INTERNATIONAL STANDARD

IEC 60728-9

First edition 2000-11

Cabled distribution systems for television and sound signals –

Part 9: Interfaces of cabled distribution systems for digitally modulated signals

Systèmes de distribution par câbles destinés aux signaux de radiodiffusion sonore et de télévision –

Partie 9: Interfaces des systèmes de distribution par câbles utilisant des signaux modulés numériques

Reference number IEC 60728-9:2000(E) As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

• IEC Web Site (<u>www.iec.ch</u>)

Catalogue of IEC publications

The on-line catalogue on the IEC web site (<u>www.iec.ch/catlg-e.htm</u>) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued publications (<u>www.iec.ch/JP.htm</u>) is also available by email. Please contact the Customer Service Centre (see below) for further information.

Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u> Tel: +41 22 919 02 11 Fax: +41 22 919 03 00

INTERNATIONAL STANDARD

IEC 60728-9

First edition 2000-11

Cabled distribution systems for television and sound signals –

Part 9: Interfaces of cabled distribution systems for digitally modulated signals

Systèmes de distribution par câbles destinés aux signaux de radiodiffusion sonore et de télévision –

Partie 9: Interfaces des systèmes de distribution par câbles utilisant des signaux modulés numériques

© IEC 2000 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission3, rue de Varembé Geneva, SwitzerlandTelefax: +41 22 919 0300e-mail: inmail@iec.chIEC web site http://www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

For price, see current catalogue

Х

CONTENTS

Page

FOREWORD	3
INTRODUCTION	5

Clause

1	Scop	e		6	
2	Norm	ative ret	eferences	6	
3	Terms, definitions and abbreviations				
	3.1	Terms	and definitions	7	
	3.2	Abbrev	viations	9	
4	Interf	aces for	r MPEG-2 data signals	10	
	4.1	Introdu	uction	10	
		4.1.1	Application requirements	10	
		4.1.2	Interfaces	11	
		4.1.3	Packet length and contents	11	
		4.1.4	Compliance	12	
		4.1.5	System integration	12	
	4.2	Synchr	ronous parallel interface (SPI)	12	
		4.2.1	Signal format	13	
		4.2.2	Clock signal	14	
		4.2.3	Electrical characteristics of the interface	15	
		4.2.4	Mechanical details of the connector	16	
	4.3	Synchr	ronous Serial Interface (SSI)	17	
	4.4	Asynch	hronous Serial Interface (ASI)	17	
	4.5	3-Wire	Interface (3WI)	17	
Ann	ex A	(normati	tive) Synchronous Serial Interface (SSI)	18	
Ann	ex B ((normati	tive) Asynchronous Serial Interface (ASI)	28	
Ann	ex C	(informa	ative) 8B/10B tables	36	
Ann fron	n the S	(informa Synchro	ative) Implementation guidelines and clock recovery onous Serial Interface (SSI)	40	
Ann fron	ex E (n the I	(informa MPEG-2	ative) Implementation guidelines and deriving clocks 2 packets for the ASI	43	
Ann for t	the 3-	(informa Wire Inte	ative) Implementation guidelines and specifications terface (3WI)	47	
Bibl	iograp	ohy		50	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

CABLED DISTRIBUTION SYSTEMS FOR TELEVISION AND SOUND SIGNALS –

Part 9: Interfaces of cabled distribution systems for digitally modulated signals

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60728-9 has been prepared by subcommittee 100D: Cabled distribution systems, of IEC technical committee 100: Audio, video and multimedia systems and equipment.

The text of this standard is based on the following documents:

FDIS	Report on voting
100/158/FDIS	100/180/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

Annexes A and B form an integral part of this standard.

Annexes C, D, E and F are for information only.

The committee has decided that the contents of this publication will remain unchanged until 2006. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

A bilingual version of this standard may be issued at a later date.

INTRODUCTION

Standards of the IEC 60728 series deal with cable networks for television signals, sound signals and interactive services including equipment, systems and installations

- for headend reception, processing and distribution of television and sound signals and their associated data signals, and
- for processing, interfacing and transmitting all kinds of signals for interactive services using all applicable transmission media.

All kinds of networks like

- CATV-networks,
- MATV-networks and SMATV-networks,
- individual receiving networks

and all kinds of equipment, systems and installations installed in such networks, are within the scope of this series.

The extent of this standardization work goes from the antennas, special signal source inputs to the head-end, or other interface points to the network, up to the system outlet or the terminal input, where no system outlet exists.

The standardization of any user terminals (i.e. tuners, receivers, decoders, multimedia terminals, etc.) as well as of any coaxial and optical cables and accessories therefore is excluded.

CABLED DISTRIBUTION SYSTEMS FOR TELEVISION AND SOUND SIGNALS –

Part 9: Interfaces of cabled distribution systems for digitally modulated signals

1 Scope

This part of IEC 60728 describes physical interfaces for the interconnection of signal processing devices for professional CATV/SMATV headend equipment or for similar systems, such as in up-link stations. This standard, in particular, specifies the transfer of MPEG-2 data signals in the standardized transport layer format between devices of different signal processing functions.

RF interfaces and interfaces to telecom networks are not covered by this standard.

In addition references are made to all other parts of the IEC 60728 series and, in particular, for RF, video and audio interfaces, to IEC 60728-5.

For connections to telecom networks, special Data Communication Equipment (DCE) is necessary to adapt the serial or parallel interfaces specified in this document to the bitrates and transmission formats of the public Plesiochronic Digital Hierarchy (PDH) networks. Other emerging technologies such as Connectionless Broadband Data Services (CBDS), Synchronous Digital Hierarchy (SDH), Asynchronous Transfer Mode (ATM), etc. can be used for transmitting MPEG-2 Transport Streams (TS) between remote locations. ATM is particularly suitable for providing bandwidth on demand and it allows for high data rates.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of IEC 60728. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of IEC 60728 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 60169-8:1978, Radio-frequency connectors – Part 8: RF coaxial connectors with inner diameter of outer conductor 6,5 mm (0,256 in) with bayonet lock – Characteristic impedance 50 ohms (type BNC)

IEC 60728 (all parts), Cabled distribution systems for television and sound signals

IEC 60728-5,— Cabled distribution systems for television and sound signals – Part 5: Head-end equipment ¹)

IEC 60728-6,— Cabled distribution systems for television and sound signals – Part 6: Optical equipment¹)

IEC 60793-2:1998, Optical fibres - Part 2: Product specifications

¹⁾ To be published.

IEC 60874-14:1993, Connectors for optical fibres and cables – Part 14: Sectional specification for fibre optic connector – Type SC

ISO/IEC 13818-1:1996, Information technology – Generic coding of moving pictures and associated audio information – Part 1: Systems

ISO/IEC 13818-9:1996, Information technology – Generic coding of moving pictures and associated audio information – Part 9: Extension for real time interface for systems decoders

ISO/IEC 14165-111, Information technology – Fibre Channel – Part 1: Physical and signalling interface (FC-PH)¹)

ISO 2110:1989, Information technology – Data communication – 25-pole DTE/DCE interface connector and contact number assignments

ITU-R Recommendation BT.656-4:1994, Interfaces for digital component video signals in 525-line and 625-line television systems operating at the 4:2:2 level of Recommendation ITU-R BT.601 (Part A)

ITU-T Recommendation G.654:1997, *Characteristics of a cut-off shifted single-mode optical fibre cable (Rev 1)*

ITU-T Recommendation G.703:1998, *Physical/electrical characteristics of hierarchical digital interfaces (Rev 1)*

ETS 300421:1994, Digital broadcasting for television, sound and data services – Framing structure, channel coding and modulation for 11/12 GHz satellite services

ETS 300429:1994, Digital broadcasting for television, sound and data services – Framing structure, channel coding and modulation for cable systems

3 Terms, definitions and abbreviations

3.1 Terms and definitions

For the purposes of this part of IEC 60728, the following definitions apply.

3.1.1

head-end

equipment connected between receiving antennas or other signal sources and the remainder of the cable distribution system to process the signals to be distributed

NOTE The head-end may, for example, comprise antenna amplifiers, frequency converters, combiners, selectors and generators.

3.1.2

Satellite Master Antenna Television system (SMATV)

system designed to provide sound and television signals to the households of a building or group of buildings

NOTE Two system configurations are defined in ETS 300 473 as follows:

- SMATV system A, based on transparent transmodulation of QPSK satellite signals into QAM signals to be distributed to the user;
- SMATV system B, based on direct distribution of QPSK signals to the user, with two options:
 - SMATV-IF distribution in the satellite IF band (above 950 MHz);
 - SMATV-S distribution in the VHF/UHF band, for example in the extended S-band (230-470 MHz).

3.1.3

biphase mark

line code which ensures DC balance, easy clock recovery and polarity freedom

3.1.4

transport stream

includes one or more programs with one or more independent time bases into a single stream. The transport stream is designed for use in environments where errors are likely, such as storage or transmission in lossy or noisy media

- 8 -

3.1.5

transport packet

packetized element of the transport stream. The packets are either 188 bytes or, in the case where Reed Solomon FEC is used, 204 bytes in length

3.1.6

DVALID

signal which indicates in the 204-byte mode of a Transport Stream that the empty space is filled with dummy bytes

3.1.7

PSYNC

flag which indicates the beginning of a packet

3.2 Abbreviations

8B/10B	eight-to-ten bit conversion
ACCP	Accumulated Phase
ACCT	Accumulated Time
ASI	Asynchronous Serial Interface
ASI-C	Asynchronous Serial Interface on coaxial cable
ASI-O	Asynchronous Serial Interface on optical fibre
ATM	Asynchronous Transfer Mode
BER	Bit Error Rate
CBDS	Connectionless Broadband Data Services
DFB	Distributed Feedback
DJ	Deterministic Jitter
DVALID	data valid
DVB	Digital Video Broadcast
EN	European Norm
FC	Fibre Channel
FIFO	First In First Out
FEC	Forward Error Correction
FWHM	Full Width Half Max
IEC	International Electrotechnical Commission
ISO	International Organization for Standardization
ITU-R	International Telecommunication Union – Radiocommunication
ITU-T	International Telecommunication Union – Telecommunication
LVDS	Low-Voltage Differential Signalling
MPEG	Moving Picture Experts Group
MSB	Most Significant Bit
MUX	Multiplex
NA	not applicable
NRZ	Non-Return-to-Zero
PDH	Plesiosynchronic Digital Hierarchy
PLL	Phase Lock Loop
PMD	Physical Medium Dependent
PSYNC	Packet Synchron
QAM	Quadrature Amplitude Modulation
QPSK	Quarternary Phase Shift Keying
RD	Running Disparity
RIN	Relative Intrinsic Noise
RJ	Random Jitter
RS	Reed Solomon
SDH	Synchronous Digital Hierarchy
SMPT	Society of Motion Picture and Television Engineers
SPI	Synchronous Parallel Interface
SSI	Synchronous Serial Interface
SSI-C	Synchronous Serial Interface on coaxial cable
SSI-O	Synchronous Serial Interface on optical fibre
Tr	Rise-time
TS	Transport Stream
UNC	Unified National Coarse Thread

4 Interfaces for MPEG-2 data signals

4.1 Introduction

This subclause describes possible interfaces for devices transmitting or receiving MPEG-2 data as transport packets, such as QPSK demodulators, QAM modulators, multiplexers, demultiplexers, or telecom network adapters.

- 10 -

This specification is similar to ETS 300429 and ETS 300421.

NOTE Both standards describe a first functional block representing the MPEG2 source coding and multiplexing as standardized in ISO/IEC 13818-1, a second functional block representing the channel adaptation, whereas an interface in between shall be based on MPEG2 transport stream specification according to ISO/IEC 13818-1.

The function of the channel modulator/demodulator is to adapt the signal to the characteristics of the transmission channel: satellite, terrestrial or cable as specified in the DVB base line documents.

Also the case where data signals are transmitted to or from a headend via a telecom network, or if a headend serves to insert data signals into such networks, is considered to be covered by the generic channel modulator/demodulator functional block. The interface parameters valid for this network have to be met. For the latter, reference is made to ITU-T G.703 for Plesiochronic Digital Hierarchy (PDH) networks.

4.1.1 Application requirements

In order to avoid any unnecessary processing at the transmitting or receiving station of an interface in certain applications, it is considered an application requirement that the interface supports 204-byte packet length in such cases, in addition to or instead of the 188-byte packet length specified in ISO/IEC 13818-1. These two cases are identified in the protocol diagrams of figures 1 and 2, where also the scope of this specification is delineated. The relevant associated packet structures are illustrated in figures 3 and 4.

Figure 1 – Protocol stack for 188-byte packets

NOTE Shaded areas identify the scope of this standard.

Figure 4 – Packet structure of 204-byte packet

4.1.2 Interfaces

Three interfaces and two serial transmission media are specified as follows:

- SPI (Synchronous Parallel Interface);
- SSI-C (Synchronous Serial Interface on coaxial cable);
- SSI-O (Synchronous Serial Interface on optical fibre);
- ASI-C (Asynchronous Serial Interface on coaxial cable);
- ASI-O (Asynchronous Serial Interface on optical fibre).

Each of these interfaces feature a BER such that FEC is not required for reliable data transport.

The synchronous parallel interface is specified to cover short or medium distances, i.e. for devices arranged near each other. Subclause 4.2 describes the definitions for such a parallel interface derived from ITU-R Recommendation BT.656-4. Flags are provided to distinguish 188-byte packets from 204-byte packets and to signal the existence of valid RS bytes. Note that the interface, as such, is transparent to the RS bytes.

The synchronous serial interface (SSI) which can be seen as an extension of the parallel interface, is briefly introduced in 4.3 and described in detail in annexes A and D. The packet length and the existence of valid RS bytes are conveyed through suitable coding mechanisms.

Subclause 4.4 introduces the Asynchronous Serial Interface (ASI). Details of the ASI are provided in annexes B and E. The ASI is configurable to either convey 188-byte packets (which is mandatory) or optionally 204-byte packets.

4.1.3 Packet length and contents

Each of the interface specifications can be used to convey either 188-byte packets or 204-byte packets in order to enable selection of the appropriate interface characteristics dependent on the kind of equipment to be interconnected. Mandatory and optional packet sizes are specified in table 1.

		Data packet carrying capability			
Interface		188 bytes	204 bytes (with 16 dummy bytes)	204 bytes (with 16 RS bytes)	
SPI	transmitter	0	М	0	
	receiver	М	М	М	
SSI	transmitter	0	М	0	
	receiver	М	М	М	
ASI	transmitter	М	0	0	
	receiver	М	0	0	
M = m	nandatory O = op	tional			

Table 1 – Mandatory and optional packet lengths

- 12 -

In case the data stream is packetized in 188-byte packets and the interface is configured to convey 204-byte packets, the extra packet length can be used for additional data. The contents of the 16 bytes in this extra packet length are not specified in this standard. One application could be the transmission of 16 RS bytes associated with the preceding transport package.

4.1.4 Compliance

For an equipment to be compliant to this standard it is sufficient for the equipment to show at least one instance of at least one of the interface specifications as described in 4.1.2 and specified in detail in subsequent subclauses of this standard, while at least the mandatory packet sizes as indicated in 4.1.3 shall be supported.

4.1.5 System integration

The interfaces specified in this standard define physical connections between various pieces of equipment. It is important to notice that various parameters which are important for interoperation are not specified in this standard. This is intentional as it leaves maximum implementation flexibility for different applications. In order to facilitate system integration, equipment suppliers shall provide the following information about the characteristics of the interfaces in their equipment:

- interface type (SPI, SSI-C, SSI-O, ASI-C, ASI-O);
- supported packet length (188 bytes, 204 bytes, both);
- maximum input jitter (jitter measured as specified in ISO/IEC 13818-9);
- output jitter (jitter measured as specified in ISO/IEC 13818-9);
- minimum input data rate (rate measured as specified in ISO/IEC 13818-1);
- maximum input data rate (rate measured as specified in ISO/IEC 13818-1).

Some of these parameters may not be applicable to certain types of equipment. If all relevant parameters are provided by equipment suppliers, the proper functioning of the complete system can be ensured.

4.2 Synchronous parallel interface (SPI)

This subclause describes an interface for a system for parallel transmission of variable data rates. The data transfer is synchronized to the byte clock of the data stream, which is the MPEG Transport Stream. Transmission links use LVDS technology [2]¹ and 25-pin connections.

¹⁾ Figures in brackets refer to items in the bibliography.

Figure 5 – System for parallel transmission

The data to be transmitted are MPEG-2 Transport Packets with 188 or 204 bytes. In the case of the 204-byte packet format, packets may contain a 16-byte "empty space"; a DVALID signal serves to identify these dummy bytes. A PSYNC flag labels the beginning of a packet. The data are synchronized to the clock depending on the transmission rate.

Equipment which implements the parallel interface shall support the three transmission formats as shown in figures 6, 7 and 8.

4.2.1 Signal format

The clock, data, and synchronization signals shall be transmitted in parallel: 8 data bits together with one (MPEG-2) PSYNC signal and a DVALID signal which indicates in the 204-byte mode that the empty space is filled with dummy bytes. All signals are synchronous to the clock signal. The signals are coded in NRZ form.

(188 data bytes and 16 dummy bytes)

Figure 8 – Transmission format with RS-coded packets (204 bytes) as specified in ETS 300 421 (188 data bytes and 16 valid extra bytes)

- Data (0-7): Transport packet data word (8 bit: Data 0 to Data 7). Data 7 is the Most Significant Bit (MSB).
- DVALID: active logic "1". Indicates valid data at the interface. It is constantly high in the 188-byte mode. In the 204-byte mode a low logical state indicates not to check the extra (dummy) bytes.
- PSYNC: active logic "1". Indicates the beginning of a Transport Packet by signalling the sync byte.

4.2.2 Clock signal

The clock is a square wave signal where the 0-1 transition represents the data transfer time. The clock frequency f_p depends on the transmission rate.

• The Transport Packets are transmitted without insertion of additional bytes for RS coding or padding (packet length 188 bytes):

$$f_{\rm D} = f_{\rm U} / 8$$

• The Transport Packets are transmitted with insertion of additional bytes for RS coding or padding (packet length 204 bytes):

$$f_{\rm p} = (204 \ / \ 188) \times f_{\rm u} \ / \ 8$$

The frequency f_u corresponds to the useful bitrate R_u of the MPEG-2 transport layer. The clock frequency f_p shall not exceed 13,5 MHz.

Figure 9 – Clock to data timing (at source)

Clock period: $T = \frac{1}{f_p}$

Clock pulse width: $t = \frac{T}{2} \pm \frac{T}{10}$

Data hold time: $t_{\rm d} = \frac{T}{2} \pm \frac{T}{10}$

4.2.3 Electrical characteristics of the interface

The interface employs 11 line drivers and 11 line receivers. Each line driver (source) has a balanced output and the corresponding line receiver (destination) a balanced input (see figure 10). The line driver and receiver shall be LVDS-compatible, i.e. they shall permit the use of LVDS for their drivers or receivers. All digital signal time intervals are measured between the half-amplitude points.

a) Logic convention

The terminal A of the line driver is positive with respect to the terminal B for a binary 1 and negative for a binary 0 (see figure 10).

Figure 10 – Line-driver and line-receiver interconnection

b) Line-driver characteristics (source)

Output impedance:	100 Ω maximum
Common mode voltage:	1,125 V to 1,375 V
Signal amplitude:	247 mV to 454 mV
Rise and fall times:	less than $T/7$, measured between the 20 % and 80 % ampli- tude points, with a 100 Ω resistive load. The difference between rise and fall times shall not exceed $T/20$.

c) Line receiver characteristics (destination)

Input impedance:	90 Ω to 132 Ω
Maximum input signal:	2,0 V peak-to-peak
Minimum input signal:	100 mV peak-to-peak

However, the line receiver shall sense correctly the binary data when a random data signal produces the conditions represented by the eye diagram in figure 11 at the data detection point.

Maximum common mode signal: ± 0.5 V, comprising interference in the range of 0 - 15 kHz (both terminals to ground).

Differential delay: Data shall be correctly sensed when the clock-to-data differential delay is in the range between $\pm T/3$ (see figure 11).

 $T_{\min} = T / 3$, $U_{\min} = 100 \text{ mV}$

4.2.4 Mechanical details of the connector

The interface uses the 25-contact type D subminiature connector specified in ISO 2110 with the contact assignment shown in table 2.

Connectors are locked together with a screw lock, with male screws on the cable connector and female threaded posts on the equipment connector. The threads are of type UNC 4-40[3]. Cable connectors employ pin contacts and equipment connectors employ socket contacts. Shielding of the interconnecting cable and its connectors shall be employed.

Pin	Signal line	Pin	Signal line
1	Clock A	14	Clock B
2	System gnd	15	System gnd
3	Data 7 A(MSB)	16	Data 7 B
4	Data 6 A	17	Data 6 B
5	Data 5 A	18	Data 5 B
6	Data 4 A	19	Data 4 B
7	Data 3 A	20	Data 3 B
8	Data 2 A	21	Data 2 B
9	Data 1 A	22	Data 1 B
10	Data 0 A	23	Data 0 B
11	DVALID A	24	DVALID B
12	PSYNC A	25	PSYNC B
13	Cable shield		

Table 2 – Contact assignment of 25-contact type D subminiature connector (ISO 2110)

4.3 Synchronous Serial Interface (SSI)

The Synchronous Serial Interface (SSI) can be seen as the extension of the parallel interface by means of an adaptation of the parallel format. SSI is synchronous to the Transport Stream which is transmitted on the serial link.

A detailed specification of the SSI is provided in annex A and guidelines for its implementation are provided in annex D.

4.4 Asynchronous Serial Interface (ASI)

The Asynchronous Serial Interface (ASI) is a serial link operating at a fixed line clock rate.

A detailed specification of ASI is provided in annex B and guidelines for its implementation are provided in annex E.

4.5 3-Wire Interface (3WI)

The 3-Wire Interface (3WI) can be used for either a Single Program Transport Stream (SPTS) or a Multi-Program Transport Stream (MPTS).

A detailed specification of 3WI and guidelines for its implementation are provided in annex F.

Annex A

(normative)

Synchronous Serial Interface (SSI)

This annex describes a system for serial encoded transmission of different data rates, with a transmission rate equal to the data rate. It is based on a layered structure of MPEG-2 Transport Packets as a top layer (Layer-2), and a pair of bottom layers attached to physical and coding aspects (Layer-0 and Layer-1).

The SSI is based on a line rate directly locked to the transport rate. The SSI is functionally equivalent to the parallel interface, since the Transport Packets can either be transmitted contiguously or separated by 16 bytes reserved for dummy bytes or extra bytes. Because the link and the TS are synchronous, the bit justification operation is not needed. The system shall be designed to fulfil the high stability requirements of the modulator clocks, even when several links are cascaded.

As an example, consider a signal which passes through several re-broadcast steps, such as the one depicted in figure A.1. In this chain, the last clock (that of the QAM modulator) is slaved to the encoder/mux clock via four steps of clock regeneration circuits.

Figure A.1 – Example of cascaded interfaces

A.1 SSI transmission system overview

Figures A.2 and A.3 represent the primary components of this SSI method over copper coaxial cable and fibre-optic cable, respectively.

Figure A.2 – Coaxial cable-based synchronous serial transmission link (SSI type)

Figure A.3 – Fibre-optic-based synchronous serial transmission link (SSI type)

The main functions of the transmission system are described below.

a) Emission path

Data to be transmitted are presented in byte-synchronized form as MPEG-2 Transport Packets. The Transport Stream is then passed through a parallel-to-serial converter. The line data stream is locked to the TS data stream.

The serial signal is Biphase Mark-encoded.

In the case of a coaxial cable application, the resulting signal is typically passed to a buffer/driver circuit and then through a coupling network, which performs impedance matching and optionally galvanic isolation, to a coaxial connector. In the case of fibre-optic application, the serial bit stream is passed through a driver circuit which drives an optical transmitter (LED or LASER) which is coupled to a fibre-optic cable through a connector.

b) Reception path

The incoming data stream from the coaxial cable is first coupled through a connector and coupling network to a circuit which recovers clock and data. In the case of fibre-optic transmission, a light sensitive detector converts light levels to electrical levels which then are passed to a clock and data recovery circuit.

Once the clock and data are recovered, the bit stream is passed to a Biphase Mark decoder. In order to recover byte alignment, a decoder searches in the serial stream for the synchronization word which is necessary to achieve the serial-to-parallel conversion.

Annex D provides further clarification of the characteristics of the SSI and implementation guidelines for clock and data recovery.

A.2 SSI configuration

An SSI interconnection physically consists of two nodes: a transmitting node and a receiving node. This unidirectional optical fibre or copper coaxial cable carrying data from the transmitting node to the receiving node is referred to as a link. The link is used by the interconnected ports to perform communication. Physical equipment such as video or audio compressors, multiplexers, modulators, etc., can be interconnected through these links. This SSI specification clause applies only to the point-to-point type link.

A.3 SSI protocol architecture description

The SSI protocol is divided into three architectural layers for purposes of development of the standard: Layer-0, Layer-1, Layer-2.

A.3.1 Layer-0: Physical requirements

The physical layer defines the transmission media, the drivers and receivers. The transmission uses Biphase Mark encoding.

This subclause provides specifications for the SSI physical layer (Layer-0). Interfaces for coaxial and optical fibre applications are specified. The links are unidirectional point-to-point.

A.3.1.1 Coaxial cable Physical Medium Dependent (PMD) requirement

The nominal cable impedance shall be 75 Ω .

Considering that the transmission data rate is derived from the user data rate, longer links can be achieved for lower user data rates. The physical medium specified in this subclause has the following characteristics. It

- provides a means of coupling the SSI Layer-1 to the coaxial cable segment;
- provides the driving of coaxial cable between a transmitter and a receiver;
- specifies the type and grade of cable and connectors to be used in a synchronous serial interface link.

a) Electrical medium connector

The required connector shall have mechanical characteristics conforming to the BNC type.

NOTE Due to its higher mechanical stability a 50 Ω BNC-type connector according to IEC 60169-8 is recommended.

The electrical characteristics of the connector shall permit it to be used over the frequency range of the specified interface.

The following table A.1 and figures A.4 and A.5 give the requirements for the serial signal launched synchronously on the coaxial cable.

Pulse shape Conforming to masks shown in figures A.4 and A			
Peak-to-peak voltage	1 V ± 0,1 V		
Rise/fall time (10 - 90 %)	≤4 ns		
Transition timing tolerance (referred to the mean value	Negative transition: ±0,2 ns		
of the 50 % amplitude points of negative transition)	Positive transition at unit interval boundaries: ±1 ns		
	Positive transition at mid interval: ±0,7 ns		
Return loss (75 Ω)	-15 dB		
	over frequency range 3,5 MHz to 105 MHz		
Maximum peak-to-peak jitter at the output port	2 ns		

Table A.1 – Transmitter output characteristics

The digital signal presented at the input port shall conform to table A.2 and figures A.4 and A.5 modified by the characteristics of the interconnecting coaxial pair. The attenuation of the coaxial pair shall be assumed to follow an approximate \sqrt{f} law. The cable shall have a maximum insertion loss of 12 dB at a frequency of 70 MHz.

Table A.2 – Receiver	input characteristics
----------------------	-----------------------

Maximum attenuation at a frequency of 70 MHz assuming a \sqrt{f} law	-12 dB
Maximum peak-to-peak jitter at the input port	4 ns
Return loss (75 Ω)	-15 dB
	over frequency range 3,5 MHz to 105 MHz

- 22 -

NOTE 1 The maximum "steady-state" amplitude should not exceed the 0,55 V limit. Overshoots and other transients are permitted to fall into the dotted area, bounded by the amplitude levels 0,55 V and 0,6 V, provided that they do not exceed the steady-state level by more than 0,05 V. The possibility of relaxing the amount by which the overshoot may exceed the steady-state level is under study.

NOTE 2 For all measurements using these masks, the signal should be AC coupled, using a capacitor of not less than 0.02 μ F (for data rate = 70 Mbit/s), to the input of the oscilloscope used for measurements.

The nominal zero level for both masks should be aligned with the oscilloscope trace with no input signal. With the signal then applied, the vertical position of the trace can be adjusted with the objective of meeting the limits of the masks. Any such adjustment should be the same for both masks and should not exceed ± 0.05 V. This may be checked by removing the input signal again and verifying that the trace lies within ± 0.05 V of the nominal zero level of the masks.

NOTE 3 Each pulse in a coded pulse sequence should meet the limits of the relevant mask, irrespective of the state of the preceding or succeeding pulses, with both pulse masks fixed in the same relation to a common timing reference, i.e. with their nominal start and finish edges coincident. The masks allow for HF jitter present in the timing signal associated with the source of interface signal.

When using an oscilloscope technique to determine pulse compliance with the mask, it is important that successive traces of the pulses overlay in order to suppress the effects of low-frequency jitter. This can be accomplished by several techniques; (such as, a) triggering the oscilloscope on the measured waveform, or b) providing both the oscilloscope and the pulse output circuits with the same clock signal). These techniques require further study.

NOTE 4 For the purpose of these masks, the rise time and delay time should be measured between -0.4 V and +0.4 V, and should not exceed 4 ns.

NOTE 5 The inverse pulse will have the same characteristics, noting that the timing tolerances at the level of the negative and positive transitions are ± 0.2 ns and ± 1 ns respectively.

Figure A.4 – Pulse mask for logical 0

- 23 -

NOTE 1 The maximum "steady-state" amplitude should not exceed the 0,55 V limit. Overshoots and other transients are permitted to fall into the dotted area, bounded by the amplitude levels 0,55 V and 0,6 V, provided that they do not exceed the steady-state level by more than 0,05 V. The possibility of relaxing the amount by which the overshoot may exceed the steady-state level is under study.

NOTE 2 For all measurements using these masks, the signal should be AC coupled, using a capacitor of not less than 0,02 μ F (for data rate = 70 Mbit/s), to the input of the oscilloscope used for measurements.

The nominal zero level for both masks should be aligned with the oscilloscope trace with no input signal. With the signal then applied, the vertical position of the trace can be adjusted with the objective of meeting the limits of the masks. Any such adjustment should be the same for both masks and should not exceed ± 0.05 V. This may be checked by removing the input signal again and verifying that the trace lies within ± 0.05 V of the nominal zero level of the masks.

NOTE 3 Each pulse in a coded pulse sequence should meet the limits of the relevant mask, irrespective of the state of the preceding or succeeding pulses, with both pulse masks fixed in the same relation to a common timing reference, i.e. with their nominal start and finish edges coincident. The masks allow for HF jitter caused by intersymbol interference in the output stage, but not for jitter present in the timing signal associated with the source of the interface signal.

When using an oscilloscope technique to determine pulse compliance with the mask, it is important that successive traces of the pulses overlay in order to suppress the effects of low-frequency jitter. This can be accomplished by several techniques (such as, a) triggering the oscilloscope on the measured waveform, or b) providing both the oscilloscope and the pulse output circuits with the same clock signal). These techniques require further study.

NOTE 4 For the purpose of these masks, the rise time and delay time should be measured between -0.04 V and +0.4 V, and should not exceed 4 ns.

Figure A.5 – Pulse mask for logical 1

A.3.1.2 Fibre-optic Physical Medium Dependent (PMD) requirement

Transmission of the SSI data stream on a fibre-optic medium consists of interconnecting transmitter and receiver by a section of optical fibre which can be either multimode or single-mode type. The type of the optical fibre will be determined by the link characteristics, length and type of optical connectors.

The fibres to be used for the serial data interface are specified by ITU-T Recommendations or EN:

Multimode fibre: EN 188 201

Single-mode fibre: ITU-T Recommendation G.654 or EN 188 101

The optical connector shall be of SC type, according to IEC 60874-14.

The optical characteristics of the links are described in table A.3. All parameters shall be met over the temperature, voltage, and lifetime range of the system.

Application	Internal connections	Trunk lines		
Аррисанон		Short-haul	Long	g-haul
Source nominal wavelength (nm)	1 310	1 310	1 310	1 550
Type of fibre	EN 188201	EN 188101	EN 188101	EN 188101
				ITU-T Rec. G.654
Distance (km)	<2	<15	<40	<60

Table A.3 – Optical characteristics for SSI links

Transmitter				
Source type	LED	LASER Diode	LASER Diode	DFB LASER Diode
Mean launched power (dBm)				
Maximum	-8	-8	-8	0
Minimum	-15	-15	-15	-5

Receiver						
Minimum sensitivity (dBm)	-23	-28	-34	-34		
Minimum overload (dBm)	-8	-8	-10	-10		
Maximum optical path penalty (dB)	1	1	1	1		

A.3.2 Layer-1: Data encoding

The SSI Layer-1 deals with encoding/decoding aspects which are independent of the transmission medium characteristics. Furthermore, this first layer performs the recognition of the three different transmission formats (see figures 6, 7 and 8) in order to allow a fully transparent serialization/deserialization.

Layer-1 operations consist of

- distinguishing the three transmission formats;
- parallel-to-serial conversion of the 8-bit byte with the MSB transmitted first;
- Biphase Mark coding of the serial signal in the transmitter.

The inverse operations are performed in the receiver.

Distinction between the three transmission formats on the serial link is performed as follows:

- the transmission format with 188-byte packets (figure 6) is characterized by a synchronization byte 47H, the periodicity of which is 188 bytes;
- the transmission format with 204-byte packets with 16 dummy bytes (figure 7) is characterized by a synchronization byte 47H, the periodicity of which is 204 bytes;
- the transmission format of packets of 204 bytes with valid extra bytes (figure 8) is characterized by an inverted synchronization byte (B8H), the periodicity of which is 204 bytes.
- a) Line coding

A Biphase Mark Code shall be used. Figure A.6a describes the rules of Biphase Mark coding, whereas figure A.6b illustrates that the required medium bandwidth is twice the bandwidth required by NRZ coding.

The encoding rules are as follows:

- a transition always occurs at the beginning of the bit whatever its value is (0 or 1);
- for logical 1, a transition occurs in the middle of the bit;
- for logical 0, there is no transition on the middle of the bit.

- 26 -

Figure A.6a – Biphase Mark coding scheme

Figure A.6b – Spectral density of Biphase Mark Code

Figure A.6 – Biphase Mark encoding

b) Byte synchronization

The byte synchronization process in the receiving equipment has to take into account the two possible packet formats, i.e. the 188-byte packet format and the 204-byte packet format. The packet synchronization byte (47H or B8H) is used as a byte alignment pattern which serves for initializing the serial-to-parallel conversion. The occurrence of the synchronization byte (188 bytes of 204 bytes) and the value of the synchronization byte (47H or B8H) are used to restore the DVALID signal and the PSYNC signal.

If the received transmission format is a 204-byte packet with valid extra bytes, as indicated in figure 8, the synchronization byte (B8H) must be inverted in order to recover the original synchronization byte (47H) of the TS packet format to be delivered to layer-2.

NOTE In order to prevent possible synchronization errors, it is recommended that consecutive bytes 47H do not occur within the 188-byte or 204-byte data packet.

c) Clock recovery

In the receiver the clock recovery circuit extracts the transport clock directly from the encoded data stream. The clock corresponds directly to the user data rate.

d) Bit-Error-Rate (BER) requirement

The BER shall be less than one part in 10¹³, as measured where data passes from Layer-1 to Layer-2. That is, BER shall be measured where data emerge from the Biphase Mark decoder.

A.3.3 Layer-2: Transport protocol

The SSI Layer-2 uses the MPEG-2 Transport Stream as defined in ISO/IEC 13818-1 as its basic message unit. The MPEG-2 Transport Packet synchronization byte (47H) is included in this Layer-2 packet definition to allow receive equipment to achieve synchronization.

The Transport Packets shall be presented to Layer-2 either as contiguous 188-byte packets, or separated by 16 dummy bytes, or contiguous Reed Solomon-encoded 204-byte packets.

Annex B

(normative)

Asynchronous Serial Interface (ASI)

This annex describes a system for a serial, encoded transmission of different data rates with a constant transmission rate, based on a layered structure of MPEG Transport Packets according to ISO/IEC 13818-1 as a top layer (Layer-2), and a pair of bottom layers (Layer-1 and Layer-0) based upon the Fibre Channel (FC) described in ISO/IEC 14165-111. Layer-1 and Layer-0 are based upon a subset of Fibre Channel Levels FC-1 and FC-0.

Transport Streams from different sources may have different data rates. The use of a constant transmission rate permits a constant receiver clock. To restore the original clock rate, a PLL circuit can be used. Annex E gives some proposals for how such a circuit can be designed. The input of the required transmission facility accepts MPEG-2 bytes and the output delivers MPEG-2 bytes.

While the Fibre Channel (FC) supports single-mode fibre, multimode fibre, coaxial cable and twisted pair media interfaces, this standard defines only two distinct forms of interfaces: coaxial cable and multimode fibre-optical cable using LED emitters.

Instead of a transmission rate of 265,625 Mbit/s, as required in ISO/IEC 14165-111, in this standard the transmission rate is 270,000 Mbit/s.

B.1 ASI transmission system overview

Figures B.1 and B.2 represent the primary components of the ASI transmission method over copper coaxial cable and fibre-optic cable, respectively.

Figure B.1 – Coaxial cable-based asynchronous serial transmission link (ASI type)

Figure B.2 – Fibre-optic-based asynchronous serial transmission link (ASI type)

Data to be transmitted are presented in byte-synchronized form as MPEG-2 Transport Packets. Bytes are then 8B/10B coded, which produces one 10-bit word for each 8-bit byte presented. These 10-bit words are then passed through a parallel-to-serial converter which operates at a fixed output bit-rate of 270 Mbit/s. If the parallel-to-serial converter requests a new input word and the data source does not have one ready, a synchronization word shall be inserted. These sync words are to be ignored by receive equipment. In the case of coaxial cable application, the resulting serial bit stream is typically passed to a buffer/driver circuit and then through a coupling network to a coaxial connector. In the case of fibre-optic application, the serial bit-stream is passed to a driver circuit which drives an LED emitter which is coupled to a fibre-optic cable through a mechanical connector.

Receive data arriving on a coaxial cable are first coupled through a connector and coupling network to a circuit which recovers clock and data. In the case of fibre-optic transmission, a light-sensitive detector converts light levels to electrical levels which are then passed to a clock and data recovery circuit.

Recovered serial data bits are passed to a decoder which converts the 10-bit transmission words back into the 8-bit bytes originally transmitted. In order to recover byte alignment, the decoder initially searches for synchronization words; the synchronization word is a unique 10-bit pattern which is prevented from occurring (by the 8B/10B encoder) with all possible input data bytes. Once found, the start of the synchronization word marks the boundary of subsequent received data words and establishes proper byte-alignment of decoder output bytes.

B.2 ASI configuration

An ASI interconnect physically consists of two nodes: a transmitting node and a receiving node. This unidirectional optical fibre or copper coaxial cable carrying data from the transmitting node to the receiving node is referred to as a link. The link is used by the interconnected ports to perform communication. Physical equipment such as video or audio compressors, multiplexers, modulators, etc., can be interconnected through these links. This ASI specification applies only to the point-to-point type link.

B.3 ASI protocol architecture description

The ASI protocol is divided into three architectural layers for purposes of development of the standard: Layer-0, Layer-1 and Layer-2.

B.3.1 Layer-0: Physical requirements

The physical layer defines the transmission media, the drivers and receivers, and the transmission speeds. The physical interface provides for both LED-driven multimode fibre and copper coaxial cable. The base speed is defined as 270 Mbit/s (transmission channel speed). The basic unit of Layer-0 is the link. The points where conformance is required are shown as point S and R in the figure B.3.

Figure B.3 – Serial link Layer-0 reference points

In coaxial applications, jitter is specified in the traditional manner of random and data dependent jitter and duty-cycle distortion. In LED-driven fibre-based applications, jitter is specified in terms of Random Jitter (RJ) and Deterministic Jitter (DJ). Deterministic Jitter is the sum of data-dependent jitter and duty-cycle distortion. The DJ is due to the timing distortions caused by normal circuit effects in the transmission system. It is comprised of the propagation delay difference between the rising and falling edge of a signal and the interaction of limited bandwidth of the transmission components and the symbol sequence. The RJ is due to the thermal noise in the system and usually modelled as a Gaussian process.

a) Line rates and bit timing

The encoded line rate with the 8B/10B block code is 270 Mbit/s which results in a media transmission rate of 270 MBd. At the transmitter the serialization is done using a fixed oscillator to establish this 270 MBd rate from which a phase-locked byte clock is derived and used to shift in parallel bytes.

Receivers recover the serial transmission clock generally by the use of a phase-lockedloop (PLL) oscillator locked to bit transitions of the incoming data stream. A phase-locked byte clock is derived from this recovered serial bit clock and is used to shift parallel bytes out to Layer-1 processing elements.

It is required that the encoded line rate shall be 270 MBd \pm (100 \times 10⁻⁶).

b) Receiver timing acquisition

A receiver shall first acquire bit synchronization, before attempting to align received bytes. This time is measured from receipt of a valid input to the time the receiver is synchronized to the bit stream and delivering valid re-timed data within the BER objective of the system.

It is required that bit synchronization shall occur in not more than 1 ms.

B.3.1.1 Electrical medium characteristics

The nominal cable impedance shall be 75 Ω .

a) Electrical medium connector

The required connector shall have mechanical characteristics conforming to the BNC type. NOTE Due to its higher mechanical stability a 50 Ω BNC-type connector according to IEC 60169-8 is recommended.

The electrical characteristics of the connector shall permit it to be used over the frequency range of the specified interface.

b) Electrical characteristics

The parameters shall be met over the temperature, voltage and lifetime range of the system. Electrical measurements shall be made with the interface terminated with the connector specified above into 75 Ω resistive termination. Full electrical details are provided in table B.1.

Table B.1 – Electrical characteristic specifications for ASI link

Transmitter output characteristics	Units	
Output voltage (p-p)	mV	800 ± 10 %
Deterministic Jitter (DJ) (p-p)	%	10
Random Jitter (RJ) (p-p)	%	8
Return loss	dB	Under consideration
Maximum rise/fall time (20 - 80 %)	ns	1,2

Receiver input characteristics	Units	
Minimum sensitivity (D21.5 idle pattern)	mV	200
Maximum input voltage (p-p)	mV	880
s_{11} (range: 0,1 to 1,0 × bit rate)	dB	-17
Minimum discrete connector return loss (5 MHz - 270 MHz)	dB	-15

The interface shall be coupled to the coaxial system via a transformer.

As measured according to the diagram in figure B.4, the eye opening provided by the transmitter shall be within the mask depicted in figure B.5.

Figure B.4 – Coaxial transmitter test circuit

Figure B.5 – Transmitter eye diagram for jitter

B.3.1.2 Fibre-optic medium characteristics

The fibre-optic medium consists of a single section of fibre-optic cable connecting a transmitter and receiver. The optical medium requirements are satisfied by a fibre with a nominal diameter of $62,5/125 \mu m$ specified by IEC 60793-2, type A1b, with the exceptions noted below. The system can operate, subject to certain restrictions, with a variety of optical fibres; however, performance to this specification and interoperability between vendors, equipment is assured only through the use of the optical fibre specified in this subclause. This specification was developed on the basis of an attenuation value of less than or equal to 1,5 dB/km, when measured at a wavelength of 1 300 nm. Higher loss fibre may be used for shorter fibre cable lengths.

Each optical fibre shall have a zero dispersion wavelength in the range of 1 295 nm to 1 365 nm and a dispersion slope not exceeding 0,110 ps/(km \times m²). Each optical fibre shall have a dispersion characteristic in the range shown in table B.2 below:

Zero dispersion wavelength	Maximum dispersion slope
λ_{0} (nm)	$\mathbf{S_0} \ [\text{ps/(km \times nm^2)}]$
1 295 - 1 300	[λ ₀ - 1 190]/1 000
1 300 - 1 348	0,110
1 348 - 1 365	1 458 - λ ₀]/1 000

Table B.2 – Chromatic dispersion requirements

a) Optical medium connector

Fibre-optic cable connectors shall be of SC type according to IEC 60874-14.

b) Optical characteristics

The transmit interface and receive interface parameters for 270 Mbit/s multimode fibre interface shall be as summarized below. The parameters shall be met over the temperature, voltage, and lifetime range of the system. Optical measurements shall be made with the cable terminated with the optical connector and the optical fibre specified above. Fibre length shall be sufficient to ensure equilibrium mode distribution. Methods of measurements are given in IEC 60728-6.

The complete specification is given in the following table B.3 and associated figure B.6.

Fibre link parameters	Units	
Fibre core diameter	μm	62,5

Table B.3 – Optical characteristic specifications for ASI link

- 33 -

Transmitter parameters	Units	
Туре		LED
Spectral centre wavelength	nm	1 280 (min.)
	nm	1 380 (max.)
Maximum spectral width	nm FWHM	See figure B.6
Average launched power	dBm	-20 (min.)
	dBm	–14 (max.)
Minimum extinction ratio	dB	9
Deterministic Jitter (DJ) (p-p)	%	16
Random Jitter (RJ) (p-p)	%	9
Maximum optical rise/fall time	ns	2,0/2,2

Receiver parameters	Units	
Average received power	dBm	–26 (min.)
	dBm	–14 (max.)
Deterministic Jitter (DJ) (p-p)	%	19
Random Jitter (RJ) (p-p)	%	9
Maximum optical rise/fall time	ns	3,0

Figure B.6 – Spectral width of transmitter

B.3.2 Layer-1: Data encoding

The ASI transmission protocol includes serial encoding rules, special characters, and error control. It uses a DC balanced 8B/10B transmission code. The code maps each 8-bit data byte into a 10-bit code with the following properties: a run length of 4 bits or less and minimal DC offset. This code provides error checking through both invalid transmission code points and the notion of 'running' disparity.

Special characters are defined as extra code points beyond the need to encode a byte of data. One in particular, the comma character (K28.5 in the tables of annex C) is used to establish byte synchronization in the ASI transmission link.

a) Coding requirements

The ASI transmission Layer-1 deals with encoding/decoding aspects which are independent of the transmission medium characteristics. At Layer-1, 8B/10B transmission coding is employed which provides for both a self-checking capability and byte synchronization of the link. The 10B transmission code is defined in terms of "disparity", i.e. the difference in the number of "1" bits and "0" bits in the transmitted serial data stream. It is through the disparity characteristics of the code that DC balance is maintained. Each 8B code point has two entries in the 10B code point map corresponding to the positive and negative disparity representation for that 8B code point. The transmitter is required to maintain the running disparity of the transmitted serial bit stream within ± 1 of a neutral point by selection of the appropriate positive or negative disparity representation of the 10B code to be transmitted. The receiver will check the incoming bit stream for proper running disparity and invalid 10B code points to ensure byte level data integrity.

b) Line coding

The 8B/10B transmission code specified in ISO/IEC 14165-111 shall be the encoding method utilized in ASI interface Layer-1. Annex C is a reproduction of the 8B/10B coding table from that standard and a brief description of the coding process.

NOTE The ASI coding is not invariant to logical inversion of the transmitted bits. Therefore, to ensure correct operation, care must be taken that equipment interface circuitry of the non-inverting type is used.

c) Byte synchronization

The byte alignment synchronization pattern shall be the K28.5 code of the 8B/10B code. The receiver shall present a properly aligned byte stream after the receipt of two K28.5 special characters aligned on the same byte boundary within a 5-byte window. The first byte received after the second K28.5 shall have valid byte alignment.

d) Bit-Error-Rate (BER) performance

The BER shall be less than one part in 10¹³, as measured where data passes from Layer-1 to Layer-2. That is, BER shall be measured where bytes emerge from the 8B/10B decoder.

e) Packet synchronization

At least two synchronization code words (K28.5) shall immediately precede every Layer-2 Transport Packet.

B.3.3 Layer-2: transport protocol

The ASI Transmission Layer-2 standard uses the MPEG-2 Transport Stream Packet as defined in ISO/IEC 13818-1 (Systems) as its basic message unit. Optionally, the RS-coded byte structure as specified in ETS 300 429 is also supported. Transport packets can be transmitted as a block of contiguous bytes (that is, with no intervening sync bytes in the transmitted stream for a single packet) or as individual bytes with intervening sync bytes, or any combination of contiguous bytes and sync bytes. Additionally, the ASI Layer-2 protocol specifies that at least two synchronization words (K28.5) precede each transport packet.

NOTE The MPEG-2 Transport Packet Synchronization word (47H) is included in this Layer-2 packet definition to allow receiving equipment to achieve packet synchronization. The packet synchronization process is not a part of this ASI Transmission protocol definition.

a) Transport requirements

The ASI interface Layer-2 definition employs the MPEG-2 Transport Stream packet syntax with the additional requirement that every Transport Packet shall be preceded with at least two K28.5 synchronization characters. Although 8B/10B receivers can generally maintain synchronization (once initially synchronized) without interspersed synchronization codes, this leading sync byte requirement will allow re-sync within one Transport Packet in the event that a line disturbance causes loss of sync.

b) Transport packet format

Transport packet structure shall conform to the specifications of ISO/IEC 13818-1 and ETS 300 429 for Transport Stream Packets. The packet length can be 188 bytes or 204 bytes.

c) Transport packet timing

Transport packets may be presented to Layer-2 either as a burst of contiguous bytes as shown in figure B.7, or as individual bytes spread out in time as shown in figure B.8. (These figures reflect the result of these types of packet delivery as seen at Layer-1.)

Figure B.7 – Transmission format with data packets (example for 188 bytes)

Figure B.8 – Transmission format with data bursts (example for 188 bytes)

Annex C

(informative)

8B/10B tables

Table C.1 – Valid data characters

Data	Bits	Current RD –	Current RD +	Data	Bits	Current RD –	Current RD +
Byte name	HGF EDCBA	abcdei fghj	abcdei fghj	Byte Name	HGF EDCBA	abcdei fghj	abcdei fghj
D0.0	000 00000	100111 0100	011000 1011	D16.1	001 10000	011011 1001	100100 1001
D1.0	000 00001	011101 0100	100010 1011	D17.1	001 10001	100011 1001	100011 1001
D2.0	000 00010	101101 0100	010010 1011	D18.1	001 10010	010011 1001	010011 1001
D3.0	000 00011	110001 1011	110001 0100	D19.1	001 10011	110010 1001	110010 1001
D4.0	000 00100	110101 0100	001010 1011	D20.1	001 10100	001011 1001	001011 1001
D5.0	000 00101	101001 1011	101001 0100	D21.1	001 10101	101010 1001	101010 1001
D6.0	000 00110	011001 1011	011001 0100	D22.1	001 10110	011010 1001	011010 1001
D7.0	000 00111	111000 1011	000111 0100	D23.1	001 10111	111010 1001	000101 1001
D8.0	000 01000	111001 0100	000110 1011	D24.1	001 11000	110011 1001	001100 1001
D9.0	000 01001	100101 1011	100101 0100	D25.1	001 11001	100110 1001	100110 1001
D10.0	000 01010	010101 1011	010101 0100	D26.1	001 11010	010110 1001	010110 1001
D11.0	000 01011	110100 1011	110100 0100	D27.1	001 11011	110110 1001	001001 1001
D12.0	000 01100	001101 1011	001101 0100	D28.1	001 11100	001110 1001	001110 1001
D13.0	000 01101	101100 1011	101100 0100	D29.1	001 11101	101110 1001	010001 1001
D14.0	000 01110	011100 1011	011100 0100	D30.1	001 11110	011110 1001	100001 1001
D15.0	000 01111	010111 0100	101000 1011	D31.1	001 11111	101011 1001	010100 1001
D16.0	000 10000	011011 0100	100100 1011	D0.2	010 00000	100111 0101	011000 0101
D17.0	000 10001	100011 1011	100011 0100	D1.2	010 00001	011101 0101	100010 0101
D18.0	000 10010	010011 1011	010011 0100	D2.2	010 00010	101101 0101	010010 0101
D19.0	000 10011	110010 1011	110010 0100	D3.2	010 00011	110001 0101	110001 0101
D20.0	000 10100	001011 1011	001011 0100	D4.2	010 00100	110101 0101	001010 0101
D21.0	000 10101		101010 0100	D5.2	010 00101	101001 0101	101001 0101
D22.0	000 10110		011010 0100	D6.2	010 00110	011001 0101	011001 0101
D23.0	000 10111	111010 0100	000101 1011	D7.2		111000 0101	000111 0101
D24.0	000 11000	110011 0100		D8.2	010 01000	111001 0101	
D25.0	000 11001		010110 0100	D9.2	010 01001	010101 0101	
D20.0	000 11010	110110 0100	001001 1011	D10.2	010 01010	110100 0101	110100 0101
D27.0	000 11011	001110 1011	001001 1011	D11.2	010 01011	001101 0101	001101 0101
D20.0	000 11100	101110 0100	010001 1011	D12.2	010 01100	101100 0101	101100 0101
D23.0	000 11101	011110 0100	100001 1011	D13.2	010 01101	011100 0101	011100 0101
D31.0	000 11110	101011 0100	010100 1011	D14.2	010 01110	010111 0101	101000 0101
D0 1	001 00000	100111 1001	011000 1001	D16.2	010 01111	011011 0101	100100 0101
D0.1	001 00000	011101 1001	100010 1001	D17 2	010 10000	100011 0101	100011 0101
D2 1	001 00010	101101 1001	010010 1001	D18.2	010 10001	010011 0101	010011 0101
D3 1	001 00011	110001 1001	110001 1001	D19.2	010 10010	110010 0101	110010 0101
D4 1	001 00100	110101 1001	001010 1001	D20.2	010 10100	001011 0101	001011 0101
D5 1	001 00101	101001 1001	101001 1001	D21 2	010 10101	101010 0101	101010 0101
D6 1	001 00110	011001 1001	011001 1001	D21.2	010 10110	011010 0101	011010 0101
D7.1	001 00111	111000 1001	000111 1001	D23.2	010 10111	111010 0101	000101 0101
D8 1	001 01000	111001 1001	000110 1001	D24 2	010 11000	110011 0101	001100 0101
D9.1	001 01001	100101 1001	100101 1001	D25.2	010 11001	100110 0101	100110 0101
D10.1	001 01010	010101 1001	010101 1001	D26.2	010 11010	010110 0101	010110 0101
D11.1	001 01011	110100 1001	110100 1001	D27.2	010 11011	110110 0101	001001 0101
D12.1	001 01100	001101 1001	001101 1001	D28.2	010 11100	001110 0101	001110 0101
D13.1	001 01101	101100 1001	101100 1001	D29.2	010 11101	101110 0101	010001 0101
D14.1	001 01110	011100 1001	011100 1001	D30.2	010 11110	011110 0101	100001 0101
D15.1	001 01111	010111 1001	101000 1001	D31.2	010 11111	101011 0101	010100 0101

Table C.1 (continued)

Data	Bits	Current RD –	Current RD +	Data	Bits	Current RD –	Current RD +
Byte Name	HGF EDCBA	abcdei fghj	abcdei fghj	Byte Name	HGF EDCBA	abcdei fghj	abcdei fghj
D0.3	011 00000	100111 0011	011000 1100	D16.4	100 10000	011011 0010	100100 1101
D1.3	011 00001	011101 0011	100010 1100	D17.4	100 10001	100011 1101	100011 0010
D2.3	011 00010	101101 0011	010010 1100	D18.4	100 10010	010011 1101	010011 0010
D3.3	011 00011	110001 1100	110001 0011	D19.4	100 10011	110010 1101	110010 0010
D4.3	011 00100	110101 0011	001010 1100	D20.4	100 10100	001011 1101	001011 0010
D5.3	011 00101	101001 1100	101001 0011	D21.4	100 10101	101010 1101	101010 0010
D6.3	011 00110	011001 1100	011001 0011	D22.4	100 10110	011010 1101	011010 0010
D7.3	011 00111	111000 1100	000111 0011	D23.4	100 10111	111010 0010	000101 1101
D8.3	011 01000	111001 0011	000110 1100	D24.4	100 11000	110011 0010	001100 1101
D9.3	011 01001	100101 1100	100101 0011	D25.4	100 11001	100110 1101	100110 0010
D10.3	011 01010	010101 1100	010101 0011	D26.4	100 11010	010110 1101	010110 0010
D11.3	011 01011	110100 1100	110100 0011	D27.4	100 11011	110110 0010	001001 1101
D12.3	011 01100	001101 1100	001101 0011	D28.4	100 11100	001110 1101	001110 0010
D13.3	011 01101	101100 1100	101100 0011	D29.4	100 11101	101110 0010	010001 1101
D14.3	011 01110	011100 1100	011100 0011	D30.4	100 11110	011110 0010	100001 1101
D15.3	011 01111	010111 0011	101000 1100	D31.4	100 11111	101011 0010	010100 1101
D16.3	011 10000	011011 0011	100100 1100	D0.5	101 00000	100111 1010	011000 1010
D17.3	011 10001	100011 1100	100011 0011	D1.5	101 00001	011101 1010	100010 1010
D18.3	011 10010	010011 1100	010011 0011	D2.5	101 00010	101101 1010	010010 1010
D19.3	011 10011	110010 1100	110010 0011	D3.5	101 00011	110001 1010	110001 1010
D20.3	011 10100	001011 1100	001011 0011	D4.5	101 00100	110101 1010	001010 1010
D21.3	011 10101	101010 1100	101010 0011	D5.5	101 00101	101001 1010	101001 1010
D22.3	011 10110	011010 1100	011010 0011	D6.5	101 00110	011001 1010	011001 1010
D23.3	011 10111	111010 0011	000101 1100	D7.5	101 00111	111000 1010	000111 1010
D24.3	011 11000	110011 0011	001100 1100	D8.5	101 01000	111001 1010	000110 1010
D25.3	011 11001	100110 1100	100110 0011	D9.5	101 01001	100101 1010	100101 1010
D26.3	011 11010	010110 1100	010110 0011	D10.5	101 01010	010101 1010	010101 1010
D27.3	011 11011	110110 0011	001001 1100	D11.5	101 01011	110100 1010	110100 1010
D28.3	011 11100	001110 1100	001110 0011	D12.5	101 01100	001101 1010	001101 1010
D29.3	011 11101	101110 0011	010001 1100	D13.5	101 01101	101100 1010	101100 1010
D30.3	011 11110	011110 0011	100001 1100	D14.5	101 01110	011100 1010	011100 1010
D31.3	011 11111	101011 0011	010100 1100	D15.5	101 01111	010111 1010	101000 1010
D0.4	100 00000	100111 0010	011000 1101	D16.5	101 10000	011011 1010	100100 1010
D1.4	100 00001	011101 0010	100010 1101	D17.5	101 10001	100011 1010	100011 1010
D2.4	100 00010	101101 0010	010010 1101	D18.5	101 10010	010011 1010	010011 1010
D3.4	100 00011	110001 1101	110001 0010	D19.5	101 10011	110010 1010	110010 1010
D4.4	100 00100	110101 0010	001010 1101	D20.5	101 10100	001011 1010	001011 1010
D5.4	100 00101	101001 1101	101001 0010	D21.5	101 10101	101010 1010	101010 1010
D6.4	100 00110	011001 1101	011001 0010	D22.5	101 10110	011010 1010	011010 1010
D7.4	100 00111	111000 1101	000111 0010	D23.5	101 10111	111010 1010	000101 1010
D8.4	100 01000	111001 0010	000110 1101	D24.5	101 11000	110011 1010	001100 1010
D9.4	100 01001	100101 1101	100101 0010	D25.5	101 11001	100110 1010	100110 1010
D10.4	100 01010	010101 1101	010101 0010	D26.5	101 11010	010110 1010	010110 1010
D11.4	100 01011	110100 1101	110100 0010	D27.5	101 11011	110110 1010	001001 1010
D12.4	100 01100	001101 1101	001101 0010	D28.5	101 11100	001110 1010	001110 1010
D13.4	100 01101	101100 1101	101100 0010	D29.5	101 11101	101110 1010	010001 1010
D14.4	100 01110	011100 1101	011100 0010	D30.5	101 11110	011110 1010	100001 1010
D15.4	100 01111	010111 0010	101000 1101	D31.5	101 11111	101011 1010	010100 1010

Data	Bits	Current RD –	Current RD +	Data	Bits	Current RD –	Current RD +
Byte Name	HGF EDCBA	abcdei fghj	abcdei fghj	Byte Name	HGF EDCBA	abcdei fghj	abcdei fghj
D0.6	110 00000	100111 0110	011000 0110	D0.7	111 00000	100111 0001	011000 1110
D1.6	110 00001	011101 0110	100010 0110	D1.7	111 00001	011101 0001	100010 1110
D2.6	110 00010	101101 0110	010010 0110	D2.7	111 00010	101101 0001	010010 1110
D3.6	110 00011	110001 0110	110001 0110	D3.7	111 00011	110001 1110	110001 0001
D4.6	110 00100	110101 0110	001010 0110	D4.7	111 00100	110101 0001	001010 1110
D5.6	110 00101	101001 0110	101001 0110	D5.7	111 00101	101001 1110	101001 0001
D6.6	110 00110	011001 0110	011001 0110	D6.7	111 00110	011001 1110	011001 0001
D7.6	110 00111	111000 0110	000111 0110	D7.7	111 00111	111000 1110	000111 0001
D8.6	110 01000	111001 0110	000110 0110	D8.7	111 01000	111001 0001	000110 1110
D9.6	110 01001	100101 0110	100101 0110	D9.7	111 01001	100101 1110	100101 0001
D10.6	110 01010	010101 0110	010101 0110	D10.7	111 01010	010101 1110	010101 0001
D11.6	110 01011	110100 0110	110100 0110	D11.7	111 01011	110100 1110	110100 1000
D12.6	110 01100	001101 0110	001101 0110	D12.7	111 01100	001101 1110	001101 0001
D13.6	110 01101	101100 0110	101100 0110	D13.7	111 01101	101100 1110	101100 1000
D14.6	110 01110	011100 0110	011100 0110	D14.7	111 01110	011100 1110	011100 1000
D15.6	110 01111	010111 0110	101000 0110	D15.7	111 01111	010111 0001	101000 1110
D16.6	110 10000	011011 0110	100100 0110	D16.7	111 10000	011011 0001	100100 1110
D17.6	110 10001	100011 0110	100011 0110	D17.7	111 10001	100011 0111	100011 0001
D18.6	110 10010	010011 0110	010011 0110	D18.7	111 10010	010011 0111	010011 0001
D19.6	110 10011	110010 0110	110010 0110	D19.7	111 10011	110010 1110	110010 0001
D20.6	110 10100	001011 0110	001011 0110	D20.7	111 10100	001011 0111	001011 0001
D21.6	110 10101	101010 0110	101010 0110	D21.7	111 10101	101010 1110	101010 0001
D22.6	110 10110	011010 0110	011010 0110	D22.7	111 10110	011010 1110	011010 0001
D23.6	110 10111	111010 0110	000101 0110	D23.7	111 10111	111010 0001	000101 1110
D24.6	110 11000	110011 0110	001100 0110	D24.7	111 11000	110011 0001	001100 1110
D25.6	110 11001	100110 0110	100110 0110	D25.7	111 11001	100110 1110	100110 0001
D26.6	110 11010	010110 0110	010110 0110	D26.7	111 11010	010110 1110	010110 0001
D27.6	110 11011	110110 0110	001001 0110	D27.7	111 11011	110110 0001	001001 1110
D28.6	110 11100	001110 0110	001110 0110	D28.7	111 11100	001110 1110	001110 0001
D29.6	110 11101	101110 0110	010001 0110	D29.7	111 11101	101110 0001	010001 1110
D30.6	110 11110	011110 0110	100001 0110	D30.7	111 11110	011110 0001	100001 1110
D31.6	110 11111	101011 0110	010100 0110	D31.7	111 11111	101011 0001	010100 1110

Table C.1 (continued)

Table C.2 – Valid special characters

Special	Current RD –	Current RD +
N	abcdei fghj	abcdei fghj
K28.0	001111 0100	110000 1011
K28.1	001111 1001	110000 0110
K28.2	001111 0101	110000 1010
K28.3	001111 0011	110000 1100
K28.4	001111 0010	110000 1101
K28.5	001111 1010	110000 0101
K28.6	001111 1000	110000 1001
K23.7	111010 1000	000101 0111
K27.7	110110 1000	001001 0111
K29.7	101110 1000	010001 0111
K30.7	011110 1000	100001 0111

The terminology of encoding used in table C.1 is described as follows:

Data byte	d7	d6	d5		d4	d3	d2	d1	d0		
8B information character	Н	G	F		Е	D	С	В	А		
10B transmission character	а	b	С	d	е	i		f	g	h	j

Bit a is transmitted first. Each transmission character in the table (valid data character) is associated with a name Dx.y, where

x is the decimal value of the bits EDCBA

 $(x)_{dec} \equiv (EDCBA)_{bin}$

y is the decimal value of the bits HGF

 $(y)_{dec} \equiv (HGF)_{bin}$

In addition there are further 10B code words named Valid Special Characters Kx.y (see table C.2). Only the Special Character: K28.5 (Comma) is here used as stuffing data and for byte synchronization.

Example

Encoding of the MPEG synchronous byte $47_{hex} = 0100\ 0111$ (Data byte name D7.2).

8B information character	0	1	0		0	0	1	1	1		
10B transmission character RD ₊	1	1	1	0	0	0		0	1	0	1
10B transmission character RD_{-}	0	0	0	1	1	1		0	1	0	1

Encoding depends on the parameter RD (Running Disparity). RD determines the ratio of zeros and ones during the transmission. Switching between the code words depending on the RD in the transmitter and receiver maintains the DC balance. RD is calculated based on two sub-blocks: bits abcdei and bits fghj of the transmission character. RD at the beginning of a sub-block is the calculated RD of the last sub-block. RD at the end of any sub-block is positive, if the sub-block contains more ones than zeros, or if the sub-block is 000111 or 0011. RD at the end of any sub-block is 111000 or 1100. Otherwise, the last RD is taken. Initialization of the transmitter is done with negative RD; the transmitter may assume either the positive or the negative RD. Independent of the validity of the transmission characters.

The redundancy of the 8B/10B transmission code can be used for error detection.

Code violations may result from a prior error which altered the RD of the bit stream, causing a detectable error at the current transmission character. The example in table C.3 shows this behaviour.

	RD	Character 1	RD	Character 2	RD	Character 3	RD
Transmitted character stream	-	D21.1	-	D10.2	-	D23.5	+
Transmitted bit stream	-	101010 1001	-	010101 0101	-	111010 1010	+
Bit stream after error	-	101010 1011	+	010101 0101	+	111010 1010	+
Decoded character stream	_	D21.0	+	D10.2	+	Code violation	+

Table C.3 – Delayed code violation example

Annex D

(informative)

Implementation guidelines and clock recovery from the Synchronous Serial Interface (SSI)

D.1 Example of implementation of the SSI interface

Hardware implementation of the proposed SSI interface was undertaken in order to validate the serial transmission in a real MPEG-2 chain including TS multiplexer, QPSK modulator/demodulator, QAM modulator/demodulator.

It consists of two adapter modules:

- an emitting module which transforms the parallel interface, such as described in 4.1, into the serial mode;
- a receiving module which performs the reverse function in recovering the Transport Packets conforming to the parallel interface.

IEC 2207/2000

D.2 Emitting module

The main functions are

- parallel-to-serial conversion;
- generation of the serial clock by a multiplication by 8 of the parallel clock;
- Biphase-Mark encoding.

As an example, using a Manchester Biphase Mark encoder:

- LED driver for optical transmission;
- cable driver for coaxial transmission.

- 41 -

Figure D.2 – Example of implementation of an emitting module

D.3 Receiving module

The byte synchronization process in the receiving equipment has to take into account the two possible packet formats, i.e. the 188-byte packet format and the 204-byte packet format.

An automatic byte synchronization is performed as follows:

- a first attempt of synchronization can be done on the hypothesis of 188-byte packet format;
- if the first attempt is unsuccessful, the synchronization is done on the 204-byte packet format.

The main functions are:

- cable equalizer for coaxial reception;
- optical receiver for optical reception;
- clock recovering and Biphase Mark decoding.

As an example, using a Manchester Biphase Mark decoder:

- byte synchronization and deserialization.

Figure D.3 – Example of implementation of a receiving module

A receiving module capable of receiving a Transport Stream of any frequency within a certain predefined frequency range can be designed according to the following principle:

- a signal which indicates if the PLL is locked or not has to be present;
- if the PLL is not locked, the value of the reference clock is changed step by step until the PLL is locked.

D.4 Physical media

Different physical media can be used.

a) Coaxial cable

With the requirements given in A.3.1.1, the following typical links can be handled:

- for coaxial cables equivalent to RG 59 BU: a maximum distance of 100 m;
- for coaxial cables equivalent to RG 216 U: a maximum distance of 220 m.
- b) Optical fibre

Multimode or single-mode: several km, depending on the configuration.

Annex E

(informative)

Implementation guidelines and deriving clocks from the MPEG-2 packets for the ASI

The ASI receiver generally is the input part of a complex device such as a modulator, a multiplexer or an adapter for telecommunications networks. The MPEG specification offers different possibilities for the regeneration of a valid MPEG Transport Stream.

Figure E.1 shows two applications: the Transport Stream clock either is determined by the subsequent equipment or extracted from the transmitted signal itself.

Concerning clock generation from an ASI data stream, information on the PLL circuitry is given in the following.

Figure E.1 – ASI link with output clock from following application or alternative with clock recovery

The induced jitter from the ASI itself is only about ± 40 ns. Consequently, there is little need for clock/rate recovery in most distribution systems. However, in those circumstances which may require transport rate recovery or smoothing, the following example illustrates the feasibility of locking to the transport rate via the packet sync byte.

In order to ensure that the channel's delivery rate frequency lock loop is useful for both packets which are delivered in bursts and those which are linearly distributed, it is suggested that the loop use the packet sync byte for timing. For this example, it is assumed that the MPEG-2 packets arrive at a nominal 10 kHz rate corresponding to a bit rate of 15,04 Mbit/s. By phase locking to the sync byte arrival, a packet clock and a bit clock can be derived. The circuit to be used is a second-order phase-locked loop (PLL) as shown in figure E.2. The sync byte detector produces a time error between the detected and the hypothesized arrival times. This error drives a second-order loop filter which in turn controls a VCO or a PLL that operates near the 10 kHz rate. This clock can be multiplied up by 1 504 to generate a bit-rate clock.

Figure E.2 – Phase Locked Loop for clock generation

It is also assumed in this simplified example that the transport rate shall be known in order to set the loop multiplier, due to the wide range of rates which shall be tracked. Of course, MPEG clock timing constraints are also assumed.

A FIFO buffer is included in this example in order to

- provide a smoothing buffer for the output rate control mechanism;
- provide a clock acquisition buffer to account for the initial rate differential between input and output as the PLL adapts to the changing transport rates with possibly different (up to 60×10^6) rate clocks;
- buffer the packet jitter which may be introduced by the interface or attached equipment (likely to be very small).

Table E.1 contains a mathematical analysis and simulation of the difference equations comprising a digital implementation of the circuit in figure E.2.

The assumptions are that the arrival rate is 10 kHz with a \pm 50 µs uniform jitter (θ_n). The loop constants *K1* and *K2* are chosen to make the damping factor 0,707 and the loop bandwidth 52,5 Hz, assuming a 10 kHz sample rate. The variable *ACCT*_n is the accumulator in the loop filter, and it converges to the time interval between arriving sync bytes. Consequently, its inverse is the rate at which sync bytes arrive. The first curve shows this rate converging to 10 kHz after about 700 samples (0,07 s). The frequency accuracy is shown by computing the mean (*A*_{mean}) and standard deviation (*A*_{sd}) of this inverse. The next set of calculations show the clock accuracy in seconds, with the standard deviation being about 19 ns. The deviation, or jitter, may be traded for acquisition time, as an MPEG-2 decoder supposes more than 19 ns of apparent packet jitter.

Table E.2 shows a mathematical analysis and simulation for the circuit of figure E.2 operating with a delivery rate that jitters at ± 2 ms. Note that the loop still acquires synchronization in about 700 samples, or 0,07 s. The accuracy of the derived clock is depicted by *Amean* and *Asd* for the frequency, and *Tmean* and *Tsd* for the time. The standard deviation of the time is now 765 ns, or about 40 times the results of table E.1. This is still very small relative to the currently suggested real-time jitter constraint for MPEG-2 decoders.

- 45 -

Table E.1 – Analysis of 10 kHz clock generating loop, ±50 µs jitter

– 46 –

Table E.2 – Analysis of 10kHz clock generating loop ±2 ms jitter

Annex F

(informative)

Implementation guidelines and specifications for the 3-Wire Interface (3WI)

The input interface of a multiplexing system is used to input single-program transport streams (SPTS) or multi-program transport stream (MPTS) coming from encoders, digital satellite/terrestrial broadcast receivers, terminating equipment for digital-program distribution circuits, video servers, etc. However, operators may use the input interface to input information signals other than audiovisual program signals. Input signals to be multiplexed shall basically consist of an input audiovisual data signal, input clock signal and enable signal/synchronizing signal required. They shall be configured with 204 bytes or 108 bytes, and their specifications shall be as given in table F.1. The input clock signal associated with each stream shall not be used as the output clock signal for the multiplexed stream.

The interface for the output signal is used to feed a multi-program transport stream (MPTS) generated by multiplexing system into the scrambling encoder for conditional access or QAM modulator. The multiplexed output signal shall basically consist of a multiplexed audiovisual data signal, a clock signal and an enable/synchronizing. The specifications for those signals shall be as given in table F.2.

The outputted transport stream may contain various TS packets multiplexed together according to the types of services provided to subscribers. Such TS packets include those used to transmit programs, service information containing MPEG-2 PSI, cable-operator-specific information for subscribers and related information for conditional access. The sum total of the transmission rate of these packets shall not exceed the rate of multiplexed data signals specified in table F.2. The rate difference between actual transmission rate and specified rate shall be adapted by stuffing null packets in the multiplex system to always maintain the specified rate of multiplexed data signals.

Input data signal	Transmission rate:	Max. 31,644 Mbit/s (204-byte configuration) Max. 29,1621 Mbit/s (188-byte configuration)	
	Logical format:	MPEG-2 transport stream Bit serial MSB first	
Input clock signal	Bit timing clock input		
Enable/synchronizing signals	Enable signal:	(204-byte configuration)	
	"high" level during a 188-byte period including the synchronizing byte, a "low" level during the remaining 16-byte period		
	Synchronizing signal: of a TS packet	(188-byte configuration) "high" level at the first bit	
Signal amplitude	TTL level/75 Ω termina	tion	
Connector	$BNC \times 3$ (data, clock, a	nd enable/synchronization)	
Required phase relationships between signals	Shall be as shown in fig	gure F.1.	

Table F 1 -	Specifications	for input	signals to	he multinlexed
	opcontoutions	ioi input	Signals to	be manipiered

- 48 -

NOTE The enable signal shall maintain the "high" level during a 188-byte period including the synchronizing byte.

Item	Specification	Remarks
Tsu	16 ns (min.)	Set-up time
Th	2 ns (min.)	Hold time
Тсу	31 ns (min.)	32,26 MHz (max.)
Tch	12 ns (min.)	High-level period of the clock pulse
Tcl	12 ns (min.)	Low-level period of the clock pulse

204-byte configuration

NOTE The dummy data shall not contain 0×47 byte (the same value as the synchronizing byte).

188-byte configuration		
	← 188×8= 1 504 bits →	4
Data signal	TS packet(188×8)	TS packet (188×8)
(Enlarged)	0 × 47	0×47
Synchronizing signal		<u> </u>

NOTE Use of the synchronizing signal is optional.

IEC 2215/2000

Figure F.1 – Required phase relationships between TTL-level serial signals

Multiplexed data signal	Transmission rate:	31,644 Mbit/s \pm 20 \times 10 ⁶ (204-byte configuration)		
	Logical format:	MPEG-2 transport stream		
	Signal type:	Bit serial, MBS first		
Multiplexed clock signal	Bit timing clock output			
Enable signal	"High" level during a 188-byte period including the synchronizing byte and "low" level during the remaining 16-byte period			
Signal amplitude	TTL level/75 Ω termination			
Connector	BNC \times 3 (data, clock and enable)			
Required phase relationships between signals	Shall be as shown in fig	gure F.2.		

Table F.2 – Specifications for multiplexed output signal

- 49 -

NOTE The enable signal shall be "high" level during a 188-byte period including the synchronizing byte.

Item	Specification	Remarks
Tsu	16 ns (min.)	Set-up time
Th	2 ns (min.)	Hold time
Тсу	31,6 ns (typ.)	31,644 MHz (typ.)
Tch	12 ns (min.)	High-level period of clock pulse
Tcl	12 ns (min.)	Low-level period of clock pulse

Figure F.2 – Required phase relationships between TTL-level serial signals

Bibliography

- 50 -

[1]	DVB-TM 1449 Rev 1	11 July 1995	Interfaces for CATV/SMATV headends and similar professional equipment (10th working draft) DVB Project Office c/o European Broadcasting Union 17 A Ancienne Route CH-1218 Grand Saconnex / Geneva Switzerland
[2]	EIA/TIA SP 3357	Dec. 1994	Electrical Characteristics of Low Voltage Differential Signaling (LDVS) Interface Circuits
[3]	ANSI B1.1	1982	Unified Inch Screw Threads (UN and UNR Thread Form) American National Standard (American National Standards Institute 11 W 42nd Street, New York, New York 10036)
[4]	JCTEA STD-002-1.0	1997	Multiplex System for Digital Cable Television
[5]	EN 188101	1995	FS: Single-mode dispersion unshifted (B1.1) optical fibre
[6]	EN 188201	1995	A1a graded index multimode optical fibres
[7]	ETS 300 473	1995	Digital broadcasting systems for television, sound and data services, Satellite Master Antenna Television (SMATV) distribution systems

The IEC would like to offer you the best quality standards possible. To make sure that we continue to meet your needs, your feedback is essential. Would you please take a minute to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission 3, rue de Varembé 1211 Genève 20 Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

Nicht frankieren Ne pas affranchir

Non affrancare No stamp required

RÉPONSE PAYÉE SUISSE

Customer Service Centre (CSC) International Electrotechnical Commission 3, rue de Varembé 1211 GENEVA 20 Switzerland

Q1	Please report on ONE STANDARD and ONE STANDARD ONLY . Enter the exact number of the standard: (e.g. 60601-1-1)			If you ticked NOT AT ALL in Question 5 the reason is: <i>(tick all that apply)</i>		
		,		standard is out of date		
				standard is incomplete		
				standard is too academic		
Q2	Please tell us in what capacity(ies) yo)U		standard is too superficial		
	bought the standard (tick all that appl	y).		title is misleading		
				I made the wrong choice		
	purchasing agent			other		
	librarian					
	researcher					
	design engineer		07	Please assess the standard in the		
	safety engineer		Q 1	following categories, using		
	testing engineer			the numbers:		
	marketing specialist			(1) unacceptable,		
	other			(2) below average, (3) average		
				(4) above average.		
03	I work for/in/ac a:			(5) exceptional,		
Q.)	(tick all that apply)			(6) not applicable		
	(timeliness		
	manufacturing			quality of writing	•••••	
	consultant			technical contents		
	government			logic of arrangement of contents		
	test/certification facility			tables, charts, graphs, figures		
	public utility			other		
	education					
	military					
	other		Q8	I read/use the: (tick one)		
04	This standard will be used for:			French text only		
44	(tick all that apply)			English text only		
				both English and French texts		
	general reference			both English and French texts		
	product research					
	product design/development					
	specifications		Q9	Please share any comment on any		
	tenders			aspect of the IEC that you would like		
	quality assessment			us to know.		
	certification					
	technical documentation					
	thesis					
	manufacturing					
	other					
Q5	This standard meets my needs:					
	(tick one)					
	pot at all					
	noral an					
	foirly well					
	σλαυτιγ					

LICENSED TO MECON Limited. - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

ICS 33.040.40; 33.060.40; 35.110