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Foreword 

The Fourteenth National Symposium on Fracture Mechanics was held in 
Los Angeles, Calif., 30 June-2 July 1981. ASTM Committee E-24 on Fracture 
Testing sponsored the symposium. J. C. Lewis, of the TRW Space and 
Technology Group, and George Sines, of the University of California at Los 
Angeles, served as symposium chairmen and edited this publication. 
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Introduction 

In fracture mechanics, as is usually the case in any scientific subject, the 
increase in literature has been exponential. From the generally accepted 
beginning in 1913 until the early 1960s, very few papers were written. At 
about the time of the formation of ASTM Committee E-24 on Fracture 
Testing of Metals in 1%5, publication of information on fracture mechanics 
began to grow. Committee E-24 and the National Symposia on Fracture 
Mechanics have played an integral part in this growth. 

The decade of the sixties can be characterized as a search for valid test 
methods and an exploration of fracture theories. The First National Sym
posium on Fracture Mechanics was held in 1968 at Lehigh University in 
Bethlehem, Pa. 

In the seventies, considerable rethinking and regrouping occurred with the 
emergence of new concepts such as the R-curve, J-integral, and nonpropa-
gating fatigue crack. During this time, the process was being documented in 
ASTM Special Technical Publications (STPs) containing the proceedings of 
the national fracture mechanics symposia for these years. 

Currently, we find a more mature fracture mechanics discipline being ap
plied to all aspects of structural integrity. Any failure mechanism in which 
the final failure occurs by crack growth or in which failure can originate from 
preexisting cracks is being studied by fracture mechanics disciplinarians. 
This publication contains papers on such subjects that were presented at the 
Fourteenth Symposium on Fracture Mechanics, 30 June-2 July 1981, at the 
University of California at Los Angeles. 

Several symposia are held each year on special topics within the fracture 
mechanics discipline. The organizing committee for this symposium espe
cially wanted it to be open to papers on any fracture subject and, of course, 
open to papers from other nations. Consequently, this publication represents 
a broad review of the state of the art of fracture mechanics research 
worldwide. 

Because of the great number of papers received, the proceedings have been 
divided into two volumes. The papers in the first volume deal primarily with 
fracture theory and analysis. The second volume contains papers emphasiz
ing testing and applications. 

Three special awards were presented at the Fourteenth Symposium. Mr. J. G. 
Kaufman was awarded Honorary Membership in ASTM; Mr. D. E. McCabe 

l-xi 
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was presented with the ASTM Award of Merit and honorary title of Fellow; 
and Dr. J. C. Newman received the George R. Irwin Medal for 1981. 

The symposium organizing committee consisted of Mr. W. E. Anderson, 
Professor B. Gilpin, Professor W. Knauss, Mr. J. C. Lewis, Dr. M. M. Rat-
wani, Professor G. Sines, Professor R. A. Westmann, and Mr. W. Wilhem. 
With the exception of Professor Gilpin, each committee member also served 
as a session chairman. The committee is grateful for the assistance of Pro
fessor A. S. Kobayashi, Professor R. P. Wei, and Mr. H. A. Wood who also 
served as session chairmen. Special thanks are due our banquet speaker, 
Robert Forgnone, Esq., who spoke on the topic of "Product Liability, or 
Converting Fracture Mechanics to Dollars." 

Finally, the symposium committee wishes to express extra special 
gratitude to Patricia Schotthoefer of the Special Programs Office of the 
University Extension for managing all the operational and financial details of 
the symposium. 

/. C. Lewis 

Space and Technology Group, TRW, Re-
dondo Beach, Calif. 90278; symposium co-
chairman and co-editor. 

George Sines 

School of Engineering and Applied Science, 
University of California at Los Angeles, Los 
Angeles, Calif. 90024; symposium co-
chairman and co-editor. 
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R. Chona,' G. R. Irwin, ^ and R. J. Sanford^ 

Influence of Specimen Size and Shape 
on the Singularlty-Donnlnated Zone 

REFERENCE: Chona, R., Irwin, G. R., and Sanford, R. J., "Influence of Specimen Size 
and Shape on the Singularity-Dominated Zone," Fracture Mechanics: Fourteenth Sympo
sium— Volume I: Theory and Analysis. ASTM STP 791, J. C. Lewis and G. Sines, Eds., 
American Society for Testing and Materials, 1983, pp. I-3-I-23. 

ABSTRACT: Improved computational methods have been used to determine, from photo-
elastic fracture patterns, those stress field parameters (in addition to the stress-intensity 
factor) that are associated with different fracture test specimen geometries. The variations 
with crack tip position of these nonsingular terms in modificd-compact-tension and 
rectangular-double-cantilever-beam specimens have been studied. The results have been 
utilized to formulate criteria that can be used to quantify the concept of the singularity-
dominated zone around a crack tip in specimens of finite dimensions. 

KEY WORDS: fracture mechanics, photoelastic fracture patterns, stress-intensity factor 
determination, singularity-dominated zones, generalized Westcrgaard equations, test 
specimen geometries, specimen size requirements, nonsingular terms 

It is generally recognized that the near-field equations suggested by Irwin 
[lY adequately describe the state of stress in the immediate neighborhood of a 
stationary crack tip, excluding a very small region around the crack tip itself. 
From a linear elastic viewpoint, all of the stresses in the singularity zone at the 
crack tip are proportional to the stress-intensity factor, K. Thus, if the crack 
tip region of interest is small enough, a one-parameter characterization in 
terms of K is adequate. 

Situations arise, however, for which a single-parameter crack tip stress field 
characterization is not adequate. This can occur due to spreading out of the 
fracture process zone or a reduction in size of the AT-dominated singularity 
zone at the crack tip. For example, even in a brittle solid, roughening of the 
fracture due to spreading out of advance cracking and incipient branching can 

'instructor, visiting professor, and associate professor, respectively, Department of Mechanical 
Engineering, University of Maryland, College Park, Md. 20742. 

^Thc italic numbers in brackets refer to the list of references appended to this paper. 

Copyright 1983 by AS FM International www.astm.org 

 



1-4 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 

substantially enlarge the fracture process zone. As a second example, when us
ing isochromatic fringes for the evaluation of K, it is rarely possible to use 
measurements very close to the crack tip for a number of practical reasons, 
such as the triaxial nature of the stress field in the immediate neighborhood of 
the crack tip, light scattering from the dimple (caustic) at the crack tip, crack 
front curvature, fringe clarity, etc. Thus, the experimental stress analyst fre
quently is forced to take measurements from regions that border on the valid
ity of the near-field equations. In such cases, it is desirable to define and 
measure additional stress field parameters. 

Considerable work has been done in recent years [2,3,4] to investigate the 
influence of nonsingular terms on the stress field around but not immediately 
adjacent to the crack tip. The effect of these higher order (that is, nonsmgu-
lar) terms on the interpretation of fringe patterns obtained from photoelas-
ticity, optical interferometry, and the method of caustics also has been ex
amined [3,4,5]. 

This investigation has been du^cted towards studying the variations with 
crack tip position of the nonsingular stress field parameters in commonly 
used fracture test specimens of two different sizes and geometries. These 
results then have been utilized to suggest criteria that can be used to quantify 
the concept of the singularity-dominated zone around a crack tip in speci
mens of finite dimensions. 

Analysis 

Stress Field Representation 

It has been shown [4,6] that the stress state associated with two-dimen
sional cracks under static opening-mode loading can be described by a gener
alized form of the Westergaard equations [7]. This generalization follows 
from an Airy stress function of the form 

F = ReZ{z)+yImZ(z)+yImY{z) (1) 

where ^ -
Z(z) = — Z ( z ) = - ^ Z ( z ) (2) 

Y{z)^-^Y(z) (3) 
dz 

and 

z=x + iy (4) 

It then follows that 

a^ = ReZ-yImZ' -yImY +2ReY (5) 

ay=ReZ+yImZ' +yImY' (6) 
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and 

T^=-yReZ' -yReY'-ImY (7) 

where, for opening mode crack problems, the functions Z{z) and Y(z) are 
subject to the constraints Re Z{z) = 0 on the crack faces and Im Y{z) = 0 
along the crack line. 

For a single-ended crack, with the origin of coordmates at the crack tip 
and the negative jc-axis coinciding with the crack faces, the functions Z{z) 
and Y{z) can be represented as 

J=J 
Z{z) = E Az>-i '2 (8) 

j=o J 

and 
m=M 

Y{z)= L B„z'" (9) 
m=0 

where Aj and B„ are real constants, and the stress-intensity factor, K, is re
lated to AQ, that is, K = AQ yl2ir. 

Results from specimens which are geometrically similar in their in-plane 
dimensions can be correlated more easily if Eqs 8 and 9 are rewritten as 

Z{z) = - 7 ^ (z/w)-'^2 2 A/iz/wV (10) 
V2irw j=o 

and 

K =M 
Y{Z) = -J=r(z/w)-'^^ E ^ B„ • (z /wy« + '/2 (11) 

V/TTW m=0 

where Aj ' and B„ ' are dimensionless real constants (^o' = 1) and w is a char
acteristic in-plane dimension of the specimen, such as the specimen width. 

Determination of the Series Constants from Photoelastic Fracture Patterns 

The series representation of the crack tip stress field that is obtained from 
Eqs 1 to 11 forms the basis for the stress field model used in this study. By 
combining the governing optical equations for isochromatic fringe patterns 
with this series representation [4], the analysis of isochromatic patterns re
duces to the problem of determuiing the coefficients of the two series Z{z) 
and Y{z) that produce the best match to the experimental pattern, over the 
region selected for data acquisition. To determine these coefficients, a proce
dure based on the least-squares method has been developed [8,9]. 

This procedure can be summarized briefly as follows. A data acquisition 
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region is selected for a given experimental pattern using the guidelines sug
gested in Ref 4. Data points are taken over the entire region in a distributed 
fashion, and this data set is input to the least-squares algorithm (details of 
which can be found in Refs 4, 8, and 9) to obtain a best-fit set of coefficients. 
The number of coefficients necessary for an adequate representation of the 
stress field over the data acquisition region can be estimated by examining, 
as a function of the number of coefficients, the value of the average fringe order 
error, |A/t|, which is defined in this study as 

J k=N 
iAn| = — E |K,- —«clt (12) 

where «,• is the specified (input) fringe order for a given data point, n^ is the 
fringe order (at the same point) calculated from the computed set of coeffi
cients, and N is the total number of data points being used. The computed set 
of best-fit coefficients then can be used to reconstruct an isochromatic fringe 
pattern which, when compared with the experimental fringe pattern being 
analyzed, serves as a visual check on the adequacy of the assumed model. 

Figure 1 shows an example consisting of the experimental fringe pattern, 
the data set selected therefrom, and the reconstructed pattern. In this case, the 
data points have been taken over a region of radius 0.125^, centered at the 
crack tip, which is located at a/w = 0.80 in a modified-compact-tension speci
men. The reconstructed pattern is based upon a sbc-parameter stress field rep
resentation, and can be seen to match the salient features of the experimental 
pattern over the sampled region around the crack tip. 

Previous work by the authors has shown that it is occasionally possible to 
obtain a best-fit set of coefficients (in a least-squares sense) that is not in fact 
the correct solution for the fringe pattern being analyzed [10]. In those cases, 
it is advisable to use a sampled least-squares method for analysis of the data, 

ANALYSIS OF PHOTOELASTIC DATA USING LEAST-SQUARES 

EXPERIMENTAL _» DATA ._ ^ RECONSTRUCTED 
OATTERN ~ " SET " " . PATTERN 

FIG. 1—An example showing the application of the least-squares method to the analysLi of 
photoelastic fracture patterns. 
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and details of this extension of the least-squares method can be found in Refs 
10 and / / . The results reported here were obtained by using the least-squares 
method to analyze a data set which normally consisted of 120 data points 
from the selected data acquisition region, with recourse to the sampled least-
squares method whenever necessary. 

Nonsingalar Tenn Variation in Modified-Compact-Tension and 
Rectangular-Doable-Cantilever-Beam Specimens 

Modified-compact-tension (MCT) and rectangular-double-cantilever-
beam (RDCB) specimens with the geometry and loading shown in Figs. 2 and 
3 were used for this study. The modified-compact-tension specimen is one of 
the crack-arrest specimens being considered as an ASTM standard [12] at 
the present time, and both MCT and RDCB specimens have been used ex
tensively for fracture testing in previous studies of crack propagation and ar
rest behaviors [13-17\. 

Saw-cut cracks were extended systematically into the specimen and the 
photoelastic fringe pattern under static loading recorded at each crack length. 
The changes in the isochromatic fringe pattern that occur as the crack is ex-

WEDGE 

SPLIT-D PIN, 
0.375 w DIA. 

LOAD.P 

• w 

•I.25W-

I.20W 

w,= 4.0 inches = 102 mm 

WL= 8.0 inches = 203 mm 

FIG. 2—The geometry and loading of the MCT specimen used in this study. 
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• 0 . 5 w -

0.09 w 

1.09 w 

. SUPPORT PLATE . 

FIG. 3—The geometry and loading of the RDCB specimen used in this study. 

tended in an MCT specimen are shown in Fig. 4, while Fig. 5 shows the corre
sponding behavior observed in an RDCB specimen. 

These fringe patterns were analyzed, using the least-squares method as pre
viously described, to obtain the first eight coefficients (AQ ' to ^^3' and BQ ' to 
£3') of the series stress field representation of Eqs 10 and 11. A total of 120 data 
points were taken from each fringe pattern recorded, with the data acquisition 
region having a radius of 0.125 w in the MCT specimen, and a radius of 0.091 w 
in the RDCB specimen. The data acquisition regions used in each case are 
shown in Figs. 4 and 5 as solid circles. 

The changes in the average fringe order error that occur as the number of 
parameters used is increased from two to eight were examined for each crack 
length used in the MCT and RDCB specimens. In each case, the error term 
stabilized by the time the eighth coefficient was introduced, indicating that 
the stress state had been modelled adequately over the data acquisition re
gion used. Only the first six coefficients from an eight-coefficient, best-fit so-
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FIG. 4—Isochromatic fringe pattern variations with crack extension observed in an MCT 
specimen. 
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a/w-O30 

o/w*0 40 

a/w-'05O 

a/w-070 

a/w- 0 80' 

a/w=090 

C2 r/w 0 1 

a '̂w-O.eO 

FIG. 5—Isochromatic fringe pattern variations with crack extension observed in an RDCB 
specimen. 
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lution were used in the subsequent parts of this study, since the last two 
terms have only a small contribution to the stress field over the data acquisi
tion region used. 

The variation with crack tip position, a/vv, of the first six normalized coef
ficients for the MCT and RDCB specimens is shown in Figs. 6 and 7, respec
tively. The results in both cases show the strong influence of the approaching 
normal boundary that is manifested in the dramatic increase in the magni
tude of the nonsingular terms beyond a/w = 0.70. The continuous variation 
displayed by the nonsingular coefficients in both specimens is consistent with 
the isochromatic fringe patterns recorded and shown in Figs. 4 and 5. Note 
that the normalized coefficients for the MCT specimen (Fig. 6) were obtained 
from specimens of two different sizes [SMCT, w^ — 102 mm (4.0 in.); 
LMCT, wi — 203 mm (8.0 in.)] that were studied to verify experimentally 
the specimen-size independent form of the stress functions, Z{z) and Y{z), 
given in Eqs 10 and 11. 

100 

075 

0 5 0 

0 2 5 

0 

-

- nSmCT 
OLMCT 

-

1 

-

-

-

1 ' 

0 4 05 0 6 0 7 0 8 a 9 

-

- 3SMCT 
OLMCT 

u^^v 

-

-

" 

07 0 9 0 9 
o/w 

FIG. 6—The variations with crack tip position of the first six coefficients of the series 
representation of the stress field as obtained from two different sizes of the MCT specimen. 
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" 

arm 

\ 

FIG. 7—The variations with crack tip position of the first six coefficients of the series 
representation of the stress field as obtained from the RDCB specimen. 

The behavior of the coefficients Ay', 5 , ' , A2', and B2' for the RDCB 
specimen is particularly interesting. The values remain essentially constant 
from a/w = 0.30 to a/w = 0.70, after which they begin to change dramati
cally. Over this span, the boundary of the specimen that is closest to the crack 
tip is the boundary parallel to the crack line. However, beyond a/w = 0.75, the 
normal boundary becomes the dominant (and the closest) one, and for a very 
deep crack, a/w = 0.90 for example, the nonsingular terms computed for the 
lUDCB specimen approach the values obtained for the MCT specimen in both 
magnitude and sign. Indications of this also can be obtained from a careful ex
amination of the fringe patterns for deep cracks in the RDCB specimen, which 
show features similar to those observed for long cracks in the MCT specimen. 

Characterization of the Smgularity-Domfaiated Zone fai Different Fracture 
Test Specimens 

Within the limits of a singularity-dominated zone, the influence of the sin
gular term should be large relative to the influence of higher-order terms with 
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regard to both stress magnitude and control of the direction of cracking. The 
results obtained for the series representation of the stress field in MCT and 
RDCB specimens were used to develop criteria that are helpful in quantifying 
the size of the zone within which the 1/Vr^term adequately describes the stress 
magnitude. In a discussion published in 1967, Wilson [18] reported that 
boundary collocation calculations indicate that the size of this zone is rather 
small, and the results obtained in this study confirm this observation. 

The six-parameter representation of the stress field at different crack 
lengths in the two specimens was compared to the single-parameter represen
tation (AQ ' = 1, all other coefficients zero) using severaf different measures 
such as the Cartesian stress components, the magnitudes and directions of the 
principal stresses, and the sum and difference of the principal stresses. Re
gions over which the six-parameter and singular representations differed by 
less than 2 percent then were constructed and examined to see if they defined a 
closed region around the crack tip which would serve to define the singularity-
dominated zone around the crack tip. 

Figure 8 shows, by way of example, the regions around the crack tip sta/w = 
0.60 in an MCT specimen, for which the six-parameter and singular solutions 
for Oj, Oy, and r^, differ by less than 2 percent. The use of T̂ J, as a singularity-
dominated zone size criterion has an inherent disadvantage in that, the 
singular solution always predicts the absence of T^ along the line S = ±60 
deg, thus making the deviation equal to 100 percent along that line, as is ap
parent from the figure. The difficulties associated with the use of â  are not 
quite so obvious, but become clearer when Fig. 9 is examined. 

This figure demonstrates the strong influence of the constant stress term, 
Bo',on the zone size obtained from ô ., by comparing, at the same crack tip lo
cation as in Fig. 8, the zones obtained from (a) a 2 percent difference between 
six-parameter and one-parameter representations, and (b) a 2 percent dif
ference between six-parameter and two-parameter representations. Similar 
behavior also was observed at other crack lengths in the two specimens, and 
this is illustrated in Fig. 10, in which BQ from MCT and RDCB specimens is 
plotted as a function of a/w. The same figure also shows the minimum radius, 
Tnun/vv, of a 2 percent zone based upon a^, and the results confirm the unsuit-
ability of ô . for use as a sole criterion. For example, as the crack approaches 
the boundary of an RDCB specimen, BQ ' falls off rapidly due to relaxation, 
and the zone actually increases substantially in size. This would imply that at 
a/w = 0.90 in an RDCB specimen, the singularity-dominated zone is approx
imately three times as large as it is at a/w = 0.50 in the same specimen. 

The strong influence of the 5o'-term on near-crack-tip behavior is well 
known [19,20] and the results discussed here are another illustration of the 
importance of this first nonsingular term of the crack-tip stress field. For in
stance, finite element computations by Larsson and Carlsson [21] have 
shown that, at a/w — 0.50 in an MCT specimen of nearly similar geometry, 
the constant-stress term plays a significant role in determining the extent of 
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FIG. 8—Regions surrounding the crack tip at a/w = 0.60 in an MCT specimen in which the 
six-parameter and singular representations for the Cartesian stress components differ by less 
than 2 percent. 

the plastic zone around the crack tip. (Their reported value of BQ' = 0.52 
agrees well with the results obtained in this study.) 

The conclusion drawn from this investigation is that, among the possible 
criteria for a singularity-dominated zone which are both simple and plausible, 
the deviation in magnitude of the crack opening stress, jy, seems an optimum 
choice. The zone based upon this criterion is shown in Figs. 11 and 12 for sev
eral different crack lengths in the MCT and RDCB specimens, respectively. 
Note that the two figures are not shown to the same scale. Both 2 and 5 percent 
zones have been shown, and while the former is perhaps better as a mathemati
cal measure, the latter comes closer to engineering standards for acceptable 
errors. Variations in the shape of the zone behind the crack tip are not impor
tant, and this region of the zone has been shown only for completeness. 
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2% ZONES - o ; 

a) 6-PARAMETER 8 SINGULAR SOLUTIONS 

^ BOD 

b) 6-PARAMETER 8 2-PARAMETER SOLUTIONS 

0.005 

r/w 
FIG. 9—Zones of 2 percent difference in (a) six-parameter and singular representations, and 

(b) six-parameter and two-parameter representations for a^ for a/w = 0.60 in an MCT 
specimen. 

It is observed that the zone is a minimum along 6 = 0 deg in both specimens, 
and it is covenient to define this distance, r^iJw, as the singularity-dominated 
zone size. t the 2 and 5 percent error zones is approximately 
linear in their respective values of rmin/w, and the subsequent discussion will 
use only results from the 2 percent zones. 

Figure 13 shows the behavior of the quantity r^^Jw from a 2 percent error 
zone in ff^ as a function of a/w in the MCT and RDCB specimens. The zone 
size decreases monotonically with crack length in the MCT specimen, but it 
remains constant over a large range of crack lengths in the RDCB specimen, 
before starting to decrease rapidly, and it finally approaches the behavior of 
the MCT geometry. This behavior is consistent with both the nonsingular 
term variation and the recorded fringe patterns shown earlier. Over a large 
part of the useful range of the specimens, the zone size in an MCT specimen 
is substantially larger than the zone size at the same a/w in an RDCB 
specimen of the same width, and this may be of importance in making selec
tions of a suitable specimen geometry for testing purposes. 

It is even more interesting to examine the behavior of the singularity-
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FIG. 10—The influence of Bg on the singularity-dominated zone size predicted by the use of 
a^as a sole criterion. 

dominated zone size as a function of the remaining net ligament, (w — a), 
and the distance to the nearest boundary, /?„,!„. In the MCT specimen 

R. 
0.60w, a/w < 0.40 

iw — a, a/w > 0.40 

whereas in the RDCB specimen 

^ r 0.25M., 

hv — a, 
a/w < 0.75 
a/w > 0.75 

(13) 

(14) 

Figure 14 shows, as functions of a/w, r^m/R„,m for the RDCB specimen and 
'•mm/(w ~ a) for the MCT and RDCB specimens. (Note that over the range 
studied, r„aa/(w — a) is the same as /•„!„//?„„„ for the MCT specimen.) 
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2 % DEFERENCE, oy 

5% DEFERENCE, oy 

FIG. 11—The variation with a/w in an MCT specimen of the zone surrounding the crack tip 
in which six-parameter and singular representations for Oy differ by 2 percent (dashed line) and 5 
percent (solid line). 

In the case of the MCT specimen, rj^„ is observed to be a constant percent
age of the net remaining ligament, with the 2 percent zone having a value of 
''min equal to 1 percent of (w — a). For the RDCB specimen, the behavior of 
'•imn/(>*' ~ ^) 's rather different. The quantity rnu„//?min is much easier to inter
pret. Over the range of crack lengths from a/w = 0.30 to a/w — 0.70, the clos
est specimen boundary is parallel to the crack line in the RDCB specimen, and 
hence R„^ is constant. Consequently, r,^/Rram remains a constant. At and 
beyond a/w = 0.75, the normal boundary is closest to the crack tip and begins 
to control the behavior or r^R,^. Beyond a/w = 0.90, the approaching 
normal boundary controls the stress field to such an extent that the behavior of 
both MCT and RDCB specimens is essentially the same. Indications of this 
also were obtained from the variation of the nonsingular terms with a/w in the 
two specimens and from the isochromatic fringe patterns, as noted earlier. 

Using a zone size criterion based upon the normal stress, Oy, the singularity-
dominated zone size at the crack tip, for the geometries studied, thus is 

 



1-18 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 
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FIG. 12—The variation with a/w in an RDCB specimen of the zone surrounding the crack tip 
in which six-parameter and singular representations for a„ differ hy 2 percent (dashed line) and 5 
percent (solid line). 

perceived to be linked closely to the distance from the crack tip to the nearest 
specimen boundary. It is in fact a constant percentage of this distance, with a 
transition when the closest boundary shifts from parallel to the crack line to 
that normal to the direction of crack extension. 

Specimen Size Reqoiiements Relative to the Singalarity-Dominated Zone 
Size in Different Fractnie Test Specimens 

There are certain assumptions inherent in the application of linear-elastic-
fracture mechanics to engineering materials and practical (finite) specimen 
types. The usefulness of the results obtained from laboratory testing for initia
tion and arrest toughnesses, Kc and Kg, depends on the accuracy with which 
Kc and Kg describe the fracture behavior of real materials, and this, in turn, 
depends on how well the stress-intensity factor represents the conditions of 
stress and strain inside the fracture process zone. In this sense, K gives an ex
act representation only in the limit of zero plastic strain. However, for many 
practical purposes, a sufficient degree of accuracy may be obtained if the crack 
front plastic zone is small in comparison with the zone around the crack tip in 
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FIG. 13—The variation with a/w of the singularity-dominated zone size obtained from the use 
of a 2 percent difference in six-parameter and singular representations for Oy in MCT and RDCB 
specimens. 

which the stress-intensity factor yields a satisfactory approximation of the ex
act elastic stress field in a fracture test specimen [18,22,23]. 

In the past, specimen size requirements relative to enclosure of the fracture 
process zone by the /f-dominated region of the elastic stress field have received 
only rough estimate treatment. The results presented here represent a 
preliminary effort towards putting these requirements on a firmer, quantita
tive footing. For example, ASTM Test for Plane-Strain Fracture Toughness of 
Metallic Materials (E 399-81) specifies requirements for specimen thickness, 
B, crack size, a, and net ligament, (w — a), as two and one-half times 
(K/aYs)^y where ays is the 0.2 percent offset yield strength obtained by stan
dard testing. These requirements are based upon a plastic zone adjustment 
factor, Ty, which is generally accepted in accordance with ASTM Method E 
399-81 and ASTM Recommended Practice for /?-Curve Determination (E 
561-80) [18,23] as being characteristic of the plastic strain region around the 
crack tip. The defming equation for ry is 

2 T 
(15) 
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FIG. 14—The relation between the singularity-dominated zone size in MCT and RDCB 
specimens and the distance from the crack tip to the boundaries of the specimen. 

where ay is a tensile estimate of the resistance to plastic yielding near the crack 
tip. 

It is useful to compare the plasticity crack size adjustment, ry, with the sin
gularity zone size, rmm- For conditions of plane strain, ay = 2(TYS is a reason
able choice, and 

ry=-^{K/ays)^ (16) 

Thus, for an MCT specimen which meets the ASTM Method E 399-81 require
ments for in-plane specimen dimensions 

lY 
w 

1 
AOTT 

= 0.008 (17) 

The results obtained in this study for r^m/w in an MCT specimen, at a/w = 
0.50, indicate that using a 5 percent deviation in a^ 

r„,:Jw = 0.013 (18) 

Thus, for a given w, the ry allowed by ASTM Method E 399-81 size require
ments is well within the singularity-dominated region characterized by rmui, as 
illustrated in Fig. 15. 
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mm 

FIG. 15—The relative sizes of Ty and T^j^ for a/w = 0.50 in an MCT specimen. 

In the case of an RDCB specimen, rmin/w has been shown to be 0.005 over 
the range a/w = 0.30 to a/w — 0.70. For ry to be just less than rmm would re
quire that w > 8 (K/OYS)^, where ry is defined by Eq 16. The use of an RDCB 
specimen, therefore, would mean using substantially more material than re
quired for an MCT specimen satisfying the same conditions. 

From these comparisons, it is suggested that a relatively simple size require
ment for in-plane specimen dimensions can be established, using the singular
ity zone size, rn,i„. Adequate enclosure of the crack tip plastic zone then can be 
achieved by adjusting the specimen dimensions such that ry is moderately less 
than r^in, the singularity zone size based upon a 5 percent deviation of ay 

Conclnsions 

The results from this study lead to the following conclusions. 

1. The nonsingular terms in the series representation of the stress field can 
be defined in a specimen-size independent form. 

2. For a given specimen geometry, the nonsingular terms display a system
atic variation with crack length. 

In addition, using the magnitude of Cy to characterize the singularity-dom
inated zone size, as suggested here, the following conclusions can be reached. 

3. There are significant differences in the size of the singularity-dominated 
zone between various fracture test specimens. 

4. Within any one specimen type, the size of the singularity-dominated zone 
varies with crack length. 

5. The absolute size of the singularity-dominated zone is specimen-size de
pendent. 

6. For the geometries studied, the size of the singularity-dominated zone is a 
constant percentage of the distance from the crack tip to the nearest specimen 
boundary, with a transition when the closest boundary shifts from parallel to 
the crack line to that normal to the direction of crack extension. 
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7. The singularity-dominated zone size can be used to establish in-plane 
specimen size requirements for fracture toughness testing consistent with a re
quirement for the plastic strain region to be within the ̂ -dominated region of 
the elastic stress field. 
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ABSTRACT; A review is given of the failure criteria developed by Hahn and Sarrate for 
through-cracked pressure vessels, whereby they established three failure categories. This 
work was based on the Dugdale and Bilby-Cottrell-Swinden (D-BCS) model for the 
crack-tip opening displacement (CTOD) in an infinite plate. The model was extended in 
an approximate way by Heald-Spink-Worthington (D-BCS-HSW) to finite geometries 
and structures by combining the effects of plasticity and geometry as multiplicative fac
tors. In this paper the criteria of Hahn and Sarrate are extended to the D-BCS-HSW 
model. The three failure categories are relabelled: (1) linear-elastic fracture mechanics 
(LEFM), (2) elastic-plastic fracture mechanics (EPFM), and (3) plastic collapse (PC). 
The model is plotted in a variety of dimensionless forms and several related developments 
also are reviewed: (1) the two-criteria approach and universal failure curve, (2) the CTOD 
design curve, and (3) the Failure Assessment Diagram. Finally, the residual strength 
diagram for the D-BCS-HSW model is presented. In all these presentations the three 
failure categories based on Hahn and Sarrate's criteria are included. Thus, it is shown 
that the D-BCS-HSW model, though approximate, presents a unified picture that em
bodies many features of fracture mechanics from LEFM through EPFM to PC. 

KEY WORDS: collapse, crack opening displacement, cracks, defects, failure, fracture 
mechanics, plasticity, strength, stress, toughnes.s 

Nomenclature 

A Area 
a Crack size 
a Equivalent crack size 

Og Effective crack size, a + ry 
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COD 
CTOD 
D-BCS 

D-BCS-HSW 
E 

EPFM 
F 

FAD 
K 

KR 

Kr 
Ki 
K2 
L 

LEFM 

Lu 
M 
N 

PC 
ry 

W 
8 
a 

ay 

<Jo 

o\ 

^2 

Normalized crack size, {FNoa/Kny-Ka 
Crack opening displacement 
Crack-tip opening displacement 
Dugdale-Bilby-Cottrell-Swinden 
Dugdale-Bilby-Cottrell-Swinden-Heald-Spink-Worthington 
Young's modulus 
Elastic-plastic fracture mechanics 
Geometric factor in stress-intensity factor 
Failure assessment diagram 
Stress-intensity factor 
Effective stress-intensity factor 
Crack-extension resistance or fracture toughness 
Risk of failure by linear-elastic fracture mechanics, K/K^ 
Normalized fracture toughness, (A'/j/ao)/(ira)'^^ 
Normalized fracture toughness, {Kn/FNof^/i-Ka)^'^ 
Plastic constraint factor 
Linear-elastic fracture mechanics 
Applied failure parameter 
Failure parameter by LEFM 
Failure parameter by plastic collapse 
Plastic correction factor in Kg 
Geometric factor for nominal stress 
Plastic collapse 
Plastic-zone adjustment 
Risk of failure by plastic collapse, a/oi 
Width 
CTOD 
Applied stress or failure stress 
Limit stress at plastic collapse 
Nominal stress 
Yield stress 
Flow stress 
Normalized applied stress, O/OQ 
Normalized nominal stress, Of^/aQ 

At the Symposium on Fracture Toughness Concepts for Weldable Struc
tural Steel Hahn and Sarrate [lY established failure criteria for through-
cracked vessels. These criteria offered a unified picture of various viewpoints 
presented at the conference: linear-elastic fracture mechanics (LEFM), 
plasticity-corrected fracture toughness, and the flow stress criterion. Their 
work was based on the plastic yield strip model of Dugdale [2] as elaborated 
by Bilby, Cottrell, and Swinden [J] for the crack-tip opening displacement 

•^he italic numbers in brackets refer to the list of references appended to this paper. 
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(CTOD) in an infinite plate (D-BCS model). The viewpoints were fitted into a 
common framework consisting of three failure categories: (1) linear-elastic 
behavior, (2) nonlinear elastic behavior, and (3) plastic instability behavior. 
They established criteria for the dividing line between these failure catego
ries. These criteria were given in terms of the toughness, flow strength, and 
crack size. The effect of geometry and size of the structure was not taken into 
account. 

Heald, Spink, and Worthington [4] extended the D-BCS model to more 
complicated and finite geometries by introducing a correction factor based 
on LEFM. They represented the CTOD as the product of two functions, one 
related to the plasticity of the material and the other to the geometry of the 
structure, in such a way that for a small crack the correct D-BCS model 
results, and for a small stress the correct LEFM result is obtained. We have 
called it the D-BCS-HSW model. 

In this paper we have reformulated Hahn and Sarrate's failure criteria in 
terms of the stress, so that they also can be applied to the case of the finite 
geometry and size represented by the D-BCS-HSW model. In order to con
form better to current usage we have relabelled their three categories: (1) 
LEFM, (2) elastic-plastic fracture mechanics (EPFM), and (3) plastic col
lapse (PC). In the Infinite Plate section, we review fracture mechanics for a 
central crack in an infinite plate and show how Hahn and Sarrate specifically 
formulated their failure criteria. 

In the section on Finite Geometry, we then show how Hahn and Sarrate's 
criteria can be adapted to the D-BCS-HSW model. It is seen that their ideas 
can be carried through quite easily by formulating the criteria in terms of the 
nominal stress. 

In the section about Relation to Other Developments, we discuss the rela
tion of the D-BCS-HSW model to several other developments in the 
literature, and show that they essentially correspond to different forms of 
plotting the D-BCS-HSW equation. First, we treat Dowling and Townley's 
[5] two-criteria approach and universal failure curve. Next, we show the rela
tion to the CTOD design curve developed by Dawes [6] and co-workers at the 
Welding Institute. Finally, we discuss the failure assessment diagram (FAD) 
of Harrison et al [7], developed at the Central Electricity Generating Board 
(CEGB). 

In the Residual Strength Diagram section, we discuss the residual 
strength diagram, which is based on examining the failure stress as a func
tion of the crack size. In this paper we examine only the general case, but in a 
future publication we shall also examine the results obtained for particular 
geometries. 

The D-BCS-HSW model embodies important features of separation 
mechanics. It reduces to LEFM at one extreme and to PC at the other. In 
summary, this model presents an even more unified picture than the original 
one of Hahn and Sarrate. 
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It has been customary to regard / computations, 7],. and J-R measure
ments, and the "tearing instability" concept as central components of 
EPFM. These topics are not discussed in the present paper, but are treated 
thoroughly in other papers in this publication. Instead, the emphasis in this 
paper is on the CTOD to provide the transition between linear-elastic and 
fully plastic behavior. Though it was the interest in the J-integral that led 
directly to introduction of the term, EPFM, we have extended its meaning to 
include all fracture behavior that contains elements of both elasticity and 
plasticity, regardless of the theory used to explain it. In this paper m par
ticular we have used the plastic yield strip model as the central component of 
EPFM. 

Infinite Plate 

Linear-Elastic Fracture Mechanics 

In LEFM the stress-intensity factor for an infinite plate with a through-
crack of length 2a is given by (see Tada et al, Ref 8) 

K = a(xa)i/2 (1) 

where a is the applied stress. If a is a tensile stress, then we have an opening 
mode for the crack, usually denoted as Mode 1. The stress-intensity factor, 
K, represents the strength of the stress field surrounding the crack tip. 
Hence, K characterizes the magnitude of the crack-tip stress field. The frac
ture process of a material may be regarded as "caused" by the surrounding 
crack-tip stress field environment. Hence, Eq 1 for K also may be interpreted 
as giving a crack-driving or crack-extension force. Here the term "force" is 
used in a generalized sense, for K does not have the dimensions of a force. 
Equation 1 shows that as CT or a is increased, so is the crack-extension force, 
K. The crack will not actually extend as long as K is less than the crack-
extension resistance, K^. When the crack-extension force begins to exceed 
the crack-extension resistance, then crack extension occurs. In this paper 
crack extension will be regarded as failure of the structure. However, these 
concepts also can be extended to slow stable crack extension (R-curve) before 
fast fracturing. 

The fracture toughness is a generic term for measures of resistance to ex
tension of a crack. Therefore we shall use the terms "fracture toughness" 
and "crack-extension resistance" interchangeably, and denote it by K^. In 
LEFM this material property is denoted by K^^. 

Plastic-Zone Adjustment 

The customary formulation of LEFM never can be correct, because it im
plies an infinite stress at the crack tip. Actually, under the applied stress, a, a 
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plastic zone will develop around the crack tip. The effect of this plastic zone 
is to increase the displacements and lower the stiffness of the plate. In other 
words, the plate behaves as if it contained a crack of somewhat larger size, 
which is called the effective crack size, and given by 

de-a + rY (2) 

where ry is the plastic-zone adjustment, which is assumed to be small relative 
to the crack size. Though linear elasticity now has broken down at the crack 
tip, because of the presence of plasticity, LEFM still gives good elastic results 
at distances much larger than ry from the crack tip. However, the 
"apparent" stress-intensity factor that best describes the behavior of this far 
elastic field is given now by an effective stress-intensity factor 

K, = oi-Ka.r^ (3) 

which is the LEFM expression for K expressed in terms of the effective crack 
size, a^. The plastic-zone adjustment, ry, gives a measure of the nominal 
plastic zone size. Based on a force balance argument, Irwin [9] has given the 
following estimate 

ry^ {KJo^Y/li: (4) 

where ag is the flow stress of the material. Equations 2 to 4 can be combined 
and solved for K^ to give 

K = 
a{Ta) 1/2 

y (o/oof 
1/2 (5) 

This relation shows that the effective stress-intensity factor, K^, is larger than 
the LEFM stress-intensity factor, K, given by Eq 1. The smaller the flow 
stress, OQ, the larger this difference becomes, and the larger the plastic-zone 
adjustment becomes. 

With plasticity present, the magnitude of the surrounding elastic crack-tip 
stress field is characterized by the effective stress-intensity factor. Hence K^ 
must now be interpreted as the crack-extension force. Again, the crack will 
begin to extend when the crack-extension force, K^, exceeds the crack-
extension resistance, K^. This will occur for smaller values of applied stress, 
a, the larger the plasticity, ry, or the smaller the flow stress, OQ. 

Plastic Yield Strip Model 

In this paper we shall model EPFM by the plastic yield strip model. It was 
introduced by Dugdale [2] and elaborated by Bilby, Cottrell, and Swinden 
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[3]. This model therefore has become known as the D-BCS model. It 
assumes that the material yields plastically in a strip ahead of the crack tip. 
For a central crack in an infinite plate, the model gives an analytic expression 
for the CTOD, formerly known as crack opening displacement (COD), given 
by 

6 = iSaaf)/irE) In sec {ira/loo) (6) 

where E is Young's modulus. For small scale yielding it is seen that this 
CTOD reduces to 

6 -> iraa^/Eao = K^/EOQ for a/oo — 0 (7) 

where the equality follows from Eq 1. The relation in Eq 7 now is generalized 
to define an effective stress-intensity factor by 

K,^ = Eac^ (8) 

Thus, from Eqs 1 and 6 the effective stress-intensity factor corresponding to 
the D-BCS model is taken as follows 

K, = CTo [(8a/IT) In sec (7ra/2ffo)]'̂ ^ (9) 

This relation is similar to the Irwin plastic-zone adjusted model in Eq 5 in that 

Kg>K iorao<oo 
(10) 

Kg^ K for ao — 00 

where K is the LEFM stress-intensity factor given by Eq 1. 
The relation in Eq 9 and additional expressions for the effective stress-

intensity factor, K^, which we shall derive later, can be visualized directly in 
terms of the CTOD, 8, by means of Eq 8, that is, in terms of the plastic yield 
strip model. This shift of nomenclature from 6 to K^ and back remains valid 
in the subsequent sections. Hence Eq 8 can be used to convert K^-walues to 
5-values. 

Furthermore, the relation in Eq 9 is based on having plastic collapse oc
curring at <T = OQ. Plastic collapse or limit load theory assumes elastic-
perfectly plastic behavior of the material, that is, there is no work-hardening. 
Hence the results usually are expressed in terms of the yield stress, oy 
Because this provides a pessimistic result for work-hardening materials, it is 
usual to replace the yield stress by a flow stress, CTQ. which has a value about 
halfway between the yield stress and the ultimate tensile strength. Further
more, the effective flow stress may be raised above this particular value due 
to constraints, such as occur in plane strain. This is frequently expressed in 
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terms of a constraint factor. In this paper we shall assume that the constraint 
factor is implied in the flow stress. 

To focus on the functional dependence of K^ it is helpful to regard Eq 9 as 
being made up of two factors as follows 

K,(a, ffo, a) = Kia, a)M(a/ao) (11) 

where K{<j, a) is the LEFM value given by Eq 1 and MCCT/CTQ) is the plastic 
correction factor given by 

Mia/ao) = (2ao/Tra)[2 In sec (7r(r/2ao)]'̂ 2 (12) 

This shows that the D-BCS form for Kg in Eq 9 has the same form as the Irwin 
Kg in Eq 5, namely, the effective stress-intensity factor, K^, is the LEFM 
stress-intensity factor, K, multiplied by a plastic correction factor, M. For 
(j/ffQ — 0, M — I, so that the D-BCS model approaches the LEFM model at 
small applied stress. 

Failure Criteria 

The expression for the effective stress-intensity factor, K^, represents the 
crack-extension force. The fracture toughness, KR, represents the crack-
extension resistance and usually is considered to be a material property. In 
general, it may vary with crack-extension, plate thickness, loading rate, or 
other parameters. However, we shall assume it constant for the present 
paper. Hence, when the cracked plate is loaded until 

Ke = K^ (13) 

then the crack will begin to extend. This, then, we take as the failure 
criterion, and the corresponding stress will be the failure stress, sometimes 
denoted by Of, The failure stress for the D-BCS model, therefore, is found 
from Eq 9 as 

a = (2/ir)aoCos-i{exp[-(x/8a)(A:;j/ffo)^]} (14) 

This relation is plotted in dimensionless form as the solid curve labelled 
D-BCS in Fig. 1. Along the j:-axis we have plotted a measure of the fracture 
toughness, (/^R/ao)^/a, and along the j-axis the normalized applied stress, 
CT/ffQ- These are logical choices for dimensionless parameters from Eq 14. 
Note that a never exceeds OQ for this curve. 

The curve represents the expected failure stress for the plate. Hence, for a 
given crack of size a, in the plate of fracture toughness Kn and flow stress OQ, 
if the applied stress, a, gives a point that falls below the D-BCS curve on this 
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FIG. 1—Failure categories for the infinite plate. The solid curve is given by the D-BCS-HSW 
model. The dashed curves represent LEFM and the plastic-zone adjustment [LEFM (PZA)J. 
The dashed horizontal line represents PC. The dotted tines give the dividing lines between the 
three failure categories. 

plot, then the structure is considered to be safe, but if the point falls above 
the curve, then it is assumed that the crack will extend and lead to failure of 
the plate. 

In the same figure, a curve labelled LEFM also is plotted. This curve 
would be obtained if failure is assumed to occur by brittle fracture, that is, 
when Vif in Eq 1 reaches KK, as described in the section on Linear-Elastic 
Fracture Mechanics. The failure stress for LEFM, therefore, is given by 

a = Kii/{wa) 1/2 (15) 

This relation is plotted in dimensionless form as the dashed curve labelled 
LEFM in Fig. 1. Note that it approaches the D-BCS curve at small applied 
stress. 

We also have plotted the plastic-zone adjustment for LEFM in Fig. L The 
formula for this model is obtained by substituting Eq 13 in Eq 5 and solving 
for the failure stress 

a = KR/[Tra + iKR/ao)y2y II (16) 

This relation is plotted in dimensionless form as the dashed curve labelled 
LEFM (PZA) in Fig. L It gives a much better approximation to the D-BCS 
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curve then Eq 15, and this shows that the plastic zone adjustment is quite 
good up to values of a/ao = 0.8. 

Finally, PC is considered to occur when the applied stress reaches the flow 
stress 

o=ao (17) 

This is the dashed line labelled PC shown in Fig. 1. No knowledge of the frac
ture toughness is needed for this curve. It simply represents the failure stress 
when no crack is present. Plastic collapse also is known as plastic instability 
or ultimate collapse. 

Failure Categories 

At the Symposium on Fracture Toughness Concepts for Weldable Struc
tural Steel, Hahn and Sarrate [1] established failure criteria for through-
cracked vessels. Their paper offered a more unified picture of the various 
viewpoints represented at the conference, such as LEFM, plasticity-corrected 
fracture toughness, CTOD, the flow strength criterion, etc. These concepts 
were fitted into a common framework of three failure categories: (1) linear-
elastic behavior, (2) nonlinear elastic behavior, and (3) plastic instability 
behavior. They also established criteria for the dividing lines between these 
failure categories. These latter criteria were given in terms of the crack size, 
a, fracture toughness, Kj^, and flow stress, ao, as follows: 

(a) Dividing line between categories (1) and (2) 

{KR/ao)ya » 1.2 (18) 

(b) Dividing line between categories (2) and (3) 

(A:«/ao)Va » 7 (19) 

In this paper we have relabelled their categories (1) LEFM, (2) EPFM, and 
(3) PC. These categories and their dividing lines (Eqs 18 and 19) also are 
shown in Fig. 1. The motivation for these dividing lines was as follows: 

(a) Hahn and Sarrate established dividing line (Eq 18) between LEFM and 
EPFM by associating it with the O/OQ = 0.6 stress level where the "true" 
CTOD (Eq 6) departs 20 percent from the "linear-elastic" estimate (Eq 7). 
This is shown as follows. We substitute Eq 18 into Eq 15, and obtain the 
stress level criterion 

a/ao = 0.62 (20) 
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as illustrated in Fig. 1. From Eqs 1 and 9, we then find 

{Kf^/KY = 8(ffo/7ra)2 In sec (Tra/lao) = 1.2 (21) 

This may also be written 

{K,^ - K^VK^ = 0.2 (22) 

which is the 20 percent criterion expressed in terms of the stress-intensity fac
tor rather than CTOD. In Fig. 1, this means that the LEFM and D-BCS 
curves differ from each other by 20 percent at the dividing line. In support of 
this dividing line, we note that Heald, Spink, and Worthington [4] have 
stated that the two curves "merge" for a > {KR/OQI^. This would correspond 
to (K}i/ao)^/a < 1 instead of Eq 18, with a difference of about 15 percent at 
(j/ffo = 0.56. We believe that criterion is essentially in agreement with that of 
Hahn and Sarrate. The conclusion here is that for CT/CTQ < 0.62 the difference 
between LEFM and EPFM becomes negligible. 

(b) For the dividing Ime (Eq 19) between EPFM and PC, Hahn and Sar
rate reported that this was a consensus of various participants at the Sym
posium. If Eq 19 is substituted in Eq 14, we find that at the dividing line 

a/ffo « 0.96 or (CTQ - o)/oo = 0.04 (23) 

This means that the EPFM curve lies 4 percent below the PC line at the dividing 
line, as can be seen in Fig. 1. The conclusion here is that for a/ffQ > 0.%the dif
ference between EPFM and PC is negligible. 

In establishing these criteria, Hahn and Sarrate did not take into account 
the effect of the geometry and size of the structure. We shall show how this 
can be done in the section on Finite Geometry. 

Dimensionless Formulation 

From Fig. 1, it is apparent that a dimensionless graph displays the essen
tial features of the model quite well. All cases for different values of a, a, A'R, 
or OQ are reduced to a single plot. 

Analytically a dimensionless formulation is also convenient, because it will 
emphasize the generic form of the equations, and hence highlight the role of 
the parameters or combination of parameters. We therefore define the nor
malized applied stress as 

(J, = a/oQ (24) 
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and a normalized fracture toughness by 

Ky = {K^/o^itay^^ (25) 

In terms of these dimensionless quantities we can now rewrite the analytic ex
pressions for the three categories as follows: 

(a) In EPFM Eq 14 then gives the following expression for the normalized 
applied failure stress of the D-BCS model 

a, = (2/7r) cos-i {exp[-(7rA:,)V8]} (26) 

This would suggest a plot of aj versus K^. However, we have plotted a\ versus 
xATî  instead in Fig. 1, primarily to illustrate Hahn and Sarrate's criteria for 
the dividing lines. 

{b) In terms of the dimensionless quantities, the normalized applied fail
ure stress for LEFM becomes (compare Eq 15) 

<7, = Ky (27) 

(c) Finally, the normalized applied failure stress for PC becomes (compare 
Eql7) 

a, = 1 (28) 

The relations (Eqs 26 to 28) then summarize the three failure categories in 
the dimensionless formulation. 

Finite Geometry 

Modified Plastic Yield Strip Model 

Heald, Spink, and Worthington [4] noted that the D-BCS model (Eq 14) 
does not account for the effect of the geometry or shape of the structure. 
They therefore introduced a correction factor into the equation to take this 
into account. We have called this modification the D-BCS-HSW model. 

First recall that in LEFM the effect of geometry or structure can be intro
duced into the stress-intensity factor by writing it in the generic form 

K = a{-Kay'^F{a/W) (29) 

where F{a/W) is the geometric factor for the stress-intensity factor and W is 
the width of the structure. Various handbooks, such as Tada et al [5], give 
analytic expressions for F in many particular geometries. Equation 29 can be 
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regarded as a generalization of Eq 1 from the infinite plate to arbitrary 
geometries. 

To generalize the D-BCS model (Eq 9) to arbitrary geometries is much 
more difficult than for the LEFM case. No analytic and only a limited 
number of numerical solutions have been published. Therefore Heald, 
Spink, and Worthington proposed an approximate generalization similar to 
the above one for LEFM. In particular, their procedure is a generalization of 
the effective stress-intensity factor in Eq 11, as follows 

KMao,a,W)= K{a,a, W)M(a„/ao) 
(30) 

= a(ira)i''2/'(a/VF)M(a^/ffo) 

where ai^ is the nominal stress, explained below, K{a, a, MO is the LEFM 
value given by Eq 29, and M{a{^/ao) is the plastic correction factor, which 
has the same form as Eq 12, and is given by 

Miofj/ao) = {2ao/iraj^) [2 In sec (iraj^/2ao)y^'^ (31) 

Equation 30 shows that the effective stress-intensity factor, K^, in the 
D-BCS-HSW model is the LEFM stress-intensity factor, K, multiplied by a 
plastic correction factor, M, just as we found for the D-BCS model. 

In the previous expressions ff/^ is the nominal stress, which is the stress on a 
net cross-section calculated in a simplified manner without taking into ac
count stress gradients produced by geometric discontinuities, such as cracks. 
The nominal stress can be related to the applied stress by 

a=a!^N{a/W) (32) 

where N{a/W) is the geometric factor for the nominal stress. As with expres
sions for F, the expressions for A'̂  are usually functions of the structural 
geometry, and most frequently expressed in terms of the parameter a/W. At 
plastic collapse it is assumed that the nominal stress, â r, reaches the flow 
stress, OQ, and the applied stress, a, reaches the limit stress, Oi, which 
therefore is given by 

aj^ = aoNia/W) (33) 

Analytic expressions in this form for various specimen geometries have been 
given by Chell [10] in Table 1 of his paper (where he uses CT] for a/; and a for OQ). 

If we substitute Eqs 31 and 32 into Eq 30, we find the following expression 
for the effective stress-intensity factor of the D-BCS-HSW model 

K, = FNoo liSa/x) In sec {ira/lNaoW^^ (34) 
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This expression has the desirable properties that for LEFM, where a < < ao, it 
reduces to Eq 29, and for the infinite plate, where F = Â  = 1, it reduces to the 
D-BCS model (Eq 9). Furthermore, Eq 34 is assumed to apply in general to all 
geometries. 

Failure Criteria 

The D-BCS-HSW expression for the effective stress-intensity factor, K^ in 
Eq 34, again can be regarded as the crack-extension force in the finite struc
ture with plasticity. When the applied stress, a, or the crack size, a, are in
creased until the crack-extensioq force, K^, reaches the value of the crack-
extension resistance, KR, then the crack will start to extend, and by our 
assumption failure will occur. Hence, if we substitute KR for K^ in Eq 34 and 
solve for a we find the failure stress for the D-BCS-HSW model 

a = (2/7r)iVaoCOS-i {t\^[-{rma){KR/FNaQY\} (35) 

This relation is plotted in dimensionless form as the solid curve labelled 
D-BCS-HSW in Fig. 2. Along the x-axis we have plotted a measure of the 
fracture toughness, {KR/FNa^f/a, and along the j-axis the normalized 
nominal stress, opf/oo. These are the logical choices for the dimensionless 
parameters in Eq 35. This curve represents the expected failure stress. 

MEASURE OF FRACTURE TOUGHNESS, (K^/FNCTof/a 

FIG. 2—Failure categories for finite geometry. 
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In the same figure, a curve labelled LEFM also is plotted. This is the curve 
that would be obtained if one assumes that failure occurs by LEFM, that is, 
that there is no plasticity at the crack tip. Then the stress-intensity factor, K, 
given by Eq 29, would represent the crack-extension force, and failure would 
occur when K reaches Kj^. Hence, if we substitute KR for K in Eq 29, and 
solve for a we find the failure stress for LEFM 

a = {KR/F)/{-Kay'^ (36) 

This relation is plotted as the dashed curve labelled LEFM in Fig. 2. The 
D-BCS-HSW curve approaches the LEFM curve as the normalized fracture 
toughness approaches zero. 

Finally, PC is considered to occur when the nominal stress reaches the flow-
stress, or the applied stress reaches the limit stress 

0^ = OQ or a= oi (37) 

This is the other dashed line in Fig. 2. Again, no knowledge of fracture 
toughness is needed for this curve. It simply represents the failure stress 
when no crack is present. The D-BCS-HSW curve approaches the PC curve 
as the crack size approaches zero. 

It will be noticed that the form of the equations in this section is similar to 
the form of the equations in the earlier section on Failure Criteria, and that 
the shape of the curves in Fig. 2 is exactly the same as the shape of the curves 
in Fig. 1. For this simplified model, the difference between the two figures is 
only in the labelling of the axes, where in going from Fig. 1 to Fig. 2 the axes 
have acquired a more general interpretation. 

Failure Categories 

If the Hahn and Sarrate [/] criteria for the dividing lines (Eqs 18 and 19) 
are applied to the D-BCS-HSW model shown in Fig. 2, then the location of 
the dividing lines between the categories would depend on the geometry of 
the structure, through the functions F{a/W) and N{a/W). Hence, it is 
desirable to generalize these criteria in such a way that they are independent 
of the geometry. Figure 2 suggests that this can be done as follows: 

(a) Dividing line between LEFM and EPFM categories 

(KR/FNoQ^/a = 1 . 2 or ffjv/f'o^ 0.62 (38) 

(fe) Dividing line between EPFM and PC categories 

{KR/FNaoY/a = 7 or On/of, = 0.% (39) 
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These are now the dividing lines for the three failure categories m the case of 
finite geometry, as illustrated in Fig. 2. These relations generalize to finite 
geometries the ideas of Hahn and Sarrate [/], discussed in the section on 
Failure Categories, which were developed for an infinite plate. 

We emphasize again that we have ascribed a general meaning to the term 
EFFM in Eqs 38 and 39, that is, EPFM is used here to describe the elastic-
plastic category described by the D-BCS-HSW model. It does not refer to the 
J-integral approach. 

Dimensionless Formulation 

Again, it is convenient to have a dimensionless formulation, because it em
phasizes the generic form of the equations, and highlights the essential com
bination of parameters. We define the normalized nominal stress by 

02 = Of{/ao = (j/ffi = a/Nofj (40) 

where the second and third equalities follow from Eqs 32 and 33. Further
more, we define a second normalized fracture toughness by 

K2 = {KR/FNaa)/{-KaV'^ (41) 

In terms of these dimensionless quantities the analytic expressions for the 
three categories now can be written as follows: 

(a) In EPFM, Eq 35 gives the following expression for the normalized 
nominal failure stress of the D-BCS-HSW model 

02 = (2/x) cos-i{exp[-(x/i:2)2/8]} (42) 

Again, in Fig. 2 we have plotted 02 versus 7rA'2̂  rather than K2, primarily to 
show the extension of Hahn Sarrate's criteria for the dividing lines to finite 
geometries. 

(b) In terms of the dimensionless quantities, the normalized nominal 
failure stress for LEFM becomes (compare Eq 36) 

02 = K2 (43) 

(c) Finally, the normalized nominal failure stress for PC becomes (com
pare Eq 37) 

02 = 1 (44) 

Note the striking similarity between Eqs 42 to 44 and Eqs 26 to 28, when the 
relations are expressed in dimensionless formulation. This is why the curves 
in Figs. 1 and 2 are identical; only the axes have been relabelled. 

 



DE WIT ON GENERALIZED FAILURE CRITERIA 1-39 

Relations to Other Developments 

Two-Criteria Approach and Universal Failure Curve 

Dowling and Townley [5] attempted to simplify the treatment of structures 
containing defects by bypassing the post-yield fracture mechanics (EPFM) 
theories and assuming that the failure stress occurs by one of two mechan
isms: this was called the two-criteria approach. LEFM can be considered as 
one extreme form of failure behavior, providing one bound to the problem of 
fracture analysis. The other bound then is given by the opposite behavior, 
namely, fully plastic collapse. The two-criteria approach then states that 
structural failure occurs when the loading system reaches the lower of either 
the load to cause fracture by LEFM or the load to cause failure by PC. The 
calculations involved in obtaining these two different loads are independent 
since in LEFM the material property governing failure is the fracture tough
ness, KR, whereas in PC it is the flow stress, OQ. The former is dependent on 
crack tip events, whereas the controlling influence in the latter is the net sec
tion. In nonwork-hardening materials PC will occur when the average stress 
across the net section approaches the yield stress (flow stress) and a 
mechanism exists for PC. 

Dowling and Townley further noted that LEFM is a good way of describing 
the effect of cracks when CT/CTQ < 0.6. This of course is in agreement with the 
former assessment of Hahn and Sarrate. 

However, Dowling and Townley realized that there is a transition region 
between their two criteria. They achieved normalization of the data by using 
the formulation of Heald, Spink, and Worthington [4], that is, the D-BCS-
HSW model (Eq 35). This equation was used to describe the behavior of sim
ple specimens in brittle fracture, the transition region, and gross yielding. To 
describe the behavior of more complex structures, they rewrote this formula 
to give the universal failure curve 

Lf/Lu = (2/ir) cos-i {exp[-(xV8)(Xi/Z,„)2]} (45) 

where the symbols L represent failure parameters, such as load, stress, or 
pressure. For example, the applied failure load could be given by 

Lj = Aa (46) 

where A is some cross-sectional area. Then the failure load by plastic collapse 
would be 

L^=AOL (47) 

and the failure load by brittle fracture 

Lk = AOKR/K = AKR/{{iray'^F] (48) 
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Hence, Dowling and Townley's universal failure curve (Eq 45) is completely 
equivalent to the D-BCS-HSW model (Eq 35). This also can be seen as 
follows. From Eqs 46 and 47 and Eq 40 

and from Eqs 33, 41, 47, and 48 

(49) 

(50) 

Hence, Eq 45 is identical to Eq 42. This equation is plotted as the solid curve 
labelled D-BCS-HSW in Fig. 3. This curve again represents the expected 
failure stress. 

Also shown in this figure is the LEFM curve, Eq 38 or 43, which is now a 
straight line given by 

Lf/Lu —Lf^/L^ 

and the PC line, Eq 37 or 44, given by 

X//X. = 1 

(51) 

(52) 

Furthermore, the three failure categories of Hahn and Sarrate also are 
shown, separated by the previously discussed dividing lines. These dividing 

0.0 05 062 10 1.5 

NORMALIZED FRACTURE TOUGHNESS L|,/L„=(Kp/FNCro)/v'TTo 

FIG. 3—The universal failure curve of Dowling and Townley. 
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lines now are expressed most conveniently in terms of the dimensionless 
quantities: 

(a) Dividing line between LEFM and EPFM categories 

/ ^2« (l-2/ir) ' '2«o.62 or aj = 0.62 (53) 

{b) Dividing line between EPFM and PC categories 

K2 « (7/x)i''2 = 1.5 or 02 = 0.96 (54) 

Dowling and Townley plotted results of a large number of analyses on the 
universal failure curve. Extensive evidence was collected confirming that Eq 
45 interpolates adequately between the two limiting criteria. There was good 
agreement between the curve and the experimental points bearing in mind 
the wide variety of geometries, materials, and toughness levels. 

Relation to the Design Curve 

As originally propounded, the CTOD design curve (formerly known as the 
COD design curve) aimed to give the practitioner a very simple but assuredly 
conservative method for defining, for a given material, an acceptable combi
nation of stress level and defect size. 

The basis for the CTOD design curve was provided by Burdekin and 
Stone's [11] analysis of the D-BCS model. However, rather than using Eq 9 
in terms of the stress, they developed a relationship between a nondimen-
sional value of the CTOD and a normalized strain. The nondimensional 
CTOD was given by 

* = dE/lTraya (55) 

where ay is the yield stress and a an equivalent crack size. This analysis ap
plied to an elastic-plastic nonwork-hardening material. However, the ex
perimental values from large-scale tests were generally below the predicted 
values. 

Burdekin and Dawes [12] revised the CTOD design curve and used the 
D-BCS model at small stresses (the toe region) and a linear portion at large 
strains. Later Dawes [13] modified the toe region of the CTOD design curve 
to a quadratic form that was simple to use. Essentially this corresponded to 
substituting Eq 7 into Eq 55. 

For a more accurate description of the toe region Dawes [6] used the equation 

* / ( l -a/Wy « (4£/7r2) In sec (iraN/lLay) (56) 

where i is a plastic constraint factor. For structural situations with low 
values of a/W this relation was justified by experimental data. We now show 
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that Eq 56 is equivalent to the developments discussed previously. The 
plastic constraint factor can simply be taken as the ratio of flow to yield stress 

L ~ OQ/OY (57) 

Following Merkle's [14] suggestion, that is, comparing Eq 1 with Eq 29, the 
equivalent crack size, a, can be related to the actual crack size, a, by the 
geometric factor for the stress-intensity factor 

a = aF^ (58) 

For a crack in tension the geometric factor for the nominal stress can be 
taken as 

N=\-a/W (59) 

though we would prefer to use the actual crack size, a, in this relation. With 
the relations in Eqs 57 to 59, it can be seen that Dawes' Eq 56 follows from 
Eqs 8, 32, 34, and 55. Hence, Dawes' equation is completely equivalent to 
the D-BCS-HSW model. 

In our previous notation the D-BCS-HSW model for the approach in this 
section is obtained by solving Eq 35 for KR or, more simply, by substituting 
Eq 13 in Eq 34 

KR = FNao [(8a/TT) In sec {Tra/2NaQ)W^ (60) 

The dimensionless form of this relation is found from Eqs 40 and 41 or by 
solving Eq 42 for K2 

Kj = [(8/7r2) In sec {1:02/2^^ (61) 

This relation is plotted as the solid curve labelled D-BCS-HSW in Fig. 4. 
Again, we also have plotted the dashed LEFM line given by (compare Eqs 36 
and 43) 

K2 = a2 or ATR = (j(7ra)i/2/- (62) 

and the plastic collapse line is given by Eq 37 or 44. The three failure 
categories of Hahn and Sarrate and their dividing lines are given by the rela
tions in Eqs 53 and 54, as before. 

We note that Fig. 4 is a variant of Fig. 3 obtained simply by interchanging 
the axes. This method of plotting has been used frequently for comparison of 
experimental data with LEFM or D-BCS-HSW; see, for example, Dawes 
[13], Server and WuUaert [15], and deWit and Interrante [16]. 
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FIG. 4—General comparison of LEFM, EPFM, and PC. 

1.5 

Failure Assessment Diagram 

Harrison et al [ 7] concluded that the previously mentioned methods were 
not an ideal presentation. When failure is by LEFM it is abrupt. When 
failure is the PC it is progressive. Hence, they wanted to clearly separate 
these two mechanisms in a diagram. The procedures developed within the 
CEGB were designed to satisfy this function. When the procedures are 
followed to completion, all necessary plasticity corrections are performed 
automatically so that the critical conditions are identified properly. Judg
ment of the degree of safety of the structure is not made by recourse to rigid 
"safety factors." Instead, the user is encouraged to choose such factors ob
jectively [17-18]. 

The basis of the CEGB procedure, also known as the R6 procedure, is the 
FAD, shown in Fig. 5, on which are plotted two parameters, S^ and K^, 
evaluated under the appropriate loading conditions. The parameter S^ is a 
measure of how close the structure is to failure by PC and is defined by 

S, = o/ai (63) 

From Eqs 40 and 49 we see that S^ is related to quantities we have defined 
before by 

S^ — 02— Lf/Lu (64) 
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FIG. 5—The failure assessment diagram of the CEGB. 

The parameter AT, is a measure of how close the structure is to failure by 
LEFM and is defined by 

Kr = K/K^ (65) 

We see that 

Sr/Kr^K2=L,/L, (66) 

from Eqs 29, 33, 41, and 50. If we now substitute ai and K2 in terms of S^ 
and K^ as given previously into Eq 61 and solve for K^ we find 

K, = Sr [(8/x2) In sec (ir5,/2)]" 1/2 (67) 

This relation is plotted as the solid curve labelled D-BCS-HSW in Fig. 5. It is 
called the failure assessment line. This luie uses the D-BCS-HSW model to 
interpolate between the two limits of behavior, namely LEFM and PC. In this 
way, advantage is taken of the observation of Dowling and Townley [5] that 
structures cannot operate outside the limits imposed by LEFM and PC. The 
basic assumption of the FAD is that it provides a realistic lower bound failure 
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locus which is somewhat independent of geometry. If it is regarded as simply 
an empirical interpolation, this assumption is justified easily by over 150 
assessment points [19]. In practical applications of this procedure, the two 
parameters (Sr,Kr) are entered as a coordinate point on the failure assess
ment diagram in Fig. 5. Failure is conceded if the assessment point falls on 
or outside the assessment line. 

Figure 5 also shows the LEFM line which is given from Eqs 29, 62, and 65 by 

K, = 1 (68) 

and the PC line which is given from Eqs 44 and 64 by 

Sr = 1 (69) 

The three failure categories of Hahn and Sarrate also are shown m the figure, 
separated by the previously discussed dividing lines. These dividing lines now 
are given in terms of the FAD parameters by using the values of aj for S^ 
from Eqs 53 and 54 and calculating K^ from Eq 67: 

(a) Dividing line between LEFM and EPFM categories 

S, » 0.62 or Kr = 0.91 (70) 

(b) Dividing line between EPFM and PC categories 

S, = 0.% or K, = 0.64 (71) 

The FAD is another way of expressing the failure line derived from the 
D-BCS-HSW model. The FAD is the cornerstone of the failure assessment 
route on the format of the American Society of Mechanical Engineers 
(ASME) Section XI code. This provided a document that was in the format 
with which engineers are well acquainted and a method based on procedures 
that also were established and well understood. The assessment route can be 
applied to ferritic steel structures of any discipline, but its application has 
been oriented to pressure-bearing components of Nuclear Class 1 status. The 
route dealt with the treatment of failure in the small-scale and the large-scale 
yielding regimes. A detailed procedure is set out. The failure assessment 
route is one approach to assessing the integrity in structures containing 
defects. Out of the methods available, a route has been selected for 
establishing the criticality of any flaw and examining the rate of grovrth of 
such a flaw. Varying degrees of sophistication can be used, and Harrison et 
al [ 7] hope that the more simple methods prove to be satisfactory in the ma
jority of cases. They do not claim that the route is fully established. The pro
cedures are continually under review and are updated when knowledge and 
techniques are improved. 
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Reviews 

The FAD has been well documented. The basic procedures are set out in the 
basic document by Harrison et al [7], which is updated regularly. An early in
troduction to the method was provided by Hairison and Milne [17], The 
method and its background has been reviewed extensively more recently by 
Chell [10], Milne [19], and Darlaston [20]. These reviews also treat various 
ramifications and extensions of the method. An up-to-date summary was 
given by Harrison and Milne [18]. 

The design curve also has been documented extensively. Dawes [6] has 
reviewed the CTOD design curve, Burdekin [21] has reviewed its applica
tion, and Harrison [22] has reviewed the state-of-the-art of CTOD testing. 
Turner [23] has reviewed a related J-based design curve. 

Turner [24] also has written an extensive review on all aspects of EPFM. 

Residnal Strength Diagram 

Consider a structure in which a crack develops. Due to the application of 
repeated loads or due to a combination of loads and environmental attack 
this crack will grow with time. The longer the crack, the higher the stress 
concentration induced by it. Due to the presence of the crack the strength of the 
structure is decreased: it is lower than the original strength it was designed for. 
The residual strength of the structure decreases progressively with increasing 
crack size. What is the residual strength as a function of crack size? The 
answer to this question is already contained in the foregoing sections, but is 
best clarified by the residual strength diagram shown in Fig. 6. 

As a measure of the residual strength we can take the fracture stress. Then 
Eq 35 represents the residual strength as a function of the crack size. To put 
this in dimensionless form, we define a normalized crack size by 

02 s {FNao/KR)^Tra = Ki'^ (72) 

where the second equality follows from Eq 41. The relation for residual 
strength then becomes (compare Eq 42) 

02 = (2/7r) cos-> {exp[-x2/8a2]} (73) 

where we now have taken the normalized stress (Eq 40) as representative of 
the residual strength. This relation is plotted as the solid curve labelled 
D-BCS-HSW in Fig. 6. This curve then represents the residual strength of 
the structure as a function of the normalized crack size. Again, the 
significance of this curve is that if a point for a given stress and crack size 
falls below the curve it is safe, but if it falls above this curve failure is 
predicted. 
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FIG. 6—The residual strength diagram. 

Also shown in Fig. 6 is the LEFM curve, which is given by 

from Eqs 36, 40, and 72, and the PC curve, given by 

2̂ = 1 

(74) 

(75) 

The three failure categories of Hahn and Sarrate also are shown in the figure, 
separated by the dividing lines: 

(a) Dividing line between LEFM and EPFM categories 

CT2 ~ 0.62 or 02 = ir/1.2 ~ 2.6 

(h) Dividing line between EPFM and PC categories 

02 « 0.% or 02 ~ 7r/7 « 0.45 

(76) 

(77) 

The form of the residual strength diagram for comparing data to the D-BCS-
HSW model also has been used extensively in the literature, for example, by 
Heald, Spink, and Worthington [4], Dowling and Townley [5], and Harrison 
and Milne [17\. 
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The residual strength diagram offers a sensible way to analyze experimen
tal data, for it examines the failure stress as a function of the crack size, that 
is, the two parameters that would be of most interest to engineers. In this sec
tion, this was done in terms of the dimensionless quantities 02, Eq 40, and a^, 
Eq 72. However, these are rather complicated quantities, involving the func
tions F{a/W) and Nia/W), which depend on the specific geometry of the 
structure. In a future publication we shall examine the residual strength 
diagram for particular geometries in simple terms. 

Summary 

We have briefly reviewed the fracture mechanics of a central crack in an 
infinite plate. In that connection we discussed the model developed by 
Dugdale, Cottrell, Bilby, and Swinden, known as the D-BCS model, which 
we used in this paper to describe EPFM. The failure criteria of Hahn and 
Sarrate were related to this model, and it was used to establish three failure 
categories: (1) LEFM, (2) EPFM, and (3) PC. The criteria for the dividing 
lines between these categories were given in terms of the fracture toughness, 
AT̂ j, flow stress, OQ, and the crack size, a. We reformulated these in terms of 
the normalized applied stress, a/a^. We also presented a dimensionless for
mulation of the D-BCS model. 

Next, we presented the extension of Heald, Spink, and Worthington of the 
D-BCS model to finite geometries and structures. This was an approximation 
patterned after the extension of LEFM for the infinite plate to finite 
geometry. In this approximation of the effective stress-intensity factor is 
represented as the product of two terms, one related to the geometry of the 
structure, and the other to the plasticity of the material. We have called it the 
D-BCS-HSW model. For a small crack size in a plate it reduces to the D-BCS 
model and for a small applied stress it reduces to the LEFM result. We 
generalized the failure criteria of Hahn and Sarrate to the D-BCS-HSW 
model simply by stating them in terms of the normalized nominal stress. 
Hence the three failure categories also could be defined quite easily. Two new 
quantities enter into the formulation of the D-BCS-HSW model, namely, the 
geometric factor for the stress-intensity factor, F, and the geometric factor for 
the nominal stress, N, both of which are functions of the geometry of the struc
ture. We also presented a dimensionless formulation of the D-BCS-HSW 
model, which was formally identical to that for the D-BCS model. 

Next, we discussed some related developments in the literature. Dowling 
and Townley's two-criteria approach and universal failure curve are just 
another way of presenting the D-BCS-HSW model. Their curve is supported 
by a large number of data. The relation of the D-BCS-HSW model to 
Dawes's CTOD design curve was pointed out. Finally, the D-BCS-HSW 
model is the basis of the FAD developed by Harrison, Loosemore, and Milne 
at the CEGB. Again, this diagram is justified easily by a large number of 
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assessment points. For the foregoing related developments, the three failure 
categories of Hahn and Sarrate and their dividing lines were established. 

Finally, the residual strength diagram was presented, where the failure 
stress is plotted as a function of the crack size. Again, the three failure 
categories and their dividing lines were established. 

Though the term EPFM was introduced into fracture mechanics in ccwtinec-
tion with developments of the J-integral, we have used it in a more general 
sense: we have regarded EPFM as any approach to fracture mechanics in the 
elastic-plastic regime, that is, the regime between LEFM and PC. In this paper 
the approach we chose was through the plastic yield strip model of Dugdale. 
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ABSTRACT: The influence of specimen size and stress field on energy loss away from the 
crack tip was studied using dynamic photoelasticity and fracture mechanics. The method 
of analysis utilised a balance of energy in the system. Experiments were conducted with 
three different sizes of modified compact tension (MCT) specimens, and it was found 
that energy loss increased with specimen size. Energy loss increased from 34 percent of 
total available energy to 48 percent as the specimen size was doubled. 

The influence of stress field on energy loss was modelled by using different starter 
crack lengths in MCT specimens. It was observed that energy loss as well as crack propa
gation behavior are dependent on the stress field into which the crack propagates. 

KEY WORDS; energy loss, photoelasticity, fracture mechanics, Homalite 100, specimen 
size, stress field, inefficiency ratio, compliance 

The fundamental principles of classical thermodynamics indicate that a 
loss of energy is inevitable during any ureversible process. Recent work at the 
University of Maryland [1,2]^ has shown that energy loss away from the crack 
tip is quite significant in a fracture process and accounts for almost 40 per
cent of the initial strain energy present in a laboratory model. A knowledge of 
this energy loss is important in numerical studies [3,4] that utilize an energy 
balance approach to predict the stress-intensity factor at arrest and the crack 
jump distance. The energy loss will, of course, depend on several factors, 
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such as the stress field into which the crack propagates, environmental con
ditions, specimen material, etc. In this paper we attempt to evaluate exper
imentally the influence of specimen size and the influence of the stress field 
on energy loss and crack propagation behavior in Homalite 100 fracture 
specimens. 

It is possible to identify four major sources of energy dissipation away from 
the crack tip during crack propagation and the initial arrest phase. (1) If the 
dynamic modulus is different from the static modulus a loss of energy occurs 
when the system changes either from a static to a dynamic configuration or 
from a dynamic to a static one. (2) Energy can be lost by high frequency 
stress waves generated during the sharp drop in K from the high initial value 
KQ, to the lower running crack value K(t). (3) Energy is also lost because of 
the low amplitude stress waves that are released when microcracks form in 
the fracture process zone. (4) Energy is lost in transformation of energy (for 
example, from kinetic to potential) and in specimen vibration after crack 
arrest. 

The investigation of energy loss away from the crack tip during rapid frac
turing is of special interest with regard to evaluations of crack arrest tough
ness of structural steel. It is also of interest to predict the size of run-arrest 
crack extension, which occurs during rapid internal cooling of a cylindrical 
pressure vessel [5]. To enhance usefulness of this study in these applications, 
the specimen tested was a wedge loaded modified compact tension (MCT) 
specimen currently preferred for evaluations of crack arrest toughness. 
Moreover, this specimen is easy to load and the crack propagates straight 
without face grooves. 

The experimental approach was relatively simple. An MCT specimen was 
loaded in fixed grip conditions and the initial strain energy U; was determined. 
The crack was then initiated and the isochromatic fringe loops associated 
with the propagating crack were photographed with a high-speed recording 
system to obtain energy absorbed in forming the fracture surface Ej. After 
arrest and ring down, the strain energy Ua left in the specimen was determined 
from the final crack length. Finally, the total energy loss E^ was obtained 
from the energy balance 

Ea=Ui-{U,+Ef) (1) 

Three different sizes of MCT specimens were used to study the influence of 
specimen size on energy loss—normal, in accordance with the ASTM Stan
dard Recommended Practice for R-Cnrwt Determination (E 561-81), three-
quarters, and 1.5 size. The lateral dimensions of the specimens were scaled 
so that the compliance characteristics did not change. The initial starter 
crack length-to-width ratio was kept the same in all experiments so that the 
cracks propagated into essentially the same state-of-stress field. Within this 
test series, several experiments were conducted in which the initial stress-in-
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tensity factors and the initial strain energy were varied. In that way, the influ
ence of these two parameters on crack jump distance and energy loss were in
vestigated. A separate series of experiments was done in which the position of 
the starter crack length was varied. The influence of changing the initial 
crack length and hence the stress state into which the crack propagates was 
found to be significant with regard to both energy loss and crack jump 
distance. 

Experimental Procedure 

Specimen and Loading Fixture 

The fracture specimen used throughout this study was an MCT specimen 
as shown in Fig. 1. The specimen was fabricated from a 12.7-mm-thick sheet 
of Homalite 100 whose properties have been characterized by Dally and 
Kobayashi [6]. 

The specimen was loaded with a transverse wedge and a split D, as shown 
in Fig. 2. The wedge was pulled between the two split D's with a hydraulic 
cylinder. The split D's were fitted in the circular hole in the MCT specimen. 
After the specimen was loaded to a specified value of [/,, the wedge was locked 
into a fixed position. This prevented any interaction between the loading sys
tem and the specimen during the fracture event. This condition is important 
for the validation of Eq 1. Besides locking the wedge, two contacting stops 
were placed along the load line on the outer edges of the specimen to reduce 
outward displacement during the propagation and arrest event. Subsequent 
trials showed there was no significant pressure against these stops prior to 
crack arrest. The experiment was initiated by drawing a sharp knife edge 
across the crack tip. Displacements of the split D were monitored with an eddy 
current transducer during the event to insure that fixed grip conditions were 
achieved. The fracture event was photographed with a high-speed multiple 
spark gap camera. 

Compliance Calibration 

The initial and final strain energy U in the specimen were determined from 

. A 

U= PdA (2) 
Jo 

which is the area under the load-displacement curves for the MCT specimen 
with a prescribed crack length a. To determine U, the relation between the 
load P and the split D displacement A was established with a compliance cal
ibration. The load P was measured with a quartz load cell positioned between 
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FIG. I—Geometry of the fracture specimen used to study the influence of specimen size on 
energy loss. 

the wedge and the split D fixture. The displacement A was measured with an 
eddy current transducer which bridged the gap on the split D fixture. Accur
acies of ± 4 N and ±0.025 mm were achieved in the determination of P and 
A, respectively. P-A curves were obtained for all the specimens, and the re
sults are shown in Fig. 3. The nonlinearity in the curves is mainly due to the 
hertzian contact indentation between the loading pins and the specimen. 

Fracture Energy Determination 

The energy absorbed at the crack tip during crack propagation was deter
mined from the photoelastic data obtained during the fracture experiment. 
Typical isochromatic fringes obtained during the experiment are shown in 
Fig. 4. These fringes were analyzed to get the value of stress-intensity factor 
K using a dynamic procedure similar to the one developed by Sanford and 
Dally \7\. Values of K^ were plotted as a function of crack tip position for 
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FIG. 2—Loading fixture with the specimen. 

each experiment. A typical result is shown in Fig. 5. The energy £y was then 
determined from 

?"/ 
Ef = h\ KVEda (3) 

.. ao 
where 

h — specimen thickness, 
E = elastic modulus, 
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Go — initial crack length, and 
Qj — final crack length. 

Results of Dynamic Photoelastic Experiments 

Small Modified Compact Specimens (SMCT) 

Three experiments were performed to study energy loss and crack propa
gation in small specimens. The specimens were loaded to an uiitial strain en
ergy of 0.113, 0.104, and 0.080 J. The photoelastic data obtained during the 
experiment were analyzed, and the results obtained are shown in Table 1. 
The results show that about 30 percent of initial strain energy present in the 
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Experi
ment No. 

SMCT 1 
SMCT2 
SMCT 3 

TA 

MPav'm 

0.87 
0.82 
0.71 

iBLE 1-

mm 

934 
836 
747 

—Sunimi 

J 

0.113 
0.104 
0.080 

iry of results for 

Ef. V„ 
J J 

0.068 0.014 
0.057 0.016 
0.043 0.013 

the SMCT specimens. 

Ed. 
J 

0.031 
0.031 
0.024 

% 

28 
30 
30 

E^/E,, 
% 

46 
54 
56 

E,' 
(Ui - UJ, 

% 

31 
35 
36 

"KQ is the stress-intensity factor associated with the initial starter crack. 
''Af is the fracture surface area. 

specimen is lost away from the crack tip during propagation and the initial 
arrest phase. The lost energy increases with the initial energy. Moreover, the 
ratio of damping energy to fracture energy was about 50 percent for this spec
imen. If the ratio of the damping loss^^ to the total used energy (U,- — Ug) is 
defined as the inefficiency of the system, the inefficiency averaged about 34 
percent. 

Regular Modified Compact Specimens {MCT) 

Four experiments were performed to study energy loss in regular sized 
MCT specimens. The initial strain energy in the specimens was varied from 
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0.164 to 0.133 J. The results obtained are given in Table 2, and show that 
about 37 percent of initial strain energy is lost in damping away from the 
crack tip. The results also verify that damping increases with initial energy. 
The ratio of damping energy to fracture energy was higher for this specimen 
as compared to the small specimens, and was about 74 percent. The ineffi
ciency in the specimen was about 42 percent. 

Large Modified Compact Specimens (LMCT) 

Three experiments were performed with large specimens to complete the 
study of size effect on damping loss. The initial strain energy in the speci
mens was varied from 0.208 to 0.129 J. The results obtained are given in 
Table 3. The results show that about 41 percent of initial strain energy is lost 
in damping. The results again confirm that damping increased with initial 
strain energy. The damping energy was comparable to the fracture energy in 
all three experiments. The inefficiency ratio was higher for the large speci
mens as compared to the smaller specimens, and averaged about 48 percent. 

Discussion of Results 

The results obtained from these experiments show that energy loss does in
crease with specimen size. This would be expected since some energy is lost in 
internal friction when stress waves travel longer distances in the bigger speci
men before they can come back to the crack tip. The inefficiency in the larger 
specimens was 48 percent, as compared to 42 percent in regular specimens 
and only 34 percent in smaller specimens. The energy loss was approximately 

TABLE 2—Summary of results for the MCT specimens. 

Experi
ment No. 

MCT 1 
MCT 2 
MCT 3 
MCT 4 

Experi
ment No. 

LMCT 1 
LMCr 2 
LMCT 3 

^Q; 
MPavm 

0.780 
0.813 
0.857 
0.890 

Af-
mm 

778 
940 

1084 
1157 

TABLE 3 -

KQ 

MPavm 

0.84 
0.84 
0.67 

^f, 
mm 

1812 
1832 
846 

U, 
3 

0.1.34 
0.140 
0.156 
0.164 

i>. 
J 

0.059 
0.072 
0.084 
0.092 

v.. 
J 

0.024 
0.018 
0.011 
0.012 

-Summary of results for 

Uj. 

J 

0.208 
0.197 
0.129 

E(. 
J 

0.102 
0.104 
0.042 

u„. 
J 

0.017 
0.011 
0.038 

EH. 
J 

0.051 
0.050 
0.061 
0.060 

E,/U, 

% 

38 
36 
39 
37 

£ / £ / . 
% 

86 
69 
73 
65 

the LMCT experiments. 

£„• 
J 

0.089 
0.082 
0.049 

E,/U, 

% 

43 
42 
38 

Ej/Ef, 

% 

87 
79 

116 

(t/,-

(.Ui 

Ej/ 

- u,). 
% 

46 
39 
42 
39 

Ej/ 

- uj. 
% 

47 
44 
54 
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equal to the fracture energy in bigger specimens. In regular MCT specimens 
the energy loss was 75 percent of Ej, and in smaller specimens energy loss was 
only 50 percent oiEj. In all the experiments damping increased with increas
ing initial energy. 

The specimen size seems to have a strong influence on the crack propaga
tion behavior. For the same initial stress-intensity factor KQ the crack jump 
obtauied in bigger specimens was longer than in the small specimens. This is 
felt to be a result of higher initial strain energy in bigger specimens as com
pared to the smaller specimens for the same value of KQ. This can be shown 
analytically as follows. 

For the same initial crack length-to-width ratio [8] 

where 1 denotes the small specimen and 2 denotes the large specimen. 
Therefore, for ATQ, = KQ, 

^ . - ^ - ' ^ 

since W1/W2 < 1 

2 

••P? > -Pi 

Now, the compliance characteristics do not change if the lateral dimensions 
are scaled 

.•. A2 > Ai 

.'. strain energy U2 > U, 

This result is verified experimentally by the data given in Tables 1, 2, and 3. 

Influence of State of Stress on Energy Loss 

Six experiments were conducted to study the influence of stress field on en
ergy loss during the fracture event. Previous studies [9] have shown that it be
comes increasingly difficult to propagate a crack into a field of increasing com
pressive stress. This means that a substantial part of an increased initial strain 
energy is lost in damping as it is not used in forming new fracture surfaces. 

The geometry of the specimen used in this study and its compliance char
acteristics are shown in Fig. 6. In this type of specimen the original compres-
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0.1 0.2 0.3 0.4 

PIN DISPLACEMENT A (nwn5 

FIG. 6—Geometry of the specimen used to study the influence of stress field on energy loss 
and its compliance characteristics. 

sive force at the crack tip position increases as the crack extends deeper into 
the specimen. Three different initial crack lengths were chosen for the dy
namic series of experiments. The ratios of initial crack length to width de
cided upon were a^/W = 0.35, 0.44, and 0.58. Three experiments were per
formed for the initial crack length of UQ/W = 0.35, two for QQ/W = 0.44, 
and one for OQ/ W = 0.58. By increasing the initial crack length in the series 
of experiments, the crack was forced to propagate into an increasingly larger 
compressive stress field. 
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Results and Discussion 

The data obtained during the dynamic experiments were analyzed to ob
tain the energy loss during the fracture event. The results shown in Table 4 
indicate that energy loss increases with initial crack length. For UQ/W = 
0.35, the energy loss was 30 percent of initial strain energy. This loss increased 
to 40 percent for ag/W = 0.44 and to 45 percent for OQ/W = 0.58. The re
sults also show that the energy loss becomes more and more comparable to 
the fracture energy as the initial crack length becomes larger. For the small
est crack length, energy loss was 60 percent of Ef. For intermediate crack 
length, it was 90 percent of Ef, and for the largest crack length the loss was 
127 percent of Ef. The inefficiency increases as the initial crack length is in
creased. For UQ/W = 0.35 the inefficiency is 37 percent, which increased to 
46 percent for CQ/W — 0.44, and then to 56 percent for OQ/W = 0.58. 

The experiments also showed that the crack propagation behavior strongly 
depends on the initial starter crack length. For the same value of KQ the 
smaller starter crack length gave a longer crack jump, and consequently a 
larger fracture surface as shown in Table 4 by the results of experiment Bl 
and B6 or B2 and B5. This is because the specimen with smaller crack length 
has more strain energy than the one with larger crack length for the same 
value of KQ. Moreover, when the initial crack length is smaller, the crack in
itially propagates in a more favorable stress field. For longer initial crack 
length, the compressive gradient in the initial static stress field is steeper and 
crack propagation through it is more difficult. 

Conclusions 

Experiments conducted to study the influence of specimen size and stress 
field on energy loss and crack propagation behavior reached the following 
conclusions. 

TABLE 4—Summary of results for experiments to study the influence of state of stress on 
energy loss. 

Experi
ment No. 

Bl 
B2 
83 
B4 
B5 
B6 

ao/W 

0.346 
0..346 
0..346 
0.438 
0.438 
0.577 

KQ 

MPaN/Si 

0.844 
0.789 
0.710 
0.677 
0.786 
0.849 

^f, 
mm 

2065 
1645 
1168 
935 

1290 
1210° 

U, 
J 

0.231 
0.202 
0.171 
0.159 
0.201 
0.210 

Ef. 
J 

0.144 
0.106 
0.071 
0.063 
0.095 
0.075 

U,r 
J 

0.017 
0.031 
0.051 
0.030 
0.024 
0.040 

^ • r f . 

J 

0.069 
0.065 
0.049 
0.065 
0.081 
0.095 

E„/U, 

% 
30 
32 
29 
41 
40 
45 

i'/-Pf. 
% 
48 
61 
69 

103 
85 

127 

Ed/ 
w, - uj, 

% 
32 
38 
41 
50 
46 
56 

"First arrest. 
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1. Energy loss away from the crack tip increased with specimen size. The 
inefficiency increases from 34 to 48 percent with the change from three-
quarters sized specimens to 1.5 times normal size. 

2. Energy loss is 50 percent of fracture energy in small specimens, and in
creases to 75 percent in regular sizes, and then to 100 percent in large 
specimens. 

3. All three sizes of specimen show that energy loss increases with initial 
energy. 

4. For the same value of KQ the crack jump obtained in bigger specimens 
was longer than hi the small specimens. 

5. The static compliance characteristics change as expected if the lateral 
dimensions of the specimen are scaled. 

6. Energy loss depends on the initial crack length. The loss increases as the 
crack length is increased. The inefficiency increased from 37 percent for 
UQ/W = 0.35 to 56 percent for ag/W = 0.58. 

7. For the same value of KQ smaller starter crack lengths gave a longer 
crack jump distance. 

The dynamic fracture data during the experiment were obtained from the 
time of crack initiation [10] to crack arrest. For the range of crack lengths 
and the size of photoelastic data acquisition region in this specimen geome
try, the accuracy in the fracture energy determination was within ± 5 percent. 

There are some inherent difficulties in the experiments that uitroduce er
ror in the results. Some energy might be lost in nonelastic deformation at the 
loading point. The value of elastic modulus used might not be exactly correct 
( ± 5 percent). It should also be pointed out that QQ/W for SMCT specimens 
was not exactly the same as for MCT and LMCT specimens, which might 
change the results for this specimen slightly. 

Acknowledgments 

The authors wish to thank the Nuclear Regulatory Commission for its sup
port under Subcontract 7778 through Oak Ridge National Laboratory. Par
tial support was also provided by the Minta Martin Fund at the University of 
Maryland. 

References 

[/] Dally, J. W. and Shukia, A., Engineering Fracture Mechanics. Vol. 13, pp. 807-817. 
[2\ Shukia, A., and Dally, J. W., Experimental Mechanics. Vol. 21, No. 4, April 1981, pp. 

163-168. 
\3\ Popelar, C. H. and Gehlen, P. C , International Journal of Fracture, Vol. 15, No. 2, 1979, 

pp. 159-178. 
[4] Kanninen, M. P., Popelar, C , and Gehlen, P. C. in Fast Fracture and Crack Arrest, 

ASTM STP 627. American Society for Testing and Materials, 1977, pp. 19-38. 

 



1-64 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 

[5] Cheverton, R. D. and Bolt, S. E., "Pressure Vessel Fracture Studies Pertaining to A PWR 
LOCA ECC Thermal Shock; Experiments TSE-3 and TSE-4, and Update of TSE-1 and 
TSE-2 Analysis," Heavy Section Steel Technology Program, Technical Report 46, ORNL/ 
NUREG-22, Oak Ridge National Laboratory/Nuclear Regulatory Commission, Dec. 1977. 

[6] Kobayashi, T. and Dally, J. W. in Fast Fracture and Crack Arrest. ASTM STP 627, Amer
ican Society for Testing and Materials, 1977, pp. 257-27.3. 

[7] Sanford, R. J. and Dally, J. W., Engineering Fracture Mechanics, Vol. 11, No. 4, 1979, 
pp. 621-633. 

\8] Srawley, J. E., International Journal of Fracture, Vol. 12, June 1976, pp. 475-476. 
[9] Dally, J. W., Shukla, A., and Kobayashi, T. in Crack Arrest Methodology and Applica

tions, ASTM STP 711, American Society for Testing and Materials, 1978, pp. 161-177. 
[10] Dally, J. W. and Shukla, A., Mechanics Research Communications, Vol. 6, No. 4, 1979, 

pp. 239-244. 

 



M. G. Vassilaros,^ J. A. Joyce,^ and J. P. Gudas^ 

Experimental Verification of 
Tearing Instability Phenomena for 
Structural Materials 

REFERENCE: Vassilaros, M. G., Joyce, J. A., and Gudas, J. P., "E)4>erimeiital Verifi
cation of Tearing Instability Phenomena for Structntal Materials," Fracture Mechanics: 
Fourteenth Symposium—Volume I: Theory and Analysis, ASTM STP 791, J. C. Lewis 
and G. Sines, American Society for Testing and Materials, 1983, pp. I-65-I-83. 

ABSTRACT: The objective of this investigation was to extend the range of tearing insta
bility validation experiments utilizing the compact specimen to include high-toughness 
alloys. J-integral (J,) tests of ASTM A106, ASTM A516 GR70, HY-80, and HY-130 steels 
were performed in a variably compliant screw-driven test machine. Results were analyzed 
with respect to the JpR curves of the materials, and various models of T^ppi^j for the 
compact specimen. Tearing instability theory was validated for these high-toughness ma
terials. For the cases of highly curved JpR curves, it was shown that the actual value of 
^material ^̂  "^^ po'^^ of instability should be employed rather than the average T^^^^^^^ 
value. The T^ppiĵ i analysis of Paris and co-workers applied to the compact specimen ap
pears to be nonconservative in predicting the point of instability, whereas the 7\„„y^^^ 
analysis of Ernst and co-workers appears to be accurate, but requires precision beyond 
that displayed in this program. The generalized Paris analysis applied to the compact 
specimen and evaluated at maximum load was most consistent in predicting instability. 

KEY WORDS: fracture mechanics, ductile fracture, elastic-plastic fracture, tearing in
stability, HY-80 steel, ASTM A106 steel, ASTM A516 steel, J-integral 

Since its introduction by Paris and co-workers in 1979 [/],•' the tearing in
stability concept has gained increasing analytical and experimental interest 
[2,3\. Tearing instability theory states that a flawed member will tear in a sta
ble manner when loaded beyond Ji^ at limit load, where T-^ppw^^ is less than 
^material- Crack instability will occur when T^ppw^^ equals or exceeds the ma
terial tearing modulus. Experimental validation of tearing instability was de
veloped by Paris and co-workers [2], and recently by Joyce and Vassilaros for 

'Metallurgist and branch head, respectively, David Taylor Naval Ship Research and Develop
ment Center, Annapolis, Md, 21402. 

^Associate professor, U.S. Naval Academy, Annapolis, Md. 21402. 
*rhe italic numbers in brackets refer to the list of references appended to this paper. 
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steels, aluminum, and titanium [3] where Jmaterial was relatively low. The ex
periments of Joyce and Vassilaros employed the compact specimen in a vari
ably compliant test apparatus where the upper limit of TappUed was 30. These 
results showed that when Tappijed exceeded 7"materiai' tearing instability was 
assured. For the materials included in that experiment, a region of limited 
instability was observed for a range of ^applied below the average Tmatenai-
with a gradual reduction in severity of unstable behavior as ^applied was re
duced. The existence of limited instability was attributed to the variability of 
Jniaterial about the average value obtained from the Jj-R curve. It was shown 
that the best correlation of instability with prediction was obtained when 
T'material was defined by the least-squares slope of the whole/j-R curve which 
in those experiments extended to 5 mm of crack growth. 

The objective of this investigation was to extend the range of tearing insta
bility validation experiments utilizing the compact specimen to include struc
tural alloys with very high fracture toughness and /,-R curves. Further, the 
treatment of the experimental results was modified to include analysis of 
nonlinear /pR curves. Emphasis was placed on validating tearing instability 
with respect to Tappiicd formulations utilizing limit load analysis, and a 
^applied formulation including specific details of the specimen load-displace
ment record. 

The approach employed in this investigation was to evaluate the instability 
performance of ASTM A106, ASTM A516 GR70, HY-SO, and HY-130 steels 
using the compact specimen. The experimental approach was similar to that 
of Joyce and Vassilaros in the use of the variably compliant screw-type test 
machine in the conduct of conventional unloading-compliance /j-R curve 
tests [J]. The TappHed formulations in this investigation included the gener
alized expression of Paris and co-workers [2], and a modification of this expres
sion where crack-tip opening displacement is limited to crack-tip displacement 
present when / = Ji^. Additionally, the model of Ernst and co-workers [4i 
using the key curve approach assuming separable load-displacement curves 
was included in this analysis. Analysis of experimental data was performed 
with both linear and power law function evaluations of rmaferial-

Experimental Procedure 

Materials 

The ASTM A106 steel used in this investigation was supplied in the form 
of 990-mm pipe product with wall thickness of 95 mm. The ASTM A516 
GR70 steel was supplied in the form of 102-mm-thick plate, and the HY 
steels were supplied in the form of 25-mm plate. The test temperature and 
mechanical properties of these steels are shown in Table 1. 
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TABLE 1 —Mechanical properties of steels. 

Material 

HY-130 
HY-80 
ASTM A106 
ASTM A516 

Modulus, 
GPa 

200 
200 
200 
200 

Flow Stress, 
MPa 

1000 
655 
550 
450 

Jlc 
U/m^ 

150 
210 
340 
100 

T 
' maicnal' Average over 5 mm of Crack 

Extension, 20 percent side-
grooved Compact Specimens 

10 
70 

170" 
50 

"No side grooves. 

Testing Procedure 

All the J-integral fracture tests were conducted with IT compact speci
mens, shown in Fig. 1, using the single specimen computer interactive un
loading compliance method of Joyce and Gudas [5]. The ASTM A106 steel 
was tested in the L-C orientation, and the remaining steels were tested in the 
T-L orientation. The results of each unloading compliance test were plots of 
load versus load line crack-mouth opening displacement, load versus test 
machine head displacement, and a /[-R curve that included corrections for 
specimen rotation [6] and crack growth. Jy was calculated according to the 
expression [4] 

' ('• +1) ''^^t A,-, +\ 
B. 

l - ( ^ ' (" ,+1 - a , ) (1) 

where 

1) = 2 + (0.522) h/W for compact specimens, 
W — specimen width, 
7 = 1 + (0.76) b/W, 
bi = instantaneous length of remaining ligament, 

Bf^ — minimum specimen thickness, 
a,- = instantaneous crack length, and 

/!,•,•+1 = area under the load versus load line displacement record between 
lines of constant displacement at points I and i -\- \. 

Table 2 presents the test matrix employed in this investigation. Conven
tional J-integral tests were conducted on at least two and usually three speci
mens from each of the seven groups shown in Table 2. These tests were con
ducted in a stiff screw-driven test machine. Each test was concluded after a 
minimum 5 mm of stable crack extension was measured. The ASTM A106, 
HY-80, and HY-130 steels were tested at room temperature, and the ASTM 
A516 steel was tested at 150°C. 
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0 375 DIA 

0 141 R 

1 200 

0415 

1 200 

FIG. ]—Modified compact specimen (ITCT) for J-integral testing. 

TABLE 2—Test matrix for tearing instability experiments. 

Material a/W Side Grooves, % Test Temperature, °C 

HY-130 
HY-80 
ASTM A516 
ASTM A106 

0.80 
0.65 
0.65 
0.65 

0,20 
0,20 
0,20 

0 

room temperature 
room temperature 
150 
room temperature 

The tearing instability tests were conducted with a screw-driving test ma
chine which was modified to accept a variable stiffness spring in the load 
train as shown in Fig. 2, and previously reported by Joyce and Vassilaros [3]. 
The stiffness of the spring was controlled by the span of the two rollers sepa
rating the flex plates. Short spans produced high stiffnesses and large spans 
produced low stiffnesses. This variable stiffness spring controlled the applied 
tearing force (rappijed) induced during the fracture tests. 

The conventional J-integral test program was modified to calculate the ma
chine compliance and the ^applied according to the formulation from Paris 
and co-workers [/]. This Tappiicd expression was a function of the machine 
stiffness, applied / j , and crack length from each unloading. The machine 
compliance was calculated by measuring the total system crosshead deflec
tion versus applied load during the initial loading of a specimen, and sub-
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DISPLACEMENT 
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TITANIUM SPRINGS 

LOAD CELL 

FIG. 2—Variably compliant test machine arrangement. 

tracting the specimen compliance. In addition to the digitally recorded data, 
an analog plot of load versus crosshead displacement was recorded during 
each test. This plot supplemented the load crack-mouth opening displace
ment curves and was used to identify instability events during each test. 

Fonniilation for TappUed 

Three formulations for TappHcd were investigated in this study. Two of 
these were derived from the published work of Paris and co-workers [/], 
which assumed elastic-fully-plastic material behavior to predict rappHed-
These expressions will be referred to as rappUcd Paris, and Tappijed Paris 
(modified), with distinctions to be discussed later. The third formulation was 
derived from the work of Ernst and co-workers [4]. This expression utilizes 
actual load-displacement data to measure the T̂ applied and is referred to as 
^applied Ernst. The derivations of the expressions are described later. 

The equation for TappHed Paris for a compact specimen loaded in a com
pliant displacement controlled machine was taken from Paris and co-workers 
[/], who gave the general relationship that 

• applied 
E dJ 
oi^ da 

W 

a*g(a/W) 

f(«„/vv,x/(./«',|xf ̂ i ^ 
da KM oa 

+ 
a*JE dg{a/W) 

Wao^ da 
(2) 
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where 

E = elastic modulus, 

CTQ = -^ = flow stress, 
2 

B = specimen thickness, and 
K^ — test machine stiffness. 

The g{a/W) function relates to the plastic component of specimen displace
ment, Api, such that 

^?L = ^g(a/W) (3) 

From the work of Merkle and Corten [7\ 

> /w^ (2W/W-a + a-l) 
g{a/W) = -— (4) 

1 + a 

where 

d, = crack opening stretch and 
a = [[4(j2 + 4a(w - a) + 2{W - a^Y^^ - (a - W)]/(W - a). 

The h{a/W) function gives the plastic limit load as 

P,i„ = a„BWhia/W) (5) 

where 

h(a/W) = il-a/W)a (6) 

Finally, the/(a/H^) expression is the elastic compliance expression of the 
compact specimen taken from Saxena and Hudak [8] 

/ 1 4- a/W\^ 
fia/W) = [2.16299 + 12.219(a/M^)' - 20.06S(a/W)^ 

\ 1 — a/W / 
- 0.9925 (a/W)^ + 20.609 (a/W)^ - 9.9314 (a/W)^] (7) 

An expression for 6, was taken from Paris [/] and Rice [9\ as 

d, = a*— (8) 

where a* = 1 for plane stress, and 0.7 for plane strain. The derivatives re
quired for Eq 2 were obtained from Eqs 3 to 7 in closed form as needed, and 
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are expressed completely in Ref 1. This model assumes an elastic-rigid-plas
tic nonhardening material behavior and accurately defines the Tappiied only 
when the specimen is loaded at its limit load. This model is referred to as the 
Paris model in this work. 

A modified Paris model is used to analyze the experimental results re
ported here in which the previous expression for b, is replaced by the following 

6, — a* -

^ * •'Ic 

5, — or 

J^Jlc 

J>Jlc 

(9) 

<̂o 

This corresponds to a constant opening angle assumption of crack-tip behav
ior beyond the point of crack initiation and addresses an apparent limitation 
of the Paris model which exaggerates the contribution beyond Ji^. Therefore, 
the only difference between the Tappiied Paris and Paris (modified) expres
sions is in the extent of the plastic contribution to Tappiied beyond Jy^. The 
Paris (modified) expression exhibits a smaller drop in TappUcd with crack 
extension. 

The third model used to evaluate ^applied, that of Ernst and co-workers 
[4], uses a key curve approach by assuming that the load displacement curve 
for a compact specimen can be expressed in the form 

P = —-F{6/W,a/W) (10) 
W 

where 6 is the load-lme crack-opening displacement (COD) value. This ex
pression assumes that the dependence of the two variables can be separated 
to give a load-displacement relationship of the form 

P = -—G{a/W)H{d/W) (11) 
W 

Based on experimental results of Landes and co-workers [10], G{a/W) is 
taken by Ernst to have the form 

Gia/W) = g0.522(W-a)/W — g0.522fe/W (J2) 

and 

b^ 
P = -—e^-^^'^^"^H(d/W) (13) 

W 

Substituting this form into the equation for the J-integral and developing an 
equation for TappHed gives [4] 

_ E dJ _ E ( J r,^ 1 ) 
-'applied- J-r ^ ~ 1 ; T ' T + T T ^ „ , , „ , „ , „ ,„— (14) 

aô  da 00̂  L b b'^ H /WH + Kf^^/P ) 
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where 

H' = dH/d{b/W) 
P is applied load and / is evaluated from Eq 1. The quantity H'/H can be 

evaluated from the load displacement curve and J-R curve of the specimen as 

H' __ }_dP^ rj^P 
H ~ P db P 

dJ , / 
(15) 

where 

dP/db = the slope of the load displacement curve and 
dJ/da = the slope of the material J-R curve. 

Calculation of TappHed from the Ernst model requires a load-displacement 
record for each specimen, knowledge of the test machine stiffness, and a Jj-R 
curve. In this program, the /j-R curve slope, dJ/da, was evaluated by using 
the power law fit described by Carison and Williams [//] that 

J = AAAa/B)'^2 (16) 

This fit then was applied to the unloading compliance JyR curve data as 
shown in Fig. 3. This equation then is differentiated to give 

1 ^ = " ' '>< ' 'HT (17) 

-r 
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FIG. 3—Power law fit of J-integral R-curve data for HY-80 steel. 
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r„., = A x ^ = ^^f4^r"' (18) 

and 

Oil da CTo^ \ B / 

in terms of the fitting coefficients A\ and Aj-

Results and Discussion 

Description of Specimen Instability Behavior 

During the loading of the specimens, three general types of load versus dis
placement behavior were demonstrated as shown in Fig. 4. The results shown 
in Fig. 4a were from a7i-R curve test of HY-130 performed in a rigid test ma
chine with the condition that ^material was much greater than rappHed- The 
curve was constructed from digital data taken at 0.5-s intervals. These 
data points were spaced regularly and closely, reflecting stable response of 
the specimen to the constant crosshead rate used in all these tests. 

For the cases where ^applied approached Tmatcrial (but still less than 
^material) the behavior shown in Fig. 4fe was observed. This behavior was 
characterized by repeated rapid steps of crack growth of relatively small magni
tude, typically on the order of 0.1 to 0.5 mm, with larger steps being observed 
as Tappiied nrore closely approached Tmateriai- The quick jumps of crack 
growth appeared as gaps in the load versus COD plot shown in Fig. 4fc. Each 
jump was accomplished in much less than the 0.5-s data acquisition interval. 

The specimens tested with the ^applied greater than Tmaterial produced the 
type of load versus displacement shown in Fig. 4c. At or near maximum 
load, instability occurred producmg an increment of crack extension large 
enough either to separate the specimen completely or leave only a small re
maining ligament. This sudden unstable crack extension is shown in Fig. 4c 
as the blank region to the right of the load displacement data. 

Figs. 4a and b show that the load displacement records for stable speci
mens and specimens with limited instability are similar in shape in spite of 
the presence of the small instabilities, and likewise the /pR curves obtained 
from stable and limited instability specimens are similar in shape, as shown 
in Fig. 5 for HY-80. This insensitivity of the /j-R curve to the ^applied was 
seen for all materials tested. 

Both macroscopic observation and scanning electron microscopy of all ma
terials studied here showed that the fracture surfaces were fully ductile and 
very similar whether they resulted from the stable tearing fracture, or the 
rapid instability. No evidence of cleavage was observed in any of the test spec
imens either near the beginning of the unstable tearing, or during the growth 
of the rapidly propagating crack. 

The results of the complete series of 32 tests are plotted in Fig. 6, with each 
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point representing a single specimen. Solid points denote specimens which 
demonstrated instability to such a degree that the tests were stopped. The 
half-filled data points represent tests which demonstrated limited instabili
ties. The open data points represent specimens that behaved in a stable fash
ion throughout the test, as they would have been expected to behave in a typi
cal stiff test machine. The abscissa of Fig. 6 is the ^material obtained from the 
linear fit of the crack extension portion of a stable /j-R curve to 5-mm crack 
extension. The ordinate of Fig. 6 is the Tappjied calculated at maximum load 
from the expression of Paris and co-workers [1], Eq 2. 

There are four points of interest to be drawn from Fig. 6 which reconfirm 
the conclusion of earlier tearing instability results by Joyce and Vassilaros 
[3]. In the first place, the data demonstrate the effectiveness of the Paris tear
ing instability criterion in that when ^material was less than Tappijed. unstable 
fracture behavior usually occurred. The second point concerns the effects of 
side grooves which reduced the Tj^ateml values when employed. The speci
mens tested with 20 percent side grooves required a lower ^applied to produce 
unstable behavior when compared to planar specimens of the same material. 
This is consistent with the results of Gudas and co-workers evaluating the ef
fects of compact specimen geometry on the /j-R curve of several steels [12]. 
The third key point is the existence of the region of limited instability behav
ior where Tappiicd approaches rmaterial ^ value. The relative extent of this 
region appears to be much smaller than was observed in Ref [3] performed 
on materials with lower rmatcriai values (^material less than 30). It appears 
that the nature of the limited instability regime is a band occupying the re
gion where Tappiied is slightly less than TmitmaU with a width of 10 to 30 
"T units." The band appears to disappear when materials with high rmateriai 
values are tested. This is a result of the relative shrinking of the fbced width of 
the limited instability region compared to the larger Tmaterial values. 

The final point in reviewing Fig. 6 is the presence of data denoting crack 
instability well above the prediction line. These points are not physically real
izable, and their existence will be examined with respect to actual J^-R 
curves, and the predictions for Tappijed- To carry out this analysis, the first 
point to be examined will be the method to evaluate Tmateriai-

The materials tested which had high Tmateriai values, such as ASTM A106 
and HY-80 steels, are not described accurately by a single T̂ material value re
sulting from a linear regression analysis due to the significant curvature in 
their/pR curves. This point is illustrated by Fig. 7 which shows ^material ver
sus crack extension developed from power-curve fit data from separate tests 
of HY-130 and ASTM A106 steels. It can be seen that the average Tmaterial 
for ASTM A106 steel is not a reasonable approximation of the rmaterial over 
the range of crack extension. However, the average Tmateriai for HY-130 steel 
more closely approximates the rmaterial value over the whole range of crack 
extension. This suggests that the instability analysis of materials with highly 
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FIG. 7—'̂ material ^^f^t^ Crack extension data for compact specimens of HY-130 and ASTM 
A106 steels. 

curved JyR curves should be performed with the measured rnjaterial value at 
the point of instability. 

Reanalysis of the data for the tests resulting in instability for HY-80, 
ASTM A106, and ASTM A516 steels was carried out by evaluating ^material 
at the point of instability using power curve fits of unloading compliance data 
from individual specimen tests. Fig. 8 shows an example of such a curve for 
an HY-80 steel specimen. The first derivative of the power law function, Eq 
17, evaluated at the crack extension at instability was used to calculate 
^material- This value then was compared with the ̂ applied value calculated at 
maximum load from Eq 2. Figure 9 shows the relation between TappUed ^nd 
^material froni this reanalysis. This treatment clearly brings the instability 
points in closer agreement with the prediction. This observation strengthens 
the validity of the Paris tearing instability theory which predicts immediate 
instability whenever TappHed exceeds Tniaterial after maximum load. 

The Tappiicd analysis previously reported by Joyce and Vassilaros and utilized 
in the evaluation of test results in this program was a modification of the gen
eralized formulation of Paris and co-workers [/] applied to the compact spec
imen. One of the objectives of this investigation was to examine more 
thoroughly the Tappiied formulations for the compact specimens using the 
analysis of Paris and co-workers [/], and the recent analysis of Ernst and co
workers [4]. The âpplied formulation from Paris depends on Ji and crack 
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length, and varies as these quantities vary throughout the course of a speci
men test. The rappHed analysis of Ernst depends on these quantities as well as 
the slope of the load displacement record and the slope of the material /j-R 
curve at each instant. Plots of these models of Tappijed. including the third 
model introduced here for which /j is limited to be less than or equal to Jj^ 
when evaluating the Paris model, are shown in Figure 10. 

Figure 11 shows /j versus T for two specimen tests of ASTM A106 steel. 
This / / r analysis is presented ui the manner suggested by Paris [13], and in
stability would be expected when the value of Tappiicd exceeds the Tniatcriai 
curve. Figure 11a shows that in the case where TappHed values from all formu
lations were less than Jmatcrial' stable crack extension was observed during 
test. In Fig. lib, which shows results of a specimen which exhibited unstable 
crack extension, the Ernst analysis predicted instability, while the Paris and 
modified Paris analysis appeared to be unconservative and predicted stable 
crack extension. The Paris TappUed value evaluated at maximum load is 
noted and seen to be consistent with the Ernst analysis for this case. 

Similar data for HY-80 steel specimens exhibiting stable and unstable 
crack extension are shown in Fig. 12. Again, in this instance, where all three 
analyses predicted stability, slow stable tearing occurred with the compact 
specimen. In the case of the instability observed in Fig. 12b, the Ernst ex
pression predicted instability at 300 KJ/m^, whereas the actual instability oc
curred at a Ji value of 600 KJ/m^. 

To understand this discrepancy, it is illustrative to examine the individual 
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terms of the Tappiied expressions of Ernst and co-workers. Equations 14 and 
15 can be combined and restated as 

-yEJ , j/^Pf 
J^applied— „lu '^ 

CTo^b h'^OQil 

1 

: ^ + _ L ^ + i ^ ( ^ ^ + I 
P db ' b^ \da ' ' b 

(19) 

For normal tests of tough materials in stiff test machines, the TappHed values 
are small because the K^/P term is much larger than the other two terms in 
the bracketed expression. In a reduced stiffness test, all three terms of the 
bracketed expression can approach the same order of magnitude. At maxi
mum load, the K^/P term becomes a minimum, and the \/P dP/db terms 
becomes zero, then negative. Cancellation between these terms apparently 
could produce a singularity in TappUed ^ the denominator of the bracketed 
term went to zero. For the specimen shown in Fig. 126, the bracketed term 
approached unity, which is on the order of the error expected in the calcula
tion of 1/P dP/db given the presence of unloadings which perturbed the 
load-displacement curve as shown in Fig. 4. In certain cases, the algebraic 
sum of the bracketed terms approaches the order of tnots in estimation of 
the individual terms. In such instances, the TappHed values have large uncer
tainty, which accounts for such discrepencies as noted in Fig. \2b. 

In reviewing the experimental results and the analysis for Jappiied' the fol
lowing observations are noted. In the first place, the drop in Tappiicd of the 
Paris model (and its modification) beyond maximum load was not verified 
experimentally. It was observed experimentally that instability occurred 
when Jmaterial f̂ ''̂  to the value of Tapplied of the Paris model evaluated at 
maximum load. All tests in this program were evaluated at this point and this 
analysis produced the most consistent results. 

The Ernst TappHcd model demonstrated both rising and falling Tappijed 
values beyond maximum load. Fluctuations in TappHed are relatively large 
due to the sensitivity to the slope of the specimen load-displacement record, 
and to errors present in the experimental method employed here to estimate 
this slope. The Ernst method appears to be accurate, but in this case impre
cise due to the experimental method employed in this program. In order to 
estimate best the point of instability of the compact specimen, the Paris 
model taken at maximum load appears to provide both conservative and con
sistent results. 

Conclnsions 

The results of this investigation point to the following conclusions: 

1. Tearing instability theory has been validated for materials which have 
high tearing modulii. 
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2. The region of limited instability appears to be reduced or eliminated 
with materials exhibiting high tearing modulii. 

3. For the case of highly curved /j-R curves, the average Tmateriai value is 
not an accurate predictor of instability. Rather, the instantaneous Tmateriai 
value should be employed. 

4. The Paris analysis beyond maximum load applied to the compact speci
men is nonconservative in predicting the point of instability. The Ernst anal
ysis for Tappiied appears to be accurate, but requires precision beyond that 
utilized in this experimental program. 

5. The generalized Paris analysis applied to the compact specimen and 
evaluated at maximum load was most consistent in predicting instabilitj'. 
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ABSTRACT: The addition of dispersions of relatively stiff particulates to brittle mate
rials is recognized to increase their fracture resistance as measured with conventional 
fracture mechanics parameters. Extant analytical models address the problem of particle 
hardening indirectly. One class of predictions is essentially a rule-of-mixtures approach 
and is of limited success in predicting particle strengthening. Another predictive model 
hypothesizes the existence of a line tension associated with the bowing of the crack front 
line as the crack front encounters particulates on the plane of crack extension; however, 
this approach fails to predict the measured effects of particle stiffness and particle size. 
The present analytical model deals directly with the extensibility of a crack on a plane 
containing particulates of an average size, spacing and stiffness. The elastic strain energy 
associated with the particulate field is calculated and compared to the energy of the non-
particle-containing matrix. The strain energy release rate then is examined for unstable 
crack extension in the particle-hardened matrix, and the fracture resistance of the com
posite is compared to that of the plain matrix. The predictions are used to examine ex
perimental data previously generated, and the model is found to be satisfactorily accurate 
in predicting changes in fracture resistance as particulate character is manipulated. 

KEY WORDS: brittle fracture, composite fracture, ceramic inclusions, particulate com
posites, multiphase material strength, particle hardening, process zones, fracture 
mechanics 

Nomenclature 

p Average particulate inclusion radius 
a Normal stress 
T Shear stress 
fx Modulus of rigidity 

'Former graduate student and professor of engineering mechanics. The Pennsylvania State 
University, University Park. Pa. 16802. 
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c Poisson's ratio 
u Elastic strain energy density, energy per unit volume 
U Total strain energy in relevant material volume 
X Average interparticle spacing 
n Number of inclusions lying on given area 
a Crack length: Full length for crack emanating on surface, half-length for 

imbedded cracks 
t Structural plate thickness 

R Material resistance to crack extension, energy per unit area 
T Line tension (force per unit length) associated with crack front lines 

The ability of brittle materials to resist catastrophic mechanical failure 
often can be improved by the addition of a particulate phase, where the elas
tic stiffness of the particulate phase must exceed that of the brittle matrix. 
Many metal oxide ceramics and intermetallic ceramic compounds are suffici
ently stiff to increase the fracture resistance of the harder and brittle poly
mers, inorganic glasses, and even selected crystalline ceramics. The mechan
ical strength parameter being addressed in the design of the composite places 
restrictions on the choice of particulate material beyond the consideration 
of particle stiffness. Tensile strength may be dependent not only on the rein
forcement character of the particle, but also on the strength of the particle-
matrix interface and local residual thermal stresses generated during com
posite fabrication. By comparison, the resistance of preexisting flaws to 
unstable extension may be less sensitive to the particles acting as crack initia
tors. Indeed, raising crack extension resistance may lead to degraded tensile 
strength in smooth-sided structural members. 

Increases in the fracture surface energy when stiff inclusion particulates are 
added to a brittle material have been demonstrated experimentally by Lange 
[7]^ and Lange and Redford [2], among others. Earlier investigators, such as 
Hasselman and Fulrath [J], did not single out the composite's fracture resis
tance, but rather sought to correlate tensile strength with particulate disper
sions by hypothesizing that crack lengths, in the natural flaw population, were 
altered effectively in length by the presence of nearby particles. The impor
tance of singling out the fracture resistance of the composite was realized first 
by Lange [4\, who postulated a line tension associated with a crack front line 
bowing out between inclusions lying on the crack plane ahead of the crack front 
line. The line tension concept, analogous to the impedance of a dislocation line 
pinned by slip plane obstacles, was developed further by Evans [5], who devel
oped an analytical model to calculate the line tension. 

The present work addresses a different, and more direct, approach to de
termining the effect that a field of stiff particulate inclusions will have on a 
material's resistance to the extension of a crack moving through that field. 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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Here, the motion of the crack is retarded by the reduced strain energy fields 
around the stiffer inclusions (stiffer than the matrix material) rather than by 
the manifestation of the reduced strain energy release rate driving force, a line 
tension, or crack front curvature potential. 

Analytical Model 

The particle-strengthened, brittle elastic composite can be visualized as a 
regular, three-dimensional array of roughly spherical particles of mean radius 
p. The stress distributions around and within a single particle, or inclusion, are 
well known from an analysis due to Goodier [6]. Figure 1 depicts the isolated 
spherical inclusion, and appropriate coordinate system, imbedded in a large 
plate subjected to a tensile boundary traction stress o. The normal and shear 
stress components outside of the inclusion are 

AP 2 + ( 3Bp4 
o r r = ~  -- 2r--- T 2r 4 

2Cp 2 ) ] o  
r2 cos20 + -~-(1 + cos20) 

[ A02 3B°4 1 2 ( 1  cos20) (1) ~o0 = o 2r 2 ~ r  4 cos20 + -- 

3Bp CO z ] o . 
r~o = o 2r 4 r2 sin 20 -- ~ -  sm 20 

The stresses inside the bonded elastic inclusion are 

~ = 2 [(1 - -A)  + (1 --B)cos20]  

O Ooo = ~-  [(1 - -A)  -- (1 -- B) cos20] (2) 

r,o = -- 2 ( 1  -- B) sin20 

The constants A, B, and C are algebraic combinations of the elastic con- 
stants of the two phases present, but the constant C does not appear in sub- 
sequent analyses, so it will be unspecified here. If the subscripts i and m refer 
to the inclusion and matrix materials, respectively, the constants A and B are 
given in terms of the modulus of rigidity # and Poisson's ratio by 
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(1 - 2vi)fi„ - (1 - 2v„)fii 

(1 — c,)fi,„ + M/ 
(3) 

B = 
/x„, + (3 — 4c„)/x, 

The strain energy density for plane strain conditions (here, the matrix 
plate is large in all directions compared to the inclusion size) in Cartesian 
coordinates is 

1 
2E 

(CT ,̂2 + „^^2) - ^ ( a „ a ^ , ) + — r , 2 , , (4) 

where E is the Young's modulus of either of the two materials. The strain 
energy density, integrated over the relevant volume V about the inclusion, 
will yield the strain energy field in the matrix as well as within the inclusion. 
The perturbed stresses in Eq 1 are known to die out quickly, certainly by a 
distance of 4p from the inclusion center [6]; thus, strain energy densities be-

t i 
FIG. 1—Inclusion embedded in a plate subjected to uniform tensile boundary stresses a. 
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yond r = 4p are largely those associated with the uniform tensile stress field. 
Substituting the stresses in Eqs 1 and 2 into the polar coordinate form of Eq 
4, and integrating over a volume of radius 4p, the total strain energy t/, as
sociated with the inclusion is 

Ur 
1:0'-p-^ 

3E, 
[(1 - Vi){l-A)^ + (1 + Pi)(l - 5)2] + . . . 

(5) 

{l + uJ{A2 + 2B^) 

The actual composite is to be visualized as in Fig. 2. Each spherical inclu
sion, of mean radius p, is to be centered on the comer of a cube of side X; 
thus, X is the mean interparticle spacing for nearest-neighbor particles. If the 
locally perturbed stress states associated with each particle rapidly approach 
the nominal tensile field, as one moves radially outward from the inclusion, 
the strain energy associated with one particle inclusion (Eq 5) can be safely 
assumed to be associated with each particle in the composite. In examining a 
rectangular area segment of length 2a by width t, lying on a random plane 
cutting the composite, it is found that n particles lie in the area segment, 
where 

2a_ ^ ±_ _ 2al_ 
X ^ X ' X2 

(6) 

FIG. 2—Particulate composite with mean particle radius p and interparticle spacing X. 

 



GAVIGAN AND QUEENEY ON BRITTLE SOLIDS 1-89 

The total strain energy associated with the n particles on the plane segment, 
denoted Et/,, is 

LUi^nUi 
2a t 
X2 Ui (7) 

In his pioneering examination of the driving forces that promote crack ex
tension, Griffith [7] examined crack extension stability by assuming that the 
strain energy released by the extending crack acted as the driving force for 
extension. His structural analysis dealt with an infinite plate with biaxial ten
sile boundary tractions, through-cracked at the center with a flat elliptical 
flaw as shown in Fig. 3. The decrease in the structural strain energy of the 
cracked plate, U^, relative to the unflawed plate, was found to be 

[/. = 
2/i 

(8) 

If the plate of Fig. 3 were to be made of the particulate composite addressed 
herein, the strain energy is reduced before the introduction of any flaw locally 
about each of the inclusion particles, the reduction being an amount i/,- from 

FIG. 3—Cracked plate examined for crack extension stability. 
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Eq 5. With the volume of the introduced flaw, a strain energy reduction 
equal to Ef/, (Eq 7) has been realized. Thus, the driving force, or energetic 
reduction, for flaw extension is 

f/, - £ ? / , • = 
lat 

X2 
•u, (9) 

The stability of the introduced flaw is determined by comparing the 
change in the structural strain energy (Eq 9) as the flaw extends symmetri
cally, to the composite's resistance to crack extension, R^. Instability is ex
pressed as 

a 
da 

{U, - Ei/ ,) > R,t 

d 

da 2M« 

2a 

X2 
U: > Rr (10) 

For the structural configuration of a flawed plate made of a particulate com
posite, studied by Griffith [7], Eq 10 predicts a critical fracture stress a^ 
equal to 

1 
aX2 

giv,ix) 
-1/2 

(11) 

where 

Og = critical fracture stress for the plate without the strengthening 
particulate phase and 

g{v,tx) = function of elastic response measures of the plate and inclusion 
materials. 

If the brittle plate material without inclusions has a fracture resistance Rg, 
the fracture resistance of the composite, R^, is 

R,. — R„ 
a\-

-giv,^i,) (12) 

Finally, the interplay of the matrix and particulate elastic response, in alter
ing the fracture resistance of the composite, is given by 

giv.ii) 
1 

(1 - pjii - A)2 + (1 + vja - 5)2 + . 

+ 3(1 + vJiA^ + 252) (13) 
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Given the physical realities that will be encountered in actual composite 
fabrication (that is, Poisson's ratio will be very similar for most matrix/parti
cle systems, and the elastic moduli for the same systems will differ by less 
than an order of magnitude) Eq 13 cannot be reduced to a simpler algebraic 
form whose strengthening predictions can be made by inspection. Figure 4 is 
a graphical evaluation of Eq 11, for both matrix and inclusion Poisson ratios 
of 0.3, various ratios of Young's moduli for the inclusion relative to the ma
trix, and various volume fractions of inclusions. The mean inclusion particle 
diameter was set at 1.0 /xm for calculating the response curves of Fig. 4. 

Discussion 

Although the results of more recent investigations of the fracture resis
tance of particle-reinforced brittle composite abound [8.9,10], the earlier 
work of Lange [/] has the most fully tabulated data available for the experi
mental validation of Eq 12. The composite investigated was a sodium boro-
silicate glass, reinforced with alumina (AI2O3) particles. The present analyt
ical model can be expected to be most accurate for particle volume fractions 
less than 0.20, to insure noninteractive, particle-to-particle stress fields. The 
data from Lange [/] pertinent to the evaluation of Eq 12, and other useful in
formation, are given in Table 1. The Poisson ratio for the glass is 0.24, and 

< 

0 

lU 
E 
CO 

0 0. 

INCLUSION VOLUME FRACTION 

FIG. 4—Composite critical fracture stress a^ relative to matrix fracture stress o^ for various 
moduli ratios Ej/E^, and volume fractions of inclusions. 
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TABLE 1—Mechanical response data for sodium borosilicate glass with Al2O j reinforcement [1]. 

Volume 
Fraction 

AI2O3 

0.0 
0.10 
0.10 
0.10 

Particle 
Size p, iim 

3.5 
11.0 
44.0 

Interp article 
Spacing X, nm 

12.1 
38.7 

153.0 

Young's 
Modulus 
E. GPa 

80.6 
92.5 
92.5 
92.5 

Fracture 
Resistance 
R^, J/m2 

12.56 
21.2 
20.8 
31.2 

Fracture 
Strength, 

MPa 

93.7 
109.0 
107.0 
71.0 

the AI2O3 would have a Young's modulus of 145 GPa and a Poisson ratio of 
0.16. The factor g{v,n) (Eq 13) then is calculated to be 22.2 for the glass-
AI2O3 composite. 

The term a, appearing in Eq 12, was introduced as the region in the mate
rial wherein the composite loses coherency, or fractures; thus, it corresponds 
in concept to the "process zone" developed by Pabst [11]. The process zone 
in a brittle material is analogous to the yield zone in a high-strength metallic 
alloy: it is within this region that the dissipative processes encountered in 
crack extension occur, providing the expected stress nonlinearity as the tip of 
a sharp stressed flaw is approached. Pabst [11] has estimated the process 
zone size to be given by 

. 1 f E^R: 

4 V TS'^ 
(14) 

where TS is the tensile strength of the composite as determined from a four-
point bend test of a smooth-sided specimen. Figure 5 compares calculated 
values of a from Eq 12, using Lange's data in Table 1, to calculated values 
from Eq 14, also using data from Table 1. The agreement is good, and one 
can see that the zone size, measured outward from the crack tip, encompasses 
about one interparticle spacing when determined through the use of Eq 12, 
as shown in Fig. 6. 

In order to describe the same strengthening effect of stiff second phases or 
inclusions in brittle matrixes, Lange [4] proposed a line tension potential 
associated with the crack front line that is minimized when that line is straight. 
Lange's prediction for changes in the composite's fracture resistance, for an 
ideally elastic-brittle material, is 

R,=R, + T/(\-2p) (15) 

using the terminology defined in this paper, and where T is the line tension 
tending to straighten out a crack front with inclusion-induced curvature. 
Evans [5] subsequently expanded the same analytical model to predict theo-
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FIG. 5—Process zone sizes a and a ' versus particle radii in a sodium horosilicate glass with 10 
percent dispersed AI2OJ by volume. 

retically the value of the line tension T. The physical model upon which these 
analyses depend demands that a crack front "bow out" between inclusions 
on the plane of crack extension, in the same manner as a dislocation line be
haves as it encounters hard particulates. While the latter phenomenon in
deed has been observed widely, the evidence for the existence of the former is 
very slight. It is both physically and analytically difficult to demand stability 
of a stressed crack by a virtual extension proceeding as far as a complete 
semicircular arc swept out as the crack encounters two inclusions. 

A physically more realistic approach has been taken recently by Green and 
Nicholson [8\, and it is more in the spirit of the present analysis. These writers 
recognized the importance of the strengthening effect of stiff inclusions in the 
manner in which they reduce local stress states. Green and Nicholson [8] suc
ceed in defining an altered stress-intensity factor for the crack approaching 
the inclusion, and demonstrate that stiff inclusions reduce the stress-inten
sity factor, while compliant inclusions (including pores) raise the stress-
intensity factor and attract the crack front. Their results are physically and 
mathematically reasonable, but fall short of actually establishing an instabil
ity criterion that is dependent upon the existence of a particle field. It ap
pears to Green and Nicholson [8] that a direct force, or stress-intensity fac
tor, approach actually can lead to no more than such an indication of the 
particle-strengthening phenomenon. 
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FIG. 6—Process zone size a and interparticle spacing \ in a sodium borosilicate glass with 10 
percent dispersed AI2OJ by volume. 

Snnimai; 

The present prediction of a particle-bearing composite material's resis
tance to crack extension is based on the altered strain energy states surround
ing the stiff inclusions in the composite particle field. The analytical model 
restricts the application of the results to composites with less than 0.20 vol
ume fraction of dispersed particulate phase. The composite's fracture resis
tance Rr is found from 

/?„ — R„ 1 -
a\^ 

g(i>,n) (12) 

and the term a has been shown to be the size of the fracture process zone, or 
region of nonlinear energy dissipation, ahead of the crack tip. Based on the 
limited examination of experimental data accomplished herein, it appears 
that the process zone extends a distance of one interparticle spacing plus one 
particle radius ahead of the crack tip. When the process zone concept has 
become more thoroughly developed, Eq 12 then can serve as a design equa
tion for optimizing the fracture resistance of these composites. It must be 
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remembered, however, that other factors may be introduced into a discussion 
of the fracture resistance of a particulate composite, such as particle-matrix 
thermal stress generation [8]. 

Finally, various groups currently are seeking to define testing standards 
for brittle material testing in order to determine fracture resistance param
eters with the same confidence that now is identified with the plane strain 
fracture toughness determination for metallic alloys. These metallic stan
dards clearly recognized the significance of plastic zone size (one type of pro
cess zone) relative to specimen dimensions and material response. The same 
type of testing-material-microstructure relationship will need to be addressed 
if fracture resistance determinations in brittle composites are to be material 
response measures only. 
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ABSTRACT: Tliis study lias been inspired by two proposed models for stable crack 
growth described by Sih and Kiefer (1979) and Wnuk and Sedmak (1980). Basic assump
tions of the second model are reexamined and refined. Although the mathematical analy
ses involved in both approaches are widely different, it is shown that the physical assump
tions underlying these two models are analogous. Both treatments assume a "quantum" 
nature of crack growth by representing extension of a stable crack as a sequence of steps 
each of which is executed as a finite jump in the current crack length. While Sih and 
Kiefer employed the numerical approach to treat the three-dimensional (3D) elastic-
plastic fracture problem, here a highly idealized line-plasticity model, modified by an 
addition of the final stretch growth law, is used. 

In earlier final stretch model the quantities essential in the formulation of the growth 
law, such as the growth step A and the opening constants 6 or / , were assumed to be 
material constants. Now it is demonstrated that the first of these assumptions may be 
relaxed and replaced by a more general requirement of the constancy of the ratios COD/ 
A or J/A. Indeed, a self-consistent theory may be constructed if only the ratio of a certain 
measure of the apparent material fracture toughness to the size of the growth step is 
maintained constant throughout the slow growth phase. 

It is shown that variations in the growth step result in reduction of the true and ap
parent fracture toughnesses associated with the quasi-static crack, which are represented 
respectively by the tearing modulus a 6/A and any suitable resistance parameter such as 
J-integral, COD, or extent of the plastic zone generated at the crack front. It is concluded 
that the models that are based on ideal plasticity and that ignore variations in the growth 
step tend to overestimate material ability to sustain a stable crack, and thus lead to non-
conservative predictions regarding occurrence of terminal instability. 

KEY WORDS: ductile fracture, stability, analysis, stable crack growth, damage, non-
elastic material behavior, resistance curve, fracture mechanics 
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Rice [1]^ has pointed out that in order to account for the nonlinear effects 
exhibited by the material located immediately ahead of the fracture front it is 
necessaty to modify the continuum view applied to the entire solid containing 
a crack by focusing attention on the small domain that is about to be 
penetrated by the crack front. This domain is expected to behave differently 
from the remaining part of the bulk solid, or "matrix," and further studies of 
such nonlinear regions indicate a certain "inner structure" within the end 
zone. As it turns out, the deterioration of strength from its maximum level to 
zero occurs over a material element oi finite dimension, say the growth step 
A, which shall be referred to as "disuitegration" or "process" zone, or a 
"unit cell." The size of such a disintegration zone may widely vary from one 
material to another, as it is determined by the microstructural parameters 
such as the average spacing between the inclusions in metallic alloys (roughly 
equal to several grain diameters), the characteristic width of the bundle of 
molecular chains in polymers, the average spacing between the microcracks 
in rocks and ceramics, and finally, the aggregate dimension in mortars and 
concretes. Since this infinitesimal disintegration element is usually embed
ded within a larger nonlinear zone that precedes the moving crack tip, it is 
appropriate to speak about "structured end zone" as suggested by Rice [/]. 

This concept is illustrated in Fig. 1, in which four possible representations 
of the structured end zone are shown schematically. The essential features of 
all these schemes are as follows: (1) the restraining stress Sixy) prevailing 
within the end zone is either uniform and equal to an effective stress CTQ. OT it 
falls off linearly to zero over the length 0, which will be identified later with 
the growth step A; (2) the relative magnitudes of the process zone (0) and the 
end zone (/?) vary from one scheme to another. The first two cases shown. 
Fig. la and b, for which A <g: R, pertain to the ductile limit of material be
havior in quasi-brittle fracture, which the other two. Fig. Ic and d, for which 
the growth step is on the same order of magnitude as the size of the end zone, 
A = ^ , correspond to a brittle limit of material behavior. Of course, all four 
representations shown in Fig. 1 are only certain idealizations of the actual 
stress distribution pictured in Fig. 2. 

Neither the exact nature of the stress distribution within the outer part of 
the nonlinear zone (j8 < xj < /?), nor its deterioration within the process 
zone (0 < xi < /3) is known. This msufficient knowledge, however, does not 
prevent us from postulating certain plausible models, such as those shown in 
Fig. 1. A detailed analysis of these models will enable us to draw meaningful 
conclusions regarding an apparent fracture toughness (/?-curve) associated 
with a quasi-static crack extending at the subcritical K-factor levels, that is, 
below the A'-factor required for a spontaneous (unstable) fracture. Our ob
jective in this study is to provide relationships between various fracture 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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FIG. 1—Schematic representation of idealized stress distributions simulating the stress trans
mitted across the nonlinear zone. 

parameters, and in particular to predict their variations during the stable 
crack growth phase and at the point of terminal instability for any given 
loading condition and geometrical configuration. 

Fracture Criterion 

According to Wnuk [2], failure of a volume element located on the pro
spective path of the crack front is linked to the incremental work dissipated 
within the process zone just prior to the collapse of this zone. If tf denotes the 
instant at which the control volume element breaks down, then the incremen
tal accumulation of damage occurs within the time interval tf — 5t < t < tf, 
m which the increment bt ( = A/d) corresponds to the time used by the crack 
front to traverse its own process zone. Size of such hypothetical zone, over 
which an intensive straining occurs before the crack may advance, is charac
terized by the length A, which is assumed to be microstructural constant. An 
alternative way of stating the basic physical assumption underlying the final 
stretch criterion of fracture may be expressed as follows: amount of irrevers
ible deformation b generated per increment of crack extension A does not de
pend on the preceding deformation states, and therefore it is invariant to the 
amount of crack growth. 
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FIG. 2—Qualitative representation of the actual stress distribution occurring within the near 
crack tip region. "EPFM" stands for "elastic-plastic fracture mechanics. " 

It is readily demonstrated that both statements given previously, the first 
one involving the energy absorbed within the process zone during an in
cremental crack extension, and the second one employing an increment of ir
reversible deformation generated during a single growth step, are in fact 
equivalent. They are also equivalent to the requirement of elevating the 
strain at a certain distance ahead of the crack front to the critical level, as 
suggested by McClintock [3] for a quasi-static Mode III crack. 

A more recent interpretation of this criterion of fracture within the sub-
critical range was given by Kfouri and MDler [4], and then by Kfouri and 
Rice [5], who reduced the energy balance equation, set up for a quasi-static 
crack extending in an elastic-plastic solid, to an equality between the rate of 
energy supplied by the external field, 8^, which is only a small fraction of the 
total work dissipated within the nonlinear zone, namely 

g^ = lim -— 
6a-A 8a 

h&a 

S{x) du^ [x, a] dx (1) 

and the energy absorbed within the disintegration zone, 8, called also the 
"essential work of fracture," compare Broberg [6] and Cotterell [7J. The 
quantity 8 is regarded to be a material property that represents the true ma
terial resistance to crack progagation, in contrast to the apparent fracture 
toughness parameter 8/?- used by other investigators. Note that the integra
tion in Eq 1 is performed with respect to the coordinate x related to the 
distance measured from the crack tip (xj) as follows: a + x^ = x, while the 
symbol Suyix, a) denotes variation of the displacement normal to the crack 
plane due to an incremental crack growth 8a. It is worthy to note that despite 
the continuum mechanics framework employed in the derivation of the en
ergy separation rate, the quantity 8̂ ^ turns out to be distinctly dependent on 
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the assumed growth step, A, and in particular it vanishes for A—0. 
Therefore, a notion of continuous crack extension must be replaced by a 
discrete process that is visualized as a sequence of "jumps," each of which 
equals a finite quantum of crack extension, A. This view is in complete agree
ment with the final stretch concept of Wnuk [2], since the energy balance 
criterion 

i+&a 

S{x) 8uy[x, a] etc = 85a (2) 

may indeed be reduced for quasi-brittle solids, that is, when R «i a, to the 
final stretch condition for a propagating subcritical crack, namely 

uja + A, a + A] — Uyla + A,a] = 8/2 (3) 

in which the quantity 6, final stretch, is assumed to be a material constant 
and is used as a measure of the local (true) fracture toughness. The quantity 
8a in the upper limit of the integral in Eq 2 has been identified with the fmite 
growth step A. 

To prove the equivalence of Eqs 2 and 3, we note that within the so called 
"small-scale yielding range" (when R <^ a) one may calculate the energy sep
aration rate 9^ either by integration of the product S(x) X [6 Uy{x, a)/8a] 
with respect to the spatial coordinate jc, or by an integration of the product 
S{x, t)uy{x, t), evaluated at a fixed x, with respect to time. This latter integral 
is evaluated over an interval corresponding to the lapse of time between the 
two successive states (compare Fig. 3): 

State 1—crack length = a, 
distance of the control point from the crack front = A, and 
time, ti = tf — 8t, in which 8t — A/d. 

State 2—crack length = a + A, 
distance of the control point from the crack front = 0, and 
time, 2̂ = tf 

S T A T I I 

S T A T U 

t « te - f t 
CRACK LBHSTH = O 

X,(P) = A 

CRACK LBN6rH=aiA 

y,(p) = o 

FIG. 3—Two successive states considered in the derivation of the energy separation rate, Q . 
P is the control point at which the energy dissipation rate is being evaluated. 

 



WNUK AND MURA ON VARIABLE GROWTH STEP 1-101 

Therefore, the energy balance Eq 2 may be rewritten in this way 

g^ = 2\\'s{x,t)uJx,t)dt] (4) 
- < : 

For a constant restraining force S = ay this expression assumes the form 

9^ = lay [Uyix, tf) - Uy{x, tf - dt)]^=^^ (5) 

Let us now replace the coordinate x by the coordinate xj, which is an
chored at the tip of a moving crack, and employ a new notation for the func
tion Uy, namely 

Uy — u(xi, a) (6) 

Then State 1 is designated by xi = A and the current crack length a, while 
State 2 is defined by xj = 0 and the crack length a + A. With this notation 
the displacements Uyit^) and Uy{t2), which correspond to the two successive 
states considered, are 

Uyiti) = Uy[xp, a] = u (A, a) 
(7) 

liyiti) ~ Uy[Xp, a + A] = M(0, a + A) 

Inserting these expressions into Eq 5 and recallmg that the constant g was 
given by the product of the effective yield stress oy and the final stretch 5, we 
obtain the equation M(0, a + A) — M(A, a) = 8/2, which indeed is the final 
stretch criterion postulated by Wnuk [2]. 

Distribution of Displacements Corresponding 
to Structured Craclc-Tip Zone 

Constant Growth Step Considerations 

In this section we shall discuss the consequences of the assumption of exis
tence of a structured crack-tip zone, weakened by the microcracks and other 
microdefects that lead to a breakdown of the stress and strain fields pre
dicted by the continuum elastic-plastic fracture mechanics. For this reason 
we shall at times refer to this region as "nonlinear zone." According to the 
schematic representations shown in Fig. 1 the nonlinear zone may be visual
ized as a composite domain consisting of two subregions. The smaller of the 
two (in Fig. la and b) is the disintegration zone, which is well embedded 
within the nonlinear region, A « ; /?. Situations depicted in Fig. Ic and d 
refer to the case when the sizes of both subregions almost coincide, A = R. 
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It should be emphasized that in a quasi-static problem considered here, 
extension of fracture is accompanied by a continuous redistribution of the 
strains prevailing within the nonlinear zone. The global effect of such redis
tribution is the change in length of the nonlinear region associated with a 
growing crack. Therefore, we anticipate that to each increment of crack 
length da, one may ascribe an increment in the extent of the nonliner zone, 
8R. Determining the rate of such redistribution, 5R/6a, is one of the primary 
objectives of this section. The quantity 6R/da is in fact a measure of the 
resistance to cracking. Since the function R = R{a) describes an apparent 
material toughness associated with a stable crack, we shall now proceed to 
determine both the unknown quantities: the rate dR/da and the function 
Rial 

If the stable phase of crack growth is to exist at all, the rate dR/da has to 
be a positive quantity. However, as we will show in the next section, a transi
tion into unstable fracture usually occurs at a certain value of dR/da greater 
than zero, but low enough to be matched by the energy supply rate, deter
mined from the intensity of the external field. 

Let us now derive the equations governing motion of a quasi-static crack. 
For a Mode I crack the basic required input is the distribution of the dis
placements normal to the crack plane generated within the nonlinear zone 
and associated with one of the distributions of the restraining forces shown in 
Fig. 1. Let us first consider the case of a uniform distribution of the stress 
over the entire end zone, Sixi) = ay (see Fig. Ic and d). The profile of the 
nonlinear zone subjected to such unifom restraining stress was given (for ex
ample) by Rice [8,9], and it is a known function of the coordinate JCJ and the 
extent of the nonlinear zone R, namely 

Here the coordinate xi varies within the interval (0, R), while the symbol Ei 
denotes Young's modulus for plane stress, and it equals £(1 — c^)"' for the 
plane-strain situation. The extent of the nonlinear zone, R, may be con
sidered here as an external field parameter related to the intensity K of the 
near-tip stress field as follows 

R = TrKV&aY^ (9) 

At this point we should add that since during the stable phase of crack 
growth the intensity of the stress field K equals at all times the material 
resistance to cracking K^, we may also interpret Eq 9 as a relation between 
the toughness K^ and the resistance parameter jR, that is 

R(a) = rKKHa)/^aY^ (10) 
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Note that the displacement Uyix^, R) attains the maximum value at the 
crack tip, that is, at Xj = 0 

ut\„ = uJO,R) = • t i p 

4 g y 
R (11) 

while it vanishes at Xi = R. It should be emphasized that while for a station
ary crack the length R has a certain fixed value, in the case of a quasi-static 
crack the toughness parameter /? is a time-dependent quantity. It is conve
nient to employ the current crack length a as a time-like variable, and there
fore we shall consider /? to be a function of a, that is, R = R{a). This is an a 
priori unknown function and it will be subject to determination. 

It may be demonstrated that Eq 8 results as a limiting case, when /3 — 0, 
from a more general expression considered by Knauss [10] in his study of 
time-dependent fracture, and valid for a bilinear distribution of the restrain
ing stress 

5(xi) = {aY/p)xi 0 < A : I <i3 

= ay 13 < Xi < R 

(12) 

Knauss' expression reduced to an inviscid case reads 

Uy{xuR) = —r-Rg(f)Fir, f), 0 < r < 1 
iritj 

(13) 

in which r = x^/R, f — /?//?, while the functions g and F are defined as 
follows 

gif) = 1 + 
1 - r 

1 + vr^ 

F{r,f) = C, + YAr r — r log 
C, + Co 

-f 
4f 

log 

CfjCr 

(14) 

Cr + Co - y l o g 
C, + 1 

C - 1 

- (1 - Co)(l + /•)C, + ~ { l - Co') C, 
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The auxiliary quantities A^, Cr, and CQ are defined 

3 

. , ^ - ' 1 - (1 - r)3'2 

C, = (1 - /•)'̂ 2 (15) 

Co = (1 - fV'' 

The relation analogous to Eq 9, which connects the extent of the nonlinear 
zone R and the /^-factor (or, the material toughness Kn), now takes on the 
form 

A -2 
TV / KV 4 '' 

At /3 = 0, that is, at r = 0, this form reduces to Eq 9, while for the other ex
treme case, at /3 — /?, or r ^ 1, we obtain 

-(i)i(ty 
Before we proceed with the derivation of the equation defining the resis

tance curve, let us note that Eq 13 describing the distribution of the opening 
displacement within the nonlinear zone associated with a quasi-static crack 
may be written in the following general way 

u{xua) = -^R{a)fir,f), 0 < r < l (18) 

in which 

irEr 

fir. P) = 2g{r) Fir, f) 

r 

r 

R 

=z 

= 

= 

R 

R 

Ria) 

(19) 
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Let us now evaluate the displacements Uy{tx) and Uyit2) that enter into the 
fracture criterion of Eq 3. It is readily seen that the displacement Uyitj) can 
be identified with the opening displacement at the crack tip at the instant 
when the current crack length equals a + A, say Uyit2) = [«tip] a + A. Com
bining this with Eq 18 yields 

Uy(t2) = uiO, a + A)=R(a + A)f2lR(a + A)] (20) 

Here, both the parameter R and the function fj are to be evaluated at the 
current crack length a + A, thus 

R = R(a + A) 
(21) 

On the other hand, the displacement Uyiti) should be evaluated at a certain 
distance from the crack front, x^ = A, and at the instant when the current 
crack length equals a. If the distance 0 is identified with the growth step A, 
then xi = A corresponds to r = r, and we obtain 

UyUi) = u(A.a) = -^R(a)f^[Ria)] (22) 

in which 

/i[/?(a)] = {/(r,r) }«=«(„ 

= {%(r)F(r,r)}^=«„) (23) 

To apply the fracture criterion of Eq 3, we need to evaluate the difference 

Uy{t2) - UyitO = ^ {R{a + A)f2[R{a + A)] - /?(a)/,[/?(a)]} (24) 

In order to relate the functions appearing in braces in Eq 24 and containing 
the arguments a and a + A, we use the Taylor expansion and arrive at the 
form 

Uyit2) - UyitO = ^ [/?/2 + f2 + R ^ dR 
^ A - /?/,] (25) 
«« JR=R(a) 

in which both quantities/] and/2 ^ ^ known functions of the resistance pa
rameter/? evaluated at the current crack length a. The form of Eq 25 is quite 
general and it enables us to set up the equations that describe motion of a 
quasi-static crack, and predict the variations of the material resistance to 
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cracking developed during the early stages of stable fracture. The range of 
validity of these expressions will be limited to the "quasi-brittle" case, since 
we are discussing here only the so-called "small-scale yielding" case, as it is 
appropriate for the class of materials under consideration. 

Applying Eqs 5 and 25, we evaluate the energy separation rate associated 
with a discontinuously growing crack 

gA = 
8ay2 

TtEt Rh + h + R 
dfi 
dR 

dR 
(26) 

Alternately, we may evaluate the final stretch 6 generated during an in
cremental (but finite) crack extension 6a = A, that is 

6 = 
Say 

•KEI 
Rf2 + fi + R 

dh 
dR 

dR 
(27) 

It is noteworthy that the quantity 8'^ rather strongly depends on the choice of 
the growth step A, and in particular it vanishes when A is allowed to ap
proach zero. We are, therefore, led to a conclusion that existence of a certain 
finite growth step is a necessary condition for propagation of a quasi-static 
crack occurring in a solid that possesses a certain granular structure. Once 
again, we emphasize that m this case the limits of applicability of the con
tinuum mechanics are surpassed and a small volume of the material immedi
ately adjacent to the fracture front obeys a new, yet not well understood, 
constitutive law. 

Generalization of the classical energy balance equation, as proposed ty 
other investigators [2,4-7], suggests an equality between the energy separa
tion rate 8^ associated with a discontmuously growing crack, and the essen
tial work of fracture, 8. given as a product of the effective stress oy and the 
final stretch. Therefore, if we set 8^ = 8 or. equivalently Uy{t-^ — Uy{tx) = 
5/2, and use Eqs 26 and 27, we may cast the equation governing motion of a 
stable crack in this general form 

R 
(fi - / i ) + fi + R 

df2 
dR 

dR 
da 

= M (28) 

Here, the functions/i(A. R) and/2(A, R) do not depend on a particular load
ing condition or crack configuration, and they are known once the distribu
tion of the restraining stress transmitted across the nonlinear zone (see Figs. 
1 and 2) is chosen. The constant M appearing on the right side of Eq 28 will 
be named "tearing modulus" and it will be used as a measure of the true 
material resistance to cracking. The greater is the constant M, the more pro
nounced will be the phase of stable crack extension preceding onset of the 
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catastrophic fracture. It is so because both the resistance to slow crack 
growth and the span between the lower and the upper toughness levels are 
directly proportional to the nondimensional modulus M. The experimental 
data collected by numerous investigators show that modification of micro-
structure, which enhances material toughness, strongly affects the tearing 
modulus. This phenomenon may be better understood if we relate the tearing 
modulus appearing in Eq 28 to other material properties, namely 

M=^—^(S/A) or 
8 (Ty 

(29) 
IT El 

= - - T < S / A ) 

We see that the ratio of a true toughness (measured either by 8 or by 9) to the 
crack growth step becomes a decisive factor that discriminates between a 
brittle and a tough material. Still another interpretation of the quantity M 
has been suggested by Wnuk [11,12] 

-=(f)(i^) 
in which e^ denotes the ultimate strain attained in a uniaxial tension test, 
while the strain ey '̂  ^ ^ strain at yield. With certain additional assumptions, 
we will soon show that stable cracking is possible only if the nondimensional 
modulus M exceeds the minimum value M^i„. For brittle solids this mini
mum value of M turns out to be about unity, and thus the initially stable 
cracking is possible for those materials in which M > 1, while for M < 1 
the point of fracture initiation coincides with the spontaneous crack 
propagation. 

Case A: Constant Restraining Stress 

To illustrate the usefulness of the equations derived previously, and in 
particular to show how the differential equation, Eq 28, may be put to work, 
let us derive a governing equation for an R-curve under an assumption of the 
simplest form of distribution of the stress within the nonlinear zone, namely 
5(jC() = CTy over the entire length of the end zone, 0 < X] < /?. It is readily 
seen that in this case according to Eq 28 we have 

Uy{t2) = ^ R i a + A) (31) 
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and 

Hence it follows/2 = 1 and df2/dR — 0, while 

uAtO = ^ l^RiR^A) - I l o g f ^ t ^ ] (32) 

VR + V/? - A 
/?/,(A, /?) = . f m ^ - ~ log ^^ _ ^ ^ _ ^ (33) 

Therefore, the governing equation of the problem under consideration, that 
is, Eq 28, reduces as follows 

da A -\ A V A 
_ (34) 

1 . Vi?/A - VJR/A - 1 
+ V'og 2 ^V^TA + Vi?/A - 1 

This nonlinear first-order differential equation defines an /?-curve for an ar
bitrary loading condition and crack configuration. It may be integrated nu
merically for a prescribed initial condition at 

a — UQ, R = /?ini (35) 

It is important to note that there are no restrictions imposed on the ratio 
A/R, and due to this fact we may now consider two limiting cases, each of 
which corresponds to a different class of materials. These extreme cases are 
as follows: (a) ductile behavior occurring when the process zone is entirely 
embedded in the nonlinear end zone, that is, when A <$: R; and (b) brittle 
behavior occurring when the process zone is on the same order of magnitude 
as the entire end zone, that is, when A = /?. 

For the first case Eq 34 reduces to the form given by Wnuk [2] for metals 
of limited ductility, and then in an almost identical form by Rice and 
Sorensen [13\ and Rice et al [14], namely 

^ = M - 4 - T log (4/?/A) (36) 
da 2 2 

This equation appears to provide a successful description of stable phase of 
ductile fracture in metals, and its extensive discussion was provided by Rice 
and Sorensen [13]. 

In case of the other extreme material behavior, pertaining to inelastic brit-
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tie fracture, the size of the process zone almost coincides with the extent of 
the entire nonlinear end zone. For such a limiting case, when A -* /?, Eq 34 
degenerates to a simple form 

or 

-^=M-4, A-/? (38) 
da A 

We note that the minimum value of the tearing modulus at which stable frac
ture phase is still possible is determined from the requirement 

mi 

which leads to 

2 / R- • \ 3 / 2 
M^in = R-^i/A - J f - ^ - 1 j from Eq 37 

= /?ini/A from Eq 38 
(40) 

In the case of very brittle solids the most reasonable assumption that one 
can make regarding toughness parameter at the onset of crack extension, 
/?i„i, is to let the growth step A be equal to the extent of the nonlinear zone at 
the threshold of fracture growth. When it is assumed that /?„,! = A, we have 
Mn,in — 1. Figure 4 shows three possible developments of events immediately 
following the onset of fracture extension. Only one of them is stable when 
M > Mmjn and dR/da > 0, while the other two imply unstable fracture, 
which begins right at the initiation point and is not preceded by any slow 
crack growth. These are the cases obtained for M = M^i„, marked by a 
horizontal line, and for M < M„^m shown by a descending resistance curve. 
For both the latter cases the slope dR/da is either zero or negative. 

Examples of integration of Eq 34, which defines an ^-curve for an arbi
trary A//? ratio, performed at various sizes of the growth step relative to the 
extent of the nonlinear zone at the onset of crack extension /?j„|, are shown in 
Fig. 5. It is seen that the assumed ratio A/Ru,; rather strongly affects the 
shape of the resistance curves obtained from Eq 34, and it also has a pro
nounced effect on the shape of the Q-curves shown in Fig. 6. The curves il
lustrate variations of the external load during stable crack extension in a 
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FIG. 4—Effect of the tearing modulus M and its limiting value M„^ on stability of crack ex
tension in a quasi-brittle solid. 

/Rir 

FIG. 5—Resistance curves obtained by numerical integration of Eg 34 at ZQ = 10A and 
A/R;„,- ratios 0.2 (Curves 1 and 2), 0.4 (Curve 3), 0.6 (Curve 4). and 0.8 (Curve 5). The tearing 
modulus for all five curves was assumed to equal the minimum modulus multiplied by a con
stant, h ~ 1.5. Curve 1 was obtained by integration of a asymptotic Eq 36 valid for R/A "» I. 
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FIG. 6a—Load versus current crack length curves; terminal instability points attained under 
load controlled condition are marked by circles. Note that the range shown is insufficient to 
reach the instability in a displacement-controlled test. 

four-point bend specimen. (Data used for plotting were derived from the 
/?-curves shown in Fig. 5.) The curves in Fig. 6 represent the nondimensional 
loading parameter Q(= ira/loY) as a function of the increment of crack 
length, Afl = a — OQ. If the shape factor <l>, which relates specimen geometry 
to the /ST-factor, K — a^a^d), is known, then Q-curve may be obtained from 
an /?-curve in the following way 

Q(., = *-.[-^]'" (41) 

The maxima of the Q-curves (marked in Fig. 6a circles) correspond to the 
points of terminal instability attained in a load controlled test, while the stars 
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FIG. 6b—Same curves as Fig. 6a, but the range of stable crack growth has been extended to 
show the terminal instability points attained in a displacement controlled test (marked by stars). 

are used to designate the points of terminal instability reached in a displace
ment controlled test. 

Case B: Bilinear Restraining Stress 

The intricate form of Eqs 13 and 15 prohibits a direct calculation of a re
sistance curve when the ratio of the size of the inner section of the nonlinear 
zone (0 < jcj < |3) to the extent of the entire end zone {x^ = R) is an ar
bitrary fraction. However, it is possible to provide certain limiting expres
sions for an /?-curve, analogous to those given by Eqs 36 and 37, which were 
obtained from considerations based on an assumption of a uniform stress 
distribution prevailing over the entire end zone.-' If we consider first the limit 

Îf (3 is allowed to shrink to zero, that is, when the bilinear distribution of S-stresses is re
placed by a linear reduction of the effective stress ag to zero over the length of the end zone, the 
governing equation for an iJ-curve reads 

dR 2p 
=M-p+ — 

da 2p 

1 , 1 \'p-sip- i 
2 - \lp(p - 1) + - 3 log 

4p' Vp +Vp 
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of ductile material behavior (A <s: R), then the equation defining an R-carve 
for a bilinear restraining stress assumes the form 

- ^ = M + 1 - - ^ log(4p), p = R/A (42) 
da 4p^ 

This form is similar to Eq 36 for quasi-static stable fracture in metals. 
We shall now focus on the other limiting case corresponding to the brittle 

behavior, obtained when A = R. The equation describing a quasi-static 
crack (Eq 9) reduces to a simple form 

f^„.^^±(E^Y\ , = «,, ,«, 
da 3 \ p / 

which, without a significant loss of accuracy, may be further simplified 

— - = M - — (44) 
da A 

This form is identical with the expression obtained for the limiting case of A 
approaching R (Eq 38). Again, the minimum tearing modulus is predicted as 

M„i„ = /?i„i/A (45) 

while the upper bound for fracture toughness /?„ is related to the growth step 
A and the modulus M as follows 

R,, = MXA (46) 

Figure 7a shows an example of the /?-curves obtained from the equations 
discussed here in the limit of A approaching R, and Fig. 7b illustrates the 
variations of the loading parameter Q, as predicted by the equations derived 
from both the models considered previously (Cases A and B). The configura
tion chosen for plotting Fig. 7b is that of four point bend specimen. It is seen 
that the differences between the two curves are not significant. 

Effect of Variabk Growth Step on the Resistance Curve 

In the preceding section we have shown that the effect of any particular as
sumption regarding the distribution of the restraining force that prevails over 
the process zone has negligible effect on the resistance curve resulting from 
integration of the governing equation (Eq 28). Such is not the case, however, 
when one chooses to alter the size of the (constant) growth step. By examina
tion of Figs. 5 and 6 it is visible that an increase in the growth step relative to 
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FIG. 7—(a) Resistance curves and (b) Q-curves shown for the two cases of restraining force 
distribution: SfXj) = (Ty. Case A, and Case B, the bilinear stress S. Only the limit of brittle ma
terial behavior is shown, A — R. Configuration used to graph the Q-curves is that of a four-point 
bend specimen. 

the size of the end zone R leads to a considerable change in material response 
during a stable fracture phase: for A much less than R a ductile behavior oc
curs, while for A approaching R one arrives at the limit of the very brittle 
fracture. It is not the absolute value of the growth step that matters, but its 
relation to the size of the plastic zone is a decisive parameter. 

In earlier treatments of the subject of ductile fracture [2,11,12.15,16] the 
growth step was assumed to be a material property, usually identified with 
the size of the process zone, and thus related to the microstructure and in-
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variant to the amount of stable cracking. Recently, however, it has been sug
gested by Sih"* and Curran [IT] that during a single ductile tear test, in which 
a crack grows at first in a stable manner due to enlargement and coalescence 
of voids generated on the prospective fracture path, the size of the growth 
step may vary from a certain initial value A, up to a much higher level cor
responding to brittle fracture, say Af. It is a fact that at the point of terminal 
instability the physical nature of fracture undergoes a transition, as its mode 
changes from tearing (ductile mode) to cleavage (brittle mode). Between 
these two limits of the growth step. A, and Ay, one would expect a gradual 
variation of the quantity A, just as one expects the gradual change in the ap
parent toughness parameters such as R, J-integral, or crack-opening dis
placement (COD). 

Curran [17] has pointed out that as a result of continuous strain redistribu
tion ahead of the crack front which progresses discontinuously due to subse
quent acts of void coalescence, the increment of crack extension becomes 
larger as the crack approaches the terminal uistability point. The suggested 
relation between the growth step and an apparent toughness parameter [17] 
was of the kind 

A = C\jRia) or CR{a) (47) 

in which the constants Cj and C involve microstructural variables. Such an 
assumption, although it may appear simplistic, agrees with the outcome of 
the studies done by Sih and Kiefer [18], who suggested that each increment 
of crack extension is accompanied by an increment in the energy density fac
tor S (chosen as an apparent toughness parameter), so that the ratio of the 
two, S/6a remains constant during the entire phase of stable crack growth. 
Such a requirement results from Sih's criterion of crack growth, in which the 
constancy of the strain-energy density along the crack border is postulated. 
Since the strain-energy density, chosen as a measure of true toughness, is ex
pressed as a ratio of factor S and a small distance Xi from the crack tip (iden
tifiable with the process zone size), the constancy of the ratio S/8a during the 
stable crack extension follows naturally. 

Following these suggestions we shall now relax the requirement of a con
stant growth step and repeat briefly the considerations presented in the pre
ceding section leading to derivation of an R-curve. Only one type of distribu
tion of the restraining force will be considered, namely S{xi) = ay. For this 
case the displacements Uyii2) and UyU^), which enter into the final stretch 
crack growth law, may be expressed in terms of R and the R/A ratio for any 
given crack length as follows 

'*Sih, G. C , private communication, 1980. 
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Wv(^l) = 

Uy{t2) = 

45y 

ir£'i 

4qy 

•KE, 

•{RMR/M}R=Ria) 

R(.a + A) 

(48) 

If we now replace the R/A ratio by the microstructural constant C ' and ap
ply the final stretch criterion of fracture, as given by Eq 3 or 28, we arrive at 

R_ 
A l - / i 

R 
+ 

dR _ / TT̂ i \ / 8 

da Say) 
(49) 

or simply 

dR 

da 
Mi„i/(/?//?i„i)-Fi(C-i) (50) 

Here, the function Fi denotes C ' [1 — / i (C ')], and for the considered 
near-tip deformation field it reads 

F,(C-.) = c - + V c = H c - ^ + 1 l o g ^ ^ ^ : ^ (51) 

Note that the effective tearing modulus Mini/(jR//?ini) becomes now a func
tion of the amount of crack growth just as /? is a function of a. Therefore, an 
index "ini" has been added to emphasize the variation in modulus M. Its' 
value at the onset of crack propagation is defined as follows 

«^ ' = ( ^ (52) 

Since the quantity Fy(C ') is now a constant, Eq 50 may be easily integrated 
in a closed form. The result is 

^ =FrHc-^)[(i-^)F,ic-^) 

+ Mi„ilog 
Mu^i - -Fi(C-') 

(53) 

Mini - (/?//?i„i)Fi(C-l) 

This expression is valid for any value of the constant C taken from the inter
val (0,1). When R :s> A, that is, when C~' is much larger than one, Eq 51 
simplifies 
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F* = [F^(C-')U » A = y + y log(4C-i) (54) 

while for /? = A we obtain another asymptotic form 

F* = [FtiC~')U = A = C-i - J (C-i - 1F2 (55) 

Since the form of Eq 53 remains unchanged for these two limiting cases, all 
one needs to do in order to discuss the two limits of material behavior is to 
substitute the Eq 54 or Eq 55 for F^iC"^) into Eq 53. 

To facilitate such a discussion Figs. 8a and b show some computer-gener
ated results of simultaneous integration of Eqs 34 and 50, which define an 
R-curve obtained at a constant and at a variable growth step, respectively, 
during stable crack extension. It is seen that the assumption of a variable A 
has a pronounced effect on the final outcome of the analysis, that is, the 
shape of an R-curve. As might be anticipated, the change in material re
sponse indicated by assumption of a variable growth step is toward a more 
brittle behavior. A reduced slope of an jR-curve signifies a lesser material re
sistance to cracking and a diminished amount of stable crack extension. This 
point is borne out in a yet more obvious way by inspection of Figs. 9a and b, 
which show a number of load versus Aa curves, or so-called Q-curves, cor
responding to the two cases considered, that is, a constant and a variable 
growth step. The critical loads attained at the point of transition to fast brit
tle-like fracture are far below those predicted by the equations obtained in 
the preceding section concerned with the constant A case. A similar conclu
sion pertaining to modification of an R-curve was reached by Ernst [19]. 

A sharp contrast between the results of both approaches discussed here is 
revealed when the upper bound for the apparent fracture toughness (/?„ or 
K^) is calculated. Setting dR/da equal zero in Eq 34 or in Eq 50 implies at
tainment of steady-state situation at which toughness no longer depends on 
the amount of crack growth. This condition determines the upper toughness 
limit, which according to Eq 34 valid for a constant A, assumes the form 

F, ( ^ ) - Mini = 0 (56) 

while for a variable A it follows from Eq 50 

Rs3 -Rm\ p ( ^ - 1 ^ (57) 
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lond3 

FIG. 8fl—Curves grouped in the upper "band" represent the R-curves (designated by even 
numbers) obtained under an assumption of a constant A and at these initial conditions: C~ ' = 
R^/Aj = R/A = ;. / (Curves 0 and 1). 1.08 (Curves 2 and 3), 1.06 (Curves 4 and 5). and 1.04 
(Curves 6 and 7). The lower band of (overlapping) curves corresponds to the assumption of a 
variable A, and it has been obtained at the same initial conditions as the curves derived for a 
constant growth step. 

Solutions to Eq 56 have to be sought numerically, at least for the range of R^^ 
on the same order of magnitude as A„. Within the range of /?„ » Ajj 
however, one may obtain an explicit relationship 

/?„ = •exp{2Afi„i- 1} (58) 

This expression leads to unreasonably high values of Rss/A„ for a class of 
ductile solids in which the tearing moduli are much greater than one (note a 
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FIG. 85—Example of two R-curves obtained under assumption of a constant A and a variable 
A. The initial parameter Rj„/A j was assumed 1.04 for both curves. 

rapid exponential increase of the curve labeled "a" shown in Fig. 10). This 
deficiency is corrected when Eq 57 is used to evaluate the upper toughniess 
bound. Figures 10a and 6 show the distinct difference between the upper 
toughness levels {R^/A^) obtained from the solutions corresponding to a 
constant and a variable growl̂ h step. 

It is noteworthy that Eq 50, which governs an i?-curve and was derived 
from an assumption of a variable growth step, may be cast into a simple form 

dR 
da R -B, (59) 

in which the constants Ai and Bi are related to the microstructural proper
ties as follows 
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Multiplying Eq 59 by a constant factor 

(60) 

(61) 

where n is a numerical factor varying within the range 1 to 2.6 depending on 
the near-tip state of stress and the degree of material strain hardening, gives 

dJR 
da B (62) 

FIG. 9o—Q-curves resulting from the resistance curves shown in Fig. 8a. 
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FIG. 9b—Q-curves resulting from the resistance curves shown in Fig. 8h. Both sets of curves 
correspond to a four-point bend specimen configuration, and Q denotes a nondimensional load
ing parameter, 0 = ^ra/2a^/. 

Here the constants A and B relate to other material properties as implied by 
Eqs 60 and 61. These constants may also be readily determined experimen
tally by matching an empirical JR versus Aa curve with that predicted by Eq 
62. Three examples of this (almost perfect) fit are provided by Figs. 11 to 13. 
Since the A533B steel (see Fig. 11) and the weld deposit (see Fig. 12) repre
sent two opposite extremes in material behavior, a ductile one and a brittle 
one, we may conclude that both these limits of material response under frac
ture are contained in the present mathematical model and they are correctly 
represented by Eq 62. This observation provides an additional argument in 
favor of admitting a variable growth step during early stage of crack exten
sion, as suggested by Eq 47. 
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FIG. 10a—Strong and weak dependence of the upper toughness limit ^R^/R—> on tAe tear
ing modulus M, fli predicted according to constant A approach. Curve "a, " and variable A ap
proach. Curves 0 and I to 4. Curve 0 corresponds to a limiting case oj an R-eurve derived from 
the asymptotic form of the differential equation defining apparent material resistance, valid for 
R/A » 1 (note that Curves 0 and I converge for larger values of the tearing modulus MA The 
parameter A has been assumed as follows: A = &i„/& = I (Curves 0 and I), 2 (Curve 2), 3 
(Curve 3), and 4 (Curve 4). Note that the line R^^ = R;„i separates stable from unstable fracture 
processes, the latter occurring below R^j/R,,, = /. 

Conclusions 

The model developed here is based on an assumption that the fracture 
zone formed during the early stages of fracture in inelastic solids is repre
sented by a "fictitious" crack, or a "damage band" of finite width, preceding 
the dominant crack and able to transfer stress. Such extension of a natural 
crack is referred to as a "nonlinear zone" in which the laws of elastic plastic 
fracture mechanics break down. 
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FIG. 106—Enlargement of Curves "a" and 1 taken from Fig. lOa shows an exponential and a 
linear relationship between the upper toughness limit R̂ ^ and the tearing modulus M. 

The stress transferring ability of the damage zone depends on the separa
tion distance created between the two opposite boundaries of a newly formed 
fracture zone. Although detailed information regarding the distribution of 
stress prevailing within the nonlinear zone is lacking, it is shown that certain 
plausible models may be constructed and employed to derive the differential 
equations that define a resistance curve. 

It is suggested that the "essential work of fracture" or so-called "final 
stretch," which serves as a measure of irreversible deformation, be calculated 
at each step of an advancing crack. Hence the variations of the toughness pa
rameter with the extent of stable crack growth (an /?-curve) may be 
predicted. 
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FIG. 11—Example of a resistance curve for a ductile metal (A533B steel) tested at room tem
perature). Constants entering Eq 62 are A = 173 kJ/m^ mm, B = J kj/m mm. Data points 
marked by the circles are according to Vassilaros et al /20/. 

Such an approach requires that crack growth occur by a series of rapid but 
intermittent steps. Equations governing the discontinuous motion of a 
crack are provided, and the stability conditions for fracture developing either 
under a load-controlled or a displacement-controlled test are discussed 
briefly. If the domain of intensive straining in which the final act of fracture 
takes place (the so-called "process zone") is identified with a finite increment 
of crack length, A, then it appears necessary to regard the growth step to de
pend not only on the microstructure (in which case A would be a material 
constant), but also to reflect the variations of the state of stress prevailing at 
the tip of a propagating crack. An assumption of a variable A seems to gain 
support from an independent study of microvoid kinetics [17\. 

Variations in the growth step of a quasi-static crack are shown to have a 
rather pronounced influence on the shape of a resistance curve within the 
small-scale yielding range. When a modification of the resistance curve is 
taken into account and examined in view of the stability conditions, the 
previous models of ductile tear process turn out to be nonconservative. The 
ejdsting solutions, which assume perfect plasticity to describe a near-tip 
deformation field such as those resulting from the final stretch model or from 
the Prandtl slip line field around a propagating crack, as suggested by Rice 
and Sorensen [13], appear to overestimate material ability to sustain stable 
tearing process prior to occurrence of brittle-like cleavage fracture. 
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An unreasonably high steady-state level of fracture toughness K^^ pre
dicted by the two approaches discussed is considerably reduced when the 
restriction concerning a constant growth step is relaxed and a variable A is 
considered instead. 
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ABSTRACT: A detailed experimental photoelastic investigation of the history of dy
namic Mode 1 and apparent mixed-mode stres.s-intensity factor during the passage of 
elastic stress waves over the crack tip is presented. Experimental recordings of isochro-
matic fringe pattern about static and moving crack tips permit the determination of the 
history of the complex stress-intensity factor A" = A', — ;A'2 which is associated with a 
rnixed-mode crack stress loading. 

A first cracking time and a first branching time problem is formulated for stationary 
and moving cracks. The dependence of the local state of stress at the crack tip on the rate 
of change of the overall stress field is discussed. 

KEY WORDS: dynamic photoclasticity, stress waves, wave diffraction, crack propaga
tion, fracture mechanics, stress-intensity factor, mixed-mode crack loading 

Nomenclatuie 

The following nomenclature for the various types of elastic waves 
generated will be adopted throughout this investigation. 

P Primary/longitudinal/dilatational/irrotational wave 
S Secondarj'/transversal/shear/rotational wave 
R Rayleigh wave 
V von Schmidt wave or head wave 

+ ( —) Upper (lower) crack face 
Xj^Y, X^^Y Diffracted (d) and reflected (r) wave of type X at crack tip Z 

due to an incident wave of type Y (X, Y = P, S) 
R_X Rayleigh wave traveling along upper ( + ) or lower ( —) crack 

wall and generated by an incident wave of type X 

'Associate professor. Institute of Mechanics, Technical University of Vienna, Vienna, Austria. 
^A.ssistant professor. Department of Mechanical Engineering and Applied Mechanics, Uni

versity of Rhode Island, Kingston, R.l. 02881. 
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For reasons of clarity the formal formation of a secondary lower Rayleigh 
wave is illustrated: 

P — Sj '^P — R _ ^ S ' ^ P characterizes the generation of a Rayleigh wave 
propagating along the lower crack face and generated by diffraction about 
crack tip B of the shear wave S'^P which was generated by diffraction about 
crack t ip A of the incident P-pulse. 

r, d Polar coordinate system at tached to the crack tip 
JCQ, >'O Coordinates of wave source in the reference coordinate system 

c Crack speed 
c i , C2 Wave propagation speeds (P, SV) 

c, Terminal crack speed 
a, I Crack length 

t Time 
w Net ligament 

t^, Xg Time and location of crack wave encounter 
tb, Cb Time and location of crack branching 

At Duration of crack wave encounter 
t* Time-like variable 
f„ Material fringe value 
h Plate thickness 

iV<'', N Photoelastic fringe order for isochromatics associated with in
cident and total wave fields, respectively 

a I, 02 Principal normal stresses 
Tn, Maximum in-plane shear stress 

SIF Stress-intensity factor 
A^dc SIF for running crack subjected to static prestress and stress 

wave loading 
Kio SIF for stationary crack of equivalent length subjected to 

static prestress and stress wave loading 
K^ SIF for running crack subjected to static prestress (no wave) 
K^ SIF for stationary crack subjected to static prestress 
ATbr SIF just prior to crack branching 
K^ Mode I SIF 
K2 Mode II SIF 
K Ki — iKj Mixed-mode stress-intensity factor 

P, S Refer to corresponding wave type 

Relations among SIF's 

KJl,c) = k{c)KJl,o) 
KiJ,t, c) = k{c) Kioit, o) 
k{c) = universal function of the crack tip velocity 

Ki Dynamic fracture toughness 
S Strain energy release rate 
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g. Critical value of g 
gic) Auxiliary function 

8 D Dynamic material resistance 

Crack-wave interaction processes are important in many fields of research. 
At times of increasing demand for energy, fracture mechanics and wave 
propagation play an active role in the exploitation of new and profitable en
ergy resources. Of particular significance are geothermal heat exploitation, 
oil shale research, and surface and underground mining operations. Knowl
edge of crack-wave interaction enables one to optimize fragmentation and 
consequently reduce the cost of mining operations. 

Rock formations found at quarry sites and oil shale sites from stacks of 
layered rock with bedding planes and joint sets present. Upon detonation of 
an explosive, the wave pattern generated in layered media is extremely com
plicated and static and running cracks interact with incident and reflected 
elastic wave systems. Depending on the nature of the wave the cracks may 
initiate, accelerate, or decelerate during the interaction phase. In particular 
situations crack path instability may induce crack branching. 

During the past decade considerable work has been devoted to the prob
lem of a crack subjected to stress wave loading. Most of the analytical results 
of crack-wave interaction compiled and critically reviewed in Ref P are 
related to the transient response of cracks to impact loads and scattering of 
waves about stationary and moving cracks. Very recent analytical work on 
wave diffraction at stationary crack tip is due to Brock [2-4] and Harris [5,6]. 
The results of the latter author's investigations of the transient response of 
cracks to impinging cylindrical wave fronts emitted from a source at finite 
distance from the crack tip and the associated diffraction problem are of par
ticular interest in the photoelastic crack wave interaction problem. 

Experimental investigations of crack wave interaction date back to the 
work by Schardin [7], Kerkhof and co-workers [8], and others. Photoelastic 
studies and research in dynamic crack-wave interaction are rather limited. 
An experimental photoelastic investigation concerning the interaction be
tween a stationary crack and an impinging dilatational wave is due to Smith 
[9]. The stress intensification at the tips of the crack was evaluated and found 
to be significantly higher than in the corresponding static case. The dynamic 
stress-intensity factor reduces to the static value for the case of a very high 
wave length to crack length ratio. Photoelastic studies by Rossmanith and 
Shukla [10,11] focus attention on the dynamic interaction between static and 
running cracks and stress waves impinging in a direction normal, tangential, 
and oblique to the prospective crack propagation plane. 

This paper deals with the determination of the history of the apparent 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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mixed-mode stress-intensity factor K = Ki — iKj at stationary or moving 
crack tips during wave diffraction. A first-cracking-time and first-branching-
time problem is formulated in the stress-intensity factor A", - /Cj-plane for 
stationary and moving crack tips. In addition, the influence of the rate of 
change of the stress field applied onto mixed-mode cracking is discussed. Dy
namic photoelasticity has been used as a means for recording the sequences 
of isochromatic fringe patterns and thus visualizing the highly complex inter
action process between stress waves and cracks. 

Theoretical Considerations 

During blasting or an earthquake phenomenon several types of elastic 
waves are generated. The longitudinal and shear waves spread out in hemi
spherical wave fronts with the spacing of their wave fronts in accord with 
their differing velocities. Miller and Pursey [12] have computed the partition 
of energy among the dilatational, shear, and surface waves due to an oscillat
ing normal point force. Woods's [13] representation in Fig. la shows the 
geometric attenuation of the displacement amplitudes with radial distance. 
The "shear window" indicates the portion of the shear wave arc along which 
the amplitude is greatest. In addition, a circular Rayleigh surface wave front 
carrying the major part of the input energy in a thin layer just underneath the 

Wave type 

Rayleigh 
Shear 
Compression 

Percentage: of 
total ener^: 

, ,67 : 
26 
7 

Relative 
amplitude 

FIG. \a—Distribution of diiplacement and energy in dilatational, shear, and surface waves 
from a harmonic normal load on a half-space for v = '/< (after Ref 13A 
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free surface propagates in a radial direction from the locus of excitation. Al
though the results shown in Fig. la pertain to spherical wave emission (with 
geometric attenuation of the stress of the order r""' and r ""•-'' for body waves 
and surface waves, respectively) similar results will hold for the two-dimen
sional analogue (with cylindrical stress field attenuation of the orders r "''^ 
and r" for body and surface waves, respectively). Thus Fig. Ih shows a 
dynamic photoelastic recording of the wave system generated during explo
sive excitation at the free surface of a half-plane model of Homalite 100 where 
the P, S, V, and R-waves can be identified clearly. Their associated wave 
propagation velocities are cp = 2150 m/s, c^ = Cv — 1230 m/s, and c^ = 
1110 m/s, respectively. 

The stress field associated with the incident P-wave is compressive in the 
leading part and tensile in the trailing part of the wave with a ratio of stress 
biaxiality Or/oQ = o^/oi = 2.5. The stress field associated with SV-wave is 
pure shear and its intensity distribution is extremely nonuniform, showing 
two distinctive symmetrical maxima. 

FIG. \h—Dynamic photoelastic recording of wave emission during explosive point force exci
tation at the free surface of a half-plane. 
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The Diffraction Problem 

When elastic waves are generated and propagated in a heterogeneous soUd 
they are diffracted at the geometric discontinuities which most often are 
cracks or inclusions or both. The diffraction process may give rise to high ele
vation of local stresses. This stress amplification becomes extremely severe 
when the discontinuity is a crack and might lead to unstable crack propaga
tion. The incident wave can be either a P-wave (polarized in the direction of 
the incoming wave), or an S-wave which may be decomposed into an SH-
wave (polarized parallel to the horizontal x-z crack plane) and an SV-wave 
(polarized parallel to the vertical xy-plane). Plane dynamic photoelasticity 
deals with P- and SV-wave propagation. Figure 2 shows the standard diffrac
tion problem of cylindrical wave pulse impinging on a static or moving semi-
infinite crack. 

In fracture mechanics the deformation of the crack surfaces induced by 
the wave interaction process are classified into three modes: Mode I (normal 
opening mode deformation), Mode II (in-plane shearing mode deformation), 
and Mode III (antiplane shearing mode deformation). In connection with 
(obliquely) impinging P- and SV-waves the first two fracture modes occur in 
various combinations in isotropic materials. General wave diffraction at 
crack tips gives rise to a mixed-mode transient fracture problem which for 

P-WAVE 
FRONT 

CENTER OF 
EXPLOSION 

Q(xo,yo) 

• • DIRECTION OF WAVE PROPAGATION 
• DIRECTION OF PARTICLE MOVEMENT 

FIG. 2—Classical diffraction problem of cylindrical wave pulse impinging on a static or mov
ing semi-infinite crack. 
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analysis purposes is divided conveniently into a symmetric part (Mode I) and 
an antisymmetric part (Mode II) [5,6]. 

Consider the propagation of elastic waves and their interaction with a 
static or running crack as shown in Fig. 2. The input waves are diffracted 
and scattered about the crack tip A. Regardless of the type of incident waves, 
whether P- or SV-waves, diffraction gives rise to the generation of both P- and 
SV-waves. The total stress field a,y ix,y, t) is composed of the stress fields of 
the incident wave cr,y''̂  {x,y,t) and the scattered field associated with the dif
fracted P- and SV-waves CT,;,'^' {x,y,t) 

Oij {x,y,t) = a,/'^ {x.y,t) + a , / ' {x,y,t) (1) 

with an appropriate radiation condition for the scattered field and the associ
ated wave function satisfies the Helmholtz equation [14]. In addition, bound
ary conditions appropriate for stress-free crack surfaces are to be described. 
In the immediate vicinity (singularity region) of the crack tip the plane 
stresses due to a scattered P- or SV pulse are assumed to be of the form 

a,/* {t.c)= "f ^ ^ 7 = / , / ' (e,c) + (Xl) (2) 

where t and c denote time and crack speed, K„ {t,c) is the dynamic time-
dependent stress-intensity factor, and n denotes the mode of fracture. 

The total local crack-tip stress field in the region {191 < x/2; r < Cpt} is 
obtained by substituting Eq 2 into Eq 1. Restriction to the close crack tip 
vicinity r/a < 0.1, that is, neglecting higher order terms except for the one 
associated with r" in the stress a^, OQ, and using the relation for the maxi
mum in-plane shear stress, Tn, = (CTJ — ai)/!, the expected shape of the iso-
chromatics near the crack tip is found to be [15,16] 

Tn,' = ( ^ ) ' = F{ /^i, ATj, <7,« - a2», e , ao} (3) 

with 

a/') - a2'" = ^ (4) 

The function /" is quadratic in K[ and K2 and is given in Refs 15 and 16. The 
quantity Â  is the order of the isochromatic fringe at the crack tip. When the 
incident wave (P) shows rotational symmetry as for a subsurface wave source 
employed in Ref 9, A'̂ *" may be obtained at a point on the incident wave front 
corresponding to the location of the crack tip but remote from the actual 
crack tip. If the wave source is located on a free surface, the resulting P- and 
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SV-waves show nonuniform angular distributions for the wave amplitudes. 
Then, a convenient engineering approach to the measurement of M'' is to 
measure the fringe order along the prospective angular coordinate of wave-
crack interaction at an earlier phase of wave propagation, that is, in an ear
lier frame of the sequence of photoelastic fringe patterns as shown in Fig. 3. 
Amplitude and wave shape then have to be corrected for the geometric dis
persion and changed crack tip location for the running crack between the 
measurement phase and the interaction phase. 

Moving cracks interacting with P- and SV-waves have been investigated by 

time: t=t, 

Q(xo,yo) 

t i m e - t = t | /—radial measurement 

Q(Xo,yo) 

FIG. 3—Measurement of fringe orders N''' and N associated with wave diffraction about a 
static or running crack tip. 
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Chen and Sih [/] and Freund [17]. For plane harmonic waves the treatment 
for running cracks is similar to the method for stationary cracks except that 
the problem is formulated with respect to a set of moving coordinates. At 
least for the singular solution the r "'''^ stress singularity is the same as that of 
a stationary crack while the angular variation of the stress field around the 
crack tip is increasingly distorted with increasing crack velocity. 

The dynamic stress-intensity factors K^ and Ki for the moving crack-wave 
mteraction process are complicated functions of the circular frequency w, in
put wave amplitudes a and T, angles of incidence 7p and y^, and crack speed 
c. If the influence of input P- and SV-wave in Ki and K2 is separated, the 
dynamic stress-intensity factors for incidence of P- or SV-wave can be repre
sented in the form [/] 

P-wave incidence 
^p ~ K\p — 

SV-wave incidence 

^ s = ^ I p ~ 

' ^2p — C^'\iK\p 

- iK2s — T^Xs (•''̂ Is 

/ATap) Gp (w, Qfp, 7p, a/L) (5a) 

IKjJGsico, a^,y^,a/L) (5b) 

where Xp and X̂  are the wave length of the P- and S-wave, respectively, and 
the functions Gp and G^ are given in Ref / . It can be noted that the peaks of 
the individual contributions ATjp and ^ j , do n^t coincide but occur at differ
ent angles. This phase difference in ATj and Kj which depends on the crack 
speed, angle of incidence, etc., has a significant influence on the crack path 
stability under dynamic mixed-mode conditions. For cracks of finite length 
and wave pulses the functions depend also on the crack length-to-pulse 
length ratio a/L, where Z, is a characteristic length of the pulse. Typical val
ues of L from explosive model studies are Z, = 25 to 26 mm and a crack 
length of a = 50 to 100 mm. 

Photoelastic Study of Running Crack-Wave Interaction 

Experimental Procedure 

Dynamic photoelasticity was utilized to study running crack-wave interac
tion in a single-edge-notched specimen. Photoelasticity provides whole field 
data during the propagation period which contains the instantaneous stress-
intensity factor, the crack tip position, and the change in the state of stress 
across the section due to crack movement and crack-wave interaction. 

The geometry of the single-edge-notched (SEN) specimens used in the run
ning crack wave interaction study is shown in Fig. 4. 

The specimens were fabricated from a 9.5-mm-thick sheet of a brittle poly
ester, Homalite 100. This polyester becomes temporarily birefringent when 
subjected to a state of stress and gives rise to optical interference fringes when 
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FIG. 4—Geometry of SEN specimen and loci of explosive wave source. 

viewed in a circular polariscope. These fringes are known as isochromatics 
and represent tlie line along which the maximum shear stress is a constant. 

A blunt starter crack was saw-cut into the specimen, as shown in Fig. 4, 
and the crack tip was rounded to inhibit premature initiation at high values 
of KQ. The crack then was initiated by drawing a sharp blade across the tip. 
As the crack propagated, it interrupted a silver conductive paint line on the 
model and triggered the multiple-spark Cranz-Schardin camera and the ex
plosive after prescribed delay times [18]. The Cranz-Schardin camera used 
provides 16 frames at discrete times during the dynamic event. The sparks 
provide light pulses about 500 ns in duration and thus effectively stop the 
motion of the fringes during the exposure time. A framing rate of about 
200 000 frames per second was used in the experiments. This provided an ob
servation period of 90 us which was well matched with the interaction process 
being studied. 

The dynamic mechanical and optical properties of Homalite 100 were 
determined by Metcalf and Kobayashi [19] and are given in Table 1. 

Elastic Wave Diffraction About a Running Crack: Nonoblique Incidence 

Consider the specimen geometry of Fig. 5 with the wave source located at 
Point 1. At some prescribed delay time after crack initiation elastic waves 
radiate from the center of explosion as shown in Figs. 1 and 2. During the in
teraction phase the normal to the wave front and the crack path are colinear 
but oppositely oriented. The dynamic stress-intensity factor, K^^, for Mode I 
extension of a half-plane crack is given by a universal function of crack tip 
velocity k{c) times the stress-intensity factor, K^^, appropriate for a crack of 
fixed length, equal to the instantaneous length, subjected to the given ap
plied loading, whether this loading is time-dependent or time-independent 
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TABLE 1—Dynamic mechanical and optical properties of Homatite 100 [19]. 

Plate wave velocity 
Shear wave velocity 
Raylcigh wave velocity 
Static Young's modulus 
Dynamic Young's modulus 
Dynamic shear modulus 
Dynamic Poisson's ratio 
Mass density 
Minimum stress-intensity factor 
Static material fringe value 
DNTiamic material fringe value 

"(X = 492 nm) 

t'l = Cp, m/s 
cj = Cj, m/s 
CK, m/s 
£•„ GPa 
i"d. GPa 
/i, GPa 

p, kgs^m "'' 
ATî , MNm-^^" 
/„5, MPa-m/fringe 

/„(]' MPa-m/fringe 

2150 
1230 
1110 
3.86 
4.83 
1.84 
0.31 
122 
0.42 
19.3 

21.9 

[17\. Assuming that a similar relation could be applied approximately to a 
crack of finite length in a finite specimen, one obtains 

Ki,it,l) = k{c)Ki,(tJ) (6) 

where K^^ (t. I) is a dynamic stress-intensity factor for the running crack 
which was subjected to a stress wave with pulse shape given in Fig. 5 at time 
zero, becoming / in length and reaching speed c at time t, and K^^ (i, D is a 
dynamic stress-intensity factor at time t for a stationary crack of length equal 
to the instantaneous length of the running crack and has been subjected to 
the identical stress wave at time zero. In a first engineering approximation 
the function ^(c) [17] may be represented by ̂  (c) = 1 — C/CR for 0 < C/CR < 
1 where c^ is the speed of the Rayleigh wave. 

Postulating that crack propagation occurs and continues when the value of 
the dynamic stress-intensity factor exceeds a critical value—the dynamic frac
ture toughness, K^—one obtains as a fracture criterion 

Kio it, /) X (1 - C/CR) = K^ (7) 

Since experimental measurements have shown that the crack speed in the 
SEN-crack-wave interaction problem was constant, the spatially fixed x-coor-
dinate attached to the tip of the starter crack is eliminated in favor of the co
ordinate ^ = X — ct where the ($, y) coordinate system moves along with the 
crack tip. Suppose now that the crack begins to move at time i = 0 with con
stant speed c, whereas the P-wave is emitted att = tg (to > 0) at a distance w 
from the tip of the starter crack and spreads with speed c^. The time t^ and 
the place x^ of the first encounter are then t^ = w/c — 1^(1 — c/ci)~^ and 
Xg = ctg. The duration of crack-wave interaction is given hy At = X(ci + 
c )~ ' with X the wave pulse length as shown in Fig. 5. 
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FIG. 5—Approximate stress distribution along the line of symmetry for a P-wave. 

The dynamic stress-intensity factor associated with a constant-speed run
ning crack subjected to stress loading with a real time pulse profile 

a{q) = vN{q)+No=- E a„q'' 
n=0 

(8) 

where c, a„ are real constants and N{q) is obtained from isochromatic fringe 
pattern evaluation, as given by Ref 17 

K^At*.c)=Ak{c) {t* - q^'^ a' {q)dq (9) 

and /I is a constant. The time-like quantity t* = t + c{t — T)/C^ is a mea
sure of the time that would have elapsed since the incident wave hit the crack 
tip if the crack tip had always been at its instantaneous position. The quan
tity T is considered the time delay between wave incidence and crack initia
tion; for the running crack wave interaction problem it holds T = 0, hence, 
(* = i(l + c/C]). a'(q) is a description of the actual wave profile in Eq 8 
and the variable q measures distance behind the wavefront on a real time 
basis. 

Combination of Eqs 8 and 9 renders 

(10) Ki^{t*,c)=Avk{c) {t*~ qy'^N'{q)dq 
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= Ak{c) L a>+3''2 
n = 0 

where the a„' form a set of real coefficients. 
The result for a simple step pulse a'{q} = H{q)ao 

(11) 

Ki,{t* c) = A k{c)aQt*^''^ r* > 0 (12) 

serves as a basis for the evaluation of the stress-intensity factor K^^'^it*, c) 
induced by the square pulse 

a/jc) = ao [H{x) - (1 + 6)H{x - X,) + 6//(JC - X, - X^)] (13) 

as shown in Fig. 6. 
The distribution of A:dc'^('* c) = ^a^kic) K^^^^it*, 0) is given by 

rr*'/2 for T o < ^ * < r , 
Ki^it*,0) = j f*"2 - (1 + b\t*- r,)'/2 for Ti < ?*< Tj 

{j*m _ (1 + 5)(f * _ 7-̂ )1/2 + 5 (y* _ Tj)^'^ for 7̂ 2 < r 
(14) 

where To, T], and Tj denote the arrival times of the stress pulse jumps. 
The total dynamic stress-intensity factor for the Mode I crack wave inter

action problem is composed of the sum of the stress-intensity factor for the 
crack running in an SEN specimen subjected to time-independent loading in 
the form of body forces or remotely applied tractions and the stress-intensity 
factor variation due to stress wave loading 

ATd,""" («* c) = K^ {t* c)/no wave + K^, {t* c)/ 'wave (15) 

a(t)AKdo 

FIG. 6—Square shaped stress pulse and associated static stress-intensity factor K^ . 
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The strain energy release rate for the present case [17\ 

1 - ^2 
Q(t*c) = Ai{c)[K^,^""Ht*c)]2 = g(c)9it*,0) (16) 

and the fracture criterion 

Sa*. c) = 8D (17) 

allow a derivation for the equation of motion for the crack tip. The function 
g{c) is given in Ref 17. The dynamic material resistance or critical strain en
ergy release rate 8 D may be considered independent of the crack speed c for 
c/Cfi^ < 'A of the QD — c relationship shown in Fig. 7 for Homalite 100 
118.20,21]. 

The crack tip equation of motion follows from Eqs 15 to 17 and is given by 

QuE/[il - ''^)iKJt*, 0) + K^,{t*, 0))2] = g{c) (18) 

which must be augmented by appropriate initial conditions. 
A low-velocity propagating crack (C/CR < V4) with So ~ Sc f'xed would 

experience an oscillating variation in crack speed with no crack arrest pro
vided in Eqs 13 and 14 8 is small enough to assume that (/^d,'*°*')min > K^. 
In the plateau region of the c — 8 D relationship of Fig. 7 large increases in 
S D causes only very small changes in crack speed c, hence g(c) = constant in 
Eq 18. If the moving crack is subjected only to time-dependent external trac-

C/Cp 
PLATEAU REGION 

1/3 -. 

1/4 

>-

O 

o 
Ul 

> 
< 
a 
u 

DYNAMIC STRAIN ENERGY RELEASE RATE 

FIG. 7—Crack speed c versus dynamic strain energy release rate 8 as obtained for Homalite 
100 from an SEN-type fracture test specimen 118]. 
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tions, the resulting variation in K^ would require corresponding variations in 
go- This type of behavior has in fact been observed in fracture experiments 
with Homalite 100. In the no-wave running crack problem the transition 
region V4 < C/CR < V3 is associated with the beginning of fracture surface 
roughening. Fracture surface roughening and the development of unsuccess
ful part-through crack branches becomes more severe for increasing K^-
values in the plateau region. When A"so exceeds a critical value, the branch
ing stress-intensity factor ATbr, successful crack branching occurs and two or 
more cracks propagate individually with the motion of each one governed by 
an equation of motion similar to Eq 18. 

Assume that the crack propagates with terminal (plateau) velocity c„ 
hence ^(c) = g(c,) = constant. The SEN specimen geometry is characterized 
by monotonically increasing AT-values and induces crack branching at a dis
tance from the top of the starter crack at time b̂o- An incident stress wave 
scattered about the crack tip moving with speed c, generates variations of K^^ 
that cause, in general, oscillating fracture surface roughening patterns. If, 
however, K^ is large enough, the impinging tensile (compressive) stress wave 
will enhance (delay) crack branching by reducing (increasing) the time t^, and 
the distance a^ for branching. Stress wave effects onto branching may be 
characterized by branching delay and shift parameters, (3, = (^b)wave/(f (,)no 
wave, and ^^ ~ (ab)wave/(ab)no wave, respectively. 

The K versus a/w relationship for stress wave-crack interaction is shown in 
Fig. 8 for nonobliquely incident stress waves. The impact of three types of in
cident stress waves onto the total dynamic stress-intensity factor is illustrated. 
A tensile step pulse a^it, x) = agHix + ct — w) encountering the crack tip 
at position x = ab/vv increases the stress-intensity factor above its critical 
value A'br to yield branching at position ay,/w. Assuming that K^X^^w, 0) 
may be approximated by 

K^ia/w, 0) = /Co + Kiia/w) + K^ia/v/^ + . . . (19) 

crack branching will occur when KJ^U'^/y^, 0) — K^r k~^ (c). Setting K; = 
0{i > 2), the crack bifurcates at position {a^,/w)no wave = K/KI with 
K = A'br^^Hc) — KQ. For step stress wave interaction at time t = t-, (Case A 
in Fig. 8) with K^^ (^* c) given by Eq 12, the locus of crack branching is 
determined from the condition 

/sTbr = K^(flb/w, c) + Ki,(t* c) 

= k(c) {K^ (ab/w, 0) + /l(7oIw/c(ab/w - a;/w){i + c/c{)V'^} (20) 

with a-[/w the position of crack wave encounter. 
The linear approximation for (a^/w) wave is given by 

(ab/>v)wave = (ab/w)no wave + 7 + {27(ab/w)no wave + 7^ — /S}'''^ (21) 
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-STARTER CRACK 
CRACK TIP POSITION, o/w 

Qj/w - Position of wove-crock encounter 

(a),/w)|- Crack branching step tensile stress wove 

(ai,/*)^- Crack branctiing reel stress wave 

(a^/w)j-Crack branching no wave 

fli Tensile step stress wave Oyit, x) = aoH{x + ct —w) 
by Experimentally recorded stress wave profile and associated squared pulse (Eq 13). 

FIG. 8—Dynamic stress-intensity factor ^jj'°" versus crack tip position a/vi for running 
crack-stress wave interaction showing enhance of branching. 

with 

- A2„2 AW — ( 1 + C / C I ) / ( 2 K , ^ ) 

0^A^ao^— ( 1 + c / c i ) -^ (Ci (22) 

and 

tu = au/c (23) 

Expressions similar to Eqs 20 and 21 may be obtained for more general 
wave forms. Crack-wave interaction with real waves obtained from explosive 
wave sources (Fig. 8/>) showing a leading biaxial compressive pulse followed 
by a biaxial tensile pulse may lead to branching enhancement (iŜ  < 1) or de
lay (/3a > 1) depending on the time of encounter of crack tip and wave front. 
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This is demonstrated clearly in Fig. 8. The sequence of isochromatic fringe 
patterns shown in Fig. 9 are associated with a very early time of encounter 
with ao too small to enforce stress wave branching. Running crack-explosive 
wave interaction experiments yielded (ab/M')no wave = 0.68 and {a^,/w)v/a.ve = 
0.45 for a/w = 0.15, where c = 380 m/s and Ci — 2150 m/s for Homalite 
100; hence, (3^ - Vi. 

Nonoblique incident P-wave diffraction at a high speed running crack tip 
is depicted in the fringe patterns shown in Fig. 9. The fringe pattern pre
sented in Fig. 9a shows the mutual far field interaction as the crack tip nor
mally approaches the P-wave front at time f = 65 /us after initiation of the 
crack. The crack tip is surrounded by a butterfly isochromatic fringe pattern 
which is typical for Mode I cracks propagating at nearly terminal velocity (c = 
380 m/s) in an SEN specimen characterized by increasing /^-values as the 
crack proceeds. When the P-wave front is scattered at the moving crack tip 
both a PP-wave and an SP-wave are generated by diffraction. The second 
photograph (Fig. 96) shows the phase when the crack tip traverses the peak 
of the leading compressive pulse of the P-wave (Frame 6, ? = 85 \i%). Notice 
that the classical butterfly isochromatics have been distorted completely by 
the transient stress field component which acts parallel to the crack line. An 
unstable quadruple fringe pattern is generated during the passage of the 
compressive half of the P-pulse. 

The final photograph of this sequence (Fig. 9c) depicts the situation where 
the crack tip traverses the trailing tensile pulse of the P-wave. The strong in
crease of crack tip fringe order from iV = 5 in Fig. 9a to the visible order A'̂  = 
8 in Fig. 9c indicates an essential increase of the stress-intensity factor. 

Oblique Incidence 

Scattering of obliquely incident stress waves about a stationary or moving 
crack tip gives rise to apparent mixed-mode stress conditions at the crack tip. 
The explosively generated stress waves, P- and S- waves, radiate from the 
source at Point II as shown in Fig. 4. During the crack-wave interaction 
phase the angle between the crack line and the normal to the wave front is 
constant for plane wave fronts but changes for cylindrical wave fronts and for 
a moving crack. Assuming the crack to propagate in its plane even when sub
jected to mked-mode stress conditions, an assumption which is clearly con-
tradictoty to experimental results, the mathematical treatment becomes very 
involved [77], incorporating two universal functions A: i(c) and A:2(c) for Mode I 
and Mode II, respectively. Relations for dynamic stress-intensity factors K^^^ 
and Kiie may be derived which arc similar to Eq 6 for the symmetric mode 

KiA,{t, c) = kiic) Kii„{t. 0) (r - 1, 2) (24) 
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and the expression for the mixed-mode strain energy release rate G reads 
(compare Eq 16) 

Q{t* c) = ^ - ^ U,(c)(/r,dc"" it*, c)f + A2(c)(K2dcit* c))2] (25) 

Experiments with DCB-type specimens with unstable crack propagation oc
curring in the sense of crack path instability suggest Mode I stress conditions 
at the very crack tip provided the crack moves in a time-independent load-
induced stress field. Dynamic photoelastic fringe recordings showing tran
sient stress fields such as generated by stress waves as well as the shapes of 
the associated shadow spots seem to induce an apparent dynamic Mode II 
contribution as expressed by Eq 25. Dynamic recordings of the shadow-spot 
surrounding a crack tip moving at high speed along a curved path in a static 
stress field reveal perfectly symmetrical shapes of the caustic.'* The presence 
of a considerable transient Mode II contribution to the stress-intensity factor 
is evidenced by the asymmetrical shape of the pseudo-shadow spot shown in 
Fig. 10a and by the dominant mixed-mode isochromatic fringe pattern en
largement of Fig. l ie shown in Fig. lOh; Fig. 10c is the associated analyti
cally generated fringe pattern [16\. 

The sequence of photographs in Fig. 11 shows the diffraction of an obliquely 
incident longitudinal (P) wave about the tip of a high-velocity running crack. 
Frame 1 (Fig. Ua) shows the crack tip moving in the static SEN-stress field 
surrounded by the classical butterfly-shaped isochromatic fringe system. The 
wave system approaches from the right lower comer. The P-wave impinges 
the crack tip at an angle of about 30 deg with respect to the crack line. The 
wave-induced stress field is superimposed onto the stress field caused by the 
loading of the specimen. The stress components of the P-wave can be split into 
three components which act normal, parallel, and tangential to the crack. 
The normal compressive stress component gives rise to an opening mode 
crack deformation. The stress field acting parallel to the crack line plays an 
important role in the crack path stability, whereas the tangential stress com
ponent causes in-plane shearing deformation of the crack walls (Mode II). 

Analysis of the isochromatic near crack tip fringe patterns (Figs. Ua and 
b) on the basis of a (static) mixed-mode analysis reveals a dominant Mode 
I-mixed mode crack problem with the sign of the transient stress field paral
lel to the crack line changing from negative (compression in Fig. life) to posi
tive (tension in Fig. He). The crack path exhibits waviness with the curvature 
apparently changing sign between Frame 3 (Fig. lib) and Frame 4 (Fig. 
lie). The geometric features of the resulting wavy crack path may be utilized 
to determine an apparent mbced-mode ratio function m(t) = Kn/Ki of the 
interaction process. 

''Kalthoff, J. F., private communication, IWM Freiburg, 1980. 
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Oblique SV-wave scattering about a moving crack is depicted in the se
quence of photographs shown in Fig. 12. In Fig. 12a (Frame l,t — 141 /^s), 
the crack tip is surrounded by nearly pure Mode I isochromatic fringes as the 
crack approaches the oblique incident SV-wave. The angle of incidence is 
greater than the critical angle, and the wave is diffracted at the crack tip in 
Fig. \2b (Frame 8, f = 153 /is), giving rise to a diffracted and reflected wave 
system. Oblique SV-wave scattering gives rise to apparent mixed-mode stress 
concentrations at the moving crack tip. The SV-wave induced Mode I stress 
intensity becomes very large, and momentarily the value of the strain energy 
release rate approaches a critical limit. The crack finally divides mto two or 
eventually several individual branches when the requirements for a branch
ing criterion 

Sbr = Sa*. c) (26) 

are met. Branching of running cracks subjected to mbced-mode loading con
ditions is shown in Fig. 12c (Frame 11, t ~ 182 /ts), and also has been inves
tigated in Ref 22. An alternate branching criterion would postulate crack 
division to occur when the strain energy disappearance rate Gjj associated 
with the system of branches would become larger than the value of Go for the 
single running crack [23]. 

Obliquely incident stress wave scattering about stationary and running 
crack tips suggests formulation of a first-cracking-time problem or first-
branching-time problem similar to a first-passage-time problem in other 
fields of mechanics. An appropriately selected fracture criterion as well as 
branching criterion constitutes two limiting curves F and B, respectively, in 
the (complex) K^ — Kj plane as shown in Fig. 13. Any wave-crack interac
tion process is associated with a path in this plane crossing the fracture 
(jF)-limit at fracture initiation, and passing the branching (5)-limit when 
branching occurs. All Mode I processes are restricted to the axis Kj = 0. The 
A'-paths for the special case of nonoblique step tensile pulse interaction with 
a moving crack (Fig. 9) is indicated by interrupted lines. The associated first-
branching-time is given by Eq 23. Solid and dash-dot curves are associated 
with oblique incident P and SV wave interaction corresponding to Figs. 11 
and Fig. 12, respectively. 

It should be pointed out that Mode II contributions to form an apparent 
mixed-mode stress-intensity factor as obtained from theoretical and experi
mental investigations may rest upon entirely different phenomenon. All dy
namic mathematical analyses of crack advancement to date assume uniform 
or nonuniform crack extension along the crack plane and do not account for 
crack path curvature, thus introducing a crack path deviation-induced ap
parent Mode II contribution. Finite-element analyses of dynamic crack prop
agation along curved crack paths are not available in the literature to date. 
Photoelastic or other optical fringe recordings of moving crack tips along 
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- \ 1 2 c FRACTURE 
^ ^^/f^V-- -^ SURFACE 

12b*y JT ROUGHENING 

Kic 9b 9a 9c ^b 
MODE 1 STRESS INTENSITY FACTOR, K, 

• NON-OBLIQUE P-WAVE INTERACTION (fig. 9) 

• OBLIQUE P-WAVE INTERACTION (fig. 11) 

' OBLIQUE SV-WAVE INTERACTION (fig. 12) 

FIG. 13—Mixed-mode Kj — K2-ptane showing fracture and branching boundaries and 
K-pathsfor crack-wave interaction problems. 

curved paths including the method of caustics show asymmetrical fringes in 
the far field or even in the close field, and the shapes of the shadow spots are 
asymmetrically distorted. This, however, does not imply that the very close 
vicinity around the crack tip is in mixed-mode, nor does it prevent the crack 
tip from propagating under pure Mode I conditions even in a highly transient 
stress field. Ratios m(t) evaluated from larger isochromatic fringe loops of a 
globally mixed-mode isochromatic crack-tip fringe pattern show a tendency 
towards increasing influence of K2. Hence, Fig. 14 has to be reinterpreted in 
the sense that the paths K connecting Figs. 1 la, b, and c and 12a, h, and c 
pertain to a particular fringe order (that is, to a very specific region of validity 
of the analysis employed). The use of a completed dynamic stress field solu
tion including the essential nonsingular terms would remove this complexity. 
This, however, is at the present time beyond the limit of running-crack inter
action analysis and will be the subject of future research. 

Conclusions 

Dynamic photoelasticity was employed to provide whole field data for 
stress wave scattering about moving crack tips in prestressed SEN fracture 
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test specimens. The isochromatic data were analyzed to obtain qualitative es
timates of the stress intensity at the crack tip. P-waves impinging non-
obiiqueiy on the moving crack give rise to Mode I type crack deformation. 
The associated stress-intensity factor Ki caused by static preload of the speci
men is lowered during the passage of the leading compressive pulse of the ex
plosively generated P-wave, but Ki increases when the trailing tensile P-pulse 
passes over the crack tip. The energy content of the trailing tensile plus and 
the dynamic stress-intensity factor at the position of crack-wave encounter if 
there was no wave present determine the dynamic propagation behavior of 
the crack and control delayed or enhanced occurrence of crack branching. 

Oblique incident SV-wave scattering causes a transient apparent mixed-
mode stress field, which in turn causes the crack to deviate from its originally 
stable straight crack path [12]. Finally, crack branching is possible for oblique 
SV-wave-crack interaction. A suitable representation of crack wave interac
tion is provided by a stress-intensity factor path K{K^, Kj) in a /f i — Ki-
plane. Engineering approximations for first-cracking and first-branching-
time problems have been formulated for general plane-stress wave loading 
employing Freund's fundamental solutions. Although in these experiments 
the crack is of finite length and the specimen is finite, the results are surpris
ingly favorable even though certain restrictive assumptions have been made. 
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ABSTRACT; Theory and numerical procedure are presented to determine the stress-
intensity factors for a partially cracked typical stiffener and a partially cracked splice 
stiffener in a stiffened panel subjected to a uniaxial uniform remote stress normal to the 
crack. The translational spring element and the beam element with special boundarj' con
ditions are investigated for the simulation of flexible fasteners. The finite-element pro
cedure was applied to the problem. From the finite-element solution, the stress-intensity 
factors were determined by using the displacement method and the strain energy release 
rate method. Results are presented as stress-intensity configuration factors, Y, for various 
values of crack lengths, stiffening ratios, stiffener spacings, and fastener flexibilities. The 
crack growth lives computed from finite-element solutions are compared with test data of 
panels containing a partially cracked typical stiffener subjected to constant amplitude 
cyclic loading and spectrum loading. The correlation between the test data and the analyses 
is very good. 

KEY WORDS: stiffened panel, finite-element method, partially cracked stiffener, flexi
ble fastener, stress-intensity factors, configuration factor, fracture mechanics 

The assessment of structural reliability in the design of modem aircraft re
quires the considerations of structural response to loading when cracking is 
present. The existence of alternate load paths in a built-up structure has 
resulted in what is termed as a fail-safe design. In most instances, this has 
produced a fairly high level of load-carrying capability in the presence of ex
tensive damage. Any quantitative analysis of behavior of the cracked struc
ture (that is, crack growth and residual strength) requires that one have 

'Principal engineer and senior specialist engineer, respectively. The Boeing Company, Mail 
Stop 21-43, Seattle, Wash. 98124. 

1-157 

Copyright® 1983 by AS FM International www.astm.org 

 



1-158 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 

available the stress-intensity factor (SIF) solution for the geometry, boundary 
conditions, and loading in question. The determination of this SIF is the pri
mary task in any fracture analysis. Most of the work done on stiffened panels 
with cracks involves cracks in skin with intact or broken stiffeners [l-6\.^ 
Very little analytical or experimental work has been done on a partially 
cracked stiffener [7J. Here, stiffened panels containing a partially cracked 
typical (Z) stiffener and a partially cracked splice (I) stiffener are analyzed 
with the finite-element analysis for various crack lengths, stiffening ratios, 
bay widths, and fastener system flexibility parameters. SIF's are presented in 
graphical forms for partially cracked stiffeners for previously mentioned 
parameters. 

Problems of small cracks originating from the edge of the skin flange, or 
from either or both sides of the fastener hole are not adressed here. SIF solu
tions for these cases are discussed and available elsewhere [8,9]. 

Formulation of Modeling Procednre 

The purpose of the work described here is to analyze a stiffened panel con
taining a partially cracked stiffener as shown in Figs. 1 and 2. Equally spaced 
stiffeners are attached to the skin with equally spaced fasteners. The skin 
and stiffeners are subjected to a remote uniform uniaxial stress, normal to 
the crack. Fasteners are flexible and their deformations must be accounted 
for accurately to reflect the load transferred from the cracked stiffener to the 
skin. Two different kinds of elements are used to simulate the flexible fasten
ers in the analysis of stiffened panels. They are the translational spring ele
ment, and the beam element with special boundary conditions. The transla
tional spring element is shown in Fig. 3a. The element has two structural 
nodes. Each structural node has three translational stiffnesses. The stiffness 
matrix for this element expressed in rectangular Cartesian coordinates is 

" o r 

0 

0 

~'^ax 

0 

0 

0 

Ic^ 

0 

0 

'^vy 

0 

0 

0 

Kvz 

0 

0 

fCvz 

—k 
"•ax 

0 

0 

"•at 

0 

0 

0 

'^vy 

0 

0 

0 

0 

0 

-k 

0 

0 

K. 

'The italic numbers in brackets refer to tlie list of references appended to this paper. 
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(a) Half of Stiffened Panel 
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(b) Section at Centerline of Panel 

FIG. 1—Stiffened panel with a partially cracked typical stiffener. 

where 

kax = translational stiffness in the axial direction, 
kyy = translational stiffness iny direction, and 
k^^ = translational stiffness in z direction. 

The beam element as shown in Fig. 3b is assumed to be a straight bar 
capable of resisting axial force, bending moments about the two principal 
axes in the plane of its cross section, and a twisting moment about its cen-
troidal axis. The element has three translational freedoms and three rota
tional freedoms at each node. The fastener was idealized with this beam ele
ment with the end conditions fixed such that it behaved as a cantilever beam, 
that is, three rotational displacements equal to zero at the fixed end and 
three bending moments equal to zero at the free end. The flexibility coeffi
cient,/, for a cantilever beam under an end load is given by 
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f- 3EI 

where 
E = Young's modulus for the fastener material, 
/ = the fastener length, and 
/ = the moment of inertia. 

Both of these elements were used to simulate flexible fasteners in a stiff
ened panel with a bay-centered crack. Results for both finite-element analyses 
with fasteners simulated as spring elements or beam elements were identical. 
The beam element was used to simulate fasteners thereon. 

Applicadon of Procedure 

The purpose of this work was to determine SIFs for a partially cracked 
typical (Z) or splice (I) stiffener and to determine stress concentration factors 

(a) Half of Stifferwd Panal 

(b) Section at Centarline of Panel 

FIG. 2—Stiffened panel with a partially cracked splice stiffener. 
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ENDd) 

(a) Translational Spring Element 
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(b) Beam Element 

FIG. 3—Fastener idealization. 
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(SCF's) in the skin and adjacent stiffeners as the crack extends in the stiff-
ener (see Figs. 1 and 2). Finite-element analyses were conducted for a stiff
ened panel containing a partially cracked stiffener, as shown in Figs. 1 and 2. 
The bay width, skin thickness, and stiffener dimensions used are dimensions 
very typically found on the lower wing surface of military transport, cargo, 
and commercial aircrafts and are shown in Figs. 1 and 2. The crack length, 
L, is measured from the edge of the skin-flange of the stiffener along the 
centerline of the cross section. Width W is the developed width of the stiff
ener, as shown in Figs. 1 and 2. 

A typical finite-element idealization is shown in Fig. 4. This is a three-di
mensional geometric idealization. However, analysis itself is two-dimensional 
in nature. General bending plate elements were used to idealize the skin and 
stiffener for the case of a partially cracked Z stiffener. The element with un
coupled mem.brane and bending stiffness has five degrees of freedom per 
node (the element has no in-plane bending stiffness). It assumes constant 
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(a) Ideatuation for SKtn and Stiffenari (b) Idealization for SIcin Alone 

Id Idealization foi Paniallv Cracked Stiffener Alone (dl Idealization of Detail A 

FIG. 4—Finite-element idealization for a partially cracked stiffener. 

membrane strain and linear curvature. For partially cracked I stiffener, 
membrane plate elements were used to idealize the skin and stiffener and 
cracks are assumed to grow symmetrically. Beam elements with special 
boundary conditions are used to simulate the flexible fasteners. For each 
case, seven completely different finite-element idealizations were constructed 
for seven crack lengths ranging from 1.9 cm (0.75 in.) to 9.4 cm (3.7 in.). In 
order to have the accurate stress-strain distribution in the crack-tip region, 
the mesh patterns were rearranged for each value of crack length. Since steep 
stress gradients exist in the vicinity of a crack tip, the clement sizes in the 
crack-tip region were reduced and the smallest elements, which were squares 
with each side about 0.13 cm (0.05 in.) long, were used at the crack tip. The 
typical finite-element idealization shown in Fig. 4 consisted of 265 nodes, 285 
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elements, and 1231 degrees of freedom. The skin and stiffeners were sub
jected to a remote uniform tension of 6.89 MPa (1 Icsi). 

Special crack-tip elements, such as eight-node quadratic isoparametric 
quadrilateral element with quarter point singularity, were used for cracked 
panels subjected to membrane or in-plane stress only [10\. The analysis in hand 
considers bending stiffness also. No special two-dimensional crack-tip elements 
were available with this capability. Hence, regular elements were used, as 
described previously, to model the crack-tip region. For the sake of uniformity, 
regular elements also were used for the partially cracked splice stiffener. 

Stress intensity factors, K, were determined by the displacement method 
and the strain energy release rate method. The AT-values calculated by the 
strain energy release rate method are approximately 7.5 percent higher than 
K calculated by the displacement method. The results shown in the illustra
tions are based on the displacement method. 

Resalts and Discussion 

The parameters that were found to have a significant effect on the SIF's 
are crack length, L, stiffening ratio, R^, stiffener spacing, B, fastener flex
ibility,/, fastener pitch, p, and stiffener cross-section dimensions. Stiffening 
ratio R^ is defined as the ratio of cross-sectional area of a Z stiffener to one 
bay area of skin. R^p is defined as the ratio of cross-sectional area of the I 
stiffener to the cross-sectional area of a Z stiffener. Results in Fig. 5 for a 
partially cracked Z stiffener show that SIF remains nearly constant while the 
crack is in the skin flange. As the crack grows in the web or the top flange, 
SIF increases with the increasing crack length. Results in Fig. 5 also show 
that varying R^ from 0.4 to 1.0, SIF increases by less than 14 percent for a 
given crack length with respect to that for R, — 0.4. Finite-element analyses 
also were conducted for5 = 25.4 cm (10.0 in.). Comparison of results showed 
that SIF increased approximately 2 percent for small cracks [L = 2.54 cm 
(1.0 in.)] and 4 percent for larger cracks [L = 8.2 cm (3.25 in.)] as B increased 
from 17.8 cm (7.0 in.) to 25.4 cm (10.0 in.). 

Effect of fastener flexibility also was investigated. Standard fastener flex
ibility encountered in practice is 2 to 10. Using ftE = 6 as a baseline, it was 
found that effect of fastener flexibility on SIF was less than —9 to + 8 per
cent forftE = 2 to/tE = 10, respectively. As expected, it was found that SIF 
of a partially cracked stiffener increased as the flexibility of the fastener in
creased. With the increased flexibility of the fastener system, less load was 
transferred from the cracked stiffener to the intact skin. 

The SIF's obtained for R, values of 0.4, 0.7, and 1.0 are given in Fig. 6 for 
a partially cracked splice stiffener. Results in Fig. 6 show that SIF increases 
rapidly as the two crack tips in the skin flanges move closer to each other and 
join together. Once the crack extends in the vertical web and free flange, SIF 
remains nearly unchanged. 
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FIG. S—SIF'sfor a partially cracked typical stiffener. 

The nondimensional stress-intensity configuration factor, Y, is defined as 
follows 

K 
ayfwL 

Y = 

where a is the applied uniaxial uniform stress a n d ! is the crack length. Plots of 
Y\ersusL/W, Rs, B, andftE are given in Figs. 7 and 8 for a partially cracked Z 
stiffener and a partially cracked I stiffener, respectively. Y is expressed as 
follows 

Y = yoyiy2 

As seen from Fig. 7 for a partially cracked Z stiffener, 3̂0 accounts for the 
effect of stiffening ratio R^ for various L/W, y\ accounts for variations in 
stiffener spacing B, and y2 accounts for the change in fastener flexibility 
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FIG. 6—SlF'sfor a partially cracked splice stiffener. 

0.9 

parameter, ftE. Fastener flexibility is represented in the nondimensional 
form as ftE. 

Stress-concentration factors, C, for the skin near the cracked stiffener 
were obtained and are shown in Figs. 9 and 10. As expected, results show 
that as L/W increases, skin stress-concentration factor C increases for a 
given /?j. Also for a given L/W, C increases with increasing R^. This is ex
pected as more load is transferred from stiffener to skin. Effect of the 
fastener flexibilities of practical interest on C was small. For ftE = 4, C was 
about 3 percent higher than C shown in Fig. 9 for ftE = 6. For ftE = 10, C 
was about 3 percent lower than C {or ftE = 6. The stress-concentration fac
tor C increases about 11 percent as bay width B increases from 17.8 cm (7.0 
in.) to 25.4 cm (10.0 in.). Factors C are useful in computing SIF for second
ary cracks in the skin near the cracked stiffener. SIF for a small crack in the 
skin near a partially cracked stiffener is computed as follows 

K = K (for crack in the skin with uncracked stringer) X C 
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FIG. 7—Stress-intensity configuration factors for a partially cracked typical stiffener. 

1.0 

0.6 

K-oYs/ST 

^y 

SKIN FLANGE 
CORNER 

i . . . 

/ \ \ v 1 TOP FLANGE 
/ - ~ \ >v ^ > ^ ^ 1 CORNER 

\ v ^ \ / ^ - ^ K ^ J * ' " 

"'*"'-».r~~ ^ ^ J ' "•'' 
^ " " ^ ~ ~ ~ ^ ! R ^ - 0.4 

1 
1 

1.2 0.2 0.3 0.4 0.5 0.6 0.7 

NONDIMENSIONAL CRACK LENGTH (L/W) 

0.8 0.9 

FIG. 8—Stress-intensity configuration factors for a partially cracked splice stiff ener. 

Industry practice in computing K for the partially cracked stiffener is to 
use the SIF solution for a single edge cracked panel with or without the free 
edge of the panel near the crack restrained. Results of the present anlayses 
show that the previously used methods (based on compounding solutions 
from known solutions) overestimate /ii' by as much as 60 to 200 percent de
pending on whether edge restraint is used or not. Effect on the crack prop-
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FIG. 10—Skin stress-concentration factors for a partially cracked splice stiffener. 
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agation life is much more severe as it is proportional to K" where n is always 
greater than 2. 

Applicatkm 

SIF's obtained in Fig. 7 are used to compute crack growth for two stiffened 
panels with partially cracked typical stiffeners tested previously at Boeing. 
Panel 1, consisting of 2024-T3 aluminum skin and 7075-T6 aluminum Z 
stiffeners, was tested under constant amplitude cyclic loading. Typical bay 
width B was 17.8 cm (7.02 m.) and stiffening ratio/?^ was 0.57. Major pertinent 
dimensions and cyclic loads are shown in Fig. 11. Initial length of the crack 
in the stiffener was 3.1 cm (1.20 in.). The crack growth rate relationship for 
the test panel material was not determined. The average crack growth rate 
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FIG. 11—Comparison of crack growth computed from finite-element solution and test data. 
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FIG. 12—Comparison of crack growth computed from finite-element solution and lest data. 

relationship for 7075-T6 aluminum alloy used at Boeing for ambient 
laboratory environment is utilized here and is given by the following equation 

- ^ = 9 . 7 7 X 1 0 - « ' ( l - / ? ) " 2 / : „ „ 3 . 7 

Crack growth life computed from SIF values in Fig. 7 are shown in Fig. 11 
along with measured crack lengths from the test. Figure 11 also shows crack 
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growth life computed from SIF solutions based on strain energy release rates. 
As mentioned before, SIF's based on strain energy release rates were approx
imately 7.5 percent higher than the SIF's computed from the crack opening 
displacements shown in Fig 7. Computed crack growth lives correlate very 
well with the test crack growth life. 

Figure 12 contains a comparison of computed crack growth life to the test life 
of Test Panel 2. Panel 2 was tested under a complex spectrum loading repre
senting cyclic loads at the lower wing skin of a military cargo aircraft. Pertinent 
details are given in Fig. 12. Predicted crack growth life correlates quite well 
with test life, considering a scatter of 50 percent is common in cyclic tests and 
prediction capability of crack growth life for spectrum loadings. 

It should be emphasized that average crack growth rates for the stiffener 
material were used and no actual test data for crack growth rates for test 
panel materials were available. 

Concluaons 

SIF's are obtained for partially cracked Z and I stiffeners for a stiffened 
panel subjected to uniform uniaxial tension. SIFs are presented in design 
charts as a function of crack length, stiffening ratio, stiffener spacing, and 
fastener flexibility. 

Results of this work show that using SIF solutions based on the traditionally 
used single-edge-notch solution significantly overestimate SIF. 

Crack growth lives predicted for partially cracked stiffeners in stiffened 
panels subjected to constant amplitude cyclic loading and spectrum loading 
correlate very well with the test results. 
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ABSTRACT; An analytical procedure was presented for computing the stress-intensity 
factors for a crack emanating from an attachment lug having an interference-fit bushing. 
The procedure consists of two major steps. First, the effective unflawed stress distribu
tion on the prospective crack surface was obtained by superimposing the residual hoop 
stresses due to the installation of an interference-fit bushing on the tangential stresses ob
tained due to the application of pin loading. Next, a crack was introduced in this stress 
field by removing the tractions on the crack faces and computing the corresponding effec
tive stress-intensity factor using the developed Green's function. It was found that the in
stallation of an interference-fit bushing caused an increase in the effective stress-intensity 
factor ratio (R^ = K^^^/K,^, and a significant decrease in the effective stress inten
sity factor range (A/fj^ = K^^ — K^^^). This would result in reduction of the fatigue 
crack growth rate. The effects of the rigidity and the thickness of the bushing on the 
stresses and the effective stress-intensity factors also were presented. 

KEY WORDS: stress-intensity factor, stress analysis, attachment lug, residual stress, 
crack propagation, fracture mechanics 

In aircraft structures, lug-type joints are used frequently to connect major 
structural components or in linkage structure. The lug joint normally is con
nected by a single pin, creating a simple joint that is easy to assemble and 
disassemble. However, the elastic gross section stress concentration for a 
normal lug can be very high, which results in a relatively short crack initia
tion period and crack growth life. To improve such life, the concept of in
stalling an interference-fit bushing to introduce fatigue-reducing residual 
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stresses around the hole of the lug prior to pin fitting has been used in air
craft attachment lug design practices. For a given fatigue load cycle, the in
stallation of an interference bushing can reduce the effective tangential stress 
range at the likely location of crack initiation, resulting in improvement in 
fatigue and crack growth life. It also can reduce fretting damage on the hole 
wall of the lug. 

Despite improved damage-tolerance design capabilities and practices and 
despite much improved nondestructive mspection techniques, some cracks 
still occur and cannot be detected during routine maintenance inspection. 
Under service loading, such cracks will grow, and fracture can occur if the 
crack length reaches a critical size before it can be detected and the part re
paired or replaced. Since attachment lugs are some of the most fracture-critical 
components in aircraft structure, the consequences of a structural lug failure 
can be very severe. Therefore, it is important to develop an analytical procedure 
for assessing or designing durable attachment lugs to help ensure aircraft 
operational safety. 

Recently, several papers have been published on the analyses of cracks at 
attachment lugs that do not have interference-fit bushings. Schijve and 
Hoeymaker [1]^ and Wanhill [2] derived empirical A'-solutions from the 
growth rate data for through-cracks under constant-amplitude loading using 
a backtracking method. Liu and Kan [3] and Kirkby and Rooke [4] used the 
simple compounded solution method that involves superimposing known 
solutions to estunate the stress-intensity factors. Aberson and Anderson [5] 
used special crack-tip singularity elements to compute the stress-intensity 
factors for a crack in a nonsymmetrical aft lug of an engine pylon. Pian et al 
[6] used the hybrid finite-element method to compute the /^-values for cracks 
oriented m various angles from the axial direction of straight lugs. Impelliz-
zeri and Rich [7] modified the exact weight function derived by Buecker [8], 
for an edge crack in a semi-infinite plate, to include a series of geometry cor
rection factors. Then they [ 7] computed the AT-values using the weight func
tion method. Hsu [9] used the finite-element method with the inclusion of a 
high-order crack-tip singularity element to determine the pin-bearing pres
sure distributions and the stress-intensity factors for cracks in straight and 
tapered attachment lugs, having a neat fit between the pin and the lug. This 
analysis can account accurately for the change of pm-bearing pressure distri
bution with the change in crack length, and provides K-values that are in 
good agreement with the available data. 

Very few solutions are available for estimating the stress-intensity factors 
for cracks at attachment lugs having an interference-fit bushing. The pur
pose of this study is to develop a procedure for estimating the stress-intensity 
factors for a crack emanating from such a lug. 

^The halic numbers in brackets refer to the list of references appended to this paper. 
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Analytical Procedures 

Generation of the Green's Function 

It is well known that the linear superposition method can be used to obtain 
the stress-intensity factors for a crack structure. The principle of superposition 
of linear elasticity implies that, for calculating stress-intensity factors, loading 
the crack faces with a{x) is equivalent to loading the cracked body with loads 
which produce a{x) on the prospective crack faces in the absence of a crack. 

Figure 1 shows the scheme of the linear superposition method. The stress-
intensity factor of the problem in Fig. \a is equivalent to the sum of that of 
the problems in Figs. \b and \c. Since Fig. \b is crack free, the stress-inten
sity factor in Fig. la is equivalent to that of Fig. Ic. By idealizing the stress in 
Fig. \c asN discrete loads, P^ P̂ y, then the stress-intensity factor, for a 
given crack length, a, can be computed from the following equation 

N N 

K{a)= i:Ki= Ek,{xi,a)Piixi) 
(=1 (=1 

(I) 

where ifc,(j:,, a) is the normalized stress-intensity factor due to the«"' load, i',, 
applied at location x,. For an arbitrarily distributed stress, a{x), instead of 
discrete forces, P,, Eq 1 becomes 

Kia)= k(x,a) Xaix)dx 
Jo 

(2) 

^— w — -

(a) 

2Ri 

w ^ — -

(x> 

C(» 
2Ri 

(c) 

FIG. l—Schematic of linear superposition method. 
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In Eq 2, k{x,a) is the weight function (or Green function). Bueckner [10] 
and Rice [11] defined the weight function as 

k(x.a) - - X — (3) 
2K(a) da 

for a symmetrical load system on a linearly elastic body containing a crack of 
length a. In Eq 3, H is an appropriate elastic modulus; it is E/(l — v^) for 
plane strain and E for generalized plane stress. K{a) is the known stress-in
tensity factor, and u{x,a) is the j-component of the crack surface displace
ment at X. The weight function was shown [10,11] to be unique for a given 
structural geometry and crack size, regardless of the loading condition. 
Therefore, it can be developed for one load condition and then used to de
termine the stress-intensity factor for any other load condition. As discussed 
by Hsu and Rudd [12], the closed-form weight function for cracks emanating 
from a hole is not available. They developed the Green's function from the 
stress-intensity factors computed using the high-order singularity element for 
a double-radial crack emanating from an open hole and subjected to concen
trated loads on and perpendicular to the crack surface. This approach also 
accounts for the effect of hole curvature, the fmite width, and the shape of 
the lug head. Therefore, it can be used to develop the weight function for 
through-the-thickness cracks emanating from the hole of attachment lugs. 

By defining G = k^a/ir and f = x/a and substituting them into Eq 2, 
one obtains 

K(a) = ooyfVa \ a(r)G(a,r) X df 
Jo 

(4) 

where OQ is the uniform far-field stress and a = a/ao is the normalized, un-
flawed stress distribution on the prospective crack surface. 

The Green's function, G, for a single radial crack emanating from a circu
lar hole of the lug and subjected to a pair of concentrated forces on the crack 
surfaces, as shown in Fig. 2, can be obtained from the computed stress-inten
sity factor using two-dimensional, cracked finite-element analysis for various 
width-to-hole diameter ratios, W/D, and crack length a//?, and x/a ratios 
as follows 

(̂ir't'̂ )̂ ^̂ -̂''̂ ^̂ ^ (5) 

Due to the limitation of finite-element methodology, when the concentrated 
forces are applied close to the crack tip, say x/a > 0.9, the corresponding 
weight functions were obtained using the edge crack model as shown in Fig. 
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(o) fOR P APPLIED AWAY FROM CRACK TIP (b) FOR P APPLIED CLOSE TO CRACK TIP 

FIG. 2—Models for generating the Green's function. 

2b. The weight function, G], for such edge cracks is available in Ref. 13, and 
can be written as 

G,= 
2 ] 3.52 (1 - x/a) 4.35 - 5.28x/a 

3/2 

+ 

(1 - a/b) 

1.30-0.30 (;c/o)-̂ ''2 

i-f 

+ 0.83 

1/2 

(6) 

- l.76x/a 1- (1 x/a) J 

In the conventional finite-element method, the external force can be ap
plied only at nodal points. When the crack length is small, it becomes cumber
some to refine the model such that there will be enough nodes along the crack 
faces for the purpose of computing the K and G values. Therefore, an alter
nate approach is used. For each crack length a, the K and G values were cal
culated at each available nodal point on the crack face, say Xj/a, using the 
model shown in Fig. 2a and Eq 5. The weight function for an edge crack in a 
finite-width strip as shown in Fig. 2b was calculated at the same locations 
Xj/a using Eq 6. From this, the ratio of the weight function for a curved at
tachment lug and the weight function for a straight strip was obtained for 
each Xj/a value, that is 
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r(xj/a) = G{Xj/a)/G^{xj/a) (7) 

When Xj/a approaches 1, say Xj/a = 0.9999, one would anticipate that 
r(0.9999) — 1.0. The high order polynominal then was used to represent the 
computed ratio r using the least-square curve fitting procedure, that is 

'(f) = 1̂ .(7)'"' »> 
The weight function at any location on the entire crack surface then can be 
computed usmg Eq 6 and 8 as 

Kf)-(f)'<°.(f) <'> 
The results obtained using the aforementioned procedure are shown in 

Figs. 3 to 5 for single through-the-thickness cracks in straight attachment 
lugs having width-to-hole diameter ratios, W/D, of 1.5, 2.25, and 3.0, re
spectively. The symbols shown in these three figures are the discrete values 
obtained using the finite-element method and the curves are obtained using 
Eq 9. As seen from these figures, this alternate approach gives an excellent 
estimation of G values at any desired location. A similar approach can be 
used to generate the Green's function for different W/D ratios. For any a//?, 
ratio different from those computed values, an mterpolation or extrapolation 
technique can be used to obtain the corresponding Green's function. 

With a knowledge of the Green's function, G, Eq 2 can be used to compute 
the stress-intensity factors for a crack emanating from the attachment lug 
having an interference-fit bushing, provided the effective unflawed stress 
(residual stress plus applied stress) on the prospective crack surface can be 
determined with the crack absent. 

Unflawed Stress Analysis 

The installation of an interference-fit bushing creates a compressive radial 
stress and a tensile hoop stress in the lug in a manner similar to a thick cyl
inder under internal pressure. On this basis, an approach similar to that of 
Seely and Smith [14] for a thick-wall cylinder under internal pressure is used 
to compute the residual stresses in the lug due to the installation of an inter
ference-fit bushing. Before the residual stresses in the lug can be computed, 
the pressure, P^, on the surface of contact between the bushing and the lug 
must be determined. 

Let Ro and /?, denote outer and inner radii of the lug, and r^ and r, denote 
outer and inner radii of the bushing before the interference-fit installation, 
respectively. Let /?i be the inner radius of the lug and also the outer radius of 
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2.5 r 

FIG. 3—Green s functions for a single through-crack at a straight attachment lug having 
Vf/D ratio of 1.50. 

the bushing after the installation, and let 5 be the difference in the original 
two values of inner radius of the lug, /?,, and the outer radius of the bushing, 
To, that is 

5^r„-R o •**•( (10) 
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' 1.5 

O 

FIG. 4—Green's functions for a single through-crack at a straight attachment lug having 
y^/D ratio of 2.25. 

After fitting the bushing, the inner radius of the lug will be larger than its 
initial value by an amount, 5], which is related to the unknown contact pres
sure as 

(11) 
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^" 

I] 

O 

0.5 

FIG. 5—Green's functions for a single through-crack at a straight attachment lug having 
Vf/D ratio of 3.00. 

where Ei and ni are the Young's modulus and the Poisson ratio of the lug. 
At the same time, the outer radius of the bushing will be changed (decreased) 
by an amount, 52, which is given by the following equation 

69 = ML 
EB \R 

Ri^ + r? 
2 _ I^B (12) 
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where Eg and fig are the Young's modulus and the Poisson's ratio of the 
bushing. 

At the completion of the fitting process, the difference in these original 
radii, 6, disappears as a result of the changes in the lengths 6] and 62- There
fore, the sum of the magnitudes of 8^ and 62 is equal to 8, that is 

6 = 
P,R s^l Rl±Rl \ E,(Rl±rl 

EB \R,'-r,^ I^B (13) 

The contact pressure is obtained from Eq 13 as 

Ps = SEL/RI RQ^ + RI^ 

Ro' -R^' 
+ ML + 

El /R_l+ll 
EB \R 2 _ , 2 f-B (14) 

With contact pressure determined, the residual stresses in the lug due to 
the installation of an interference-fit bushing can be calculated using the fol
lowing equations 

oe = 
Ro'-Ri^ 

RJ 
(Ri+x)^ 

+ 1 (15) 

and 

Or = 
Ro'-R? 

R/ 
(Ri+xy 

- 1 (16) 

where x is the radial distance measured from the hole wall surface. 
Equations 14, 15, and 16 are used to compute the residual tangential 

stresses along the x-axis in the attachment lugs due to the installation of 
interference-fit bushings having various dimensions and rigidities. Results 
are presented in Figs. 6, 7, and 8. Figure 6 shows the effect of the amount of 
radial interference on the residual stress along the jc-axis in the aluminum lug 
having a constant bushing thickness of 0.09 in.^ and constant ratio of bush
ing rigidity to lug rigidity (EB/EL) of 3.0. As shown by Fig. 6, the increase in 
the amount of radial interference increases the magnitude of the residual 
tangential stress. Figure 7 presents the residual tangential stress as a func
tion of the normalized distance along the jc-axis in an attachment lug for an 
EB/EI ratio ranging from 1.0 to 3.0. The result indicates that, for a constant 
bushing thickness and a constant level of radial interference, the increase in 
the bushing-to-lug rigidity ratio increases the magnitude of residual stress. 
The effect of bushing thickness on the residual stress in the attachment lug 
having a constant Eg /Ei ratio and the same amount of radial interference is 

' S I unit conversion table is furnished at the end of the text. 
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3.0, R • 2.0 IN. 

RADIAL 
INTERFERENCE, 

INCHES 

NORMALIZED DISTANCE, «/R. 

FIG. 6—Stress distribution along the x-axis in attachment lugs due to installation of variable 
levels of intetference-fit bushings. 

shown in Fig. 8; the increase in the bushing thickness increases the residual 
stress in the lug. 

The tangential stresses due to the application of the pin loading were com
puted using the fmite-element method. In the calculation, it is assumed that 
the bushing and the lug remain contact, and that no slippage occurs along 
the hole wall surface during the apphcation of the load. The computed ap
plied stresses are shown in Figs. 9 and 10. Figure 9 show the tangential stress 
normalized by the far-field applied stress as a function of normalized dis
tance along the jc-axis in the attachment lug having a constant bushing thick
ness and various bushing rigidity ratios. As shown in this figure, the increase 
in the rigidity of the bushing decreases the applied tangential stress. Figure 
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3.0, R = 2 . 0 IN . 

E = 10x10 PSI 

t =0^09 I N . 

6 =0.004 I N . 

NORMALIZED DISTANCE, »/R. 

FIG. 7—Stress distribution along the x-axis in attachment lugs due to installation of interfer
ence-fit bushings with various rigidities. 

10 presents similar results for an attachment lug having a constant Eg/Ei 
ratio and various bushing thicknesses. The results indicated that the increase 
in the bushing thickness reduces the applied tangential stress. 

Within the levels of radial interference used in this study, it is found that 
the tangential stresses due to the application of the far-field loading are inde
pendent of the level of interference. This is true as long as there is no separa
tion between the interference-fit bushing and the lug, and the total effective 
stress (residual stress plus applied stress) does not exceed the material yield 
strength. If the total effective stress exceeds the material yield strength, a 
nonlinear, elastic-plastic, finite-element analysis such as Ref. 15 should be 
conducted to obtain the total effective stress. Within the range of practical 
interest, only the linear analysis is performed in the current study. The total 
effective tangential stresses then were used to compute the effective stress-
intensity factors for a crack emanating from an attachment lug having an 
interference-fit bushing by using Eq 4. 
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FIG. 8—Stress distribution along the x-axis in attachment lugs due to installation of inter
ference-fit bushings with various thicknesses. 

Analysis of Stress-Intensity Factors 

The effective stress-intensity factors were computed using Eq 4, and the 
typical results are presented in Figs. 11, 12, and 13 for the lugs subjected to 
far-field loading of 8 ksî  and a minimum-to-maximum load ratio of zero (R = 
0). Figure 11 compares the effective stress-intensity factor ranges for a lug 
having an interference-fit bushing with a similar lug without a bushing. It is 
clear from Fig. 11 that the installation of the interference-fit bushing causes 
an increase in the effective stress-intensity factor ratio, /?eff — ̂ min/̂ max> 
and a significant decrease in the stress-intensity factor range, AK. This com
bination will result in the reduction of fatigue crack growth rate. 
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FIG. 9—Normalized stress distribution along the x-axis in attachment lug having various 
bushing rigidities caused by far-field applied loading. 
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FIG. iO—Normalized stress distribution along the x-axis in attachment lug having various 
bushing thicknesses caused by far-field applied loading. 
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FIG. 11—Effective stress-intensity factor range and ratio of a single through-crack at attach
ment lug with and without interference-fit bushing (OQ = 8 ksi and R = 0). 

The effect of a//?, on /?eff aJso was investigated, and was found to change 
the value of i?eff by less than 4 percent for interference levels considered in 
this paper. The effects of the bushing-to-lug rigidity ratio on the effective 
stress-intensity factor range are shown in Fig. 12. Similar results on the effect 
of bushing thickness on the effective AK are presented in Fig. 13. Based on 
the results shown in Figs. 12 and 13, it may be concluded that: (1) for the 
same amount of radial interference and a constant thickness of the bushing, 
when the rigidity of the bushing increases, the effective stress-intensity factor 
range decreases; (2) for the same amount of radial interference and a specific 
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2.0 IN . 

NORMALIZED CRACK LENGTH, c(/R. 

FIG. 12—Stress-intensity factor ranges of cracks at attachment lug having 0.004-in. inter
ferences bushing and various Eg/EL ratios. 

rigidity of the bushing, the increase in the bushing thickness decreases the ef
fective stress-intensity factor range. 

An experimental program has been defined to provide data to evaluate and 
verify the analysis. A straight 7075-T6 aluminum lug will be used m the text, 
and the experimental stress-intensity factors will be reduced from the crack 
growth rate data to be generated using a backtracking method [16] of cali
brating the crack growth rate, da/dN, and the stress-intensity factor range, 
AK. When the reduced AT-values become available, they will be used to cor
relate with the analysis, and the results will be reported in the near future. 

Conchisions 

An analytical procedure usmg the Green's function approach has been 
presented for computing the stress-intensity factors for a crack emanating 
from an attachment lug having an interference-fit bushmg. Based on the 
analysis conducted, the following conclusions have been reached: 

1. The installation of an interference-fit bushing caused an increase in the 
effective stress-intensity factor ratio (/?eff ~ ^mm/̂ max)> ^nd a significant 
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FIG. 13—Stress-mtensity factor ranges of cracks at attachment lug having 0.004-in. radial in
terference bushing subjected to far-field loading of 8 ksi and R = 0.1. 

decrease in the effective stress-intensity range {AK^ — K,n^ — K^i„). This 
would result in the reduction of fatigue crack growth rate, and hence improve 
the fatigue crack growth life. 

2. For the same amount of radial interference between the bushing and 
the lug, the effective stress-intensity factor range can be further decreased by 
the proper choice of a bushing either (a) having a specific thickness but a 
higher rigidity, or (b) having a specific rigidity but a greater thickness. 

SI Unit Conversion Table 

1 in. = 0.0254 m 
1 ksi = 6.895 MPa 
1 psi = 0.006895 MPa 

IksiVinr = 1.0989 MPa Vin 
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DISCUSSION 

A. P. Parker^ (written discussion)—The authors have addressed a complex 
problem. This problem encompasses Weight (or Green's) functions, pin-fit, 
and bushing effects. Taking these various aspects in turn, I believe that it is 
important to emphasize the following points. 

1. The authors have derived a Green's function for a cracked lug by apply
ing discrete pairs of point forces, symmetrically located on the crack sur
faces, at a total of eight stations along the crack line. The Green's functions 
for each crack length then were obtained by "fitting" the numerical data 

'Materials Branch, Royal Military College of Science, Shrivenham, Swindon. Wiltshire, 
England. 
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points. By employing a Weight function approach it is possible to obtain all 
of the Green's function data for each crack length from only two computer 
runs.-'-^ 

2. The modelling of a multiply connected geometry by using the Green's 
function for a singly connected geometry of the equivalent width is likely to 
give inaccurate answers at longer crack lengths, unless the additional re
straint of the multiply connected region is incorporated.'' The authors 
employ this model for near-tip loading, and should indicate the amount of 
error which this may involve. 

3. In the case of contact problems in which the required unflawed crack 
line distribution is a function of crack length, it is incorrect to employ crack 
line loading arising from boundary conditions applicable to the unflawed 
state. Quoting from Parker^: 

The derivation of further stress-intensity factor solutions from the weight func
tion depends on a knowledge of stresses along the crack line in an unflawed con
figuration which has other boundary conditions identical to those in the cracked 
structure. If incorrect crack-line stresses are used, any solution so obtained is, 
in general, invalidated. Kj solutions to statically indeterminate configurations 
cannot be obtained unless the redistribution of boundary stresses caused by the 
presence of the crack is known. 

The authors should indicate the likely error arising from this incorrect 
modelling. 

4. In circumstances in which displacement boundary conditions are to be 
applied, it may be advantageous to employ the alternative weight function 
formulation applicable to such boundary conditions.^ 

5. The increased R ratio with interference fit bushing is anticipated on the 
grounds that the loading tends to increase /^min/^max- However, the signifi
cant reduction in stress-intensity range is not fully explained. I assume that it 
is because the pin-load distribution in the nonbushed lug is mitigated by the 
bushing, producing a more constant variation of direct stress around the hole 
boundary. Such a dramatic influence of arc of contact is noted elsewhere.^ 
Would the authors comment on the hole boundary stress distribution in lugs 
with, and without, interference fit bushing? 

^Andrasic, C. P. and Parker, A. P. in "Weight Functions for Cracked, Curved Beams", Pro
ceedings. Conference on Numerical Methods in Fracture Mechanics. Swansea, U. K., 1980, pp. 
67-82. 

•'Parks, D. M. and Kamenetzky, E. M., International Journal for Numerical Methods in 
Engineering, Vol. 14, 1979, pp. 1693-1706. 

""Parker, A. P., Underwood, ] . H., Throop, J., and Andra.sic, C. P., in this publication, pp. 
1-216-1-237. 

^Parker, A. P., "The Mechanics of Fracture and Fatigue in Some Common Structural Con
figurations," Technical Note MAT/18, Royal Militan' College of Science, Shrivenham, 
England, 1979. 

''Parker, A. P. "The Mechanics of Fracture and Fatigue—An Introduction," E and FN Spon, 
London, 1981. 
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T. M. Hsu and K. Kathiresan (authors' closure)—In response to the dis
cussion of Dr. Parker, we would like to thank him for stressing the complex
ity of the problem addressed m the paper and bringing some of his recent 
works related to the present topic to our notice. We offer the following com
ments for the rest of his discussion. 

It was recognized in the very early stage of the work that the change in arc 
of contact of the pin and use of singly connected geometry for near-tip load
ing will play important roles in the analysis as the crack length increases (Ref 
9 of the paper). It also was conjectured that the effect of such incorrect 
boundary condition or modeling on the estimation of stress-intensity factors 
will be minimal for higher W/D ratios. In other words, the redistribution of 
stresses along the prospective crack surface due to the extension of the crack 
will be very small, at least for higher W/D ratios. As anticipated, the stress-
intensity factors estimated by the Green's function method and the direct 
evaluation of stress-intensity factors through the finite-element method by 
modeling both the lug and the pin, accounting proper arc of contact, agreed 
well for W/D ratios of 3.0 and 2.25, the differences between them being less 
than 1 and 2 percent, respectively. However, for a lower W/D ratio of 1.5, 
the difference was of 10 to 15 percent, values estimated by the Green's func
tion being higher. Consequently, the Green's function was scaled down in a 
consistent form to reflect the effect of incorrect boundary conditions and er
rors arising from other means due to the extension of crack length. Thus, 
while the statements are true, they could be taken into account in a rational 
form in order to obtain reasonably accurate solutions. 

The significant reduction in the stress-intensity factor range due to the in
stallation of interference-fit bushing can be explained as follows. In the pres
ent analysis, the effective stresses are obtained as the sum of the residual 
stresses due to the interference-fit bushing and the stresses due to the appli
cation of the load by the pin. While the stresses due to the interference fit re
main constant, the magnitude of the variable stresses due to the loading and 
unloading of the pin may seem not to have a significant reduction. The mag
nitude of the variable stresses in the lug is reduced by the following factors. 
The installation of the bushing reduces the hole radius, thereby reducing the 
stress concentration factor. The boundary of the lug hole is at a distance t^ 
from the bushing boundary, in the radial direction. This also contributes to 
lower stresses at the lug hole boundary, as the tangential stresses decrease 
rapidly in the radial direction. Other important factors in reducing the 
stresses at the lug hole boundary are the properties of the bushing, such as its 
rigidity and thickness. As the thickness or the rigidity of the bushing is in
creased, the stresses at the lug hole boundary will be reduced. In effect, the 
bushing bears the beatings of the pin, thereby reducing the stress or stress-
intensity factor range significantly in the lug. As far as the lug hole boundary 
stress distribution is concerned, in the present analysis, it again will be the 
superposition of the residual stresses due to the installation of interference-fit 

 



DISCUSSION ON CRACKS AT AN ATTACHMENT LUG 1-193 

bushing and the stresses due to the pin load, the latter being reduced signifi
cantly due to the previously mentioned reasons. 

Finally, we would like to comment that several assumptions were made in 
the present analysis, such as no separation between the interference-fit bush
ing and the lug, and the effective stresses do not exceed the yield strength of 
the lug material, etc. It is very hard to pin down and make error estimates 
due to each contributing factor. The analysis procedure was developed such 
that the errors due to several contributing factors are minimal and could be 
used effectively for designing fracture resistant lugs for aerospace and other 
mechanical applications. An experimental program using 7075-T6 alumi
num lug is underway, and the results presented in the present paper will be 
correlated with that of the experiments, and will be reported in the near fu
ture. Also, effort is underway to make a nonlinear, elastic-plastic analysis 
such as in Ref 15 of the paper when the total effective stresses exceed the ma
terial yield strength. 
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Kip J, K(pi) SIF due to uniform tension p„ and internal pressure pi 
Kc SIF due to crack face loading p^ 
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Kcip), K^.ipr~^) SIF due top^ = p, Pc ~ pr~^, respectively 
Kcie = 0.9) SIF due top^ corresponding to a 90 percent overstrain re

sidual stress 
K„ SIF for m equally spaced radial cracks emanating from a 

hole in an infinite plate 
K„f K„ when the infinite plate is replaced by a cylinder of fi

nite thickness 
N Number of radial cracks 

r, 6 Polar coordinates centered at the center of the tube 
r̂  Radius to the tip of a crack, r,, = 1 + c 
t Wall thickness of the cylinder, t = b — I 

T, T„, Tp Temperature at r, r = a and r = p, respectively 
a Linear thermal expansion coefficient 
6 Percentage of overstrain, e = (p — \)/t, 0 < e < 1 
c Poisson's ratio 
p Radius of elastic-plastic interface during pressurization 

Oo Uniaxial yield stress of the tube material 
CT^, og Normal stress in the radial and tangential direction, 

respectively 

In a previous paper [/],•' stress-intensity factors have been obtained, using 
12-node quadrilateral, isoparametric elements, for a uniform array of equal 
depth radial cracks originating at the internal boundary of a pressurized 
thick-wall cylinder. To increase the maximum pressure a cylinder can con
tain, it is a common practice to produce a favorable residual stress in the cyl
inder by an autofrettage process. It is important to find the effect of residual 
stresses on the stress-intensity factor for a cylinder with multiple cracks. 

Using the concept of thermal simulation [2], the autofrettage residual 
stresses are simulated by active thermal loads. It is shown that the stress-in
tensity factor for multiple radial cracks in a tube with residual stresses can be 
computed by the same finite-element method. 

Slight changes in geometrical configurations or loading conditions require 
new computations. To obviate this problem, which is a shortcoming of the fi
nite-element method, load relief [3] and weight function methods [4,5] are 
examined. For a small number of radial cracks, the method of load relief en
ables us to estimate the stress intensity for N other than two fairly accurately 
by making use of the finite-element result for N — 2. When N or crack depth 
is large it is shown in this paper that the load relief factor is not reliable be
cause it varies with the nature of the load. 

For a given geometrical configuration it is useful to use the weight function 
method. In the present approach the restrictive assumption that the crack 
opening displacement is a conic section [6,7] is circumvented. There are only 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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three types of hoop stress, namely: constant, 1/r̂ , and log (r), in an uncracked 
cylinder subjected to internal pressure, uniform tension on the outer bound
ary, and the autofrettage residual stress. This eliminates the need to assume 
the crack face pressure as a simple polynomial [8], It enables us to obtain 
stress-intensity factors for each type of crack face pressure from three linear 
algebraic equations using three finite-element results for the given geometry. 
The stress-intensity factor can be calculated readily for any combination of 
internal pressure and any degree of autofrettage. 

When the radial cracks progress beyond the elastic-plastic interface pro
duced during the autofrettage overstrain, the algebraic equation for stress-
intensity factor breaks dovm because the crack face pressure cannot be repre
sented by a simple expression. Modifications are derived for such cases based 
on the crack-opening displacement near a crack tip being parabolic [9]. 

Extensive numerical results are presented for multiply cracked cylinders 
having an external diameter twice that of the internal diameter. Results 
agree with those obtained by other methods for the nonautofrettaged [10] 
and fully autofrettaged [//] cases. In addition, results are given for the par
tially autofrettaged cases. 

Residnal Stress and Thermal Simulation 

For the case of plane strain, the stress distribution of a partially autofret
taged tube, using the von Mises yield criterion for the incompressible ma
terial, is given by [12] 

^{p^-P0(^-\) p^r^b (2) 

CT»(r) = 

where 

VI''̂  "\f^ ^ 

^ W i + , + £i_,,(^ + ±,l , , , , , ,3) 

l<^-'".'(^ + 7) p<r<b (4) 

P , = / ' i ( p ) = ; ^ ( l - f ^ + 2 1 o g p ) (5) 
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If the same hollow cylinder is subjected to a thermal load 

\T - ^^" ~ ^"^ loer 1 < r < fl 
T(r) = r'' logp ' ° ^ ' ' - ' - ^ (6) 

C^p p < r < fc 

the thermal stresses are given by [2] 

Ea{T„-T,) (/̂ ,̂_ r ^ ^ p^\^f I _ 1 

ar(r) = ' 

oeir) 

Ea{T„-T,) ^ 2 0 ^ 1 M ^ ^A r«^ 

(9) 
2(1 - v)\ogp I * p fe2 ' ^ ^ 2 r 

Ea(T„-T^) ^ , „ Y 1 ^ 1 

. 2(1 - »')log p "̂  ' V^^ 7-2 
( p 2 - / > , ) - + - p < r < 6 (10) 

The thermal stresses and the autofrettage residual stresses become equivalent 
if the temperature gradient of the thermal load and the uniaxial yield stress of 
the cylinder material has the following relation 

Ea{T„ - Tp) _ 2a„ 

2( l - f ' ) logp V3 ^ ' 

where TQ or Tp may be assigned arbitrarily. 
In many instances there is a redistribution of residual stresses due to 

changes of geometrical configurations such as the presence of keyways, 
holes, riflings, and cracks. The stress redistribution may be difficult to find. 
In case of cracks, it may be difficult to obtam stress-intensity factors. For 
simple problems, the method of superposition may be used to compute the 
stress redistribution as well as the stress-intensity factors involving cracks. 
Several examples are given in Ref 13. An alternative, thermal simulation 
method is proposed in Ref 2 replacing the residual stress by an active thermal 
load. The method of thermal simulation shows in Ref 13 that the thermal 
stress redistribution is equivalent to the residual stress redistribution. For 
more complicated problems, the thermal simulation method has the advan
tage over the method of superposition by eliminating the computation of re
sidual stresses acting on the surface of the crack which would be present in 

 



1-198 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 

the uncracked body under external loads. In this paper the thermal simula
tion is used to compute stress-intensity factors for multiple, radial cracks in a 
fully autofrettaged tube. 

Finite Element Method 

The finite-element technique has become an important numerical method 
for practical problems in structural mechanics because of its ability to treat 
very general geometrical configurations and loading conditions. The trend is 
to use high order elements requiring a small number of elements for high de
gree of accuracy. The plane problem of a uniform array of equal depth radial 
cracks emanating from the bore of a pressurized, nonautofrettaged tube has 
been solved using 12-node quadrilateral, isoparametric elements [/]. The 
collapsed singular elements developed by the authors [14] are used around 
the crack tip. The finite element results of stress-intensity factors agree well 
vifith results in Refs 15 and 10 using the modified mapping collocation 
method. Tracy, in a private communication, pointed out a discrepancy of 
five percent for the case of four cracks with crack depth c/t = 0.5 in a tube 
having outer diameter twice that of inner diameter. 

In the previous work [/], the finite element meshes are generated automat
ically by a computer program for various values of N and c/t. There is a pos
sibility of excessive distortion of elements for some values of Â  and c/t. Ac
cording to Sickles and Gifford [16], isoparametric elements suffer a loss of 
accuracy when distorted from a rectangular shape. They recommended a 
"45-degree rule" as a guide to construct the element mesh. Because of these 
reasons and our interest in very shallow radial cracks, we have used the en
riched quadrilateral elements [17] as crack tip elements in this study. A typi
cal finite element idealization is shown in Fig. la. For shallow cracks, the 
section containing the crack tip changes slightly as shown in Fig. lb. When 
thermal simulation is used with the finite-element method, the circle r = p 
must be a side of quadrilateral elements in the finite element idealization 
since thermal loads are different in the two regions of r < p and r > p. The 
actual finite element idealization for a particular geometry and thermal loads 
may be modified slightly from those shown in Fig. 1. 

The finite element computer program APES, an acronym for Axisymmet-
ric/Planar Elastic Structures, is used for all finite element computations in 
this paper. This powerful computer program has been improved continu
ously with new features including the addition of thermal loading for fracture 
analysis [18]. The APES results for stress-intensity factors for inside diame
ter radial cracks for a cylinder oib ~ 2 arc given in Table 1 for three types of 
loading, namely (1) uniform tension Po on outside diameter, (2) uniform 
pressure p, on inside diameter (no crack face pressure), and (3) thermal load
ing equivalent to a 100 percent overstrain residual stress [2], The new results 
for uniform tension on outside diameter serve as a check to the previously re-
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CRACK T I P 

FIG. I—(a) A typical finite element idealization, (b) Idealization for very shallow cracks. 

ported results using collapsed singular crack tip elements [7]. The new re
sults agree within three percent of those reported in Refs 15 and 10. For in
stance, the result for b = 2, N = 4, c/t = 0.5, which was K(pJ/ 
p^Vxc = 2.990 in Ref / , is now K{po)/po4Trc = 3.149 which agrees with 
Tracy's//, = 1.18 [10] within 0.1 percent. 

An explanation is in order regarding negative stress-intensity factors 
shown in Table 1. A crack remains closed in a compressive residual stress re
gion. The stress-intensity factor (SIF) is zero. The crack will open when a suf
ficiently large internal pressure is applied. The negative value of SIF is con-
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TABLE 1—Dimensionless SIF, K(p^/p„Virc, K(pi)/pjV7rc, and K^ie = l)/a^\'irc 
obtained from APES for a cylinder b = 2 for various N and c/t. 

Loading 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

c/t = 0.05 

2.874 
1.703 

- 0 . % 7 

2.891 
1.762 

-0.980 

2.878 
1.762 

-0.980 

2.866 
1.764 

-0.981 

2.843 
1.753 

-0.975 

2.792 
1.721 

-0.957 

2.548 
1.570 

-0.871 

2.224 
1.367 

-0.756 

1.959 
1.19S 

-0.659 

c/t = 0.1 

N=l 

2.825 
1.711 

-0.896 

N = 2 

2.874 
1.745 

-0.919 

N = 3 

2.860 
1.731 

-0.907 

N=4 

2.826 
1.710 

-0.895 

2.753 
1.665 

-0.871 

N = 1 0 

2.590 
1.566 

-0.817 

N = 20 

2.062 
1.243 

-0.641 

N=30 

1.687 
1.014 

-0.515 

N = 40 

1.465 
0.879 

-0.442 

c/t = 0.2 

2.828 
1.667 

-0.758 

3.014 
1.766 

-0.813 

2.882 
1.689 

-0.776 

2.782 
1.629 

-0.745 

2.578 
1.507 

-0.684 

2.217 
1.291 

-0.575 

1.635 
0.944 

-0.401 

1.363 
0.782 

-0.322 

1.169 
0.670 

-0.277 

c/t = 0.3 

2.890 
1.646 

-0.650 

3.279 
1.872 

-0.745 

3.034 
1.728 

-0.683 

2.833 
1.611 

-0.628 

2.504 
1.418 

-0.539 

2.056 
1.155 

-0.417 

1.538 
0.854 

-0.284 

1.282 
0.709 

-0.228 

1.124 
0.621 

-0.197 
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venient in measuring the crack resistance against the opening by internal 
pressure, and it should be understood as such. 

The combination of the finite-element method and thermal simulation can 
be used to compute SIF for any degree of partial autofrettage. However, it is 
expensive and time consuming to use finite element for parametric studies. 
Therefore, we seek alternative methods for the computation of SIF for radial 
cracks in a partially autofrettaged tube in the following two sections. 

Method of Load Relief Factor 

Baratta [3] extended the coefficient of load relief of Neuber [19] to esti
mate SIF arising from multiple cracking in a thick-wall cylinder. He defined 
the ratio 

R=^ in) 

as the load relief factors, with K„ and K„ based on a solution due to Tweed 
and Rooke [20]. Assuming that this R value remains nearly constant from an 
infinitely thick cylinder to a cylinder with finite thickness, he can estimate 
K„j since K„j is known for n = 1 and n = 2 from Bowie and Freese [15]. 
His estimates, based on the crude assumption, have a discrepancy as high as 
20 percent with our finite element results for the same geometry and loading. 
Parker and Farrow [21] obtained R values for various numbers of cracks us
ing our results in Ref / . They assume that R values vary with geometrical 
configurations, but they are independent of loading. Therefore, they can ob
tain SIF for N inside diameter radial cracks for a 100 percent overstrained 
tube by applying the load relief factors to the solution of SIF for a 100 
percent autofrettaged tube with two inside diameter radial cracks due to 
Grandt [22]. 

If the load relief factor works for a fully autofrettaged tube, then it should 
work for a partially overstrained tube also. Our study reveals that R values do 
vary with the nature of load. Strictly speaking, the concept of load relief fac
tor does not work. However, R values vary within ± 5 percent, except for 
large values of A'̂  and c/t, for a thick-wall cylinder subjected to the following 
three types of loading: (1) uniform tension p„ on outside diameter, (2) 
uniform pressure p, on inside diameter, and (3) residual stress due to 100 
percent overstrain. Table 2 gives R values for various values of N and c/t 
under these three types of loading. From Table 2 it can be seen that R values 
remain nearly constant for any given A'̂  and c/t no matter if the loading is /?„ 
on outside diameter or pj on inside diameter. This property enables us to 
estimate fairly accurately the SIF forp, from values forp„ and vice versa. The 
R values corresponding to the 100 percent overstrain residual stress agree 
within two percent with R values for p^ iS N < 4 and c/t < 0.3. Therefore, 
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TABLE 2-Load 

Loading 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

Po 
Pi 
100% overstrain 

relief factor R = Kf^/K.f^^2f°'' " cylinder of h = 2 subjected 
types of loading. 

c/t = 0.05 

0.994 
0.%7 
0.987 

0.9% 
1.000 
1.000 

0.992 
1.002 
1.002 

0.984 
0.995 
0.995 

0.966 
0.977 
0.977 

0.882 
0.891 
0.889 

0.769 
0.776 
0.772 

0.678 
0.678 
0.672 

c/t = 0.1 

N= 1 

0.983 
0.980 
0.976 

N = 2 

0.995 
0.992 
0.987 

N = A 

0.983 
0.980 
0.974 

;v = 6 

0.958 
0.954 
0.948 

0.901 
0.897 
0.889 

N=20 

0.718 
0.713 
0.697 

Af=30 

0.587 
0.581 
0.561 

^ = 40 

0.510 
0.504 
0.481 

c/t = 0.2 

0.938 
0.943 
0.932 

0.956 
0.956 
0.954 

0.923 
0.922 
0.917 

0.855 
0.853 
0.841 

0.735 
0.731 
0.707 

0.543 
0.534 
0.493 

0.452 
0.443 
0.3% 

0.388 
0.379 
0.340 

to three 

c/t = 0.3 

0.881 
0.897 
0.873 

0.925 
0.923 
0.918 

0.864 
0.860 
0.844 

0.764 
0.757 
0.723 

0.627 
0.617 
O.S60 

0.469 
0.456 
0.381 

0.391 
0.379 
0.307 

0.343 
0.331 
0.264 

SIF may be estimated for N <, 4, c/t < 0.3 for partially autofrettaged cases 
from R values for p„ and from known results of SIF for N = 2 for the same 
crack depth c/t and loading. The error may exceed ten percent if the load 
relief factor method is used to estimate SIF for cracked tubes with autofret-

 



PU AND HUSSAIN ON CRACKS IN A THICK-WALL CYLINDER 1-203 

tage residual stress from R values obtained for p„ on outside diameter for 
yv > 10 and c/t > 0.2. For loading conditions other than the three types 
mentioned, the method of load relief factor should be applied with care. 

Wei^t Fnnction Method 

Bueckner [4] and Rice [5] have shown that knowledge of the SIF and 
displacement field for a flaw geometry enable construction of a weight func
tion which depends only on geometry. With the weight function one may ob
tain SIF for any other symmetric loading applied to the same geometry. 
Grandt has applied this technique to obtain SIF for a large plate containing 
radial hole cracks [7] and for radially cracked rings [22] loaded with ar
bitrary symmetric crack pressure. The SIF K for a specified crack face 
loading/JcU), based on the weight function approach, is given by 

where fl^ is a constant, H = Efor plane stress and H = E/{1 — v^) for plane 
strain, K* is the known SIF for a given loading applied to the flaw geometry 
of interest, x is the distance from the edge of the hole, and v is the crack 
opening profile corresponding to the known SIF K*. In Eq 13 the only 
undefined term is the partial derivative dv/dc. The finite-element results of 
the ̂ -component of displacement at nodal points along the crack face are not 
enough for the determination of the crack profile. Grandt used the assump
tion of conic sections due to Orange [6]. Andrasic and Parker [23] used the 
method of virtual crack extension [24] and B-spline curve fitting. In this 
paper the loading of the cracked tube is limited to a combination of internal 
pressure and autofrettage residual stresses; a set of algebraic equations is used 
in lieu of the determination of dv/dc. 

The crack face loading/^^(x) in Eq 13 for a cracked tube subjected to the 
autofrettage residual stress is given by the hoop stress, Eqs 3 and 4, for an 
uncracked, overstrained tube 

p^ix) _ aeix) 

Oo 

%-[{2-P,)-Pi{l+x)-^ + 2\og{\+x)] 0 < x < e ^ (14) 
V3 

1 

V3 
[(p2-Pj)fc-2 + (p2_Pj)(|+jj.)-2] et^X<t (15) 
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For e = 1, substituting from Eq 14 into Eq 13, the following is obtained 

Kc{e = 1) 1 

where 

[{2 - Pi{b)}K,{l) - P,{b)K,{r-^) + 2K,{\ogr)] (16) 

'̂ •"'="..U'̂  
•^'=;.i"-"-':-

(17) 

(18) KM-"-) 

^c(logr) = - ^ \ \\og{\+x)\^dx (19) 
K* Jo dc 

These may be termed as functional intensity factors. From Lame solution, 
the hoop stress in an uncracked cylinder subjected to uniform tension p^ on 
outside diameter is 

Po b^-\ r 
1 + ^ (20) 

The same stress under internal pressure pi is 

Substituting OD for p^ in Eq 13, the SIF for a radially cracked cylinder sub
jected to Pa or pi is given by one of the following 

Kip^l _ _ h ^ K^W ^ _^ -c-.- , (22) b^ 
fe2-l 

fc2 

Kir-') 
\firc 

K(r-^) 

Po^nrc b^ — I sTirc 

KjPi) ^ 1 K,{1) ̂  _^ - c . _ . (23) 
Pi^firc b^ — \ VTC b^ — \ y/itc 

If the left-hand sides of Eqs 22 and 23 are determined numerically from the 
fmite-element method, then /C^d) and Kc(r~^) can be solved. Inserting these 
values into Eq 16, K^ilog r) can be solved if K^ie = 1) is known from the 
finite-element computation. 

Once KcW, Kdr"'^), and Kdiog r) are known for a given geometry {b, N, 
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and c/t are fixed), the SIF for the flawed cylinder subjected to a residual 
stress corresponding to a given e (?^ 1) can be computed from 

CT„VTC^ VSTTC 
[{2 - P^{p)\K,{\) - P,{p)KXr'^) + 2/:,(logr)] (24) 

provided c< et. 
In case c > ef, the crack face pressure is a combination of Eqs 14 and 15; 

therefore, Eq 24 is not valid. If c/t — e + 8 and 0 < 5 « ; 1, we may use Eq 
24 to compute an approximate SIF and then use the following equation to 
compute a corrective SIF, Kg 

Pc(x)-^dx (25) 

where 

p,(x) = ( - 1 + 2 logp) + p2(i + x)-2 - 2 logd + ;c) (26) 

The final result of SIF for a small 5 > 0 is the sum of K^^e), Eq 24, and K^, 
Eq25. 

An approximate method for K^ is based on the Westergaard near field 
solution [25]. The crack opening displacement v(^) near a crack tip due to an 
arbitrary load is given in terms of SIF K* at the crack tip by 

2K* / 2 ^ X'/^ 

The derivative with respect to the crack length is 

dv K* / 2 \ i / 2 

The length variable ^ is defined by 

? = - ( x - c) (29) 

Substituting from Eqs 26 and 28 into 25 and using Eq 29, we have 

Ks _ 1 

'^o\Trc v3xc 

- 2(l3 + I3')} 

2/x { ( - 1 + 2 log p)(I, + Ii') + pHh + h') (30) 
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where 

I7 = 

I, = 2-4k, \{ 

1 + c 

W = — 

- (6f)3/2 

V67 (1 + c)- 1/2 
\ogD{p) 

—— + :; logD(p) 

(31) 

(32) 

I. = - 2 (2 - iogp)V6F+ (1+c)'/2iog : ! ^ i ^ % 
(33) 

I3' = ^ [^{bt{\ogp - 2(1 + c) - 26^/3)} - (1 + c)3̂ 2 logD(p)] 

with 

Dip) = [2(1 + c) - p - 2V6t(l + c)]/p (34) 

It should be noted that Eq 30 is independent of N. It works for small N and 8. 
If A'̂  is small, it may work for a relatively larger 8. But when N is large, the 
crack interaction is strong, and 6 must be small. 

Nnmerical Results 

Using Eqs 16, 22, and 23 and finite element results in Table 1, we obtain 
values of K^.{p)/p\firc, Kc(pr~^)/p\fTrc, and K^ip log r)/pVirc! Figures 2 
through 4 are plots of these values as a function of c/t for various values of N. 
The use of these graphs and Eq 24 gives Kc{e)/ao\firc for any value of e, et > 
c, for a given geometry. A graph of A"c(e)/ff„VTC^versus e is shown in Fig. 5 
for various c/t and ior N = 2 and N = 40. Figure 6 is another way of presen
ting Kc{e)/a^^Trc in which e is fbced but A'̂  varies. 

The numerical results given previously are enough for an estimate of SIF 
for any assigned values of N, c/t, and e. For example, if the SIF is desired for 
iV = 8, c/t = 0.15, and e = 0.75, readings are taken from Figs. 2 through 4 
as fojlows: K,{p)/p^irc = 1.03, K,{pr-'^)/p4^ = 0.86, and K,{p log r)/ 
pyf-Kc = 0.091. For e = 0.75 we have from Eqs 5 and 24 K,{e - 0.75)/ 
ajsfzc = —0.67. In another example, if the SIF for iV = 2, c/t = 0.30, and 
e = 0.25 is desired, we first compute K^ie = 0.25)/aoVxc from Eq 24 with 
K,{\)/-ITK = 1.41 from Fig. 2, K,{r~^)/yfKc = 1.05 from Fig. 3, and A-,.(log 
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0.2 
c / t 

0.3 

FIG. 2—Stress-intensity factors as a function of c/t for N radial cracks subjected to the crack 
face pressure P(.(x) = p. 

r)/-^l-Kc = 0.22 from Fig. 4. The result from Eq 24 is K^ie = 0.25)/agyfTC = 
—0.12. In this case since c/t > e, we have to compute K^/OO-^TTC from Eqs 30 
through M with dt = 0.05. The corrective SIF is K^/a^yT^ = —0.023 and 
the desired SIF is K^e — 0.'25)/a„-spKc — —0.143. A finite element compu
tation is performed for the case; the result is also —0.143. If in the previous 
example e = 0.20 is desired, that is, bt = 0.1, Eq 24 gives K^/o^yfTrc — 
-0.0209 and Eq 30 gives K^/a,,-fKc = -0.0668. The final result is K,(e -
O.D/ag^/iTC = —0.088 which is 5.6 percent less than the finite element result 
Kc(e = 0.2)/a„\fTrc ~ —0.093. This indicates that 5 must be fairly small for 
Eq 30 to be valid. For the geometry / / = 10, c/t = 0.3, the finite element 
computation gives AT̂Ce = 0.3)/aoVTC = —0.079 and/C<,(e = 0.25)/a„\/Trc = 
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0.5 

c/ t 

FIG. 3—Stress-intensity factors as a function of c/t for N radial cracks subjected to the crack 
face pressure p^(x) = p(/ + x)~^. 

—0.044. The corresponding values computed from Eq 24 and from Eqs 24 
and 30 are -0.080 and -0.0477. 

The SIF's due to a combination of residual stress and internal pressure on 
inside diameter and on crack faces can be computed readily by linear super
position. If the applied pressure isp, = ajf, where/ is a constant, the resul
tant SIF's for/ =1 .5 and 3, for TV = 1 and 40, and for e = 1.0 are shown in 
Fig. 7. We purposely keep the negative SIF for shallow cracks in the case of/ = 
3 and e = 1.0. The correct SIF should be zero, which means that a smgle 
crack or a set of multiple cracks remains closed due to the high compressive 
residual stress near the bore. The negative SIF gives a little more information 
than SIF = 0. The graph also shows a high SIF ioiN ^ 1 than that totN = 
40 for a given e and/. One may conclude that it is worse to have a single ra
dial crack than to have a large number of radial cracks for an autofrettaged 
tube. This conclusion is similar to that found in the study of nonautofrettaged 
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Knlplogrl 

Pv/nc 

0.20 
b = 2 

Pc(xl = P logl l * x ) 

N = 2 

FIG. 4—Stress-intensity factors as a function of c/t for N radial cracks subjected to the crack 
face pressure p̂ Cx) = p log (/ + x). 

tubes. With some slight modification, the method used here can be applied 
to multiple outside diameter cracks. The modifications and numerical resuhs 
for outside diameter cracks are to be reported elsewhere. 

Conclusions 

The finite-element method together with the thermal simulation can be used 
to compute the SIF for multiple radial cracks emanating from the bore of a 
partially autofrettaged tube. The finite element results of KipJ, K{p,), and 
K^ie = 1.0) can lead to a system of algebraic equations for solving K^il), 
Kc(r~^), and K^ilog r). Using these results, the weight function concept gives 
an alternative method for the determination of SIF for any degree of partial 
autofrettage provided that the crack depth c/t is not greater than the per
centage of autofrettage e. A correction formula is supplied for the SIF when 
c/t is slightly greater than e when N is small. These expressions yield quite 
accurate results and can save a great deal of computing time. 

The SIF results of this study show that a cylinder with dual cracks is, in 
general, the weakest configuration against fracture. For more than two 
cracks, the SIF decreases as the number of cracks increases. This conclusion 
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c / t - 0 ALL N 

) N = 2 

> N = 40 

FIG. 5—Stress-intensity factors as a function of e in an autofrettaged cylinder ofh = 2. 

N 

FIG. 6—Stress-intensity factors as a function offiin a fully autofrettaged cylinder ofb = 2. 
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0.3 

FIG. 7—Stress-intensity factors in an autofrettaged cylinder o/ b = 2 subjected to internal 
pressure a^/i on inside diameter and on crack faces. 

for an autofrettage cylinder of an elastic-ideally plastic material remains the 
same as that concluded for a nonautofrettaged cylinder [/]. 

Experimental studies of SIF for multiply cracked cylinders reported in 
Refs 26 and 27 confirmed the previously mentioned conclusion. A compli
ance K calibration for a pressurized cylinder with a radial crack suggested by 
Underwood et al [28] may be extended to multiply cracked cylinders with or 
without autofrettage to provide further experimental verification. 

An important use of the SIF study of a cracked cylinder is to estimate the 
remaining useful life of the cylinder. Based on the well-known crack propa
gation laws of Paris-Erdogen [29], it is obvious that the fatigue life of an au
tofrettaged cylinder is prolonged because of the reduction in both the maxi
mum SIF and the range of stress intensity due to the compressive residual 
stress introduced by the autofrettage process. An experimental study of pres
sure cycling 0 to 331 MPa (0 to 48 ksi) a cylinder (b/a = 2, a = 8.75 cm) 
with multiple notches [0.008 cm (0.003 in.) cut, 0.64 cm (0.25 m.) deep, and 
50.8 cm (20 in.) long], was conducted by Joseph Throop of our laboratory to 
measure the remainmg fatigue lives. For the case of a single notch, cycles to 
failure were 1550, 3834, and 8490 for cylinders with 0, 30, and 60 percent 
overstrain, respectively. This confirms our prediction that the fatigue life is 
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prolonged considerably by the process of autofrettage. In multiple cracking 
experiments, it was virtually impossible to achieve uniform crack propaga
tion. The final failure inevitably was dominated by one crack no matter if it 
was started from two or four notches. Therefore, no meaningful conclusion 
could be drawn from measured cycles to failure except a set of data for non-
autofrettaged cylinders. The measured cycles to failure for initially one-, 
two-, and four-notch cases were 1550, 1143, and 1463, respectively. It agrees 
with the SIF prediction of Ref / that dual crack case is the weakest configura
tion and the SIF for a single crack case is close to that of three-crack, or four-
crack case. 
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DISCUSSION 

A. P. Parker^ (written discussion)—The authors have addressed a geome
try and loading which also has been a concern of ours for some time. The 
numerical technique we have adopted to solve the multiply cracked, partially 
autofrettaged thick cylinder is modified mapping-collocation (MMC),̂  com
bined with a simple procedure involving superposition of the stress intensity 
due to pressure acting alone, and the stress intensity due to full autofrettage 
acting alone (that is, the 100 percent overstrain case). 

Results for internal pressure and for full autofrettage were presented 
graphically by Parker and Andrasic.^ Numerical values for these cases have 
been supplied to the authors. Results for partial autofrettage with internal 
pressure and both internal and external cracks were presented by Parker et al,̂  

'Materials Branch, Royal Military College of Science, Shrivenham, Swindon, Wiltshire, 
England. 

•^Parker, A. P. and Andrasic, C. P., "Stress Intensity Prediction for a Multiply Cracked, Pres
surized Gun Tube with Residual and Thermal Stresses," Army Symposium on Solid Mechanics, 
AMMRC MS 80-5, Army Materials and Mechanics Research Center, Sept. 1980. 

•'Parker, A. P., Sleeper, K. A., and Andrasic, C. P., "Safe Life Design of Gun Tubes: Some 
Numerical Methods and Results," U.S. Army Numerical Methods Conference, Huntsville, Ala., 
Feb. 1981. 
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the necessary superposition being given by Eq 4 in Neal et al'* (internal cracks) 
and Eq 12 in Parker^ (external cracks). 

Would the authors indicate the extent of agreement between their finite 
element calculations and our MMC predictions? 

S. L. Pu and M. A. Hussain (authors' closure)—We appreciate the oppor
tunity of discussion from the question raised by Professor Parker regarding 
the agreement between their SIF predictions based on MMC technique and 
our finite element calculations. It originally was planned to include in the 
paper a comparison of results by these two methods. Since the numerical re
sults supplied by Professor Parker were not received on time, we had to 
change the plan to include the comparison in a follow-up paper.* Tables 3 
and 4, shown here, are taken from Footnote 6. The agreement is quite well 
with a maximum relative error less than four percent. The finite element 
values are consistently higher than MMC values. 

TABLE 3—Comparison of K,/p|V7rc/or inside diameter cracks in a 
cylinder of b/a = 2, subject to hore pressure pj. Finite element (FE) (this 

study) versus modified mapping collocation iJracy'j. 

c 

0.1 
0.2 
0.3 
0.4 
0.5 

1 Crack 

FE 

2.83 
2.83 
2.89 
3.02 
3.19 

MMC 

2.80 
1.11 
2.88 
2.99 
3.15 

2 Cracks 

FE 

2.87 
3.01 
3.28 
3.56 
4.00 

MMC 

2.83 
2.96 
3.23 
3.55 
4.00 

4 Cracks 

FE 

2.83 
2.78 
2.83 
2.95 
3.15 

MMC 

2.75 
2.75 
2.77 
2.99 
3.15° 

"This value is based on ff] = 1.18 in a private communication prior to 
the publication of Footnote 7. The value //] = 1.31 in Footnote 7 is prob
ably a typographic error. 

''Neal, D. M., Parker, A. P., and Lenoe, E. M., "Gun Tube Fatigue Life Estimates: Influence 
of Residual Stress, Crack Growth Law, and Load Spectra." U.S. Army Numerical Methods 
Conference, Huntsville, Ala., Feb. 1981. 

^Parker, A. P., "Stress Intensity and Fatigue Crack Growth in Multiply Cracked, Pres-surized, 
Partially Autofrcttaged Thick Cylinders," to be published in Fatigue of Engineering Materials 
and Structures. 

*Pu, S. L., "Stress Intensity Factors for Radial Cracks at Outer Surface of a Partially Auto
frcttaged Cylinder Subjected to Internal Pressure," U.S. Army Armament Research and Devel
opment Command, Technical Report ARLCB-TR-82003, Benet Weapons Laboratory, Water-
vliet, N.Y., 1982. 

'Tracy, P. G., Engineering Fracture Mechanics, Vol. 11, 1979, pp. 291-.300. 
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TABLE 4—Comparison o/ K, /(— a^\ ire) for inside diameter cracks in a fully autofrettaged 
cylinder of b/a = 2. Finite element (FE) (this study) versus modified mapping collocation'' 

(Parker and Andrasic^). 

c 

0.05 
0.1 
0.2 
0.3 

4 Cracks 

FE 

0.981 
0.895 
0.745 
0.628 

MMC 

0.967 
0.871 
0.722 
0.609 

6 Cracks 

FE 

0.975 
0.871 
0.684 
0.539 

MMC 

0.959 
0.847 
0.662 
0.521 

10 Cracks 

FE 

0.957 
0.817 
0.575 
0.417 

MMC 

0.941 
0.794 
0.557 
0.403 

40 Cracks 

FE 

0.659 
0.442 
0.277 
0.197 

MMC 

0.670 
0.432 
0.271 
0.191 

°MMC results were supplied by Parker in a private communication, then multiplied by 2/\'3 
to convert from Tresca yield criterion to von Mises criterion. 

^Parker, A. P. and Andrasic, C. P., "Stress Intensity Prediction For a Multiply Cracked, 
Pressurized Gun Tube With Residual and Thermal Stresses," Army Symposium on Solid Me
chanics, AMMRC MS 80-5, Army Materials and Mechanics Research Center, 1980, and sup
plemental data supplied in private communications, 1981. 
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ABSTRACT; Stress-intensity factors are determined using tlie modified mapping colloca
tion (MMC) method for a single, radial, straight-fronted crack in a thick cylindrical tube 
that has been subjected to full autofrettage treatment (100 percent overstrain). By superpo
sition of these results and existing solutions, stress-intensity factors are determined for the 
same geometry with internal pressure and any amount of overstrain from 0 to 100 percent. 

Correction factors for crack shape and nonideal material yielding are determined from 
various sources for the pressurized, autofrettaged tubes containing semielliptical cracks. 
These results are employed in the life prediction of pressurized thick tubes with straight-
fronted and semicircular cracks, for various amounts of autofrettage. Experimentally de
termined lifetimes for tubes having 0 and 30 percent nominal overstrain are significantly 
greater than the predictions for both straight-fronted and semicircular cracks. This is 
related to multiple initiation and early growth of cracks from the notch. 

Experimentally determined lifetimes for a tube with 60 percent nominal overstrain are 
somewhat less than predicted. This effect is partially explained by additional experimental 
work, which shows that the angle of opening of rings cut from autofrettaged tubes is some
what less than the ideal predictions. The latter effect is attributed to the Bauschinger effect 
and the associated reduced yield strength in compression during the unloading of tubes 
during the autofrettage process. 
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Nomenclatnie 

a 
A 
c 
C 
E 
G 

He 
K 

Ki 

Kn 
K 

Ko 
AK 

Cn 
m 

max 
min 

A' 
P 

PB 
PT 

r 

Ri 
Rj 

RA 

RD 
t 

Y 
z 
a 

/? 
7 

f 
e 
K 

\ 
V 

f 
a 
T 

<t> 
^ 

Crack depth 
Autofrettage 
Surface crack length 
Coefficient in Paris' crack growth law 
Modulus of elasticity 
E/ia + j>) 
Correction factor defined in Eq 11 
Stress-intensity factor 
Opening mode stress-intensity factor 
Sliding mode stress-intensity factor 
Nondimensionalizing stress-intensity factor 
Nondimensionalizing stress-intensity factor 
Stress-intensity factor range 
Natural logarithm 
Exponent in Paris' crack growth law 
Maximum 
Minimum 
Number of loading cycles 
Pressure 
Pure bending 
Pure tension 
Radius 
Tube inner radius 
Tube outer radius 
Tube autofrettage radius 
Tube reversed yielding radius 
Theoretical 
Yield stress 
Complex variable, x + iy 
Proportion of tension 
Proportion of bending 
Tube opening angle (radians) 
Parameter plane 
Angular coordinate 
3 - 4v (plane strain), (3 - v)/{l + p) (plane stress) 
Yield stress in tension/yield stress in compression 
Poisson's ratio 
Parameter plane 
Direct stress 
Shear stress 
Complex stress function 
Complex stress function 
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Fatigue crack growth arising from the cyclic pressurization of thick-wall 
cylinders tends to produce radial fatigue cracks emanating from the bore. A 
knowledge of the crack tip stress-intensity factor, K, is necessary in order to 
predict the fatigue crack growth rate, critical length, and lifetime of such 
cracks. It is common practice to produce an advantageous stress distribution 
by autofrettage (overstrain) of the cylinder in order to slow or prevent crack 
growth. This autofrettage process may involve plastic strain throughout the 
wall thickness, or any lesser proportion of the wall thickness, depending upon 
the degree of overstrain applied to the cylinder by overpressure or by an over
sized mandrel-swage process. 

An accurate stress-intensity solution for pressurized, autofrettaged thick 
cylinders is a fundamental requirement for crack growth rate and life predic
tion. Some of the work relating to two- and three-dimensional K solutions is 
reviewed by Tan and Fenner [1].^ Of the various types of solutions, the errors 
associated with collocation and integral equation solutions are of order 1 per
cent while 4 percent would be more typical of finite-element and boundary-
element methods. However, there may be more significant uncertainties in 
crack growth and life prediction. Some key factors, and the factors considered 
here, are the shape of the crack during the fatigue lifetime of the component, 
uncertainty over the exact proportion of overstrain in the tube, and a residual 
stress distribution that generally does not conform with the predictions of an 
idealized elastic-plastic analysis, particularly the assumption of the same mag
nitude of yield strength in tension and compression. 

In this paper it is proposed that accurate two-dimensional K solutions may 
be modified in order to predict stress-intensity factors, and hence crack growth 
rates, for semielliptical cracks in pressurized thick-wall cylinders with residual 
stress distributions. Such predictions may be compared with experimental 
crack growth data, and some measure of the extent of overstrain may be ob
tained by cutting autofrettaged tubes radially and measuring the angle of 
opening. 

Calculation of Stress-Intensity Factors 

Stress-intensity factors for the plane (two-dimensional) geometry illustrated 
in Fig. la were obtained by the modified mapping collocation (MMC) method. 
This method is described in detail in Ref 2. Briefly, complex variable methods 
due to Muskhelishvili [3] are utilized. Stresses and displacements within a 
body are given in terms of the complex stress functions 0(z) and ^{z) by 

a;, + ff^ = 4 Re {< '̂(z)} (1) 

ay-a, + li T^ = 2[^0"(z) + ^'(z)] (2) 

•"The italic numbers in brackets refer to the list of references appended to this paper. 
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FIG. 1—Cracked thick cylinder geometry showing partitioning and mapping schemes: (a) z 
(physical)-plane, (b) ^-plane, and (c) ^-plane. 

2G{u + iv) = K 4>{z) - z4>\z) - \Kz) (3) 

where the complex variable z — x -{• iy, x and j are the physical coordinates, 
primes denote differentiation, and bars represent the complex conjugate. Also 

G = 
2(1 + v) 

K = 3 — Av (plane strain), K = —•— (plane stress) 
\ -T V 

where G is the shear modulus, E the elastic modulus, and v is Poisson's ratio, 
while the resultant force over an arc s is 

/ i + ifi = i iX„ + iY„)ds = <t>iz) + z <t>-(z) + rPiz) (4) 

where X„ ds and ¥„ ds are the horizontal and vertical components of force 
acting on ds. 

The solution of the cracked, autof rettaged cylinder was carried out similarly 
to Tracy [4]. A complex mapping transforms straight lines parallel to the real 
axis in the ?-plane to curved lines in the physical (z)-plane; in particular, the 
real axis in the ^-plane is mapped to an arc of radius R i, centered at the origin 
in the z-plane (Fig. 1). A further mapping is introduced, which maps the unit 
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semicircle plus its exterior in the f-plane to the crack plus its exterior in the ^-
plane, as in Fig. 16,c. The analytic continuation arguments of Muskhelishvili 
are used to ensure traction-free conditions along F'L' andJ'G' and henceJFX 
and JG in the physical plane (Fig. 1). 

For certain geometries it is necessary to use partitioning [2] to obtain the 
desired accuracy. The partitioning of the cylinder is shown in Fig. 1. In gen
eral, each region has its own complex stress and mapping function. Since there 
is symmetry about the imaginary axis, only Region I and that part of Region II 
to the right of the imaginary axis need be considered. When partitioning is 
used, it is necessary to "stitch" along common boundaries, by imposing equi
librium and compatibility of displacements. 

In the MMC method the infinite series representations of the stress func
tions are truncated to a finite number of terms. Force conditions are imposed 
at selected boundary points, which give conditions on the unknown coeffi
cients in the stress functions. Thus, each boundary point produces two rows in 
the main matrix A, and two corresponding elements in the boundary condi
tions vector b, where 

^ x = b 

and X is the vector of unknown coefficients. The common ("stitched") bound
ary points are used to obtain conditions relating the unknown coefficients. 
Each common boundary point gives four rows in A and four corresponding 
zeros in b. In general, 4̂ is a matrix of ( rows and m columns, where ( and m 
depend upon the number of boundary points and unknown coefficients, re
spectively. It was found that convergence is generally better when 2m < i < 
2.5 m, and this conforms with other work [5]. A least-square error minimiza
tion procedure was used to solve the overdetermined set of linear equations. 
When the coefficients for the stress function in the cracked region are known, 
the crack-tip stress-intensity factor, K, may be determined from [6] 

K = Ki- iKu = 2(2ir)i''2 Limit (z - z,)'^^ x ,^'(2) (5) 

where ATj and/LU are opening and sliding mode stress-intensity factors, respec
tively, and Zc is the location of the crack tip. 

We now consider the various loadings and combinations of loadings that 
will be necessary for the solution of the pressurized, autofrettaged tube. 

Loading A: Internal Pressure Acting in Bore and Cracks 

An accurate MMC opening mode stress-intensity solution, Ki, is available 
for this configuration [7] and is shown as the upper curve in Fig. 2. This MMC 
solution was obtained by superposition of an all-round tension field on the 
outer boundary. The results are presented in dimensionless form as Ki/Kp, 
where 
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2R,^ 

^^ = -W^^'^"""^ 1/2 (6) 

and where Rj is the outer radius, Ry is the inner radius, a is the crack depth, 
andp is the internal pressure acting in both bore and crack. Also shown, for 
the purposes of comparison, are points from a solution due to Grandt [8] based 
on an approximate weight function method that was also employed in the 
derivation of additional solutions referred to in the next section. 

Loading B: Ideal Autofrettage Residual Stresses in Uncracked Tube 

An MMC program, based on the formulation outlined in this section, was 
used to calculate the stress-intensity results for full autofrettage (100 percent 
overstrain), shown as the lower curve in Fig. 2. This was based on the ideal. 

h 

0.4-

0.2 -

2R/ 

Pressure, Kp " ^ ^ E ^ •pfTrall'^ 

Y(7ra)' 

0 0.1 Q2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 l.O 
a 

R2-R1 

FIG. 2—Stress-intensity factors for a single, straight-fronted, radial crack in a thick cylinder. 
(Inset) Short crack length convergence for 100 percent overstrain. 
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elastic-plastic solution [9], where the distribution of hoop stress (ag) in the 
uncracked tube is given by 

ao= -Yen{R2/Ri) + y[l+fn(r / /? , ) ] (7) 

and y is the uniaxial yield strength of the material (Tresca's criterion) or 1.15 
X yield strength (von Mises' criterion). Points obtained from a solution by 
Grandt are shown for comparison purposes. The approximate results of 
Grandt [10] for a cracked tube of the same dimensions subjected to steady-
state thermal loading were modified in accordance with Ref 11 to make possi
ble a comparison with the calculated autofrettage results. The modification is 
based on the fact that the residual stress distribution for 100 percent overstrain 
is identical to that for steady state thermal loading, apart from a simple multi
plying constant. Agreement is generally within 5 percent. 

A particularly important feature of the MMC formulation outlined at the 
beginning of this section is the accuracy of the results at shallow crack depths. 
Many available results are not quoted for a/(R2 — Ri) < 0,1, or even 0.2, and 
are therefore of limited use for life prediction purposes. The inset in Fig. 2 
shows the calculated results for 100 percent overstrain in the range 0 < a/ 
{R2 — Ri) ^ 0.1, and indicates good convergence to the limiting value of 1.12. 
Since as much as 80 percent of gun tube lifetime may be expended in this 
range, it is clearly very important to seek accurate results at shallow crack 
depths. It is apparent that this solution provides the required accuracy. The 
results for full autofrettage are presented in dimensionless form as K^/Kyi 
where 

K. = 1 - £n {R2/Ri) 
Rz' - Ri' 

Yiiray^^ (8) 

Loading C: Internal Pressure and Ideal Autofrettage 

The total stress intensity in a pressurized, fully autofrettaged (100 percent 
overstrain) tube is given by the superposition of the results in Fig. 2, thus 

^ful l autofrettage + pressure "-p ' "^A v ' / 

where Kp is the stress intensity with pressure in bore and crack, and Kyi is the 
stress-intensity contribution due to the 100 percent overstrain residual stress 
field acting alone. 

In the event that the tube has been subjected to less than 100 percent over
strain, the plastic flow during the autofrettage process will extend to a radius 
Ryi, and the stress-intensity factor in this case is given by [12] 
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K, partial autofrettage + pressure 1 + — in(.R2/RA) - — iRi^ - RA^/2R2^ 
P P 

•Kp + KA, U^RA-RI 

where R^ can be obtained from the expression [12] 

(10) 

p = YiniRA^Ri) + 2R? (RI^-RA'Z 

Results for 0, 30, 60, and 100 percent overstrain, with Y/p = 3.55, R2/R1 = 
2.0, based on the superposition of results given in Fig. 2, are shown in Fig. 3. 
These curves indicate the very significant reduction in stress intensity as a 
result of the ideal autofrettage process. Indeed, for the particular value Y/p = 
3.55, 100 percent overstrain causes a negative total stress intensity (that is, 
crack closure) for crack depths up to a/iRj — /?i) = 0.08. 

Correction for the Crack Shape Effects 

Thus far we have ignored the effect of crack shape on stress intensity, 
assuming a through crack. We now consider the crack to be semielliptical, 
semimajor axis c, depth a, as shown in Fig. 4. In order to modify the two-

5.0 n 

FIG. 3—Stress-intensity factors for a single, straight-fronted crack in a pressurized thick cylin
der with 0, 30, 60, and 100 percent overstrain. 
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L> a,c 

FIG. 4—Semielliptical crack in a thick cylinder. 

dimensional results to account for crack shape we employ two sets of work, 
namely the extensive results for semielliptical cracks in a flat plate under ten
sion or bending, due to Newman and Raju [13], and the limited results for a 
semielliptical crack in a pressurized thick cylinder, due to Tan and Fenner [/] 
and Atluri and Kathiresan \14]. 

First, consider the flat plate containing a semielliptical crack. From the 
results given in Ref 13, we may define a correction factor for the plate in pure 
tension Hp-f given by 

H, PT KpT 

where Kp-^ is the stress-intensity factor for semielliptical crack in a plate in 
tension and Rpr is the stress-intensity factor solution for a straight-fronted 
through crack given in Ref 15. Curves of the correction factor Hpj are shown in 
Fig. 5a. 

Similar correction factors for the flat plate under pure bending HpB are 
defined by 

tlpB — ^ 
PB 

PB 
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FIG. 5—(a) Crack shape factors for a plate in tension ((j> = Tr/2), after Ref 13. (b) Crack shape 
factors for a plate in pure bending (<l> = ir/2), after Ref 13. 

where Kpg is the stress-intensity factor for a semielliptical crack in a plate in 
pure bending and A"̂ ^ is the solution for a straight-fronted through crack [15]. 
Curves of the correction factor Hpg are shown in Fig. 5b. 

It is proposed that, at shallow crack depths, the correction factors applica
ble to the thick cylinder may be obtained by appropriate superpositions oiHpj 
and HpB, given by 

He = oHpT + I3HPB (11) 

where the multiplying factors a and ̂  are obtained by calculating the propor
tions of tension and bending in the uncracked tube that act over the prospec
tive crack line. In order to test this hypothesis, consider the case of a tube 
subjected to internal pressure. In this case the crack-line loading comprises 
hoop stresses due to the internal pressure [12] plus a contribution from the 
pressure, p, which infiltrates the crack, thus the total crack line loading is 

<^e 1 +. 
R.' 

/?,2 /?,2 
1 + ,2 

as shown in Fig. 6a. Using a straight line approximation, for the range 0 < a/ 
(/?2 ~ R\) ^ 0.2, the proportion of tension loading is given by a = 1.72/2.66 
while the proportion of pure bending, /3 = 0.94/2.66, hence the correction 
factor He is determined as 

He = 0.645 HpT + 0.355 Hps 

Correction factors determined on this basis are plotted in Fig. 6b for the case 
a/c = 0.8. Also shown are the equivalent correction factors obtained for the 
same configuration by Tan and Fenner [/], using boundary-element methods. 
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Lame's stresses and 
i ' ^ ^ s ^ ^ ^ ^ crack pressure 

Tar & Fenner 

FIG. 6—(a) Method of calculating proportion of tension and bending, pressure in bore and 
cracks, (b) Crack shape factors for pressure in bore and cracks, a/c = 0.8, 4> = T / 2 . (C) Crack 
shape factors for pressure in bore and cracks, a/c = 0.8, ((> — 0. 

Agreement is within 2 percent at a/(i?2 ~ ^ i ) = 0.2. For deeper cracks the 
difference between plate and cylinder results becomes appreciable because of 
the differences in constraint, discussed in the next paragraph. It is important 
to emphasize that the proportion of the tube in which the majority of compo
nent lifetime is expended is well represented by the model, that is, for a/iRj — 
/?i) < 0.3. The equivalent correction factors for A' at the point <|) = 0 (the free 
surface of the plate) are shown in Fig. 6c and exhibit similar characteristics to 
those of Fig. 6b. 

The significant difference between the cylinder and plate shape factors in 
Fig. 6b is attributed to the significantly greater constraint of a cylinder com
pared with a plate, particularly for straight-fronted, deep cracks. This differ
ence can be demonstrated by comparing K for a straight-fronted, fl/(/?2 ~ ^ i) 
= 0.8 crack in a pressurized cylinder with Rj/R] = 2.0 with the K for a 
straight-fronted, a/iRj — /?i) = 0.8 crack in a plate with approximately the 
same combination of tension and bending loading as that of the pressurized 
cylinder. The K for the cylinder can be obtained from Ref 7 or from Fig. 2, and-
is shown in Table 1. The K for the plate with cylinder loading is obtained using 
the expressions for pure tension and pure bending [15] as follows 

K plate — Kpj T K PB 

The tension and bending stresses in Kpj and Kpg are determined as Opj- = 2 . 0 
p and apu = 0.5 p, by using a linear approximation of the entire cylinder 
loading plot shown in Fig. 6a. The K for the plate with a straight crack is 
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TABLE 1—Comparison of K values for deeply cracked cylinder and plate. 

K for a/(R2 - /?,) H^ from Fig. bb K for a/(/?2 - i?,) = 
= 0.8, Straight for a/ijij - R^) = 0.8, a/c = 0.8, 

Crack 0.8, a/c = 0.8 Semiclliptical Crack 

Pressurized cylinder 
Plate with approximate 

cylinder loading 

6.99 pra/' '^ 

AtJpla)^''^ 

0.42 

0.07 

2.'^p(a)^'^ 

several times that of the cylinder, which indicates that the plate is much less 
constrained. Therefore, the increase in constraint corresponding to a semicl
liptical rather than a straight crack will be much larger for a plate than for a 
cylinder. This results in the much smaller He for a plate than for a cylinder, as 
observed in Fig. 66. When the final comparison is made in Table 1, AT for deep 
semiclliptical cracks in a cylinder and a similarly loaded plate are about the 
same, as might be expected. 

In order to obtain a range of correction factors applicable to thick cylinders, 
the procedure outlined by Eq 11, Fig. 6, and related discussion was used to 
obtain correction factors from Newman's work for the case of internal pressure 
and full autofrettage (100 percent overstrain). These results for relatively short 
cracks were combined, using engineering judgment, with those of Tan and 
Fenner for longer cracks to obtain correction factors for use over a wide range 
of crack length. The results for pressure, Lp, are shown in Fig. la and b, for 
0 = x/2 and 0.0, respectively, and the results for autofrettage, L^, are shown 
in Fig. 7c and rf for </> = -K/I and 0.0, respectively. In the case of pressure (Fig. la 
and b), we may compare in each figure with the solutions due to Atluri and 
Kathiresan [/</] attwo points, namely a/c = l.OandaA = 0.5and0.8. ¥OT4> = 
•K/2 agreement is within 8 percent; however, for 0 = 0 the correction factors 
differ by 25 percent, reflecting wide disagreement between investigators on K 
solutions at the free surface [13,14\. 

It is thus possible to calculate the stress-intensity factor for any combination 
of pressure, ideal partial autofrettage, and crack shape by correcting the 
stress-intensity factors presented in Fig. 2 in accordance with Eq 10 and cor
rection factors i p a n d i ^ to obtain 

"• partial autofrettage — pressure (3D) ^p 
P 

1 + — ln{R2/RA) iRy^ - /?^V2/?,2 
Y^ 

P 

• K„ + LA KA (12) 

Effects of Nonldeal Residual Stress Distribution 

The residual stress distribution predicted by Eq 7 may not occur in practice 
[16,17]. Nonideal Bauschinger effects and uncertainty over the exact amount 
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Rj-Ri RrR ?-«! 

FIG. 7—(a) Crack shape factors, h„, for pressure in bore and cracks, <i> = ir/2; two data points 
from Ref 14, a/c = /. 0. (b) Crack shape factors, Lp, for pressure in bore and cracks, <j> = 0; two data 
points from Ref 14, a/c = 1.0. (c) Crack shape factors, L^j/or 100 percent overstrain, </> = 
•K/2. (d) Crack shape factors, L^, for 100 percent overstrain, <̂  = ft 

of autofrettage on unloading may produce a different stress distribution. In 
earlier work [16] a constant reduction factor of 0.7 was applied to the autofret
tage contribution to stress-intensity factor to account for primarily the Baus-
chinger effect. 

In the present work it is proposed that these effects may be considered in a 
different manner. If an unflawed autofrettaged tube is cut along a radius, it 
will spring apart, the theoretical angle of opening y, being given for 100 per
cent overstrain and using the von Mises' yield criterion as [18] 

7t 100 percent ^n 
8irY 
y[3E 

(13) 

In the case of partial overstrain, the total moment acting over the cut ends is 
reduced by a factor F. Details of the calculation of F are contained in the 
Appendix. The theoretical angle of opening for partial overstrain -ŷ P""̂ '̂ is 
given by 

y percent =; jCVy 100 percent (14) 
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A graphical representation of Ffor a tube having/?2/^i = 2.0 is shown in Fig. 
8. The angle (and moment) ratio JF between partial and 100 percent overstrain 
does not vary much with i?2//? 1- In fact, for tubes in the range 1.8 < Rj/Ri ^ 
2.2 the deviation from the curve in Fig. 8 is only 1 percent, and of course it still 
goes asymptotically to the limit of 1.0 at 100 percent overstrain, and to zero at 0 
percent overstrain. 

We propose that a comparison of the ratio of measured opening angle to 
^̂ 100 percent ŷĵ jj tj,g ratio F provides an indication of the nonideality of the 
residual stress distribution in actual autofrettage cylinders. The data points 
shown in Fig. 8 make this comparison. Each point represents an autofrettaged 
steel cylinder of the type described in Ref 16. k section was removed from each 
cylinder, and the opening angle was measured using an optical comparator. 
The ratio of measured angle to 100 percent overstrain theoretical angle was 
calculated using the measured value of yield strength, Y, for each tube. 

The important features of the comparison between experiment and theory 
in Fig. 8 are the following: 

1. The experimental results are generally near or above the theoretical curve 
for relatively low overstrain and generally below the curve for high overstrain. 
This can be explained by the Bauschinger effect, since for high overstrain and 
the associated large amount of tensile yielding, the Bauschinger effect would 
result in significant reverse yielding and less than expected residual stress and 
opening angle. 

2. The two sets of experimental results designated by dashed lines indicate 
less than expected opening angle and residual stress with increasing/?2/^1-

^© 

_o 
" ^ R2/R1 • 2.14 

\ Theoretical Results: 
Eq. 14 

l o 20 30 40 50 60 70 80 5o 1̂ 0 
% Overstrain 

FIG. 8—Ratio of opening angle for partial overstrain to the theoretical value for 100 percent 
overstrain. 
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This also is consistent with the Bauschinger effect, using a similar rationale as 
with the first feature, that is, larger R2/R1 result in more tensile yielding, more 
reverse yielding, and less than expected residual stress. 

Also shown in Fig. 8 are the measured-to-theoretical angle ratios from the 
30 and 60 percent overstrained tubes of the experimental work described here. 
Note that the average of the two angle measurements for 60 percent overstrain 
is about 0.6 of the theoretical value. This would suggest that, at least as a first 
approximation, the contribution of overstrain to the total K could be reduced 
by this 0.6 factor, and a shorter than expected fatigue life would result. This is 
discussed further in the comparison of experimental and theoretical results. 

Life Calculations 

The fatigue growth rate of cracks subjected to cyclic loading may be ex
pressed in terms of Paris' law [19] 

- ^ = CiAKr (15) 
dN 

where da/dN is the fatigue crack growth per loading cycle, C and m are empiri
cal constants, and AK is the range of stress intensity defined by 

^K — ^max ~ -̂ 111111. (-/̂ min ^ 0) 

A ^ = K,^, {K^, < 0) 

where /̂ max ^"^ ^min ^^^ the maximum and minimum values of stress intensity 
during the loading cycle. Note that the possibility of "overlapping" or touch
ing of the crack surfaces at some point on the crack line remote from the crack 
tip [20] is not considered in this paper. During the lifetime of a particular 
cracked cylinder, the crack will propagate from some initial depth a, to some 
final depth Of, where Uf is generally the total wall thickness of the cylinder, 
/?2 ~ ^ 1 - In order to predict the fatigue life, Eq 15 is rearranged to give 

("/ da ^ (16) 

Crack growth (a versus N) predictions are made for two examples that are 
near the extremes of crack geometry encountered in thick cylinders: a single 
nearly straight-fronted crack and a single semicircular crack. The predictions 
are compared with ultrasonic crack growth measurements from cylinders in 
which internal radius /?] is 90 mm, /?2//?i is 2.0, and the cyclic pressurization 
is 0 to 331 MPa. The cylinder material is ASTM A723 forged steel, with yield 
strength of 1175 MPA, —40°C Charpy impact energy of 34 J, reduction in area 
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of 50 percent [21]. These properties can be slightly different after overstrain, 
due to the plastic strain, which can be up to 1 percent at the inner radius of a 
100 percent overstrained cylinder. Considering this small amount of plastic 
strain relative to reduction in area, no significant effect on fatigue life is ex
pected as the result of the material property changes due to the overstrain 
process. 

In general, the integral of Eq 16 was evaluated numerically using Simpson's 
rule. For the particular steel employed in the experimental crack growth rate 
work, the measured constants are C = 6.52 X lO"'^ and m = 3.0 for crack 
growth in metres per cycle and AK in MPa m'^^. 

Single, Nearly Straight-Fronted Crack 

Figure 9 shows a versus N predictions based on the K results presented in 
Fig. 3 for a single, straight-fronted radial crack, initial depth 6.4 mm. The 
solid lines in Fig. 9 are predictions for 0 and 30 percent overstrain. The dashed 
line shows experimental results, originally reported in Ref 2 / , for a tube with 
zero nominal overstrain in which a single notch was cut using electro-discharge 
machining to a depth of 6.4 mm and a half surface length, c, of 254 mm. 

For this example it is possible [22] to integrate Eq 16 directly if a simple, 
shallow crack AT-expression is used, that is, one with Kp/Kp at a constant 
value. From Fig. 2, Kp/Kp — 1.05 at a/Ri — R\ = 0.2 is a reasonable choice, 
considering that most of the cylinder life is expended at relatively low values of 
a. Doing so and combining with Eqs 6 and 12 gives the following expression for 
fatigue life of a tube with no overstrain 

Nj - N, 
Kj, 

K„ 

1 1 

_ Va,- yfof 

M 1/2 

Rj' - ^1^. 
LpP 

(17) 

For values of a,, C, i?2, /?j, and/7 in this example and settingX^ = 1.0, the 
result is the dotted line in Fig. 9, very close to the more general analysis. For 
the conditions of this comparison, the simpler analysis of Eq 17, although less 
rigorous and general, is adequate and easier to use. 

The lack of agreement between the two analytical predictions and the exper
iment would be improved if the shape factor, Lp, was significantly less than 
unity. The initial shape is described by ia/c)j = 0.025 and the final shape is 
(a/c)f = 0.18. Referring to Fig. 7a and considering that most of the cylinder 
life is expended with low values of both a/c and a/Rj — Ri,Lp is estimated to 
be between 0.95 and 1.0. So even with this factor to the third power in Eq 17, it 
cannot account for the differences in Fig. 9. 
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FIG. 9—Fatigue crackgrotvtk (a i^ww N) in thick cylinder with single, xtraight-frontedcrack: 
experimental results and predictions. 

Single, Semicircular Crack 

Figure 10 shows a versus A'̂ predictions, based on the v -̂vaiues presented in 
Fig. 2, as modified in accordance with Eq 12, utilizing correction factors Xj, 
andXa from Fig. 7a and c respectively, fora/c = 1.0. The j^-values are repre
sentative of the stress intensity at the deepest point of a semicircular crack of 
initial depth 6.4 mm in a thick cylinder, and therefore implicitly assume that 
the crack retains its semicircular shape during the life of the tube. This as-

T ~ r 
10,000 ?0,000 30,000 

N (Cycles) 
40,000 50,000 

FIG. 10—Fatigue crack growth (a versus N) in thick cylinder with single, semicircular crack; 
experimental results and predictions. 
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sumption appears to be justified on the basis of experimental observations 
[16]. The predictions are made for zero, 30, 40, 45, and 50 percent overstrain, 
while the dashed lines indicate experimental results [16] for the same initial 
crack depth for actual tubes with zero, 30, and 60 percent nominal overstrain. 

For this example it is also possible to obtain a closed form expression for 
fatigue life, analogous to Eq 17. By combining Eqs 6, 8, and 10 it can be shown 
that the ratio of the K expression for an autofrettaged and pressurized cylinder 
to that of a pressurized cylinder with no autofrettage is the following 

K„ 
= 1 + -^ (n + sen + 

R/ - 6/?,2 (1 - 5)/?2' (18) 

where 8 is defined as {KA/K^)/{Kp/Kp), the ratio of the K solutions in Fig. 2. 
Using Eq 18 in a life expression in the form of Eq 17 gives 

Nf - Ni = 

1 1 

- f 
„ , R2\ , , R \ , RA^- 5^1^ - (l-5)/?2^ 
en[—~-] + 8(n~ + -^^ ]-—r^ -^-

RA Ri 2R2^ (19) 

which should give a good estimate of fatigue life for an autof rettaged, pressur
ized cylinder in which a shallow semielliptical crack dominates the life. Results 
from this shallow crack expression are shown in Fig. 10 for 0, 30, and 50 
percent overstrain. A mean! = 0.53 was used, since 1^ and i^ are close to this 
value for a//?2 ~ ^ i 0.2 (see Fig. 7a and c). The predictions of the shallow 
crack analysis, Eq 19, are close to those of the more general analysis. The lack 
of agreement between the two analytical predictions and the experiments is 
discussed in the next section. 

Discassion and Conclnsions 

Life prediction for cracked tubes requires an accurate knowledge of stress-
intensity factor at short crack depths. In this paper, two-dimensional solutions 
for cracked tubes with various amounts of residual stress (overstrain) were 
obtained by use of the MMC technique, which gives good convergence to the 
known analytic solution at very small crack depths. 

The solutions were extended to include three-dimensional semielliptical 
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cracks in thick cylinders by calculating the proportion of tension and bending 
in the cylinder and applying appropriate correction factors determined for 
cracked plates in tension and bending. Comparison with limited available 
three-dimensional solutions for thick cylinders indicates good agreement at 
short to medium crack lengths, a/Ri — R^ < 0.3, where most of the fatigue 
lifetime is expended. The approach adopted is, however, not restricted to thick 
cylinders, and may have general application in fracture mechanics design. 
Indeed, the thick cylinder may be a sort of limiting configuration in which 
maximum errors would be anticipated because of the large degree of restraint 
offered by the doubly connected body. 

The calculations of lifetime for nonautofrettaged, pressurized tubes with 
nearly straight-fronted and semicircular cracks predict lives of about one 
quarter of those determined experimentally. Possible explanations for this ef
fect are the following: 

1. The possibility that full pressure does not infiltrate the crack. This is not 
considered likely, because the experimental work was deliberately designed to 
avoid this effect. Also it would be far more noticeable in the autofrettage case if 
it were occurring because of the compressive stress closing the crack. 

2. Residual stresses in the nonautofrettage tube. Again, this is not consid
ered likely. When cut radially, nonautofrettaged tubes do not exhibit any ten
dency to spring open, indicating negligible gross residual stresses. 

3. Multiple, small, semielliptical cracks along the notch boundary. This is 
considered a probable explanation. Such a form of multiple crack growth 
would result in slower overall crack growth than that of a single crack, until the 
individual semielliptical cracks linked to form a single continuous crack front. 

Lifetimes calculated on the basis of the ideal residual stress field indicate 
extreme sensitivity to the amount of overstrain. Note in Fig. 10 that an increase 
from 30 to 50 percent overstrain increases the predicted life by a factor of five, 
while an increase from 30 to 60 percent overstrain increases measured life by a 
factor of 1.4. So there is clearly much less increase in life due to increased 
overstrain than would be expected from the calculations. We believe this effect 
is directly related to the less than expected opening angle measured from cylin
ders with 60 percent overstrain, discussed in relation to Fig. 8. The preferred 
explanation for the deviations of opening angle and lifetime from calculated 
values is the reduction in the residual stress field due to reversed yielding near 
the inner radius caused by the Bauschinger effect. This would manifest itself 
as a reduction in opening angle, particularly at large overstrains, and a rela
tively larger reduction in lifetime, since most of the lifetime is expended at 
shallow depths at which the hoop stresses are reduced most significantly. 
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APPENDIX 

Opening of Cut Tubes with Partial Autofrettage, No Reversed Yielding 

The residual stresses in an autofrettaged tube, internal radius/^i, external radius 
Rj, and autofrettage radius R^ are [9] 

aei = -p + Y(\+ia{r/Rx)-p 
/?2 

./?,2 - i?,2 
! + • 

r2 

°ei 
YRA' pR 

Ij^ Ri' - Ri^ 

where p , the autofrettage pressure, is given by 

Y 

1 + 

R, <r^R. 

RA :< r < Rn 

p = YIMR^/Ri) + •(i?2'-/?^2) 

(20) 

(21) 

(22) 

The total moment acting over any radial cut is given by 

M =\ agXr X dr 

or 

M = 1 aeirXdr+ \ 
(23) 

Since the opening angle of fully autofrettaged tubes of any radius ratio, R2/R1, 
provided reversed yielding does not occur, is given by Sir Y/y[3E [18], and the amount of 
opening is proportional to the applied bending moment, it is possible to produce a 
nondimensional plot of theoretical angle of opening for a cut tube with partial autofret
tage, for any radius ratio. The curve for Rj/Rx = 2.0 is shown in Fig. 8. Deviations 
from this curve for 1.8 < Rj/Ri :S 2.2 are less than 1 percent ofthe maximum opening. 

Opening of Cat Tubes with Partial, Autofrettage, with Reversed Yielding 

If the material of the tube has a reduced yield strength in compression of —\Y, it 
may undergo reversed yielding out to a radius RD after removal of the autofrettage 
pressure, p. In this case the residual stresses are [23] 

ag3= - X y ( l + en(r/Ri)), R, ^ r < R, (24) 
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"04= - P - ( 1 + X ) y ? n (3R RD' 
1 + 

-p + Y{l+ln(r/Ri)), RD ^ r ^ R^ 

r2 

(25) 

°6S — -[.-(1 + X)r.n(|̂ )]- RD' 

VJ 
1 + 

/ ? / 
i?^ < r < /J2 

where i?o is calculated in an iterative fashion from 

(1+X) 
/?2^ - RD^ 

2R-P-
+ (ni.Ro/Ri) 

(26) 

(27) 

Once again, the total moment acting over any radial cut is given by Eq 23, thus when 
reversed yielding occurs 

M oos r X dr (28) 

The reduction in opening arising from a Bauschinger effect equivalent to X = 0.5 can 
be calculated, leading to a plot similar to Fig. 8. The maximum reduction Ln opening is 
approximately 8 percent as a result of this magnitude of Bauschinger effect. Deviations 
from this figure do not exceed 1 percent for 1.8 < R2/R\ s 2.2. 
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ABSTRACT; This paper presents empirical stress-intensity factor equations for em
bedded elliptical cracks, semielliptical surface cracks, quarterelliptical comer cracks, 
semielliptical surface cracks at a hole, and quarterelliptical comer cracks at a hole in finite 
plates subjected to remote tensile loading. These equations give stress-intensity factors as a 
function of parametric angle, crack depth, crack length, plate thickness, and, where ap
plicable, hole radius. The stress-intensity factors used to develop the equations were ob
tained from current and previous three-dimensional finite-element analyses of these crack 
configurarions. A wide range of configuration parameters was included in the equations. 
The ratio of crack depth to plate thickness ranged from 0 to 1, the ratio of crack depth to 
crack length ranged from 0.2 to 2, and the ratio of hole radius to plate thickness ranged 
from 0.5 to 2. The effects of plate width on stress-intensity variations along the crack front 
also were included, but generally were based on engineering estimates. For all combina
tions of parameters investigated, the empirical equations were generally within 5 percent of 
the finite-element results, except within a thin "boundary layer" where the crack front in
tersects a free surface. However, the proposed equations are expected to give a good 
estimate in this region because of a study made on the boundary-layer effect. These equa
tions should be useful for correlating and predicting fatigue crack growth rates as well as in 
computing fracture toughness and fracture loads for these types of crack configurations. 

KEY WORDS; cracks, surface cracks, comer cracks, crack propagation, fracture, stress 
analysis, fatigue (materials), stress-intensity factors, finite elements 

Nomenclature 

a Depth of crack 
b Width or half-width of cracked plate (see Fig. 2) 
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c Length or half-length of crack (see Fig. 2) 
F Boundary-correction factor on stress intensity 

Fc Boundary-correction factor for comer crack in a plate 
Fg Boundary-correction factor for embedded crack in a plate 
F, Boundary-correction factor for surface crack in a plate 

F^i, Boundary-correction factor for surface crack at a hole in a plate 
Fc-i, Boundary-correction factor for comer crack at a hole in a plate 
f„ Finite-width correction factor 
/^ Angular function derived from embedded elliptical crack solution 
gj Curve fitting functions defined in text 
h Half-length of cracked plate 

Ki Stress-mtensity factor (Mode I) 
M, Curve fitting functions defined in text 
Q Shape factor for an elliptical crack 
R Radius of hole 
S Remote uniform tensile stress 
t Thickness or half-thickness of plate (see Fig. 2) 
p Poisson's ratio 

(t> Parametric angle of the ellipse 

In aircraft stmctures, fatigue failures usually occur from the initiation and 
propagation of cracks from notches or defects in the material that are either 
embedded, on the surface, or at a comer. These cracks propagate with elliptic 
or near-elliptic crack fronts. To predict crack-propagation life and fracture 
strength, accurate stress-intensity factor solutions are needed for these crack 
configurations. But, because of the complexities of such problems, exact solu
tions are not available. Instead, investigators have used approximate analyti
cal methods, experimental methods, or engineering estimates to obtain the 
stress-intensity factors. 

Very few exact solutions for three-dimensional cracked bodies are available 
in the literature. One of these, an elliptical crack in an infinite solid subjected 
to uniform tension, was derived by Irwin [1]^ using an exact stress analysis by 
Green and Sneddon [2]. For finite bodies, all solutions have requked approx
imate analytical methods. For a semickcular surface crack in a semi-infinite 
solid and a semielliptical surface crack in a plate of finite thickness. Smith, 
Emery, and Kobayashi [J] and Kobayashi [4], respectively, used the alter
nating method to obtain stress-intensity factors along the crack front. Raju 
and Newman [5,6] used the finite-element method, and Heliot, Labbens, and 
Pellissier-Tanon [7] used the boundary-integral equation method to obtain the 
same information. For a quarterelliptic comer crack in a plate, Tracey [8] and 
Pickard [9] used the finite-element method; Kobayashi and Enetanya [10] 
used the alternating method. Shah [//] estimated the stress-intensity factors 

•'The italic numbers in brackets refer to the list of references appended to this paper. 

 



1-240 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 

for a surface crack emanating from a circular hole. For a single comer crack 
emanating from a circular hole in a plate, Smith and KuUgren [12] used a 
finite-element-altemating method to obtaui the stress-intensity factors. 
Hechmer and Bloom [13] and Raju and Newman [14] used the finite-element 
method for two-symmetric comer cracks emanating from a hole in a plate. All 
of these approximate results, except that for the surface crack [6,9] and the 
comer crack [9], were presented in the form of curves or tables. However, for 
ease of computation, results expressed in the form of equations are preferable. 

This paper presents empirical equations for the stress-intensity factors for a 
wide variety of three-dimensional crack configurations subjected to uniform 
tension as a function of parametric angle, crack depth, crack length, plate 
thickness, and hole radius (where applicable). An example is shown in Fig. 1. 
These crack configurations, shown in Fig. 2, include the following: an embed
ded elliptical crack, a semielliptical surface crack, a quarterelliptical comer 
crack, a semielliptical surface crack at a hole, and a quarterelliptical comer 
crack at a hole in finitie plates subjected to remote tensile loading. The equa
tions were based on the stress-intensity factors obtained from three-
dimensional finite-element analyses conducted herein and from the literature 
[5,14], and cover a wide range of configuration parameters. The ratio of crack 

FIG. 1—Comer cracks at the edge of a hole in a finite plate subjected to remote tension. 
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FIG. 2—Embedded-, surface-, and corner-crack configurations (all cracks have elliptical 
fronts). 

depth to plate thickness {a/t) ranged from 0 to 1, the ratio of crack depth to 
crack length {a/c) ranged from 0.2 to 2, and the ratio of hole radius to plate 
thickness {R/t) ranged from 0.5 to 2. The effects of plate width {b) on stress-
intensity variations along the crack front also were included, but generally 
were based on engineering estimates. 

Thiee-Dimensional Finite-Element Analyses 

Three-dimensional finite-element analyses [5.14] using linear-strain and 
singularity elements were used to calculate the Mode I stress-intensity factor 
variation along the crack front for an embedded elliptical crack, a quarterel-
liptical comer crack, and a semielliptical surface crack at a hole in a finite 
plate subjected to remote tensile loading (see Fig. 2). The finite-element 
models used for these configurations were the same as those used in Refs 5 and 
14 for surface cracks and comer cracks at holes. The only differences were the 
boundary conditions that were imposed on certain faces of the models. For 
embedded cracks and surface cracks at holes, the normal displacements on 
three planes of symmetry were fixed (set equal to zero), except for the crack 
surface. For a comer crack in a plate, the normal displacements on the two 
faces that intersect the crack were free. 

The stress-intensity factors were obtained from the finite-element analyses 
by using a nodal-force method, the details of which are given in Refs 5 and 15. 
In this method, the nodal forces normal to the crack plane and ahead of the 
crack front were used to evaluate the stress-intensity factors. 
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The stress-intensity factor, K^, at any point along the crack front in a finite-
thickness plate was taken to be 

, a I a a R 
(1) 

where Q is the shape factor for an ellipse and is given by the square of the com
plete elliptic integral of the second kind [2]. In the finite-element models, the 
width {b) and length {h) of the plate were taken to be large enough so that they 
would have a negligible effect on stress intensity. The boundary correction, F, 
accounts for the influence of various boundaries and is a function of crack 
depth, crack length, hole radius (where applicable), plate thickness, and the 
parametric angle of the ellipse. Figure 3 shows the coordinate system used to 
define the parametric angle. 

Very useful empirical expressions for Q have been developed by Rawe (see 
Ref 6). The expressions are 

(2 = 1 + 1.464(—j f o r — < 1 

1.65 a 
( 2 = 1 + 1.464( —1 f o r — > 1 

(2a) 

{2b) 

The maximum error in the stress-intensity factor by using these equations for 
Q was about 0.13 percent for all values of a/c. (Rawe's original equation was 
written in terms of a/2c). 

The boundary-correction factors, F, obtained from the present finite-ele-

T 
a 

1 
(a) a/c s 1 (t>) a/c =• 1 

FIG. 2—Coordinate system used to define parametric angle. 
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ment results for the embedded elliptical crack and the quarterelliptic comer 
crack in a finite plate subjected to uniform tension are given in Tables 1 and 2, 
respectively, for various parametric angles and several a/c and a/t ratios. 
Tables 3 and 4 give the boundary-correction factors for two-symmetric semiel-
liptical surface cracks emanating from a circular hole in a finite plate sub
jected to uniform tension for R/t equals 1 and 2, respectively. 

TABLE 1—Boundary correction factors, F, for embedded 
elliptical crack in a plate subjected to tension ^c/b < 0.2: h/b = I: 

V = 0.3). 

a/c 

0.2 

0.4 

1.0 

2.0 

2<p/7r 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.875 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.875 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.875 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.875 
1.0 

0.2 

0.450 
0.531 
0.643 
0.750 
0.838 
0.905 
0.951 
0.978 
0.987 

0.632 
0.656 
0.715 
0.789 
0.857 
0.914 
0.954 
0.978 
0.987 

0.986 
0.986 
0.986 
0.986 
0.986 
0.986 
0.986 
0.986 
0.986 

0.709 
0.703 
0.686 
0.658 
0.622 
0.579 
0.536 
0.503 
0.490 

a/t 

0.5 

0.473 
0.556 
0.678 
0.794 
0.893 
0.978 
1.042 
1.083 
1.097 

0.660 
0.685 
0.748 
0.826 
0.900 
0.964 
1.014 
1.046 
1.056 

1.009 
1.009 
1.008 
1.006 
1.006 
1.008 
1.010 
1.012 
1.013 

0.713 
0.707 
0.690 
0.662 
0.625 
0.582 
0.539 
0.506 
0.494 

0.8 

0.514 
0.605 
0.745 
0.884 
1.015 
1.176 
1.329 
1.438 
1.480 

0.721 
0.749 
0.821 
0.905 
0.995 
1.105 
1.211 
1.285 
1.312 

1.060 
1.058 
1.050 
1.035 
1.036 
1.059 
1.093 
1.114 
1.121 

0.720 
0.714 
0.697 
0.669 
0.633 
0.592 
0.552 
0.522 
0.511 
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TABLE 2—Boundary correction factors, F, for comer crack in a 
plate subjected to tension ^c/b £ 0.2: h/b = 1: v= 0.3). 

a/c 

0.2 

0.4 

1.0 

2.0 

WT 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.875 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.875 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.875 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.875 
1.0 

0.2 

0.555 
0.633 
0.753 
0.871 
0.973 
1.055 
1.115 
1.159 
1.156 

0.791 
0.774 
0.824 
0.893 
0.964 
1.026 
1.075 
1.117 
1.132 

1.162 
1.111 
1.079 
1.064 
1.059 
1.063 
1.078 
1.109 
1.159 

0.800 
0.787 
0.756 
0.722 
0.683 
0.640 
0.600 
0.579 
0.586 

a/t 

0.5 

0.761 
0.840 
0.988 
1.141 
1.277 
1.397 
1.495 
1.580 
1.610 

0.990 
0.952 
0.997 
1.067 
1.140 
1.210 
1.273 
1.334 
1.365 

1.275 
1.207 
1.160 
1.134 
1.121 
1.123 
1.140 
1.176 
1.233 

0.826 
0.811 
0.776 
0.738 
0.697 
0.653 
0.612 
0.590 
0.597 

0.8 

1.288 
1.340 
1.522 
1.705 
1.850 
2.008 
2.118 
2.263 
2.450 

1.397 
1.297 
1.310 
1.346 
1.384 
1.458 
1.528 
1.627 
1.788 

1.487 
1.378 
1.290 
1.219 
1.180 
1.191 
1.231 
1.301 
1.416 

0.862 
0.837 
0.793 
0.750 
0.704 
0.660 
0.624 
0.611 
0.625 

Stress-IntensMy Factor Equations 

In the following sections, the empirical stress-intensity factor equations for 
embedded elliptical cracks, semielliptical surface cracks, quarterelliptical 
comer cracks, semielliptical surface cracks at a hole, and quarterelliptical cor
ner cracks at a hole in finite plates (see Fig. 2) subjected to remote tension are 
presented. The particular functions chosen were obtained from systematic 
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TABLE 3—Boundary correction factors, F,for surface crack at 
center of hole in a plate subjected to tension [fR + cj/h < 0.2; h /b 

> 1.6; V - 0.3; R/t = //. 

a/c 

0.2 

0.4 

1.0 

2.0 

2 « / T 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.833 
0.917 
0.958 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.833 
0.917 
0.958 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.833 
0.917 
0.958 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.833 
0.917 
0.958 
1.0 

0.2 

0.641 
0.692 
0.836 
1.011 
1.196 
1.405 
1.651 
1.905 
2.179 
2.288 
1.834 

1.030 
1.076 
1.202 
1.376 
1.578 
1.804 
2.040 
2.238 
2.396 
2.376 
1.844 

2.267 
2.276 
2.301 
2.343 
2.404 
2.481 
2.566 
2.620 
2.622 
2.468 
1.950 

1.944 
1.931 
1.897 
1.840 
1.763 
1.669 
1.580 
1.498 
1.426 
1.313 
1.042 

a/t 

0.5 

0.607 
0.662 
0.775 
0.905 
1.032 
1.178 
1.362 
1.583 
1.885 
2.121 
1.958 

0.872 
0.912 
1.007 
1.131 
1.275 
1.452 
1.667 
1.891 
2.141 
2.255 
1.923 

1.806 
1.818 
1.851 
1.905 
1.980 
2.079 
2.206 
2.321 
2.415 
2.370 
1.957 

1.606 
1.600 
1.582 
1.553 
1.514 
1.468 
1.434 
1.404 
1.387 
1.321 
1.082 

0.8 

0.593 
0.643 
0.771 
0.919 
1.094 
1.293 
1.528 
1.765 
2.050 
2.336 
2.329 

0.840 
0.872 
0.959 
1.074 
1.234 
1.426 
1.668 
1.914 
2.201 
2.411 
2.224 

1.615 
1.619 
1.630 
1.646 
1.730 
1.852 
2.049 
2.250 
2.452 
2.512 
2.203 

1.394 
1.389 
1.377 
1.357 
1.333 
1.313 
1.310 
1.313 
1.332 
1.294 
1.077 
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TABLE 4—Boundary correction factors, F,for surface crack at 
center of hole in a plate subjected to tension [(R + c>/b < 0.2: 

h/b > 1.6; V = 0.3: R/t = 2]. 

a/c 

0.2 

0.4 

1.0 

2.0 

WT 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.833 
0.917 
0.958 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.833 
0.917 
0.958 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.833 
0.917 
0.958 
1.0 

0 
0.125 
0.25 
0.375 
0.5 
0.625 
0.75 
0.833 
0.917 
0.958 
1.0 

0.2 

0.800 
0.864 
1.046 
1.272 
1.508 
1.766 
2.041 
2.279 
2.474 
2.439 
1.791 

1.290 
1.346 
1.498 
1.704 
1.932 
2.165 
2.378 
2.516 
2.564 
2.417 
1.776 

2.620 
2.626 
2.642 
2.667 
2.700 
2.732 
2.753 
2.733 
2.643 
2.409 
1.862 

2.136 
2.121 
2.075 
2.000 
1.899 
1.777 
1.659 
1.552 
1.456 
1.325 
1.041 

a/t 

0.5 

0.680 
0.743 
0.877 
1.037 
1.206 
1.410 
1.662 
1.932 
2.238 
2.375 
1.947 

1.058 
1.107 
1.227 
1.384 
1.568 
1.785 
2.026 
2.237 
2.418 
2.416 
1.894 

2.188 
2.199 
2.232 
2.280 
2.341 
2.410 
2.483 
2.527 
2.521 
2.381 
1.888 

1.922 
1.911 
1.879 
1.826 
1.756 
1.671 
1.593 
1.522 
1.463 
1.360 
1.088 

0.8 

0.634 
0.690 
0.832 
1.002 
1.213 
1.469 
1.787 
2.109 
2.463 
2.699 
2.380 

0.972 
1.010 
1.118 
1.263 
1.470 
1.722 
2.031 
2.319 
2.595 
2.705 
2.258 

1.990 
1.9% 
2.009 
2.026 
2.121 
2.246 
2.437 
2.599 
2.716 
2.662 
2.192 

1.712 
1.704 
1.681 
1.643 
1.594 
1.541 
1.499 
1.461 
1.434 
1.351 
1.089 

 



NEWMAN AND RAJU ON STRESS-INTENSITY FACTOR EQUATIONS 1-247 

curve-fitting procedure by using double-series polynomials in terms of a/c, 
a/t, and angular functions of </>. For cracks emanating from holes, polynomial 
equations in terms of c/R and 0 also were used. The limits on a/c, a/t, R/t, 
R/h, c/b, and <t> in the equations were determined from either the analysis or 
engineering estimates. 

Embedded Elliptical Crack 

The empirical stress-intensity factor equation for an embedded elliptical 
crack in a finite plate (shown in Fig. 2a) subjected to tension was obtained by 
fitting to the finite-element results presented in Table 1. To account for limit
ing behavior as a/c approaches zero or infinity, the results of Irwin [/] also were 
used. The equation is 

for 0 < a/c < 00, c/b < 0.5, and — TT < 0 < ir provided that a/t satisfies 

— < 1.25(^ + 0.6) for0<-^<0.2 

— < 1 for 0.2 < — < 00 
t c 

The function F^ accounts for the influence of crack shape (a/c), crack size 
(a/t), finite width (c/b), and angular location (0), and was chosen as 

F = M , + M 2 ( j l +M3[-
a 4̂ 

gf,t>f« (5) 

The term in brackets gives the boundary-correction factors at </> = x/2 (where 
g = f,j, = 1). The function/^ was taken from the exact solution for an em
bedded elliptical crack in an infinite solid [7 J and/„ is a finite-width correction 
factor. The function g is a fine-tuning curve-fitting function. For a/c < 1 

M , = 1 (6) 

0.05 
^2 = T-VTT, (7) 

0.11+ ( -
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M , = 
0.29 

0.23 + f — 

g = i -
1 + 4 

COS</)| 

(8) 

(9) 

and 

/* = cos^ (j) + sin^ 4) 
1/4 

(10) 

The finite-width correction,/„, from Ref 6 was 

f« sec 
xc 

2fc 

1/2 

(11) 

for c/fe < 0.5. (Note that for the embedded crack, t is defined as one half of the 
full plate thickness.) For a/c > 1 

Mi = (12) 

and 

/ . = — ) sin^ 0 + cos^ <t> 
1/4 

(13) 

The functions M2, M3, ^, and/„ are given by Eq 7, 8, 9, and 11, respectively. 
As a/c approaches zero and <ji equals -x/l, the stress-intensity factor equa

tion reduces to 

Ki = SyJWa 1 + 0.455 ( — ) +1.261 (14) 

for c/b = 0. Equation 14 is within 1 percent of the accepted solution [16] for 
a/t < 0.55 and within 3 percent for a/t < 0.8. 

As a/c approaches infinity and 0 equals zero, the equation reduces to 

Ki = S^irc 
1/2 

(15) 
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Equation 15 is the accepted solution [16] for this configuration as a/t ap
proaches unity. 

A typical comparison between the proposed equation and the finite-element 
results for an embedded elliptical crack is shown in Fig. 4 for a/c = 0.4 and 
various a/t ratios. The boundary-correction factor, Fg, is plotted against the 
parametric angle. At 0 = 0 and ir/2, the equation (solid curves) is within 2 
percent of the finite-element results (symbols). (Herein "percent error" is 
defined as the difference between the equation and the finite-element results 
normalized by the maximum value for that particular case. This definition is 
necessary because the stress-intensity factors in some cases vary from small to 
large values along the crack front.) The dashed curve shows the exact solution 
for an elliptic crack in an infinite solid [/]. These results indicate that the 
finite-element solution for a/t = 0.2 is probably about 1.5 percent below the 
exact solution. Because the proposed equation is slightly higher than the 
finite-element results, the equation should be very accurate. 

Semielliptical Surface Crack 

An empirical equation for the stress-intensity factors for a semielliptical sur
face crack in a finite plate (shown in Fig. Ih) subjected to tension was obtained 
from Ref 6. This equation was fitted previously to the finite-element results 

20 
TT 

FIG. 4—Distribution of boundary-correction factors along crack front for an embedded ellip
tical crack (si/c = 0.4; c/b = 0.1). 
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from Raju and Newman [5] for a/c values from 0.2 to 1. An equation for a/c 
greater than unity was developed herein. To account for the limiting behavior 
as a/c approaches zero, the results of Gross and Srawley {17\ for a single-edge 
crack also were used. The equation is 

•̂ = ̂ "t47'7-i-* (16) 

for 0 < a/c < 2, c/b < 0.5, and 0 < </> < x, again, provided that a/t satisfies 
Eq 4. The function F^ was chosen to be 

M,+M2{-jj +M,(j gf^L (17) 

For a/c < 1 

Ml = 1.13-0.09 ( — (18) 

Mj = -0 .54 + 
0.89 

0.2 + 
(19) 

M3 = 0.5 

0.65 + — 
c 

+ 14 1 
a \ c 

(20) 

5 = 1 + 0.1+0.351 — (l-sin<A)2 (21) 

and/^ is given by Eq 10. The finite-width correction,/„, is again given by 
Eq 11. (The 24th power in Eq 20 was needed to fit the behavior as a/c ap
proaches zero.) Equations 17 through 21 were taken from Ref 6. 
For a/c > 1 

A/i= /—(1 + 0.04' ' 
' a \ a 

M2 = 0.2 

M3= -0 .11 

(22) 

(23) 

(24) 
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g = \ + 0.1 + 0.351—j ( - ( 1 - s i n 0)2 (25) 

and/^ a.ndf„ are given by Eqs 13 and 11, respectively. 
Figure 5 shows the distribution of boundary-correction factors, Fj, along the 

crack front for a semielliptical surface crack with a/c = 2 for two a/c ratios. 
The proposed equation (solid curves) is within 3 percent of the finite-element 
results (symbols). 

For a/c < 1, Ref 6 gives a more complete comparison between the proposed 
equation and the finite-element results. In Ref 6, the equation also was used to 
predict surface crack-growth patterns under tension fatigue loads. These 
predicted crack-growth patterns were in good agreement with measurements 
made on steel, titanium alloy, and aluminum alloy materials. In Ref 18, the 
equation also was used to correlate surface-crack fracture data for a brittle 
epoxy material within ± 10 percent over a wide range of crack shapes (a/c) and 
crack sizes (a/t). 

Quarterelliptical Comer Crack 

The empirical stress-intensity factor equation for a quarterelliptical comer 
crack in a finite plate (shown in Fig. 2c) subjected to tension was obtained by 

FIG. 5—Distribution of boundary-correction factors along crack front for a semielliptical sur
face crack {a/c = 2: c/b = 0.04). 
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fitting to the finite-element results presented in Table 2. The equation is 

^. = 'yj^^c(7,7,«^) (26) 

for 0.2 < a/c < 2, aA < 1, andO < <̂  < 1^/2 for c/b < 0.2. The functioniv 
was chosen as 

F.= M,+M2[jj +^3'^^ glglf^ (27) 

(Although the effects of width are significant, f„ is not included in Eq 27 
because results on finite-width plates were not available for comparison.) For 
a/c < 1 

M, = 1.08-0.03 — 

1.06 
M2 = -0.44 + 

0.3-f ( — 

(28) 

(29) 

M3 = -0.5 -f 0.25 ( — j + 14.8 (1 - - (30) 

8x = i + 0.08 + 0.4 ( — (1-sinewy' (31) 

52 = 1 + 0.08 + 0.151-!. ( 1 ~ cos 0)3 (32) 

and/0 is given by Eq 10. 
For a/c > 1 

Ml = ̂ |—( 1.08-0.03 ̂  

M2 = 0.375 

(33) 

(34) 

M3 = -0.25 (35) 
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51 = 1 + 0.08 + 0.4 ( — (l-sm<^)3 (36) 

g2 = i + 0.08 + 0.151 — ( 1 - c o s 0)3 (37) 

and/^ is given by Eq 13. 
Figure 6 shows boundary-correction factors obtained by several investiga

tors for a quartercircular comer crack in a finite-thickness plate (a/t = 0.2) 
under tension loading. The present finite-element results are shown as solid 
circular symbols and the proposed equation is shown as the solid curve. Tracey 
[8] and Pickard [9] also used the finite-element method, but the width (b) and 
half-length (A) of their models were equal to the plate thickness (see dashed 
and dash-dot lines in the insert in Fig. 6). Kobayashi [10] used the alternating 
method, but the a/c ratio was 0.98. Pickard's results were 1 to 3 percent higher 
than the present finite-element results. Part of the difference is due to a width-
and length-effect in Pickard's model. The present results are expected to be 
about 1.5 percent below the exact solution. Near <p = 0 and ir/l, Tracey's 
and Kobayashi's results are 5 to 13 percent higher than present results. All 
results are in good agreement (within 3 percent) at the midpoint (0 = ir/A). 

1.5r 

Eq, 27 • Present results (b = 5t; h = 5t) 
o Pickard [9] (b = t; h = t) 
Q Tracey [81 (r = t; h - t) 
A Kobayashi 110] (a - 0.98c) 

h 

£1 
\^t^ 

.5 
20 

FIG. 6—Compamon of boundary-correction factors for quartercircular comer crack in a 
plate subjected to tension (a/c = 1; a/f = 0.2). 
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Figures 7 and 8 show the distribution of boundary-correction factors, F^, 
along the crack front for a quartercircular (a/c — 1) and semielliptical {a/c — 
0.2) comer crack, respectively, in a finite plate subjected to tension. The fig
ures show the results for several a/t ratios. The proposed equation (solid 
curves) is generally within about 2 percent of the finite-element results (sym
bols), except near the mtersection of the crack front with the free surfaces (</> = 
0 and z/2). Near these points, the equations is generally higher than the finite-
element results, the maximum difference being about 5 percent. These low 
values at the free surfaces are probably due to a boundary-layer effect [19] and 
this behavior is discussed in the appendix. 

Semielliptical Surface Crack at Hole 

Two-Symmetric Surface Cracks—The empirical stress-intensity factor 
equation for two-symmetric semielliptical surface cracks at the center of a hole 
in a finite plate (shown in Fig. 2d) subjected to tension was obtained by fitting 
to the finite-element results presented here (Tables 3 and 4). The equation is 

^i-sj^F..(7,7,7,j,f,<^ (38) 

2.Or 

' c : . o -

20 

FIG. 7—Distribution of boundary-correction factors along crack front for quartercircular 
comer crack (ajc = J; c/b = 0.04). 
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2 • 

1 
a 
T 

h b-

k-c-^ 

Eq. 27 

H 

iiS'̂ . 
t 
t 
1 

Eq. 27 

a/t 

^—-"A 

•3,_e- Q 

L-^-^^-^T-—o 

Finite-element results 

•K 

FIG. 8—Distribution of boundary-correction factors along crack front for quarterelliptic cor
ner crack /"a/c = 0.2; c/b = 0.2). 

for 0.2 < a/c <2,a/t < 1, 0.5 < /?A < 2, (/? + c)/Z» < 0.5, and - ir /2 < 
0 < x/2. (Note that here t is defined as one half of the full plate thickness.) The 
function Fs/, was chosen as 

^sh — M,+M2{jy + MJj^' gigigiUL (t>Jw (39) 

For a/c < 1 

Mn 

Mi = l 

0.05 

0.11 + ( -
3/2 

(40) 

(41) 

M , = 
0.29 

0.23 + 
3/2 (42) 
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g; = i 7—7- cos(j) (43) 

' - 7 

1 + 0.358X + 1.425X2 _ 1 573x3 + 2.156X4 

where 

^^ 1 + 0.08X2 ^"^^ 

X = ^ (45) 

1 +—cos(0.9<^) 
R 

g2=l + 0A(l-cos<i>)''(l-jj (46) 

The function/^ is given by Eq 10. (The 10th power in Eq 46 was needed to fit 
the behavior as a/t approaches zero.) The finite-width correction, f„, was 
taken as 

/« = 
•KR\ ( -AIR ^nc) a 1/2 

(47) 

where « = 1 is for a single crack, H = 2 is for two-symmetric cracks, and the 
hole is located in the center of the plate. This equation was chosen to account 
for the effects of width on stress concentration at the hole [20] and for crack ec
centricity [16]. For a/c > 1 

M, = ^ (48) 

The functionsM2, M3, g\,g2, g3, and X are given by Eqs41 through 46, and the 
functions/^ and/„ are given by Eqs 13 and 47, respectively. 

Estimates for a Single-Surface Crack—The stress-intensity factors for a 
single-surface crack located at the center of a hole can be estimated from the 
present results for two-symmetric surface cracks by using a conversion factor 
developed by Shah [//]. The relationship between one- and two-surface cracks 
was given by 

4 ac 
X 2//? 

( ^ l ) o „ e = H ( ^ l ) two (49) 
crack >» I _ i ^^ cracks 

IT tR 
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where Ki for two cracks must be evaluated for an infinite plate {f^. = 1) and 
then the finite-width correction for one crack must be applied. Shah had as
sumed that the conversion factor was constant for all locations along the crack 
front, that is, independent of the parametric angle. 

Comparison with Another Stress-Intensity Solution—Figure 9 shows a com
parison between the present results and those estimated by Shah [//] for two-
symmetric semicircular {a/c = 1) and semielliptical {a/c — 0.2) surface 
cracks emanating from a hole in a plate subjected to tension. The present re
sults (solid symbols) show the distribution of boundary-correction factors, F^h, 
as a function of the parametric angle. The open symbols show the results esti
mated by Shah. The proposed equation (solid curves) is in good agreement 
with the results estimated by Shah, but the equation is about 5 percent higher 
(based on peak value) than the present results in the midregion for the semiel-
liptic crack. Near the intersection of the crack front with the free surface (4) — 
7r/2), the present results show a sharp reduction. As previously mentioned, 
this reduction is probably due to a boundary-layer effect (see Appendix). 
However, as mentioned in the Appendix, further mesh refinement in this 
region caused the stress-intensity factors to be higher very near the intersection 
point, but lower at the surface. Also, the stress-intensity factors in the interior 
region 0 < 2<̂ /7r < 0.8 were unaffected by mesh refinement. Therefore, the 
equation was fitted in the interior region (2<A/7r <0.8) only. However, the pro-

2 * 
TT 

FIG. 9—Comparison of boundary-correction factors for semielliptical surface cracks at a hole 
subjected to tension (T?/t = 1: a/t = 0.2: R/b < 0.05). 
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posed equation, extrapolated to the surface, is probably a good estimate for 
the limiting behavior due to mesh refinement. 

The influence of crack shape (a/c) on the distribution of boundary-correc
tion factors is shown in Fig. 10. The open symbols show the estimated results 
from Shah [//]. The solid symbols show the present finite-element results for 
a/c = 2. The solid curves show the results from the proposed equation for a 
semielliptical surface crack at a hole with R/t = 0.5. The agreements are very 
good. 

Effects of Crack Depth-to-Plate Thickness—Figure 11 shows the distribu
tion of boundary-correction factors, F^h, along the crack front for two-sym
metric semicircular surface cracks at a hole {R/t = 1) with various a/t ratios. 
The proposed equation (solid curves) is generally within a few percent of the 
finite-element results (symbols), except near the intersection of the crack front 
with the hole surface (0 = x/2). Here, again, the proposed equation is ex
pected to give a good estimate for the limiting behavior due to mesh refinement 
in this region. 

Quarterelliptical Comer Crack at a Hole 

Two-Symmetric Comer Cracks—The empirical stress-intensity factor equa
tion for two-symmetric quarterelliptical comer cracks at a hole in a finite plate 

'"sh 

Present results 

2b M 

1-2RH 

Shah [ i n 

20 

FIG. 10—Comparison of boundary-correction factors for semielliptical surface cracks at a 
hole subjected to tension as a function of i/c ^R/t = 0.5: a/t = 0.2: R/b < 0.1). 
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•̂ sh 

2 * 
•n 

FIG. 11—Distribution of boundary-correction factors along crack front for semicircular sur
face cracks at a hole (T^'t = / ; a/c = / ; R/b < 0.1). 

(shown in Fig. 2e) subjected to tension was obtained by fitting to the finite-
element results in Ref 14. The equation is 

^i-^J-^^c.(7.7'7'f'f.0 (50) 

for 0.2 < a/c < 2, a/t < 1, 0.5 < R/t < ! , ( / ?+ c)/b < 0.5, and 0 < <̂  < 
x/2. The function F^i, was chosen as 

fcH = My+Mji^y + AtJ-j^' g\g2giUL (51) 

For a/c < 1 

M, = 1.13-0.09 (52) 

M->= -0.54 + 
0.89 

0.2+ — 
c 

(53) 

 



-260 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 

M3 = 0.5 • 

51 = 1 + 

0.65 + 

0.1 + 0.35 

+ 14 1 
a \ c 

24 

( 1 - s i n 0)2 

g2 = 

where 

1 + 0.358X + 1.425X2 _ 1.578x3 + 2.156X^ 

1 + 0.13X2 

X = 

(54) 

(55) 

(56) 

(57) 
1 + —cos (0.850) 

R. 

The function ^3 is given by 

53= 1 + 0.04— [l + O.l( l -cos0)2] 0.85 + 0.15 
1/4 

(58) 

Functions/^ and/w are given by Eqs 10 and 47, respectively. For a/c > 1 

M, = / — ( 1 + 0.04^ 

51 = 1 + 

M2 = 0.2( — 

Ml = - 0 . 1 1 

0.1+0.35|f) f ( 1 - s i n 0)2 

(59) 

(60) 

(61) 

(62) 

Functions g2 and X are given by Eqs 56 and 57. The function ^3 is given by 

0.85 + 0.151 — g3 = (1.13 - 0.09—j [1 + 0.1 (1 - cos0)2] 

The functions/0 and/n, are given by Eqs 13 and 47, respectively. 

1/4 
(63) 
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Estimates for a Single-Comer Crack—The stress-intensity factors for a 
single-comer crack at a hole can be estimated from the present results for two-
symmetric comer cracks by using the Shah conversion factor (Eq 49). Raju 
and Newman [14] have evaluated the use of the conversion factor for some cor
ner crack-at-a-hole configurations. The stress-intensity factor obtained using 
the conversion factor were in good agreement with the results from Smith and 
Kullgren [12] for a single-comer crack at a hole. 

Effects of Plate Thickness and Crack Shape—Figures 12 and 13 show the 
distribution of boundary-correction factors, F^h, along the crack front for two-
symmetric quarterelliptical comer cracks at a hole. The effects of crack size 
{a/t) on the distribution are shown in Fig. 12. The finite-element results are 
shown as symbols and the proposed equation is shown as the solid curves. 
Again, the equation is in good agreement with the finite-element results, ex
cept near </> = 0 and -K/I. Here again the boundary-layer effect [19], as men
tioned previously, is causing low values of boundary-correction factors. Fur
ther mesh refinement in this region is shown in the Appendix to give higher 
boundary-correction factors near the free surface, but lower values at the sur
face. Thus, the equation is expected to give a good estimate in the'se regions. 

The effects of crack shape {a/c) on the distribution of boundary-correction 
factors are shown in Fig. 13. Again, the proposed equation (solid curves) is in 

2* 

FIG. 12—Distribution of boundary-correction factors along crack front for quartercircular 
comer cracks at a hole fR/t = 0.5; a/c = / ; R/b < 0.1). 
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• 2 b -
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FIG. 13—Distribution of boundary-correction factors along crack front for quarterelliptical 
corner cracks at a hole fR/t = /; a/t = 0.8: R/b < 0.1). 

good agreement with the finite-element results (symbols), except near the in
tersection points (<̂  = 0 and x/2). 

In summary, for all combinations of parameters investigated and a/t < 0.8, 
the equations were within a few percent of the finite-element results. The max
imum error was about 5 percent, except where the crack front intersects a free 
surface. For a/t > 0.8, the accuracy of the equations has not been established 
because there are no solutions available for comparison. However, their use in 
that range appears to be supported by estimates based on a part-through crack 
approaching a through crack. The effects of plate width on stress-intensity 
variations along the crack front also were included, but generally were based 
on engineering estimates. Table 5 gives the range of applicability of <{>, a/t, 
a/c, R/t, and {R + c)/b for the proposed equations. 

Concluding Remarks 

Stress-intensity factors from three-dimensional finite-element analyses were 
used to develop empirical stress-intensity factor equations for a wide variety of 
crack configurations subjected to remote uniform tension. The following con
figurations were included: an embedded elliptical crack, a semielliptical sur
face crack, a quarterelliptical comer crack, a semielliptical surface crack at 
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TABLE 5—Range of applicability for stress-intensity factor equations. 

Configuration 

Embedded crack in plate 
Surface crack in plate 
Comer crack in plate 
Surface crack at hole'' 
Comer crack at hole"̂  

Equation 

3 
16 
26 
38 
50 

0 

— TT to 7r 
OtOTr 
0 to »/2 

— V2 to •/2 
0 to V2 

a/t 

a 

a 

<i 
< i 
< i 

a/c 

0 to 00 
0 t o 2 

0.2 to 2 
0.2 to 2 
0.2 to 2 

R/t 

0.5 to 2 
0.5 to 1 

(R + c)/b 

<0.5' ' 
<0.5* 
<0.2' ' 
<0.5 
<0.5 

"a/t < 1.25 (u/c + 0.6). 
''R = 0. 
•̂ One or two-symmetric cracks. 

the center of a hole, and a quarterelliptical comer crack at the edge of a hole in 
finite plates. The empirical equations cover a wide range of configuration 
parameters. The ratio of crack depth to plate thickness {a/i) ranged from 0 to 
1, the ratio of crack depth to crack length {a/c) ranged from 0.2 to 2, and the 
ratio of hole radius to plate thickness {R/t) ranged from 0.5 to 2. The effects of 
plate width {b) on stress-intensity variations along the crack front also were in
cluded, but were based on engineering estimates. 

For all configurations for which ratios of crack depth to plate thickness do 
not exceed 0.8, the equations are generally within 5 percent of the finite-ele
ment results, except where the crack front intersects a free surface. Here the 
proposed equations give higher stress-intensity factors than the finite-element 
results, but these higher values probably represent the limiting behavior as the 
mesh is refined near the free surface. For ratios greater than 0.8, no solutions 
are available for direct comparison; however, the equations appear reasonable 
on the basis of engineering estimates. 

The stress-intensity factor equations also were compared with other solu
tions reported in the literature for some of the configurations investigated. The 
proposed equations were in good agreement with some of the reported results. 
For limiting cases, as crack depth-to-plate thickness {a/t) or crack depth-to-
crack length {a/c) approach limits, the proposed equations reduce to exact or 
accepted solutions. 

The stress-intensity factor equations presented herein should be useful for 
correlating and predicting fatigue crack growth rates as well as in computing 
fracture toughness and fracture loads for these types of crack configurations. 
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APPENDIX 

Boundary-Layer Effect on Stress-Intensity Factors 

Hartranft and Sih [19] proposed that the stress-intensity factors in a very thin "boun
dary layer" near the intersection of the crack with a free surface drop off rapidly and 
equal zero at the free surface. To investigate the boundary-layer effect, a semicircular 
surface crack emanating from a hole was considered. Three different finite-element 
models were analyzed with 8,10, and 14 wedges. A wedge is a slice of the finite-element 
model used to define a layer of elements [5]. The width of a wedge is measured by a 
parametric angle. Larger numbers of wedges result in smaller wedge angles and more 
degrees of freedom. The 8-wedge model had eight equal wedges (A(f> = ir/16). The other 
models had nonuniform wedges and were obtained by refining the 8-wedge model near 
the free surface (<̂  = •)r/2). The smallest wedge angle for the 10 and 14-wedge models 
was ir/48 and ir/180, respectively. The stress-intensity factors obtained from the three 
models are shown in Fig. 14. These results show that the stress intensities near the free 
surface were affected by mesh refinement. They were higher near the free surface but 
lower at the surface with smaller wedge angles. However, the stress-intensity distribu
tions in the interior (2<^/x < 0.8) were unaffected by mesh refmements. 

Further mesh refinements near the free surface should give higher stress intensi
ties near the free surface but lower values at the surface. Thus, the proposed equation 
(solid curve) is expected to give a good estimate for the limiting behavior due to mesh 
refinement. 

'̂ sh 

Eq. 39 

K 2 R H 

^ ^ ,7 

Finite-element results 

o 8 Wedge model 
h 

c 
- 2 b -

X 
a 

cl»* 

T 
2t 

1 

a 10 Wedge model 

A 14 Wedge model 

20 

FIG. 14—Effects of mesh refinement near the free surface on the distribution of boundary-
correction factors for surface cracks at a hole (R/t = I: a/c = /; a/t = 0.5: R/b < 0.05). 
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ABSTRACT; A series of frozen stress photoelastic experiments on large flat plates contain
ing surface cracks was conducted during which cracks were grown to depths approximat
ing those prescribed as benchmark depths in uniform remote tension. Crack shapes and 
stress-intensity distributions were obtained and compared with analytical results. It was 
found that (1) cracks grown in uniform remote tension retain their semielliptic shape but 
exhibit nonself-similar flaw growth, (2) stress-intensity factor (SIF) distributions compare 
favorably with results from finite element models, and (3) benchmark geometries cannot 
be obtained from cracks grown under uniaxial loading. 

KEY WORDS; stress-intensity factors, surface cracks, photoelastic analysis, three-
dimensional crack problems, surface flaws, benchmark geometries, fracture mechanics 

It is generally acknowledged that the majority of service failures found in 
load-carrying components are preceded by a period of subcritical crack growth 
under cyclic or repeated loading, during which period a subcritical crack is 
enlarged into one of critical size. Moreover, a substantial percentage of starter 
cracks occurs at component surfaces because of exposure to a variety of ex
traneous environmental and mechanical effects. G. R. Irwin, in a classic paper 
in 1962 [1],^ characterized such a crack in a large body as semielliptic in shape 
and provided a stress-intensity factor (SIF) distribution for such a shape in a 
half-space. While such a characterization has been generally accepted by the 
fracture mechanics community for small cracks in large bodies, this approach 
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^The italic numbers in brackets refer to the list of references appended to this paper. 
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has been questioned when cracks grow to dimensions of the order of the body 
dimensions. In such a case, the problem falls into the three-dimensional (3D) 
finite, cracked body problem class which has remained intractable to efforts of 
analysts to provide closed form solutions. 

The importance of surface flaws in fracture control rationale has led to a 
great deal of study such as found in Refs 2, 3, and 4, but most of the work has 
focused upon the semielliptic flaw shape and has implied self-similar crack 
growth.-̂  However, a recent compilation of current data, shown in Fig. 1 [5-9], 
on subcritical surface crack growth in finite thickness plates reveals that, in 
general, the crack growth is nonself-similar and depends upon the aspect ratio 
of the starter crack. 

Because of the practical importance of the surface crack problem and its 
resistance to tractability in an analytical sense, the first author of this paper 
and his colleagues some years ago began to study ways of adapting experimen
tal techniques towards a goal of modelling subcritical crack growth to predict 
both crack shape and SIF distribution where neither are known a priori. The 
method has evolved from over a decade of laboratory experience and involves a 
marriage between a modified form of Irwin's near field equations of linear 
elastic fracture mechanics (LEFM) with the techniques of frozen stress photo-
elasticity. In modelling 3D crack shapes, however, real cracks are used, and a 
small, irreversible nonlinear zone always surrounds the crack tip. Conversely 
(as is well known to photoelasticians), when cracks are simulated with sharp 
machined notches in which material is removed from the body, the frozen 
stress process is completely reversible. When real cracks are used, the first 
author and his colleagues have found that, under certain conditions, the crack 
shapes produced under monotonic load in the photoelastic models exactly 
overlay those produced by fatigue loading in geometrically similar metal 
models [10-11]. 

In a previous publication [12], the authors and their colleagues reported on 
the influence of the deviations of crack shapes from semielliptic shapes upon 
SIF distributions. However, they were attempting to produce benchmark as
pect ratios prescribed by the Battelle Three-Dimensional Fracture Workshop 
[13] and they found it necessary to apply flexural loads to achieve the proper 
aspect ratios. This led to the conclusion that the aspect ratios recommended by 
the Battelle Workshop could not be obtained from uniform remote extensional 
loading. It also left unanswered the question of the degree of deviation from 
the semielliptic crack shape and self-similar flaw growth that one can expect 
from purely uniform extensional loading. 

The present study utilizes the frozen stress method to assess the extent to 
which the classic semielliptic flaw shape and SIF distribution is retained as the 
flaw depths in wide plates are increased from approximately one third to three 

^That is, crack shape remains semielliptic with same aspect ratio during growth. 
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FIG. 1—Test data on fatigue surface crack growth under uniaxial tension: 2219-T87 fS/; Ni 
steel[(,]: Ti-6Al-4VHI: SM-50, HT-80 [8J; Al-Mg 3 [9/. 

quarters of the plate depth under remote uniform extension. No attempt is 
made to control the aspect ratio during this flaw growth. Results are compared 
with the finite element results of Raju and Newman [5] for semielliptic flaws. 

Analytical Foundation and Test Procedures 

The details of the frozen stress method have been described elsewhere 
[14,15]. Its application to the Mode I problem is briefly restated here for the 
convenience of the reader. 

For the case of Mode I loading, one begins with equations of the form 
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K <'ij = -7kfijW + <'H';e) {i,j = n,z) (1) 

for the stresses in a plane mutually orthogonal to the crack surface and the 
crack border referred to a set of local rectangular Cartesian coordinates as 
pictured in Fig. 2, where the terms containing Ki, the SIF, are identical to 
Irwin's equations for the plane case, and ag represent the contribution of the 
regular stresses to the stress field in the measurement zone. The CT^- are nor
mally taken to be constant for a given point along the crack border, but may 
vary from point to point. Observing that stress fringes tend to spread approxi
mately normal to the crack surface, as shown in Fig. 3, Eq I is evaluated along 
e = 7r/2 (Fig. 2) and 

'•max = '/2 [ia„„ - aj^ + 4a}J 1/2 (2) 

FIG. 2—General problem notation. 
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FIG. 3—Spreading of Mode I isochromatics. 

which, when truncated to the same order as Eq 1, leads to the two-parameter 
equation 

7-max = ITi- + -8 where >1 = /sTi/VSiT and B =f(ap (3) 

which can be rearranged into the normalized form 

qiiray^ q{iray^ + 
/(<Tp(8)'^2 / . M / 2 

q 
(4) 

 



-274 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 

where K^p = T^^^ (8ir)i'^ and, from the Stress-Optic Law, r̂ ax — Nf/2t' 
where N is the stress fringe order,/ is the material fringe value, t' is the slice 
thickness in the t direction, q is the remote loading parameter (such as uniform 
stress, pressure, etc.), and a is the characteristic crack depth. Equation 4 
prescribes that, within the zone dominated by Eq 1 with a"- as described previ
ously, a linear relation exists between the normalized apparent SIF and the 
square root of the normalized distance from the crack tip. Thus, one need only 
locate the linear zone in a set of photoelastic data and extrapolate across a very 
near field nonlinear zone to the crack tip in order to obtain the SIF. An exam
ple of this approach using data from one of the tests described later in this 
paper is given in Fig. 4. 

2.60 

0.00 
0.00 0.100 0.200 0300 0400 0.500 0.600 

(r/Q)"' 

FIG. 4—Estimation of normalized SIF from optical data. 
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In applying the method, starter cracks are inserted at desired locations by 
striking a sharp blade held normal to the specimen surface, causing a crack to 
propagate dynamically into the specimen normal to the specimen surface, af
ter which the crack arrests. The cracked model is then placed in an oven in a 
loading device, heated to critical temperature, and then loaded monotonically 
until the crack begins to grow. The crack will take the shape dictated by the 
loads and geometry, and when it reaches the desired size (several times larger 
than the initial crack), loads are reduced, terminating crack growth. Upon 
cooling under load, the frozen cracked model containing crack-tip stress 
fringe and deformation fields is obtained. All slices for analysis are taken par
allel to the nz plane (Fig. 2), coated with matching index fluid, and analyzed 
in a crossed circular polariscope with white light, using the Tardy method and 
reading tint of passage at X10 magnification. 

Experimental Results 

Small starter cracks were placed in the center of five wide plates with lengths 
several times plate width. Crack geometries studied are given in Table 1. Each 
plate was loaded above critical temperature in remote uniform tension normal 
to the crack plane through a dead weight system consisting of a row of pins 
connected to nylon lines through fishing swivels. The moderately shallow and 
intermediate cracks maintained perfect elliptical shapes throughout their 
growth. In fact, even the deep crack in Fig. 5 showed only a slight deviation 
from the semielliptic shape. However, as suggested by Fig. 1, the crack growth 
was not self-similar (that is, aspect ratios changed during growth). 

Using the procedures described in the previous section, SIF values were 
estimated at intervals along the crack borders for each test. Results are shown 
in Figs. 6, 7, and 8. Also shown are the results from a 3D finite-element model 
of the semielliptic crack developed by Newman and Raju [5]. The experimen
tal results reveal a maximum experimental scatter of approximately ±6 per-

TABLE 1—Crack geometries. 

Test 

S-1 
S-2 

I-l 
1-2 

D-1 

a, MPa 

0.19 
0.24 

0.19 
0.16 

0.076 

a, mm c, mm a/c 

MODERATELY SHALLOW FLAWS 

5.33 5.54 0.96 
5.26 5.33 0.99 

INTERMEDIATE FLAWS 

8.36 11.46 0.73 
7.67 9.78 0.78 

DEEP FLAWS 
11.51 15.62 0.74 

a/T 

0.39 
0.39 

0.61 
0.62 

0.78 

c/B 

0.10 
0.14 

0.32 
0.51 

0.21 

NOTE—Conversion factors: 1 psi = 0.006895 MPa; 1 in. = 25.400 mm. 
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TEST D-1 

FITTED ELLIPSE 

FIG. 5—Deviation of flaw shape from semiellipse (a/T ~ 0.80). 

cent. The center of this scatter band appears to He 5 to 10 percent above the 
Newman-Raju theory. In this connection, it should be noted that the value of 
Poisson's ratio {v) for the photoelastic material above critical temperature is 
nearly 0.5. By using v = 0.3 and 0.45 in several surface crack numerical analy
ses, Newman and Raju have found that the higher value of Poisson's ratio 
causes an elevation of the SIF by an average of about 6 percent, ranging from 
6.7 percent at midcrack to 5.7 percent at the surface, for a/T = 0.8 and a/c — 
0.7. Based upon these estimates, the authors conjecture that most of the eleva
tion of the experimental results above the analytical model results is likely due 
to the Poisson's ratio effect since Newman and Raju used v = 0.3. Since virtu
ally no deviation from the semielliptic crack shape was observed in these ex
periments, we surmise that deviations produced in Ref 12 (and the corre
sponding changes in SIF distribution) resulted from the flexing operation used 
to produce the crack shapes prior to tensile loading. 

Sonunary and Conclusions 

A series of five photoelastic stress freezing experiments was conducted on 
wide, long plates containing centrally located natural surface cracks that en
tered from one side of each plate. Loads were applied through a dead weight 
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FIG. 6—Variation of SIF around moderately shallow flaw. 

system to produce a uniform remote uniaxial tension normal to the crack 
plane. By removing slices mutually orthogonal to the crack plane and the 
crack border, SIF values were estimated at points along the crack borders after 
the border shapes were obtained. Results suggest the following conclusions. 

1. For uniform remote simple tension on large plates, surface cracks main
tain nearly perfect semielliptic shapes up through 75 percent of the plate 
depth. However, aspect ratios prescribed by the Battelle Benchmark Commit
tee will not be realized by crack growth under uniform tension. 

2. Corresponding SIF distributions averaged some 5 to 10 percent higher 
than those from finite-element elastic models where p = 0.3 was used. This 
elevation is probably due to the fact that v =• 0.5 for the photoelastic material 
above critical temperature. 

The experimental method has its own limitations when used to predict sub-
critical fatigue cracking in metals, as follows: 

1. The photoelastic material is elastic (except very near the crack tip) and is 
incompressible. 
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FIG. 7—Variation of SIF around moderately deep flaw. 

2. Starter crack aspect ratios and model geometry must be the same for 
photoelastic and metal models. 

3. Fatigue loading must be tension-tension. 
4. Closure effects must be small. 

Despite these limitations, the use of real cracks in frozen stress models offers 
a window on the geometrical and loading effects upon subcritical crack growth 
in complex 3D problems and a means of obtaining estimates of both crack 
shapes and SIF distributions where neither are known a priori. 
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ABSTRACT: Approximate influence functions are presented for a part-circumferential 
semielliptical interior surface crack in a circular pipe. The influence functions are de
rived from the crack surface opening displacements obtained by the use of boundary in
tegral equation techniques. Such functions are useful in evaluating stress-intensity fac
tors for cracks in bodies subjected to complex stress conditions, and convenient curve fits 
suitable for numerical calculations are provided. The stress intensities are obtainable for 
arbitrary stresses by numerical integration techniques. Comparisons with existing solu
tions indicate that the influence functions provide results of suitable accuracy for engi
neering purposes. The results indicate that the stress-intensity factor is not strongly 
dependent on the parameter R/h or on whether the crack is longitudinal or circumferen
tial. Details of the variation of K along the crack front are not obtainable from the influ
ence functions, only "root-mean-square (RMS)-averaged" values are generated. How
ever, such values are useful in the analysis of the growth of semielliptical cracks, and the 
results presented should be of wide use in the analysis of such cracks under complex 
stress conditions. 

KEY WORDS: cracks, stress-intensity factors, influence functions, pipes, fracture 
mechanics 
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b Half surface length of crack 
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^1 A function in influence function formulation 
g2 A function in influence function formulation 
h Pipe wall thickness 

ha Influence function associated with depth direction (Ka) 
hi, Influence function associated with length direction (Ky) 
H Equals £•/(! — v'^); E = Young's modulus, v — Poisson's ratio 

Ka RMS-averaged stress-intensity factor associated with depth direction 
Kf, RMS-averaged stress-intensity factor associated with length direction 
Rj Inside radius of pipe 
S Equals [(x/a)^ + (y/b)^]^^^ 
U Strain energy in cracked stressed body 
w Crack surface opening displacement 
X Spatial coordinate into pipe wall 
y Spatial coordinate in crack plane and normal to x 
a Equals a/h 
P Equals b/a 
7 Equals Rj/h 

AAa Incremental change in crack area for a crack growing only in a direc
tion 

AAi, Incremental change in crack area for a crack growing only in b direc
tion 

f Equals l/)3 
^ Equals [1 - (x/a)^ - (y/b)^ 
a Normal stress on crack plane 

<j> Elliptical angle along crack front (equals 0 at point of maximum 
crack depth) 

$ Complete elliptic integral of the second kind 
i/- Equals 1 - (2/x) tan"! (y/b)/(x/a) 

Stress-intensity factor solutions for semielliptical surface cracks in cylin
drical bodies are useful in the analysis of crack growth. Considerable informa
tion on stress intensities (K) for such surface cracks is available, with selected 
examples supplied in Refs i to 5.-' However, if information on part-circumfer
ential cracks is desired, current K solutions suffer from one or more of the fol
lowing deficiencies: applicable only to flat plates or longitudinal cracks; appli
cable only for selected crack depths and lengths; applicable only for uniform 
stress; or applicable only at point of maximum crack penetration. 

In order to overcome these deficiencies, and to provide a general K solu
tion for part-circumferential cracks, approximate influence (or weight) func
tions [6] were determined for this crack geometry. The purpose of this paper 
is to present the results obtained, along with some closely related results that 
were generated in the process. Part-circumferential cracks are of interest, be-

•'The italic numbers in brackets refer to the list of references appended to this paper. 
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cause most piping welds are circumferential, and cracks tend to be concen
trated in and grow in welds. 

The developed influence functions are not capable of providing complete 
information on the variation of the stress-intensity factor along the crack 
front in the case of three-dimensional problems. Only "root-mean-square 
(RMS)-averaged" values of K are provided. However, such averaged values 
are suitable for analysis of subcritical crack growth [ 7-9] and therefore pro
vide sufficient information for many purposes. The influence functions are 
determined from the crack surface opening displacement for an arbitrary 
stress. In the case of part-cu-cumferential surface cracks, numerical tech
niques must be utilized. Hence, detailed information on crack surface open
ing displacements for a given stress is generated as part of the calculations. 

The numerical results for the crack surface opening displacement were 
generated by boundary integral equation (BIE) techniques [10-13] for uni
form normal stress on the crack plane. This also provides the variation of K 
along the crack front for this stress system. K was evaluated for both circum
ferential and longitudinal cracks in order to allow comparisons with previous 
solutions. The crack surface opening displacements for part-circumferential 
cracks then were used to determine approximate influence functions for this 
geometry, and a convenient curve fit is provided. Additional comparisons 
with selected earlier results are presented which indicate that the influence 
functions provide suitably accurate results that are applicable to a wide vari
ety of crack sizes subjected to arbitrary stresses. 

Review of Influence Functions 

The theory of influence functions for cracks in three-dimensional bodies has 
been covered elsewhere [6,14-16] and will be reviewed only briefly here. The 
part-circumferential crack geometry shown in Fig. 1 will be analyzed, with at
tention on the case of symmetry with respect to the Hne AB. Such a crack is said 
to possess "two-degrees-of-freedom" associated with growth in the depth (a) 
and length {b) directions. In this case, the following equations apply 

Ka=\ haix, y, a, b)a{x, y)dA (1) 
•I A 

Kh = hhix, y, a, b)a(x, y)dA (2) 
A 

ha and hi, are the influence functions associated with growth in the depth and 
length directions, respectively. The RMS-averaged stress intensities are re
lated to the local value of K through the relationships 
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K-' = 

V = 

1 

1 

x/2 

A/1 6 Jo 

KH4>)d[AAM)\ 

KH<i>)d[AAk{<i>)] 

(3) 

(4) 

The parameters AAa{<i>) and ^At,{4>) are associated with incremental area 
changes for cracks growing only in the depth and length directions, respec
tively [6,7,14-17]. Equations 1 to 4 can be summarized conveniently as follows 

Kj — hjix. y, a, b)aix, y)dA 

AA,-

r/2 

KH<j>)dlAAj{<t>)] 
1/2 

(5) 

Following the development of Cruse and Besuner [7,14,16], the influence 
function hj is given by 

, dw 1 dA dU 
H duj dojj 

1/2 
(6) 

where ai = a and aj — b. hj can be evaluated from numerical solutions for 
crack surface displacements for a reference stress system. In order to mini-

•j- = a / h 

B = b/a 

FIG. 1—Geometry of part-circumferential internal surface crack considered in this investiga
tion. 
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mize errors in development of the desired influence functions, the known in
fluence function for an embedded elliptical crack in an infinite body will be 
utilized, with "corrections" made to account for the free surfaces of the pipe. 

Consider the following four solutions to the elliptical crack. 

Exact solution for embedded crack 
Numerical solution for embedded crack 
Numerical solution for surface crack 
Exact solution for surface crack 

Crack Surface 
Displacement 

w* 
w 
w 
w 

Strain 
Energy 

U* 

u 
u 
u 

Influence 
Function 

V 

ft! 

In these solutions, w* and U* are known, and w and U are the desired end 
result. The following are assumed to hold 

U* U « • ' ' ' 
(7) 

—T = — =g2{a,b,x,y) (8) 

The functions gi and g2 are obtained from numerical results for the part-
circumferential surface crack and embedded crack with same a and b (but in 
an mfinite body). Once gi and g2 are known, Eq 7 and 8 can be substituted 
into Eq 6 to provide the following end resuh 

h — h* g2 + w*-
dg2 jdw* 

da,- / da 
gi + U*-

dgi j dU* 

da; / da; 

1/2 
(9) 

Hence, the desired approximate influence function is knovm once the 
functions g^ and g2 are evaluated. For the sake of completeness, the follow
ing closed-form results for the embedded crack are included [14,16,17] 

2aa 

U* 

il/2 

4TraVb 
3H^ 

uniform 
stress 

(10) 

(11) 

h * = 

T 

_ 

b 

1 1 a $ je2 • 

1 ^ da a-'^ 

3 \a ^ da 

? 

)] 

1/2 

1/2 (12) 
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hH* = 
ab_ 

3 

1 d^ y^ ' 

* db b^^ 
tvi 

\b ^ db J _ 
1/2 (13) 

# is the complete elliptic integral of the second kind, which is defined as follows 

Ha/b) = 
Til 

1 - 1 
^2 

in^e sin 
1/2 

dQ (14) 

A convenient approximation of $ is 

$(a /6) 1 + 1.464 
b 

1.65 1/2 
(15) 

This approximation is good for a < 6, and is accurate to within 0.13 percent 
for alb between 0 and 1. 

Approximate Influence Functions and Related Results 

Crack surface opening displacements for the geometry of interest are re
quired to obtain the desired influence functions. The necessary numerical 
results were generated by use of the BIE technique \10-13\. Cracks with a = 
a/h = 0.25, 0.4, 0.5, 0.6, 0.8, and j3 = b/a = 1 to 6 were analyzed. A uni
form stress on the crack plane was considered, and the variations of K along 
the crack front were determined from the opening displacements along the 
row of nodes in the BIE mesh closest to the crack front [17]. The distance 
between this row and the crack front was a/10. Typically, about 120 nodes 
and 360 degrees-of-freedom were employed. Reference 17 provides addi
tional details, including information on the BIE mesh employed. 

In order for the generated results to be comparable to previous solutions, 
longitudinal cracks were analyzed first. Figure 2 shows typical results for the 
variation of K along the crack front, and provides comparisons with previous 
work [2,3]. Good agreement is observed in this figure. Calculations were 
then performed for part-circumferential cracks, with Fig. 3 presenting typi
cal results. This figure shows that the variation of K along the crack front 
does not depend strongly on the crack orientation or value of /?,/A. These 
points are discussed in detail in Ref 17. Additionally, the magnitudes of K 
for longitudmal and part-circumferential cracks were observed to be nearly 
the same [17], thereby indicating that crack orientation does not have a 
strong influence for the range of semielliptical crack sizes considered. 

The values of K^ and Ki, for uniform stress on a part-circumferential crack 
were evaluated from the known Ki<j)) by use of Eqs 3 and 4. The results are 
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Reference 2 

0.9 

K(07 

0.7 

0.8 

FIG. 2—Comparison of normalized variation of K along crack front of semielliptical interior 
surface longitudinal crack in a pipe. 

presented as data points in Figs. 4 and 5. Also shown in Figs. 4 and 5 are the 
results of a polynomial curve fit. In addition to the indicated data points, val
ues of Ka and Ki, for an embedded crack in an infinite body were used as ad
ditional data points for a = 0.01 in the curve fit. This improves the fit by 
providing additional data for small a. The use of embedded crack results 
should produce errors no larger than 12 percent, which is an accuracy consis
tent with other sources of error in this work. The curve fit for uniform stress 
is included in the Appendix, and is felt to be of suitable accuracy for a = 0 to 
0.8 and |8 = 1 to 6. The curve fit should be fairly accurate as a. exceeds 0.8, 
because the (1 — a)"'''^ singularity for a centrally located circular crack ap-
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1.3 longitudinal \ . 
• Circumferential) 

Lonaitudinal 

*/ Circumferent ial) 
6=3 

longitudinal 

Circumferential 

.8=5 

30 50 
^ (degrees) 

FIG. 3—Normalized variation of K along the crack front for various longitudinal and circum
ferential semielliptical cracks in pipes as obtained by BIE calculations. 

proaching the outside surface of a circular cylindrical bar [18] has been in
corporated into the curve fit. K for a complete circumferential crack [19,20] 
also is included in Fig. 4, which shows that K for the part-circumferential 
crack is always considerably below the corresponding complete circumferen
tial crack. 
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2.6 

Z.4 

2.2 

2.0 

1.6 

1.4 

1.2 

uniform stress 
circumferential crack 
R./h = 5 
1 

lines are least squares fit 
data are BIE results 

b/a = 1 

0 0.2 0.4 0.6 0.8 
a = a/h 

FIG. 4—Kj/oa^ /or a part-circumferential crack in a pipe with uniform stress in the pipe 
wail. 

The functions gi and g2 in Eqs 7 and 8 then were evaluated from numeri
cal results for the crack surface opening displacements at nodal points of the 
BIE mesh. The strain energy, U, was evaluated from the relation 

U(a, b) = V2<T 1 wix, y, a, b)dxdy (16) 

A linear least squares regression analysis was performed for g\, and the re
sulting curve fit, which is most accurate for a < 0.8 and j3 = 1 to 6, is in
cluded in the Appendix. 

The function g2 depends on four independent variables. Besuner's [16] 
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2.0 

b 

FIG. 5—K(,/(Ta for a part-circumferential crack in a pipe with uniform stress in the pipe 
wall. 

formulation for a semielliptical surface crack in a half-space was modified to 
account for the finite thickness, and the resulting curve fit is included in the 
Appendix. 

The functions5i and g2 now are defined. This, in turn, defines the desired 
approximate influence functions by use of Eq 9 in conjunction with Eqs 10 to 
13. Figure 2 indicates that the BIE calculations of K((i>) were of suitable ac
curacy. However, this comparison does not check the accuracy of gi and g2. 
Such checks will be provided m the following section. 

Additional CcMnparisons 

Results presented earlier and additional discussions in Refs 17 and 20 sug
gest that the values of K determined from the BIE calculations are of reason
able accuracy. However, they do not provide a check on the suitability of the 
curve fits for gj and ^2- Such checks can be made in two ways: (1) using Eqs 1 
and 2 to generate K^ and K^ for uniform stress and comparing the results 
with Figs. 4 and 5; and (2) using previous results for power law stresses from 
Refs 2 and 3 in conjunction with Eqs 3 and 4 and comparing the results with 
those generated for corresponding stress systems by use of the approximate 
influence functions in Eqs 1 and 2. 
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Numerical integration over semielliptical crack areas is required, and the 
functions A, and h* are singular at the crack front. Reference 17 presents an 
efficient scheme for integrating over semielliptical areas functions with the 
known type of singularity. Checks of the integration scheme demonstrate it 
to be highly accurate [17]. 

Comparisons of results for uniform stress obtained by different means are 
presented in Figs. 6 and 7. The agreement between the two sets of results is 
seen to be best for deeper cracks of small aspect ratio. 

Figures 8 and 9 present comparisons with Heliot's results [2] for power 
law stresses on longitudinal cracks in pipes with R/h of 10. Good agreement 
is observed, which indicates the suitable accuracy of the approximate influ
ence functions. Figures 8 and 9 compare longitudinal cracks with /?,//; = 10 
to circumferential cracks with /?,//; = 5. However, as discussed previously 
and in Ref 17, these variables do not have a strong influence on K. Hence, 
the comparisons of Figs. 8 and 9 are felt to provide strong evidence of the ac
curacy of the influence functions. 

The major usefulness of the approximate influence functions is in the anal
ysis of crack growth under complex stress conditions, such as thermal or 

••• Influence Function 

= 6 

= 3 

0.2 0.4 0.6 0.8 

= a/h 

FIG. (>—Comparison ofK^ for part-circumferential crack in a pipe with uniform stress in the 
pipe wall as determined by two means. The lines are for results directly from BIE calculations 
(Fig. 4). Data points are obtained by use of h^ and Eq 1. 
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Results of Figure 5 

• 

1 1 

• 

y\ 

• 

• 

« 

1 

'"^ • 
m 

• 

• 

• 

• 

• 

• 

• 
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^' = 3 
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_ 

0.2 0.4 0.6 0.8 

o = a/h 

FIG. 7—Comparison of K,, for part-circumferential crack in a pipe with uniform stress in the 
pipe wall as determined by two means. The lines are for results directly from BIE calculations 
(Fig. 5). Data points are obtained by use of hj, in Eq 2. 

residual stresses. In such cases of strong thickness gradients of the stresses, 
the influence functions can easily and economically provide stress-intensity 
factors that are of sufficient accuracy for engineering purposes. This circum
vents the need to perform numerical calculations for each of the complex 
stress systems of interest. Applications of the influence functions to analysis 
of fatigue crack growth in the presence of thermal stresses are presented in 
Refs 77 and 21. Reference 22 discusses their application to the analysis of the 
influence of welding residual stresses on the growth of stress-corrosion 
cracks. 

Sammaiy and Conchisioiis 

Approximate influence functions are presented for part-circumferential 
semielliptical cracks located at the inside surface of a pipe. These influence 
functions were derived from numerical calculations based on boundary in
tegral equations. Convenient curve fits of the resuH:s are presented. Com
parisons with previous solutions indicate the results are of suitable accuracy 
for engineering purposes. The following additional conclusions can be drawn: 
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1. The variation of the stress-intensity factor with position on the crack 
front is not strongly dependent on the crack orientation (that is, longitudinal 
versus circumferential). 

2. The magnitude of A" is not strongly dependent on the crack orientation. 
3. The value of K is only weakly dependent on Ri/h, for the range con

sidered in this work (/?,//J == 5 to 10). (Additional results in Ref 17 indicate 
that this conclusion can be extended to the range Ri/h > 5). 

The approximate influence functions should be useful in a wide variety of 
analyses of the behavior of semielliptical cracks growing under complex 
stress conditions. 

b/a = 3 

0 = (x/h)P 

o, = stress at the crack tip 
a 

— IF solution [circumferential crack 
R./h = 5] 
Reference 2 [ longitudinal 
cracks, R./h = 10J 

— p=0 

a 

~1~ 
.4 

a/h 

FIG. 8—Comparison of influence function solutions for uniform (p = 0) and nonuniform 
stresses with existing solutions. Note somewhat different geometries involved. 
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SI 

b/a = 3 

a = (x/h)P 

stress at the crack tip 

IF solution [circumferential cracks, 
R./h=5] 

Reference 2 [longitudinal cracks, 
R./h = W ] 

— p-4 

"1 
.2 

~1~ 
.4 

a/h 

FIG. 9—Comparison of influence function solutions for uniform (p = 0) and nonuniform 
stresses with existing solutions. Note somewhat different geometries involved. 
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APPENDIX 

Carve Fits 

Stress Intensities Due to Uniform Stress 

The values of K^ and Kj, for part-circumferential interior surface cracks in pipes 
with uniform axial stress can be approximately evaluated from the following expression 

- ^ = [do + rflf + d2^^ + dsf^ + «(eo + eif + ezf^ + e3f3) 

+ ctHfo + / l f +/2f^ +/3f^) + «^(«0 + glf + «2f^ + «3f^)] 

/(I - a) ' '2 (17) 

The values of the coefficients are different for K,, and K/,, and are as follows. 

do 
di 
di 
di 

«0 
6 ] 

«2 
«3 

A .̂ 

1.6561 
-0.39440 
-0.46115 

0.33664 
-0.78383 
-0.48680 
-0.57149 

1.1149 

KH 

1.1260 
0.23200 

-0.28484 
0.063055 
1.2214 

-7.6912 
10.601 

-4.9324 

/o 
/ i 
fi 
h 
go 
J?i 
«2 
ff3 

^. 

0.042060 
13.568 

-23.844 
11.147 
0.48946 

-18.201 
33.%9 

-17.301 

Kb 

-3.1601 
25.091 

-41.651 
21.397 

1.6496 
-20.361 

35.868 
-18.949 

Function g; 

The values of gj can be approximated from the following curve fit 

gl = (0.9701 -I- 0.3414)3) -|- a(-0.00176 + 0.39924|8 - 0.05512^^) 

-I- a2(-0.16095 -I- 0.4112/3 - 0.15460|82 -j- 0.01936/33) 

Function g2 

The value of g2 can be approximated from the following curve fit 

^2 = lAoM + /li(a)5<-5 r̂ OlS + A2MS^-^ ^"'^ + A3(a)S^-^ ,̂ -0.15 

+ A4(cc)S^-^ ^0-3 + /l5(a)(f - 1) + A6(a)(f - 1)2]F 

where 

Ao = 0.99568 -I- 0.71745a, 
Ai = 3.99268 - 22.1411a -I- 44.2643a2 - 32.8078a3, 
Aj = -3.5431 + n.3427a - 40.5886a2 + 31.5185a3, 
^ 3 = -2.5527 + 2.3462a + 0.274470^, 

(18) 

(19) 
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A4 = 2.5948 - 0.6154a, 
As= - 0 . 1 7 7 0 6 - 0.5857a, 
A^= - 0 . 1 3 7 8 + 0.09001a, 

and ^=l-2/w 

i^= 1+0.15 

[tan- (''' \x/a 

(°r)<^" (y/b)Hi + 0.2a)(2/3 - 1.99). 
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ABSTRACT: Recent investigations have indicated that fatigue growth of surface flaws 
cannot be adequately predicted solely by stress-intensity factor (SIF) analysis. This is due 
to variations in the stress field triaxiality along the flaw border. A fatigue growth analysis of 
surface cracks is performed accounting for the variation in stress field triaxiality using the 
concepts of crack closure. Changes in the geometric parameters describing the flaw size 
and shape are studied for remote tensile load. For an isotropic material where the Paris 
equation adequately describes the fatigue crack growth rates, it is found that all subcritical 
flaws, regardless of initial geometry, extend such that they eventually will have identical 
size and shape, and that the process is independent of stress range and material properties. 
Experiments were performed to assess the accuracy of the analysis. Accounting for the con
straint variation through the use of the concepts of crack closure yields excellent results. 

KEY WORDS: fracture mechanics, fatigue (materials), surface flaw, farigue crack 
growth 

One of the most common flaw types found in structural components is the sur
face flaw, which is often observed to have a shape close to that of a semiellipse. 
Although much attention has been focused on the surface flaw problem [/, 2] ,•' ac
curate analysis of the fatigue growth of such surface flaws under constant 
amplitude loading has been slow to develop. This has been due to complicating 
factors such as the lack of a closed form solution for the stress-intensity factor, 
muhidirectional and nonself-similar crack growth, and variations in the stress-
intensity factor and stress field triaxiality along the flaw border. 

Recent studies [3] have shown that fatigue growth of semielliptical surface 
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flaws is not adequately predicted solely by stress-intensity factor analysis. Al
though a variation in the fatigue resistance of the material along the flaw bor
der would account for the observed differences, many metals are isotropic. 
Thus, the variation in constraint along the flaw border, from plane stress at the 
plate surface to that of plane strain at the point of maximum flaw penetration, 
must be an important factor affecting observed fatigue crack growth behavior. 

An analysis of the fatigue growth of semielliptical surface flaws is per
formed, accounting for the variation in constraint along the flaw border. 
Changes in the geometric parameters describing the flaw size and shape are 
investigated, and the analysis is compared with results of experiments. 

Analytical Considerations 

A semielliptical surface flaw in a finite plate is shown in Fig. 1, where a is 
the crack depth, c the crack half-length at the free surface, w the width, and t 
the plate thickness. The parametric angle <̂  is used to locate a point on the 
flaw border. 

The point of intersection of the flaw and the free surface, point c, and the 
point of maximum flaw penetration, point a, occur at <A = 0 and 7r/2, respec
tively. Note that flaw extension at point c will be in the <̂  = 0 direction while 
the crack extension at point a will be in the </> = ir/2 direction. Thus, it is 
convenient to study the fatigue growth of the surface flaw by analyzing crack 
extension at points a and c. 

The crack growth rate at these points can be related to the stress-intensity 
factor range (AA") through the Paris \4\ relation 

da 
dN 

dc 
dN 

= CiAK^r 

= CiAK.r 

(1) 

(2) 

where C and n are material properties which depend on the stress ratio. 

FIG. 1—SuTface flaw geometry. 
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The stress-intensity factor under remote tensile loading (a) is given by 
Newman and Raju [5] as 

Tra\^^^ / a a c 

Since the plate width is often large as compared with crack length (w » c), 
the primary parameters describing the crack geometry are the aspect ratio 
(a/c) and the relative depth (a/t). 

Equation 1, 2, and 3 can be combined and written in incremental form as 

Aa = ( — ) Ac (4) 

Thus, geometry variations during fatigue growth of surface flows can be 
studied by assuming a small amount of crack length extension (Ac), deter
mining the corresponding amount of crack depth increase (Aa), and repeat
ing the process incrementing the values of a and c until a final desired flaw 
size is attained. An example of this procedure is in the Appendix. 

The results of an analysis of an initially shallow, semicircular surface flaw 
{a/t = 0.01, a/c = 1) are presented in Fig. 2. A value of n = 3, typical for a 
crack growth rate exponent in metals, was assumed. Although observations 
of surface cracks are that shallow semicircular flaws will remain semicircular 
[6,7], the analysis predicts a decreasing aspect ratio. Thus, the observed 
crack growth at point c is slower than predicted by the analysis. 

In the absence of anisotropic crack growth rate properties (C and n are 
equal in Eqs 1 and 2), the variation in constraint along the flaw border can 
account for the observed differences in flaw growth. The plane stress condi
tion occurring at point c results in more extensive yielding [8] than that oc
curring at point a, which generally will be in a region of plane strain. Fatigue 
crack closure, as first noted by Elber [9], is caused by plastic deformation left 
in the wake of the advancing crack tip. Thus, the relative increase in yielding 
causes greater crack closure to occur at point c than at point a. Then, the ef
fective stress range at point c is smaller than at pomt a and results in slower 
crack growth at the point of flaw intersection with the plate surface, which is 
consistent with the observed behavior. 

In order to account for the constraint variation along the flaw border, the 
fatigue crack growth rates are related to the range of the stress-intensity fac
tor when the flaw is fully open, AK^ff by 

^ = CiAK^r (5) 

^ = CiAK^^y (6) 
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FIG. 2—Crack geometry changes neglecting effects of constraint variation. 

where C and n can be shown now to be material constants independent of the 
stress ratio. Elber [10] demonstrated that the extent of crack closure during con
stant amplitude tensile loading can be quantified by a crack closure parameter 

U = 
AK. eff 

AK 
(7) 

Equations 3, 5, 6, and 7 can be combined and written in incremental form 

as 

Aa=(^YAc 
U,F, 

(8) 

This is similar to Eq 4, yet accounts for the effects of constraint variation by 
allowing the crack closure parameter at the point of flaw intersection with the 
plate surface, (/<.« to be a different value than the crack closure parameter at 
the point of maximum flaw penetration, Ua-
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Using Eq 8 and the procedure described previously to analyze surface 
crack fatigue growth, a shallow semicircular surface flaw will remain semicir
cular if U/Ua - 0.91 as shown in Fig. 3. This analysis then can be per
formed to determine changes in geometry during fatigue growth of surface 
flaws over a wide range of initial geometries using the ratio f//f/o = 0.91. 

Surface Flaw Growth Behavior 

Analyses were performed to study changes in geometry during fatigue 
growth of shallow surface flaws of initial relative flaw depth a/t = 0.01 and 
various initial aspect ratios. The results, shown in Fig. 3, indicate that all 
flaws tend to grow as to attain a semicu-cular shape. 

The influence of the back surface of the plate on flaw growth behavior can 
be seen in Fig. 4. Here, fatigue crack growth analyses were performed on 
cracks of initial relative flaw depth a/t = 0.2 and a range of initial aspect ra
tios. An initially semicircular flaw no longer will remain semicircular, but 
will extend with a decreasing aspect ratio. However, it is interesting to note 
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FIG. 3—Geometry histories of shallow flaws. 

 



1-302 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 

1.2 

1.0 -

o 0.8 -

0.6 -

0.4 

0.2 

ANALYSIS 
(n=3,Uc/Ua'0 .9 l ) 

-L . 
0.2 0.4 0.6 0.8 1.0 

RELATIVE FLAW DEPTH , % 

FIG. 4—Geometry histories of surface flaws. 

that the growth pattern of the initially shallow semicircular flaw remains an 
asymptote for the growth patterns of all other initial geometries. 

A closer examination of the parameters affecting the crack geometry his
tory would be appropriate. As can be seen from Eq 8, flaw shape extension is 
independent of the stress range and the crack growth rate constant, C, and 
depends only on the current flaw geometry and the crack growth rate expo
nent, n. The influence of the exponent is assessed by performing analyses on 
an initial flaw geometry (a/t = 0.2 and a/c = 1) assuming a range of values 
of the exponent typical of metals. The results of such analyses indicate that 
the geometric history of the flaw is affected only slightly by a large change in 
the exponent. Thus, the future geometric parameters of an existing flaw de
pend almost entirely on the current flaw geometry and not on the material 
properties or stress range. 

Although the analysis presented is for materials with isotropic fatigue 
crack growth properties and a simple power law relationship between the fa
tigue crack growth rate and effective stress-intensity factor range, the analy-
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sis can be generalized by selecting another functional relation for Eqs 5 and 6 
and varying the material constants from Eq 5 to 6. 

Experiments 

Experiments were conducted to assess the accuracy of the analysis. Eight 
fatigue crack growth rate tests were conducted on 2024-T351 aluminum to 
determine the range of Aî eff for which Eqs 5 and 6 are applicable as well as 
the crack growth rate exponent, «. The results are presented in Fig. 5. It is 
apparent that, for this material, if 3 < A êff - 18 MPam'̂ ^ the analytic 
procedure will be valid. A least squares analysis results in n = 3.76. Note 
that when an effective stress-intensity factor range is used, the measured 
fatigue crack growth rates are independent of the stress ratio. 
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FIG. 5—Fatigue crack growth rate results for 2024-T351 aluminum. 
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Ten surface flaw specimens were fabricated of 2024-T351 aluminum. The 
specimens had a width w = 2.54 cm and a thickness t = 1.27 cm or 2.54 cm. 
A notch of the desired initial flaw geometry was electro-discharge machined 
(EDM) in each specimen. 

Each specimen then was fatigued in a servohydrauHc test system at a stress 
ratio R — O.l and a frequency of 10 Hz. Crack extension was monitored 
along the plate surface. Periodically, the minimum load was increased for 
300 cycles to a level which would result in a fatigue crack growth rate of ap
proximately 25 nm/cycle. This results in the creation of a contrasting marker 
band on the fracture surface which can be used to examine flaw growth after 
completion of the fatigue loading. 

The fracture surfaces were observed and the dimensions a and c measured 
for each marker band using a travelling microscope. The first marker band 
served as the initial crack geometry for purposes of the analyses. 

The initial and final flaw geometry and loading parameters for each exper
iment are summarized in Table 1. The range of A/iTeff achieved during all ex
periments is within the limits qualified previously. 

The results of the experiments and corresponding analyses are shown in 
Fig. 6, presented in two graphs for clarity. As can be noted in Fig. 6, excel
lent agreement is obtained between the experimentally observed flaw geo
metry histories and those predicted by the analyses. The asymptotic trend of 
the crack geometry histories is also apparent. 

Snininaiy and Conctasioiis 

Geometry variations during fatigue growth of surface flaws have been in
vestigated. It is apparent that fatigue growth of surface flaws cannot be pre
dicted solely by a stress-intensity factor analysis due to the variation in stress 
field triaxiality along the flaw border. Accounting for the constraint variation 
through the use of the concepts of crack closure yields excellent results. 

Surface flaws tend to grow as to attain a geometry identical with that ob
served of a crack which is initially shallow and semicircular. Although fa
tigue life depends on the magnitude of loading, material properties, and flaw 
size and shape, the geometry history will depend primarily on the initial flaw 
geometry for the conditions studied. 

Including the effects of constraint variation in surface flaw analyses also 
should improve fatigue life predictions. 
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APPENDIX 

An example of the application of Eq 8 for the analysis of surface flaw fatigue growth 
is appropriate. The initial geometry of Experiment 1 is a = 3.10 mm, c = 3.05 mm, 
and t = 25.4 mm. Then, the relative flaw depth a/t = 0.12 and the flaw aspect ratio 
a/c = 1.02 as shown in Table 1. For this geometry, Ref 5 is used to find F^ — 1.124 
and jFp — 1.242. Using U^JUa — 0.91 and the crack growth rate exponent 
n = 3.76 for the material of interest, the crack depth increase (Aa) can be determined 
for a small, arbitrary crack length extension, Ac = 0.25 mm. 

Rewriting Eq 8 

f U^F.Y ( 1 1.124 \3-^^ 
Aa = — ^ - ^ Ac = (0.25) = 0.243 m (9) 

\V^J V0.91 1.242/ 

Then, the new crack depth a — 3.10 + 0.243 = 3.343 mm and crack length c — 
3.05 + 0.25 = 3.30 mm. The new relative flaw depth, a/t — 0.13 and aspect ratio, 
a/c ~ l.OJ. The procedure is repeated, using the new crack geometry, to yield the 
analytical results shown in Fig. 6. 
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ABSTRACT: The growth of part-through part-circumferential semielliptical surface 
cracks in nuclear primary piping of finite wall thickness is computed. Crack extension is 
considered to be controlled by root mean square (RMS)-averaged stress-intensity factors 
associated with each axis of the semielliptical crack, which allows the consideration of 
varying aspect ratio with crack depth. Crack extension due to nonuniform through-wall 
stresses is computed by the use of a recently developed influence function for circumferen
tial cracks in pipes. The crack growth due to uniform and nonuniform stresses is presented 
by the use of crack trajectories, which pictorially display the change in crack geometry with 
stress history. These trajectories are presented for crack growth due to heat-up and cool-
down and reactor trip transients of a nuclear plant. These crack growth trajectories for 
uniform stress are presented in a manner that makes it possible to compute crack growth 
for any stress history. 

KEY WORDS: aspect ratio, cracks in pipes, circumferential cracks, crack growth trajec
tories, influence functions, nonuniform stresses, EMS stress-intensity factors, semiellipti
cal cracks, uniform stresses, fatigue crack growth, fracture mechanics 

Nomenclature 

AAj Increment of crack area for crack extending in i-direction 
a Maximum depth of a semielliptical crack 

da/dn Fatigue crack growth rate 
b Half surface length of a semielliptical crack 

'Science Applications, Inc., Sunnyvale, Calif. 94086. 
^Science Applications, Inc., Palo Alto, Caiif. 94304. 
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C Parameter in fatigue crack growth relation 
h Pipe wail thickness 
K Stress intensity factor 

/ r Equals (K^^ - K^J/{1 - R)^'^ 
Ki RMS-averaged stress-intensity factor associated with crack exten

sion in the i degree-of-freedom direction 
hKi Stress-intensity factor (^,) due only to radial gradient thermal 

stresses 
LOCA Loss-of-coolant accident 

m Exponent in fatigue crack growth relation 
n N u m b e r of stress cycles 

R Load ra t io = K„i„/K^^^ 
X Dis tance into pipe wall 
a Equa ls An C a J" A""'^ 

f̂ max M a x i m u m stress dur ing a fatigue cycle 
(Tmin Minimum stress during a fatigue cycle 

Oe Effective cyclic stress = [a,a»x (̂ max - <^mm)]'̂ ^ 
0 Elliptic angle of position along crack front 

The growth of part-through surface cracks in reactor piping and pressure 
vessels is a problem of considerable interest in analysis of the reliability of such 
components. This is especially true of nuclear reactors, where failure of the 
pressure boundary can have particularly undesirable consequences. A means 
of accounting for the complex stresses that occur during the operation of a 
nuclear plant is of interest, as well as a means of accounting for possible 
changes of the crack aspect ratio (length-to-depth ratio) that can occur as the 
crack extends. Previous work [1,2,3Y in related areas generally suffers from 
one or more of the following drawbacks: 

1. It was restricted to uniform stress through the wall, or at most a linear 
variation of stress. 

2. It considered aspect ratio to remain constant during crack growth. 
3. It based the growth rate on local values of stress-intensity factor at the 

plate surface and the point of deepest crack penetration. 
4. It considered only cracks in a half-space. 

These restrictions are all dropped in the current paper. Crack extension is 
considered to be controlled by a root mean square (RMS)-averaged stress in
tensity factor associated with each axis of semielliptical surface crack (two-
degrees-of-freedom model) rather than the local value. This allows the aspect 
ratio to change as the crack grows. Additionally, the use of the recent influence 
function developed for circumferential cracks in pipes {4\ allows arbitrary 
stresses through the pipe wall of finite thickness to be treated. 

•'The italic numbers in brackets refer to the list of references appended to this paper. 
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The relative influence of uniform and radial gradient thermal stresses (non
uniform) on fatigue crack growth is ascertained and displayed by the use of 
"crack growth trajectories" that pictorially display how the shapes of semiel-
liptical cracks change with cyclic loading of various types. Uniform stresses tend 
to grow cracks deeper, whereas nonuniform radial gradient thermal stresses 
(which tend to be largest at the inside surface) grow cracks longer. This effect 
is shown schematically in Figure 1, and is quantified in this paper. Such results 
are of interest in discussions of the types of cracks expected to be found in 
reactor piping, and are of relevance in estimation of the relative probability 
of "leak-before-break" in pressurized components subjected to complex 
stresses. 

Stress-Intensity Factors and Crack Growth Rate 

The rate at which a and b (length and depth of a crack) will grow depends on 
the cyclic values of A" along the crack front, as well as the fatigue crack growth 
characteristics of the material. The growth characteristic for cases where K 
is uniform along the crack front for austenitic stainless steel primary piping 
material (A304 and A316) were reviewed [5] and the results could be summa
rized by 

da _ \ AK ] ' 
dn L (1 - RY'^ J 

CK" (1) 

FIG. I—A schematic diagram showing fatigue crack growth of a semielliptical crack in pipe, 
due to uniform through-wall and nonuniform radial gradient thermal stresses. 
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where 

da/dn = fatigue crack growth rate, m/cycle, 
AK = cyclic stress-intensity factor = K^i^ — ATmbi, MPa Vm, 

R = load ratio = K,riin /^max. and 
C,m = empirical constants. 

K' is the effective cyclic stress-intensity factor that accounts for the effect of 
cyclic stress intensity as well as the load ratio on fatigue crack growth rate. The 
values of C and m were obtained by statistical analysis [5] of the relevant exper
imental data to be 1.59 X 10~ !•' and 4, respectively (for da/dn in m/cycle, and 
K in MPa-m'^^). This growth law will be assumed to be applicable to part-
through cracks as well, but the stress-intensity factors to be employed must be 
defined carefully, because K varies along the crack front. Consideration of a 
local growth rate controlled by the local values of K would be analytically 
prohibitive, and probably unrealistic. Semielliptical cracks would not neces
sarily remain semielliptic for complex stresses, and stress-intensity factor solu
tions for nonelliptical cracks would be required. Therefore, it will be assumed 
that the grovrth of a and b need only be considered, with appropriate selection 
of the controlling stress-intensity factors. The following are two possibilities. 
(1) The growth of a is controlled by the cyclic value of Â  at the point of maxi
mum crack penetration, and the growth of b is controlled by the cyclic K at the 
surface, or, in other words, by the local values of K. (This approach was 
adopted by Nair [6] in a closely related investigation that was limited to simpler 
stress distributions than considered here); (2) The growth of a and b are con
trolled separately by some average stress intensity along the crack front that is 
associated with growth in each of these directions. 

Suggested averaged values are the RMS-averaged values [7-10] associated 
with each degree-of-freedom. This seems to be a more realistic assumption 
than the use of simply the local values. Therefore, these RMS-averaged values 
of stress-intensity factors associated with each degree of freedom will be as
sumed to govern the rate of growth of a and b. Basically, the RMS-averaged 
values, which are denoted as K, are defined as follows 

1/2 

(<̂ )] (2) 
1 r'' 

K,^ - — ; - K^ W d [AA 
A^a Jo 

AAf, Jo 

T / 2 

(3) 

An added advantage of this approach is that K^ and K^, can be evaluated for 
arbitrary stresses on the crack plane by the use of influence function [4, 7-11]. 
An influence function is defined as the stress-intensity factor arising from a 
unit point load on the crack surface. This function can be evaluated from 
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information on the opening displacements on the crack surface for an arbi
trary state of stress. This is fully explained in Ref 4. 

In accordance with the preceding consideration, the fatigue crack growth 
rates will be assumed to be governed by the following equations 

^^C[KX (4) 
an 

and 

db 
. =C{K{,r (5) 

an 

Results and Discussion 

Uniform Stress 

The applicability of the fracture mechanics solutions obtained is demon
strated by evaluating the crack growth rates in nuclear primary piping. First, 
the crack growth calculations are performed for uniform through-the-wall 
stresses. The cyclic crack growth results are plotted on a graph with a/b as one 
coordinate and normalized crack depth, {a/h) as another coordinate. The nor
malized crack depth would lie between zero and one. The limits on a/b are also 
zero and one; the upper limit on a/b = 1 means that the cracks that are shorter 
than twice the depth are omitted from consideration. This coordinate system is 
displayed in Fig. 2. Any crack with an a/h coordinate equal to one would be a 
through-wall defect and cause a leak. The loci of all cracks that would cause a 
double-ended guillotine break, or loss-of-coolant accident (LOCA), are shown 
as a dotted region. The position of the dashed line (one of the boundaries of the 
dotted region) depends on the stresses on the pipe and the failure criteria 
employed. 

Typical crack growth trajectories also are displayed in Fig. 2. The trajecto
ries are the loci of points showing the variation of crack dimensions with time 
as the crack grows under the cyclic loads. The crack depth variable is mono-
tonically increasing, while the value of a/b either increases or decreases during 
the crack propagation, depending on the current crack geometry and the na
ture of the applied stress. 

As shown in Fig. 2, any of the cracks in the sample space when subjected to 
cyclic loads of sufficient magnitude for enough number of cycles, would even
tually cause a failure, either as a through-wall leak or a catastrophic complete 
pipe severance. Figure 2 shows that many of the failures would occur as part-
through defects that would develop into a leak (trajectories intersecting the 
a/h = 1 line). If these leaks are not detected, the length of the crack would 
continue to increase (a/b decreasing) and ultimately reach the large LOCA re-
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gion. Cracks which exhibit this sequence of leak and LOCA are said to have 
experienced "leak before break." It is apparent from Fig. 2 that for uniform 
through-the-wall stress loading, most of the failures that could occur would expe
rience a "leak before break." On the other hand, it is possible to have a combina
tion of initial crack size and stress histories that lead to large LOCA without first 
undergoing a leak. The cracks leading to a direct LOCA necessarily would have to 
be initially very long, that is, almost completely circumferential. 

As shown in Fig. 2, for the cracks with a/b less than about 0.85, the crack 
depth increases faster than the half-crack-length b and the a/b (inverse of 
aspect ratio) approaches a constant value of about 0.85. For cracks with a/b 
larger than 0.85, a/b actually decreases, again approaching the value of about 
0.85. This is true for w = 4. The crack growth trajectories for m = 6 and m = 
2 are displayed in Figs. 3 and 4. The only noticeable difference in the trajecto
ries is that for m = 6, the cracks approach a/b of 0.8, and for tn = 2, this value 
of a/b is about 0.9. 

For uniform through-the-wall stresses, the crack growth data are plotted for 
predetermined values of C, m, fatigue cycles, and effective stress (a^). This 
procedure makes it possible to use the crack growth rate calculations for any 
other values of C and effective stress, as explained in the following equations. 

The crack growth rate {da/dn) is given as 

da; dn 

^ max ^ min 

K • V^^ = C [K^J (/̂ „,ax - K^J']""' (6) 

Since A", solutions, for uniform stress are given as [4,5] K/ = aa^'"^ X 
fi {a/h, a/b) 

da; 
dn 

= C [fiHa/h, a/b) X a^l-/^ [a^J (a„,, - a^„Y]'"'' 

= C [fi\a/h, a/b) X a^]'"'"' (a,^r"^ (7) 

where a^ = [a^^ {a^^^ - a^,ry)V''^. 

For AM cycles 

Aa,- = An X C [ff (a/h, a/b) a'^Y"^ (ff/)"'"' 
(8) 

= a\ft ia/h, a/b){a/h?\"'"^ 

where a = A« X C X CT.'" X h'"'^. 
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Aa and Ab are computed for a given a and plotted a/h — a/b space. Any two 
adjoining symbols on a trajectory define the Aa and Ab for a given a. This kind 
of plot makes it possible to compute the effect of another C and a^ on crack 
growth rate, using the crack growth trajectories, A specific example of this 
computation is given in the Appendix. 

Nonuniform Stresses 

Sudden changes in the coolant temperature in the primary nuclear piping 
following a reactor transient produce axisymmetrical radial gradient thermal 
stresses. Figure 5 shows such stresses for various times from the start of a 
reactor trip from full power (a reactor transient). These stresses were obtained 
[12] by a numerical procedure that employed the time-temperature variation. 

The method of influence function [4,11] then was used to calculate the RMS 
stress-intensity factors (Kg and K/,) for each time interval. These calculations 
of Kg and K/, were performed for a range of crack geometries. For each crack 
geometry, the RMS stress-intensity factors change with time and go through a 
maximum. This is very much like a fatigue cycle, and hence, maximum excur
sions of Ka and K/, are of interest. The maximum excursion due solely to the 
temperature fluctuations are denoted as dK^ and 5Ki,, and are shown for a 
range of crack geometries in Figs. 6 and 7. For numerical computations, the 
maximum dK^ and 6Kh are curve fitted as functions a/h and a/b. These maxi
mum values of dK^ and dKi, are plotted (Figs. 6 and 7) as a function of a/h for 
a selected value of b/a. 
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FIG. 5—Radial gradient thermal stresses at various times from the start of the transient for 
0.0635-m-thick pipe. 
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FIG. 6—Maximum SK^ during reactor trip as a function of crack geometry for a pipe wall 
thickness of 0.0635 m. 

Some interesting observations can be drawn from Figs. 6 and 7. One is that 
bKf, is generally larger than bK^ for the same crack, except for very shallow 
and very long cracks. This means that only very shallow and very long cracks 
will grow in the same manner as due to uniform stress. That is, for the cracks in 
this category, crack depth will increase faster than b (half-crack-length). For 
all the other cracks, b will increase faster than a. That is, they will grow more in 
the circumferential direction than in the depth direction. This is displayed 
vividly in Fig. 8, which presents the fatigue crack growth due to a given num
ber of transients (all of them reactor trips, in this case). A very striking feature 
of the fatigue crack growth due to radial gradient thermal stresses is that these 
would produce the long cracks that would result in a sudden and complete pipe 
severance, rather than a leak-before-break. This is because the largest stresses 
occur at inner pipe walls with a steep ̂ adient into the wall (see Fig. 5). 

Another interesting feature of the K^ for a reactor trip is that the stress-
intensity factors for shallow cracks can be larger than for the deep cracks. This 
is demonstrated (Fig. 8) by the fact that as the crack becomes deeper, it takes 

 



DEDHIA ET AL ON NONUNIFORM THERMAL STRESSES 1-319 

2 4 

1=̂  a 

FIG. 7—Maximum SK,, during reactor trip as a function of crack geometry for a pipe wall 
thickness of 0.0635 m. 

more and more cycles to grow it by the same amount. This apparent anomaly is 
due to the steep stress gradients through the pipe wall. The stresses decrease 
with increasing thickness, and the tip of very deep cracks might even see some 
compressive stresses. This produces lower K^ for deeper cracks; on the other 
hand, Kt, remains high for deeper cracks, meaning that the deeper cracks 
would continue to grow in the circumferential direction, which again points 
to such transients tending to lead to direct pipe breaks more than uniform 
stress cycles. 

The foregoing analysis to produce the crack grovrth trajectories was based 
on uniform and nonuniform stress cycles separately. The cracks in the primary 
coolant piping in actuality would be subjected to both uniform and 
nonuniform stress cycles. The crack growth trajectories for stress histories 
involving both uniform and nonuniform stress cycles is shown in Fig. 9. The 
nonuniform stress cycle was the one discussed earlier (reactor trip), whereas 
the uniform stress cycle corresponds to the actual calculated stresses produced 
during the heat-up and cool-down transient of a nuclear power plant, the ef-
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fective cyclic stress (a^) for which is 96.747 MPa. The trajectories are plotted 
(in Fig. 9) assuming one reactor trip occurring after every heat-up and cool-
down transient, that is, one nonuniform stress cycle for every uniform stress 
cycle. It is seen that the crack growth behavior is dominated by uniform stress 
cycles. With this combination of uniform and nonuniform stress cycles, most 
of the cracks would grow to leak and very few of initial crack geometries could 
lead to direct pipe severance, as was the case with uniform stress cycles (see 
Figs. 2, 3, or 4). Even when two to five cycles of nonuniform stress are consid
ered for every uniform stress cycle, as shown in Figs. 10 and 11, there is only a 
small change in the trajectories. Most of the cracks would still leak first. The 
cracks approach a/b ratio of about 0.6 instead of 0.7 in the previous case (see 
Fig. 8). 

With sufficient number of heat-up and cool-down and reactor trip tran
sients (two of the most severe [5] as far as the fatigue crack grovrth is con
cerned), all the cracks would grow to failure. However, the computed crack 
growth in primary nuclear piping due to these transients is very small. For 
example, it would take about 20 000 years for an initial crack of a/h — 0.37 to 
grow to a/h — 0.48, with only a small change in this aspect ratio. This is based 
on five heat-up and cool-down and ten reactor trips occurring every year, the 
rate typical [5] of a pressurized water reactor. 

Soinmary and Conclnsions 

The growth of part-through part-circumferential semielliptical surface 
cracks in nuclear primary piping of finite wall thickness was ascertained. 
Crack extension was considered to be controlled by RMS-averaged stress-in
tensity factors associated with each axis of the semielliptical crack rather than 
the local value. This allowed the aspect ratio to change with crack extension. 
Additionally, the use of a recent influence function developed for circumferen
tial cracks in pipes allowed the arbitrary stresses through the pipe wall of finite 
thickness to be treated. 

The influence of uniform and radial gradient thermal stresses on crack 
growth was computed and displayed through crack growth trajectories that 
display the changes in semielliptical crack growth geometry with stress history. 
These trajectories showed that the uniform stress cycles tend to grow cracks 
through the thickness for all cracks with length-to-depth ratio of greater than 
2.5, thus resulting in most of the cracks leading to leaks in pipes rather than 
direct pipe severence. Nonuniform thermal stresses, on the other hand, tend to 
grow cracks more in length direction leading to direct pipe severance. These 
trajectories were obtained for an actual calculated primary piping stress his
tory, and the results were dominated by uniform stress cycles, with the actual 
crack growth during the lifetime of a reactor being predicted to be negligibly 
small. 
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APPENDIX 
This appendix illustrates the use of crack growth trajectories to compute the number 

of cycles required to grow a crack from a defined point on a given crack growth trajec
tory. For example, form = 4 , let us compute the number of heat-up to cool-down cycles 
required to grow a crack from the point indicated by an arrow in Fig. 2 to the next point 
on the trajectory. This corresponds to initial conditions of a/A = 0.315, a/b = 0.495, 
and final conditions of a/A = 0.369, a/b = 0.545. From Fig. 2, the value of a for these 
two points is 0.006516. Consider the heat-up and cool-down cycle to have (Tmaj = 104.2 
MPa and a„i„ = 14.34 MPa. Then 

•Tnin 

Kax-<Tmin) ] ' ' ' = 96-7 MPa (9) 
"max v"max 

Let C = 1.59 X 10 ^^ and pipe wall thickness h = 0.0635 m. The following number of 
cycles then are required to produce the amount of crack growth considered 

An = a/(Ca,"' h'"''^) = 0.006516/(1.59 X 1 0 ^ " X 96.7^ X 0.0635^) 

= 1.16 X 10^ cycles (10) 

Thus, 116 000 cycles of heat-up to cool-down will grow an initial crack of a = 0.315/i 
= 20 mm, A = 40 mm to a size of a = 0.369A =23.4 mm, b — 43.0 mm. The manner 
in which a crack changes shape as it grows is given by the crack trajectory. The number 
of cycles required to grow a crack between two points on a given trajectory for any 
combination of C, Og and h can be computed from information on the corresponding 
value of a. 
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ABSTRACT: Environmentally affected fatigue crack propagation in steels is described 
for ultralow growth rates (below 10~* mm/cycle) in terms of the role of crack surface cor
rosion debris in promoting crack closure. It is shown that the reported effects of gaseous 
and aqueous environments (air, water, hydrogen, helium, etc.) on near-threshold crack 
growth in lower strength steels are consistent primarily with an oxide-induced crack 
closure mechanism. Moist atmospheres, such as humid air and water, are shown to pro
mote the formation of oxide deposits within the crack, which at low load ratios are 
thickened by fretting-assisted oxidation to maximum thicknesses comparable with crack-
tip opening displacements. Using ultrasonic techniques, this is shown to increase closure 
loads and to lower effective alternating stress intensities at the crack tip. Observations 
that near-threshold growth in dry helium is similar to that in dry hydrogen gas and faster 
than in air, are shown to be consistent with such concepts since both environments pro
vide a dry atmosphere limiting oxide formation. Extensive data on near-threshold 
corrosion-fatigue crack growth in ultrahigh-strength (300-M) and lower-strength (2V4Cr-
IMo and SA516) steels are examined in the context of this mechanism, and it is found 
that the threshold for no crack growth (AA'̂ ) is consistent with a maximum excess oxide 
thickness approximately equal to the pulsating crack-tip displacement (ACTOD). The 
implications of this and other microscopic mechanisms of closure are discussed in the 
light of microstructural and environmental influences on near-threshold fatigue. 
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Nomenclatuie 

a Crack length 
d Crack surface oxide thickness 

da/dN Fatigue crack growth rate 
ACTOD Pulsating (cyclic) crack-tip opening displacement 

E Elastic modulus 
AK Alternating stress-intensity factor (K^i^ - ^min) 

AKgff Effective alternating stress-intensity factor (K,,^ — K^O 
AK„ Threshold stress intensity for no detectable cyclic crack growth 

K^i Stress intensity to cause closure of fatigue crack 
ATjc Plane strain fracture toughness 

Ki^^ Threshold stress intensity for environmentally assisted cracking 
ATmax̂  transition maximum stress intensity for hydrogen-assisted growth 

/iLraaj Max imum stress-intensity factor 
/Tmin Min imum stress-intensity factor 

N Number of cycles 
R Load ratio (K^i„/K^ 

U T S Tensile strength 
Yc Cyclic yield strength 

Recently a new approach to modelling corrosion-fatigue crack growth has 
been proposed based on the concept tha t if corrosion deposits form within 
growing cracks to a size comparable with crack-tip opening displacements, 
significant crack closure can result which reduces effective alternating stress in
tensities at the crack tip [1-3].'* This concept, te rmed oxide-induced crack 
closure, has been found to be pert inent in explaining somewhat surprising 
observations reported recently on environmentally affected fatigue crack 
growth at near-threshold levels ( that is, below 10~^ mm/cycle) , where, for in
stance, seemingly aggressive environments are found in certain materials to 
retard crack growth [1-4], For example, near-threshold fatigue crack propaga
tion has been found (a) to be slower in water [3,5,6] said faster in helium gas 
compared to air in lower-strength steels [1-3,7], (b) to be marginally slower in 
dry hydrogen gas compared to air in ultrahigh-strength steels [4,8], and (c) in 
general to be susceptible only to an environmental contribution to cracking at 
low load ratios [1,3]. Such observations are at first sight inconsistent with 
classical mechanisms of corrosion fatigue, involving such processes as 
hydrogen embri t t lement or active path corrosion ( that is, metal dissolution) 
[9]. It appears tha t with the ultralow growth rates, small crack-tip 
displacements, and high frequencies generally associated with crack propaga
tion at al ternating stress intensities (AK) approaching the threshold for no 
detectable crack growth {AKg), conventional wisdom on environmentally-

••The italic numbers in brackets refer to the list of references appended to this paper. 
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assisted cracking becomes questionable and alternative competing mecha
nisms, such as oxide-induced crack closure, become more predominant. 

According to the oxide-induced crack closure model [1-3], near-threshold 
growth rates are faster in dry hydrogen gas because of an absence of water 
vapor compared to moist air. Moist environments result in the formation of 
readily observable oxide films within the crack, which are thickened at low 
load ratios by "fretting oxidation [10]." The latter process is essentially a 
continual breaking and reforming of the oxide scale on the crack surfaces 
due to abrasion and "smashing" together of these surfaces, and is a result of 
plasticity-induced crack closure [//] and the Mode II crack-tip displacements 
characteristic of near-threshold crack growth [12]. Consistent with this mech
anism, oxide films have been measured to be between 3 to 20 times thicker 
than oxide formed naturally on freshly bared specimens held in the same en
vironment for similar periods of time [3,10]. Such corrosion deposits, which 
are much less predominant in dry atmospheres or at high load ratios (where 
plasticity-mduced closure is insignificant), provide a mechanism for increased 
crack closure. By allowing earlier contact between mating fracture surfaces 
during unloading, closure loads are raised such that the effective stress 
intensity range at the crack tip is reduced, that is, the presence of the foreign 
debris effectively raises Kj^ij,. This mechanism, however, is specific only to 
stress intensity ranges where oxide thicknesses are of the order of cyclic 
crack-tip opening displacements (ACTOD), for example, at near-threshold 
levels. 

The objective of the present paper is to review some new observations on en
vironmentally influenced near-threshold fatigue crack growth in both ultra-
high-strength and lower-strength steels in the context of such alternative corro
sion fatigue mechanisms. In particular, direct experimental measurements of 
oxide-induced crack closure are described, and the significance of this 
microscopic closure is discussed in terms of effects of microstructure and en
vironment on near-threshold fatigue crack growth behavior. 

Experimental Procedures 

In this investigation, alloy steels covering a wide range of yield strengths 
from 327 to 1740 MPa were examined. These were an ultrahigh-strength 
silicon-modified AISI 4340 steel (300-M), two lower-strength 2V4Cr-lMo 
pressure vessel steels, namely quenched and tempered ASTM A542 Classes 2 
and 3, and a normalized ASTM A516 Grade 70 pipeline steel.̂  The 300-M 
alloy was oil quenched from 870°C, and tempered at 300°C and at 650°C 
(hereafter referred to as T300 and T650, respectively) to give tempered 

*For brevity, the lower strength steels are referred to in the text by their American Society 
of Mechanical Engineers (ASME) designations, namely SA542-2, SA542-3, and SA516-70, re
spectively. 
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martensitic structures. The lower strength steels, which were heat-treated ac
cording to appropriate ASTM standards, displayed duplex ferritic/pearlitic 
(SA516), bainitic (SA542-3), and martensitic (SA542-2) microstructures. 
Room temperature mechanical properties are shown in Table 1; full details 
of microstructures and heat-treatment procedures are described elsewhere 
[13-15]. 

Near-threshold fatigue testing was performed with 12.7-mm-thick com
pact specimens* (T-L orientation), cycled under load control at frequencies 
between 0.5 and 50 Hz (sine wave). Tests were conduced at load ratios (R = 
^min/̂ max) between 0.05 and 0.75 in carefully controlled room temperature 
environments of moist air (30 percent relative humidity), distilled water, and 
purified and dehumidified hydrogen and helium gases. Gaseous atmopheres 
were held at 138 kPa pressure in a small 0-ring sealed chamber, locally 
mounted on the specimen, with gas purity maintained usmg an extensive 
purification system including molecular sieves, cold traps, and heat-
bakeable lines [15]. Near-threshold crack growth rates were monitored using 
d-c electrical potential techniques under load-shedding (decreasing A^) con
ditions, with the threshold AKo defined in terms of a maximum growth rate 
of 10~* mm/cycle [16]. All plotted data represent mean values from several 
individual tests. Full experimental details have been described elsewhere 
[1.14-17]. 

Crack surface oxide deposits were characterized using electron spec
troscopy for chemical analysis (ESCA) and scanning Auger spectroscopy of 
fatigue fracture surfaces. Using a tantalum oxide standard, depth-
concentration profiles were obtained using argon (Ar+) sputtering to define 
the extent of oxidation, as described in detail elsewhere [3,17]. The resulting 
crack closure phenomena were assessed using ultrasonic techniques similar 
to those developed by Buck and co-workers [18,19]. Such procedures are 
described in Ref 17. 

TABLE 1—Room temperature mechanical properties of steels investigated. 

Steel 

300 M-T300 
300 M-T650 
SA542-2 
SA542-3 
SA516-70 

Structure 

martensite 
martensite 
martensite 
bainite 
ferrite-

peariite 

Monotonia 
Yield 

Strength, 
MPa 

1740 
1070 
769 
500 
327 

Cyclic 
Yield 

Strength, 
MPa 

1700 
970 
568 
400 

Ultimate 
Tensile 

Strength, 
MPa 

2000 
1200 
820 
610 
4% 

Reduction Ki^, 
in Area, % MPaVm 

48 65 
56 152 
56 
77 295 

233 

^Iscc 
(H2 gas), 
MPaVin 

18 to 20 

80 
85 

•"Plane-strain conditions were maintained such that cyclic plastic zone si2es did not exceed 
1/15 of specimen thickness. 

 



SURESH ET AL ON FATIGUE CRACK GROWTH IN STEELS 1-333 

Results 

Behavior in Lower-Strength Steels 

The variation of fatigue crack growth per cycle with stress intensity range 
for a fully bainitic 2V4Cr-lMo steel (SA542-3) is shown in Fig. 1 for en
vironments of moist air and dry gaseous hydrogen (138 kPa pressure), 
representing tests at load ratios of 0.05 and 0.75 with frequencies between 
0.5 and 50 Hz. As reported previously [20], the influence of hydrogen is evi
dent in two growth rate regimes, namely at mid-growth rate levels above 
~10~^ mm/cycle and at near-threshold levels below —10"^ mm/cycle. In 
the mid-growth rate regime, at maximum stress intensities K^^ in excess of 
-20 MPaVm'' and where frequencies (for R = 0.05) are below 5 Hz, crack 
growth rates are increased abruptly m hydrogen gas coincident with a frac
ture mode transition from predominately transgranular to predominately in-
tergranular cracking, as shown in Fig. 2b and d. The major difference in 
growth rates between hydrogen and air, however, occurs progressively as the 
threshold AKg is approached. In this regime at i? = 0.05, even at high fre
quencies (50 Hz), crack propagation rates are up to two orders of magnitude 
faster in hydrogen with AKg values reduced by as much as 27 percent, 
although the fracture surface morphology (predominately transgranular) re
mains unchanged (Fig. 2a and c). Significantly, however, near-threshold 
growth rates at high load ratios {R = 0.75) appear comparable in both en
vironments. Similar behavior for air and dry hydrogen environments has 
been observed in bamitic-ferritic 2V4Cr-lMo (SA387) steels [/] and in the 
pearlitic-ferritic SA516-70 pipeline steel shown in Fig. 3. In the near-
threshold regime at 50 Hz, the presence of hydrogen similarly results in faster 
growth rates at low load ratios (i? = 0.15), whereas behavior in moist air and 
hydrogen is almost identical ai R — 0.75. Also shown in Fig. 3 are mid-
growth rate data [21] for moist air and high-pressure (6900 kPa) hydrogen 
tests on the same heat of steel at frequencies of 0.1 to 10 Hz. A fifty-fold in
crease in hydrogen pressure can be seen to increase growth rates by up to a 
factor of 20, coincident with a reduction in the stress intensity K„,^^, above 
which the mid-growrth rate effect of hydrogen is first observed. 

In Fig. 4, the influence of a number of environments on near-threshold 
growth is compared with moist air data for SA542-3 at R = 0.05 (50 Hz). 
What is perhaps most significant about these results is that near-threshold 
growth rates are approximately 100 times higher in dry hydrogen, yet in wet 
hydrogen this effect totally disappears. In distilled water, growth rates are 
marginally slower compared to air, whereas they are markedly faster in dry 

This critical value for the onset of hydrogen-assisted growth, termed K„^, is of the order of 
20 MPaVm in SA542-3. This value is found to be independent of load ratio and can be con
sidered, in this case, as an effective threshold for sustained load hydrogen embrittlement con
tributions to fatigue crack growth [20]. 
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FIG. 2—Fractography of fatigue crack growth in moist air and dry hydrogen (R — 0.05, 50 
Hz) at near-threshold levels and at AK = 20 MPa'fm. 

gaseous helium. Helium in fact behaves very similarly to dry hydrogen in that 
no effect is seen at high load ratios {R = 0.75), as shown for martensitic 
SA542-2 steel in Fig. 5. 

Thus, environmental influences at near-threshold levels predominate at 
low load ratios, and are characterized by the fact that growth rates are 
substantially higher in dehumidified environments such as dry hydrogen and 
helium gases, compared to moist environments such as wet hydrogen, moist 
air, and distilled water. Such results appear at variance with classical 
mechanisms of corrosion fatigue, yet can be understood by considering a 
contribution from oxide-induced crack closure. 

Behavior in Ultrahigh-Strength Steels 

The variation of fatigue crack propagation rates in 3(X)-M steel as a func
tion of stress intensity range at /? = 0.05 is shown in Fig. 6 for the highest 
strength 300°C tempered structure tested in moist air and hydrogen. As for 
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FIG. 4—Environmentally influenced fatigue crack propagation in bainitic SA542-3 at R = 
0.05 (50 Hz) in moist air, distilled water, dry helium, and wet and dry hydrogen gas. 

lower strength steels (Figs. 1 and 3), two distinct regimes of environmentally 
influenced crack growth are seen. Above 10"^ mm/cycle, although growth 
rates in air and hydrogen are similar at 50 Hz, lowering the frequency to 5 Hz 
results in significantly faster growth rates in hydrogen. This behavior, which 
has been reported by others [22-24], is accompanied by a marked increase in 
intergranular fracture for hydrogen-assisted failures. What is intriguing, 
however, is the observation that at growth rates below 10~* mm/cycle at 50 
Hz frequency, the presence of hydrogen gas actually results in slower near-
threshold propagation rates and a 16 percent higher threshold AAT,, value 
compared to air. 

Similar behavior is seen in the lower-strength T650 microstructure where, at 
both high and low load ratios {R = 0.05 and 0.70) at 50 Hz, growth rates in 
air and hydrogen are similar until near-threshold levels, whereupon they 
become slower in hydrogen, as shown in Fig. 7. Threshold AKg values in 
hydrogen are again between 11 to 15 percent higher than in air. Similar to 
lower strength steels (Fig. 2), fracture surfaces close to the threshold were 
predominately transgranular and indistinguishable between au- and 
hydrogen environments. Once again, the role of environment at near-
threshold levels appears distinctly different from more familiar behavior 
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commonly observed in higher growth rates, and is seemingly at variance with 
classical corrosion fatigue mechanisms. 

Discussion 

It is well established that in the mid-growth rate regime above ~10~^ 
mm/cycle, hydrogen-containing or producing environments can cause 
significant accelerations in fatigue crack growth rates in both high-strength 
[20-24] and lower-strength [20,25] steels. Hydrogen-assisted growth in this 
region is sensitive to load ratio, frequency, and pressure (Figs. 1 and 3), and 
in many materials is accompanied by a change from a predominately trans-
granular to a predominately intergranular fracture mode (Fig. 2). 
Mechanistically, reaction kinetic studies [22,23] have indicated that such en
vironmentally assisted cracking can be attributed to hydrogen embrittlement 
processes rate-limited by surface reactions at the crack tip. It appears that in 
gaseous hydrogen atmospheres this rate-limiting step involves chemisorption 
of hydrogen, whereas in water/water vapor environments crack growth is 
limited by the rate of hydrogen production which results from the reactions with 
(or oxidation of) freshly exposed surfaces at the crack tip [23]. 

However, an even more pronounced effect in the presence of hydrogen has 
been shown in the current work for near-threshold growth rates below 10~^ 
mm/cycle, an effect which is characteristically very different from behavior 
at higher growth rates. Steels such as 3(X)-M, for example, which are known 
for their marked susceptibility to hydrogen embrittlement, show marginally 
slower growth rates in hydrogen compared to air at near-threshold levels. On 
the other hand, lower-strength steels, which traditionally have been con
sidered to be relatively immune to hydrogen embrittlement, show faster rates 
in dry hydrogen, no effect in wet hydrogen, and marginally slower rates in 
water, again with reference to room air. Previous models [16,26-29] for the 
role of environment at uHralow growth rates relied on very limited data and 
were based on classical corrosion-fatigue mechanisms, specifically hydrogen 
embrittlement in steels. While such mechanistic processes may still occur at 
near-threshold levels, even at high frequencies, it is clear that in light of the 
current results, competing processes such as those based on crack closure 
must play a dominant role. 

Models [1-3] based on the role of corrosion debris formed inside the crack 
can provide such a description of environmentally influenced crack growth at 
near-threshold levels, at least for lower-strength steels. Moist environments, 
such as humid air, water, and wet hydrogen, simply allow ojdde products to 
build up on the crack surfaces due to fretting and abrasion from plasticity-
induced closure and Mode 11 displacements, as shown in Fig. 8. Provided 
such deposits are of a size comparable with crack-tip opening displacements, 
the effective stress intensity (A/̂ eff) at the crack tip will be reduced cor
respondingly through oxide-induced crack closure [1-3] and possibly addi-
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FIG.8—Zones of corrosion deposits formed on near-threshold fatigue fracture surfaces of 
SA542-3, tested in air at R = 0.05 and 0.75. 

tional crack blunting [7,30] effects. In dry atmospheres, such as dehumidified 
hydrogen and helium, where less oxide can be generated, the reduced role of 
closure promotes faster propagation rates. At high load ratios, the relative 
absence of such closure mechanisms results ui similar growth rate behavior in 
both wet and dry environments (Figs. 1, 3, and 5). 

Supporting evidence for this mechanism has been obtained through oxide 
thickness and closure measurements [17\. ESC A and Auger analyses of frac
ture surfaces in SA542-3 [3] revealed that corrosion deposits were 
predominately iron oxide (Fe203) and varied in thickness with crack length 
(and hence crack growth rate) in the manner shown in Fig. 9. It is apparent 
that the thickness of the oxide scale varies inversely with growth rate, is in
dependent of the time spent from crack initiation to final failure, and is at a 
maximum close to the threshold AAr̂ . At R = 0.05 for tests in moist air, the 
maximum oxide thickness is approximately 0.2 fim, roughly 20 times larger 
than oxides formed naturally under similar environmental conditions for the 
same length of time. Even in dry hydrogen at R — 0.05, the oxide formed 
close to the threshold was 0.1 ^m thick, presumably because oxide formation 
can occur via fretting mechanisms even in the presence of minute traces of 
moisture in dehumidified atmospheres. Conversely, at high load ratios (R = 
0.75) where closure and fretting effects would be negligible, oxide 
thicknesses in air and hydrogen environments were of the order of naturally 
formed oxide (that is, ~0.01 ^m). 
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3 4 5 6 7 8 9 
CRACK LENGTH (mm) 

FIG. 9—AT'^ sputtering data showing variation of crack flank oxide thickness with crack 
length (measured from the notch tip) and crack growth rate (da/dN)/or SA542-3 and 300-M 
steels tested in moist air and hydrogen gas at R = 0.05 and 0.75. 

The suggestion that the presence of such oxides at low load ratios can in
crease crack closure loads can be verified experimentally by using ultrasonics 
to detect the opening and closing of a near-threshold crack [18,19]. Such 
measurements on SA542-3 steel [17] mdicated that closure loads'* were 
roughly 50 percent larger in moist air environments compared to dry 
hydrogen, in support of oxide-induced closure concepts. 

Since one unit volume of iron produces 2.13 unit volumes of Fe203, the 
measurements in Fig. 9 represent approximately the total excess material in
side the crack, assuming an equal thickness on each crack face. A com
parison of such oxide thickness data measured for a number of steels with 
computed crack-tip opening displacements' indicates that, at threshold, 
ACTOD is of the order of the maximum excess oxide thickness, as shown in 
Fig. 10. Whereas Auger thickness measurements and ACTOD computations 
are somewhat uncertain, this "model" for the existence of a threshold is 
clearly physically appealing since it indicates that the crack will no longer 
propagate when it becomes "wedged closed" with corrosion deposits such 

^Estimates of the stress intensity at closure (.K^i), determined from such measurements, were 
found to be of the order of the threshold stress intensity levels for both air and hydrogen en
vironments a tR = 0.05 [17]. 

'Following the finite-element analyses of Shih [31], crack tip displacements were calculated 
from the expression ACTOD = 0.5 AK^/2 Y^, valid for a material of yield strain ~ 0.002, 
strain hardening exponent ~ 0 . 1 , deformed in plane strain. Y^ is the cyclic yield stress and E the 
appropriate elastic modulus. 
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FIG. 10—Data for 2'/4Cr-IMo steels [3] showing correspondence of maximum excess oxide 
thickness (d) with ACTOD at the threshold. 

that the effective stress intensity range becomes small. It follows from this 
that one might not expect to see a threshold for tests in vacuo, and while in
terpretations of such a result may be clouded by re-welding effects [2,16], the 
vacuum data of Cooke et al [26] and Skelton and Haigh [32] on medium-
strength steels do in fact show no well-defined threshold! 

Behavior in ultrahigh-strength steel, however, appears considerably more 
complicated [4]. Early data on high-strength rotor steels by Stewart [2] in
dicated that thresholds in air and hydrogen were identical (no growth rate 
measurements were made). Such an observation is at least consistent with the 
idea of oxide-induced closure, since oxide formation should be reduced with 
increasing strength level. This follows from decreased fretting-oxidation ef
fects arising from less plasticity-mduced closure and less abrasion of the ox
ide debris on the harder steel substrate, and from the fact that the extent of 
oxide buildup will be limited by the smaller crack-tip displacements. Auger 
measurements on the present 300M-T300 condition (Fig. 9) indicated excess 
oxide thicknesses of approximately 0.01 fira at R = 0.05, which are compa
rable with the ACTOD value at the threshold. The oxide films, though, are 
considerably smaller than those in lower-strength steels and measurements 
often approach background noise levels. What is surprising, however, is that 
careful experimentation on ultrahigh-strength steels subsequent to Stewart's 
work [2] shows that threshold values are in fact marginally higher in 
hydrogen compared to moist air, at both low and high load ratios (Figs. 6 
and 7). This result, which has been confirmed in 300-M by testing at con-
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stant AK with changing environment [4], and independently verified by Liaw 
et al [8] on rotor steels, remains largely unexplained at this time. 

Nevertheless, it is conceivable that in such high-strength steels, known for 
their susceptibility to degradation from hydrogen, environmentally affected 
near-threshold growth still may be associated predominantly with hydrogen 
embrittlement mechanisms even at high frequencies [4]. The results in Figs. 
6 and 7, however, imply that at the partial pressures and periods (reciprocal 
frequency) relevant to these data, hydrogen uptake into the matrix, and 
hence the extent of embrittlement, would need to be more efficient in water 
vapor than in gaseous hydrogen. Although contrary to behavior in steels at 
higher growth rates [25,33], this behavior is similar to aluminum alloys [34], 
and presumably occurs because at the small ACTOD's associated with near-
threshold levels, where fretting-oxidation can promote enhanced oxide growth 
even in nominally dry environments (Fig. 9), crack surface corrosion deposits 
may be thicker than naturally formed oxide. Since it is this formation of the 
oxide which is the source of hydrogen for water vapor environments, whereas 
the oxide provides a barrier for hydrogen permeation for hydrogen gas phase 
environments, moist air atmospheres may well be more aggressive than hydro
gen gas for steel at near-threshold levels. 

Thus, the results presented in this paper provide an indication that en
vironmental influences on fatigue crack growth behavior at near-threshold 
levels and at higher growth rates may be governed by entirely different 
mechanisms. Although classical procesises such as hydrogen embrittlement 
and active path corrosion may be effective mechanisms controlling corrosion 
fatigue behavior over a wide range of growth rates, at near-threshold levels it 
is clear that competing mechanisms, namely oxide-induced crack closure, 
can become active, particularly in lower-strength steels, and dominate overall 
behavior. Near-threshold behavior in ultrahigh-strength steels similarly shows 
marked differences compared to higher growth-rate behavior, but remains 
largely unexplained at this time. 

The competing role of oxide-induced closure becomes significant at near-
threshold levels because the size-scale of the corrosion debris is of the order 
of the crack-tip displacements. Size-scales of the fracture surface mor
phology or roughness, however, also may approach this dimension, thus pro
viding additional sources of closure [35]. Given the small ACTOD's and 
Mode II displacements near AKg, a rougher fracture surface may lead to in
creased closure simply by wedging open the crack at discrete contact points 
along the crack faces [36-38], In terms of this mechanism, one might expect 
increasing threshold AKo values in coarser-grained materials due to the oc
currence of rougher fracture surfaces, which is consistent with reported data 
[16], Further, threshold values should be decreased in higher-strength 
materials due to reduced plasticity-induced closure, less fretting [1-3] and 
perhaps smoother fracture surfaces [37], again consistent with reported data 
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for steels [16]. Although these crack closure explanations for observed 
microstructural effects are at present somewhat speculative, they are in keep
ing with one prominent characteristic of near-threshold behavior, that in 
general the beneficial effects of increasing grain size and decreasing strength 
are markedly reduced at high load ratios (that is, R ^ 0.5). Thus, similar to 
the lack of environmental effects at high load ratios at near-threshold levels 
in lower-strength steels, this strongly suggests a dominant role of fatigue 
crack closure. 

Conclusions 

Based on a study of environmentally influenced fatigue crack propagation 
at high frequencies (0.2 to 50 Hz) in a wide range of steels, it is apparent that 
at near-threshold levels, below ~ 10~* mm/cycle, the overall growth rate 
behavior results from competing mechanisms. In higher-strength steels 
where the role of crack closure is minimized, conventional corrosion fatigue 
processes, that is, hydrogen embrittlement, appear to dominate, although 
unlike behavior at higher growth rates, moist air/water vapor environments 
seem marginally more aggressive than dry hydrogen gas. In lower-strength 
steels, however, the production of copious corrosion deposits in moist en
vironments can promote large crack wedging effects, which at near-threshold 
levels and low load ratios can markedly influence the overall growth rate 
behavior through the mechanism of oxide-induced crack closure. 
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ABSTRACT: Near-threshold fatigue crack growth behavior has been analyzed for a broad 
selection of steels surveyed from the literature. It is clear first of all that apparent values of 
the threshold stress-intensity factor (A/C,̂ ) can vary widely, roughly an order of magnitude. 
Though in many instances actual A/f,̂  values are difficult to define rigorously, a pro
nounced transition point or "knee" is apparent in the near-threshold region of the conven
tional logarithmic plot of fatigue crack growth rate (da/dN) as a function of stress-intensity 
range (AK). Though the values of A/f associated with these transition points {^j) for an 
individual steel may tend to exhibit a functional dependence on yield strength (Oj,,) or grain 
size (Q—as is the ease, for example, with a low-carbon ferritic steel—it is unmistakably 
clear that for the gamut of steels examined (15 cases), the transition points do not order on 
the basis of either Oy^ or (alone. Rather, values of A/Tj- for the gamut of steels order on the 
basis of a synergetic interaction of (7„j and f, according to the equation, A/fj- = 5.5 cr̂ j VE 
This relationship was derived in the cyclic plasric zone model of fatigue crack growth 
established in our prior work with titanium alloys. In further agreement with this model, 
AKj has been identified for these steels as the point at which the cyclic plastic zone attains 
the mean grain size. The significance and implications of these findings appear far-reach
ing, as the steels surveyed include those of both high and low strength, a wide range of 
effective grain sizes (mean free path in the case of high-strength steel), and a host of 
microstructural types (ferritic, martensitic, pearlitic, bainitic, and austenitic). 

KEY WORDS: fatigue (materials), crack propagation, steels, ferrous alloys, yield 
strength, grain size, microstructure, structure-sensitive crack growth, cyclic (reversed) 
plastic zone, near-threshold fatigue crack growth, fracture mechanics 

Though a number of investigators have examined the influence of micro-
structural variables on near-threshold fatigue crack growth rates in steels, a 
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comprehensive understanding of the dependence of near-threshold growth 
rates on grain size, yield strength, and microstructural morphology in steels 
has yet to emerge, as noted in an excellent review by Ritchie [1].^ Recently, 
however, from our own extensive studies with a/0 titanium alloys, the basis for 
microstructural dependence of widely different fatigue crack growth rates was 
established for titanium alloys [2-6]. Inasmuch as the micromechanistic 
model from that work does not depend uniquely on alloy family, it is of great 
interest to explore its applicability to steels, especially since it predicts quanti
tatively the influence of yield strength and grain size in the near-threshold 
region for steels. Thus, the purpose of this paper is to analyze critically the 
near-threshold fatigue crack growth behavior, as reported in the literature, for 
steels of widely different strength level, grain size, and microstructural mor
phology in the search for a systematic ordering of near-threshold fatigue crack 
growth rates that pertains to the whole gamut of steels. 

Survey and Analysis 

A summary of the near-threshold fatigue crack growth behavior surveyed 
from the literature is presented in Fig. 1, together with symbols that identify 
the steel and respective investigator(s) in Table 1 [7-15]. For each of the 15 
materials represented in this logarithmic plot of fatigue crack growth rate (da/ 
dN) versus stress-intensity range (AK), the growth-rate data exhibit a bilinear 
form with a transition point or "knee" as illustrated in Fig. 1. The level of 
stress-intensity range associated with the transition point is designated as 
AKj- Since the observed value of AKxfor each material in the figure is unique, 
it serves in Table 1 to distinguish the yield strength (â j) and grain size (J) of 
that material in those instances where a given symbol pertains to multiple 
growth-rate curves. It is important to point out that virtually all of the growth-
rate data represented in this figure were generated at roughly the same value of 
stress ratio, namely 0.0 < /? < 0.1.^ 

As shovwi in Fig. 1, apparent values of the threshold stress-intensity range 
(AKii,) can vary widely among the different steels, by roughly as much as an 
order of magnitude."* Though in many instances actual AKi^ values are diffi
cult to define rigorously. Fig. 1 indicates a spectrum of values from about 3 to 
18 MPa-m'''-^. Note, however, that in the case of each material, the transition 
point AKr closely approximates A/Ĉ ,̂ since the slope of the hypotransitional 
branch of the growth-rate curve is so steep, that is, the exponent in the growth 
rate law [18] 

da/dN = dAKY" (1) 

The italic numbers in brackets refer to the list of references appended to this paper. 
•^Thc data of Taira, Tanaka, and Hoshina [J5] are treated as though R = 0, as the authors 

originally published. 
•• Earlier surveys of AK,/, [16,17] which were based upon more limited data did not reveal the 

broad range of near-threshold behavior that is now evident. 
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4 5 10 20 30 40 50 

STRESS-INTENSITY RANGE, AK (MPa m'-^) 

FIG. 1—Near-threshold fatigue crack growth behavior of a broad selection of steels. Symbols 
refer to identification in Table 1, see text for further details. 

is very large. Inasmuch as the transition points AKT are found to order system
atically for the 15 materials in Fig. 1, on the basis of a synergetic interaction of 
the yield strength and grain size, which will be elucidated in this paper, this 
point is of potentially prime engineering significance with regard to the estima
tion of thresholds A/ir,̂ . 

The broad spectrum of ^.Kj values represented in Fig. 1 derives from steels 
that vary widely in terms of composition, microstructural morphology, yield 
strength, and grain size, as indicated in Table 1. Microstructural types range, 
for example, from basically martensitic 4Cr-0.35C steel to primarily ferritic 
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1005, 1007, and 1020 steels, pearlitic 1055 steel or austenitic 304 stainless, etc. 
Both high- and low-strength steels are represented, with yield strengths ranging 
from 192 MPa < â j < 1324 MPa. Effective grain sizes {transformed grain 
size or mean free path in the case of high-strength steel) range from 0.38 iim < 
f < 76 /im.5 

In prior work with low-strength steels, it has been reported that fatigue 
crack growth rates decrease with increased grain size, or that the threshold 
AKti, itself increases with increased grain size, or both [7,12,15,21-24]. Figure 
2 illustrates behavior found typically for & particular steel: Though the said 
effects appear operative as the grain size is increased through heat treatment 
of the given plate of steel, it is also clear that the yield strength (CT̂ J) has been 
simultaneously decreased. Thus, the isolation of any grain-size effect is ob
scured, as pointed out by Ritchie [/] and Benson [7]. Others also have noted a 
decrease in AAr,̂  with an increase in Oy^ [12,24-26]. Though the data in Fig. 2 
will be considered further later in this paper, it is worthwhile to note at this 
point the degree to which the data support the bilinear form of the growth-rate 
curves shown here and in Fig. 1. 

In contrast to Fig. 2, if behavior for the broad spectrum of steels described in 
Fig.^ and Table 1 is examined, there is no clearly discernible influence of Oy^ 
and Fon the ordering of the growth-rate curves, when each variable is consid
ered separately. This point is illustrated in Fig. 3, where a random sampling of 
data from Fig. 1 and Table 1 is represented. As the growth-rate curves (in 
terms of AK,i, or AKj) are traversed from left to right, values of ^exhibit no 
consistent trend, nor do those of Oy,. When the functional dependence of AKf 
on ays and 7is examined for all 15 of the materials of Fig. 1 and Table 1, as 
shown in Figs. 4 and 5 respectively, again the data patterns of AKj versus Oy^ 
and f appear highly random. For the sake of completeness, data from our own 
work with titanium alloys [4,27] have been included in these and subsequent 

^ For the basically ferritic st««ls or the 304 stainless, (is the ferrite or austenite grain size, 
respectively. For the 105S steel, Cis the pearlite colony size, since all a-phase lamellae in a colony 
exhibit the same variant of the Kurdjumov-Sachs transformation relationship—so that, accord
ingly, slip bands or slip-band cracks can transmit across o:-lamellae with carbide platelets crack
ing very readily under tensile load [10,19,20] as though the colony were a pseudo single crystal. Jn 
the case of the dual-phase, ferritic-martensitic 1018 steel, which is nearly 65 percent ferrite, t is 
taken as the ferrite grain size, consistent with Suzuki and McEvily's observation that crack growth 
preferentially followed a path through the ferrite [14]. For the martensitic 4Cr-0.35C steel, f would 
be the size of the packet of martensite laths which have a common variant according to the Kurdju
mov-Sachs or the Nishiyama-Wasserman transformation relations—were there no austenite re
maining at the lath boundaries as an effective barrier to the transmission of slip bands between 
adjacent laths [9]. In those cases where virtually continuous films of retained austenite line thejath 
boundaries (namely for austenitizing temperatures of 1000, 1100, and 1200°C), values of f are 
taken as the lath widths reported by Carlson, Narasimha Rao, and Thomas, namely I = 0.47, 
0.41, and 0.38 ;*m, respectively. By contrast, for the material quenched from the lowest austenitiz
ing temperature (870°C), the austenite film is highly discontinuous; in this instance, the appropri
ately modulated value of mean free path is estimated (from quantitative metallographic methods 
by the present authors) from the thin film transmission electron micrograph [9] to be f = 0.83 iira. 
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FIG. 2—Near-threshold fatigue crack growth behavior of a 1020 steel heat-treated to the indi
cated levels of grain size (0 and yield strength (Oy,), after Ref 15, adapted from Fig. 11, p. 151. 

plots, denoted by the symbol "X." All other data symbols in these figures are 
identified in Table 1. 

If AKT does not order on the basis of either Oy^ or 7, when the full gamut of 
steels is considered, then what is the system to the ordering of the growth-rate 
curves in the near-threshold region? Happily, there appears to be a straight
forward answer to this question: In accord with the cyclic plastic zone model 
for the ordering of growth-rate curves, as developed from work with titanium 
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lo-V 

4 5 10 
STRESS-INTENSITY RANGE, AK (MPa • m''' 

20 30 

FIG. 3—As illustrated with selections from Fig. 1 and Table 1, near-threshold growth-rate 
behavior for the whole gamut of steels fails to order on the basis of either grain size (f) or yield 
strength (Oyj) alone. 

alloys [2-6], obsen'ed values of AKjfor the whole spectrum of steels examined 
in this study are in remarkable agreement with the quantitative predictions of 
that model. In further agreement with the model, values of £ for all these steels, 
independent of microstructural morphology or composition, are found equal 
to respective values of the cyclic plastic zone size at the transition point, AKj. 

To begin with: In the work with titanium alloys, a bilinear growth-rate be
havior was observed as illustrated in Fig. 6, with two distinct branches that 
independently obey the power law of Eq 1 and that join together at the transi
tion point ( r ) . In the hypotransitional region where the cyclic (or "reversed") 
plastic zone size (sketched for plane strain conditions) is less than the grain 
size, r / < f, a microstructurally sensitive (or "structure-sensitive") mode of 

 



YODER ET AL ON FATIGUE CRACK GROWTH IN STEELS 1-355 

1000 2000 
YIELD STRENGTH, Oys WPa) 

FIG. 4—Values of stress-intensity range observed at transition points or "knees" in the growth-
rate data trend lines (^Kj) of Fig. I versus yield strength (a^. Symbols refer to Table 1: additional 
symbol "X" refers to data from Refs 4, 27. 

crack growth occurs that involves crystallographic bifurcation in grains adja
cent to the Mode I crack plane. This bifurcation causes a reduction in the 
effective AAT and consequently da/dN, and thus the appearance of the transi
tion itself. By contrast, in the hypertransitional region where r / > F, the grains 
within the larger r / must necessarily deform as a continuum, which results in 
a microstructurally insensitive, nonbifurcated mode of crack growth [4,5]. It 
should be noted that bifurcation has been observed in the microstructurally 
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FIG. 5—Observed values of transitional stress-intensity range (AKj) versus effective grain size 
(0. 

sensitive region for a wide range of microstructures [28,29]. Moreover, it is 
appropriate to mention that Wanhiil and Doker [30] have observed a differ
ence in the dislocation substructures associated with the structure-sensitive 
and structure-insensitive modes of crack growth. Quantitatively, a shift in the 
fatigue crack growth rate curve can be predicted, since the transition point (T) 
in Fig. 6 is the point at which the reversed plastic zone size [31-33] 

r/ = 0.033 (AK/ay,)^ (2) 
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FIG. 6—Influence of cyclic (reversed) plastic zone size, relative to grain size, upon development 
of bilinear fatigue crack growth behavior. Note transition from structure-sensitive mode of crack 
growth in lower branch to structure-insensitive mode in upper branch. 

attains the mean grain size [2-6,27-29]. Thus at the transition point, where 
r / = e, it follows that 

AKr = 5.5 ff„,Vr 
ys (3) 

This shift in the da/dN data plot, as sketched in Fig. 7, is well documented for 
titanium alloys [2-6,27-29]. 

To examine the applicability of this model to the near-threshold fatigue 
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crack growth behavior of the whole gamut of steels described by Fig. 1 and 
Table 1, values of (are compared in Fig. 8 to respective values of the cyclic 
plastic zone size from Eq 2, computed at the transition point, AK^. The agree
ment appears to be excellent. In further accord with Fig. 6, a number of inves
tigators have reported a structure-sensitive mode of crack growth when the 
cyclic plastic zone size was less than the grain size, which made the transition 
to a structure-insensitive mode of crack growth when the cyclic plastic zone 
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exceeded the grain size; for example, see Aita and Weertman [19,20], Suzuki 
and McEvily [14], and Cooke, Irving, Booth, and Beevers [34], Finally, to 
examine whether the wide spread in near-threshold growth-rate curves in Fig. 
1 is simply a consequence of the "omega" shift predicted in Fig. 7 via Eq 3, 
values of AKj- observed for the whole gamut of steels in Fig. 1 are compared in 
Fig. 9 to values of AKj- computed from Eq 3. The level of agreement is consid
ered remarkable, particularly in view of uncertainties involved in the measure
ments made by different investigators.* Thus, the broad spectrum of near-
threshold growth-rate curves for the gamut of 15 steels in Fig. 1 clearly orders 
in accord with the predictions of Fig. 7 and Eq 3. 

*'For example, inasmuch as there is as yet no ASTM standard for the relatively difficult mea
surement of growth rates in the near-threshold region, the data represented in Fig. 1 were ob
tained by a multitude of different procedures. Moreover, as pointed up in a recent paper by 
Vosikovsky, Trudeau, and Rivard [35], residual stresses can affect enormously determinations of 
apparent near-threshold growth rate behavior. 
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Discussion 

Evidence has been presented for a systematic ordering of near-threshold 
growth rates for steels, based on the synergetic interaction of yield strength 
(o-̂ j) and grain size {() expressed by Eq 3. Inasmuch as this finding pertains to 
the whole gamut of steels, regardless of strength level, microstructural mor
phology, or composition, it would appear to be extraordinarily significant. In 
particular, from an engineering standpoint, it is suggested that estimation of 
the threshold for fatigue crack growth A^j^ ought to be considered via Eq 3, 
which requires knowledge of only Oy^ and f, to obviate the need for direct mea
surements of A/r,A, which though elegant, are very time-consuming and ex
pensive. 

Though the near-threshold growth-rate curves for the vho\c gamut of steels 
do not order on the basis of grain size alone, it is pertinent to readdress the case 
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of an individual steel, heat-treated to generate different levels of F(and ff^j) as 
illustrated in Fig. 2. Since the Hall-Petch relation provides the tradeoff be
tween Oyj and £ in steels [36,37] 

Oy, = a, + m-"^ (4) 

where CT„ and k are material constants, then for an individual steel it follows 
from Eq 3 that 

A/i:r = 5.5(a„Vr+it) (5) 

or 

^KT a VF (6) 

Thus it is possible to understand micromechanistically the "grain-size" effects 
reported by Taira, Tanaka, and Hoshina [15] and Masounave and Bailon [12], 
namely 

AK,, a VT (7) 

It is of further interest to note that in the case of titanium alloys, the Hall-
Petch relation in Eq 4 is inoperative—that is, the dependence of a^ on (is very 
weak, at best [3,38]. Consequently, the Vfterm dominates the right-hand side 
of Eq 3, so that a grain-size effect is observed for titanium alloys [2-4,21,38,39]. 
In that case, the inverse dependence of fatigue crack growth rates upon grain 
size is directly relatable to the microstructurally sensitive mode of crack 
growth—since larger bifurcated cracks (thought to be slip-band cracks [5]) 
occur as the grain size is increased, thus dispersing the strain-field energy of 
the macroscopic crack over increased volumes of material in the crack-tip re
gion—to further reduce the effective AK and consequently, da/dN.'' 

As shown by Hertzberg and Mills [41] for a wide range of alloy families, slip-
band cracking or decohesion is characteristic of near-threshold growth-rate 
behavior, or the microstructurally sensitive mode of fatigue crack grovrth. For 
steels, Taira, Tanaka, and Nakai [42] have developed a blocked slip band 
model, with particular reference to the results of Ref 15, in which the ferrite 
grain boundaries served as the blocking obstacles.^ If the structure-sensitive 
mode of crack growth can occur only so long as the cyclic plastic zone size is 
less than the maximum dimension to which a slip-band (or slip-band crack) 

' In recent work by J. P. Lucas and W. Vf. Gerberich with ahigh-strength low-alloy steel, the 
Hall-Petch relation similarly was found to be inoperative for f in excess of 50 ^m, with a large 
grain-size effect observed on AK,,, {40]; moreover, a dislocation model for the AK,,, behavior has 
been developed. 

^Recently, Sadananda [43] has developed a dislocation model to explain the crystallographic, 
faceted mode of fatigue crack growth. 
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can develop unimpeded by an (insurmountable) obstacle, then f must in the 
general sense represent the mean free path between such obstacles. For a/^ 
titanium alloys and low-strength steels, Jis thus the effective grain size—inas
much as the grain boundaries are the controlling obstacles. In the case of the 
high-strength steels of Carlson et al [8,9], as noted previously in Footnote 5, 
the appearance of retained austenite in the martensite lath boundaries trun
cates the mean free path for slip-band transmission, which otherwise would be 
the lath packet dimension. 

If application of the model represented by Eq 3 and Fig. 7 were to be ex
tended to the near-threshold, transitional growth-rate behavior observed in 
precipitation-hardened alloys such as those in the aluminum family [44-47] or 
others [48], thin-foil transmission electron microscopy might well be required 
to determine the mean free path £ between obstacles that effectively obstruct 
slip-band transmission. Such potential obstacles might include constituent or 
intermetallic particles, dispersoids, or precipitates formed upon aging.' 

In closing this discussion, it is appropriate at least to mention a further pair 
of issues concerning AK^. On the one hand, in view of the work of WiUiem [49] 
some years ago, the question might be raised as to whether AKj- reflects a 
tensile to shear mode fracture transition. The answer appears to be a resound
ing no, since it appears that shear lip development was not involved in the case 
of any of the 15 materials in Fig. 1 and Table 1. Moreover, calculation of the 
limits for plane strain constraint indicates that levels of AKj are nowhere near 
the calculated limits, except for possibly 1 or 2 of the 15 cases. On the other 
hand, the question of stress-ratio (R) influence on AKj- might be raised. From 
a micromechanics standpoint, it is not clear that/? should have any influence 
on AKJ as formulated in Eq 3. Rather, there is growing evidence that stress-
ratio effects may be primarily environmental in their influence on the near-
threshold growth-rate behavior: Witness, for example, the results for steels, 
aluminum, and titanium alloys which indicate that AK,h (or AKj) is insensi
tive to R in an inert environment, namely vacuum conditions [1,34,47]. More
over, it is relevant to note that AK,i, values reported for vacuum over a wide 
range of R values are similar to A/C,/, values observed near /? = 0 for an air 
environment. Thus the case can be made that environmental influence had 
negligible bearing on the results for the 15 steels analyzed in this paper.'" 

Conclusions 

1. Resistance to fatigue crack growth in the near-threshold region varies 
widely among steels. When logarithmic plots of grovrth rate (da/dN) versus 
stress-intensity range (AK) are analyzed in a bilinear form with a transition point 

'Hertzberg has raised the question whether subgrain boundaries might act as the controlling 
obstacles in an extruded aluminum alloy. Personal communication, 3 April 1981. 

"*W!th regard to stress-ratio effects and environmental modeling, the interested reader might 
wish to consult the work of Krafft, J. M., this publication, pp. I-380-I-406. 
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or "knee" at AATj-, values of AKj are observed to range from 3 to 18 MPa • m^^ for 
the different steels. These values of AK^ appear to be good approximations to 
actual threshold values of AK below which cracks do not propagate {AK,h). 

2. Values of AKj- for the gamut of steels examined do not order on the basis 
of either yield strength (ays)or grain size(F) alone. Rather, values of A/T^ order on 
the basis of the synergetic parameter, Oy^ \C 

3. Specifically, in accord with the cyclic plastic zone model developed in prior 
work with titanium alloys, observed values of AKj are in remarkable agree
ment with predictions according to the equation, AKx = 5.5 CT^JVE 

4. Applicability of these findings appears to be far-reaching, as the steels 
surveyed span a wide variety of yield strengths (192 to 1324 MPa), effective 
grain sizes (0.4 to 76 /tm), and microstructural types (ferritic, martensitic, 
pearlitic, bainitic, and austenitic). 

5. A simple predictive equation (see Conclusion 3) thus is offered as a rea
sonable approximation of the threshold, AK,^, for any steel, from knowledge 
of only â j and t 

6. Though near-threshold growth-rate curves for the whole gamut of steels 
do not order on the basis of grain size alone, for the case of an individual steel, 
by contrast, AK^ does increase with \/T This result is shown to be a direct 
consequence of the Hall-Petch relation, in combination with the equation for 
AKx given in Conclusion 3. _ 

7. The grain-size parameter in the cyclic plastic zone model, namely I, is 
recognized in the more general sense to be the mean free path between (insur
mountable) obstacles to slip-band transmission. 
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ABSTRACT: Overload effects have been studied for center-cracked tension (CCT) speci
mens of aluminum alloy 2124-T351. The results show that the retardation of crack prop
agation due to overloading, which is not taken into account by the Paris relation, can be 
explained by variation in the U ratio as defined by Elber. The crack length over which 
this retardation occurs was found equivalent to the diameter of the plastic zone as calcu
lated by the Irwin relation. It was verified that the minimum value of AK^^ reached after 
overloading could be calculated from threshold measurements taking into account the 
loading history. The threshold after overloading was related to the overload ratio, imply
ing that two kinds of tests are sufficient to determine the threshold after any overload 
ratio and hence the minimum AK^. The relationship between i^K^ff and the plastic zone 
size gives the AA'̂ ff value for a given crack length in the affected zone without measure
ment of crack tip opening displacement. 

KEY WORDS: aluminum alloys, effective stress-intensity factor range, threshold, 
R-ratio influence, overloading effects, spectrum loadings, prediction of retardation, frac
ture mechanics 

Nomenclatoie 

a Crack length 
Co Overload crack length 
aj) Crack length affected by overloading 

No Number of cycles of retardation due to overloading 
Pmax Maximum applied load 
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Pniin Minimum applied load 
Pop Load level at which the crack is fully open 
P„ Applied load just before overloading 
Pp Magnitude of applied overload 
P„ Maximum load at which the crack is arrested after overloading 

AKo Stress-intensity factor range before overloading 
AKpeak Overload stress-intensity factor range 

A/ith Maximum stress intensity factor range at which the crack is ar
rested after overloading 

AK^ffo) AK value at which the crack is no longer affected by overloading 
AATeff Effective stress-intensity factor range 

AA êffmin Minimum value of AK^ff due to overloading 
A/ik'eff(ND) '^^eff value at which the crack is no longer affected by over

loading 
U Effective stress-intensity range ratio 

UE [/-value for uniform loading 
U„aD Minimum value of U due to overloading 

Tp Overload ratio (A/Tpcak/A/iro) 
T Threshold ratio (AKo/AK^y,) 

m, C Constants of Paris relation 
CE Constant of Paris relation modified by Elber relation 

8 Gage displacement at the crack tip 
Tpo Plastic zone size due to K^ 

Tppeak Plastic zone size due to ATpeak 
Tpth Plastic zone size due to /if ,|, 

The reduction in crack growth rate resulting from an overload preceded 
and followed by the same level of cyclic loading has been studied by many in
vestigators. 

Crack grovrth retardation is known to be related to many factors. After the 
overload, there is generally a rapid decrease in the growth rate to a minimum 
level followed by a gradual increase back to the steady-state growth rate. 

Wheeler related the retardation only to the plastic zone size affected by the 
overload. Systematic agreement between the Wheeler model and test results 
is not always found. Actually, the number of variables of complex load time 
histories is ra ther large. Hence it is necessary to incorporate crack closure to 
get a more realistic model. 

The effective AK determination is not easy and requires sophisticated ap
pliances [1,2\? So a threshold concept after overload has been introduced in 
order to determine more easily the part of the cycle that contributes to propa
gating the crack effectively. 

The italic numbers in brackets refer to the list of references appended to this paper. 
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Procedure 

Center-cracked tension (CCT) specimens of 2124-T351 aluminum alloy 
were tested under tensile cyclic loading in plane stress conditions. The 
specimens were 1.6 mm thick and 200 mm wide. The chemical composition 
of this alloy was 

Si 
0.11 

Fe 
0.23 

Cu 
4.35 

Mn 
0.6 

Mg 
1.45 

Cr 
0.01 

Zn 
0.04 

Ti 
0.02 

Its mechanical properties in the longitudinal transverse direction were Oy = 
274 NfPa, ultimate tensile strength = 440 MPa, reduction in area = 18 per
cent, and /fic = 32 MPa Vm. 

A servo-hydraulic fatigue machine controlled by a minicomputer was used 
for the overloading tests. The cracks were propagated at a frequency of 10 
H2. One millimetre before application of the overload the frequency was 
changed to 0.1 Hz. A clip gage was positioned just ahead of each crack tip 
and in the affected zone, at an average crack length chosen to have the stress-
intensity factor range, AK^, approximately equal to 12 MPa Vm, just before 
the overload. Another clip gage straddling the central notch was used to 
record the load-displacement curves. 

On the other specimens, cracks were propagated at a frequency of 20 Hz 
and with an R-ratio of 0.01. When the stress-intensity factor range, AK^, was 
12 MPaVm, different overload values were applied at a frequency of 10 Hz. 
The stress-intensity factor range was subsequently decreased to a level such 
that the crack did not propagate during 10^ cycles. This level called 
threshold, Kfi^, has been determined for the following load configurations, as 
shown in Fig. 1: 

1. Determine the overload value {AK^^ which induces crack arrest such 
that the threshold iAK^t,) after overloading is equal to the stress-intensity fac
tor range which preceded the overload, AKg [3]. 

2. Determine the AK^^ value during uniform loading such that the 
overload ratio Tp is 1 [J]. 

3. Determine the threshold after a given overload ratio. Two values have 
been investigated here: T^ = 1.5 and 2 [4]. 

Experimental Program 

To study crack growth mechanisms in terms of effective stress-intensity 
factor range, AK^, the influence of different parameters on the retardation 
due to overloading has been investigated. These parameters are: the frequency 
before and after overloading; the crack length; the steps at a maximum and 
minimum value of load; the stress state; the overload ratio, Tp = 1.5 and 2; 
and the R-ratio influence. 
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Rlc =Ps/Pm 
Ps 

Pm 

t 

Ps 
R2c = Ps/Pm 

Pm 

Po 

t 

Ps/Po=1,5et2 

Ps 

Pm 

FIG. \.—Determination of the threshold after overloading [3]. 

Our results show [5,6] first that the affected crack length, a^ was influ
enced only by the value of the overload ratio, Tp; a value of a,) — 0.9 mm has 
been found both for 12-mm-thick compact-tension (CT) specimens and 1.6-
mm-thick CCT specimens tested with a stress-intensity factor range AATQ — 
12 MPaVnTand an overload ratio Tp = 1.5. Secondly, important variations 
were observed on the number of cycles of delay, Np, principally due to varia
tions in the coefficient, C, and exponent, m, of the Paris law established from 
different tests, associated with a particular crack length, as shown in Tables 
1 and 2. Consequently, the crack growth rate, the overload ratio, and the 
R-ratio are the principal parameters to be considered in the determination of 
crack growth retardation after overloading. 

Overloading Effect on the Effective Stress-Intensity Factor 

Because an overload ratio, Tp — AKp^^^^/AKo of 1.5 is not sufficient to 
record variations in the load displacement relationship, due to the poor retar
dation ( = 4000 cycles), we decided to test the CCT specimens with an 
overload ratio Tp = 2, with two R-ratios: 0.01 and 0.5 [4], For this value of 
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TABLE 1—Comparison between measured and calculated affected zones. 

Specimen 
Reference 

MO 2.2 
MO 3.2 

MO 4.1 

MO 5.1 

MO 6.1 

MO 7.2 

"o' 

average 
average 
side 1 
side 2 
average 
side 1 
side 2 
side 1 
side 2 

mm 

24.91 
24.91 
15.66 
14.34 
15.1 
14.42 
15.45 
24.37 
25.49 

Measured 
Values 

of a J), mm 

2.7 
2.98 
2.85 
2.96 
3.6 
2.38 
2.92 
2.8 
2.8 

Oj), Determined 
from U Ratio, 

mm 

2.65 

2.55 
2.4 
2.55 

Calculated 
Plastic Zone 

Diameter, 2ry, 
mm 

2.56 
2.56 
2.63 
2.4 
2.54 
2.42 
2.6 
2.5 
2.63 

Calculated 
Values of 
OD, U51, 

mm 

1.9 
1.9 
1.97 
1.8 
1.9 
1.8 
1.95 
1.87 
1.97 

overload ratio, variations of P opening have been recorded by the clip gages 
located in front of each crack tip in the zones affected by the overload. Figure 
2 shows an example of P opening variations determined from the P — d 
recordings. 

For each value of Pop> there exists a corresponding value of U 

U = 
^^cff ^max ^op 

AP P — P 
' - " ^ max ' min 

These values have been calculated in order to determine AK^ff = U AK = 
UAayTira , where a is the crack length. Figure 3 shows that when the crack 
growth rate is plotted versus AK^n, instead of AK as shown in Fig. 4, all the 
experimental points obtained in the affected zone lie on a unique straight line 
that corresponds to the relation da/dN = C^ A/iT̂ ff determined from the 
Paris relation da/dN = C AK'" without considering the points obtained in 
the affected zone (Fig. 4). In this case the ratio U is constant for a given 
R-ratio, and hence da/dN = C^ U AK"' [2]. A similar relation da/dN = 
C^AK^d has been obtained for an R-ratio equal to 0.5 [4,5], shown in Fig. 5. 
Secondly, we have verified that the ratio U is agam constant after the 
overload effect [2,5,7,8] confirming the previous relation da/dN = C^ AK'", 
established in the case of fatigue crack propagation under constant amplitude 
loading. 

This method for the determination of Op, the crack length affected by the 
overload, appears to be more precise than measuring ap on the curves of 
da/dN =f{a) (Table 1). The values of Up determined when U is again con
stant are in good agreement with values of the plastic zone diameter, 2ry, 
calculated with the Irwin relation 

2ry = 
•K 

1 / / ^ p e a k ^ ' 
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FIG. 2—P opening variations detected in the affected zone. 
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FIG. 3—Fatigue crack growth rate versus the effective stress-intensity factor range: R = 0.01. 
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FIG. 4—Fatigue crack growth rate versus the stress-intensity factor range: R = 0.01. 

Knowledge of the integration limits, 0 and 2ry, is not sufficient to calcu
late the number of cycles of delay, A^ ,̂ from the relation dN = da/ 
CE AK^a because U and AK^ff are a function of the retarded crack length a^-
As a first approximation, we have considered the linear relation between f/-' 
and a or 2ry, and also between AKlf{ and a or 2ry, as shown in Fig. 6. 

The new relation becomes 

dN = 
da 

CEiAa+B)'"^^ (1) 

The coefficients A, B are calculated for each case from the relations for a„ 
(overload crack length) 

-^^effmin — t/min '^•^o 

for 2ry 

U=^C'= UE; AA:(ND) = Ao^n{a„ + 2ry) 
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FIG. 5—Fatigue crack growth rate versus the effective stress-intensity factor range: R = 0.5. 
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FIG. 6—U (star) and AK /̂̂ ^ (solid square) variations versus the affected zone size: Tp — 2. 
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So 

A êff(ND) = Ui:AK(fiD) = UE^O^T^UO + 2ry) 

The relation AK^ = / (a) becomes 

Iry 
AK^ = V 4 ^ T 5 = peff(ND) ^ef f^ in , + ^;^2^^^^ (3) 

The integration of Eq 1 has been made by Simpson's method over the 
limits Og, a„ + Aa. The results found for Aa = 2ry are given in Table 2. 
These results are given for different coefficients m and C^ found in different 
tests, but for each test, with its determined values of m, C£, the calculated 
retardation is in good agreement with the experimentally measured value. 

Relation Between the Effective Stress-Intensity Factor Range and the 
Tlireshold After Overloading 

From the previous results we know that it is possible to calculate the delay 
due to an overload by means of AÂ eff measurements. To avoid the determi
nation of AKgff in the affected zone by crack opening displacement, the 
threshold concept after overloading, AT,),, has been introduced [3] in Paris's 
law da/dN = C (K^^ - Ktt,)'". 

Because the crack does not propagate for AK values less than AK^i^, we 
shall consider that the crack propagates for AK^ff values equal to /ifmax ~ 
K^j,. So the AAT̂ff value, immediately after overloading called previously 
A/Teffmin. will be determined from the following hypothesis: AK^ = AK^f + 
AKth- From the results obtained for the three configurations [9], a linear 
relation has been established between 

2 = ( ^ ^ P f ^ y = ZPP22L and T ^ = ( ^ ' = ^ (for/? = 0) 

where r^ is the radius of the plastic zone, as shown in Fig. 7. It appears that 
two tests are sufficient to determine this relation for the two extreme cases a,b 
defined previously [3]. From this relation, for any given Tp and AK,, the A/sTt,, 
value immediately after overloading can be determined, and hence AK^ff^i^, 
being the lower integration limit of Eq 1. The higher limit can be calculated 
from Eq 2. Hence, the retardation due to an eventual overload can be pre
dicted without measurement of crack opening displacement variations. 

Discussion 

It is interesting to notice that no variation of crack opening was obtained 
by the central clip gage while the crack crossed the affected zone. The ex-
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FIG. 1—Threshold determination for a given overload ratio Tpj AK„ = 12 MPa-Jm and 
R = 0.01. 

planation is that the variations of Pop are due to the extra residual deforma
tions, which affect only the tip of the crack, induced by the overload. The 
variations of Pop ̂ ^''^ obtained only with the two clip gages located in front of 
the crack tips in the affected zone [1,7,8,10-14]. 

The results given in Table 1 show that the values of ap determined by the 
U ratio are in good agreement with the values of the diameters of the plastic 
zones due to overloading, calculated for /Cpeak = 24 MPaVm. This method 
gives less scatter in results than those obtained by measuring ao from a = 
f{N) or da/dN ~f{a), as they depend greatly on the manipulator. However, 
Elber and Schijve [2,7] have found them to be in a good agreement. Good 
relations have also been found by Bertel [6] between a^ and 2ry for sheets of 
2124-T351 and 2618-T651 aluminum alloys tested with two R-ratios, 0.01 
and 0.5, and different overload ratios. Consequently, it is more accurate to 
consider 2ry for determining the length of the affected crack than to consider 
the value of a^ determined by Wheeler [15] (Table 1) or only ry, as proposed 
by different authors, at least for the aluminum alloys. 

The relation Tp — /(T) gives the threshold just after a given overload (when 
Tp = 1, as is the case of uniform loading or many successive overloads). It 

 



BERTEL ET AL ON COMPLEX CYCLIC LOADING 1-377 

appears that the threshold is easily determined, but the use of AK^ is more 
practical in the prediction of retardation for the following reasons: 

1. When the crack growth rate is plotted against AK^, in logarithmic 
coordinates, a linear relationship is obtained even in the case of overloading 
with different ^-ratios. 

2. This relation is the same for different R-ratios in plane stress propaga
tion (Figs. 3 and 5) verifying the Elber relation U = a + ^R established in 
the case of propagation under uniform loading as well as for overloading. 

3. The threshold concept gives only the extreme points: the threshold value 
just after overloading and that after a uniform loading, that is, for 2ry. The 
relation between U and a gives the AK^ft value for a given crack length Aa, 
even if Aa is less than 2ry. 

This last remark is very important for application of the AA"ef( concept in 
the case of complex spectrum loading. In fact, AK^H is calculated cycle by cy
cle by the different relations established in this paper, satisfymg 

- ^ = CEAK'^!( hence Aaj, = CEAK"^^, 
dN 

An example of applying this method is given in Table 3 for the spectrum 
loading, represented in Fig. 8, composed of repeated blocks of 18 cycles. The 
results show that the prediction of crack propagation is in good agreement 
with measurements for a range of crack length up to 8.18 mm. 

The AKefi concept indicates that only five cycles are effectively propagat
ing the crack (Fig. 8). 

The AKgff concept appears to be a good criterion to explain the crack 
propagation mechanisms under variable amplitude loading with different 
R-ratios, at least for thin sheets. This concept permits the prediction of crack 
propagation under complex spectrum loadings encountered in aeronautics. 

Conclusions 

1. The variations of the U ratio calculated from P8 records in the affected 
zone by overloading permit plotting a linear relation in logarithmic coor-

TABLE 3—Predicted crack propagation for spectrum loading (CCT specimen}. 

a„, mm 

32.32 
34.6 
35.7 

Measured Number of 
Blocks 

AN„ 

3010 
1400 
5300 

EN 

3010 
4410 
9710 

N = 9710 

Calculated Crack 
Propagation 

Aa 

2.28 
1.1 
4.9 

LAa = 8.28 

Total a 

34.6 
35.7 
40.6 
40.6 

Measured Crack 
Propagation 

Aa 

2.68 
1.35 
4.15 

EAo = 8.18 

Total a 

35 
36.35 
40.5 
40.5 
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FIG. 8—Applied spectrum loading as repeated blocks. 

dinates between the crack propagation rate da/dN and the effective stress-
intensity factor range A/f ̂ ff. 

2. This relation has been found the same in the case of propagation under 
a cyclic loading with R-ratio of 0.5, affected by an overload. 

3. The value of a^, affected crack length, calculated from the U variations 
has been found in good agreement with the diameter of the plastic zone, 2ry, 
induced by the overload. 

4. The relation U = /(2ry) permits the prediction of the number of cycles 
delayed, NQ, due to an overload with good precision by integrating dN = 
da/Ce A K'Sf. 

5. The range of results obtained for calculated values of No is the same as 
that observed during testing. Consequently, an eventual error of ND values is 
due not to the calculation method (A/foff concept) but to the variations of the 
coefficient C^ observed for different tests. 

6. The threshold concept after overloading defined in the literature is a 
simple and indirect means for determination of AK^ff. 

7. The AA'eff concept permits the prediction of crack growth in plane stress 
conditions under complex spectrum loadings. 
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Data of Several Steeb," Fracture Mechanics: Fourteenth Symposium—Volume I: 
Theory and Analysis, ASTM STP 791,1. C. Lewis and G. Sines, Eds., American Society 
tor Testing and Materials, 1983, pp. I-380-I-406. 

ABSTRACT; Taken from a recent Naval Research Laboratory (NRL) repon, this paper 
advances author's earlier efforts to associate plastic flow with fatigue crack growth charac
teristics. Success with this could lessen the data required for estimates of fatigue crack 
propagation life of structural elements. The model sees crack growth as a means of strain 
hardening material elements adjacent to the crack tip to counteract strength losses due to 
transient stress relaxation/creep and environmental surface attack. It defines limiting 
growth rates in terms of fixed as well as of strain-limited environmental action. Data on 
some 16 steels are compared to measured stress-strain data using the same model equa
tions. Data fits are rather close, and values of the three kinds of data fitting parameters 
show consistent trends with respect to the yield strength of the steels. 

KEY WORDS: fatigue crack propagation, corrosion fatigue of steels, fatigue propagation 
model, plastic flow versus fracture model, fracture mechanics 

Fatigue crack propagation data are needed in important life-prediction 
problems such as: air-frame structural integrity and damage tolerance; fa
tigue stress allowables of welded structures; tolerance for nondestructive test
ing (NDT) indications under the American Society of Mechanical Engineers 
(ASME) pressure vessel code; and total fatigue endurance of jet engine parts. 
The ideal measure of structural fatigue endurance is by testing in direct simu
lation of service environment and loading spectrum. However, it is usually less 
costly to estimate life from steady-state crack growth rate data, modified by 
suitable overload retardation models. Even here, the effort required to simu
late all stress ratios, frequencies, and environmental conditions can be sub
stantial. A goal of propagation modeling, the subject of this paper, is to reduce 

' Head, Structural Mechanics Branch, Naval Research Laboratory, Washington, D.C. 20375. 

1-380 

Copyright® 1983 by AS FM International www.astm.org 

 



KRAFFT ON PLASTIC FLOW 1-381 

the time and cost of acquiring such data. As in earlier papers on this endeavor 
[1,2,3],^ this one puts forth refinements that were required to cope with an 
enlarged data base. It describes the ferrous alloy results of Naval Research 
Laboratory (NRL) Memorandum Report4161 [4], which also contains data on 
titanium and aluminum alloys. Copies of the full report are available from the 
NRL. 

Model Concept and Development 

This model explores the hypothesis that stability of crack propagation re
quires the maintenance of a state of constant-load stability within a specific 
region of material very close to the crack tip. The crack extension during each 
cycle is determined as the means of just maintaining such stability. For sim
plicity, it considers the specific region of material as a crack-tip front with rows 
of cylindrical tensile ligaments of fixed diameter dj-{=2rx). These are elon
gated by remote loading of the crack as well as by crack growth in each cycle. 
As with any specimen subjected to tensile strain, strain-hardening enhances 
stability, while Poisson contraction reduces it. Additional load-reducing ef
fects are transient stress relaxation (a volume effect) and environmental attack 
(a surface effect), modeled as load-bearing material removed from the liga
ment surface. This surface attack can be considered to be limited in two ways. 
First, it may be limited by exposure time in the cycle, up to a saturation condi
tion. Second, it may be limited alternatively by insufficient surface-disturbing 
plastic strain due to crack loading and propagation. The following analysis 
provides a deterministic way of considering both limits. 

Constant Load Stability 

Consider a simple tension specimen of sectional area/1, subjected to load P, 
for which the true stress a is defined 

a = P/A; P = oA; dP = adA + Ada (1) 

For the constant-load creep conditions, dP = 0, whence Eq. 1 becomes 

adA = -Ada (2) 

These total differentials of area and stress, on a ligament of radius rx = dx/2, 
can be replaced by the following partials 

dA^ = IvTtrx'dep; dA^ = —iTrrrdrj- (3) 

dag = 6pdep da„ = —madt/t (4) 

•̂ The italic numbers in brackets refer to the list of references appended to this paper. 

 



1-382 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 

Here V is the Poisson ratio, ê  is the plastic stram, 0^ is the plastic strain harden
ing rate {da/dep), m is the stress relaxation exponent (dlna/lnt — —dina/dinep), 
t is time, and subscript s denotes a surface effect. The plastic strain Sp, and plastic 
strain hardening rate cfff/dtp = 9^(9^" ' = 0 ~ ' — E~') are used since stress 
relaxation, or strain rate sensitivity, is a plastic-flow effect and the elastic part 
of the Poisson contraction is relatively small, 2y — 1.0. With this simplifica
tion, combining Eqs 3 and 4 with Eq 2 results in 

" ' rr t 

Crack-Tip Straining 

In Eq 5, dtp may be regarded as the strain differential required to maintain 
the constant load condition, d!P = 0. An expression is needed for how such 
strain derives from the loading and growth of the crack. This model employs, 
provisionally, the simple analogue of the linear elastic crack tip stress field, 
providing an inverse half power strain singularity near the crack tip 

Oy = K/sll^r, e = K/-j2^rE (6) 

Differentiating Eq 6 gives 

de = (r-^^^dK - -y r-3/2jrj /V2^ E (7) 

where K is the opening mode stress-intensity factor, r is distance ahead of the 
crack tip, E is Young's modulus, and e is total elastic plus plastic strain. 

As a further simplification, the crack-tip strain singularity is truncated 
within the distance equal to the ligament diameter, r = dj. Substituting r = 
dx, dr = —da where a is crack length, and e = K/y/litdj- E, then Eq 7 
becomes 

dt =de^+4^ da (8a) 
4rj-

Here dei designates a strain differential due to crack loading, while e^ is a 
strain associated with the strain gradient di/dr, hence —de/da, at the point 
r = dj. For constant-load stability during the dwell period after loading has 
ceased in the fatigue cycle, the loading strain differential dei is neglected. Of 
the propagation strain remaining, its elastic component is unchanged by the 
growth increment da, hence de may be regarded as a plastic-only strain, that is 

fG_ 
4rr 

dep= ^ da {8b) 
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Substituting Eq 8b in Eq 5 gives 

da = [Sdrj- + Amr-f 
a 

(9) 

Specifics for the Growth Rate Equation 

The general crack growth relationship, Eq 9, shows the principal impedi
ment to crack growth as the strain hardening rate of the material. Cyclic and 
monotonic strain hardening characteristics differ markedly. Both are involved 
in some way at the crack tip in fatigue. Cyclic loading produces cyclic straining 
at the crack tip. Yet if there is substantial growth during the period of sus
tained load, the crack may invade material of virgin characteristics, unaf
fected by the cycling. After trials of many correlation algorithms, the option 
chosen is to divide the effects decisively on the basis of limiting cases of crack 
propagation, namely, to associate cyclic strain hardening, a function of the 
strain excursion, with impedance to stress-relaxation induced growth, and to 
associate monotonic strain hardening, a function of the maximum strain, with 
impedance to environmentally induced growth. This defines two different 
kinds of the flow property-dependent term of Eq 9 

Oi 

0̂ 1 

£_ — V3 
(10) 

and 

G, ^ £2^ 

<^2 

V3 
(11) 

where subscripts 1 and 2 denote monotonic and cyclic properties, respectively, 
and G is called a specific growth rate factor. 

In calculating G-values from measured tensile data, the monotonic stress aj 
is measured from zero-stress origin, and converted to true stress. However the 
cyclic stress is the positive excursion of a cyclic loop assumed in balance with its 
negative excursion as results from prolonged cycling [5]. The strains ej and €2 
are total (elastic plus plastic) strains measured from these origins, and the 
corresponding values of stress and strain hardening rate are considered func
tions of these total strains. The term V372, slightly less than unity, is substi
tuted as a plane-strain triaxiality effect on the instability condition [6]. It has 
the effect of increasing the strain for tensile instability in a way found to be 
helpful in correlating materials with very flat monotonic stress-strain curves. 
With these selections, Eq 9 can be expressed as a crack growth differential 

da = Ar-j-mGjdt/t + SG^drj- (12a) 
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An increment of crack growth in an excursion from K^i„ to A'̂ ax in an interval 
ti, and then holding on K^^^ for an interval tjf can be expressed 

Aa = Arrm (nil + tH/t^Gj + SArj-G, {\2b) 

or abbreviated 

Afl =hG2 +/1G1 (12c) 

A summed or averaged growth-rate factor (GRF) may be defined as 

GRF = Aa//2 = G2 + 4 - Gi 
72 

(13) 

In this paper, a single value for the loading wave-form factor £n(l + tu/ti) = 
0.3 (versus 0.4 in Ref J) is used to fit data for both sinusoidal and triangular 
wave forms used in the fatigue crack growth rate (FCGR) tests. Substituting 
this value in Eq 13 

Aa 
GRF ^ - — = Gj + 

i.lmrj 

Arj 

where GRF is a general/total growth-rate factor. 

Gi/0.15m (14) 

Curves of Time- and of Strain-Limited Surface Attack 

The two different ways in which environmental attack may be limited were 
mentioned earlier. The effect of varying these limits is displayed by two fami
lies of curves. One is a parametric set of constant values of rj-normalized 
surface attack intrusion [Arj/rj\; the second is a set for such intrusion relative 
to the plastic tensile straining of the dj-ligament during one loading cycle, 
[Arr/rj/Aep]. 

For the first family, Eq 14 is restated 

GRF = G2 + [Arj-Aj-j Gi/0.15w (15) 

or for a parametric TV-family 

G{N) = G2 + [2^]Gi/0.15w (16) 

The crack growth rate is thus 

da ^^, . = LlmrrGiN) (17) 
dN /t 
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For the second family, Eq 14 is restated 

Ar-p/rt 
GRF = G, + Ae„ 

A6„ 
Gi/0.15m (18) 

Here the Ae^ term is intended to include plastic strain due to both the loading 
and the propagation of the crack. It is calculated from Eq 8, approximated 
here in incremental form, with Eq 14 substituted for Aa 

Ae„ = Afi + OJitieaGRF (19) 

The loading (plastic) strain Ae/, is associated with the total strain of the cyclic 
stress-strain curve, less its elastic strain 

ACi = e2p - £2 - 2ff2/-E'2 (20) 

Considering the term 0.3 mecGRF, what value to use for e is unclear since, 
in effect, 62 is used for it in the G2 term of GRF, while ej is used in the Gj term, 
per Eqs 10,11, and 13. Corresponding values of these strains differ at nonzero 
stress ratio. To obtain a closed-form solution, only one can be used. In this 
case, the gradient strain is set equal to the maximum strain ej, corresponding 
to its value in G\. This is the more accurate value in regions where the environ
mental effects dominate. When they do not, the choice is of little consequence. 
With this approximation then, Eq 18 becomes 

GRF = G2 + 

Solving for GRF, then 

GRF = 

lOo 
+ ei0.3mGRF 

Arj-Zr-p 

Ae 
G,/0.15m (21) 

G, + 
Ar-j-Zr-f 

Ae 
G2pG,/0.15m 

1 -
Arj/r-f 

Ae 

(22) 

2e,G, 

or for a parametric M-family 

G(,M) = 
G2 + [2^]62^Gi/0.15m 

1 - [2^]2€,G, 

Similarly to Eq 17, the crack growth rate for this family is simply 

^Ui. 
dNj 

ImrjGiM) 

(23) 

(24) 
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Corresponding K-Strain Excursion 

The effects of load ratio R (ATmin /^max) on the values of Gj and G2 is consid
ered next. If the load ratio is zero and crack tip strain is proportional to the 
stress-intensity factor, then total elastic plus plastic strains of measurement in 
the two cycles can be compared directly. However, if R is greater than zero, 
then one should associate monotonic properties, hence Gj, with a strain larger 
than that for cyclic properties, hence Gj- If the strain excursion corresponding 
to AK is taken as a base, then a basis of association is 

Ae = 62 = (1 - R)t^ (25) 

This means that to calculate a GRF for a given value of strain excursion Ae, 
one uses cyclic properties at strain €2 = Ac to compute G2, while using mono-
tonic properties at strain e\ ~ Ae/(1 — /?) to compute the corresponding value 
ofGj. 

What level of stress-intensity factor excursion AK is required to produce a 
strain Ae at dj ? This model recognizes a slight degree of ineffectiveness, or 
"slack," in coupling the overall /f-excursion to the strain excursion at the 
crack tip, analogous to the Elber's crack closure effect [7]. The amount of this 
slack is fixed as one-half the monotonic tensile yield point strain as justified in 
Ref J. This "closure strain," ecz = TYS/2E, is taken as a fixed increase of the 
monotonic form of Ae. In the cyclic form, it is added only to the extent that the 
minimum strain, /? A6/(l — R), is less than the closure strain, or the difference 
greater than zero. With this, the AAT proportional strain is defined as 

Ae :̂ = Ae + tcL (26) 

= e2 + U c L - « « 2 / a - ^ ) ] > o (27) 

= (1 - i?)e, -f eci (28) 

The cyclic excursion AAT may now be defined, after Eq 6, for the point r = 
dj- = 2rx 

AK = ^JA^EAeK (29) 

An illustration of foregoing considerations is attempted in Fig. 1. 
This model version differs from that of Refs J and 8 in one major respect, as 

well as in several minor ones. The major change is that the gradient strain in 
Gi (Eq 10) and in G{M) (Eq 21) is taken as the maximum strain rather than 
the strain excursion. This and the minor changes are detailed in Ref 4. 
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FIG. 1—Outline of procedure for converting measured shape of monotonic (1) and cyclic (2) 
stress-strain curves into paths of up to four stages of corrosion-fatigue crack growth rate. 

Tension Tests of Conversion to GRE Parametric Curves 

To compare the previously developed algorithm with plotted fatigue crack 
growth data requires monotonic and cyclic stress-strain measurement and its 
conversion to parametric curve sets of G(N) and G{M) versus Ae,(. The com
putational task, too laborious for manual calculation and graphing, is readily 
accomplished with a suitable computer program, large digital computer, and 
plotter. The general procedure is summarized in sections to follow. References 
3 and 4 contain greater detail, and the BASIC language calculation program is 
available from the Naval Research Laboratory to those interested. 

Measuring Stress-Strain-Time Curves 

The model requires a mechanical stress-strain test of the material of inter
est. Specimens are taken preferably from used fatigue test specimens, with the 
longitudinal axis normal to the fracture plane; ours are 4.32 mm (0.170 in.) 
diameter, with about 9 mm (0.35 in.) length of uniform cylindrical section 
between fillets to threaded end buttons. With some skimping on thread 
length, they can be made from broken halves of a 1-T compact tension speci
men in accordance with the ASTM Test for Plane-Strain Fracture Toughness 
of Metallic Materials (E 399-81). These are subjected to tensile and compres
sive deformation on a subpress installed in the lower head space of 45-kN (10-
kip) screw-driven Instron machine. The crosshead was biased with heavy coil 
springs to remove backlash in load reversal, in the manner of Coffin and 
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Tavernelli [9]. A four-finger, resistance-strain-gage-instrumented clip gage 
was used to measure longitudinal strain recorded versus load on anx-y plotter. 
The Instron was set up to give a constant-load strain rate of about 10~^ s~^ 
Data for the stress relaxation exponent m is obtained on the flat region of the 
cyclic curve by arresting the head and timing, with the highest available ampli
fication, the decay in load. The slope of a log plot of load versus time after 
arrest is used in the measure of m. 

Reading and Correcting Flow Data 

Values of stress and tangent modulus are scaled directly on the stress-strain 
curves at selected strain stations, then converted to true values using 

a = aril + £r) (30) 

d = [dT+ aj/n + er)] d + 6 )̂̂  (31) 

€ = £n(l + €7-) (32) 

where the subscript T denotes tensile values. For the cyclic curve, stress is 
measured from the compressive toe, converted to true stress, then divided by 
two for the applicable tensile portion. 

Removing Upper-Yield-Point Effects 

Monotonic properties of structural steel usually exhibit an upper/lower 
yield point effect where zero or negative Qx produces an intractable Gj infin
ity. It is removed by fitting a power-hardening equation to the region beyond 
that of the lower yield point, then extrapolating with it back under the mea
sured lower yield plateau, using the equations 

ffi = ooi^p/^o)" 
(33) 

- 1 
^ ^ + - ^ 1 (34) 

e, = £̂  + <7,/£i (35) 

The strain hardening exponent n is determined as the slope of a log plot of 
measured a versus e beyond the lower yield range, and E\ is the measured 
monotonic elastic modulus. Estimated values of Gj are used only to replace 
lesser measurement-derived values. By this rule, measurements around the 
proportional limit are used, as desirable to ascertain AK threshold values. 
Only measured values of a-j- are used in the program. 
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Computer Processing 

The monotonic and cyclic flow data are listed in separate data file programs 
in computer storage. The file for a given material is withdrawn and inserted in 
the calculational program using the BASIC-language WEAVE instruction ca
pability in preparing the program to run. The program performs the numeri
cal interpolations, providing monotonic and cyclic characteristics at fixed log
arithmically spaced strain intervals of Ae;^. The output is plotted on a graphics 
terminal, generally with G(M) and G{N) versus Ae^ maps, in contrasting 
colors, superimposed. 

Installing Matching Guidelines 

The matching process involves finding what values of r and the two surface 
attack fitting parameters, Arj/r^ or N, Arj/rj-ZAe or M, provide the best fit 
of the data. This is done by graphical superposition of GRF versus Ae/̂  maps 
upon the da/dN \eTsus AK data, both of identical (logarithmic) scaling. In 
doing this, it is convenient to install match guidelines on both the plots. Our 
convention is to find the point on the crack growth data plot da/dN = 10 /nm/ 
cycle; AK ~ 10 MPaVm. Solving Eqs 14 and 29 using these coordinates, plus 
an arbitrary value of dj — 100 /im, gives a corresponding point on the GRF 
plot 

G/?/"ref = l/bm 
(36) 

Ae/c-ref = 1000 {MPaV^l-K El 

Other values of c/j- can be substituted to establish a line; alternatively, one of 
slope + 2 can be drawn from the previously designated reference points, by 
regarding the 2:1 dj-sensitivity of Gi?i^ versus Ae/f. The matching lines shown 
on the various data-match figures follow this convention. Comparison of G-
maps with da/dN data involves superposition of the respective plots on a light 
box, with matching lines held coincident. The position of Aeĵ  on the AK scale 
at best match is, conveniently, a value whose square is the size of the dr process 
zone in microns. 

Number of Fitting Parameters 

This model requires from one to five fitting parameters of three different 
kinds. The size parameter dj- is always required. If there is little or no environ
mental effect, the data should correspond to G(N) =^ G2-only, for a one-
parameter (rfj-only) fit. If there is a sensitivity to the air environment, data 
generally will correspond to a curve of constant M = Mm, for a two-parameter 
fit. In aggressive liquid environments, two additional stages must be charac-
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terized: Stage I growth by another higher value of M = Mj, and Stage II 
bridging I to III with a path of constant Â  = Â H' for ^ four-parameter fit. 
Finally, at high stress ratios, one can detect a "knee" protruding down from 
the constant-Mj, Stage I trace which appears to be matched by a curve of very 
low N = Njif value. With it, a maximum of five fitting parameters is needed. 
However, the same parameters apply to all positive stress ratios without 
change. 

The two curve families differ in frequency sensitivity. Curves of constant M, 
like the Stages I and III of corrosion-fatigue crack growth (CFCG) which they 
track, tend to be frequency-independent, presumably because the amount of 
surface attack is limited by the degree of surface distortion or plastic deforma
tion of the ligament. On the other hand, the curves of constant Â , as the Stage 
II they track, tend to be frequency/cycle-duration dependent, which presum
ably is related to the time dependency of surface attack or corrosion. 

Case Studies 

The overall collection reported in Ref4 contained some 13 alloys of titanium 
and aluminum in addition to the 16 steels shown here. Table 1 provides a 
listing of steel compositions, and Table 2 provides the heat treatments and 
mechanical properties. The sources of tension specimen material and FCGR 
data are referenced in the figure captions. For brevity, the GRF maps for the 
first case are shown. For the other cases, only the map portions found in corre
spondence with the data are shown. The characterizing values of df, Nfn, Mj, 
TV],, and Mm, where appropriate, are shown on each figure. 

Figures 2 to 10 display analyses of the 16 steels of differing composition or 
heat treatment or both. The full example is shown in Fig. 2 using the unusually 
complete data set of Vosikovsky [10] on X-70 line pipe steel. Values of true 
stress and strain hardening rates are given in Fig. 2a, followed in Fig. 2b by the 
combined G(M) and G{N) maps for each stress ratio. (A selection of these is 
overlaid the data in Fig. 2c.) 

Of the various cases shown, the matches are generally encouraging. In the 
softest materials, such as the A-36 of Fig. 3, specimen yielding tends to cut off 
the upper limit of agreement. Steels in the middle strength range seem to 
model best. Two higher strength steels, HY-80 and HY-130, show a greater 
AK range of stable fatigue growth than can be predicted from the strain range 
of stable plastic deformation. The extreme flatness of their monotonic stress-
strain curve causes, as with the lower yield point of mild steel, an uncertainty in 
the estimate of stability. However, at present the match of these two must be 
regarded as less than satisfactory. It is notable of the whole data set of Ref 4 
that the eleven titanium alloys modeled rather well, but two aluminum alloys 
did not model as well. 
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Trends in Model Fitting Parameters 

One measure of plausibility of a fracture model is the consistency among 
fitting parameters for various materials. In the titanium alloys from the source 
report [4], the dj process zone was found to correlate with the average grain 
size. In the steels, grain size generally was not measured. However, if a similar 
correspondence were to carry over, then the process zone size should follow a 
Hall-Petch type correlation with yield strength. The upper bound of Fig. 11 
shows such a plot. The slope of —2.0 for the overlaid band is as would be 
expected from the usual —0.5 power of grain size to yield strength relation
ship. Some of the other fitting parameters also are displayed in Fig. 11. In each 
case, the MorN value of the parametric curve family member has been con
verted to an absolute length using the process zone size as a multiplier.The 
parameters used are A^̂ ^ and Mm for the air fatigue data. Some degree of 
consistency among the values is indicated by the shaded bands. 

The frequency-dependent parameter of the tensile ligament instability 
model (TLIM) is the value of Â n or corresponding Arj- per cycle, found to fit 
the Stage II corrosion-fatigue growth region. Such values as are available in 
this collection are shown in Fig. 12 where, on a logarithmic plot, the value of 
Ar-f is plotted against loading time of the cycle. Using loading time as the time 
parameter governing corrosion-fatigue below Ki^^ follows the finding of Bar-
som [17] and of Kawai and Koibuchi [18]. Loading time is taken as 0.35 of 
cycle period for a sinusoidal wave form and 0.5 for a triangular wave form. The 
4340 steel data also are plotted this way, although for most specimens the 
cycling was at a Kj„^^ generally exceeding the Ki^cc threshold. 

In evaluating trends of Fig. 12, one should place less confidence in the low 
values of Arj-, as the small difference between M] and Mm paths in this region 
make it difficult to fit. Also, small values of the environmental term corres
pond to the transition of control between cyclic and monotonic curve shapes, 
where simple addition of limiting cases in the model is a questionable proce
dure. A slope of + 1 on this plot indicates a constant value of surface attack 
rate, called Vj in earlier papers. There appears to be a tendency for V̂  to 
decrease with cycle period at longer cycle durations, presumably due to some 
sort of time-saturation effect on environmental attack. 

The model algorithm permits a direct estimate of the threshold for fatigue 
crack growth. In the nonvacuum environment, AKj^ is proportional to the 
monotonic yield point strain, or 

AKTH = (1.5 - R)TYS sfli-d^- (37) 

which results from combining Eqs 28 and 29. This is a slight overestimate, as 
the program detects the proportional limit, rather than the 0.2 percent yield 
stress. The observation in titanium alloys [4] ofdj — 2Fsubstituted in Eq 37 
gives for ^ = 0 

AKTH = 5.3 TYS^ (38) 
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FIG. 2~Stress-strain data and GRF curves for X-70 line pipe steel at three stress ratios 
matched to air and salt water environment FCGR data of Vosikovsky [lOJ. 
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FIG. 2—(Continued.) 
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10 100 
STRESS INTENSITY FACTOR RANGE - AK (MROv/m) 

FIG. 3—GRFparametric curves matched to Stonesifer FCGR data on A-36 steel p.0]. 

where ? is the average (effective) grain size. This result is consistent with the 
expression put forth by Yoder et al [19]. 

One should be cautious in attempting to use this model for FCGR predic
tions when cleavage is part of the fracture process. This model implicitly as
sumes a ductile tear type of separation as a local process. The additional 
growth due to local bursts of cleavage was observed by Stonesifer [20] and 
Richards and Lindley [21] to accelerate the average crack propagation rate. 
The model does not account for this, and our (unpublished) attempts to apply 
it to predict the low temperature fatigue crack propagation rate in steel have 
been unsuccessful. On the other hand, the modeling seems quite adequate in 
cases when the environmental attack has resulted in intragranular separation. 
Presumably, here the stability of grain size ligaments limits the rate at which 
the separation around them may proceed. In general, the reflection of the 
widely differing shapes of stress-strain curves in the crack growth rate maps 
suggests some truth in the method. It does provide a way of normalizing effects 
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FIG. 4—GRF curves for BS 4360 Grade SOD steel matched to corrosion-fatigue crack growth 
rate data of Scott and Silvester [\ \}. The curves shown are from stress-strain data at ~ 7° C except 
the air data, which were at 25°C. Authors designate experimental artifact hy enlarged circles 
around data points. 
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FIG. 5—GRF curve family for X-65 line pipe steel at the single stress ratio R = 0.2, matched to 
room temperature, air, salt water, and sour crude oil environment data of Vosikovsky [il]. 
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K) 100 
STRESS INTENSITY FACTOR RANGE-AK (MF*vfil) 

2 10 100 
STRESS INTENSITY FACTOR RAN6E-4K (MRlv^ii) 

FIG. 7—GRF curves for HY-130 steel at three stress ratios matched to air and salt water 
environment data of Vosikovsky [\4J. 
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RT AIR 

o R •0.1 

IC 100 
INTENSITY FACTOR RANGE-AK luf^Jm) 

FIG. 8—GRF curves for 10-nickel steel at three stress ratios matched to air FCGR data of 
Hudak and Bucci [ISJ. 
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FIG. 9—GRF curves for each of four tempers of 4340 steel matched to corrosion-fatigue crack 
growth rate data in air and fresh water environments by Stonesifer, reported in Ref2. 
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FIG. 10—GRF curves for 300M steel tempered at Jour different temperatures at R =^0.05and 
0.7 matched to air environment data of Ritchie [16]. 
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FIG. 10—(Continued. J 
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FIG. 11—Size and surface-attack depth values derived from TLIM matching of the various iron 
base alloys shows an internal consistency. 

of plastic flow properties, allowing more effort to be devoted to studies of the 
remaining, more complex, influences of material and environment. 

Conclusions 

From this further development of a model which views crack growth as a 
means of strain hardening material elements at the crack tip to balance 
strength losses due to transient creep and surface attack, the following conclu
sions are reached. 

1. A fit of threshold and three later stages of growth, including stress ratio 
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FIG. 12—Values of the depth of surface attack in Stage 11 growth derived from TLIM matching 
are plotted versus loading rise time of the cycle. 

effects, can be obtained with two values of two kinds of disposable surface 
attack parameters and a process zone size parameter. 

2. In the steels, the process zone size decreases with increasing yield 
strength of the materials in a manner suggesting its correspondence to grain 
size. 

3. Values of the surface attack parameters show a consistent trend with the 
yield strength of the steels. 

4. Although conversion of measiired monotonic plus cyclic stress-strain 
curves to growth tracking curve families is tedious, a computer program is 
available that makes this a feasible task that is believed to be well worth the 
effort. 
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ABSTRACT: A muhidomain boundary element model for the automatic analysis of mixed-
mode fatigue and quasi-static crack propagation problems is described. Starting with the 
initial structural discretization, the new model automatically computes stress-intensity 
factors, direction of propagation, and load increment or number of cycles required to ad
vance the crack tips a requested distance. This process is repeated, again automatically, 
until crack instability occurs or the requested number of crack increments is reached. 
Traction singular quarter-point boundary elements are used on each side of the crack tips. 
These elements contain both the dominant ]/vr traction singularity and the dominant Vr 
displacement variation at the crack tip. Any of four mixed-mode interaction theories may 
be activated for angle and instability predictions. Solutions of example problems are 
presented. The predicted boundary element results show good correlation with both ex
perimental and other numerically obtained results. 

KEY WORDS; mixed-mode, fatigue, crack propagation, boundary element method, frac
ture mechanics 

Except for very simplified problems, the computations involving crack 
propagation must be done numerically. Within the scope of linear elastic frac
ture mechanics computer modelling of crack propagation problems is charac
terized by the following three difficulties. 

1. Topology: The extension of a crack changes the boundary configuration 
and places the problem into the class of moving boundary problems. Thus, a 
numerical discretization of the solution region must change at each step. The 
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new discretization has required the intervention of the analyst, who submits new 
data on punched cards ll,2f or graphically using interactive computer graphics 
[3], The latter method is more efficient from the point of view of the analyst 
(although it uses more computer time), but requires access to graphic hardware 
and software. Ingraffea et al [4] discuss the graphics type of algorithm. 

2. Singularity: A linear elastic fracture mechanics approach to discrete 
cracking requires recognition of the theoretically singular nature of the crack 
tip stress field. If fracture toughness, J î̂ , is to be the controlling material 
parameter, stress-intensity factors, K^ and K^, must be found for a given 
crack configuration and loading. In the boundary element context, this im
plies the ability to compute accurately and efficiently the stress-mtensity fac
tors through the use of elements which reflect the singular behavior in the vi
cinity of the crack tip. 

3. Stability: Cracking is not always immediately catastrophic. Quasi-static 
growth can occur if the energy release rate is decreasing with crack length. 
Subcritical growth can occur during cyclic loading. Nor is cracking always 
pure Mode I, either in a quasi-static or fatigue growth environment. For a 
given load increment or number of cycles of loading on a structure, methods 
must be available for predicting the length and direction of the corresponding 
crack increments. 

This paper presents a new and comprehensive solution to two-dimensional 
crack propagation problems. The computer code described herein automati
cally generates data required to analyze sequentially the changing boundary 
configuration corresponding to a propagating crack. The user need only sup
ply the initial input data; as output, the user obtains the final crack trajectory 
and a load/position or cycle number/position history. 

The operation of the model is controlled by the length of the crack increment 
selected by the user. For each new crack configuration, mixed-mode stress-
intensity factors are computed automatically. These are substituted into a 
user-selected interaction formula which predicts the direction of the next 
crack increment and determines its stability. For quasi-static propagation, the 
load increment corresponding to the selected crack increment length is com
puted automatically using an energy balancing algorithm [1]. In the case of 
fatigue, the user selects a mixed-mode fatigue crack model from which the 
number of cycles corresponding to the crack increment is determined. This 
process is repeated for as many crack increments as the user selects, or until 
crack instability is detected. 

The boundary element method (BEM) is used herein as the numerical algo
rithm. Since only the boundary is discretized, the topological changes intro
duced by the crack extension require a minimal one-dimensional boundary 
change in the vicinity of the crack tip. Only the nodal coordinates along the 
crack are recomputed (Mode I and mixed-mode fracture problems), and one 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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or two elements are added to represent the extended crack (mixed-mode frac
ture problems). In contrast, the finite element method requires a two-dimen
sional change which is more extensive [5] and can be used for the present pur
pose only in an interactive graphics environment. 

A multidomain approach is used since that is the only accurate and efficient 
means of analyzing mixed-mode problems using the BEM [6]. 

Both mixed-mode fatigue and quasi-static cracking problems are consid
ered in this paper. The techniques to be described are used to analyze the prob
lems shown in Fig. I. These problems have been studied experimentally and 
numerically in previous investigations [2,7]. Results of those investigations are 
compared to the predictions of the present method. 

Stable Crack Propagation 

The characteristics of the two types of crack propagation which the present 
method is capable of modelling are described in this section. 

Quasi-Static Crack Propagation 

Quasi-static propagation occurs when, under the assumptions of linear elas
tic fracture mechanics, a continuously increasing load is required to maintain 
crack instability. This implies a decreasing energy release rate with respect to 
crack advance under a constant load. Three classes of structures which exhibit 
this type of behavior are of interest. 

(b) 

FIG. 1—(a) Mixed-mode fatigue crack problem (2a = 13.5 mm. b = 76.2 mm. ACT = 155.3 
MPa, R = 0.1). (b) Quasi-static crack propagation problem (a = 10.16 mm. b = 0.1016 mm. 
w = 101.6 mm). 
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In the first class are structures loaded in tension, bending, or by wedging ac
tion which, by nature of their geometry, exhibit quasi-static growth. The 
tapered or contoured double cantilever [8], the short rod [9], and the wedge-
opened crack specimens [10] are examples which are of current interest for 
their value in fracture toughness testing of concrete and rock. 

In the second class are those structures in which quasi-static growth occurs 
because of the existence of mechanical crack arrest capability. Reinforced 
concrete is a good example [Il\. 

Finally, there is the class of cracked or notched structures, loaded in com
pression, such as an underground opening in rock (Fig. lb). 

In order to model crack propagation in these classes of structures, it is nec
essary to predict: 

1. the load required to initiate a crack increment, 
2. the direction of that crack increment, and 
3. the length of that crack increment. 

In the present model, mbced-mode crack initiation theory is employed to ob
tain the first two predictions. Four theories have been implemented in the de
veloped code: maximum circumferential tensile stress, ai6)m3x V2\; maximum 
energy release rate, Gifi)^^^ [13], and J(0)n,ax [14]; and minimum strain energj' 
density 5'(̂ )n,in [15\. Each of these theories predicts critical mixtures of the 
Mode I and Mode II stress intensity factors {K\ and ATu) and the direction of 
propagation at local instability. For example, the interaction equation for the 
o<e)max theory is 

1 0 
— COS — -

2 
(1) 

and the direction of propagation is found by solving 

[Ki sin e„ + Kyi (3 cos 0,, - 1)] = 0 (2) 

for e„ (Fig. 2). 
An algorithm, first proposed by Ingraffea [7J, computed the length of each 

increment of cracking caused by a given increment in load. The opposite point 
of view is taken herein; the increment in load which causes the crack to extend 
a given distance is computed. The scheme is based on the release of potential 
energy to form surface energy. Let R be the energy required to create a new-
unit of crack length, and G the potential energy release rate due to creation of 
that unit. If for a given crack configuration G is greater than R, a local in
stability occurs and the crack will extend. As the crack propagates, G may in
crease, resulting in an unstable crack growth. Alternatively, G may decrease 
and lead to stable crack growth. 

For stable crack growth, the question is then how far the crack extends un-
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• X, 

FIG. 2—Crack tip polar coordinate system and stress notation. 

der a given fixed load before it stops. An equilibrium state will be reached 
when a balanced energy transfer occurs from G to /? as shown in Fig. 3 and in 
the following form 

(3) G(a,e,Ki,Kn)dAa=\ R{K^,)dM 
0 Jo 

where A« represents the point of crack arrest and the origin is taken at the orig
inal crack tip. 

Given a structure, analyzed for four crack positions, all with the same load 
Pi, a curve through the four corresponding values of G can be defined. The 
area under the G-curve, A^, is the amount of energy released, and the area un
der the R-curve, A^, is the amount of energy needed to create a new crack 
length corresponding to the increment Aa (Fig. 3). 

If >iG is greater than A^, then a form of instability occurs. It will be a local 
instability if G decreases with crack length and the energy balance transfer can 
be satisfied before the crack reaches a free surface. Alternatively, if G in-

G,R 

FIG. 3—Graphical form of energy balance algorithm for crack length prediction. 
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creases with crack extension, then a global instability takes place resulting in 
failure. 

UAG is smaller than^l;;, Ac should be increased by shifting the G-curve up
ward in order to satisfy the energy balance transfer. Since G is proportional to 
the square of stress intensity, which in turn is directly proportional to the load, 
the multiplication factor for the current increment of load is 

^=.if^ (4) 
The determination of Ac is accomplished by dividing each crack increment 

into three subincrements, each with its own direction and value of G, fitting a 
curve through the four G-values, and integrating the resulting expression over 
the crack increment length. This process is done automatically for each crack 
increment. 

Further details of the algorithms for predicting crack increment direction 
and length can be found in Ref 16. 

Fatigue Crack Propagation 

The present model is capable of predicting mixed-mode fatigue crack prop
agation under constant amplitude loading. The four theories mentioned previ
ously are available for predicting direction of propagation. Rate of growth for 
Mode I loading is predicted using the Paris model [17], 

- ^ = CiAKyr (5) 

in which N is the number of load cycles, C and n are material properties, and 
AKi is the stress intensity factor range. 

The generalized Paris model of Tanaka [18] 

^=C{AK,f,r (6) 

is used for mixed-mode loading. Two expressions for the effective stress-in
tensity factor range, AK^ff, are user-selectable, 

AATeff = (A^i^ + 8AA:„4)'^^ (7) 

AK,f[ = {AKr' + 2A/:„2)i/2 (8) 
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Rewriting Eq 6 and integrating both sides gives 

- — ^ = dN^AN (9) 
0 CiAK^ff)" Jo 

where Aa is the user-selected crack length increment and AÂ  is the required 
load cycle increment. 

The evaluation of the left side of Eq 9 depends on the relationship between 
AKeff and crack length, AK^ff =f(a). To establish that function, AK^ff is cal
culated by the BEM at four points 

a,' = a," + 

a,^ = a,i + 

Aa 

3 

Aa_ 

3 

(10) 

Aa 
af = af + —— = a,_i + Aa 

m which a,_i is the crack length at the end of Step i — 1. A cubic polyno
mial, generated by using Lagrangian interpolation, is passed through the 
four points on the A/iTeff = /(a) curve \16\. Using this polynomial as the re
quired functional relationship, six point Gaussian quadrature is used to eval
uate the integral on the left side of Eq 9, thus obtaining the required number 
of load cycles to extend the crack the fixed distance, Aa. 

The Boundai; Integral Equation 

The boundary integral equation formulation discretizes only the boundary 
and thus effectively reduces the dimension of the computation by one. The 
governing Navier-Cauchy equations of elasticity are replaced with a bound
ary integral operator using Betti's reciprocal theorem \19,20\. 

Dividing the plane into subdomains 1^*^ the boundary integral equation is 
written as \2lX' 

c / ' (P)«/*) (P) + 1̂ ^̂^ 7-̂<*> (/^.Q)!./' (Q)jr 
(11) 

Vik) 
Ui}''HP.Q)tl''HQ)dT 

""The usual indicial notation of Cartesian tensor analysis is used. Latin subscripts have the range 
(1,2) and summation over repeated subscripts is implied. Commas are used to denote partial 
differentiation. 
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in which Cy'*' (P) is the rigid body translation solution of Eq 11 [22,23]. For a 
smooth boundary, c,j^''^ (P) = V2 6,-,, in which 6,-, is the Kronecker delta. The 
displacement vector is uj and the traction vector is tj. The points P and Q are 
field points on the boundary, F'*'. The second-order tensors Ty**' {P, Q) and 
t/y'*' (P, Q) are the fundamental traction and displacement solutions, respec
tively, which are [19,20] 

Til^HP,Q) = 
- 1 

4^^(t)(^(W + ^(«) \r{P,Q) 

X [-^;;^ (2(̂ <*')2)5^ + 4T('¥'^r,,iP,Q) 

r,j {P,Q) + 2(M<«)2 [r.j {P,Q)4'^ (Q) 

- r„ . (P.Q)n/ ' (Q)] j (12) 

^^'*' ^^'^^ " 4.^(»(rTi + ,(^))^^^' ' ' -^ V«)ft ir(P.Q)6, 

-7<«r.,(P.Q)r.,.(/'.<2)} 

in which yx**' is the shear modulus for subdomain, k, T<*' = /i'*'/(l — l;-̂ *') 
for plane strain, T**̂  = 2fi'*' (1 + i/*') for plane stress, and c**' in the Poisson 
ratio for subdomain k. The distance measured from point P to point Q is 
r(P,Q) and «**' is the unit outward normal to the boundary at point Q. The 
fundamental solutions given in Eqs 12 represent the traction and displace
ment in the jth direction at point Q due to a unit point force in the ith direc
tion at point P. 

At a point along the interface between subdomains fl**' and Vf-'\ the dis
placement continuity and the traction equilibrium are enforced through 

M / * ' ( P ) = « / ^ ' ( P ) 

f.(*)(P)= -f.(0(p) (13) 

The Numerical Model 

An isoparametric formulation of the multidomain boundary integral equa
tion (Eq 11) is used in the present formulation. The isoparametric BEM 
represents the geometric, displacement, and traction variations as quadratic 
polynomials 
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xi= E NHOx^^= lN(0}{x,} 

ui= LM?)J{«,} 

ti^ vm)\{ti} (14) 

where LM^)J is the row vector of shape functions given in Fig. 4 and the 
terms in braces are the element nodal values of the parameter. 

Substituting the polynomial expressions of Eqs 14 into Eq 11 results in the 
multidomain boundary' element formulation [6,16] 

M«) 

Til'HP^,Q{0)NHi)Jv{^)d^ (u/'^Y 

E Uil'HP^,QmNHOJr(^)d^ Ui'-''^" (15) 

in which P^ is the fixed boundary point, Q(0 is the variable boundary point, 
A/<*' is the number of elements in subdomain k, Jj-iO is the boundary Jaco-
bian, that is 

/r(^) = dU \d^ 

1/2 '"'^,.y+('^,^"• 
d( y-w 

1/2 

— X. 

2 

-•- 4-^e 
+1 

N' (f)--f(h<)/2 

FIG. 4—Isoparametric quadratic boundary element. 
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and {uj-'^''f'', (̂ y*')̂ " are the element node components of displacement and 
traction, respectively. Evaluating Eq 15 for each boundary node in each sub-
domain and imposing the interface constraint conditions of Eqs 13, leads to an 
algebraic system of equations. 

Stress-Intensity Factor Computation 

Using the boundary element shown in Fig. 4 in the vicinity of the crack tip 
would give a quadratic variation of the displacements and tractions whereas 
the theoretical crack-tip displacement and traction functions are proportional 
to \fr and 1/Vr, respectively, where r is the distance from the crack tip. Since 
the interpolating polynomials do not contain these terms, the tractions never 
can be represented correctly by the interpolating functions, and the displace
ments can be modelled adequately only by using a refined mesh in the vicinity 
of the crack tip. 

It has been shown, however, that by moving the midpoint node of the 
quadratic element to the quarter-point position, the V7displacement variation 
is obtained [24]. Unfortunately, the traction variations will not possess the 
1/Vr̂  singularity. The inclusion of the 1/V7 singularity into the traction inter
polations is obtained by moving the midpoint node to the quarter-point posi
tion, and then multiplying the traction interpolations by \'l/r where / is the 
crack tip element [24]. The resulting displacement and traction interpola
tions are 

M,=A,,'+^„,2v;^+v (iM 

ti = (A,^'+A,^\'i+AM\-

= Z?,/Vr>5,2 + B(/Vr 
(166) 

Equations 16a and \bb show that both the dominant vr displacement variation 
and the dominant 1/V7 traction variations are included in the crack tip ele
ment interpolations. The expression \fI7r in Eq 16b is written in the non-
dimensionalized coordinate system as shown in Figs. 5a and b. The terms A^ J, 
Bi/ ij = 1,2,3) are generalized constants which are functions of displacements 
and tractions, respectively, at the node pomts. The boundary elements with 
interpolations given by Eqs 16 are known as "tracrion singular quarter-point" 
boundary elements [6,16]. 

The displacement correlation method [25] is employed with these elements 
for the computation of the stress-intensity factors. Denoting the displacements 
along the crack axis as u (crack sliding displacement) and the displacements 
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-MI/*\— 5 l/A —A 

(a) Crack tip at element node 1 

I 2 3 

f* 3^/4 H //4 1^ 

r//= (1-f )*/4 

(b) Crack tip at elennent node 3 

FIG. 5—Traction singular quarter-point boundary elements. 

normal to the crack axis as v (crack opening displacement), the evaluation of 
the mixed-mode stress-intensity factors for 6 = 180 deg is [/],-

Kl = ^_|_j J — IM.UB ~ Up) + UE- UC] 

in which the points jff, C, D, and £" are defined in Fig. 6,/i is the shear modulus, 
and /c = 3 — 4 I' for plane strain in which v is Poisson's ratio. 

Crack Propagation Algorithms 

A boundary element program, entitled Boundary Element Crack Propaga
tion Program (BECPP), was developed to analyze both Mode I and mixed-
mode quasi-static or fatigue fracture problems [16]. As currently written, the 
calculation is limited to the propagation of a single crack in an isotropic and 
homogeneous material. 

The program steps for quasi-static crack propagation are summarized later. 
The calculations begin with an elastic analysis based upon the geometry of the 
structure, including the initial crack geometry, and unit applied loads. Then: 

1. The stress-intensity factors, Ki and Kn, are computed from the elastic 
analysis and Eq 17. The direction of propagation is computed from direction 
of propagation equation, for example, Eq 2. 

2. An increment of crack length, Aa, is chosen. 
3. The G(P,a) and RiKJ curves (Fig. 3) are calculated by 

(a) Dividing the crack length by 3. 
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FIG. 6—Element geometries and nodal lettering for mixed-mode stress-intensity factor 
calculations. 

(b) Performing the elastic analysis and stress-intensity factor calcula
tion for each A«/3 increment of crack length. 

4. The areas/l^ and AQ are computed and compared. The load then is in
creased according to 

Pi = {LF)Pi 

where 

Pi = first fracture increment initiation load, 
Pi = initial applied load, and 
LF = load amplification factor, Eq 4. 

5. Return to Step 1 with updated geometry and loads. 

The modification of the procedure for fatigue crack propagation is straight
forward. The number of load cycles replaces the load increment as the driving 
mechanism. Steps 1 and 2 are performed as before. Steps 3 and 4 are replaced 
by the integration implied in Eq 9 from which the number of load cycles re
quired for the specified crack increment is computed. 

Example Problems 

Fatigue Crack Propagation 

The analysis of the problem shown in Fig. la is discussed in this section. The 
boundary element results are compared with the numerical and experimental 
results of Pustejovsky [2]. Those numerical results were obtained using the 
dislocation-superposition method. 

The initial mesh used to perform the boundary element analysis is shown in 
Fig. 7. The boundary element program was used to extend the crack four in
crements with each crack increment of length A« = 1.9 mm. The predicted 
crack path from the boundary element analysis is compared with the experi-
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FIG. 7—Initial boundary element mesh for the fatigue crack propagation problem of Fig. /a. 

mentally observed crack paths of Pustejovsky [2] in Fig. 8fl. The a(0)^^ theory 
[12] was used for angle predictions in the present analysis. 

The experimental results of Pustejovsky were obtained on a titanium 
Ti-6A1-4V plate. The reported material properties of the specimen were 
£• = 110 316 MPa, j> = 0.29 and Ki^ = 82.4 MPa Vm. The titanium specimen 
was subjected to a stress range of Aa = 155.3 MPa with a stress ratio of /? = 0.10. 

The C and n values to be used in Eq 6 were not reported in Ref 2. However, in 
Fig. 2 of that paper, results of fatigue crack growth rate tests on two center-
cracked plate specimens are reported. From that figure, a value of « = 3.37 
was measured in the AKi range applied in the angled-crack test under 
analysis. Although this value of n was measured for both tests, values of C 
measured from the two test results were not equal. Results of load cycle com
putations for three values of C, those derived directly from the test results and 
the average value, are compared to experimental results in Fig. 8b. It is ob
vious that there was substantial variation in the value of C among the speci
mens tested, and that load cycle computations are quite sensitive to the value 
chosen. The load-cycle computations were found to be totally insensitive to the 
form of effective stress-intensity factor range, Eqs 7 and 8. 

The experimental results plotted in Fig. 8 were obtained for an actual crack 
orientation of /3 = 43 deg rather than the 13 = 45 deg orientation used in both 
the present BEM analyses and the dislocation-superposition analyses of Puste
jovsky [2]. Correction for this discrepancy would bring the BEM trajectory 
(Fig. 8a) and load-cycle (Fig. 8b with average C-value) predictions into even 
better agreement with the experimental results. 
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FIG. 8—Comparison of BEM results with the experimental results of Pustejovsky [2J. 

The computed Mode I stress-intensity factor ranges using the BEM and the 
superposition-dislocation results of Pustejovsky [2] are compared in Fig. 9. 
These results show a consistent correlation of the two projected crack paths 
and the Mode I stress-intensity factor ranges, particularly for the first several 
crack increments. The boundary element stress-intensity factor ranges be
come higher than the dislocation-superposition results as the fatigue crack 
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FIG. 9—Comparison of the computed Mode I stress intensity factor ranges (units: MPa Vm). 

lengthens. The dislocation-superposition analysis was performed on a plate 
assumed infinite in length and width [2], whereas the BEM employed here 
models the actual test geometry. It is to be expected, therefore, that the BEM 
results should increase more rapidly as the fatigue crack begins to sense the 
finite width effect. 

The results shown in Figs. 8a and 9 indicate that the center slant fatigue 
crack propagates primarily in Mode I. The Mode II stress intensity factor 
ranges are two orders of magnitude smaller than the corresponding Mode I 
stress intensity factor ranges [16]. 

Quasi-Static Crack Propagation 

The quasi-static crack propagation analysis of the angled notch problem of 
Fig, lb is discussed in this section. The boundary element results using the 
ai0)imx' '̂ (̂ )min> ^"d G{9)^^ mixed-mode fracture initiation theories are com
pared with the same analyses using the finite element method as well as the ex
perimental results of Ingraffea [/, 7J. The initial mesh used to perform the 
boundary element analysis is shown in Fig. 10a and b. The initial crack length 
emanating from the notch was chosen to be 0.762 mm, which is the same as the 
chosen crack increment, Aa. 

The boundary element program was used to perform seven crack increment 
analyses. The computed crack path is compared with the experimentally ob
served results obtained by Ingraffea [7] in Fig. 11. Ingraffea performed experi
ments on 19-mm-thick Salem limestone with the initial geometry of Fig. lb. 
The material properties assumed in the analyses were [7\E = 36200 MPa, v = 
0.21, K^ = 9.55 X 10-6 a3 _ j ^y x iQ'^ a^ -f 4.89 X 10-2 a + 0.252 for 
a < 50.8 mm, and ATje = 0.97 MPa Vm for a > 50.8 mm. The BEM results 
shown in Fig. 11 were obtained using the i'(^)n,in [15] fracture initiation theory. 
The predicted crack paths of the a{0)max and G(0)max mixed-mode fracture ini-
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FIG. 10—(a) Initial boundary element mesh for the quasi-static crack propagation problem of 
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FIG. 11—Comparison of the BEM predicted primary crack path with the experimental re
sults of Test 1 fSJ. 

tiation theories are not shown because the results are virtually identical. The 
reason that the results agree so closely is that the Mode II stress-intensity fac
tors are at least an order of magnitude smaller than the corresponding Mode I 
stress-intensity factors. 

The BEM and finite element [/, 7] crack path predictions are shown in Fig. 
12. There is good agreement between the BEM and the a{6)max ^nd C7(S)n,ax 
finite element results. The finite element crack path predictions using the 
S{6)^i„ theory agree less with the other results. This discrepancy is most likely 
due to small errors in crack topology introduced by the irregularity of a finite 
element mesh. Using the BEM approach, the crack trajectory is modelled 
more smoothly and element distribution is more regular. The resulting stress 
intensity factor evaluation is more accurate, especially for the small Kn values 
which control trajectory. 

The average solution times required for the automatic crack propagation 
analysis using the BEM are given in Table I. (The average time was obtained 
by summing the aiO)mi^, i'(^)min' ^"id Gi9)„^^ solution times and dividing by 
three.) The initial time corresponds to a single analysis using the boundary ele
ment mesh of Fig. 10. The solution times in each fracture step represent a total 
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FIG. 12—Comparison of BEM and Finite element [S] crack path predictions. 

TABLE 1—CPU timing statistics for the angle notch problem. 
IBM 370/168. 

Analysis" 

Initial 
FS l 
FS2 
FS3 
FS4 
FS5 
FS6 
PS 7 

Total 

Average Time, s 

13.29* 
50.17 
62.82 
77.58 
94.24 

112.9 
133.9 
157.0 

701.9 

"FS—fracture step. 
'single analysis on initial mesh. 

of three analyses, one for each subincrement of crack propagation. The central 
processing unit (CPU) times increase with each fracture step since a total of 
eight new unknowns (two displacements in each subdomain for each propa
gating crack tip) are introduced with each fracture step. 
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Discussion 

Examination of Figs. 8 and 11 shows that the present method accurately re
produced observed fatigue and quasi-static craclc propagation. Although both 
of the problems studied herein are laboratory simplifications rather than ac
tual structural configurations, they do show the versatility of the developed 
code. They integrate physical phenomena necessary to test all the algorithms 
described in this paper. 

Figures 9 and 12 show that the proposed model is at least as accurate as pre
viously employed numerical methods. Moreover, it should be emphasized that 
previous approaches to crack propagation modelling have not been automatic; 
the new method requires only initial input data from the user, the code 
generating all subsequent data without the possibility of human error. 

This observation, coupled with the reasonable CPU times shown in Table 1, 
means that the new model is extremely efficient. Analyses which previously re
quired man-days to perform and check now can be done, with more confidence 
in the results, in man-hours. 

The present, initial version of the code does have some major drawbacks. 
Problem size grows rapidly with the number of crack increments. This effect 
can be countered by automatically eliminating unnecessary elements behind 
the propagating crack-tips. For fatigue modelling, only constant amplitude 
loading is allowed currently. User-selectable load spectra should be imple
mented and Eq 9 and its solution generalized accordingly. During quasi-static 
propagation in materials with relatively low tensile strength, secondary crack 
nucleation often occurs [1,3]. The code should have the capability for auto
matically locating likely points of nucleation, and ideally, remeshing for a new 
crack. Work on these and other improvements is currently underway. 

Conchisions 

In this paper the BEM has been used as a new approach to the modelling of 
quasi-static and fatigue crack propagation problems within the limitations of 
linear elastic fracture mechanics. The advantages include: 

1. The inherent accuracy of boundary methods in that all approximations 
are confined to the boundary; 

2. The ease of the use of singular elements to reproduce the crack tip 
singularity; 

3. The ease in which the discretization can follow a moving boundary; 
4. The fact that the user need supply mesh data only on the boundaries (plus 

a short segment of line from the crack tips to a free boundary); and 
5. The inherent efficiency of the BEM which greatly reduces computing 

time. 

Thus, the crack propagation program can be made automatic whereby the 
user does not have to intervene from one step to the next. 
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The examples in this paper and in Ref 16 have indicated that the method is 
at least as accurate as alternate techniques. These examples illustrate the ad
vantages cited previously. 
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ABSTRACT; A method of fatigue life calculation based upon low-cycle fatigue and frac
ture mechanics concepts is presented. Two arbitrary crack initiation criteria were ana
lyzed regarding experimental results with SAE 0030 cast steel and theoretical solutions 
proposed by other authors. Four different load histories based upon the Society of Auto
motive Engineers (SAE) transmission history using a keyhole compact specimen with two 
different notch diameters were analyzed. The results showed that the criterion Aa = 0.25 
mm (0.01 in.) for crack initiation is practical. However, the exact value of crack length at 
initiation is not of the greatest importance in total fatigue life calculations. Similarly, 
fatigue crack growth retardation was not as important as that found with other spectra 
discussed in the literature. It was found that proper modeling of fatigue crack growth 
near notches can improve fatigue life calculations. With the present state of knowledge it 
was possible to calculate the total life within a factor of two. The calculation methods 
developed primarily for wrought metals were quite acceptable for this cast steel. 

KEY WORDS: fatigue (materials), notches, cracks, low cycle fatigue, fracture mechanics, 
linear elastic fracture mechanics, crack initiation, crack growth, spectra loading, over
loads, cast steel 

The common failure mode of structures and components subjected to cyclic 
stresses and strains is fatigue; thus, calculating the fatigue life of critical ele
ments must be emphasized. For analysis, the fatigue life has been separated 
into two stages: (1) a portion of life spent in crack initiation, and (2) a portion 
spent in crack propagation. It should be noted that this distinction is arbi
trary and both stages are not adequately defined. 

' Faculty, Warsaw Technical University, Warsaw, Poland; formerly postdoctoral fellow, The 
University of Iowa, Iowa City, Iowa 52242. 

^Professor, Materials Engineering Division, The University of Iowa, Iowa City, Iowa 52242. 

1-427 

Copyright 1983 by AS FM International www.astm.org 

 



1-428 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 

Low-cycle fatigue concepts have often been used to estimate crack initiation 
lives of notched members [1-3].^ Techniques based on fracture mechanics 
concepts have been used for estimating crack propagation life [4,5]. There has 
been only limited work combining the two methods for variable-amplitude 
loading. Socie [6] has used both criteria in conjunction with the experimental 
Society of Automotive Engineers (SAE) fatigue program, which involved two 
wrought steels and a keyhole test specimen, that is related to this work. The 
purpose of this paper is to combine theoretical evaluations of fatigue life under 
complex load spectra for a cast steel using both low-cycle fatigue and fracture 
mechanics concepts. The analytical models, load histories, material, and 
notched specimens will be reviewed. 

Low-Cycle Fatigae Concept 

The basic hypothesis of the low-cycle fatigue concept is that if stresses and 
strains at the critical location of a component are known, then crack initiation 
life at this location can be related to the life of strain-controlled unnotched 
laboratory specimens. Thus, the analysis reduces to determining the local 
stresses and strains and relating them to the known strain-life fatigue behavior. 
The local stresses and strains can be estimated from nominal stresses, loads, 
or strains on the basis of the cyclic stress-strain behavior and Neuber's rule 
[/]. The cyclic stress-strain curve has to be obtained from smooth laboratory 
specimens. It is usually given in the form of Eq 1 

Ae _Aa ^ f ^ Y " ' (1) 
2E \2K' 

where 

Ae = strain range, 
Aa = stress range, 
E = modulus of elasticity, 

K' = cyclic strength coefficient, and 
n' = cyclic strain hardening exponent. 

Neuber's rule relates the theoretical stress concentration factor and the 
nominal stresses and strains with the local stresses and strains of the notch 
for plane-stress conditions. 

K,HAS X Ae) = (Aa X Ae) (2) 

where 

AS = nominal stress range, 
Ae = nominal strain range, 

3The italic numbers in brackets refer to the list of references appended to this paper. 
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Aa = local (notch) stress range, 
Ae = local (notch) strain range, and 
Kt = theoretical stress concentration factor. 

It has been shown that under cyclic loading it may be better to use a fatigue 
strength reduction factor Kf in Eq 2 instead of the theoretical stress concen
tration factor K,. The fatigue strength reduction factor Kf can be determined 
experimentally but very often the empirical formula proposed by Peterson [7] 
is used. 

K ^ \ 

1 + 
^/ = 1+T^-^ (3) 

r 

where 

a — material constant and 
r = notch radius. 

Fatigue resistance of metals is characterized by a strain-life relationship de
termined from smooth laboratory specimens and is expressed in the following 
form 

-Y- = e 'filNfY + -—{INj)" (4) 

where 

€ y = fatigue ductility coefficient, 
c = fatigue ductility exponent, 

a'f = fatigue strength coefficient, 
h = fatigue strength exponent, and 

2Nf = number of reversals to failure. 

For mean stress considerations the following modified strain-life relation
ship accounting for mean stress a„ is often used. 

Ae '^ f = 6 'AlNfY + - ^ (27^,)* (5) 

Notch root stresses and strains are determined on a reversal-by-reversal 
basis using Eqs 1 and 2 and a cycle counting scheme (often rainflow). Then 
fatigue damage for each reversal is calculated using Eq 5. The total damage 
is determined as a sum of damages by individual reversals which is equivalent 
to Miner's rule. 

Crack Propagation Concept 

The most commonly used formula for relating fatigue crack growth rate 
and applied loads was proposed by Paris [4]. 
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da 
dN 

where 

CiAK)" (6) 

da/dN = fatigue crack growth rate, 
C = crack growth coefficient, 
n = crack growth exponent, and 

AK — stress-intensity factor range. 

Crack propagation lives are obtained by integrating Eq 6 with the following 
result 

where 

a, = initial crack size, 
ay = final crack size, and 

Np = crack propagation life. 

In practice the integral in Eq 7 is usually replaced by a cycle-by-cycle sum
mation for each cycle such that 

a y - a , = E C(AKirANi (8) 
i = i 

For variable-amplitude loading, fatigue crack growth retardation due to load 
interaction can be taken into account. There are several simple models that 
approximately calculate this retardation. The Willenborg model [8] was used 
in this research. Thus Eq 8 can then be written in the form 

ay - a,- = E C„C(AX,)"AiV,- (9) 

where 

Cri = the retardation factor calculated on the basis of Willenborg's model. 

The use of specific retardation models is still an open issue, and discussion of 
different retardation models can be found in the literature [5,9]. 

Material, Specimens, and Tests 

SAE 0030 cast steel was used in all experiments. The chemistry, foundry 
history, and heat treatment are given in Table 1. The monotonic and cyclic 
properties taken from Ref 10 are given in Table 2. The cyclic stress-strain 
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TABLE 1 —Chemical composition, weight percent. 

c 
0.24 

Mn 

0.71 

Si 

0.44 

S 

0.026 

P 

0.015 

Cr 

0.10 

Ni 

0.10 

Cu 

0.05 

Mo 

0.08 

Al 

0.06 

Ti 

0.013 

NOTE—Heat treatment: normalize 30 min at 900°C (1650°F); temper 90 min at 
677°C(1250°F). 

TABLE 2—Monotonic and cyclic properties [10]. 

0.2% monotonic yield strength a , MPa (ksi) 303 (44) 
Ultimate strength a^, MPa (ksi) 496 (72) 
Modulus of elasticity E, GPa (psi) 207 (.30 X 10*) 
0.2% cyclic yield strength a'^, MPa (k.si) 317 (46) 
Strength coefficient AT', MPa (ksi) 708 (103) 
Strain hardening exponent n ' 0.13 
Fatigue strength coefficient a',, MPa (ksi) 653 (95) 
Fatigue strength exponent h —0.082 
Fatigue ductility coefficient f y 0.28 
Fatigue ductility exponent c —0.51 

properties were previously obtained from strain-controlled tests with un-
notched polished uniaxial specimens [10]. The cyclic stress-strain and strain-
life curves are shown in Fig. 1 [10] and Fig. 2 [10], respectively. Baseline 
constant-amplitude fatigue crack growth rate (FCGR) data were obtained 
using compact tension specimens. FCGR data using four different R ratios 
ranging from — 1 to 0.5 are shown in Fig. 3. Even though the compact speci
men is not recommended in the ASTM Test for Constant-Load-Amplitude 
Fatigue Crack Growth Rates Above 10~*m/Cycle (E 647-81) for negative R 
ratio testing, the /? = — 1 test results can still be considered quite reason
able. Some influence of R ratio on FCGRs was found under high stress inten
sities, but R ratio had little effect on total fatigue crack propagation life. In 
general, there was no systematic R ratio effect and the scatter between results 
obtained from different specimens tested under the same R ratio was similar 
to differences due to the R ratio. It was assumed that the R ratio effects could 
be neglected. The constants for Eq 6 found from these data by a least-square 
method arc« = 3.30, C = 1.67 X lO^'for AA: in MPa\/m(C = 8.97 X lO"" 
for AK in ksi VTn.), and da/dN in mm/cycle (in./cycle). Note that AAT = K„^ 
for/? < 0. 

Keyhole specimens shown in Fig. 4 were used for experiments presented in 
Ref 10 involving crack initiation and propagation under variable-amplitude 
load histories. Two keyhole notch diameters were used: 4.7 mm (4̂ 16 in.) and 
9.5 mm (% in.) The distance from the load centerline to the notch end (a^) 
was 19.6 mm (0.77 in.) for both notches. All specimens were 8.2 mm (0.325 
in.) thick. 
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0.016 

FIG. 1—Cyclic stress-strain behavior of SAE 0030 cast steel [lOJ. 

Loading Histories and Test Results 

The SAE transmission history [//] was chosen as shown in Fig. 5a as the 
base spectrum and will be referred to as T/H. This T/H spectrum was modi
fied to form additional spectra. Figure 5b shows one modification labeled 
"mod T/H" that eliminates all compressive loadings. A total of 1710 load 
reversals make up one T/H history block. The mod-T/H history has only 
1694 reversals per block since 16 reversals were eliminated by removing the 
compressive loads. Two other modifications were formed by applying two 
single tensile overloads to the T/H and mod-T/H spectra. One overload was 
applied at the beginning of the test, and the second was applied after a crack 
increment of Aa = 5.8 mm (0,23 in.), which corresponds to a total crack 
length of 25.4 mm (1.0 in.). Thus, overload influence on both crack initiation 
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FIG. 2—Low-cycle strain-control fatigue behavior of SAE 0030 cast steel f\OJ. 

and crack growth could be considered. The overloads were equal to 1.6 times 
the highest peak in the T/H or mod-T/H spectra. These histories are called 
T/H + 20L and mod-T/H + 20L, respectively. 

An automated profiler was used in conjunction with an 89-kN (20-kip) 
closed-loop electrohydraulic test system in load control to apply the four his
tories to the specimens. The block history was repeated until specimen frac
ture. Fatigue crack initiation and crack growth were monitored with an elec-
tropotential system and a X45 traveling microscope using stroboscopic light
ing and a 0.25-mm (0.01-in.) least division scale fastened to the specimen. 
Crack initiation was defined and recorded in the experiments at the first visi
ble surface crack of Aa = 0.25 mm (0.01 in.). A crack length of Aa = 2.5 mm 
(0.1 in.) was also specifically monitored since this value had been selected by 
the SAE Fatigue Design and Evaluation Committee as a limiting value of 
crack initiation used with low-cycle fatigue analysis prediction riiethods. 

The T/H history was applied with both keyhole specimen diameters using 
three different relative peak load levels. This peak load occurs as the first and 
last load within a block. Values chosen for these peaks were 22.24 kN (5 kips), 
17.8 kN (4 kips), and 15.57 kN (3.5 kips). Nominal elastic stresses caused by 
the peaks were 393 MPa (57 ksi), 314 MPa (46 ksi), and 275 MPa (40 ksi), 
respectively, which indicates plasticity occurred at the notches on the first 
loading. Two load levels, 17.8 kN (4 kips) and 15.57 kN (3.5 kips), respec-
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(a) CRACK GROWTH SPECIMEN 

•W= 2.55 in-
(64.8 mm) 

OiO 

3/16 in dia 
(4.8 mm) 

.£ £ 
CO E 

(M to 

(b) KEY HOLE FATIGUE SPECIMEN 

FIG. 4—Keyhole fatigue specimen. 

tively, were used to scale the T/H + 20L and mod-T/H spectra. Only the 
smaller diameter keyhole specimens were tested with these two spectra. One 
load level was used with the mod-T/H + 20L history and the smaller diam
eter keyhole specimen. The experimental results from Refs 10 and 12 are 
presented in Table 3. Duplicate or triplicate tests were made for each history 
and stress level. 

Theoretical Calculation of Fadgue Crack Initiation Lives 

To simulate stress-strain behavior near the notch tip using Neuber's rule 
one needs to know the theoretical stress concentration factor K,. This was 
found for both keyhole notch diameters by mterpolation of results published 
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msi^'mm^j^mv 
FIG. 5—Variable-amplitude load spectra T/H and mod T/H. 

TABLE 3—Number of blocks to specific crack lengths and fracture with four load histories 
and three load levels [10,12] (duplicate or triplicate tests per condition). 

Crack 
Length Aa, 

mm (in.) 

0.25 (0.01) 
2.54(0.1) 
Fracture 

0.25 (0.01) 
2.54(0.1) 
Fracture 

0.25 (0.01) 
2.54(0.1) 
Fracture 

22.24 

(5) 

4.7-

18, 16 
39,27 
54,54 

9.5 

24, 20, 19 
45, 55, 45 
55, 82, 57 

Peak Load Levels P^^^, kN 

17.8 

(4) 

15.57 

(3.5) 

mm (̂ 16-111.) NOTCH DIA 
T/H HISTORY 

67, 35 
77, 78 

141, 130 

82, 52 
134, 130 
270, 213 

MoD-T/H HISTORY 

247, 113 
354, 193 
453, 340 

249, 308 
298, 388 
447, 567 

•mm (ys-in.) NOTCH DIA 
T/H HISTORY 

140, 111, 121 
180, 153, 156 
256, 218, 241 

193, 288, 103 
209, 332 . . . 
351, 489, 297 

(kips) 

17.8 15.57 

(4) (3.5) 

4.7-mm (VuAn.) NOTCH DIA 
T/H + 2 OL HISTORY 

100, 74 141, 181 
140, 114 200, 207 
200, 203 367, 381 

MoD-T/H + 2 OL HISTORY 

237, 257 
460, 335 
876, 632 

 



GLINKA AND STEPHENS ON FATIGUE LIFE CALCULATIONS 1-437 

by Wilson [13] and Neal [14]. The values were K, « 3.65 and K, « 2.8 for 
specimen with holes 4.7 mm (-Vie in.) diameter and 9.5 mm (% in.) diameter, 
respectively. The fatigue strength reduction factors were calculated using Eq 3. 
Material constant a = 0.000326 m (0.0128 in.) was calculated from the empiri
cal expression in Eq 10 based on the fatigue results presented by Peterson [7]. 

a = 2.5 X 10-5 2068 
for a,, in SI units (10) 

The fatigue strength reduction factors were Ky = 3.33 for the small hole and 
Kf = 2.62 for the large hole. The notch root stress and strains were 
simulated using a method proposed by Wetzel [15]. Following this method 
the cyclic stress-strain curve (Fig. 1) used for calculations was represented by 
a series of ten straight-line segments. The fatigue damage for separate rever
sals was calculated following Wetzel's method by using Eq 5 rearranged by 
Landgraf [2]. 

Damage _ 
Reversal e'yE 

A 6 , b-c 

(U) 

where 

A€p = plastic strain range and 
Asg = elastic strain range. 

A similar approach to fatigue damage calculations was presented by Nelson 
and Fuchs [3]. The first calculation showed that for longer lives (small Ae^) 
Eq 11 overestimated lives due to the use of the plastic-to-elastic strain range 
ratio as a damage parameter. A similar tendency was found by Nelson and 
Fuchs [J]. Therefore, for reversals with total strain amplitude less than 
Ae/2 = 0.001, the elastic part of Eq 5 was used for damage calculations in 
the form 

Damage 
Reversal 

2 ( g / - f f m ) 
Ae X £• 

l/b 

(12) 

A total fatigue damage was calculated for one block history. The inverse of 
the damage value caused by one block gives the number of blocks to initia
tion. Numbers of blocks to specific crack lengths Aa = 0.25 mm (0.01 in.) 
and Aa = 2.54 mm (0.1 in.) obtained from experiments were compared with 
calculated lives to initiation for both notches. The crack initiation results for 
the four load histories with Aa = 0.25 mm (0.01 in.) are shown in Fig. 6, 
where it can be seen that, considering a scatter factor of 2, substantial good 
agreement was obtained for Aa — 0.25 mm (0.01 in.) using the theoretical 
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FIG. 6—Comparison of experimental lives to crack length A a = 0.25 mm (0.01 in.) with 
calculated lives using K,. 

stress concentration factor, K,. Over 90 percent of the data were within the 
±2.0 scatterband shown by the dashed lines in Fig. 6. 

As mentioned previously, the separation of the fatigue process into initia
tion and propagation stages is strictly arbitrary because the initiation stage 
has not yet been properly defined. In this paper the crack initiation period 
was defined once as life to a crack Aa = 0.25 mm (0.01 in.), and second as 
life to a crack Aa = 2.54 mm (0.1 in.). The first criterion is related to the 
accuracy of equipment used in experiments and to what a design engineer 
might realistically comprehend or visualize. The crack Aa = 0.25 mm (0.01 
in.) was the shortest crack that was reasonable to detect. The criterion Aa = 
2.54 mm (0.1 in.) was suggested by SAE. This suggestion wa.s based upon 
wide experimental research. 
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Many researchers agree that the crack Aa defining the initiation period is 
below Aa = 2.5 mm (0.1 in.) Dowling [16] suggests defining craclc length 
initiation at a notch as a crack equal to the length of the notch effect. For the 
keyhole specimens the values are Aa = 0.4 mm (0.017 in.) for the small 
notch and Aa = 0.8 mm (0.033 in.) for the large notch. El Haddad et al [77] 
suggest that the crack length at initiation is a material constant related to the 
threshold stress intensity AKu, and fatigue limit strain amplitude e^- Simpli
fied calculations based on this model gave Aa = 0.25 (0.01 in.) Socie's 
results [18] suggested that the crack length to initiation should not be a ma
terial constant because initiation depends upon material properties, loading 
level, and geometric parameters. Calculations based on Socie's model made 
by LawTence and Chen'' for AISI 1020 steel (which is similar to the cast 
SAE 0030 steel) suggest that the crack length to initiation varies in the range 
from 0.25 mm (0.01 in.) to 0.5 mm (0.02 in.) depending on the stress level. 
The model discussed by Smith and Miller [19] gives a value Aa = 0.9 mm 
(0.035 in.). In general, all the models mentioned previously predict the crack 
length to initiation in the range Aa = 0.25 mm (0.01 in.) to 0.9 mm (0.035 
in.). Also, crack length to fracture or failure in strain-controlled low-cycle 
fatigue tests will vary from about 0.25 mm (0.01 in.) to 5 mm (0.2 in.) 
depending upon stress level and fracture toughness. 

The criterion Aa = 0.25 mm seems to be very reasonable for fatigue crack 
initiation in cast SAE 0030 steel. The applied method of notch stress-strain 
simulation and fatigue damage calculation properly predicted the effect of 
the first overload in T/H + 20L and mod-T/H + 20L histories. The over
loads in T/H + 20L and mod-T/H -|- 20L increased fatigue life to crack 
initiation about 50 percent in comparison to the T/H and mod-T/H his
tories, respectively. The same tendency was obtained from the calculated 
results. 

Theoretical Calculation of Fatigue Cracli Propagation Lives 

Equations 6 and 7 were used for predicting fatigue crack propagation life 
along with an effective stress-intensity factor concept based upon the Willen-
borg model [8], which accounts for fatigue crack growth retardation due to 
variable load history. The plastic zones r^ at the crack tip were calculated 
from Eq 13 assuming plane stress conditions. 

-. = ̂ (4-) (13) 

Short cracks at notches, however, behave differently than long cracks that 
are beyond the notch affected area, and therefore, a model proposed by 
Jergeus [20] was used to determine the notch effect on fatigue crack growth. 
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Jergeus showed that the effect is equivalent to an additional crack increment 
e calculated from Eq 14 

e — Uj^ll — exp -4(1 + 4^ ^̂ '̂  (14) 

(vhere 

a^ = notch depth, a,^, = 19.5 mm (0.77 in.), 
Aa = crack increment measured from notch tip, 

b = Vflyv X p, and 
p = notch radius. 

The effective crack length used for calculating the effective stress-intensity 
factor is 

A«eff = Aa+e (15) 

An analysis of Eq 14 shows that the notch effect is negligible for longer Aa. 
For the specimen shown in Fig. 4, with Off/W = 0.308, e was practically 
equal to zero for Aa = 2 mm (0.08 in.). This means that the model overesti
mates the notch effect in comparison to resuhs presented by Dowling [16] 
and Smith [19]. However, there is no solution that exactly satisfies the geom
etry in Fig. 4. Therefore, Eq 14 was used as a reasonable model, which is also 
very convenient in computer calculations. The improved (relating to specimen 
geometry, notch effect, and stress computations) program "CRACKS II— 
Crack Propagation Analysis Program" [21 ] was used for fatigue propagation 
life calculations. The life was calculated beginning from Aa = 0.25 mm 
(O.Ol in.) until the current maximum stress-intensity factor K^^ reached a 
value Kc = 77 MPaVm (70 ksiVin^.). The value of K^ — 77 MPaVm was 
determined at fracture from previously described fatigue crack growth tests 
under constant amplitude. 

Fatigue crack growth lives were calculated with and without retardation. It 
was found that including the retardation effect in the calculations did not 
contribute significantly to the calculated crack growth life with these four 
histories. The highest calculated increment in crack growth life due to re
tardation for the tensile overload histories was 18 percent over that calculated 
without retardation. The experiments, however, showed that the tensile over
loads increased crack propagation life by a factor of about two. The fatigue 
crack propagation lives calculated without retardation are shown in Fig. 7. 
About half of the results had overestimated lives. There are many reasons for 
this. The first is natural scatter of fatigue crack growth rates. With P„^ = 
17.8 kN (4 kips) and P^^^ = 22.24 kN (5 kips) some peaks gave nominal 
stresses higher than the yield strength. However, the basic crack growth rate 
data (Fig. 3) were obtained under nominal elastic conditions. The basic 
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FIG. 7—Comparison of experimental and calculated fatigue crack propagation lives calculated 
from Aa = 0.25 mm (0.01 in.) until fracture without retardation. 

crack growth data (Fig. 3) did not show appreciable R ratio effects, but it is 
possible that under lower stress intensities that existed in the spectra the 
effect is more distinct. It should be noted from Table 3 that experiments 
showed differences in fatigue propagation lives between the T/H and the 
mod-T/H histories by less than a factor of two. Unfortunately, the crack 
growth models used here do not take into account compressive loads and 
therefore cannot show the difference. The Paris equation and Willenborg 
model used in the present study thus give the same life for the T/H and the 
mod-T/H histories, which disagrees with the experimental results. 

In terms of fatigue accuracy, the crack propagation calculations without 
load interaction effects are acceptable. About 80 percent of the calculated 
lives (Fig. 7) do not differ by more than a factor of two (dashed lines) from 
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the experimental lives. It can be concluded that for the spectra analyzed, 
fatigue crack growth retardation is not as important as in other spectra. Bar-
som [22] indicated that spectra with frequently applied similar peak loads 
will not have significant fatigue crack growth retardation. 

Total Life Predictions 

It was shown in the previous sections that good agreement regarding life 
to initiation was found for Aa = 0.25 mm (0.01 in.) using K, (Fig. 6). These 
lives were added to the respective propagation lives with and without retarda
tion. Comparison of experimental and calculated lives is shown in Fig. 8 
without retardation. Calculations with retardation were within scatter ranges 
similar to Fig. 8. The same calculations were made using Aa = 2.5 mm (0.1 in.) 
for crack initiation. These results in terms of total lives are shown in Fig. 9, 
also without retardation. It is surprising that for both crack initiation criteria, 
the calculations in Figs. 8 and 9 are quite similar considering that differences 
less than a factor of two are acceptable. Thus it can be concluded for these 
experiments using two different keyhole notch sizes (K, = 2.8 and 3.65) that 
crack length to crack initiation, Aa, was not that important from the viewpoint 
of acceptable practical total fatigue life calculations. 

Lawrence and Chen'' also recently indicated that in some reasonable range 
the crack length Aa to initiation does not substantially affect the total predicted 
fatigue life. The previously discussed theoretical models suggested that the 
crack length to initiation is in the range 0.25 mm (0.01 in.) to 0.9 mm 
(0.035 in.). The present studies show that the criterion Aa = 0.25 mm is 
reasonably good for both notches and all load histories applied. Therefore, 
it seems reasonable to recommend Aa = 0.25 mm (0.01 in.) as a crack 
initiation criterion until a nonarbitrary criterion is found. 

Summaiy and Conclusions 

An approach to fatigue life calculations was presented. Low-cycle fatigue 
concepts were applied to fatigue life initiation calculations and fracture me
chanics concepts for fatigue crack propagation life estimation. Two arbitrary 
criteria for fatigue crack initiation were chosen: Aa = 0.25 mm (0.01 in.) 
and Aa = 2.54 mm (0.1 in.). It was found that the method of damage calcu
lation in the form of Eq 11 overestimated lives (unconservative predictions) 
especially for spectra that consist of many reversals with low strain ampli
tudes. Theoretical calculations were improved distinctly for strain amplitudes 
lower than 0.001 when the elastic part of the strain-life equation was used in 
the form of Eq 12. Good agreement with experimental results was found for 

•*Lawrence, F. and Chen, W. C , University of lllmois, Urbana, 111., private communications. 
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the crack initiation criterion Aa = 0.25 mm (0.01 in.) and the stress concen
tration factor K,. The fatigue strength reduction factor Ky overestimated 
lives for both assumed crack initiation criteria. The crack propagation calcu
lations for the four spectra suggest that fatigue crack growth retardation did 
not contribute to the fatigue life significantly, assuming that disagreement 
between theoretical and experimental results by a factor of two is acceptable. 

The analysis of total lives showed that both the criteria for fatigue initi
ation were reasonably good. It can be suggested that in some reasonable 
range the crack length to initiation does not appreciably affect the predicted 
initiation lives. 

Fatigue life calculation methods that have been used primarily in com
paring experimental wrought metals were quite acceptable for this cast steel. 
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ABSTRACT; The mechanism for fatigue crack growth in aluminum alloys under a 
chemically aggressive environment is discussed, based on the current understanding of 
hydrogen embrittlement phenomena. This mechanism is discussed quantitatively in terms 
of the three-term superposition model proposed by Wei et al. A diffusion-controlled model, 
characterizing the cycle-dependent interaction of fatigue loading and environmental at
tack, is developed, based on the assumption that crack growth enhancement results from 
microvoid nucleation due to hydrogen accumulation at inhomogeneities ahead of a crack 
tip. This model is evaluated with limited data on Aluminum 7075-T6. The model developed 
in this paper accounts for the significant parameters affecting corrosion-fatigue crack 
growth enhancement. Integration of this model into the superposition scheme is discussed, 
including the application to predicting crack growth behavior in a corrosive environment 
for spectrum loading. 

KEY WORDS; corrosion fatigue, crack growth enhancement, crack propagation 
(growth), environment, fracture mechanics, hydrogen embrittlement, Paris' region, re
tardation, spectrum loading, superposition model, sustained load crack growth 

Environment assisted fatigue crack growth in aluminum alloys is often an 
important factor in many structural applications. Specifically, it is one of the 
major considerations m aircraft structural design and analysis, since it can 
significantly affect aircraft safety-of-flight, operational readiness, and overall 
maintenance costs. Thus, quantitative understanding of the characteristics of 
and mechanisms for corrosion fatigue is essential to assure structural integrity, 
durability, and reliability, together with optimum structural efficiency. 

Fatigue crack growth behavior of aircraft structural materials in chemically 
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aggressive environments has been extensively studied during the last 20 to 25 
years [1-6].^ According to previous research, the primary parameters in
fluencing crack growth behavior of a material in a corrosive environment in
clude the following: (1) cyclic stress amplitude, (2) mean stress level, (3) load 
frequency, (4) sustained-load holding time, (5) severity of environments (or 
water vapor pressure), and (6) cyclic material properties, etc. Significant pro
gress in understanding the effects of load frequency and gas pressure on 
crack growth in a gaseous environment has been made recently by Wei et al 
[7-9]. Based on considerations of surface reactions and gas transport, they 
established a framework for estimating frequency and pressure dependence 
on cycle-dependent crack growth enhancement for single component gaseous 
environments [7,8] and for binary gas mixtures [9]. 

Meanwhile, understanding of fatigue crack growth behavior in aqueous 
environments is considered to be less advanced. Saff et al [10,11] recently 
have made a significant step towards quantitatively predicting crack growth 
behavior in synthetic seawater, by applying the Wei-Landes linear superposi
tion approach [12] to several landing gear steels subjected to various load 
spectra. However, Wei-Landes' superposition scheme [12] implicitly assumed 
that crack growth enhancement results only from sustained-load contribu
tion, and thus did not consider the load-environment interaction. 

The main purposes of this paper are: (1) to qualitatively describe the prob
able mechanism for fatigue crack growth of aluminum alloys in an aqueous 
environment, and (2) to quantitatively relate this mechanism to the super
position model later suggested by Wei and Simmons [13], in order ultimately 
to derive a predictive methodology traceable to fundamental behavior. 
Techniques for applying this model to spectrum loading conditions also will 
be discussed. 

Corrosion-Fatigne Crack Propagation Mechanism 

Environment assisted crack growth generally is believed to result from 
hydrogen embrittlement in conjunction with the mechanical driving force for 
crack growth. Based on the current understanding. Fig. 1 schematically il
lustrates the corrosion-fatigue process during crack propagation. 

Free hydrogen atoms are produced at the crack tip by the chemical reac
tions of the hydrogeneous environments with the freshly created crack sur
face, as described in Fig. la. Hydrogen atoms then must be driven from the 
metal surface layers of the crack tip to various internal destinations in the 
microstructure (Fig. lb). This process is governed by classical lattice diffu
sion, or by dislocation transport of hydrogen atoms, or both. Under cyclic 
loading, hydrogen atoms transferred into the matrix lattice will segregate at 
inhomogeneities, such as grain boundaries, matrix/constituent particle in-

The italic numbers in brackets refer to the list of references appended to this paper. 
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FIG. 1—Schematic representation of a mechanism for corrosion-fatigue crack propagation 
due to hydrogen emhrittlement. 

terfaces, or sessile dislocations, depending upon which sites provide the 
highest binding energy with hydrogen. Segregation of hydrogen at favorable 
sites makes this process completely irreversible, resulting in the continuous 
accumulation of hydrogen atoms (Fig. Ic). When the local hydrogen concen
tration exceeds the limit of solubility, hydrogen-filled microvoids nucleate 
easily. Fracture type and morphology, therefore, are affected by the type of 
site which is dominant in hydrogen trapping. A generalized relationship be
tween the fracture morphology and various hydrogen segregation sites has 
been presented by Thompson [14]. 
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The sequence of processes described previously is represented schemati
cally in Fig. 2. Hydrogen evolution at crack-tip surfaces and subsequent 
transfer into the matrix, segregation at inhomogeneities, and accumulation 
at these sites result in nucleation of hydrogen-filled microvoids ahead of the 
crack tip, as shown in Fig. 2. Microvoid nucleation ahead of the actual crack 
tip is expected to lead to accelerated crack propagation or so-called crack 
growth enhancement. Corrosion-fatigue crack growth response, then, is 
governed by one or more of various processes, operating in sequence, that seem 
to involve embrittlement of high-strength aluminum alloys by hydrogen. 

As a result, corrosion-fatigue fracture surfaces m general are expected to 
show dimples with a somewhat brittle fracture morphology. This morphology 
is in sharp contrast with ductile striations which usually are observed on the 
fracture surface of most aluminum alloys after fatigue testing in a nonag-
gressive environment. 
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FIG. 2—Sequence of corrosion-fatigue crack propagation based on hydrogen embrittlement 
mechanism and comparison of fatigue fracture surface for dry air versus corrosion environment. 
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Figure 3 shows scanning electron microscopy of Aluminum 7075-T6 fa
tigue fracture surfaces tested in dry air and in a 3.5 percent sodium chloride 
(NaCl) solution. As expected from the mechanism described previously, the 
fracture surface in a 3.5 percent NaCl has a high density of dimples with a 
brittle morphology attributed to hydrogen embrittiement along the crack 
path; on the other hand, in lab air the fracture surface shows well-defined 
striations. Figure 4 shows that crack growth is nearly 100 percent transgranu-
lar for a frequency of 1 Hz, from a polished and slightly etched surface of 
7075-T6 after fatigue loading in a 3.5 percent NaCl solution. This figure also 
indicates that the crack path is associated with constituent particles. There-

' (•a/) A K =• 21 MPaV'm / 

.(e');'-A,K;,« M-'uPaJ^J '•• ( a ' ) AIC='3B M P a y ^ . " 

FIG. 3—Scanning electron micrographs of 7075-T6 fatigue fracture surfaces in dry air and in 
a 3.5 percent NaCl solution. 
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fore, in 7075-T6 alloy, constituent particle interfaces and dislocation tangles 
are considered the dominant hydrogen accumulation sites of interest in the 
corrosion-fatigue crack propagation process. 

Quantitative Analysis of Corrosion-Fatigae Crack Growth Rate 

According to the superposition model proposed by Wei et al [/J], fatigue 
crack growth rate in an aggressive environment, ida/dN)^, can be expressed 
by the sum of three components, as described by Eq 1 

da_] ^(da_\ ^(da_) ^ ( da\ 
dN/^ VrfTV/j"*" VdiV/,"*" WiV/^e ^̂ ^ 

The first term, (,da/dN)\, is the crack growth rate in an inert environment, 
representing the contribution of purely mechanical fatigue. The second term, 
{da/dN)c, is a cycle-dependent contribution requiring synergistic interaction 
of fatigue and environmental attack. The third term, {da/dN)y^c, is the con
tribution of sustained-load crack growth per cycle, that is, stress-corrosion 
cracking at K-\t\t\s above K^^. 

(da/dN);, which is the purely mechanical term, has been formulated by 
many people, at least for the so-called Paris' region (Region II). The 
pseudostatic crack grovrth region (Region III) is not considered to be very im
portant in terms of total fatigue life, while the near-threshold region (Region I) 
is extremely important, if an initial flaw size is small enough, or if the stress 
level is low enough. Near-threshold fatigue crack propagation resistance in 
nonaggressive environments has been correlated to grain size [75,76] or yield 
strength [17,18], or both [19]. However, to the best of our knowledge, a 
general agreement has not been reached on a quantitative relationship be
tween these material parameters and fatigue crack propagation rates in this 
region. Furthermore, the corrosion-fatigue mechanism described in this 
paper is believed to be more applicable to the intermediate A ^ region, where 
increase in crack closure stress due to oxide film formation at a crack tip 
[20-22] may not be significant. 

For the materials havmg K^^ values close to K^ (that is, high relative index 
of stress-corrosion cracking susceptibility, K^^/Kc), contribution of the sus
tained-load crack growth is not an important factor, since most crack growth 
occurs at cyclic stress intensities below the K^^c level. Such materials include 
most 7XXX series aluminum alloys in the longitudinal direction. Therefore, 
{da/dN)^c may be only of academic interest, while ida/dN]^ is quite impor
tant for these alloys. However, transverse directions for aluminum alloys and 
some high-strength titanium and steel alloys [for example, 10,11] often in
dicate a low stress-corrosion cracking susceptibility index. For these condi
tions, both terms are believed to be equally important. These cases, however, 
will not be explored in this paper. 
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Crack Growth Enhancement Due to Load-Environment Interaction 

The second term of the superposition model, shown in Eq 1, represents the 
cycle-dependent contribution from the synergistic interaction of fatigue 
loading and environmental attack. Based on the mechanism previously 
described, this term can be interpreted as the crack growth enhancement 
resulting from microvoid nucleation due to hydrogen accumulation at in-
homogeneities ahead of a crack tip. It can be derived mathematically using two 
plausible assumptions: (1) hydrogen penetration distance (PD) is proportional 
to the plastic zone size (PZS) and the diffusion distance, and (2) hydrogen con
centration in the matrix varies linearly as a function of distance from the crack 
tip. These assumptions are schematically represented in Fig. 5. 

PD then is expressed by Eq 2 

PD = a[{AK)yTr(a'o)^^fDr (2) 

where a is a proportional constant, AK the cyclic stress-intensity amplitude, 
ff'o the cyclic yield stress, D the diffusivity of hydrogen in aluminum, and t 
the time available for reaction. The hydrogen concentration around a sessile 
dislocation at a crack tip, Cj^, has been reported in the literature [23] as 
given by Eq 3 

Cj_=C\/pexp{-Gs/RT) (3) 

where C is the hydrogen concentration in the surrounding matrix, p the 
pressure, G^ the binding energy of hydrogen atoms to a dislocation, R the 
gas constant, and J the absolute temperature. 

From the assumption of a linear variation of the hydrogen concentration as a 
function of distance, the number of hydrogen atoms accumulated during the 
nth cycle at a dislocation located at a distance X from the crack tip, D„' {X) 
may be expressed by Eq 4 

D„' iX) = 0XC^ ( l - - ^ ) (4) 

where 3̂ is a proportional constant. 
An arbitrary point {XQ) can be chosen at or within PD for calculation pur

poses. However, it is more convenient to select a point at the boundary of PD 
and PZS, where the first cycle considered in calculation results in the first ac
cumulation of hydrogen atoms. If some other reference points within PD are 
chosen, one has to calculate the number of hydrogen atoms already accumu
lated during the prior cycles. 

At Xo = PD, the distance X is also a function of the number of cycles (n) 
and is given by PD — {{In — l)/2} X 8a, where 8a represents crack grovrth 
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oc Diffusion Dirt. 

(2) Lintar virution of [H] cone, in tht minrix. 
as I function of X. 

FIG. 5—Schematic illustration of the assumptions used for deriving (da/dN)^. 

increment per cycle. Using the criterion that a local fracture occurs at XQ = 
PD when the accumulated damage exceeds a critical value, D^*, Eq 5 may be 
established when PD/da » 1. (In general, PD is considered to be several 
hundred times greater than 8a in the Paris region.) 

PD/Sa 

E D„'iX) = V2^C^~ =D* 
n=\ da ' 

PD 
(5) 

Substituting Eqs 2, 3, and 4 into Eq 5 leads to Eq 6 

da 
(IN 

= 6a = ^ X exp (-GB/RT) X y.ipDt X ( ^ ^ j (6) 
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In Eq 6, >4 is a proportional constant and the other parameters already have 
been defined. 

Equation 6 provides a quantitative basis for predicting the effect of various 
parameters on the cycle-dependent crack growth enhancement. For example, 
an increase in pressure increases the degree of crack grovrth enhancement; 
whereas an increase in frequency (which is the reciprocal of the time available 
for reaction) decreases the degree of enhancement. An increase in AK 
amplifies the crack growth enhancement in proportion to the square of AK. 

Crack grovrth rates, da/dN, were obtained using simple dog-bone 7075-T6 
specimens. Each specimen contained a single open fastener hole and re
flected a K, of 2.4. Crack growth rates were determined for lab air and a 3.5 
percent NaCl solution. Plots of da/diV versus AK are shown in Fig. 6 in a log-
log scale. Based on Fig. 6, the crack growth rates in a 3.5 percent NaCl solu
tion are approximately 70 to 100 percent faster than in dry air. Figure 7 also 
shows that the crack grovrth rates for 0.3 Hz are about 30 to 60 percent faster 
than for 1 Hz in a 3.5 percent NaCl solution. 

Some of the crack growth rate data in dry air was subtracted from the cor
responding 3.5 percent NaCl data for 1 Hz and 0.3 Hz, so that the resulting 
values may correspond to the second term of the superposition model. Ex
perimental values so determined were plotted against AK in a log-log scale, 
as shown in Fig. 8. The slope for 0.3 Hz was 2.8 and that for 1 Hz was 2.5 
while our predicted value from Eq 6 was 2. 

Application of the Superposition Model to Spectrum Loading Case 

Spectrum loading can be input into a computer as a series of stresses and 
corresponding time increments. The stress history is simplified, so that it 
contains only peaks and valleys and the time at which they are applied. Stress 
levels are then joined by a haversine wave, as shown in Fig. 9. 

For spectrum loading, the superposition model described in the previous 
sections must be modified for load interaction and load fluctuation. Since the 
present algorithm accounts for the effects of cyclic stress-intensity amplitude 
{AK), R ratio, frequency, and cyclic yield stress along with some other factors, 
it can be applied to various loading spectra, assuming that currently existing 
load interaction models [24-26] are applicable. The amount of retardation was 
reported [27,28] to be substantially less in a corrosive environment than in dry 
air for the same AK and overload ratio. However, this observation does not 
necessarily imply that a retardation model for a nonaggressive environment 
cannot be used for the corrosion fatigue case. This may be attributed simply to 
the fact that fewer cycles are required in the corrosive environment for a fatigue 
crack to propagate through the previously formed zone created by the over
load, because the crack growth rate is higher in the corrosive environment. Fur
ther investigation, however, is needed for this presumption. 
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The mean stress level of each cycle, denoted by Rj for the j'th cycle in Fig. 
9, is expected to affect the sustained load crack growth, if it is higher than 
one half of the K^^ 'evel. However, the effects of mean stress on the sustained 
crack growth for the aluminum alloys investigated in this study are con
sidered to be negligible, as discussed earlier. Thus, Rj mainly affects the first 
term of superposition model, while the second term is primarily a function of 
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time available for the cycle.-' For both terms, the effective cyclic stress 
amplitude, (a,- — (jy_i)cff, adjusted for the retardation effect should be used. 

•'However, we also recognize that some work addressing the effect of the mean stress on the 
crack growth enhancement, based on the surface-reaction controlled process, is in progress by 
R. P. Wei's group at Lehigh University. 
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The equations shown in Fig. 9 illustrates how the superposition model can be 
used for spectrum loading. A, B, n, and m are empirical constants required 
as input information, and mean stress {Rj) and reciprocal of frequency (tj) 
are automatic inputs from the spectrum tape for equivalent cycle-by-cycle 
loading. Therefore, a total crack length can be obtained by iterative evalua
tion of the equations in Fig. 9 for all the cycles. 

Figure 10 is a part of a simplified flow chart for programming to predict 
crack growth behavior in a corrosive environment. It includes the following 
steps: (1) calculate i^K^^ either by the Wheeler model \24\ or by the MPYZ 
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FIG. 9—Schematic illustration of the application of the superposition model for spectrum 
loading. 

model [26J, (2) calculate the first term either by Paris' equation or by For-
man's equation, using the A/̂ eff determined, (3) calculate the second term by 
our proposed model, using same AK^ff, (4) sum the two terms, and (5) add 
the crack growth increment to the original crack size. This procedure can be 
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done iteratively to predict corrosion-fatigue crack lengths, as a function of 
time or number of cycles of peak stresses. The model described for character
izing crack propagation due to the cycle-dependent interaction of spectrum 
fatigue loading and environment will be developed further and evaluated 
under an ongoing Navy program [29]. 

Summaiy 

1. A three-step procedure for corrosion-fatigue crack growth behavior for 
aluminum alloys was proposed based on the current understanding. This 
procedure includes the following processes: (1) formation of hydrogen atoms 
at a crack tip, (2) transfer of the hydrogen into microstructure, and (3) con
tinuous accumulation of the hydrogen at inhomogeneities while cycling. 

2. The second term of the superposition model (cycle-dependent enhance
ment) was determined theoretically based on the mechanism described 
previously. Our limited experimental data agreed reasonably well with the 
predicted dependence of AK on this term. 

3. Quantification of the superposition model for various load spectra was 
described briefly. 
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ABSTRACT: A method is presented for predicting the stress corrosion crack initiation 
(environment-induced crack initiation) resistance of notched components from the results 
of smooth (unnotched) specimen tests. The predictive procedure is based on the maxi
mum principal surface strain failure criterion and uses Neuber's rule to estimate notch 
root strains. It is capable of handling elastic-plastic notch stress-strain behavior. The 
method is shown to be accurate in predicting the results of tests on two notched geomet
ries, representing very different stress gradients, and a number of notch radii correspond
ing to a wide range of stress concentration factors. A material-environment system was 
employed in which hydrogen-induced cracking occurs, specifically a 1194 MPa (173 ksi) 
yield strength NiCrMoV steel exposed to 345 kPa (50 psig) hydrogen sulfide gas. Some 
additional data pertaining to the definition of crack initiation and the effect of constraint 
were generated and discussed in terms of their effect on the accuracy of the prediction 
procedure. The results of the work indicate that the stress corrosion crack initiation resis
tance of structures and machine parts which contain stress raisers can be predicted by 
laboratory tests with specimens of much simpler geometries. 

KEY WORDS: prediction, stress corrosion crack initiation, notches, nickel-chromium-
molybdenum-vanadium steel, hydrogen sulfide, geometry effects, Neuber's rule, fracture 
mechanics 

Little information is available regarding geometry effects on stress corro
sion crack initiation (environment-induced crack initiation) behavior. Of the 
information available, much is qualitative or fails to distinguish between 
crack initiation and crack propagation performance. Geometry effects in
clude stress concentration, state-of-stress, and stress gradient. Consideration 
of these factors is necessary when applying stress corrosion data developed 
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with one type of test specimen geometry to a component with a different ge
ometry and possibly a different loading mode. Also, laboratory data gener
ated with different specimen geometries should correlate, of course. 

Recently, Lee, Goldenberg, and Hirth [1,2]^ and Hirose and Tanaka [3] 
were able to correlate the environment-induced crack initiation behavior of 
notched specimens. Lee's correlation was based on measured principal notch 
strain, while Hirose's involved the K/'/p parameter, an indirect measure of 
notch stress-strain level. Each study employed a single notched specimen 
geometry and several radii. 

The present work is concerned with the relationship between smooth (un-
notched) and notched body performance. Often, stress corrosion data are 
generated with a smooth specimen geometry and the results are applied to a 
part containing a notch of some type. In light of this practice, a quantitative 
procedure is established here for predicting the stress corrosion crack initia
tion resistance of notched parts from stress corrosion tests on smooth uniax
ial tension specimens. The proposed prediction procedure invokes the maxi
mum principal strain failure criterion and employs Neuber's rule to estimate 
notch root strains. An important feature of the procedure is that it can han
dle strains beyond yield as easily as completely elastic strains. 

In order to establish the limits of applicability of the predictive method, 
experimental data were obtained on a wide range of specimen geometry-
notch radii combinations, as well as on smooth tension specimens. Specifi
cally, two notched specimen types were selected, representing the extremes of 
stress gradient (uniform tension versus bending) across their net sections. 
Notch radii were chosen giving stress concentration factors from 2.8 to 16.4. 
One material-environment system was employed, a 1194 MPa (173 ksi) yield 
3.5 percent nickel-chromium-molybdenum-vanadium (NiCrMoV) steel ex
posed to 345 kPa (50 psig) hydrogen sulfide (H2S) gas. This system results in 
hydrogen-induced cracking, and was selected because it is fast-acting and 
convenient in terms of test result interpretation. 

In general, a complete picture of the environment-induced crack initiation 
behavior of a given material-environment system can be represented by a 
stress (or strain) versus time-to-cracking curve. The curve may or may not in
volve a threshold level below which the time to crack initiation is infinite. For 
the present material-environment system, this threshold level apparently 
does exist, and above it crack initiation occurs almost instantaneously. All 
the test results in this paper represent this threshold level. 

The test data are presented in terms of specimen failure (separation in two 
pieces). However, crack initiation was essentially coincident with failure for 
the subject material-environment system, as will be demonstrated experi
mentally. Thus, the terms "initiation" and "failure" are interchangeable in 
this report. 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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Some additional data on the effect of constraint also are given, as are frac-
tographic observations. 

Analysis 

In this paper, the prediction of notch stress corrosion crack initiation is 
based on the notch surface stress-strain behavior. However, it is often incon
venient to deal with notch stress and strain directly. Therefore, analysis is 
provided for relating the notch conditions to two other parameters: nominal 
stress, S, and the fracture mechanics term, stress intensity, K. The represen
tation employing K is addressed in the following paragraph. 

Consider a part under load with a notch of a given depth and radius. If the 
part is treated as if it contains a crack (instead of a notch) whose depth 
equals that of the notch, a pseudo-stress intensity, K, can be calculated with 
the appropriate fracture mechanics /iC-solution. A "fictitious elastic stress," 
(7g, which is the notch surface stress assuming completely elastic conditions, 
is calculated by the so-called KNp relationship [4] 

VTT Vp 

where p is the notch radius. This relationship first was employed in the analy
sis of stress corrosion crack initiation data by Clark [5]. Its accuracy has been 
established by finite element results [6]. While widely applicable, it should be 
noted that there are certain geometries for which the equation results in sig
nificant error [7]. 

The nominal stress, S, on a notched part is calculated without accounting 
for the effects of stress concentration or plasticity. The relation between true 
notch surface stress, a, and strain, e, and nominal stress is given by Neuber's 
rule [8] 

oe-—;;— (2) 

where k, is the theoretical stress concentration factor and E is the elastic 
modulus. Note that ki must be defined in a manner consistent with the 
method of determining S, so that the product A:, 5 is the same for different 
methods of calculating these factors (for example, gross section versus net 
section stress). Also, the nominal stress must be below yield for this version of 
Neuber's rule to be valid. 

Since the fictitious elastic stress from Eq 1 is identical to k,S 

ae = k,S (3) 
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Equations 1 and 2 can be combined and rearranged to form 

K _ \rKaeE 

4p 2 
(4) 

For a stress-strain point representing the tlireshold resistance to stress-corro
sion crack initiation in a smooth specimen, a specific value of /C/Vp is in
dicated. That is, the resistance of a notch with a given radius is predicted in 
terms of its pseudo-stress intensity. On a plot of initiation K versus Vp̂ , differ
ent notch radii are expected to be correlated by a straight line representing 
the appropriate value of K/^. (Such a plot is shown later in this paper in 
Fig. 4.) 

The /C/Vp̂  criterion predicts that the notch resistance approaches zero as 
the notch becomes sharper. But the cracked body behavior, represented by 
î iscc, is considered to be the lower bound on notch resistance. This limit is 
represented by a horizontal line on the K versus Vp plot. The overall predic
tion scheme then is represented by a two-segment line (the solid line in Fig. 4). 

Another method of characterizing notched part stress corrosion crack ini
tiation behavior is through the use of nominal stress. Neuber's rule, Eq 2, 
can be rearranged to give 

ktS = 47eE~ (5) 

Recalling that smooth, specimen resistance is represented by a stress-strain 
point, notched behavior is given by a specific value of the product k,S. On a 
plot of critical (for initiation) nominal stress versus fc„ notched specimen per
formance would be correlated by a hyperbola representing the appropriate 
value oik,S. (As shown later, Fig. 5 is an example of such a plot.) A different 
lower bound line (value of S) corresponding to Ky^^ is needed for each geom
etry since the relationship between K and S is geometry dependent. 

The analyses defined in the preceding section will be employed to predict 
notch resistance, from the smooth specimen test results, in terms of both K 
and S. The analyses arc done only once since plots are constructed that yield 
a prediction for any notch. For a given notched part, K and S are linearly re
lated to load. Thus, the notched specimen test results can be converted easily 
to values of K and S, which in turn can be compared with the predicted 
values. 

Experimental Procedure 

The test material used in this investigation was a 3.5NiCrMoV steel [simi
lar to the ASTM Specification for Vacuum-Treated Alloy Steel Forgings for 
Turbine Rotor Disks and Wheels, A 471-77 (1982)] with a yield strength of 
about 1194 MPa (173 ksi) and a bainitic microstructure. The range of room 
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temperature tensile, Charpy, and fracture toughness properties found in the 
original piece of material is given m Table 1. 

Four specimen types were tested, as shown in Fig. 1. Two of them, the 
straight tension and tapered tension, are considered "smooth" specimens, 
and the other two are notched specimens. Most of the smooth specimen test
ing was conducted with the straight tension specimen. The tapered tension 
specimen [9] is sometimes favored in static load stress corrosion testing be
cause it can provide information over the range of stresses along its length. 
The stress at the maximum diameter of the test section is 54 percent of that 
at the minimum diameter. 

The two notched specimens are the notched compact and circumferentially 
notched round, here simply called notched round. Table 3 gives the notch 
radii and k, values employed. The compact specimen is common in fracture 
mechanics testing where a fatigue-induced precrack is used instead of a finite 
radius notch. Some fatigue precracked compact specimens also were tested 
in this investigation. 

TABLE 1—Mechanical properties at room temperature. 

3.5NiCrMoV Steel, 1194 MPa (173 ksi) nominal jield strength 

Yield strength, MPa (ksi) 
Ultimate tensile strength, MPa (ksi) 
True fracture strength, MPa (ksi) 
Reduction in area, % 
Charpy impact energy, m-N (ft-lb) 
Fracture toughness, MPa-m"^ 

(ksi-in.'''2) 

1173 to 1214 (170 10 176) 
1311 to 1352 (190 to 196) 
1856 to 2077 (269 to 301) 
45 to 55 
48 to 54 (35 to 40) 

160 to 182 (145 to 165) 

1 / 2 - 2 0 NF thds 

^ 0 . ? 5 0 R 

8 25 - ^ 0 IM 

0.300R 

— 0.250 

1°30' 8 

^ \ 
-O.IM 

r 
ir 

SO.IOOR I S 
0.368 ° 

L-J'-

-1.800 

ev 
0.184 } * ^ -"T 0.0938 

0.450 D 

Thickness =0.')00 

Notched 
Compact 

Straight 
Tensile 

Tapered 
Tensile 

Notched 
Round Dimensions in Inches U in. = 2. 54 cml 

FIG. 1—Smooth and notched stress-corrosion crack initiation specimens. 
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The two notched geometries represent very different nominal stress gra
dients across their net sections. The stress distribution across the minimum 
diameter of the round is uniform, while a decreasing stress gradient exists 
across the ligament of the compact specimen due to the bending forces present. 

The smooth specimens were fabricated by single-point machining on a 
lathe. To minimize surface metal disturbance, the last few passes were shal
low and then several polishing steps were performed with successively finer 
grit. The notched specimens also were fabricated by a point machining type 
process, although the techniques mvolved are somewhat different than that 
for the smooth specimens. The notched specimens also are polished, but by 
honing rather than by using abrasive paper. 

The environmental tests were conducted in an austenitic stainless steel 
chamber. Force was transmitted from a servo-controlled electro-hydraulic 
test machine to the specimen inside the chamber via 0-ring sealed pull rods 
extending through the chamber walls. After installing a specimen in the 
chamber and sealing it, the chamber was evacuated. It then was backfilled 
with H2S gas to a pressure of 345 kPa (50 psig). The bottled gas was commer
cial purity (CP) grade, minimum purity 99.5 percent. 

A rising load technique [10] was employed in which, as opposed to static 
load testing, the load slowly and continuously increases. All tests were con
ducted under stroke (ram deflection) control at a stroke rate maintained con
stant throughout a given test. Specimens were brought to an initial load 
(preload) corresponding to a true stress of about one half of yield before ap
plying the stroke rate to be used for the remainder of the test. The stroke 
rates selected (different for each specimen geometry) corresponded to a 
strain rate of about 2 X lO"*" s~'. More detail on strain rate will be given 
with the test results. 

In the H2S tests on the straight tension specimens it was inconvenient to 
attach a deflection gage directly to the specimen test section. Consequently, a 
clip gage was used to measure deflection between the two clevises into which 
specimens were threaded. This arrangement also was used for the tapered 
tension and notched round specimens. For the compact specimens, a similar 
type of gage was employed, but deflection was measured directly on the spec
imen at the load line. A heavy wax coating prevented the gages from being af
fected by the H2S. Load versus deflection was recorded autographically in all 
tests. 

Some air environment tests were conducted on the straight tension speci
mens in which a l.27-cm (0.5-in.) clip-on gage with knife edges was attached 
to the specimen test section; a clevis-to-clevis clip gage also was attached to 
these specimens. A comparison between results from both gages was made, 
yielding an accurate calibration for subsequent testing in H2S gas. A similar 
calibration was obtained for the tapered tension specimens by using metal 
foil strain gages at the minimum section. The foil gages had a gage length of 
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about 0.041 cm (0.016 in.) and were accurate up to a strain of 0.06, accord
ing to manufacturer's specifications. 

In both air and H2S gas environments, some tests were terminated before 
failure and the specimens were examined for evidence of stable crack growth. 
In the case of the smooth specimens, their surfaces were examined via a scan
ning electron microscope (SEM). In one case, a straight tension specimen 
tested in air, a longitudinal metallographic section was prepared and ex
amined for the presence of cracks by optical microscopy at XIOOO magnifi
cation. The notched specimens, both compact and round, that were ter
minated before failure were heat tinted, then cooled with liquid nitrogen and 
fractured. A small crack extending from a notch root would be visible due to 
the heat tint. 

Results and Discussion 

In this section, the smooth specimen test results are presented first, along 
with information on the effect of strain rate. The notched specimen results 
then are given and are compared with the predictions based on the smooth 
specimen results. Following this discussion, test results are presented that 
bear on two factors possibly affecting the observed stress corrosion crack ini
tiation behavior, these being constraint and the difference between crack ini
tiation and propagation. 

Smooth Specimen Behavior 

All the smooth specimen test results are given in Table 2. The stress-strain 
behavior obtained on a straight tension specimen of the test material is 
shown in Fig. 2 along with the median failure strain in H2S. Up to the H2S 
failure point, the stress-strain curves in air and H2S had the same shape. The 
fracture strain in H2S was much less than in air, of course, around 0.054 
compared to a true fracture strain of 0.892. The latter value was converted 
from a measured reduction in area of 59 percent. The most important feature 
illustrated in Fig. 2 is that the critical point for failure (which coincides with 
crack initiation) is well into the plastic range of deformation behavior. The 
stress corrosion predictive methodology presented here is capable of handling 
this plasticity. 

The baseline strain rate for the H2S tests on the straight tension specimens 
was about 2 X 10~^ s ' ^ A few tests were conducted at other strain rates, 
and the results are displayed in Fig. 3. These tests indicate little effect of 
strain rate below about 10^^ s~^ Above this rate the effect of H2S is appar
ently less severe, perhaps due to insufficient exposure time, and higher frac
ture strains result. The strain rates in H2S at the minimum section of the ta-
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pered tension specimens and at the notch roots of the notched specimens 
were all within the range where strain rate is unimportant. 

While the straight tension and tapered tension specimen results are in gen
eral agreement (see Table 2), the resistance of the latter specimen appeared 
to be slightly higher. The straight tension specimen median failure strain was 
0.054. But the failure point on two of the tapered tension specimens was 
beyond the calibration limit strain of 0.06. 

Notched Specimen Results 

Table 3 contains the notched specimen test results. Figure 4 shows these 
results and the prediction from smooth specimen results on a plot of Kp ver
sus Vp. The horizontal line representing the lower bound of the prediction at 
K\^ is based on the precracked specimen results, which are plotted at zero 
radius. The critical value of iC/Vp is based on a strain of 0.054. The figure 
clearly shows the increased resistance to stress corrosion cracking at a notch 
compared to the precracked condition. The predicted line shows the correct 
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FIG. 4—Test data and predicted line for failure of notched specimens in H2S. 
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trend of notched specimen stress corrosion behavior, and is generally in good 
agreement with the data. The largest factors of error between prediction and 
test data are for the sharpest radii, and it is important to note that these er
rors are conservative. 

Another means of portraying the data is in terms of the nominal stress at 
failure, Sf, on a plot of Sj.- versus k„ as shown in Fig. 5. While the predicted 
line in Fig. 4 represents a constant value of A'/Vp, the predicted line in Fig. 5 
represents a constant value of ktS. The hyperbolic shape of the predicted line 
reveals that stress corrosion crack initiation in the subject material-environ
ment system is very sensitive to changes in stress concentration factor at the 
low end of the scale. In spite of this, the plot clearly shows the good agree
ment between notched specimen test data and prediction ui this region of 
stress concentration factor, between about three and six. It is significant that 
the predictions in this region are the most accurate, because higher stress 
concentration factors are rare in service. At the higher stress concentration 
factors, the increased resistance over that predicted is also clearly visible. 

Fractography was conducted on the fracture surfaces of some of the failed 
specimens, as indicated in Tables 2 and 3. In the H2S environment tests, the 
crackmg mode near the origin of fracture was predominantly intergranular 
for all specimen types. This is illustrated in Fig. 6. Farther from the point of 
origin, as the mechanical overload point was approached, the fracture mode 
changed to a ductile one. In the air environment tests, the fracture mode was 
entirely ductile. 
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FIG. 5—Predicted line and test data for failure of notched specimens in H^S. 
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a) straight tensile 
speciraeH 
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FIG. 6—Fracture surfaces of smooth and notched specimens failed in H2S. 
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Effect of Constraint 

Maximum principal surface strain has been proposed as the controlling 
parameter for failure in H2S, implying that the value of the other principal 
strain (which acts in the transverse direction) is unimportant. The ratio of the 
principal strains represents the overall state-of-strain, which in turn is re
lated to the state-of-stress. But data do exist which show a possible influence 
of state-of-stress on environment-induced crack initiation behavior [//]. 

In compact specimens, the state-of-stress (or state-of-strain) at the notch 
surface can be characterized by what is known as transverse constraint. Con
straint is determined by the ratio of notch radius to specimen thickness, p/B. 
As this constraint factor, p/B, decreases, the constraint is said to increase, 
and the state-of-stress approaches the plane strain condition and departs 
from plane stress. For the compact specimens tested which were of the same 
thickness, a different degree of constraint is represented by each notch 
radius. Therefore, constraint was investigated as a possible cause for the 
sharp notches having greater resistance than predicted while the blunter notches 
agreed with prediction. 

Several "thin" compact specimens were fabricated with a notch radius 
equal to the sharpest in the full-thickness specimens, 0.(X)38 cm (0.0015 in.), 
but with a thickness of 0.229 cm (0.090 in.) instead of 2.29 cm (0.900 in.). 
The resulting constraint factor, p/B, was in the range of that.of the larger 
radii (lower k,) specimens for which the failure predictions were accurate. 
However, reducing the thickness, and thus constraint, of the sharp-notch 
specimens did not significantly change the stress corrosion resistance, as 
shown in Fig. 7. Thus the higher constraint (compared to the blunter notches) 
existing in the sharp-notch specimens is not responsible for their failure per
formance exceeding that predicted. Two other possible explanations for this 
increased stress corrosion resistance are size of the highly stressed area 
(weakest link argument) and notch surface condition (residual stress and de
gree of cold-work), the latter being more difficult to control as notch radius 
decreases. The influence of these factors was not addressed in the present 
work. 

Crack Initiation Versus Propagation 

Due to the high crack growth rates that occur in H2S for metals of the type 
tested [10], crack initiation generally is expected to be virtually coincident 
with specimen failure. Some testing was conducted to verify this assumption. 
Again, there was interest in the sharp notch test data that did not agree with 
prediction. Perhaps stress corrosion crack initiation occurred at a lower load, 
closer to that predicted, than did failure. Such a phenomenon might be ex
pected for a sharp notch based on an argument employed in the area of fa
tigue [12]. That is, as a crack grows out of the notch-affected strain field into 
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FIG. 7—Effect of transverse constraint on the failure of notched compact specimens in H2S. 

an area of lower strain, it may slow down relative to a crack growing from the 
surface of a notch of a larger radius that would have a deeper notch-affected 
strain field. 

Tests were conducted in H2S on smooth (straight tension), notched, and 
precracked specimens that were terminated before failure and inspected for 
the presence of cracks as described in the Experimental Procedure section. 
For each set of tests to failure with a given geometry and radius, a test was 
run to about 85 percent of the lowest failure point. The results are shown in 
Fig. 8. The smooth and notched specimens inspected contained no cracks. 
Interestingly, the only geometry in which subcritical crack growth did occur 
was the precracked compact. 

One example of the inspection findings is in Fig. 9a. This is an SEM photo of 
the surface of a straight tension specimen from an H2S test that was stopped 
before failure. Surface "rumpling" associated with the plastic strain endured 
is evident, but no cracks were found. The feature near the center of the top 
photo, which is shown at a higher magnification in the bottom photo, is ap
parently a slip step. 

Some tests were also run in air and stopped before failure. For each set of 
tests to failure in H2S with a given geometry and radius, a test was run in air 
to about 15 percent beyond the highest failure point. Figure 8 contains the 
results. In no case were cracks found. Figure 9fc is a representative sample of 
the surface condition of a straight tension specimen. This shows that the H2S 
test results do not represent a situation where cracks initiated due to purely 
mechanical effects and propagated rapidly due to H2S. In other words, crack 
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initiation in the subject material in H2S is truly an environment-induced 
phenomenon. 

Conchisions 

1. The environment-induced crack initiation resistance of notched parts 
can be predicted accurately from smooth specimen tests with a maximum 
principal surface strain failure criterion. The predictive methodology can 
handle elastic-plastic notch stress-strain behavior. Experimental verification 
was obtained with notched specimens of different stress gradients and a wide 
range of stress concentration factors, in a material-environment system 
where hydrogen cracking occurred. 

2. Very sharp notches (k, > 9) not normally found in service portray 
greater environment-induced crack initiation resistance than predicted. 
Higher levels of transverse constraint in these specimens compared to those 
with larger radii notches are not responsible for this discrepancy. Therefore, 
the predictive method has a built-in conservatism, for reasons presently un
clear, for very sharp notches. 

3. The cracking mode in H2S at the point of crack mitiation was predomi
nantly intergranular for all geometries. This is further evidence that the ob
served environment-induced crack initiation results represent a geometry-m-
dependent phenomenon and can be treated by a single failure criterion. 

4. Crack initiation in H2S was essentially coincident with total specimen 
failure, as expected. Thus, crack propagation was not a factor in the test re
sults obtained. 

5. Tests of the type conducted here should be performed for a wider range 
of stress states, for example, pure shear and equibiaxial conditions. Also, the 
experiments should be repeated in an environment where dissolution mecha
nisms rather than hydrogen cracking alone are operable. Such tests would 
expand the range of situations in which the proposed predictive methodology 
could be applied confidently. 
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ABSTRACT; Despite the fact that weld-induced residual stresses arise as a result of ther
moplastic material deformation, current analyses of crack growth in welds assume that 
linear elastic fracture mechanics (LEFM) conditions are valid. In particular, the .stress-
intensity factor/L, the LEFM-based measure of the crack driving force, is calculated using 
the linear superposirion techniques that strictly hold for linear clastic material behavior. 
Another common idealization is that only the normal component of the residual stress 
field that acts on the crack plane is significant. 

To assess the importance of these as.sumptions, a heuristic elastic-plastic fracture me
chanics analysis procedure is developed in this paper and applied to determine the rate of 
stress-corrosion crack grovrth in an axially-loaded 102-mm (4-in.)-diameter girth-welded 
Type 304 stainless steel pipe. It is found that the more rigorous elastic-plastic analysis 
predicts higher crack growth rates than do the currently used LEFM-based calculations. 
It is concluded that more rigorous prediction methods may be needed for safety assess
ments of welded .structures than those now in use. 

KEY WORDS: residual stresses, stress-corrosion cracking, Type 304 stainless steel, elas
tic-plastic fracture mechanics, weld cracking, fracture mechanics 

Intergranular stress-corrosion cracking (IGSCC) in the heat-affected zones 
(HAZ) around girth welds in austenitic stainless steel piping of boiling water 
reactors (BWR) is a problem of some concern to the nuclear industry. As de
scribed by Fox [1],^ the three factors that are required for IGSCC to occur— 
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material sensitization, a deleterious environment, and tensile stresses—are 
all present in BWR piping. In particular, the weld-induced residual stresses 
at the inner surface of a pipe are generally tensile so that IGSCC can occur 
even in the absence of an applied stress. Several studies [2-5] have shown 
that the welding-induced residual stresses can be quite high, in some cases 
approaching the room temperature yield stress of the material. Hence, it 
would appear that direct consideration must be given to the residual stresses 
induced by the welding process in assessing the integrity of nuclear piping 
systems. 

Thermoplastic finite-element analyses have been developed for the direct 
computation of the residual stresses arising in the welding process [6-10\. 
But, these generally do not consider the effect of applied stresses and the flaw 
size. Conversely, the analyses that have been made of crack growth in resid
ual stress fields do not admit the plastic deformation, but instead treat the 
problem within the confines of linear elasticity. 

Treatments of the influence of residual stresses on stress-corrosion crack
ing in sensitized weldments in austenitic stainless steel piping in BWR piping 
have been given by several investigators [11-13]. Earlier studies on the tem
perature distributions and residual stresses due to welding are given by Mas-
ubuchi [14]. All of these analyses have employed the same two rather severe 
assumptions: that linear elastic fracture mechanics (LEFM) conditions are 
valid, and that only the normal component of the residual stress field that 
acts on the crack plane is significant. The work reported in this paper avoids 
these two assumptions by coupling an elastic-plastic fracture mechanics 
treatment of crack growth with a thermoplastic analysis of weld-induced resi
dual stresses. Thus, both the complete plastic deformation field and a more 
appropriate elastic-plastic fracture parameter is used to determine the crack 
growth rates. 

In this paper a brief outline of a general analysis procedure is given first. 
Next, a heuristic approach is developed and applied to determine the rate of 
stress-corrosion crack growth in an axially-loaded 102-mm (4-in.)-diameter 
girth-welded Type 304 stainless steel pipe. These results then are contrasted 
with the current LEFM-based approaches for a preliminary assessment of 
the importance of pursuing an elastic-plastic fracture mechanics approach 
for stress-corrosion cracking in nuclear plant piping. 

Basis of the Analysis 

Thermal elastic-plastic mechanical models for residual stresses due to 
welding generally consist of two parts: a weld-layer dependent temperature 
analysis and a corresponding stress analysis. Most of the early models con
centrated on plate type configurations and girth-butt welds in pipes and pres
sure vessels [15]. More recent work has centered on the improvement and 
control of residual stresses by alterations in the welding process [16] or by 
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post-welding treatments [17\. It is now generally agreed that such analyses 
are reliable for general trends, but do not always give a high degree of preci
sion. Nevertheless, because experimental residual stress determinations are 
quite expensive and are also subject to uncertainties, finite-element analyses 
can be useful for quantitative studies such as this. 

Considerable progress has been made towards the development of elastic-
plastic fracture mechanics analysis techniques for nuclear components [18]. 
The incentive for these developments can be attributed to the inability of 
LEFM to treat conditions where the plastic deformation occurring in real 
structures is important. The tough and ductile nuclear plant materials (for 
example, A533B steel. Type 304 stainless steel) undergo large plastic defor
mation before the onset of crack growth. Moreover, crack growth instability 
in such materials generally is preceded by some stable crack growth. Of most 
importance here, investigations aimed at the development of a plastic frac
ture methodology [19-20] have revealed that the local crack-tip opening dis
placement tends to remain a constant, even for extended amounts of stable 
crack growth. While comparable observations for IGSCC have not been 
made, this fact is highly suggestive for the latter process as well. 

Due to the inherent limitations and uncertainties of current inspection and 
detection techniques, some cracks are always left undetected, even in frac
ture-sensitive components. (As examples, stress-corrosion cracks that were 
detected in a BWR pipe [21] are shown in Fig. 1.) Thus, it is important to 
have a reasonably accurate prediction of the time requked for such cracks to 
grow to a critical size. This depends upon the crack growth rate, which in 
turn depends on the controlling crack growth mechanism, the loading, and 
the operating conditions. Of primary interest here is stress-corrosion crack
ing that occurs under conditions such that 

da 
-— = CK"> (1) 
dt 

where da/dt is the time rate of crack growth, K is the applied stress-intensity 
factor, while C and m are supposed to be material constants. For example, 
Eq 1 was used in recent studies to determine the integrity of sensitized BWR 
piping welds [11,12]. 

One basic difficulty involved in the use of Eq 1 is its explicit reliance on 
LEFM. Commonly, data are collected with small-scale laboratory test speci
mens and used to determine the empirical parameters C and m for application 
to full-scale structures. However, if either the test specimen or the structure 
experiences extensive plastic deformation during crack growth, the resulting 
relation could be quite inappropriate. Nevertheless, because there currently 
is no generally acceptable ahemative, such relations are sometimes used 
when they are not valid. It is one aim of this work to utilize the constancy of 
the crack-tip opening displacement observed in plastic fracture mechanics 
investigations in an attempt to improve upon this situation. 
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FIG. 1—Profiles of circumferential cracks detected in 102-mm (4-in.)-diameter recirculation 
bypass line of the Dresden II boiling water reactor plant, after Cheng et al [21]. 

Analysis Procedure 

The analysis procedure is composed of three steps. In the first step the resi
dual stresses induced during the girth welding of a 102-mm (4-in.)-diameter, 
Schedule 80, Type 304 stainless steel pipe are calculated under axisymmetric 
conditions. In the second, the radial growth of the circumferential part-
through-wall crack is simulated to obtain the elastic-plastic crack driving 
force at successive stages of the crack growth process. The third step intro
duces a plausible, albeit hypothetical, elastic-plastic stress-corrosion crack
ing criterion to deduce the crack length-time behavior. 

Analysis Model for a Girth-Welded Pipe 

The residual stress analysis approach for a girth-welded pipe consists of 
first predicting the temperature versus time history experienced in the pipe 
when depositing each individual weld pass. The temperature model is based 
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on the solution for a point heat source moving in an infinite solid at a con
stant velocity with appropriate modifications made to account for the finite 
wall thickness. These temperature histories then serve as the loading history 
for a subsequent thermoelastic-plastic finite-element analysis. The finite-ele
ment program that was used is based on incremental plasticity theory and in
cludes large deformations. A modified isotropic hardening law which permits 
strain softening to occur at higher temperatures is used in this model. 

The temperature-dependent material properties for Type 304 stainless 
steel shown in Fig. 2 were used in the analysis together with a bilinear repre
sentation of the stress-strain curve. The temperature analysis was performed 
using the welding parameters in an experimental program by Argonne Na
tional Laboratories [5]. Welding parameters are shown in Table 1. The weld 
pass geometry was obtained from a photograph of the weld cross section. 
While the actual weldment consisted of a total of seven passes, these were 
modeled with four layers using a weld centerline symmetry assumption. 

The finite-element grid used to model the welding process and to perform 
the subsequent crack growth analysis is shown in Fig. 3. This mesh consists 
of a total of 286 nodes and 238 elements. The elements are constant strain 
triangles and quadrilaterals consisting of an assemblage of four triangles. A 
condition of axisymmetry is imposed on the nodal deformations for the girth-
weld analysis together with the weld centerline symmetry condition. There
fore, only radial deformations are permitted in the nodes along the weld cen-
terlme, with stress-free boundary conditions imposed on the nodes at the 
opposite end of the pipe model. 

(Ju, cr,, E a E j , 
MPo MPci MPa 

400 600 
Temperatjre, C 

FIG. 2—Temperature-dependent properties of Type 304 stainless steel. 
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TABLE 1—Welding parameters and weld geometry for a 102-mm (4-m.j-diameter Schedule 80 
Type 304 stainless steel pipe." 

Layer 

Root 
Two 
Three 
Four 

Welding Current, A 

100 
85 
95 
95 

Arc 
Voltage, 

V 

13 
13 
23 
24 

Travel 
Speed, 
mm/s 

1.14 
1.09 
3.05 
3.05 

Heat 
Input, 
J/mm 

1137 
1012 
717 
717 

"Data of Shack ct al [51. 

FIG. 3—Finite-element model for residual stress and crack growth analysis in a girth-welded 
102-mm (4-in. hdiameter Schedule 80. Type 304 stainless steel pipe. 

A comparison between the residual stresses computed at the inner surface 
of the pipe and Argonne's measured values [5] is presented in Fig. 4. It can 
be seen that the analysis predictions agree quite well with the experimental 
data. Notice that both the axial and circumferential residual stresses are ten
sile in the HAZ at the inner surface of the pipe. Therefore, this pipe is defi
nitely a candidate for IGSCC. 
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FIG. 4—Axial and circumferential stresses along the inner surface of a girth-welded 102-mm 
(4-in.)-diameter Schedule 80, Type 304 stainless steel pipe. 

The axial residual stresses calculated through the pipe wall thickness at 
the crack line are shown in Fig. 5. It is seen that tensile residual stresses of 
96.5 MPa (14 ksi) exist at the pipe inner surface and reverse to compression 
at the pipe outer surface. These stresses are self equilibrating through the 
pipe wall. 

Crack Growth Analysis 

As appropriate for a preliminaty investigation, the work described m this 
paper was based upon simple geometric conditions. Specifically, a complete 
circumferential annular crack shape was considered with a symmetry plane 
considered to exist at the weld centerline. This implies that there actually are 
two parallel cracks, one existing on each side of the weld. A crack was simu
lated in the finite-element model by placing a line of double nodes along a 
radial line in the weld HAZ where intergranular stress-corrosion cracks tend 
to occur. This is shown in Fig. 3. The nodal spacing along this line was 0.53 
mm (0.021-in.). All of the crack growth calculations were made by introduc
ing a small initial radial crack into the finite-element model of length equal 
to 1.5 mm (0.06-in.). 

Each pair of double nodes was coupled with a spring that was assigned a 
very high stiffness. Then, as shown schematically in Fig. 6, the simulation of 
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FIG. 5—Axial residual stresses plotted through the pipe wall at the crack line. 

CTOD 

FIG. 6—Simulation of crack growth by node release in the finite-element model. 
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an increment of crack growth was achieved by gradually releasing the force 
developed in a spring to zero. The crack grows by sequentially eliminating 
the spring forces along the preselected crack path. Notice that this procedure 
does negative work on the body which removes an amount of energy corre
sponding to the material's energy dissipation rate. 

Where LEFM is valid, a relation exists between the stress-intensity factor 
and the crack-tip opening displacement. This can be written as 

5 = « g (2) 

where 6 is the crack-tip opening displacement, K is the LEFM stress-inten
sity factor, E is the elastic modulus, Y is the yield stress, and a is a dimen-
sionless constant. The exact value of a depends upon the problem formula
tion and loading conditions; for example, see Atkinson and Kanninen [22]. 
This relation is important here because of the key role played by 5 in plastic 
fracture mechanics applications [8-20]. In particular, as shown by Shih [23] 

^ = dn~ (3) 

where / is the J-integral—the crack-tip characterizing parameter for a defor
mation plasticity representation of the near-tip region—and d„ is a function 
of the strain-hardening exponent of the material; note that for LEFM condi
tions, / oc K'^/E whereupon Eq 3 agrees with Eq 2. It follows that, if 6 is com
puted as a function of crack growth, it can serve to characterize the propensity 
for crack growth under both the elastic and the elastic-plastic conditions ex
amined in this study. 

Starting from the arbitrary initial crack, progressive subcritical crack 
growth was simulated in the model by successively releasing the stiff springs 
connecting the double nodes on the crack plane. At the point where the 
nodes were completely uncoupled, the crack-tip opening displacement was 
taken as equal to 8 (see Fig. 6). In this way, a record of 6 = 5 (a — OQ) was 
obtained where OQ denotes the initial crack length. Parallel computations 
were performed for the simple elastic case, where only the normal component 
of the residual stress field on the crack plane was included. Figure 7 shows 
the results. 

One interesting aspect of these results is shown in Fig. 8. This is that the 
stress redistribution that occurs due to crack growth, even in the absence of 
an applied stress, will give rise to a positive stress at the crack tip well beyond 
the point at which the initial residual stresses become negative. Hence, even 
if a region of compressive residual stress exists, there could be a positive 
crack driving force as crack growth proceeds that will drive the crack to a 
critical size. It follows that reliance on a region of compressive stress to as
sure crack arrest may not be realistic. 
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FIG. 7—Crack-tip opening displacement calculated as a function of crack growth (Aa) for 
102-mm (4-in.)-diameter Type 304 stainless steel pipe subjected to welding-induced residual 
stresses and zero applied stress. 

Simulation of Stress-Corrosion Cracking 

By combining Eq 1 and 2, an expression for the crack growth rate in stress-
corrosion cracking can be obtained in terms of the crack-tip opening dis
placement. This is 

dt 
(4) 

where C = C {EY/cxf''^ is a material constant. Of interest is the extent of 
crack growth as a function of time. With 6 known as a function of crack 
length (compare Fig. 7), integration of Eq 4 can be obtained most easily in 
the form 

1 

' " 0 

da 
(5) 

To keep the following results as general as possible it is convenient to intro
duce a dimensionless time parameter, t*. This gives 

t* = 
h' 1/2-1 

5m/2 da (6) 
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FIG. 8—Normal stress distribution across the uncracked remaining ligament for a 102-mm 
(4-inJ-diameter Type 304 stainless steel pipe subjected to welding-induced residual stresses. 
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where t* is related to real time by 

t* 
(7) C'/jm/2-l 

where h is the pipe wall thickness. 
By this device, the following computational results are independent of at 

least one of the parameters in the stress-corrosion crack growth rate relation. 
But the results do depend on the material parameter m and, of course, on the 
calculated 8 = 6 {a — a,)) results for the conditions being examined here. 

A value appropriate for Type 304 stainless steel is w = 8 [11,12]. Using 
this value and the results shown in Fig. 7, Eq 6 can be integrated (numerically) 
to obtain t* = t* (a — OQ). The results are shown in Fig. 9. These results are 
very significant in that they reveal the nonconservative nature of the conven
tional crack growth prediction technique. That is, as indicated by these cal
culations, the simple elastic analysis overpredicts the time required for a 
crack to grow to a given length. 

Discassion 

The work presented in this paper was designed to address two separate as
sumptions that are made in all previous analyses of crack growth in weld-in
duced residual stress fields. These are the following: 

1. Only the normal component of the residual stress field that acts on the 
crack plane is significant. 

2. Linear elastic conditions (including linear superposition and the exis
tence of the characteristic LEFM singularity) are valid in weld-induced 
thermoplastic deformation fields. 

To assess the validity of these assumptions, two different types of crack 
growth analyses can be carried out. First, a calculation can be made in ac
cord with the conventional assumptions. This result will be referred to as a 
"simple elastic analysis." Second, an "elastic-plastic analysis" can be per
formed in which neither assumption is used. As described in the foregoing, 
this calculation can be conducted by introducing the initial crack directly into 
the plastically deformed weld-induced residual stress analysis model. 

It also may be of interest to determine the crack growth rates under an ap
plied load. Figure 10 gives the results when an axial stress of 138 MPa (20 
ksi) (approximately one half the yield stress for Type 304 stainless steel) is 
imposed. Of perhaps most interest here, it can be seen in Fig. 10 that the 
simple elastic analysis gives a consistently lower value of the crack-tip open
ing displacement than the elastic-plastic analysis. 

It is important to recognize that only one problem was analyzed here—a 
girth-welded Type 3(M stainless steel 102-mm (4-in.)-diameter Schedule 80 
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FIG. 9—Nondimensional time t* as a function of crack growth for 102-mm (4-in.)-diameter 
Type 304 stainless steel pipe subjected to welding-induced residual stresses. 

pipe—and that this was done for a highly idealized crack/structure geom
etry. Hence, conclusions drawn from these results must be viewed cautiously. 
It would be desirable to carry out similar analyses for a range of pipe diame
ters, wall thicknesses, and welding procedures. But, before this can be done 
effectively, further attention must be paid to two key aspects of the work: the 
limitations in current residual stress analyses and the present lack of a suit
able crack growth parameter valid for crack growth in a plastically deformed 
material. 

Conclnsions 

Based on the results obtained in this paper, the calculation of stress-corro
sion crack growth rates m the HAZ's around welds—based on analyses that 
(1) do not include the full residual stress field and (2) assume that linear su
perposition is valid—could be substantial underestimates. More reliable cal
culations based upon a combination of thermoplastic residual stress analyses 
and plastic fracture mechanics concepts appear to be needed. The approach 
described in this paper indicates how this calculation can be done. 
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ABSTRACT: This paper addresses tlie problem of determining J for a ligament subjected 
to arbitrarj' tension-bending loading, presenting a solution for/ in terms of the load dis
placement characteristics. Several aspects of the problem are considered. First the Merkle-
Corten analysis (MCA) for the compact specimen (Cr) is reviewed, emphasizing its basic 
assumptions. Then the problem is stated in a general way and solved for J by assummg 
suitable relations between load and displacement. This results in a unified solution ranging 
continuously from pure bending to pure tension. The result agrees with previous in
vestigators in the limits of pure bending and pure tension and closely approximates the 
MCA result for small tensile component (0.6 < a/W) in the CT. The two analyses are ex
tensively discussed in the light of the constitutive equation used. The present work is also 
compared with finite-element results obtained by other investigators for the CI" and the 
single-edge-notch specimen. 

KEY WORDS: fraaure mechanics, materials, J-integral, bending, tension, single-edge 
notch, solutions, calibration 

With the increasing success of the J-integral [1,2,3,4,5]^ as the parameter 
describing fracture properties, significant effort has been devoted to reduce as 
much as possible the number of specimens needed for its experimental deter
mination. Rice et al [6] made a significant contribution with their analysis of 
different deep cracked specimens relating / to area under the load-
displacement record, which included a very small remaining ligament sub
jected to either pure bending or pure tension. In fact, for many years their 
analysis provided the only available tool to determine J from a single load-

' Senior research engineer. Materials Engineering Department, Westinghouse Research and 
Development Center, Pittsburgh, Pa. 15235. 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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displacement record. In particular, it became popular to use their formula for 
bending even when the starting assumption of a small remaining ligament sub
ject to pure bending was not the actual testing condition (that is, compact 
specimen with a/W as low as 0.4). 

Merkle and Corten [7] provided a significant step further by including the 
effect of the tensile component in their already classical analysis (MCA) of the 
compact specimen (CT). Their solution was shown to slightly overestimate/, 
for a/W > 0.5, but if the term involving the complementary energy is 
neglected as proposed by Landes et al [8], it gives excellent agreement with the 
/ obtained with the multispecimen technique [4]. However, for situations 
where the tensile component becomes more important (that is, short cracks in 
the CT or the single-edge-notch specimen subject to tensile pin-load, SEN) a 
formula to experimentally determine / from a single P-5 record of a real 
material tested (arbitrary constitutive equation) is still needed. 

Recently, Shiratori and Miyoshi [9] developed expressions for the location 
of the stress reversal point in the SEN and CT, of a rigid-perfectly plastic mate
rial based on lower bound, upper bound, and slip line approaches. They also 
obtained expressions for/ in terms of load point displacement and its relation 
with crack-tip opening displacement (CTOD) for the perfectly plastic 
material, their expressions being "essentially the same as those of Merkle and 
Corten (1974) though the expressions are a little different" [9]. 

In this work, several aspects of the problem are considered. First the MCA 
[7] is briefly reviewed, emphasizing its basic assumptions. Then the problem 
of a ligament subject to arbitrary tension-bending combination is stated in a 
general way and solved in terms of / by assuming suitable relations between 
load and displacement. This results in unified solution, ranging continuously 
from pure bending to pure tension. It is also shown that the CT and the SEN 
are particular examples of the general formulation. 

The analysis agrees with the Rice et al [6] result in the limit of pure tension 
and pure bending and closely follows the MCA for small tensile component 
{a/W > 0.6) in the CT. Moreover, the latter is shown to be in error when ex
trapolated to pure tension. The two analyses are discussed extensively in the 
light of the constitutive equations used. The present work is also compared 
with the Kumar et al [10] finite-elements results for the CT and SEN. 

Merkle-Corten Analysis 

As a starting point, consider briefly the MCA [7] for the CT shown in Fig. 1. 
The internal resisting moment per unit thickness at plastic collapse is given by 

Mo = aocHl - a2) (1) 

and the limit load per unit thickness is 

Po = <̂ o'̂ (2a) (2) 
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2ac 

{ l -a )c ( l -a)c 

FIG. 1—Stress conditions in a CT at plastic collapse. 

where CTQ is the yield stress, c is half of the remaining ligament length, and a is 
the ratio of the internal stress block equilibrating the applied load to the re
maining ligament length, b — 2c. 

Equating the plastic moment MQ to the moment of the applied load Pg about 
the centroid of the net section gives 

Mo = Po(« + c) (3) 

Equations 1, 2, and 3 can be combined to eliminate PQ and MQ, and thus an 
equation for a can be obtained 

a- + 21 — + 1 /a 1 = 0 (4) 

with solution 

2 2a 

c 

1/2 

- ( - + 1 (5) 

Note that with a given by Eq 5, the dependence of the moment and load on 
crack length (Eqs 1 and 2 is completely specified. 

As pointed out in the MCA, Eqs 1 through 5 "represent a lower bound plas
tic limit analysis of the net section, based on equilibrium ignoring the state of 
stress triaxiality caused by the crack tip" [7\. In any case, the particular value 
of the yield stress does not affect the value of / obtained when the latter is 

 



1-502 FRACTURE MECHANICS: FOURTEENTH SYMPOSIUM 

related to area under the P-6 record. Note also that the presence of all bound
aries, other than the back face, are ignored. Or in other words, the only two 
length parameters affecting (or describing) the problem are the distance from 
the crack tip to the back surface h, and the distance from the load-line to the 
back surface D. The MCA would give the same result independently of the 
location of all other boundaries. 

Displacement Diagram and Constitutive Equation 

The displacement diagram for a CT, as shown in Fig. 2, is obtained using a 
trigonometric type relation, assuming rigid rotation about the point of stress 
reversal. Thus, the plas-tic angle of rotation 0pL is given by 

^fi 
-'PL a + (1 + a)c 

(6) 

where 5pL represents the plastic part of the displacement measured at the load 
line. 

Regarding the relation between load and displacement, a constitutive equa
tion has to be assumed since it cannot be derived from the perfectly plastic 
analysis. In fact, in the MCA it is assumed that the plastic angle is a function 
of the ratio of the applied to the limit load only. 

epL = |(P/Po) (7) 

or inverting 

P = PogiOpi) 

This equation indicates that the total dependence of the load on a/W is given 
through the limit load and the expression relating dp^ and SpL- As indicated in 
the MCA, this is consistent with Rice's approach [6J, although it is obviously 
not the only possible one. 

PL 

Neutral Axis 
at Point of 
Stress Reversal 

l + a)c, -4(l-a)c 

W 

FIG. 2—Displacement diagram for a CT at plastic collapse. 
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Using Eq 7, the expression for/can be obtained in a straightforward man
ner, following the definition. 

The displacement due to the crack 5 can be separated in its elastic and 
plastic parts [6,11,12] S^L and 5pL 

6 = 6EL + 5pL (8) 

Then / 

Jo db^'p Jo db ^P oJ db )p ^ ' 

The first term is the elastic part of/, that is, Griffith's G, and the second term 
following Ernst et al [//, 12] can be written as 

-r7r)-=rf)--
Jo ob /p Jo Ob /5pL 

giving for the total / 
,-«PL Qp\ 

/ = G + / p L = G + — - rfSpL (11) 

The expression relating P with 6pL and b can be obtained from Eqs 5, 6, and 
7, and then used for/pL in Eq 11, giving 

•'PL- ^r <>?LdOpi_ - g \ -T7~OpLadpL + /'o T7 7T—aOpt 
Jo Ob Jo oo Jo "PpL «opL 

(12) 

Using Eqs 5, 6, and 7, Eq 12 can be written in the form (see the MCA [7] for 
details) 

2 (1 + a) (•*•''- 2 / 1 - 2a - a2 \ r 

where a is given by Eq 5 and the integrals refer to the area and the complemen
tary area under the load per unit thickness, P, versus plastic displacement, 5pL, 
record respectively. 

Or as defined in the MCA 

PSPL ,-/• 

•̂ PL = - f Pdbn^ + - ^ b^dP (14) 
o Jo O Jo 
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where 

- (1 + a) 
5? = 2 -

(15) 
— 2«(1 ~ 2a ~ g^) 

''^ ~ (1 + a2)2 

In Table 1, values of a, rj, and r/̂  are listed for different a/W. It can be seen 
that for the case of pure bending {b/W — 0, a — 0) the value of r) approaches 2 
while r)c approaches 0, thus Eq 14 converges to the familiar Rice et al result 
as it should. 

As was mentioned before, for many years the MCA has provided the only 
way of obtaining/for the CT from a single P-d record. It has been shown that 
this formula gives excellent results when compared to the multispecimen J for 
a/W > 0.5, if the term involving the complementary energy is neglected 
(that is, Tjc = 0). For smaller a/W, it is believed to overestimate / although 
very limited work has been done. 

The basic points of the analysis are the following: (1) Perfect plastic be
havior is assumed to obtain the limit load Po and the point of stress reversal (re
lation between d-pi and SpL, Eq 6); however, the value of / does not depend on 
the particular value oiPo when referred to area under the curve. (2) The problem 
is described in terms of two length parameters only, b and D, and the location 
of the boundaries other than the back surface does not enter into the analysis. 
(3) A constitutive relation has been assumed between load and angle with Eq 7, 
or load and displacement if Eq 6 is used. As will be seen later, the last assump
tion is more suitable for situations where bending predominates. In fact, if the 
analysis is extended to situations where tension predominates by redefining 
terms, it fails to meet the required value in the limit (see next sections). 

TABLE 1—Merkle-Corten analysis. 

a/W 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

a 

0.414 
0.357 
0.303 
0.252 
0.205 
0.162 
0.1Z3 
0.088 
0.055 
0.026 
0.000 

1 

2.414 
2.407 
2.387 
2.355 
2.313 
2.265 
2.213 
2.159 
2.104 
2.051 
2.000 

Vc 

0.000 
0.089 
0.154 
0.193 
0.207 
0.200 
0.176 
0.141 
0.097 
0.049 
0.000 
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Ligament Subject to Arbitrary Bending Tension Loading 

Consider now a cracked body, with a remaining ligament b, subject to a ten
sion load per unit thickness P, applied perpendicular to the crack along a line 
lying at an arbitrary distance D from the back surface, as shown in Fig. 3. Note 
that depending on the relation between b and D different situations arise. If 
the load is applied very far from the back surface, b/D -> 0, the ligament is 
essentially subjected to pure bending; if, instead, the load is applied in the 
middle of the remaining ligament, b/D •— 2 and from a plastic analysis point 
of view the ligament is in pure tension. For 0 < b/D < 2 all bending-tension 
combinations result. 

According to Fig. 3, let d be the coordinate (positive or negative) of the crack 
tip taking the load line-crack line intersection as origin; let x = d/D be the 
generalized dimensionless coordinate, and s the distance from the load line to 
the middle of the remaining ligament s = Dil + x)/2. Let us assume as before 
that the plastic problem can be described in terms of two parameters, b and D 
(or b and x), implying that the only boundary taken into consideration is the 
back surface. The load diagram in terms of the general coordinates is shown in 
Fig. 4. 

The plastic limit moment and limit load per unit thickness MQ and PQ, re
spectively, are given by 

Mo = ( T o - ^ ( l - a 2 ) = ^ Z ) 2 ( l - x ) 2 ( l - a 2 ) (i6) 

Po = aoba = aoD(.l - x)a (17) 

D^ 
Mo = Pos = ao — a - x^) (18) 

where 

b=Dil-x) 

D (19) 
5 = Y (1 + X) 

As before, combining Eqs 16 through 18, an equation for a can be obtained 

aHl-x) + 2a(l+x)-(l-x)^0 (20) 

with solution 

a • i±iY+. 1̂2 / 1 + ; . , 

1 — x 
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i P I 

FIG. 3—Extension of the MCA redefinition of coordinates. 
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FIG. 4—Srt-esi conditions for a ligament subject to arbitrary tension-bending loading at 
plastic limit. 
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The foregoing equation obviously coincides with Eq 5 for x > 0, because so far 
nothing more than a redefinition of coordinates has been made. However, the 
problem has been set now in a general way. The load line is not restricted to be
ing left of the crack tip as in the original MCA (b < D), and that allows the ex
tension of the problem to pure tension. By allowingx to range from 1 to — 1 all 
situations from pure bending to pure tension are obtained (the CT and SEN 
being just special cases of the general formulation). 

In this spirit, the MCA can be extended to situations where tension prevails. 
In fact a can be obtained from the more general Eq 21 and )j and i;<, can be still 
calculated from Eq 15. Nevertheless, as it can be seen from Table 2 and Fig. 5, 
for jc — — 1, 7j — 2, y becomes 

2 r* 2 
J=—\ Pd8^—P8 

b io b 

for pure tension in a perfectly plastic material; on the other hand. Rice's [6] 
limit for this case is 

TABLE 2—Extension of the Merkle-Corten 
analysis. 

X 

- L O 
- 0 . 9 
- 0 . 8 
- 0 . 7 
- 0 . 6 
- 0 . 5 
- 0 . 4 
- 0 . 3 
- 0 . 2 
- 0 . 1 

0 
0.2 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1 

2.000 
2.051 
2.104 
2.159 
2.213 
2.265 
2.313 
2.355 
2.387 
2.407 
2.414 
2.407 
2.387 
2.355 
2.313 
2.265 
2.213 
2.159 
2.104 
2.051 
2.000 
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e„ 1 ST MS NA 
P , / T I , 

FIG. 5—Displacement diagram for a ligament subject to arbitrary tension-bending loading at 
plastic limit. 

Thus, even though the MCA can be extended using a redefinition of coordi
nates, it does not give the con-ect value at the limit. This result shows that the 
problem of a ligament subjected to arbitrary tension-bending loading cannot 
be approached by a mere extension of the ah-eady available MCA using a 
generalization of coordinates. 

Instead, a major change in the basic assumptions is needed to better de
scribe the problem from a physical point of view. Specifically, the MCA was 
originally intended to serve for the CT, and this is reflected in the particular 
constitutive relation used, Eq 7, which best suits situations where bending 
prevails. For the more general case, the constitutive equation has to be able to 
accurately describe the problem in its whole range. In the following sections 
this approach is presented as well as its consequences in terms of/. 

Displacement Diagram and Constitutive Equations 

Let us assume here that the plastic displacement SpL can be separated in a 
part due to bending Spg and a part due to tension dpj. As shown in Fig. 5, the 
total plastic displacement 6pL is still obtained (in the plastic limit) from a trigo
nometric type relation, but here the final "position of the transverse line" 
(displacement profile) can be thought as being the result of a rigid rotation 
about the midsection point plus a rigid translation producing zero displace
ment at the point of stress reversal. Thus according to Fig. 5 

5pt — 6pR + 5 PB JpT (22) 

^PB — "PL 

^PT — "PL 

s + ab/2 

ab/2 
s + ab/2 

(23) 

or using Eq 19 

ire (1+x) 
6pL ( l + x ) + a ( l - jc ) 

(24) 
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0 .6 0 . 8 a/VV 

FIG. 6—Plastic factor tj, y, and /3 versus generalized coordinate x and single-edge notch a/W. 

5pT 

5pL 

a(l - x) 

(l+x) + ail -x) 
(24) 

In real situations the different displacements are connected in a more complex 
way than just the simple rigid rotation model. In fact, hardening exponent, 
level of deformation, and changes in location of the point of stress reversal due 
to increasing deformation are variables expected to modify the picture. 

However, these displacements are expected to be affected proportionally by 
the previously mentioned variables. Thus, ratios of "individual" displace
ments 6pB and Spy to the total plastic one dpi are not expected to be veiy dif
ferent than those shown in Eq 24 obtained from a rigid rotation model. As em
phasized before when referring to actual value of ag, no attempt is made to 
predict the absolute value of these quantities: they will be determined from the 
P-5 record itself. Nevertheless, even if no statement is made about the absolute 
value, the functional form can be proposed following the spirit of the dimen
sional analysis in Rice's work [6]. Therefore, the bending part of the plastic 
displacement 6pB can be written as 

D •giP/Po) (25) 
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or inverting 

On tlie other hand, the tension part of the plastic displacement 6pr can be writ
ten as 

^=h{P/b) (26) 

h 

or inverting 

P = bh(8pi/b) 

AS discussed later, Eq 24 coincides with the MCA for x ^ 1 {a/W — 1), but 
for shorter cracks the former departs the latter. 

/Analysis 

Once the constitutive relations of Eqs 24, 25, and 26 have been established, / 
can be calculated in a rather straightforward (although sometimes laborious) 
manner just by applying the definition 

1 ^ 36 \ 
J= — dP (27) 

Jo ^a/p 

or following Refs 6, 7, and 11-13 

J=G+\ ^ ) dP (28) 

for this case using Eq 22 

(29) 

G+ \ — ( 6 P B ) ^ ^ + y-(5Fr)rf^ 

The last equation can be evaluated by using Eqs 25 and 26 (see Appendix for 
detailed analysis) giving as a result 

J=G+^\ Pdh^ - -7- SpL^P (30a) 
* Jo " J o 
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or rearranging 

P5pL 

h . n h JO 

with 

(306) 

7 = 
2(l + a)( l+A:) , ,̂  ." 

X 
1 

(1 + x) + a( l - jc) 
(31) 

/3 = , , , , (32) 
a + 

and 

1 - J C 

Values of 7, j8 as functions of x (or a/VF) can be found in Table 3 and in Fig. 5. 

DiscDSsion 

Limits 

When the limit of pure bending is approached, that is, x — 1, as it can be 
seen in Fig. 5 and Table 3, 7 — 2 and /3 — 0; as a result Eq 30 gives for/pL the 
correct Rice's limit for pure bending [6\ 

On the other hand when the limit of pure tension is approached, as shown in 

Fig. 5 and Table 3, 7 — 1 and / ? ->! , the result from Eq 30 becomes 

1 I'*'"'- I ^^ 
/pL = y J Pdb^-j\^b^dP 

^5pL 
Pdh^ - ^ 

b J "̂^ b 

which again is the correct Rice's limit for pure tension \6\. 
It is emphasized (as can be seen from Fig. 5 and Table 3) that the present 

analysis completely agrees with the MCA in the region 0.6 < x < 1, where the 
latter has been extensively checked. 
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TABLE 3—Ligament subjected to arbitrary tension-bending loading. 

X 

- 1 . 0 
- 0 . 9 
- 0 . 8 
- 0 . 7 
- 0 . 6 
- 0 . 5 
- 0 . 4 
- 0 . 3 
- 0 . 2 
- 0 . 1 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

(a/MOsEN 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

(a/WOci 7 

O.C 
0.1 
0.2 
0.3 
0.4 
0.5 
0.( 
0.7 
0.8 
0.9 
1.0 

1.000 
1.055 
1.122 
1.201 
1.294 
1.400 
1.517 
1.643 
1.769 
1.891 
2.000 
2.089 
2.154 
2.193 
2.207 
2.200 
2.177 
2.141 
2.097 
2.050 
2.000 

|3 

1.000 
0.947 
0.890 
0.826 
0.758 
0.684 
0.606 
0.526 
0.445 
0.367 
0.293 
0.226 
0,168 
0.119 
0.081 
0.051 
0.030 
0.015 
0.006 
0.001 
0.000 

Constitutive Equations 

The present work follows the spirit of the MCA although a different consti
tutive relation between load and displacement is used. As was mentioned be
fore, the relationships given in Eqs 6 and 7 are for situations where bending is 
the main component. In fact, if the arms(orZ))is big compared with/)/2, Eqs 
6 and 7 are expected to be accurate. On the other hand, for cases where the ten
sion component is more important, that is, the arm s is not so large and D is 
nearly b/2, Eqs 6 and 7 are not expected to be adequate; in fact, the errors in 
the angle and plastic displacement prediction might be large. 

A better description of the problem can be achieved by separating the plastic 
displacement in its bending and tension parts, Spg and b^i, respectively. In this 
way even if Eq 7 is not too accurate, the relative contribution of bending to the 
total displacement is small and Eq 13 is in order. 

At the same time, following previous analyses {11,12,13\, the angle has been 
replaced by b^^/W. 

With respect to the tension part: if a load P is applied at a certain distance D 
from the back surface, the ligament is subjected to a tension load that is pre
cisely P. Thus, the Rice et al analysis [6] was followed, resulting in constitutive 
Eq26. 
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Applicability: Rule of Similarity 

This work gives an expression for/based on the load displacement record of 
a single specimen ranging continuously from pure tension to pure bending. 
The solution is presented in terms of the plastic factors 7 and p, which are func
tions of the general dimensionless variable x only. Therefore a solution can be 
obtained for a ligament subjected to any arbitrary bending tension combina
tion. In fact, the percent of bending (POB) and the percent of tension (POT) 
can be defined via the nominal stress in terms of the variable x. The nominal 
stresses due to bending and tension, CTNB and a^j, can be defined as [14] 

<^NB — 

OffY = 

P 
D 

P 

^^ 
+ x) 

1 

D a-x) 

and as a consequence the POT and POB are given by 

(TNT + ONB 2(2 + X) 

ffNT- + ^NB 2 (2 + X) 

Thus the following rule of similarity can be stated: Two specimens having 
the same POB or POT or both (that is, the same x) behave similarly and thus 
the same value of 7 and jS must be used for both. This means that the curves 
7 and 0 versus x can be used as master curves to solve any two-dimensional 
problem of a ligament subject to arbitrary POB (or POT). In fact, for any 
given specimen the value of x can be easily obtained from specimen geome
try, crack length, total width, and so forth. With the particular value of x, 
the corresponding values of 7 and fi can be obtained from this analysis. 

For example, using the nomenclature defined in Fig. 3 for the CT 

W=D 

a=d 

thus X = d/D ^ a/W (33) 

For the SEN instead, if W is the total width 

W 
a - - = d 
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thus 

X = d/D = (la/W - i) (34) 

Then using Eqs 33 and 34, a CT and a SEN will have the same plastic factors 
7 and jS when 

(a/W)cT = ( ^ - l)sEN (35) 

Note that this analysis ignores all boundaries other than the back face, and 
the whole plastic problem is described using two length parameters, b and D 
(or A: and D). Thus, the obtained equations are not expected to hold in situa
tions where the front face is close to the tip of the crack (that is, ratio of crack 
length to total width <0.3). 

Comparison with Finite-Element Results 

As a way of checking the present analysis and the Rule of Similarity stated 
previously, a crucial comparison was made with the finite-elements results of 
Kumar et al [10], In their work, expressions for / and load-point displace
ment 6 in terms of P, a, and the hardening exponent n for different 
geometries were obtained. 

J = J{a.P,n) 
(36) 

5 = b{a,P,n) 

In particular, their results for the CT and SEN were re-expressed, after some 
algebra in the form 

/ = - 7 - Pdb 
b Jo 

with^ = /t(a/VK, n) (37) 

In both cases (CT and SEN), the values of a/W were converted to x using the 
Rule of Similarity of Eqs 33 and 34, and thus values oi (i = ii{x, n) were ob
tained. This allows the plotting values of /x for both configurations in the same 
curve. 

On the other hand, if a pure power relation is assumed, P = k b\i^, (as in 
Kumar et al [10]), Eq 30 becomes 

7 r „ . . & '" 
b Jo b Jo 
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can be restated as 

J = G + It 
?5pL 

Pd8 PL (38) 

with 7r = (7 — jS/n) (39) 

In Fig. 7, a plot of 7, and /x from Eqs 37 and 30 versusxforn = 10 is shown. 
The good agreement indicates the accuracy of the present analysis as well as 

the viability of using the Rule of Similarity. 

Conclnsions 

1. The problem of determining / for a ligament subjected to arbitrary ten
sion-bending loading was considered. 

2. It was shown that by proper redefinition of coordinates the MCA for the 
CT can be extended to situations where tension prevails over bending, but it 
does not give the correct result for pure tension. 

3. By assuming a proper constitutive equation, an expression for/was ob
tained based on the P-8 record for arbitrary tension-bending combination. 

4. The present analysis agrees with the Rice limits [6] for pure bending and 
pure tension, and closely approximates the MCA for a/W > 0.6 {x > 0.6). 

5. A Rule of Similarity was stated, allowing the use of this analysis for the 
general problem. 

I 

1 

1 1 

^ / o 

1 1 

1 1 1 

0 

0 SEN| 

A CT 1 

1 1 1 

1 1 1 

A 
0 A^..^^^^ 

from Kumar 
etal 1101 

1 1 1 

- 1 

-0.8 -0.6 -0. 4 -0.2 0.0 0.2 0.4 a 6 0.8 
X 

FIG. 7—Total plastic factor 7, and fi versus xfor the CT and SEN hardening exponent n = 10 
(plane strain). 
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6. A successful comparison with finite-element results regarding both the 
Rule of Similarity and the analysis itself was made. 
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Appendix 

J Analysis for a Ligament Subjected to Arfoitraiy Tension-Bending Loading 

As was mentioned, the plastic displacement 6pL can be separated in its bending and 
tension parts, Spg and 8pj, as 

P̂L = P̂B + 5pT (40) 

And thus for/pL, one gets 

. p , = - r ^ ) . p ^ - f ^ ) . p - f ^ ) ,p (41) 
Jo ^^ /p Jo ob Jp Jo 36 Jj> 

The first integral of the right-hand side can be evaluated using the constitutive relation 

Sirr = hh{P/b) (42) 

In fact, by differentiating and integrating by parts 

^ dP=\ bh' hdP 
0 db /p Jo b b Jo 

pP ^P 

hdP+ hP - hdP 
0 Jo 

2 rr"^^ . P6pr 
" [ J o ^ ^ ^ - - 2 ] '''' 

The second integral in Eq 41 can be evaluated with the help of the constitutive 
relations 

- ^ = ~g(P/Po) (44) 

Po^aoba (45) 
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As a first step, the second integral can be written as 

fP ^. \ CP 

Jo db Jp }o H db 

but from Eq 42 

dPo 

db 

Now using Eq 4 

= (Jo(a + b da/db) (47) 

or replacing a = W — b 

o^-j-l — + 2 ) a - l = 0 

2W 
o?+( 2 ) a - l = 0 (48) 

By differentiating Eq 48 and reusing it to eliminate b/W one gets 

da I (l+2a-c?)a 
ab ~ b (1 + a2) 

Combining Eqs 49 and 47, 

Replacing Eq 

Jo db . 

a/'o 
db -"' 

50 in Eq 46 gives 

dP= -W\ g' 
// ' Jo Po b 

-2W / 1 - a 
b \1 + cP-

_ -2 / I + a \ 

b \l + a^ J 

2a(l- |-a) 
(1 + a2) 

(1 + a) _ 

( I W ) ' ^ ^ 

)'A'po-i 
g 

Po 

]^mP- \ hBdp\ 

2 1 + a r*™ 

= * l-f«Oo ^ ' ' -

Adding Eqs 43 and 51 gives 

•^PL 

2 1 + a {^^^ 

A 1 + a^ Jo 
2 {'^ 

dp\ 

'P8„ 

h 

(49) 

(50) 

(51) 

(52) 
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Using Eq 24 for the relative displacements 

d&PB (1 + x) 

d5pY a{\ ~ x) 

(53) 

one gets for Jpi 

or 

dSpL ( l + x ) + a ( l - x ) 

7 (''•'" /3 f̂  
Jp,.= - P c / 5 p L - - SpLrfP (54) 

* Jo b Jo 

Jph - — r — ^''^PL 7 — 
b !Q b 

with 7 and |S given by 
2 ( l + a ) ( l + ; c ) 

+ a:(l ~ X) 
7 = (55) 

(1 + x) + a(l - * ) 

a + 
1 + X 

1 - X 
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ABSTRACT: Fitness-for-scrvice assessments of critical metal structures such as piping 
systems, pressure vessels, and ships require accurate predictive methods for fracture of 
parts containing small flaws or short cracks. Flaw size, geometry, applied loads, fabrica
tion, and material characteristics often combine to produce large-scale plastic zones in
appropriate for evaluation by linear elastic fracture mechanics. The J-integral is widely 
advocated as a suitable parameter to characterize both material fracture toughness and 
the driving force in elastic-plastic fracture. Procedures have been proposed to measure 
the material fracture toughness, / j ^ , for standard test specimen geometries containing 
large crack lengths. However, there arc no generally accepted methods to predict or ex
perimentally measure the applied J-integral within a structural element containing a 
small crack (defined here by a crack length to remaining ligament ratio, a/W, < 0.25). 

This paper describes analytical studies conducted using the finite-element method 
(FEM) to predict applied J-integral values in single-edgc-notch tensile panels (width/ 
thickness = 9) of HY-130 steel for crack lengths in the range 0.02 < a/W ^ 0.22. 
Nominal strain levels beyond yield are addressed specifically. Comparisons are made with 
preliminary experimental/-values obtained by integrating strain and displacement quan
tities measured along an instrumented contour. FEM plane stress predictions for applied 
/ increasingly exceed experimentally measured values for decreasing crack lengths with 
large discrepancies observed at strain levels above nominal yield. The introduction of a 
small stiffened zone that provides partial through-thickness constraint around the crack 
tip, using a plane stress-plane strain overlay scheme, considerably reduces the disagree
ment. Near tip stiffening also improves results in the regime between clastic and fully 
plastic response and slightly elevates the predicted limit loads. 

These computational results suggest a strong dependence of the applied J on partial 
through-thickness constraint near the tips of short cracks under conditions normally con
sidered plane stress. The effect of near tip stiffening diminishes for crack lengths greater 
than the specimen thickness, but does reduce the small remaining discrepancy between 
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FEM plane stress and experimental 7-valucs for longer cracks. Both experimental and 
computational evidence imply the existence of a transition range of crack lengths in 
which the applied / begins to decrease significantly at strains above yield as the crack 
length approaches zero. Given the existence of a small flaw in a crirical structural compo
nent, knowledge of this transition range behavior may prove essential for defect assess
ment. Two-dimensional FEM plane stress models do not predict this behavior unless 
augmented with the partial thickness constraint capability near the crack tip. The model
ing scheme adopted in this study can be utilized without modification of standard elasto-
plastic analysis software and appears to minimize the necessity of expensive, three-
dimensional nonlinear computations. 

KEY WORDS: J-integral, finite-element method, experimental results, plane stress, 
plane strain, near tip constraint, fracture mechanics 

Fitness-for-service assessments of critical metal structures such as piping 
systems, pressure vessels, and ships require accurate predictive methods for 
fracture of parts containing small flaws or short cracks. The majority of flaws 
that develop in critical structures are generally quite small with respect to in-
plane dimensions of the affected component. Flaw size, geometry, fabrica
tion, applied loads, and material characteristics often combine to produce 
large scale plasticity conditions inappropriate for evaluation by linear elastic 
fracture mechanics (LEFM). There is a considerable absence of experimental 
data, and consequently, verified analytical techniques to describe the elastic-
plastic fracture behavior of small flaws (defined here by crack length to re
maining ligament ratios a/W < 0.25). This paper describes parallel experi
mental and analytical investigations of small flaw effects within the framework 
of a J-integral based elastic-plastic fracture methodology. 

The J-integral, introduced by Rice [/],^ is widely advocated as both a 
measure of elastic-plastic deformation intensity near a crack tip and as a 
means of characterizing material fracture toughness \2,3\. Compared with 
the crack-opening displacement method (COD), the J-integral offers several 
advantages including a precise definition of the fracture characterizmg 
parameter and direct correspondence with LEFM under purely elastic condi
tions. Previous experimental studies of the J-integral have concentrated 
largely on standard material fracture toughness test specimen geometries 
(3 point bend, compact tension, etc.) for moderate to deep initial flaw lengths 
(0.5 < alW < 0.75). Within this range of crack lengths, the applied/ has 
been found to be nearly independent of a/W^ for a specified load point dis
placement. This important result combined with analytical methods relating 
absorbed energy from load point displacement records to applied J spurred 
development of the ASTM Test for /[j., a Measure of Fracture Toughness 
(E 813-81) to determine /]<, for correlation with plane strain fracture tough-

•'The italic numbers in brackets refer to the list of references appended to this paper. 
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ness Ki^. The 7-mtegral concept now is adopted widely for the evaluation of 
material fracture toughness, as measured by Jj^, for relatively ductile 
materials. 

The multiple specimen test procedure developed by Begley and Landes [2] 
provides a general technique to experimentally determine the applied / as a 
function of load point displacement. However, the procedure breaks down 
for small a/W as compliance changes become increasingly difficult to 
measure. Similarly, / prediction schemes that use limit load solutions to 
estimate the terminal slope of the applied / versus load point displacement 
curves become suspect as a/W ratios decrease. The simple limit load solu
tions, which idealize the behavior as either plane stress or plane strain, 
neglect thickness direction constraint near notch tips and changes in 
behavior that occur between net and gross section yield. The center cracked 
tensile panel illustrates this problem. The limit load is given by 2B{W — a) 
Oy, where B is specimen thickness, Y/ the width per crack tip, a the crack 
length per crack tip, and Oy the material yield stress. This expression predicts 
a terminal /-displacement slope {dJ/dV, where V is the load point displace
ment) that is independent of a / W and given by 1.0 Oy (plane stress) or 1.15 <jy 
(plane strain). The implication is that as a / W approaches zero, the terminal 
/-displacement slope abruptly vanishes because for a = 0, / also must be 
zero. Such a sudden change in behavior seems unrealistic, and indeed, ex
perimental and computational results presented herein suggest the existence 
of a transition range oi a/W during which the slope of the /-displacement 
relationship gradually decreases to zero. Given the existence of a flaw in a 
large structural component such that a/W is quite small, knowledge of 
whether the flaw lies within or beyond an a /W transition limit may prove 
essential in assessing the defect significance. 

In this work, the finite-element method (FEM) has been applied to study 
the relationship between flaw size, loading, and applied / interpreted as the 
fracture driving force for small cracks. To date, studies have been completed 
for single edge notch (SEN) tensile panels of HY-130 steel containing 
through-thickness notches oi a/W < 0.25. The primary purpose here is to 
examine the adequacy of analytical techniques to predict applied /-values for 
small flaw sizes in the plastic range. A nonlinear finite-element approach 
that employs a hybrid plane stress-plane strain model of material behavior 
near the crack tip is explored in addition to conventional plane stress and 
plane strain procedures. Comparisons are made with experimental /-values 
obtained by integrating strain and displacement quantities measured along 
an instrumented contour. Finite-element predicted crack-mouth opening 
displacement (CMOD) and the overall load displacement response are 
similarly compared with experimental results. A brief description of the ex
perimental procedure to measure / by instrumenting a contour is included 
for completeness. 
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Experimental Procedme 

This section provides a brief summaty of the experimental procedure and 
methods employed to evaluate the J-integral from test measurements. Full 
details of the experimental program and data reduction process are de
scribed elsewhere [4]. 

Test specimens were machined to the dimensions shown in Fig. 1 from 
2.54-cm-thick, annealed HY-130 steel plate. The chemical composition and 
mechanical properties of this material are summarized in Tables 1 and 2. 
The reference axis shown on the figure parallels the principal rolUng du-ec-
tion. A gage test section 9 by 30 cm and 1 cm thick was used for all ex
periments. Specimens were instrumented with strain gages and by linear 
variable differential transformers (LVDT's) to measure overall extension and 
cross-section rotation as shown in Fig. 1. Tests were conducted for 1, 2, 4, 7, 
and 20-mm single edge notches. Saw cut notches of width 0.46 mm were used 
rather than fatigue cracks to postpone the onset of stable crack growth. This 
permitted overall gage strains (e^) of 3 to 8 times nominal yield prior to ob
served tearing. The gage strain, defined as the average of the three LVDT 
readings divided by the gage length (30 cm), provides a convenient measure 
of the extensional deformation. 

Measured strains and displacements obtained during a test permit evalua
tion of the J-integral defined by Rice [/] as 

for two-dimensional problems. In this equation, {t} represents Cartesian 
components of the traction vector directed along the outward normal to path 
r . Displacement components u and v are also directed along the x-y axes; 
where y is perpendicular to the notch plane. The strain energy density, W, is 
defined by 

W= {a}T{de} (2) 
Jo 

for nonlinear material behavior. 
The contour, T, selected for experimental 7 evaluation as shown in Fig. 1, 

follows free edges where possible and traverses the gage section far from the 
notch. The contour consists of three straight segments denoted A-B, B-C, 
and C-D. Equation 1 for this particular contour is conveniently split into 
three simple integrals, one for each segment. Only the first term of Eq 1 con
tributes to J for free edge segments A-B and C-D. Moreover, the strain 
energy density is entirely determined by Eyy along these edges and is given 
numerically by the area under the tensile stress-strain curve for the material. 
Measured strains were used in conjunction with a nonlinear curve fitting pro-
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US 1 

Contour for 
J Evaluation 

(ABCDI 

I Small Strain Gages 

a Strain Gage 

, LVDT 

O CMOD Gage 

All Dimensions in cm 

SEN SPECIMEN 
WITH INSTRUMENTATION 

FIG. 1—Specimen geometry and instrumentation along the contour for i evaluation. 

c 
0.11 

TABLE 1—Chemical composition of HY-130 steel, weight percent. 

Mn P Si Ni Cr Mo V S Cu Al Co 

0.76 0.005 0.03 5.0 0.42 0.53 0.043 0.004 0.022 0.021 0.02 

Ti 

0.008 

TABLE 2—Mechanical properties of HY-130 steel. 

Yield Strength 
(0.2 percent offset), Ultimate Tensile Elongation in 

MPa Strength, MPa 51 mm (2 in.), % 

933 964 21 

cess to construct continuous strain and W functions for these edges. Applica
tion of standard numerical integration procedures then yielded the J con
tribution from these edges. The J contribution from contour segment B-C is 
simplified by noting that: (1) dy = 0 and ds — dx, (2) Oyy is the dominant 
stress component of the far field, and (3) dv/dx is the required displacement 
gradient. Thus, / computation requires only the stress Cyy (obtained from 
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measured strain and the material a-e curve) and the average contour rota
tion, dgc^ provided by the gradient {dv/dx) of the LVDT readings. 

In summary, the experimentally determined /-value is given by 

/exp = 2 X ( j Wdy - \ Wdy- o^y e^c^) 0 ) 

Reference 4 presents details of the curve fitting processes employed and a 
brief analysis that estimates uncertainty in the experimental /-values on the 
order of 5 percent once extensive plasticity develops. 

Fiiiite-Element Analysis 

The FEM has been applied successfully by a number of investigators in 
nonlinear fracture related problems. All finite-element solutions reported here 
refer to two-dimensional (2-D) models that utilize linear strain-displacement 
relations based on small geometry change (SGC) assumptions. Large geome
try change (LGC) analyses of a blunting notch in plane strain by McMeeking 
[5] and Alturi, Nakagaki, and Chen [6\ showed/to be path dependent within 
the intensely deformed near tip zone. In the surrounding outer plastic field, 
however, negligible differences existed between SGC and LGC / predictions. 

The following sections briefly describe special techniques employed here to 
address problems of nonlinear material characterization, stability of the in
cremental nonlinear solution, and through-thickness constraint near the 
notch tip. Numerical computations were performed with the POLO-FINITE 
[ 7,8] structural mechanics system operating in single precision on a computer 
with a 48-bit word length (11 to 12 decimal digits). 

Element Grids and Material Representation 

Figure 2a shows a typical element grid used for all models. Because ex
perimental measurements occur only within the 1-cm-thick gage section, geo
metric details and nonlinear effects near the loading pin hole are neglected. 
Rectangular, eight node isoparametric elements with linear material proper
ties adequately model this thicker (2.54 cm) region. Static condensation ap
plied to this region reduces the grid to a row of nodes compatible with non
linear elements in the gage section. One additional node located at the pin 
hole center, denoted A in the figure, also is retained after condensation for 
loading purposes. Condensation eliminates nodes and elements in the linear 
grip region (approximately 'A of the total) from the iterative nonlinear solu
tion and permits use of a rectangular mesh up to the point of thickness tran
sition. 

Eight node isoparametric elements also are used throughout the nonlinear 
test gage section. Figures 2b and c illustrate typical mesh refinement schemes 
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\ \' \ \ I 
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Nonlinear Structure 

/ 270 Nodes 
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FIG. la—Typical finite element grid with substructuring to reduce analysis cost. 

2, 4, 7. and 20 mm 
Notch Lengths 

FIG. 2h—Blunt notch tip model. 
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j I'lAJm AII7HI I'\ n—r' 
a 23 mm 

2 mm Notch Length 

FIG. 2c—Geometrically correct model of tip for 2-mm crack length analysis. 

employed near the notch tip. Degenerated singularity elements [9] were con
sidered inapplicable at the tip of the blunt saw notch. Details of the notch tip 
geometry (width and comer radii) were not considered initially in finite-
element models. To simulate the blunt notch condition, small square 
elements of size 0.25 mm at the tip were combined with constraint of 
displacements normal to the notch plane beginning at the tip (see Fig. 2b). A 
geometrically correct model for the notch tip (see Fig. 2c) also was con
sidered for the 2-mm crack specimen to assess possible size effects of the 
notch width. 

Incremental plasticity {J2 ^1°^ theory) with the Mises yield surface, 
associated flow rule, and isotropic hardening applicable in monotonic loading 
situations adequately models the HY-130 material. Computational algo
rithms detailed by Nayak and Zienkiewicz [10] were utilized to ensure satis
faction of the incremental equations for finite size loading steps. Figure 3 
shows the uniaxial tensile stress-strain curve for HY-130 steel. A pure power 
law hardening representation for this material does not appear realistic due 
to the extended plateau region; a simple 10-piece linear approximation gives 
an excellent fit with the experimental curve. Although the initial yield point 
for finite-element analysis is considered 827 MPa, a flow stress (oy) of 931 
MPa corresponding to the plateau region is used in simple limit state calcula
tions and to normalize results. 

Plane Stress or Plane Strain 

The dilemma facing analysts limited to 2-D solutions for through-thickness 
cracks involves selection of either the plane-stress or plane-strain condition, 
both of which neglect the complex variation of strain in the thickness direc
tion near the tip. For thick specimens that satisfy, for example, the require
ment in the ASTM Test for Plane-Strain Fracture Toughness of Metallic Ma
terials (E 399-81) for valid Kic determination, plane strain dominates over 
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a, • 135 KSI (Flow Stress) 

75 
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25 

0 .004 .008 .012 .016 .020 
Strain 

FIG. 3—Uniaxial stress-strain curve for HY-130 employed infinite element analyses. 

most of the thickness with a rapid drop to the required plane-stress condition 
at free surfaces. Many practical situations involve thmner material, thus 
leading to relaxation of the perfect plane-strain condition. Specimen dimen
sions of 9 by 30 by 1-cm thick employed in the current experimental investi
gation strongly suggested idealization for 2-D finite-element analysis as plane 
stress. Preliminary finite-element solutions conducted assuming plane stress 
characteristically overestimated both the experimental CMOD and the ap
plied / ; yet excellent agreement was observed with the experimental load-
gage displacement results including limit-load predictions. These computa
tions suggested that the plane-stress assumptions are valid throughout the 
specimen except near the notch tip where localized through thickness con
straint develops. 

Several investigators, including Underwood and Kendall [11], Kobayashi, 
Engstrom, and Simon [12], and Ke and Liu [13], have measured strains near 
crack tips of SEN specimens using the Moire method. Their results indicate a 
definite three-dimensional (3-D) influence even for thin material (B = 0.32 
cm). Away from the crack tip, measured strains agreed very well with those 
obtained from plane-stress finite-element solutions. However, near the crack 
tip, beginning at a radius of approximately B/2, the measured surface 
strains decreased by 30 percent or more below plane-stress values. Hu and 
Liu [14] argue this behavior is due to partial restraint of thickness contrac
tion at the highly strained crack tip by considerably less strained material 
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surrounding the tip. The degree of restraint provided naturally depends on 
the thickness, but the "stiffened" zone consistently showed a radius of 5/2 to 
B in the experimental work. The partial restraint of contraction elevates 
stresses at the notch above simple plane-stress yield values but decreases the 
strain. 

Analytical solutions to properly account for these effects require full 3-D 
elasto-plastic finite-element computations near the crack tip, which are pro
hibitively expensive for even simple test specimen geometries. To approxi
mate the 3-D effect, Hu and Liu modified the plane-stress finite-element 
analysis by incorporating a fraction of idealized plane strain in a stiffened 
zone near the crack tip. They maintained two sets of stresses, one set for 
plane strain, the other for plane stress, for each simple constant strain 
triangle element within a radius B/2 from the crack tip. The degree of con
straint is then expressed by 

{A(r} = n[Z)J{Ae} + (l-fi)[Z)J{Ae} (4) 

where strain and stress increments are defined as 

{Aff}= Aff^J and {Ae}= Ae^J (5) 
i^<rxy) i^^xy) 

[D„] and [£)J relate strain and stress increments in the elasto-plastic regime 
for plane-stress and plane-strain cases, respectively. Explicit forms of these 
matrixes are given by Nayak [15]. The stiffening parameter, Q, was assumed 
to vary linearly from a specified value at the tip to zero (plane-stress condi
tion) at a radius of B/2. In Ref 14, fi-values were selected to provide the best 
correlation between finite-element and measured surface strains near the 
crack tip. Neither / nor CMOD calculations were reported. Typical values of 
tt ranged from 0.04 for 0.635-cm-thick plate to 0.08 for 1.27-cm-thick plate 
for tensile panel gage strains up to seven times nominal yield with 2024-0 
aluminum specimens. These Q-values, however, must be interpreted as mini-
mums since no indication was given of special procedures to prevent "lock
ing" of the triangle elements in plane-strain plasticity which provides an ad
ditional but unknown amount of stiffening. 

A similar approach, but implemented differently, was adopted in this 
study to bring finite-element plane-stress results for CMOD and J into better 
agreement vdth experimental data. The stiffening effect represented by Eq 4 
was incorporated without any change in the existing software through an 
overlay technique. Two isoparametric elements of the same shape and con
nectivity replace each single element appearing near the tip in a usual mesh. 
One of the elements is associated with a nonlinear plane-strain material 
model, the other with a nonlinear plane-stress material model. Simple appor-
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tionment of the element thicknesses provides the desired value of the stiffen
ing parameter. The stiffening effect is reduced linearly from the notch tip to 
zero at the boundary of the zones indicated in Fig. 4. 

Computations for full plane-stress and plane-strain conditions were con
ducted to provide representative bounding solutions in addition to analyses 
performed to assess the influence of the stiffening parameter Q. The incom-
pressibility condition in plane strain implied by the Mises yield criterion was 
satisfied by using a reduced integration order (2 by 2) for all elements [16] to 
assure that no spurious stiffening developed. 

Solution Procedures 

Displacement control loading was used for the finite-element models cor
responding to the test procedure. Specified extensional displacement incre
ments imposed at node A in Fig. 2a loaded the model with horizontal trans
lation at this node constrained to zero. Approximately 30 load increments of 
variable size were used to trace the nonlinear response and to obtam results 
at gage strains correspondmg to experimental data points. Numerical refine
ments described by Nayak and Zienkiewicz [10] and Holt and Parsons [17] 
assured satisfaction of the material flow rule and controlled the spurious 
unloading phenomenon that occurs with high order isoparametric elements 
due to overestimation of yield zones. These techniques and the variable 
displacement increment magnitudes produced a stable solution process. 

Incremental equations formulated in the initial stress approach described 
by Zienkiewicz [18] were solved with various forms of the Newton-Raphson 
scheme with occasional tangent stiffness updatmg. Application of the accel
eration scheme originally proposed by Crisfield [19], based on the variable 
metric method, reduced by one-half the number of iterations required within 
each increment to attain the equilibrium configuration. 

Stiffened Zone 
with Partial 
Plane Strain 

FIG. 4—Region of mesh stiffened with the plane stress-plane strain overlay model. 
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Numerical Evaluation of J 

Finite-element strain-stress results permit evaluation of the J-integral de
fined in Eq 1 by direct numerical integration along contours that pass through 
specified Gauss points. Ten to twelve integration paths were typically em
ployed with one path defined to closely follow the instrumented experimental 
contour. Plane-strain linear analyses were conducted to evaluate the accuracy 
of the numerical integration procedure and the degree of path independence 
attained. For all notch lengths, finite-element values of/exhibited less than 
a 5 percent individual contour deviation from the mean of all paths. Stress-
intensity factors, Ki, derived from J consistently fell below exact results for a 
sharp crack as expected from the use of standard, not singularity, elements 
near the notch tip. For the longest notch, 20 mm (,a/W = 0.22), the finite 
element K^ was 1 percent below the sharp crack solution. Similarly, for the 
shortest notch, 2 mm {a/W ~ 0.22), Ki was 4 percent lower and dropped 
slightly following modification of the element mesh to incorporate the blunt 
notch tip geometry (see Fig. 2c). These results reflect the diminishing in
fluence of notch tip geometry with increasing notch length and provided addi
tional justification for neglecting tip details of the 4, 7, and 20-mm notches. 

Deviation of computed /-values between contours increased to 10 to 15 
percent from the mean after the plastic zone began to propagate from the 
notch tip. Semicircular paths nearest the notch tip always produced the least 
variation of / (<5 percent). Contours outside the plastic zone also demon
strated negligible / variation and agreed well with near-tip path results. The 
onset of net section, then gross section yield and formation of the narrow slip 
band exacerbated the situation and caused 20 to 25 percent J variations be
tween parallel paths traversing the same elements away from the notch tip 
(see Fig. 2a). However, simple averaging of the computed / for each pair of 
parallel contours produced a consistent set of values with less than 5 percent 
variation from the mean, including those paths near the tip. These observa
tions reflect the severe strain gradients (ê )̂ present in the narrow slip band, 
which contribute significantly to the J-integral. At most, two elements are 
available to represent the complete slip band width for outermost J-integral 
contour segments parallel to the j-axis. Under such conditions the average J 
of parallel paths through these elements should provide a mote reliable esti
mate. Contours near the tip pass through the most refmed portion of the ele
ment mesh which experiences complete plastification with a comparatively 
smooth strain variation in the circumferential dttection. Values of/for these 
contours showed negligible variation. 

Results and Discasami 

Figure 5 illustrates the qualitative elastic-plastic behavior of a tensile panel 
containing a short edge crack in terms of the plastic zone and the tensile 
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FIG. 5—Qualitative elastic-plastic behavior and J-integral response for a tensile panel con
taining a short crack. 

strain variation along the free edges A-B and D-C. Gross section yield (GSY) 
accompanying net section yield (NSY) is attained only with very short cracks 
(a/W < 0.05) for which negligible in-plane bending develops. Longer crack 
lengths permit considerable bending that concentrates deformation in the 
narrow plastic zones and at the crack tip. In such cases, "tearing occurs at 
gage strain levels near those corresponding to NSY. 

Figure 5, in conjunction with Eq 3, offers insight into the physical meaning 
and computational aspects of the J-integral for shallow SEN specimens. / is 
the difference in area under the strain energy density, W, curves along the 
free edges (similar to the strain variations shown) plus a traction-rotation 
term across the ends. For low gage strains, ê /ê  < 1, a positive area differ
ence and thus a positive / exist due to the drop of strain to zero at the crack 
mouth (point D). Almost no stram gradient occurs over the unnotched edge 
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A-B. For a/W < 0.05, the positive traction-rotation term, which reflects in-
plane bending, is negligible. As the plastic zone extends across the section, / 
slightly increases above the LEFM energy release rate, G, as shown in Fig. 
Sd. When the plastic zone becomes unconfined at NSY, a slip band develops 
that is sensed along the J contour segment A-B by a narrow spike in the ten
sile strain distribution. Simultaneously, the notched edge strain increases but 
undergoes very minor redistribution. At this deformation for longer cracks, 
the traction-rotation term equals or exceeds the strain energy contribution 
and J increases linearly with deformation thereafter (the constant end trac
tion rotates through an increasing angle). 

For very short cracks, the traction-rotation term remains negligible com
pared with the strain spike contribution. Only after GSY does / begin to in
crease linearly with deformation. The strain spike height and width increase 
continuously as large shear deformations develop in the slip band. Within 
the spike, strains are well beyond yield such that the strain energy density in
creases at a constant rate (AVy = '^j^^)-

Early portions of the /-deformation curve follow LEFM predictions (J = 
G). The slope of the linear portion fully characterizes the response once ex
tensive plasticity develops (NSY for long cracks, GSY for short cracks). 
These slopes are referred to symbolically as M, where 

M = dJ/OfLgdtg = dJ/ofdb (6) 

in which Lg is the gage length and 6 is the load point displacement. M is pro
posed as a direct indicator of the manner in which the specimen absorbs 
deformation in the plastic range. A large M-value indicates that displace
ments imposed at the specimen ends are transmitted in full to the crack tip, 
add significantly to the crack tip strain field, and produce large increases in 
appUed J. Consequently, the correlation of finite-element and experimental 
M-values and the dependence of M on a/VT as a -^ 0 are of considerable 
interest. 

Plane Stress-Plane Strain Analyses 

Finite-element plane-stress analyses were performed for three crack 
lengths corresponding to a/W = 0.022, 0.044, 0.078, and 0.22. The com
puted limit load in each case fell below the experimental value. The discrep
ancy increased from 1 percent for the shortest crack to nearly 4 percent for 
the longest crack length. Figure 6 presents the experimental and finite-
element J-integral response as a function of overall gage strain with the sim
ple perfect plasticity approximation (/ = X.Qojb) included for reference. All 
curves follow the same qualitative trends: J first increases parabolically in ac
cordance with LEFM, then makes a transition to a linear function of gage 
strain once sufficient plasticity develops. 
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FIG. 6—Finite element and experimental applied J-integral values for SEN tensile panel. 

Agreement between finite-element and experimental results for the longer 
crack lengths is quite good in the elastic region. As plasticity extends out
ward from the tip, the experimental and analytical curves separate but re
main nearly parallel for subsequent deformation. Finite-element estimates of 
the / versus ê  linear region slope, M, are slightly larger than experimental 
values. Slopes for both experimental and finite-element curves were deter
mined with a least squares procedure. The close agreement of A/-values and 
the gage strain shift between the curves indicate that the finite-element 
models are too flexible in the early stages of plastic deformation at the crack 
tip, but accurately represent conditions after extensive plasticity has devel
oped. Further evidence of this is given in Fig. 7, which presents the finite 
element and experimental CMOD's. The CMOD curves exhibit the same 
qualitative trends as the J-integral and verify the greater near-tip deformation 
predicted by finite-element models. 

Results for the 2- and 4-mm cracks (a/W - 0.022, 0.044) show con
siderable discrepancy for both / and CMOD beyond the elastic range despite 
excellent agreement of the limit loads. Beginning at an a/W of approxi
mately 0.05 (a/B = 1.0), terminal slopes of the/and CMOD curves rapidly 
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FIG. 7—finite element and experimental CMOD values fur SEN tensile panel. 

decrease and approach zero for diminishing crack length. Finite-element 
plane-stress results indicate little sensitivity to decreasing crack length except 
for a lengthened region of elastic response. The computed M-values appear 
almost invariant of crack length and lead to a very large (320 percent) dis
crepancy with the 2-mm experimental value. The discrepancy arises because 
finite-element predictions of specimen rotation (line B-C of Fig. I) exceed the 
experimental measurements (vî hich indicate almost no rotation), and the 
finite-element ê .̂ strain variation along the unnotched edge (A-B in Fig, 1) 
overestimates the strain spike height and width, although the spike center 
coincides with the experimental location. These effects comprise the two 
positive terms of the J-integral expression for the experimental contour. 

Additional analyses were performed for the 2-mm crack specimen to in
vestigate possible sources of and corrections for the near-tip flexibility. These 
included idealization of the test grips as frictionless pins, bluntness of the 
notch tip, and the use of plane-strain assumptions throughout the specimen. 
Rigidly constrained, rather than pinned, end conditions produced no 
changes in the computed limit load, / , or CMOD responses. The rigidly con
strained model developed additional shear deformation in the narrow slip 
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band. The strain spike height and width increased sufficiently to offset loss of 
the positive / contribution at the constrained ends. No moment reaction 
developed across the constrained ends to suppress the rotation. This type of 
response is possible due to the nonuniqueness of slip-line fields at the limit 
load. Similar observations for the SEN tensile panel are described in Ref 20. 
A geometrically correct model of the blunt notch tip (see Fig. 2c) had only 
minor effect on J in the elastic region and no effect on the final slope M. The 
plane-strain analysis predicted a limit load 1.155 times the experimental 
(and plane-stress) value, and decreased the finite-element and experimental 
discrepancy in J. More noticeable, however, is the significant improvement in 
CMOD correlation (Fig. 7) due to greatly reduced strain levels at the crack 
tip. The finite-element /-displacement relationship contradicts the trend 
predicted by simple limit load solutions, that is, the slope M decreases, 
rather than increases, for plane strain. The decrease of applied / for the 
plane-strain solution derives from a reduction of the cross section rotation 
about the pinned ends, and considerable reduction of the strain spike height 
along the unnotched edge with some width gain. The slip band angle relative 
to the crack plane also increased, thus causing the strain spikg location to 
shift upwards well above the experimental and plane stress location. This 
change in fundamental response, coupled with the limit load elevation, 
demonstrates the inappropriateness of plane-strain assumptions over the 
complete specimen, but that some degree of plane-strain constraint exists in 
the crack tip vicinity. 

Effects of Crack Tip Stiffening 

The partial through-thickness constraint model was mtroduced near the 
crack tip to provide the required stiffening effect and yet preserve those 
aspects of the experimental and plane-stress solutions that agreed away from 
the tip. Analyses were performed to assess the influence of the stiffening 
parameter, fi, on / , CMOD, and the limit load. For these analyses the stiff
ened zone was fixed as shown in Fig. 4 with an assumed variation of fi that 
decreased linearly to zero at a radius of B/2. The only parameter varied in 
the present study was Q at the crack tip. 

Stiffening slightly increased the finite-element limit loads, which remained 
below experimental values. Fig. 8 shows the finite-element plane stress, stiff
ened crack tip, and experimental J-integral results as a function of gage 
strain. Stiffening the crack tip has a more pronounced effect on / as the crack 
length diminishes. The longest crack (20 mm) shows only slight improvement 
between experimental and finite element results for an 0 of 0.10. However, 
the same Q reduces the discrepancy by more than one half over the complete 
curve for the 7-mm crack. M for both these specimens is reduced to very near 
or just below experimental values. For the 2-mm crack, an fi of only 0.10 
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FIG. 8—Effects of crack lip stiffening on computed J-integral. 

lowered the stiffened model curve below that for full plane strain and again 
decreased the difference with experimental results by nearly one half. 

The 2-mm crack specimen was also analyzed for fl = 0.20 and 0.40 with 
the results shown in Fig. 8. These curves reveal an interesting trend in that 
large increases of Q produce surprisingly small additional reductions of / and 
M. For example, increasing Q from 0.10 to 0.40 provides less change than 
from plane stress (Q = 0) to an Q of 0.10. 

Effects of the crack tip stiffening parameter on M are summarized in Fig. 
9. Finite-element plane-stress solutions exceed the experimental values, but 
with decreasing magnitude for increasing crack length. Differences between 
finite-element and experimental values are insignificant for the 20 and 7-mm 
cracks when Q = 0.10. The initial 300 percent difference of M with the ex
perimental value for the 2-mm crack is reduced to approximately 35 percent 
as fl increases to 0.40. The 2-mm crack length curve also shows the finite-
element solution sensitivity to an initial small constraint but that additional 
constraint approaching full plane strain produces only a minor effect. Ap
plied to actual specimens, this implies a very small portion of specimen 
thickness over which the behavior transforms from plane stress to plane 
strain. 
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Correlation of J Predictions in Plastic Range 

The slope of the linear portion of /-displacement (or nominal strain) 
curves, normalized and termed M, has been postulated as a basic measure of 
the fracture response under fully plastic conditions—either net or gross sec
tion yield. Af-values are available from finite-element analyses, experimental 
studies, and slip-line limit load approximations. The relation of / to displace
ment at the limit load is given by Ref 21 

dJ--
1 dP^ 

B da 
db (7) 

where Pi is the limit load expression in terms of flow stress and geometry 
parameters. From such equations, M is derived as 

M = 
1 3Pi 

Boj da 
(8) 

Three limit load approximations [22] are available for the SEN tension 
specimen as listed in the following equations. 

Rigid ends, plane stress 
Pi = ajBiW - a) (9) 
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Pinned ends, plane strain 
Fj- = oyBW {1 - 0.809(a/Vy) - l.037(.a/W} 

(10) 

Pinned ends, plane stress 
PL = afBW{[{l - a/WV + ia/W)^^/^ - a/W} 

(11) 

Corresponding M relationships evaluated for the tensile panels tested are 
given in Fig. 10. The simplest expression for rigid ends, Eq 9, provides a 
reasonable average estimate of M. The solution for pinned end conditions 
with plane strain over the complete specimen, Eq 10, shows the closest agree
ment with finite-element and experimental results. The pinned-end, plane-
stress solution, Eq 11, severely overestimates M for short cracks. Clearly, 
none of the limit load solutions predict the rapid decrease of M as the crack 
length approaches zero. 

Smnmaiy and Conclu»oiis 

Experimental and finite-element results are presented for the J-integral 
and CMOD response of tensile panels (width/thickness — 9) containing 
short, single edge cracks. The behavior at nominal strain levels above yield 
was specifically addressed. Studies were conducted for a high-strength steel 
HY-130, (oy = 931 MPa) for crack length to remaining ligament ratios, 
a/W, in the range 0.02 < a/W < 0.22. Experimental J-integral values were 
obtained by integrating strain and displacement quantities measured along 
an instrumented contour. Elasto-plastic finite-element 2-D analyses were 
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performed using conventional plane-stress and plane-strain assumptions 
with high order isoparametric elements. A hybrid plane stress-plane strain 
modeling scheme was explored to provide partial through-thickness con
straint near crack tips within the limitations of a 2-D analysis. The major 
findings of this investigation can be summarized as follows. 

1. Plane-stress models predict limit loads slightly lower than experimen
tally measured values. For the longest crack length (a/W = 0.22) the dis
crepancy approached 4 percent. The difference decreased to approximately 
1 percent for the shortest crack length (a/W = 0.022). 

2. Plane-stress predictions for both J and CMOD in the plastic range ex
ceed the experimental values for all crack lengths. The difference in applied 
7-values for the longest crack is in the range of 10 percent, but for the 
shortest crack exceeds 100 percent. 

3. Experimental results imply the existence of a transition range of crack 
lengths (a/W = 0.05 or a/B = 0.5) in which the rate of 7 increase with addi
tional deformation (M) decreases rapidly to zero for crack lengths ap
proaching zero. Such behavior indicates that additional deformation after 
development of extensive plasticity is absorbed through uniform plastic 
strain over the complete length, and therefore does not promote ductile frac
ture or tearing. Finite-element plane-stress / predictions show only minor 
sensitivity to crack length in the plastic region. 

4. Detailed comparisons of finite-element results with experimental mea
surements revealed excessive flexibility of the plane-stress models in the 
crack tip vicinity during the early stages of plastic deformation. Analyses 
conducted assuming plane strain over the entire model lowered the / and 
CMOD, but elevated the limit load by 15 percent over the experimental value 
and significantly raised the plastic slip band angle relative to the crack plane. 
Plane-stress solutions accurately predicted both the limit load and slip band 
angle. 

5. The hybrid plane stress-plane strain model introduces the required par
tial through-thickness constraint near the crack tip and improves finite-
element J predictions while preserving the essentially plane-stress behavior 
elsewhere in the model. Near-tip stiffening improves / predictions over the 
whole range of deformation and slightly elevates the limit loads, thereby im
proving agreement with experimental values. The effect of crack tip stiffen
ing is most pronounced for the shortest crack lengths with an equivalent 10 per
cent plane-strain constraint reducing the applied / by 40 to 50 percent. 

6. Both computational and experimental results suggest an increasing 
dependence of J on the through-thickness near-tip constraint as crack 
lengths approach zero under conditions normally considered plane stress. 
Finite-element 2-D models do not predict this behavior unless augmented 
with partial through-thickness constraint. Such a modeling scheme may 
minimize the necessity of expensive, 3-D nonlinear computations. Full 3-D 
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computations are in progress to define more fully the degree and region of 
near-tip stiffening. 

This investigation has shown that short cracks in tensile panels (a/W < 
0.25) have a radically different J-integral behavior than observed in tests of 
more traditional specimen geometries {a/W > 0.5). From the limited results 
presented in this study, it appears that conventional finite-element and limit 
load approaches for J-integral prediction are inadequate for short cracks 
commonly encountered in practice. These analytical methods predict applied 
/-values much larger than experimental results indicate, and thus may lead 
to grossly conservative designs or unnecessary costly repairs. 
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ABSTRACT: Elastic-plastic J-R curves were obtained for compact specimens of 
A533B-02 plate tested at average load point velocities of 2.5 X 10"'' m/min and 0.25 
m/s directly from the load displacement record using a key curve analysis technique. The 
slow velocity results compare well with J-R curves obtained on the identical specimens using 
an unloading compliance technique. The key curve method is shown to accurately predict 
the extent of crack extension. The J-R curves obtained from the high speed loading are 
shown to be elevated with respect to the slow test resuHs in both the initial Ji,, and the 
tearing modulus T by from 50 to 100 percent. 

KEY WORDS: elastic-plastic fracture, J-integral, fracture toughness J-R curves, A533 
steel, key curve method, tearing modulus, high rate testing, crack propagation, fractures • 
(materials), fracture mechanics 

It has become common over the past few years to characterize the tough
ness of an elastic plastic material through the use of the J\c fracture parame
ter. A test procedure for the evaluation of J^^ is presently approaching a con
sensus standard of ASTM using a multispecimen technique proposed by 
Clarke et al [7].^ More recently the J-R curve has been suggested as an impor
tant measure of resistance to ductile tearing instability by Paris et al [2], and 
work by Paris et al [3] and Joyce and Vassilaros [4] has demonstrated that in
deed fracture instability for a system can be accurately predicted if a material 
J-R curve is available. Static single specimen J-R curve testing has been done 
by various methods, but most commonly the technique used is that of un
loading compliance as described by Clarke et al [5]. An alternate technique 

'Associate professor. Mechanical Engineering Department, U.S. Naval Academy, Annapolis, 
Md. 21402. 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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for J-R curve evaluation using only load displacement records—without un-
loadings or additional instrumentation—was proposed by Ernst et al [6] and 
was termed the Calibration Function Method or Key Curve Method. This 
method was used by Joyce et al [7] on compact specimens of HY-130 steel, 
and it was demonstrated that accurate J-R curves could indeed be evaluated 
directly from load displacement records of IT specimens if additional load 
displacement records of geometrically similar subscale 1/2T specimens were 
available. The advantages of the Key Cur\'e Method are the following: 

1. /-values incorporating crack extension effects are evaluated directly. 
2. Crack extensions are available directly from the load displacement rec

ord without additional instrumentation. 
3. Additional corrections like those for specimen rotation are included in 

the calculation of / and crack extension. 
4. A J-R curve point is evaluated for each point on the load displacement 

record allowing accurate measure of the J-R curve slope and the ^material tear
ing modulus quantity introduced by Paris et al [2]. 

5. J-R curves can be evaluated for high-speed tests—tests done at any rate 
at which an accurate load displacement record can be recorded. This is possi
ble today at load point velocities up to 2.5 m/s. 

In the present work key curve functions are obtained for compact speci
mens of A533B (HSST 02) plate material at two test speeds, a slow load point 
speed of approximately 2.5 X lO""* m/min and a rapid load point velocity of 
0.25 m/s. J-R curves are then developed from load displacement records of 
IT compact specimens. For the slow-speed tests, the J-R curves are com
pared with results obtained earlier by an unloading compliance method and 
the slow and rapid J-R curves are compared to determine the effects of the 
load rate increase on the/ic value and the J-R curve for this material. 

Experimental Program 

Material Characterization 

The material used in the study was obtained from an HSST-02 plate of 
A533B steel supplied in 0.3-m thickness. The chemical composition of the 
plate is described in Table 1 and the mechanical properties are presented in 
Table 2. 

TABLE 1—Chemical composition of HSST-02 A533B steel elements, 
weight percent. 

c 

0.22 

Mn 

1.48 

Ni 

0.68 

Mo 

0.52 

Si 

0.25 

S 

0.018 

P 

0.012 
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TABLE 2—Tensile mechanical properties of 
HSST-02 A533B steel. 

Ultimate Total 
0.2% Yield Tensile Elongation, 

Strength, MPa Strength, MPa % in 50 mm 

448 620.1 19 

Testing Details 

Two sizes of compact specimens, 1/2T and IT, were machined from the 
A533B plate with crack planes oriented in the T-L orientation. The small 
specimens were fatigue precracked to crack lengths from a/W = 0.5 to 
a/W = 0.9. A standard 6.35-mm (0.2-in.) travel fracture mechanics clip 
gage was attached to integral knife edges on the small specimens and load 
versus load point displacement curves were run for these specimens at 150°C. 

Two loading rates were used, first 2.5 X 10^'' m/min and then sO.25 
m/s. The slow tests were conducted in a displacement controlled Instron 
Universal Test Machine; the fast tests were done on Materials Testing 
System (MTS) servohydraulic test machine. 

For the larger specimens, the slow tests were completed and reported ear
lier [8], All were done using the Instron screw machine and the computer in
teractive unloading compliance J-R test procedure of Joyce and Gudas [9]. 
The high speed IT tests were conducted in stroke control on the MTS servo-
hydraulic machine and a 19-mm (0.80-in.) travel clip-on load line crack-
opening displacement (COD) gage mounted on razor blades was used in the 
specimen load line. Data from the high speed tests was taken by a digital os-
cilliscope connected via an Institute of Electrical and Electronics Engineers 
(IEEE) 488 interface to a Tektronix 4051 controller. All data were stored on 
magnetic tapes and disks for the key curve analysis. 

After testing, each specimen was heat tinted at 370°C for 30 min and 
broken open at liquid nitrogen temperature. The fatigue crack length was 
measured on the 1/2T specimens while both the fatigue crack length and 
crack extension were measured optically using a 10 point average technique 
on the IT specimens. 

Key Curve Function Analysis 

Previous work by Ernst et al [6] and Joyce et al [7] has shown that incre
ments in / and crack extension Aa can be evaluated directly from a specimen 
load displacement record if a key curve function for the particular material 
geometry combination is available. The form of the key curve function 
assumed here was that 
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PW 
= F\ 

W ' W (1) 

where 

P = applied load, 
A = total load line crack-opening displacement, 
a — crack length, 
b = uncracked ligament, 
B — specimen thickness, and 
W =: a -\- b = specimen width. 

Increments in J and crack extension can then be evaluated from the equa
tions of Joyce and coworkers [7] that 

dJ = 
2b 

W 
Fl 

b^ dfl 

W^ d{a/W} 
dA 

+ ^ ^ 1 ^ ^ + 
4b dFl f^_6^ d^Fl 

da 

(2) 

and 

da = 

b^ dFl 
W^d{A/W) 

dA-dP 

2b b^ dF\ 
W W^d{a/W) 

(3) 

Evaluating Eqs 2 and 3 at each point along a load displacement record and 
summing the increments gives a J-R curve for the specimen. Ernst et al have 
pointed out that the resulting J-R curve calculated in this fashion includes ro
tation corrections and corrections to/resulting from crack extension. Combin
ing the results of Eqs 2 and 3 allows calculating the Paris [2] tearing modulus 
from the expression 

T = 
dJ E 
da a^ 

(4) 

Development of the Key Curve File 

The key curve file for each loading rate was obtained by assembling the load 
displacement records of eight 1/2T specimens with different alW ratios in a 
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computer file as normalized triples. The result for the statically loaded case is 
shown in Fig. 1. This file is an experimentally obtained representation of the 
load displacement records of all geometrically similar specimens of this 
material loaded at similar rates at the temperature of 150°C. This file is ob
tained from small specimens so that it does not include the effects of crack ex
tension, and checks were made of the fracture surfaces of each specimen after 
test to assure that ver>' little if any crack extension was present when the test 
was terminated. It was found from these checks that crack initiation occurred 
very close to the first drop in load on the load displacement curve of each 
specimen, and this was used subsequently as a limitation to the load displace
ment record used to develop the key curve for the dynamically loaded tests. A 
similar key curve file was obtained from eight 1/2T specimens tested at the 
rapid rate. This file is shown in Fig. 2. The key curves are similar in a/W 
dependence but the high-speed tests resulted in elevated values of normalized 
load for a given a/W and A/W point. 

Discussion of the Test Environment 

Typical load displacement records for static and dynamic tests are shown in 
Fig. 3. The static test was run by unloading compliance as described previ
ously. The dynamic test was conducted with the apparatus shown schemati
cally in Fig. 4. All data were taken digitally and stored on magnetic disks to 
facilitate the key curve analysis. 

PW/Bb' 276 MPa 

a/W < 1.0 

FIG. 1—Static experimental key curve function for A533B steel at I50°C. 
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PW/Bb' r 276 MPa 

a/W 
DEUW 

FIG. 2—Dynamic experimental key curve function for A533B steel at 150°C. 

e 1 eE-3 8 882 8 883 8.884 8.885 8.886 8 887 8 888 8 889 8.81 

COD DISPLACEMENT m«lar= 

FIG. 3—Static and dynamic load displacement records for A533B compact specimens. 
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FIG. 4—Schematic drawing of high speed loading apparatus and data acquisition system. 

The MTS servohydraulic machine was run in a single cycle mode with a 
5-Hz-square wave excitation. The crack opening rate applied by this apparatus 
at the specimen load line is shown for IT specimens of two crack lengths in 
Fig. 5. In both cases a maximum rate of between 0.25 and 0.35 m/s was 
reached, but the shorter cracked specimen, which required a considerably 
higher load, reached the maximum d(CODj/dt rate much more slowly than 
the deeply cracked specimen. Looking at these same two specimens in terms 
of the rate at which the applied J singularity increased, a different picture re
sults as shown in Fig. 6. For the short cracked specimen / is applied more 
slowly for about the first 0.01 s, but higher values of dJ/dt are reached for 
the short cracked specimen by about a factor of two in comparison with the 
deeply cracked compact specimen. 

Discussion of the Static Test Results 

For the static tests the IT compact specimens were run as part of work re
ported previously using the computer interactive unloading compliance 
method of Joyce and Gudas [9] to investigate the effect of side grooves on J-R 
curves of A533B steel. For this work 1/2T specimens were machined as de
scribed previously, and slow-speed load-displacement tests were run to de
velop a key curve file. Then the analysis of the preceding sections was used to 
develop J-R curves for the IT compact specimens that could be compared di
rectly to the results of the unloading compliance tests. A typical comparison 
of the results of the two methods is shown in Fig. 7 for a 20 percent side 
grooved specimen with a/W = 0.6. The hollow triangles represent the re-
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a 3E^ 

J 
A 

^ 0 2S. / V ' / V 1; 

i\A>-M .-, 

^ I 

:= a !5^ 

8 0 5 . 

/ 'J 

r" 

j " ^ a/U = 0 50 

r 
0 I 0E-3 0.0B2 0.003 0.004 0.005 8.006 0.007 0.008 0.009 0,01 0.011 

COD m«t«rii 

FIG. 5—hmd line displacement rate versus load line displacement for two high speed dy
namic tests with different a /W ratios. 

0.005 0.01 0 . e i 5 0 02 

TIMt seconds 

0 025 0 03 

FIG. 6—J-integral application rates versus elapsed time for tests with different a /W ratios. 
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s.eE-4 i.eE-3 e.aeis e.eea 
CRACK EXTENSION molars 

e.eezs 8.883 

FIG. 7—Static J-R curves for a/Vf = 0.6 specimen obtained from unloading compliance and 
from the key curve methods. 

suits of the unloading compliance test where J is corrected for crack growth 
using the analysis of Ernst et al [10] and crack extension is corrected for rota
tion effects using the formula of Loss [11]. Similar close agreement was 
found for all 24 specimens of the matrix of geometries reported in the earlier 
work [51. Figure 8 shows the results of the key curve analysis for four 20 per
cent side grooved specimens with different crack lengths, showing clearly the 
effect of constraint on the J-R curves of this material. This result was hinted 
at the unloading compliance results reported earlier, but was partially masked 
until the results were corrected for crack growth—a correction that is included 
in the key curve method. 

DiscusHon of the Dynamic Results 

The success of the static results reported here for A533B steel and pre
viously for HY-130 steel gave incentive for an attempt to use the key curve 
method to develop J-R curves for compact specimens loaded at rates ap
proaching those of impact testing. Typical load displacement records for IT 
compact specimens tested at the 0.25 to 0.35 m/s loading rate are shown in 
Fig. 9. Applying the key curve analysis described previously to these and 
other similar load displacement records utilizing the key curve file of Fig. 2 
gives the J-R curves shown in Fig. 10. It is clear immediately from comparing 
Figs. 8 and 10 that a similar dependence of the J-R curve on crack length is 
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>- a/W = 0 5 C*7) 

"^a/W - 0.6 (•12) 

yW - 0.7 C*I9) 

5.0E-4 I.0E-3 0.0015 0.002 

CRACK EXTENSION mal.r. 

0 0025 0 . 003 

FIG. 8—Static key curve J-R curves for compact specimens with a range of a /W ratios. 

70,-

3 I 8E-3 0 002 a 003 0 004 0.005 0.006 0.007 0.008 0.009 0.01 

LOAD LINE COD m«l«r« 

FIG. 9—High rate load displacement records for compact specimens of varied a/W ratio. 
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a/\i = e.se cboito 

8.804 8.806 8.888 

CRACK EXTENSION nxsUrs 

FIG. 10—Dynamic key curve J-R curves for compact specimens with a range of a /W ratios. 

demonstrated at the high and low test rates. Also, it is clear that the high 
speed tests are considerably elevated in J^^ and in dJ/da. Similar elevations 
of the J-R curve have been reported previously by the present author [72J on 
HY-130 steel tested in a similar manner. 

Only the a/W = 0.50 specimens shown in Fig. 10 were analyzed to the full 
extent of their load-displacement records. For the longer crack length speci
mens, the key curve file did not extend far enough for a complete analysis. 
All J-R curves seem to become horizontal and then fall slightly as the end of 
the key curve file is approached. This might imply a limit has been reached to 
the region for which /-controlled crack growth can exist as discussed by 
Hutchinson et al [13], but it also might be that the key curve analysis was be
coming inaccurate, possibly because of crack extension occurring in the sub-
size specimens used in the development of the key curve. 

To evaluate the accuracy of the key curve method's J-integral value, a com
parison is made in Fig. 11 between J-R curves utilizing four different equa
tions for / . 

The three additional equations used to determine / are, first, that due to 
Rice and coworkers [14\ 

J = 
lA 

Bb 
(5) 
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second, that due to Merkle and Corten [/5] 

Bb (6) 

with /3(a/ W) slightly greater than 2 to account for the additional component 
of tensile loading, and finally that due to Ernst and coworkers [10] 

•^(i+\) (f>^]['-(i).<«--«.>] <'> 
where 

7; = 2 + {0.S22) b/W, 
7 = 1 + (0.76) b/W, and 

,̂-,•+1 = area under the load versus load line displacement record between 
lines of constant displacement at points / and i + \. 

The Rice equation is strictly accurate for deeply cracked bend specimens and 
contains no correction for crack extension. The Merkle-Corten equation in
cludes a tensile correction, which makes it accurate for a compact specimen, 
but again this equation does not include a crack extension correction. The 

i/W = a.61 (#12) 

o 

O MEASURED NINE POINT CRACK LENGTH 
O CRACK LENGTH CORRECTED FOR 

• CRACK TIP BLUNTING 

I .0E-3 0 082 B.803 0.004 0.005 

CRACK EXTENSION i r « U r s 

0.006 0.007 

FIG. W—J-R curves for two high rate tests showing accuracy of final crack extension using 
the key curve method. 
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Ernst equation contains corrections for both of these effects and thus should 
be most directly comparable with key curve results calculated here. Compar
ing the results in Fig. 11 shows that for small crack extensions, the Rice for
mula falls low because it does not include the tensile correction. When appre
ciable crack extension occurs, the two crack-growth corrected results start to 
fall away from the Merkle-Corten result back toward the Rice result. The key 
curve result agrees well with the Ernst formula for crack extension less than 
0.002 m, but it falls always slightly below the Ernst results, with the difference 
growing to about 20 percent after 0.094 m of crack extension. The key curve 
result is of course vulnerable to experimental and numerical errors, while the 
Ernst result requires separable behavior of the load displacement relationship, 
which has not been experimentally verified for the compact specimen even 
without crack extension. The key curve result substantially agrees with 
numerical results of Shih et al [16], which predicted that the J singularity 
would begin to break down at around 6 to 10 percent crack growth or about 
2.5 mm of crack extension in ana/W = 0.5 IT compact specimen. The fact 
that this does in fact occur has apparently been masked up to now by a failure 
to crack-growth correct the / singularity values used for J-R curves. 

For the two a/ W = 0.50 specimens shown in Fig. 12, final crack extensions 
of about 9.6 mm were predicted by the key curve analysis and the heat 
tint nine-point average crack lengths for both specimens were found to be 
-10.0 mm. 

î êe 

see. 

• J MERKLE CORTEN 

^ _ - • J RICE 

J ERNST 

0 KEY CURVE 

6^^ 

488 

8.882 8.884 0.886 8.808 

CRACK EXTENSION mclers 

0 01? 

FIG. \2—J-R curves for dynamic a/ W = 0.5 specimen obtained from equations for the J pa
rameter taken from Merkle Corten [IS], Rice fUJ, Ernst flOJ, and the present key curve 
method as designated. 
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Two additional specimens containing deeper crack lengths were subse
quently tested using the identical apparatus, but with a reduced square wave 
amplitude so that a reduced amount of crack extension would result. These 
specimens could be calculated to the end of their load displacement records 
without extending beyond the key curve file. The results are shown on Fig. 11 
along with measured final crack length values. As in the case of the previous 
a/W = 0.50 specimens, the key curve result underestimates the crack exten
sion by 10 to 15 percent. Part of this shortfall results from the fact that the 
key curve method does not include crack tip blunting in its crack extension 
measure since it occurs in both the small and large specimens and is sub
tracted out in the key curve analysis. 

Data points were taken on the load displacement curves at fked intervals 
of 50 /us for all these tests, and since crack extension at each data point was 
available from the key curve analysis, straight line segments could be fit to 
the crack length file to obtain estimates of the crack growth rates achieved in 
these tests. Figure 13 shows the average crack velocities achieved in these 
tests for two different crack length specimens using linear fits over 750-/ts in
tervals. The short cracked specimens are seen to be subjected to considerably 
higher crack velocities than the deeply cracked specimens. 

r 

a 9^ 

0EL-3 0 002 e 003 

CRACK tXTENSION meters 

a 80-4 

FIG. 13—Average crack velocity versus crack extension for two specimens with varied a /W 
ratios. 
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Comparison of Static and Dynamic Resalts 

A comparison of the dynamic and static J-R curve files resulting from this 
work is shown in Figs. 14 to 16. In each case, the dynamic J-R cur\'e is con
siderably elevated with respect to the static result. Greater elevation is found 
in the short cracked case, probably resulting from the higher dJ/dt applied 
and the higher da/dt that resulted in these specimens, as discussed in the 
previous sections. A tabulated summary of all J-R curve parameters is pre
sented in Table 3. 

Conclusions 

The following conclusions can be drawn from this work. 

1. The key curve method as utilized in this effort can be used to obtain ac
curate J-R curves directly from the load displacement record of a single speci
men. Excellent agreement is found between the key curve analysis and a 
properly crack-growth corrected J-R curve resulting from unloading compli
ance methods. 

2. The J-R curves of A533B-02 steel depend on crack length ratio in IT 20 
percent side grooved specimens with the most conservative J-R curve result
ing from a/W ratios between 0.65 and 0.7. 

700. 

600. 

500. 

400 

300. 

S 0E-4 I 0E-3 0 0015 

CRACK EXTENSION mvl.rs 

e 002 

FIG. U—Comparison of dynamic and static J-R curves for A533B at 150°C. a /W = 0.5. 
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see 

0. 488 

383 

i.eE-3 e.eeis 

CRACK EXTENSION m . l e r . 

a e02 

FIG. 15—Comparison of dynamic and static J-R curves for A533B at 150°C. a/W = 0.60. 

see 

7881 

6801 

a -tea 

see 

I.8E-3 8.8815 

CRACK EXTENSION matars 

8.882 0 0825 

FIG. lb—Comparison of dynamic and static J-R curves for A533B at ISO^C. a /W = 0.7. 
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TABLE 3—Summary ofJ-R curve test parameters, A533B-02 at 1S0°C. 

Specimen 
.No. 

8 

7 

12 

13 

19 

23 

27 

9D 
13D 
6D 

12D 
5D 
8D 
3D 

Loading, 
m/sec 

4 X 10"* 

4 X 10"* 

4 X 10"* 

4 X 10"* 

4 X 10"* 

4 X 10"* 

4 X 10"* 

0.25 
0.25 
0.25 
0.25 
0.25 
0.25 
0.25 

Analysis 
Method 

Key curve 
Unloading 

compliance 
Key curve 
Unloading 

compliance 
Key curve 
Unloading 

compliance 
Key curve 
Unloading 

compliance 
Key curve 
Unloading 

compliance 
Key curve 
Unloading 

compliance 
Key curve 
Unloading 

compliance 
Key curve 
Key curve 
Key curve 
Key curve 
Key curve 
Key curve 
Key curve 

a/W 

0.5 

0.5 

0.6 

0.6 

0.7 

0.7 

0.8 

0.5 
0.5 
0.6 
0.61 
0.64 
0.78 
0.75 

h.. 
kPa-m 

125 

137 
133 

146 
185 

143 
200 

173 
173 

173 
188 

185 
151 

193 
322 
327 
306 
359 
262 
229 
315 

dJ/da, 
MPa 

161 

174 
177 

181 
103 

128 
124 

146 
94 

108 
101 

100 
199 

145 
1% 
186 
170 
192 
129 
148 
91.7 

T 

86 

93 
95 

97 
56 

69 
67 

78 
50 

58 
54 

54 
107 

78 
106 
100 
91 

103 
69 
79 
49 

3. The key curve method is also effective for developing J-R curves from 
tests conducted at speeds up to 0.36 m/s COD rates at the specimen load 
line. It appears that the method would work at whatever velocity accurate 
load displacement records can be accurately measured. 

4. High-rate J-R curves are elevated over those found at static speeds and 
the elevation approaches a factor of two when the crack velocity attamed is 
on the order of 0.5 m/s. The slower loading rates generated for longer cracked 
specimens produced a smaller elevation of the high-rate J-R curve over that 
of the slow rate tests and it was not possible to determine whether this effect 
was due to the test rate or to a specimen constraint effect. 

5. The key curve analysis when applied to the high-rate tests was shown to 
accurately predict the crack extension found by heat tinting and optically 
measuring the specimen after test was completed. 
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ABSTRACT: Several aspects of ela,stic-pla,stic R-eurve theory and instability analysis are 
discussed. It is shown how material flow property effects can be incorporated into the 
R-curve in place of the more common practice of incorporation into / crack drive. For
mulas for deformation theory / that adjust for slow-stable crack growth in compact (CT) 
and center cracked tension (OCT) specimens are presented. For cases of extremely large 
crack extension where conditions of deformation theory J are violated, an expression for 
modified / also is presented, y^-curve data obtamed from a 4T size compact specimen 
were used to predict instability in a displacement controlled OCT test for 2024-T351 
aluminum. 

KEY WORDS: R-curve, elastic-plastic fracture, J-integral, fracture mechanics, crack 
propagation 

Nomenclature 

r; A dimensionless factor used in area approximation for / 
A Area under force-displacement diagram in energy units 
B Specimen thickness 
W Specimen width 
b Remaining ligament dimension 

OQ Yield strength 
a^ Ultimate strength 
eo Yield strain 
a Coefficient in Ramberg-Osgood work hardening law 
n Work hardening exponent, Ramberg-Osgood law 
E Elastic modulus 

h 1 Handbook listed coefficients for plastic / determination 

'Senior engineer. Materials Engineering Department, Westinghouse Research and Develop
ment Center, Pittsburgh, Pa. 15235. 
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Jn Crack growth resistance expressed in units of / 
Kn Crack growth resistance expressed in units of K^ 
J^i Elastic component of J 
J pi Plastic component of / 
Ki Linear elastic stress-intensity factor, K 
Ty Plastic zone adjustment 
Qp Physical or real crack size 
Op Effective crack size, physical plus r^ 

Aop Stable growth of physical crack size 
Aflj, Stable growth of effective crack size 

P Applied load 
PQ Calculated limit load 

CcR Compliance capacity remaining 
Kf^ Spring constant of the structure 
CM Compliance of total structure {l/K^) 

Y Half-span of clip gage in CCT tests 

R-curve technology had evolved initially as an extension of linear-elastic 
fracture mechanics, specifically designed to handle materials that display 
slow-stable crack growth prior to instability. Instability theory is implicit in 
R-curve theory through the relationships used to describe the balance be
tween crack driving force supplied by loading conditions and crack growth 
resistance development in the materials. The fundamentals on the instability 
prediction procedure have been developed and used successfully on ultra-
high-strength sheet materials for a number of years. Here linear-elastic con
ditions dominate stress field conditions and it has been shown that R-curves 
behave as a "material property," independent of initial flaw size, component 
planar size, and component geometry [1].^ Most engineering grade steels 
also display slow-stable crack growth leading to instability provided that the 
service conditions are in the upper shelf transition temperature regime. Be
cause these materials commonly display high upper shelf toughness, most 
laboratory specimens will deform progressively from linear elastic to confined 
plasticity to fully plastic conditions. Under high plastic deformation condi
tions, the so-called "material property" characteristics of R-curvcs have not 
been proved adequately. Experiments to evaluate specimen size require
ments to obtain intrinsic R-curve behavior are few, and the appropriate spec
imen size requirements to be applied are not firmly established. 

In the absence of a strong technical confirmation for the use of elastic-
plastic /yj-curves, a J^^ concept has been adopted as a temporary expedient. 
This concept directs attention to the point on the /|;-curve where stable crack 
growth initiates which generally occurs well below the in-service toughness 
performance capability of the materials. The principal advantage in Ji^ is 

^Thc italic numbers in brackets refer to the list of references appended to this paper. 
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that specimen geometry effects are demonstrated to be negligible. Geometry 
effects have tended to develop only after appreciable crack growth and with 
the attendant increased plasticity development. 

This paper is intended to present data applicable to the intrinsic /^j-curve 
behavior of elastic-plastic deforming materials. Methods of handling plastic
ity effects and crack growth effects in fracture toughness characterization 
will be discussed and the implications that y^-curves have for instability pre
diction problems will be presented and demonstrated. 

Elastic-Plastic Toughness Parameters 

J-integral currently is regarded by many as the most suitable toughness 
parameter for handling plasticity effects, primarily because of the rigorous 
use of plasticity theory in its development. Specifically, J-integral is suitably 
justified for use in nongrowing crack situations. However, / initially was ex
pected to be inappropriate for //{-curve work precisely because of its origin in 
deformation theory. Theoretically, all nonlinear effects should be due to 
plasticity development in a specimen, and partial unloading due to stable 
crack growth violates the conditions assumed in the use of deformation the
ory. Despite this concern, J has been applied successfully to //{-curve devel
opment for the purpose of determining J^^. In this specific application, the 
unknown variance from deformation theory / is not significant to Ji^ at incip
ient stable crack growth. Hence, simple equations employing total applied 
energy of the following form have been used liberally 

/ = -qA/Bb (specimens in bending mode) (1) 

In recent work, the relative impact of crack growth on the accuracy of 7 is 
better understood. Shih [2] has shown through numerical analysis that 
growth up to 6 percent of the initial ligament size can be tolerated, in the 
sense that / based on deformation theory still controls the crack growth pro
cess. Even more recently, Ernst [3] has developed a computational procedure 
whereby deformation theory J can be obtained from load-displacement rec
ords that contain significant additional displacement due to crack growth. 
This procedure, along with a newly developed expression for the center 
cracked tension (CCT) configuration, is described in the Appendix [4]. Un
less otherwise stated, the J^ data shovra in the present report were calculated 
with these expressions. The consequence of applying the Appendix calcula
tions versus Eq 1 is demonstrated for the compact (CT) specimen geometry in 
Fig. 1 on a material that developed considerable crack growth. The 2024-
T351 aluminum in 12.7-mm (V2-in. thickness develops appreciable plasticity, 
but because the test was made with a 4T planview size CT specimen, the plas
ticity was confined within a dominant elastic stress field throughout the test. 
The elastic-plastic K^/E shown in this comparison was obtained by the 
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FIG. 1—JR curve from a 12.7-mm (0.5-in.)-thick 4T CT specimen of 2024-T351 aluminum. 
Comparison of Aap adjusted ^-values. 

compliance procedure outlined in the ASTM Recommended Practice for 
/?-Curve Determination (E 561-81), and for the present confined plasticity 
example can serve as the benchmark for comparison. 

The use of deformation theory / , however, does not insure that geometry 
effects will be eliminated from /^-curve behavior. In fact, the converse may 
exist when crack growth is substantial and when comparing two specimen 
types. Figure 2 is an example where deformation theory /^-curves are com
pared for 12.7-mm (V2-in.)-thick 2024-T351 aluminum with planview sizes of 
a 4T CT and 40-cm (16-in.)-wide CCT. The remaining ligament size was 
comparable in both specimen types. 

Values of Aa^ were measured from unloading compliance, and deforma
tion theory J^ for the CCT was calculated using the new procedure developed 
by Ernst (see Appendix). As can be seen, for crack extension up to 12.7 mm 
('/2 in.), the results are consistent; beyond that size, data from the two geom
etries start deviating from each other. To improve calculations of J with ex
tensive crack growth, it was decided to compute the results using a new 
parameter suggested by Rice et al [5,6]. This has been generalized very 
recently by Ernst [ 7] to obtain a modified J^, expressed as 

JM — JD 
MPL 

da 
da (2) 

ipl 
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FIG. 2—CT specimen and center cracked panel Jjj curve comparison using deformation 
theory J p. 

where AQ ^""^ a are the initial and final value, respectively, of the crack 
length, and Jpi is the plastic part of/, {Jp/ — Jo ~ G). (See Appendix.) The 
data were replotted in terms of/^^ versus Aa, and a much better correlation 
resulted, as shown in Fig. 3. As was mentioned, the assumption that a uni
versal material parameter exists with large amounts of crack growth is still an 
open question, but it seems that available results can be improved by prop
erly modifying / . 

Elastic-Plastic /-Calibration Values 

In the previous section, formulas were presented for the experimental de
termination of deformation theory / . This information together with the value 
of the crack length represents the way the material behaves with crack growth, 
that is, the /^-curve. On the other hand, / can be determined numerically as a 
function of, say, crack length and displacement, / = / (a , 6), with no crack 
growth assumed. These are calibration functions in the sense that they deal 
with the deformation behavior of the material in a fixed geometry. 

Complete closed form elastic-plastic solutions for / do not exist for many 
configurations. However, solutions for the outer bounds of linear-elastic and 
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FIG. 3—CT specimen and center cracked panel JR curve comparison using modified J^^. 

fully plastic conditions are more common and are likely to be avatible. Exact 
linear-elastic solutions are obtainable through linear-elastic handbook ATj 
formulas. At the othef extreme of fully plastic displacements, general solu
tions have been developed for several cracked geometries [8]. To bridge the 
gap between elastic and fully plastic (confined plasticity cases), a common 
practice is to use plasticity-modified Ki values. Here, crack sizes are aug
mented with a plastic zone adjustment dimension, r^, such that when these 
are applied in linear-elastic stress-intensity factor equations, K^ is obtained 
which is related to Jg through 

jR = KgyE (3) 

The accuracy of/^ obtained in this way is, therefore, highly dependent on the 
accuracy of r^ in substitution for the plasticity effects. The well-known Irwin 
[ 9] formula is oftentimes used as a basis format and generally has been found to 
work best on high-strength nonhardening materials. For work hardening 
materials. Rice [10] has recommended the following to be more appropriate 

1 n - \ fKR 
IT: « + 1 \ ffo 

(4) 
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where n is the Ramberg-Osgood work hardening exponent. One additional 
modification is useful to make a smooth transition into the fully plastic mode 
of deformation. Since KR is used for crack size adjustment to solve for KR, 
solutions tend to become noncoverging as the fully plastic (limit load) condi
tion is approached. A factor, 0, as proposed by Edmunds and Willis [//] can 
be added where 

<̂  = i / [ i - (p/Po)'J (5) 

Plastic zone adjusted cracks commonly are referred to as effective crack size, 
and 

«e = «p + <>ry (6) 

The experimental counterpart to the use of Eq 6 is a compliance procedure 
outlined in ASTM Method E 561-81. The procedure is relatively simple since 
it involves the use of the slope of secant lines constructed on the load-dis
placement test record. Values of KR determined using these psuedolinear-
elastic crack sizes have been shown to relate to deformation theory JR for 
three common test specimen geometries [12]. This relationship is almost 
always exact up to limit load and moderately diverging beyond limit load, as 
illustrated in Fig. 4. 

Crack Growth Resistance-Effective Crack Growth R-Carves 

In ASTM Method E 561-81, it is suggested that R-curves can be plotted 
using either physical crack grovrth, Acp, or effective crack growth, Aa^, on 
the abscissa. However, this particular method had been developed princi
pally with high-strength sheet materials in mind. Here plastic zones are 
usually small such that the effect of this option would be of little consequence 
to an instability analysis. However, for the more ductile elastic-plastic behav
ing materials, plasticity effects can dominate, and the handling of material 
flow property effects can be highly significant to the accuracy of the predic
tions. If an R-curve is plotted in terms of A a effective it will contain com
pletely the material flow property effects. The compliance procedure out
lined in ASTM Method E 561-81 or Eq 6 can be used to describe crack 
growth, Aa^, on the abscissa. So long as plasticity is confined within domi
nant elastic stress fields, the resulting KR-Aug R-curves can be shown to be 
independent of specimen planview size as represented by IT and 4T CT 
specimen data shown in Fig. 5. In both cases, much of the data shown had 
been generated beyond maximum load. 

An alternative and perhaps more laborious means of generating KR-AU^ 

R-curves is to use deformation theoty / determined using the elastic-plastic 
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FIG. 4—Correlation between i and K^/E for four materials and two specimen types. 

formulations proposed by Shih and co-workers [8] in a handbook of elastic-
plastic solutions. The material flow properties are contained within / calibra
tions and the plastic flow field effects can be transposed into K/^-Aa^ values 
for various crack geometries. Initially, / is developed using the Ramberg-
Osgood work hardening properties of the material 

e 
Co 

— + a\ — 
<̂ 0 <̂o 

(7) 

where OQ and EQ ^ ^ true yield strength and true yield strain, respectively. J is 
determined as the sum of the psuedoelastic J^i and fully plastic J^,, where 

J = J,,+Jp!{n,a/W) 

J,, = KRVE 

(8) 

(8a) 
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Jgi is calculated using Eqs 4 through 6 and 8a with a^ applied in the linear 
elastic Kj equation for the subject geometry to obtain KR. The second term, 
Jpi, in Eq 8 is for full plastic flow and two example solutions for CCT and CT 
specimens are as follows 

{CCT)Jp, = aaoeoail - 2a/W)h^ ( P / P Q ) " " ' 

{CT)Jp,= aaoeo{W-a)hi(P/Po)''+' 

(9) 

(9a) 

In these, PQ represents theoretical limit load, and the term /ij is obtained 
through numerical analysis and is a function of relative crack size, a/W, and 
work hardening exponent n. Values oi hi are tabulated in the handbook [13] 
in two sets: plane strain and plane stress. To illustrate, a family of calculated 
/ calibration plots over variable crack sizes, Up/W, for the 4T specimen of 
Fig. 5 is shown in Fig. 6. These calibration plots then can be used to calculate 
K/f versus Aa^ data points for Fig. 5. The procedure used was as follows: 

Select a / level to be converted to Kj^. 
Use aJ-Aap R-curve to determine the Op/W at the selected / level. 

3. Determine applied load from the appropriate calibration curve (ap/W) 
in Fig. 6 (a^ = physical crack size). 
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FIG. 6—i calibration for 4T CT specimens of 2024-T35I aluminum. 

4. With Kn from Item 1 of this procedure and load from Item 3, determine 
the Ug that will satisfy the Ki equation for the CT specimen. 

5. Then: Aa^ = a^ — UQ. 

The results of the exercise over five levels of / are shown as data points in 
Fig. 5. The compatibility between these handbook-derived values and exper
imental values is unusually good. In effect, what has been demonstrated is 
that material flow property effects from elastic-plastic / solutions were ef
fectively incorporated into the R-curve. The advantage of this alternative will 
be evident in a subsequent section on instability concepts. 

Intrinsic R-Cnrves 

To justify the validity of either /jj-curves or Kn-curves for use in instability 
predictions, the material property characteristics of independence from ini-
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tial crack size and planview size must be demonstrated. This is accomplished 
experimentally by testing specimens of variable dimensions, and Figs. 7 and 
8 are illustrative of typical findings. Figure 7 contains data on A533B tested 
as 25-mm (l-in.)-thick CT specimens, but with IT, 2T, and 4T planview 
sizes. The Fig. 8 data were obtained from 200-mm (8-in.)-wide by 12-mm 
(0.494-ui.)-thick CCT specimens of Ni-Cr-Mo-V (A471) rotor steel. In both 
figures, the plot on the left represents K^ versus Aa^ obtained usmg the 
ASTM Method E 561-81 described earlier. The right-hand plots were ob
tained using the Appendix calculations iorJ^, and these are plotted against 
physical crack size obtained by unloading compliance. The preference of the 
authors is to always plot J^ against Aop and K^ against Aa^ as a convention 
for easy identification, but in the present case ̂ RE was used for the purpose 
of the comparison being made. 

Both methods of data plotting show intrinsic R-curve behavior up to the 
onset of limit load (PQ) for the various size specimens. In these cases, limit 
load is also about coincident with the first attainment of maximum load. For 
CT specimens J/}-Attp R-curves are generally unaffected by the onset of limit 
load deformation. The equivalency between the toughness parameters of 7^ 
and Kg is reasonably maintained to well beyond limit load, as was indicated 
earlier in Fig. 4. On the other hand, KR-AQ^ type R-curves have been found 
to deviate consistently from intrinsic behavior at or near first onset of limit 
load. Since the equivalency between//} and KR is essentially maintained, the 
anomaly apparently develops in the abscissa, Aa^. This perhaps results from 
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the reality that the plastic zone representation loses physical significance 
once the remaining ligament transcends into full plastic flow, A procedure 
for extrapolation of Aa^ values to obtain intrinsic K/^-Aag beyond limit load, 
utilizing known plastic behavior characteristics, is thought to be possible, 
and a procedure is presently under evaluation. 

In center cracked panel tests, it appears that both Aop and Aa^ type 
R-curves deviate from intrinsic behavior after the onset of limit load. This 
problem is generic to both methods, apparently because 45-deg slip lines 
develop that connect the crack tip to the free edges of the specimen. This type 
of deformation tends to disrupt the crack tip deformation fields such that 
the crack tip modeling of the fracture processes zone is progressively weak
ened with continued deformation. Therefore, it would appear that in order to 
develop substantial portions of intrinsic J^ curves in CCT tests, most of the 
data should be developed under confined plasticity conditions and this can 
be satisfied only by testing specimens with relatively large initial ligaments. 

The following sections will address the various ways that intrinsic R-curves 
are used to make instability predictions. 

Tearing Instability 

Instability results from a lack of balance between an externally applied 
crack drive force and material crack growth resistance and will ensue when 
the rate of increase of the applied drive force exceeds that of the material 
resistance to crack growth. The general principles have been known since 
1961 and are well documented in Ref 14. 
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Recently, the basic implications of this concept were explored further by 
Paris et al [15-16], and as a result, it was demonstrated that the overall char
acteristics of the structure play a major role in instability and its effects have 
to be included in the rate balance mentioned. In this work, they introduced a 
nondimensional quantity called the tearing modulus, T, that in general has 
the form 

r=4-f (10) 
fffl da 

where E is the elastic modulus and OQ is the flow stress. If Eq 10 is evaluated 
using the / resistance curve of the material, the resulting T is the material 
tearing modulus Tmat- ^ instead, dJ/da in Eq 10 is calculated as the rate of 
change of crack drive or the applied /, per unit virtual crack extension, with 
the condition of total displacement, 6tot' l̂ p̂t constant (or other similar con
ditions specified), the resulting T is the applied tearing modulus Japp. And so 
following References [15-16], instability will occur when 

-' app — -'mat ( H ) 

Using the condition of total displacement constant, the compliance of the 
structure. CM, is introduced into the analysis and Tapp becomes a function of 
CM- Consequently, according to the theory, Eq 11 instability is predicted 
provided the values of r^^, and expressions for Tapp are known. In their orig
inal work, Paris et al also performed the first experimental evaluation of the 
theory. In tests of three-point bend specimens loaded in series with a spring 
bar of adjustable length, the compliance of the system, CM, was varied from 
test to test, producing stable or unstable behavior in complete agreement 
with the theory. In this work the expressions of T̂ pp for different configura
tions were calculated by assuming that the material was perfectly plastic and 
that the crack was growing under limit load conditions. 

Later on, Hutchinson and Paris [17] presented a more general expression 
for Japp for a specimen loaded in series with a spring, simulating the structure 

(12) 

where 6 is the displacement due to the crack and CM is the compliance of the 
spring. All the terms appearing in Eq 12 are calibration functions, that is, 
they do not bear any information regarding the material response to crack 
growth. These functions can be obtained from finite-element analysis or ex
perimentally from blunt notch specimen tests, and no "real" crack growth 

T = 
' app 

E 1 dj 
da p 

dJ 

dP 
d8 

a 3a p 

1 

c +^' 
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test is needed for their determination. This scheme has been used [18-19] to 
obtain Tapp for different configurations of practical interest, and, as was 
mentioned, instability can be predicted by comparing the value of T^^^ ob
tained from Eq 12 with the experimentally obtained Tmat-

In this section, the problem is approached from a different point of view, 
emphasizing the role of the actual P-6 test record. In fact, as shown by Ernst 
et al [3], both T^^i and T^^p can be evaluated from a single specimen test 
record and the conditions for instability can be found directly. 

The r^at is defined as the rate of change of / with respect to crack length 
along the J-R curve, or actual test record. 

E (dj\ ^ _E_ (dJ_ dJ d6\ 
(13) 

At the same time, considering the load P as a function of displacement, 6, 
and crack length, a, 

P = P(5,a) (14) 

it can be differentiated to give 

dP = 

or rearranging 

dP 
da 

d8 
da 

da + 
dP 
38 

dh (15) 

dP 
da 6 

f dP dP 
\d8 6 6 

\ 
J 

(16) 

where the terms (dP/da) \^ and {dP/d8) |a are calibration functions, and the 
term dP/db is to be measured from the actual test record. Replacing Eq 16 in 
Eq 13 and noting that 

dP 
da 

dJ 
dd 

gives 

E dJ 
•* mat Tin 

oo j da 

which is a general expression for r^at. 

dP_ 
35 

dP 
db 

(17) 
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The applied tearing modulus T^p is defined as the rate of change of J^pp 
with crack length under the condition that the overall displacement is kept 
constant (or equivalent condition). Thus, Tapp is given by 

T = -* app 
(^0^ 

f) =-T(f + f f ) as 
The condition Sjot = constant, is equivalent to d8,ot = 0, or separating the 
total displacement into a part due to the crack, 6, and a part due to the rest 
of the structure (uncracked body part), 8M 

dStot — dd -{• dbf4 — 0 

= db + CMdP = 0 

(19) 

(19a) 

where C^ — (A^M) ' — db^/dP can be associated with the linear compli
ance of the system (spring -f testing machine + uncracked specimen). J^pp 
then can be calculated using Eqs 15, 16, 18, and 19 to give 

app 
<y(f 5 \ddj, dP_ 

db 

1 
(20) 

+ K M 

An alternative expression also can be found for J^pp by combining Eqs 17 
and 18, giving 

+ db) 
1 

dP 
do OQ^ 

{dJ/dbY 

T 
jp •' mat 

dj 

da 

(21) 

Moreover, the calibration functions dJ/da \ s and dJ/db \ ̂  can be expressed in 
terms of current values of J and P, respectively, if the expression for P in Eq 
14 is known. As an example, as discussed in Ref 3 for the CT specimen 

dJ 
da 

dJ 
db 

b 

P 

(22) 

(22a) 

where 7 = 1 + 0.76 b/W and r; = 2 + 0.522 b/W. 
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As a result, Eqs 19 to 21, with the corresponding condition of Eq 22, allow us 
to obtain T^a, and Tapp as a function of current values of J, P, and b, the slope 
dP/dd, and the stiffness of the structure K;^; all quantities obtainable from a 
single test record [3]. This different approach to the instability problem em
phasizing the role of the load displacement record allows a new perspective to 
the instability phenomenon. That is, by comparing J^at ^nd Tapp, an alternate 
physical meaning can be given to the instability condition of Eq 11. In fact, by 
comparing Eqs 19 and 20 one gets Tapp > r^at when and only when 

dP 
KM = CM-' < " ^ (23) 

where dP/db refers to the slope (decreasing load part) of the load versus dis
placement test record (P-6 of the specimen alone). As a result, by just in
specting a test record of a certain specimen geometry, the amount of addi
tional structural compliance needed to cause instability in an identical 
specimen test, or the needed additional compliance CCR (compliance capac
ity remaining) [3] can be obtained readily. 

So far, it is obvious that instability can be predicted by the CQR concept for 
a given specimen geometry. Nevertheless, it is of much greater interest to be 
able to predict instability for a certain specimen without actually running a 
test. This also can be accomplished using the CQR concept. In fact, —dP/db 
can be obtained from Eq 17 and substituted in Eq 23 to get 

C -^ = - ^ = - ^ 
^'^ db db 

+ i4^V ' 
da I Off _ dJ 

(24) 

as the instability condition for any configuration. Note that, as mentioned, 
dP/db\a, dP/da\/i, and dJ/da\i are calibration functions and the only addi
tional information needed is Tmat which comes from other specimen tests. 
Thus, instability can be predicted in a given configuration with no more than 
calibration functions and "universal material properties" (no actual test 
needed). In this approach, Eqs 23 and 24 are completely analogous to the 
previously mentioned method used by several authors. In fact, if the /^j-curve 
or KR-Aa^[{ is available (obtained for a certain specimen geometry) the P-b 
record for an untested configuration can be predicted using Eqs 3 to 9 and 
the instability condition obtained following Eqs 23 and 24. Alternatively, 
with the material resistance curve information and the calibration functions 
known, the crack drive force, J = J (8,ot,a), can be obtained. The tangency 
condition can be found, and mstability predicted. 

It is emphasized here that all of the preceding calculation makes use of the 
concept that a universal geometry-independent crack growth resistance ma-
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terial property can be found. In situations where the universal parameter 
does not exist as such, some investigators have adopted the value of Tniat ob
tained by testing bend-type specimens as a conservative lower bound estima
tion. Nevertheless, the apparent variability of the J-R curve due to different 
geometries is still an open question which needs further exploration. This 
subject will be addressed again in the next section. 

To illustrate the foregoing, a practical example of test specimen perfor
mance will be shown. Two specimens of 2024-T351 aluminum were tested in 
displacement control loading: (1) a 4T CT, thickness = 12.7 mm {Vi in.), 
a/W = 0.5, and (2), a CCT, total width T^ = 406 mm (16 in.), thickness = 
12.7 mm (Vi in.) 2a/W - 0.4. The P-8 test record for the CCT specimen was 
predicted from the J^ versus Aup R-curve generated from the 4T compact 
specimen, as shown in Fig. 9. 

Measuring the slope of the dropping part of the curve beyond maximum 
load, the compliance CCR needed to cause instability was estimated to be 
1.95 X 10"^ m/N (3.41 X IQ-^ in./lb), which predicts that a panel length 
of I, = 711 mm (28 in.) [for the same W = 406 mm (16 in.) and thickness, 
B = 6.35 mm (VA in.)] will cause crack instability. Considering that the 
estimated effective length was L = 686 mm (27 in.) and that the panel went 
unstable, it can be concluded that the prediction is in excellent agreement 
with the experimental result. 

Graphical R-Corve Instability Metliods 

The tearing instability concept could be viewed as a numerical adaptation 
of principles that have been applied in the older and more conventional 
graphical methods. Crack drive is plotted against the material R-curve. See 
Fig. 10 as a schematic example. The R-curve indicates the trend of material 
fracture toughness development as a crack drive is increased. When the level 
of toughness, J^, and development rate, dJu/da, are the same as crack 
drive, / , and crack drive rate, dJ/da, crack instability will develop. This, of 
course, is uniquely defined by the tangency condition shown with load i'3. As 
was pointed out earlier, material flow property effects are an important con
sideration in application of this model, and this is particularly important for 
structural materials that develop considerable plasticity and work hardening. 
The options are to incorporate the material flow properties in either the crack 
drive calculations or in the R-curve. 

At present, the common practice is to use J^-Aa^ R-curves and calculate 
elastic-plastic to fully plastic crack drive solutions for /-crack drive of the 
various geometries. As such, the material flow properties are contained in 
crack drive. The calibration behavior such as that shown in Fig. 6 is used to 
obtain crack drive, observing the trend in / at a fked load over variable crack 
size, /-crack drive for the CCT panel of 2024-T351 aluminum in Fig. 9 was 
calculated using the handbook [13] of/solutions. The material crack growth 
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FIG. 9~Load-displacement test record of CCT predicted from 4T CT jR-curve. Results of 
dP/d5 slope to predict critical CCT length. 

resistance behavior was obtained from the 4T size compact specimen, as 
shown in Fig. 11. Here load control is implied, and instability occurs at max
imum load. Therefore, we compare an experimental maximum load of 801 
kN (179.9 kips) to a predicted maximum load of 779 kN (175 kips). 

An alternative which is not presently widely recognized is to incorporate 
flow properties into the R-curve through the use of Aa^ on the abscissa as was 
described earlier. Since material flow properties are contained within the 
R-curve, crack drive can be calculated on the basis of simple linear-elastic Ki 
solutions. A comparison of the two alternate procedures is illustrated for the 
4T CT specimen of 2024-T351 in Fig. 12. Again, the crack drive curves are for 
load control assumption such that instability is predicted at first attainment 
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FIG. 10—Schematic of crack driving Jorce and crack growth resistance curves. 

of maximum load. The determinations for crack drive were made at 44.5 kN 
(10 kips) load. The maximum load in test was actually 45.8 kN (10.3 kips). 
Clearly, the instability prediction is suitably equivalent with either choice. 

Finally, it will be useful to reexamine the T instability prediction example 
in terms of the conventional /if^-curve. Again, the R-curve is obtained from 
the 4T CT specimen test, but in this case effective crack growth Aa^ is plotted 
on the abscissa, as shown in Fig. 13. Crack drive is simply obtained from 
linear-elastic Ki, and because displacement controlled loading is used, speci
men compliance behavior also is incorporated in crack drive. Load is set at 
774 kN (174 kips), observed experimentally to be the failure load, and we 
predict a critical panel length for crack instability. As can be seen, the tan-
gency condition occurs for a panel length, Z, = 480 mm (19 in.). Again, this 
result agrees well with the experimental observation. 

Concluding Comment 

The present study represents an attempt to review and to put into perspec
tive several various R-curve approaches and instability concepts that have 
evolved over the past 20 years. In general, it is found that despite the highly 
varied origins of analytical developments, there is a strong coherence in the 
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end results from the standpoint that predicted instability conditions gener
ally agree within acceptable limits. 

The/-calibration approximations from the work of Shih et al [2,8,19] ap
peared to predict suitable elastic-plastic 7-crack drive relationships that can 
be used withZ/j-Aa^ crack growth resistance curves. Alternatively, flow prop
erty effects can be incorporated into R-curves in the form of K^ versus Aa^ 
and linear-elastic Ky crack drive can be used to predict instability conditions. 

Crack drive rate and material crack growth resistance properties also can 
be compared in terms of the dimensionless J-moduIi. T p̂p represents the 
elastic-plastic /-crack drive slope and J^at results from the J-Aop R-curve 
characterization. J-modulus was originally specialized to fked displacement 
systems where system compliance was shown to exert an influence on insta
bility occurrences. This specialization is not confining, however, in the sense 
that T, or for that matter, any of the other aforementioned approaches can 
be applied to either load- or displacement-controlled systems. 

Generalized equations relating T p̂p to Jmat (again assuming displace
ment-controlled systems), have led to some interesting observations about 
the relationship between cracked body behavior and system compliance. 
Simply, the added compliance needed to cause component instability can be 
determined directly from test record slopes. In effect, material fracture 
toughness analysis information is not necessarily needed to demonstrate in-
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stability experimentally. However, to predict instability on an untested geom
etry, calibration functions as well as information on material R-curve be
havior are needed. From the point of view of the authors, this aspect of 
R-curve technology represents the major challenge, and for this, a complete 
understanding of constraint, geometry, and loading condition influences on 
material R-curve and flow property behavior is necessary. 
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APPENDIX 

Defomiation Theory J and the Growing Crack 

Values of deformation theory of J, J^, were obtained for the CT and CCT specimen 
geometries using the following formulas \3-4]. For the CT, 7p is given by 

/,+, = (J, + - ^ >lu + l ) ( l - f K+i . - f l , ) (25) 

where subscripts ( or j + 1 indicate quantities evaluated at that step. 

T) = 2 + 0.522fe/W 

7 = 1 + 0.76Z>/iy 

Aii+\ refers to the area enclosed by the load per unit thickness versus displacement 
record between boundaries of constant displacement 

6,- and 6,-i- j 

In the same spirit, for the CCT, JQ is given by 

JQ = G + J pi 

J pi for CCT based on 8 ,̂ 

where 

Aa = bi- hi+i, 
h = total remaining ligament (W — 2a), 
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5 = plastic component of displacement, and 
J pi = plastic component of / . 

Modified/ 

The foregoing results showed how to calculate the correct 7^ from a P-8 record for a 
CT and CCT. In this section a different concept is introduced. Rice et al [5-6] sug
gested that if two specimens subjected to pure bending with different initial remaining 
ligaments are tested, the resulting/^ — Aa curves would be slightly different and that 
eventually consistent results would be obtained if instead of 7^, a far field 7, Jy, were 
used. The slope of the Jy — Aa being 

djy __ CUD Jp — G 

da da 
(27) 

Very recently, this concept was generalized by Ernst [/J for other configurations: the 
expression for this modified 7, Jf^ being 

JM—JD~ 
97, •pi 
da 

for pure bending J^ coincides with Rice's Jj 

dJ, pi 

da 

Jpi 

da 
Spi 

(28) 

(29) 

and thus 

dJM ^ djf^ _ djj) Jpi^ 

da da da 
(30) 

but at the same time Eq 25 provides a general way of modifying 7. 
In this work, JM for the CT was calculated as 

JM-JD+ \ J—-da (31) 

with 7 = 1 -I- 0.76 b/W. 
For the CCT, the difference between 7 ^ anAJp is almost negligible. In fact, follow

ing Rice, Paris, and Merkle [20], for the CCT, Jp, is 

'Spi 

Jpi = ~ Pdb 'P'-
P^pi 

(32) 

Now if the load and displacement are connected by a pure power law P = a 8^^", then 

SJpi 
da Spl 

J 
(33) 
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which in general is a small modification to J^. In fact in the limit of perfect plastic 
material (n — oo) 

5P/ 

and thus 

da 
- 0 (34) 

dpi 

JM = JD (35) 
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Summary 

The papers in this Special Technical Publication have been divided into two 
volumes. Volume I contains papers dealing with fracture theory and analyses. 
The papers in Volume II primarily describe test methods or fracture mechan
ics data about specific applications or materials. 

Volume I has five sections: Fracture Theory, Stress-Intensity Factors, Sur
face Cracks, Fatigue and Stress Corrosion, and J-Integral and R-Curves. 

In the section on Fracture Theory, various theoretical models are proposed 
in six papers for different aspects of fracture mechanics. Chona, Irwin, and 
Sanford describe photoelastic methods to determuie the influence of specimen 
size and shape on the coefficients of a series representation of the stresses 
around the crack tip. The authors compare the multiparameter representation 
to a "singular" solution in an effort to quantify the "singularity-dominated 
zone." In the second paper, de Wit proposes a crack-opening displacement 
model for failure that encompasses the whole range of fracture mechanics from 
linear elastic fracture mechanics through elastic-plastic fracture mechanics 
and plastic collapse. Shukla and Foumey report on studies of the energy loss 
during the fracture process using photoelastic methods. In their paper, 
Vassilaros, Joyce, and Gudas explore the tearing instability theory of Paris and 
coworkers for applicability to materials having high tearing moduli. Gavigan 
and Queeney propose a theoretical model for the fracture resistance of particle-
hardened brittle solids based on strain energy concepts. In the last paper of this 
section, Wnuk and Mura describe a final stretch model for predicting stable 
crack growth under three-dimensional elastic-plastic conditions. 

The section on Stress-Intensity Factors contains six papers that give stress-
intensity factor solutions for various physical conditions or structural geome
tries. Rossmanith and Shukla describe the use of photoelastic techniques to 
determine mbced-mode stress-intensity factors for both static and dynamic 
crack fronts interacting with elastic stress waves. Shah and Lin use fmrte-
element analysis to calculate stress-intensity factors for partially cracked stiff-
eners on stiffened panels. Hsu and Kathiresan report on the calculation of 
stress-intensity factors for an attachment lug having an interference-fit 
bushing. The next two papers in this section use different analytical ap
proaches to determine stress-intensity factors for radial cracks in pressurized 
thick-wall cylinders: Pu and Hussain treat the partially autofrettaged case, 
and Parker et al treat the fully autofrettaged case. Finally, Newman and Raju 
report stress-intensity factors for imbedded cracks, surface cracks, comer 
cracks, surface cracks at holes, and comer cracks at holes for finite bodies 
under three-dimensional stresses. 
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Four papers are included in the section on Surface Cracks. Smith and Kkby 
describe methods to determine stress-intensity factor distributions for deep 
surface cracks and the relative influence of bending stresses on deviations 
from the classical semielliptical shape. Lim, Dedhia, and Harris report ap
proximate influence functions that can be used to estimate Mode I stress-
intensity factors for circumferential surface cracks of arbitrary size in pipes 
subjected to arbitrary stresses and loadings. JoUes and Tortoriello propose a 
methodology for predicting the geometrical crack growth patterns for surface 
cracks growing under cyclic tension or cyclic bending stresses. Finally, 
Dedhia, Harris, and Lim use the influence functions described in their previ
ous paper to predict the effect of nonuniform thermal stresses on fatigue crack 
growth of surface cracks in nuclear reactor piping. 

Nine papers constitute the section on Fatigue and Stress Corrosion. Suresh, 
Toplosky, and Ritchie extend earlier work on a proposed new mechanism for 
the effect of environment on crack growth rates in steels near the crack-
growth threshold. In the second paper, Yoder, Cooley, and Crooker propose a 
model, based on yield strength and grain size, for predicting the transition 
point at which the slope of the logarithmic plot of da/dN versus AJ^ changes 
in steels. Bertel, Clerivet, and Bathias argue for the use of Fiber's AAT̂ff to de
scribe crack growth under complex cyclic loading. Krafft presents numerous 
additional case studies of fatigue crack growth using his improved micro-liga
ment instability model. Ingraffea, Blandford, and Liggett use a boundary ele
ment method to predict two-dimensional Mode I and mixed-mode quasi-
static growth and fatigue crack growth. Glinka and Stephens present a 
method of fatigue life calculation based on a combination of fracture 
mechanics and low-cycle fatigue notch strain analysis. Kim and Manning de
scribe a model for predicting corrosion fatigue crack growth under spectrum 
loading in a chemically aggressive environment. 

The last two papers in this section are about stress corrosion. Brose reports 
on investigations of the effect of state-of-stress and surface condition on 
stress-corrosion crack initiation. Abou-Sayed et al compare stress-corrosion 
crack growth rates calculated with an elastic-plastic fracture mechanics 
analysis to rates calculated by superposition of linear elastic fracture 
mechanics conditions. 

The last section of this volume contains four papers about the J-integral and 
R-curves. In the first paper, Ernst proposes a single solution for / that de
scribes crack growth in a single specimen when the state-of-stress starts as 
pure bending, moves into combined bending and tension, and ends as pure 
tension. Dodds, Read, and Wellman compare experimentally measured J-
uitegral values for specimens having large yielded zones to those determined 
analytically using a nonlinear finite-element method. loyce reports on the use 
of load-displacement records to develop J-R curves at a load point velocity of 
approximately 0.25 m/s. In the last paper of Volume I, McCabe and Ernst 
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1-562, II-5, 11-16, 11-51, 
11-52, 11-54, U-55,11-61, 
11-81, 11-82, 11-89, 11-176, 
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11-178,11-221, 11-222,11-231, 
11-232,11-493 

Dent, 11-285 
Distribution, I-101-I-113,1-134 
Inelastic, 11-526 
Load, 1-73, 1-74,1-544,1-546-

1-553,1-555-I-557,1-559, 
1-563,1-567, 1-576, 1-578, 
n-403,11-404, 11-408, 11-409, 
11-425 

Load-line, 11-239, n-24], 11-243, 
n-245, n-278, 11-307,11-482-
11-485,11-487,11-492, 11-520, 
11-521, II-525-U-527,11-530 

Load-point, 1-354, 1-500,1-502, 
1-504,1-508,1-509,1-512, 
1-515,11-361 

Measurement, II-166-II-180, 
11-500 

Mode II, 1-340, 1-344, n-381 
Nonelastic, II-300-II-302 
Plastic, 11-297 
Rate, 11-34, II-188-U-191, 

11-193,11-194, II-232-II-234, 
11-236, U-242 

Residual, n-298 
Vertical, 11-356,11-359 

Drivingforces, 1-89,1-90 
Crack, 1-562,1-572, 1-573, 1-576-

1-579,1-581, U-108,11-113, 
11-545 

Fracture, 1-522 
Ductility, 1-108,1-113,1-114, 1-124, 

11-501, U-503,11-506 

E 

Elasticity, 1-28, II-297-II-300,11-321 
Linear, 1-174, 1-175, 1-483 
Plane, n-320 

Elastic behavior, 11-298,11-299, 
11-300 

Elastic crack-wave interaction, 
I-133-I-155 

Elastic-plastic 
Analysis, 1-218, 1-222 
Behavior, 1-69, 1-71, 1-531,1-532, 

11-485,11-486, 11-492 
Interface, 1-196 
Regime, 11-403 

Electric potential (EP) technique, 
II-266-II-292 

Electrochemical process, 11-471 
Embrittlement, 11-14 

Hydrogen, 1-330, 1-340, 1-344, 
1-345, I-447-I-450, 11-16, 
U-101, 11-383, 11-384 

Temper, 11-101 
Energy, 11-261,11-263,11-264 (see 

also Crack-tip) 
Density, 1-115, 11-321,11-474 

Strain, 11-322,11-323,11-335 
Dissipation, 1-94,1-lOO 
Elastic strain, 11-343, 11-346, 

11-349 
Fracture criterion, 11-342,11-343 
Fracture-surface, 1-85 
Loss during fatigue, 1-51-1-63 
Release rate, I-408-I-411 
Separation rate, 1-106 

Environment 
Aggressive, 1-330, 1-389, 1-446-

1-447, 1-452, 1-453,1-455, 
1-458, 11-379, 11-380, 11-518 

Air, II-607-II-609 
Aqueous, 1-447,11-114 
Attack, 1-46, 1-381,1-384-I-385, 

1-393, 1-396, 1-405, 11-518 
Caustic, 11-126 
Corrosive, I l -n , 11-12, n-14-

11-17 
Degradation, 11-544 
Deleterious, 1-483 
Effects, I-330-I-345, 1-446, 1-447, 

II-4, n-131, 11-143, 11-151, 
11-183, II-376-II-379, 11-520, 
11-529, n-534, 11-545, 11-580-
11-596 
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Fatigue, 11-121, 11-138 
Gaseous, II-373-II-377, 11-379-

11-384, II-594-II-596 
Helium, 11-601, 11-603, 11-607, 

11-610, 11-614 
Hydrogen, I-331-I-335, 1-338-

1-340, 1-344, 1-345, 11-370-
11-387 (see also Cracking, 
hydrogen-induced; Embrit-
tlement, hydrogen; Hydrogen 
charging) 

Moist, 1-331, I-333-I-339, 1-342-
1-345, 11-82-11-85, 11-380, 
11-381, 11-383, 11-595, 11-596 

Nonaggressive, 1-449, 1-452, 1-455 
Noncorrosive, II-8, II-9, 11-14, 

11-16, U-17 
Seawater, 11-144, 11-147, 11-149-

11-153 
Wet steam, U-110,11-113, 11-118 

Failure 
Analysis, 1-26,1-43-I-46, 11-116-

n-117 
Catastrophic, 1-85, 11-453 
Categories, I-31-I-33, I-37-I-38, 

1-48, 1-49 
Criteria, I-25-I-49,11-169 
Ductile, 11-489 
Intergranular, 11-385, 11-386, 

11-545 
Modes, 11-581, 11-582, 11-592-

11-593 
Structural, 1-427 

Fatigue, II-47-II-66 
Analysis prediction methods, 1-433 
Crack growth, 1-218-1-236,1-309-

1-325, I-380-I-405, 1-446, 
1-447, II-3-II-17, 11-33-
11-46, n-157, 11-165, 11-582-
11-585, 11-587-11-588, 11-598, 
11-604, II-607-U-612, 11-614 

Constant-amplitude, 1-431, 
II-67-II-85 

Life evaluation, II-120-11-139 
Mixed-mode, II-588-II-593 
Near-threshold, 1-452, 11-78, 

II-81-II-85, II-370-II-387 
Rate, I-372-I-374, 1-377, 1-378, 

1-429, 11-47, 11-48, 11-63, 
II-67-II-69, 11-75, 11-76, 
11-557, 11-594 

Crack growth resistance, 1-452 
Crack initiation lives, 1-435 
Cracks 

Nonpropagating, 11-54 
Slow growing, 11-67 

Damage, 1-437, 1-439, 11-370 
Failure, 1-239 {see also Failure) 
Life calculations, I-427-I-444 
Low-cycle, I-428-I-429 
Mixed-mode, 1-407-1-42^ 
Properties, II-101-II-118 
Resistance, 1-298, 1-429 
Strength reduction, 1-429, 1-437, 

1-443 
Ferrite content, 11-496, 11-497, 

11-498, 11-511 
Finite-element analyses, 1-161, 1-163, 

1-183, 1-195, I-198-I-201, 
1-207, 1-214, 1-215, 1-240-
1-243, 1-262, 1-277, 1-521-
1-541, 11-90, 11-157, 11-238, 
11-256, 11-261, 11-273, 11-275 
(see also Stress, analysis; 
Thermoplastic finite-element 
analysis) 

Results, I-514-I-516 
Finite-element model, 1-488, 1-489, 

n-167-IM69, 11-173, 11-176, 
U-179 

Fissures, 11-194,11-428, 11-429 
Transverse, 11-432, 11-433, 

11-435, 11-439, II-440-II-443 
Flaws, 1-90, 1-521, 1-522, 11-61, 

II-129-II-131 
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Crack resistance, 1-85 
Deep, 1-278, 1-279 
Extension, 1-90 
Preparations, controlled, 11-463-

11-476 
Shape deviations, 1-276 
Size, 11-214, n-215 
Stressed, 1-92 
Surface, 1-270,1-277,1-297-I-307, 

11-216, 11-268, 11-269, 11-274, 
n-281,11-282, II-284-n-292 

Flexibility, effects, I-163-I-165,1-170 
Fractography, 1-473, 11-70, 11-75-

11-78, IM12-II-113,11-116, 
U-125-IM27,11-137, 11-479-
11-494, 11-585,11-594-11-5% 

Fracture, 11-428, 11-429 
Behavior, 1-76, 11-422,11-464 
Brittle, 1-31, 1-39, 11-11, 11-13, 

11-103 
Catastrophic, 1-107 
Cleavage, 11-487, 11-491 
Composites, 11-580-11-5% 
Control planning, II-114-II-118 
Criteria, I-98-I-101 
Ductile, n-13,11-15, 11-17, 

11-365,11-487 
Dynamic, II-252-II-264 
Energy, 1-59, 1-60 

Determination, I-54-I-57, 1-63 
Loss, 1-51, 1-63 

Extension, 1-102,1-109 
Final, 11-192,11-422 
Initiation, 1-107 
Instability, 1-543 
Mechanics 

Analysis, 11-214, 11-215 
Elastic-plastic (EPFM), 1-26-

1-28, 1-32,1-33, 1-38, 1-39, 
1-41,1-43, I-45-I-49, 1-99, 
I-lOl, 1-122,1-483, 1-484, 
1-521 

Linear-elastic (LEFM), 1-18, 
I-25-I-27, 1-49,1-106,1-270, 

1-407, 1-409, 1-425, 1-483, 
1-484, 1-490, 1-493,1-521, 
1-533,1-562, 11-34, n-102, 
II-115-II-118, 11-168,11-206, 
11-208, 11-211,11-222, 
11-297,11-416, 11-417, 
11-419,11-421, 11-422, 
11-425,11-439, 11-440, 
11-442,11-554,11-557 

Prediction, I-482-I-495 
Mode, 1-473,11-581, 11-582 

Intergranular, 11-524 
Mked, 11-582 
Mode I, II-599-II-600, 11-607 
Transition, 11-487 

Morphology, 1-448, II-378-II-379, 
U-382,11-383 

Intergranular, 11-379,11-380, 
U-384-II-387 

Transgranular, 11-378, 11-379, 
11-380, II-385-U-387 

Process, 1-27, 11-364 
Zone, 1-3,1-4,1-18, 1-19, 

1-572, 11-447 
Properties, II-101-II-118 
Quasi-brittle, 1-97 
Rapid, 1-52,11-305, 11-311, 

11-315 
Resistance, I-85-I-95,11-342, 

n-353, 11-369, II-591-II-592 
Shear, 11-357 

Fracture Toughness Concepts for 
Weldable Structural Steel, 
Symposium on, 1-25, 1-32 

Frequency, effects, 11-45, 11-46, 
11-544,11-545 

Fretting 
Damage, 1-173 
Oxidation, 1-331, 1-341, 1-343, 

1-344 
Fringe patterns (see also Photoelastic 

patterns, fringe) 
Interference, 11-51,11-52, 11-65, 

11-66, II-158-II-162 
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Isochromatic, I-4-I-10,1-12, 
1-15, 1-17, 1-57, 1-134, 1-142, 
1-147, 1-149, 1-150, 1-152, 
1-154, 1-155, II-449-II-452, 
11-455, 11-456, II-458-II-460, 
11-462 

Frozen stress method, 1-270, 1-271, 
1-276 

Geometries, 1-486, 1-487, 1-494, 
11-47,11-123, II-171-II-173, 
11-179, II-187-IM91, 11-193, 
11-195, 11-253, 11-264, 
11-408,11-483 

Compact specimen, 11-354 
Crack, 1-275, I-282-I-284, 1-286, 

1-312, 1-318, 1-319, 1-323, 
1-324, 1-417, 1-418, 1-421, 
1-423 

Dependence, 11-252 
Effects, 1-463, 1-464, 1-480, 

1-563, 1-564,1-566, 1-568, 
1-576, 1-577, 1-582, 11-89 

Flaw, variations, I-297-I-307 
Shear fracture, 11-357 
Specimen, 1-7, 1-8, 1-13, 1-15, 

1-21,1-54,1-60-I-63 
Structure, 1-26, I-33-I-38, 1-48 
Variation, 1-525 

Geothermai heat, 1-133 
Girthwelds, 11-214, 11-215 
Glass, 1-85,1-91, I-92-I-94 
Graphite, PGX, II-598-II-614 
Grain-size dependence, I-348-I-363 
Green's function (see Weight 

function) 
Growth-rate factor (GRF), 1-384-

1-390,1-394-I-403 

H 

Hardening, 1-567, 1-568, 1-569, 1-577 
Age, 11-356 

Isotropic, 1-486 
Secondary creep, 11-234, 11-237, 

11-239, 11-242 
Strain, 1-120, 1-382, 1-383, 1-385, 

1-388, 1-390, 1-404, 11-301, 
11-420 

Techniques, 11-389, 11-391 
Work, material, 1-29, 1-39, 1-41, 

11-348 
Rates, 11-503 

Hardness, 11-148, 11-392 
Zone, 11-390, 11-399 

Heat treatment, 11-147, 11-148-
11-149 

Heavy-Section Steel Technology 
(HSST) Program, 11-463, 
11-464, 11-467, 11-470 

Helium gas, 1-330,1-332, 1-337, 
1-338, 1-341 

Holes, resistance curves, I-87-II-100 
Hybrid Experimental-Numerical 

(HEN) approach, 11-157, 
11-158, 11-165, II-167-II-169, 
11-174, II-176-II-178, 11-180 

Hydrogen (see also Embrittlement, 
hydrogen; Environment, 
hydrogen) 

Charging, 11-464, 11-466, 11-470, 
11-472, II-473-II-475 

Evolution, 1-149 

I 

Inclusions, 1-88, 1-89, 1-91, 1-92, 1-97, 
1-136,1-173,11-115, 11-431 

Alumina, 11-555 
Ceramic, 11-554 
Content, II-496-II-501, 11-509-

11-511, 11-513 
Effects, 11-369 
Elastic, 1-86 
Size, 1-87 
Stiff, 1-85, 1-86, I-92-I-94 
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Influence function, I-282-I-295, 
1-311, 1-322 

Instability behavior, I-73-I-83 
Crack path, 1-133 
Plastic (see Plastic collapse) 
Terminal, 1-111,1-112,1-115 
Theory, I-562-I-584 

Interferometry, optical, 1-4 
Isochromatics, Mode 1,1-273 

J-contour integral, 11-232,11-234, 
n-238, 11-244 

Evaluation, II-199-II-213 
J-integral, I-499-I-518, I-521-I-541, 

II-92-II-94, 11-97,11-342, 
11-351,11-353 

Analysis, II-402-II-414,11-479, 
n-482-II-486, 11-487,11-503-
11-508, 11-510, 11-511 

J-parameter evaluation, 11-182-
n-195 

J-resistance, 11-280 
J-values, I-565-I-567, 1-580, 1-581, 

I-582-I-584 

K 

Key curve function analysis, 1-543-
1-559 

Leaks, 11-285, 11-464, 11-469 
Piping, 1-312,1-314 

Life evaluation, crack, II-120-II-139 
Prediction, 1-218,1-230-I-233, 

1-234,11-233,11-371, 11-518 
Linear-elastic behavior, 1-26,1-27, 

1-32, 11-483, 11-486,11-488-
11-489 

Linear regression analysis, 11-348 
Load displacement (see Displace

ment, load) 

Load drop, 11-406, II-408-II-410, 
n-413 

Load-environment interaction, 1-447, 
I-453-I-455,1-461 

Load point displacement {see Dis
placement, load point) 

Load relief factor analysis, 1-201-
1-203 

Loading, 1-111, 1-157,1-158, 1-168, 
1-170, 1-173, I-381-I-382, 
1-385 

Constant-amplitude, 1-297,1-305 
Cyclic, 1-310,1-367-I-378, 1-408, 

1-418, 1-419, 1-447, 11-50, 
II-52-II-54, 11-58, 11-65, 
11-307 

Frequency, 11-33 
Effects, 11-391, 11-392, 11-483, 

11-486 
Elastic, 11-361 
Histories, 11-19, 11-22, 11-23, 

II-25-II-29, 11-168, 11-532, 
11-533, 11-535, 11-537 

Rate, II-342-II-351 
Ratio, 11-373 
Spectrum, I-455-I-461,11-548-

11-550 
Static, 1-4,1-7 
Sustained, II-536-II-551 
Thermal, 1-195, 1-222 
Time-independent, 1-143 
Variable, I-427-I-444 
Wedge-open (WOL), 11-23 

Loss-of-coolant accident (LOCA), 
1-312, 1-314 

Lugs, attachment, cracks in, 1-172-
1-189, I-190-I-193 

M 

Macrocrack, 11-604 
Man-Ten analysis, 11-28, 11-29 
Material 

Brittle, 1-3,1-107,1-109,1-llO, 
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11-115, 11-116, 11-118, 
11-183, 11-506, 11-599, 11-600 

Ductile, 11-93, 11-115, U-116, 
11-118, 11-272, U-273, 
11-402, n-600 

Resistance, dynamic, 1-144 
Material-environment system, 

1-464, 1-473, 1-480 
Mechanical flawing method, 11-466-

11-470 
Merkle-Corten analysis, 1-500-

1-504, I-506-I-508, 1-510, 
1-512, 1-515, 1-554, 1-555 

Metal dissolution, 1-330 
Metallographic examination, 

II-428-II-437 
Metallurgical flawing method, 

II-470-II-475 
Metallurgy, II-125-II-127, 11-137 
Microcracks, 1-52, II-8, 11-194 
Microstructure 

Effects, 11-355, II-4%-II-513 
Morphology, 1-349, 1-351,1-354 

Microvoids, 1-449,11-76, 11-77 
Modified-compact-tension (MCT) 

specimens, I-7-I-9, I-ll-
1-17, I-19-I-21 

Modified mapping collocation 
(MMC), I-213-I-215, 1-218, 
I-219-I-222,1-233 

Multibeam interference, 11-64-11-66 

N 

Nickel-base superalloy, 11-158, 
11-160, 11-165, II-166-II-180, 
I1-518-II-535, II-536-II-551, 
II-554-II-577 

Nondestructive inspection (NDI), 
1-380, 11-115, 11-117 

Nonlinear analysis, elastic-plastic, 
1-193 

Nonlinear behavior 
Elastic, 1-26, 1-32 

Nonlinear effects, 1-97 
Nonlinear zone, I-lOl, 1-102, 1-104, 

1-107, 1-109, 1-112, 1-122, 
1-270 

Nonsingular term variation, I-7-1-12, 
1-17 

Nuclear industry, 1-482 
Piping, 1-483, 1-484 

0 

Overloading, 1-368, I-369-I-378, 
1-432, 1-439 

Retardation, 1-380 
Overpressure, 1-218 
Overstrain {see Autofrettage) 
Oxidation, 11-167, 11-381 (see also 

Fretting) 
Oxide 

Crack closure, 1-330, 1-331, 
1-335, 1-340, I-342-I-345, 
11-381, 11-384 

Debris, 11-113, 11-380, 11-384 
Wedging, 11-381 

Deposits, 1-332, I-340-I-343 
Film, 1-331, 1-343 

Degradation, 11-591 
Formation, 1-452, 11-160, 

11-165, 11-587, 11-5% 
Rupture, 11-16 

Oxygen 
Absorption, 11-16 
Content, U-587, n-594, 11-5% 

Photoelastic patterns 
Fracture, I-5-I-7 
Fringe, M38, 1-149 

Photoelastic studies, I-57-I-60, 
I-133-M36, I-139-I-155 

Photoelasticity, 1-4, 1-274, 1-276-
1-278 

Dynamic, 11-252, 11-258, U-261 
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Pipes 
Flawed, II-266-II-292 
Girthwelded, 1-482-1-495 
Surface cracking, I-282-I-295 
Systems, 1-521 

Pitting corrosion, 11-117, 11-118, 
11-124, 11-126, 11-127, 
II-132-II-134,11-136,11-137, 
11-138, 11-416 

Plastic collapse (PC), 1-26, 1-27, 
1-29, 1-32, I-33-I-35, 
I-37-I-45,1-47-I-49, 
I-500-I-502,11-365 

Plastic flow, I-380-I-405,1-568-

1-570, 1-572 
Plastic wake zone, effects, 11-48-

11-50,11-57,11-58, 11-62, 
11-63,11-64 

Plastic yielding 
Resistance, 1-20 
Strip model, I-25-I-49 

Plastic zone, 1-19, I-27-I-28, 1-113, 
1-439, I-531-I-533, 1-566, 
1-567, 1-572, II-5, II-7, 11-14, 
11-16, 11-20, 11-21,11-38, 
11-45, 11-89,11-94,11-98, 
11-111,11-218, n-360-II-362, 
11-384, 11-387 

Active, II-47-II-66 
Adjustment, 11-31,11-32 
Analysis, 11-133 
Crack-tip, 1-14, 1-21, 11-82, 

11-115, 11-206, 11-506 
Cyclic, 1-353, 1-354,1-356-1-359, 

1-361,1-363 
Enlarged, 11-525 
Size, 1-367, 1-370, 1-375, 1-376, 

1-378, 1-453,11-71, 11-76, 
11-81,11-216, 11-219, 11-220, 
II-225-II-227, 11-302,11-385, 
11-386 

Strain localization, 11-76 
Plasticity, I-26-I-28, 1-37, 1-48, 

1-465, 1-469, I-504-I-506, 

1-508, 1-509, 1-514, 1-515, 
1-525, 1-527, 1-529, 1-533, 
I-538-I-540, 1-562, 1-563, 
1-566, 1-572, 1-577, 11-94, 
11-95, 11-97, 11-98, 11-133, 
n-235,11-268,11-271-
11-273,11-276,11-281,11-284, 
11-292,11-297,11-300, n-404, 
U-405,11-410,11-422,11-467, 
n-542, n-600 

Crack-tip, 11-81, 11-83, 11-218, 
11-403, 11-425 

Effects, 11-183, 11-207, 11-211, 
11-213 

Polycrystalline metals, II-9 
Polyester, brittle, M39,1-140, 

1-141, 1-144, 1-145,1-147, 
1-148,1-151 

Polymers, 1-97, 11-253, 11-254, 
II-256-II-264 

Potential difference technique, 
11-266 

Potential drop technique, 11-266, 
II-267-II-269, II-271-II-273 

Pressure, 1-199,1-201, I-203-I-205, 
1-208,1-209, 1-211, 1-213 

Piping, 11-284, 11-285, 11-288 
Pressure vessels, 1-309, 1-521, 

II-266-II-292 
Rapid internal cooling, 1-52 
Reactor, 11-463,11-464, 11-466, 

11-474 
Steel, 11-297, 11-310, 11-313, 

11-445, 11-446, 11-461, 11-479 
Pressurization, I-218-I-236,11-464, 

11-468 
Pressurized-water reactor (PWR), 

1-322, 11-464 
Process zone, 1-92,1-94, 1-95,1-97-

1-99,1-108, 1-109, 1-113-
1-115, 1-124, 1-393, 1-405 
(see also Disintegration zone) 

Purity, effects, 11-73,11-75, 11-77, 
11-78, 11-81, 11-82, 11-85 
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R 

Rainflow, II-21-II-23, 11-27, 11-29 
R-curves, I-562-I-584 
Reactors 

Boiling water {see Boiling water 
reactor) 

Nuclear, 11-496 
Piping, thermal stress, 1-309-

1-325 
Pressurized water (see Pressurized-

water reactor) 
Trip, I-320-I-325 
Water-cooled, 11-463 

Rectangular-double-cantilever-beam 
(RDCB) specimens, 1-7, 1-8, 
I-10-I-21 

Resistance 
Curves, II-87-II-100 
Electric, 11-289, 11-292 

Rigidity, 1-182, 1-183, 1-185, 1-187, 

1-189, 1-192 
Rupture, 11-238, 11-240, 11-241, 

11-244 
Capability, 11-554 
Mechanisms, II-496-II-513 

Salt water, effects, II-416-II-443 
SAE fatigue program, 1-428, 1-433, 

1-438 
Separation 

Grain boundary, 11-163 
Mechanics, 1-26 

Service stress, II-134-II-135, 11-136 
Singularity-dominated zone, 1-3-

1-22 
Sliding, out-of-plane, 11-63 
Slip 

Band, 1-531, 1-533, I-535-I-536, 
1-540, 11-204 

Cracks, 1-352, 1-361-1-363 
Damage, 11-81 

Plane decohesion, 11-76 
Process, cyclic, 11-83 

Slippage, 1-182, 11-366 
Sodium chloride solution, 1-450, 

1-451, I-455-I-457, 11-12, 
11-14 

Specimens 
Shape effects, I-3-I-22 
Size effects, 1-3-1-22, I-51-I-60, 

I-62-I-63 
Type effects, II-43-II-45 

Stiffeners 
Crack, I-164-M68 
Partially cracked, I-157-I-170 

Stiffening effect, 1-529, 1-530, 
I-536-I-537, 1-540 

Stiffness, 1-68, 1-82,1-576 
Ceramics, 1-85 
Connection, 1-125 

Steel, 1-66, 1-72, 1-73, 1-81, 1-125, 
1-464,1-465,1-468, 1-523, 
1-524,1-543-I-559, 11-71, 
11-144, 11-147, 11-148, 
11-153, 11-155, 11-156, 
11-204, 11-212, U-253, 
11-254, 11-256,11-257, 
11-260, 11-296, 11-297, 
11-302, 11-303, 11-308, 
II-310-II-318 

AUoys, 11-103, 11-104, 11-111, 
11-448 

Crack behavior, II-389-II-400 
Austenitic, 1-310 
Cast, I-427-I-444 
Engineering grade, 1-562 
Environmental effects, I-330-I-345 
Fatigue crack propagation, 

I-380-I-405 
Ferritic, 1-45 
Forge, 1-230 
Fractography, II-479-II-494 
Fracture mechanics testing, 

II-463-II-476 
Fracture resistance, 11-353 
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Fracture toughness, II-342-II-351 
High-strength, II-402-II-414 
HSLA, II-355-II-357, n-366 
Line pipe, 11-51, 11-52, 11-57, 

11-58, 11-60, n-61 
Maraging, 11-365,11-366 
Mechanical properties, 1-67 
Mild, II-4, II-8-II-15 
Near-threshold fatigue, I-348-I-363 
Nickel alloy, 11-369, II-370-II-387 
Pipeline, II-214-II-231 
Piping, 11-268, H-269, 11-276-

U-281,11-284, II-286-II-289 
Processing liquid, U-497 
Rupture mechanisms, II-4%-

11-513 
Stainless, I-482-I-489, 1-492-

1-495, 11-121, 11-126,11-127, 
11-129, 11-130,11-132, 
11-138, U-182-n-195, 11-232, 
11-233, 11-238, II-240-II-242, 
II-244-II-246 

Structural, 1-52, n-23,11-416-
11-443 

Steel-environment combinations, 
11-416,11-438,11-443 

Strain 
Compressive, 11-58,11-63, 11-64 
Distribution, 11-81 
Elastic, 11-200,11-209,11-210, 

11-212 
Energy, 1-144,1-149, 1-152, 

1-289,11-203 
Density, 1-115, 11-581, n-582, 

11-588,11-591 
Field, I-86-I-90, 1-94 
Initial, 1-53,1-58-I-60,1-62 
Rate, 11-234 
Release rate, 1-163, 1-170, 

11-582, 11-591 
Excursion, 1-386 
Hardening {see Hardening, strain) 
Patterns, 11-221,11-225, 11-227-

11-230 
Plane, 1-20, 1-29, 1-299, 1-417, 

1-521,1-522,1-527-I-530, 
I-533-I-536, 1-537, 11-299 

Plastic, 1-18, M9, 1-22, 1-231, 
1-478, 11-21 

Range, 11-200, II-208-II-210, 
11-212, 11-213 

Rate, 11-189 
TensUe, 11-48 

Strength, 11-362,11-363,11-364, 
11-365, 11-609 

Deterioration, 1-97 
How, 1-26 
Fracture, 1-239, 11-582, n-584 
Residual, I-46-I-49 {see also 

Toughness, fracture) 
Tensile, 1-29,1-85 
Transverse, 11-596 
Yield, 1-19 

Stress, 1-26,1-29-I-31,1-32,1-33, 
1-35, I-36-I-39,1-46, 1-48, 
I-88-I-91, 1-501, 1-506, 
11-123, 11-124, n-132, 
11-133,11-182,11-183, 
11-228, n-229, 11-237, 
11-238, 11-242, 11-244 

Analysis, finite-element, 11-121-
11-124,11-132, n-135, 
11-137,11-138 

Applied, 11-204, 11-208 
Bending, 11-104, 11-118, 11-129, 

n-135, 11-136,11-138 
Compressive, 11-58, 11-63, 11-64 
Concentration, 1-172, 1-192, 11-89 

Factor, I-160-I-161, 1-165-
1-167,1-428, 1-429, 1-435, 
I-437-I-438, 1-443, 1-464, 
1-465, 1-473, 1-480 

Corrosion, 11-101 
Corrosion cracking, 1-452, 1-482-

1-495,11-281,11-291, 11-292, 
11-464 

Initiation, I-463-I-480 
Intergranular, I-482-I-484, 

1-487 
Monitoring, 1-272, 11-284 
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Resistance, 1-464,1-477, 
II-416-II-443 

Sensitivity, 11-81 
Variable strength, 11-143-

11-156 
CMOD versus, II-220-II-224, 

11-230 
Crack opening, 1-14 
Crack-tip, 11-542, 11-543 
CTOD versus, 11-231 
Distribution, 1-86, 1-97, 1-98, 

I-123-I-125, 1-142, 1-182-
1-186, 1-191, 1-196, 1-197, 
1-218, 1-222, I-227-I-230, 
11-407, 11-447, 11-453, 
11-460, 11-518- 11-535 

Fatigue-reducing residual, 1-172-
1-173 

Field, I-4-I-6, 1-8, I-l 1-1-13, 
1-17, 1-21, 1-27, 1-28, 1-51-
1-53, I-60-I-63, 1-88, 1-135, 
1-137, 1-139, 1-155, 1-272, 
1-562, 1-563 

Crack-tip, 1-5, 1-408, 11-322-
11-324 

Dynamic, 1-154, 11-321 
Elastic, 1-19, 1-21, 1-567 
Linear-elastic crack-tip, 1-382 
Load-induced, 1-149 

Flow, 11-501 
Fracture, 11-97, 11-98, 11-100, 

11-586 
Frequency, 11-12, 11-15 
Fringe, 1-274, 1-275 
Function theory, 11-321, 11-323 
Intensification, 1-133 
Intensity, I-218-I-236, 1-330 

1-331, 1-333, 1-335, 1-340, 
1-343, 1-465, 1-466, II-34-II-
36, 11-39, 11-42, 11-44, 11-145-
11-147, II-149-II-151, 11-153, 
11-156, 11-163, 11-205 
11-207, 11-296, 11-305, 
11-307,11-518, 11-531, 
II-538-II-541, 11-546, 11-550 

Crack-tip, 11-419 
Cyclic, 1-452, 1-453, 1-455, 

n-391, 11-396, 11-399 
Distribution, I-269-I-279 
Factor, 1-3, 1-5, 1-18, 1-19, 

I-27-I-30, I-33-I-37, 1-42, 
1-48, I-51-I-54, 1-58, 1-60, 
1-93, I-133-I-155, 1-157-
1-170, I-173-I-175, 1-183-
1-188, 1-191, 1-192, 1-195-
1-215, I-239-I-264, 1-282, 
1-283,1-293, 1-295, 1-297-
1-299,1-302-I-304, 1-309-
1-312, 1-317,1-367-I-378, 
1-382, 1-386, 1-408, 1-412, 
I-416-I-423, I-439-I-441, 
1-484, 1-490, 1-531, 1-566, 
U-26-II-29, 11-67, 11-68, 
11-72,11-74, 11-85, 11-87-
11-89, 11-107,11-108, 11-128-
11-132, 11-134, 11-183, 
11-184, II-187-II-191, 11-193, 
11-195, 11-222, 11-232, 
11-240, 11-244, 11-246, 
II-252-II-255, 11-258, 11-259, 
11-262, II-320-II-336, 11-458, 
11-466,11-488,11-493,11-519, 
11-521,11-527,11-528,11-534, 
11-535, II-538-II-542,11-546, 
11-550, n-559,11-607,11-609 

Range, 1-349, 1-351, 1-355,1-356, 
1-360, 1-362, II-4, II-7, II-8, 
11-10, 11-11, II-14-II-17, 
11-370, 11-372,11-373, 
11-378, 11-384, 11-385, 
11-419, 11-465 

Residual, II-397-II-400 
Threshold, 11-144 
Zone, II-47-II-66 

Interaction effects, 11-129 
Nonuniform thermal, I-309-I-325 
Plane, 1-298, 1-299, 1-368, 1-377, 

1-522, I-527-I-530, 1-533-
1-537, 11-201, 11-520, 11-522, 
11-529 
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Ratio effects, 11-23, 11-26, 11-27, 
II-34-II-42, 11-106, 11-108, 
11-109, 11-114 

Relaxation, 11-175, 11-361, 
11-544,11-545 

Residual, 1-85, I-196-I-198, 
1-201, 1-203,1-208, 1-211, 
I-221-I-223, 1-234,1-235, 
1-292, I-483-I-485, 1-487-
1-495, 11-473 

Restraining, 1-103, 1-106, 1-112-
1-113 

Reversal point, 1-500, 1-502, 
1-508, 1-509 

Shear, 11-360 
Thermal, 1-95, I-291-I-292 
Unflawed, M77-I-183, 1-191 
Uniform, 1-287, 1-289, 1-290, 

1-291, 1-292,1-295, 1-312-
1-318, 1-321,1-322, 1-324 

Waves, 11-455,11-458, 11-462 
Stress-strain, 1-527,1-528, 11-93, 

11-94 
Behavior, 1-431-1-433,1-435, 

1-437,1.464-I-466, 1-469, 
1-471, 1-480 

Distribution, 1-162 
Field, 11-200,11-201 

Stress-whitened zone, 11-451, 
11-453, 11-455, 11-456, 11-460 

Stretching, plastic, 11-62 
Striations, 11-113, 11-126,11-136, 

11-138 
Ductile, 1-449 
Fatigue, II-8, II-9, 11-11, 11-13 
Formation, 11-19,11-20, 11-76 

Structures 
Design and analysis, 11-402 
Failure, 1-27,1-39 
Fatigue endurance, 1-380 
Size, 1-26,1-33 
Material tearing instability, 1-65-

1-83 
Superposition model, I-446-I-461 

Tearing, 1-107, 1-109, I-llO, 1-113, 
1-115, 1-116, 1-118, M22, 
1-123, 1-124, 11-205,11-362, 
11-364, 11-366 

Crack-tip, 11-422 
Ductile, 1-396, 11-82, 11-276, 

11-446 
Fracture, 1-73 
Instability, 1-27, I-65-I-83, 1-572-

1-577 
Resistance, 1-543 
Structural material, I-65-I-83 

Temperature effects, 1-317, II-4, 
II-7, n-9, 11-11, 11-157-
11-165,11-166,11-182, 
11-183, II-342-II-351, 11-373, 
11-482, 11-487, 11-489, 
11-490, II-496-II-513, 11-518, 
II-536-II-551 

Versus time history, 1-485, 1-486 
Tempering effects, 11-73-11-75, 

11-78, 11-82, 11-83, 11-148, 
11-149, 11-156 

Tension, 1-224,1-225, 1-226,1-234, 
1-467 

Loading, 1-251, 1-253, 1-257, 
1-259 

Pure, I-499-I-518, n-235 
Uniform, I-269-I-279 

Testing 
Bending, 1-92, 11-343, 11-344, 

II-346-II-348,11-349, 11-351 
Cantilever-beam, 11-423 
Compliance, II-601-II-602 

Unloading, 1-67 
Configuration, II-600-II-601 
Constant-amplitude, 11-19 
Corrosion, variable strength, 

II-143-II-156 
Creep crack growth, 11-239, 

II-240-II-241 
Creep rupture, 11-184 
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Dynamic, 1-550, I-551-I-557 
Environmental, 1-468, 1-473 
Fatigue, 11-34 

Crack growth, II-69-II-75, 
11-604 

Crack growth rate (FCGR), 
1-384, 1-390, I-394-I-397, 
1-399, 1-400 

Mixed-mode, I-582-II-585 
Near-threshold, 1-332 

Fracture, 1-7, 1-68, 11-93, 11-113, 
II-599-II-600 

Toughness, 1-22, II-402-II-414, 
II-602-II-604, 11-612, 11-614 

Impact, 11-344, 11-349-11-351 
CharpyV, 11-498, 11-501, 

11-503 
J-integral, 1-67,1-68 
J-R curve, I-543-I-559 
Load, biaxial, 11-44 
Nondestructive {see Nondestruc

tive inspection) 
s e c , 11-417, 11-419, 11-422, 

11-433 
Structural applications, 11-438-

11-441 
Single ductile tear, 1-115 
Static, I-549-I-551, 1-557 
Strain-controlled, 11-568, U-569 
Strain cycle, 11-21 
Tear instability, 1-68 
Tension, I-387-I-390, 11-88, 

11-90, 11-103, 11-127, 11-498, 
11-501, 11-502, 11-582, 
11-588, 11-599 

Off-axis, 11-582 

Wedge-loaded compact, 11-145, 
11-155 

Thermal shock, 11-474, 11-475 
Variable, secondary, II-33-II-46 

Thermal electromotive force (EMF) 
voltage effects, 11-268 

Thermal simulation, 1-195, 1-196-
M98, 1-201, 1-209 

Thermoplastic fmite-element analy
ses, 1-483,1-486,1-487,1-494 

Thickness, effects, 11-42-11-43,11-46, 
11-310, 11-538, II-542-II-544, 
U-547,11-550 

Threshold effects, II-3-II-17, 11-28 

Relation to stress intensity, 1-367-
1-378 

Resistance, 1-466 
Time effects, 1-103, 11-167, 11-178, 

11-183, 11-239, 11-241, 
11-458,11-480 

Variation with crack length, 
II-333-II-335 

Titanium alloys, 1-66, I-352-I-354, 
1-357, I-361-I-363, 1-381, 
1-390,1-393,1-419,11-55, 
11-61, 11-71 

Composites, 11-580-11-5% 
Toughness, 1-26, 1-562, 1-571, 

1-577, 1-581, 11-43, 11-281, 
11-282, 11-302, 11-307, 
11-310, 11-314, II-316-II-318, 
11-389, 11-497, 11-510, 
11-511, 11-554 

Arrest, 1-18 
Criteria, II-508-II-509 
Elastic-plastic, I-563-I-565, 

II-487-II-489, 11-490 
Fatigue, 11-589 
Fracture, 1-27, 1-30,1-32, 1-36-

1-38, 1-48, 1-66, 1-95, 1-97, 
1-99, 1-100, 1-107, 1-109, 
1-113,1-115,1-117,1-119, 
1-126, 1-141, 1-203, 1-408, 
1-410, 1-439, 1-467, 1-521, 
1-522, 11-68, 11-75, 11-82, 
11-83, 11-85, 11-88,11-99, 
11-102,11-105,11-111-1-113, 
11-115, 11-118, 11-131, 
11-200, 11-214, 11-252, 
11-253, 11-262, 11-2%, 
11-297, n-312, II-342-II-351, 
11-353, 11-362, II-364-II-366, 
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U-446,11-455, 11-479, 
11-491, 11-493, 11-594, 
11-5%, 11-598, 11-599, 
II-605-I1-607 

Microstructure effects, 11-355 
Plasticity-corrected, 1-25, 1-32 
Predicting, 11-87 
Strain, plane, 0-480, 11-600 

Linear-elastic, II-480-II-482, 
11-490, 11-493 

Material, 1-543 
Tension, 11-390 

Turbine engines 
Disks, 11-158 
Gas, U-518, 11-536,11-537, 

11-548, 11-554, n-558, 
11-562, 11-577 

Low-pressure steam, 11-120-
11-139 

Shaft materials, properties, 
11-101-11-118 

U 

Ultrasonic frequencies, effects, 
II-3-11-17 

Variable growth step, 1-97-1-123 
Vessels, through-cracked, 1-25, 1-32 

(see ako Pressurized vessels) 
Vibration analysis, 11-124-11-125 
Void 

Coalescense, 1-115 

Formation, 11-76, 11-77, 11-82, 
11-451 

Initiation, 11-365, 11-366 
Linkage, 11-365 
Volume, 11-467 

W 

Wedgmg 
Corrosion {see Corrosion, 

wedging) 
Effects, 11-113 
Transverse, 11-296 

Weight function, 1-174-1-177, 
1-178-1-180,1-188, 
1-190-1-192 

Method, 1-195, 1-203-1-206, 
1-209, 1-221 

Welding, 11-129 
EB, U-466, 11-471, 11-473, 11-474, 

11-475 
Electron beam process, 11-471-

11-475 
Operations, 11-469 

Welds 
Brittle, 11-299, 11-302, 11-310, 

11-311, 11-315 
Electric resistance seam, 11-284, 

11-286, 11-287 
Ferritic, 11-471 
Pipe, 1-283 

Yield-strength dependence, 1-348-
1-363 
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