

Edition 1.0 2010-10

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measurement of quartz crystal unit parameters -

Part 11: Standard method for the determination of the load resonance frequency f_L and the effective load capacitance C_{Leff} using automatic network analyzer techniques and error correction

Mesure des paramètres des résonateurs à quartz -

Partie 11: Méthode normalisée pour la détermination de la fréquence de résonance à la charge f_L et de la capacité de charge efficace C_{Leff} utilisant des analyseurs automatiques de réseaux et correction des erreurs

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2010 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur. Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

Catalogue of IEC publications: <u>www.iec.ch/searchpub</u>

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.

IEC Just Published: www.iec.ch/online_news/justpub

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

Electropedia: <u>www.electropedia.org</u>

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

Customer Service Centre: <u>www.iec.ch/webstore/custserv</u>

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: <u>csc@iec.ch</u> Tel.: +41 22 919 02 11

Fax: +41 22 919 03 00

A propos de la CEI

La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI

Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Catalogue des publications de la CEI: <u>www.iec.ch/searchpub/cur_fut-f.htm</u>

Le Catalogue en-ligne de la CEI vous permet d'effectuer des recherches en utilisant différents critères (numéro de référence, texte, comité d'études,...). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.

Just Published CEI: www.iec.ch/online_news/justpub

Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles publications parues. Disponible en-ligne et aussi par email.

Electropedia: <u>www.electropedia.org</u>

Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International en ligne.

Service Clients: <u>www.iec.ch/webstore/custserv/custserv_entry-f.htm</u>

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du Service clients ou contactez-nous:

Email: <u>csc@iec.ch</u> Tél.: +41 22 919 02 11

Fax: +41 22 919 03 00

IEC 60444-11

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measurement of quartz crystal unit parameters -

Part 11: Standard method for the determination of the load resonance frequency f_L and the effective load capacitance C_{Leff} using automatic network analyzer techniques and error correction

Mesure des paramètres des résonateurs à quartz -

Partie 11: Méthode normalisée pour la détermination de la fréquence de résonance à la charge f_L et de la capacité de charge efficace C_{Leff} utilisant des analyseurs automatiques de réseaux et correction des erreurs

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE CODE PRIX

ICS 31.140

ISBN 978-2-88912-210-3

CONTENTS

FOF	REWO	RD	3
1	Scope		5
2	Norma	ative references	5
3	General concepts		6
	3.1 3.2	Load resonance frequencies f_{Lr} and f_{La} Effective load capacitance C_{Leff}	6
4	Refere	ence plane and test conditions	7
	4.1	General	7
	4.2	Principle of measurement	7
	4.3	Evaluation of errors	10
Bibl	iograp	hy	14
Figu	ure 1 –	Admittance of a quartz crystal unit	6
Figu	ure 2 –	X_{C} as a function of frequency (solid line) in the vicinity of f_{L}	9
Figu	ure 3 –	Level of drive of a crystal in a π -network vs. frequency	9
Figu mea	ure 4 – asured	Error of the load resonance frequency due to the inaccuracy of the voltages (dashed line) and the calibration resistances (soft line)	11
Figu and	ure 5 – the ca	C_{L} -error resulting from f_{L} error (due to inaccuracy of the measured voltages alibration resistances) for the same crystal as in Figure 4	11
Figu	ure 6 –	Frequency error due to noise of the measured voltages	12
Figı equ	ure 7 - ivalent	 Error of load resonance frequency f_L at 30 pF and 10 pF for typical parameters of quartz crystal units 	12
Figu	ure 8 –	Error of C _{Leff} for typical equivalent parameters of quartz crystal units	13

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEASUREMENT OF QUARTZ CRYSTAL UNIT PARAMETERS –

Part 11: Standard method for the determination of the load resonance frequency $f_{\rm L}$ and the effective load capacitance $C_{\rm Leff}$ using automatic network analyzer techniques and error correction

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60444-11 has been prepared by IEC technical committee 49: Piezoelectric, dielectric and electrostatic devices and associated materials for frequency control, selection and detection.

The text of this standard is based on the following documents:

CDV	Report on voting
49/852/CDV	49/883/RVC

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

A list of all parts of the IEC 60444 series under the general title *Measurement of quartz crystal unit parameters* can be found on the IEC website.

The committee has decided that the contents of this amendment and the base publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

MEASUREMENT OF QUARTZ CRYSTAL UNIT PARAMETERS –

Part 11: Standard method for the determination of the load resonance frequency $f_{\rm L}$ and the effective load capacitance $C_{\rm Leff}$ using automatic network analyzer techniques and error correction

1 Scope

This part of IEC 60444 defines the standard method of measuring load resonance frequency $f_{\rm L}$ at the nominal value of $C_{\rm L}$, and the determination of the effective load capacitance $C_{\rm Leff}$ at the nominal frequency for crystals with the figure of merit M > 4.

M, according to Table 1 of IEC 60122-1:2002, is expressed in the following equation:

$$M = \frac{Q}{r} = \frac{1}{\omega C 0 R 1} \tag{1}$$

This gives good results in a frequency range up to 200 MHz. This method allows the calculation of load resonance frequency offset Δf_L , frequency pulling range $\Delta f_{L1,L2}$ and pulling sensitivity S as described in 2.2.31 of IEC 60122-1:2002. In contrary to the simple method of IEC 60444-4, this measurement technique avoids the use of physical load capacitors, and allows higher accuracy, better reproducibility and correlation to the application. It extends the upper frequency limit from 30MHz by the method of IEC 60444-4 to 200MHz approximately. This method is based on the error-corrected measurement technique of IEC 60444-5:1995, and therefore allows the measurement of f_L and C_{Leff} together with the determination of the equivalent crystal parameters in one sequence without changing the test fixture.

With this method the frequency f_{L} is searched where the reactance X_{C} of the crystal has the opposite value of the reactance of the load capacitance.

$$XC = -XCL = \frac{1}{\omega LCL}$$
(2)

Furthermore this method allows to determine the effective load capacitance C_{Leff} at the nominal frequency f_{nom} .

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60122-1:2002, Quartz crystal units of assessed quality – Part 1: Generic specification

IEC/TR 60444-4, Measurement of quartz crystal unit parameters by zero phase technique in a π -network – Part 4: Method for the measurement of the load resonance frequency f_L , load resonance resistance R_L and the calculation of other derived values of quartz crystal units, up to 30 MHz

IEC 60444-5:1995, Measurement of quartz crystal units parameters – Part 5: Methods for the determination of equivalent electrical parameters using automatic network analyzer techniques and error correction

3 General concepts

3.1 Load resonance frequencies f_{Lr} and f_{La}

As can be seen in Figure 1, there are two intersection frequencies where $X_{C} = -X_{CL}$, f_{Lr} with high admittance (low impedance) and f_{La} with low admittance (high impedance).

The load resonant frequency f_L is one of the two frequencies of a crystal unit in association with a series or with a parallel load capacitance, at which the electrical admittance (respectively impedance) of the combination is resistive. The load resonance frequency f_L is the lower of the two frequencies.

In a first approximation f_{L} can be calculated by:

$$\frac{1}{f_{\rm L}} \approx 2 \pi \sqrt{\frac{L_{\rm l}C_{\rm 1} (C_{\rm 0} + C_{\rm L})}{C_{\rm 1} + C_{\rm 0} + C_{\rm L}}}$$
(3)

IEC 2353/10

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

Figure 1 – Admittance of a quartz crystal unit

3.2 Effective load capacitance C_{Leff}

 C_{Leff} is defined by the reactance of the crystal at the nominal frequency

$$C_{\text{Leff}} = \frac{1}{\omega_{\text{nom}} X_{\text{C}}(\omega_{\text{nom}})}$$
(4)

4 Reference plane and test conditions

4.1 General

Reference plane: as in 8.4 of IEC 60444-5:1995.

Test conditions: crystal case not grounded.

Level of drive: the output level of the generator is set, such that at its (series) resonance frequency, the crystal under test is measured at the nominal drive level.

The measurement at the load resonance frequency using the method described below leads to a level of drive, which is remarkably lower than at the (series) resonance frequency due to the relative high reactance value. Therefore a correction measurement is performed, for details see 4.2.

4.2 Principle of measurement

The principles of measurement are the following.

a) Calibration

Due to the high impedance measurements with this method special care has to be taken in the calibration of the test set-up.

Similar to IEC 60444-5:1995, use the following three known calibration elements:

- 1) short-circuit (0 Ω) or resistor with low resistance;
- 2) resistor of 25 Ω or 50 Ω nominal;
- 3) open circuit (infinite resistance) or capacitor of 10 pF nominal;

where Z_1 is the impedance of calibration element 1

 Z_2 is the impedance of calibration element 2

- Z_3 is the impedance of calibration element 3
- V_1 is the measured voltage with calibration element 1
- V_2 is the measured voltage with calibration element 2
- V_3 is the measured voltage with calibration element 3

The following parameters are then used for the measurement of quartz crystal units:

 R_{T} is the termination impedance of the π -network

Vs is the error-corrected "short" voltage

- V_{o} is the error-corrected "open" voltage
- b) Calibration with three known calibration elements:
 - 1) short-circuit calibration;
 - 2) calibration load (25 Ω or 50 Ω);
 - 3) open circuit calibration (or calibration capacitor of 10 pF);

$$RT = \frac{Z1Z2(V1 - V2) + Z2Z3(V2 - V3) + Z3Z1(V3 - V1)}{Z1(V2 - V3) + Z2(V3 - V1) + Z3(V2 - V2)}$$
(5)

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

60444-11 © IEC:2010

$$VS = \frac{V3Z1Z2(V1 - V2) + V1Z2Z3(V2 - V3) + V2Z3Z1(V3 - V1)}{Z1Z2(V1 - V2) + Z2Z3(V2 - V3) + Z3Z1(V3 - V1)}$$
(6)

$$V_0 = \frac{Z_1 V_1 (V_2 - V_3) + Z_2 V_2 (V_3 - V_1) + Z_3 V_3 (V_1 - V_2)}{Z_1 (V_2 - V_3) + Z_2 (V_3 - V_1) + Z_3 (V_1 - V_2)}$$
(7)

NOTE If Z_3 is taken as infinite number (ideal open circuit), the above Equations (5), (6) and (7) result is not allowed divisions of infinite by infinite.

c) Measurement of a quartz crystal unit impedance Z_{c}

From the measured voltage with a quartz crystal unit V_c , the impedance Z_c of the quartz crystal unit is calculated with:

$$Zc = R \tau \frac{(V s - V c)}{(V c - V_0)}$$

$$\tag{8}$$

d) Measurement procedure for f_{L}

At load resonance frequency, the impedance of a quartz crystal unit is

$$Z_{\rm CL} = R_{\rm L} + jX_{\rm c} \tag{9}$$

For the determination of the load resonance frequency, the frequency f_L the lower frequency is searched for which Equation (2) is fulfilled, i.e.

$$X_{\rm C} + X_{\rm CL} = 0 \tag{10}$$

With network analyzers, the frequency $f_{\rm L}$ is easily determined by using «marker search». functions.

e) Evaluation of R_L

The computation of the load resonance resistance R_L from the real part of Z_c at the load resonance frequency f_L by the formula:

$$R_{\rm L} = R_{\rm c}(\omega_{\rm L}) = {\rm Re}(Z_{\rm c}(\omega_{\rm L}))$$
(11)

may result in excessive inaccuracy, because – especially for low frequency crystals – the angle of the voltage V_c is close to 90°.

Only for $\frac{X_{\text{CL}}}{R_{\text{L}}}$ < 10 this method yields reasonable results.

In all other cases, the R_1 should be computed from the equation given in IEC 60122-1:

$$R_{\rm L} = R_1 \left(1 + \frac{C_0}{C_{\rm L}} \right)^2 \tag{12}$$

f) Measurement procedure for CLeff

The reactance $X_{\rm c}(\omega_{\rm nom})$ is measured at the nominal frequency and the effective load capacity $C_{\rm Leff}$ is then calculated with the following equation:

$$C \text{Leff} = \frac{1}{\omega \text{nom } XC(\omega \text{nom})}$$
(13)

Figure 2 shows X_{C} as a function of frequency (solid line) in the vicinity of f_{L} .

Figure 2 – X_{C} as a function of frequency (solid line) in the vicinity of f_{L}

g) Level of drive

At the resonance frequency f_r , the level of drive P of a quartz crystal unit in a π -network is given by the voltage V_{xr} across the crystal

Figure 3 – Level of drive of a crystal in a π -network vs. frequency

with

$$P = \frac{V_{\rm xr}^2}{R_r} \tag{14}$$

and

$$VXr = \frac{Vg Rr}{Rr + RT}$$
(15)

60444-11 © IEC:2010

$$Vg = \sqrt{PRr} \frac{Rr + RT}{Rr}$$
(16)

At load resonance frequency f_L , the impedance Z_L of a quartz crystal unit is given by the load resonance resistance R_L and the modulus of the reactance of the load capacitor X_L :

- 10 -

$$|Z_{\rm L}| = \sqrt{R_{\rm L}^2 + X_{\rm L}^2}$$
(17)

and therefore the drive level is

$$P = \frac{V_{\rm xr}}{Z_{\rm L}}^2$$

$$V_{gL} = \sqrt{\mathbf{P} \cdot \mathbf{R}_{1}} \cdot \sqrt{\frac{X_{CL}^{2} \left(1 + X_{CL}^{2} + \left(R_{L} + R_{T}\right)^{2}\right)^{2} + R_{L}^{2} \left(\left(R_{L} + R_{T}\right)^{2} - 1\right)}{R_{L}^{2} + X_{CL}^{2}}}$$
(18)

In order to get the same level of drive at the load frequency $f_{\rm L}$ as at the series resonance frequency $f_{\rm S}$, it is necessary to increase the output power of the generator by the ratio:

$$ABS\left[\frac{V_{gL}}{V_{gr}}\right] = \sqrt{\frac{Rr}{RL}} \frac{\sqrt{(RL+RT)^2 + XCL^2}}{Rr+RT}$$
(19)

NOTE If the required power cannot be reached by the generator, a second measurement at resonance frequency f_r is performed with a by factor $ABS\left(\frac{V_{gL}}{V_{or}}\right)$ lower level and the difference of both series resonance measurements

is added to the load resonance frequency $f_{\rm L}$

4.3 Evaluation of errors

a) General comments

According to the application of quartz crystal units in oscillators, the measurement accuracy of the load resonance frequency f_L is presented here. The accuracy of the load capacitance C_{Leff} can be calculated then from the frequency accuracy and the equivalent parameters of the crystal C_0 and C_1 from the relation

$$\frac{f_{\rm L} - f_{\rm s}}{f_{\rm s}} = \frac{C_{\rm 1}}{2(C_{\rm 0} + C_{\rm L})} \tag{20}$$

b) Accuracy of measurement

The accuracy of the measurement is given by the calibration resistors and the measured voltages. In order to achieve an accuracy of the voltages of 1 %, it may be necessary to calibrate the test equipment in the whole power range.

Typ. frequency error: at CL 10 pF (S = -75,45 ppm/pF): ±16,1 ppm (equiv.: ±0,21 pF)

- 11 -

IEC 2356/10

Figure 5 – C_L -error resulting from f_L error (due to inaccuracy of the measured voltages and the calibration resistances) for the same crystal as in Figure 4

c) Reproducibility

Since the determination of the load frequency is based on a voltage measurement, the reproducibility of the f_{L} measurement is influenced by noise.

Depending on the level of the expected voltage the measured noise is directly proportional to the evaluated frequency.

To increase the accuracy it is recommended to use smaller bandwidths of intermediate frequency (IF) filters of the used measurement equipment and the use of an averaged signal.

- 12 -

Figure 6 – Frequency error due to noise of the measured voltages

Figure 7 – Error of load resonance frequency $f_{\rm L}$ at 30 pF and 10 pF for typical equivalent parameters of quartz crystal units

- 13 -

IEC 2360/10

Figure 8 – Error of C_{Leff} for typical equivalent parameters of quartz crystal units

d) Comparison with the method of IEC 60444-4

The inaccuracy of the measurement of the load resonance frequency $f_{\rm L}$ according to IEC 60444-4 is mainly given by the inaccuracy of the physical load capacitors which often show a large dependence on frequency.

Comparison measurements ([1]¹, [2], [5]) with quartz crystal units between 4 MHz and 155 MHz showed an inaccuracy of 1 % of C_{Leff} .

The corresponding frequency inaccuracy can be calculated with the formula (20).

The inaccuracy for fundamental quartz crystal units with high C_1 is less than 5 ppm with the standard method presented here and up to 20 ppm with the method of IEC 60444-4.

Several series of comparative measurements ([1], [2]) have proven that the reproducibility between different test systems using the standard method is considerably better than with the IEC 60444-4 method.

e) Limitations

This method shall not be used for measurements of aging and for the measurement of load resonance in the temperature range due to the still remaining measurement uncertainty.

In the presence of activity dips, the described method may yield unacceptable results and therefore care should be taken.

If narrow frequency tolerances of $f_{\rm L}$ are required in an application, it is recommended to determine the effective $C_{\rm L}$ of the application circuit by a correlation measurement.

Generally the error of f_1 becomes large when C_1 is smaller than 10 pF or $2 \times C_0$.

¹ Figures in square brackets refer to the bibliography.

- 14 -

- Bibliography
- [1] NEUBIG, Bernd: *PI-Network Measurement of the Load Resonance Frequency without Load Capacitor*, Proc. 4th European Frequency and Time Forum (EFTF), pp.481-486, 1990
- [2] ZIMMERMANN, Rolf: Messung der Lastresonanzfrequenz von Schwingquarzen ohne physikalische Lastkapazität, Report Tele Quarz, 31.3.1995
- [3] ROSE, Dwane: Load Resonant Measurements of Quartz Crystals, www.saundersassoc.com
- [4] LEE, Arthur and CHAN, K.: Direct Impedance Method for Load Resonant Measurement of Crystals; Proc. 21st Piezoelectric Devices Conference & Exhibition, 1999
- [5] VAN HERWIJNEN, M.and SOHRE, Frieder K.C.: Load-Resonance Measurement Accuracy of Ceramic Surface Mount Quartz Crystals, Proc. 14th European Frequency and Time Forum (EFTF), 2002

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

- 16 -

SOMMAIRE				
AV	ANT-PROPOS	17		
1	Domaine d'application	19		
2	Références normatives	19		
3	Concepts généraux			
	3.1 Fréquences de résonance à la charge f_1 , et f_1 ,	20		
	3.2 Capacité de charge efficace C _{l eff}	21		
4	Plan de référence et conditions d'essai	21		
	4.1 Généralités	21		
	4.2 Principe de mesure	21		
	4.3 Évaluation des erreurs	24		
Bib	liographie	28		
Fig	ure 1 – Admittance d'un résonateur à quartz	20		
Fig	ure 2 – X_{C} en fonction de la fréquence (ligne continue) au voisinage de f_{L}	23		
Fig fréc	ure 3 – Niveau d'excitation d'un résonateur dans un circuit en π en fonction de la quence			
Fig ten:	ure 4 – Erreur de la fréquence de résonance à la charge due à l'imprécision des sions mesurées (traits pointillés) et aux résistances d'étalonnage (trait plein)	25		
Fig me: dar	ure 5 – Erreur de C_{L} résultant d'une erreur de f_{L} (due à l'imprécision des tensions surées et des résistances d'étalonnage) pour le même résonateur à quartz que la Figure 4	25		
Fig	ure 6 – Erreur de fréquence due au bruit des tensions mesurées	26		
Fig des	ure 7 – Erreur de la fréquence de résonance à la charge f_{L} à 30 pF et 10 pF pour paramètres typiques équivalents des résonateurs à quartz	r 26		
Fig à q	ure 8 – Erreur de <i>C_{Leff} pour des paramètres typiques équivalents des résonateur</i> uartz	[.] s 27		

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

MESURE DES PARAMÈTRES DES RÉSONATEURS À QUARTZ -

Partie 11: Méthode normalisée pour la détermination de la fréquence de résonance à la charge f_L et de la capacité de charge efficace C_{Leff} utilisant des analyseurs automatiques de réseaux et correction des erreurs

AVANT-PROPOS

- 1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de conformité de la CEI. La CEI n'est responsable d'aucun des services effectués par les organismes de certification indépendants.
- 6) Il convient que les utilisateurs s'assurent qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.
- L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme Internationale CEI 60444-11 a été établie par le Comité d'Etudes 49 de la CEI: Dispositifs piézoélectriques, diélectriques et électrostatique et matériaux associés pour la détection, le choix et la commande de la fréquence.

Le texte de cette norme est issu des documents suivants:

CDV	Rapport de vote
49/852/CDV	49/883/RVC

Le rapport de vote donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Une liste de toutes les parties de la série CEI 60444 présentées sous le titre général *Mesure des paramètres des résonateurs à quartz,* peut être consultée sur le site web de la CEI.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de stabilité indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou encore
- amendée.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de cette publication indique qu'elle contient des couleurs qui sont considérées comme utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par conséquent, imprimer cette publication en utilisant une imprimante couleur.

MESURE DES PARAMÈTRES DES RÉSONATEURS À QUARTZ –

Partie 11: Méthode normalisée pour la détermination de la fréquence de résonance à la charge f_L et de la capacité de charge efficace C_{Leff} utilisant des analyseurs automatiques de réseaux et correction des erreurs

1 Domaine d'application

La présente partie de la CEI 60444 définit la méthode normalisée de mesure de la fréquence de résonance à la charge f_L à la valeur nominale de C_L et la détermination de la capacité de charge efficace C_{Leff} à la fréquence nominale pour des résonateurs de facteur de mérite M > 4.

M, conformément au Tableau 1 de la CEI 60122-1:2002, est exprimé dans l'équation suivante:

$$M = \frac{Q}{r} = \frac{1}{\omega C 0 R 1} \tag{1}$$

Cela donne de bons résultats dans une plage de fréquences pouvant atteindre 200 MHz. La présente méthode permet de calculer un décalage de fréquence de résonance à la charge $\Delta f_{\rm L}$, la plage de décalage de fréquence $\Delta f_{\rm L}$, et la sensibilité de fréquence relative S comme cela est décrit dans la CEI 60122-1:2002. Contrairement à la méthode simple de la CEI 60444-4, la présente technique de mesure évite l'utilisation de condensateurs de charge physiques et elle offre une précision supérieure, une meilleure reproductibilité et une corrélation avec l'application. Elle augmente la limite des fréquences supérieures de 30MHz par la méthode de la CEI 60444-4 à approximativement 200 MHz. La présente méthode est fondée sur la technique des mesures avec correction des erreurs de la CEI 60444-5:1995, et permet donc la mesure de $f_{\rm L}$ et $C_{\rm Leff}$ ainsi que la détermination des paramètres des résonateurs équivalents en une séquence sans modifier le dispositif d'essai.

Avec cette méthode, on recherche la fréquence f_{L} pour laquelle la valeur de la réactance X_{C} du résonateur est opposée à la valeur de la réactance de la capacité de charge.

$$XC = -XCL = \frac{1}{\omega LCL}$$
(2)

En outre, cette méthode permet de déterminer la capacité de charge efficace C_{Leff} à la fréquence nominale f_{nom} .

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60122-1:2002, Résonateurs à quartz sous assurance de la qualité – Partie 1: Spécification générique

CEI/TR 60444-4, Mesure des paramètres des quartz piézoélectriques par la technique de phase nulle dans le circuit en π – Partie 4: Méthode pour la mesure de la fréquence de résonance à la charge f_L et de la résistance de résonance à la charge R_L et pour le calcul des autres valeurs dérivées des quartz piézoélectriques, jusqu'à 30 MHz

CEI 60444-5:1995, Mesure des paramètres des résonateurs à quartz – Partie 5: Méthodes pour la détermination des paramètres électriques équivalents utilisant des analyseurs automatiques de réseaux et correction des erreurs

- 20 -

3 Concepts généraux

3.1 Fréquences de résonance à la charge f_{Lr} et f_{La}

Comme le montre la Figure 1, il y a deux fréquences d'intersection où $X_{C} = -X_{CL}$, f_{Lr} avec une forte admittance (faible impédance) et f_{La} avec une faible admittance (forte impédance).

La fréquence de résonance à la charge f_L est une des deux fréquences du résonateur à quartz associé à une capacité de charge série ou parallèle, pour laquelle l'admittance électrique (respectivement l'impédance) de la combinaison est résistive. La fréquence de résonance à la charge f_L est la plus basse des deux fréquences.

En première approximation, $f_{\rm L}$ peut être calculée de la manière suivante:

$$\frac{1}{f_{\rm L}} \approx 2 \pi \sqrt{\frac{L_{\rm I}C_{\rm I} (C_{\rm 0} + C_{\rm L})}{C_{\rm I} + C_{\rm 0} + C_{\rm L}}} \tag{3}$$

Figure 1 – Admittance d'un résonateur à quartz

3.2 Capacité de charge efficace C_{Leff}

 C_{leff} est définie par la réactance du résonateur à la fréquence nominale:

$$C_{\text{Leff}} = \frac{1}{\omega_{\text{nom}} Xc(\omega_{\text{nom}})}$$
(4)

4 Plan de référence et conditions d'essai

4.1 Généralités

Plan de référence: comme au 8.4 dans la CEI 60444-5:1995.

Conditions d'essai: boîtier du résonateur non relié à la terre.

Niveau d'excitation: le niveau de sortie du générateur est réglé de telle sorte qu'à sa fréquence de résonance (série), le résonateur en essai soit mesuré au niveau d'excitation nominal.

La mesure de la fréquence de résonance à la charge utilisant la méthode décrite ci-dessous donne un niveau d'excitation considérablement inférieur à la fréquence de résonance (série) en raison de la valeur de réactance relativement élevée. Ainsi, une mesure de correction est effectuée. Pour les détails de cette mesure, se reporter au 4.2.

4.2 Principe de mesure

Les principes de mesure sont les suivants.

a) Étalonnage

En raison des mesures à haute impédance de cette méthode, le montage d'essai doit être étalonné avec précaution.

Comme pour la CEI 60444-5:1995, on utilise trois éléments d'étalonnage connus:

- 1) court-circuit (0 Ω) ou résistance de faible valeur;
- 2) résistance de 25 Ω ou 50 Ω nominal;
- 3) circuit ouvert (résistance infinie) ou condensateur de 10 pF nominal;
- où Z1 est l'impédance de l'élément d'étalonnage 1
 - Z₂ est l'impédance de l'élément d'étalonnage 2
 - Z₃ est l'impédance de l'élément d'étalonnage 3
 - V1 est la tension mesurée avec l'élément d'étalonnage 1
 - V₂ est la tension mesurée avec l'élément d'étalonnage 2
 - V₃ est la tension mesurée avec l'élément d'étalonnage 3
- Les paramètres suivants sont alors utilisés pour mesurer les résonateurs à quartz:

 R_{T} est l'impédance de sortie du circuit en π

 $V_{\rm s}$ est la tension "de court-circuit" avec correction d'erreur

- Vo est la tension "en-circuit ouvert" avec correction d'erreur
- b) Étalonnage avec trois éléments d'étalonnage connus
 - 1) court-circuit d'étalonnage;
 - 2) charge d'étalonnage (25 Ω ou 50 Ω);
 - 3) circuit ouvert d'étalonnage (ou condensateur d'étalonnage de 10 pF);

– 22 –

60444-11 © CEI:2010

$$RT = \frac{Z1Z2(V1 - V2) + Z2Z3(V2 - V3) + Z3Z1(V3 - V1)}{Z1(V2 - V3) + Z2(V3 - V1) + Z3(V2 - V2)}$$
(5)

$$VS = \frac{V3Z1Z2(V1 - V2) + V1Z2Z3(V2 - V3) + V2Z3Z1(V3 - V1)}{Z1Z2(V1 - V2) + Z2Z3(V2 - V3) + Z3Z1(V3 - V1)}$$
(6)

$$V_0 = \frac{Z_1 V_1 (V_2 - V_3) + Z_2 V_2 (V_3 - V_1) + Z_3 V_3 (V_1 - V_2)}{Z_1 (V_2 - V_3) + Z_2 (V_3 - V_1) + Z_3 (V_1 - V_2)}$$
(7)

NOTE: Si Z_3 est considérée comme infinie (circuit ouvert idéal), les Equations 5), (6) et (7) ci-dessus donnent des divisions de l'infini par l'infini et sont donc interdites.

c) Mesure de l'impédance d'un résonateur à quartz Z_c

À partir de la tension mesurée avec un résonateur à quartz V_c , l'impédance Z_c du résonateur à quartz est calculée comme suit:

$$ZC = R T \frac{(V S - V C)}{(V C - V 0)}$$

$$\tag{8}$$

d) Procédure de mesure de f_1

À la fréquence de résonance à la charge, l'impédance d'un résonateur à quartz est

$$Z_{\rm CL} = R_{\rm L} + jX_{\rm C} \tag{9}$$

Pour la détermination de la fréquence de résonance à la charge, on recherche la plus petite fréquence f_L qui satisfait à l'Équation (2), c'est-à-dire:

$$X_{\rm C} + X_{\rm CL} = 0 \tag{10}$$

Avec des analyseurs de réseau, la fréquence f_{L} est facilement déterminée en utilisant des fonctions de «recherche de marqueurs».

e) Évaluation de $R_{\rm L}$

Le calcul de la résistance de résonance à la charge $R_{\rm L}$ à partir de la partie réelle de $Z_{\rm c}$ à la fréquence de résonance à la charge $f_{\rm L}$ par la formule:

$$R_{\rm L} = R_{\rm c}(\omega_{\rm L}) = {\rm Re}(Z_{\rm c}(\omega_{\rm L}))$$
(11)

peut entraîner une imprécision excessive, parce que – en particulier pour les résonateurs basse fréquence – l'angle de la tension V_c est proche de 90°.

Seulement pour $\frac{X_{CL}}{R_L}$ < 10 cette méthode donne des résultats raisonnables.

Dans tous les autres cas, il convient de calculer R_L à partir de l'équation donnée dans la CEI 60122-1:

 $R_{\rm L} = R_1 \left(1 + \frac{C_0}{C_{\rm L}} \right)^2 \tag{12}$

f) Procédure pour la mesure de C_{Leff}

La réactance $X_{c}(\omega_{nom})$ est mesurée à la fréquence nominale et la capacité de charge efficace C_{Leff} est ensuite calculée avec l'équation suivante:

$$C \text{Leff} = \frac{1}{\omega \text{nom } XC(\omega \text{nom})}$$
(13)

La Figure 2 représente X_{C} en fonction de la fréquence (ligne continue) au voisinage de f_{L} .

Figure 2 – X_{C} en fonction de la fréquence (ligne continue) au voisinage de f_{L}

g) Niveau d'excitation

À la fréquence de résonance f_r , le niveau d'excitation P d'un résonateur à quartz dans un circuit en π est donné par la tension V_{xr} aux bornes du résonateur

avec

$$P = \frac{V_{\rm xr}^2}{R_{\rm r}} \tag{14}$$

et

$$VXr = \frac{Vg Rr}{Rr + RT}$$
(15)

$$Vg = \sqrt{PRr} \frac{Rr + RT}{Rr}$$
(16)

60444-11 © CEI:2010

À la fréquence de résonance à la charge f_L , l'impédance Z_L d'un résonateur à quartz est donnée par la résistance de résonance à la charge R_L et le module de la réactance du condensateur de charge X_L :

$$|Z_{\rm L}| = \sqrt{R_{\rm L}^2 + X_{\rm L}^2}$$
(17)

et le niveau d'excitation est donc

$$P = \frac{V_{\rm xr}}{Z_{\rm L}}^2$$

$$V_{\rm gL} = \sqrt{\mathbf{P} \cdot \mathbf{R}_1} \cdot \sqrt{\frac{X_{\rm CL}^2 \left(1 + X_{\rm CL}^2 + (R_{\rm L} + R_{\rm T})^2\right)^2 + {R_{\rm L}}^2 \left((R_{\rm L} + R_{\rm T})^2 - 1\right)}{{R_{\rm L}}^2 + X_{\rm CL}}^2}$$
(18)

Afin d'obtenir le même niveau d'excitation pour la fréquence à la charge f_L que la fréquence de résonance série f_s , il est nécessaire d'augmenter la puissance de sortie du générateur du rapport suivant:

$$ABS\left[\frac{VgL}{Vgr}\right] = \sqrt{\frac{Rr}{RL}} \frac{\sqrt{(RL+RT)^2 + XCL^2}}{Rr+RT}$$
(19)

NOTE Si la puissance requise ne peut pas être atteinte par le générateur, une deuxième mesure est effectuée à la fréquence de résonance f_r avec un facteur de niveau inférieur $ABS\left(\frac{V_{gL}}{V_{gr}}\right)$ et la différence des deux mesures de résonance en série est ajoutée à la fréquence de résonance à la charge f_L .

4.3 Évaluation des erreurs

a) Remarques générales

Conformément à l'application de résonateurs à quartz dans les oscillateurs, la précision des mesures de la fréquence de résonance à la charge f_{L} est présentée ici. La précision de la capacité de charge C_{Leff} peut alors être calculée à partir de la précision de la fréquence et des paramètres équivalents du résonateur C_0 et C_1 à partir de la relation

$$\frac{f_{\rm L} - f_{\rm s}}{f_{\rm s}} = \frac{C_{\rm 1}}{2(C_{\rm 0} + C_{\rm L})} \tag{20}$$

b) Précision de mesure

La précision de la mesure est donnée par les résistances d'étalonnage et les tensions mesurées. Pour atteindre une précision des tensions de 1 %, il peut être nécessaire d'étalonner l'équipement d'essai sur toute la gamme de puissance.

- 24 -

Erreur de fréquence typ.: à CL 10 pF (S = -75,45 ppm/pF): ±16,1 ppm (équiv.: ±0,21 pF)

- 25 -

NOTE Exemple d'un résonateur à quartz de 11 MHz dans un boîtier HC-49/U.

Figure 5 – Erreur de C_L résultant d'une erreur de f_L (due à l'imprécision des tensions mesurées et des résistances d'étalonnage) pour le même résonateur à quartz que dans la Figure 4

c) Reproductibilité

Puisque la détermination de la fréquence à la charge est fondée sur une mesure de la tension, la reproductibilité de la mesure de $f_{\rm L}$ est influencée par le bruit.

En fonction du niveau de tension attendu, le bruit mesuré est directement proportionnel à la fréquence évaluée.

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

Pour améliorer la précision, il est recommandé d'utiliser des filtres de fréquence intermédiaire (FI) de largeurs de bande plus petites pour l'équipement mesuré et d'utiliser un signal moyenné.

Figure 6 – Erreur de fréquence due au bruit des tensions mesurées

Figure 7 – Erreur de la fréquence de résonance à la charge f_L à 30 pF et 10 pF pour des paramètres typiques équivalents des résonateurs à quartz

IEC 2360/10

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

Figure 8 – Erreur de C_{Leff} pour des paramètres typiques équivalents des résonateurs à quartz

d) Comparaison avec la méthode de la CEI 60444-4

L'imprécision de la mesure de la fréquence de résonance à la charge f_L selon la CEI 60444-4 est principalement donnée par l'imprécision des condensateurs de charge physiques qui sont souvent fortement dépendants de la fréquence.

La comparaison des mesures ([1]¹, [2], [5]) avec des résonateurs à quartz entre 4 MHz et 155 MHz a montré une imprécision de 1 % de C_{Leff}

L'imprécision sur la fréquence correspondante peut être calculée à partir de la formule (20).

L'imprécision pour des résonateurs à quartz fondamentaux avec une valeur de C_1 élevée est inférieure à 5 ppm avec la méthode normalisée présentée ici et peut atteindre 20 ppm avec la méthode de la CEI 60444-4.

Plusieurs séries de mesures comparatives ([1], [2]) ont prouvé que la reproductibilité entre différents systèmes d'essai utilisant la méthode normalisée est bien meilleure que celle utilisant la méthode de la CEI 60444-4.

e) Limitations

Cette méthode ne doit pas être utilisée pour des mesures de vieillissement ni pour des mesures de résonance à la charge dans la gamme de températures parce que les mesures présentent toujours une incertitude.

Lors d'une diminution de l'activité, la méthode décrite peut donner des résultats inacceptables et il convient donc de procéder avec soin.

Si des tolérances de fréquences strictes sur f_L sont requises dans une application, il est recommandé de déterminer la valeur C_L efficace du circuit d'application par une mesure de corrélation.

Généralement, l'erreur de f_L devient grande lorsque C_L est inférieur à 10 pF ou 2 × C_0 .

¹ Les chiffres entre crochets se réfèrent à la bibliographie.

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

Bibliographie

- [1] NEUBIG, Bernd: *PI-Network Measurement of the Load Resonance Frequency without Load Capacitor,* Proc. 4th European Frequency and Time Forum (EFTF), pp.481-486, 1990
- [2] ZIMMERMANN, Rolf: Messung der Lastresonanzfrequenz von Schwingquarzen ohne physikalische Lastkapazität, Report Tele Quarz, 31.3.1995
- [3] ROSE, Dwane: Load Resonant Measurements of Quartz Crystals, www.saundersassoc.com
- [4] LEE, Arthur and CHAN, K.: Direct Impedance Method for Load Resonant Measurement of Crystals; Proc. 21st Piezoelectric Devices Conference & Exhibition, 1999
- [5] VAN HERWIJNEN, M.and SOHRE, Frieder K.C.: Load-Resonance Measurement Accuracy of Ceramic Surface Mount Quartz Crystals, Proc. 14th European Frequency and Time Forum (EFTF), 2002

Copyrighted material licensed to BR Demo by Thomson Reuters (Scientific), Inc., subscriptions.techstreet.com, downloaded on Nov-28-2014 by James Madison. No further reproduction or distribution is permitted. Uncontrolled when print

INTERNATIONAL ELECTROTECHNICAL COMMISSION

3, rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland

Tel: + 41 22 919 02 11 Fax: + 41 22 919 03 00 info@iec.ch www.iec.ch