

Edition 1.0 2009-05

INTERNATIONAL STANDARD

NORME INTERNATIONALE

GROUP SAFETY PUBLICATION

PUBLICATION GROUPÉE DE SÉCURITÉ

Tests for electric cables under fire conditions – Circuit integrity – Part 1: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter exceeding 20 mm

Essais pour câbles électriques soumis au feu – Intégrité des circuits – Partie 1: Méthode d'essai au feu avec chocs pour les câbles de tension assignée au plus égale à 0,6/1,0 kV et de diamètre externe supérieur à 20 mm, à une température d'au moins 830 °C

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2009 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.

Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch

Email: inmail@iec.c Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

Catalogue of IEC publications: www.iec.ch/searchpub

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.

■ IEC Just Published: <u>www.iec.ch/online_news/justpub</u>

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

■ Customer Service Centre: <u>www.iec.ch/webstore/custserv</u>

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: csc@iec.ch Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00

A propos de la CEI

La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI

Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

■ Catalogue des publications de la CEI: <u>www.iec.ch/searchpub/cur_fut-f.htm</u>

Le Catalogue en-ligne de la CEI vous permet d'effectuer des recherches en utilisant différents critères (numéro de référence, texte, comité d'études,...). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.

Just Published CEI: www.iec.ch/online_news/justpub

Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles publications parues. Disponible en-ligne et aussi par email.

■ Electropedia: <u>www.electropedia.org</u>

Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International en ligne.

Service Clients: www.iec.ch/webstore/custserv/custserv_entry-f.htm

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du Service clients ou contactez-nous:

Email: csc@iec.ch Tél.: +41 22 919 02 11 Fax: +41 22 919 03 00

Edition 1.0 2009-05

INTERNATIONAL STANDARD

NORME INTERNATIONALE

GROUP SAFETY PUBLICATION

PUBLICATION GROUPÉE DE SÉCURITÉ

Tests for electric cables under fire conditions – Circuit integrity – Part 1: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter exceeding 20 mm

Essais pour câbles électriques soumis au feu – Intégrité des circuits – Partie 1: Méthode d'essai au feu avec chocs pour les câbles de tension assignée au plus égale à 0,6/1,0 kV et de diamètre externe supérieur à 20 mm, à une température d'au moins 830 °C

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE
CODE PRIX

Τ

ICS 29.060.20; 29.020; 13.220.40

CONTENTS

FO	REW	ORD	4
INT	ROD	UCTION	6
1	Scop	pe	7
2	Norn	native references	7
3	Term	ns and definitions	8
4	Test	conditions – Test environment	8
5	Test	apparatus	8
	5.1	Test equipment	8
	5.2	Test ladder and mounting	
	5.3	Source of heat	
		5.3.1 Burner	12
		5.3.2 Flow meters and flow rates	13
		5.3.3 Verification	
	5.4	Shock producing device	
	5.5	Positioning of source of heat	
	5.6	Continuity checking arrangements	
6	5.7	Fusesspecimen	
O		Test specimen preparation	
	6.1 6.2	Test specimen preparation	
7		procedure	
•	7.1	Test equipment and arrangement	
	7.1	Electrical connections	
	7.3	Flame and shock application	
	7.4	Electrification	
8	Perf	ormance requirement	20
	8.1	Flame application time	20
	8.2	Acceptance criteria	20
9	Rete	st procedure	20
10	Test	report	20
11	Cabl	e marking	20
Anr	nex A	(normative) Verification procedure for the source of heat	21
Anr	nex B	(informative) Guidance on the choice of recommended test apparatus	23
Bib	liogra	phy	24
	Ū		
Fig	ure 1	Schematic diagram of test configuration	9
_		– Plan view of fire test equipment	
		– End elevation of fire test equipment (not to scale)	
_		Typical rubber bush for supporting the test ladder	
_		- Burner face	
_		Schematic diagram of an example of a burner control system using	
		rs	14
		 Example of method of mounting a larger diameter test specimen for test 	

Figure 8 – Detailed section of adjustable position of vertical ladder elements for	
mounting a smaller diameter test specimen for test	17
·	
Figure 9 – Basic circuit diagram	19
Figure A.1 – Temperature measuring arrangement	21

INTERNATIONAL ELECTROTECHNICAL COMMISSION

TESTS FOR ELECTRIC CABLES UNDER FIRE CONDITIONS – CIRCUIT INTEGRITY –

Part 1: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter exceeding 20 mm

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60331-1 has been prepared by IEC technical committee 20: Electric cables.

This first edition of IEC 60331-1 cancels and replaces IEC 60331-12 (2002) and IEC 60331-31 (2002) to form one single standard.

The text of this standard is based on the following documents:

FDIS	Report on voting
20/1049/FDIS	20/1053/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

It has the status of a group safety publication in accordance with IEC Guide 104.

A list of all the parts in the IEC 60331 series, under the general title *Tests for electric cables under fire conditions – circuit integrity*, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

INTRODUCTION

IEC 60331 consists of the following parts under the general title: *Tests for electric cables under fire conditions – Circuit integrity:*

- Part 1: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter exceeding 20 mm
- Part 2: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter not exceeding 20 mm
- Part 3: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV tested in a metal enclosure
- Part 11: Apparatus Fire alone at a flame temperature of at least 750 °C
- Part 21: Procedures and requirements Cables of rated voltage up to and including 0,6/1,0 kV
- Part 23: Procedures and requirements Electric data cables
- Part 25: Procedures and requirements Optical fibre cables

NOTE Parts 21, 23 and 25 relate to fire-only conditions at a flame temperature of at least 750 °C.

Since its first edition (1970), IEC 60331 has been extended and has introduced a range of test apparatus in order that a test may be carried out on large and small power, control, data and optical fibre cables.

Successful tests carried out in accordance with this standard will enable an identification to be marked on the product.

TESTS FOR ELECTRIC CABLES UNDER FIRE CONDITIONS – CIRCUIT INTEGRITY –

Part 1: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter exceeding 20 mm

1 Scope

This part of IEC 60331 specifies the test apparatus and procedure and gives the performance requirements, including recommended flame application times, for low voltage power cables of rated voltage up to and including 0,6/1,0 kV and control cables with a rated voltage which are required to maintain circuit integrity when subject to fire and mechanical shock under specified conditions. It is intended for use when testing cables of greater than 20 mm overall diameter.

NOTE 1 Cables of smaller diameter should be tested using the apparatus, procedure and requirements of IEC 60331-2.

This standard describes the means of test specimen preparation, the continuity checking arrangements, the electrical testing procedure, the method of burning the cables and the method of shock production, and gives requirements for evaluating test results.

NOTE 2 Although the scope is restricted to cables with rated voltage up to and including 0,6/1,0 kV, the procedure may be used, with the agreement of the manufacturer and the purchaser, for cables with rated voltage up to and including 3,3 kV, provided that suitable fuses are used.

Annex A provides the method of verification of the burner and control system used for the test.

Requirements are stated for an identification that may optionally be marked on the cable to signify compliance with this standard.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60584-1, Thermocouples - Part 1: Reference tables

IEC 60269-3, Low-voltage fuses - Part 3: Supplementary requirements for fuses for use by unskilled persons (fuses mainly for household and similar applications) - Examples of standardized systems of fuses A to F

IEC Guide 104, The preparation of safety publications and the use of basic safety publications and group safety publications

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

circuit integrity

ability of an electric cable to continue to operate in a designated manner whilst subjected to a specified flame source for a specified period of time under specified conditions.

4 Test conditions - Test environment

The test shall be carried out in a suitable chamber, of minimum volume 10 m³, with facilities for disposing of any noxious gases resulting from burning. Sufficient ventilation shall be available to sustain the flame for the duration of the test.

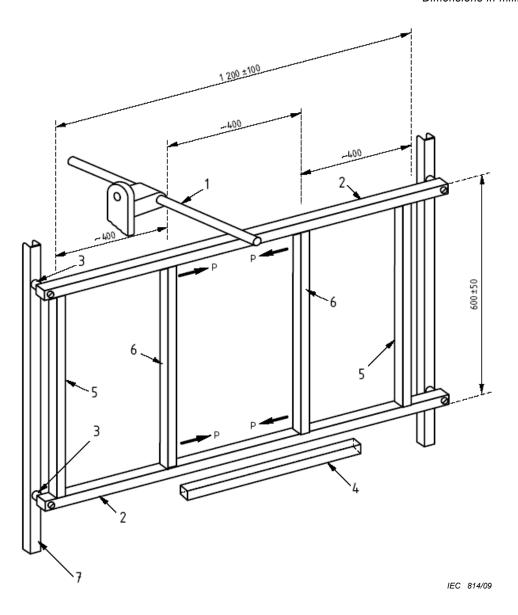
NOTE 1 Guidance on the choice of suitable chambers is given in Annex B.

The chamber and test apparatus shall be at a temperature of between 10 °C and 40 °C at the start of each test.

The same ventilation and shielding conditions shall be used in the chamber during both the verification and cable test procedures.

NOTE 2 The test given in this standard may involve the use of dangerous voltages and temperatures. Suitable precautions should be taken against the risk of shock, burning, fire and explosion that may be involved, and against any noxious fumes that may be produced.

5 Test apparatus

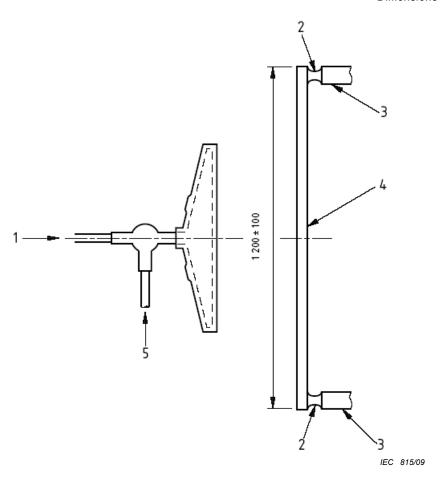

5.1 Test equipment

The test equipment shall consist of the following:

- a) a test ladder, on to which the test specimen is mounted, comprising a steel framework fastened to a rigid support as described in 5.2;
- b) a source of heat comprising a horizontally mounted ribbon burner as described in 5.3;
- c) a shock-producing device as described in 5.4;
- d) a test wall equipped with thermocouples for verification of the source of heat as described in Annex A.
- e) a continuity checking arrangement as described in 5.6
- f) fuses as described in 5.7

A general arrangement of the test equipment is shown in Figures 1, 2 and 3.

Dimensions in millimetres

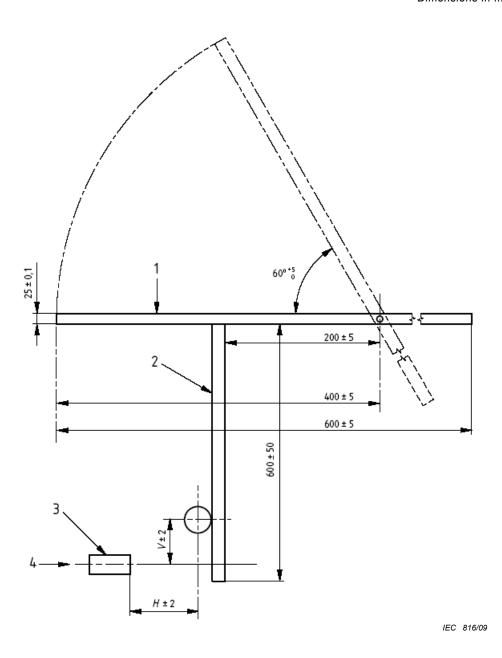

ĸ	^	.,
n	U	ν

4

- 1 shock producing device 5 fixed vertical elements of test ladder
- 2 steel test ladder 6 adjustable vertical elements of test ladder
- 3 rubber bush 7 RIGID support framework
 - ribbon gas burner P plane of adjustment

Figure 1 – Schematic diagram of test configuration

Dimensions in millimetres



Key

- 1 entry for air
- 2 rubber bush
- 3 support framework
- 4 horizontal steel test ladder
- 5 entry for propane gas

Figure 2 - Plan view of fire test equipment

Dimensions in millimetres

Key

- 1 shock producing device
- 2 steel test ladder
- ${\it H}$ horizontal distance of metal enclosure centre line from burner face
- V vertical distance of metal enclosure centre line from centre line of burner
- 3 gas burner
- 4 centre line of burner face

Figure 3 – End elevation of fire test equipment (not to scale)

5.2 Test ladder and mounting

The test ladder shall consist of a steel framework as shown in Figure 1. The two central vertical elements of the ladder shall be adjustable in order to accommodate different sizes of cable under test. The test ladder shall be (1 200 \pm 100) mm long and (600 \pm 50) mm high, and the total mass of the test ladder shall be (18 \pm 1) kg. Ballast, if required, shall be placed on the steel supports.

NOTE 1 Angle iron approximately 45 mm wide and 6 mm thick, with suitable slots cut to allow for fixing of the bolts or saddles, has been found to be a suitable material for construction of the ladder.

Each horizontal element shall have a mounting hole not more than 200 mm from each end, the exact position and diameter being determined by the particular supporting bush and supporting framework used. The test ladder shall be fastened to a rigid support by four bonded rubber bushes of hardness 50–60 Shore A fitted between the horizontal steel elements of the ladder and the support framework, as shown in Figures 1 and 2 so as to allow movement under impact.

NOTE 2 A typical rubber bush, which has been found to be suitable, is shown in Figure 4.

Dimensions in millimetres (dimensions without tolerances are approximate)

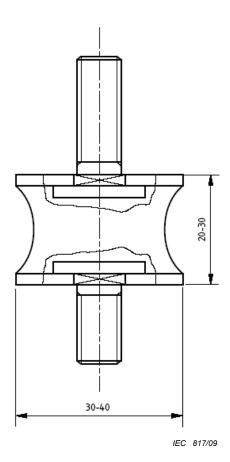
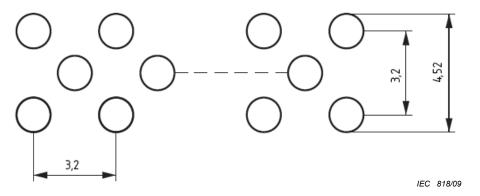


Figure 4 - Typical rubber bush for supporting the test ladder

5.3 Source of heat


5.3.1 Burner

The source of heat shall be a ribbon type propane gas burner with a nominal burner face length of 500 mm with a Venturi mixer. A centre-feed burner is recommended. The nominal burner

face width shall be 10 mm. The face of the burner shall have three staggered rows of drilled holes, nominally 1,32 mm in diameter and drilled at centres 3,2 mm from one another, as shown in Figure 5. Additionally, a row of small holes milled on each side of the burner plate, to serve as pilot holes for keeping the flame burning, is permitted.

Guidance on the choice of a recommended burner system is given in Annex B.

Dimensions in millimetres

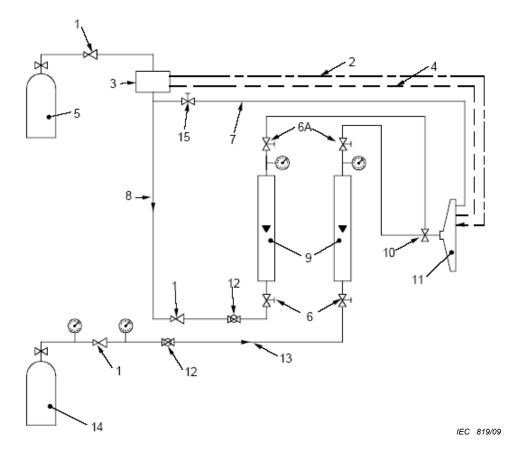
NOTE Round holes, 1,32 mm in diameter, on centres 3,2 mm from one another, staggered in three rows and centred on the face of the burner. Nominal burner face length 500 mm.

Figure 5 - Burner face

5.3.2 Flow meters and flow rates

Mass flow meters/controllers should be used as the means of controlling accurately the input flow rates of fuel and air to the burner.

NOTE 1 Rotameter type flow meters may be used as an alternative, but are not recommended. Guidance on their use, and the application of appropriate correction factors is given in IEC 60331-11:1999, Annex C.


NOTE 2 Figure 6 shows an example of a rotameter type system.

For the purposes of this test, the air shall have a dew point not higher than 0 °C.

The flow rates used for the test shall be as follows:

- air: (160 \pm 8) I/min at reference conditions (1 bar and 20 °C) or (3 267 \pm 163) mg/s ;
- propane: (10 ± 0.4) l/min at reference conditions (1 bar and 20 °C) or (319 \pm 13) mg/s;

NOTE 3 The purity of the propane is not defined. Industrial grades that contain impurities are allowed provided that the calibration requirements are achieved.

Key			
1	regulator	9	flowmeters
2	piezoelectric igniter	10	venturi mixer
3	flame failure device	11	burner
4	control thermocouples	12	ball valve
5	propane cylinder	13	air flow
6	screw valve (6A = alternative position)	14	compressed air cylinder
7	pilot feed	15	screw valve on pilot feed
8	gas flow		

Figure 6 – Schematic diagram of an example of a burner control system using rotameters

5.3.3 Verification

The burner and control system shall be subject to verification following the procedure given in Annex A.

5.4 Shock producing device

The shock producing device shall consist of a mild steel round bar $(25,0\pm0,1)$ mm in diameter and (600 ± 5) mm long. The bar shall be freely pivoted about an axis parallel to the test ladder, which shall be in the same horizontal plane as, and (200 ± 5) mm away from, the upper edge of the ladder. The axis shall divide the bar into two unequal lengths, the longer length being (400 ± 5) mm which shall impact the ladder. The bar shall drop under its own weight from an angle of $(60^{+5}_{0})^{\circ}$ to the horizontal to strike the upper edge of the ladder at its midpoint as shown in Figures 1 and 3.

5.5 Positioning of source of heat

The burner face shall be positioned in the test chamber so that it is at least 200 mm above the floor of the chamber, or any solid mounting block, and at least 500 mm from any chamber wall.

By reference to the centre point of the test specimen (cable) to be tested, the burner shall be positioned centrally at a horizontal distance of $(H \pm 2)$ mm from the burner face to the centre of the test specimen and at a vertical distance of $(V \pm 2)$ mm from the burner horizontal central plane to the centre of the test specimen, as shown in Figure 3.

The exact burner location to be used during cable testing shall be determined using the verification procedure given in Annex A, where the values of H and V to be used shall be determined.

NOTE The burner should be rigidly fixed to the framework during testing so as to prevent movement relative to the test specimen.

5.6 Continuity checking arrangements

During the test, a current for continuity checking shall be passed through all conductors of the test specimen. This shall be provided by a three-phase star connected or single-phase transformer(s) of sufficient capacity to maintain the test voltage up to the maximum leakage current allowable.

NOTE 1 Due note should be taken of the fuse characteristics when determining the power rating of the transformer.

This current shall be achieved by connecting, at the other end of the test specimen, a suitable load and an indicating device (e.g. lamp) to each conductor, or group of conductors.

NOTE 2 A current of 0,25 A at the test voltage, through each conductor or group of conductors, has been found to be suitable.

5.7 Fuses

Fuses used in the test procedure in Clause 7 shall be of type DII, complying with IEC 60269-3. Alternatively, a circuit-breaker with equivalent characteristics may be used.

Where a circuit-breaker is used, its equivalent characteristics shall be demonstrated by reference to the characteristic curve shown in IEC 60269-3.

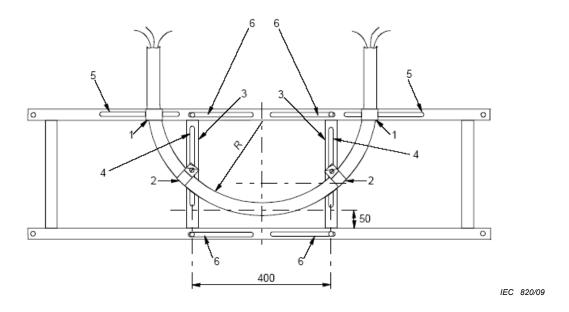
The test method using fuses shall be the reference method in the case of dispute.

6 Test specimen

6.1 Test specimen preparation

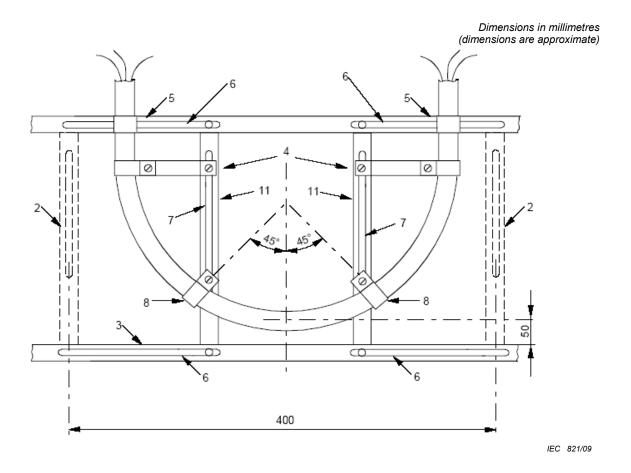
A cable sample at least 4,5 m long shall be available from the cable length for test. Each individual test specimen to be tested shall consist of a piece of cable, taken from the cable sample, not less than 1 500 mm long with approximately 100 mm of sheath or outer covering removed at each end.

At each end of the test specimen each conductor shall be suitably prepared for electrical connections, and the exposed conductors shall be spread apart to avoid contact with each other.


6.2 Test specimen mounting

The test specimen shall be bent to form an approximate arc of a circle. The internal radius of the bend shall be the manufacturer's declared minimum bending radius.

The test specimen shall be mounted centrally on the test ladder, as shown in Figure 7, using metal clips which shall be earthed. Two U-bolts on the upper horizontal element of the ladder are recommended, but P-clips made of metal strip (20 \pm 2) mm wide for cables from 20 mm up to 50 mm in diameter, and (30 \pm 3) mm wide for larger cables shall be used on the central vertical elements. The P-clips shall be formed so as to have approximately the same diameter as the test specimen under test.


If the test specimen is too small to be mounted on the central vertical elements when in the position shown in Figure 7, the vertical elements shall be equally moved towards the centre so that the specimen may be mounted as shown in Figure 8.

Dimensions in millimetres (dimensions are approximate)

Key 1 U-bolt 5 slot for U-bolt 2 P-clip 6 slot for movement of adjustable vertical elements 3 adjustable vertical elements R minimum bending radius of cable 4 slot for P-clip fixing

Figure 7 – Example of method of mounting a larger diameter test specimen for test

	ve y		
1	Adjustable position of vertical elements	5	U-bolt
2	Normal position of vertical elements	6	Slot for movement of adjustable vertical elements
3	B Lower horizontal element of test ladder	7	Slot for P-clip fixing
4	Additional clip to maintain cable arc (if required)	8	P-clip

Figure 8 – Detailed section of adjustable position of vertical ladder elements for mounting a smaller diameter test specimen for test

7 Test procedure

Kev

7.1 Test equipment and arrangement

The test procedure shall be carried out using the apparatus detailed in Clause 5.

Mount the test specimen on the test ladder and adjust the burner to the correct position relative to the test specimen in accordance with 5.5.

7.2 Electrical connections

At the transformer end of the test specimen, earth the neutral conductor and any protective conductors. Any metal screens, drain wire or metallic layer shall be interconnected and earthed. Connect the transformer(s) to the conductors, excluding any conductor which is

specifically identified as intended for use as a neutral or a protective conductor, as shown in the circuit diagram in Figure 9. Where a metallic sheath, armour or screen acts as a neutral or protective conductor, it shall be connected, as shown in the circuit diagram in Figure 9, as for a neutral or protective conductor.

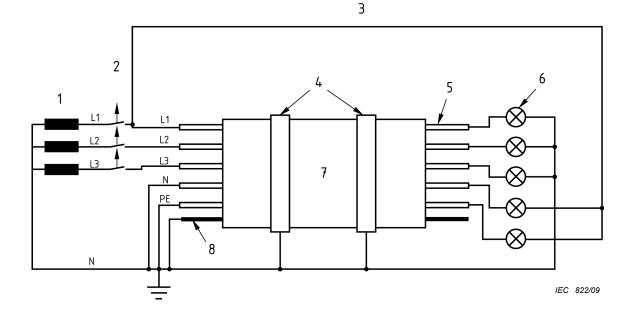
For single-, twin- or three-phase conductor cables, connect each phase conductor to a separate phase of the transformer(s) output with a 2 A fuse or circuit-breaker with equivalent characteristics in each phase.

For multicore cables that have four or more conductors (excluding any neutral or protective conductors), the conductors shall be divided into three roughly equal groups, ensuring that adjacent conductors are, as far as possible, in different groups.

For multipair cables, the conductors shall be divided into two equal groups, ensuring that the a-core of each pair is connected to one phase and the b-core of each pair is connected to another phase (L1 and L2 in Figure 9). Quads shall be treated as two pairs.

For multi-triple cables, the conductors shall be divided into three equal groups, ensuring that the a-core of each triple is connected to one phase, the b-core of each triple to another phase and the c-core of each triple to the third phase of the transformer (L1, L2 and L3 in Figure 9).

Connect the conductors of each group in series and connect each group to a separate phase of the transformer output with a 2 A fuse or circuit-breaker with equivalent characteristics in each phase.


NOTE 1 The above test procedure connects the neutral conductor to earth. This may not be appropriate if the cable is designed for use on a system where neutral is not earthed. If required by the cable standard, it is permissible for the neutral conductor to be tested as if it were a phase conductor. Where a metallic sheath, armour or screen acts as a neutral conductor, it shall always be connected to earth. Any such variations in methodology should be included in the test report.

NOTE 2 For cable constructions not specifically identified above, the test voltage should be applied, as far as is practicable, to ensure that adjacent conductors are connected to different phases.

NOTE 3 In certain cases, for example when testing a control cable using a three-phase transformer, it may not be possible to apply a test voltage between conductors and from conductor to earth equal to the rated voltage simultaneously. In such cases, either the test voltage between conductors, or the test voltage from conductor to earth shall be equal to the rated voltage, such that both the test voltage between conductors and the test voltage from conductor to earth is equal to or higher than the rated voltage.

At the end of the test specimen remote from the transformer:

- connect each phase conductor, or group of conductors, to one terminal of the load and indicating device (as described in 5.6), the other terminal being earthed;
- connect the neutral conductor and any protective conductor to one terminal of the load and indicating device (as described in 5.6), the other terminal being connected to L1 (or L2 or L3) at the transformer end (see Figure 9).

Key

L1, L2, L3	phase conductor (L2, L3 if present)		
N	neutral conductor (if present)		
PE	protective conductor (if present)		
1	transformer	5	test conductor or group
2	fuse, 2 A	6	load and indicating device
3	L1 or L2 or L3	7	test specimen
4	metal clips	8	metal screen (if present)

Figure 9 - Basic circuit diagram

7.3 Flame and shock application

Ignite the burner and adjust the propane and air flow rates to those obtained during the verification procedure (see Annex A).

Immediately after igniting the burner, activate the shock-producing device and start the test duration timer. The shock-producing device shall impact the ladder after 5 min \pm 10 s from activation and subsequently at 5 min \pm 10 s intervals. After each impact, the impacting bar shall be raised from the test ladder no more than 20 s after the impact.

7.4 Electrification

Immediately after starting the test duration timer, switch on the electricity supply and adjust the voltage to the rated voltage of the cable (subject to a minimum voltage of 100 V a.c.), i.e. the test voltage between conductors shall equal the rated voltage between conductors, and the test voltage from conductor to earth shall equal the rated voltage from conductor to earth.

The test shall continue for the flame application time given in 8.1, after which the flame shall be extinguished.

8 Performance requirement

8.1 Flame application time

The flame application time shall be as specified in the relevant cable standard. In the absence of such a standard, a flame and impact application time of 30 min, 60 min, 90 min or 120 min shall be chosen.

8.2 Acceptance criteria

With reference to the test procedure given in Clause 7, the cable possesses the characteristics for providing circuit integrity so long as during the course of the test

- the voltage is maintained, i.e. no fuse fails or circuit-breaker is interrupted,
- a conductor does not rupture, i.e. the lamp is not extinguished.

9 Retest procedure

In the event of a failure, as judged by the requirements of the relevant standard, two further test specimens, taken from the same cable sample, shall be tested. If both comply, the test shall be deemed successful.

10 Test report

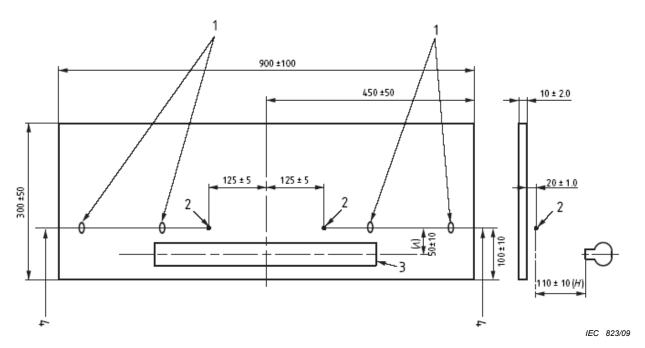
The test report shall include the following information:

- a) the number of this standard;
- b) a full description of the cable tested;
- c) the manufacturer of the cable tested;
- d) the test voltage;
- e) the actual cable bending radius used for the test;
- f) the actual performance requirement applied (by reference to Clause 8);
- g) the flame application time;
- h) the chamber volume and temperature at the start of the test.

11 Cable marking

If a cable is required to be marked to signify compliance with this standard, it shall be marked with the number of this standard and the duration of flame application, as follows: "IEC 60331-1 (XX)" where XX shall be the duration in minutes. The marking shall be in addition to any requirement of the cable standard.

Annex A (normative)


Verification procedure for the source of heat

A.1 Measuring equipment

The flame temperature shall be measured using two 1,5 mm mineral insulated, stainless steel sheathed thermocouples, type K to IEC 60584-1, mounted on the test wall as shown in Figure A.1. The thermocouple tips shall be $(20,0\pm1,0)$ mm in front of the test wall. The horizontal line of the thermocouples shall be (100 ± 10) mm above the bottom of the wall. The wall shall consist of a board of heat-resistant, non-combustible and non-metallic material (900 ± 100) mm long, (300 ± 50) mm high and (10 ± 2) mm thick.

Position the burner 100 mm to 120 mm horizontally from the thermocouple (H) and 40 mm to 60 mm vertically below the centre line of the thermocouples (V) as shown in Figure A.1.

Dimensions in millimetres (dimensions without tolerances are approximate)

Key

- 1 thermocouple supports
- 2 thermocouple tip
- 3 burner
- 4 1,5 mm type K sheathed thermocouples
- H horizontal distance of thermocouple tip from burner face
- V vertical distance of thermocouple tip from centre line of burner

Figure A.1 - Temperature measuring arrangement

A.2 Procedure

Ignite the burner and adjust the gas and air supplies to those given in 5.3.

Monitor the temperature as recorded by the thermocouples over a period of 10 min to ensure conditions are stable.

A.3 Evaluation

The verification procedure shall be considered satisfactory if:

- a) the mean of the averaged readings for each of the two thermocouples over the 10 min falls within the requirement of $(830 \, ^{+40}_{0})\,^{\circ}\text{C}$ and
- b) the difference of the averaged readings for each of the two thermocouples over the 10 min period does not exceed 40 $^{\circ}$ C.

At least one measurement shall be made every 30 s in order to obtain the average.

NOTE The actual method of obtaining the average thermocouple reading over the period is not specified, but it is recommended that a recorder with averaging facilities is used in order to damp the variability caused by point measurement.

If the verification is not successful, the flow rates shall be altered within the tolerances given in 5.3 and a further verification carried out.

A.4 Further verification

If the verification of Clause A.3 is not successful, the distances (H and V) between burner and thermocouples shall be altered (within the tolerance given in Clause A.1) and a further verification carried out.

If no successful verification can be achieved within the tolerances given, then the burner system shall be considered as incapable of providing the source of heat required by this standard.

A.5 Verification report

The position established for successful verification (H and V) and flow rates used shall be recorded.

Annex B (informative)

Guidance on the choice of recommended test apparatus

B.1 Burner and Venturi

A commercially available burner face meeting the recommendations of this standard is the AGF burner insert 11-55, and a suitable 500 mm burner, including the specified burner face, is the AGF, reference 1857B¹. A recommended Venturi mixer is the AGF 14-18.

The recommended burner and venturi are available from:

Pemfab 30 Indel Avenue PO Box 227 Rancocas New Jersey 08073-0227 USA

www.amgasfur.com or www.pemfab.com

B.2 Influence of draughts in the test chamber

Experience has shown that the flame geometry is influenced by any draughts in the test chamber and it is recommended that the burner be shielded from any draughts by the use of draught shields.

B.3 Guidance on provision of a suitable test chamber

The chamber shall have a sufficient volume such that fire effluents released during combustion do not alter the test conditions. Experience has shown a chamber similar to the "3 m cube" specified in IEC 61034-1 to be suitable, although other chambers of suitable volume may be used. Windows may be installed in the walls of the chamber in order to observe the behaviour of the cable during the test. Fume exhaust should be by means of a chimney located at least 1 m from the burner. A damper may be used for adjustment of ventilation conditions.

Air inlet to the chamber should be made through orifices located near the base of the chamber. Air inlets and an exhaust chimney should be located in such a way that the burner flame remains stable during the verification procedure and test.

¹ This information is given for the convenience of users of this standard and does not constitute an endorsement by IEC of the product named. Equivalent products may be used if they can be shown to lead to the same results.

Bibliography

IEC 60331-2, Tests for electric cables under fire conditions — Circuit integrity — Part 2: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter not exceeding 20 mm

IEC 60331-11:1999, Tests for electric cables under fire conditions – Circuit integrity – Part 11: Apparatus – Fire alone at a flame temperature of at least 750 °C

IEC 61034-1, Measurement of smoke density of cables burning under defined conditions – Part 1: Test apparatus

SOMMAIRE

AV.	ANT-	PROPOS	28
INT	ROD	UCTION	30
1	Dom	naine d'application	31
2	Réfé	erences normatives	31
3	Tern	nes et définitions	32
4	Con	ditions d'essai – Environnement de l'essai	32
5	App	areillage d'essai	32
	5.1	Équipement d'essai	
	5.2	Échelle d'essai et son montage	
	5.3	Source de chaleur	37
		5.3.1 Brûleur	37
		5.3.2 Débitmètres et débits	
		5.3.3 Vérification	
	5.4	Dispositif de production de chocs	
	5.5	Positionnement de la source de chaleur	
	5.6	Dispositif de contrôle de la continuité Fusibles	
6	5.7 Énra	puvette	
U	6.1	Préparation de l'éprouvette	
	6.2	Montage de l'éprouvette	
7		édure d'essai	
•	7.1	Équipement et dispositifs	
	7.1	Connections électriques	
	7.3	Application de la flamme et des chocs	
	7.4	Mise sous tension	
8	Exig	ence de performance	44
	8.1	Durée d'application de la flamme	44
	8.2	Critères d'acceptation	
9	Proc	edure de contre-essai	44
10	Rap	port d'essai	44
11	Mar	quage du câble	44
Anı	nexe .	A (normative) Procédure de vérification de la source de chaleur	45
		B (informative) Guide pour le choix d'appareillage recommandé	
		aphie	
Fia	ure 1	- Schéma de configuration de l'essai	33
_		 Vue en plan de l'équipement d'essai au feu 	
_		- Vue en élévation de l'équipement d'essai (non à l'échelle)	
_		Manchon amortisseur type en caoutchouc pour supporter l'échelle d'essai	
_		Face du brûleur	
_			37
		 Schéma d'un exemple de montage du système de contrôle du brûleur des débitmètres 	38
		Exemple de méthode de montage pour l'essai d'un échantillon de plus	
		amètre	40

Figure 8 – Section détaillée de la position ajustable des éléments verticaux de l'échelle	
pour le montage d'un échantillon d'un échantillon de plus petit diamètre4	41
Figure 9 – Schéma de base du circuit électrique	43
Figure A.1 – Disposition du système de mesure de la température4	45

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

ESSAIS POUR CÂBLES ÉLECTRIQUES SOUMIS AU FEU - INTÉGRITÉ DES CIRCUITS -

Partie 1: Méthode d'essai au feu avec chocs pour les câbles de tension assignée au plus égale à 0,6/1,0 kV et de diamètre externe supérieur à 20 mm, à une température d'au moins 830 °C

AVANT-PROPOS

- 1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI entre autres activités publie des Normes internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI intéressés sont représentés dans chaque comité d'études.
- 3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
- 4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
- 5) La CEI n'a prévu aucune procédure de marquage valant indication d'approbation et n'engage pas sa responsabilité pour les équipements déclarés conformes à une de ses Publications.
- 6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
- 7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de toute autre Publication de la CEI, ou au crédit qui lui est accordé.
- 8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications référencées est obligatoire pour une application correcte de la présente publication.
- 9) L'attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 60331-1 a été établie par le comité d'études 20 de la CEI: Câbles électriques.

Cette première édition de la CEI 60331-1 annule et remplace la CEI 60331-12 (2002) et la CEI 60331-31 (2002) pour établir une seule norme.

Le texte de cette norme est issu des documents suivants:

FDIS	Rapport de vote
20/1049/FDIS	20/1053/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant abouti à l'approbation de cette norme.

Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

Elle a le statut de publication groupée de sécurité en accord avec le Guide CEI 104.

Une liste de toutes les parties de la série CEI 60331, présentées sous le titre général *Essais* pour câbles électriques soumis au feu – intégrité des circuits, peut être consultée sur le site web de la CEI.

Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de maintenance indiquée sur le site web de la CEI sous "http://webstore.iec.ch" dans les données relatives à la publication recherchée. A cette date, la publication sera

- reconduite,
- supprimée,
- remplacée par une édition révisée, ou
- amendée.

INTRODUCTION

La CEI 60331 comprend les parties suivantes présentées sous le titre général: Essais pour câbles électriques soumis au feu – Intégrité des circuits:

- Partie 1: Méthode d'essai au feu avec chocs pour les câbles de tension assignée au plus égale à 0,6/1,0 kV et de diamètre externe supérieur à 20 mm, à une température d'au moins 830 °C
- Partie 2: Méthode d'essai au feu avec chocs pour les câbles de tension assignée au plus égale à 0,6/1,0 kV et de diamètre externe inférieur ou égal à 20 mm, à une température d'au moins 830 °C
- Partie 3: Méthode d'essai au feu pour les câbles de tension assignée au plus égale à 0,6/1,0 kV, essayés sous tube métallique avec chocs, à une température d'au moins 830 °C
- Partie 11: Appareillage Incendie seul avec flamme à une température d'au moins 750 °C
- Partie 21: Procédures et prescriptions Câbles de tension assignée jusque et y compris 0,6/1,0 kV
- Partie 23: Procédures et prescriptions Câbles électriques de données
- Partie 25: Procédures et prescriptions Câbles à fibres optiques

NOTE Les Parties 21, 23 et 25 décrivent uniquement les conditions d'essai avec une flamme à une température d'au moins 750 $^{\circ}$ C.

Depuis sa première édition (1970), la CEI 60331 a été élargie afin que l'appareillage d'essai puisse être utilisé pour les essais des petits et gros câbles d'énergie, de contrôle, de données et les câbles à fibres optiques.

Des essais satisfaisants réalisés conformément à la présente norme pourront permettre une identification sur le produit par un marquage.

ESSAIS POUR CÂBLES ÉLECTRIQUES SOUMIS AU FEU – INTÉGRITÉ DES CIRCUITS –

Partie 1: Méthode d'essai au feu avec chocs pour les câbles de tension assignée au plus égale à 0,6/1,0 kV et de diamètre externe supérieur à 20 mm, à une température d'au moins 830 °C

1 Domaine d'application

La présente partie de la CEI 60331 donne des précisions sur l'appareillage et la procédure d'essai et les exigences de performance, y compris des recommandations pour la durée des temps d'application de la flamme pour les câbles de puissance à basse tension, de tension assignée au plus égale à 0,6/1,0 kV, et les câbles de contrôle ayant une tension assignée, qui sont réputés conserver l'intégrité du circuit quand ils sont soumis à un incendie et à des chocs mécaniques dans des conditions spécifiées. Elle est prévue pour être utilisée pour essayer des câbles de diamètre externe supérieur à 20 mm.

NOTE 1 Pour les câbles de diamètre plus petit, il convient d'utiliser l'appareillage, la procédure et les exigences de la CEI 60331-2.

Cette norme décrit les moyens de préparation de l'éprouvette d'essai, les dispositions de contrôle de la continuité du circuit, la procédure d'essai électrique, la méthode pour brûler les câbles et la méthode de production des chocs, et indique les exigences pour évaluer les résultats d'essai.

NOTE 2 Bien que le domaine d'application soit limité aux câbles de tension assignée au plus égale à 0,6/1,0 kV, par accord entre client et fournisseur, la procédure peut être utilisée pour des câbles de tension assignée au plus égale à 3,3 kV à condition d'utiliser des fusibles appropriés.

L'Annexe A fournit la méthode de vérification du brûleur et le système de contrôle utilisé pour l'essai.

Les conditions requises sont indiquées pour une identification signifiant la conformité à la présente norme par un éventuel marquage sur le câble.

2 Références normatives

Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du document de référence s'applique (y compris les éventuels amendements).

CEI 60584-1, Couples thermoélectriques – Partie 1: Tables de référence

CEI 60269-3, Fusibles basse tension — Partie 3: Exigences supplémentaires pour les fusibles destinés à être utilisés par des personnes non qualifiées (fusibles pour usages essentiellement domestiques et analogues) — Exemples de systèmes de fusibles normalisés A à F

Guide CEI 104, Elaboration des publications de sécurité et utilisation des publications fondamentales de sécurité et publications groupées de sécurité

3 Termes et définitions

Pour les besoins du présent document, les termes et définitions suivants s'appliquent.

3.1

intégrité du circuit

aptitude du câble électrique à continuer de fonctionner de la façon prévue lorsqu'il est soumis à une source de flamme spécifiée pendant une durée spécifiée dans les conditions spécifiées.

4 Conditions d'essai - Environnement de l'essai

L'essai doit être effectué dans une chambre d'essai appropriée, de volume minimum de 10m³, pourvue de moyens d'évacuation des gaz nocifs résultants de la combustion. Une ventilation suffisante doit être disponible pour maintenir la flamme pendant la durée de l'essai.

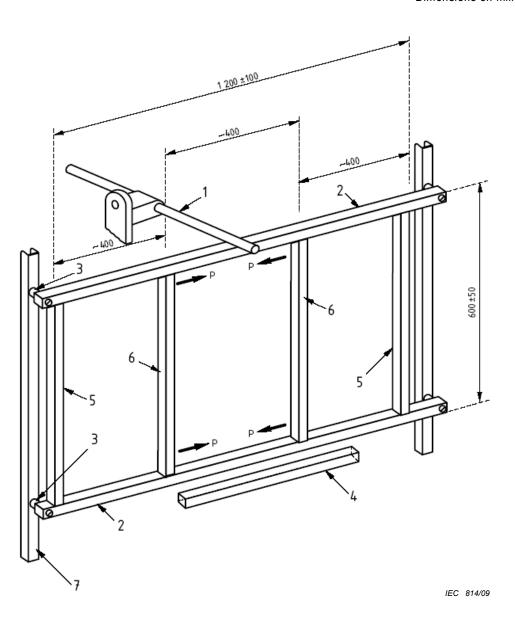
NOTE 1 Un guide pour le choix de chambres appropriées est donné en Annexe B.

La température de la chambre d'essai et de l'appareillage d'essai doit être comprise entre 10 °C et 40 °C au début de chaque essai.

Les conditions de ventilation et de protection utilisées au cours des procédures de contrôle et d'essai du câble doivent être identiques.

NOTE 2 L'essai indiqué dans la présente norme peut mettre en œuvre l'utilisation de tensions et de températures dangereuses. Il convient de prendre des précautions appropriées contre les risques de choc, de brûlure, de feu et d'explosion qui peuvent en résulter et contre toutes fumées nocives qui pourraient être générées.

5 Appareillage d'essai

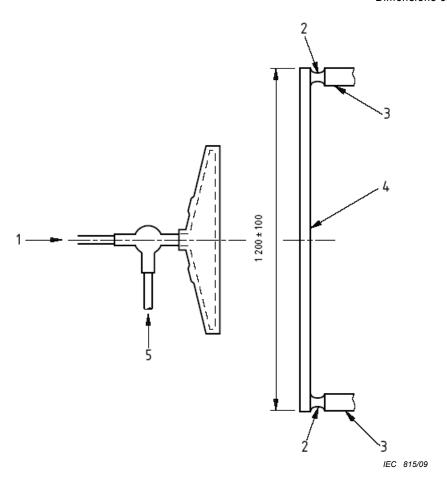

5.1 Équipement d'essai

L'équipement d'essai est constitué des éléments suivants:

- a) une échelle d'essai sur laquelle l'éprouvette d'essai est montée, comprenant un cadre en acier fixé à un support rigide tel que décrit en 5.2;
- b) une source de chaleur comprenant un brûleur de type ruban monté horizontalement comme décrit en 5.3;
- c) un dispositif de production de chocs comme décrit en 5.4;
- d) une paroi d'essai équipée de thermocouples pour la vérification de la source de chaleur comme décrit en Annexe A
- e) un dispositif de contrôle de la continuité comme décrit en 5.6;
- f) des fusibles comme décrit en 5.7.

Une disposition générale de l'équipement d'essai est représentée aux Figures 1, 2 et 3.

Dimensions en millimètres

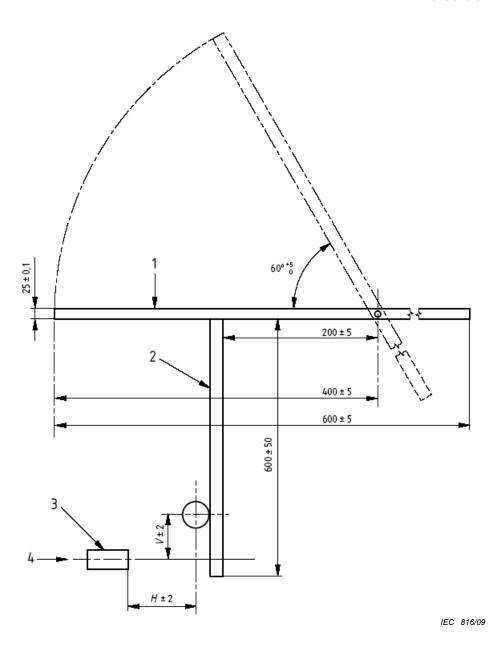


Légende

- 1 dispositif de production de chocs
- 2 échelle d'essai en acier
- 3 manchons amortisseurs en caoutchouc
- 4 brûleur à gaz du type à ruban
- 5 éléments verticaux de l'échelle d'essai
- 6 éléments verticaux amovibles de l'échelle d'essai
- 7 support rigide du dispositif d'essai
- P plan d'ajustement

Figure 1 - Schéma de configuration de l'essai

Dimensions en millimètres



Légende

- 1 arrivée de l'air
- 2 manchon amortisseur en caoutchouc
- 3 support rigide du dispositif d'essai
- 4 échelle d'essai horizontale en acier
- 5 arrivée du gaz propane

Figure 2 – Vue en plan de l'équipement d'essai au feu

Dimensions en millimètres

Légende

- 1 dispositif de production de chocs mécaniques
- 2 échelle d'essai en acier
- 3 brûleur à gaz
- 4 ligne centrale de la face avant du brûleur
- H distance horizontale de la face avant du brûleur au centre du câble en essai
- V distance verticale de l'axe central du brûleur à la ligne centrale du câble en essai.

Figure 3 – Vue en élévation de l'équipement d'essai (non à l'échelle)

5.2 Échelle d'essai et son montage

L'échelle d'essai doit être constituée d'un cadre métallique comme représenté à la Figure 1. Les deux éléments centraux verticaux de l'échelle doivent être amovibles afin de les adapter aux différentes tailles de câbles en essai. L'échelle d'essai doit avoir une longueur de $(1\ 200\ \pm\ 100)$ mm et une hauteur de $(600\ \pm\ 100)$ mm et la masse totale de l'échelle d'essai doit être de $(18\ \pm\ 1)$ kg. Si nécessaire, un lest doit être placé sur les supports en acier.

NOTE 1 L'utilisation de cornière d'acier de largeur approximative 45 mm et d'épaisseur approximative 6 mm, comportant des entailles appropriées afin de permettre la fixation des boulons et des pinces, s'est révélée être convenable pour la construction de l'échelle.

Chaque élément horizontal doit comporter un trou de montage situé au plus à 200 mm de chaque extrémité, la position exacte et le diamètre étant déterminés en fonction du type de manchon amortisseur et du type de cadre support utilisés. L'échelle d'essai doit être fixée à un support rigide à l'aide de quatre manchons amortisseurs en caoutchouc de dureté 50–60 Shore A placés entre les supports d'acier horizontaux de l'échelle et le cadre support, tel que représenté aux Figures 1 et 2, de façon à permettre son déplacement lors des chocs.

NOTE 2 Un manchon amortisseur typique en caoutchouc, qui s'est avéré être approprié, est présenté en Figure 4.

Dimensions en millimètres (les dimensions sans tolérance sont approximatives)

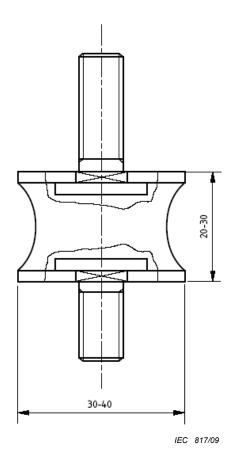
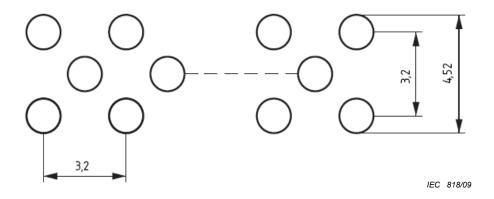


Figure 4 – Manchon amortisseur type en caoutchouc pour supporter l'échelle d'essai


5.3 Source de chaleur

5.3.1 Brûleur

La source de chaleur doit consister en un brûleur à gaz propane du type ruban, ayant une longueur nominale de la face du brûleur de 500 mm et muni d'un mélangeur Venturi. Il est recommandé d'utiliser un brûleur à alimentation centrale. La largeur nominale de la face du brûleur doit être de 10 mm. La face active du brûleur doit comporter trois rangées en quinconce, de diamètre nominal de 1,32 mm et dont les centres de perçage sont espacés l'un de l'autre de 3,2 mm, comme représenté à la Figure 5. De plus, une rangée de petits trous disposés de chaque côté de la plaque du brûleur est autorisée, afin de servir de trous pilotes pour que la flamme continue de brûler.

Un quide pour le choix d'un système de brûleur recommandé est donné en Annexe B.

Dimensions en millimètres

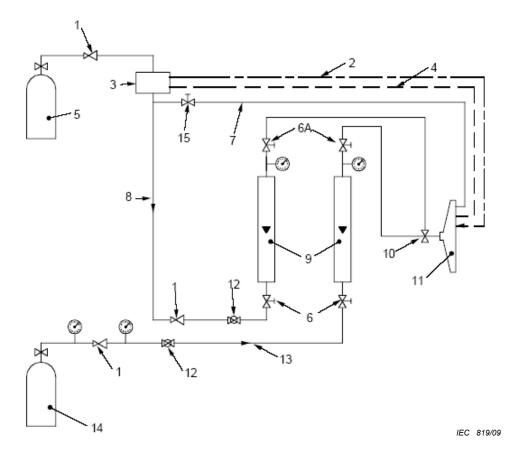
NOTE Trous ronds de 1,32 mm de diamètre placés en quinconce à 3,2 mm de distance l'un de l'autre sur trois rangées et centrés sur la face avant du brûleur. Longueur nominale de la face du brûleur 500 mm

Figure 5 - Face du brûleur

5.3.2 Débitmètres et débits

Il convient d'utiliser des débitmètres massiques comme moyen de contrôle exact des débits d'entrée de combustible et d'air au brûleur.

NOTE 1 Des débitmètres à flotteur peuvent être utilisés en variante, mais ils ne sont pas recommandés. Des indications concernant leur utilisation et l'application des facteurs de correction sont donnés dans la CEI 60331-11:1999, Annexe C.


NOTE 2 La Figure 6 représente un exemple d'un système de contrôle utilisant des débitmètres à flotteur.

Pour les besoins du présent essai, le point de rosée de l'air ne doit pas être supérieur à 0 °C.

Les débits utilisés pour l'essai doivent être les suivants:

- air: (160 ± 8) l/min dans les conditions de référence (1 bar et 20 °C) ou (3 267 \pm 163) mg/s;
- propane (10.0 ± 0.4) l/min dans les conditions de référence (1 bar et 20 °C) ou (319 ± 13) mg/s.

NOTE 3 La pureté du propane n'est pas définie. Des qualités industrielles qui contiennent des impuretés sont permises à condition que les exigences d'étalonnage soient réalisées.

Légende

- 1 régulateur
- 2 allumeur piézo-électrique
- 3 sécurité de coupure de flamme
- 4 thermocouples de contrôle
- 5 bouteille de propane
- 6 vanne à pointeau (6A = position alternative)
- 7 alimentation de la flamme pilote
- 8 alimentation en gaz

- 9 débitmètres à flotteur
- 10 mélangeur Venturi
- 11 brûleur
- 12 vanne à bille
- 13 alimentation en air
- 14 bouteille d'air comprimé
- 15 vanne à pointeau sur l'alimentation de la flamme pilote

Figure 6 – Schéma d'un exemple de montage du système de contrôle du brûleur utilisant des débitmètres

5.3.3 Vérification

Le brûleur et le système de contrôle doivent être soumis à vérification en suivant la procédure donnée en Annexe A.

5.4 Dispositif de production de chocs

Le dispositif de production de chocs doit être constitué d'une barre ronde en acier doux de diamètre $(25,0\pm0,1)$ mm et de longueur (600 ± 5) mm. La barre doit pivoter librement autour d'un axe parallèle à l'échelle d'essai. Cet axe doit être situé dans le même plan horizontal que le bord supérieur de l'échelle d'essai et à (200 ± 5) mm de celui-ci. L'axe doit diviser la barre en deux parties inégales, la partie la plus longue, qui doit heurter l'échelle d'essai, est de (400 ± 5) mm. La barre doit tomber sous l'effet de son propre poids en formant un angle de

 $(60^{+5}_{0})^{\circ}$ par rapport à l'horizontale pour frapper l'échelle d'essai en son milieu comme présenté aux Figures 1 et 3.

5.5 Positionnement de la source de chaleur

La face du brûleur doit être positionnée dans la chambre d'essai de telle façon qu'elle soit au moins à 200 mm au-dessus du sol de la chambre d'essai, ou de tout bloc de montage massif, et à au moins 500 mm de toute paroi de la chambre d'essai.

Par rapport au point central de l'éprouvette (câble) à essayer, le brûleur doit être positionné au centre, à une distance horizontale de $(H\pm2)$ mm de la face du brûleur et le centre de l'éprouvette et à une distance verticale de $(V\pm2)$ mm du plan horizontal central du brûleur et le centre de l'éprouvette, comme représenté à la Figure 3.

La position exacte du brûleur à utiliser pendant l'essai de câble doit être déterminée lors de la procédure de vérification donnée en Annexe A, au cours de laquelle les valeurs de V et H à utiliser doivent être déterminées.

NOTE 2 Il convient que la fixation du brûleur pendant l'essai soit rigide afin de prévenir tout mouvement relatif par rapport à l'éprouvette.

5.6 Dispositif de contrôle de la continuité

Pendant l'essai, un courant doit circuler dans toutes les âmes conductrices de l'éprouvette afin de vérifier la continuité. Celui-ci doit être fourni par un transformateur triphasé connecté en étoile ou d'un (ou de) transformateur(s) monophasé(s), d'une puissance suffisante pour maintenir la tension d'essai jusqu'au courant de fuite maximal autorisé.

NOTE 1 Il convient de prendre en compte les caractéristiques des coupe-circuit à fusibles lors de la détermination de la puissance assignée du transformateur.

À l'autre extrémité de l'échantillon, une charge appropriée et un dispositif de signalisation (par exemple une lampe) doivent être connectés à chaque âme conductrice, ou groupe d'âmes pour obtenir ce courant.

NOTE 2 Un courant de 0,25 A à la tension d'essai, circulant dans chaque conducteur, ou groupe de conducteurs a été jugé approprié.

5.7 Fusibles

Les fusibles utilisés dans la procédure d'essai de l'Article 7 doivent être du type DII, conformément à la CEI 60269-3. Un disjoncteur de caractéristiques équivalentes peut être utilisé en alternative.

Lorsqu'un disjoncteur est utilisé, il doit être démontré que ses caractéristiques sont équivalentes en se référant à la courbe de caractéristiques donnée dans la CEI 60269-3.

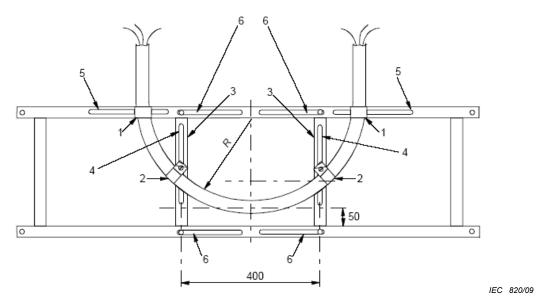
En cas de désaccord, la méthode utilisant des fusibles doit être la méthode de référence.

6 Éprouvette

6.1 Préparation de l'éprouvette

A partir de la longueur de câble à essayer, un échantillon de câble d'au moins 4,5 m de long doit être disponible. Prélever sur la longueur échantillon de câble chaque éprouvette à essayer qui doit être constituée d'un tronçon de câble d'une longueur d'au moins 1 500 mm, dont chaque extrémité est dépouillée de la gaine ou autre revêtement sur une longueur approximative 100 mm.

Les extrémités des âmes de chaque coté de l'éprouvette doivent être convenablement préparées pour réaliser les connections électriques, les extrémités des âmes dénudées doivent être écartées pour éviter tout contact entre elles.

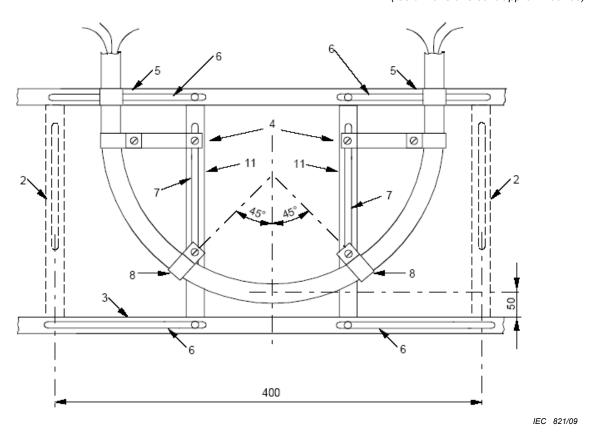

6.2 Montage de l'éprouvette

L'éprouvette doit être courbée afin de former approximativement un arc de cercle. Le rayon interne de la courbure doit être égal au rayon de courbure minimal déclaré par le fabricant.

L'éprouvette doit être montée au centre de l'échelle d'essai, comme indiqué à la Figure 7, à l'aide de pinces métalliques qui doivent être mises à la terre. Sur l'élément horizontal supérieur de l'échelle, il est recommandé d'utiliser des fixations en forme de "U". Sur les éléments centraux verticaux des pinces métalliques en forme de "P" de largeur (20 ± 2) mm pour les câbles de diamètre de 20 mm à 50 mm, et de largeur (30 ± 3) mm pour les câbles de diamètre supérieur doivent être utilisées. Les pinces en forme de "P" doivent être façonnées de façon à avoir approximativement le même diamètre que le câble en essai.

Si l'éprouvette est trop petite pour être montée sur les éléments centraux verticaux lorsqu'ils sont dans la position indiquée à la Figure 7, les éléments verticaux doivent être déplacés symétriquement par rapport au centre afin que l'éprouvette puisse être montée comme indiqué à la Figure 8.

Dimensions en millimètres (les dimensions sont approximatives)



Légende

- 1 pince de fixation en U
- 2 pince de fixation en P
- 3 élément vertical amovible
- 4 entaille pour fixation des pinces en P
- entaille pour fixation des pinces en U
- 6 entaille pour mouvement des éléments amovibles verticaux
- R rayon de courbure minimum du câble

Figure 7 – Exemple de méthode de montage pour l'essai d'un échantillon de plus grand diamètre

Dimensions en millimètres (les dimensions sont approximatives)

Légende

2

1	Position	aiustable d	le l'élément	vertical	5	Pince de fixation en U
	1 03111011	ajustable t	ie i elellielli	verticai	J	I IIICE UE IIXALIUII EII U

- Position normale des éléments verticaux 6 Entaille pour mouvement des éléments amobibles verticaux
- Élément horizontal inférieur de l'échantillon 7 Entaille pour fixation des pinces en P de l'échelle d'essai
- Attache additionnelle pour maintenir le 8 Pince de fixation en P

câble courbé (si exigé)

Figure 8 – Section détaillée de la position ajustable des éléments verticaux de l'échelle pour le montage d'un échantillon d'un échantillon de plus petit diamètre

7 Procédure d'essai

7.1 Équipement et dispositifs

La procédure d'essai doit être réalisée en utilisant l'appareillage décrit à l'Article 5.

Monter l'éprouvette sur l'échelle d'essai et ajuster la position correcte du brûleur en fonction de l'éprouvette conformément au 5.5.

7.2 Connections électriques

À l'extrémité de l'éprouvette d'essai coté transformateur, mettre à la terre le conducteur de neutre et tout conducteur de protection. Les écrans métalliques éventuels, fil de continuité ou couche métallique, doivent être connectés ensemble et mis à la terre. Relier le ou les transformateurs aux conducteurs, en excluant tout conducteur spécifiquement identifié comme étant prévu pour être utilisé comme conducteur de neutre ou de protection, comme cela est présenté dans le schéma électrique en Figure 9. Lorsqu'une gaine métallique, une armure ou un écran agit comme un conducteur de neutre ou de protection, celui-ci doit être connecté comme cela est présenté dans le schéma électrique en Figure 9 de la même manière qu'un conducteur de neutre ou de protection.

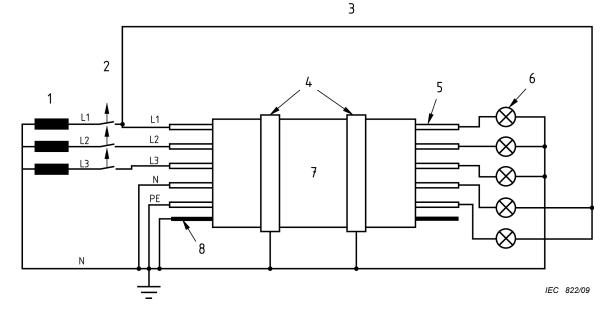
Pour les câbles monophasés, biphasés ou triphasés, relier chaque conducteur de phase à une phase distincte de la sortie du ou des transformateurs par l'intermédiaire d'un fusible de 2 A ou d'un disjoncteur ayant des caractéristiques équivalentes à celles du fusible.

Pour les câbles multiconducteurs comportant quatre conducteurs ou plus (à l'exception de tout conducteur de neutre ou de protection), les conducteurs doivent être divisés en trois groupes à peu près égaux, en s'assurant autant que possible que les conducteurs adjacents sont dans des groupes différents.

Pour les câbles multipaires, les conducteurs doivent être divisés en deux groupes égaux, en s'assurant que le conducteur "a" de chaque paire est relié à une phase et que le conducteur "b" de chaque paire est relié à une autre phase (L1 et L2 de la Figure 9). Les quartes doivent être traitées comme deux paires.

Pour les câbles multitierces, les conducteurs doivent être divisés en trois groupes égaux, en s'assurant que le conducteur "a" de chaque tierce est relié à une phase, le conducteur "b" de chaque tierce à une autre phase et le conducteur "c" de chaque tierce à la troisième phase du transformateur (L1, L2 et L3 de la Figure 9).

Relier les conducteurs de chaque groupe en série et relier chaque groupe à une phase séparée de la sortie du transformateur en série avec un fusible de 2 A ou un disjoncteur ayant des caractéristiques équivalentes dans chaque phase.


NOTE 1 Dans la procédure ci-dessus le conducteur de neutre est relié à la terre. Ceci peut ne pas être approprié si le câble est conçu pour être utilisé dans un système où le neutre n'est pas relié à la terre. Si cela est exigé par la norme du câble, il est admissible que le conducteur de neutre soit essayé comme s'il s'agissait d'un conducteur de phase. Lorsqu'une gaine métallique, une armure ou un écran joue le rôle de conducteur de neutre, il doit toujours être relié à la terre. Il convient d'indiquer dans le rapport d'essai de telles modifications dans la méthodologie.

NOTE 2 Pour les constitutions de câbles non spécifiquement identifiées ci-dessus, il convient d'appliquer la tension d'essai, autant que faire se peut, pour s'assurer que les conducteurs adjacents soient connectés à des phases distinctes.

NOTE 3 Dans certains cas, par exemple lorsque l'on essaye des câbles de contrôle avec un transformateur à trois phases, il peut ne pas être possible d'appliquer simultanément la tension d'essai égale à la tension assignée entre conducteurs et entre un conducteur et la terre. Dans de tels cas, soit la tension d'essai entre conducteurs, soit la tension d'essai entre un conducteur et la terre doit être égale à la tension assignée, ainsi dans les deux cas, la tension d'essai entre conducteurs et la tension d'essai entre un conducteur et la terre sera égale ou supérieure à celle de la tension assignée.

À l'extrémité de l'éprouvette éloignée du transformateur:

- relier chaque conducteur, ou groupe de conducteurs, à l'une des extrémités de la charge et du dispositif de signalisation (tel que décrit au 5.6), l'autre extrémité étant mise à la terre;
- relier le conducteur de neutre, et tout conducteur de protection, à l'une des extrémités de la charge et du dispositif de signalisation (tel que décrit au 5.6), l'autre extrémité étant connectée à L1 (ou L2 ou L3) à la sortie du transformateur (voir Figure 9).

Légende

-			
L1, L2, L3	conducteurs de phase (L2, L3 s'ils existent)		
N	conducteur de neutre (s'il existe)		
PE	conducteur de protection (s'il existe)		
1	transformateur	5	conducteur ou groupe de conducteurs
2	fusibles 2 A	6	charge et système indicateur
3	connexion à la phase L1 ou L2 ou L3	7	éprouvette
4	clips de fixation métalliques	8	écran métallique

Figure 9 – Schéma de base du circuit électrique

7.3 Application de la flamme et des chocs

Allumer le brûleur et ajuster les débits de propane et d'air aux valeurs utilisées pendant la procédure de vérification (voir Annexe A).

Immédiatement après l'allumage du brûleur, activer le dispositif de production de chocs et déclencher le chronomètre. Le dispositif de production de chocs doit frapper l'échelle $5 \text{ min} \pm 10 \text{ s}$ après sa mise en route et par la suite à des intervalles de $5 \text{ min} \pm 10 \text{ s}$. Après chaque impact, la barre de choc doit être levée de l'échelle d'essai au maximum dans les 20 s après le choc.

7.4 Mise sous tension

Immédiatement après la mise en route du chronomètre, mettre en service l'alimentation électrique et ajuster la tension à la tension assignée du câble (en tout état de cause à une tension d'au moins 100 V alternatif), c'est-à-dire que la tension d'essai entre les conducteurs doit être égale à la tension assignée entre conducteurs, et celle entre conducteur et la terre doit être égale à la tension assignée entre conducteur et la terre.

L'essai doit continuer pour la durée d'application de la flamme donnée en 8.1, après quoi la flamme doit être éteinte.

8 Exigence de performance

8.1 Durée d'application de la flamme

La durée d'application de la flamme doit être spécifiée dans la norme appropriée du câble. En l'absence d'une norme de câble, une durée d'application de la flamme et de chocs de 30 min, 60 min, 90 min ou 120 min doit être choisie.

8.2 Critères d'acceptation

En référence à la procédure d'essai donnée à l'Article 7, le câble possède les caractéristiques pour conserver l'intégrité du circuit pendant la durée de l'essai si

- la tension est maintenue, c'est-à-dire qu'aucun fusible n'a fonctionné ou qu'aucun disjoncteur n'a déclenché,
- aucun conducteur n'a été coupé, c'est-à-dire qu'aucune lampe ne s'est éteinte.

9 Procédure de contre-essai

En cas de défaillance, comme estimé avec les exigences de la présente norme, deux nouvelles éprouvettes, prélevées sur le même échantillon, doivent être essayées. Si les deux échantillons satisfont à l'essai, l'essai doit être considéré comme satisfaisant.

10 Rapport d'essai

Le rapport d'essai doit comprendre les informations suivantes:

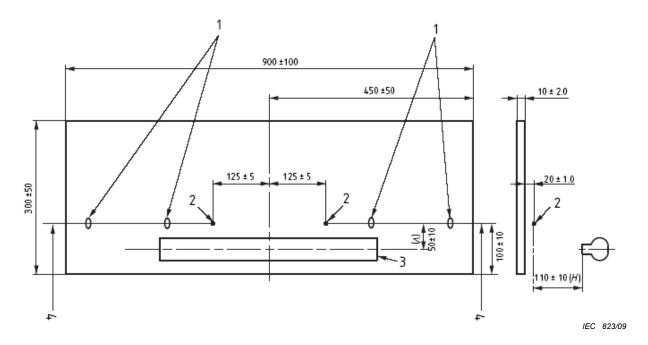
- a) le numéro de la présente norme;
- b) une description complète du câble essayé;
- c) le fabricant du câble essayé;
- d) la tension d'essai:
- e) le rayon de courbure réel du câble utilisé pendant l'essai;
- f) les exigences de performance réelles appliquées (par référence à l'Article 8);
- g) la durée d'application de la flamme ;
- h) la température de la chambre au démarrage de l'essai et son volume.

11 Marquage du câble

Si un marquage est demandé pour signifier la conformité vis-à-vis de la présente norme, il doit être marqué avec le numéro de la présente norme et la durée d'application de la flamme comme suit « CEI 60331-1(XX) » où XX doit être la durée en minutes. Le marquage doit être complémentaire à toute exigence de la norme du câble.

Annexe A

(normative)


Procédure de vérification de la source de chaleur

A.1 Equipement de mesure

La température de la flamme doit être mesurée à l'aide de deux thermocouples sous gaine d'acier inoxydable et à isolation minérale type K de 1,5 mm, conformes à la CEI 60584-1, montés sur la paroi d'essai comme représenté en Figure A.1. Les pointes des thermocouples doivent être à $(20,0\pm1,0)$ mm en avant de la paroi d'essai. La ligne horizontale des thermocouples doit être approximativement à (100 ± 10) mm au-dessus de la base inférieure de la paroi d'essai. La paroi doit être constituée en une planche non combustible résistante à la chaleur et en matériau non métallique de (900 ± 100) mm de longueur, (300 ± 50) mm de hauteur et d'une épaisseur de (10 ± 2) mm.

Placer le brûleur à une distance horizontale des thermocouples (H) comprise entre 100 mm et 120 mm et à une distance verticale en dessous de la ligne des centres des thermocouples (V) comprise entre 40 mm et 60 mm, comme représenté en Figure A.1.

Dimensions en millimètres (les dimensions sans tolérance sont approximatives)

Légende

- 1 supports des thermocouples
- 2 pointe du thermocouple
- 3 brûleur
- 4 thermocouples gainés de type K de 1,5 mm
- H distance horizontale de la face avant du brûleur à la pointe du thermocouple
- V distance verticale de la ligne centrale du brûleur à la pointe du thermocouple

Figure A.1 – Disposition du système de mesure de la température

A.2 Méthode d'essai

Allumer le brûleur et régler l'alimentation en gaz et en air aux valeurs données en 5.3.

Contrôler la température enregistrée par les thermocouples pendant 10 min pour s'assurer que les conditions de fonctionnement sont stables.

A.3 Évaluation

La procédure de vérification doit être considérée comme satisfaisante si:

- a) la moyenne des deux lectures des thermocouples sur une période de 10 min est dans l'intervalle de tolérance $(830^{+40})^{\circ}$ C et que
- b) la différence entre les moyennes des lectures des deux thermocouples sur une période de 10 min ne dépasse pas 40 °C.

Une mesure doit être effectuée au moins toutes les 30 s de façon à déterminer la moyenne.

NOTE La méthode réelle d'obtention de la valeur moyenne de la lecture du thermocouple au cours de cette période n'est pas spécifiée, mais il est recommandé d'utiliser un enregistreur comportant une fonction de détermination de la moyenne pour amortir les fluctuations provoquées par la mesure en un point.

Si la vérification n'est pas satisfaisante, les débits doivent être ajustés dans les limites des tolérances indiquées au 5.3 et un contrôle supplémentaire est effectué.

A.4 Vérifications supplémentaires

Si la vérification de l'Article A.3 n'est pas satisfaisante, les distances (H et V) entre le brûleur et les thermocouples doivent être modifiées (dans la limite des tolérances indiquées à l'Article A.1) et une nouvelle vérification effectuée.

Si aucune vérification satisfaisante ne peut être trouvée dans les tolérances indiquées, alors le système de brûleur doit être considéré comme incapable de fournir la source de chaleur prescrite par la présente norme.

A.5 Rapport de vérification

La position établie pour une vérification satisfaisante de (H et V) et les débits utilisés doivent être enregistrés.

Annexe B

(informative)

Guide pour le choix d'appareillage recommandé

B.1 Brûleur et Venturi

Un brûleur commercialement disponible répondant aux recommandations de la présente norme est le brûleur AGF « burner insert »11-55, de longueur appropriée de 500 mm, comprenant la face spécifiée, il est disponible chez AGF sous la référence 1857B¹. Un mélangeur Venturi recommandé est le AGF 14-18.

Le brûleur et le mélangeur Venturi recommandés sont disponible chez:

Pemfab 30 Indel Avenue PO Box 227 Rancocas New Jersey 08073-0227 USA

www.amgasfur.com ou www.pemfab.com

B.2 Influence du tirage dans la chambre d'essai

L'expérience a montré que la géométrie de la flamme est influencée par le tirage dans la chambre d'essai et il est recommandé de protéger le brûleur de tout tirage par l'emploi de protections.

B.3 Guide pour approvisionner une chambre d'essai adaptée

La chambre doit avoir un volume suffisant de telle sorte que les effluents du feu dégagés pendant la combustion n'altèrent pas les conditions d'essai. L'expérience a montré qu'une chambre similaire à la « chambre de 3 m » spécifiée dans la CEI 61034-1 était appropriée, bien que d'autres chambres d'un volume convenable puissent être utilisées. Des fenêtres peuvent être installées dans les parois de la chambre de façon à observer le comportement du câble pendant l'essai. Il convient d'évacuer les fumées au moyen d'une cheminée située à au moins 1 m du brûleur. Un volet de tirage peut être utilisé pour régler les conditions de ventilation.

Il convient que l'entrée de l'air dans la chambre soit faite au travers d'orifices situés près de la base de la chambre. Il est recommandé que les entrées d'air et la cheminée d'évacuation soient localisées de telle manière que la flamme du brûleur reste stable pendant la procédure de vérification et l'essai.

La présente information est donnée à l'intention des utilisateurs de la présente norme et ne signifie nullement que la CEI approuve ou recommande l'emploi exclusif du produit ainsi désigné. Des produits équivalents peuvent être utilisés s'il est démontré qu'ils conduisent aux mêmes résultats.

Bibliographie

CEI 60331-2, Essais de câbles électriques soumis au feu – Integrité des circuits – Partie 2: Méthode d'essai au feu avec chocs pour les câbles de tension assignée au plus égale à 0,6/1,0 kV et de diamètre externe inférieur à 20 mm, à une température d'au moins 830 °C

CEI 60331-11 :1999, Essais de câbles électriques soumis au feu – Intégrité des circuits – Partie 11: Appareillage – Incendie seul avec flamme à une température d'au moins 750 °C

CEI 61034-1, Mesure de la densité de fumées dégagées par des câbles brûlant dans des conditions définies – Partie 1: Appareillage d'essai

INTERNATIONAL ELECTROTECHNICAL COMMISSION

3, rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland

Tel: + 41 22 919 02 11 Fax: + 41 22 919 03 00 info@iec.ch www.iec.ch