (where appropriate)

Maximum value at a current of π times the rated mean forward current.

NOTE $\;$ Instead of π the voltage can be specified at 3 times the rated current as well.

5.3.4 Breakdown voltage $(V_{(BR)})$ (of an avalanche rectifier diode)

Minimum value for a specified current.

5.3.5 Continuous (direct) reverse current $(I_{R(D)})$

Maximum value at a specified high reverse voltage at the maximum virtual junction temperature.

- 18 -

NOTE I_{R} is used as a synonym of $I_{R(D)}$.

5.3.6 Repetitive peak reverse current (*I*_{RRM}) (where appropriate)

Maximum value at the rated repetitive peak reverse voltage.

5.3.7 Recovered charge (Q_r) (where appropriate)

Maximum value, or maximum and minimum values, under the following specified conditions:

- a) forward current, preferably equal to the maximum mean forward current;
- b) decline rate of forward current $-di_{F}/dt$;
- c) reverse voltage, preferably 50 % of the maximum rated repetitive peak reverse voltage;
- d) junction or case or heatsink temperature.

Figure 7 – Recovered charge Q_r , peak reverse recovery current I_{rrm} , reverse recovery time t_{rr} (idealized characteristics)

5.3.8 Total capacitive charge (Q_{C}) (where appropriate)

Maximum value under the following conditions:

- a) reverse voltage, preferably 67 % of the maximum rated repetitive peak reverse voltage
- b) junction or case or heatsink temperature

5.3.9 Peak reverse recovery current (I_{rrm}) (where appropriate)

Maximum value under the conditions as specified for recovered charge (see Figure 7).

5.3.10 Reverse recovery time (t_{rr}) (where appropriate)

Maximum value under the conditions as specified for recovered charge (see Figure 7).

5.3.11 Reverse recovery energy (E_{rr}) (where appropriate)

Typical value under the conditions as specified for recovered charge.

5.3.12 Forward recovery time (t_{fr}) (where appropriate)

Maximum value under the following specified conditions:

- a) junction temperature (T_{vi}) ;
- b) continuous (direct) forward current (I_F) ;
- c) rising rate d_{i_F}/d_t of the forward current pulse.

5.3.13 Peak forward recovery voltage (*V*_{FRM}) (where appropriate)

Maximum value under conditions as specified for forward recovery time.

5.3.14 Reverse recovery softness factor (S_{rr}) (where appropriate)

Minimum value under following specified conditions:

- a) forward current (before switching) at a value of less than 10 % and at 200 % of maximum rated mean forward current;
- b) decline rate $(-di_F/dt)$ of the forward current;
- c) reverse voltage, 50 % of the maximum rated repetitive peak reverse voltage;
- d) RC damping network (snubber) including significant parasitic components, where appropriate;
- e) junction temperature.

The duration of the forward current pulse has to be sufficient to ensure carrier density equilibrium.

5.3.15 Thermal resistance (R_{th})

Maximum value between junction and case for case rated devices or junction and heatsink for heatsink rated devices or junction to ambient for ambient rated devices.

5.3.16 Transient thermal impedance $(Z_{th}(t))$ (where appropriate)

A curve showing maximum transient thermal impedance versus time, extending from steady-state value down to 1 ms or less, or, alternatively, a mathematical relation.

6 Measuring and test methods

6.1 Measuring methods for electrical characteristics

6.1.1 General

Stray capacitances for a.c. measurements methods should be avoided. In addition, residual inductance should be kept as low as possible, especially for high current devices and pulsed measurement methods.

DC measurements should be performed only after thermal equilibrium has been reached. For short pulses at low duty cycle, the virtual junction temperature may be considered to be equal to the ambient or case temperature.

6.1.2 Forward voltage ($V_{\rm F}$, $V_{\rm FM}$)

6.1.2.1 DC method

Purpose

To measure the forward voltage $V_{\rm F}$ of a rectifier diode under d.c.conditions.

Circuit diagram

See Figure 8.

Circuit description and requirements

- D = diode being measured
- R = protective resistor
- G = d.c. source

Measurement procedure

The cooling conditions are adjusted to the specified ambient, case or reference-point temperature. The specified forward current is applied through the diode for a time until thermal equilibrium is reached. The forward voltage drop $V_{\rm F}$ across the diode terminals is measured under specified conditions.

Specified conditions

- a) forward current;
- b) ambient, case or reference-point temperature.

6.1.2.2 AC method

Purpose

To measure the forward voltage $V_{\rm F}$ of a rectifier diode under a.c. conditions and to measure the peak forward voltage $V_{\rm FM}$ at a current magnitude equal to π times the rated current.

Circuit diagram

See Figure 9.

Figure 9 – Circuit diagram for the measurement of forward voltage (oscilloscope method)

Circuit description and requirements

- D_1 = diode being measured
- D_2 = clamping diode for negative half wave
- R₁ = current sensing resistor
- R_2 = protective resistor, low resistance
- G = AC generator

Measurement procedure

A half-sine wave current is applied to the diode being measured in the forward direction until thermal equilibrium is reached. The voltage-current curve is displayed on an oscilloscope. The magnitude of the current source is set to the required value for the $V_{\rm F}$ or $V_{\rm FM}$ specification. Due to the semiconductor capacitances the oscilloscope shows a hysteresis curve. The turn point is equal to the static on state voltage (see Figure 10).

NOTE A sequence of current half-waves with rising magnitude gives a series of turn points, which corresponds to the static forward characteristic.

Figure 10 – Graphic representation of on-state voltage versus current characteristic

Specified conditions

- a) peak forward current;
- b) ambient, case or reference-point temperature.

6.1.2.3 Pulse method

Purpose

To measure the forward voltage $V_{\rm F}$ of a rectifier diode using a pulse method and to measure the peak forward voltage $V_{\rm FM}$ at a current magnitude equal to π times the rated current.

Circuit diagram

See Figure 11.

Figure 11 – Circuit diagram for forward voltage measurement (pulse method)

Circuit description and requirements

- D = diode being measured
- G = pulse generator
- R_1 = protective resistor
- R₂ = calibrated current sensing resistor
- OSC = oscilloscope or peak reading instrument

The pulse width and the repetition rate of the pulse generator should be such that negligible internal heating occurs during the measurement.

The above conditions are usually met with pulse widths of 50 μ s to 500 μ s. In all cases carrier equilibrium shall be established.

Measurement procedure

The pulse generator voltage is set initially to zero.

Temperature conditions are set to the specified value.

The specified forward current is then set by increasing the voltage of the pulse generator; the forward voltage is measured on the oscilloscope.

Peak reading instruments may be used instead of the oscilloscope, but they shall be instruments that allow measurement of the peak forward voltage at the time the forward current reaches its peak value.

Specified conditions

The values of the following conditions should be stated:

a) peak forward current;

b) ambient, case or reference-point temperature.

6.1.3 Breakdown voltage $(V_{(BR)})$ of avalanche rectifier diodes

Purpose

To measure the breakdown voltage of an avalanche rectifier diode by a pulse method under specified conditions.

Circuit diagram

See Figure 12.

Figure 12 – Circuit diagram for breakdown voltage measurement

Circuit description and requirements

- D = diode being measured
- R = non-inductive calibrated resistor
- G = d.c. source

The pulse length and the duty cycle of the constant current generator should be such that negligible internal heating of the diode occurs.

Measurement procedure

The temperature is set to the specified value.

The generator output is increased to obtain the specified value of reverse current.

The breakdown voltage is read from the peak reading instrument.

Specified conditions

a) ambient, case, reference-point or virtual junction temperature (T_a , T_c , T_{ref} , T_{vi});

b) reverse current (I_R) .

6.1.4 Reverse current (I_R)

Purpose

To measure the reverse current under d.c.conditions

Circuit diagram

See Figure 13.

- 24 -

Figure 13 – Circuit diagram for reverse current measurement

Circuit description and requirements

- D = diode being measured
- R = protective resistor
- G = voltage source

Measurement procedure

The cooling conditions are adjusted to the specified ambient, case or reference-point temperature.

The specified reverse voltage is applied through a protective resistor and the reverse current is measured under specified conditions.

Specified conditions

- a) ambient, case, reference-point or virtual junction temperature (T_a , T_c , T_{ref} , T_{vi});
- b) reverse voltage (V_R) .

6.1.5 Repetitive peak reverse current (I_{RRM})

Purpose

To measure the peak reverse current of a rectifier diode at repetitive peak reverse voltage.

Circuit diagram

See Figure 14.

- 25 -

Figure 14 – Circuit diagram for peak reverse current measurement

Circuit description and requirements

D ₁	=	diode	being	measured
----------------	---	-------	-------	----------

 D_2 and D_3 = diodes to provide negative half-cycles, so that only the reverse characteristic of the rectifier diode is measured

G = alternating voltage source

R₁ = protective resistor

 R_2 = calibrated current sensing resistor

Measurement procedure

The diode temperature is set to the specified value.

The reverse voltage across the rectifier diode, measured on the oscilloscope, is adjusted by means of the alternating voltage source to the value of the specified repetitive peak reverse voltage. The reverse current through the rectifier diode is measured on the oscilloscope connected across R_2 .

Peak reading instruments may be used instead of the oscilloscope to measure the peak reverse current, but they shall be instruments that allow measurement of the peak reverse current at the time the reverse voltage reaches its peak value.

Specified conditions

The values of the following conditions should be stated:

- a) reverse voltage; in case of peak reverse current equal to repetitive reverse voltage;
- b) ambient, case, reference-point or virtual junction temperature.

6.1.6 Recovered charge, reverse recovery time, reverse recovery energy and softness factor $(Q_r, t_{rr}, E_{rr}, S_{rr})$

6.1.6.1 Half sinusoidal wave method

Purpose

To measure the recovered charge Q_{r} , and the reverse recovery time t_{rr} and softness factor S_{rr} of a rectifier diode at low di/dt under specified conditions.

Circuit diagram and waveform

See Figure 15 and Figure 16.

Figure 15 – Circuit diagram for recovered charge measurement, half sinusoidal wave method

Figure 16 – Current waveform through the diode D during recovered charge measurement, half sinusoidal wave method

Circuit description and requirements

- C_1 = capacitor supplying the forward current (see also L_1)
- C_2 = capacitor limiting the high induced reverse voltage
- D_1 = diode being measured
- D_2 = antiparallel diode
- G = voltage source
- L_1 = inductor adjusting the rate of change of forward current $-di_F/dt$ and the pulse duration $(t_p \simeq \pi \sqrt{L_1C_1})$
- M = measuring instrument (for example an oscilloscope)
- R_1 = resistor limiting the charge of C_1
- R_2 = resistor limiting the high induced reverse voltage
- R_3 = calibrated non-inductive current sensing resistor
- T_1 = electronic switch (e.g. a thyristor)

Measurement procedure

Thyristor T_1 is triggered and the voltage source G is adjusted to give the specified value of the peak forward current I_{FM} through the diode D_1 . The pulse duration t_p , the rate of change of forward current $-di_F/dt$ and the voltage V_1 at the C_1 terminals shall be in accordance with the specified conditions.

- 27 -

The rate of change of forward current is measured at zero crossing current, for current values between $i_F = |I_{rrm}|$ and $i_{rr} = 0.5 I_{rrm}$ (see Figure 16).

$$-\frac{\mathrm{d}i_{\mathsf{F}}}{\mathrm{d}t} = \frac{3}{2} \cdot \frac{I_{\mathsf{rrm}}}{\Delta t}$$

The recovered charge is measured as:

$$Q_{\mathsf{r}} = \int_{t_0}^{t_0 + t_{\mathsf{i}}} i \cdot \mathsf{d}t$$

where

 t_0 is the instant when the current passes through zero;

 t_i is the specified integration time, preferably equal to the specified maximum value of t_{rr} .

The reverse recovery time t_{rr} is measured as the time interval between t_0 and the instant when for decreasing values of i_{rr} a line through the points for 0,9 I_{rrm} and 0,25 I_{rrm} crosses the zero current axis.

The softness factor is the absolute value of the ratio of the rate of rise of the reverse recovery current when passing through zero to the maximum rate of fall of the recovery current

$$S_{\rm rr} = \frac{|(di_{\rm rrr}/dt)_{i=0}|}{(di_{\rm rrf}/dt)_{\rm max}}$$

Specified conditions

- a) ambient or case temperature;
- b) peak forward current I_{FM};
- c) voltage V_1 at the C₁ terminals;
- d) pulse duration of forward current t_{p} ;
- e) rate of change of forward current $-di_F/dt$ (see note);
- f) integration time t_i ;
- g) C₁, C₂, R₂.

NOTE Depending on pulse duration t_p and peak forward current is the rate of change d_i / dt limited to a few A/µs. Therefore this method is not suitable for fast-switching rectifier diodes.

6.1.6.2 Rectangular wave method

Purpose

To measure the recovered charge Q_r , the reverse recovery time t_{rr} , reverse recovery energy E_{rr} and softness factor S_{rr} of a rectifier diode under specified conditions.

Circuit diagram and waveform

See Figure 17 and Figure 18.

- 28 -

Figure 17 – Circuit diagram for recovered charge measurement, rectangular wave method

Figure 18 – Current waveform through the diode D recovered charge measurement, rectangular wave method

Circuit description and requirements

- C = capacitor operating as energy reservoir for the current double pulse and should be large enough to keep the voltage constant during the test
- D = diode being measured
- G = voltage source
- L = inductor large enough to keep the current almost constant during the freewheeling time
- OSC = oscilloscope to measure current and voltage at the device under test
- R = resistor limiting the supply current
- T = electronic switch (for example IGBT) with adjustable turn-on speed

Measurement procedure

The temperature of the device is set to the specified value.

The voltage source G is adjusted to the specified value of reverse voltage.

– 29 –

Switch T is turned on for a duration that the specified forward current value (I_F) is flowing in the inductor L.

Switch T is turned off and the current of the inductor commutates to the diode being measured which operates as a freewheeling diode. The pulse duration t_p (equal to turn-off time of the T) should be long enough to guarantee full conduction of the diode being measured but short enough that negligible internal heating of the diode occurs. The duration should be at least 20 µs (fast switching rectifier diode) up to 1 ms (line rectifier diodes).

At the end of the pulse duration Switch T is turned on a second time and the diode being measured turns off. The rate of change of forward current is adjusted to the specified value by the gate resistor of T. The rate of change of forward current is measured at zero crossing current, for current values between $i_{\rm F} = |0,5 I_{\rm rrm}|$ and $i_{\rm R} = 0,5 I_{\rm rrm}$ (see Figure 18).

$$-\frac{\mathrm{d}i_{\mathsf{F}}}{\mathrm{d}t} = \frac{I_{\mathsf{rrm}}}{\Delta t}$$

The recovered charge is measured as:

$$Q_{\mathsf{r}} = \int_{t_0}^{t_0 + t_{\mathsf{i}}} i \cdot \mathsf{d}t$$

where

 t_0 is the instant when the current passes through zero;

 t_i is the specified integration time, preferably when the current has reached 2% of I_{rrm} .

The reverse recovery time t_{rr} is measured as the time interval between t_0 and the instant when, for decreasing values of i_{rr} , a line through the points for 0,9 I_{rrm} and 0,25 I_{rrm} crosses the zero current axis.

The reverse recovery energy E_{rr} is the result of the integration of the product from device voltage and current during the integration time t_{j} .

$$E_{\rm rr} = \int_{t_0}^{t_0+t_{\rm i}} v_{\rm AK} \cdot i_{\rm rr} \cdot {\rm d}t$$

The softness factor is the absolute value of the ratio of the rate of rise of the reverse recovery current when passing through zero to the maximum rate of fall of the recovery current.

$$S_{\rm rr} = \frac{(di_{\rm rrr}/dt)_{i=0}}{(di_{\rm rrf}/dt)_{\rm max}}$$

Specified conditions

- a) ambient or case temperature;
- b) forward current I_F (before triggering T_2);
- c) reverse voltage V_{R} ;
- d) pulse duration of forward current $t_{\rm p}$;
- e) rate of change of forward current $-di_F/dt$ (see note);
- f) integration time t_i ;

NOTE The rate of change $d_i F/dt$ can be varied between a few ten A/µs and several kA/µs. Therefore this is the preferred method for fast-switching rectifier diodes.

- 30 -

6.1.7 Forward recovery time $(t_{\rm fr})$ and peak forward recovery voltage $(V_{\rm frm})$

Purpose

To measure the forward recovery time and the peak forward recovery voltage of a rectifier diode.

Circuit diagram and test waveform

See Figure 19, Figure 20 and Figure 21.

Figure 19 – Circuit diagram for forward recovery time measurement

Figure 20 – Current waveform forward recovery time measurement

Figure 21 – Voltage waveform forward recovery time measurement

Circuit description and requirements

- D = diode being measured
- G = current-pulse generator having a compliance voltage (open-circuit output voltage) 50 V minimum or three times V_{frm}, whichever is greater
- R = non-inductive calibrated resistor
- S = electronic switch, which is closed except for a period starting just before the current pulse and throughout its duration

 M_A and M_B = oscilloscopes or other monitoring instruments

The pulse duration shall be long enough for the forward voltage to have reached the stable value $V_{\rm F}$.

The pulse duration and the duty cycle of the current pulse generator should be such that negligible internal heating of the diode occurs.

Measurement procedure

The temperature is set to the specified value.

While monitoring the current waveform on M_A , the current-pulse source is adjusted to the specified conditions of rise time t_r and forward current I_F .

The reverse voltage V_{R} is adjusted to the specified value, and switch S is appropriately set.

The peak forward recovery voltage V_{frm} and the forward recovery time t_{fr} are measured on the waveform of voltage across the diode on M_B in accordance with the specified specification method.

Specified conditions

- a) virtual junction temperature (T_{vi}) ;
- b) continuous (direct) forward current (I_F) ;
- c) rise time of current pulse (t_r) (between 10 % and 90 % of I_F , unless otherwise stated);

d) specification method I: voltages defining beginning and end of the forward recovery time, if different from 10 % and 110 %, respectively, of $V_{\rm F}$;

- 32 -

- e) specification method II: voltage of points A and B in per cent of $V_{\rm frm}$;
- f) reverse voltage (V_R).

6.1.8 Total capacitive charge $(Q_{\rm C})$

Purpose

To measure the small-signal short-circuit junction capacitance, under specified conditions. This is used for calculating the total capacitive charge.

Circuit diagram

See Figure 22.

Figure 22 – Circuit diagram for total capacitive charge measurement

Circuit description and requirements

- C_1 = capacitor blocking the d.c. voltage from the measurement bridge
- C_2 = capacitor to minimize the influence of the voltage source
- D = diode being measured
- L = inductor blocking the high frequency measurement signal from the d.c. source
- G = DC voltage source

A capacitance bridge is used, thus making it possible to apply a null method. C_1 should be much larger than the junction capacitances C_j . The impedance of L should be sufficiently high, so that it is possible to compensate it by the bridge adjustments. The d.c. resistance should be low compared to the output resistance of the device.

Measurement procedure

With no device in the measurement socket, the zero adjustment of the capacitance bridge is made. The device to be measured is then inserted into the measurement socket. The voltage source G is adjusted to a specified reverse voltage. The bridge is rebalanced; the difference of the capacitance readings of this adjustment and that with no device in the measurement socket yields the current value of C_j . This measurement is performed in small increment steps for reverse voltage starting at 0 until the specified voltage V_{end} for this test is reached. The resulting curve of the capacitance as a function of the cathode-anode voltage is integrated over the cathode-anode voltage. The total capacitive charge calculates with:

$$Q_{\rm C} = \int_{0}^{V_{\rm end}} C(V) {\rm d}V$$

Specified conditions

- a) maximum of reverse voltage used in the measurement;
- b) frequency of measurement;
- c) junction or case or heatsink temperature.

6.2 Measuring methods for thermal characteristics

6.2.1 General

The measurement of thermal resistance and transient thermal impedance is based on the use of a temperature-sensitive parameter of the semiconductor as an indicator of virtual junction temperature. The forward voltage of a rectifier diode, at a small percentage of rated current, is normally used as the temperature-sensitive parameter.

6.2.2 Thermal resistance $(R_{th(i-r)})$ and transient thermal impedance $(Z_{th(i-r)}(t))$

Purpose

To measure the thermal resistance and/or the transient thermal impedance between the junction and another specified reference point of a rectifier diode. The thermal resistance is the end point of the thermal impedance characteristic after thermal equilibrium has been reached. The reference point temperature might be at the case for $R_{th(j-c)}$, $Z_{th(j-c)}$, at the heatsink for $R_{th(j-s)}$, $Z_{th(j-s)}$ or the ambient temperature for $R_{th(j-a)}$, $Z_{th(j-a)}$ or at any other specified reference point. The same measurement method is used, with the second temperature measured at the heatsink, ambient or reference point instead of the case as described below in example.

Circuit diagram

See Figure 23

Figure 23 – Circuit diagram for thermal impedance measurement

Circuit description and requirements

- I_1 = load current generating the power dissipation *P* in the junction
- I_2 = reference d.c. current
- D = diode being measured
- S = switch to interrupt the load current I_1
- G_1 = d.c. source to provide the load current

- G_2 = d.c. source to provide reference current
- W = wattmeter to indicate the power dissipation P in the junction caused by the load current I_1
- Re = recording equipment, for example an oscilloscope or data logger to record the time variation of the forward voltage caused by I_2

Measurement procedure

The measurement is made in two steps:

a) determination of the temperature coefficient of the forward voltage at the low measuring current

The diode being measured is heated subsequently to the temperatures T_1 and T_2 by immersing it in a heated chamber or inert fluid. Thermal equilibrium shall be achieved before measurements are taken. At temperature T_1 the forward voltage at the measuring current I_2 is V_{F1} . At a higher temperature T_2 it is V_{F2} (see Figure 24). Then the temperature coefficient ε of the calibration curve is:

Figure 24 – Calibration curve showing a typical variation of the forward voltage V_F at a low measuring current I_2 with the case temperature T_c (when heated from outside, i.e. $T_c = T_{vi}$)

b) measurement of the response of the diode to a step change in the internal power dissipation

The diode being measured is clamped on a heatsink maintained at a fixed temperature. A thermocouple is fixed at a specified case point to measure the case temperature $T_c(t)$ or at another specified reference point temperature to measure $T_r(t)$. The heating current I_1 is applied generating the power dissipation P in the diode being measured until thermal equilibrium is established. The power dissipated in the diode is recorded.

The heating current I_1 is interrupted by opening the switch S. The switch S has to switch off the current much faster than the carrier storage time of the diode being measured. A delay time is necessary before measuring the forward voltage across the diode after opening S due to carrier storage effects. The necessary delay time lasts between several 100μ s for fastswitching rectifier diodes up to 1ms for line rectifier diodes. The forward voltage at the reference current I_2 and the case temperature are measured at the same time. The virtual
junction temperature is then calculated by means of the calibration curve obtained for the same reference current.

$$R_{\text{th(j-c)}} = \frac{T_{\text{vj}} - T_{\text{c}}}{P}$$

The forward voltage and the reference temperature are recorded as a function of the cooling time for the thermal impedance measurement by the recording equipment Re.

The curve of the recorded forward voltage is converted to the virtual junction temperature T_{vj} by means of the calibration curve. The transient thermal impedance $Z_{th(j-c)}(t)$ is calculated using the expression:

$$Z_{\text{th(j-c)}}(t) = \frac{\left| T_{\text{vj}}(0) - T_{\text{c}}(0) \right| - \left| T_{\text{vj}}(t) - T_{\text{c}}(t) \right|}{P}$$

where

 $T_{vi}(0), T_{c}(0)$ are the temperatures at the time t = 0 when opening S;

 $T_{vi}(t), T_{c}(t)$ are the temperatures at the time t.

6.3 Verification test methods for ratings (limiting values)

6.3.1 Surge (non-repetitive) forward current (I_{FSM})

Purpose

To verify the surge (non-repetitive) forward current rating of a rectifier diode, under specified conditions.

Circuit diagram

See Figure 25.

Figure 25 – Circuit diagram for surge forward current measurement

Circuit description and requirements

A = peak reading instrument (e.g. ammeter or oscilloscope)

 D_1 = diode under test

- D_2 = diode to block the forward voltage supplied by transformer T_2
- R_1 = surge current setting resistor
- R_2 = protective resistor which should be as small as practicable
- S = electromechanical or electronic switch with a conduction angle of approximately 180° during the forward (surge) half-cycle
- T₁ = high-current low-voltage transformer supplying through S the forward (surge) halfcycle. The current wave shape should be essentially a half-sine wave of approximately 10 ms (or 8,3 ms) duration, with a repetition rate of approximately 50 (or 60) pulses per second (see Note below)
- T_2 = low-current high-voltage transformer supplying the reverse half-cycle through diode D₂; if fed from a separate source, its phase shall be the same as that feeding T₁. The voltage shape should be essentially a half-sine wave
- V = peak reading instrument (e.g. voltmeter or oscilloscope)

If desirable, either a diode D_3 in series with a switch S_1 or a resistor R_3 in series with a switch S_1 can be inserted between points X and Y. These circuits are not mandatory. D_3 is a current balancing diode having approximately the same forward resistance as the diode under test. If a resistor R_3 is used, it should have the same resistance as the forward resistance of the diode under test. S_1 is an electromechanical or electronic switch with a conduction angle of approximately 180°, during the reverse half-cycle of transformer T_1 .

NOTE As an alternative to T_1 and R_1 a transformer with variable number of secondary coils can be used to adjust the surge current value.

Test procedure

The voltage and current sources are set to zero. The diode under test is inserted into the test socket in accordance with its polarity marking. The temperature conditions are set to the specified values.

The peak reverse voltage, measured on peak-reading instrument V, is adjusted to the specified value.

The surge forward current, measured on peak-reading instrument A, is set to the specified value by adjustment of R_1 .

The surge forward current is applied as many times as specified to the diode under test.

Proof of the ability of the rectifier diode to withstand the surge forward current rating is obtained from the post-test measurements.

Specified conditions

The values of the following conditions should be stated:

- a) peak reverse voltage;
- b) surge (non-repetitive) forward current;
- c) maximum impedance of the reverse voltage source;
- d) number of cycles per surge, number of surges and repetition rate;
- e) ambient, case or reference-point temperature;
- f) post-test measurement limits.

6.3.2 Non-repetitive peak reverse voltage (V_{RSM})

Purpose

To verify the non-repetitive peak reverse voltage rating of a rectifier diode.

Circuit diagram

See Figure 26.

IEC

Figure 26 – Circuit diagram for peak reverse voltage measurement

Circuit description and requirements

- D_1 = diode under test
- D₂ = diode to provide negative half-cycles, so that only the reverse characteristic of the diode under test is measured
- G = alternating voltage source
- S = electromechanical or electronic switch (with a conduction angle of approximately 180°) which applies the source voltage to the rectifier diode under test for one half-cycle in the reverse direction
- V = peak reading instrument

Test procedure

With bias conditions set to zero, the diode under test is inserted into the test socket.

Switch S is opened and the a.c. source voltage is increased to the specified value of non-repetitive peak reverse voltage.

The specified temperature conditions are checked.

The specified non-repetitive peak reverse voltage is applied by closing switch S for approximately 180°.

Proof of the ability of the diode under test to withstand the non-repetitive peak reverse voltage rating is obtained from the post-test measurements.

Specified conditions

The values of the following conditions should be stated:

- a) non-repetitive peak reverse voltage;
- b) ambient, case or reference-point temperature;

- c) duration of the half-cycle pulse;
- d) post-test measurement limits.

6.3.3 Peak reverse power (repetitive or non-repetitive) (P_{RRM} , P_{RSM}) of avalanche rectifier diodes

- 38 -

Purpose

To verify the peak reverse power rating of avalanche and controlled-avalanche rectifier diodes under specified conditions.

The following three test methods are described:

- A with a triangular waveform pulse.
- B with a sinusoidal waveform pulse.
- C with a rectangular waveform pulse.

Circuit diagram

See Figure 27.

Figure 27 – Circuit to verify peak reverse power of avalanche rectifier diodes

Circuit description and requirements

- G₁ = adjustable pulse generator with a voltage waveform in accordance with the test method
- D_1 = diode under test
- D_2 = rectifier diode
- R_1 = non-inductive current sensing resistor
- R_2 = variable non-inductive resistor for adjusting the peak open-circuit reverse voltage
- M₁ = instrument (e.g. oscilloscope) for measuring the peak open-circuit reverse voltage
- M_2 = equipment (e.g. oscilloscope) for measuring the reverse current pulse duration

 M_1 and M_2 may be combined (e.g. dual-channel oscilloscope)

The reverse current pulse of the triangular waveform according to Method A should be as shown in Figure 28.

- 39 -

Figure 28 – Triangular reverse current waveform

The reverse current pulse of the sinusoidal waveform according to Method B should be as shown in Figure 29.

 $t_{\rm w}$ = specified pulse duration

Figure 29 – Sinusoidal reverse current waveform

The reverse current pulse of the rectangular waveform according to Method C should be as shown in Figure 30.

- 40 -

 $t_{\rm r} \le 20 \% t_{\rm w}$

 $t_{\rm rf} \le 20 \% t_{\rm w}$

Figure 30 – Rectangular reverse current waveform

Measurement procedure

The value of R_2 (including the impedance of the voltage source G_1) is determined from the expression:

$$\mathsf{R}_{2} = \frac{V_{(\mathsf{BR})}\mathsf{max} \cdot V_{(\mathsf{BR})}\mathsf{min}}{P_{\mathsf{RXM}}}$$

where

 $V_{(BR)}$ max = upper spread limit for $V_{(BR)}$

 $V_{(BR)}$ min = lower spread limit for $V_{(BR)}$

$$P_{\text{RXM}} = \begin{cases} P_{\text{RSM}} \text{ for verification of } P_{\text{RSM}} \\ P_{\text{RRM}} \text{ for verification of } P_{\text{RRM}} \end{cases}$$

With no diode in the socket, the voltage pulse from voltage source G_1 is increased until the peak value of the open-circuit reverse voltage, measured at M_1 , is equal to $(V_{(BR)}max + V_{(BR)}min)$. This ensures that the applied power for any reverse voltage in the range between $V_{(BR)}$ min and $V_{(BR)}max$ is higher or at least equal to the rated value P_{RSM} or P_{RRM} , respectively. See Figure 31 for P_{RSM} .

The pulse generator is then switched off, but the setting is maintained.

- 41 -

Figure 31 – Verification of P_{RSM} reverse power versus breakdown

Insert the diode under test into the test socket in accordance with its polarity marking.

Set the temperature to the specified value.

Apply the specified sequence of pulses.

Proof of the ability of the diode to withstand the peak reverse power rating is obtained from the post-test measurements.

Specified conditions

- a) test method to be used (A, B or C);
- b) ambient or case temperature $(T_a \text{ or } T_c)$;
- c) peak reverse power rating, repetitive (P_{RRM}) or non-repetitive (P_{RSM}) ;
- d) for verification of P_{RSM} : duration of the reverse current pulse (t_w) ;
- e) for verification of P_{RRM} :
 - duration of each pulse (t_w) ,
 - duty factor (δ),
 - number of pulses;
- f) post-test measurement limits;
- g) for Method A only: minimum rate of rise of reverse current (d_{i_r}/d_t) .

6.3.4 Peak case non-rupture current (I_{RSCM})

Purpose

To verify the peak case non-rupture current rating of a rectifier diode under specified conditions.

Circuit diagram and test current waveform

See Figure 32 and Figure 33.

Figure 32 – Circuit diagram for case non-rupture current measurement

Figure 33 – Waveform of the reverse current i_{R} through the diode under test

Circuit description and requirements

- G = a.c. system having appropriate short-circuit capacity
- S₁, S₂ = electromechanical or electronic high-power switches that can be operated at defined instants of the line voltage cycle
- F = optional fuse in place of S_2 (see test procedure)
- L = variable inductor
- Tr = high-power transformer
- R_M = calibrated non-inductive current sensing resistor
- D = diode under test

Preconditioning and initial measurements

Prior to the test, the diode under test should be initially damaged, for example, with a lowenergy high-voltage pulse or mechanically, so that the breakdown always occurs at the edge of the silicon chip.

If required, mechanical damage shall be carried out before the diode is encapsulated. The diode under test is subjected to an initial leak test and the leak rate should be lower than 10^{-7} Pa \cdot m³ s⁻¹ (10^{-6} bar cm³ s⁻¹).

Test procedure

The diode under test is inserted in the test apparatus.

The switch S_1 is closed at an instant t_1 such that a voltage is applied to the diode under test in the reverse direction causing a breakdown at the previously damaged spot. As a result, the reverse current rises steeply with a rate of rise that may be adjusted (within reasonable limits) by varying the inductance L.

At the instant t_2 , the switch S₂ is closed so that the peak current is limited to the specified value I_{RSMC} .

Alternatively, fuse F may be placed in the circuit and the current through the diode under test will be interrupted when the fuse operates.

Specified conditions

- a) case or reference-point temperature;
- b) value I_{RSMC} of the peak case non-rupture current;
- c) rate of rise of the reverse current, preferably 25 A/ μ s;
- d) pulse duration of the test current.

Post-test measurements

The diode under test is subjected to leak test and the leak rate should be lower than 10^{-7} Pa \cdot m³ s⁻¹ (10⁻⁶ bar cm³ s⁻¹).

Alternatively, a plasma detecting device may be used during the electrical test to make sure that no plasma escapes during the test even if a small crack develops.

Following the electrical test, the device is visually inspected. There should be no sign of particles thrown off nor shall there be evidence that the device has externally melted or burst into flames.

7 Requirements for type tests, routine tests and endurance tests; marking of rectifier diodes

7.1 Type tests

Type tests are carried out on new or changed products on a sample basis, in order to determine the electrical and thermal ratings (limiting values) and characteristics to be given in the data sheet, and to establish the test limits for future routine tests.

The minimum type tests to be carried out on rectifier diodes are listed in Table 1.

Some of the type tests are destructive.

7.2 Routine tests

The routine tests are carried out on the current production or deliveries normally on a 100 % basis, in order to verify that characteristics specified in the data sheet are met by each specimen.

Routine tests may comprise a selection of the devices into groups.

The minimum routine tests to be carried out on a rectifier diode are listed in Table 1.

7.3 Measuring and test methods

The measuring and test methods given in Clause 6 shall be applied.

For the endurance tests, the methods given in 7.5 shall be applied.

Table 1 – Minimum type and routine tests for rectifier diodes

	Type test	Routine test	
Measurements of characteristics			
Forward voltage	х	х	
Additional forward characteristics	х		
Reverse current	х	х	
Additional reverse characteristics	х		
Recovered charge, peak reverse recovery current	X ^a	Xp	
Thermal resistance and transient thermal impedance	х		
Verification of ratings			
Surge forward current	х		
Peak case non-rupture current	X ^a		
Endurance test			
High-temperature a.c. reverse bias test	х		
Thermal cycling load test	х		
^a Type test only for devices with specified maximum values.			
^b Routine test only for devices with specified maximum or minimum values.			

7.4 Marking of rectifier diodes

Each rectifier diode shall be clearly and indelibly marked with the following information:

- manufacturer's name or identification;
- manufacturer's or supplier's type;
- marking to permit the distinction between anode and cathode terminals;
- date code (where appropriate).

7.5 Endurance test

7.5.1 List of endurance tests

For rectifier diodes, a choice of endurance tests is given in the IEC 60749 series. According to Table 1 the high temperature reverse bias test (IEC 60749-23) and the power cycling test (IEC 60749-34) are mandatory.

7.5.2 Conditions for endurance tests

Test conditions and test circuits are listed in IEC 60749-23 and IEC 60749-34. The relevant specification shall state which test(s) will apply.

7.5.3 Acceptance-defining characteristics and acceptance criteria for endurance tests

Acceptance-defining characteristics, their acceptance criteria and measurement conditions are listed in Table 2.

- 45 -

Acceptance-defining characteristics	Acceptance criteria ^a	Measurement conditions
I _R	< 2 × USL	Highest $V_{\rm R}$ (= $V_{\rm RRM}$) and highest temperature specified for $I_{\rm R}$
V _F	< 1,1 × USL	Highest $I_{\rm F}$ specified for $V_{\rm F}$
^a USL = Upper specifica	ation limit.	

7.5.4 Acceptance-defining characteristics and acceptance criteria for reliability tests

For failure criteria see IEC 60749-23 and IEC60747-34.

SOMMAIRE

A١	/ANT-P	ROP	OS	49
1	Dom	aine	d'application	51
2	Réfé	renc	es normatives	51
3	Term	ies e	t définitions	51
	3.1	Teri	nes et définitions généraux	51
	3.2	Ten	sions	52
	3.3	Cou	rants	53
	3.4	Diss	sipation de puissance	54
	3.5	Car	actéristiques de commutation	55
4	Syml	boles	littéraux	58
	4.1	Gér	éralités	58
	4.2	List	e des symboles littéraux	58
	4.2.1		Tensions	58
	4.2.2	2	Courants	58
	4.2.3	3	Puissances	59
	4.2.4	ŀ	Commutation	59
5	Vale	urs a	ssignées et caractéristiques essentielles	60
	5.1	Gér	iéralités	60
	5.2	Vale	eurs assignées (conditions limites)	60
	5.2.1		Température de stockage (<i>T</i> stg)	60
	5.2.2	2	Température ambiante de fonctionnement, température du dissipateur	
			thermique, temperature du boitier ou temperature de jonction (T_a , T_s ,	60
	523	3	Tension inverse de pointe non répétitive (V_{DOM})	60
	5.2.4	ļ	Tension inverse de pointe répétitive (VRSM)	60
	5.2.5	5	Tension inverse continue (Vp) (le cas échéant)	60
	5.2.6	6	Courant direct moven $(I_{F(A)})$	60
	5.2.7	,	Courant direct moven $(I_{F(R,M,S)})$	60
	5.2.8	3	Courant direct de pointe répétitif (<i>I</i> _{FRM}) (le cas échéant)	60
	5.2.9)	Courant direct de surcharge accidentelle non répétitif (<i>I</i> _{ESM})	60
	5.2.1	0	Courant direct continu (<i>I</i> _F)	61
	5.2.1	1	Courant de pointe pour non-rupture du boîtier (I _{RSMC}) (le cas échéant)	61
	5.2.1	2	Dissipation de puissance inverse de pointe non répétitive (PRSM) (pour	
			les diodes de redressement à avalanche)	61
	5.2.1	3	Dissipation de puissance inverse de pointe répétitive (<i>P</i> _{RRM}) (pour les diodes de redressement à avalanche)	61
	5.2.1	4	Dissipation de puissance inverse movenne $(P \square (A)/I)$ (pour les diodes	
			de redressement à avalanche)	61
	5.2.1	5	Couple au montage (M) (le cas échéant)	61
	5.2.1	6	Force de serrage (F) pour les diodes de type à disques (le cas échéant)	61
	5.3	Car	actéristiques	62
	5.3.1		Généralités	62
	5.3.2	2	Tension directe (V _F)	62
	5.3.3	3	Tension directe de pointe (V _{FM}) (le cas échéant)	62
	5.3.4	ŀ	Tension de claquage ($V_{(BR)}$) (d'une diode de redressement à	~~~
	F 0 7	-	avalanche)	62
	5.3.5)	Courant inverse continu (¹ R(D))	62

5.3.6	Courant inverse de pointe répétitif (<i>I</i> _{RRM}) (le cas échéant)	62
5.3.7	Charge récupérée (Q_{r}) (le cas échéant)	62
5.3.8	Charge capacitive totale ($\mathcal{Q}_{f C}$) (le cas échéant)	63
5.3.9	Courant de recouvrement inverse de pointe (<i>I</i> _{rrm}) (le cas échéant)	63
5.3.10	Temps de recouvrement inverse (<i>t</i> _{rr}) (le cas échéant)	63
5.3.11	Energie de recouvrement inverse (<i>E</i> rr) (le cas échéant)	63
5.3.12	Temps de recouvrement direct (<i>t</i> fr) (le cas échéant)	63
5.3.13	Tension de pointe de recouvrement direct (V _{FRM}) (le cas échéant)	63
5.3.14	Facteur de douceur de recouvrement inverse (S _{rr}) (le cas échéant)	63
5.3.15	Résistance thermique (<i>R</i> _{th})	63
5.3.16	Impédance thermique transitoire (<i>Z</i> th(<i>t</i>)) (le cas échéant)	64
6 Méthoo	les de mesure et d'essai	64
6.1 N	léthodes de mesure des caractéristiques électriques	64
6.1.1	Généralités	64
6.1.2	Tension directe (<i>V</i> _F , <i>V</i> _{FM})	64
6.1.3	Tension de claquage ($V_{(BR)}$) des diodes de redressement à avalanche	67
6.1.4	Courant inverse (I _R)	68
6.1.5	Courant inverse de pointe répétitif (<i>I</i> _{RRM})	69
6.1.6	Charge récupérée, temps de recouvrement inverse, énergie de recouvrement inverse et facteur de douceur (<i>Q</i> r, <i>t</i> rr, <i>E</i> rr, <i>S</i> rr)	70
6.1.7	Temps de recouvrement direct (<i>t</i> fr) et tension de recouvrement direct de pointe (<i>V</i> frm)	75
6.1.8	Charge capacitive totale ($Q_{\rm C}$)	77
6.2 N	léthodes de mesure des caractéristiques thermiques	78
6.2.1	Généralités	78
6.2.2	Résistance thermique $(R_{th(j-r)})$ et impédance thermique transitoire $(Z_{th(i-r)}(t))$	78
6.3 N	léthodes d'essai pour la vérification des valeurs assignées (valeurs limites)	80
6.3.1	Courant direct (non répétitif) de surcharge accidentelle (I _{FSM})	80
6.3.2	Tension inverse de pointe non répétitive (V _{RSM})	82
6.3.3	Puissance inverse de pointe (répétitive ou non répétitive) (<i>P</i> _{RRM} , <i>P</i> _{RSM}) des diodes de redressement à avalanche	83
6.3.4	Courant de pointe pour non-rupture du boîtier (/pscM)	87
7 Exigen d'endu	ces pour les essais de type, essais individuels de série et essais rance: marguage des diodes de redressement	89
71 F	ssais de type	89
7.1 E	esais individuals de série	80
7.2 L	láthodes de mesure et d'essai	۵۵
7.5 N	larquade des diodes de redressement	00
7.4 1	ssai d'andurance	۵۵ ۵۱
7.5 1	Liste des assais d'andurance	90
7.5.1	Conditions nour les essais d'endurance	
7.5.2	Conditions pour les essais à endurance	
7.5.5	les essais d'endurance	91
7.5.4	Caractéristiques définissant la réception et critères de réception pour les essais de fiabilité	91
Figure 1 – F	Forme d'onde de la tension pendant le recouvrement direct (méthode I)	55
Figure 2 – F	Forme d'onde de la tension pendant le recouvrement direct (méthode II)	55
Figure 3 – F	Forme d'onde du courant pendant le recouvrement inverse	56

Figure 4 – Coupure du courant de la diode, tension, courant et charge récupérée de la diode	57
Figure 5 – Valeurs assignées de tension inverse	58
Figure 6 – Valeurs assignées de courant direct	59
Figure 7 – Charge récupérée Q_r , courant de recouvrement inverse de pointe I_{rrm} , temps de recouvrement inverse t_{rr} (caractéristiques idéales)	62
Figure 8 – Circuit de mesure de la tension directe (méthode en courant continu)	64
Figure 9 – Circuit de mesure de la tension directe (méthode de l'oscilloscope)	65
Figure 10 – Représentation graphique de la tension à l'état passant en fonction de la caractéristique du courant	66
Figure 11 – Circuit de mesure de la tension directe (méthode à impulsions)	66
Figure 12 – Circuit de mesure de la tension de claquage	67
Figure 13 – Circuit de mesure du courant inverse	68
Figure 14 – Circuit de mesure du courant inverse de pointe	69
Figure 15 – Circuit de mesure de la charge récupérée, méthode en demi-onde sinusoïdale	70
Figure 16 – Forme d'onde du courant traversant la diode D pendant la mesure de la charge récupérée, méthode en demi-onde sinusoïdale	71
Figure 17 – Circuit de mesure de la charge récupérée, méthode en onde rectangulaire	73
Figure 18 – Forme d'onde du courant traversant la diode D pendant la mesure de la charge récupérée, méthode en onde rectangulaire	73
Figure 19 – Circuit de mesure du temps de recouvrement direct	75
Figure 20 – Forme d'onde du courant pendant la mesure du temps de recouvrement direct	75
Figure 21 – Forme d'onde de la tension pendant la mesure du temps de recouvrement direct	76
Figure 22 – Circuit de mesure de la charge capacitive totale	77
Figure 23 – Circuit de mesure de l'impédance thermique	78
Figure 24 – Courbe d'étalonnage présentant une variation typique de la tension directe $V_{\rm F}$ à un courant de mesure faible I_2 avec la température du boîtier $T_{\rm C}$ (chauffé de l'extérieur, c'est-à-dire $T_{\rm C} = T_{\rm vi}$)	79
Figure 25 – Circuit de mesure du courant direct de surcharge accidentelle	81
Figure 26 – Circuit de mesure de la tension inverse de pointe	82
Figure 27 – Circuit de vérification de la puissance inverse de pointe des diodes de redressement à avalanche	84
Figure 28 – Forme d'onde triangulaire du courant inverse	85
Figure 29 – Forme d'onde sinusoïdale du courant inverse	85
Figure 30 – Forme d'onde rectangulaire du courant inverse	86
Figure 31 – Vérification de la puissance inverse P_{RSM} en fonction de la tension de claquage	87
Figure 32 – Circuit de mesure du courant pour non-rupture du boîtier	88
Figure 33 – Forme d'onde du courant inverse i_{R} traversant la diode soumise à essai	88
Tableau 1 – Essais de type et essais individuels de série minimaux pour les diodes de redressement	90
Tableau 2 – Caractéristiques définissant la réception pour réception après les essais d'endurance	91

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

DISPOSITIFS À SEMICONDUCTEURS -

Partie 2: Dispositifs discrets – Diodes de redressement

AVANT-PROPOS

- 1) La Commission Electrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, l'IEC entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- L'attention est attirée sur le fait que certains des éléments de la présente Publication de l'IEC peuvent faire l'objet de droits de brevet. L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 60747-2 a été établie par le sous-comité 47E: Dispositifs discrets à semiconducteurs, du Comité d'études 47 de l'IEC: Dispositifs à semiconducteurs.

Cette troisième édition annule et remplace la deuxième édition parue en 2000. Cette édition constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition précédente:

- a) les diodes à barrière de Schottky et leurs propriétés ont été ajoutées;
- b) les Articles 3, 4, 5 et 7 ont été modifiés en procédant d'une part à des suppressions d'informations ne faisant plus l'objet d'une application ou figurant déjà dans d'autre parties de la série IEC 60747, et d'autre part à des ajouts nécessaires;
- c) l'Article 6 a été déplacé et ajouté à l'Article 7 de la présente troisième édition;

d) certaines parties de l'Article 7 ont été déplacées et ajoutées à l'Article 7 de la présente troisième édition;

- 50 -

e) l'Annexe A a été supprimée.

Cette norme doit être utilisée conjointement avec l'IEC 60747-1:2006 et son Amendement 1: 2010.

Le texte de la présente norme est issu des documents suivants:

FDIS	Rapport de vote
47E/531/FDIS	47E/537/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/IEC, Partie 2.

Une liste de toutes les parties de la série IEC 60747, publiées sous le titre général *Dispositifs* à semiconducteurs, peut être consultée sur le site web de l'IEC.

Les futures normes de cette série porteront dorénavant le nouveau titre général cité ci-dessus. Le titre des normes existant déjà dans cette série sera mis à jour lors de la prochaine édition.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de l'IEC sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.

DISPOSITIFS À SEMICONDUCTEURS -

Partie 2: Dispositifs discrets – Diodes de redressement

1 Domaine d'application

La présente partie de l'IEC 60747 donne les normes pour les catégories et sous-catégories suivantes de diodes de redressement, comprenant:

- diodes de redressement de ligne;
- diodes de redressement à avalanche;
- diodes de redressement à commutation rapide;
- diodes à barrière de Schottky.

2 Références normatives

Les documents suivants sont cités en référence de manière normative, en intégralité ou en partie, dans le présent document et sont indispensables pour son application. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

IEC 60050-521, Vocabulaire Electrotechnique International – Partie 521: Dispositifs à semiconducteurs et circuits intégrés (disponible à l'adresse http://www.electropedia.org)

IEC 60747-1:2006, *Dispositifs à semiconducteurs – Partie 1: Généralités* IEC 60747-1:2006/AMD1:2010

IEC 60749-23, Dispositifs à semiconducteurs – Méthodes d'essais mécaniques et climatiques – Partie 23: Durée de vie en fonctionnement à haute température

IEC 60749-34, Dispositifs à semiconducteurs – Méthodes d'essais mécaniques et climatiques – Partie 34: Cycles en puissance

3 Termes et définitions

Pour les besoins du présent document, les termes et définitions donnés dans l'IEC 60747-1 et l'IEC 60050-521 (à l'exception des définitions 521-05-18, 521-05-25, 521-05-26) ainsi que les suivants s'appliquent.

3.1 Termes et définitions généraux

3.1.1

sens direct

sens de circulation d'un courant continu permanent pour lequel une diode à semiconducteurs présente la plus faible résistance

3.1.2

sens inverse

sens de circulation d'un courant continu permanent pour lequel une diode à semiconducteurs présente la plus forte résistance

3.1.3

borne d'anode

<diode de redressement à semiconducteurs> borne vers laquelle le courant direct circule à partir du circuit extérieur

- 52 -

3.1.4

borne de cathode

<diode de redressement à semiconducteurs> borne à partir de laquelle le courant direct circule vers le circuit extérieur

3.2 Tensions

3.2.1

tension directe

 V_{F}

tension entre les bornes provoquée par la circulation du courant dans le sens direct

3.2.2

tension directe de pointe

tension directe de crête

 $V_{\rm FM}$

tension entre les bornes provoquée par un courant π fois plus élevé que le courant moyen spécifié

3.2.3

tension de recouvrement direct

 $V_{\rm fr}$

tension variable qui se produit pendant le temps de recouvrement direct, après commutation instantanée à partir de zéro ou d'une tension inverse spécifiée jusqu'à un courant direct spécifié

3.2.4

tension inverse

 V_{R}

tension constante appliquée à une diode dans le sens inverse

3.2.5

tension inverse de pointe répétitive

 V_{RRM}

valeur instantanée la plus élevée de la tension inverse incluant toutes les tensions transitoires répétitives, mais excluant toutes les tensions transitoires non répétitives

Note 1 à l'article: Voir la Figure 5.

3.2.6

tension inverse de pointe non répétitive

tension inverse transitoire de pointe

V_{RSM}

valeur instantanée la plus élevée d'une quelconque tension inverse transitoire non répétitive

Note 1 à l'article: La tension répétitive est habituellement une fonction du circuit et accroît la dissipation de puissance du dispositif. Une tension transitoire non répétitive est habituellement due à une cause extérieure et il est admis que son effet a complètement disparu avant que la transitoire suivante n'arrive.

3.2.7 tension de claquage $V_{(BR)}$ tension dans la région où se pr

tension dans la région où se produit le claquage

3.3 Courants

3.3.1

courant direct

 I_{F} courant parcourant la diode dans le sens direct

3.3.2

courant direct moyen

 $I_{F(AV)}$ valeur du courant direct calculée sur la période complète

3.3.3 courant direct efficace

 $I_{\mathsf{F}(\mathsf{R},\mathsf{M},\mathsf{S},\mathsf{)}}$ valeur efficace du courant direct calculée sur un cycle complet de la fréquence de fonctionnement

- 53 -

Note 1 à l'article: S'il n'y a aucun risque d'ambiguïté, I_{F(RMS)} peut être utilisé.

3.3.4

courant direct de pointe

 $I_{\rm FM}$

valeur maximale du courant direct en fonction du temps

3.3.5

courant direct de pointe répétitif

I_{FRM}

valeur de pointe du courant direct incluant tous les courants transitoires répétitifs

Note 1 à l'article: Voir la Figure 6.

3.3.6

courant direct de surcharge accidentelle non répétitif

IESM

impulsion de courant direct de courte durée et de forme d'onde spécifiée, dont l'application provoque ou peut provoquer un dépassement de la valeur assignée maximale de la température de jonction, mais qui par hypothèse ne se produit que rarement et un nombre limité de fois durant la vie du dispositif, et est la conséquence de conditions inhabituelles dans le circuit (par exemple un défaut)

Note 1 à l'article: Voir la Figure 6.

3.3.7

courant inverse

 I_{R}

courant parcourant la diode quand une tension inverse est appliquée

3.3.8

courant de recouvrement inverse

 I_{rr}

partie du courant inverse qui existe pendant le temps de recouvrement inverse jusqu'à l'atteinte de conditions guasi statiques

3.3.9

valeur I^2t

intégrale du carré du courant direct de surcharge accidentelle pendant la durée de la surcharge de courant

3.3.10

courant de pointe pour non-rupture du boîtier

IRSMC

valeur de pointe du courant inverse qu'il convient de ne pas dépasser afin d'éviter l'explosion du boîtier ou l'émission d'un jet de plasma, dans des conditions spécifiées de courant, de forme d'onde et de temps

- 54 -

Note 1 à l'article: Cette définition implique qu'une fine fissure puisse exister dans le boîtier pour un dispositif soumis au courant de pointe pour non-rupture du boîtier, pourvu qu'aucun jet de plasma n'ait été émis. Aucune partie du boîtier ne doit se détacher et le dispositif ne doit ni fondre extérieurement ni s'embraser.

3.4 Dissipation de puissance

3.4.1

dissipation de puissance totale

P_{tot}

somme des dissipations dues au courant dans le sens direct et inverse et pendant la commutation

3.4.2

dissipation de puissance directe

 P_{F}

dissipation de puissance due au passage du courant direct

3.4.3

dissipation de puissance directe moyenne

 $P_{\mathsf{F}(\mathsf{AV})}$

valeur moyenne du produit de la tension directe instantanée et du courant direct instantané calculée sur une période complète

3.4.4

dissipation de puissance inverse

 P_{R}

dissipation de puissance due au passage du courant inverse

3.4.5

dissipation de recouvrement direct

 P_{fr}

puissance dissipée dans la diode lors du passage de la tension inverse au courant direct, lorsque la diode est commutée d'une tension inverse à un courant direct

3.4.6

dissipation de recouvrement inverse

 $P_{\rm rr}$

puissance dissipée dans la diode lors du passage du courant direct à la tension inverse, lorsque la diode est commutée d'un courant direct à une tension inverse

3.4.7

dissipation de puissance inverse de surcharge accidentelle

 P_{RSM}

 diodes de redressement à avalanche> puissance qui est dissipée dans la diode, résultant de surcharges accidentelles, en fonctionnement dans le sens inverse

3.4.8

dissipation de puissance inverse de pointe répétitive

 P_{RRM}

 <diodes de redressement à avalanche> puissance qui est dissipée dans la diode, résultant de courants de pointe répétitifs, en fonctionnement dans le sens inverse

3.4.9

dissipation de puissance inverse moyenne

$P_{\mathsf{R}(\mathsf{AV})}$

<diodés de redressement à avalanche> puissance qui est dissipée dans la diode, résultant du courant inverse constant ou correspondant à la valeur moyenne d'une fonction périodique, en fonctionnement dans le sens inverse

3.5 Caractéristiques de commutation

3.5.1

temps de recouvrement direct

t_{fr}

intervalle de temps entre l'instant où la tension directe croît en passant par une première valeur spécifiée et celui où elle décroît de sa valeur de pointe $V_{\rm frm}$ à une seconde valeur spécifiée proche de la valeur stable finale de la tension directe (comme indiqué à la Figure 1), ou celui où elle atteint par extrapolation la valeur zéro (comme indiqué à la Figure 2), après application d'un échelon spécifié de courant direct, à partir d'une tension nulle ou d'une autre tension inverse spécifiée

Note 1 à l'article: Méthode I: les première et seconde valeurs spécifiées indiquées dans la définition sont fixées généralement à 10 % et 110 % respectivement de la valeur stable finale ($V_{\rm F}$ dans la Figure 1).

Note 2 à l'article: Méthode II: l'extrapolation est effectuée en traçant une droite passant par deux points A et B spécifiés, comme indiqué à la Figure 2 où les valeurs de A et B sont généralement 90 % et 50 % respectivement, de $V_{\rm frm}$

Note 3 à l'article: La méthode I est préférable pour les valeurs $V_{\rm frm}$ jusqu'à environ 10 V; la méthode II pour des valeurs considérablement supérieures.

- 56 -

[SOURCE: IEC 60050-521:2002, 521-05-25, modifiée — révisée pour se rapporter uniquement à la tension directe, les notes à l'article et les figures ont été ajoutées]

3.5.2

temps de recouvrement inverse

t_{rr}

intervalle de temps compris entre l'instant où le courant passe par la valeur zéro, au cours du passage du sens direct au sens inverse, et l'instant où le courant inverse atteint par extrapolation la valeur zéro (comme indiqué à la Figure 3)

Figure 3 – Forme d'onde du courant pendant le recouvrement inverse

Note 1 à l'article: l'extrapolation est effectuée en traçant une droite passant par deux points A et B spécifiés, comme indiqué à la Figure 3. Le point A est souvent spécifié à 90 % de I_{rrm} , et le point B à 25 % de I_{rrm} .

[SOURCE: IEC 60050-521:2002, 521-05-26, modifiée — révisée pour se rapporter uniquement au courant avec des limites spécifiées de la fonction temps, les notes à l'article et les figures ont été ajoutées]

3.5.3

temps de montée du courant de recouvrement inverse

t_{rrr}

intervalle de temps entre le début du temps de recouvrement inverse et l'instant où le courant de recouvrement inverse atteint sa valeur de pointe, après commutation instantanée d'un courant direct spécifié à une tension inverse spécifiée

3.5.4

temps de descente du courant de recouvrement inverse

t_{rrf}

intervalle de temps entre l'instant où le courant de recouvrement inverse atteint sa valeur de pointe et la fin du temps de recouvrement inverse, après commutation instantanée d'un courant direct spécifié à une tension inverse spécifiée

3.5.5 charge récupérée

Q_r

charge totale récupérée dans la diode pendant un temps d'intégration spécifié après commutation d'un état passant spécifié vers un état bloqué spécifié:

$$Q_{\mathsf{r}} = \int_{t_0}^{t_0 + t_{\mathsf{i}}} i \cdot \mathsf{d}t$$

où

- t₀ est l'instant où le courant passe par zéro;
- t_i est le temps d'intégration spécifié allant de t_0 jusqu'à un instant où i_{rr} chute à 2 % de I_{rrm} (comme indiqué à la Figure 4).

Figure 4 – Coupure du courant de la diode, tension, courant et charge récupérée de la diode

Note 1 à l'article: Cette charge inclut les composantes dues aux porteurs de charge stockés et à la capacité de la couche diélectrique.

[SOURCE: IEC 60050-521:2002, 521-05-18, modifiée — révisée pour se rapporter uniquement aux diodes et au temps d'intégration ajouté, la formule et la figure ont été ajoutées]

3.5.6

charge capacitive

 Q_{C}

<diodes à barrière de Schottky> charge nécessaire pour augmenter la tension cathode-anode de zéro à une valeur spécifiée

3.5.7

énergie de recouvrement inverse

 $E_{\rm rr}$

énergie de commutation provoquée par l'intégration du produit de la tension et du courant du dispositif pendant le temps d'intégration t_i de la charge récupérée

Note 1 à l'article: t_i est indiqué à la Figure 4.

3.5.8

facteur de douceur de recouvrement inverse

 $S_{\rm rr}$

valeur absolue du rapport de la vitesse de montée du courant de recouvrement inverse au passage à zéro et de la vitesse maximale de descente du courant de recouvrement

$$S_{\rm rr} = \frac{(di_{\rm rrr}/dt)_{i=0}}{(di_{\rm rrf}/dt)_{\rm max}}$$

Note 1 à l'article: (d_{rrr}/d_t) et (d_{rrf}/d_t) sont indiqués à la Figure 3.

4 Symboles littéraux

4.1 Généralités

Les règles données dans l'IEC 60747-1:2006, Article 4, s'appliquent.

4.2 Liste des symboles littéraux

4.2.1 Tensions

Nom et désignation	Symbole littéral	Observation
Tension directe	V _F	
Tension directe de pointe	V _{FM}	
Tension inverse	V _R	
Tension inverse de pointe répétitive	V _{RRM}	
Tension inverse de pointe non répétitive	V _{RSM}	
Tension de claquage	$V_{(BR)}$	
Tension de recouvrement direct	V _{fr}	
Valeur de pointe de la tension de recouvrement direct	V _{frm}	
V-		

4.2.2 Courants

Nom et désignation	Symbole littéral	Observation
Courant direct	Ι _F	
Courant direct moyen	I _{F(AV)}	
Courant direct de pointe répétitif	I _{FRM}	
Courant direct efficace	$I_{F(R.M.S.)}$	I _{F(RMS)} peut être utilisé
Courant direct de surcharge accidentelle non répétitif	I _{FSM}	
Courant inverse	I _R	
Courant inverse maximal	I _{RM}	
Courant de recouvrement inverse de pointe	<i>I</i> _{rrm}	
Courant de recouvrement inverse	I _{rr}	
Courant de pointe pour non-rupture du boîtier	I _{RSMC}	

4.2.3 Puissances

Nom et désignation	Symbole littéral	Observation
Dissipation de puissance directe	Р _F	
Dissipation de puissance directe moyenne	P _{F(AV)}	
Dissipation de puissance inverse	₽ _R	
Dissipation de puissance totale	P _{tot}	
Dissipation de puissance inverse de surcharge accidentelle	P _{RSM}	
Dissipation de puissance inverse de pointe répétitive	₽ _{RRM}	
Dissipation de puissance inverse moyenne	P _{R(AV)}	
Dissipation de recouvrement direct	P_{fr}	
Dissipation de recouvrement inverse	P _{rr}	

4.2.4 Commutation

Nom et désignation	Symbole littéral	Observation
Temps de recouvrement direct	t _{fr}	
Temps de recouvrement inverse	t _{rr}	
Temps de montée du courant de recouvrement inverse	t _{rrr}	
Temps de descente du courant de recouvrement inverse	t _{rrf}	
Charge récupérée	Qr	
Charge capacitive	Q _C	
Energie de recouvrement inverse	E_{rr}	
Facteur de douceur de recouvrement inverse	S _{rr}	

5 Valeurs assignées et caractéristiques essentielles

5.1 Généralités

Il est nécessaire que plusieurs des valeurs assignées et des caractéristiques soient indiquées à une température de 25 °C et à une autre température spécifiée.

- 60 -

5.2 Valeurs assignées (conditions limites)

5.2.1 Température de stockage (T_{sta})

Valeurs minimale et maximale.

5.2.2 Température ambiante de fonctionnement, température du dissipateur thermique, température du boîtier ou température de jonction $(T_a, T_s, T_c \text{ ou } T_{vi})$

Valeurs minimale et maximale.

NOTE La température du boîtier est normalement mesurée sur le corps du dispositif. Pour certaines diodes de redressement, la température est spécifiée sur l'une des bornes.

5.2.3 Tension inverse de pointe non répétitive (V_{RSM})

Valeur maximale d'une impulsion de tension inverse en forme de demi-onde sinusoïdale, dont la durée est à spécifier.

5.2.4 Tension inverse de pointe répétitive (V_{RRM}) (le cas échéant)

Valeur maximale des impulsions de tension inverse répétitives en forme de demi-ondes sinusoïdales, dont la durée et la fréquence de répétition sont à spécifier.

5.2.5 Tension inverse continue (*V*_R) (le cas échéant)

Valeur maximale.

5.2.6 Courant direct moyen $(I_{F(AV)})$

Courbe indiquant les valeurs maximales en fonction de la température ambiante ou de la température du boîtier pour un circuit monophasé, simple alternance, avec une charge résistive à une fréquence spécifiée. Des courbes pour d'autres formes d'onde peuvent également être données.

5.2.7 Courant direct moyen $(I_{F(R.M.S.)})$

Valeur maximale pour une température ambiante spécifiée ou une température du dissipateur thermique ou une température du boîtier et pour une température virtuelle de jonction.

5.2.8 Courant direct de pointe répétitif (*I*_{FRM}) (le cas échéant)

Valeur maximale pour une température ambiante spécifiée ou une température du dissipateur thermique ou une température du boîtier et pour une température virtuelle de jonction.

5.2.9 Courant direct de surcharge accidentelle non répétitif (I_{FSM})

Valeur maximale dans des conditions initiales correspondant à la valeur maximale de la température virtuelle de jonction, une durée spécifiée et une tension inverse appliquée ultérieurement. De plus, des chiffres correspondant à des températures virtuelles de jonction initiales plus basses peuvent être donnés.

Il convient d'indiquer les valeurs assignées de courant de surcharge accidentelle pour les durées suivantes.

a) Pour des durées inférieures à une demi-période (à 50 Hz ou 60 Hz), mais supérieures à environ 1 ms, en termes de la valeur assignée maximale de

 $\int i^2 dt$

Ces valeurs assignées peuvent être données par une courbe ou par des valeurs spécifiées. Par hypothèse, il n'y a pas d'application de la tension inverse suivant immédiatement la surcharge accidentelle.

b) Pour des durées égales ou supérieures à une demi-période et inférieures à 15 périodes (à 50 Hz ou 60 Hz) sous forme d'une courbe montrant la valeur assignée maximale du courant de surcharge accidentelle en fonction du temps.

Il convient que ces valeurs assignées soient données de préférence pour une tension inverse égale à 80 % de la valeur maximale de la tension inverse de pointe répétitive. Des valeurs assignées supplémentaires peuvent être données pour la tension inverse. Des valeurs assignées supplémentaires peuvent être données pour des tensions inverses égales à 50 % ou 100 % de la valeur maximale de la tension inverse de pointe répétitive.

c) Pour une durée égale à une période, sans application de la tension inverse.

5.2.10 Courant direct continu (I_F)

Valeur maximale pour une température ambiante spécifiée ou une température du dissipateur thermique ou une température du boîtier et pour une température virtuelle de jonction.

5.2.11 Courant de pointe pour non-rupture du boîtier (*I*_{RSMC}) (le cas échéant)

Valeur maximale pour une durée et une forme d'impulsion spécifiées et pour une température initiale du boîtier spécifiée, de préférence la température maximale.

5.2.12 Dissipation de puissance inverse de pointe non répétitive (P_{RSM}) (pour les diodes de redressement à avalanche)

Valeur maximale pour une forme d'onde (triangulaire, sinusoïdale ou rectangulaire) spécifiée et une durée spécifiée à la valeur maximale de la température virtuelle de jonction.

5.2.13 Dissipation de puissance inverse de pointe répétitive (P_{RRM}) (pour les diodes de redressement à avalanche)

Valeur maximale pour une forme d'onde (triangulaire, sinusoïdale ou rectangulaire) spécifiée, une durée et un facteur d'utilisation spécifiés et pour une température ambiante ou du boîtier spécifiée avec une dissipation directe nulle.

5.2.14 Dissipation de puissance inverse moyenne $(P_{R(AV)})$ (pour les diodes de redressement à avalanche)

Valeur maximale pour une forme d'onde (triangulaire, sinusoïdale ou rectangulaire) spécifiée, une durée et un facteur d'utilisation spécifiés et pour une température ambiante ou du boîtier spécifiée avec une dissipation directe nulle.

5.2.15 Couple au montage (*M*) (le cas échéant)

Valeurs minimale et maximale.

5.2.16 Force de serrage (*F*) pour les diodes de type à disques (le cas échéant)

Les valeurs minimale et maximale ainsi que la rigidité de la surface de montage doivent être spécifiées.

5.3 Caractéristiques

5.3.1 Généralités

Les caractéristiques doivent être données à T_{vj} = 25 °C sauf indication contraire et à une autre température spécifiée.

- 62 -

5.3.2 Tension directe ($V_{\rm F}$)

Valeur maximale pour la valeur assignée du courant direct continu.

5.3.3 Tension directe de pointe (V_{FM}) (le cas échéant)

Valeur maximale pour un courant direct égal à π fois la valeur assignée du courant direct moyen.

NOTE Plutôt que la valeur π , la tension peut aussi être spécifiée à 3 fois la valeur assignée du courant.

5.3.4 Tension de claquage $(V_{(BR)})$ (d'une diode de redressement à avalanche)

Valeur minimale pour un courant spécifié.

5.3.5 Courant inverse continu $(I_{R(D)})$

Valeur maximale pour une tension inverse élevée spécifiée à la valeur maximale de la température virtuelle de jonction.

NOTE I_{R} est utilisée comme synonyme de $I_{R(D)}$.

5.3.6 Courant inverse de pointe répétitif (*I*_{RRM}) (le cas échéant)

Valeur maximale pour la valeur assignée de la tension inverse de pointe répétitive.

5.3.7 Charge récupérée (Q_r) (le cas échéant)

Valeur maximale, ou valeurs maximale et minimale, dans les conditions spécifiées suivantes:

- a) courant direct, de préférence égal à la valeur maximale du courant direct moyen;
- b) vitesse de descente du courant direct $-di_F/dt$;
- c) tension inverse, de préférence égale à 50 % de la valeur assignée maximale de la tension inverse de pointe répétitive;
- d) température de jonction, température du boîtier ou température du dissipateur thermique.

Figure 7 – Charge récupérée Q_r , courant de recouvrement inverse de pointe I_{rrm} , temps de recouvrement inverse t_{rr} (caractéristiques idéales)

5.3.8 Charge capacitive totale $(Q_{\rm C})$ (le cas échéant)

Valeur maximale dans les conditions suivantes:

- a) tension inverse, de préférence égale à 67 % de la valeur assignée maximale de la tension inverse de pointe répétitive;
- b) température de jonction, température du boîtier ou température du dissipateur thermique.

5.3.9 Courant de recouvrement inverse de pointe (*I*_{rrm}) (le cas échéant)

Valeur maximale dans les mêmes conditions que celles spécifiées pour la charge récupérée (voir Figure 7).

5.3.10 Temps de recouvrement inverse (*t*_{rr}) (le cas échéant)

Valeur maximale dans les mêmes conditions que celles spécifiées pour la charge récupérée (voir Figure 7).

5.3.11 Energie de recouvrement inverse (E_{rr}) (le cas échéant)

Valeur typique dans les mêmes conditions que celles spécifiées pour la charge récupérée.

5.3.12 Temps de recouvrement direct (t_{fr}) (le cas échéant)

Valeur maximale dans les conditions spécifiées suivantes:

- a) température de jonction (T_{vi}) ;
- b) courant direct continu (I_F) ;
- c) vitesse de montée d_{i_F}/d_t de l'impulsion de courant direct.

5.3.13 Tension de pointe de recouvrement direct (V_{FRM}) (le cas échéant)

Valeur maximale dans les mêmes conditions que celles spécifiées pour le temps de recouvrement direct.

5.3.14 Facteur de douceur de recouvrement inverse (S_{rr}) (le cas échéant)

Valeur minimale dans les conditions spécifiées suivantes:

- a) courant direct (avant commutation) à une valeur inférieure à 10 % et à une valeur de 200 % de la valeur assignée maximale du courant direct moyen;
- b) vitesse de descente $(-di_F/dt)$ du courant direct;
- c) tension inverse égale à 50 % de la valeur assignée maximale de la tension inverse de pointe répétitive;
- d) réseau d'amortissement résistance-condensateur (RC) ¹, incluant les composants significatifs parasites, le cas échéant;
- e) température de jonction.

La durée d'impulsion du courant direct doit être suffisante pour garantir l'équilibre de la densité des porteurs de charge.

5.3.15 Résistance thermique (R_{th})

Valeur maximale entre jonction et boîtier pour les dispositifs à température du boîtier assignée, ou entre jonction et dissipateur thermique pour les dispositifs à température de

¹ RC = Resistor capacitor

dissipateur thermique assignée, ou entre jonction et température ambiante pour les dispositifs à température ambiante assignée.

- 64 -

5.3.16 Impédance thermique transitoire $(Z_{th}(t))$ (le cas échéant)

Courbe de l'impédance thermique transitoire maximale en fonction du temps, depuis le régime permanent jusqu'à 1 ms ou moins, ou bien relation mathématique.

6 Méthodes de mesure et d'essai

6.1 Méthodes de mesure des caractéristiques électriques

6.1.1 Généralités

Il convient d'éviter les capacités parasites pour les méthodes de mesure en courant alternatif. De plus, il convient tout particulièrement de maintenir l'inductance résiduelle aussi faible que possible, spécialement pour les dispositifs à courant élevé et les méthodes de mesure à impulsions.

Il convient d'effectuer les mesures en courant continu seulement après que l'équilibre thermique a été atteint. Pour des impulsions de courte durée à facteur d'utilisation faible, la température virtuelle de jonction peut être considérée comme égale à la température ambiante ou du boîtier.

6.1.2 Tension directe ($V_{\rm F}$, $V_{\rm FM}$)

6.1.2.1 Méthode en courant continu

But

Mesurer la tension directe $V_{\rm F}$ d'une diode de redressement dans des conditions en courant continu.

Schéma

Voir Figure 8.

Description et exigences du circuit

- D = diode en mesure
- R = résistance de protection
- G = source de courant continu

Mode opératoire de mesure

Les conditions de refroidissement sont ajustées pour obtenir la température (ambiante, du boîtier ou d'un point de référence) spécifiée. Le courant direct spécifié est appliqué à la diode jusqu'à ce que l'équilibre thermique soit atteint. La chute de tension directe V_F aux bornes de la diode est mesurée dans des conditions spécifiées.

Conditions spécifiées

- a) courant direct;
- b) température ambiante, température du boîtier ou température d'un point de référence.

6.1.2.2 Méthode en courant alternatif

But

Mesurer la tension directe V_F d'une diode de redressement dans des conditions en courant alternatif et mesurer la tension directe de pointe V_{FM} à une amplitude de courant égale à π fois la valeur assignée du courant.

Schéma

Voir Figure 9.

Figure 9 – Circuit de mesure de la tension directe (méthode de l'oscilloscope)

Description et exigences du circuit

- D_1 = diode en mesure
- D_2 = diode de serrage pour les demi-ondes négatives
- R₁ = résistance pour la mesure du courant
- R₂ = résistance de protection, valeur faible
- G = générateur de courant alternatif

Mode opératoire de mesure

Un courant de demi-onde sinusoïdale est appliqué à la diode en mesure dans le sens direct jusqu'à ce que l'équilibre thermique soit atteint. La courbe tension-courant est affichée sur un oscilloscope. L'amplitude de la source de courant est établie à la valeur exigée pour la spécification $V_{\rm F}$ ou $V_{\rm FM}$. En raison des capacités du semiconducteur, l'oscilloscope affiche une courbe d'hystérésis. Le point d'établissement est égal à la tension statique à l'état passant (voir Figure 10).

- 66 -

NOTE Une séquence de demi-ondes de courant d'amplitude croissante donne une série de points d'établissement correspondant à la caractéristique statique directe.

Figure 10 – Représentation graphique de la tension à l'état passant en fonction de la caractéristique du courant

Conditions spécifiées

- a) courant direct de pointe;
- b) température ambiante, température du boîtier ou température d'un point de référence.

6.1.2.3 Méthode à impulsions

But

Mesurer la tension directe $V_{\rm F}$ d'une diode de redressement à l'aide de la méthode à impulsions et mesurer la tension directe de pointe $V_{\rm FM}$ à une amplitude de courant égale à π fois la valeur assignée du courant.

Schéma

Voir Figure 11.

Description et exigences du circuit

- D = diode en mesure
- G = générateur d'impulsions
- R_1 = résistance de protection
- R₂ = résistance étalonnée pour la mesure du courant

OSC = oscilloscope ou indicateur de crête

Il convient que la largeur de l'impulsion et la fréquence de répétition du générateur d'impulsions soient telles que l'échauffement interne soit négligeable pendant la mesure.

Les conditions ci-dessus sont, en général, réalisées pour des largeurs d'impulsion de 50 μ s à 500 μ s. Dans tous les cas, l'équilibre des porteurs de charge doit être atteint.

Mode opératoire de mesure

La tension délivrée par le générateur d'impulsions est initialement nulle.

Les conditions de température sont réglées à la valeur spécifiée.

Le courant direct est ensuite réglé à la valeur spécifiée en augmentant la tension du générateur d'impulsions; la tension directe est alors mesurée sur l'oscilloscope.

Des indicateurs de crête peuvent être utilisés au lieu de l'oscilloscope, mais ils doivent être des instruments qui permettent de mesurer la tension directe de pointe lorsque le courant direct a atteint sa valeur de pointe.

Conditions spécifiées

Il convient d'indiquer les valeurs des conditions suivantes:

- a) courant direct de pointe;
- b) température ambiante, température du boîtier ou température d'un point de référence.

6.1.3 Tension de claquage ($V_{(BR)}$) des diodes de redressement à avalanche

But

Mesurer la tension de claquage d'une diode de redressement à avalanche par une méthode à impulsions dans des conditions spécifiées.

Schéma

Voir Figure 12.

Figure 12 – Circuit de mesure de la tension de claquage

Description et exigences du circuit

- D = diode en mesure
- R = résistance étalonnée non inductive
- G = source de courant continu

Il convient que la longueur d'impulsion et le facteur d'utilisation du générateur à courant constant soient choisis de telle façon qu'il ne se produise qu'un échauffement interne négligeable de la diode.

Mode opératoire de mesure

La température est réglée à la valeur spécifiée.

Le débit du générateur est augmenté pour obtenir la valeur spécifiée du courant inverse.

La tension de claquage est lue sur l'indicateur de crête.

Conditions spécifiées

- a) température ambiante, température du boîtier, température d'un point de référence ou température virtuelle de jonction (T_a , T_c , T_{ref} , T_{vi});
- b) courant inverse (I_R) .

6.1.4 Courant inverse (*I*_R)

But

Mesurer le courant inverse dans des conditions en courant continu.

Schéma

Voir Figure 13.

Description et exigences du circuit

- D = diode en mesure
- R = résistance de protection
- G = source de courant continu

Mode opératoire de mesure

Les conditions de refroidissement sont ajustées pour obtenir la température (ambiante, du boîtier ou d'un point de référence) spécifiée.

La tension inverse spécifiée est appliquée par une résistance de protection et le courant inverse est mesuré dans les conditions spécifiées.

Conditions spécifiées

- a) température ambiante, température du boîtier, température d'un point de référence ou température virtuelle de jonction (T_a , T_c , T_{ref} , T_{vj});
- b) tension inverse (V_R).

6.1.5 Courant inverse de pointe répétitif (I_{RRM})

But

Mesurer le courant inverse de pointe d'une diode de redressement à la tension inverse de pointe répétitive.

Schéma

Voir Figure 14.

Description et exigences du circuit

D1= diode en mesureD2 et D3= diodes fournissant des demi-périodes négatives de sorte que seule la
caractéristique inverse de la diode de redressement est mesuréeG= source de tension alternativeR1= résistance de protectionR2= résistance étalonnée pour la mesure du courant

Mode opératoire de mesure

La température de la diode est réglée à la valeur spécifiée.

La tension inverse aux bornes de la diode de redressement, mesurée sur l'oscilloscope, est ajustée à l'aide de la source de tension alternative à la valeur spécifiée de la tension inverse de pointe répétitive. Le courant inverse qui traverse la diode de redressement est mesuré sur l'oscilloscope raccordé aux bornes de R_2 .

- 70 -

Des indicateurs de crête peuvent être utilisés au lieu de l'oscilloscope pour mesurer le courant inverse de pointe, mais ils doivent être des instruments qui permettent de mesurer le courant inverse de pointe lorsque la tension inverse a atteint sa valeur de pointe.

Conditions spécifiées

Il convient d'indiquer les valeurs des conditions suivantes:

- a) tension inverse, en cas de courant inverse de pointe égal à la tension inverse répétitive;
- b) température ambiante, température du boîtier, température d'un point de référence ou température virtuelle de jonction.
- 6.1.6 Charge récupérée, temps de recouvrement inverse, énergie de recouvrement inverse et facteur de douceur (Q_r , t_{rr} , E_{rr} , S_{rr})

6.1.6.1 Méthode en demi-onde sinusoïdale

But

Mesurer la charge récupérée Q_r , le temps de recouvrement inverse t_{rr} et le facteur de douceur S_{rr} d'une diode de redressement à faible rapport di/dt dans des conditions spécifiées.

Schéma et forme d'onde

Voir Figure 15 et Figure 16.

Figure 15 – Circuit de mesure de la charge récupérée, méthode en demi-onde sinusoïdale

Figure 16 – Forme d'onde du courant traversant la diode D pendant la mesure de la charge récupérée, méthode en demi-onde sinusoïdale

Description et exigences du circuit

 C_1 = condensateur qui fournit le courant direct (voir également L_1)

- C₂ = condensateur qui limite la haute tension inverse induite
- D_1 = diode en mesure
- D_2 = diode antiparallèle
- G = source de tension alternative
- L₁ = bobine d'inductance qui permet d'ajuster la vitesse de variation du courant direct $-di_F/dt$ et la durée de l'impulsion $(t_p \cong \pi \sqrt{L_1C_1})$
- M = instrument de mesure (par exemple un oscilloscope)
- R_1 = résistance qui limite la charge de C_1
- R₂ = résistance qui limite la haute tension inverse induite
- R₃ = résistance pour la mesure du courant, étalonnée et non inductive
- T_1 = interrupteur électronique (par exemple un thyristor)

Mode opératoire de mesure

Le thyristor T₁ est amorcé et la source de tension G est ajustée pour obtenir la valeur spécifiée du courant direct de pointe I_{FM} dans la diode D₁. La durée de l'impulsion t_p , la vitesse de variation du courant direct $-di_F/dt$ et la tension V_1 aux bornes de C₁ doivent correspondre aux conditions spécifiées.

La vitesse de variation du courant direct est mesurée au voisinage du passage du courant à zéro pour des valeurs de courant comprises entre $i_F = |I_{rrm}|$ et $i_{rr} = 0.5 I_{rrm}$ (voir Figure 16).

$$-\frac{\mathrm{d}i_{\mathsf{F}}}{\mathrm{d}t} = \frac{3}{2} \cdot \frac{I_{\mathsf{rrm}}}{\Delta t}$$

La charge récupérée est mesurée comme suit:

$$Q_{\mathsf{r}} = \int_{t_0}^{t_0 + t_{\mathsf{i}}} i \cdot \mathsf{d}t$$

où

- t₀ est l'instant où le courant passe par zéro;
- ti est le temps d'intégration spécifié, de préférence égal à la valeur maximale spécifiée de trr.

Le temps de recouvrement inverse t_{rr} est l'intervalle de temps qui sépare t_0 de l'instant où la droite qui joint les valeurs décroissantes 0,9 I_{rrm} et 0,25 I_{rrm} de i_{rr} coupe l'axe correspondant à un courant nul.

Le facteur de douceur est la valeur absolue du rapport de la vitesse de montée du courant de recouvrement inverse lorsqu'il passe par zéro et de la vitesse maximale de descente du courant de recouvrement

$$S_{\rm rr} = \frac{(di_{\rm rrr}/dt)_{i=0}}{(di_{\rm rrf}/dt)_{\rm max}}$$

Conditions spécifiées

- a) température ambiante ou du boîtier;
- b) courant direct de pointe I_{FM} ;
- c) tension V_1 aux bornes de C₁;
- d) durée de l'impulsion du courant direct t_p ;
- e) vitesse de variation du courant direct $-di_F/dt$ (voir note);
- f) temps d'intégration t_i;
- g) C₁, C₂, R₂.

NOTE En fonction de la durée d'impulsion t_p et du courant direct de pointe, la vitesse de variation du courant direct di_F/dt est limitée à quelques A/µs. Par conséquent, cette méthode ne convient pas aux diodes de redressement à commutation rapide.

6.1.6.2 Méthode en onde rectangulaire

But

Mesurer la charge récupérée Q_r , le temps de recouvrement inverse t_{rr} , l'énergie de recouvrement inverse E_{rr} et le facteur de douceur S_{rr} d'une diode de redressement dans des conditions spécifiées.

Schéma et forme d'onde

Voir Figure 17 et Figure 18.

- 73 -

Figure 17 – Circuit de mesure de la charge récupérée, méthode en onde rectangulaire

Figure 18 – Forme d'onde du courant traversant la diode D pendant la mesure de la charge récupérée, méthode en onde rectangulaire

Description et exigences du circuit

- C = condensateur fonctionnant comme un réservoir d'énergie pour la double impulsion de courant dont il convient qu'il soit suffisamment grand pour maintenir la tension constante pendant l'essai
- D = diode en mesure
- G = source de tension alternative
- L = bobine d'inductance suffisamment grande pour maintenir le courant presque constant pendant le temps de roue libre
- OSC = oscilloscope pour mesurer le courant et la tension du dispositif soumis à essai
- R = résistance limitant le courant d'alimentation
- T = interrupteur électronique (par exemple un transistor bipolaire à grille isolée) à vitesse réglable à l'état passant

Mode opératoire de mesure

La température du dispositif est réglée à la valeur spécifiée.

La source de tension G est ajustée à la valeur spécifiée de la tension inverse.

L'interrupteur T est ouvert pendant que la valeur spécifiée du courant direct (I_F) circule dans la bobine d'inductance L.

- 74 -

L'interrupteur T est fermé et le courant de la bobine d'inductance commute avec la diode en mesure, qui fonctionne comme une diode de roue libre. Il convient que la durée d'impulsion t_p (égale au temps de fermeture de T) soit suffisamment longue pour assurer un fonctionnement en totale conduction de la diode en mesure, mais aussi suffisamment courte pour qu'il ne se produise qu'un échauffement interne négligeable de la diode. Il convient que la durée soit d'au moins 20 μ s (diode de redressement à commutation rapide) et d'au plus 1 ms (diodes de redressement de ligne).

A la fin de la durée d'impulsion, l'interrupteur T est ouvert une deuxième fois et la diode en mesure est hors tension. La vitesse de variation du courant direct est ajustée à la valeur spécifiée au moyen de la résistance de gâchette de T. La vitesse de variation du courant direct est mesurée au voisinage du passage du courant à zéro pour des valeurs de courant comprises entre $i_{\rm F} = |0,5 I_{\rm rrm}|$ et $i_{\rm R} = 0,5 I_{\rm rrm}$ (voir Figure 18).

$$-\frac{\mathrm{d}i_{\mathrm{F}}}{\mathrm{d}t} = \frac{I_{\mathrm{rrm}}}{\Delta t}$$

La charge récupérée est mesurée comme suit:

$$Q_{\mathsf{r}} = \int_{t_0}^{t_0 + t_{\mathsf{i}}} i \cdot \mathsf{d}t$$

où

 t_0 est l'instant où le courant passe par zéro;

t_i est le temps d'intégration spécifié, de préférence lorsque le courant a atteint 2 % de I_{rrm}.

Le temps de recouvrement inverse t_{rr} est l'intervalle de temps qui sépare t_0 de l'instant où la droite qui joint les valeurs décroissantes 0,9 I_{rrm} et 0,25 I_{rrm} de i_{rr} coupe l'axe correspondant à un courant nul.

L'énergie de recouvrement inverse E_{rr} est le résultat de l'intégration du produit de la tension et du courant du dispositif pendant le temps d'intégration t_i .

$$E_{\rm rr} = \int_{t_0}^{t_0 + t_{\rm i}} v_{\rm AK} \cdot i_{\rm rr} \cdot {\rm d}t$$

Le facteur de douceur est la valeur absolue du rapport de la vitesse de montée du courant de recouvrement inverse lorsqu'il passe par zéro et de la vitesse maximale de descente du courant de recouvrement

$$S_{\rm rr} = \frac{|(di_{\rm rrr}/dt)_{i=0}|}{(di_{\rm rrf}/dt)_{\rm max}}$$

Conditions spécifiées

- a) température ambiante ou du boîtier;
- b) courant direct I_F (avant l'amorçage de T_2);
- c) tension inverse V_{R} ;

- d) durée de l'impulsion du courant direct t_{p} ;
- e) vitesse de variation du courant direct $-di_F/dt$ (voir note);
- f) temps d'intégration t_i ;
- g) L₁, L₂, C₂, R₂.

NOTE La vitesse de variation $d_i r/d_t$ peut varier d'environ quelques dizaines d'A/µs à plusieurs kA/µs. Par conséquent, cette méthode est celle à privilégier pour les diodes de redressement à commutation rapide.

6.1.7 Temps de recouvrement direct (t_{fr}) et tension de recouvrement direct de pointe (V_{frm})

But

Mesurer le temps de recouvrement direct et la tension de recouvrement direct de pointe d'une diode de redressement.

Schéma et forme d'onde d'essai

Voir Figure 19, Figure 20 et Figure 21.

Figure 19 – Circuit de mesure du temps de recouvrement direct

Figure 20 – Forme d'onde du courant pendant la mesure du temps de recouvrement direct

- 76 -

du temps de recouvrement direct

Description et exigences du circuit

- D = diode en mesure
- G = générateur d'impulsions en courant dont la tension de sortie en circuit ouvert atteint au moins 50 V ou trois fois V_{frm} (la valeur retenue étant la plus forte)
- R = résistance étalonnée non inductive
- S = interrupteur électronique, fermé sauf pour une période commençant juste avant l'impulsion en courant et s'étalant sur toute la durée de l'impulsion en courant
- M_A et M_B = oscilloscopes ou autres instruments de mesure

La durée de l'impulsion doit être suffisamment longue pour que la tension directe puisse atteindre la valeur stable $V_{\rm F}$.

Il convient que la durée d'impulsion et le facteur d'utilisation du générateur d'impulsions en courant soient choisis de telle façon qu'il ne se produise qu'un échauffement interne négligeable de la diode.

Mode opératoire de mesure

La température est réglée à la valeur spécifiée.

Par observation de la forme d'onde du courant sur M_A , le générateur d'impulsions en courant est ajusté aux conditions spécifiées: temps de montée t_r et courant direct I_F .

La tension inverse V_{R} est ajustée à la valeur spécifiée et l'interrupteur S est réglé de manière appropriée.

Selon la méthode spécifiée, la tension de recouvrement direct de pointe V_{frm} et le temps de recouvrement direct t_{fr} sont mesurés sur la forme d'onde de la tension aux bornes de la diode sur M_B.

Conditions spécifiées

a) température virtuelle de jonction (T_{vi}) ;

- b) courant direct continu (I_F) ;
- c) temps de montée de l'impulsion en courant (t_r) (entre 10 % et 90 % de I_F , sauf indication contraire);
- d) méthode de spécification I: tensions définissant le début et la fin du temps de recouvrement direct si ces valeurs diffèrent de 10 % et 110 % de $V_{\rm F}$ respectivement;
- e) méthode de spécification II: tension des points A et B en pourcentage de V_{frm} ;
- f) tension inverse (V_R) .

6.1.8 Charge capacitive totale $(Q_{\rm C})$

But

Mesurer la capacité de jonction en court-circuit pour de petits signaux, dans des conditions spécifiées. Cette mesure sert à calculer la charge capacitive totale.

Schéma

Voir Figure 22.

Figure 22 – Circuit de mesure de la charge capacitive totale

Description et exigences du circuit

- C₁ = condensateur bloquant la tension continue à partir du pont de mesure
- C₂ = condensateur destiné à réduire au minimum l'influence de la source de tension
- D = diode en mesure
- L = bobine d'inductance de blocage du signal de mesure à haute fréquence à partir de la source de courant continu
- G = source de tension continue

Un pont de mesure de capacité est utilisé, ce qui permet d'appliquer une méthode de zéro. Il convient que C_1 soit largement supérieure aux capacités de jonction C_j . Il convient que l'impédance de L soit suffisamment élevée pour pouvoir la compenser par les réglages du pont. Il convient que la résistance en courant continu soit plus faible que la résistance de sortie du dispositif.

Mode opératoire de mesure

Le réglage du zéro du pont de mesure de capacité est réalisé en l'absence de dispositif dans le support de mesure. Le dispositif à mesurer est ensuite inséré dans le support de mesure. La source de tension G est ajustée à une tension inverse spécifiée. Le pont est rééquilibré; la différence entre les relevés de capacité de ce réglage et ceux obtenus en l'absence de tout dispositif donne la valeur actuelle de C_j . Cette mesure est effectuée par petits incréments de la tension inverse à partir de 0 jusqu'à ce que la tension V_{end} spécifiée pour cet essai soit

atteinte. La courbe obtenue représentant la capacité en fonction de la tension cathode-anode est intégrée sur la tension cathode-anode. La charge capacitive totale se calcule comme suit:

- 78 -

$$Q_{\rm C} = \int_{0}^{V_{\rm end}} C(V) {\rm d}V$$

Conditions spécifiées

- a) valeur maximale de la tension inverse utilisée pendant la mesure;
- b) fréquence de mesure;
- c) température de jonction, température du boîtier ou température du dissipateur thermique.

6.2 Méthodes de mesure des caractéristiques thermiques

6.2.1 Généralités

La mesure de la résistance thermique et de l'impédance thermique transitoire est basée sur l'emploi d'un paramètre du semiconducteur sensible à la température servant d'indicateur de la température virtuelle de jonction. La tension directe d'une diode de redressement, pour une valeur égale à un petit pourcentage du courant assigné, est normalement employée comme paramètre sensible à la température.

6.2.2 Résistance thermique $(R_{th(i-r)})$ et impédance thermique transitoire $(Z_{th(i-r)}(t))$

But

Mesurer la résistance thermique et/ou l'impédance thermique transitoire entre la jonction et un autre point de référence spécifié d'une diode de redressement. La résistance thermique est le point final de la caractéristique d'impédance thermique après l'atteinte de l'équilibre thermique. La température du point de référence peut être celle du boîtier pour $R_{th(j-c)}$, $Z_{th(j-c)}$, celle du dissipateur thermique pour $R_{th(j-s)}$, $Z_{th(j-s)}$ ou la température ambiante pour $R_{th(j-a)}$, $Z_{th(j-a)}$, ou celle de tout autre point de référence spécifié. La même méthode de mesure est utilisée, avec la deuxième température mesurée à la température du dissipateur thermique, à la température ambiante ou à la température d'un point de référence, au lieu de la température du boîtier, comme décrit ci-dessous.

Schéma

Voir Figure 23.

Figure 23 – Circuit de mesure de l'impédance thermique

Description et exigences du circuit

 I_1 = courant de charge provoquant la dissipation de puissance *P* dans la jonction

- I_2 = courant continu de référence
- D = diode en mesure
- S = interrupteur destiné à couper le courant de charge I_1
- G_1 = source de courant continu fournissant le courant de charge
- G₂ = source de courant continu fournissant le courant de référence
- W = wattmètre indiquant la dissipation de puissance P dans la jonction par le passage du courant de charge I_1
- Re = enregistreur, par exemple un oscilloscope ou un enregistreur de données enregistrant le décalage temporel de la tension directe dû à I_2

Mode opératoire de mesure

La mesure est effectuée en deux étapes.

a) calcul du coefficient de température de la tension directe au courant de mesure faible

La diode en mesure est portée aux températures T_1 et T_2 en l'immergeant dans une enceinte chauffée ou dans un fluide inerte. L'équilibre thermique doit être atteint avant la prise des mesures. A la température T_1 , la tension directe au courant de mesure I_2 est V_{F1} . A une température plus élevée T_2 , cette tension correspond à V_{F2} (voir Figure 24). Le coefficient de température ε de la courbe d'étalonnage est donc:

Figure 24 – Courbe d'étalonnage présentant une variation typique de la tension directe V_F à un courant de mesure faible I_2 avec la température du boîtier T_c (chauffé de l'extérieur, c'est-à-dire $T_c = T_{vi}$)

b) mesure de la réponse de la diode à une variation d'échelon dans la dissipation de puissance interne

La diode en mesure est fixée sur un dissipateur thermique maintenu à une température fixe. Un thermocouple est fixé à un point spécifié du boîtier afin de mesurer la température du boîtier $T_c(t)$ ou une autre température de point de référence spécifiée pour mesurer $T_r(t)$. Le courant d'échauffement I_1 est appliqué, provoquant ainsi une dissipation de puissance P dans la diode en mesure, jusqu'à ce que l'équilibre thermique soit atteint. La puissance dissipée dans la diode est enregistrée.

Le courant d'échauffement I_1 est interrompu en ouvrant l'interrupteur S. L'interrupteur S doit couper le courant dans un intervalle de temps beaucoup plus court que le temps d'accumulation des porteurs de charge de la diode en mesure. Un temps d'attente est nécessaire avant de mesurer la tension directe aux bornes de la diode après l'ouverture de l'interrupteur S, en raison des effets d'accumulation des porteurs de charge. Le temps d'attente nécessaire va de plusieurs centaines de μ s pour les diodes de redressement à commutation rapide jusqu'à 1 ms pour les diodes de redressement de ligne. La tension directe au courant de référence I_2 et la température du boîtier sont mesurées simultanément. La température virtuelle de jonction est ensuite calculée au moyen de la courbe d'étalonnage obtenue pour le même courant de référence.

- 80 -

$$R_{\rm th(j-c)} = \frac{T_{\rm vj} - T_{\rm c}}{P}$$

La tension directe et la température de référence sont enregistrées par l'enregistreur Re en fonction du temps de refroidissement pour la mesure de l'impédance thermique.

La courbe de la tension directe enregistrée est convertie en température virtuelle de jonction T_{vj} au moyen de la courbe d'étalonnage. L'impédance thermique transitoire $Z_{th(j-c)}(t)$ est calculée en utilisant l'expression suivante:

$$Z_{\text{th}(j-c)}(t) = \frac{\left| T_{vj}(0) - T_{c}(0) \right| - \left| T_{vj}(t) - T_{c}(t) \right|}{P}$$

où

 $T_{vj}(0), T_{c}(0)$ sont les températures au temps t = 0 lorsque l'interrupteur S est ouvert; $T_{vj}(t), T_{c}(t)$ sont les températures à l'instant t.

6.3 Méthodes d'essai pour la vérification des valeurs assignées (valeurs limites)

6.3.1 Courant direct (non répétitif) de surcharge accidentelle (*I*_{FSM})

But

Vérifier la valeur assignée du courant direct (non répétitif) de surcharge accidentelle d'une diode de redressement dans des conditions spécifiées.

Schéma

Voir Figure 25.

Figure 25 – Circuit de mesure du courant direct de surcharge accidentelle

Description et exigences du circuit

- A = indicateur de crête (par exemple ampèremètre ou oscilloscope)
- D_1 = diode soumise à essai
- D_2 = diode qui bloque la tension directe délivrée par le transformateur T_2
- R₁ = résistance permettant de régler le courant de surcharge accidentelle
- R₂ = résistance de protection; il convient que sa valeur soit aussi faible que possible
- S = interrupteur électromécanique ou électronique ayant un angle de conduction d'environ 180° pendant la demi-période directe (de surcharge accidentelle)
- T₁ = transformateur basse tension, à courant élevé, fournissant à travers l'interrupteur S la demi-période directe (de surcharge accidentelle). Il convient que la forme d'onde du courant soit sensiblement demi-sinusoïdale, d'une durée voisine de 10 ms (ou 8,3 ms), avec une fréquence de répétition d'environ 50 (ou 60) impulsions par seconde (voir Note ci-après)
- T₂ = transformateur haute tension, à faible courant, fournissant la demi-période inverse à travers la diode D₂; s'il est alimenté par une source séparée, la phase de celle-ci doit être la même que celle de la source qui alimente T₁. Il convient que la forme d'onde de la tension soit sensiblement demi-sinusoïdale
- V = appareil de mesure de valeur de pointe (par exemple voltmètre ou oscilloscope)

Le cas échéant, une diode D_3 peut être insérée en série entre les points X et Y avec un interrupteur S_1 ou bien une résistance R_3 peut être insérée en série entre les points X et Y avec un interrupteur S_1 . Ces circuits ne sont pas obligatoires. D3 est une diode d'équilibrage du courant ayant sensiblement la même résistance directe que la diode soumise à essai. Si une résistance R3 est utilisée, il convient qu'elle ait la même résistance que la résistance directe de la diode soumise à essai. S1 est un interrupteur électromécanique ou électronique, ayant un angle de conduction d'environ 180° pendant la demi-période inverse du transformateur T1.

NOTE En variante à T₁ et R₁, un transformateur présentant un nombre variable d'enroulements secondaires peut être utilisé pour ajuster la valeur du courant de surcharge accidentelle.

Mode opératoire d'essai

Les sources de tension et de courant sont mises à zéro. La diode soumise à essai est insérée dans le support d'essai en respectant son marquage de polarité. Les conditions de température sont réglées aux valeurs spécifiées.

La tension inverse de pointe, mesurée par l'indicateur de crête V, est ajustée à la valeur spécifiée.

- 82 -

Le courant direct de surcharge accidentelle, mesuré par l'indicateur de crête A, est réglé à la valeur spécifiée en agissant sur R_1 .

Le courant direct de surcharge accidentelle est appliqué le nombre de fois spécifié à la diode soumise à essai.

Les mesures réalisées après l'essai indiquent si la diode de redressement a pu supporter la valeur assignée du courant direct de surcharge accidentelle.

Conditions spécifiées

Il convient d'indiquer les valeurs des conditions suivantes:

- a) tension inverse de pointe;
- b) courant direct (non répétitif) de surcharge accidentelle;
- c) impédance maximale de la source de tension inverse;
- d) nombre de cycles par surcharge accidentelle, nombre de surcharges accidentelles et fréquence de répétition;
- e) température ambiante, température du boîtier ou température d'un point de référence;
- f) limites des caractéristiques mesurées après l'essai.

6.3.2 Tension inverse de pointe non répétitive (V_{RSM})

But

Vérifier la valeur assignée de la tension inverse de pointe non répétitive d'une diode de redressement.

Schéma

Voir Figure 26.

Figure 26 – Circuit de mesure de la tension inverse de pointe

Description et exigences du circuit

 D_1 = diode soumise à essai

- D₂ = diode fournissant des demi-périodes négatives, de sorte que seule la caractéristique inverse de la diode soumise à essai est mesurée
- G = source de tension alternative
- S = interrupteur électromécanique ou électronique (ayant un angle de conduction d'environ 180°) qui permet d'appliquer la tension du générateur à la diode de redressement soumise à essai pendant la demi-période inverse
- V = indicateur de crête

Mode opératoire d'essai

La polarisation étant nulle, la diode de redressement soumise à essai est insérée dans le support d'essai.

L'interrupteur S est ouvert et la tension alternative de la source est augmentée jusqu'à atteindre la valeur spécifiée de la tension inverse de pointe non répétitive.

Les conditions de température spécifiées sont vérifiées.

La tension inverse de pointe non répétitive spécifiée est appliquée en fermant l'interrupteur S selon un angle d'environ 180°.

Les mesures réalisées après l'essai indiquent si la diode soumise à essai a pu supporter la valeur assignée de la tension inverse de pointe non répétitive.

Conditions spécifiées

Il convient d'indiquer les valeurs des conditions suivantes:

- a) tension inverse de pointe non répétitive;
- b) température ambiante, température du boîtier ou température d'un point de référence;
- c) durée de l'impulsion demi-sinusoïdale;
- d) limites des caractéristiques mesurées après l'essai.

6.3.3 Puissance inverse de pointe (répétitive ou non répétitive) (P_{RRM} , P_{RSM}) des diodes de redressement à avalanche

But

Vérifier la valeur assignée de la puissance inverse de pointe des diodes de redressement à avalanche et à avalanche contrôlée dans des conditions spécifiées.

Les trois méthodes d'essai suivantes sont décrites:

- A avec une impulsion de forme d'onde triangulaire;
- B avec une impulsion de forme d'onde sinusoïdale;
- C avec une impulsion de forme d'onde rectangulaire.

Schéma

Voir Figure 27.

Figure 27 – Circuit de vérification de la puissance inverse de pointe des diodes de redressement à avalanche

Description et exigences du circuit

- G₁ = générateur d'impulsions réglable avec une forme d'onde de tension conformément à la méthode d'essai
- D_1 = diode soumise à essai
- D_2 = diode de redressement
- R_1 = résistance non inductive pour la mesure du courant
- R₂ = résistance variable non inductive destinée à régler la tension inverse de pointe en circuit ouvert
- M₁ = instrument (par exemple oscilloscope) destiné à mesurer la tension inverse de pointe en circuit ouvert
- M₂ = équipement (par exemple oscilloscope) destiné à mesurer la durée d'impulsion de courant inverse

M₁ et M₂ peuvent être associés (par exemple oscilloscope à deux voies).

Il convient que l'impulsion de courant inverse pour la forme d'onde triangulaire, correspondant à la Méthode A, soit conforme à celle représentée à la Figure 28.

- 85 -

Figure 28 – Forme d'onde triangulaire du courant inverse

Il convient que l'impulsion de courant inverse pour la forme d'onde sinusoïdale, correspondant à la Méthode B, soit conforme à celle représentée à la Figure 29.

 t_w = durée d'impulsion spécifiée

Figure 29 – Forme d'onde sinusoïdale du courant inverse

Il convient que l'impulsion de courant inverse pour la forme d'onde rectangulaire, correspondant à la Méthode C, soit conforme à celle représentée à la Figure 30.

- 86 -

 $t_{\rm r} \le 20 \% t_{\rm w}$ $t_{\rm rf} \le 20 \% t_{\rm w}$

Figure 30 – Forme d'onde rectangulaire du courant inverse

Mode opératoire de mesure

La valeur de la résistance R_2 (comprenant l'impédance de la source de tension G_1) est calculée à l'aide de l'expression suivante:

$$\mathsf{R}_2 = \frac{V_{(\mathsf{BR}})\mathsf{max} \cdot V_{(\mathsf{BR}})\mathsf{min}}{P_{\mathsf{RXM}}}$$

où

 $V_{(BR)}$ max = valeur supérieure de la gamme de $V_{(BR)}$

 $V_{(BR)}$ min = valeur inférieure de la gamme de $V_{(BR)}$

$$P_{\mathsf{RXM}} = \begin{cases} P_{\mathsf{RSM}} \text{ for verification of } P_{\mathsf{RSM}} \\ P_{\mathsf{RRM}} \text{ for verification of } P_{\mathsf{RRM}} \end{cases}$$

Le support ne comprenant aucune diode, l'impulsion en provenance de la source de tension G1 est augmentée jusqu'à ce que la valeur de pointe de la tension inverse en circuit ouvert, mesurée à M1, soit égale à ($V_{(BR)}$ max + $V_{(BR)}$ min). Cette manipulation garantit que la puissance appliquée pour toute tension inverse comprise entre $V_{(BR)}$ min et $V_{(BR)}$ max est supérieure ou égale à la valeur assignée P_{RSM} ou P_{RRM} , respectivement. Voir Figure 31 pour la valeur assignée P_{RSM} .

Le générateur d'impulsions est ensuite coupé tout en maintenant le réglage.

- 87 -

R₂ = ligne de charge

Figure 31 – Vérification de la puissance inverse P_{RSM} en fonction de la tension de claquage

Introduire la diode soumise à essai dans le support d'essai en respectant son marquage de polarité.

Régler la température à la valeur spécifiée.

Appliquer le nombre spécifié d'impulsions.

Les mesures réalisées après l'essai indiquent si la diode a pu supporter la valeur assignée de la puissance inverse de pointe.

Conditions spécifiées

- a) méthode d'essai à utiliser (A, B ou C);
- b) température ambiante ou du boîtier (T_a ou T_c);
- c) valeur assignée de puissance inverse de pointe, répétitive (P_{RRM}) ou non répétitive (P_{RSM});
- d) pour la vérification de P_{RSM} : durée de l'impulsion de courant inverse (t_w) ;
- e) pour la vérification de P_{RRM} :
 - durée de chaque impulsion (t_w),
 - facteur d'utilisation (δ).,
 - nombre d'impulsions.
- f) limites des caractéristiques mesurées après l'essai;
- g) pour la Méthode A uniquement: vitesse minimale de montée du courant inverse (d_i/dt) .

6.3.4 Courant de pointe pour non-rupture du boîtier (*I*_{RSCM})

But

Vérifier la valeur assignée du courant de pointe pour non-rupture du boîtier d'une diode de redressement dans des conditions spécifiées.

Schéma et forme d'onde du courant d'essai

Voir Figure 32 et Figure 33.

Figure 32 – Circuit de mesure du courant pour non-rupture du boîtier

Description et exigences du circuit

G = générateur de courant alternatif ayant une possibilité adéquate de court-circuit

- S₁, S₂ = interrupteurs électromécaniques ou électroniques pour fortes puissances, pouvant fonctionner à des instants définis du cycle de la tension du secteur
- F = fusible facultatif pouvant remplacer S_2 (voir mode opératoire d'essai)
- L = bobine d'inductance variable
- Tr = transformateur pour puissances élevées
- R_M = résistance pour la mesure du courant, étalonnée et non inductive
- D = diode soumise à essai

Préconditionnement et mesures initiales

Avant l'essai, il convient que la diode soumise à essai soit préalablement endommagée, par exemple par une impulsion à haute tension et de faible énergie ou bien mécaniquement, de façon que le claquage ait toujours lieu sur les bords de la pastille de silicium.

Si cela est exigé, un dommage mécanique doit être effectué avant encapsulation de la diode. La diode soumise à essai est soumise à un essai de fuite avant l'essai; il convient que le taux de fuite soit inférieur à 10^{-7} Pa · m³ s⁻¹ (10^{-6} bar cm³ s⁻¹).

IEC 60747-2:2016 © IEC 2016

Mode opératoire d'essai

La diode soumise à essai est installée dans l'appareillage d'essai.

L'interrupteur S_1 est fermé à l'instant t_1 de façon à appliquer à la diode soumise à essai une tension dans le sens inverse provoquant un claquage dans la partie précédemment endommagée. Il s'ensuit que le courant inverse croît brusquement avec une vitesse de montée pouvant être ajustée (dans des limites raisonnables) en faisant varier l'inductance L.

A l'instant t_2 , l'interrupteur S_2 est fermé de façon que le courant de pointe soit limité à la valeur spécifiée I_{RSMC} .

Une autre manière de procéder consiste à placer un fusible F dans le circuit; le courant traversant la diode soumise à essai cesse lorsque le fusible coupe le circuit.

Conditions spécifiées

- a) température du boîtier ou température d'un point de référence;
- b) valeur *I*_{RSMC}.du courant de pointe pour non-rupture du boîtier;
- c) vitesse de montée du courant inverse, de préférence 25 A/µs;
- d) durée de l'impulsion du courant d'essai.

Mesures réalisées après l'essai

La diode soumise à essai est soumise à un essai de fuite; il convient que le taux de fuite soit inférieur à 10^{-7} Pa \cdot m³ s⁻¹ (10^{-6} bar cm³ s⁻¹).

Une autre manière de procéder consiste à utiliser un dispositif détectant le plasma pendant l'essai électrique, de façon à s'assurer qu'il n'y a aucune disparition de plasma pendant l'essai, même si de petites fissures se forment.

Après l'essai électrique, le dispositif est soumis à une inspection visuelle. Il convient qu'il n'y ait aucune indication que des particules ont été arrachées et il ne doit y avoir aucune indication que le dispositif a fondu extérieurement ou qu'il s'est enflammé.

7 Exigences pour les essais de type, essais individuels de série et essais d'endurance; marquage des diodes de redressement

7.1 Essais de type

Les essais de type sont effectués sur les nouveaux produits ou les produits remplacés, par échantillonnage, afin de déterminer les valeurs assignées (valeurs limites) et les caractéristiques électriques et thermiques à faire figurer dans les fiches techniques, et afin d'établir les limites d'essai pour les essais individuels de série ultérieurs.

Les essais de type minimaux à effectuer sur les diodes de redressement sont énumérés dans le Tableau 1.

Certains essais de type sont destructifs.

7.2 Essais individuels de série

Les essais individuels de série sont effectués sur la production courante ou les livraisons, normalement selon un ratio de 100 %, afin de vérifier que les caractéristiques sont conformes aux valeurs spécifiées dans les fiches techniques pour chaque échantillon.

Les essais individuels de série peuvent comporter une répartition des dispositifs en groupes.

- 90 -

Les essais individuels de série minimaux à effectuer sur les diodes de redressement sont énumérés dans le Tableau 1.

7.3 Méthodes de mesure et d'essai

Les méthodes de mesure et d'essai données à l'Article 6 doivent être appliquées.

Pour les essais d'endurance, les méthodes données en 7.5 doivent être appliquées.

	Essai de type	Essai individuel de série	
Mesure des caractéristiques			
Tension directe	x	х	
Caractéristiques directes supplémentaires	x		
Courant inverse	x	х	
Caractéristiques inverses supplémentaires	x		
Charge récupérée, courant de recouvrement inverse de pointe	Xa	Xp	
Résistance thermique et impédance thermique transitoire	x		
Vérification des valeurs assignées			
Courant direct de surcharge accidentelle	x		
Courant de pointe pour non-rupture du boîtier	X ^a		
Essai d'endurance			
Essai de polarisation inverse à haute température, en alternatif X			
Essai de charge thermique cyclique	х		
Essai de type seulement pour les dispositifs avec valeurs maximales spécifiées.			
Essai individuel de série seulement pour les dispositifs avec valeurs maximales ou minimales spécifiées.			

Tableau 1 – Essais de type et essais individuels de série minimaux pour les diodes de redressement

7.4 Marquage des diodes de redressement

Chaque diode de redressement doit être marquée d'une façon claire et indélébile et comporter les informations suivantes:

- nom ou identification du fabricant;
- type du fabricant ou du fournisseur;
- marquage permettant la distinction entre les bornes d'anode et de cathode;
- code de la date (le cas échéant).

7.5 Essai d'endurance

7.5.1 Liste des essais d'endurance

La série IEC 60749 donne un choix d'essais d'endurance pour les diodes de redressement. Selon le Tableau 1, l'essai de polarisation inverse à haute température (IEC 60749-23) et l'essai de cycles en puissance (IEC 60749-34) sont obligatoires.

7.5.2 Conditions pour les essais d'endurance

Les circuits et les conditions d'essai sont énumérés dans l'IEC 60749-23 et l'IEC 60749-34. La spécification applicable doit indiquer le ou les essais à effectuer.

7.5.3 Caractéristiques définissant la réception et critères de réception pour les essais d'endurance

Les caractéristiques définissant la réception, leurs critères de réception et leurs conditions de mesure sont énumérés dans le Tableau 2.

Tableau 2 – Caractéristiques définissant la réception	
pour réception après les essais d'endurance	

Caractéristique définissant la réception	Critère de réception ^a	Conditions de mesure
I _R	< 2 × LSS	La plus forte valeur de $V_{\rm R}$ (= $V_{\rm RRM}$) et la plus forte température spécifiée pour $I_{\rm R}$
V _F	< 1,1 × LSS	La plus forte valeur de $I_{\rm F}$ spécifiée pour $V_{\rm F}$
^a LSS = Limite de spécification supérieure.		

7.5.4 Caractéristiques définissant la réception et critères de réception pour les essais de fiabilité

Pour les critères de défaillance, voir l'IEC 60749-23 et l'IEC 60747-34.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

3, rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland

Tel: + 41 22 919 02 11 Fax: + 41 22 919 03 00 info@iec.ch www.iec.ch