ames Madison. No further reproduction or distribution is permitted. Uncontrolled when print



# IEC 60534-8-3

Edition 3.0 2010-11

# INTERNATIONAL STANDARD

# NORME INTERNATIONALE

Industrial-process control valves – Part 8-3: Noise considerations – Control valve aerodynamic noise prediction method

Vannes de régulation des processus industriels – Partie 8-3: Considérations sur le bruit – Méthode de prédiction du bruit aérodynamique des vannes de régulation





# THIS PUBLICATION IS COPYRIGHT PROTECTED

#### Copyright © 2010 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur. Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch Web: www.iec.ch

#### About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

#### About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

Catalogue of IEC publications: <u>www.iec.ch/searchpub</u>

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.

IEC Just Published: <u>www.iec.ch/online\_news/justpub</u>

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

Electropedia: <u>www.electropedia.org</u>

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

Customer Service Centre: <u>www.iec.ch/webstore/custserv</u>

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: <u>csc@iec.ch</u> Tel.: +41 22 919 02 11

Fax: +41 22 919 03 00

#### A propos de la CEI

La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

#### A propos des publications CEI

Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue des publications de la CEI: <u>www.iec.ch/searchpub/cur\_fut-f.htm</u>

Le Catalogue en-ligne de la CEI vous permet d'effectuer des recherches en utilisant différents critères (numéro de référence, texte, comité d'études,...). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.

Just Published CEI: <u>www.iec.ch/online\_news/justpub</u>

Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles publications parues. Disponible en-ligne et aussi par email.

Electropedia: <u>www.electropedia.org</u>

Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International en ligne.

Service Clients: <u>www.iec.ch/webstore/custserv/custserv\_entry-f.htm</u>

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du Service clients ou contactez-nous:

Email: <u>csc@iec.ch</u> Tél.: +41 22 919 02 11

Fax: +41 22 919 03 00

Edition 3.0 2010-11

# INTERNATIONAL STANDARD

NORME INTERNATIONALE

Industrial-process control valves – Part 8-3: Noise considerations – Control valve aerodynamic noise prediction method

Vannes de régulation des processus industriels – Partie 8-3: Considérations sur le bruit – Méthode de prédiction du bruit aérodynamique des vannes de régulation

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE CODE PRIX

ISBN 978-2-88912-241-7

X

ICS 17.140.20; 23.060.40; 25.040.40

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

# CONTENTS

| FO  | REWO    | DRD                                                                         | 4      |
|-----|---------|-----------------------------------------------------------------------------|--------|
| INT | RODI    | JCTION                                                                      | 6      |
| 1   | Scop    | e                                                                           | 7      |
| 2   | Norm    | ative references                                                            | 7      |
| 3   | Term    | s and definitions                                                           | 8      |
| 4   | Symb    | ools                                                                        | 9      |
| 5   | Valve   | es with standard trim                                                       | 12     |
|     | 5.1     | Pressures and pressure ratios                                               | 12     |
|     | 5.2     | Regime definition                                                           | 13     |
|     | 5.3     | Preliminary calculations                                                    | 14     |
|     |         | 5.3.1 Valve style modifier $F_{d}$                                          | 14     |
|     |         | 5.3.2 Jet diameter D <sub>j</sub>                                           | 14     |
|     |         | 5.3.3 Inlet fluid density $\rho_1$                                          | 14     |
|     | 5.4     | Internal noise calculations                                                 | 15     |
|     |         | 5.4.1 Calculations common to all regimes                                    | 15     |
|     |         | 5.4.2 Regime dependent calculations                                         | 16     |
|     |         | 5.4.3 Downstream calculations                                               | 18     |
|     |         | 5.4.4 Valve internal sound pressure calculation at pipe wall                | 19     |
|     | 5.5     | Pipe transmission loss calculation                                          | 20     |
|     | 5.6     | External sound pressure calculation                                         | 21     |
| ~   | 5.7     | Calculation flow chart                                                      | 22     |
| 6   | vaive   | es with special trim design                                                 | 22     |
|     | 6.1     |                                                                             | 22     |
|     | 6.2     | Single stage, multiple flow passage trim                                    | 22     |
|     | 6.3     | steps)                                                                      | 23     |
|     | 6.4     | Multipath, multistage trim (two or more passages and two or more stages)    | 25     |
| 7   | Valve   | es with higher outlet Mach numbers                                          | 27     |
|     | 7.1     | General                                                                     | 27     |
|     | 7.2     | Calculation procedure                                                       | 27     |
| 8   | Valve   | es with experimentally determined acoustical efficiency factors             | 28     |
| 9   |         | pination of noise produced by a control valve with downstream installed two | 29     |
| Δnr |         | (informative) Calculation examples                                          | <br>31 |
| Dih |         |                                                                             | 16     |
| מום | nogra   | Driy                                                                        | 40     |
| Fig | ure 1   | - Single stage, multiple flow passage trim                                  | 23     |
| Fig | ure 2   | - Single flow path, multistage pressure reduction trim                      | 24     |
| Fig | ure 3   | - Multipath, multistage trim (two or more passages and two or more stages)  | 26     |
| Fig | ure 4   | - Control valve with downstream installed two fixed area stages             | 30     |
| Tah | ole 1 - | Numerical constants N                                                       | 15     |
| Tak |         | Typical values of value style modifier F. (full size trim)                  | 15     |
| Tak | 10 2 -  | • Overview of regime dependent equations                                    | 17     |

| Table 4 – Typical values of $A_\eta$ and $St_p$                   | . 18 |
|-------------------------------------------------------------------|------|
| Table 5 – Indexed frequency bands                                 | . 19 |
| Table 6 – Frequency factors $G_X$ (f) and $G_y$ (f)               | . 21 |
| Table 7 – "A" weighting factor at frequency <i>f</i> <sub>i</sub> | . 22 |

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

# INTERNATIONAL ELECTROTECHNICAL COMMISSION

# INDUSTRIAL-PROCESS CONTROL VALVES -

# Part 8-3: Noise considerations – Control valve aerodynamic noise prediction method

# FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60534-8-3 has been prepared by subcommittee 65B: Measurements and control devices, of IEC technical committee 65: Industrial-process measurement, control and automation.

This third edition cancels and replaces the second edition published in 2000. This edition constitutes a technical revision.

The significant technical changes with respect to the previous edition are as follows:

- predicting noise as a function of frequency;
- using laboratory data to determine the acoustical efficiency factor.

The text of this standard is based on the following documents:

| FDIS         | Report on voting |
|--------------|------------------|
| 65B/765/FDIS | 65B/780/RVD      |

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all the parts of the IEC 60534 series, under the general title *Industrial-process control valves* can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

# INTRODUCTION

The mechanical stream power as well as acoustical efficiency factors are calculated for various flow regimes. These acoustical efficiency factors give the proportion of the mechanical stream power which is converted into internal sound power.

This method also provides for the calculation of the internal sound pressure and the peak frequency for this sound pressure, which is of special importance in the calculation of the pipe transmission loss.

At present, a common requirement by valve users is the knowledge of the sound pressure level outside the pipe, typically 1 m downstream of the valve or expander and 1 m from the pipe wall. This standard offers a method to establish this value.

The equations in this standard make use of the valve sizing factors as used in IEC 60534-1 and IEC 60534-2-1.

In the usual control valve, little noise travels through the wall of the valve. The noise of interest is only that which travels downstream of the valve and inside of the pipe and then escapes through the wall of the pipe to be measured typically at 1 m downstream of the valve body and 1 m away from the outer pipe wall.

Secondary noise sources may be created where the gas exits the valve outlet at higher Mach numbers. This method allows for the estimation of these additional sound levels which can then be added logarithmically to the sound levels created within the valve.

Although this prediction method cannot guarantee actual results in the field, it yields calculated predictions within  $5 \, dB(A)$  for the majority of noise data from tests under laboratory conditions (see IEC 60534-8-1). The current edition has increased the level of confidence of the calculation. In some cases the results of the previous editions were more conservative.

The bulk of the test data used to validate the method was generated using air at moderate pressures and temperatures. However, it is believed that the method is generally applicable to other gases and vapours and at higher pressures. Uncertainties become greater as the fluid behaves less perfectly for extreme temperatures and for downstream pressures far different from atmospheric, or near the critical point. The equations include terms which account for fluid density and the ratio of specific heat.

NOTE Laboratory air tests conducted with up to 1 830 kPa (18,3 bar) upstream pressure and up to 1 600 kPa (16,0 bar) downstream pressure and steam tests up to 225 °C showed good agreement with the calculated values.

A rigorous analysis of the transmission loss equations is beyond the scope of this standard. The method considers the interaction between the sound waves existing in the pipe fluid and the first coincidence frequency in the pipe wall. In addition, the wide tolerances in pipe wall thickness allowed in commercial pipe severely limit the value of the very complicated mathematical approach required for a rigorous analysis. Therefore, a simplified method is used.

Examples of calculations are given in Annex A.

This method is based on the IEC standards listed in Clause 2 and the references given in the Bibliography.

# INDUSTRIAL-PROCESS CONTROL VALVES -

# Part 8-3: Noise considerations – Control valve aerodynamic noise prediction method

# 1 Scope

This part of IEC 60534 establishes a theoretical method to predict the external soundpressure level generated in a control valve and within adjacent pipe expanders by the flow of compressible fluids.

This method considers only single-phase dry gases and vapours and is based on the perfect gas laws.

This standard addresses only the noise generated by aerodynamic processes in valves and in the connected piping. It does not consider any noise generated by reflections from external surfaces or internally by pipe fittings, mechanical vibrations, unstable flow patterns and other unpredictable behaviour.

It is assumed that the downstream piping is straight for a length of at least 2 m from the point where the noise measurement is made.

This method is valid only for steel and steel alloy pipes (see Equations (21) and (23) in 5.5).

The method is applicable to the following single-stage valves: globe (straight pattern and angle pattern), butterfly, rotary plug (eccentric, spherical), ball, and valves with cage trims. Specifically excluded are the full bore ball valves where the product  $F_pC$  exceeds 50 % of the rated flow coefficient.

For limitations on special low noise trims not covered by this standard, see Clause 8. When the Mach number in the valve outlet exceeds 0,3 for standard trim or 0,2 for low noise trim, the procedure in Clause 7 is used

The Mach number limits in this standard are as follows:

|                                         | Mach number limit         |                                 |                                              |  |  |
|-----------------------------------------|---------------------------|---------------------------------|----------------------------------------------|--|--|
| Mach number location                    | Clause 5<br>Standard trim | Clause 6<br>Noise-reducing trim | Clause 7<br>High Mach number<br>applications |  |  |
| Freely expanded jet M <sub>j</sub>      | No limit                  | No limit                        | No limit                                     |  |  |
| Valve outlet M <sub>o</sub>             | 0,3                       | 0,2                             | 1,0                                          |  |  |
| Downstream reducer inlet M <sub>r</sub> | Not applicable            | Not applicable                  | 1,0                                          |  |  |
| Downstream pipe M <sub>2</sub>          | 0,3                       | 0,2                             | 0,8                                          |  |  |

# 2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. - 8 -

IEC 60534 (all parts), Industrial-process control valves

IEC 60534-1, Industrial-process control valves – Part 1: Control valve terminology and general considerations

# 3 Terms and definitions

For the purposes of this document, all of the terms and definitions given in the IEC 60534 series and the following apply:

# 3.1

# acoustical efficiency

η

ratio of the stream power converted into sound power propagating downstream to the stream power of the mass flow

# 3.2

# external coincidence frequency

fg

frequency at which the external acoustic wavespeed is equal to the bending wavespeed in a plate of equal thickness to the pipe wall

# 3.3

# internal coincidence frequency

f<sub>o</sub>

lowest frequency at which the internal acoustic and structural axial wave numbers are equal for a given circumferential mode, thus resulting in the minimum transmission loss

# 3.4

# fluted vane butterfly valve

butterfly valve which has flutes (grooves) on the face(s) of the disk. These flutes are intended to shape the flow stream without altering the seating line or seating surface

# 3.5

# independent flow passage

flow passage where the exiting flow is not affected by the exiting flow from adjacent flow passages

# 3.6

# peak frequency

fp

frequency at which the internal sound pressure is maximum

3.7

# valve style modifier

Fd

ratio of the hydraulic diameter of a single flow passage to the diameter of a circular orifice, the area of which is equivalent to the sum of areas of all identical flow passages at a given travel

# 4 Symbols

| Symbol                | Description                                                                                                                | Unit                             |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| A                     | Area of a single flow passage                                                                                              | m²                               |
| $A_\eta$              | Valve correction factor for acoustical efficiency                                                                          | Dimensionless                    |
|                       | (see Table 4)                                                                                                              |                                  |
| A <sub>n</sub>        | Total flow area of last stage of multistage trim with <i>n</i> stages at given travel                                      | m²                               |
| С                     | Flow coefficient ( $K_v$ and $C_v$ )                                                                                       | Various<br>(see IEC 60534-<br>1) |
| c <sub>a</sub>        | External speed of sound (dry air at standard conditions = 343 m/s)                                                         | m/s                              |
| C <sub>n</sub>        | Flow coefficient for last stage of multistage trim with <i>n</i> stages                                                    | Various<br>(see IEC 60534-<br>1) |
| c <sub>s</sub>        | Speed of sound of the pipe (for steel = 5 000 m/s)                                                                         | m/s                              |
| C <sub>VC</sub>       | Speed of sound in the <i>vena contracta</i> at subsonic flow conditions                                                    | m/s                              |
| C <sub>VCC</sub>      | Speed of sound in the vena contracta at critical flow conditions                                                           | m/s                              |
| <i>c</i> <sub>2</sub> | Speed of sound at downstream conditions                                                                                    | m/s                              |
| D                     | Valve outlet diameter                                                                                                      | m                                |
| d                     | Diameter of a flow passage (for other than circular, use<br><i>d</i> <sub>H</sub> )                                        | m                                |
| d <sub>H</sub>        | Hydraulic diameter of a single flow passage                                                                                | m                                |
| d <sub>i</sub>        | Smaller of valve outlet or expander inlet internal diameters                                                               | m                                |
| Di                    | Internal downstream pipe diameter                                                                                          | m                                |
| Dj                    | Jet diameter at the vena contracta                                                                                         | m                                |
| d <sub>o</sub>        | Diameter of a circular orifice, the area of which equals the sum of areas of all flow passages at a given travel           | m                                |
| F <sub>d</sub>        | Valve style modifier                                                                                                       | Dimensionless                    |
| FL                    | Liquid pressure recovery factor of a valve without<br>attached<br>fittings (see Note 4)                                    | Dimensionless                    |
| F <sub>Ln</sub>       | Liquid pressure recovery factor of last stage of low noise trim                                                            | Dimensionless                    |
| F <sub>LP</sub>       | Combined liquid pressure recovery factor and piping geometry factor of a control valve with attached fittings (see Note 4) | Dimensionless                    |
| Fp                    | Piping geometry factor                                                                                                     | Dimensionless                    |
| fg                    | External coincidence frequency                                                                                             | Hz                               |
| f <sub>o</sub>        | Internal coincidence pipe frequency                                                                                        | Hz                               |
| <i>f</i> p            | Generated peak frequency                                                                                                   | Hz                               |
| f <sub>pR</sub>       | Generated peak frequency in valve outlet or reduced diameter of expander                                                   | Hz                               |
| f <sub>r</sub>        | Ring frequency                                                                                                             | Hz                               |
| f <sub>s</sub>        | Structural loss factor reference frequency = 1 Hz                                                                          | Hz                               |

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

| Symbol                          | Description                                                                                                  | Unit                               |
|---------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------|
| G <sub>x</sub> , G <sub>y</sub> | Frequency factors (see Table 4)                                                                              | Dimensionless                      |
| I                               | Length of a radial flow passage                                                                              | m                                  |
| <i>I</i> w                      | Wetted perimeter of a single flow passage                                                                    | m                                  |
| Lg                              | Correction for Mach number                                                                                   | dB (ref p <sub>o</sub> )           |
| $L_{pe,1m}$ (f)                 | Frequency-dependent external sound-pressure level 1 m from pipe wall                                         | dB(ref $p_0$ )                     |
| L <sub>pAe,1m</sub>             | A-weighted overall sound-pressure level 1 m from pipe wall                                                   | dB(A) (ref <i>p</i> <sub>o</sub> ) |
| L <sub>pi</sub>                 | Overall Internal sound-pressure level at pipe wall                                                           | dB (ref p <sub>o</sub> )           |
| L <sub>pi</sub> (f)             | Frequency-dependent internal sound-pressure level at pipe wall                                               | dB (ref p <sub>o</sub> )           |
| L <sub>piR</sub>                | Overall Internal sound-pressure level at pipe wall for noise created by outlet flow in expander              | dB (ref <i>p</i> <sub>o</sub> )    |
| L <sub>piR</sub> (f)            | Frequency-dependent internal sound-pressure level at pipe wall for noise created by outlet flow in expander  | dB (ref <i>p</i> <sub>o</sub> )    |
| L <sub>piS</sub> (f)            | Combined internal frequency-dependent sound-pressure at the pipe wall, caused by the valve trim and expander | dB (ref <i>p</i> <sub>o</sub> )    |
| L <sub>wi</sub>                 | Total internal sound power level                                                                             | dB (ref $W_{o}$ )                  |
| М                               | Molecular mass of flowing fluid                                                                              | kg/kmol                            |
| Mj                              | Freely expanded jet Mach number in regimes II to IV                                                          | Dimensionless                      |
| <i>M</i> jn                     | Freely expanded jet Mach number of last stage in multistage valve with <i>n</i> stages                       | Dimensionless                      |
| M <sub>j5</sub>                 | Freely expanded jet Mach number in regime V                                                                  | Dimensionless                      |
| Mo                              | Mach number at valve outlet                                                                                  | Dimensionless                      |
| M <sub>R</sub>                  | Mach number in the entrance to expander                                                                      | Dimensionless                      |
| M <sub>vc</sub>                 | Mach number at the vena contracta                                                                            | Dimensionless                      |
| <i>M</i> <sub>2</sub>           | Mach number in downstream pipe                                                                               | Dimensionless                      |
| ṁ                               | Mass flow rate                                                                                               | kg/s                               |
| Ν                               | Numerical constants (see Table 1)                                                                            | Various                            |
| n <sub>o</sub>                  | Number of independent and identical flow passages in valve trim                                              | Dimensionless                      |
| <i>p</i> a                      | Actual atmospheric pressure outside pipe                                                                     | Pa (see Note 3)                    |
| p <sub>n</sub>                  | Absolute stagnation pressure at inlet of the last stage of multistage valve with <i>n</i> stages             | Ра                                 |
| p <sub>o</sub>                  | Reference sound pressure = $2 \times 10^{-5}$ (see Note 5)                                                   | Pa                                 |
| p <sub>s</sub>                  | Standard atmospheric pressure (see Note 1)                                                                   | Pa                                 |
| $p_{ m vc}$                     | Absolute <i>vena contracta</i> pressure at subsonic flow conditions                                          | Ра                                 |
| <i>p</i> <sub>1</sub>           | Valve inlet absolute pressure                                                                                | Pa                                 |
| <i>p</i> <sub>2</sub>           | Valve outlet absolute pressure                                                                               | Pa                                 |
| R                               | Universal gas constant = 8 314                                                                               | $J/kmol \times K$                  |
| St                              | Strouhal number for peak frequency calculation (see Table 4)                                                 | Dimensionless                      |

| Symbol                | Description                                                                           | Unit              |
|-----------------------|---------------------------------------------------------------------------------------|-------------------|
| T <sub>n</sub>        | Inlet absolute temperature at last stage of multistage                                | к                 |
|                       | valve<br>with <i>n</i> stages                                                         |                   |
| T <sub>vc</sub>       | <i>Vena contracta</i> absolute temperature at subsonic flow conditions                | K                 |
| $T_{\rm vcc}$         | Vena contracta absolute temperature at critical flow conditions                       | К                 |
| <i>T</i> <sub>1</sub> | Inlet absolute temperature                                                            | К                 |
| <i>T</i> <sub>2</sub> | Outlet absolute temperature                                                           | К                 |
| TL(f)                 | Frequency-dependent transmission loss                                                 | dB                |
| t <sub>s</sub>        | Pipe wall thickness                                                                   | m                 |
| <i>U</i> p            | Gas velocity in downstream pipe                                                       | m/s               |
| U <sub>R</sub>        | Gas velocity in the inlet of diameter expander                                        | m/s               |
| W <sub>a</sub>        | Sound power for noise crated by valve flow and propagating downstream                 | W                 |
| W <sub>aR</sub>       | Sound power for noise generated by the outlet flow and propagating downstream         | W                 |
| W <sub>m</sub>        | Stream power of mass flow                                                             | W                 |
| W <sub>ms</sub>       | Stream power of mass flow rate at sonic velocity                                      | W                 |
| W <sub>mR</sub>       | Converted stream power in the expander                                                | W                 |
| Wo                    | Reference sound power = $10^{-12}$ (see Note 5)                                       | W                 |
| x                     | Differential pressure ratio                                                           | Dimensionless     |
| x <sub>vcc</sub>      | <i>Vena contracta</i> differential pressure ratio at critical flow conditions         | Dimensionless     |
| x <sub>B</sub>        | Differential pressure ratio at break point                                            | Dimensionless     |
| x <sub>C</sub>        | Differential pressure ratio at critical flow conditions                               | Dimensionless     |
| X <sub>CE</sub>       | Differential pressure ratio where region of constant acoustical efficiency begins     | Dimensionless     |
| α                     | Recovery correction factor                                                            | Dimensionless     |
| β                     | Contraction coefficient for valve outlet or expander inlet                            | Dimensionless     |
| γ                     | Specific heat ratio                                                                   | Dimensionless     |
| $\Delta L_A(f)$       | A-Weighting correction based on frequency                                             | dB                |
| ΔTL                   | Damping factor for transmission loss                                                  | dB                |
| η                     | Acoustical efficiency factor for noise created by valve flow (see Note 2)             | Dimensionless     |
| $\eta_R$              | Acoustical efficiency factor for noise created by outlet flow in expander             | Dimensionless     |
| $\eta_{s}(f)$         | Frequency-dependent structural loss factor                                            | Dimensionless     |
| $ ho_1$               | Density of fluid at $p_1$ and $T_1$                                                   | kg/m <sup>3</sup> |
| $\rho_2$              | Density of fluid at $p_2$ and $T_2$                                                   | kg/m <sup>3</sup> |
| $ ho_{\sf n}$         | Density of fluid at last stage of multistage valve with $n$ stages at $p_n$ and $T_n$ | kg/m <sup>3</sup> |
| $ ho_{\sf S}$         | Density of the pipe                                                                   | kg/m <sup>3</sup> |
| Φ                     | Relative flow coefficient                                                             | Dimensionless     |

#### Symbol

Description

Unit

# Subscripts

| е | Denotes external                                                   |
|---|--------------------------------------------------------------------|
| i | Denotes internal or used as an index for the frequency band number |
| n | Denotes last stage of trim                                         |
| р | Denotes peak                                                       |
| R | Denotes conditions in downstream pipe or pipe expander             |

NOTE 1 Standard atmospheric pressure is 101,325 kPa or 1,01325 bar.

NOTE 2 Subscripts 1, 2, 3, 4 and 5 denote regimes I, II, III, IV and V respectively.

NOTE 3 1 bar =  $10^2$  kPa =  $10^5$  Pa.

NOTE 4 For the purpose of calculating the *vena contracta* pressure, and therefore velocity, in this standard, pressure recovery for gases is assumed to be identical to that of liquids.

NOTE 5 Sound power and sound pressure are customarily expressed using the logarithmic scale known as the decibel scale. This scale relates the quantity logarithmically to some standard reference. This standard reference is  $2 \times 10^{-5}$  Pa for sound pressure and  $10^{-12}$  W for sound power.

# 5 Valves with standard trim

#### 5.1 Pressures and pressure ratios

There are several pressures and pressure ratios needed in the noise prediction procedure. They are given below. For noise considerations related to control valves the differential pressure ratio x is often used.

$$x = \frac{p_1 - p_2}{p_1}$$
(1)

The vena contracta is the region of maximum velocity and minimum pressure. This minimum pressure related to the inlet pressure, which cannot be less than zero absolute, is calculated as follows:

$$\frac{p_{vc}}{p_1} = 1 - \frac{x}{F_L^2}$$
(2)

NOTE 1 This equation is the definition of  $F_{L}$  for subsonic conditions.

NOTE 2 When the valve has attached fittings,  $F_{\rm L}$  should be replaced with  $F_{\rm LP}/F_{\rm p}$ .

NOTE 3 The factor  $F_{L}$  is needed in the calculation of the *vena contracta* pressure. The *vena contracta* pressure is then used to calculate the velocity, which is needed to determine the acoustical efficiency factor.

At critical flow conditions, the pressure in the *vena contracta* and the corresponding differential pressure ratio when  $p_2 = p_{vcc}$  are calculated as follows:

$$x_{vcc} = 1 - \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma - 1)}$$
(3)

The critical downstream pressure ratio where sonic flow in the *vena contracta* begins is calculated from the following equation:

$$x_C = F_L^2 x_{vcc}$$
(4)

NOTE 4 When the valve has attached fittings,  $F_{\rm L}$  should be replaced with  $F_{\rm LP}/F_{\rm p}$ .

The correction factor  $\alpha$  is the ratio of two pressure ratios:

a) the ratio of inlet pressure to outlet pressure at critical flow conditions;

b) the ratio of inlet pressure to vena contracta pressure at critical flow conditions.

It is defined as follows:

$$\alpha = \frac{1 - x_{vcc}}{1 - x_c} \tag{5}$$

The point at which the shock cell-turbulent interaction mechanism (regime IV) begins to dominate the noise spectrum over the turbulent-shear mechanism (regime III) is known as the break point. See 5.2 for a description of these regimes. The differential pressure ratio at the break point is calculated as follows:

$$x_B = 1 - \frac{1}{\alpha} \left(\frac{1}{\gamma}\right)^{\gamma/(\gamma-1)}$$
(6)

The differential pressure ratio at which the region of constant acoustical efficiency (regime V) begins is calculated as follows:

$$x_{CE} = 1 - \frac{1}{22 \alpha} \tag{7}$$

#### 5.2 Regime definition

A control valve controls flow by converting potential (pressure) energy into turbulence. Noise in a control valve results from the conversion of a small portion of this energy into sound. Most of the energy is converted into heat.

The different regimes of noise generation are the result of differing sonic phenomena or reactions between molecules in the gas and the sonic shock cells. In regime I, the flow is subsonic and the gas is partially recompressed, thus the involvement of the factor  $F_L$ . Noise generation in this regime is predominantly dipole.

In regime II, sonic flow exists with interaction between shock cells and with turbulent choked flow mixing. Recompression decreases as the limit of regime II is approached.

In regime III, no isentropic recompression exists. The flow is supersonic, and the turbulent flow-shear mechanism dominates.

In regime IV, the shock cell structure diminishes as a Mach disk is formed. The dominant mechanism is shock cell-turbulent flow interaction.

In regime V, there is constant acoustical efficiency; a further decrease in  $p_2$  will result in no increase in noise.

For a given set of operating conditions, the regime is determined as follows:

 

#### 5.3 Preliminary calculations

# 5.3.1 Valve style modifier *F*<sub>d</sub>

In the case of multistage valves,  $F_d$  applies only to the last stage.

The valve style modifier can be calculated by

$$F_{\rm d} = \frac{d_{\rm H}}{d_{\rm o}} \tag{8a}$$

The hydraulic diameter  $d_{\rm H}$  of a single flow passage is determined by the following equation:

$$d_{\rm H} = \frac{4}{I_{\rm w}}$$
(8b)

The equivalent circular diameter  $d_0$  of the total flow area is given as follows:

$$d_o = \sqrt{\frac{4 \cdot n_o \cdot A}{\pi}} \tag{8c}$$

Typical values of  $F_d$  are given in Table 2.

#### 5.3.2 Jet diameter D<sub>i</sub>

The jet diameter is given by the following equation:

$$D_{\rm j} = N_{\rm 14} \, F_{\rm d} \, \sqrt{C} \, F_{\rm L} \tag{9}$$

NOTE 1  $N_{14}$  is a numerical constant, the values of which account for the specific flow coefficient ( $K_v$  or  $C_v$ ) used. Values of the constant may be obtained from Table 1.

NOTE 2 Use the required C, not the valve rated value of C.

NOTE 3 When the valve has attached fittings,  $F_L$  should be replaced with  $F_{LP}/F_p$ .

# 5.3.3 Inlet fluid density $\rho_1$

Whenever possible it is preferred to use the actual fluid density as specified by the user. If this is not available, then a perfect gas is assumed, and the inlet density is calculated from the following equation:

$$o_1 = \frac{p_1}{RT_1} \tag{10}$$

Table 1 – Numerical constants N

| • • •                   | Flow coe                                                        | efficient            |  |  |  |
|-------------------------|-----------------------------------------------------------------|----------------------|--|--|--|
| Constant                | K <sub>v</sub>                                                  | Cv                   |  |  |  |
| N <sub>14</sub>         | 4,9 × 10 <sup>-3</sup>                                          | $4,6 \times 10^{-3}$ |  |  |  |
| N <sub>16</sub>         | $4,23 	imes 10^4$                                               | $4,89\times10^4$     |  |  |  |
| NOTE Unlisted numerical | OTE Unlisted numerical constants are not used in this standard. |                      |  |  |  |

Table 2 – Typical values of valve style modifier  $F_d$  (full size trim)

|                                                      |                   | Relative flow coefficient ${oldsymbol{arPhi}}$ |           |       |      |      |      |
|------------------------------------------------------|-------------------|------------------------------------------------|-----------|-------|------|------|------|
| Valve type                                           | Flow<br>direction |                                                |           |       |      |      |      |
|                                                      |                   | 0,10                                           | 0,20      | 0,40  | 0,60 | 0,80 | 1,00 |
| Globe, parabolic plug                                | To open           | 0,10                                           | 0,15      | 0,25  | 0,31 | 0,39 | 0,46 |
|                                                      | To close          | 0,20                                           | 0,30      | 0,50  | 0,60 | 0,80 | 1,00 |
| Globe, 3 V-port plug                                 | Either*           | 0,29                                           | 0,40      | 0,42  | 0,43 | 0,45 | 0,48 |
| Globe, 4 V-port plug                                 | Either*           | 0,25                                           | 0,35      | 0,36  | 0,37 | 0,39 | 0,41 |
| Globe, 6 V-port plug                                 | Either*           | 0,17                                           | 0,23      | 0,24  | 0,26 | 0,28 | 0,30 |
| Globe, 60 equal diameter hole drilled cage           | Either*           | 0,40                                           | 0,29      | 0,20  | 0,17 | 0,14 | 0,13 |
| Globe, 120 equal diameter hole drilled cage          | Either*           | 0,29                                           | 0,20      | 0,14  | 0,12 | 0,10 | 0,09 |
| Butterfly, eccentric                                 | Either            | 0.18                                           | 0.28      | 0.43  | 0.55 | 0.64 | 0.70 |
| Butterfly, swing-through (centered shaft), to 70°    | Either            | 0,26                                           | 0,34      | 0,42  | 0,50 | 0,53 | 0,57 |
| Butterfly, fluted vane, to 70°                       | Either            | 0,08                                           | 0,10      | 0,15  | 0,20 | 0,24 | 0,30 |
| 60° flat disk                                        | Either            |                                                |           |       |      |      | 0,50 |
| Eccentric rotary plug                                | Either            | 0,12                                           | 0,18      | 0,22  | 0,30 | 0,36 | 0,42 |
| Segmented ball 90°                                   | Either            | 0,60                                           | 0,65      | 0,70  | 0,75 | 0,78 | 0,98 |
| NOTE These values are typical only. Actual v         | alues are state   | d by the i                                     | manufactu | irer. |      | •    |      |
| * Limited $p_{4} - p_{2}$ in flow to close direction |                   |                                                |           |       |      |      |      |

# 5.4 Internal noise calculations

# 5.4.1 Calculations common to all regimes

In each regime, the internal acoustic power  $W_a$  is equal to the product of the stream power  $W_m$  and the acoustical efficiency factor  $\eta$ , as shown in Equation 11.

$$W_a = \eta W_m \tag{11}$$

Although not required for this method, the total internal sound power level is calculated as follows:

$$L_{\rm wi} = 10 \log_{10} \frac{W_{\rm a}}{W_{\rm o}}$$
(12)

# 5.4.2 Regime dependent calculations

The equations to calculate the appropriate values of  $W_m$  and  $\eta$  are given in Table 3 for each regime. This allows the internal acoustic power  $W_a$  to be determined, using Equation (11).

| $M_{j5}$ $\eta$ $f_p$ $T_{vc}, T_{vcc}$ $c_{vcc}$ $W_m$ | $\frac{\frac{1}{2}}{1-1}  \eta = \left(1 \times 10^{A_{\eta}}\right) F_{L}^{2} \cdot M_{vc}^{3}  f_{p} = \frac{St_{p} \cdot M_{vc} \cdot c_{vc}}{D_{j}}  T_{vc} = T_{1} \left(1 - \frac{x}{F_{L}^{2}}\right)^{(\gamma-1)/\gamma}  c_{v} = \sqrt{\gamma} \frac{p_{1}}{\rho_{1}} \left(1 - \frac{x}{F_{2}^{2}}\right)^{(\gamma-1)/\gamma}  W_{m} = \frac{\dot{m}(M_{vc}c_{vc})^{2}}{2}$ | $-1 \int \eta = \left(1 \times 10^{A_{\eta}}\right) \cdot \frac{x}{x_{\text{rcc}}} M_j \epsilon_{6F_{\mu}^2}  f_p = \frac{St_p \cdot M_j \cdot c_{\text{rcc}}}{D_j}$                                                             | $\frac{-1/\gamma}{-1}  \eta = (1 \times 10^{A_{\eta}}) \cdot M_{j}^{6,6F_{L}^{2}}  f_{p} = \frac{St_{p} \cdot M_{j} \cdot c_{vec}}{D_{j}}  T = \frac{2T_{1}}{2}  c_{vec} = \frac{2\gamma}{D_{1}}  M_{j} = \frac{1}{2} + \frac{1}{2}$ | $ \frac{1}{-1} \frac{1}{-1} \frac{\eta}{r} = (1 \times 10^{h_{1}}) \left(\frac{M_{1}}{2}\right) (\sqrt{2})^{(6h_{1}^{2})} \frac{1}{f_{p}} = \frac{1.4 \cdot St_{p} \cdot c_{vcc}}{D_{j}\sqrt{M_{j}^{2} - 1}} \frac{1}{\gamma + 1} \frac{\gamma + 1}{2} \frac{\zeta^{vcc}}{\gamma + 1} \frac{\gamma + 1}{\rho_{1}} \frac{W^{m}}{2} = \frac{1}{2} $ | $\frac{1}{1} \qquad \eta = \left(1 \times 10^{\Lambda_{p}}\right) \left(\frac{M_{p^{2}}}{2}\right) \left(\sqrt{2}\right)^{\alpha_{61_{2}^{2}}}  f_{p} = \frac{1.4 \cdot St_{p} \cdot c_{vc}}{D_{j} \sqrt{M_{js}^{2} - 1}}$ |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ν <sub>c</sub> , M <sub>j</sub> , M <sub>j5</sub> η η   | $\frac{x}{t^2} \left( \frac{1-\eta/\gamma}{-1} \right) = \frac{\eta}{1-1} = \frac{\eta}{1-1} = \frac{1}{1-1} = \frac{1}{1-1}$                                                                                                                                                                                                                                                         | $\frac{1}{2} \left( \frac{y^{-1}}{y} \right)^{(y-1)/\gamma} - 1 \right] \qquad \eta = \left( 1 \times 10^{\Lambda_{\eta}} \right) \cdot \frac{x}{x_{\text{vec}}} M_j \frac{6.6F_{\lambda}^2}{f_p} + \frac{S}{f_p} = \frac{S}{2}$ | $\frac{1}{-\mathbf{x}} \int_{-\infty}^{(\gamma-1)/\gamma} -1 \left[ \eta = \left(1 \times 10^{A_{\eta}}\right) \cdot \mathbf{M}_{j}^{6.6F_{\lambda}^{2}} \left[ f_{p} = \frac{S}{-1} \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1}{-\mathbf{x}} \int_{-\mathbf{x}}^{(\gamma-1)/\gamma} -\mathbf{I} \left[ \eta = (1 \times 10^{\Lambda_{y}}) \left( \frac{M_{j}^{2}}{2} \right) \left( \sqrt{2} \right)^{6.6T_{j}^{2}} \left[ f_{p} = \frac{1}{L} \right]$                                                                                                                 | $\frac{-1}{T} - 1 \qquad \eta = \left(1 \times 10^{\Lambda_{p}}\right) \left(\frac{M_{p^{2}}}{2}\right) \left(\sqrt{2}\right)^{6.6r_{1}} f_{p} = \frac{1}{L}$                                                              |  |
| jime Mach number <i>M</i> v                             | bsonic<br>$\leq \chi_C$ $M_{\nu c} = \sqrt{\left(\frac{2}{\nu-1}\right) \left[ \left(1 - \frac{x}{F_L}\right)^2 \right]^2}$                                                                                                                                                                                                                                                           | $< x \le x_{vec}$ $M_j = \sqrt{\frac{2}{\gamma - 1} \left[ \left( \frac{1}{\alpha (1 - \gamma)} \right)^{-1} \right]}$                                                                                                           | $_{c} < x \le x_{B}  M_{j} = \sqrt{\frac{2}{\gamma - 1} \left[ \left( \frac{1}{\alpha \left( 1 - 1 \right)} \right)^{2} \right]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $< x \le x_{CE}$ $M_j = \sqrt{\frac{2}{\gamma - 1} \left[ \left( \frac{1}{\alpha (1 - 1)} \right)^{-1} \right]}$                                                                                                                                                                                                                                  | $\int_{S} \leq x \qquad M_{jS} = \sqrt{\frac{2}{\gamma - 1}} \left[ (22)^{(\gamma - 1)} \right]$                                                                                                                           |  |

Table 3 – Overview of regime dependent equations

The exponent  $A_n$  is - 4 for pure dipole noise sources as for free jets in a big expansion volume. The valve-related acoustic efficiency factor takes into account the effect of different geometries of valve body and fittings on the acoustical efficiency and the location inside the pipe behind the control valve (distance 6 x  $d_i$ ). Hence, real  $A_n$  factors are different for various valves and fittings. Also this value can be dependent on the differential pressure ratio x. Typical average values are given in Table 4.

The Strouhal number St<sub>n</sub> at the peak frequency lies typically in a range of 0,1 through 0,3 for free jets. Typical average values for different various valves and fittings are given in Table 4.

| Valve or fitting                                        | Flow<br>direction      | Aη       | St <sub>p</sub> |
|---------------------------------------------------------|------------------------|----------|-----------------|
| Globe, parabolic plug                                   | Either                 | -4,2     | 0,19            |
| Globe, V-port plug                                      | Either                 | -4,2     | 0,19            |
| Globe, ported cage design                               | Either                 | -3,8     | 0,2             |
| Globe, multihole drilled plug or cage                   | To open                | -4,8     | 0,2             |
| Globe, multihole drilled plug or cage                   | To close               | -4,4     | 0,2             |
| Butterfly, eccentric                                    | Either                 | -4,2     | 0,3             |
| Butterfly, swing-through (centered shaft), to 70°       | Either                 | -4,2     | 0,3             |
| Butterfly, fluted vane, to 70°                          | Either                 | -4,2     | 0,3             |
| Butterfly, 60° flat disk                                | Either                 | -4,2     | 0,3             |
| Eccentric rotary plug                                   | Either                 | -3,6     | 0,3             |
| Segmented ball 90°                                      | Either                 | -3,6     | 0,3             |
| Drilled hole plate fixed resistance                     | Either                 | -4,8     | 0,2             |
| Expander                                                | Either                 | -3,0     | 0,2             |
| NOTE 1 These values are typical only. Actual values are | e stated by the manufa | acturer. | -               |

| Table 4 – | Typical | values | of | A <sub>n</sub> | and | Stp |
|-----------|---------|--------|----|----------------|-----|-----|
|-----------|---------|--------|----|----------------|-----|-----|

NOTE 2 Section 8 should be used, for those multihole trims, where the hole size and spacing is controlled to minimize noise.

#### 5.4.3 **Downstream calculations**

The downstream mass density is calculated from the following equation, assuming  $T_1=T_2$ :

$$\rho_2 = \rho_1 \left(\frac{p_2}{p_1}\right) \tag{13}$$

The downstream temperature T2 may be determined by using thermodynamic isenthalpic relationships, provided that the necessary fluid properties are known. However, if the fluid properties are not known, T2 may be taken as approximately equal to T1. From the following equation, the downstream sonic velocity can be calculated:

$$c_2 = \sqrt{\frac{\gamma R T_2}{M}} \tag{14}$$

The Mach number at the valve outlet is calculated using Equation (15).

60534-8-3 © IEC:2010

$$M_{o} = \frac{4 \,\dot{m}}{\pi \,D^{2} \,\rho_{2} \,c_{2}} \tag{15}$$

NOTE 1  $M_{o}$  should not exceed 0.3. If  $M_{o}$  exceeds 0.3, then accuracy cannot be maintained, and the procedure in Clause 7 should be used.

The downstream pipe velocity correction is approximately:

$$L_{\rm g} = 16 \, \log_{10} \left( \frac{1}{1 - M_2} \right) \, (16)$$

where

$$M_2 = \frac{4 \dot{m}}{\pi D_1^2 \rho_2 c_2}$$
(17)

NOTE 2 For calculating  $L_q$ ,  $M_2$  is limited to 0,3.

#### 5.4.4 Valve internal sound pressure calculation at pipe wall

To calculate the internal sound-pressure level referenced to  $p_0$ , the following equation is used:

$$\mathbf{L}_{pi} = 10 \log_{10} \left[ \frac{(3,2 \times 10^9) \mathbf{W}_a \, \rho_2 \, \mathbf{c}_2}{\mathbf{D}_i^2} \right] + L_g$$
(18)

The frequency dependent internal sound pressure levels can be predicted from Equation (39) ([17]).

$$L_{pi}(f_i) = L_{pi} - 8 - 10 \cdot \log\left\{ \left[ 1 + \left( \frac{f_i}{2 \cdot f_p} \right)^{2.5} \right] \cdot \left[ 1 + \left( \frac{f_p}{2 \cdot f_i} \right)^{1.7} \right] \right\}$$
(19)

| Index          | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8     | 9     | 10    | 11    |
|----------------|------|------|------|------|------|------|------|-------|-------|-------|-------|
| Frequency [Hz] | 12,5 | 16   | 20   | 25   | 31,5 | 40   | 50   | 63    | 80    | 100   | 125   |
|                |      |      |      |      |      |      |      |       |       |       |       |
| Index          | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19    | 20    | 21    | 22    |
| Frequency [Hz] | 160  | 200  | 250  | 315  | 400  | 500  | 630  | 800   | 1000  | 1250  | 1600  |
|                |      |      |      |      |      |      |      |       |       |       |       |
| Index          | 23   | 24   | 25   | 26   | 27   | 28   | 29   | 30    | 31    | 32    | 33    |
| Frequency [Hz] | 2000 | 2500 | 3150 | 4000 | 5000 | 6300 | 8000 | 10000 | 12500 | 16000 | 20000 |

#### Table 5 – Indexed frequency bands

NOTE 1 The constant -8 replaces the original constant -5,3 so that the overall level  $-L_{pi}$  for more than 21 octaves becomes 0.

NOTE 2 Equation (19) should not be used outside of the frequency range (12,5 Hz - 20 000 Hz) as indicated in Table 5.

- 20 -

#### 5.5 Pipe transmission loss calculation

The frequency-dependent transmission loss across the pipe wall is calculated as follows:

$$TL(f_{i}) = 10 \log_{10} \left[ \left( 8,25 \times 10^{-7} \right) \left( \frac{c_{2}}{t_{s} f_{i}} \right)^{2} \frac{G_{x}(f_{i})}{\left( \frac{\rho_{2} c_{2} + 2 \cdot \pi \cdot t_{s} \cdot f_{i} \cdot \rho_{s} \cdot \eta_{s}(f_{i})}{415 G_{y}(f_{i})} + 1 \right)} \left( \frac{p_{a}}{p_{s}} \right) \right] - \Delta TL$$
(20a)

where  $\Delta TL$  is a damping factor depending on the pipe size:

$$\Delta TL = \begin{cases} 0 & \text{for } D > 0,15 \\ -16660 \cdot D^3 + 6370 \cdot D^2 - 813 \cdot D + 35,8 & \text{for } 0,05 \le D \le 0,15 \\ 9 & \text{for } D < 0,05 \end{cases}$$
(20b)

and  $\boldsymbol{\eta}_s$  is the non-dimensional frequency-dependent structural loss factor:

$$\eta_s(f_i) = \sqrt{\frac{f_s}{100f_i}} \tag{20c}$$

NOTE 1  $G_x$  and  $G_y$  are defined in Table 6.

NOTE 2 The ratio  $p_a/p_s$  is a correction for local barometric pressure.

The frequencies  $f_r$ ,  $f_o$  and  $f_g$  are calculated from the following equations:

$$\mathbf{f}_r = \frac{c_s}{\pi \mathbf{D}_i} \tag{21}$$

$$\mathbf{f}_{o} = \frac{\mathbf{f}_{r}}{4} \left( \frac{\mathbf{c}_{2}}{\mathbf{c}_{a}} \right) \tag{22}$$

$$\mathbf{f}_{g} = \frac{\sqrt{3} \left(\mathbf{c}_{a}\right)^{2}}{\pi \,\mathbf{t}_{s}(\mathbf{c}_{s})} \tag{23}$$

NOTE 3 In Equations (22) and (23),  $c_a = 343$  m/s for the speed of sound of dry air at standard conditions.

NOTE 4 In Equations (21) and (23),  $c_s = 5\ 000$  m/s for the nominal speed of sound in the pipe wall if made of steel.

NOTE 5 It should be noted that the minimum transmission loss occurs at the first pipe coincidence frequency.

# Table 6 – Frequency factors $G_x$ (f) and $G_y$ (f)

| $f_i < f_o$                                                                                                                               | $f_{i} \ge f_{o}$                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{G}_{x}(f_{i}) = \left(\frac{\mathbf{f}_{o}}{\mathbf{f}_{r}}\right)^{2/3} \left(\frac{\mathbf{f}_{i}}{\mathbf{f}_{o}}\right)^{4}$ | $\mathbf{G}_{x}(f_{i}) = \left(\frac{\mathbf{f}_{i}}{\mathbf{f}_{r}}\right)^{1/2} \text{ for } f_{i} < f_{r}$ $\mathbf{G}_{x}(\mathbf{f}_{i}) = 1 \text{ for } f_{i} \ge f_{r}$ |
| $\mathbf{G}_{y}(f_{i}) = \left(\frac{\mathbf{f}_{o}}{\mathbf{f}_{g}}\right) \text{ for } f_{o} < f_{g}$                                   | $\mathbf{G}_{y}(f_{i}) = \left(\frac{\mathbf{f}_{i}}{\mathbf{f}_{g}}\right) \text{ for } f_{i} < f_{g}$                                                                         |
| $G_{y}(f_{i}) = 1 \text{ for } f_{o} \geq f_{g}$                                                                                          | $G_{y}(f_{i}) = 1 \text{ for } f_{i} \ge f_{g}$                                                                                                                                 |

#### 5.6 External sound pressure calculation

The external sound pressure level spectrum at a distance of 1 m from the pipe wall can be calculated from the internal sound-pressure level spectrum and the transmission losses. For higher valve outlet Mach numbers the combined internal sound-pressure  $L_{piS(fi)}$  at the pipe wall caused by valve trim and expander instead of  $L_{pi(fi)}$  shall be used (see Equation (43) in Clause 7).

$$L_{pe,1m}(f_i) = L_{pi}(f_i) + TL(f_i) - 10\log\left(\frac{D_i + 2t_s + 2}{D_i + 2t_s}\right)$$
(24)

Finally, the overall A-weighted sound pressure level at a distance of 1 m from the pipe wall can be calculated by:

$$L_{pAe,1m} = 10 \cdot Log_{10} \left( \sum_{i=1}^{N=33} 10^{\frac{L_{pe,1m}(f_i) + \Delta L_A(f_i)}{10}} \right)$$
(25)

where

 $f_i$  = third octave band center frequency;

 $L_{pi}(f_i)$  = internal sound pressure level at frequency  $f_i$ ;

 $TL(f_i)$  = transmission loss at frequency  $f_i$ ;

 $\Delta L_{A}(f_{i}) =$  "A" weighting factor at frequency  $f_{i}$ .

| f <sub>i</sub> [Hz}           | 12,5  | 16    | 20    | 25    | 31.5  | 40    | 50    | 63    | 80    | 100   | 125   |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $\Delta L_{\rm A}(f_{\rm i})$ | -63,4 | -56,7 | -50,5 | -44,7 | -39,4 | -34,6 | -30,2 | -26,2 | -22,5 | -19,1 | -16,1 |
|                               |       |       |       |       |       |       |       |       |       |       |       |
| f <sub>i</sub> [Hz}           | 160   | 200   | 250   | 315   | 400   | 500   | 630   | 800   | 1000  | 1250  | 1600  |
| $\Delta L_{\rm A}(f_{\rm i})$ | -13,4 | -10,9 | -8,6  | -6,6  | -4,8  | -3,2  | -1,9  | -0,8  | 0     | 0,6   | 1,0   |
|                               |       |       |       |       |       |       |       |       |       |       |       |
| f <sub>i</sub> [Hz}           | 2000  | 2500  | 3150  | 4000  | 5000  | 6300  | 8000  | 10000 | 12500 | 16000 | 20000 |
| $\Delta L_{\rm A}(f_{\rm i})$ | 1,2   | 1,3   | 1,2   | 1,0   | 0,5   | -0,1  | -1,1  | -2,5  | -4,3  | -6,6  | -9,3  |

Table 7 – "A" weighting factor at frequency  $f_i$ 

NOTE Octave bands can be also used, when in Equation (19) instead of the first term of 8 dB, a value of 3 dB is used.

# 5.7 Calculation flow chart

The following flow chart provides a logical sequence for using the above equations to calculate the sound-pressure level.

Start with 5,1, 5,2 and 5,3 for all regimes

Then 5,4 for regime dependent calculations

Then 5,5 and 5,6 for all regimes.

NOTE See Annex A for calculation examples.

# 6 Valves with special trim design

#### 6.1 General

This clause is applicable to valves with special trim design. Although it uses much of the procedure from Clause 5, it is placed in a separate clause of this standard, because these trims need special consideration.

# 6.2 Single stage, multiple flow passage trim

For valves with single stage, multiple flow passage trim (see Figure 1 for one example of many effective noise reducing trims) without significant pressure recovery between stages, the procedure in Clause 5 shall be used, except as noted below.



NOTE This is one example of many effective noise-reducing trims.

#### Figure 1 – Single stage, multiple flow passage trim

All flow passages shall have the same hydraulic diameter, and the distance between them shall be sufficient to prevent jet interaction.

Although the valve style modifier is the same as in Clause 5, an example of its application is given below:

#### EXAMPLE

Assume a trim with 48 exposed rectangular passages which have a width of 0,010 m and a height of 0,002 m. The area A of each passage is  $0,010 \times 0,002 = 0,000 \ 02 \ m^2$ . The wetted perimeter

 $l_{\rm W}$  = (2 × 0,010) + (2 × 0,002) = 0,024 m;  $d_{\rm O}$  = 0,035 m, and  $d_{\rm H}$  = 0,0033, which yields  $F_{\rm d}$  = 0,0033/0,035 = 0,094.

The jet diameter  $D_i$  is calculated as follows:

$$D_{\rm j} = N_{\rm 14} \cdot F_{\rm d} \sqrt{C[0.9 - 0.06(l/d)]}$$
(26)

NOTE 1  $F_{Ln}$  has been replaced by [0,9 - 0,06(l/d)] in the expression for  $D_i$ , and l/d has a maximum value of 4.

The result of using [0,9 - 0,06(I/d)] instead of  $F_{Ln}$  is a general increase in the transmission loss in regimes I, II and III by up to 5 dB.

The Mach number at the valve outlet is calculated using Equation (15).

NOTE 2 For pressure ratios  $p_1/p_2 > 4$ , Equation (8a), which is used to calculate  $F_d$ , is only applicable when the wall distance between passages exceeds 0,7 *d*. It also loses its validity if the Mach number  $M_o$  at the valve outlet exceeds 0,2.

# 6.3 Single flow path, multistage pressure reduction trim (two or more throttling steps)

For single flow path, multistage valves (see Figure 2 for one example of many effective noise-reducing trims) without significant pressure recovery between stages, the procedure of Clause 5 shall be used, except as noted below.





NOTE This is one example of many effective noise-reducing trims.

#### Figure 2 – Single flow path, multistage pressure reduction trim

NOTE 1 All calculations in 6.3 are applicable to the last stage.

The flow coefficient  $C_n$  shall be used in place of C. It is applicable to the last stage of the multistage trim. When values of  $C_n$  are not available from the valve manufacturer, the following relationship shall be used:

$$C_{\rm n} = N_{16} A_{\rm n}$$
 (27)

NOTE 2  $N_{16}$  is a numerical constant, the value of which accounts for the specific flow coefficient ( $K_v$  or  $C_v$ ) used. Values of the constants may be obtained from Table 1.

The stagnation pressure  $p_n$  at the last stage shall be used in place of  $p_1$ , and the density  $\rho_n$  shall be used in place of  $\rho_1$ . These values are determined using the following equations as appropriate:

NOTE 3 If  $p_1/p_2 \ge 2$ , then it should first assumed that  $p_n/p_2 < 2$  and  $p_n$  should then be calculated from Equation (28a). If the calculated  $p_n \ge 2 p_2$ , then  $p_n$  should be calculated from Equation (28b) and the procedure continued.

If  $p_1/p_2 \ge 2$  and  $p_n/p_2 < 2$ :

$$p_{\rm n} = \sqrt{\left(\frac{p_{\rm 1}\,C}{1,155\,C_{\rm n}}\right)^2 + {p_2}^2}$$
 (28a)

If  $p_1/p_2 \ge 2$  and  $p_n/p_2 \ge 2$ :

$$\rho_{\rm n} = \rho_1 \left(\frac{C}{C_{\rm n}}\right) \tag{28b}$$

If  $p_1/p_2 < 2$ :

$$p_{\rm n} = \sqrt{\left(\frac{C}{C_{\rm n}}\right)^2 \left(p_1^2 - p_2^2\right) + p_2^2}$$
(28c)

$$\rho_{\rm n} = \rho_{\rm l} \left( \frac{p_{\rm n}}{p_{\rm l}} \right) \tag{29}$$

The jet diameter for the last stage used in the equations for the peak frequency is determined from the following equation:

$$D_{\rm j} = N_{\rm 14} F_{\rm d} \sqrt{C_{\rm n} F_{\rm L}} \tag{30}$$

NOTE 4 For this Equation,  $F_d$  and  $F_L$  of the last stage should be used.

Finally, the internal sound pressure level of the last stage that is radiated into the pipe has to be corrected with the following equation:

$$L_{pi} = L_{pi,n} + \frac{1}{(n-1)^{0.125}} IO \cdot \log_{10}\left(\frac{p_1}{p_n}\right)$$
(31)

NOTE 5 The noise contribution of the last stage is given by  $L_{pi,n}$ . The term 10 log<sub>10</sub> ( $p_1/p_n$ ) includes the sound pressure level caused by the pressure reductions of the other stages.

# 6.4 Multipath, multistage trim (two or more passages and two or more stages)

NOTE 1 This subclause covers only linear travel valves.

NOTE 2 All calculations in 6.4 are applicable to the last stage.

For multipath, multistage trim (see Figure 3 for one example of many effective noise-reducing trims), the procedure of Clause 5 shall be used, except as noted below.



NOTE This is one example of many effective noise-reducing trims.

#### Figure 3 – Multipath, multistage trim (two or more passages and two or more stages)

All flow passages shall have the same hydraulic diameter, and the distance between them shall be sufficient to prevent jet interaction. The flow area of each stage shall increase between inlet and outlet.

The vena contracta pressure  $p_{vc}$  shall be calculated using  $F_{Ln}$  instead of  $F_L$  in Equation (2). The flow coefficient  $C_n$  per Equation (27) shall be used in place of C; the stagnation pressure  $p_n$  of the last stage per Equation (28) shall be used in place of  $p_1$ ; and the density  $\rho_n$  per Equation (29) shall be used in place of  $\rho_1$ .

The jet Mach number is calculated from the following equation:

$$M_{jn} = \sqrt{\left(\frac{2}{\gamma - 1}\right) \left[ \left(1 - \frac{x}{F_{Ln}^{2}}\right)^{(1 - \gamma)/\gamma} - 1 \right]}$$
(32)

where the pressure drop ratio x for the last stage is determined from Equation (1) using  $p_n$  in place of  $p_1$ .

The peak frequency  $f_p$  is calculated from Equation (33) using the jet diameter  $D_j$  for the last stage from Equation (30):

$$f_{\rm p} = \frac{\operatorname{St}_{\rm p} M_{\rm jn} \, c_{\rm vc}}{D_{\rm j}} \tag{33}$$

NOTE 3 If the Strouhal number  $St_p$  cannot be determined,  $St_p$  can be set to equal 0,2.

NOTE 4 The method of 6.4 is not accurate if the Mach number  $M_0$  at the valve outlet exceeds 0,2. For calculation of  $M_0$ , see Equation (15). At a Mach number of 0,3, errors may exceed 5 dB. Refer to Clause 7 for the procedure for higher Mach numbers.

NOTE 5 See Annex A for a calculation example.

Finally, the A-weighted sound-pressure level  $L_{pAe}$  is calculated using Equation (25).

#### 7 Valves with higher outlet Mach numbers

#### 7.1 General

This clause provides a method for predicting sound pressure levels produced at the outlet of the valve with or without an expander. The applicability is limited to 30° as total angle of the transition piece installed downstream of the valve. Higher angles can lead to flow instabilities that are not within the scope of this standard.

#### 7.2 Calculation procedure

In the downstream pipe, the velocity is limited to a Mach number of 0,8 and is calculated from the following equation:

$$U_{\rm p} = \frac{4 m}{\pi \rho_2 D_{\rm j}^2}$$
(34)

The gas velocity  $U_R$  at the inlet of the expander is limited to the sonic velocity  $c_2$  and is calculated as follows:

$$U_{\mathsf{R}} = \frac{U_{\mathsf{p}} D_{\mathsf{l}}^2}{\beta d_{\mathsf{l}}^2} \tag{35}$$

NOTE 1 It is recognized that the velocity profile in the valve outlet is not uniform in all cases, and a contraction coefficient may have to be employed. This coefficient  $\beta$  is included in Equation (35). The value of  $\beta$  can be derived from test data using the point of choked flow in the valve outlet as an indication of Mach 1. Net area equals mass flow divided by density and speed of sound. It can also be determined by analytical methods. A value of  $\beta = 0.93$  seems to be applicable to straight pattern globe valves. Data for other valve styles are not available at this time, but for some rotary valves the value may be as low as 0,7.

The stream power in the expander is determined from Equation (36).

$$W_{\rm mR} = \frac{\dot{m} U_{\rm R}^2}{2} \left[ \left( 1 - \frac{d_{\rm i}^2}{D_{\rm i}^2} \right)^2 + 0.2 \right]$$
(36)

The peak frequency of the generated noise is determined as follows:

$$\mathbf{f}_{pR} = \frac{St_p \mathbf{U}_R}{\mathbf{d}_i} \tag{37}$$

Equation (38) is used to calculate the acoustical efficiency factor.

$$\eta_R = \left(1 \times 10^{A_\eta}\right) \mathbf{M}_R^3 \tag{38}$$

NOTE 2 For  ${\rm St}_p$  and  ${\rm A}_\eta$  s. Table 4

where

$$M_{\rm R} = \frac{U_{\rm R}}{c_2} \tag{39}$$

Then, the generated sound power is determined as follows:

$$W_{aR} = \eta_R \ W_{mR} \tag{40}$$

Although not required for this method, the total sound power level is calculated using Equation (12).

- 28 -

To calculate the internal sound-pressure level referenced to  $P_{o}$ , the following equation is used:

$$L_{piR} = 10 \log_{10} \left[ \frac{(3.2 \times 10^9) W_{aR} \rho_2 c_2}{D_i^2} \right] + L_g$$
(41)

The frequency spectrum related to the internal sound pressure levels due to the downstream pipe noise can be predicted from Equation (42) ([17]).

$$L_{piR}(f_i) = L_{piR} - 8 - 10 \cdot \log\left\{ \left[ 1 + \left( \frac{f_i}{2 \cdot f_{pR}} \right)^{2.5} \right] \cdot \left[ 1 + \left( \frac{f_{pR}}{2 \cdot f_i} \right)^{1.7} \right] \right\}$$
(42)

NOTE 3 Octave bands can be also used, when in Equation (41) instead of the first term of 8 dB, a value of 3 dB is used

The combined sound-pressure level  $L_{piS}(f_i)$  from both the valve trim  $L_{pi}(f_i)$  and the expander  $L_{piR}(f_i)$  can be estimated from Equation (42).

$$L_{piS}(f_i) = 10 \log_{10} \left( 10^{L_{pi}(f_i)/10} + 10^{L_{piR}(f_i)/10} \right)$$
(43)

 $L_{pis}(f_i)$  has then to be used instead  $L_{pi}(f_i)$  in Equation (24) to calculate the external sound pressure levels in Equations (24) and (25).

#### 8 Valves with experimentally determined acoustical efficiency factors

This standard recognizes acoustical efficiency factors based on laboratory data for specific valve designs as an alternative to the values calculated using the typical values given in Table 4. This alternative value of the acoustical efficiency factor  $\eta_{x}$  shall be calculated from noise measurements according to procedures in IEC 60534-8-1.

The preferred method is that  $L_{pi}$  and  $L_{pi}(f_i)$  are measured versus the differential pressure ratio x directly according to IEC 60534-8-1 Method B.

An alternative is that  $L_{pe,1m}$  and  $L_{pe,1m}(f_i)$  are measured from external noise measurements vs. the differential pressure ratio x according to the procedures given in IEC 60534-8-1 Method A. On that basis,  $L_{pi}$  and  $L_{pi}(f_i)$  have to be calculated from the measured  $L_{pe,1m}(f_i)$  and the transmission loss (see 5.6). Therefore the pipe data of the test facility shall be used.

For both measurements the valve outlet Mach number  $M_{\rm O}$  should be lower than the appropriate limits for the trim being tested.

On the basis of the experimentally determined  $L_{pi}$  and  $L_{pi}(f_i)$  (direct or via  $L_{pe,1m}(f_i)$ ), the following parameters may be determined:

- The experimentally determined acoustical efficiency factor η<sub>x</sub> as a function of x. This would be used in place of the values calculated according to the equations in Table 3.
- A new frequency profile function  $L_{pi}(f_i) L_{pi}$ , from which new values of the peak Strouhal number may be determined. The new profile would be used in place of Equation (19). The new Strouhal number would be used in place of the typical values that are given in Table 4 when calculating the peak frequency  $f_p$  according to the equations in Table 3.

All other calculations should be in accordance with 5.7.

# 9 Combination of noise produced by a control valve with downstream installed two or more fixed area stages

When fixed area pressure reduction stages (like drilled holes plates) are installed downstream a control valve, total noise produced downstream can be calculated as follows (the example refers to a two-stage configuration):

$$L_{piTot}(f_i) = 10 \bullet \log_{10} \left( 10^{0.1 \bullet (Lpi(1)(f_i) - \Delta(2)(f_i) - \Delta(3)(f_i)} + 10^{0.1 \bullet (Lpi(2)(f_i) - \Delta(3)(f_i)} + 10^{0.1 \bullet (Lpi(3)(f_i))} \right)$$
(44)

where

- L<sub>piTOT</sub>(f<sub>i</sub>) is the total noise level inside the pipe downstream the last fixed area stage. L<sub>piTOT</sub>(f<sub>i</sub>) shall be used in Equation (24) instead of L*pi(fi)* to calculate L<sub>pe,1m</sub>(f<sub>i</sub>);
- L<sub>pi(j)</sub>(f<sub>i</sub>) is the internal noise level produced by the stage (j) at the frequency (f<sub>i</sub>) into the downstream pipe without taking in account downstream installed silencer attenuation;
- $\Delta_{(j)}(f_i)$  is the noise attenuation of the stage (j) at the frequency  $(f_i)$ .  $\Delta_{(j)}(f_i)$  are experimental values. If no experimental values are available  $\Delta_{(i)}(f_i)$  can be set 0.



- 30 -

Figure 4 – Control valve with downstream installed two fixed area stages

# Annex A

(informative)

# **Calculation examples**

# A.1 General

This annex indicates how the equations in this standard are used. The use of calculated values to several significant places is not meant to imply such accuracy; it is only to assist the user in checking the calculated values. The numbers on the left-hand side in parentheses are the equation numbers as used in this standard.

# A.2 Calculation examples 1 to 6

# Given data

# Valve

| Single-seat globe valve (with cage) install                          | ed flow to open                |
|----------------------------------------------------------------------|--------------------------------|
| Valve size:                                                          | Various                        |
| Valve outlet diameter:                                               | Various                        |
| Rated C <sub>v</sub> :                                               | $C_{\rm vR} = 195$             |
| Required C <sub>v</sub> :                                            | Various                        |
| Combined liquid pressure recovery factor and piping geometry factor: | $F_{\rm LP} = 0,792$           |
| Number of cage openings:                                             | $N_0 = 6$                      |
| Wetted perimeter of single flow passage:                             | $l_{\rm W}$ = 181 mm = 0,181 m |
| Area of single flow passage:                                         | $A = 0,00137 \text{ m}^2$      |
| Pressure drop ratio factor:                                          | $x_{\rm T} = 0.75$             |

# Pipe

| Inlet nominal pipe size:  | DN 200                                 |
|---------------------------|----------------------------------------|
| Outlet nominal pipe size: | DN 200                                 |
| Pipe wall thickness:      | t <sub>S</sub> = 8 mm = 0.008 m        |
| Internal pipe diameter:   | Various                                |
| Speed of sound in pipe:   | c <sub>S</sub> = 5 000 m/s             |
| Density of pipe material: | $\rho_{S} = 8 \ 000 \ \text{kg/m}^{3}$ |

#### Other

| Speed of sound in air:       | c <sub>o</sub> = 343 m/s                                             |
|------------------------------|----------------------------------------------------------------------|
| Density of air:              | $\rho_{0} = 1,293 \text{ kg/m}^{3}$                                  |
| Actual atmospheric pressure: | <i>p</i> <sub>a</sub> = 1,013 25 bar = 1,013 25 × 10 <sup>5</sup> Pa |

Standard atmospheric pressure:  $p_s = 1,013 \ 25 \ bar = 1,013 \ 25 \times 10^5 \ Pa$ 

The following values are used in, or determined from, calculations based on IEC 60534-2-1.

Head loss coefficient: $\Sigma \zeta = 0.86$ Sum of inlet velocity head coefficient: $\zeta_i = 1.2$ Piping geometry factor: $F_p = 0.98$ 

|                                                                                                                                                       | Example 1                                              | Example 2                                              | Example 3                                              | Example 4                                              | Example 5                                             | Example 6                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Type fluid: vapour                                                                                                                                    |                                                        |                                                        |                                                        |                                                        |                                                       |                                                       |
| Mass flow rate                                                                                                                                        | m = 2.22 kg/s                                          | m = 2.29 kg/s                                          | m = 2.59 kg/s                                          | m = 1.18 kg/s                                          | m = 1.19 kg/s                                         | m = 0.89 kg/s                                         |
| Valve inlet absolute pressure                                                                                                                         | p <sub>1</sub> = 10 bar =<br>1.0 x 10 <sup>6</sup> Pa  | p <sub>1</sub> = 10 bar =<br>1.0 x 10 <sup>6</sup> Pa  | p <sub>1</sub> = 10 bar =<br>1.0 x 10 <sup>6</sup> Pa  | p <sub>1</sub> = 10 bar =<br>1.0 x 10 <sup>6</sup> Pa  | p <sub>1</sub> = 10 bar =<br>1.0 x 10 <sup>6</sup> Pa | p <sub>1</sub> = 10 bar =<br>1.0 x 10 <sup>6</sup> Pa |
| Valve outlet absolute pressure                                                                                                                        | p <sub>2</sub> = 7.2 bar =<br>7.2 x 10 <sup>5</sup> Pa | p <sub>2</sub> = 6.9 bar =<br>6.9 x 10 <sup>5</sup> Pa | p <sub>2</sub> = 4.8 bar =<br>4.8 x 10 <sup>5</sup> Pa | p <sub>2</sub> = 4.2 bar =<br>4.2 x 10 <sup>5</sup> Pa | p <sub>2</sub> = 0.5 bar =<br>5 x 10 <sup>4</sup> Pa  | p <sub>2</sub> = 0.5 bar =<br>5 x 10 <sup>4</sup> Pa  |
| Inlet density                                                                                                                                         | $\rho_1 = 5.3 \text{ kg/m}^3$                          | $\rho_1 = 5.3 \text{ kg/m}^3$                         | ρ <sub>1</sub> = 5.3 kg/m <sup>3</sup>                |
| Inlet absolute temperature                                                                                                                            | T <sub>1</sub> = 177 °C =<br>450 K                     | T <sub>1</sub> = 177 °C =<br>450 K                     | T <sub>1</sub> = 177 °C = 450 K                        | T <sub>1</sub> = 177 °C =<br>450 K                     | T <sub>1</sub> = 177 °C =<br>450 K                    | T <sub>1</sub> = 177 °C =<br>450 K                    |
| Specific heat ratio                                                                                                                                   | γ = 1.22                                               | γ = 1.22                                               | γ = 1.22                                               | γ = 1.22                                               | γ = 1.22                                              | γ = 1.22                                              |
| Molecular mass                                                                                                                                        | M = 19.8<br>kg/kmol                                    | M = 19.8<br>kg/kmol                                    | M = 19.8<br>kg/kmol                                    | M = 19.8<br>kg/kmol                                    | M = 19.8<br>kg/kmol                                   | M = 19.8<br>kg/kmol                                   |
| Required C <sub>v</sub>                                                                                                                               | C <sub>v</sub> = 90                                    | C <sub>v</sub> = 90                                    | C <sub>v</sub> = 90                                    | C <sub>v</sub> = 40                                    | C <sub>v</sub> = 40                                   | C <sub>v</sub> = 30                                   |
| Valve size                                                                                                                                            | DN 100                                                 | DN 100                                                 | DN 100                                                 | DN 200                                                 | DN 200                                                | DN 100                                                |
| Valve outlet diameter                                                                                                                                 | D = 0.1 m                                              | D = 0.1 m                                              | D = 0.1 m                                              | D = 0.2031 m                                           | D = 0.2031 m                                          | D = 0.1 m                                             |
| Internal pipe diameter                                                                                                                                | D <sub>i</sub> = 0.2031 m                              | D <sub>i</sub> = 0.2031 m                             | D <sub>i</sub> = 0.15 m                               |
|                                                                                                                                                       |                                                        |                                                        |                                                        |                                                        |                                                       |                                                       |
| (1) Differential pressure ratio $x = \frac{p_1 - p_2}{p_1}$                                                                                           | x = 0.28                                               | x = 0.31                                               | x = 0.52                                               | x = 0.58                                               | x = 0.95                                              | x = 0.95                                              |
| (2) Absolute vena contracta pressure at subsonic<br>flow conditions<br>$p_{vc} = p_1 \cdot \left(1 - \frac{x}{(F_{LP} / F_P)^2}\right)$               | р <sub>ис</sub> =<br>567787 Ра                         | p <sub>vc</sub> =<br>521478 Pa                         | р <sub>ис</sub> =<br>197319 Ра                         | p <sub>vc</sub> =<br>104702 Pa                         | р <sub>vc</sub> =<br>-466437 Ра                       | p <sub>vc</sub> =<br>-466437 Pa                       |
| (3) Vena contracta differential pressure ratio at critical flow conditions<br>$x_{vec} = 1 - \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma - 1)}$ | x <sub>vcc</sub> = 0.439                               | x <sub>vcc</sub> = 0.439                              | x <sub>vcc</sub> = 0.439                              |
|                                                                                                                                                       | Example<br>1                                           | Example<br>2                                           | Example<br>3                                           | Example<br>4                                           | Example<br>5                                          | Example<br>6                                          |
| (4) Differential pressure ratio at critical flow conditions<br>$x_C = (F_{LP} / F_P)^2 x_{vcc}$                                                       | x <sub>C</sub> = 0.285                                 | x <sub>C</sub> = 0.285                                | x <sub>C</sub> = 0.285                                |
| (5) Recovery correction factor<br>$\alpha \equiv \frac{1 - x_{vec}}{1 - x_c}$                                                                         | α = 0.784                                              | α = 0.784                                              | α = 0.784                                              | α = 0.784                                              | α = 0.784                                             | α = 0.784                                             |
| (6) Differential pressure ratio at break point<br>$x_{B} = 1 - \frac{1}{\alpha} \left(\frac{1}{\gamma}\right)^{\gamma/(\gamma-1)}$                    | x <sub>B</sub> = 0.576                                 | x <sub>B</sub> = 0.576                                | x <sub>B</sub> = 0.576                                |
| (7) Differential pressure ratio where region of<br>constant acoustical efficiency begins<br>$x_{CE} = 1 - \frac{1}{22 \alpha}$                        | x <sub>CE</sub> = 0.942                                | x <sub>CE</sub> = 0.942                               | x <sub>CE</sub> = 0.942                               |
| 0                                                                                                                                                     | i                                                      | 1                                                      | i                                                      | 1                                                      | 1                                                     | I                                                     |

| Table A.1 – Calculation: | examples | 1 | to | 6 |
|--------------------------|----------|---|----|---|
|--------------------------|----------|---|----|---|

# 60534-8-3 © IEC:2010

# - 33 -

|                                                                                                                                                                                                                                                                               | Example 1                                                                              | Example 2                                                             | Example 3                                                             | Example 4                                                             | Example 5                                                      | Example 6                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|
| $\label{eq:regime} \begin{array}{ c c c } Regime \ definition \\ Regime \ I & If \ x \leq x_C \\ Regime \ II & If \ x_C < x \leq x_{vcc} \\ Regime \ III & If \ x_{vcc} < x \leq x_B \\ Regime \ IV & If \ x_B \ < x \leq x_{CE} \\ Regime \ V & If \ x_{CE} < x \end{array}$ | x ≤ x <sub>C</sub><br>⇒ Regime I                                                       | xc < x ≤ xvcc<br>⇒ Regime II                                          | x <sub>VCC</sub> < x ≤ x <sub>B</sub><br>⇒ Regime III                 | x <sub>B</sub> < x ≤ x <sub>CE</sub><br>⇒ Regime IV                   | x <sub>CE</sub> < x<br>⇒ Regime V                              | $x_{CE} < x$<br>$\Rightarrow$ Regime V                                |
| (8b) Hydraulic diameter of a single flow passage<br>$d_{\rm H} = \frac{4}{l_{\rm w}} A$                                                                                                                                                                                       | d <sub>H</sub> = 0.030 m                                                               | d <sub>H</sub> = 0.030 m                                              | d <sub>H</sub> = 0.030 m                                              | d <sub>H</sub> = 0.030 m                                              | d <sub>H</sub> = 0.030 m                                       | d <sub>H</sub> = 0.030 m                                              |
| (8c) Diameter of a circular orifice<br>$d_{o} = \sqrt{\frac{4 N_{o} A}{\pi}}$                                                                                                                                                                                                 | d <sub>0</sub> = 0.010 m                                                               | d <sub>0</sub> = 0.010 m                                              | d <sub>0</sub> = 0.010 m                                              | d <sub>0</sub> = 0.010 m                                              | d <sub>0</sub> = 0.010 m                                       | d <sub>0</sub> = 0.010 m                                              |
| (8a) Valve style modifier<br>$F_{\rm d} = \frac{d_{\rm H}}{d_{\rm o}}$                                                                                                                                                                                                        | F <sub>d</sub> = 0.30                                                                  | F <sub>d</sub> = 0.30                                                 | F <sub>d</sub> = 0.30                                                 | F <sub>d</sub> = 0.30                                                 | F <sub>d</sub> = 0.30                                          | F <sub>d</sub> = 0.30                                                 |
| (9) Jet diameter<br>$D_{j} = N_{14} F_{d} \sqrt{C(F_{LP} / F_{P})}$                                                                                                                                                                                                           | $N_{14} = 4.6 \times 10^{-3}$ $\Rightarrow$ $D_j = 0.012 \text{ m}$                    | $N_{14} = 4.6 \times 10^{-3}$ $\Rightarrow$ $D_{j} = 0.012 \text{ m}$ | $N_{14} = 4.6 \times 10^{-3}$ $\Rightarrow$ $D_{j} = 0.012 \text{ m}$ | $N_{14} = 4.6 \times 10^{-3}$ $\Rightarrow$ $D_{j} = 0.008 \text{ m}$ | $N_{14} = 4.6 \times 10^{-3}$ $\implies D_j = 0.008 \text{ m}$ | $N_{14} = 4.6 \times 10^{-3}$ $\Rightarrow$ $D_{j} = 0.007 \text{ m}$ |
| Calculations for Regime I                                                                                                                                                                                                                                                     |                                                                                        |                                                                       | ·                                                                     |                                                                       | ·                                                              |                                                                       |
| (Table 3) Stream power of mass flow<br>$W_m = \frac{\dot{m}(M_{vc}c_{vc})^2}{2}$                                                                                                                                                                                              | W <sub>m</sub> =<br>225385 W                                                           |                                                                       |                                                                       |                                                                       |                                                                |                                                                       |
| (Table 3) Vena contracta absolute temperature<br>$T_{ve} = T_1 \left( 1 - \frac{x}{(F_{LP} / F_P)^2} \right)^{(\gamma-1)/\gamma}$                                                                                                                                             | T <sub>vc</sub> = 406 K                                                                |                                                                       |                                                                       |                                                                       |                                                                |                                                                       |
| (Table 3) Speed of sound in the vena contracta<br>$c_{vc} = \sqrt{\gamma \frac{p_1}{\rho_1} \left(1 - \frac{x}{(F_{LP} / F_P)^2}\right)^{(\gamma-1)/\gamma}}$                                                                                                                 | c <sub>vc</sub> =<br>455.9 m/s                                                         |                                                                       |                                                                       |                                                                       |                                                                |                                                                       |
| (Table 3) Mach number at vena contracta $M_{\nu c} = \sqrt{\left(\frac{2}{\gamma - 1}\right) \left[ \left(1 - \frac{x}{F_L^2}\right)^{(1 - \gamma)/\gamma} - 1 \right]}$                                                                                                      | M <sub>vc</sub> = 0.988                                                                |                                                                       |                                                                       |                                                                       |                                                                |                                                                       |
| (Table 3) Acoustical efficiency factor<br>$\eta = \left(1 \times 10^{A_{\eta}}\right) (F_{LP} / F_{P})^{2} \cdot M_{vc}^{3}$                                                                                                                                                  | $\begin{array}{c} A_{\eta}=-3.8\\ \Rightarrow\\ \eta_{1}=9.9\times10^{-5} \end{array}$ |                                                                       |                                                                       |                                                                       |                                                                |                                                                       |
| (11) Sound power<br>$W_a = \eta W_m$                                                                                                                                                                                                                                          | W <sub>a</sub> = 22.3 W                                                                |                                                                       |                                                                       |                                                                       |                                                                |                                                                       |
| (Table 3) Peak frequency<br>$f_p = \frac{Stp \cdot M_{vc} \cdot c_{vc}}{D}$                                                                                                                                                                                                   | $St_p = 0.2$                                                                           |                                                                       |                                                                       |                                                                       |                                                                |                                                                       |
| D <sub>j</sub>                                                                                                                                                                                                                                                                | Ip = 7778 HZ                                                                           |                                                                       |                                                                       |                                                                       |                                                                |                                                                       |
| (Table 3) Speed of sound in the vena contracta<br>$c_{vec} = \sqrt{\frac{2\gamma}{\gamma + 1} \frac{p_1}{\rho_1}}$                                                                                                                                                            |                                                                                        | c <sub>vcc</sub> =<br>455.4 m/s                                       |                                                                       |                                                                       |                                                                |                                                                       |
| (Table 3) Stream power of mass flow<br>$W_m = \frac{\dot{m}(c_{vcc})^2}{2}$                                                                                                                                                                                                   |                                                                                        | W <sub>ms</sub> =<br>237447 W                                         |                                                                       |                                                                       |                                                                |                                                                       |
| (Table 3) Freely expanded jet Mach number<br>$ \begin{bmatrix} \sqrt{\frac{2}{\gamma-1} \left[ \left(\frac{1}{\alpha(1-x)}\right)^{(\gamma-1)\gamma} - 1 \right]} \\ \sqrt{\frac{2}{\gamma-1} \left[ (22)^{(\gamma-1)\gamma} - 1 \right]} \end{bmatrix} $                     |                                                                                        | M <sub>j</sub> =<br>Min(1.03; 2.6)<br>= 1.03                          |                                                                       |                                                                       |                                                                |                                                                       |
| (Table 3) Acoustical efficiency factor<br>$\eta = \left(1 \times 10^{A_{\eta}}\right) \cdot \frac{x}{x_{vcc}} M_{j}^{-6.6(F_{LP} / F_{P})^{2}}$                                                                                                                               |                                                                                        | $A_{\eta} = -3.8$<br>$\Rightarrow$<br>$\eta_2 = 1.3 \times 10^{-4}$   |                                                                       |                                                                       |                                                                |                                                                       |
| (11) Sound power<br>$W_a = \eta W_m$                                                                                                                                                                                                                                          |                                                                                        | W <sub>a</sub> = 30.4 W                                               |                                                                       |                                                                       |                                                                |                                                                       |

|                                                                                                                                                                                                                                                                      | Example 1 | Example 2                     | Example 3                                                                              | Example 4                                                                           | Example 5                       | Example 6                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------|---------------------------------|
| (Table 3) Peak frequency                                                                                                                                                                                                                                             |           | Stp = 0.2                     |                                                                                        |                                                                                     |                                 |                                 |
| $f_p = \frac{Stp \cdot M_j \cdot C_{vcc}}{D}$                                                                                                                                                                                                                        |           | ⇒<br>f <sub>p</sub> = 8115 Hz |                                                                                        |                                                                                     |                                 |                                 |
| Calculations for Regime III                                                                                                                                                                                                                                          |           |                               |                                                                                        |                                                                                     |                                 |                                 |
| (Table 3) Speed of sound in the vena contracta                                                                                                                                                                                                                       |           |                               |                                                                                        |                                                                                     |                                 |                                 |
| $c_{vec} = \sqrt{\frac{2\gamma}{\gamma+1}} \frac{p_1}{\rho_1}$                                                                                                                                                                                                       |           |                               | c <sub>vcc</sub> =<br>455.4 m/s                                                        |                                                                                     |                                 |                                 |
| (Table 3) Stream power of mass flow                                                                                                                                                                                                                                  |           |                               |                                                                                        |                                                                                     |                                 |                                 |
| $W_m = \frac{\dot{m}(c_{vcc})^2}{2}$                                                                                                                                                                                                                                 |           |                               | W ms =<br>268553 W                                                                     |                                                                                     |                                 |                                 |
| (Table 3) Freely expanded jet Mach number<br>$ \begin{bmatrix} \sqrt{\frac{2}{\gamma - 1} \left[ \left(\frac{1}{\alpha (1 - x)}\right)^{(\gamma - 1)\gamma} - 1 \right]} \\ \sqrt{\frac{2}{\gamma - 1} \left[ (22)^{(\gamma - 1)\gamma} - 1 \right]} \end{bmatrix} $ |           |                               | M <sub>j</sub> =<br>Min(1.32; 2.6)<br>= 1.32                                           |                                                                                     |                                 |                                 |
| (Table 3) Acoustical efficiency factor<br>$\eta = (1 \times 10^{A_{\eta}}) \cdot M_{j}^{6.6(F_{LP} / F_{P})^{2}}$                                                                                                                                                    |           |                               | $\begin{array}{c} A_{\eta}=-3.8\\ \Rightarrow\\ \eta_{3}=5.3\times10^{-4} \end{array}$ |                                                                                     |                                 |                                 |
| (11) Sound power<br>$W_a = \eta W_m$                                                                                                                                                                                                                                 |           |                               | W <sub>a</sub> = 141.3 W                                                               |                                                                                     |                                 |                                 |
| (Table 3) Peak frequency                                                                                                                                                                                                                                             |           |                               | St <sub>p</sub> = 0.2                                                                  |                                                                                     |                                 |                                 |
| $f_p = \frac{Stp \cdot M_j \cdot C_{vcc}}{D_j}$                                                                                                                                                                                                                      |           |                               | ⇒<br>f <sub>p</sub> = 10407 Hz                                                         |                                                                                     |                                 |                                 |
| Calculations for Regime IV                                                                                                                                                                                                                                           |           |                               |                                                                                        |                                                                                     |                                 |                                 |
| (Table 3) Speed of sound in the vena contracta<br>$c_{vee} = \sqrt{\frac{2\gamma}{\gamma+1} \frac{p_1}{\rho_1}}$                                                                                                                                                     |           |                               |                                                                                        | c <sub>vcc</sub> =<br>455.4 m/s                                                     |                                 |                                 |
| (Table 3) Stream power of mass flow<br>$W_m = \frac{\dot{m}(c_{vec})^2}{2}$                                                                                                                                                                                          |           |                               |                                                                                        | W <sub>ms</sub> =<br>122353 W                                                       |                                 |                                 |
| (Table 3) Freely expanded jet Mach number<br>$ \begin{bmatrix} \sqrt{\frac{2}{\gamma-1} \left[ \left(\frac{1}{\alpha (1-x)}\right)^{(\gamma-1)\gamma} - 1 \right]} \\ \sqrt{\frac{2}{\gamma-1} \left[ (22)^{(\gamma-1)\gamma} - 1 \right]} \end{bmatrix} $           |           |                               |                                                                                        | M <sub>j</sub> =<br>Min(1.42; 2.6)<br>= 1.42                                        |                                 |                                 |
| (Table 3) Acoustical efficiency factor<br>$\eta = \left(1 \times 10^{A_{\eta}}\right) \left(\frac{M_j^2}{2}\right) \left(\sqrt{2}\right)^{6.6(F_{1P}/F_P)^2}$                                                                                                        |           |                               |                                                                                        | $A_{\eta} = -3.8$ $\Rightarrow$ $\eta_{4} = 7.0 \times 10^{-4}$                     |                                 |                                 |
| (11) Sound power<br>$W_a = \eta W_m$                                                                                                                                                                                                                                 |           |                               |                                                                                        | W <sub>a</sub> = 86.1 W                                                             |                                 |                                 |
| (Table 3) Peak frequency<br>$f_p = \frac{I.4 \cdot St_p \cdot c_{vcc}}{D_j \sqrt{M_j^2 - I}}$                                                                                                                                                                        |           |                               |                                                                                        | $\begin{array}{c} St_p = 0.2 \\ \Rightarrow \\ f_p = 16368 \ \text{Hz} \end{array}$ |                                 |                                 |
| Calculations for Regime V                                                                                                                                                                                                                                            |           |                               |                                                                                        |                                                                                     |                                 |                                 |
| (Table 3) Speed of sound in the vena contracta<br>$c_{vc} = \sqrt{\frac{2\gamma}{\gamma+1} \frac{p_1}{\rho_1}}$                                                                                                                                                      |           |                               |                                                                                        |                                                                                     | c <sub>vcc</sub> =<br>455.4 m/s | c <sub>vcc</sub> =<br>455.4 m/s |
| (Table 3) Stream power of mass flow<br>$W_m = \frac{\dot{m}(c_{vcc})^2}{2}$                                                                                                                                                                                          |           |                               |                                                                                        |                                                                                     | W <sub>ms</sub> =<br>123389 W   | W <sub>ms</sub> =<br>92283 W    |
| (Table 3) Freely expanded jet Mach number                                                                                                                                                                                                                            |           |                               |                                                                                        |                                                                                     | $M_j = Min(2.7; 2.6)$<br>= 2.6  | $M_j = Min(2.7; 2.6)$<br>= 2.6  |
|                                                                                                                                                                                                                                                                      |           |                               | -                                                                                      |                                                                                     |                                 |                                 |

- 34 -
|                                                                                                                                                                                                                                                                                                                            | Example 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Example 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Example 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Example 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Example 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Example 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{M}_{j} = \mathbf{M}\mathbf{i}\mathbf{n}\mathbf{i}\mathbf{m}\mathbf{u}\mathbf{m} \text{ of } \begin{bmatrix} \sqrt{\frac{2}{\gamma-1} \left[ \left( \frac{1}{\alpha (1-\mathbf{x})} \right)^{(\gamma-1)\gamma} - 1 \right]} \\ \sqrt{\frac{2}{\gamma-1} \left[ (22)^{(\gamma-1)\gamma} - 1 \right]} \end{bmatrix}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (Table 3) Acoustical efficiency factor                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A <sub>η</sub> = -3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A <sub>η</sub> = -3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\eta = \left(1 \times 10^{A_{\eta}}\right) \left(\frac{M_{j}^{2}}{2}\right) \left(\sqrt{2}\right)^{6.6(F_{LP}/F_{P})^{2}}$                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\underset{\eta_{5}=2.4\times10^{-3}}{\Rightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\underset{\eta_{5}=2.4\times10^{-3}}{\Rightarrow}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (11) Sound power<br>$W_a = \eta W_m$                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W <sub>a</sub> = 291.9 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W <sub>a</sub> = 218.3 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (Table 3) Peak frequency                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | St <sub>p</sub> = 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | St <sub>p</sub> = 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $f_p = \frac{1.4 \text{ M}_p \text{ C}_{vec}}{D_j \sqrt{M_j^2 - I}}$                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $f_p = 6864 \text{ Hz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $f_p$ = 7926 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Noise calculations                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (13) Outlet density<br>$\rho_2 = \rho_1 \left( \frac{\rho_2}{\rho_1} \right)$                                                                                                                                                                                                                                              | $\rho_2 = 3.8 \text{ kg/m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\rho_2 = 3.7 \text{ kg/m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\rho_2 = 2.5 \text{ kg/m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\rho_2 = 2.2 \text{ kg/m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\rho_2=0.3\ kg/m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\rho_2=0.3\ kg/m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (14) Speed of sound at downstream conditions $\sqrt{\gamma R T_2}$                                                                                                                                                                                                                                                         | R = 8314<br>J/kmol x K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R = 8314<br>J/kmol x K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R = 8314<br>J/kmol x K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R = 8314<br>J/kmol x K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R = 8314<br>J/kmol x K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R = 8314<br>J/kmol x K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $c_2 = \sqrt{\frac{2}{M}}$ (15) Mach number at valve outlet                                                                                                                                                                                                                                                                | $\Rightarrow$<br>c <sub>2</sub> = 480 m/s<br>M <sub>o</sub> = 0.15 < 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \Rightarrow \\ c_2 = 480 \text{ m/s} \\ M_0 = 0.17 <\!\! 0.3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \Rightarrow \\ c_2 = 480 \text{ m/s} \\ \hline M_0 = 0.27 < 0.3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \Rightarrow \\ c_2 = 480 \text{ m/s} \\ \hline M_0 = 0.03 < 0.3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Rightarrow$<br>$c_2 = 480 \text{ m/s}$<br>$M_0 = 0.29 < 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Rightarrow$<br>$c_2 = 480 \text{ m/s}$<br>$M_0 = 0.89 > 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $M_{\rm o} = \frac{4\dot{m}}{\piD^2\rho_2c_2}$                                                                                                                                                                                                                                                                             | ⇒<br>calculations<br>are<br>appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ⇒<br>calculations<br>are<br>appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⇒<br>calculations<br>are<br>appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⇒<br>calculations<br>are<br>appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⇒<br>calculations<br>are<br>appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ⇒<br>calculation of<br>eqs. (54)-(63)<br>is pecessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (17) Mach number in downstream pipe                                                                                                                                                                                                                                                                                        | M <sub>2</sub> = 0.04 < 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M <sub>2</sub> = 0.04 < 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M <sub>2</sub> = 0.07 < 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M <sub>2</sub> = 0.03 < 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M <sub>2</sub> = 0.29 < 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $M_2 = 0.4 > 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $M_2 = \frac{4 m}{\pi D_i^2 \rho_2 c_2} < 0.3$                                                                                                                                                                                                                                                                             | ⇒<br>M <sub>2</sub> = 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ⇒<br>M <sub>2</sub> = 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ⇒<br>M <sub>2</sub> = 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ⇒<br>M <sub>2</sub> = 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ⇒<br>M₂ = 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ⇒<br>M₂ = 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (16) Correction for Mach number<br>$L_{g} = 16 \log_{10} \left( \frac{1}{1 - M_{2}} \right)$                                                                                                                                                                                                                               | L <sub>G</sub> = 0.26 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L <sub>G</sub> = 0.29 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $L_G = 0.47 \text{ dB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L <sub>G</sub> = 0.24 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L <sub>G</sub> = 2.4 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L <sub>G</sub> = 2.5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (18) Overall internal sound-pressure level<br>$L_{pi} = 10 \log_{10} \left[ \frac{(3.2 \times 10^9) W_a \rho_2 c_2}{D_i^2} \right] + L_g$                                                                                                                                                                                  | L <sub>pi</sub> = 155.3 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L <sub>pi</sub> = 156.5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L <sub>pi</sub> = 161.7 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L <sub>pi</sub> = 158.8 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L <sub>pi</sub> = 157 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L <sub>pi</sub> = 158.4 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (19) Frequency dependent internal sound-<br>pressure level (third octave bands:<br>12.5 Hz – 20 000 Hz)<br>$L_{pi}(f_i) = L_{pi} - 8$ $-10 \cdot \log \left\{ \left[ 1 + \left( \frac{f_i}{2 \cdot f_p} \right)^{2.5} \right] \cdot \left[ 1 + \left( \frac{f_p}{2 \cdot f_i} \right)^{1.7} \right] \right\}$              | $\begin{array}{c} L_{pl,1} = 105 \ dB \\ L_{pl,2} = 107 \ dB \\ L_{pl,3} = 108 \ dB \\ L_{pl,4} = 110 \ dB \\ L_{pl,5} = 112 \ dB \\ L_{pl,6} = 113 \ dB \\ L_{pl,6} = 113 \ dB \\ L_{pl,9} = 119 \ dB \\ L_{pl,9} = 119 \ dB \\ L_{pl,10} = 120 \ dB \\ L_{pl,11} = 122 \ dB \\ L_{pl,12} = 124 \ dB \\ L_{pl,13} = 125 \ dB \\ L_{pl,13} = 125 \ dB \\ L_{pl,14} = 127 \ dB \\ L_{pl,15} = 129 \ dB \\ L_{pl,16} = 130 \ dB \\ L_{pl,17} = 132 \ dB \\ L_{pl,17} = 132 \ dB \\ L_{pl,19} = 135 \ dB \\ L_{pl,22} = 143 \ dB \\ L_{pl,22} = 143 \ dB \\ L_{pl,22} = 143 \ dB \\ L_{pl,22} = 145 \ dB \\ L_{pl,23} = 145 \ dB \\ L_{pl,33} = 145 \ dB \\ L_{pl,33} = 145 \ dB \\ L_{pl,33} = 144 \ dB \ dB \ dB \\$ | $\begin{array}{l} L_{pi,1} = 106 \ dB \\ L_{pi,2} = 108 \ dB \\ L_{pi,3} = 109 \ dB \\ L_{pi,3} = 109 \ dB \\ L_{pi,5} = 111 \ dB \\ L_{pi,5} = 111 \ dB \\ L_{pi,6} = 114 \ dB \\ L_{pi,7} = 116 \ dB \\ L_{pi,9} = 119 \ dB \\ L_{pi,10} = 121 \ dB \\ L_{pi,11} = 123 \ dB \\ L_{pi,12} = 125 \ dB \\ L_{pi,13} = 126 \ dB \\ L_{pi,15} = 130 \ dB \\ L_{pi,16} = 131 \ dB \\ L_{pi,16} = 131 \ dB \\ L_{pi,20} = 138 \ dB \\ L_{pi,20} = 141 \ dB \\ L_{pi,20} = 141 \ dB \\ L_{pi,20} = 144 \ dB \\ L_{pi,20} = 144 \ dB \\ L_{pi,20} = 146 \ dB \\ L_{pi,20} = 147 \ dB \\ L_{pi,30} = 146 \ dB \\ L$ | $\begin{array}{l} L_{pi,1} = 109 \ dB \\ L_{pi,2} = 111 \ dB \\ L_{pi,3} = 113 \ dB \\ L_{pi,5} = 116 \ dB \\ L_{pi,5} = 116 \ dB \\ L_{pi,6} = 118 \ dB \\ L_{pi,7} = 119 \ dB \\ L_{pi,8} = 121 \ dB \\ L_{pi,9} = 123 \ dB \\ L_{pi,10} = 125 \ dB \\ L_{pi,11} = 126 \ dB \\ L_{pi,12} = 128 \ dB \\ L_{pi,13} = 130 \ dB \\ L_{pi,15} = 133 \ dB \\ L_{pi,16} = 135 \ dB \\ L_{pi,17} = 136 \ dB \\ L_{pi,18} = 138 \ dB \\ L_{pi,22} = 144 \ dB \\ L_{pi,22} = 146 \ dB \\ L_{pi,22} = 150 \ dB \\ L_{pi,23} = 150 \ dB \\ L_{pi,23} = 150 \ dB \\ L_{pi,33} = 151 \ dB \\ L_{pi,34} = 151 \ dB \\ L$ | $\begin{array}{c} L_{pi,1} = 103 \ dB \\ L_{pi,2} = 105 \ dB \\ L_{pi,3} = 106 \ dB \\ L_{pi,4} = 108 \ dB \\ L_{pi,5} = 110 \ dB \\ L_{pi,5} = 111 \ dB \\ L_{pi,6} = 111 \ dB \\ L_{pi,9} = 117 \ dB \\ L_{pi,9} = 117 \ dB \\ L_{pi,10} = 112 \ dB \\ L_{pi,11} = 120 \ dB \\ L_{pi,12} = 122 \ dB \\ L_{pi,13} = 123 \ dB \\ L_{pi,14} = 125 \ dB \\ L_{pi,15} = 127 \ dB \\ L_{pi,16} = 128 \ dB \\ L_{pi,18} = 132 \ dB \\ L_{pi,19} = 134 \ dB \\ L_{pi,22} = 133 \ dB \\ L_{pi,22} = 133 \ dB \\ L_{pi,22} = 133 \ dB \\ L_{pi,22} = 140 \ dB \\ L_{pi,22} = 140 \ dB \\ L_{pi,22} = 143 \ dB \\ L_{pi,22} = 144 \ dB \\ L_{pi,22} = 144 \ dB \\ L_{pi,23} = 147 \ dB \\ L_{pi,30} = 148 \ dB \\ L_{pi,30} = 148 \ dB \\ L_{pi,30} = 149 \ dB \\ L_{pi,32} = 149 \ dB \\ L_{pi,33} = 149 \ dB \\ L$ | $\begin{array}{l} L_{pi,1} = 108 \ dB \\ L_{pi,2} = 109 \ dB \\ L_{pi,3} = 111 \ dB \\ L_{pi,5} = 114 \ dB \\ L_{pi,5} = 114 \ dB \\ L_{pi,6} = 116 \ dB \\ L_{pi,7} = 118 \ dB \\ L_{pi,9} = 121 \ dB \\ L_{pi,9} = 121 \ dB \\ L_{pi,10} = 123 \ dB \\ L_{pi,11} = 124 \ dB \\ L_{pi,12} = 126 \ dB \\ L_{pi,13} = 128 \ dB \\ L_{pi,14} = 130 \ dB \\ L_{pi,16} = 133 \ dB \\ L_{pi,18} = 136 \ dB \\ L_{pi,20} = 123 \ dB \\ L_{pi,20} = 123 \ dB \\ L_{pi,20} = 123 \ dB \\ L_{pi,20} = 138 \ dB \\ L_{pi,20} = 138 \ dB \\ L_{pi,20} = 147 \ dB \\ L_{pi,30} = 143 \ dB \\ L$ | $\begin{array}{c} L_{pl,1} = 108 \ dB \\ L_{pl,2} = 110 \ dB \\ L_{pl,3} = 111 \ dB \\ L_{pl,4} = 113 \ dB \\ L_{pl,5} = 115 \ dB \\ L_{pl,6} = 117 \ dB \\ L_{pl,6} = 117 \ dB \\ L_{pl,9} = 122 \ dB \\ L_{pl,9} = 122 \ dB \\ L_{pl,10} = 123 \ dB \\ L_{pl,11} = 125 \ dB \\ L_{pl,12} = 127 \ dB \\ L_{pl,13} = 128 \ dB \\ L_{pl,13} = 128 \ dB \\ L_{pl,14} = 130 \ dB \\ L_{pl,15} = 132 \ dB \\ L_{pl,16} = 133 \ dB \\ L_{pl,16} = 133 \ dB \\ L_{pl,17} = 135 \ dB \\ L_{pl,12} = 127 \ dB \\ L_{pl,22} = 140 \ dB \\ L_{pl,22} = 143 \ dB \\ L_{pl,22} = 144 \ dB \\ L_{pl,22} = 144 \ dB \\ L_{pl,22} = 144 \ dB \\ L_{pl,22} = 148 \ dB \\ L_{pl,23} = 148 \ dB \\ L_{pl,30} = 147 \ dB \\ L_{pl,30} = 147 \ dB \\ L_{pl,30} = 147 \ dB \\ L_{pl,30} = 148 \ dB \\ L_{pl,30} = 148 \ dB \\ L_{pl,30} = 147 \ dB \\ L_{pl,30} = 147 \ dB \\ L_{pl,30} = 147 \ dB \\ L_{pl,30} = 148 \ dB \\ L_{pl,30} = 148 \ dB \\ L_{pl,30} = 147 \ dB \\ L_{pl,30} = 148 \ dB \\ L_{pl,30} = 147 \ dB \\ L_{pl,30} = 148 \ dB \\ L$ |
| Note                                                                                                                                                                                                                                                                                                                       | ⇒<br>calculation of<br>eqs. (34)-(43)<br>is not<br>necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ⇒<br>calculation of<br>eqs. (34)-(43)<br>is not<br>necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⇒<br>calculation of<br>eqs. (34)-(43)<br>is not<br>necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⇒<br>calculation of<br>eqs. (34)-(43)<br>is not<br>necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⇒<br>calculation of<br>eqs. (34)-(43)<br>is not<br>necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} M_0 > 0.3 \\ \Rightarrow \\ calculation of \\ eqs. (34)-(43) \\ is necessary \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (34) Gas velocity in downstream pipe<br>$U_{p} = \frac{4 \dot{m}}{\pi \rho_{2} D_{i}^{2}} \le 0.8 \cdot c_{2}$                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U <sub>p</sub> = 190 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# 60534-8-3 © IEC:2010

|      |                                                                                                                                                                                                                                                                                                                                                                             | Example 1 | Example 2 | Example 3 | Example 4 | Example 5 | Example 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (35) | Gas velocity in the inlet of diameter expander                                                                                                                                                                                                                                                                                                                              |           |           |           |           |           | $d_i = D$ and<br>$\beta = 0.93$<br>(assumed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | $\mathbf{U}_{R} = \frac{\mathbf{O}_{p} \mathbf{D}_{i}}{\beta \mathbf{d}_{i}^{2}} \leq c_{2}$                                                                                                                                                                                                                                                                                |           |           |           |           |           | ⇒<br>U <sub>R</sub> = 460m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (36) | Converted stream power in the expander $\int_{1}^{1} (1 - \alpha)^2 dx$                                                                                                                                                                                                                                                                                                     |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | $W_{\rm mR} = \frac{\dot{m} U_{\rm R}^2}{2} \left[ \left( 1 - \frac{d_{\rm i}^2}{D_{\rm i}^2} \right) + 0.2 \right]$                                                                                                                                                                                                                                                        |           |           |           |           |           | <sub>W mR</sub> =<br>47854 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (37) | Peak frequency in valve outlet or reduced<br>diameter of expander<br>$f_{pR} = \frac{St_P U_R}{d_r}$                                                                                                                                                                                                                                                                        |           |           |           |           |           | f <sub>pR</sub> = 920 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (39) | Mach number in the entrance to expander<br>$M_{\rm R} = \frac{U_{\rm R}}{c_2}$                                                                                                                                                                                                                                                                                              |           |           |           |           |           | M <sub>R</sub> = 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (38) | Acoustical efficiency factor for noise<br>created by outlet flow in expander                                                                                                                                                                                                                                                                                                |           |           |           |           |           | $\eta_{\rm R} = 8.8 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (40) | $\eta_{R} = (1 \times 10^{A_{\eta}}) M_{R}^{3}$<br>Sound power for noise generated by the                                                                                                                                                                                                                                                                                   |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | outlet flow and propagating downstream $W_{\rm c} = w_{\rm c} W_{\rm c}$                                                                                                                                                                                                                                                                                                    |           |           |           |           |           | W <sub>aR</sub> =<br>42.0 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (41) | Overall internal sound-pressure level at pipe<br>wall for noise created by outlet flow in<br>expander<br>$L_{r,n} = 10 \log_{10} \left[ \frac{(3,2 \times 10^9) W_{aR} \rho_2 c_2}{10} \right] + L_{r,n}$                                                                                                                                                                   |           |           |           |           |           | L <sub>piR</sub> = 151 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                             |           |           |           |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (42) | Frequency dependent internal sound-<br>pressure level at pipe wall for noise created<br>by outlet flow in expander<br>(third octave bands: 12,5 Hz – 20 000 Hz)<br>$L_{piR}(f_i) = L_{piR} - 8$ $-10 \cdot \log \left\{ \left[ 1 + \left( \frac{f_i}{2 \cdot f_{pR}} \right)^{25} \right] \cdot \left[ 1 + \left( \frac{f_{pR}}{2 \cdot f_i} \right)^{17} \right] \right\}$ |           |           |           |           |           | $\label{eq:constraints} \begin{array}{c} \text{dB} \\ \text{L}_{\text{pR},16} = 140 \\ \text{dB} \\ \text{L}_{\text{pR},17} = 140 \\ \text{dB} \\ \text{L}_{\text{pR},19} = 141 \\ \text{dB} \\ \text{L}_{\text{pR},20} = 141 \\ \text{dB} \\ \text{L}_{\text{pR},22} = 130 \\ \text{dB} \\ \text{L}_{\text{pR},26} = 134 \\ \text{dB} \\ \text{L}_{\text{pR},26} = 134 \\ \text{dB} \\ \text{L}_{\text{pR},28} = 130 \\ \text{dB} \\ \text{L}_{\text{pR},28} = 130 \\ \text{dB} \\ \text{L}_{\text{pR},29} = 127 \\ \text{dB} \\ \text{L}_{\text{pR},30} = 125 \\ \text{dB} \\ \text{L}_{\text{pR},30} = 125 \\ \text{dB} \\ \text{L}_{\text{pR},32} = 120 \\ \text{dB} \\ \text{L}_{\text{pR},32} = 120 \\ \text{dB} \\ \text{L}_{\text{pR},33} = 1177 \\ \text{dB} \\ \end{array}$ |

|                                                                                                                                                                                                                | Example 1                     | Example 2                     | Example 3                     | Example 4                | Example 5                | Example 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (43) Combined internal sound-pressure le pipe wall, caused by valve trim and expander (third octave bands:<br>12,5 Hz – 20 000 Hz)<br>$L_{pS}(f_i) = 10 \log_{10} (10^{L_{pS}(f_i)/10} + 10^{L_{pR}(f_i)/10})$ | vel at                        |                               |                               |                          |                          | $ \begin{array}{l} {} L_{piS,1} = 117 \ dB \\ {} L_{piS,2} = 119 \ dB \\ {} L_{piS,2} = 119 \ dB \\ {} L_{piS,3} = 121 \ dB \\ {} L_{piS,5} = 124 \ dB \\ {} L_{piS,5} = 126 \ dB \\ {} L_{piS,6} = 126 \ dB \\ {} L_{piS,10} = 132 \\ dB \\ {} L_{piS,10} = 132 \\ dB \\ {} L_{piS,10} = 132 \\ dB \\ {} L_{piS,11} = 134 \\ dB \\ {} L_{piS,12} = 135 \\ dB \\ {} L_{piS,13} = 137 \\ dB \\ {} L_{piS,15} = 139 \\ dB \\ {} L_{piS,16} = 141 \\ dB \\ {} L_{piS,16} = 141 \\ dB \\ {} L_{piS,16} = 142 \\ dB \\ {} L_{piS,21} = 144 \\ dB \\ {} L_{piS,22} = 145 \\ dB \\ {} L_{piS,22} = 145 \\ dB \\ {} L_{piS,22} = 145 \\ dB \\ {} L_{piS,22} = 148 \\ dB \\ {} L_{piS,23} = 148 \\ dB \\ {} L_{piS,30} = 148 \\ dB \\ {} L_{piS,33} = 146 $ |
| (21) Ring frequency                                                                                                                                                                                            | c <sub>s</sub> = 5000 m/s     | cs = 5000 m/s                 | $c_{\rm S}$ = 5000 m/s        | cs = 5000 m/s            | cs = 5000 m/s            | cs = 5000 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $f_r = \frac{c_s}{\pi D_i}$                                                                                                                                                                                    | ⇒<br>f <sub>r</sub> = 7836 Hz | ⇒<br>f <sub>r</sub> = 7836 Hz | ⇒<br>f <sub>r</sub> = 7836 Hz | ⇒<br>fr = 7836 Hz        | ⇒<br>fr = 7836 Hz        | ⇒<br>fr = 10610 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (22) Internal coincidence pipe frequency                                                                                                                                                                       | c <sub>a</sub> = 343 m/s      | c <sub>a</sub> = 343 m/s      | c <sub>a</sub> = 343 m/s      | c <sub>a</sub> = 343 m/s | c <sub>a</sub> = 343 m/s | c <sub>a</sub> = 343 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\mathbf{f}_o = \frac{\mathbf{f}_r}{4} \left( \frac{\mathbf{c}_2}{\mathbf{c}_a} \right)$                                                                                                                       | $f_0 = 2742 \text{ Hz}$       | $f_0 = 2742 \text{ Hz}$       | ⇒<br>f <sub>0</sub> = 2742 Hz | $f_0 = 2742 \text{ Hz}$  | $f_0 = 2742 \text{ Hz}$  | ⇒<br>f <sub>0</sub> = 3713 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (23) External coincidence frequency<br>$f_s = \frac{\sqrt{3} (c_s)^2}{\pi t_s (c_s)}$                                                                                                                          | f <sub>g</sub> = 1622 Hz      | f <sub>g</sub> = 1622 Hz      | f <sub>g</sub> = 1622 Hz      | f <sub>g</sub> = 1622 Hz | f <sub>g</sub> = 1622 Hz | f <sub>g</sub> = 1622 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# 60534-8-3 © IEC:2010

|                                                                                                                             | Example 1                                                          | Example 2                                                          | Example 3                                                          | Example 4                                                          | Example 5                                                          | Example 6                                                          |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                                             | $G_{x,1} = 2.1 \times 10^{-10}$                                    | $G_{x,1} = 6.4 \times 10^{-11}$                                    |
|                                                                                                                             | $G_{x,2} = 5.8 \times 10^{-9}$                                     | $G_{x,2} = 5.8 \times 10^{-9}$                                     | $G_{x,2} = 5.8 \times 10^{-9}$                                     | $G_{x,2} = 5.8 \times 10^{-9}$<br>$G_{w,2} = 1.4 \times 10^{-9}$   | $G_{x,2} = 5.8 \times 10^{-9}$<br>$G_{w,2} = 1.4 \times 10^{-9}$   | $G_{x,2} = 1.7 \times 10^{-10}$<br>$G_{w,2} = 4.2 \times 10^{-10}$ |
|                                                                                                                             | $G_{x,4} = 3.4 \times 10^{-9}$                                     | $G_{x,4} = 1.0 \times 10^{-9}$                                     |
|                                                                                                                             | $G_{x,5} = 8.6 \times 10^{-9}$                                     | $G_{x,5} = 2.6 \times 10^{-9}$                                     |
|                                                                                                                             | $G_{x,6} = 2.2 \times 10^{-6}$                                     | $G_{x,6} = 6.7 \times 10^{-8}$                                     |
|                                                                                                                             | $G_{x,7} = 5.5 \times 10^{-7}$<br>$G_{x,8} = 1.4 \times 10^{-7}$   | $G_{x,7} = 5.5 \times 10^{-7}$<br>$G_{x,8} = 1.4 \times 10^{-7}$   | $G_{x,7} = 5.5 \times 10^{-7}$<br>$G_{x,8} = 1.4 \times 10^{-7}$   | $G_{x,7} = 5.5 \times 10^{-7}$<br>$G_{x,8} = 1.4 \times 10^{-7}$   | $G_{x,7} = 5.5 \times 10^{-7}$<br>$G_{x,8} = 1.4 \times 10^{-7}$   | $G_{x,7} = 1.6 \times 10^{-8}$<br>$G_{x,9} = 4.1 \times 10^{-8}$   |
|                                                                                                                             | $G_{x,9} = 3.6 \times 10^{-7}$                                     | $G_{x,9} = 4.1 \times 10^{-7}$<br>$G_{x,9} = 1.1 \times 10^{-7}$   |
| (Table 6) Frequency factor G <sub>x</sub>                                                                                   | $G_{x,10} = 8.8 \times 10^{-7}$                                    | G <sub>x,10</sub> = 2.6×10                                         |
| (third octave bands: $12.5 \text{ Hz} - 20.000 \text{ Hz}$ )                                                                | $G_{x,11} = 2.1 \times 10^{-6}$                                    | $G_{x,11} = 6.4 \times 10^{-1}$                                    |
|                                                                                                                             | $G_{x,12} = 5.8 \times 10^{-5}$                                    | $G_{x,12} = 1.7 \times 10^{-10}$                                   |
| $\left( \begin{array}{c} c \end{array} \right)^{2/3} \left( \begin{array}{c} c \end{array} \right)^{4}$                     | $G_{x,13} = 1.4 \times 10^{-5}$<br>$G_{x,14} = 3.4 \times 10^{-5}$ | $G_{x,13} = 1.4 \times 10^{-5}$<br>$G_{x,14} = 3.4 \times 10^{-5}$ | $G_{x,13} = 1.4 \times 10^{-5}$<br>$G_{x,14} = 3.4 \times 10^{-5}$ | $G_{x,13} = 1.4 \times 10^{-5}$<br>$G_{x,14} = 3.4 \times 10^{-5}$ | $G_{x,13} = 1.4 \times 10^{-5}$<br>$G_{x,14} = 3.4 \times 10^{-5}$ | $G_{x,13} = 4.2 \times 10^{-5}$<br>$G_{x,14} = 1.0 \times 10^{-5}$ |
| $\left(\frac{\mathbf{f}_o}{\mathbf{f}_i}\right) \left(\frac{\mathbf{f}_i}{\mathbf{f}_i}\right) = \mathbf{f}_i \mathbf{f}_i$ | $G_{x,15} = 8.6 \times 10^{-5}$                                    | G <sub>x,15</sub> = 2.6×10                                         |
| $\begin{pmatrix} \mathbf{f}_r \end{pmatrix} \begin{pmatrix} \mathbf{f}_o \end{pmatrix}$ for $f_i < f_0$                     | $G_{x,16} = 2.2 \times 10^{-4}$                                    | $G_{x,16} = 6.7 \times 10^{-5}$                                    |
|                                                                                                                             | $G_{x,17} = 5.5 \times 10^{-1}$                                    | $G_{x,17} = 1.6 \times 10$                                         |
| <b>G</b> $(f_{i}) = \begin{cases} f_{i} \end{cases}$ for $f_{i} \ge f_{i}$ and $f_{i} \le f_{i}$                            | $G_{x,18} = 0.0014$<br>$G_{x,19} = 0.0036$                         | $G_{x,18} = 4.1 \times 10$<br>$G_{x,19} = 0.0011$                  |
| $\left  \frac{1_i}{c} \right $                                                                                              | G <sub>x,20</sub> = 0.0088                                         | G <sub>x,20</sub> = 0.0088                                         | $G_{x,20} = 0.0088$                                                | G <sub>x,20</sub> = 0.0088                                         | $G_{x,20} = 0.0088$                                                | G <sub>x,20</sub> = 0.0026                                         |
| $(\mathbf{I}_r)$                                                                                                            | G <sub>x,21</sub> = 0.021                                          | G <sub>x,21</sub> = 0.006                                          |
| for $f_i \ge f_0$ and $f_i \ge f_r$                                                                                         | $G_{x,22} = 0.058$                                                 | $G_{x,22} = 0.017$                                                 |
| 1                                                                                                                           | $G_{x,23} = 0.14$<br>$G_{x,24} = 0.34$                             | $G_{x,23} = 0.14$<br>$G_{x,24} = 0.34$                             | $G_{x,23} = 0.14$<br>$G_{x,24} = 0.34$                             | $G_{\chi 23} = 0.14$<br>$G_{\chi 24} = 0.34$                       | $G_{x,23} = 0.14$<br>$G_{x,24} = 0.34$                             | $G_{x,23} = 0.04$<br>$G_{x,24} = 0.1$                              |
|                                                                                                                             | $G_{x,25} = 0.63$                                                  | $G_{x,25} = 0.26$                                                  |
|                                                                                                                             | $G_{x,26} = 0.71$                                                  | $G_{x,26} = 0.71$                                                  | G <sub>x,26</sub> = 0.71                                           | $G_{x,26} = 0.71$                                                  | $G_{x,26} = 0.71$                                                  | $G_{x,26} = 0.61$                                                  |
|                                                                                                                             | $G_{x,27} = 0.8$                                                   | $G_{x,27} = 0.69$                                                  |
|                                                                                                                             | $G_{x,28} = 0.9$<br>$G_{x,20} = 1$                                 | $G_{x,28} = 0.77$<br>$G_{x,20} = 0.87$                             |
|                                                                                                                             | $G_{x,29} = 1$<br>$G_{x,30} = 1$                                   | $G_{x,29} = 0.07$<br>$G_{x,30} = 0.97$                             |
|                                                                                                                             | G <sub>x,31</sub> = 1                                              |
|                                                                                                                             | G <sub>x,32</sub> = 1                                              |
|                                                                                                                             | $G_{x,33} = 1$                                                     |
|                                                                                                                             | $G_{y,1} = 1$<br>$G_{y,2} = 1$                                     |
|                                                                                                                             | G <sub>y,3</sub> = 1                                               | $G_{y,3} = 1$                                                      |
|                                                                                                                             | G <sub>y,4</sub> = 1                                               |
|                                                                                                                             | $G_{y,5} = 1$                                                      | $G_{y,5} = 1$                                                      | G <sub>y,5</sub> = 1                                               | $G_{y,5} = 1$                                                      | $G_{y,5} = 1$                                                      | G <sub>y,5</sub> = 1                                               |
|                                                                                                                             | $G_{y,6} = 1$<br>$G_{w,7} = 1$                                     | $G_{y,6} = 1$<br>$G_{w,7} = 1$                                     | $G_{y,6} = 1$<br>$G_{y,7} = 1$                                     | $G_{y,6} = 1$<br>$G_{w,7} = 1$                                     | $G_{y,6} = 1$<br>$G_{u,7} = 1$                                     | $G_{y,6} = 1$<br>$G_{w,7} = 1$                                     |
| (Table C) Frequency factor C                                                                                                | $G_{y,8} = 1$                                                      | $G_{y,8} = 1$                                                      | $G_{y,7} = 1$<br>$G_{y,8} = 1$                                     | $G_{y,8} = 1$                                                      | $G_{y,8} = 1$                                                      | $G_{y,7} = 1$<br>$G_{y,8} = 1$                                     |
| (Table 6) Frequency factor G <sub>y</sub>                                                                                   | G <sub>y,9</sub> = 1                                               |
| (third octave bands: 12,5 Hz – 20 000 Hz)                                                                                   | $G_{y,10} = 1$                                                     |
|                                                                                                                             | $G_{y,11} = 1$<br>$G_{y,10} = 1$                                   |
| $\left( \mathbf{f}_{n} \right)$                                                                                             | $G_{y,12} = 1$<br>$G_{y,13} = 1$                                   |
| $\left\  \frac{\sigma}{\mathbf{f}} \right\ $ for $f_i < f_0$ and $f_0 < f_s$                                                | G <sub>y,14</sub> = 1                                              | $G_{y,14} = 1$                                                     |
| $\left(1_{g}\right)$                                                                                                        | G <sub>y,15</sub> = 1                                              |
|                                                                                                                             | $G_{y,16} = 1$                                                     |
| 1 for $f_i < f_0$ and $f_0 \ge f_g$                                                                                         | $G_{y,17} = 1$<br>$G_{y,18} = 1$                                   |
| $G_{v}(f_{i}) = \langle$                                                                                                    | G <sub>y,19</sub> = 1                                              |
| $(f)$ for $f \ge f$ and $f \le f$                                                                                           | $G_{y,20} = 1$                                                     |
| $\left  \frac{1_i}{2} \right $                                                                                              | $G_{y,21} = 1$                                                     | G <sub>y,21</sub> = 1                                              |
| $\left(\mathbf{f}_{g}\right)$                                                                                               | $G_{y,22} = 1$<br>$G_{y,23} = 1$                                   |
| for $f_i \ge f_0$ and $f_i \ge f_g$                                                                                         | $G_{y,24} = 1$                                                     |
| 1                                                                                                                           | $G_{y,25} = 1$                                                     | $G_{y,25} = 1$                                                     | $G_{y,25} = 1$                                                     | G <sub>y,25</sub> = 1                                              | $G_{y,25} = 1$                                                     | G <sub>y,25</sub> = 1                                              |
|                                                                                                                             | $G_{y,26} = 1$                                                     |
|                                                                                                                             | $G_{y,27} = 1$<br>$G_{y,28} = 1$                                   |
|                                                                                                                             | $G_{y,29} = 1$                                                     | $G_{y,29} = 1$                                                     | G <sub>y,29</sub> = 1                                              |
|                                                                                                                             | $G_{y,30} = 1$                                                     | G <sub>y,30</sub> = 1                                              | $G_{y,30} = 1$                                                     | G <sub>y,30</sub> = 1                                              | G <sub>y,30</sub> = 1                                              | G <sub>y,30</sub> = 1                                              |
|                                                                                                                             | $G_{y,31} = 1$                                                     | G <sub>y,31</sub> = 1                                              |
|                                                                                                                             | $G_{y,32} = 1$<br>$G_{y,33} = 1$                                   |
|                                                                                                                             | - 1,00                                                             | - 1,00                                                             | - 1,00                                                             | - 1,00                                                             | - 1,00                                                             | - 9,00                                                             |
|                                                                                                                             |                                                                    | 1                                                                  | I                                                                  | I                                                                  | I                                                                  | 1                                                                  |
|                                                                                                                             | ηs,1 = 0.028                                                       | η <sub>s,1</sub> = 0.028                                           | η <sub>s,1</sub> = 0.028                                           | ηs,1 = 0.028                                                       | ηs,1 = 0.028                                                       | η <sub>s,1</sub> = 0.028                                           |
|                                                                                                                             | $\eta_{s,2} = 0.025$                                               |
|                                                                                                                             | $\eta_{S,3} = 0.022$                                               |
|                                                                                                                             | $n_{s,4} = 0.02$                                                   | $n_{s,4} = 0.02$                                                   | $n_{8,4} = 0.02$                                                   | $n_{8,4} = 0.02$                                                   | $n_{8,4} = 0.02$                                                   | $n_{s,4} = 0.02$                                                   |
|                                                                                                                             | $\eta_{3,5} = 0.016$                                               | $\eta_{3,5} = 0.016$                                               | $\eta_{3,5} = 0.016$                                               | $\eta_{3,5} = 0.016$<br>$\eta_{3,6} = 0.016$                       | $\eta_{3,5} = 0.016$                                               | $\eta_{3,5} = 0.016$                                               |
|                                                                                                                             | ηs,7 = 0.014                                                       |
|                                                                                                                             | ηs,8 = 0.013                                                       | ηs,8 = 0.013                                                       | η <sub>s,8</sub> = 0.013                                           | ηs,8 = 0.013                                                       | ηs,8 = 0.013                                                       | η <sub>S,8</sub> = 0.013                                           |
|                                                                                                                             | ηs,9 = 0.011                                                       | η <sub>S,9</sub> = 0.011                                           | η <sub>s,9</sub> = 0.011                                           | η <sub>S,9</sub> = 0.011                                           | η <sub>S,9</sub> = 0.011                                           | η <sub>S,9</sub> = 0.011                                           |
|                                                                                                                             | η <sub>S,10</sub> = 0.01                                           | η <sub>S,10</sub> = 0.01                                           | $\eta_{S,10} = 0.01$                                               | $\eta_{S,10} = 0.01$                                               | η <sub>S,10</sub> = 0.01                                           | η <sub>s,10</sub> = 0.01                                           |
| (20c) Frequency-dependent structural loss factor                                                                            | $\eta_{S,11} = 0.0089$                                             |
| (third octave bands:                                                                                                        | $\eta_{S,12} = 0.0079$                                             |
| 12.5 Hz – 20 000 Hz)                                                                                                        | $\eta_{s,14} = 0.0063$                                             | $\eta_{5,13} = 0.0071$<br>$\eta_{5,14} = 0.0063$                   |
| ·_,,                                                                                                                        | η <sub>s,15</sub> = 0.0056                                         | η <sub>S,15</sub> = 0.0056                                         | ηs,15 = 0.0056                                                     | η <sub>S,15</sub> = 0.0056                                         | ηs,15 = 0.0056                                                     | ηs,15 = 0.0056                                                     |
|                                                                                                                             | ηs,16 = 0.005                                                      | ηs,16 = 0.005                                                      | η <sub>s,16</sub> = 0.005                                          | ηs,16 = 0.005                                                      | ηs,16 = 0.005                                                      | ηs,16 = 0.005                                                      |
| $n_s(f_s) = \left  \frac{f_s}{f_s} \right $                                                                                 | η <sub>S,17</sub> = 0.0045                                         | ηs,17 = 0.0045                                                     | ηs,17 = 0.0045                                                     | ηs,17 = 0.0045                                                     | ηs,17 = 0.0045                                                     | ηs,17 = 0.0045                                                     |
| $100f_i$                                                                                                                    | $\eta_{S,18} = 0.004$                                              | η <sub>S,18</sub> = 0.004                                          |
|                                                                                                                             | $\eta_{S,19} = 0.0035$                                             |
|                                                                                                                             | $\eta_{S,20} = 0.0032$                                             |
|                                                                                                                             | $n_{S,21} = 0.0028$<br>$n_{S,22} = 0.0025$                         | $\eta_{5,21} = 0.0028$<br>$\eta_{5,22} = 0.0025$                   | $\eta_{5,21} = 0.0028$<br>$\eta_{5,22} = 0.0025$                   | $\eta_{5,21} = 0.0028$<br>$\eta_{5,22} = 0.0025$                   | $n_{S,21} = 0.0028$<br>$n_{S,22} = 0.0025$                         | $n_{S,21} = 0.0028$                                                |
|                                                                                                                             | $\eta_{5,22} = 0.00223$<br>$\eta_{5,23} = 0.00222$                 | $\eta_{5,23} = 0.0023$                                             | $\eta_{5,23} = 0.0023$                                             | $\eta_{5,23} = 0.0023$                                             | $\eta_{5,22} = 0.0023$<br>$\eta_{5,23} = 0.0022$                   | $\eta_{5,23} = 0.0022$                                             |
|                                                                                                                             | ηs,24 = 0.002                                                      | ηs,24 = 0.002                                                      | η <sub>5,24</sub> = 0.002                                          | ηs,24 = 0.002                                                      | η <sub>5,24</sub> = 0.002                                          | ηs,24 = 0.002                                                      |
|                                                                                                                             | $\eta_{S,25} = 0.0018$                                             |
|                                                                                                                             | $\eta_{S,26} = 0.0016$                                             |
|                                                                                                                             | η <sub>s,27</sub> = 0.0014                                         | η <sub>S,27</sub> = 0.0014                                         | ηs,27 = 0.0014                                                     | η <sub>5,27</sub> = 0.0014                                         | ηs,27 = 0.0014                                                     | ηs,27 = 0.0014                                                     |
|                                                                                                                             | $\eta_{s,28} = 0.0013$                                             |
|                                                                                                                             | 10,29 - 0.0011                                                     | 10,29 - 0.0011                                                     | 10.29 - 0.0011                                                     | 10,29 – 0.00 I I                                                   | 10.0011 - U.UUTT                                                   | 1 10,29 - 0.0011                                                   |

# 60534-8-3 © IEC:2010

|                                                                                                                                                                                                                                                                                              | Example 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Example 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Example 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Example 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Example 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Example 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                              | $\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 \times 10^{-4} \\ \eta_{S,32} = 7.9 \times 10^{-4} \\ \eta_{S,33} = 7.1 \times 10^{-4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 \times 10^{-4} \\ \eta_{S,32} = 7.9 \times 10^{-4} \\ \eta_{S,33} = 7.1 \times 10^{-4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 \times 10^{-4} \\ \eta_{S,32} = 7.9 \times 10^{-4} \\ \eta_{S,33} = 7.1 \times 10^{-4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 {\scriptstyle \star} 10^{-4} \\ \eta_{S,32} = 7.9 {\scriptstyle \star} 10^{-4} \\ \eta_{S,33} = 7.1 {\scriptstyle \star} 10^{-4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 \times 10^{-4} \\ \eta_{S,32} = 7.9 \times 10^{-4} \\ \eta_{S,33} = 7.1 \times 10^{-4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} \eta_{S,30} = 0.001 \\ \eta_{S,31} = 8.9 \times 10^{-4} \\ \eta_{S,32} = 7.9 \times 10^{-4} \\ \eta_{S,33} = 7.1 \times 10^{-4} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (20b) Damping factor for transmission loss<br>$\Delta TL = \begin{cases} 0 & for \ D > 0.15 \\ -16660 \cdot D^3 + 6370 \cdot D^2 & \\ -813 \cdot D + 35.8 & \\ 9 & for \ D < 0.05 \end{cases}$                                                                                               | ∆TL = 1.5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ΔTL = 1.5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∆TL = 1.5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Delta TL = 0 dB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ∆TL = 0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∆TL = 1.5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (20a) Frequency dependent transmission loss<br>(third octave bands: 12,5 Hz – 20 000 Hz)<br>$TL(f_i) = 10 \log_{10} \left[ \frac{(8,25 \times 10^{-7}) \left(\frac{c_2}{t_3 f_1}\right)^2}{\left(\frac{G_1(f_1)}{415 G_y(f_1)} + 1\right) \left(\frac{p_2}{p_1}\right)} \right] - \Delta TL$ | $\begin{array}{l} TL_1 = -93 \ dB \\ TL_2 = -90.9 \ dB \\ TL_3 = -89 \ dB \\ TL_4 = -87.1 \ dB \\ TL_5 = -85.2 \ dB \\ TL_6 = -83.1 \ dB \\ TL_7 = -81.2 \ dB \\ TL_9 = -77.3 \ dB \\ TL_1 = -73.6 \ dB \\ TL_1 = -75.4 \ dB \\ TL_1 = -75.4 \ dB \\ TL_1 = -75.4 \ dB \\ TL_1 = -69.7 \ dB \\ TL_2 = -53.4 \ dB \\ TL_2 = -53.4 \ dB \\ TL_2 = -53.2 \ dB \\ TL_2 = -53.2 \ dB \\ TL_2 = -53.2 \ dB \\ TL_2 = -52.7 \ dB \\ TL_2 = -52.7 \ dB \\ TL_2 = -54.4 \ dB \\ TL_2 = -54.4 \ dB \\ TL_3 = -58.4 \ dB \\ TL_3 = -56.4 \ dB \\ TL_3 = -60.9 \ dB \\ TL_3 = -63.4 \ dB \\ TL_3 = -65.6 \ dB \\ TL_$                | $\begin{array}{l} \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1 \\ 1 \\ 1 \\ - 91.8 \ dB \\ 1 \\ 1 \\ 2 \\ - 89.7 \ dB \\ 1 \\ 1 \\ - 85.9 \ dB \\ 1 \\ 1 \\ - 85.9 \ dB \\ 1 \\ 1 \\ - 80. \ dB \\ 1$ | $\begin{array}{l} TL_1 = -89.8 \ dB \\ TL_2 = -87.7 \ dB \\ TL_3 = -85.8 \ dB \\ TL_4 = -84 \ dB \\ TL_5 = -82 \ dB \\ TL_6 = -80 \ dB \\ TL_7 = -78.1 \ dB \\ TL_9 = -74.2 \ dB \\ TL_9 = -74.2 \ dB \\ TL_1 = -72.4 \ dB \\ TL_1 = -66.8 \ dB \\ TL_1 = -66.8 \ dB \\ TL_1 = -66.8 \ dB \\ TL_1 = -65.8 \ dB \\ TL_2 = -50.5 \ dB \\ TL_2 $ | $\begin{array}{l} \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} TL_1 = -92.9 \ dB \\ TL_2 = 90.8 \ dB \\ TL_3 = -89.2 \ dB \\ TL_5 = -85.3 \ dB \\ TL_6 = -83.4 \ dB \\ TL_7 = -81.7 \ dB \\ TL_9 = -77.9 \ dB \\ TL_9 = -77.9 \ dB \\ TL_1 = -74.5 \ dB \\ TL_1 = -74.5 \ dB \\ TL_1 = -72.6 \ dB \\ TL_2 = -72.6 \ dB \\ TL_2 = -72.6 \ dB \\ TL_2 = -57.5 \ dB \\ TL_2 = -55.5 \ dB \\ TL_3 = -59.6 \ dB \\ TL_3 = -62.2 \ dB \\ TL_3 = -64.6 \ dB \\ $                                                                                                                                                                                                                                |
| (24) Frequency dependent external sound-<br>pressure level<br>(third octave bands: 12.5 Hz – 20000 Hz)<br>$L_{pe,lm}(f_i) = L_{pi}(f_i) + TL(f_i)$ $-10 \log \left(\frac{D_i + 2t_s + 2}{D_i + 2t_s}\right)$                                                                                 | $\begin{array}{l} L_{pe,1m,1}=2\ dB\\ L_{pe,1m,2}=6\ dB\\ L_{pe,1m,3}=9\ dB\\ L_{pe,1m,3}=9\ dB\\ L_{pe,1m,5}=17\\ dB\\ L_{pe,1m,6}=20\\ dB\\ L_{pe,1m,6}=21\\ dB\\ L_{pe,1m,7}=24\\ dB\\ L_{pe,1m,9}=31\\ dB\\ L_{pe,1m,1}=38dB\\ L_{pe,1m,1}=38dB\\ L_{pe,1m,1}=46dB\\ L_{pe,1m,1}=46dB\\ L_{pe,1m,1}=46dB\\ L_{pe,1m,1}=65dB\\ L_{pe,1m,2}=77dB\\ L_{pe,1m,2}=77dB\\ L_{pe,1m,2}=77dB\\ L_{pe,1m,2}=83dB\\ L_{pe,1m,2}=77dB\\ L_{pe,1m,2}=83dB\\ L_{pe,1m,2}=83dB\\ L_{pe,1m,2}=77dB\\ L_{pe,1m,2}=83dB\\ L_{pe,1m,2}=83dB\\ L_{pe,1m,2}=83dB\\ L_{pe,1m,2}=82dB\\ L_{pe,1m,2}=82dB\\ L_{pe,1m,2}=82dB\\ L_{pe,1m,2}=82dB\\ L_{pe,1m,2}=77dB\\ L_{pe,1m,2}=82dB\\ L_{pe,1m,2}=82dB\\ L_{pe,1m,2}=77dB\\ L_{pe,1m,2}=77dB\\ L_{pe,1m,2}=77dB\\ L_{pe,1m,2}=77dB\\ L_{pe,1m,2}=77dB\\ L_{pe,1m,3}=77dB\\ L_{pe,1m,3}=77dB\\ L_{pe,1m,3}=77dB\\ L_{pe,1m,3}=67dB\\ L_{pe,1m,$ | $\begin{array}{c} L_{pe,1m,1}=3 \ dB \\ L_{pe,1m,2}=7 \ dB \\ L_{pe,1m,3}=10 \\ dB \\ L_{pe,1m,4}=14 \\ dB \\ L_{pe,1m,6}=18 \\ dB \\ L_{pe,1m,6}=21 \\ dB \\ L_{pe,1m,7}=25 \\ dB \\ L_{pe,1m,8}=28 \\ dB \\ L_{pe,1m,8}=32 \\ dB \\ L_{pe,1m,1}=39dB \\ L_{pe,1m,1}=39dB \\ L_{pe,1m,1}=39dB \\ L_{pe,1m,1}=47dB \\ L_{pe,1m,1}=47dB \\ L_{pe,1m,1}=64dB \\ L_{pe,1m,2}=7dB \\ L_{pe,1m,2}=7dB \\ L_{pe,1m,2}=7dB \\ L_{pe,1m,2}=7dB \\ L_{pe,1m,2}=85dB \\ L_{pe,1m,2}=85dB \\ L_{pe,1m,2}=85dB \\ L_{pe,1m,2}=85dB \\ L_{pe,1m,2}=85dB \\ L_{pe,1m,2}=82dB \\ L_{pe,1m,2}=82dB \\ L_{pe,1m,2}=82dB \\ L_{pe,1m,2}=82dB \\ L_{pe,1m,2}=82dB \\ L_{pe,1m,2}=72dB \\ L_{pe,1m,2}=72dB \\ L_{pe,1m,3}=72dB \\ L_{pe,1m,3}=72dB \\ L_{pe,1m,3}=72dB \\ L_{pe,1m,3}=72dB \\ L_{pe,1m,3}=68dB \\ L_{pe,1m,3}=68dB \end{array}$ | $\begin{array}{c} L_{pe,1m,1}=7\ dB\\ L_{pe,1m,2}=11\\ dB\\ L_{pe,1m,3}=15\\ dB\\ L_{pe,1m,4}=18\\ dB\\ L_{pe,1m,5}=22\\ dB\\ L_{pe,1m,5}=22\\ dB\\ L_{pe,1m,7}=29\\ dB\\ L_{pe,1m,7}=29\\ dB\\ L_{pe,1m,7}=33\\ dB\\ L_{pe,1m,1}=440dB\\ L_{pe,1m,1}=44dB\\ L_{pe,1m,1}=44dB\\ L_{pe,1m,1}=48dB\\ L_{pe,1m,1}=54dB\\ L_{pe,1m,1}=54dB\\ L_{pe,1m,1}=65dB\\ L_{pe,1m,1}=65dB\\ L_{pe,1m,2}=84dB\\ L_{pe,1m,2}=75dB\\ L_{pe,1m,2}=85dB\\ L_{pe,1m,2}=85dB\\ L_{pe,1m,2}=88dB\\ L_{pe,1m,3}=87dB\\ L_{pe,1m,3}=75dB\\ L_{pp$                                                                                                                            | $\begin{array}{l} L_{pe,1m,1}=3 \ dB \\ L_{pe,1m,2}=7 \ dB \\ L_{pe,1m,3}=10 \ dB \\ L_{pe,1m,3}=110 \ dB \\ L_{pe,1m,5}=18 \ dB \\ L_{pe,1m,5}=18 \ dB \\ L_{pe,1m,7}=25 \ dB \\ L_{pe,1m,7}=25 \ dB \\ L_{pe,1m,7}=32 \ dB \\ L_{pe,1m,7}=32 \ dB \\ L_{pe,1m,1}=39 \ dB \\ L_{pe,1m,1}=39 \ dB \\ L_{pe,1m,1}=57 \ dB \\ L_{pe,1m,1}=57 \ dB \\ L_{pe,1m,1}=57 \ dB \\ L_{pe,1m,1}=64 \ dB \\ L_{pe,1m,2}=71 \ dB \\ L_{pe,1m,2}=71 \ dB \\ L_{pe,1m,2}=71 \ dB \\ L_{pe,1m,2}=71 \ dB \\ L_{pe,1m,2}=88 \ dB \\ L_{pe,1m,2}=83 \ dB \\ L_{pe,1m,2}=87 \ dB \\ L_{pe,1m,3}=77 \ dB \\ L_{pe,1m,33}=75 \ dB \\ L_{$             | $\begin{array}{l} L_{pe,1m,1}=11 \ dB \\ L_{pe,1m,2}=15 \ dB \\ L_{pe,1m,2}=12 \ dB \\ L_{pe,1m,3}=19 \ dB \\ L_{pe,1m,5}=26 \ dB \\ L_{pe,1m,5}=23 \ dB \\ L_{pe,1m,7}=33 \ dB \\ L_{pe,1m,9}=40 \ dB \\ L_{pe,1m,1}=47 \ dB \\ L_{pe,1m,1}=50 \ dB \\ L_{pe,1m,1}=71 \ dB \\ L_{pe,1m,1}=71 \ dB \\ L_{pe,1m,1}=71 \ dB \\ L_{pe,1m,2}=80 \ dB \\ L_{pe,1m,2}=80 \ dB \\ L_{pe,1m,2}=80 \ dB \\ L_{pe,1m,2}=80 \ dB \\ L_{pe,1m,2}=87 \ dB \\ L_{pe,1m,2}=77 \ dB \\ L_{pe,1m,3}=77 \ dB \\ L_{pe,1m,3}=77$ | $\begin{array}{c} Use \ L_{\text{pis}}(f_i) \\ instead \ of \\ L_{\text{pi}}(f_i) \\ L_{\text{pe}}, I_{m,2} = 17 \ dB \\ L_{\text{pe}}, I_{m,3} = 20 \ dB \\ L_{\text{pe}}, I_{m,3} = 20 \ dB \\ L_{\text{pe}}, I_{m,4} = 24 \ dB \\ L_{\text{pe}}, I_{m,5} = 27 \ dB \\ L_{\text{pe}}, I_{m,5} = 27 \ dB \\ L_{\text{pe}}, I_{m,7} = 35 \ dB \\ L_{\text{pe}}, I_{m,7} = 35 \ dB \\ L_{\text{pe}}, I_{m,1} = 48 \ dB \\ L_{\text{pe}}, I_{m,11} = 48 \ dB \\ L_{\text{pe}}, I_{m,11} = 55 \ dB \\ L_{\text{pe}}, I_{m,11} = 55 \ dB \\ L_{\text{pe}}, I_{m,11} = 55 \ dB \\ L_{\text{pe}}, I_{m,12} = 52 \ dB \\ L_{\text{pe}}, I_{m,12} = 57 \ dB \\ L_{\text{pe}}, I_{m,12} = 74 \ dB \\ L_{\text{pe}}, I_{m,22} = 74 \ dB \\ L_{\text{pe}}, I_{m,22} = 78 \ dB \\ L_{\text{pe}}, I_{m,22} = 85 \ dB \\ L_{\text{pe}}, I_{m,22} = 85 \ dB \\ L_{\text{pe}}, I_{m,22} = 85 \ dB \\ L_{\text{pe}}, I_{m,23} = 80 \ dB \\ L_{\text{pe}}, I_{m,30} = 80 \ dB \\ L_{\text{pe}}, I_{m,30} = 77 \ dB \\ L_{\text{pe}}, I_{m,30} = 77 \ dB \\ L_{\text{pe}}, I_{m,30} = 77 \ dB \\ L_{\text{pe}}, I_{m,33} = 77 \ dB \\ L_{\text{pe}$ |
| (25) A-weighted sound-pressure level 1 m from<br>pipe wall $L_{A,A} = 10 \cdot Log_{10} \left( \sum_{i=1}^{N=33} 10^{\frac{L_{pe,lm}(f_i) + \Delta L_A(f_i)}{10}} \right)$                                                                                                                   | $\Delta L_{A}(f_{i}) \text{ see 5.6}$ $\Rightarrow$ $L_{pAe, 1m} = 92$ $dB(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Delta L_{A}(f_{i}) \text{ see 5.6}$ $\Rightarrow$ $L_{pAe, 1m} = 93$ $dB(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Delta L_A(f_i) \text{ see 5.6}$ $\Rightarrow$ $L_{pAe,1m} = 98$ $dB(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \Delta L_{A}(f_{i}) \text{ see 5.6} \\ \Rightarrow \\ L_{pAe,1m} = 94 \\ dB(A) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \Delta L_{A}(f_{i}) \text{ see 5.6} \\ \Rightarrow \\ L_{pAe,1m} = 97 \\ dB(A) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta L_{A}(f_{i}) \text{ see 5.6}$ $\Rightarrow$ $L_{pAe, 1m} = 94$ $dB(A)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Calculation example 7 A.3

# Given data

# Valve

| Single-seat globe valve (with cage) installed flow to open |                                               |  |  |  |  |
|------------------------------------------------------------|-----------------------------------------------|--|--|--|--|
| Valve size:                                                | DN 200                                        |  |  |  |  |
| Valve outlet diameter:                                     | D = 0,200  m                                  |  |  |  |  |
| Required C <sub>v</sub> :                                  | $C_{\rm v} = 81,5$                            |  |  |  |  |
| Number of independent and identical flow passages:         | $N_0 = 432$                                   |  |  |  |  |
| Total flow area of last stage:                             | $A_{\rm n} = 6,44 \times 10^{-3} \ {\rm m}^2$ |  |  |  |  |
| Hydraulic diameter:                                        | $d_{\rm H} = 0,0025 \ {\rm m}$                |  |  |  |  |
| Liquid pressure recovery factor for last stage:            | $F_{Ln} = 0,98$                               |  |  |  |  |

- 40 -

# Pipe

| Inlet nominal pipe size:  | DN 200                       |
|---------------------------|------------------------------|
| Outlet nominal pipe size: | DN 200                       |
| Pipe wall thickness:      | t <sub>S</sub> = 0,008 m     |
| Internal pipe diameter:   | $D_{\rm i} = 0,200 {\rm m}$  |
| Speed of sound in pipe:   | c <sub>S</sub> = 5 000 m/s   |
| Density of pipe material: | ρ <sub>S</sub> = 8 000 kg/m³ |

# Other

| Speed of sound in air:         | c <sub>o</sub> = 343 m/s                                   |
|--------------------------------|------------------------------------------------------------|
| Density of air:                | $\rho_{0} = 1,293 \text{ kg/m}^{3}$                        |
| Actual atmospheric pressure:   | $p_{\rm a}$ = 1,013 25 bar = 1,013 25 × 10 <sup>5</sup> Pa |
| Standard atmospheric pressure: | $p_{\rm s}$ = 1,013 25 bar = 1,013 25 × 10 <sup>5</sup> Pa |

# Definitions

| Index          | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8         | 9         | 10        | 11        |
|----------------|------|------|------|------|------|------|------|-----------|-----------|-----------|-----------|
| Frequency [Hz] | 12.5 | 16   | 20   | 25   | 31.5 | 40   | 50   | 63        | 80        | 100       | 125       |
|                |      |      |      |      |      |      |      |           |           |           |           |
| Index          | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19        | 20        | 21        | 22        |
| Frequency [Hz] | 160  | 200  | 250  | 315  | 400  | 500  | 630  | 800       | 1000      | 1250      | 1600      |
|                |      |      |      |      |      |      |      |           |           |           |           |
| Index          | 23   | 24   | 25   | 26   | 27   | 28   | 29   | 30        | 31        | 32        | 33        |
| Frequency [Hz] | 2000 | 2500 | 3150 | 4000 | 5000 | 6300 | 8000 | 1000<br>0 | 1250<br>0 | 1600<br>0 | 2000<br>0 |

|                                                                                                                                                                                                                                                                                                           | Example 7                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type fluid: vapour                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                  |
| Mass flow rate                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |
| Valve inlet absolute pressure                                                                                                                                                                                                                                                                             | p <sub>1</sub> = 70 bar = 7.0 x 10 <sup>6</sup> Pa                                                                                                                                               |
| Valve outlet absolute pressure                                                                                                                                                                                                                                                                            | p <sub>2</sub> = 14 bar = 1.4 x 10 <sup>6</sup> Pa                                                                                                                                               |
| Inlet density                                                                                                                                                                                                                                                                                             | ρ <sub>1</sub> = 55.3 kg/m³                                                                                                                                                                      |
| Inlet absolute temperature                                                                                                                                                                                                                                                                                | T <sub>1</sub> = 290 K                                                                                                                                                                           |
| Specific heat ratio                                                                                                                                                                                                                                                                                       | γ = 1.31                                                                                                                                                                                         |
| Molecular mass                                                                                                                                                                                                                                                                                            | M = 19.0 kg/kmol                                                                                                                                                                                 |
| (27) Flow coefficient for last stage of multistage trim<br>$C_n = N_{16} A_n$<br>Determination of absolute stagnation pressure a                                                                                                                                                                          | $C_n = 315$ $t \qquad \qquad p_1/p_2 = 5 > 2$ $\Rightarrow \qquad \qquad$ |
| last stage of multistage valve                                                                                                                                                                                                                                                                            | $p_{r}/p_2 < 2$<br>⇒<br>Calculation of en (28a) is necessary                                                                                                                                     |
| (28a) Absolute stagnation pressure at last stage of multistage valve                                                                                                                                                                                                                                      | $p_n = 2.1 \times 10^6 \text{ Pa}$ $\Rightarrow$ $p_n = 1.5 < 2$                                                                                                                                 |
| $p_{\rm n} = \sqrt{\left(\frac{p_{\rm 1}{\rm C}}{1,155{\rm C}_{\rm n}}\right)^2 + {p_{\rm 2}}^2}$                                                                                                                                                                                                         | $p_{P}/p_2 = 1.3 < 2$ $\Rightarrow$ The use of Equation (28a) is appropriate                                                                                                                     |
| (1) Differential pressure ratio<br>$x = \frac{p_1 - p_2}{p_1}$                                                                                                                                                                                                                                            | $Use p_1 = p_n$ $\Rightarrow$ $x = 0.334$                                                                                                                                                        |
| (2) Absolute vena contracta pressure at subsoni flow conditions $p_{vc} = p_1 \cdot \left(1 - \frac{x}{E^{-2}}\right)$                                                                                                                                                                                    | с<br><sub>р<sub>vc</sub> = 1371038 Ра</sub>                                                                                                                                                      |
| (3) Vena contracta differential pressure ratio at critical flow conditions<br>$x_{vec} = 1 - \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma - 1)}$                                                                                                                                                     | x <sub>vcc</sub> = 0.456                                                                                                                                                                         |
| (4) Differential pressure ratio at critical flow<br>conditions<br>$x_{c} = F_{Ln}^{2} x_{vcc}$                                                                                                                                                                                                            | x <sub>c</sub> = 0.438                                                                                                                                                                           |
| (5) Recovery correction factor<br>$\alpha \equiv \frac{1 - x_{vec}}{1 - x_{C}}$                                                                                                                                                                                                                           | α = 0.968                                                                                                                                                                                        |
| (6) Differential pressure ratio at break point<br>$x_{B} = 1 - \frac{1}{\alpha} \left(\frac{1}{\gamma}\right)^{\gamma / (\gamma - 1)}$                                                                                                                                                                    | x <sub>B</sub> = 0.67                                                                                                                                                                            |
| (7) Differential pressure ratio where region of<br>constant acoustical efficiency begins<br>$x_{CE} = 1 - \frac{1}{22 \alpha}$                                                                                                                                                                            | x <sub>CE</sub> = 0.953                                                                                                                                                                          |
| $\begin{array}{c c} \mbox{Regime definition} \\ \mbox{Regime I} & \mbox{If } x \leq x_C \\ \mbox{Regime II} & \mbox{If } x_C < x \leq x_{vcC} \\ \mbox{Regime IV} & \mbox{If } x_{bcC} < x \leq x_B \\ \mbox{Regime V} & \mbox{If } x_{CF} < x \\ \mbox{Regime V} & \mbox{If } x_{CF} < x \\ \end{array}$ | x ≤ x <sub>C</sub><br>⇒ Regime I                                                                                                                                                                 |
| Area of a single flow passage $A = \frac{A_n}{N_a}$                                                                                                                                                                                                                                                       | $A = 1.5 \times 10^{-5} m^2$                                                                                                                                                                     |

# Table A.2 – Calculation: example 7

|                  |                                                                                                                                              | Example 7                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| (8c)             | Diameter of a circular orifice                                                                                                               |                                                                  |
|                  | $d_{\rm o} = \sqrt{\frac{4 N_{\rm o} A}{\pi}}$                                                                                               | a <sub>o</sub> = 0.091 m                                         |
| (8a)             | Valve style modifier                                                                                                                         |                                                                  |
| ()               | $F_{\rm d} = \frac{d_{\rm H}}{d_{\rm H}}$                                                                                                    | $F_{d} = 0.028$                                                  |
|                  | <sup>d</sup> d <sub>o</sub>                                                                                                                  |                                                                  |
| (9)              | Jet diameter                                                                                                                                 | $N_{14} = 4.6 \times 10^{-3}$                                    |
| ( )              | $\mathbf{D}_{j} = \mathbf{N}_{14} \mathbf{F}_{d} \sqrt{\mathbf{C}_{n} \mathbf{F}_{Ln}}$                                                      | ⇒                                                                |
| Cala             | lations for Desires I                                                                                                                        | D <sub>j</sub> = 0.0022 m                                        |
| Calci            |                                                                                                                                              |                                                                  |
| (Tabi            | e 3) Stream power of mass flow $rig(M - c_{1})^{2}$                                                                                          | W <sub>m</sub> =                                                 |
|                  | $W_m = \frac{m(w_w c_w)}{2}$                                                                                                                 | 1.19 x 10 <sup>6</sup> W                                         |
| (Tab             | e 3) Vena contracta absolute temperature                                                                                                     |                                                                  |
| (                | $\begin{pmatrix} x \end{pmatrix}^{(\gamma-1)/\gamma}$                                                                                        | T.,, = 262 K                                                     |
|                  | $T_{vc} = T_1 \left( 1 - \frac{\pi}{F_{t_n}^2} \right)$                                                                                      |                                                                  |
| (Tabl            | e 3) Speed of sound in the years contracts                                                                                                   |                                                                  |
| (100             | $\frac{1}{\sqrt{(\gamma-1)/\gamma}}$                                                                                                         | Use $p_1 = p_n$ and $\rho_1 = \rho_n$                            |
|                  | $c_{vc} = \sqrt{\gamma \frac{p_1}{\rho_c}} \left[ 1 - \frac{x}{E_c^2} \right]$                                                               | ⇒<br>c <sub>w</sub> = 387.1m/s                                   |
| ( <b>T</b> - 1.1 | $P_1(T_{L_n})$                                                                                                                               |                                                                  |
| (Tabi            | e 3) Mach number at vena contracta                                                                                                           |                                                                  |
|                  | $M_{\rm vc} = \sqrt{\left(\frac{2}{1-1}\right)} \left[ \left(1 - \frac{x}{1-2}\right) - 1 \right]$                                           | $M_{vc} = 0.829$                                                 |
|                  | $(\gamma - 1) \begin{bmatrix} F_L \end{bmatrix}$                                                                                             |                                                                  |
| (Tabl            | e 3) Acoustical efficiency factor                                                                                                            | A <sub>η</sub> = -4.8                                            |
|                  | $\eta_1 = \left(1 \times 10^{A_{\eta}}\right) F_{Ln}^{2} \cdot M_{vc}^{3}$                                                                   | $\Rightarrow$                                                    |
| (4.4)            | 0                                                                                                                                            | T[1 = 0.7 X TU                                                   |
| (11)             | Sound power $W = n W$                                                                                                                        | W <sub>a</sub> = 10.3 W                                          |
|                  |                                                                                                                                              |                                                                  |
| (Tabl            | e 3) Peak frequency<br>Str. $M$ - c.                                                                                                         | $St_p = 0.1$                                                     |
|                  | $f_p = \frac{SIP - M_{vc} - Cvc}{D}$                                                                                                         | ⇒<br>f <sub>n</sub> = 14381 Hz                                   |
| Noise            |                                                                                                                                              | .p                                                               |
| (13)             | Outlet density                                                                                                                               |                                                                  |
| ()               | $\left( \begin{array}{c} P_2 \end{array} \right)$                                                                                            | $\rho_2 = 11.1 \text{ kg/m}^3$                                   |
|                  | $\rho_2 = \rho_1 \left( {\rho_1} \right)$                                                                                                    |                                                                  |
| (14)             | Speed of sound at downstream conditions                                                                                                      | R = 8314 J/kmol x K                                              |
|                  | $c_2 = \sqrt{\frac{\gamma R T_2}{\gamma R T_2}}$                                                                                             | $\Rightarrow$                                                    |
| (45)             | V M                                                                                                                                          | c <sub>2</sub> = 408 m/s                                         |
| (15)             | $4 \dot{m}$                                                                                                                                  | $M_{o} = 0.16 < 0.3$                                             |
|                  | $M_{\rm o} = \frac{1}{\pi D^2 \rho_2 c_2}$                                                                                                   | calculations are appropriate                                     |
| (17)             | Mach number in downstream pipe                                                                                                               | M <sub>2</sub> = 0.16 < 0.3                                      |
|                  | $M_2 = \frac{4 \dot{m}}{D^2} < 0.3$                                                                                                          | $\Rightarrow$                                                    |
| (16)             | $\pi D_i \rho_2 C_2$                                                                                                                         | M <sub>2</sub> = 0.16                                            |
| (10)             |                                                                                                                                              | $L_{c} = 12  dB$                                                 |
|                  | $L_{\rm g} = 16 \log_{10} \left( \frac{1}{1 - M_2} \right)$                                                                                  |                                                                  |
| (18)             | Overall internal sound-pressure level                                                                                                        |                                                                  |
|                  | $L_{a} = 10 \log_{10} \left[ \frac{(3.2 \times 10^9) W_a \rho_2 c_2}{1000} + L_a \right]$                                                    | L <sub>pi</sub> = 156.9 dB                                       |
|                  | $\mathbf{D}_{i}^{2}$                                                                                                                         |                                                                  |
| (19)             | Frequency dependent internal sound-pressure                                                                                                  | L <sub>pi,1</sub> = 102 dB<br>L <sub>pi,2</sub> = 104 dB         |
| (13)             | level                                                                                                                                        | $L_{pi,3} = 105 \text{ dB}$                                      |
|                  | (third octave bands: 12.5 Hz – 20000 Hz)                                                                                                     | $L_{p_{1,4}} = 107 \text{ dB}$<br>$L_{p_{1,5}} = 109 \text{ dB}$ |
|                  | $L_{ni}(f_i) = L_{ni} - 8$                                                                                                                   | L <sub>pi,6</sub> = 111 dB<br>L <sub>pi,7</sub> = 112 dB         |
|                  | $p \sim p$ $p \sim p$ $\left[ \left[ \left( \right) 2.5 \right] \left[ \left( \right) 1.7 \right] \right]$                                   | $L_{pi,8} = 114 \text{ dB}$                                      |
|                  | $-10 \cdot \log \left\{ \left  1 + \left( \frac{f_i}{2} \right) \right  + \left  1 + \left( \frac{f_p}{2} \right)^{\infty} \right  \right\}$ | $L_{pi,9} = 110 \text{ GB}$<br>$L_{pi,10} = 117 \text{ dB}$      |
|                  | $\begin{bmatrix} 2 \cdot f_p \end{bmatrix} \begin{bmatrix} 2 \cdot f_i \end{bmatrix}$                                                        | $L_{pi,11} = 119 \text{ dB}$<br>$L_{pi,12} = 121 \text{ dB}$     |
|                  |                                                                                                                                              | $I_{a12} = 122 \text{ dB}$                                       |

|                                                                                                                                                                                                                                                                                                                                                                                                     | Example 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \mbox{Example 7} \\ & \  \  \  \  \  \  \  \  \  \  \  \  \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Note                                                                                                                                                                                                                                                                                                                                                                                                | $M_0 < 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (21) Ring frequency                                                                                                                                                                                                                                                                                                                                                                                 | Calculation of eqs. (54)-(63) is not necessary<br>$c_s = 5000 \text{ m/s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\mathbf{f}_r = \frac{c_s}{\pi \mathbf{D}}$                                                                                                                                                                                                                                                                                                                                                         | ⇒<br>f, = 7958 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (22) Internal coincidence pipe frequency                                                                                                                                                                                                                                                                                                                                                            | c <sub>a</sub> = 343 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\mathbf{f}_o = \frac{\mathbf{f}_r}{4} \left( \frac{\mathbf{c}_2}{\mathbf{c}_a} \right)$                                                                                                                                                                                                                                                                                                            | $\Rightarrow$<br>f <sub>0</sub> = 2365 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (23) External coincidence frequency<br>$f_{g} = \frac{\sqrt{3} (c_{a})^{2}}{\pi t_{s}(c_{s})}$                                                                                                                                                                                                                                                                                                      | f <sub>g</sub> = 1622 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (Table 6) Frequency factor $G_x$<br>(third octave bands: 12,5 Hz – 20 000 Hz)<br>$G_x(f_i) = \begin{cases} \left(\frac{f_o}{f_r}\right)^{2/3} \left(\frac{f_i}{f_o}\right)^4 & \text{for } f_i < f_0 \\ \left(\frac{f_i}{f_r}\right)^{1/2} & \text{for } f_i \ge f_0 \text{ and } f_i < f_r \\ & \text{for } f_i \ge f_0 \text{ and } f_i \ge f_r \\ 1 \end{cases}$ (Table C). Frequency factor $Q$ | $ \begin{array}{c} G_{x,1} = 3.5 \times 10^{10} \\ G_{x,2} = 9.3 \times 10^{10} \\ G_{x,3} = 2.3 \times 10^{-9} \\ G_{x,4} = 5.6 \times 10^{-9} \\ G_{x,5} = 1.4 \times 10^{-9} \\ G_{x,6} = 3.6 \times 10^{-8} \\ G_{x,7} = 8.9 \times 10^{-8} \\ G_{x,7} = 8.9 \times 10^{-7} \\ G_{x,10} = 5.8 \times 10^{-7} \\ G_{x,10} = 1.4 \times 10^{-7} \\ G_{x,11} = 3.5 \times 10^{-6} \\ G_{x,12} = 9.3 \times 10^{-6} \\ G_{x,13} = 2.3 \times 10^{-5} \\ G_{x,14} = 5.6 \times 10^{-5} \\ G_{x,15} = 1.4 \times 10^{-4} \\ G_{x,16} = 3.6 \times 10^{-4} \\ G_{x,17} = 8.9 \times 10^{-4} \\ G_{x,19} = 0.0058 \\ G_{x,22} = 0.093 \\ G_{x,23} = 1 \\ G_{x,31} = 1 \\ G_{x,33} = 1 \\ G_{x,33} = 1 \\ G_{x,33} = 1 \\ \end{array} $ |
| (1 able 6) Frequency factor $G_y$<br>(third octave bands: 12,5 Hz – 20 000 Hz)<br>$\left( \left( \frac{f_o}{f_g} \right) \text{ for } f_i < f_0 \text{ and } f_0 < f_g \right)$                                                                                                                                                                                                                     | $G_{y,1} = 1$<br>$G_{y,2} = 1$<br>$G_{y,3} = 1$<br>$G_{y,4} = 1$<br>$G_{y,5} = 1$<br>$G_{y,6} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $1  for f_i < f_0 and f_0 \ge f_e$                                                                                                                                                                                                                                                                                                                                                                  | $G_{y,7} = 1$<br>$G_{y,8} = 1$<br>$G_{y,0} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathbf{G}_{y}(f_{i}) = \begin{cases} \left(\frac{\mathbf{f}_{i}}{\mathbf{f}_{g}}\right) & \text{for } f_{i} \ge f_{0} \text{ and } f_{i} < f_{g} \\ & \text{for } f_{i} \ge f_{0} \text{ and } f > f \end{cases}$                                                                                                                                                                                 | $G_{y,10} = 1$<br>$G_{y,11} = 1$<br>$G_{y,12} = 1$<br>$G_{y,13} = 1$<br>$G_{y,14} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{bmatrix} J^{(i)}, J_i = J_0 & \text{and} & J_i = J_g \\ 1 & \end{bmatrix}$                                                                                                                                                                                                                                                                                                                  | $G_{y,15} = 1$<br>$G_{y,16} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                                                                                                                                                                | Formula 7                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                                                | Example 7                                                    |
|                                                                                                                                                                | $G_{y,17} = 1$<br>$G_{y,16} = 1$                             |
|                                                                                                                                                                | G <sub>y,19</sub> = 1                                        |
|                                                                                                                                                                | $G_{y,20} = 1$                                               |
|                                                                                                                                                                | $G_{y,21} = 1$<br>$G_{y,22} = 1$                             |
|                                                                                                                                                                | $G_{y,23} = 1$                                               |
|                                                                                                                                                                | $G_{y,24} = 1$<br>$G_{y,25} = 1$                             |
|                                                                                                                                                                | $G_{y,26} = 1$                                               |
|                                                                                                                                                                | $G_{y,27} = 1$                                               |
|                                                                                                                                                                | $G_{y,29} = 1$                                               |
|                                                                                                                                                                | $G_{y,30} = 1$                                               |
|                                                                                                                                                                | $G_{y,31} = 1$<br>$G_{y,32} = 1$                             |
|                                                                                                                                                                | G <sub>y,33</sub> = 1                                        |
|                                                                                                                                                                | $\eta_{S,1} = 0.028$                                         |
|                                                                                                                                                                | $\eta_{S,2} = 0.023$<br>$\eta_{S,3} = 0.022$                 |
|                                                                                                                                                                | $\eta_{S,4} = 0.02$                                          |
|                                                                                                                                                                | $\eta_{S,5} = 0.018$                                         |
|                                                                                                                                                                | $\eta_{S,6} = 0.018$<br>$\eta_{S,7} = 0.014$                 |
|                                                                                                                                                                | $\eta_{S,8} = 0.013$                                         |
|                                                                                                                                                                | $\eta_{S,9} = 0.011$                                         |
|                                                                                                                                                                | $\eta_{S,10} = 0.01$<br>$\eta_{S,14} = 0.0089$               |
|                                                                                                                                                                | $\eta_{S,12} = 0.0079$                                       |
|                                                                                                                                                                | $\eta_{S,13} = 0.0071$                                       |
| (20c) Frequency-dependent structural loss factor                                                                                                               | $\eta_{S,14} = 0.0063$                                       |
| (third octave bands: 12,5 Hz– 20 000 Hz)                                                                                                                       | $\eta_{\rm S,16} = 0.005$                                    |
|                                                                                                                                                                | $\eta_{S,17} = 0.0045$                                       |
| $\eta_s(f_i) = \sqrt{\frac{J_s}{100 f_i}}$                                                                                                                     | $\eta_{S,18} = 0.004$                                        |
| $\sqrt{100}f_i$                                                                                                                                                | $\eta_{S,19} = 0.0033$<br>$\eta_{S,20} = 0.0032$             |
|                                                                                                                                                                | $\eta_{S,21} = 0.0028$                                       |
|                                                                                                                                                                | $\eta_{S,22} = 0.0025$                                       |
|                                                                                                                                                                | $\eta_{S,23} = 0.0022$<br>$\eta_{S,24} = 0.002$              |
|                                                                                                                                                                | $\eta_{S,25} = 0.0018$                                       |
|                                                                                                                                                                | $\eta_{S,26} = 0.0016$                                       |
|                                                                                                                                                                | $\eta_{S,27} = 0.0014$<br>$\eta_{S,28} = 0.0013$             |
|                                                                                                                                                                | $\eta_{S,29} = 0.0011$                                       |
|                                                                                                                                                                | $\eta_{S,30} = 0.001$                                        |
|                                                                                                                                                                | $n_{\rm S,31} = 6.9 \times 10^{-4}$                          |
|                                                                                                                                                                | $\eta_{S,33} = 7.1 \times 10^{-4}$                           |
| (20b) Damping factor for transmission loss                                                                                                                     |                                                              |
| for D > 0.15                                                                                                                                                   |                                                              |
| $-16660 \cdot D^3 + 6370 \cdot D^2$                                                                                                                            | $\Delta T = 0  dB$                                           |
| $\Delta TL = \begin{cases} for \ 0.05 \le D \le 0.15 \\ -813 \cdot D + 35.8 \end{cases}$                                                                       |                                                              |
| $f_{0}$ , $D < 0.05$                                                                                                                                           |                                                              |
| 9 507 10 < 0.05                                                                                                                                                |                                                              |
|                                                                                                                                                                | $\Gamma L_1 = -94.1 \text{ dB}$<br>$T L_2 = -92 \text{ dB}$  |
|                                                                                                                                                                | $TL_3 = -90 \text{ dB}$                                      |
|                                                                                                                                                                | $TL_4 = -88.1 \text{ dB}$                                    |
|                                                                                                                                                                | $TL_6 = -84.1 \text{ dB}$                                    |
|                                                                                                                                                                | $TL_7 = -82.2 \text{ dB}$                                    |
| (20a) Frequency dependent transmission loss                                                                                                                    | $IL_8 = -80.2 \text{ dB}$<br>$TL_6 = -78.1 \text{ dB}$       |
| (third octave bands: 12,5 Hz – 20 000 Hz)                                                                                                                      | $TL_{10} = -76.2 \text{ dB}$                                 |
| $\begin{bmatrix} c & c \end{bmatrix}^2$                                                                                                                        | $TL_{11} = -74.3 \text{ dB}$                                 |
| $\left  \left( 8,25 \times 10^{-7} \right) \left( \frac{c_2}{t_s f_i} \right) \right  \cdot$                                                                   | $TL_{12} = -72.2 \text{ dB}$<br>$TL_{13} = -70.4 \text{ dB}$ |
| $TL(f_i) = 10 \log_{10} \left  \frac{G_x(f_i)}{G_x(f_i)} \right  - \Delta TL$                                                                                  | $TL_{14} = -68.5 dB$                                         |
| $\left  \left( \frac{\rho_2 \mathbf{c}_2 + 2 \cdot \pi \cdot t_s \cdot f_i \cdot \rho_s \cdot \eta_s(f_i)}{1 + 1} \right) \left( \mathbf{p}_s \right) \right $ | $IL_{15} = -66.5 \text{ dB}$<br>$TL_{16} = -64.5 \text{ dB}$ |
| $\begin{bmatrix} 415G_{y}(f_{i}) \end{bmatrix}$                                                                                                                | TL <sub>17</sub> = -62.6 dB                                  |
|                                                                                                                                                                | $TL_{18} = -60.7 \text{ dB}$<br>TL <sub>10</sub> = -58.7 dB  |
|                                                                                                                                                                | $TL_{20} = -56.9 \text{ dB}$                                 |
|                                                                                                                                                                | $TL_{21} = -55.1 dB$                                         |
|                                                                                                                                                                | $I L_{22} = -53 \text{ GB}$<br>TL <sub>23</sub> = -51.2 dB   |
|                                                                                                                                                                | $TL_{24} = -49.4 \text{ dB}$                                 |

|                                                                                                                                                                                                              | Example 7                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                              | $TL_{25} = -51.1 \text{ dB}$ $TL_{26} = -52.8 \text{ dB}$ $TL_{27} = -54.4 \text{ dB}$ $TL_{28} = -56.1 \text{ dB}$ $TL_{29} = -57.9 \text{ dB}$ $TL_{30} = -60 \text{ dB}$ $TL_{31} = -62.2 \text{ dB}$ $TL_{32} = -64.6 \text{ dB}$ $TL_{32} = -66.8 \text{ dB}$ |
| (24) Frequency dependent external sound-pressure<br>level<br>(third octave bands: 12,5 Hz – 20 000 Hz)<br>$L_{pe,lm}(f_i) = L_{pi}(f_i) + TL(f_i)$ $-10 \log \left(\frac{D_i + 2t_s + 2}{D_i + 2t_s}\right)$ | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                         |
| (25) A-weighted sound-pressure level 1 m from pipe wall                                                                                                                                                      | $\Delta L_A(f_i)$ see 5.6.3                                                                                                                                                                                                                                        |
| $L_{pAe,1m} = 10 \cdot Log_{10} \left( \sum_{i=1}^{N=33} 10^{\frac{L_{pe,1m}(f_i) + \Delta L_A(f_i)}{10}} \right)$                                                                                           | $\Rightarrow L_{pAe,1m} = 89 \text{ dB}(A)$                                                                                                                                                                                                                        |

## Bibliography

- [1] IEC 60534-2-1, Industrial-process control valves Part 2-1: Flow capacity Sizing equations for fluid flow under installed conditions
- [2] IEC 60534-8-1, Industrial-process control valves Part 8: Noise considerations Section One: Laboratory measurement of noise generated by aerodynamic flow through control valves
- [3] ANSI/ISA-75.01.01 (IEC 60534-2-1 Mod)-2007, Flow Equations for Sizing Control Valves
- [4] BAUMANN, H. D., A Method for Predicting Aerodynamic Valve Noise Based on Modified Free Jet Noise Theories, ASME Paper 87-WA/NCA-7 28, December 1987.
- [5] BAUMANN, H. D., Coefficients and Factors Relating to Aerodynamic Sound Level Generated by Throttling Valves, Noise Control Engineering Journal, Vol. 22, No. 1, January 1984, p. 6-11.
- [6] BAUMANN, H. D., On the Prediction of Aerodynamically Created Sound Pressure Level of Control Valves, ASME Paper WM/FE 28, December 1970, p. 2.
- [7] BAUMANN, H. D., Determination of Peak Internal Sound Frequency Generated by Throttling Valves for the Calculation of Pipe Transmission Losses, Noise Control Engineering Journal, Vol. 36, No. 2, March-April 1991, p. 75-82.
- [8] BAUMANN, H. D., Predicting Control Valve Noise at High Exit Velocities, INTECH, February 1997, p. 56-59.
- [9] BERANEK, Leo L., and ISTVAN L. Vér, Noise and Vibration Control Engineering Principles and Applications, New York, 1992.
- [10] EILERS, D. and CATRON F., Effect of structural loss factor on the calculation of pipe wall transmission loss, NOISE-CON 2007, October 2007
- [11] FAGERLUND, A. C. and CHOU D. C., Sound Transmission Through a Cylindrical Pipe Wall, ASME Journal of Engineering for Industry, Vol. 103, November 1981, p. 355-360.
- [12] FOWCS Williams, J. E. and HAWKINS D. L., Sound Generation by Turbulence and Surface in Arbitrary Motion, Philosophic Transactions of the Royal Society of London, Ser. A., 264 (London, 1969), p. 321-342.
- [13] KIESBAUER, J. and VNUCEC, D., Improvement of IEC 60534-8-3 standard for noise prediction in control valves, Hydrocarbon Processing, January 2008[12] LIGHTHILL, M. J., On Sound Generated Aerodynamically: I. General Theory, Proceedings of the Royal Society of London, A211 (London, 1952), p. 564-587.
- [14] LIGHTHILL, M.J., Jet Noise, AIAA Journal, 1, 150701517, July 1963.
- [15] POWELL, A., On the Mechanism of Choked Jet Noise, Proceedings Physical Society of London, Section B., 66:1039-57 (1953).
- [16] REETHOF, G. and WARD W. C., A Theoretically Based Valve Noise Prediction Method for Compressible Fluids, Journal of Vibrations, Acoustics, Stress, and Reliability in Design, ASME, July 1986, 00329.
- [17] SHEA, Allen K., A Comparative Study of Sound Level Prediction Methods for Control Valves, Master of Engineering Report, The Pennsylvania State University, Behrend Campus, Erie, PA., August 1982.

- [18] SINAMBARI, G. R., Ausströmgeräusche von Düsen und Ringdüsen in angeschlossenen Rohrleitungen Ihre Entstehung Fortpflanzung und Abstrahlung, Dissertation D386, Kaiserslautern, 1981
- [19] WARD, W. C., and REETHOF G., Graphical Implementation of a Fundamentals Based Method of Aerodynamic Control Valve Noise, American Society of Mechanical Engineers Conference on Pressure Vessels and Piping, Proceedings, Vol. 2, June 24-26, 1985.

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

# SOMMAIRE

| AV         | ANT-F         | PROPOS               | 5                                                                                                   | 50 |
|------------|---------------|----------------------|-----------------------------------------------------------------------------------------------------|----|
| INT        | ROD           | JCTION               |                                                                                                     | 52 |
| 1          | Dom           | aine d'a             | oplication                                                                                          | 54 |
| 2          | Réfé          | rences r             | ormatives                                                                                           | 55 |
| 3          | Term          | ies et dé            | finitions                                                                                           | 55 |
| 4          | Svm           | ooles                |                                                                                                     | 57 |
| 5          | Vanr          | ies muni             | es d'un équipement interne standard.                                                                | 60 |
| •          | 5 1           | Pressic              | ons et rapports de pression                                                                         | 60 |
|            | 5.2           | Définiti             | on des régimes                                                                                      | 61 |
|            | 5.3           | Calculs              | préliminaires                                                                                       | 62 |
|            |               | 5.3.1                | Coefficient de correction générique de la vanne <i>F</i> <sub>d</sub>                               | 62 |
|            |               | 5.3.2                | Diamètre du jet <i>D</i> <sub>i</sub>                                                               | 62 |
|            |               | 5.3.3                | Masse volumique du fluide à l'entrée $\rho_1$                                                       | 63 |
|            | 5.4           | Calculs              | de bruit interne                                                                                    | 64 |
|            |               | 5.4.1                | Calculs communs à tous les régimes                                                                  | 64 |
|            |               | 5.4.2                | Calculs dépendant du régime                                                                         | 64 |
|            |               | 5.4.3                | Calculs en aval                                                                                     | 66 |
|            |               | 5.4.4                | Calcul de la pression acoustique interne de la vanne sur la paroi de la tuvauterie                  | 67 |
|            | 5.5           | Calcul               | de la perte par transmission de la tuyauterie                                                       | 68 |
|            | 5.6           | Calcul               | de la pression acoustique externe                                                                   | 69 |
|            | 5.7           | Organi               | gramme de calcul                                                                                    | 70 |
| 6          | Vanr          | ies muni             | es d'un équipement interne spécial                                                                  | 70 |
|            | 6.1           | Généra               | lités                                                                                               | 70 |
|            | 6.2           | Equipe               | ment interne mono-étagé à chemins d'écoulement multiples                                            | 70 |
|            | 6.3           | Equipe<br>(deux é    | ment interne à chemin d'écoulement unique, à détente multi-étagée<br>tages de restriction ou plus)  | 71 |
|            | 6.4           | Equipe<br>chemin     | ment interne multi-étagé, à chemins d'écoulement multiples (deux<br>s ou plus, deux étages ou plus) | 73 |
| 7          | Cas           | des nom              | bres de Mach supérieurs en sortie de vanne                                                          | 75 |
|            | 7.1           | Généra               | lités                                                                                               | 75 |
|            | 7.2           | Méthoc               | le de calcul                                                                                        | 75 |
| 8          | Vanr          | ies à coe            | efficients de rendement acoustique déterminés expérimentalement                                     | 76 |
| 9          | Com<br>ou p   | binaison<br>us à sec | du bruit généré par une vanne de régulation munie de deux étages<br>tion fixe, installés en aval    | 77 |
| Anr        | nexe /        | A (inform            | ative) Exemples de calculs                                                                          | 79 |
| Bib        | lioora        | nhie                 |                                                                                                     | 95 |
| DID        | nogra         | p1110                |                                                                                                     |    |
| Fig        | ure 1         | – Equipe             | ement interne mono-étagé à chemins d'écoulement multiples                                           | 71 |
| Fig        | ure 2         | – Equipe             | ement interne à chemin d'écoulement unique, à détente multi-étagée                                  | 72 |
| Fig<br>che | ure 3<br>mins | – Equipe<br>ou plus, | ement interne multi-étagé, à chemins d'écoulement multiples (deux deux étages ou plus)              | 74 |
| Fig        | ure 4         | – Vanne              | de régulation avec deux étages à section fixe installés en aval                                     | 78 |
| Тан        | رام           | 1 – Cone             | stantes numériques N                                                                                | 63 |
| · at       | nouu          |                      |                                                                                                     |    |

| Tableau 2 – Valeurs types du coefficient de correction générique de vanne <i>F</i> <sub>d</sub> (équipements internes de dimension nominale) | 63 |
|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| Tableau 3 – Vue d'ensemble des équations dépendant du régime                                                                                 | 65 |
| Tableau 4 – Valeurs types de Α <sub>η</sub> et St <sub>p</sub>                                                                               | 66 |
| Tableau 5 – Indices de bandes de fréquences                                                                                                  | 67 |
| Tableau 6 – Facteurs de fréquence G <sub>X</sub> (f) et G <sub>y</sub> (f)                                                                   | 69 |
| Tableau 7 – Coefficient pondéré "A" à la fréquence f <sub>i</sub>                                                                            | 70 |

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

# COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

# VANNES DE RÉGULATION DES PROCESSUS INDUSTRIELS -

# Partie 8-3: Considérations sur le bruit – Méthode de prédiction du bruit aérodynamique des vannes de régulation

# **AVANT-PROPOS**

- 1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéresé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de la CEI. La CEI n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 60534-8-3 a été établie par le sous-comité 65B: Equipements de mesure et de contrôle commande, du comité d'études 65 de la CEI: Mesure, commande et automation dans les processus industriels.

Cette troisième édition annule et remplace la deuxième édition parue en 2000. Cette édition constitue une révision technique.

Par rapport à l'édition précédente, les modifications techniques majeures sont les suivantes:

- la prédiction du bruit en fonction de la fréquence;
- l'utilisation des données de laboratoire pour déterminer le coefficient de rendement acoustique.

Le texte de cette norme est issu des documents suivants:

| FDIS         | Rapport de vote |  |
|--------------|-----------------|--|
| 65B/765/FDIS | 65B/780/RVD     |  |

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Une liste de toutes les parties de la série CEI 60534, présentées sous le titre général *Vannes de régulation des processus industriels*, peut être consultée sur le site web de la CEI.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.

## INTRODUCTION

- 52 -

La puissance mécanique intrinsèque de l'écoulement et les coefficients de rendement acoustique sont calculés à différents régimes. Ces coefficients de rendement acoustique donnent la proportion de la puissance mécanique intrinsèque de l'écoulement convertie en puissance acoustique interne.

Cette méthode pourvoit également au calcul de la pression acoustique interne et de la fréquence dominante de cette pression acoustique, qui revêt une importance particulière dans le calcul de la perte par transmission de la tuyauterie.

Actuellement, la connaissance du niveau de pression acoustique à l'extérieur de la tuyauterie, généralement à 1 m en aval de la vanne ou du divergent et à 1 m de la paroi de la tuyauterie, est une exigence courante des utilisateurs de vannes. La présente norme offre une méthode permettant d'établir cette valeur.

Les équations de la présente norme reprennent les coefficients de dimensionnement de vanne déjà utilisés dans la CEI 60534-1 et la CEI 60534-2-1.

Dans une vanne de régulation courante, peu de bruit se propage à travers les parois de la vanne. Le bruit préoccupant est seulement celui qui se propage en aval de la vanne et à l'intérieur de la tuyauterie puis s'échappe à travers les parois de la tuyauterie, et que l'on mesure généralement à 1 m en aval du corps de vanne et à 1 m de distance de la paroi extérieure de la tuyauterie.

Des sources de bruit secondaires peuvent être créées lorsque le gaz quitte la sortie de la vanne à des nombres de Mach plus élevés. Cette méthode permet l'estimation de ces niveaux acoustiques supplémentaires qui peuvent être ajoutés sur le mode logarithmique avec les niveaux acoustiques créés à l'intérieur de la vanne.

Bien que cette méthode de prédiction ne puisse garantir des résultats réels sur site, elle fournit des résultats précis à 5 dB(A) près pour la majorité des données expérimentales sur le bruit recueillies dans des conditions de laboratoire (suivant la CEI 60534-8-1). Dans l'édition actuelle, le niveau de confiance du calcul a été augmenté. Dans certains cas, les résultats des éditions précédentes étaient plus conservateurs.

La majeure partie des données expérimentales utilisées pour valider la méthode a été fournie par des essais à l'air à pression et température modérées; on pense cependant que cette méthode est généralement applicable à d'autres gaz et vapeurs et à des pressions plus élevées. Les incertitudes deviennent plus grandes lorsque le fluide s'éloigne des conditions des gaz parfaits, à des températures extrêmes et pour des pressions aval très différentes de la pression atmosphérique, ou près du point critique. Les équations comprennent des termes tenant compte de la masse volumique et du rapport des chaleurs spécifiques du fluide.

NOTE Des essais en laboratoire à l'air jusqu'à 1 830 kPa (18,3 bar) de pression amont et jusqu'à 1 600 kPa (16,0 bar) de pression aval et des essais à la vapeur jusqu'à 225 °C ont montré une bonne concordance avec les valeurs calculées.

Une analyse rigoureuse des équations de perte par transmission ne relève pas du domaine d'application de la présente norme. La méthode considère l'interaction entre les ondes acoustiques existant dans la tuyauterie et la première fréquence de coïncidence dans la paroi de la tuyauterie. De plus, les larges tolérances d'épaisseur de paroi de la tuyauterie permises pour les tuyauteries d'usage commercial limitent sévèrement la validité des formulations mathématiques très complexes que nécessiterait une analyse rigoureuse; c'est pourquoi on utilise une méthode simplifiée.

Des exemples de calculs sont donnés à l'Annexe A.

Cette méthode est fondée sur les normes CEI citées à l'Article 2 et les références dont la liste figure dans la bibliographie.

# VANNES DE RÉGULATION DES PROCESSUS INDUSTRIELS –

# Partie 8-3: Considérations sur le bruit – Méthode de prédiction du bruit aérodynamique des vannes de régulation

# **1** Domaine d'application

La présente partie de la CEI 60534 établit une méthode théorique pour prévoir le niveau de pression acoustique externe engendré dans une vanne de régulation et dans les raccords adjacents par le débit d'un fluide compressible.

Cette méthode ne considère que les régimes monophasiques de gaz et vapeurs secs, et est basée sur la loi des gaz parfaits.

La présente norme ne concerne que le bruit engendré par les processus aérodynamiques dans les vannes et les tuyauteries adjacentes. Elle ne tient compte d'aucun bruit pouvant être engendré par des réflexions des surfaces extérieures ou en interne par les raccords, des vibrations mécaniques, des régimes instables ou d'autres phénomènes imprévisibles.

On suppose que la tuyauterie aval comprend une longueur droite d'au moins 2 m à partir du point de mesure du bruit.

Cette méthode n'est valable que pour des tuyauteries en acier ou en acier allié (voir les Equations (21) et (23) en 5.5).

La méthode est applicable aux vannes mono-étagées suivantes: à soupape (droites et d'équerre), à papillon, à obturateur rotatif (excentré, sphérique), à tournant sphérique, et aux vannes à cage. Les vannes à tournant sphérique à passage direct, pour lesquelles le produit  $F_pC$  dépasse 50 % du coefficient de débit assigné, sont spécifiquement exclues.

Pour les limitations applicables aux équipements internes de réduction de bruit spéciaux non couverts par la présente norme, voir l'Article 8. Lorsque le nombre de Mach à la sortie de la vanne dépasse 0,3 pour les équipements internes standard ou 0,2 pour les équipements internes de réduction de bruit, la méthode de l'Article 7 s'applique.

|                                         | Nombre de Mach limite                       |                                                          |                                                |  |
|-----------------------------------------|---------------------------------------------|----------------------------------------------------------|------------------------------------------------|--|
| Nombre de Mach<br>considéré             | Article 5<br>Equipement interne<br>standard | Article 6<br>Equipement interne de<br>réduction de bruit | Article 7<br>Cas des nombres de<br>Mach élevés |  |
| Jet à expansion libre $M_{\rm j}$       | Pas de limite                               | Pas de limite                                            | Pas de limite                                  |  |
| Sortie de vanne M <sub>o</sub>          | 0,3                                         | 0,2                                                      | 1,0                                            |  |
| Entrée du réducteur aval M <sub>r</sub> | Non applicable                              | Non applicable                                           | 1,0                                            |  |
| Tuyauterie aval $M_2$                   | 0,3                                         | 0,2                                                      | 0,8                                            |  |

Les nombres de Mach limites applicables dans cette norme sont les suivants:

#### 2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60534 (toutes les parties), Vannes de régulation des processus industriels

CEI 60534-1, Vannes de régulation des processus industriels – Partie 1: Terminologie des vannes de régulation et considérations générales

#### 3 Termes et définitions

Pour les besoins du présent document, tous les termes et définitions donnés dans la série CEI 60534, ainsi que les suivants, s'appliquent:

#### 3.1

#### coefficient de rendement acoustique

rapport entre la puissance intrinsèque de l'écoulement transformée en puissance acoustique aval et la puissance intrinsèque de l'écoulement du débit massique

#### 3.2

#### fréquence de coïncidence externe

fg

fréquence à laquelle la vitesse de propagation acoustique externe de l'onde est égale à la vitesse de propagation d'une onde de flexion dans une plaque d'épaisseur égale à celle de la paroi de la tuvauterie

#### 3.3

#### fréquence de coïncidence interne

fo

plus faible fréquence à laquelle la vitesse de propagation axiale de l'onde acoustigue interne et la vitesse de propagation axiale de l'onde dans la structure sont égales pour un mode circonférentiel donné, ce qui se traduit par une perte par transmission minimale

#### 3.4

#### vanne papillon à disque dentelé

vanne papillon dont la ou les faces du disque comprennent des dentelures. Ces dentelures ont pour but de profiler l'écoulement sans interrompre la ligne d'étanchéité ou la surface d'étanchéité

#### 3.5

#### chemin d'écoulement indépendant

orifice à la sortie duquel la veine fluide n'est pas influencée par les veines fluides des chemins d'écoulement adjacents

#### 3.6 fréquence dominante

 $f_p$  fréquence à laquelle la pression acoustique interne est maximale

## 3.7

# coefficient de correction générique de vanne

Fd

rapport entre le diamètre hydraulique d'un chemin d'écoulement unique et le diamètre d'un orifice circulaire de section équivalente à la somme des sections de tous les chemins d'écoulement identiques, à une course donnée

# 4 Symboles

| Symbole               | Description                                                                                                                                                   | Unité                          |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Α                     | Surface d'un chemin d'écoulement unique                                                                                                                       | m²                             |
| $A_{\eta}$            | Coefficient de correction de vanne pour rendement acoustique                                                                                                  | Sans dimension                 |
|                       | (voir Tableau 4)                                                                                                                                              |                                |
| A <sub>n</sub>        | Surface totale de l'orifice du dernier étage d'une vanne multi-étagée de <i>n</i> étages, à une course donnée                                                 | m²                             |
| С                     | Coefficient de débit ( $K_v$ et $C_v$ )                                                                                                                       | Diverses (voir<br>CEI 60534-1) |
| c <sub>a</sub>        | Vitesse extérieure du son (air sec dans des conditions standard = 343 m/s)                                                                                    | m/s                            |
| C <sub>n</sub>        | Coefficient de débit du dernier étage d'une vanne multi-étagée de <i>n</i> étages                                                                             | Diverses (voir<br>CEI 60534-1) |
| C <sub>s</sub>        | Vitesse du son de la tuyauterie (pour l'acier = 5 000 m/s)                                                                                                    | m/s                            |
| C <sub>VC</sub>       | Vitesse du son dans la <i>vena contracta</i> en régime<br>subsonique                                                                                          | m/s                            |
| C <sub>VCC</sub>      | Vitesse du son dans la vena contracta en régime critique                                                                                                      | m/s                            |
| <i>c</i> <sub>2</sub> | Vitesse du son dans les conditions en aval                                                                                                                    | m/s                            |
| D                     | Diamètre de sortie de la vanne                                                                                                                                | m                              |
| d                     | Diamètre d'un chemin d'écoulement (si chemin d'écoulement non circulaire, utiliser <i>d</i> <sub>H</sub> )                                                    | m                              |
| d <sub>H</sub>        | Diamètre hydraulique d'un chemin d'écoulement unique                                                                                                          | m                              |
| d <sub>i</sub>        | Le plus petit des diamètres intérieurs entre celui de la sortie de la vanne et celui de l'entrée du divergent                                                 | m                              |
| Di                    | Diamètre intérieur de la tuyauterie aval                                                                                                                      | m                              |
| Dj                    | Diamètre du jet à la vena contracta                                                                                                                           | m                              |
| d <sub>o</sub>        | Diamètre d'un orifice circulaire de section égale à la<br>somme des sections de tous les chemins d'écoulement, à<br>une course donnée                         | m                              |
| F <sub>d</sub>        | Coefficient de correction générique de vanne                                                                                                                  | Sans dimension                 |
| FL                    | Facteur de récupération de pression du liquide dans une vanne sans raccords adjacents (voir Note 4)                                                           | Sans dimension                 |
| F <sub>Ln</sub>       | Facteur de récupération de pression du liquide au dernier<br>étage d'un équipement interne de réduction de bruit                                              | Sans dimension                 |
| F <sub>LP</sub>       | Facteur combiné de récupération de pression du liquide et<br>de géométrie de la tuyauterie d'une vanne de régulation<br>avec raccords adjacents (voir Note 4) | Sans dimension                 |
| Fp                    | Facteur résultant de la géométrie de la tuyauterie                                                                                                            | Sans dimension                 |
| fg                    | Fréquence de coïncidence externe                                                                                                                              | Hz                             |
| f <sub>o</sub>        | Fréquence de coïncidence interne de la tuyauterie                                                                                                             | Hz                             |
| f <sub>p</sub>        | Fréquence dominante du bruit généré                                                                                                                           | Hz                             |
| f <sub>pR</sub>       | Fréquence dominante du bruit généré au niveau de la sortie de la vanne ou du diamètre réduit du divergent                                                     | Hz                             |

| Symbole                         | Description                                                                                                                                                                              | Unité                           |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| f <sub>r</sub>                  | Fréquence d'anneau                                                                                                                                                                       | Hz                              |
| f <sub>s</sub>                  | Fréquence de référence du coefficient de perte structurale<br>= 1 Hz                                                                                                                     | Hz                              |
| G <sub>x</sub> , G <sub>y</sub> | Coefficients de fréquence (voir Tableau 4)                                                                                                                                               | Sans dimension                  |
| 1                               | Longueur d'un chemin d'écoulement radial                                                                                                                                                 | m                               |
| <i>I</i> w                      | Périmètre mouillé d'un chemin d'écoulement unique                                                                                                                                        | m                               |
| Lg                              | Correction relative au nombre de Mach                                                                                                                                                    | dB (réf <i>p</i> <sub>o</sub> ) |
| $L_{pe,1m}$ (f)                 | Niveau de pression acoustique externe dépendant de la fréquence, à 1 m de la paroi de la tuyauterie                                                                                      | dB (réf p <sub>o</sub> )        |
| L <sub>pAe,1m</sub>             | Niveau de pression acoustique totale pondéré A, à 1 m de la paroi de la tuyauterie                                                                                                       | dB(A) (réf p <sub>o</sub> )     |
| L <sub>pi</sub>                 | Niveau de pression acoustique interne totale sur la paroi de la tuyauterie                                                                                                               | dB (réf p <sub>o</sub> )        |
| L <sub>pi</sub> (f)             | Niveau de pression acoustique interne dépendant de la fréquence sur la paroi de la tuyauterie                                                                                            | dB (réf <i>p</i> <sub>o</sub> ) |
| L <sub>piR</sub>                | Niveau de pression acoustique interne totale sur la paroi de<br>la tuyauterie du bruit généré par l'écoulement en sortie<br>dans le divergent                                            | dB (réf p <sub>o</sub> )        |
| L <sub>piR</sub> (f)            | Niveau de pression acoustique interne dépendant de la fréquence sur la paroi de la tuyauterie du bruit généré par l'écoulement en sortie dans le divergent                               | dB (réf p <sub>o</sub> )        |
| $L_{piS}$ (f)                   | Niveau de pression acoustique interne combinée<br>dépendant de la fréquence de l'effet de l'équipement<br>interne de la vanne et du divergent, au niveau de la paroi<br>de la tuyauterie | dB (réf p <sub>o</sub> )        |
| L <sub>wi</sub>                 | Niveau de puissance acoustique interne totale                                                                                                                                            | dB (réf <i>W</i> <sub>o</sub> ) |
| М                               | Masse moléculaire du fluide véhiculé                                                                                                                                                     | kg/kmol                         |
| Mj                              | Nombre de Mach d'un jet à expansion libre pour les régimes II à IV                                                                                                                       | Sans dimension                  |
| <i>M</i> <sub>jn</sub>          | Nombre de Mach d'un jet à expansion libre du dernier étage d'une vanne multi-étagée à <i>n</i> étages                                                                                    | Sans dimension                  |
| <i>M</i> <sub>j5</sub>          | Nombre de Mach d'un jet à expansion libre pour le régime V                                                                                                                               | Sans dimension                  |
| Mo                              | Nombre de Mach à la sortie de la vanne                                                                                                                                                   | Sans dimension                  |
| M <sub>R</sub>                  | Nombre de Mach à l'entrée du divergent                                                                                                                                                   | Sans dimension                  |
| M <sub>vc</sub>                 | Nombre de Mach à la vena contracta                                                                                                                                                       | Sans dimension                  |
| <i>M</i> <sub>2</sub>           | Nombre de Mach dans la tuyauterie aval                                                                                                                                                   | Sans dimension                  |
| ṁ                               | Débit massique                                                                                                                                                                           | kg/s                            |
| Ν                               | Constantes numériques (voir Tableau 1)                                                                                                                                                   | Diverses                        |
| n <sub>o</sub>                  | Nombre de chemins d'écoulement indépendants et<br>identiques à travers l'équipement interne                                                                                              | Sans dimension                  |
| <i>p</i> a                      | Pression atmosphérique réelle à l'extérieur de la tuyauterie                                                                                                                             | Pa (voir Note 3)                |
| <i>p</i> n                      | Pression intermédiaire absolue à l'entrée du dernier étage d'une vanne multi-étagée à <i>n</i> étages                                                                                    | Ра                              |
| $p_{o}$                         | Pression acoustique de référence = $2 \times 10^{-5}$ (voir Note 5)                                                                                                                      | Ра                              |

| Symbole               | Description                                                                                   | Unité          |
|-----------------------|-----------------------------------------------------------------------------------------------|----------------|
| p <sub>s</sub>        | Pression atmosphérique standard (voir Note 1)                                                 | Pa             |
| $p_{\rm vc}$          | Pression absolue à la <i>vena contracta</i> en régime<br>subsonique                           | Ра             |
| <i>p</i> <sub>1</sub> | Pression absolue à l'entrée de la vanne                                                       | Ра             |
| <i>p</i> <sub>2</sub> | Pression absolue à la sortie de la vanne                                                      | Ра             |
| R                     | Constante universelle des gaz = 8 314                                                         | J/kmol 	imes K |
| St                    | Nombre de Strouhal pour le calcul de la fréquence dominante (voir Tableau 4)                  | Sans dimension |
| T <sub>n</sub>        | Température absolue à l'entrée du dernier étage d'une vanne multi-étagée à <i>n</i> étages    | К              |
| T <sub>vc</sub>       | Température absolue à la <i>vena contracta</i> en régime subsonique                           | К              |
| T <sub>vcc</sub>      | Température absolue à la <i>vena contracta</i> en régime critique                             | К              |
| <i>T</i> <sub>1</sub> | Température absolue à l'entrée                                                                | К              |
| <i>T</i> <sub>2</sub> | Température absolue à la sortie                                                               | К              |
| TL(f)                 | Perte par transmission dépendant de la fréquence                                              | dB             |
| t <sub>s</sub>        | Epaisseur de paroi de la tuyauterie                                                           | m              |
| Up                    | Vitesse du gaz dans la tuyauterie aval                                                        | m/s            |
| U <sub>R</sub>        | Vitesse du gaz à l'entrée du divergent                                                        | m/s            |
| Wa                    | Puissance acoustique du bruit généré en aval par le débit<br>de la vanne                      | W              |
| W <sub>aR</sub>       | Puissance acoustique du bruit généré par l'écoulement en sortie aval                          | W              |
| W <sub>m</sub>        | Puissance intrinsèque de l'écoulement du débit massique                                       | W              |
| W <sub>ms</sub>       | Puissance intrinsèque de l'écoulement du débit massique à<br>la vitesse du son                | W              |
| W <sub>mR</sub>       | Puissance intrinsèque de l'écoulement convertie dans le divergent                             | W              |
| Wo                    | Puissance acoustique de référence = $10^{-12}$ (voir Note 5)                                  | W              |
| X                     | Rapport de pression différentielle                                                            | Sans dimension |
| X <sub>VCC</sub>      | Rapport de pression différentielle à la vena contracta en régime critique                     | Sans dimension |
| х <sub>В</sub>        | Rapport de pression différentielle au point de rupture                                        | Sans dimension |
| x <sub>C</sub>        | Rapport de pression différentielle en régime critique                                         | Sans dimension |
| x <sub>CE</sub>       | Rapport de pression différentielle auquel commence la région de rendement acoustique constant | Sans dimension |
| α                     | Coefficient de correction de récupération                                                     | Sans dimension |
| β                     | Coefficient de contraction pour la sortie de la vanne ou l'entrée du divergent                | Sans dimension |
| γ                     | Rapport des chaleurs spécifiques                                                              | Sans dimension |
| $\Delta L_A(f)$       | Correction pondérée A en fonction de la fréquence                                             | dB             |
| ΔTL                   | Facteur d'amortissement pour la perte par transmission                                        | dB             |
|                       |                                                                                               |                |

| Symbole        | Description                                                                                                    | Unité             |
|----------------|----------------------------------------------------------------------------------------------------------------|-------------------|
| η              | Coefficient de rendement acoustique du bruit généré par le débit de vanne (voir Note 2)                        | Sans dimension    |
| $\eta_R$       | Coefficient de rendement acoustique du bruit généré par l'écoulement en sortie du divergent                    | Sans dimension    |
| $\eta_{s}(f)$  | Coefficient de perte structurale dépendant de la fréquence                                                     | Sans dimension    |
| $ ho_1$        | Masse volumique du fluide à $p_1$ et $T_1$                                                                     | kg/m <sup>3</sup> |
| ρ <sub>2</sub> | Masse volumique du fluide à $p_2$ et $T_2$                                                                     | kg/m <sup>3</sup> |
| $ ho_{\sf n}$  | Masse volumique du fluide au dernier étage d'une vanne multi-étagée à $n$ étages, à $p_{\rm n}$ et $T_{\rm n}$ | kg/m <sup>3</sup> |
| $ ho_{ m S}$   | Masse volumique de la tuyauterie                                                                               | kg/m <sup>3</sup> |
| Φ              | Coefficient de débit relatif                                                                                   | Sans dimension    |
|                |                                                                                                                |                   |
| Indices        |                                                                                                                |                   |
| е              | Pour «externe»                                                                                                 |                   |
| i              | Pour «interne» ou pour un indice du numéro de bande de fréquence                                               |                   |
| n              | Pour «dernier étage de l'équipement interne»                                                                   |                   |
| р              | Pour « dominant »                                                                                              |                   |
| R              | Pour «conditions dans la tuyauterie aval ou le divergent»                                                      |                   |

NOTE 1 La pression atmosphérique standard est 101,325 kPa ou 1,01325 bar.

NOTE 2 Les indices 1, 2, 3, 4 et 5 désignent respectivement les régimes I, II, III, IV et V.

NOTE 3 1 bar = 10<sup>2</sup> kPa = 10<sup>5</sup> Pa.

NOTE 4 Pour le calcul de la pression à la *vena contracta,* et donc de la vitesse, on suppose dans la présente norme que la récupération de pression des gaz est identique à celle des liquides.

NOTE 5 La puissance acoustique et la pression acoustique sont couramment exprimées suivant une échelle logarithmique connue sous le nom d'échelle en décibels. Cette échelle relie sur un mode logarithmique la valeur en question à une référence standard. Cette référence standard est  $2 \times 10^{-5}$  Pa pour la pression acoustique et  $10^{-12}$  W pour la puissance acoustique.

## 5 Vannes munies d'un équipement interne standard

#### 5.1 Pressions et rapports de pression

Plusieurs pressions et rapports de pression sont utilisés dans la procédure de prédiction de bruit. Ils sont décrits ci-dessous. Pour ce qui concerne le bruit associé aux vannes de régulation, le rapport de pression différentielle *x* est souvent utilisé.

$$x = \frac{p_1 - p_2}{p_1}$$
(1)

La vena contracta est la région de vitesse maximale et de pression minimale. Cette pression minimale associée à la pression d'entrée, qui ne peut être négative, est calculée comme suit:

$$\frac{p_{vc}}{p_1} = 1 - \frac{x}{F_L^2}$$
(2)

60534-8-3 © CEI:2010

NOTE 1 Cette équation représente la définition de  $F_1$  en régime subsonique.

NOTE 2 Lorsque la vanne est munie de raccords adjacents, il convient de remplacer  $F_{\rm L}$  par  $F_{\rm LP}/F_{\rm p}$ .

NOTE 3 Le coefficient  $F_{L}$  est nécessaire pour le calcul de la pression à la *vena contracta*. La pression à la *vena contracta* est ensuite utilisée pour calculer la vitesse, qui est elle-même nécessaire pour déterminer le coefficient de rendement acoustique.

En régime critique, la pression à la *vena contracta* et le rapport de pression différentielle correspondant lorsque  $p_2 = p_{vcc}$ , sont calculés comme suit:

$$x_{vcc} = 1 - \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma - 1)}$$
(3)

Le rapport de pression aval critique auquel commence le régime sonique à la vena contracta est calculé à partir de l'équation suivante:

$$x_C = F_L^2 x_{vcc} \tag{4}$$

NOTE 4 Lorsque la vanne est munie de raccords adjacents, il convient de remplacer  $F_L$  par  $F_{LP}/F_p$ .

Le coefficient de correction  $\alpha$  est le rapport de deux rapports de pression:

a) le rapport de la pression d'entrée à la pression de sortie en régime critique;

b) le rapport de la pression d'entrée à la pression à la vena contracta en régime critique.

Il s'écrit comme suit:

$$\alpha = \frac{1 - x_{vcc}}{1 - x_C} \tag{5}$$

Le point auquel le mécanisme d'interaction turbulent-cellules de choc (régime IV) commence à dominer le spectre de bruit par rapport au mécanisme turbulent-cisaillement (régime III) est connu comme le point de rupture. Voir 5.2 pour une description de ces régimes. Le rapport de pression différentielle au point de rupture est calculé comme suit:

$$x_{B} = 1 - \frac{1}{\alpha} \left(\frac{1}{\gamma}\right)^{\gamma / (\gamma - 1)}$$
(6)

Le rapport de pression différentielle auquel commence la région de rendement acoustique constant (régime V) est calculé comme suit:

$$x_{CE} = 1 - \frac{1}{22 \alpha}$$
(7)

#### 5.2 Définition des régimes

Une vanne de régulation régule le débit en transformant l'énergie potentielle (de pression) en turbulence. Le bruit dans une vanne de régulation résulte de la conversion d'une faible partie de cette énergie en énergie acoustique. La plupart de l'énergie est convertie en chaleur.

Les différents régimes de génération de bruit résultent de différents phénomènes acoustiques ou de réactions entre les molécules du gaz et les cellules de choc soniques. Dans le régime l, l'écoulement est subsonique et le gaz est partiellement recomprimé, ce qui explique l'influence du coefficient  $F_L$ . La génération de bruit dans ce régime est principalement du type dipôle.

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

Dans le régime II, il existe un écoulement sonique avec interaction entre les cellules de choc et un écoulement turbulent engorgé. La recompression diminue à mesure que l'on s'approche de la limite du régime II.

Dans le régime III, il n'y a pas de recompression isentropique. Le régime est supersonique et le mécanisme de cisaillement-écoulement turbulent domine.

Dans le régime IV, la structure de la cellule de choc diminue avec la formation du disque de Mach. Le mécanisme dominant est l'interaction entre les cellules de choc et l'écoulement turbulent.

Dans le régime V, le rendement acoustique est constant; une diminution de  $p_2$  n'entraîne plus d'accroissement du bruit.

Pour un ensemble donné de conditions de service, le régime est déterminé comme suit:

| Régime I   | Si                  |   | $x \leq x_C$    |
|------------|---------------------|---|-----------------|
| Régime II  | Si x <sub>C</sub>   | < | $x \le x_{vcc}$ |
| Régime III | Si x <sub>vcc</sub> | < | $x \leq x_B$    |
| Régime IV  | Si x <sub>B</sub>   | < | $x \leq x_{CE}$ |
| Régime V   | Si x <sub>CF</sub>  | < | х               |

#### 5.3 Calculs préliminaires

#### 5.3.1 Coefficient de correction générique de la vanne F<sub>d</sub>

Dans le cas des vannes multi-étagées, F<sub>d</sub> s'applique uniquement au dernier étage.

Le coefficient de correction générique de la vanne peut être calculé par

$$F_{\rm d} = \frac{d_{\rm H}}{d_{\rm o}} \tag{8a}$$

Le diamètre hydraulique  $d_{\rm H}$  d'un chemin d'écoulement unique est déterminé par l'équation suivante:

$$d_{\rm H} = \frac{4}{I_{\rm w}}$$
(8b)

Le diamètre circulaire équivalent d<sub>o</sub> de la section totale d'écoulement s'exprime comme suit:

$$d_o = \sqrt{\frac{4 \cdot n_o \cdot A}{\pi}} \tag{8c}$$

Des valeurs types de  $F_d$  sont données au Tableau 2.

#### 5.3.2 Diamètre du jet D<sub>i</sub>

Le diamètre du jet est donné par l'équation suivante:

$$D_{\rm j} = N_{\rm 14} \ F_{\rm d} \ \sqrt{C \ F_{\rm L}} \tag{9}$$

NOTE 1  $N_{14}$  est une constante numérique dont la valeur dépend du coefficient de débit spécifique ( $K_v$  ou  $C_v$ ) utilisé. Les valeurs de cette constante peuvent être obtenues à partir du Tableau 1.

NOTE 2 Utiliser la valeur requise de C et non la valeur assignée de C de la vanne.

NOTE 3 Lorsque la vanne est munie de raccords adjacents, il convient de remplacer  $F_{\rm L}$  par  $F_{\rm LP}/F_{\rm p}$ .

#### 5.3.3 Masse volumique du fluide à l'entrée $\rho_1$

Dans la mesure du possible, il est préférable d'utiliser la masse volumique réelle du fluide, spécifiée par l'utilisateur. Si elle n'est pas disponible, un gaz parfait est alors supposé, et la masse volumique d'entrée est calculée à partir de l'équation suivante:

$$\rho_1 = \frac{p_1}{RT_1} \tag{10}$$

#### Tableau 1 – Constantes numériques N

|                                           | Coefficient de débit     |                           |  |  |  |  |  |  |  |  |
|-------------------------------------------|--------------------------|---------------------------|--|--|--|--|--|--|--|--|
| Constante                                 | K <sub>v</sub>           | Cv                        |  |  |  |  |  |  |  |  |
| N <sub>14</sub>                           | $4,9 \times 10^{-3}$     | $4,6 \times 10^{-3}$      |  |  |  |  |  |  |  |  |
| N <sub>16</sub>                           | $4,23 \times 10^4$       | $4,89 \times 10^4$        |  |  |  |  |  |  |  |  |
| NOTE Les constantes nu<br>présente norme. | mériques non citées ne s | ont pas utilisées dans la |  |  |  |  |  |  |  |  |

# Tableau 2 – Valeurs types du coefficient de correction générique de vanne $F_d$ (équipements internes de dimension nominale)

|                                                                                                      | 0                | Coefficient de débit relatif |      |      |      |      |      |  |  |
|------------------------------------------------------------------------------------------------------|------------------|------------------------------|------|------|------|------|------|--|--|
| lype de vanne                                                                                        | fluide           | Φ                            |      |      |      |      |      |  |  |
|                                                                                                      |                  | 0,10                         | 0,20 | 0,40 | 0,60 | 0,80 | 1,00 |  |  |
| Soupape, clapet parabolique                                                                          | Tend à           | 0,10                         | 0,15 | 0,25 | 0,31 | 0,39 | 0,46 |  |  |
|                                                                                                      | ouvrir           | 0,20                         | 0,30 | 0,50 | 0,60 | 0,80 | 1,00 |  |  |
|                                                                                                      | Tend à<br>fermer |                              |      |      |      |      |      |  |  |
| A soupape, clapet V-port à 3 V                                                                       | Indifférent*     | 0,29                         | 0,40 | 0,42 | 0,43 | 0,45 | 0,48 |  |  |
| A soupape, clapet V-port à 4 V                                                                       | Indifférent*     | 0,25                         | 0,35 | 0,36 | 0,37 | 0,39 | 0,41 |  |  |
| A soupape, clapet V-port à 6 V                                                                       | Indifférent*     | 0,17                         | 0,23 | 0,24 | 0,26 | 0,28 | 0,30 |  |  |
| A soupape, à cage percée de 60 trous de même<br>diamètre                                             | Indifférent*     | 0,40                         | 0,29 | 0,20 | 0,17 | 0,14 | 0,13 |  |  |
| A soupape, à cage percée de 120 trous de<br>même diamètre                                            | Indifférent*     | 0,29                         | 0,20 | 0,14 | 0,12 | 0,10 | 0,09 |  |  |
| Papillon, excentré                                                                                   | Indifférent      | 0.18                         | 0.28 | 0.43 | 0.55 | 0.64 | 0.70 |  |  |
| Papillon, (à arbre centré) ouverture maximale<br>70°                                                 | Indifférent      | 0,26                         | 0,34 | 0,42 | 0,50 | 0,53 | 0,57 |  |  |
| Papillon, disque dentelé, ouverture maximale<br>70°                                                  | Indifférent      | 0,08                         | 0,10 | 0,15 | 0,20 | 0,24 | 0,30 |  |  |
| 60° Disque plat, ouverture maximale 60°                                                              | Indifférent      |                              |      |      |      |      | 0,50 |  |  |
| Obturateur rotatif excentré                                                                          | Indifférent      | 0,12                         | 0,18 | 0,22 | 0,30 | 0,36 | 0,42 |  |  |
| A secteur sphérique, ouverture maximale 90°                                                          | Indifférent      | 0,60                         | 0,65 | 0,70 | 0,75 | 0,78 | 0,98 |  |  |
| NOTE Ces valeurs sont données à titre indicatif. Les valeurs exactes sont fournies par le fabricant. |                  |                              |      |      |      |      |      |  |  |
| * $p_1 - p_2$ limité dans le sens «le fluide tend à fermer».                                         |                  |                              |      |      |      |      |      |  |  |

#### 5.4 Calculs de bruit interne

#### 5.4.1 Calculs communs à tous les régimes

Dans chaque régime, la puissance acoustique interne  $W_a$  est égale au produit de la puissance intrinsèque de l'écoulement  $W_m$  et du coefficient de rendement acoustique  $\eta$ , comme indiqué dans l'Equation 11.

$$W_a = \eta W_m \tag{11}$$

Bien que celui-ci ne soit pas nécessaire dans l'application de cette méthode, le niveau de puissance acoustique interne totale est calculé comme suit:

$$L_{\rm wi} = 10 \log_{10} \frac{W_{\rm a}}{W_{\rm o}}$$
 (12)

#### 5.4.2 Calculs dépendant du régime

Les équations pour calculer les valeurs appropriées de  $W_m$  et  $\eta$  sont données dans les Tableaux 3a et 3b pour chaque régime. Ceci permet de déterminer la puissance acoustique interne  $W_a$ , à l'aide de l'Equation (11).

| _                                                                 |                                                                                                                                  |                                                                                                                              |                                                                                                                                 |                                                                                                                                 |                                                                                                          |                                                         |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| W_m                                                               | $W_m = \frac{\dot{m}(M_{vc}c_{vc})^2}{2}$                                                                                        | $W_m = rac{\mathrm{in}  \mathrm{c_{vec}}^2}{2}$                                                                             |                                                                                                                                 |                                                                                                                                 |                                                                                                          |                                                         |  |  |  |
| c <sub>ve</sub> , c <sub>vee</sub>                                | $c_{\rm sc} = \sqrt{\gamma \frac{p_1}{\rho_1} \left(1 - \frac{x}{F_L^2}\right)^{(\gamma-1)/\gamma}}$                             | $c_{vcc} = \sqrt{\frac{2\gamma}{\gamma+1}\frac{\mathbf{p}_1}{\boldsymbol{\rho}_1}}$                                          |                                                                                                                                 |                                                                                                                                 |                                                                                                          |                                                         |  |  |  |
| T <sub>vc</sub> , T <sub>vcc</sub>                                | $T_{vc} = T_{1} \left( 1 - \frac{x}{F_{L}^{2}} \right)^{(\gamma-1)/\gamma}$                                                      |                                                                                                                              | $T = \frac{2T_1}{2}$                                                                                                            | $\gamma^{\nu cc} \gamma + 1$                                                                                                    |                                                                                                          |                                                         |  |  |  |
| f <sub>p</sub>                                                    | $f_p = \frac{St_p \cdot M_{vc} \cdot c_{vc}}{D_j}$                                                                               | $f_p = \frac{St_p \cdot M_j \cdot c_{vcc}}{D_j}$                                                                             | $f_p = \frac{St_p \cdot M_j \cdot c_{vcc}}{D_j}$                                                                                | $f_p = \frac{1.4 \cdot St_p \cdot c_{vec}}{D_j \sqrt{M_j}^2 - 1}$                                                               | $f_p = \frac{1.4 \cdot S_{t_p} \cdot c_{vc}}{D_j \sqrt{M_{js}^2 - 1}}$                                   | er F <sub>L</sub> par F <sub>LP</sub> /F <sub>p</sub> . |  |  |  |
| u                                                                 | $\eta = \left(1 \times 10^{A_{\eta}}\right) F_{L}^{2} \cdot M_{\nu c}^{3}$                                                       | $\eta = \left(1 \times 10^{\Lambda_{\eta}}\right) \cdot \frac{x}{x_{\text{tec}}} \mathbf{M}_{j}  _{6.6  \mathrm{F_{L}^{2}}}$ | $\eta = \left(1 \times 10^{\lambda_{\eta}}\right) \cdot M_{j}^{6.6F_{\iota}^{2}}$                                               | $\eta = \left(1 \times 10^{\Lambda_{\eta}}\right) \left(\frac{M_{J}^{2}}{2}\right) \left(\sqrt{2}\right)^{6.6 R_{J}^{2}}$       | $\eta = \left(1 \times 10^4\right) \left(\frac{M_{\beta s}^2}{2}\right) \left(\sqrt{2}\right)^{66r_1^2}$ | nts, il convient de remplace                            |  |  |  |
| Nombre de Mach M <sub>vc</sub> , M <sub>j</sub> , M <sub>j5</sub> | $M_{\rm W} = \sqrt{\left(\frac{2}{\gamma-1}\right)\left[\left(1-\frac{x}{F_L^2}\right)^{\left(1-\gamma\right)/\gamma}-1\right]}$ | $M_{j} = \sqrt{\frac{2}{\gamma - 1} \left[ \left( \frac{1}{\alpha (1 - x)} \right)^{(\gamma - 1)/\gamma} - 1 \right]}$       | $M_{j} = \sqrt{\frac{2}{\gamma - 1}} \left[ \left( \frac{1}{\alpha (1 - \mathbf{x})} \right)^{(\gamma - 1)/\gamma} - 1 \right]$ | $M_{j} = \sqrt{\frac{2}{\gamma - 1}} \left[ \left( \frac{1}{\alpha (1 - \mathbf{x})} \right)^{(\gamma - 1)/\gamma} - 1 \right]$ | $M_{j5} = \sqrt{\frac{2}{\gamma - 1}} \left[ (22)^{(\gamma - 1)^{\gamma}} - 1 \right]$                   | la vanne est munie de raccords adjacer                  |  |  |  |
| Régime                                                            | I subsonique $x \leq x_C$                                                                                                        | $x_C < x \le x_{vcc}$                                                                                                        | $\frac{   }{x_{vcc}} < x \le x_B$                                                                                               | $ V  \\ \chi_B < \chi \le \chi_{CE}$                                                                                            | $\bigvee X_{CE} \leq X$                                                                                  | NOTE Lorsque I                                          |  |  |  |

Tableau 3 – Vue d'ensemble des équations dépendant du régime

L'exposant  $A_{\eta}$  est – 4 pour les sources de bruit de type dipôle pur comme pour les jets à expansion libre dans un grand volume d'expansion. Le coefficient de rendement acoustique de la vanne tient compte de l'effet des différentes géométries du corps de vanne et des raccords sur le rendement acoustique et de l'emplacement dans la tuyauterie derrière la vanne de régulation (distance 6 x d<sub>i</sub>). Ainsi, les coefficients réels  $A_{\eta}$  sont différents pour les différents types de vannes et de raccords. Cette valeur peut également dépendre du rapport de pression différentielle x. Le Tableau 4 donne des valeurs moyennes types.

Le nombre de Strouhal St<sub>p</sub> à la fréquence dominante se situe généralement dans une plage comprise entre 0,1 et 0,3 pour les jets à expansion libre. Les valeurs moyennes types correspondant à différents types de vannes et de raccords sont indiquées au Tableau 4.

| Vanne ou raccord adjacent                                               | Sens du<br>fluide | Aη           | St <sub>p</sub> |
|-------------------------------------------------------------------------|-------------------|--------------|-----------------|
| Soupape, clapet parabolique                                             | Indifférent       | -4,2         | 0,19            |
| Soupape, clapet V-port                                                  | Indifférent       | -4,2         | 0,19            |
| Soupape, à cage à ouverture                                             | Indifférent       | -3,8         | 0,2             |
| Soupape, à cage ou clapet percé(e) de plusieurs trous                   | Tend à<br>ouvrir  | -4,8         | 0,2             |
| Soupape, à cage ou clapet percé(e) de plusieurs trous                   | Tend à<br>fermer  | -4,4         | 0,2             |
| A papillon, excentré                                                    | Indifférent       | -4,2         | 0,3             |
| Papillon, (à arbre centré), ouverture maximale 70°                      | Indifférent       | -4,2         | 0,3             |
| Papillon, à disque dentelé, ouverture maximale 70°                      | Indifférent       | -4,2         | 0,3             |
| Papillon, disque plat, ouverture maximale 60°                           | Indifférent       | -4,2         | 0,3             |
| Obturateur rotatif excentré                                             | Indifférent       | -3,6         | 0,3             |
| A secteur sphérique, ouverture maximale 90°                             | Indifférent       | -3,6         | 0,3             |
| Plaque percée de trous, résistance fixe                                 | Indifférent       | -4,8         | 0,2             |
| Divergent                                                               | Indifférent       | -3,0         | 0,2             |
| NOTE 1 Ces valeurs sont données à titre indicatif. Les valeu fabricant. | rs exactes sont   | fournies par | le              |

## Tableau 4 – Valeurs types de A<sub>n</sub> et St<sub>p</sub>

NOTE 2 Il convient d'utiliser la section 8, pour les équipements internes à plusieurs trous, pour lesquels la taille et l'espacement des trous sont contrôlés pour réduire le bruit.

#### 5.4.3 Calculs en aval

La masse volumique en aval est calculée à partir de l'équation suivante, en supposant que  $T_1=T_2$ :

$$\rho_2 = \rho_1 \left(\frac{p_2}{p_1}\right) \tag{13}$$

La température en aval  $T_2$  peut être déterminée en utilisant les relations thermodynamiques isenthalpiques, à condition que les propriétés du fluide nécessaires soient connues. Cependant, si les propriétés du fluide ne sont pas connues,  $T_2$  peut être considérée comme approximativement égale à  $T_1$ . A partir de l'équation suivante, la vitesse du son en aval peut

être calculée: 
$$c_2 = \sqrt{\frac{\gamma R T_2}{M}}$$
 (14)

Le nombre de Mach à la sortie de la vanne est calculé en utilisant l'Equation (15).

60534-8-3 © CEI:2010

$$M_{o} = \frac{4 \,\dot{m}}{\pi \, D^{2} \, \rho_{2} \, c_{2}} \tag{15}$$

NOTE 1 Il convient que  $M_o$  ne dépasse pas 0,3. Si  $M_o$  dépasse 0,3, il y a dégradation de la précision et il convient d'utiliser la procédure de l'Article 7.

La correction de vitesse de tuyauterie aval est approximativement:

$$L_{\rm g} = 16 \log_{10} \left( \frac{1}{1 - M_2} \right) \tag{16}$$

où

$$M_2 = \frac{4 \dot{m}}{\pi D_1^2 \rho_2 c_2}$$
(17)

NOTE 2 Pour le calcul de  $L_q$ ,  $M_2$  est limité à 0,3.

# 5.4.4 Calcul de la pression acoustique interne de la vanne sur la paroi de la tuyauterie

Pour calculer le niveau de pression acoustique interne par rapport à la référence  $p_0$ , on utilise l'équation suivante:

$$L_{pi} = 10 \log_{10} \left[ \frac{(3,2 \times 10^{9}) W_{a} \rho_{2} c_{2}}{D_{i}^{2}} \right] + L_{g}$$
(18)

Les niveaux de pression acoustique interne dépendant de la fréquence peuvent être prévus à partir de l'Equation (39) ([17]).

$$L_{pi}(f_i) = L_{pi} - 8 - 10 \cdot \log\left\{ \left[ 1 + \left( \frac{f_i}{2 \cdot f_p} \right)^{2.5} \right] \cdot \left[ 1 + \left( \frac{f_p}{2 \cdot f_i} \right)^{1.7} \right] \right\}$$
(19)

| Indice         | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8     | 9     | 10    | 11    |
|----------------|------|------|------|------|------|------|------|-------|-------|-------|-------|
| Fréquence [Hz] | 12,5 | 16   | 20   | 25   | 31,5 | 40   | 50   | 63    | 80    | 100   | 125   |
|                |      |      |      |      |      |      |      |       |       |       |       |
| Indice         | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19    | 20    | 21    | 22    |
| Fréquence [Hz] | 160  | 200  | 250  | 315  | 400  | 500  | 630  | 800   | 1000  | 1250  | 1600  |
|                |      |      |      |      |      |      |      |       |       |       |       |
| Indice         | 23   | 24   | 25   | 26   | 27   | 28   | 29   | 30    | 31    | 32    | 33    |
| Fréquence [Hz] | 2000 | 2500 | 3150 | 4000 | 5000 | 6300 | 8000 | 10000 | 12500 | 16000 | 20000 |

#### Tableau 5 – Indices de bandes de fréquences

NOTE 1 La constante -8 remplace la constante initiale -5,3, de sorte que le niveau global -  $L_{pi}$  pour plus de 21 octaves soit égal à 0.

NOTE 2 Il convient de ne pas utiliser l'Equation (19) à l'extérieur de la plage de fréquences (12,5 Hz - 20 000 Hz), comme indiqué dans le Tableau 5.

#### 5.5 Calcul de la perte par transmission de la tuyauterie

La perte par transmission dépendant de la fréquence dans la paroi de la tuyauterie est calculée comme suit:

$$TL(f_{i}) = 10 \log_{10} \left[ \left( 8,25 \times 10^{-7} \right) \left( \frac{c_{2}}{t_{s}f_{i}} \right)^{2} \frac{G_{x}(f_{i})}{\left( \frac{\rho_{2} c_{2} + 2 \cdot \pi \cdot t_{s} \cdot f_{i} \cdot \rho_{s} \cdot \eta_{s}(f_{i})}{415 G_{y}(f_{i})} + 1 \right)} \left( \frac{p_{a}}{p_{s}} \right) \right] - \Delta TL$$
(20a)

où  $\Delta TL$  est un facteur d'amortissement dépendant de la dimension de la tuyauterie:

$$\Delta TL = \begin{cases} 0 & pour \ D > 0,15 \\ -16660 \cdot D^3 + 6370 \cdot D^2 - 813 \cdot D + 35,8 & pour \ 0,05 \le D \le 0,15 \\ 9 & pour \ D < 0,05 \end{cases}$$
(20b)

et  $\eta_s$  est le coefficient de perte structurale dépendant de la fréquence, sans dimension:

$$\eta_s(f_i) = \sqrt{\frac{f_s}{100f_i}} \tag{20c}$$

٦

NOTE 1  $G_x$  et  $G_y$  sont définis au Tableau 6.

г

NOTE 2 Le rapport  $p_a/p_s$  est une correction de pression barométrique locale.

Les fréquences  $f_r$ ,  $f_o$  et  $f_a$  sont calculées à partir des équations suivantes:

$$f_r = \frac{c_s}{\pi D_i}$$
(21)

$$\mathbf{f}_o = \frac{\mathbf{f}_r}{4} \left( \frac{\mathbf{c}_2}{\mathbf{c}_a} \right) \tag{22}$$

$$\mathbf{f}_{g} = \frac{\sqrt{3} \left(\mathbf{c}_{a}\right)^{2}}{\pi \mathbf{t}_{S}(\mathbf{c}_{s})}$$
(23)

NOTE 3 Dans les Equations (22) et (23), la constante  $c_a = 343$  m/s représente la vitesse du son dans l'air sec en mètres par seconde (m/s) dans les conditions normales.

NOTE 4 Dans les Equations (21) et (23), la constante  $c_s = 5\,000$  m/s représente la vitesse nominale du son dans la paroi de la tuyauterie en mètres par seconde (m/s), dans le cas de l'acier.

NOTE 5 Il convient de noter que la perte par transmission minimale survient à la première fréquence de coïncidence de la tuyauterie.

| $f_i < f_o$                                                                                                                               | $f_i \ge f_o$                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{G}_{x}(f_{i}) = \left(\frac{\mathbf{f}_{o}}{\mathbf{f}_{r}}\right)^{2/3} \left(\frac{\mathbf{f}_{i}}{\mathbf{f}_{o}}\right)^{4}$ | $\mathbf{G}_{x}(f_{i}) = \left(\frac{\mathbf{f}_{i}}{\mathbf{f}_{r}}\right)^{1/2} \text{ pour } f_{i} < f_{r}$ $\mathbf{G}_{x}(f_{i}) = 1 \text{ pour } f_{i} \ge f_{r}$ |
| $\mathbf{G}_{y}(f_{i}) = \left(\frac{\mathbf{f}_{o}}{\mathbf{f}_{g}}\right) \text{ pour } f_{o} < f_{g}$                                  | $\mathbf{G}_{y}(f_{i}) = \left(\frac{\mathbf{f}_{i}}{\mathbf{f}_{g}}\right) \text{ pour } f_{i} < f_{g}$                                                                 |
| $G_y(f_i) = 1 \text{ pour } f_o \ge f_g$                                                                                                  | $G_{y}(f_{i}) = 1 \text{ pour } f_{i} \ge f_{g}$                                                                                                                         |

## Tableau 6 – Facteurs de fréquence $G_x$ (f) et $G_y$ (f)

#### 5.6 Calcul de la pression acoustique externe

Le spectre de niveau de pression acoustique externe à une distance de 1 m de la paroi de la tuyauterie peut être calculé à partir du spectre de niveau de pression acoustique interne et des pertes par transmission. Pour des nombres de Mach plus élevés à la sortie de la vanne, le niveau de pression acoustique interne combiné  $L_{piS(fi)}$  de l'effet de l'équipement interne de la vanne et du divergent sur la paroi de la tuyauterie doit être utilisé au lieu de  $L_{pi(fi)}$  (voir Equation (43) dans l'Article 7).

$$L_{pe,1m}(f_i) = L_{pi}(f_i) + TL(f_i) - 10 \log\left(\frac{D_i + 2t_s + 2}{D_i + 2t_s}\right)$$
(24)

Enfin, le niveau de pression acoustique totale pondéré A à une distance de 1 m de la paroi de la tuyauterie peut être calculé comme suit:

$$L_{pAe,1m} = 10 \cdot Log_{10} \left( \sum_{i=1}^{N=33} 10^{\frac{L_{pe,1m}(f_i) + \Delta L_A(f_i)}{10}} \right)$$
(25)

où

 $f_i$  = fréquence centrale de bande de tiers d'octave;

 $L_{pi}(f_i)$  = niveau de pression acoustique interne à la fréquence  $f_i$ ;

 $TL(f_i)$  = perte par transmission à la fréquence  $f_i$ ;

 $\Delta L_{A}(f_{i})$  = coefficient pondéré "A" à la fréquence  $f_{i}$ 

| f <sub>i</sub> [Hz}   | 12,5  | 16    | 20    | 25    | 31.5  | 40    | 50    | 63    | 80    | 100   | 125   |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $\Delta L_{A}(f_{i})$ | -63,4 | -56,7 | -50,5 | -44,7 | -39,4 | -34,6 | -30,2 | -26,2 | -22,5 | -19,1 | -16,1 |
|                       |       |       |       |       |       |       |       |       |       |       |       |
| f <sub>i</sub> [Hz}   | 160   | 200   | 250   | 315   | 400   | 500   | 630   | 800   | 1000  | 1250  | 1600  |
| $\Delta L_{A}(f_{i})$ | -13,4 | -10,9 | -8,6  | -6,6  | -4,8  | -3,2  | -1,9  | -0,8  | 0     | 0,6   | 1,0   |
|                       |       |       |       |       |       |       |       | •     |       |       |       |
| f <sub>i</sub> [Hz}   | 2000  | 2500  | 3150  | 4000  | 5000  | 6300  | 8000  | 10000 | 12500 | 16000 | 20000 |
| $\Delta L_{A}(f_{i})$ | 1,2   | 1,3   | 1,2   | 1,0   | 0,5   | -0,1  | -1,1  | -2,5  | -4,3  | -6,6  | -9,3  |

Tableau 7 – Coefficient pondéré "A" à la fréquence fi

NOTE Des bandes d'octave peuvent également être utilisées lorsque, dans l'Equation (19), on utilise pour le premier terme de 8 dB une valeur de 3 dB.

## 5.7 Organigramme de calcul

L'organigramme suivant donne une séquence logique d'utilisation des équations ci-dessus pour le calcul du niveau de pression acoustique.

Commencer avec 5,1, 5,2 et 5,3 pour tous les régimes.

Puis 5,4 pour les calculs dépendant du régime.

Puis 5,5 et 5,6 pour tous les régimes.

NOTE Voir l'Annexe A pour des exemples de calculs.

# 6 Vannes munies d'un équipement interne spécial

#### 6.1 Généralités

Le présent article est applicable aux vannes munies d'un équipement interne spécial. Bien qu'il utilise une grande partie de la procédure de l'Article 5, il constitue un article séparé de la présente norme, car les équipements internes considérés nécessitent une considération particulière.

## 6.2 Equipement interne mono-étagé à chemins d'écoulement multiples

Pour les vannes mono-étagées avec équipement interne à chemins d'écoulement multiples (voir, à la Figure 1, un exemple parmi beaucoup d'autres d'équipements internes de réduction de bruit), sans récupération de pression significative entre les étages, la procédure de l'Article 5 doit être utilisée, à l'exception de ce qui suit.


NOTE Ceci est un exemple parmi d'autres d'équipements internes de réduction de bruit.

#### Figure 1 – Equipement interne mono-étagé à chemins d'écoulement multiples

Tous les chemins d'écoulement doivent avoir le même diamètre hydraulique, et la distance qui les sépare doit être suffisante pour éviter une interaction des jets.

Bien que le coefficient de correction générique de vanne soit le même qu'à l'Article 5, un exemple d'application est donné ci-dessous:

#### EXEMPLE

Soit un équipement interne comprenant 48 chemins rectangulaires activés qui ont une largeur de 0,010 m et une hauteur de 0,002 m. La surface A de chaque chemin est de 0,010 × 0,002 = 0,000 02 m<sup>2</sup>. Le périmètre mouillé  $l_W = (2 \times 0,010) + (2 \times 0,002) = 0,024$  m;  $d_0 = 0,035$  m, et  $d_H = 0,0033$ , ce qui implique que  $F_d = 0,0033/0,035 = 0,094$ .

Le diamètre du jet Di est calculé comme suit:

$$D_{\rm j} = N_{\rm 14} \cdot F_{\rm d} \sqrt{C[0.9 - 0.06(l/d)]}$$
(26)

NOTE 1  $F_{Ln}$  a été remplacé par [0,9-0,06(l/d)] dans l'expression de  $D_i$ , et l/d a une valeur maximale de 4.

La conséquence de l'utilisation de [0,9 - 0,06(I/d)] au lieu de  $F_{Ln}$  est une augmentation générale de la perte par transmission dans les régimes I, II et III jusqu'à 5 dB.

Le nombre de Mach à la sortie de la vanne se calcule en utilisant l'Equation (15).

NOTE 2 Pour les rapports de pression  $p_1/p_2 > 4$ , l'Equation (8a) qui est utilisée pour calculer  $F_d$ , n'est applicable que lorsque la distance entre les chemins dépasse 0,7 *d*. Elle perd également sa validité lorsque le nombre de Mach  $M_o$  à la sortie de la vanne dépasse 0,2.

# 6.3 Equipement interne à chemin d'écoulement unique, à détente multi-étagée (deux étages de restriction ou plus)

Pour les vannes multi-étagées à chemin d'écoulement unique (voir la Figure 2 pour un exemple parmi beaucoup d'autres d'équipements internes de réduction de bruit) sans récupération de pression significative entre les étages, la procédure de l'Article 5 doit être utilisée, à l'exception de ce qui suit.

- 72 -



NOTE Ceci est un exemple parmi d'autres d'équipements internes de réduction de bruit.

#### Figure 2 – Equipement interne à chemin d'écoulement unique, à détente multi-étagée

NOTE 1 Tous les calculs de 6.3 s'appliquent au dernier étage.

Le coefficient de débit  $C_n$  doit être utilisé au lieu de C. Cela s'applique au dernier étage de l'équipement interne multi-étagé. Lorsque les valeurs de  $C_n$  ne sont pas données par le fabricant de la vanne, la relation suivante doit être utilisée:

$$C_{\rm n} = N_{16} A_{\rm n}$$
 (27)

NOTE 2  $N_{16}$  est une constante numérique dont la valeur dépend du coefficient de débit spécifique ( $K_v$  ou  $C_v$ ) utilisé. Les valeurs de cette constante peuvent être obtenues à partir du Tableau 1.

La pression intermédiaire  $p_n$  du dernier étage doit être utilisée au lieu de  $p_1$ , et la masse volumique  $\rho_n$  au lieu de  $\rho_1$ . Ces valeurs sont déterminées en utilisant les équations suivantes, selon le cas:

NOTE 3 Si  $p_1/p_2 \ge 2$ , il convient alors de supposer d'abord que  $p_n/p_2 < 2$ , et il convient alors de calculer  $p_n$  à partir de l'Equation (28a). Si la valeur de  $p_n$  calculée est  $\ge 2 p_2$ , il convient alors de calculer  $p_n$  à partir de l'Equation (28b) et de poursuivre suivant la procédure.

Si  $p_1/p_2 \ge 2$  et  $p_n/p_2 < 2$ :

$$p_{\rm n} = \sqrt{\left(\frac{p_{\rm 1} C}{1,155 C_{\rm n}}\right)^2 + p_2^2}$$
 (28a)

Si  $p_1/p_2 \ge 2$  et  $p_n/p_2 \ge 2$ :

$$p_{\rm n} = p_{\rm l} \left( \frac{C}{C_{\rm n}} \right) \tag{28b}$$

Si  $p_1/p_2 < 2$ :

$$p_{\rm n} = \sqrt{\left(\frac{C}{C_{\rm n}}\right)^2 \left(p_1^2 - p_2^2\right) + p_2^2}$$
 (28c)

$$\rho_{n} = \rho_{1} \left( \frac{p_{n}}{p_{1}} \right) \tag{29}$$

Le diamètre du jet au dernier étage utilisé dans les équations pour la fréquence dominante est déterminé à partir de l'équation suivante:

$$D_{\rm j} = N_{\rm 14} \ F_{\rm d} \ \sqrt{C_{\rm n} \ F_{\rm L}} \tag{30}$$

NOTE 4 Dans cette Equation, il convient d'utiliser  $F_d$  et  $F_L$  du dernier étage.

Enfin, le niveau de pression acoustique interne du dernier étage qui est rayonné dans la tuyauterie doit être corrigé à partir de l'équation suivante:

$$L_{pi} = L_{pi,n} + \frac{1}{(n-1)^{0.125}} IO \cdot \log_{10}\left(\frac{p_1}{p_n}\right)$$
(31)

NOTE 5 La contribution au bruit du dernier étage est donnée par  $L_{pi,n}$ . Le terme 10 log<sub>10</sub> ( $p_1/p_n$ ) tient compte du niveau de pression acoustique engendré par la détente dans les autres étages.

# 6.4 Equipement interne multi-étagé, à chemins d'écoulement multiples (deux chemins ou plus, deux étages ou plus)

NOTE 1 Ce paragraphe ne couvre que les vannes à mouvement linéaire.

NOTE 2 Tous les calculs de 6.4 s'appliquent au dernier étage.

Pour les équipements internes multi-étagés à chemins d'écoulement multiples (voir la Figure 3 pour un exemple parmi tant d'autres d'équipements internes à réduction de bruit), la procédure de l'Article 5 doit être utilisée, à l'exception de ce qui suit.



- 74 -

NOTE Ceci est un exemple parmi d'autres d'équipements internes de réduction de bruit.

#### Figure 3 – Equipement interne multi-étagé, à chemins d'écoulement multiples (deux chemins ou plus, deux étages ou plus)

Tous les chemins d'écoulement doivent avoir le même diamètre hydraulique, et la distance qui les sépare doit être suffisante pour éviter une interaction des jets. La surface de passage de chaque étage doit augmenter entre l'entrée et la sortie.

La pression à la vena contracta  $p_{vc}$  doit être calculée en utilisant  $F_{Ln}$  au lieu de  $F_L$  dans l'Equation (2). Le coefficient de débit  $C_n$  de l'Equation (27) doit être utilisé au lieu de C; la pression intermédiaire  $p_n$  du dernier étage de l'Equation (28) doit être utilisée au lieu de  $p_1$ , et la masse volumique  $\rho_n$  de l'Equation (29) doit être utilisée au lieu de  $\rho_1$ .

Le nombre de Mach du jet est calculé à partir de l'équation suivante:

$$M_{jn} = \sqrt{\left(\frac{2}{\gamma - 1}\right) \left[ \left(1 - \frac{x}{F_{Ln}^{2}}\right)^{(1 - \gamma)/\gamma} - 1\right]}$$
(32)

où le taux de chute de pression x pour le dernier étage est déterminé à partir de l'Equation (1) en utilisant  $p_n$  au lieu de  $p_1$ .

La fréquence dominante  $f_p$  est calculée à partir de l'Equation (33) en utilisant le diamètre du jet  $D_j$  du dernier étage tiré de l'Equation (30):

$$f_{\rm p} = \frac{\mathrm{St}_{\rm p} \, M_{\rm jn} \, c_{\rm vc}}{D_{\rm j}} \tag{33}$$

NOTE 3 Si le nombre de Strouhal St<sub>p</sub> ne peut être déterminé, St<sub>p</sub> peut être fixé égal à 0,2.

NOTE 4 La méthode de 6.4 n'est pas précise si le nombre de Mach  $M_o$  à la sortie de la vanne dépasse 0,2. Pour le calcul de  $M_o$ , voir l'Equation (15). Pour un nombre de Mach de 0,3, l'erreur peut dépasser 5 dB. Se reporter à l'Article 7 pour des nombres de Mach supérieurs.

NOTE 5 Voir l'Annexe A pour un exemple de calcul.

Enfin, le niveau de pression acoustique pondéré A,  $L_{pAe}$ , est calculé à partir de l'Equation (25).

#### 7 Cas des nombres de Mach supérieurs en sortie de vanne

#### 7.1 Généralités

Cet article fournit une méthode de prévision des niveaux de pression acoustique engendrés à la sortie de la vanne avec ou sans divergent. L'applicabilité est limitée à une valeur d'angle total maximale de 30° pour le raccord de réduction installé en aval de la vanne. Des valeurs d'angles plus élevées peuvent donner lieu à des instabilités de débit qui ne relèvent pas du domaine d'application de la présente norme.

#### 7.2 Méthode de calcul

Dans la tuyauterie aval, la vitesse est limitée à un nombre de Mach de 0,8 et se calcule à partir de l'équation suivante:

$$U_{\rm p} = \frac{4 \dot{m}}{\pi \rho_2 \, {D_{\rm j}}^2} \tag{34}$$

La vitesse du gaz  $U_R$  à l'entrée du divergent est limitée à la vitesse du son  $c_2$  et se calcule comme suit:

$$U_{\mathsf{R}} = \frac{U_{\mathsf{p}} D_{\mathsf{i}}^2}{\beta d_{\mathsf{i}}^2} \tag{35}$$

NOTE 1 Il est reconnu que le gradient de vitesse à la sortie de la vanne n'est pas toujours uniforme et qu'il peut être nécessaire d'employer un coefficient de contraction. Ce coefficient  $\beta$  fait partie de l'Equation (35). La valeur de  $\beta$  peut être extraite de résultats d'essai utilisant le point d'écoulement engorgé à la sortie de la vanne comme révélateur de l'existence d'une vitesse du son (Mach 1). La section nette est égale au quotient du débit massique par le produit de la masse volumique et de la vitesse du son. Il peut aussi être déterminé par des méthodes analytiques. Une valeur de  $\beta$  = 0,93 semble appropriée pour les vannes à soupape à corps droit. On ne dispose pas, actuellement, de valeurs numériques relatives aux autres types de vannes mais, pour certaines vannes rotatives, la valeur peut tomber jusqu'à 0,7.

La puissance intrinsèque de l'écoulement dans le divergent est déterminée à partir de l'Equation (36).

$$W_{\rm mR} = \frac{\dot{m} U_{\rm R}^2}{2} \left[ \left( 1 - \frac{d_{\rm i}^2}{D_{\rm i}^2} \right)^2 + 0.2 \right]$$
(36)

La fréquence dominante du bruit généré est déterminée comme suit:

$$\mathbf{f}_{pR} = \frac{St_p \ \mathbf{U}_R}{\mathbf{d}_i} \tag{37}$$

L'Equation (38) est utilisée pour calculer le coefficient de rendement acoustique.

$$\eta_R = \left(1 \times 10^{A_\eta}\right) \mathbf{M}_R^3 \tag{38}$$

NOTE 2 Pour St<sub>p</sub> et A<sub> $\eta$ </sub> s, voir le Tableau 4.

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

où

$$M_{\rm R} = \frac{U_{\rm R}}{c_2} \tag{39}$$

Donc, la puissance acoustique générée est déterminée comme suit:

$$W_{aR} = \eta_R \ W_{mR} \tag{40}$$

Bien que non requis par cette méthode, le niveau de puissance acoustique totale est calculé à partir de l'Equation (12).

- 76 -

Pour calculer le niveau de pression acoustique interne par rapport à la référence  $P_0$ , on utilise l'équation suivante:

$$L_{piR} = 10 \log_{10} \left[ \frac{(3,2 \times 10^9) W_{aR} \rho_2 c_2}{D_i^2} \right] + L_g$$
(41)

Le spectre de fréquences relatif aux niveaux de pression acoustique interne dû au bruit de la tuyauterie aval peut être prévu à partir de l'Equation (42) ([17]).

$$L_{piR}(f_i) = L_{piR} - 8 - 10 \cdot \log \left\{ \left[ 1 + \left( \frac{f_i}{2 \cdot f_{pR}} \right)^{2.5} \right] \cdot \left[ 1 + \left( \frac{f_{pR}}{2 \cdot f_i} \right)^{1.7} \right] \right\}$$
(42)

NOTE 3 Des bandes d'octave peuvent également être utilisées lorsque, dans l'Equation (41), on utilise pour le premier terme de 8 dB une valeur de 3 dB.

Le niveau de pression acoustique combiné  $L_{piS}(f_i)$  de l'équipement interne de la vanne  $L_{pi}(f_i)$  et du divergent  $L_{piR}(f_i)$  peut être estimé à partir de l'Equation (42).

$$L_{pis}(f_i) = 10 \log_{10} \left( 10^{L_{pi}(f_i)/10} + 10^{L_{piR}(f_i)/10} \right)$$
(43)

Dans l'Equation (24),  $L_{pis}(f_i)$  doit ensuite être utilisé au lieu de  $L_{pi}(f_i)$  pour calculer les niveaux de pression acoustique externe dans les Equations (24) et (25).

#### 8 Vannes à coefficients de rendement acoustique déterminés expérimentalement

En remplacement des valeurs calculées à l'aide des valeurs types données dans le Tableau 4, la présente norme considère les coefficients de rendement acoustique fondés sur des données de laboratoire pour les conceptions spécifiques de vannes. Cette valeur alternative du coefficient de rendement acoustique  $\eta_x$  doit être calculée à partir des mesures du bruit réalisées conformément aux procédures spécifiées dans la CEI 60534-8-1.

La méthode recommandée consiste à mesurer directement  $L_{pi}$  et  $L_{pi}(f_i)$  en fonction du rapport de pression différentielle *x*, conformément à la Méthode B de la CEI 60534-8-1.

Une autre méthode consiste à mesurer  $L_{pe,1m}$  et  $L_{pe,1m}(f_i)$  à partir des mesures du bruit externe en fonction du rapport de pression différentielle *x* conformément aux procédures de la CEI 60534-8-1 Méthode A. Sur cette base,  $L_{pi}$  et  $L_{pi}(f_i)$  doivent être calculés à partir de  $L_{pe,1m}(f_i)$  mesuré et de la perte par transmission. (voir 5.6). Par conséquent, les données relatives à la tuyauterie du montage d'essai doivent être utilisées.

Pour les deux mesures, il convient que le nombre de Mach à la sortie de la vanne M<sub>O</sub> soit inférieur aux limites appropriées applicables à l'équipement interne soumis à essai.

Sur la base des valeurs de  $L_{pi}$  et  $L_{pi}(f_i)$  déterminées de manière expérimentale (directement ou avec  $L_{pe,1m}(f_i)$ ), il est possible de déterminer les paramètres suivants:

- Le coefficient de rendement acoustique η<sub>x</sub> déterminé expérimentalement en fonction de x. Il serait utilisé en remplacement des valeurs calculées conformément aux équations du Tableau 3.
- Une nouvelle fonction de profil de fréquence  $L_{pi}(f_i) L_{pi}$ , permettant de déterminer de nouvelles valeurs du nombre de Strouhal dominant. Le nouveau profil serait utilisé à la place de l'Equation (19). Le nouveau nombre de Strouhal serait utilisé à la place des valeurs types données au Tableau 4 lors du calcul de la fréquence dominante  $f_p$ conformément aux équations du Tableau 3.

Il convient que tous les autres calculs soient conformes à 5.7.

#### 9 Combinaison du bruit généré par une vanne de régulation munie de deux étages ou plus à section fixe, installés en aval

Lorsque des étages de détente à section fixe (tels que des plaques percées de trous) sont installés en aval d'une vanne de régulation, le bruit total généré en aval peut être calculé comme suit (l'exemple s'applique à une configuration à deux étages):

$$L_{piTot}(f_i) = 10 \bullet \log_{10} \left( 10^{0,1 \bullet (Lpi(1)(f_i) - \Delta(2)(f_i) - \Delta(3)(f_i)} + 10^{0,1 \bullet (Lpi(2)(f_i) - \Delta(3)(f_i)} + 10^{0,1 \bullet (Lpi(3)(f_i))} \right)$$
(44)

où

- L<sub>piTOT</sub>(f<sub>i</sub>) est le niveau acoustique total à l'intérieur de la tuyauterie en aval du dernier étage à section fixe. L<sub>piTOT</sub>(f<sub>i</sub>) doit être utilisé dans l'Equation (24) au lieu de L*pi(fi)* pour calculer L<sub>pe,1m</sub>(f<sub>i</sub>);
- L<sub>pi(j)</sub>(f<sub>i</sub>) est le niveau acoustique interne généré par l'étage (j) à la fréquence (f<sub>i</sub>) dans la tuyauterie aval sans tenir compte de l'atténuateur acoustique installé en aval;
- Δ<sub>(j)</sub>(f<sub>i</sub>) est l'atténuation du bruit de l'étage (j) à la fréquence (f<sub>i</sub>). Δ<sub>(j)</sub>(f<sub>i</sub>) sont des valeurs expérimentales. En l'absence de valeurs expérimentales, Δ<sub>(i)</sub>(f<sub>i</sub>) peut être fixé égal à 0.





IEC 2490/10



### Annexe A

(informative)

#### Exemples de calculs

#### A.1 Généralités

La présente annexe montre comment sont utilisées les équations de la présente norme. L'utilisation de valeurs calculées avec un nombre élevé de décimales n'implique pas une précision correspondante; il s'agit seulement d'aider l'utilisateur à vérifier les valeurs calculées. Les nombres situés à gauche entre parenthèses renvoient aux équations de la présente norme.

#### A.2 Exemples de calculs de 1 à 6

#### Données

#### Vanne

Vanne à soupapes à simple siège (à cage) installée dans le sens «fluide tend à ouvrir»

| Dimension de la vanne:                                                                         | Diverse                                  |
|------------------------------------------------------------------------------------------------|------------------------------------------|
| Diamètre de sortie de la vanne:                                                                | Divers                                   |
| C <sub>v</sub> nominal:                                                                        | $C_{\rm vR} = 195$                       |
| C <sub>v</sub> requis:                                                                         | Divers                                   |
| Facteur combiné de récupération<br>de pression du liquide<br>et de géométrie de la tuyauterie: | F <sub>LP</sub> = 0,792                  |
| Nombre de lumières dans la cage:                                                               | $N_{\rm O}=6$                            |
| Périmètre mouillé du chemin<br>d'écoulement unique:                                            | <i>I</i> <sub>W</sub> = 181 mm = 0,181 m |
| Surface du chemin d'écoulement unique:                                                         | $A = 0,00137 \text{ m}^2$                |
| Facteur de taux de chute de pression:                                                          | $x_{\rm T} = 0,75$                       |

#### Tuyauterie

| Dimension nominale de la tuyauterie d'entrée:                             | DN 200                                       |  |  |  |  |  |
|---------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|
| Dimension nominale de la tuyauterie de sortie:                            | DN 200                                       |  |  |  |  |  |
| Epaisseur de la paroi de la tuyauterie:                                   | $t_{\rm S} = 8 \text{ mm} = 0,008 \text{ m}$ |  |  |  |  |  |
| Diamètre intérieur de la tuyauterie:                                      | Divers                                       |  |  |  |  |  |
| Vitesse du son dans la tuyauterie:                                        | c <sub>S</sub> = 5 000 m/s                   |  |  |  |  |  |
| Masse volumique du matériau de la tuyauterie: $ ho_{\sf S}$ = 8 000 kg/m³ |                                              |  |  |  |  |  |

#### Autres

| Vitesse du son dans l'air: | c <sub>o</sub> = 343 m/s            |
|----------------------------|-------------------------------------|
| Masse volumique de l'air:  | $\rho_{0} = 1,293 \text{ kg/m}^{3}$ |

- 80 -

| Pression atmosphérique réelle:   | $p_{a}$ = 1,013 25 bar = 1,013 25 × 10 <sup>5</sup> Pa     |
|----------------------------------|------------------------------------------------------------|
| Pression atmosphérique standard: | $p_{\rm s}$ = 1,013 25 bar = 1,013 25 × 10 <sup>5</sup> Pa |

Les valeurs suivantes sont utilisées dans la CEI 60534-2-1 ou déterminées à partir de calculs basés sur celle-ci.

| Coefficient de perte de charge:                     | $\Sigma \zeta = 0,86$ |
|-----------------------------------------------------|-----------------------|
| Somme des coefficients de vitesse d'entrée:         | $\zeta_i = 1,2$       |
| Facteur résultant de la géométrie de la tuyauterie: | $F_{\rm p} = 0,98$    |

|                                                                                                                                                     | Exemple 1                                              | Exemple 2                                              | Exemple 3                                              | Exemple 4                                              | Exemple 5                                            | Exemple 6                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| Type de fluide: vapeur                                                                                                                              |                                                        | •                                                      |                                                        |                                                        |                                                      | •                                                     |
| Débit massique                                                                                                                                      | m = 2,22 kg/s                                          | m = 2,29 kg/s                                          | m = 2,59 kg/s                                          | m = 1,18 kg/s                                          | m = 1,19 kg/s                                        | m = 0,89 kg/s                                         |
| Pression absolue à l'entrée de la vanne                                                                                                             | p <sub>1</sub> = 10 bar =<br>1,0 x 10 <sup>6</sup> Pa  | p <sub>1</sub> = 10 bar =<br>1,0 x 10 <sup>6</sup> Pa  | p <sub>1</sub> = 10 bar =<br>1,0 x 10 <sup>6</sup> Pa  | $p_1 = 10 \text{ bar} = 1,0$<br>x 10 <sup>6</sup> Pa   | $p_1 = 10 \text{ bar} = 1,0$<br>x 10 <sup>6</sup> Pa | p <sub>1</sub> = 10 bar =<br>1,0 x 10 <sup>6</sup> Pa |
| Pression absolue à la sortie de la vanne                                                                                                            | p <sub>2</sub> = 7,2 bar =<br>7,2 x 10 <sup>5</sup> Pa | p <sub>2</sub> = 6,9 bar =<br>6,9 x 10 <sup>5</sup> Pa | p <sub>2</sub> = 4,8 bar =<br>4,8 x 10 <sup>5</sup> Pa | p <sub>2</sub> = 4,2 bar =<br>4,2 x 10 <sup>5</sup> Pa | $p_2 = 0,5 \text{ bar} = 5$<br>x 10 <sup>4</sup> Pa  | $p_2 = 0.5 \text{ bar} = 5$<br>x 10 <sup>4</sup> Pa   |
| Masse volumique d'entrée                                                                                                                            | $\rho_1 = 5,3 \text{ kg/m}^3$                          | $\rho_1 = 5,3 \text{ kg/m}^3$                        | $\rho_1 = 5,3 \text{ kg/m}^3$                         |
| Température absolue à l'entrée                                                                                                                      | T <sub>1</sub> = 177 °C =<br>450 K                     | T <sub>1</sub> = 177 °C =<br>450 K                   | T <sub>1</sub> = 177 °C =<br>450 K                    |
| Rapport des chaleurs spécifiques                                                                                                                    | γ = 1,22                                               | γ = 1,22                                               | γ = 1,22                                               | γ = 1,22                                               | γ = 1,22                                             | γ = 1,22                                              |
| Masse moléculaire                                                                                                                                   | M = 19,8<br>kg/kmol                                    | M = 19,8<br>kg/kmol                                    | M = 19,8<br>kg/kmol                                    | M = 19,8<br>kg/kmol                                    | M = 19,8<br>kg/kmol                                  | M = 19,8<br>kg/kmol                                   |
| C <sub>v</sub> requis                                                                                                                               | C <sub>v</sub> = 90                                    | C <sub>v</sub> = 90                                    | C <sub>v</sub> = 90                                    | C <sub>v</sub> = 40                                    | C <sub>v</sub> = 40                                  | C <sub>v</sub> = 30                                   |
| Dimension de la vanne                                                                                                                               | DN 100                                                 | DN 100                                                 | DN 100                                                 | DN 200                                                 | DN 200                                               | DN 100                                                |
| Diamètre de sortie de la vanne                                                                                                                      | D = 0,1 m                                              | D = 0,1 m                                              | D = 0,1 m                                              | D = 0,2031 m                                           | D = 0,2031 m                                         | D = 0,1 m                                             |
| Diamètre intérieur de la tuyauterie                                                                                                                 | D <sub>i</sub> = 0,2031 m                              | D <sub>i</sub> = 0,2031 m                            | D <sub>i</sub> = 0,15 m                               |
|                                                                                                                                                     |                                                        | •                                                      | •                                                      | •                                                      | •                                                    | •                                                     |
| (1) Rapport de pression différentielle<br>$x = \frac{p_1 - p_2}{p_1}$                                                                               | x = 0,28                                               | x = 0,31                                               | x = 0,52                                               | x = 0,58                                               | x = 0,95                                             | x = 0,95                                              |
| (2) Pression absolue à la vena contracta en régime subsonique<br>$p_{vc} = p_1 \cdot \left(1 - \frac{x}{(F_{LP} / F_P)^2}\right)$                   | р <sub>vc</sub> =<br>567787 Ра                         | р <sub>vc</sub> =<br>521478 Ра                         | р <sub>ис</sub> =<br>197319 Ра                         | р <sub>vc</sub> =<br>104702 Ра                         | р <sub>vc</sub> =<br>-466437 Ра                      | р <sub>vc</sub> =<br>-466437 Ра                       |
| (3) Rapport de pression différentielle à la vena contracta en régime critique $x_{vec} = 1 - \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma-1)}$ | x <sub>vcc</sub> = 0,439                               | x <sub>vcc</sub> = 0,439                               | $x_{vcc} = 0,439$                                      | x <sub>vcc</sub> = 0,439                               | x <sub>vcc</sub> = 0,439                             | x <sub>vcc</sub> = 0,439                              |
|                                                                                                                                                     | Exemple<br>1                                           | Exemple 2                                              | Exemple<br>3                                           | Exemple 4                                              | Exemple 5                                            | Exemple 6                                             |
| (4) Rapport de pression différentielle en régime critique<br>$x_{c} = (F_{LP} / F_{P})^{2} x_{vcc}$                                                 | x <sub>C</sub> = 0,285                                 | x <sub>C</sub> = 0,285                               | x <sub>C</sub> = 0,285                                |
| (5) Coefficient de correction de<br>récupération<br>$\alpha = \frac{1 - x_{vec}}{1 - x_c}$                                                          | α = 0,784                                              | α = 0,784                                              | α = 0,784                                              | α = 0,784                                              | α = 0,784                                            | α = 0,784                                             |
| (6) Rapport de pression différentielle au point de rupture<br>$x_B = 1 - \frac{1}{\alpha} \left(\frac{1}{\gamma}\right)^{\gamma/(\gamma-1)}$        | x <sub>B</sub> = 0,576                                 | x <sub>B</sub> = 0,576                               | x <sub>B</sub> = 0,576                                |

| Tableau A.1 - | Calculs: | exemples | de | 1 | à | 6 |
|---------------|----------|----------|----|---|---|---|
|---------------|----------|----------|----|---|---|---|

### - 81 -

|                                                                                                                                                                                 | Exemple 1                                                                              | Exemple 2                                            | Exemple 3                                             | Exemple 4                                           | Exemple 5                         | Exemple 6                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------|-----------------------------------|
| (7) Rapport de pression différentielle<br>auquel commence la région de<br>rendement acoustique constant<br>$x_{CE} = 1 - \frac{1}{22 \alpha}$                                   | x <sub>CE</sub> = 0,942                                                                | x <sub>CE</sub> = 0,942                              | x <sub>CE</sub> = 0,942                               | x <sub>CE</sub> = 0,942                             | x <sub>CE</sub> = 0,942           | x <sub>CE</sub> = 0,942           |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         | x ≤ x <sub>C</sub><br>⇒ Régime I                                                       | x <sub>C</sub> < x ≤ x <sub>VCC</sub><br>⇒ Régime II | x <sub>VCC</sub> < x ≤ x <sub>B</sub><br>⇒ Régime III | x <sub>B</sub> < x ≤ x <sub>CE</sub><br>⇒ Régime IV | x <sub>CE</sub> < x<br>⇒ Régime V | x <sub>CE</sub> < x<br>⇒ Régime V |
| (8b) Diamètre hydraulique d'un chemin<br>d'écoulement unique<br>$d_{\rm H} = \frac{4}{l_{\rm w}}$                                                                               | d <sub>H</sub> = 0,030 m                                                               | d <sub>H</sub> = 0,030 m                             | d <sub>H</sub> = 0,030 m                              | d <sub>H</sub> = 0,030 m                            | d <sub>H</sub> = 0,030 m          | d <sub>H</sub> = 0,030 m          |
| (8c) Diamëtre d'un orifice circulaire<br>$d_{o} = \sqrt{\frac{4 N_{o} A}{\pi}}$                                                                                                 | d <sub>0</sub> = 0,010 m                                                               | d <sub>0</sub> = 0,010 m                             | d <sub>0</sub> = 0,010 m                              | d <sub>0</sub> = 0,010 m                            | d <sub>0</sub> = 0,010 m          | d <sub>0</sub> = 0,010 m          |
| (8a) Coefficient de correction générique<br>de vanne<br>$F_{\rm d} = \frac{d_{\rm H}}{d_{\rm o}}$                                                                               | F <sub>d</sub> = 0,30                                                                  | F <sub>d</sub> = 0,30                                | F <sub>d</sub> = 0,30                                 | F <sub>d</sub> = 0,30                               | F <sub>d</sub> = 0,30             | F <sub>d</sub> = 0,30             |
| (9) Diamètre du jet                                                                                                                                                             | $N_{14} = 4.6 \times 10^{-3}$                                                          | $N_{14} = 4,6 \times 10^{-3}$                        | $N_{14} = 4,6 \times 10^{-3}$                         | $N_{14} = 4,6 \times 10^{-3}$                       | $N_{14} = 4,6 \times 10^{-3}$     | $N_{14} = 4.6 \times 10^{-3}$     |
| $D_{j} = N_{14} F_{d} \sqrt{C(F_{LP} / F_{P})}$                                                                                                                                 | ⇒<br>D <sub>j</sub> = 0,012 m                                                          | ⇒<br>D <sub>j</sub> = 0,012 m                        | ⇒<br>D <sub>j</sub> = 0,012 m                         | ⇒<br>D <sub>j</sub> = 0,008 m                       | ⇒<br>D <sub>j</sub> = 0,008 m     | ⇒<br>D <sub>j</sub> = 0,007 m     |
| Calculs pour le Régime I                                                                                                                                                        |                                                                                        |                                                      |                                                       |                                                     |                                   |                                   |
| (Tableau 3) Puissance intrinsèque de<br>l'écoulement du débit massique<br>$W_m = \frac{\dot{m}(M_{vc}c_{vc})^2}{2}$                                                             | W <sub>m</sub> =<br>225385 W                                                           |                                                      |                                                       |                                                     |                                   |                                   |
| (Tableau 3) Température absolue à la vena contracta $T_{vc} = T_{I} \left( 1 - \frac{x}{(F_{LP} / F_{P})^{2}} \right)^{(\gamma-1)/\gamma}$                                      | Т <sub>vc</sub> = 406 К                                                                |                                                      |                                                       |                                                     |                                   |                                   |
| (Tableau 3) Vitesse du son dans la vena<br>contracta<br>$c_{vc} = \sqrt{\gamma \frac{p_1}{\rho_1} \left(1 - \frac{x}{(F_{LP} / F_P)^2}\right)^{(\gamma-1)/\gamma}}$             | c <sub>vc</sub> =<br>455,9 m/s                                                         |                                                      |                                                       |                                                     |                                   |                                   |
| (Tableau 3) Nombre de Mach à la vena<br>contracta $M_{vc} = \sqrt{\left(\frac{2}{\gamma - 1}\right) \left[ \left(1 - \frac{x}{F_L^2}\right)^{(1 - \gamma)/\gamma} - 1 \right]}$ | $M_{vc} = 0,988$                                                                       |                                                      |                                                       |                                                     |                                   |                                   |
| (Tableau 3) Coefficient de rendement<br>acoustique<br>$\eta = (1 \times 10^{A_{\eta}}) (F_{r,p} / F_p)^2 \cdot M_{w}^{-3}$                                                      | $\begin{array}{c} A_{\eta}=-3,8\\ \Rightarrow\\ \eta_{1}=9,9\times10^{-5} \end{array}$ |                                                      |                                                       |                                                     |                                   |                                   |
| (11) Puissance acoustique<br>$W_a = \eta W_m$                                                                                                                                   | W <sub>a</sub> = 22,3 W                                                                |                                                      |                                                       |                                                     |                                   |                                   |
| (Tableau 3) Fréquence dominante<br>$f_p = \frac{Stp \cdot M_w \cdot c_w}{D_v}$                                                                                                  | $St_p = 0,2$<br>$\Rightarrow$<br>$f_p = 7778 \text{ Hz}$                               |                                                      |                                                       |                                                     |                                   |                                   |
| Calculs pour le Régime II                                                                                                                                                       |                                                                                        |                                                      |                                                       |                                                     |                                   |                                   |
| (Tableau 3) Vitesse du son dans la vena<br>contracta<br>$c_{vec} = \sqrt{\frac{2\gamma}{\gamma+1} \frac{p_1}{\rho_1}}$                                                          |                                                                                        | c <sub>vcc</sub> =<br>455,4 m/s                      |                                                       |                                                     |                                   |                                   |
| (Tableau 3) Puissance intrinsèque de<br>l'écoulement du débit massique<br>$W_m = \frac{\dot{m}(c_{vcc})^2}{2}$                                                                  |                                                                                        | W <sub>ms</sub> =<br>237447 W                        |                                                       |                                                     |                                   |                                   |
| (Tableau 3) Nombre de Mach d'un jet à expansion libre                                                                                                                           |                                                                                        | M <sub>j</sub> =<br>Min(1,03; 2,6)<br>= 1.03         |                                                       |                                                     |                                   |                                   |

|                                                                                                                                                                                                                                                            |           |                                                       | 1                                                                                  |                                                                                        | 1         |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------|-----------|
|                                                                                                                                                                                                                                                            | Exemple 1 | Exemple 2                                             | Exemple 3                                                                          | Exemple 4                                                                              | Exemple 5 | Exemple 6 |
| $\mathbf{M}_{j} = \mathbf{Minimum de} \begin{bmatrix} \sqrt{\frac{2}{\gamma-1} \left[ \left( \frac{1}{\alpha (1-x)} \right)^{(\gamma-1)\gamma} - 1 \right]} \\ \sqrt{\frac{2}{\gamma-1} \left[ (22)^{(\gamma-1)\gamma} - 1 \right]} \end{bmatrix}$         |           |                                                       |                                                                                    |                                                                                        |           |           |
| (Tableau 3) Coefficient de rendement<br>acoustique                                                                                                                                                                                                         |           | A <sub>η</sub> = -3,8                                 |                                                                                    |                                                                                        |           |           |
| $\eta = \left(1 \times 10^{A_{\eta}}\right) \cdot \frac{x}{x_{vec}} \mathbf{M}_{j}^{6.6(F_{LP} / F_{P})^{2}}$                                                                                                                                              |           | $\stackrel{\Rightarrow}{\eta_2 = 1,3 \times 10^{-4}}$ |                                                                                    |                                                                                        |           |           |
| (11) Puissance acoustique<br>$W_a = \eta W_m$                                                                                                                                                                                                              |           | W <sub>a</sub> = 30,4 W                               |                                                                                    |                                                                                        |           |           |
| (Tableau 3) Fréquence dominante<br>Stp · M : · Cycc                                                                                                                                                                                                        |           | St <sub>p</sub> = 0,2                                 |                                                                                    |                                                                                        |           |           |
| $f_p = \frac{1}{D_j}$                                                                                                                                                                                                                                      |           | ⇒<br>f <sub>p</sub> = 8115 Hz                         |                                                                                    |                                                                                        |           |           |
| Calculs pour le Régime III                                                                                                                                                                                                                                 |           |                                                       |                                                                                    |                                                                                        |           |           |
| (Tableau 3) Vitesse du son dans la vena<br>contracta<br>$c_{wc} = \sqrt{\frac{2\gamma}{p_1}} \frac{p_1}{p_1}$                                                                                                                                              |           |                                                       | c <sub>vcc</sub> =<br>455,4 m/s                                                    |                                                                                        |           |           |
| (Tableau 3) Puissance intrinsèque de                                                                                                                                                                                                                       |           |                                                       |                                                                                    |                                                                                        |           |           |
| l'écoulement du débit massique<br>$W_m = \frac{\dot{m}(c_{vec})^2}{2}$                                                                                                                                                                                     |           |                                                       | W <sub>ms</sub> =<br>268553 W                                                      |                                                                                        |           |           |
| (Tableau 3) Nombre de Mach d'un jet à                                                                                                                                                                                                                      |           |                                                       |                                                                                    |                                                                                        |           |           |
| $M_{j} = \text{Minimum de} \begin{bmatrix} \sqrt{\frac{2}{\gamma-1} \left[ \left( \frac{1}{\alpha (1-x)} \right)^{(\gamma-1)\gamma} - 1 \right]} \\ \sqrt{\frac{2}{\gamma-1} \left[ (22)^{(\gamma-1)\gamma} - 1 \right]} \end{bmatrix}$                    |           |                                                       | M <sub>j</sub> =<br>Min(1,32; 2,6)<br>= 1,32                                       |                                                                                        |           |           |
| (Tableau 3) Coefficient de rendement                                                                                                                                                                                                                       |           |                                                       | A <sub>η</sub> = -3,8                                                              |                                                                                        |           |           |
| $\eta = (1 \times 10^{A_{\eta}}) \cdot \mathbf{M}_{j}^{6,6(F_{LP} / F_{P})^{2}}$                                                                                                                                                                           |           |                                                       | $\stackrel{\Rightarrow}{\eta_3=5,3\times10^{-4}}$                                  |                                                                                        |           |           |
| (11) Puissance acoustique<br>$W_a = \eta W_m$                                                                                                                                                                                                              |           |                                                       | W <sub>a</sub> = 141,3 W                                                           |                                                                                        |           |           |
| (Tableau 3) Fréquence dominante<br>$f_p = \frac{Stp \cdot M_j \cdot c_{vec}}{D_j}$                                                                                                                                                                         |           |                                                       | $\begin{array}{c} St_p = 0,2 \\ \Rightarrow \\ f_p = 10407 \text{ Hz} \end{array}$ |                                                                                        |           |           |
| Calculs pour le Régime IV                                                                                                                                                                                                                                  |           |                                                       |                                                                                    |                                                                                        |           |           |
| (Tableau 3) Vitesse du son dans la vena<br>contracta<br>$c_{vec} = \sqrt{\frac{2\gamma}{\gamma + 1} \frac{p_1}{\rho_1}}$                                                                                                                                   |           |                                                       |                                                                                    | c <sub>vcc</sub> =<br>455,4 m/s                                                        |           |           |
| (Tableau 3) Puissance intrinsèque de l'écoulement du débit massique $\dot{m}(c_{vc})^2$                                                                                                                                                                    |           |                                                       |                                                                                    | W <sub>ms</sub> =<br>122353 W                                                          |           |           |
| $W_m = \frac{1}{2}$                                                                                                                                                                                                                                        |           |                                                       |                                                                                    |                                                                                        |           |           |
| expansion libre<br>$M_{j} = \text{Minimum de} \begin{bmatrix} \sqrt{\frac{2}{\gamma-1} \left[ \left( \frac{1}{\alpha (1-x)} \right)^{(\gamma-1)\gamma} - 1 \right]} \\ \sqrt{\frac{2}{\gamma-1} \left[ (22)^{(\gamma-1)\gamma} - 1 \right]} \end{bmatrix}$ |           |                                                       |                                                                                    | M <sub>j</sub> =<br>Min(1,42;2,6)<br>= 1,42                                            |           |           |
| (Tableau 3) Coefficient de rendement<br>acoustique<br>$\eta = \left(1 \times 10^{A_{\eta}}\right) \left(\frac{M_j^2}{2}\right) (\sqrt{2})^{6.6(F_{LP}/F_P)^2}$                                                                                             |           |                                                       |                                                                                    | $\begin{array}{l} A_{\eta}=-3.8\\ \Rightarrow\\ \eta_{4}=7.0\times10^{-4} \end{array}$ |           |           |
| (11) Puissance acoustique<br>$W_a = \eta W_m$                                                                                                                                                                                                              |           |                                                       |                                                                                    | W <sub>a</sub> = 86,1 W                                                                |           |           |
| (Tableau 3) Fréquence dominante                                                                                                                                                                                                                            |           |                                                       |                                                                                    | $St_p = 0,2$ $\Rightarrow$ $f_p = 16368 \text{ Hz}$                                    |           |           |
|                                                                                                                                                                                                                                                            |           |                                                       |                                                                                    |                                                                                        |           |           |

- 82 -

|                                                                                                                                                                                                      | Exemple 1                                                                                  | Exemple 2                                                                                  | Exemple 3                                                                                    | Exemple 4                                                                                  | Exemple 5                                                                                    | Exemple 6                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| $f_p = \frac{0.35 \cdot c_{vcc}}{1.25 \cdot D (M^2 - 1)}$                                                                                                                                            |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
| Calculs pour le Régime V                                                                                                                                                                             |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
| (Tableau 3) Vitesse du son dans la vena                                                                                                                                                              |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
| $\frac{\text{contracta}}{\sqrt{2\gamma - \mathbf{p}}}$                                                                                                                                               |                                                                                            |                                                                                            |                                                                                              |                                                                                            | c <sub>vcc</sub> =<br>455.4 m/s                                                              | c <sub>vcc</sub> =<br>455.4 m/s                                   |
| $\mathbf{c}_{vcc} = \sqrt{\frac{2\gamma}{\gamma+1}} \frac{\mathbf{p}_1}{\mathbf{p}_1}$                                                                                                               |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              | ,                                                                 |
| (Tableau 3) Puissance intrinsèque de                                                                                                                                                                 |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
| $m(c_{wc})^2$                                                                                                                                                                                        |                                                                                            |                                                                                            |                                                                                              |                                                                                            | W <sub>ms</sub> =<br>123389 W                                                                | W <sub>ms</sub> =<br>92283 W                                      |
| $W_m = \frac{1}{2}$                                                                                                                                                                                  |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
| expansion libre                                                                                                                                                                                      |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
| $\left[ 2 \left[ \left( \frac{1}{(1-\gamma)} \right)^{(\gamma-1)/\gamma} - 1 \right] \right]$                                                                                                        |                                                                                            |                                                                                            |                                                                                              |                                                                                            | M <sub>j</sub> =<br>Min(2,7; 2,6)                                                            | M <sub>j</sub> =<br>Min(2,7; 2,6)                                 |
| $M_{j} = \text{Minimum de} \begin{bmatrix} \gamma - 1 \left[ \left( \alpha \left( 1 - x \right) \right) \right] \\ \hline 2 \left[ \left( \alpha \left( 1 - x \right) \right) \right] \end{bmatrix}$ |                                                                                            |                                                                                            |                                                                                              |                                                                                            | = 2.6                                                                                        | = 2.6                                                             |
| $\sqrt{\frac{2}{\gamma-1}} \left[ (22)^{\gamma-1} \gamma^{\gamma} - 1 \right]$                                                                                                                       |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
| (Tableau 3) Coefficient de rendement                                                                                                                                                                 |                                                                                            |                                                                                            |                                                                                              |                                                                                            | A 3 8                                                                                        | Δ3.8                                                              |
| $\left(1 + 16^{A_p}\right) \left(\mathbf{M}_i^2\right) \left(\sqrt{5} \sqrt[6]{6} (F_{LP}/F_P)^2\right)$                                                                                             |                                                                                            |                                                                                            |                                                                                              |                                                                                            | ⇒                                                                                            | ⇒                                                                 |
| $\eta = (1 \times 10^{-\eta}) \left( \frac{1}{2} \right) (\sqrt{2})$                                                                                                                                 |                                                                                            |                                                                                            |                                                                                              |                                                                                            | $\eta_5 = 2,4 \times 10^{-3}$                                                                | $\eta_5 = 2,4 \times 10^{-5}$                                     |
| (11) Puissance acoustique                                                                                                                                                                            |                                                                                            |                                                                                            |                                                                                              |                                                                                            | W 201.0.W                                                                                    | M 040.0 M                                                         |
| $W_a = \eta W_m$                                                                                                                                                                                     |                                                                                            |                                                                                            |                                                                                              |                                                                                            | w <sub>a</sub> = 291,9 w                                                                     | vv <sub>a</sub> = 210,3 vv                                        |
| (Tableau 3) Fréquence dominante                                                                                                                                                                      |                                                                                            |                                                                                            |                                                                                              |                                                                                            | St <sub>p</sub> = 0,2                                                                        | St <sub>p</sub> = 0,2                                             |
| $f_p = \frac{1.7 \ M_p \ C_{vcc}}{D \ M^2 - l}$                                                                                                                                                      |                                                                                            |                                                                                            |                                                                                              |                                                                                            | ⇒<br>f <sub>p</sub> = 6864 Hz                                                                | ⇒<br>f <sub>p</sub> = 7926 Hz                                     |
| $D_j \sqrt{m_j}$                                                                                                                                                                                     |                                                                                            |                                                                                            |                                                                                              |                                                                                            | ·                                                                                            |                                                                   |
| (13) Masse volumique de sortie                                                                                                                                                                       |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
| $\rho_2 = \rho_1 \left( \frac{\rho_2}{\rho_1} \right)$                                                                                                                                               | $\rho_2 = 3,8 \text{ kg/m}^3$                                                              | $\rho_2 = 3,7 \text{ kg/m}^3$                                                              | $\rho_2 = 2,5 \text{ kg/m}^3$                                                                | $\rho_2 = 2,2 \text{ kg/m}^3$                                                              | $\rho_2 = 0,3 \text{ kg/m}^3$                                                                | $\rho_2=0,3~kg/m^3$                                               |
| $(P_1)$<br>(14) Vitesse du son dans les conditions                                                                                                                                                   |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
| en aval                                                                                                                                                                                              | R = 8314<br>J/kmol x K                                                                     | R = 8314<br>J/kmol x K                                                                     | R = 8314<br>J/kmol x K                                                                       | R = 8314 J/kmol<br>x K                                                                     | R = 8314 J/kmol<br>x K                                                                       | R = 8314<br>J/kmol x K                                            |
| $c_2 = \sqrt{\frac{\gamma R T_2}{M}}$                                                                                                                                                                | ⇒<br>c₂ = 480 m/s                                                                          | ⇒<br>c₂ = 480 m/s                                                                          | ⇒<br>c₂ = 480 m/s                                                                            | ⇒<br>c₂ = 480 m/s                                                                          | $\Rightarrow$<br>c <sub>2</sub> = 480 m/s                                                    | $\Rightarrow$<br>c <sub>2</sub> = 480 m/s                         |
| (15) Nombre de Mach à la sortie de la                                                                                                                                                                | M <sub>o</sub> = 0,15 < 0,3                                                                | M <sub>o</sub> = 0,17 < 0,3                                                                | M <sub>o</sub> = 0,27 < 0,3                                                                  | M <sub>o</sub> = 0,03 < 0,3                                                                | M <sub>o</sub> = 0,29 < 0,3                                                                  | M <sub>o</sub> = 0,89 >0,3<br>⇒                                   |
| $\dot{4}\dot{m}$                                                                                                                                                                                     | ⇒<br>les calculs sont                                                                      | $\Rightarrow$ les calculs sont                                                             | $\Rightarrow$ les calculs sont                                                               | $\Rightarrow$<br>les calculs sont                                                          | ⇒<br>les calculs sont                                                                        | le calcul des<br>équations (54)-                                  |
| $M_0 = \frac{1}{\pi D^2 \rho_2 c_2}$                                                                                                                                                                 | appropriés                                                                                 | appropriés                                                                                 | appropriés                                                                                   | appropriés                                                                                 | appropriés                                                                                   | (63) est<br>nécessaire                                            |
| (17) Nombre de Mach dans la tuyauterie<br>aval                                                                                                                                                       | M <sub>2</sub> = 0,04 < 0,3                                                                | M <sub>2</sub> = 0,04 < 0,3                                                                | M <sub>2</sub> = 0,07 < 0,3                                                                  | M <sub>2</sub> = 0,03 < 0,3                                                                | M <sub>2</sub> = 0,29 < 0,3                                                                  | $M_2 = 0,4 > 0,3$                                                 |
| $M_2 = \frac{4 \dot{m}}{-D^2 - 2} < 0.3$                                                                                                                                                             | ⇒<br>M <sub>2</sub> = 0.04                                                                 | ⇒<br>M <sub>2</sub> = 0,04                                                                 | ⇒<br>M <sub>2</sub> = 0,07                                                                   | ⇒<br>M <sub>2</sub> = 0,03                                                                 | ⇒<br>M <sub>2</sub> = 0,29                                                                   | $\Rightarrow$<br>M <sub>2</sub> = 0,3                             |
| (16) Correction relative au nombre de                                                                                                                                                                |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
| Mach                                                                                                                                                                                                 | L <sub>G</sub> = 0,26 dB                                                                   | L <sub>G</sub> = 0,29 dB                                                                   | L <sub>G</sub> = 0,47 dB                                                                     | L <sub>G</sub> = 0,24 dB                                                                   | L <sub>G</sub> = 2,4 dB                                                                      | L <sub>G</sub> = 2,5 dB                                           |
| $L_{\rm g} = 16 \log_{10} \left( \frac{1}{1 - M_2} \right)$                                                                                                                                          |                                                                                            |                                                                                            | - /                                                                                          |                                                                                            | - /                                                                                          |                                                                   |
| (18) Niveau de pression acoustique                                                                                                                                                                   |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
| $\begin{bmatrix} (3.2 \times 10^9) W_1 \rho_2 c_2 \end{bmatrix}$                                                                                                                                     | L <sub>pi</sub> = 155,3 dB                                                                 | L <sub>pi</sub> = 156,5 dB                                                                 | L <sub>pi</sub> = 161,7 dB                                                                   | L <sub>pi</sub> = 158,8 dB                                                                 | L <sub>pi</sub> = 157 dB                                                                     | L <sub>pi</sub> = 158,4 dB                                        |
| $L_{pi} = 10 \log_{10} \left[ \frac{(2^{-2} - 2^{-2})^2 + 2^{-2}}{D_i^2} \right] + L_g$                                                                                                              |                                                                                            |                                                                                            |                                                                                              |                                                                                            |                                                                                              |                                                                   |
|                                                                                                                                                                                                      | L <sub>pi,1</sub> = 105 dB<br>L <sub>pi,2</sub> = 107 dB                                   | L <sub>pi,1</sub> = 106 dB<br>L <sub>pi,2</sub> = 108 dB                                   | L <sub>pi,1</sub> = 109 dB<br>L <sub>pi,2</sub> = 111 dB                                     | $L_{pi,1} = 103 \text{ dB}$<br>$L_{pi,2} = 105 \text{ dB}$                                 | $L_{pi,1} = 108 \text{ dB}$<br>$L_{pi,2} = 109 \text{ dB}$                                   | $L_{pi,1} = 108 \text{ dB}$<br>$L_{pi,2} = 110 \text{ dB}$        |
| (19) Niveau de pression acoustique                                                                                                                                                                   | $L_{pi,3} = 108 \text{ dB}$<br>$L_{pi,4} = 110 \text{ dB}$                                 | $L_{pi,3} = 109 \text{ dB}$<br>$L_{pi,4} = 111 \text{ dB}$                                 | $L_{pi,3} = 113 \text{ dB}$<br>$L_{pi,4} = 114 \text{ dB}$                                   | $L_{pi,3} = 106 \text{ dB}$<br>$L_{pi,4} = 108 \text{ dB}$                                 | $L_{pi,3} = 111 \text{ dB}$<br>$L_{pi,4} = 113 \text{ dB}$                                   | $L_{pi,3} = 111 \text{ dB}$<br>$L_{pi,4} = 113 \text{ dB}$        |
| (bandes de 1/3 d'octave:                                                                                                                                                                             | $L_{pi,5} = 112 \text{ dB}$<br>$L_{pi,6} = 113 \text{ dB}$                                 | $L_{pi,5} = 113 \text{ dB}$<br>$L_{pi,6} = 114 \text{ dB}$                                 | $L_{pi,5} = 116 \text{ dB}$<br>$L_{pi,6} = 118 \text{ dB}$                                   | $L_{pi,5} = 110 \text{ dB}$<br>$L_{pi,6} = 111 \text{ dB}$                                 | $L_{pi,5} = 114 \text{ dB}$<br>$L_{pi,6} = 116 \text{ dB}$                                   | $L_{pi,5} = 115 \text{ dB}$<br>$L_{pi,6} = 117 \text{ dB}$        |
| 12,5 Hz – 20 000 Hz)                                                                                                                                                                                 | $L_{pi,8} = 117 \text{ dB}$<br>$L_{pi,8} = 119 \text{ dB}$                                 | $L_{pi,8} = 118 \text{ dB}$<br>$L_{pi,8} = 119 \text{ dB}$                                 | $L_{pi,8} = 121 \text{ dB}$<br>$L_{pi,8} = 123 \text{ dB}$                                   | $L_{pi,7} = 115 \text{ dB}$<br>$L_{pi,8} = 115 \text{ dB}$<br>$L_{pi,8} = 117 \text{ dB}$  | $L_{pi,7} = 110 \text{ dB}$<br>$L_{pi,8} = 119 \text{ dB}$<br>$L_{pi,8} = 121 \text{ dB}$    | $L_{pi,8} = 120 \text{ dB}$<br>$L_{pi,8} = 122 \text{ dB}$        |
| $\mathbf{L}_{pi}(f_i) = \mathbf{L}_{pi} - 8$                                                                                                                                                         | $L_{pi,10} = 120 \text{ dB}$<br>$L_{pi,11} = 122 \text{ dB}$                               | $L_{pi,10} = 121 \text{ dB}$<br>$L_{pi,10} = 123 \text{ dB}$                               | $L_{pi,10} = 125 \text{ dB}$<br>$L_{pi,10} = 125 \text{ dB}$<br>$L_{pi,11} = 126 \text{ dB}$ | $L_{pi,10} = 118 \text{ dB}$<br>$L_{pi,11} = 120 \text{ dB}$                               | $L_{pi,10} = 123 \text{ dB}$<br>$L_{pi,10} = 124 \text{ dB}$                                 | $L_{pi,10} = 123 \text{ dB}$<br>$L_{pi,10} = 125 \text{ dB}$      |
| $10 \log \left[ \left[ 1 \left( f_i \right)^{2.5} \right] \left[ 1 \left( f_p \right)^{1.7} \right] \right]$                                                                                         | L <sub>pi,12</sub> = 124 dB<br>L <sub>pi,13</sub> = 125 dB                                 | L <sub>pi,12</sub> = 125 dB<br>L <sub>pi,13</sub> = 126 dB                                 | L <sub>pi,12</sub> = 128 dB<br>L <sub>pi,13</sub> = 130 dB                                   | L <sub>pi,12</sub> = 122 dB<br>L <sub>pi,13</sub> = 123 dB                                 | L <sub>pi,12</sub> = 126 dB<br>L <sub>pi,13</sub> = 128 dB                                   | L <sub>pi,12</sub> = 127 dB<br>L <sub>pi,13</sub> = 128 dB        |
| $= 10^{-10^{\circ}\log} \left[ 1^{+} \left( \frac{2 \cdot f_p}{2 \cdot f_p} \right) \right] \left[ 1^{+} \left( \frac{2 \cdot f_i}{2 \cdot f_i} \right) \right]$                                     | $L_{pi,14} = 127 \text{ dB}$<br>$L_{pi,15} = 129 \text{ dB}$                               | $L_{pi,14} = 128 \text{ dB}$<br>$L_{pi,15} = 130 \text{ dB}$                               | L <sub>pi,14</sub> = 131 dB<br>L <sub>pi,15</sub> = 133 dB                                   | $L_{pi,14} = 125 \text{ dB}$<br>$L_{pi,15} = 127 \text{ dB}$                               | $L_{pi,14} = 130 \text{ dB}$<br>$L_{pi,15} = 131 \text{ dB}$                                 | $L_{pi,14} = 130 \text{ dB}$<br>$L_{pi,15} = 132 \text{ dB}$      |
|                                                                                                                                                                                                      | $L_{pi,16} = 130 \text{ dB}$<br>$L_{pi,17} = 132 \text{ dB}$<br>$L_{110} = 134 \text{ dB}$ | $L_{pi,16} = 131 \text{ dB}$<br>$L_{pi,17} = 133 \text{ dB}$<br>$L_{110} = 135 \text{ dB}$ | $L_{pi,16} = 135 \text{ dB}$<br>$L_{pi,17} = 136 \text{ dB}$<br>$L_{110} = 138 \text{ dB}$   | $L_{pi,16} = 128 \text{ dB}$<br>$L_{pi,17} = 130 \text{ dB}$<br>$L_{110} = 132 \text{ dB}$ | $L_{pi,16} = 133 \text{ dB}$<br>$L_{pi,17} = 135 \text{ dB}$<br>$L_{pi,17} = 136 \text{ dB}$ | $L_{pi,16} = 1330B$<br>$L_{pi,17} = 135 dB$<br>$L_{110} = 137 dB$ |

# 60534-8-3 © CEI:2010

|      |                                                                                                                                                                                                                                                | Exemple 1                                                                                                                                                                                                                                                                                                                   | Exemple 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exemple 3                                                                                                                                                                                                                                               | Exemple 4                                                                                                                                                                                                                                                                                                                   | Exemple 5                                                                                                                                                                                                                                                                                           | Exemple 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                                                | $\begin{array}{c} L_{pi,19} = 135 \ dB \\ L_{pi,20} = 137 \ dB \\ L_{pi,22} = 130 \ dB \\ L_{pi,22} = 140 \ dB \\ L_{pi,22} = 141 \ dB \\ L_{pi,24} = 142 \ dB \\ L_{pi,26} = 143 \ dB \\ L_{pi,26} = 144 \ dB \\ L_{pi,26} = 144 \ dB \\ L_{pi,28} = 145 \ dB \\ L_{pi,28} = 145 \ dB \\ L_{pi,28} = 145 \ dB \end{array}$ | $\begin{array}{c} L_{pl,19}=136\ dB\\ L_{pl,20}=138\ dB\\ L_{pl,22}=141\ dB\\ L_{pl,22}=141\ dB\\ L_{pl,22}=142\ dB\\ L_{pl,24}=143\ dB\\ L_{pl,26}=145\ dB\\ L_{pl,26}=145\ dB\\ L_{pl,28}=146\ dB\\ L_{pl,28}=146\ dB\\ L_{pl,28}=146\ dB\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} L_{pi,19}=140 \ dB \\ L_{pi,20}=141 \ dB \\ L_{pi,22}=144 \ dB \\ L_{pi,22}=144 \ dB \\ L_{pi,22}=146 \ dB \\ L_{pi,24}=147 \ dB \\ L_{pi,26}=150 \ dB \\ L_{pi,26}=150 \ dB \\ L_{pi,28}=151 \ dB \\ L_{pi,28}=151 \ dB \end{array}$ | $\begin{array}{c} L_{pl,19} = 134 \ dB \\ L_{pl,20} = 135 \ dB \\ L_{pl,21} = 137 \ dB \\ L_{pl,22} = 138 \ dB \\ L_{pl,22} = 138 \ dB \\ L_{pl,22} = 140 \ dB \\ L_{pl,25} = 140 \ dB \\ L_{pl,26} = 144 \ dB \\ L_{pl,28} = 144 \ dB \\ L_{pl,28} = 146 \ dB \\ L_{pl,28} = 147 \ dB \\ L_{pl,28} = 147 \ dB \end{array}$ | $\begin{array}{c} L_{pi,19} = 138 \ dB \\ L_{pi,20} = 139 \ dB \\ L_{pi,21} = 141 \ dB \\ L_{pi,22} = 142 \ dB \\ L_{pi,23} = 143 \ dB \\ L_{pi,24} = 145 \ dB \\ L_{pi,26} = 146 \ dB \\ L_{pi,26} = 146 \ dB \\ L_{pi,27} = 147 \ dB \\ L_{pi,28} = 147 \ dB \\ L_{pi,28} = 147 \ dB \end{array}$ | $\begin{array}{c} L_{pl,19} = 138 \ dB \\ L_{pl,20} = 140 \ dB \\ L_{pl,21} = 141 \ dB \\ L_{pl,22} = 143 \ dB \\ L_{pl,22} = 143 \ dB \\ L_{pl,23} = 144 \ dB \\ L_{pl,24} = 145 \ dB \\ L_{pl,26} = 146 \ dB \\ L_{pl,26} = 148 \ dB \\ L_{pl,28} = 148$ |
|      |                                                                                                                                                                                                                                                | $L_{pi,29} = 143 \text{ dB}$ $L_{pi,30} = 145 \text{ dB}$ $L_{pi,31} = 145 \text{ dB}$ $L_{pi,32} = 144 \text{ dB}$ $L_{pi,32} = 142 \text{ dB}$                                                                                                                                                                            | $L_{pi,29} = 147 \text{ dB} \\ L_{pi,30} = 146 \text{ dB} \\ L_{pi,31} = 146 \text{ dB} \\ L_{pi,32} = 145 \text{ dB} \\ L_{pi,32} = 144 \text{ dB} \\ L_{pi,33} = 144  $ | $L_{pi,29} = 152 \text{ dB}$ $L_{pi,30} = 152 \text{ dB}$ $L_{pi,31} = 152 \text{ dB}$ $L_{pi,32} = 151 \text{ dB}$ $L_{pi,33} = 151 \text{ dB}$                                                                                                        | $L_{pi,29} = 148 \text{ dB} \\ L_{pi,30} = 148 \text{ dB} \\ L_{pi,31} = 149 \text{ dB} \\ L_{pi,31} = 149 \text{ dB} \\ L_{pi,32} = 149 \text{ dB} \\ L_{pi,33} = 149 \text{ dB} \\ L_{pi,33} = 149 \text{ dB} $                                                                                                           | $\begin{array}{c} L_{pi,29} = 147 \text{ dB} \\ L_{pi,30} = 147 \text{ dB} \\ L_{pi,31} = 146 \text{ dB} \\ L_{pi,32} = 145 \text{ dB} \\ L_{pi,32} = 143 \text{ dB} \end{array}$                                                                                                                   | $L_{pi,29} = 149 \text{ dB}$ $L_{pi,30} = 148 \text{ dB}$ $L_{pi,31} = 148 \text{ dB}$ $L_{pi,32} = 147 \text{ dB}$ $L_{pi,32} = 147 \text{ dB}$ $L_{pi,33} = 146 \text{ dB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Note |                                                                                                                                                                                                                                                | M <sub>0</sub> <0,3<br>⇒<br>le calcul des<br>équations (34)-<br>(43) n'est pas<br>nécessaire                                                                                                                                                                                                                                | M <sub>0</sub> <0,3<br>⇒<br>le calcul des<br>équations (34)-<br>(43) n'est pas<br>nécessaire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M <sub>0</sub> <0,3<br>⇒<br>le calcul des<br>équations (34)-<br>(43) n'est pas<br>nécessaire                                                                                                                                                            | M <sub>0</sub> <0,3<br>⇒<br>le calcul des<br>équations<br>(34)-(43) n'est<br>pas nécessaire                                                                                                                                                                                                                                 | M <sub>0</sub> <0,3<br>⇒<br>le calcul des<br>équations<br>(34)-(43) n'est<br>pas nécessaire                                                                                                                                                                                                         | int <sub>0</sub> >0,3<br>⇒<br>le calcul des<br>équations<br>(34)-(43) est<br>nécessaire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (34) | Vitesse du gaz dans la tuyauterie<br>aval $U_{p} = \frac{4 \text{ in}}{\pi \rho_{2}  {D_{i}^{2}}} \leq 0.8 \cdot c_{2}$                                                                                                                        |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     | U <sub>p</sub> = 190 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (35) | Vitesse du gaz à l'entrée du divergent $U_p D_i^2$                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     | $d_i = D \text{ et}$<br>$\beta = 0.93$<br>(supposé)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | $\mathbf{U}_{R} = \frac{r}{\beta \mathbf{d}_{i}^{2}} \leq c_{2}$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     | $\Rightarrow$<br>U <sub>R</sub> = 460m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (36) | Puissance intrinsèque de<br>l'écoulement convertie dans le<br>divergent<br>$W_{mR} = \frac{\dot{m} U_{R}^{2}}{2} \left[ \left( 1 - \frac{d_{i}^{2}}{D_{i}^{2}} \right)^{2} + 0.2 \right]$                                                      |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     | W <sub>mR</sub> =<br>47854 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (37) | Fréquence dominante au niveau de<br>la sortie de la vanne ou du diamètre<br>réduit du divergent<br>$f_{pR} = \frac{St_P U_R}{d_i}$                                                                                                             |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     | f <sub>pR</sub> = 920 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (39) | Nombre de Mach à l'entrée du divergent $M_{\rm R} = \frac{U_{\rm R}}{c_2}$                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     | M <sub>R</sub> = 0,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (38) | Coefficient de rendement acoustique<br>du bruit généré par l'écoulement en<br>sortie du divergent<br>$n_{\rm p} = (1 \times 10^{A_7}) {\rm M_p}^3$                                                                                             |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     | $\eta_R = 8.8 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (40) | Puissance acoustique du bruit généré<br>par l'écoulement en sortie aval<br>$W_{aB} = n_B W_{mB}$                                                                                                                                               |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     | W <sub>aR</sub> =<br>42,0 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (41) | Niveau de pression acoustique<br>interne totale sur la paroi de la<br>tuyauterie du bruit généré par<br>l'écoulement en sortie du divergent<br>$L_{piR} = 10 \log_{10} \left[ \frac{(3.2 \times 10^9) W_{aR} \rho_2 c_2}{D_i^2} \right] + L_g$ |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                     | L <sub>piR</sub> = 151 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                               | Exemple 1                                 | Exemple 2                                 | Exemple 3                                 | Exemple 4                                 | Exemple 5                                 | Exemple 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (42) Niveau de pression acoustique<br>interne dépendant de la fréquence<br>sur la paroi de la tuyauterie du bruit<br>généré par l'écoulement en sortie<br>dans le divergent<br>(bandes de 1/3 d'octave: 12,5 Hz –<br>20 000 Hz)<br>$L_{piR}(f_i) = L_{piR} - 8$ $-10 \cdot \log \left\{ \left[ 1 + \left( \frac{f_i}{2 \cdot f_{pR}} \right)^{2.5} \right] \cdot \left[ 1 + \left( \frac{f_{pR}}{2 \cdot f_i} \right)^{1.7} \right] \right\}$ |                                           |                                           |                                           |                                           |                                           | $\begin{array}{c} L_{piR,1} = 117 \ dB \\ L_{piR,2} = 118 \ dB \\ L_{piR,3} = 120 \ dB \\ L_{piR,3} = 122 \ dB \\ L_{piR,6} = 125 \ dB \\ L_{piR,6} = 125 \ dB \\ L_{piR,6} = 125 \ dB \\ L_{piR,9} = 130 \ dB \\ L_{piR,9} = 130 \ dB \\ L_{piR,10} = 132 \ dB \\ L_{piR,11} = 133 \ dB \\ L_{piR,12} = 135 \ dB \\ L_{piR,12} = 136 \ dB \\ L_{piR,13} = 136 \ dB \\ L_{piR,13} = 136 \ dB \\ L_{piR,13} = 136 \ dB \\ L_{piR,14} = 137 \ dB \\ L_{piR,15} = 139 \ dB \\ L_{piR,16} = 140 \ dB \\ L_{piR,12} = 141 \ dB \\ L_{piR,22} = 141 \ dB \\ L_{piR,22} = 141 \ dB \\ L_{piR,22} = 136 \ dB \\ L_{piR,22} = 136 \ dB \\ L_{piR,22} = 130 \ dB \\ L_{piR,22} = 127 \ dB \\ L_{piR,23} = 122 \ dB \\ L_{piR,24} = 136 \ dB \\ L_{piR,24} = 136 \ dB \\ L_{piR,24} = 117 \ dB \\ L_{piR,34} = 117 \ dB \\ L_{piR,3$ |
| (43) Niveau de pression acoustique<br>interne combiné de l'effet de<br>l'équipement interne de la vanne et<br>du divergent sur la paroi de la<br>tuyauterie (bandes de 1/3 d'octave:<br>12,5 Hz – 20 000 Hz)<br>$L_{plS}(f_i) = 10 \log_{10} \left( 10^{L_{pl}(f_i)/10} + 10^{L_{plR}(f_i)/10} \right)$                                                                                                                                       |                                           |                                           |                                           |                                           |                                           | $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (21) Fréquence d'anneau                                                                                                                                                                                                                                                                                                                                                                                                                       | c <sub>s</sub> = 5000 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $f_r = \frac{c_s}{\pi D_i}$                                                                                                                                                                                                                                                                                                                                                                                                                   | ⇒<br>f <sub>r</sub> = 7836 Hz             | $\Rightarrow$<br>f <sub>r</sub> = 10610 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (22) Fréquence de coïncidence interne de la tuyauterie                                                                                                                                                                                                                                                                                                                                                                                        | c <sub>a</sub> = 343 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\mathbf{f}_o = \frac{\mathbf{f}_r}{4} \left( \frac{\mathbf{c}_2}{\mathbf{c}_a} \right)$                                                                                                                                                                                                                                                                                                                                                      | $\Rightarrow$<br>f <sub>0</sub> = 2742 Hz | $\Rightarrow$<br>f <sub>0</sub> = 3713 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (23) Fréquence de coïncidence externe<br>$f_g = \frac{\sqrt{3} (c_a)^2}{\pi t_s(c_s)}$                                                                                                                                                                                                                                                                                                                                                        | f <sub>g</sub> = 1622 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# 60534-8-3 © CEI:2010

|                                                                                                                                                                                                                                                                                                                                                                                      | Exemple 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exemple 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exemple 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exemple 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exemple 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exemple 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Tableau 6) Coefficient de fréquence $G_x$<br>(bandes de 1/3 d'octave: 12,5 Hz –<br>20 000 Hz)<br>$G_x(f_i) = \begin{cases} \left(\frac{f_o}{f_r}\right)^{2/3} \left(\frac{f_i}{f_o}\right)^4 & pour f_i < f_0\\ \left(\frac{f_i}{f_r}\right)^{1/2} & pour f_i \ge f_0 \text{ et } f_i < f_r\\ & pour f_i \ge f_0 \text{ et } f_i \ge f_r\\ 1 \end{cases}$                           | $ \begin{array}{l} G_{x,1} = 2,1,10^{10} \\ G_{x,2} = 5,8,10^{-10} \\ G_{x,3} = 1,4,10^9 \\ G_{x,4} = 3,4,10^9 \\ G_{x,6} = 2,2,10^8 \\ G_{x,6} = 2,2,10^8 \\ G_{x,7} = 5,5,10^8 \\ G_{x,8} = 1,4,10^7 \\ G_{x,10} = 8,8,10^7 \\ G_{x,11} = 2,1,10^6 \\ G_{x,12} = 5,8,10^6 \\ G_{x,13} = 1,4,10^5 \\ G_{x,15} = 8,6,10^5 \\ G_{x,16} = 0,0014 \\ G_{x,17} = 5,5,10^4 \\ G_{x,17} = 5,5,10^4 \\ G_{x,19} = 0,0038 \\ G_{x,20} = 0,0088 \\ G_{x,22} = 0,014 \\ G_{x,22} = 0,014 \\ G_{x,22} = 0,058 \\ G_{x,22} = 0,014 \\ G_{x,23} = 0,014 \\ G_{x,24} = 0,014 \\ G_{x,24} = 0,014 \\ G_{x,25} = 0,014 \\ G_{x,25} = 0,014 \\ G_{$                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{l} G_{x,1}=2,1,10^{-10} \\ G_{x,2}=5,8,10^{-10} \\ G_{x,3}=1,4,10^{-9} \\ G_{x,4}=3,4,10^{-9} \\ G_{x,6}=8,6,10^{-9} \\ G_{x,6}=2,2,10^{-8} \\ G_{x,7}=5,5,10^{-8} \\ G_{x,8}=1,4,10^{-7} \\ G_{x,19}=3,6,10^{-7} \\ G_{x,12}=5,8,10^{-7} \\ G_{x,12}=5,8,10^{-7} \\ G_{x,12}=5,8,10^{-7} \\ G_{x,12}=5,8,10^{-7} \\ G_{x,13}=1,4,10^{-5} \\ G_{x,15}=8,6,10^{-5} \\ G_{x,15}=8,6,10^{-5} \\ G_{x,15}=8,6,10^{-5} \\ G_{x,15}=8,6,10^{-5} \\ G_{x,16}=2,2,10^{-4} \\ G_{x,17}=5,5,10^{-4} \\ G_{x,17}=5,5,10^{-4} \\ G_{x,18}=0,0014 \\ G_{x,22}=0,028 \\ G_{x,22}=0,028 \\ G_{x,22}=0,058 \\ G_{x,22}=0,058 \\ G_{x,22}=0,058 \\ G_{x,22}=0,034 \\ G_{x,26}=0,71 \\ G_{x,29}=0,14 \\ G_{x,31}=1 \\ G_{x,31}=1 \\ G_{x,32}=1 \\ G_{x,33}=1 \\ G_{y,1}=1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{l} G_{x,1}=2,1,10^{10}\\ G_{x,2}=5,8,10^{-10}\\ G_{x,3}=1,4,10^9\\ G_{x,5}=8,6,10^9\\ G_{x,6}=2,2,10^8\\ G_{x,6}=2,2,10^8\\ G_{x,7}=5,5,10^8\\ G_{x,8}=1,4,10^7\\ G_{x,19}=3,6,10^7\\ G_{x,11}=2,1,10^6\\ G_{x,12}=5,8,10^6\\ G_{x,13}=1,4,10^5\\ G_{x,15}=8,6,10^5\\ G_{x,15}=8,6,10^5\\ G_{x,15}=8,6,10^5\\ G_{x,15}=8,6,10^5\\ G_{x,16}=2,2,10^4\\ G_{x,17}=5,5,10^4\\ G_{x,16}=2,2,10^4\\ G_{x,17}=5,5,10^4\\ G_{x,16}=0,0014\\ G_{x,19}=0,0038\\ G_{x,20}=0,0088\\ G_{x,22}=0,014\\ G_{x,22}=0,058\\ G_{x,22}=0,058\\ G_{x,22}=0,034\\ G_{x,22}=0,034\\ G_{x,20}=0,08\\ G_{x,20}=0,08\\ G_{x,20}=0,08\\ G_{x,20}=0,08\\ G_{x,20}=0,08\\ G_{x,20}=0,08\\ G_{x,20}=0,08\\ G_{x,20}=1\\ G_{x,31}=1\\ G_{x,32}=1\\ G_{x,32}=1\\ G_{x,32}=1\\ G_{x,32}=1\\ G_{x,32}=1\\ G_{x,33}=1\\ G_{x,33$                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{l} G_{x,1}=2,1,10^{10}\\ G_{x,2}=5,8,10^{-10}\\ G_{x,3}=1,4,10^{-9}\\ G_{x,4}=3,4,10^{-9}\\ G_{x,5}=8,6,10^{-9}\\ G_{x,6}=2,2,10^{-8}\\ G_{x,6}=2,2,10^{-8}\\ G_{x,8}=1,4,10^{-7}\\ G_{x,9}=3,6,10^{-7}\\ G_{x,10}=8,8,10^{-7}\\ G_{x,11}=2,1,10^{-6}\\ G_{x,12}=5,8,10^{-6}\\ G_{x,12}=5,8,10^{-6}\\ G_{x,13}=1,4,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,15}=2,2,10^{-4}\\ G_{x,16}=0,0014\\ G_{x,16}=0,0014\\ G_{x,16}=0,0036\\ G_{x,20}=0,0088\\ G_{x,22}=0,058\\ G_{x,22}=0,058\\ G_{x,22}=0,058\\ G_{x,22}=0,058\\ G_{x,22}=0,058\\ G_{x,22}=0,058\\ G_{x,22}=0,058\\ G_{x,22}=0,08\\ G_{x,22}=0,08\\ G_{x,20}=1\\ G_{x,31}=1\\ G_{x,32}=1\\ G_{x,33}=1\\ G_{y,33}=1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{l} G_{x,1}=2,1,10^{10}\\ G_{x,2}=5,8,10^{-10}\\ G_{x,3}=1,4,10^{-9}\\ G_{x,4}=3,4,10^{-9}\\ G_{x,5}=8,6,10^{-9}\\ G_{x,6}=2,2,10^{-8}\\ G_{x,6}=2,2,10^{-8}\\ G_{x,7}=5,5,10^{-8}\\ G_{x,8}=1,4,10^{-7}\\ G_{x,10}=8,8,10^{-7}\\ G_{x,11}=2,1,10^{-6}\\ G_{x,12}=5,8,10^{-6}\\ G_{x,12}=5,8,10^{-6}\\ G_{x,13}=1,4,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,15}=8,6,10^{-5}\\ G_{x,16}=2,2,10^{-4}\\ G_{x,16}=0,0014\\ G_{x,16}=0,0014\\ G_{x,16}=0,0014\\ G_{x,16}=0,0036\\ G_{x,20}=0,0038\\ G_{x,22}=0,058\\ G_{x,22}=0,058\\ G_{x,22}=0,058\\ G_{x,22}=0,058\\ G_{x,22}=0,058\\ G_{x,22}=0,08\\ G_{x,22}=0,08\\ G_{x,20}=1\\ G_{x,31}=1\\ G_{x,32}=1\\ G_{x,33}=1\\ G_{y,33}=1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{l} G_{x,1}=6,4.10^{-11}\\ G_{x,2}=1,7.10^{-10}\\ G_{x,3}=4,2.10^{-10}\\ G_{x,3}=4,2.10^{-10}\\ G_{x,4}=1,0.10^{9}\\ G_{x,6}=6,7.10^{9}\\ G_{x,6}=6,7.10^{9}\\ G_{x,7}=1,6.10^{8}\\ G_{x,8}=4,1.10^{8}\\ G_{x,9}=1,1.10^{7}\\ G_{x,11}=6,4.10^{7}\\ G_{x,12}=1,7.10^{6}\\ G_{x,13}=4,2.10^{6}\\ G_{x,13}=4,2.10^{6}\\ G_{x,13}=4,2.10^{6}\\ G_{x,14}=1,0.10^{5}\\ G_{x,15}=2,6.10^{7}\\ G_{x,16}=4,1.10^{7}\\ G_{x,11}=1,6.10^{4}\\ G_{x,18}=4,1.10^{4}\\ G_{x,18}=4,1.10^{4}\\ G_{x,18}=4,1.10^{4}\\ G_{x,19}=0,0011\\ G_{x,22}=0,001\\ G_{x,22}=0,001\\ G_{x,22}=0,017\\ G_{x,23}=0,04\\ G_{x,24}=0,01\\ G_{x,25}=0,26\\ G_{x,26}=0,61\\ G_{x,26}=0,61\\ G_{x,26}=0,69\\ G_{x,28}=0,77\\ G_{x,39}=0,97\\ G_{x,39}=1\\ G_{x,33}=1\\ G_{x,4}=1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (Tableau 6) Coefficient de fréquence $G_y$<br>(bandes de 1/3 d'octave: 12,5 Hz –<br>20 000 Hz)<br>$G_y(f_i) = \begin{cases} \left(\frac{f_o}{f_s}\right) & pour f_i < f_0 \text{ et } f_0 < f_s \\ 1 & pour f_i < f_0 \text{ et } f_0 \ge f_s \\ \left(\frac{f_i}{f_s}\right) & pour f_i \ge f_0 \text{ et } f_i < f_s \\ pour f_i \ge f_0 \text{ et } f_i \ge f_s \\ 1 \end{cases}$ | $ \begin{array}{l} G_{y,2} = 1 \\ G_{y,2} = 1 \\ G_{y,3} = 1 \\ G_{y,6} = 1 \\ G_{y,6} = 1 \\ G_{y,6} = 1 \\ G_{y,7} = 1 \\ G_{y,8} = 1 \\ G_{y,7} = 1 \\ G_{y,8} = 1 \\ G_{y,1112} = 1 \\ G_{y,2112} = 1 \\ G_{y,212} = 1 \\ G_{y,212} = 1 \\ G_{y,222} = 1 \\ G_{y,223} = 1 \\ G_{y,23} = 1 \\ G_{y,23}$                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{l} G_{y,1}=1\\ G_{y,2}=1\\ G_{y,2}=1\\ G_{y,4}=1\\ G_{y,4}=1\\ G_{y,8}=1\\ G_{y,8}=1\\ G_{y,9}=1\\ G_{y,9}=1\\ G_{y,10}=1\\ G_{y,10}=1\\ G_{y,11}=1\\ G_{y,11}=1\\ G_{y,11}=1\\ G_{y,11}=1\\ G_{y,11}=1\\ G_{y,11}=1\\ G_{y,11}=1\\ G_{y,11}=1\\ G_{y,11}=1\\ G_{y,12}=1\\ G_{y,22}=1\\ G_{y,23}=1\\ G_{y,23$                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{l} G_{y,1}=1\\ G_{y,2}=1\\ G_{y,2}=1\\ G_{y,4}=1\\ G_{y,5}=1\\ G_{y,8}=1\\ G_{y,7}=1\\ G_{y,8}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,2}=1\\ G_{$                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} G_{y,1}=1\\ G_{y,2}=1\\ G_{y,2}=1\\ G_{y,4}=1\\ G_{y,6}=1\\ G_{y,7}=1\\ G_{y,8}=1\\ G_{y,7}=1\\ G_{y,8}=1\\ G_{y,7}=1\\ G_{y,9}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,2}=1\\ G_{$                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c} G_{y,1}=1\\ G_{y,2}=1\\ G_{y,2}=1\\ G_{y,4}=1\\ G_{y,6}=1\\ G_{y,7}=1\\ G_{y,8}=1\\ G_{y,7}=1\\ G_{y,8}=1\\ G_{y,7}=1\\ G_{y,9}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,1}=1\\ G_{y,2}=1\\ G_{$                                                                                                                                                                                                                                                                                                               | $ \begin{array}{l} G_{y,2} = 1 \\ G_{y,2} = 1 \\ G_{y,3} = 1 \\ G_{y,6} = 1 \\ G_{y,6} = 1 \\ G_{y,6} = 1 \\ G_{y,7} = 1 \\ G_{y,8} = 1 \\ G_{y,10} = 1 \\ G_{y,11} = 1 \\ G_{y,11} = 1 \\ G_{y,13} = 1 \\ G_{y,13} = 1 \\ G_{y,14} = 1 \\ G_{y,15} = 1 \\ G_{y,15} = 1 \\ G_{y,16} = 1 \\ G_{y,17} = 1 \\ G_{y,16} = 1 \\ G_{y,17} = 1 \\ G_{y,17} = 1 \\ G_{y,22} = 1 \\ G_{y,23} = 1 \\ G_{y,33} = 1 \\ G_{y,33} = 1 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (20c) Coefficient de perte structurale<br>dépendant de la fréquence (bandes<br>de 1/3 d'octave:<br>12,5 Hz – 20 000 Hz)<br>$\eta_s(f_i) = \sqrt{\frac{f_s}{100f_i}}$                                                                                                                                                                                                                 | $\begin{array}{c} \eta_{8,1}=0.028\\ \eta_{8,2}=0.025\\ \eta_{5,3}=0.022\\ \eta_{5,4}=0.02\\ \eta_{5,5}=0.018\\ \eta_{5,6}=0.018\\ \eta_{5,7}=0.014\\ \eta_{5,7}=0.014\\ \eta_{5,8}=0.013\\ \eta_{5,10}=0.011\\ \eta_{5,10}=0.011\\ \eta_{5,11}=0.0089\\ \eta_{5,12}=0.0079\\ \eta_{5,13}=0.0071\\ \eta_{5,14}=0.0063\\ \eta_{5,15}=0.0045\\ \eta_{5,16}=0.0035\\ \eta_{5,16}=0.0035\\ \eta_{5,20}=0.0028\\ \eta_{5,22}=0.0028\\ \eta_{5,22}=0.0028\\ \eta_{5,22}=0.0028\\ \eta_{5,22}=0.0018\\ \eta_{5,22}=0.0018\\ \eta_{5,22}=0.0014\\ \eta_{5,22}=0.0014\\ \eta_{5,22}=0.0014\\ \eta_{5,22}=0.0014\\ \eta_{5,22}=0.0014\\ \eta_{5,22}=0.0014\\ \eta_{5,22}=0.0014\\ \eta_{5,22}=0.0014\\ \eta_{5,22}=0.0014\\ \eta_{5,22}=0.0013\\ \eta_{5,22}=0.0013\\ \eta_{5,22}=0.0011\\ \eta_{5,22}=0.0011\\ \eta_{5,22}=0.0011\\ \eta_{5,22}=0.0011\\ \eta_{5,22}=0.0011\\ \eta_{5,22}=0.0011\\ \eta_{5,22}=0.0011\\ \eta_{5,23}=0.0011\\ \eta_{5,33}=0.0011\\ \eta_{$ | $\begin{array}{l} \eta_{5,1}=0,028\\ \eta_{5,2}=0,025\\ \eta_{5,3}=0,022\\ \eta_{5,4}=0,02\\ \eta_{5,5}=0,018\\ \eta_{5,6}=0,016\\ \eta_{5,7}=0,014\\ \eta_{5,8}=0,013\\ \eta_{5,9}=0,011\\ \eta_{5,11}=0,0089\\ \eta_{5,12}=0,0079\\ \eta_{5,13}=0,0071\\ \eta_{5,14}=0,0063\\ \eta_{5,15}=0,0056\\ \eta_{5,16}=0,005\\ \eta_{5,16}=0,0035\\ \eta_{5,12}=0,0045\\ \eta_{5,22}=0,0028\\ \eta_{5,22}=0,0028\\ \eta_{5,22}=0,0028\\ \eta_{5,22}=0,0028\\ \eta_{5,22}=0,0028\\ \eta_{5,22}=0,0018\\ \eta_{5,22}=0,0014\\ \eta_{5,23}=0,0014\\ \eta_{5,33}=0,0014\\ \eta_$ | $\begin{array}{l} \eta_{5,1}=0,028\\ \eta_{5,2}=0,025\\ \eta_{5,3}=0,022\\ \eta_{5,4}=0,02\\ \eta_{5,5}=0,018\\ \eta_{5,6}=0,016\\ \eta_{5,7}=0,014\\ \eta_{5,8}=0,013\\ \eta_{5,9}=0,011\\ \eta_{5,10}=0,011\\ \eta_{5,11}=0,0089\\ \eta_{5,12}=0,0079\\ \eta_{5,13}=0,0071\\ \eta_{5,14}=0,0063\\ \eta_{5,15}=0,0056\\ \eta_{5,16}=0,005\\ \eta_{5,16}=0,005\\ \eta_{5,12}=0,0045\\ \eta_{5,22}=0,0028\\ \eta_{5,22}=0,0028\\ \eta_{5,22}=0,0018\\ \eta_{5,22}=0,0018\\ \eta_{5,22}=0,0018\\ \eta_{5,22}=0,0018\\ \eta_{5,22}=0,0018\\ \eta_{5,22}=0,0014\\ \eta_{5,23}=0,0014\\ \eta_{5,33}=0,0014\\ \eta_{5$ | $\begin{array}{l} \eta_{8,1}=0,028\\ \eta_{8,2}=0,025\\ \eta_{8,3}=0,022\\ \eta_{8,4}=0,02\\ \eta_{8,5}=0,018\\ \eta_{8,6}=0,016\\ \eta_{8,7}=0,014\\ \eta_{8,8}=0,013\\ \eta_{8,9}=0,011\\ \eta_{8,10}=0,001\\ \eta_{8,11}=0,0089\\ \eta_{8,12}=0,0079\\ \eta_{8,13}=0,0071\\ \eta_{8,14}=0,0063\\ \eta_{8,15}=0,0056\\ \eta_{5,16}=0,005\\ \eta_{5,16}=0,005\\ \eta_{5,16}=0,005\\ \eta_{5,16}=0,005\\ \eta_{5,12}=0,0045\\ \eta_{5,12}=0,0028\\ \eta_{8,22}=0,0028\\ \eta_{8,22}=0,0028\\ \eta_{8,22}=0,0028\\ \eta_{8,22}=0,0028\\ \eta_{8,22}=0,0028\\ \eta_{8,22}=0,0028\\ \eta_{8,22}=0,0018\\ \eta_{8,22}=0,0014\\ \eta_{8,23}=0,0014\\ \eta_{8,2$ | $\begin{array}{l} \eta_{8,1}=0,028\\ \eta_{8,2}=0,025\\ \eta_{8,3}=0,022\\ \eta_{8,4}=0,02\\ \eta_{8,5}=0,018\\ \eta_{8,6}=0,016\\ \eta_{8,7}=0,014\\ \eta_{8,8}=0,013\\ \eta_{8,9}=0,011\\ \eta_{8,10}=0,001\\ \eta_{8,11}=0,0089\\ \eta_{8,12}=0,0079\\ \eta_{8,13}=0,0071\\ \eta_{8,14}=0,0063\\ \eta_{8,15}=0,005\\ \eta_{8,15}=0,005\\ \eta_{8,15}=0,005\\ \eta_{8,15}=0,005\\ \eta_{8,15}=0,005\\ \eta_{8,12}=0,0028\\ \eta_{8,22}=0,0028\\ \eta_{8,22}=0,0028\\ \eta_{8,22}=0,0028\\ \eta_{8,22}=0,0028\\ \eta_{8,22}=0,0018\\ \eta_{8,22}=0,0014\\ \eta_{8,22}=0,0001\\ \eta_{8,22}=0,0001\\ \eta_{8,22}=0,0002\\ \eta_{8,22}=0,0002\\ \eta_{8,22$ | $\begin{array}{l} \eta_{S,1}=0,028\\ \eta_{S,2}=0,025\\ \eta_{S,3}=0,022\\ \eta_{S,4}=0,02\\ \eta_{S,5}=0,018\\ \eta_{S,6}=0,016\\ \eta_{S,7}=0,014\\ \eta_{S,8}=0,013\\ \eta_{S,9}=0,011\\ \eta_{S,10}=0,01\\ \eta_{S,11}=0,0089\\ \eta_{S,12}=0,0071\\ \eta_{S,14}=0,0063\\ \eta_{S,15}=0,005\\ \eta_{S,16}=0,005\\ \eta_{S,16}=0,005\\ \eta_{S,16}=0,0032\\ \eta_{S,22}=0,0028\\ \eta_{S,22}=0,0028\\ \eta_{S,22}=0,0028\\ \eta_{S,22}=0,0028\\ \eta_{S,22}=0,0028\\ \eta_{S,22}=0,0028\\ \eta_{S,22}=0,0028\\ \eta_{S,22}=0,0028\\ \eta_{S,22}=0,0018\\ \eta_{S,22}=0,0014\\ \eta_{S,22}=0,0011\\ \eta_{S,22}=0,0013\\ \eta_{S,22}=0,0013\\ \eta_{S,22}=0,0013\\ \eta_{S,22}=0,0013\\ \eta_{S,22}=0,0013\\ \eta_{S,22}=0,0013\\ \eta_{S,22}=0,0014\\ \eta_{S,22}=0,0013\\ \eta_{S,22}=0,0014\\ \eta_{S,23}=0,0014\\ \eta_{S,2$ |

### - 87 -

|                                                                                                                                                                                                                                                                                                                                                                        | Exemple 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exemple 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exemple 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Exemple 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exemple 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exemple 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                        | $\eta_{S,31} = 8.9 \times 10^{-4}$<br>$\eta_{S,32} = 7.9 \times 10^{-4}$<br>$\eta_{S,32} = 7.1 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\eta_{S,31} = 8.9 \times 10^{-4}$<br>$\eta_{S,32} = 7.9 \times 10^{-4}$<br>$\eta_{S,32} = 7.1 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\eta_{S,31} = 8.9 \times 10^{-4}$<br>$\eta_{S,32} = 7.9 \times 10^{-4}$<br>$\eta_{S,32} = 7.1 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\eta_{S,31} = 8.9 \times 10^{-4}$<br>$\eta_{S,32} = 7.9 \times 10^{-4}$<br>$\eta_{S,32} = 7.1 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\eta_{s,31} = 8.9 \times 10^{-4}$<br>$\eta_{s,32} = 7.9 \times 10^{-4}$<br>$\eta_{s,32} = 7.1 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\eta_{S,31} = 8.9 \times 10^{-4}$<br>$\eta_{S,32} = 7.9 \times 10^{-4}$<br>$\eta_{S,32} = 7.1 \times 10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (20b) Facteur d'amortissement pour la perte par transmission<br>$\Delta TL = \begin{cases} 0 & pour D > 0,15 \\ -16660 \cdot D^3 + 6370 \cdot D^2 & pour 0,05 \le D \le 0, \\ -813 \cdot D + 35,8 & pour 0,05 \le D \le 0, \\ 9 & pour D < 0,05 \end{cases}$                                                                                                           | ΔTL = 1,5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΔTL = 1,5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ΔTL = 1,5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΔTL = 0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ΔTL = 0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ΔTL = 1,5 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (20a) Perte par transmission dépendant<br>de la fréquence<br>(bandes de 1/3 d'octave: 12,5 Hz –<br>20 000 Hz)<br>$TL(f_i) = 10 \log_{10} \left[ \frac{(8,25 \times 10^{-7}) \left(\frac{c_2}{t_3 t_i}\right)^2}{\left(\frac{p_2 c_2 + 2 \cdot \pi \cdot t_5 \cdot f_1 \cdot p_2 \cdot \eta_1(f_1)}{415 G_3(f_1)} + 1\right)} \left(\frac{p_2}{p_2}\right) - \Delta TL$ | $\begin{array}{l} TL_1 = -93 \ dB \\ TL_2 = -90,9 \ dB \\ TL_3 = -89 \ dB \\ TL_3 = -87,1 \ dB \\ TL_5 = -85,2 \ dB \\ TL_7 = -81,2 \ dB \\ TL_9 = -77,3 \ dB \\ TL_{10} = -75,4 \ dB \\ TL_{11} = -75,4 \ dB \\ TL_{12} = -71,5 \ dB \\ TL_{12} = -71,5 \ dB \\ TL_{13} = -69,7 \ dB \\ TL_{14} = -67,8 \ dB \\ TL_{15} = -65,9 \ dB \\ TL_{16} = -64 \ dB \\ TL_{17} = -62,2 \ dB \\ TL_{18} = -60,3 \ dB \\ TL_{20} = -56,7 \ dB \\ TL_{21} = -53,4 \ dB \\ TL_{22} = -53,4 \ dB \\ TL_{23} = -51,2 \ dB \\ TL_{26} = -50,9 \ dB \\ TL_{29} = -56,4 \ dB \\ TL_{29} = -56,4 \ dB \\ TL_{31} = -60,9 \ dB \\ TL_{32} = -63,4 \ dB \\ TL_{33} = -65,6 \ dB \\ TL_{34} = -65,6 \ d$ | $\begin{array}{l} eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear$                                                                                                    | $\begin{array}{l} eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear$                                                                                                         | $\begin{array}{c} \Pi_{11} = -89.8 \ dB \\ \Pi_{22} = -87.7 \ dB \\ \Pi_{33} = -85.8 \ dB \\ \Pi_{4} = -84 \ dB \\ \Pi_{5} = -82 \ dB \\ \Pi_{7} = -78.1 \ dB \\ \Pi_{7} = -78.1 \ dB \\ \Pi_{9} = -76.2 \ dB \\ \Pi_{19} = -76.2 \ dB \\ \Pi_{112} = -68.6 \ dB \\ \Pi_{112} = -68.6 \ dB \\ \Pi_{113} = -66.8 \ dB \\ \Pi_{113} = -66.8 \ dB \\ \Pi_{116} = -61.2 \ dB \\ \Pi_{116} = -61.2 \ dB \\ \Pi_{116} = -57.6 \ dB \\ \Pi_{122} = -58.4 \ dB \\ \Pi_{223} = -54.8 \ dB \\ \Pi_{223} = -54.6 \ dB \\ \Pi_{225} = -54.6 \ dB \\ \Pi_{226} = -52.3 \ dB \\ \Pi_{226} = -52.3 \ dB \\ \Pi_{226} = -52.2 \ dB \\ \Pi_{236} = -56.6 \ dB \\ \Pi_{231} = -58.8 \ dB \\ \Pi_{232} = -61.3 \ dB \\ \Pi_{233} = -63.7 \ dB \\ \Pi_{23} = -63.7 \ dB$ | $\begin{array}{l} \hline eq:linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_line$ | $\begin{array}{l} \label{eq:constraints} \begin{array}{l} \label{eq:constraints} \\ eq:c$ |
| (24) Niveau de pression acoustique<br>externe dépendant de la fréquence<br>(bandes de 1/3 d'octave: 12,5 Hz –<br>20 000 Hz)<br>$L_{pe,lm}(f_i) = L_{pi}(f_i) + TL(f_i)$ $-10 \log\left(\frac{D_i + 2t_s + 2}{D_i + 2t_s}\right)$                                                                                                                                       | $\begin{array}{l} L_{pe,1m,1}=2\ dB\\ L_{pe,1m,2}=6\ dB\\ L_{pe,1m,3}=9\ dB\\ L_{pe,1m,4}=13\ dB\\ L_{pe,1m,5}=17\ dB\\ L_{pe,1m,6}=20\ dB\\ L_{pe,1m,7}=24\ dB\\ L_{pe,1m,7}=24\ dB\\ L_{pe,1m,9}=31\ dB\\ L_{pe,1m,10}=35dB\\ L_{pe,1m,11}=38dB\\ L_{pe,1m,11}=38dB\\ L_{pe,1m,11}=38dB\\ L_{pe,1m,12}=42dB\\ L_{pe,1m,12}=46dB\\ L_{pe,1m,15}=55dB\\ L_{pe,1m,16}=56dB\\ L_{pe,1m,16}=56dB\\ L_{pe,1m,16}=56dB\\ L_{pe,1m,16}=57dB\\ L_{pe,1m,20}=77dB\\ L_{pe,1m,22}=77dB\\ L_{pe,1m,22}=77dB\\ L_{pe,1m,22}=83dB\\ L_{pe,1m,22}=83dB\\ L_{pe,1m,22}=83dB\\ L_{pe,1m,22}=83dB\\ L_{pe,1m,22}=83dB\\ L_{pe,1m,22}=83dB\\ L_{pe,1m,22}=83dB\\ L_{pe,1m,22}=87dB\\ L_{pe,1m,22}=79dB\\ L_{pe,1m,32}=77dB\\ L_{pe,1m,32}=77dB\\ L_{pe,1m,32}=77dB\\ L_{pe,1m,32}=77dB\\ L_{pe,1m,33}=77dB\\ L_{pe,1m,33}=77dB\\ L_{pe,1m,33}=67dB\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{l} L_{pe,1m,1}=3 \ dB \\ L_{pa,1m,2}=7 \ dB \\ L_{pa,1m,3}=10 \ dB \\ L_{pa,1m,4}=14 \ dB \\ L_{pa,1m,5}=18 \ dB \\ L_{pa,1m,5}=25 \ dB \\ L_{pa,1m,5}=22 \ dB \\ L_{pa,1m,5}=22 \ dB \\ L_{pa,1m,5}=23 \ dB \\ L_{pa,1m,5}=32 \ dB \\ L_{pa,1m,1}=39 \ dB \\ L_{pa,1m,1}=39 \ dB \\ L_{pa,1m,1}=37 \ dB \\ L_{pa,1m,1}=47 \ dB \\ L_{pa,1m,1}=57 \ dB \\ L_{pa,1m,1}=57 \ dB \\ L_{pa,1m,1}=57 \ dB \\ L_{pa,1m,1}=57 \ dB \\ L_{pa,1m,2}=78 \ dB \\ L_{pa,1m,2}=78 \ dB \\ L_{pa,1m,2}=78 \ dB \\ L_{pa,1m,2}=83 \ dB \\ L_{pa,1m,2}=72 \ dB \\ L_{pa,1m,3}=75 \ dB \\ L_{pa,1m,3}=75 \ dB \\ L_{pa,1m,3}=75 \ dB \\ L_{pa,1m,3}=75 \ dB \\ L_{pa,1m,3}=68 \ dB \\ L_{pa,1m,3}=68 \ dB \\ L_{pa,1m,3}=68 \ dB \\ L_{pa,1m,3}=75 \ dB \\ L_{pa,1m,3}=68 \ dB \\ L_{pa,1m,3}=75 \ dB \\ L_{pa,1m,3}=83 \ dB \\ L_{pa,1m,3}=68 \ dB \\ L_{pa,1m,3}=75 \ dB \\ L_{pa,1m,3}=75 \ dB \\ L_{pa,1m,3}=68 \ dB \\ L_{pa,1m,3}=75 \ dB \\ L_{pa,1m,3}=75 \ dB \\ L_{pa,1m,3}=75 \ dB \\ L_{pa,1m,3}=68 \ dB \\ L_{pa,1m,3}=75 \ $ | $\begin{array}{l} L_{pe,1m,1}=7\ dB\\ L_{p,1m,2}=11\ dB\\ L_{p,1m,3}=15\ dB\\ L_{pe,1m,4}=18\ dB\\ L_{pe,1m,4}=18\ dB\\ L_{pe,1m,5}=22\ dB\\ L_{pe,1m,7}=29\ dB\\ L_{pe,1m,7}=29\ dB\\ L_{pe,1m,7}=29\ dB\\ L_{pe,1m,9}=37\ dB\\ L_{pe,1m,9}=37\ dB\\ L_{pe,1m,1}=440B\\ L_{pe,1m,1}=540B\\ L_{pe,1m,1}=540B\\ L_{pe,1m,1}=540B\\ L_{pe,1m,1}=5500\ dB\\ L_{pe,1m,1}=5500\ dB\\ L_{pe,1m,1}=6500\ dB\\ L_{pe,1m,1}=6500\ dB\\ L_{pe,1m,2}=7500\ dB\\ L_{pe,1m,2}=8200\ dB\\ L_{pe,1m,2}=8200\ dB\\ L_{pe,1m,2}=8500\ dB\\ L_{pe,1m,2}=800B\ dB\\ L_{pe,1m,2}=8000\ dB\\ L_{pe,1m,2}=8700\ dB\\ L_{pe,1m,2}=8700\ dB\\ L_{pe,1m,2}=8700\ dB\\ L_{pe,1m,2}=8700\ dB\\ L_{pe,1m,2}=7800\ dB\\ L_{pe,1m,3}=710\ dB\\ L_{pe,1m,3}=7500\ dB\\ L_{pe,1m,3}=750\ dB\\ L_{pe,1m,3}=110\ dB\\ L_{pe,1m,3}=750\ dB\\ L_{pe,1m,3}=750\ dB\\ L_{pe,1m,3}=750\ dB\\ L_{pe,1m,3}=110\ dB\\ L_{pe,1m,3}=750\ dB\\ L_{pe,1m,3}=110\ dB\\ L_{pe,1m,3}=750\ dB\\ L_{pe,1m,3}=10\ dB\\ L_{pe,1m,3}=750\ dB\\ L$ | $\begin{array}{l} L_{pe,1m,1}=3 \ dB \\ L_{pe,1m,2}=7 \ dB \\ L_{pe,1m,3}=10 \ dB \\ L_{pe,1m,4}=14 \ dB \\ L_{pe,1m,4}=14 \ dB \\ L_{pe,1m,5}=18 \ dB \\ L_{pe,1m,5}=25 \ dB \\ L_{pe,1m,5}=22 \ dB \\ L_{pe,1m,7}=25 \ dB \\ L_{pe,1m,1}=39 \ dB \\ L_{pe,1m,1}=39 \ dB \\ L_{pe,1m,1}=39 \ dB \\ L_{pe,1m,1}=47 \ dB \\ L_{pe,1m,1}=57 \ dB \\ L_{pe,1m,1}=57 \ dB \\ L_{pe,1m,1}=57 \ dB \\ L_{pe,1m,1}=57 \ dB \\ L_{pe,1m,2}=78 \ dB \\ L_{pe,1m,2}=78 \ dB \\ L_{pe,1m,2}=78 \ dB \\ L_{pe,1m,2}=88 \ dB \\ L_{pe,1m,3}=82 \ dB \\ L_{pe,1m,3}=82 \ dB \\ L_{pe,1m,3}=87 \ dB \\ L_{pe,1m,3}=75 \ dB \\ L_{pe,1m,3}=75 \ dB \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{l} L_{pe,1m,1}=11dB\\ L_{pe,1m,2}=15dB\\ L_{pe,1m,3}=19dB\\ L_{pe,1m,4}=22dB\\ L_{pe,1m,5}=26dB\\ L_{pe,1m,5}=20dB\\ L_{pe,1m,5}=33dB\\ L_{pe,1m,6}=33dB\\ L_{pe,1m,9}=40dB\\ L_{pe,1m,1}=57dB\\ L_{pe,1m,1}=57dB\\ L_{pe,1m,1}=57dB\\ L_{pe,1m,1}=67dB\\ L_{pe,1m,1}=74dB\\ L_{pe,1m,1}=74dB\\ L_{pe,1m,1}=74dB\\ L_{pe,1m,1}=74dB\\ L_{pe,1m,1}=74dB\\ L_{pe,1m,1}=74dB\\ L_{pe,1m,1}=74dB\\ L_{pe,1m,2}=83dB\\ L_{pe,1m,2}=84dB\\ L_{pe,1m,3}=7dB\\ L_{pe,$                                                                                                                                                                                                       | $\begin{array}{c} Utiliser \ L_{ps}(f_{1}) \\ au \ lieu \ de \ L_{pi}(f_{1}) \\ au \ lieu \ de \ L_{pi}(f_{1}) \\ L_{pe, 1m, 2} = 17 \ dB \\ L_{pe, 1m, 2} = 17 \ dB \\ L_{pe, 1m, 2} = 17 \ dB \\ L_{pe, 1m, 4} = 24 \ dB \\ L_{pe, 1m, 5} = 27 \ dB \\ L_{pe, 1m, 6} = 31 \ dB \\ L_{pe, 1m, 7} = 35 \ dB \\ L_{pe, 1m, 7} = 35 \ dB \\ L_{pe, 1m, 1} = 38 \ dB \\ L_{pe, 1m, 1} = 35 \ dB \\ L_{pe, 1m, 1} = 48 \ dB \\ L_{pe, 1m, 11} = 48 \ dB \\ L_{pe, 1m, 11} = 58 \ dB \\ L_{pe, 1m, 11} = 58 \ dB \\ L_{pe, 1m, 14} = 58 \ dB \\ L_{pe, 1m, 16} = 64 \ dB \\ L_{pe, 1m, 17} = 66 \ dB \\ L_{pe, 1m, 12} = 76 \ dB \\ L_{pe, 1m, 22} = 78 \ dB \\ L_{pe, 1m, 22} = 78 \ dB \\ L_{pe, 1m, 28} = 82 \ dB \\ L_{pe, 1m, 29} = 72 \ dB \\ L_{pe, 1m, 31} = 77 \ dB \\ L_{pe, 1m, 31} = 77 \ dB \\ L_{pe, 1m, 32} = 74 \ dB \\ L_{pe, 1m, 32$           |
| (25) Niveau de pression acoustique<br>pondéré A à 1 m de la paroi de la<br>tuyauterie<br>$L_{pAe,lm} = 10 \cdot Log_{10} \left( \sum_{i=1}^{N=33} 10^{\frac{L_{pe,lm}(f_i) + \Delta L_A(f_i)}{10}} \right)$                                                                                                                                                            | $\begin{array}{l} \Delta L_{A}(f_{i}) \text{ voir 5.6} \\ \Rightarrow \\ L_{pAe,1m} = 92 \\ dB(A) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} \Delta L_{A}(f_{i}) \text{ voir 5.6} \\ \Rightarrow \\ L_{pAe,1m} = 93 \\ dB(A) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{l} \Delta L_{A}(f_{i}) \text{ voir 5.6} \\ \Rightarrow \\ L_{pAe, 1m} = 98 \\ dB(A) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} \Delta L_{A}(f_{i}) \text{ voir 5.6} \\ \Rightarrow \\ L_{pAe,1m} = 94 \\ dB(A) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} \Delta L_{A}(f_{i}) \text{ voir 5.6} \\ \Rightarrow \\ L_{pAe,1m} = 97 \\ dB(A) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Delta L_A(f_i) \text{ voir 5.6}$<br>$\Rightarrow$<br>$L_{pAe,1m} = 94$<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# A.3 Exemple de calcul 7

# Données

### Vanne

| Vanne à soupapes à simple siège (à cage) installée c                | lans le sens «fluide tend à ouvrir»                  |
|---------------------------------------------------------------------|------------------------------------------------------|
| Dimension de la vanne:                                              | DN 200                                               |
| Diamètre de sortie de la vanne:                                     | <i>D</i> = 0,200 m                                   |
| C <sub>v</sub> requis:                                              | <i>C</i> <sub>v</sub> = 81,5                         |
| Nombre de chemins d'écoulement<br>indépendants et identiques:       | N <sub>0</sub> = 432                                 |
| Surface totale de l'orifice du dernier étage:                       | $A_{\rm n}$ = 6,44 × 10 <sup>-3</sup> m <sup>2</sup> |
| Diamètre hydraulique:                                               | <i>d</i> <sub>H</sub> = 0,0025 m                     |
| Facteur de récupération de pression du liquide<br>du dernier étage: | $F_{Ln} = 0.98$                                      |

### Tuyauterie

| Dimension nominale de la tuyauterie d'entrée:  | DN 200                               |
|------------------------------------------------|--------------------------------------|
| Dimension nominale de la tuyauterie de sortie: | DN 200                               |
| Epaisseur de la paroi de la tuyauterie:        | t <sub>S</sub> = 0,008 m             |
| Diamètre intérieur de la tuyauterie:           | $D_{\rm i} = 0,200 \ {\rm m}$        |
| Vitesse du son dans la tuyauterie:             | c <sub>S</sub> = 5000 m/s            |
| Masse volumique du matériau de la tuyauterie:  | $\rho_{\rm S} = 8000 \text{ kg/m}^3$ |

#### Autres

| Vitesse du son dans l'air:       | c <sub>o</sub> = 343 m/s                                   |
|----------------------------------|------------------------------------------------------------|
| Masse volumique de l'air:        | $\rho_{0} = 1,293 \text{ kg/m}^{3}$                        |
| Pression atmosphérique réelle:   | $p_{\rm a}$ = 1,013 25 bar = 1,013 25 × 10 <sup>5</sup> Pa |
| Pression atmosphérique standard: | $p_{\rm s}$ = 1,013 25 bar = 1,013 25 × 10 <sup>5</sup> Pa |

| Indice         | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8     | 9     | 10    | 11    |
|----------------|------|------|------|------|------|------|------|-------|-------|-------|-------|
| Fréquence [Hz] | 12.5 | 16   | 20   | 25   | 31.5 | 40   | 50   | 63    | 80    | 100   | 125   |
|                |      |      |      |      |      |      |      |       |       |       |       |
| Indice         | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19    | 20    | 21    | 22    |
| Fréquence [Hz] | 160  | 200  | 250  | 315  | 400  | 500  | 630  | 800   | 1000  | 1250  | 1600  |
|                |      |      |      |      |      |      |      |       |       |       |       |
| Indice         | 23   | 24   | 25   | 26   | 27   | 28   | 29   | 30    | 31    | 32    | 33    |
| Fréquence [Hz] | 2000 | 2500 | 3150 | 4000 | 5000 | 6300 | 8000 | 10000 | 12500 | 16000 | 20000 |

### Définitions

# Tableau A.2 – Calcul: exemple 7

|                                                                                                                                                               | Exemple 7                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Type de fluide: vapeur                                                                                                                                        |                                                                                                                       |
| Débit massique                                                                                                                                                | m = 23,1 kg/s                                                                                                         |
| Pression absolue à l'entrée de la vanne                                                                                                                       | p <sub>1</sub> = 70 bar = 7,0 x 10 <sup>6</sup> Pa                                                                    |
| Pression absolue à la sortie de la vanne                                                                                                                      | p <sub>2</sub> = 14 bar = 1,4 x 10 <sup>6</sup> Pa                                                                    |
| Masse volumique d'entrée                                                                                                                                      | $ ho_1$ = 55,3 kg/m <sup>3</sup>                                                                                      |
| Température absolue à l'entrée                                                                                                                                | T <sub>1</sub> = 290 K                                                                                                |
| Rapport des chaleurs spécifiques                                                                                                                              | γ = 1,31                                                                                                              |
| Masse moléculaire                                                                                                                                             | M = 19,0 kg/kmol                                                                                                      |
| (27) Coefficient de débit pour le dernier étage de l'équipement interne multi-étagé<br>$C_n = N_{16} A_n$                                                     | C <sub>n</sub> = 315                                                                                                  |
| Détermination de la pression intermédiaire<br>absolue du dernier étage de la vanne multi-<br>étagée                                                           | $p_1/p_2 = 5 > 2$<br>$\Rightarrow$<br>$p_1/p_2 < 2$<br>$\Rightarrow$<br>Le calcul de l'équiation (28a) est nécessaire |
| (28a)Pression intermédiaire absolue du dernier<br>étage de la vanne multi-étagée<br>$p_{n} = \sqrt{\left(\frac{p_{1}C}{1.155 C_{n}}\right)^{2} + p_{2}^{-2}}$ | $p_n = 2,1 \times 10^6$ Pa<br>⇒<br>$p_n/p_2 = 1,5 < 2$<br>⇒<br>L'utilisation de l'Equation (28a) est appropriée       |
| (1) Rapport de pression différentielle<br>$x = \frac{p_1 - p_2}{p_1}$                                                                                         | Utiliser $p_1 = p_n$<br>$\Rightarrow$<br>x = 0.334                                                                    |
| (2) Pression absolue à la vena contracta en régime subsonique $p_{vc} = p_1 \cdot \left(1 - \frac{x}{F_{Ln}^2}\right)$                                        | p <sub>vc</sub> = 1371038 Pa                                                                                          |
| (3) Rapport de pression différentielle à la vena contracta en régime critique $x_{vcc} = 1 - \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma - 1)}$         | x <sub>vcc</sub> = 0,456                                                                                              |
| (4) Rapport de pression différentielle en régime critique $x_C = F_{Ln}^2 x_{vec}$                                                                            | x <sub>c</sub> = 0,438                                                                                                |
| (5) Coefficient de correction de récupération<br>$\alpha = \frac{1 - x_{vec}}{1 - x_c}$                                                                       | <i>α</i> = 0,968                                                                                                      |

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

|                                                                                                               | Exemple 7                                                    |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| (6) Rapport de pression différentielle au point                                                               |                                                              |
| de rupture                                                                                                    | x <sub>B</sub> = 0,67                                        |
| $x_B = 1 - \frac{1}{\alpha} \left( \frac{1}{\gamma} \right)$                                                  |                                                              |
| (7) Rapport de pression différentielle auquel                                                                 |                                                              |
| commence la région de rendement<br>acoustique constant                                                        | x <sub>or</sub> = 0.953                                      |
| $x_{cr} = 1 - \frac{1}{2}$                                                                                    | ACE - 0,000                                                  |
| $22 \alpha$                                                                                                   |                                                              |
|                                                                                                               |                                                              |
| Regime I Si $x \le x_C$<br>Régime II Si $x_C \le x \le x_{MCC}$                                               | $x \le x_C$                                                  |
| Régime III Si $x_{VCC} < x \le x_B$                                                                           | ⇒ Régime I                                                   |
| Régime IV Si x <sub>B</sub> < x ≤ x <sub>CE</sub>                                                             |                                                              |
| Surface d'un chemin d'écoulement unique                                                                       |                                                              |
| $A = \frac{A_n}{N}$                                                                                           | $A = 1.5 \times 10^{-5} m^2$                                 |
| (8c) Diamètre d'un orifice circulaire                                                                         |                                                              |
| $d_{\rm c} = \sqrt{\frac{4 N_{\rm o} A}{N_{\rm o} A}}$                                                        | d <sub>o</sub> = 0,091 m                                     |
| (8a) Coefficient de correction générique de                                                                   |                                                              |
| vanne                                                                                                         | F <sub>d</sub> = 0,028                                       |
| $F_{d} = \frac{dH}{d_{o}}$                                                                                    |                                                              |
| (9) Diamètre du jet                                                                                           | $N_{14} = 4,6 \times 10^{-3}$                                |
| $\mathbf{D}_{j} = \mathbf{N}_{14} \mathbf{F}_{d} \sqrt{\mathbf{C}_{n} F_{Ln}}$                                | $\Rightarrow$<br>D <sub>i</sub> = 0.0022 m                   |
| Calculs pour le Régime l                                                                                      | D] = 0,0022 m                                                |
| (Tableau 3) Puissance intrinsèque de                                                                          |                                                              |
| l'écoulement du débit massique                                                                                | $W_{m} =$                                                    |
| $W_m = \frac{m(M_{vc}c_{vc})^2}{2}$                                                                           | 1,19 X 10 W                                                  |
| (Tableau 3) Température absolue à la vena                                                                     |                                                              |
| contracta $(\gamma^{(\gamma-1)/\gamma})$                                                                      | T <sub>vc</sub> = 262 K                                      |
| $T_{vc} = T_1 \left( 1 - \frac{x}{F_{r_{a}}^2} \right)$                                                       |                                                              |
| (Tableau 3) Vitesse du son dans la vena                                                                       |                                                              |
|                                                                                                               | $\text{Utiliser } p_1 = p_n \ \text{ et } \ \rho_1 = \rho_n$ |
| $\mathbf{c}_{vc} = \sqrt{\gamma \frac{\mathbf{p}_{1}}{\rho_{1}}} \left(1 - \frac{x}{F_{in}^{2}}\right)^{1/2}$ | $\Rightarrow$<br>c <sub>vc</sub> = 387,1m/s                  |
| (Tableau 3) Nombre de Mach à la vena                                                                          |                                                              |
|                                                                                                               | M., - 0.829                                                  |
| $M_{vc} = \sqrt{\left(\frac{2}{\gamma-1}\right)} \left[ \left(1 - \frac{x}{E^2}\right) - 1 \right]$           | Wvc = 0,020                                                  |
| (Tableau 3) Coefficient de rendement                                                                          | Δ – - Δ 9                                                    |
| acoustique                                                                                                    | $A_{\eta} = -4.0$                                            |
| $\eta_1 = (1 \times 10^{n_y}) F_{Ln}^2 \cdot \mathbf{M}_{vc}^3$                                               | $\eta_1 = 8.7 \times 10^{-6}$                                |
| (11) Puissance acoustique<br>$W_a = \eta_1 W_m$                                                               | W <sub>a</sub> = 10,3 W                                      |
| (Tableau 3) Fréquence dominante                                                                               | St <sub>p</sub> = 0,1                                        |
| $f_p = \frac{Stp \cdot M_{vc} \cdot c_{vc}}{D}$                                                               | $\Rightarrow$                                                |
| D <sub>j</sub>                                                                                                | τ <sub>p</sub> = 14381 Hz                                    |
| (13) Masse volumique de sortie                                                                                |                                                              |
| $(P_2)$                                                                                                       | $\rho_2 = 11.1 \text{ kg/m}^3$                               |
| $\rho_2 = \rho_1 \left( \frac{1}{p_1} \right)$                                                                | · - · · · · · · · · · · · · · · · · · ·                      |
| (14) Vitesse du son dans les conditions en aval                                                               | R = 8314 J/kmol x K                                          |
| $c_2 = \sqrt{\frac{\gamma R T_2}{\gamma R T_2}}$                                                              | $\Rightarrow$<br>c <sub>2</sub> = 408 m/s                    |
| N 1//                                                                                                         |                                                              |

# - 91 -

|                                                                                                                                                                                                                                                                                                                                  | Exemple 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (15) Nombre de Mach à la sortie de la vanne                                                                                                                                                                                                                                                                                      | $M_o = 0,16 < 0,3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $M_{\rm o} = \frac{4m}{\piD^2\rho_2c_2}$                                                                                                                                                                                                                                                                                         | ⇒<br>les calculs sont appropriés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (17) Nombre de Mach dans la tuyauterie aval                                                                                                                                                                                                                                                                                      | M <sub>2</sub> = 0,16 <0,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $M_2 = \frac{4 m}{\pi D_1^2 \rho_2 G_2} < 0.3$                                                                                                                                                                                                                                                                                   | $\Rightarrow$ M <sub>2</sub> = 0,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (16) Correction relative au nombre de Mach                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $L_{\rm g}=16\log_{10}\left(\frac{1}{1-M_2}\right)$                                                                                                                                                                                                                                                                              | L <sub>G</sub> = 1,2 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (18) Niveau de pression acoustique interne totale                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $L_{pi} = 10 \log_{10} \left[ \frac{(3.2 \times 10^{9}) W_{a} \rho_{2} c_{2}}{D_{i}^{2}} \right] + L_{g}$                                                                                                                                                                                                                        | L <sub>pi</sub> = 156,9 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (19) Niveau de pression acoustique interne<br>dépendant de la fréquence<br>(bandes de 1/3 d'octave: 12,5 Hz – 20000<br>Hz)<br>$L_{pi}(f_i) = L_{pi} - 8$ $-10 \cdot \log \left\{ \left[ 1 + \left( \frac{f_i}{2 \cdot f_p} \right)^{2.5} \right] \cdot \left[ 1 + \left( \frac{f_p}{2 \cdot f_i} \right)^{1.7} \right] \right\}$ | $\begin{array}{c} L_{pi,1} = 102 \ dB \\ L_{pi,2} = 105 \ dB \\ L_{pi,3} = 105 \ dB \\ L_{pi,4} = 107 \ dB \\ L_{pi,5} = 109 \ dB \\ L_{pi,6} = 111 \ dB \\ L_{pi,7} = 112 \ dB \\ L_{pi,8} = 114 \ dB \\ L_{pi,10} = 117 \ dB \\ L_{pi,10} = 117 \ dB \\ L_{pi,11} = 119 \ dB \\ L_{pi,12} = 121 \ dB \\ L_{pi,13} = 122 \ dB \\ L_{pi,14} = 124 \ dB \\ L_{pi,15} = 126 \ dB \\ L_{pi,16} = 128 \ dB \\ L_{pi,19} = 133 \ dB \\ L_{pi,22} = 134 \ dB \\ L_{pi,22} = 136 \ dB \\ L_{pi,22} = 138 \ dB \\ L_{pi,22} = 138 \ dB \\ L_{pi,22} = 142 \ dB \\ L_{pi,28} = 142 \ dB \\ L_{pi,29} = 145 \ dB \\ L_{pi,29} = 145 \ dB \\ L_{pi,29} = 147 \ dB \\ L_{pi,23} = 147 \ dB \\ L_{pi,23} = 147 \ dB \\ L_{pi,23} = 147 \ dB \end{array}$ |
| Note                                                                                                                                                                                                                                                                                                                             | ⇒<br>Le calcul des équations (54)-(63) n'est pas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (21) Fréquence d'anneau                                                                                                                                                                                                                                                                                                          | nécessaire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $f_r = \frac{c_s}{c_s}$                                                                                                                                                                                                                                                                                                          | $\Rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\pi D_i$<br>(22) Fréquence de coïncidence interne de la                                                                                                                                                                                                                                                                         | f <sub>r</sub> = 7958 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| tuyauterie                                                                                                                                                                                                                                                                                                                       | c <sub>a</sub> = 343 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathbf{f}_{o} = \frac{\mathbf{f}_{r}}{4} \left( \frac{\mathbf{c}_{2}}{\mathbf{c}_{a}} \right)$                                                                                                                                                                                                                                 | $\overrightarrow{f_0} = 2365 \text{ Hz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (23) Fréquence de coïncidence externe<br>$f_{g} = \frac{\sqrt{3} (c_{s})^{2}}{\pi t_{s}(c_{s})}$                                                                                                                                                                                                                                 | f <sub>g</sub> = 1622 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exemple 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Tableau 6) Coefficient de fréquence $G_x$<br>(bandes de 1/3 d'octave: 12,5 Hz – 20000<br>Hz)<br>$G_x(f_i) = \begin{cases} \left(\frac{f_o}{f_r}\right)^{2/3} \left(\frac{f_i}{f_o}\right)^4 & pour f_i < f_0 \\ \left(\frac{f_i}{f_r}\right)^{1/2} & pour f_i \ge f_0 \text{ et } f_i < f_r \\ pour f_i \ge f_0 \text{ et } f_i \ge f_r \\ 1 \end{cases}$                                                                                                                         | $ \begin{array}{c} G_{x,1} = 3,5 \times 10^{-10} \\ G_{x,2} = 9,3 \times 10^{-10} \\ G_{x,3} = 2,3 \times 10^{-9} \\ G_{x,4} = 5,6 \times 10^{-9} \\ G_{x,5} = 1,4 \times 10^{-9} \\ G_{x,6} = 3,6 \times 10^{-8} \\ G_{x,7} = 8,9 \times 10^{-7} \\ G_{x,9} = 5,8 \times 10^{-7} \\ G_{x,9} = 5,8 \times 10^{-7} \\ G_{x,10} = 1,4 \times 10^{-7} \\ G_{x,11} = 3,5 \times 10^{-6} \\ G_{x,12} = 9,3 \times 10^{-6} \\ G_{x,13} = 2,3 \times 10^{-5} \\ G_{x,14} = 5,6 \times 10^{-5} \\ G_{x,15} = 1,4 \times 10^{-4} \\ G_{x,16} = 3,6 \times 10^{-4} \\ G_{x,17} = 8,9 \times 10^{-4} \\ G_{x,18} = 0,0022 \\ G_{x,19} = 0,0058 \\ G_{x,22} = 0,0033 \\ G_{x,23} = 0,233 \\ G_{x,24} = 0,566 \\ G_{x,25} = 0,633 \\ G_{x,26} = 0,71 \\ G_{x,26} = 0,71 \\ G_{x,27} = 0,79 \\ G_{x,28} = 0,89 \\ G_{x,29} = 1 \\ G_{x,30} = 1 \\ G_{x,31} = 1 \\ G_{x,32} = 1 \\ G_{x,22} = 1 \\ G_{x,22} = 1 \\ G_{x,23} = 1 \\ \end{array} $ |
| $ \begin{array}{ll} (Tableau 6) & Coefficient de fréquence G_y \\ (bandes de 1/3 d'octave: 12,5 Hz - 20000 \\ Hz) \\ & Hz) \\ & G_y(f_i) \!=\! \begin{cases} \left( \frac{\mathbf{f}_o}{\mathbf{f}_g} \right) & pour  f_i \!<\! f_0  et  f_0 \!<\! f_g \\ 1 & pour  f_i \!<\! f_0  et  f_0 \!\geq\! f_g \\ \left( \frac{\mathbf{f}_i}{\mathbf{f}_g} \right) & pour  f_i \!\geq\! f_0  et  f_i \!<\! f_g \\ pour  f_i \!\geq\! f_0  et  f_i \!\geq\! f_g \\ 1 \end{array} \right) $ | $\begin{array}{c} G_{x,3} = 1 \\ & G_{y,1} = 1 \\ & G_{y,2} = 1 \\ & G_{y,3} = 1 \\ & G_{y,6} = 1 \\ & G_{y,6} = 1 \\ & G_{y,6} = 1 \\ & G_{y,7} = 1 \\ & G_{y,7} = 1 \\ & G_{y,9} = 1 \\ & G_{y,10} = 1 \\ & G_{y,11} = 1 \\ & G_{y,12} = 1 \\ & G_{y,13} = 1 \\ & G_{y,15} = 1 \\ & G_{y,15} = 1 \\ & G_{y,16} = 1 \\ & G_{y,17} = 1 \\ & G_{y,18} = 1 \\ & G_{y,22} = 1 \\ & G_{y,23} = 1 \\ & G_{y,30} = 1 \\ & G_{y,31} = 1 \\ & G_{y,32} = 1 \\ & G_{y,32} = 1 \\ & G_{y,33} = 1 \end{array}$                                                                                                                                                                                                                                                   |
| (20c) Coefficient de perte structurale<br>dépendant de la fréquence<br>(bandes de 1/3 d'octave: 12,5 Hz – 20000<br>Hz)<br>$\eta_s(f_i) = \sqrt{\frac{f_s}{100f_i}}$                                                                                                                                                                                                                                                                                                                | $\begin{split} & \eta_{S,1} = 0.028 \\ & \eta_{S,2} = 0.025 \\ & \eta_{S,3} = 0.022 \\ & \eta_{S,4} = 0.02 \\ & \eta_{S,5} = 0.018 \\ & \eta_{S,6} = 0.016 \\ & \eta_{S,7} = 0.014 \\ & \eta_{S,8} = 0.013 \\ & \eta_{S,9} = 0.011 \\ & \eta_{S,10} = 0.01 \\ & \eta_{S,11} = 0.0089 \\ & \eta_{S,12} = 0.0079 \\ & \eta_{S,13} = 0.0071 \\ & \eta_{S,14} = 0.0063 \\ & \eta_{S,16} = 0.0056 \\ & \eta_{S,16} = 0.004 \\ & \eta_{S,18} = 0.004 \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                                                                                                                                                                                                                                                                                                                                                   | Exemple 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \eta_{S,19} = 0,0035\\ \eta_{S,20} = 0,0032\\ \eta_{S,21} = 0,0028\\ \eta_{S,22} = 0,0025\\ \eta_{S,23} = 0,0022\\ \eta_{S,24} = 0,002\\ \eta_{S,25} = 0,0018\\ \eta_{S,26} = 0,0016\\ \eta_{S,27} = 0,0014\\ \eta_{S,28} = 0,0013\\ \eta_{S,29} = 0,0011\\ \eta_{S,30} = 0,001\\ \eta_{S,31} = 8,9 \times 10^4\\ \eta_{S,32} = 7,9 \times 10^4\\ \eta_{S,33} = 7,1 \times 10^4 \end{array}$                                                                                                                                                                                                                                                                                                                                                      |
| (20b) Facteur d'amortissement pour la perte<br>par transmission<br>$\Delta TL = \begin{cases} 0 & pour D > 0,15 \\ -16660 \cdot D^3 + 6370 \cdot D^2 & pour 0,05 \le D \le 0,15 \\ -813 \cdot D + 35,8 & pour D < 0,05 \end{cases}$                                                                                                                               | $\Delta TL = 0 dB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (20a) Perte par transmission dépendant de la fréquence<br>(bandes de 1/3 d'octave: 12,5 Hz – 20000 Hz)<br>$TL(f_i) = 10 \log_{10} \left[ \frac{(g_2 5 \times 10^{-7}) \left(\frac{c_2}{t_1 f_1}\right)^2}{\left(\frac{p_2 c_2 + 2 \cdot \pi \cdot t_3 \cdot f_1 \cdot p_* \cdot \eta_* (f_i)}{415 G_y(f_1)} + 1\right)} \left(\frac{p_*}{p_*}\right) - \Delta TL$ | $\begin{array}{c} TL_1 = -94,1 \ dB \\ TL_2 = -92 \ dB \\ TL_3 = -90 \ dB \\ TL_4 = -88,1 \ dB \\ TL_6 = -84,1 \ dB \\ TL_6 = -84,1 \ dB \\ TL_8 = -80,2 \ dB \\ TL_9 = -78,1 \ dB \\ TL_{10} = -76,2 \ dB \\ TL_{11} = -74,3 \ dB \\ TL_{12} = -72,2 \ dB \\ TL_{13} = -70,4 \ dB \\ TL_{15} = -66,5 \ dB \\ TL_{15} = -66,5 \ dB \\ TL_{16} = -64,5 \ dB \\ TL_{18} = -60,7 \ dB \\ TL_{19} = -58,7 \ dB \\ TL_{29} = -58,7 \ dB \\ TL_{22} = -53 \ dB \\ TL_{23} = -51,2 \ dB \\ TL_{24} = -51,2 \ dB \\ TL_{25} = -51,2 \ dB \\ TL_{26} = -52,8 \ dB \\ TL_{28} = -56,1 \ dB \\ TL_{29} = -57,9 \ dB \\ TL_{29} = -57,9 \ dB \\ TL_{30} = -60 \ dB \\ TL_{31} = -62,2 \ dB \\ TL_{31} = -62,2 \ dB \\ TL_{32} = -64,6 \ dB \\ TL_{33} = -66,8 \ dB \end{array}$ |
| (24) Niveau de pression acoustique externe<br>dépendant de la fréquence<br>(bandes de 1/3 d'octave: 12,5 Hz – 20000<br>Hz)<br>$L_{pe,lm}(f_i) = L_{pi}(f_i) + TL(f_i)$ $-10 \log\left(\frac{D_i + 2t_s + 2}{D_i + 2t_s}\right)$                                                                                                                                   | $\begin{array}{c} L_{pe,1m,1} = -2 \ dB \\ L_{pe,1m,2} = 2 \ dB \\ L_{pe,1m,3} = 5 \ dB \\ L_{pe,1m,4} = 9 \ dB \\ L_{pe,1m,5} = 13 \ dB \\ L_{pe,1m,5} = 13 \ dB \\ L_{pe,1m,7} = 20 \ dB \\ L_{pe,1m,7} = 20 \ dB \\ L_{pe,1m,7} = 27 \ dB \\ L_{pe,1m,9} = 27 \ dB \\ L_{pe,1m,10} = 31 \ dB \\ L_{pe,1m,12} = 38 \ dB \\ L_{pe,1m,14} = 46 \ dB \\ L_{pe,1m,15} = 49 \ dB \\ L_{pe,1m,15} = 49 \ dB \\ L_{pe,1m,17} = 56 \ dB \\ L_{pe,1m,19} = 64 \ dB \\ L_{pe,1m,21} = 71 \ dB \\ L_{pe,1m,22} = 74 \ dB \\ L_{pe,1m,25} = 81 \ dB \\ L_{pe,1m,26} = 80 \ dB \\ L_{pe,1m,27} = 80 \ dB \\ L_{pe,1m,27} = 80 \ dB \\ L_{pe,1m,27} = 80 \ dB \end{array}$                        |

|                                                                                                                    | Exemple 7                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                    | $\begin{array}{c} L_{pe,1m,28} = 79 \text{ dB} \\ L_{pe,1m,29} = 78 \text{ dB} \\ L_{pe,1m,30} = 77 \text{ dB} \\ L_{pe,1m,31} = 75 \text{ dB} \\ L_{pe,1m,32} = 72 \text{ dB} \\ L_{pe,1m,32} = 70 \text{ dB} \\ L_{pe,1m,33} = 70 \text{ dB} \end{array}$ |
| (25) Niveau de pression acoustique pondéré A                                                                       | $AL_{c}(f)$ voir 5.6.3                                                                                                                                                                                                                                      |
| $L_{pAe,1m} = 10 \cdot Log_{10} \left( \sum_{i=1}^{N=33} 10^{\frac{L_{pe,1m}(f_i) + \Delta L_A(f_i)}{10}} \right)$ | $\Rightarrow L_{pAe,1m} = 89 \text{ dB}(A)$                                                                                                                                                                                                                 |

#### Bibliographie

- [1] CEI 60534-2-1, Vannes de régulation des processus industriels Partie 2-1: Capacité d'écoulement – Equations de dimensionnement des vannes de régulation pour l'écoulement des fluides dans les conditions d'installation
- [2] CEI 60534-8-1, Vannes de régulation des processus industriels Partie 8: Considérations sur le bruit – Section Un: Mesure en laboratoire du bruit créé par un débit aérodynamique à travers une vanne de régulation
- [3] ANSI/ISA-75.01.01 (IEC 60534-2-1 Mod)-2007, Flow Equations for Sizing Control Valves
- [4] BAUMANN, H. D., A Method for Predicting Aerodynamic Valve Noise Based on Modified Free Jet Noise Theories, ASME Paper 87-WA/NCA-7 28, December 1987.
- [5] BAUMANN, H. D., Coefficients and Factors Relating to Aerodynamic Sound Level Generated by Throttling Valves, Noise Control Engineering Journal, Vol. 22, No. 1, January 1984, p. 6-11.
- [6] BAUMANN, H. D., On the Prediction of Aerodynamically Created Sound Pressure Level of Control Valves, ASME Paper WM/FE 28, December 1970, p. 2.
- [7] BAUMANN, H. D., Determination of Peak Internal Sound Frequency Generated by Throttling Valves for the Calculation of Pipe Transmission Losses, Noise Control Engineering Journal, Vol. 36, No. 2, March-April 1991, p. 75-82.
- [8] BAUMANN, H. D., Predicting Control Valve Noise at High Exit Velocities, INTECH, February 1997, p. 56-59.
- [9] BERANEK, Leo L., and ISTVAN L. Vér, Noise and Vibration Control Engineering Principles and Applications, New York, 1992.
- [10] EILERS, D. and CATRON F., Effect of structural loss factor on the calculation of pipe wall transmission loss, NOISE-CON 2007, October 2007
- [11] FAGERLUND, A. C. and CHOU D. C., Sound Transmission Through a Cylindrical Pipe Wall, ASME Journal of Engineering for Industry, Vol. 103, November 1981, p. 355-360.
- [12] FOWCS Williams, J. E. and HAWKINS D. L., Sound Generation by Turbulence and Surface in Arbitrary Motion, Philosophic Transactions of the Royal Society of London, Ser. A., 264 (London, 1969), p. 321-342.
- [13] KIESBAUER, J. and VNUCEC, D., Improvement of IEC 60534-8-3 standard for noise prediction in control valves, Hydrocarbon Processing, January 2008[12] LIGHTHILL, M. J., On Sound Generated Aerodynamically: I. General Theory, Proceedings of the Royal Society of London, A211 (London, 1952), p. 564-587.
- [14] LIGHTHILL, M.J., Jet Noise, AIAA Journal, 1, 150701517, July 1963.
- [15] POWELL, A., On the Mechanism of Choked Jet Noise, Proceedings Physical Society of London, Section B., 66:1039-57 (1953).
- [16] REETHOF, G. and WARD W. C., A Theoretically Based Valve Noise Prediction Method for Compressible Fluids, Journal of Vibrations, Acoustics, Stress, and Reliability in Design, ASME, July 1986, 00329.
- [17] SHEA, Allen K., A Comparative Study of Sound Level Prediction Methods for Control Valves, Master of Engineering Report, The Pennsylvania State University, Behrend Campus, Erie, PA., August 1982.

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

- [18] SINAMBARI, G. R., Ausströmgeräusche von Düsen und Ringdüsen in angeschlossenen Rohrleitungen Ihre Entstehung Fortpflanzung und Abstrahlung, Dissertation D386, Kaiserslautern, 1981
- [19] WARD, W. C., and REETHOF G., Graphical Implementation of a Fundamentals Based Method of Aerodynamic Control Valve Noise, American Society of Mechanical Engineers Conference on Pressure Vessels and Piping, Proceedings, Vol. 2, June 24-26, 1985.

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

INTERNATIONAL ELECTROTECHNICAL COMMISSION

3, rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland

Tel: + 41 22 919 02 11 Fax: + 41 22 919 03 00 info@iec.ch www.iec.ch