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Foreword 

The symposium on Statistical Analysis of Fatigue Data was held on 30-31 
Oct. 1979 in Pittsburgh, Pa. The American Society for Testing and Mate­
rials, through its Committee E-9 on Fatigue, sponsored the event. R. E. 
Little of the University of Michigan at Dearborn presided as chairman, and 
J. C. Ekvall of the Lockheed-California Company served as cochairman. 
Both men served as editors of this publication. 
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Introduction 

One cannot use fatigue data competently in either design or research and 
development without first explaining (understanding) and assessing (measur­
ing) variability in the test results. Maximum likelihood analysis has emerged 
as a major statistical tool in explaining fatigue variability—because it can be 
used to analyze and study even very complex mathematical fatigue models. 
Once an adequate statistical model has been established by appropriate 
study, it is vital that the associated random fatigue variability be assessed 
properly using test results generated by replicate experiments in a statisti­
cally planned test program. Only then may we presume to predict fatigue 
behavior reliably. 

The two major areas considered in this Special Technical Publication are 
(1) maximum likelihood analysis used as a tool in the statistical analysis of 
fatigue data and in the study of alternative fatigue models and (2) assessment 
of fatigue variability using statistically planned test programs with appro­
priate replication. Since adequate statistical models and accurate assessment 
of random variability form the foundation of reliable prediction, this volume 
should be conceptually very useful to practitioners of fatigue analysis. In 
fact, it is likely that the concepts considered in this publication will become 
the cornerstone of statistical analyses of fatigue data in the 1980s and 
beyond. 

The 1980s will also see routine use of elaborate digital computer software' 
for maximum likelihood analyses, as well as widespread use of the likelihood 
ratio test statistic, not only to study and assess the adequacy of alternative 
fatigue models but also to establish intervals estimates for reliable life. In this 
context, this publication is meant to preview what is coming in the next 
decade and beyond rather than to summarize what has been done recently. 

The major issue to be resolved in the 1980s is how to come to grips with the 
discrepancies between the idealizations of test planning and mathematical 
analyses and the realities of practical procedures of actual test conduct so 
that ultimately fatigue variability may be assessed reliably. Certain aspects of 
this problem are presented elsewhere ,̂ but a specific example discussed here 

'Refer, for example, to Nelson, W. D., Hendrickson, R., Phillips, M. C , and Shumbart, L., 
"STATPAC Simplified—A Short Introduction to How to Run STATPAC, A General Statistical 
Package for Data Analysis," Technical Information Series Report 73 CRD 046, General Electric 
Co., Corporate Research and Development, Schenectady, N.Y., July 1973. (Available by writing 
to Technical Information Exchange, 5-237, G.E. Corp. R&D, Schenectady, N.Y. 12345.) 

^Little, R. E., ASTM Standardization News, Vol. 8, No., 2, Feb. 1980, pp. 23-25. 
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2 STATISTICAL ANALYSIS OF FATIGUE DATA 

will help define the issue. The current practice, as elaborated in recent text­
books and short courses, is to assume that the fatigue limit for steel is nor­
mally distributed with a standard deviation equal to (at most) 8 percent of its 
median value. Thus, in theory, one can estimate the alternating stress ampli­
tude that corresponds to a probability of failure equal to 0.000001. However, 
several test programs have been conducted involving simple sinusoidal 
loading of real components (for example, high-strength bolts and forged and 
heat-treated valve bridges) instead of conventional laboratory specimens. 
The standard deviations obtained from these programs are two to three times 
as large as the rule-of-thumb estimate. Moreover, it has been observed that 
strength distributions are clearly not normal. These results indicate that the 
textbook estimate is generally misleading and sometimes very dangerous. 
The fundamental problem, of course, is that conventional laboratory tests 
are specifically conducted using procedures that circumvent and minimize 
fatigue variability. Accordingly, the results of conventional laboratory tests 
do not form a sound basis for predicting the fatigue variability of real com­
ponents. Statistical theory indicates that we can predict fatigue behavior 
reliably only when the future tests of interest are nominally identical to the 
original tests whose data were used to compute the prediction intervals. In 
other words, if one wishes to predict service performance, service tests must 
be conducted to generate relevant data for prediction purposes. Such tests 
may be impractical, but, nevertheless, the discrepancy between theory and 
practice must be reduced. This discrepancy presents a formidable challenge 
to all fatigue practitioners to improve both the quality of statistical analyses 
and the relevance of the associated fatigue tests by appropriate planning. We 
hope that the reader will accept this challenge and that this publication will 
provide some help in that effort. 

R. E. Little 
University of Michigan, Dearborn, Mich. 

48128; symposium chairman and editor. 

/ . C. Ekvall 
Loclcheed-Califomia Co., Burbank, Calif. 

91520; symposium cochairman and editor. 
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R. E. Little' 

Review of Statistical Analyses of 
Fatigue Life Data Using One-Sided 
Lower Statistical Tolerance Limits 

REFERENCE: Little. K. E., "Review of Statistical Analyses of Fatigue Life Data Using 
One-Sided Lower Statistical Tolerance Limits," Slulisticul Aiiulysi's of Fuli^iie Dtilu. 
ASTM STP 744, R. E. Little and J. C. Ekvall, Eds., American Society for Testing and 
Materials, 1981, pp. 3-23. 

ABSTRACT: This introductory paper explains basic probability concepts and summarizes 
in a fatigue context the state of the art for analyses of life data using one-sided lower 
statistical tolerance limits. Types 1 and 11 censoring arc considered for both the two-
parameter log-normal and Weibull distributions, and the corresponding approximate and 
exact one-sided lower tolerance limit calculations are illustrated and discussed. In addi­
tion, Antle's likelihood ratio test for discriminating between these two-parameter life 
distributions is summarized. The classic one-sided lowei- nonparametrie tolerance limit 
analysis and a small sample modification by Little are discussed and illustrated in a fatigue 
context. Overall, this paper is intended to provide background and perspective for subse­
quent papers. 

KEY WORDS: tolerance limits, one-sided lower tolerance limits, two-parameter log-
normal distribution, two-parameter Weibull distribution, statistical analysis, fatigue life, 
fatigue 

The objective of this paper is to elucidate in a fatigue context the state of the 
ait in computation of one-sided lower statistical tolerance limits. 

First, I shall provide some background and terminology for readers with lit­
tle statistical training. 

Background and Terminology 

Consider the probability expression 

Prob [z,„„,.,. < Z < 2upper] = 7 (1) 

in which Z|„„,er and zipper are numbers (denoted by lower case letters), Z is a 

'Professor, University of Michigan-Dearborn. Mich. 48128. 
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4 STATISTICAL ANALYSIS OF FATIGUE DATA 

random variable (denoted by a capital letter), and 0 < 7 < 1. Given a specific 
future realization of the random variable Z, say z*, the realization will either 
lie within the interval from zio êr to Zyppe,- or it will not, and we cannot tell 
which until we have conducted the appropriate experiment and observed its 
outcome. Nevertheless, we can assert that, in the long run, 7 proportion of all 
future realizations associated with this experiment will lie within the given in­
terval. Refer to Fig. 1. 

The interval from Z|,„er to Zupp̂ , in probability Expression 1 is termed a two-
sided probability interval. Specifically, this interval is bounded by the lower 
limit, Z|o„er. and the upper limit, Zupper- Accordingly, Expression 1 is more 
properly termed a two-sided probability interval expression. The associated 
one-sided lower probability interval expression is 

P r o b [Z|„„er <Z]= 7,„wer ( 2 « ) 

and the associated one-sided upper probability interval expression is 

P r o b [ Z < Zupper] = 7upper (26) 

probided that 

(1 - Tlower) + (1 - 7upper) = i^ ~ j) 

Most statistical applications of probability expressions are based on 
theoretical arguments involving certain equivalent events. If, for example, we 
seek a probability interval to contain the mean, n, oi a normal population 
given the population standard deviation, a, the appropriate equivalent events 
are 

^ lower *^ ^ ^ Z ĵ 

and 
pper 

lower < u < Z* 
^ ^ ^ upper 

(3«) 

(36) 

( 2 ) 

/

UPPER 

(o<r< i ) 

FIG. 1«—An a priori probability. The probability is y that a single future realization of the ran­
dom variable, Z. will fall within the interval [z/„„.,.r. z,™„.rl-
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6 STATISTICAL ANALYSIS OF FATIGUE DATA 

in which Z = (Y — fi)/io/Vn) in Expression 3a, Z*|„„(.r = Y — z^^pp^ra/Vn and 
2*upper = Y — 2|,„vcrff/^ •" Expression 3b, and Y{a random variable) = Y,"=\ 
Yj/ii, where y, is the /"̂  future (yet unknown) random observation and u is the 
(future) sample size.^ The definition of equivalent events dictates specifically 
that when Expression 3a is true, then and only then is 3b true, and vice versa. 
The respective probabilities associated with Expressions 3a and 3b, therefore, 
are exactly equal, namely, 

Prob [z|„„er < (y — n)/ia/\fn) < zipper] = 7 {4a) 

and 

Prob [Y - Zupperff/Vw < fi < Y- Zh,^.e,a/^i] = y (ib) 

(in which zipper is usually positive and Z|„„er is usually negative). The probabili­
ty, 7, pertaining to application Expression 4b is established by appropriate 
selection of Z|„„.er and z upper'" theory Expression 4a. Refer again to Fig. 1. 

Probability Expression 4b involves a fixed (unknown) parameter and a ran­
dom interval [Y — z,,ppe,a/VH, Y — zi^,^.„a/yfn], whereas 4a involves a fixed in­
terval and a random variable, Y. Given a specific future (numerical) realiza­
tion of the random variable Y, denoted _y, the quantity, (y — /t)/(ff/V«), will 
either lie within the interval from ziî gr to Zypper or it will not, and we cannot 
tell which until we have conducted the appropriate experiment and observed 
the outcome. Nevertheless, we can assert that, in the long run, 7 proportion of 
all possible/wrwre numerical values of {y — \>)/{a/4n) will lie within the inter­
val given in Expression 4a. In turn, using arguments based on equivalent 
events, we can deduce that 7 proportion of all possible future numerical inter­
vals \y — Zuppera/Vw, y ~~ Z|o«.er«̂ /V«], will includc the population mean, ^, 
even though /x is unknown. The concept of a random interval is illustrated 
schematically in Fig. 2. The actual proportion of the numerical intervals that 
indeed include the population mean, \i., may be visualized as sketched in Fig. 
\b. Specifically, this proportion approaches 7 in the long run (that is, as « --
«>). 

Probability expressions involving random intervals are usually referred to as 
either confidence, prediction, or tolerance expressions, depending on their use 
[7-J].^ Confidence expressions and their associated intervals generally pertain 
to the parameters of a population previously sampled, such as the mean, \x, or 
the standard deviation, CT, or a normal population. Prediction expressions and 
their associated intervals usually pertain to observations to be obtained from a 
specific future sample randomly drawn from a population previously sampled, 
whereas tolerance expressions and their associated intervals usually pertain to 

-The equivalence of these events may be established in this elementary example by algebraic 
manipulation. However, in general, more sophisticated arguments and methodologies are needed. 

•'The italic numbers in brackets refer to the list of references appended to this paper. 
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LITTLE ON ONE-SIDED LOWER STATISTICAL TOLERANCE LIMITS 7 

REPLICATED (INDEPENDENT) 

EXPERIMENT NUMBER 

,C^/^/n"^ 

H m(no) 

- i y . - ^ L .̂ ''Ar 

H j(yu) 

-\ 
-t l(y«») 

— I 3 (y«l) 

H 2 (yn ) 

-I Kyn) 

M Y 
(UNKNOWN) 

FIG. 2—Confidence intervals to contain the mean. ti. of a normal distribution (given that the 
variance, a^. is known) generated by a series of replicated /independent) experiments. The pro­
portion of the computed intervals that actually bound n approaches y in the limit as n approaches 
infinity. Refer to Fig. lb. 

some proportion of all possible future observations that could conceptually be 
drawn randomly from a population previously sampled. The critical distinction 
is as follows: tolerance expressions pertain specifically to the entire conceptual 
population rather than to a finite sample from that population. Accordingly, 
tolerance expressions are useful in setting material, process, and product 
specifications while prediction expressions are useful in reliability situations in­
volving a finite number of components. 

Numerical Example [\,2]—Consider the following data pertaining to a 
sample randomly selected from a normal population with an unknown mean, 
fx, and unknown standard deviation, a: 51.4, 49.5, 48.7, 49.3, and 51.6. 

The best estimator for the mean, ^, of the normal population is 

Y= E y , / « (5«) 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
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8 STATISTICAL ANALYSIS OF FATIGUE DATA 

in which y, and Y are random variables and n is the sample size. The most 
widely used estimator for the sample standard deviation, a, of the normal 
population is 

S = \LiY,-Y)yin-l)i (6«) 

in which 5 is a random variable. For the given example data, these estimators 
take on the realizations y and 5, where 

y= L y,/n = (51.4 + • • • + 51.6)/5 = 50.10 (Sb) 

and 

I, 1/2 

— — ={[(51.4-50.10)2 „ - l J 

+ • • • + (51.6 - 50.10)2]/(5 - l)}'/2 = 1.31 (66) 

A probability expression associated with a two-sided 100 y percent confi­
dence interval to contain the unknown mean, ft, of a normal population may 
be written as 

Prob [Z*|ower < M < •Z*upper] = J (7) 
in which 

Z*iower = F - r[n - 1; (1 + y)/2]S/Vn 

2*upper = Y+t[ri-VAl+ y)/2]S/^ 

and f [n - 1; (1 + 7)/2] is the 100(1 + 7)/2 percentile of the Student's t dis­
tribution, with (« — 1) degrees of freedom. For any particular sample of in­
terest, this random interval takes on the specific lower and upper limit reali­
zations 

2*iower = J " d " " U H + y)/2]s/yfn 
and 

^%per=y + tln - 1; (1 + y)/2]s/^/ii 

Thus, for the given example data, this numerical two-sided 95 percent con­
fidence interval for /x is bounded by 

z*iower = 50.10 - t[4; 0.975](1.31)/V5 

= 50.10 - 2.776(1.31)/V5 

= 50.10 - 1.63 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



LITTLE ON ONE-SIDED LOWER STATISTICAL TOLERANCE LIMITS 9 

and 

Z*upper = 50.10 + 1.63 

Accordingly, the corresponding numerical two-sided 95 percent confidence 
interval for the unknown population mean, /j., of the normal population is 
[48.47, 51.73] . . . subject to the probability interpretation underlying Figs. 
1 and 2. If the factor ^ [« — 1; (1 + 7)/2]Vn had been specially tabulated for 
the specific purposes of this calculation as ti(n; y) = 2.776/V5 = 1.24, this 
numerical confidence interval could have been computed more conveniently 
asy ± ti(n; 7)5. 

A probability expression associated with a two-sided 100 7 percent predic­
tion interval to contain a single future observation randomly selected from a 
previously sampled normal population may be written as [2] 

Prob [Z*|„,,,, < K„ +, < Z*„pp,,] = 7 (8) 

in which 
Z*lower = F - ?[« - 1; (1 + 7 ) / 2 ] 5 v ' l + ( l / « ) 

and 
2*upper =y + t[n~l;{l + y)/2]Ssfr+ (l/«) 

For any particular sample of interest, this random interval takes on the spe­
cific lower and upper limit realizations 

lower =y- tin - 1; (1 + 7)/2]Wl + (l/«) z*, 
and 

in which t[n - l;(l + 7)/2] is the 100 (1 + 7)/2 percentile of the Student's t 
distribution with (« — 1) degrees of freedom, and n is the (prior) sample size. 
Thus, for the given example data, this numerical two-sided 95 percent pre­
diction interval is bounded by 

z*io«er = 50.10 - tl4; 0.975](1.31)>/ir2 

= 5 0 . 1 0 - 2.766(1.31 )Vr2 

= 50.10 - 3.98 

and 

Z*upper = 50.10 + 3.98 

Accordingly, the corresponding numerical two-sided 95 percent prediction 
interval of a single future observation YiY„ + j) randomly selected from the 
previously sampled normal population is [46.12, 54.08] . . . subject to the 
probability interpretation underlying Figs. 1 and 2. If the factor 

t[n - 1; (1 + 7)/2]Vl + (!/«) 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
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10 STATISTICAL ANALYSIS OF FATIGUE DATA 

had been specially tabulated for the specific purposes of this calculation as 
tji't', T) = 2 . 7 7 6 N / 1 . 2 = 3.04, this numerical prediction interval could have 
been computed more conveniently as3; + tjin', 7)5• 

The prediction interval associated with probability Expression 8 is perhaps 
more easily understood than the analogous confidence interval associated 
with Expression 7, because we can always make another observation (at least 
in concept) to see whether, indeed, it falls within the numerical interval—yes 
or n o / 

A probability expression associated with a two-sided 100 7 percent predic­
tion interval to contain all of k future observations, randomly selected from a 
previously sampled normal population, may be written as [2] 

Prob [z*to,er < Y„+, n y„+2 n y „ + 3 . . . n Y„+^ < z%^,\ = y (8) 

in which fl (intersection) implies all, z*ia„„ = Y — ti^n; k; y)S, Z^^^^^ = 
Y + tjin; k; y)S, and tiin; k; y) is a prediction interval factor conveniently 
tabulated by Hahn [1]. For example, when M = 5, Â  = 2, and y = 0.95, then 

?3(«; k; y) = ?3(5; 2; 0.95) = 3.70 

Thus, this random prediction interval is given by y ± 3.705. For the given 
example data, the corresponding numerical two-sided 95 percent prediction 
interval to contain both of two future observations randomly selected from 
the normal population previously sampled i s j ± 3.70s — 50.10 ± 4.85 = 
[45.25, 54.95] . . . subject to the probability interpretation underlying Figs. 
1 and 2. 

A probability expression associated with a two-sided 100 y percent toler­
ance interval which contains at least j3 proportion of all possible future ob­
servations from a previously sampled normal population may be written as 

Prob 
pper 

2 lower 

(9) 

in which /normai(") is the normal probability density function, Z*io„„ = Y — 
?4(«; 7; /3)5, Z*upp„ = Y + <4(«; 7; |8)5, and <4(n; 7; jS) is a tolerance limit 
factor widely tabulated in the statistical literature (refer, for example, to 
Natrella [4]). Specifically, when n = 5, 7 = 0.95, and /3 = 0.90, then ^4(5, 
0.95, 0.90) = 4.28. Thus, a random interval to contain at least 90 percent 
(/3 = 0.90) of all future observations from the previously sampled normal 
population with 0.95 probability (7 = 0.95) is y ± 4.285. For the given ex-

^Specifically, the replicated experiment consists of selecting a random sample of size ii. com­
puting the prediction interval, and then selecting another independent obsei-vation and observing 
whether it indeed falls within the computed prediction interval; this entire process is then 
repeated indefinitely to obtain plots similar to those in Figs. 1 and 2. 
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LITTLE ON ONE-SIDED LOWER STATISTICAL TOLERANCE LIMITS 11 

ample data, the corresponding numerical two-sided tolerance interval which 
contains at least 90 percent of all future observations from the previously 
sampled normal population with probability 0.95 isjĵ  ± 4.28s = 50.10 + 
5.61 = [44.49, 55.71] . . . subject to the probability interpretation underly­
ing Figs. 1 and 2. 

Historically, statisticians have used the phrase "with 95 percent confi­
dence" in place of the phrase "with 0.95 probability" when referring to a spe­
cific numerical interval (for example, the two-sided tolerance interval [44.49, 
55.71]). This terminology is intended to avoid repeated use of the qualifica­
tion . . . subject to the probability interpretation underlying Figs. 1 and 2. 
Thus, the two-sided tolerance interval expression is commonly stated verbally 
as "We may say with 95 percent confidence that at least 90 percent of the 
sampled normal population will exhibit values between 44.49 and 55,71." 

It is also relatively common to use the term "confidence" when referring to 
an interval containing a percentile of a distribution (rather than a 
parameter). For example, it might be said that "we are 95 percent confident 
that the tenth percentile of the sampled normal population lies within the in­
terval [Z*io„er. 2*upper]-" The associated probability expression may be inter­
preted as a tolerance limit expression, as is evident in the next section. 

Figure 3 presents a plot of the example data and a sketch of the estimated 
normal probability density function along with diagrams for comparative 
purposes of the two-sided 95 percent intervals computed for the respective 
numerical examples. Proschan [5] provides factors to compute additional 
probability intervals that may be of interest to certain readers. 

One-Sided Lower Tolerance Limits 

I deal specifically in this paper with one-sided lower tolerance limits of the 
verbalized form: "We may say with 7 percent confidence that (at least) 0 pro­
portion of the sampled population lies above Zio„er." In the section on Dis­
tribution Assumed Known I summarize exact and approximate one-sided 
lower tolerance limit calculations based on known distributions, namely, the 
two-parameter log-normal and Weibull distributions, because of their exten­
sive use in fatigue. In the section on Life Distribution Not Assumed Known 
in Analysis, I discuss distribution-free one-sided lower tolerance limits, be­
cause it is indeed naive to believe that the actual fatigue life distribution is 
either exactly log-normal or exactly Weibull. 

Test Conduct 

All statistical analyses discussed herein pertain specifically to a completely 
randomized test program [6,7]; that is, it is implicitly assumed that all 
specimens are homogeneous in material and preparation and that all test con-
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12 STATISTICAL ANALYSIS OF FATIGUE DATA 

EXAMPLE DATA 

-1 L 

4 5 5 0 55 

Y=50.l 

ESTIMATED NORMAL DISTRIBUTION 

(MEAN fl , VARIANCE (f^ ) 

48.47 (a) 51.73 

I 1 
46.12 (b) S4.0a 

I 1 
48.26 (c) 64.96 

44.49 ( d ) 88.71 

FIG, 3—Probability intervals pertaining to the text numerical examples—based on an assumed 
normal distribution with mean. ji. and variance, a^. and the following illustrative data: 51.4. 49.5. 
48.7. 49.3. 51.6: fal a two-sided 95 percent confidence interval to contain n[48.47. 51. 73]. (b) a 
two-sided 95 percent prediction interval to contain a single future observation [46.12. 54.08\. (c) a 
two-sided 95 percent prediction interval to contain both of two independent future observations 
[45.25. 54.95]. and (A) a two-sided tolerance interval to contain at least 90 percent of all possible 
future observations [44.49. 55.71[. 

ditions are nominally identical during the entire test program. Any heter­
ogeneity in either specimen material configuration, preparation, or the actual 
test conditions and conduct (a) may bias the estimated fatigue life at any 
percentile of interest, either positively or negatively, (b) will inflate the 
estimate of the distribution dispersion (scale parameter, standard deviation), 
and (c) will adversely affect the credibility of the assumption that the form of 
the actual life distribution is known. Accordingly, I strongly recommend that 
these statistical analyses not be applied to compilations of life data gathered 
from various sources and pertaining to different test conditions. 

Distribution Assumed Known 

There are two cases of particular interest in fatigue applications: (a) data 
that may include Type I censoring and (fe) data that may include Type II cen­
soring. Type I censoring occurs when the individual tests are suspended 
because the specimen has survived some prespecified test duration. This cen-
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LITTLE ON ONE-SIDED LOWER STATISTICAL TOLERANCE LIMITS 13 

soring literally pertains to runouts at "long life" in a fatigue context.^ Type II 
censoring is more academic, pertaining primarily to "accelerated testing" 
situations where the entire test program is terminated as soon as the 7"' failure 
occurs (assuming all specimens are being tested concurrently). Exact one­
sided lower tolerance limit analyses are available in the statistical literature for 
the two-parameter log-normal and Weibull distributions given Type II censor­
ing, but only approximate solutions are available given Type I censoring. 

Regardless of the given type of censoring, the life distribution assumed, or 
the exactness of the analyses, the analytical procedure for the one-sided lower 
tolerance limits considered herein may be summarized as follows: (a) assume 
the distribution, (b) estimate its parameters, (c) plot the estimated distribution 
on probability paper (Fig. 4), (d) plot the corresponding one-sided lower 1(X) 7 
percent confidence band (Fig. 4),^ and (e) obtain the desired tolerance limit 
by finding the intersection of the relevant population proportion (1 — jS) and 

PROBABILITY PAPER 

ESTIMATED DISTRIBUTION 

FATISUE LIFE , z 

FIG. 4—A schematic drawing that defines the one-sided lower tolerance limits of interest 
herein, namely, one-sided lower 100 7 percent confidence limits pertaining to the (I — 0)''' 
percentile of the assumed fatigue life distribution. 

'Individual fatigue tests are also "suspended" after shorter durations (but prior to failure) on 
various occasions. Although maximum lilteiihood estimation techniques include suspended data 
also, the concept of the replicated experiment in the context of Fig. 2 is not strictly valid. 

""The method of constructing one-sided lower confidence bands depends on whether the ran­
dom interval pertains to a fixed value of : or a fixed value of (1 — /3) in the conceptually replicated 
experiments. 
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14 STATISTICAL ANALYSIS OF FATIGUE DATA 

the corresponding one-sided lower 100 7 percent confidence band (Fig. 4). 
The associated probability expression is 

Prob[2|o„er < ^l-fsl " T ( H ) 

in which ^i_(j is the (1 — j8)"̂  percentile of the assumed distribution, and 
Z|ower is the (random) one-sided lower 100 7 percent confidence limit pertain­
ing to the (1 — /3)"' percentile of the assumed distribution. 

The only issues remaining pertain to the specific methods of estimating the 
distribution parameters and of computing the corresponding one-sided lower 
100 7 percent confidence band. 

Two-Parameter Weibull Distribution 

Type II Censoring—I have illustrated the computation of exact one-sided 
lower tolerance limits for the two-parameter Weibull distribution given Type II 
censoring in a previous paper [8]. The distribution parameters are estimated 
using the best linear unbiased (BLU) estimation methodology, based on coeffi­
cients tabulated by White [9], and the associated one-sided lower 100 7 per­
cent confidence limits for certain specific population percentiles are computed 
using special factors tabulated by Mann and Fertig [10]. These special one­
sided lower confidence limit factors were established using a digital computer 
simulation technique in which appropriate Type II censored data were 
repeatedly generated and analyzed, leading ultimately to a "histogram" of 
observed results which closely approximates the actual sampling distribution 
of interest. The actual sampling distribution depends in theory upon ^i-^, but 
not upon the unknown parameters of the Weibull distribution. Thus, Mann 
and Fertig were able to satisfy probability Expression 11 by tabulating a special 
tolerance limit factor (which pertains to both ^ i - ^ and the appropriate percen­
tile, 1 — 7, of the sampling distribution of interest). 

Numerical Example [SJ—The following fatigue life data, randomly selected 
from a two-parameter Weibull population, are given: 

170 000 cycles 
210 000 
183 000 
144 000 
256 000 
256 000 suspended 

First, for convenience, rewrite the ordered data in terms of thousands of 
cycles, that is, 144, 170, 183, 210, 256 (256 suspended). Next, note that if the 
observed fatigue life data follow the two-parameter Weibull distribution 

/'(2) = l -e-<- /» ' ) '^ (12) 
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LITTLE ON ONE-SIDED LOWER STATISTICAL TOLERANCE LIMITS 15 

then the natural logarithms of the data (denoted z* in Ref 8) follow the 
smallest extreme value distribution 

F(z*) = 1 (13) 

We may estimate 6*i and 6*2 in Eq 13 using the expressions [8] 

e*. Ea,z*-

and (14) 

0*2 = Zbiz*i 

in which the a, and bj coefficients are given by White [9]. Refer to Table 1. 
Next, we may use these estimates and certain other coefficients given by 
White [9] in an intermediate computation to obtain best linear variant pa­
rameter estimates, a* and h*. For the given example data, the appropriate 
coefficients are 0.0105329 and 1.1861065, and 

. 0.0105329 . _ . , „ 7 , , 

and 

b* = 
e*-y 

1.1861065 
= 0.220116 

(15a) 

Finally, using the special tolerance limit factor tabulated by Mann and Fertig 
[10], we may compute the one-sided lower 95 percent confidence limit for the 
tenth percentile of the sampled two-parameter Weibull fatigue life distribu­
tion, that is 

^ lower ^ b*{M and F factor) 

= 5.452721 - 0.220116(6.73) = 3.971 

TABLE 1—Computation of parameter estimates for the Weibull distrihiition |8] (z*j = log^z,). 

144 
170 
183 
210 
256 

4.96981 
5.13580 
5.20949 
5.34711 
5.54518 

0.0057312 
0.0465760 
0.1002434 
0.1722854 
0.6751639 

-0.2015427 
-0.1972715 
-0.1536128 
-0.0645867 
0.6170138 

0.028482 
0.239205 
0.522217 
0.921229 
3.743905 

5.455039 

-1.001629 
-1.013147 
-0.800244 
-0.345352 
3.421453 

0.261081 
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16 STATISTICAL ANALYSIS OF FATIGUE DATA 

Taking the antilog, we may say with 95 percent confidence that 90 percent of 
the sampled population lies above 53 000 cycles. Refer to Fig. 5. 

Two-Parameter Log-Normal Distribution 

Type II Censoring—I recently wrote a corresponding paper on the compu­
tation of exact one-sided lower tolerance limits for the two-parameter log-
normal distribution with Type II censoring [//]. The methodology is identi­
cal to that in Ref 8 for the two-parameter Weibull distribution, only the 
coefficients change (and intermediate Calculation 15a is not required). The 
coefficients for best linear unbiased estimation with Type II censoring are 
given by Sarhan and Greenberg [12], and the associated special one-sided 
lower 100 7 percent confidence limit factors are tabulated by Nelson and 
Schmee in Ref 13. Refer to Table 2 for the estimation of 0*] and 6*2. The 
associated one-sided lower 95 percent confidence limit for the tenth percen­
tile of the sampled two-parameter log-normal fatigue life distribution is 

2*iower = 0*1 - 0*2{N and S factor) 

= 5.322247 - 0.303682(3.083) = 4.386 (16) 

? 

1 ^ 

% 
l 
0 

1 

.9S 

.>9 

.90 

ao 
.70 

.60 
.50 
.40 

.JO 

.20 

.10 

.05 

.02 

.01 

3 

SMALLEST EXTREME VALUE PROBABILITY PAPER 

_ 
0 
C 

• / 
• / 

• — / 
f « 
— 
m 

1* ,/ 
5 " / 

1 1 1 L 1 L 1 

1 / 

• i C 

/ \ 

/ 9 

^ ! • 5.455039+ 0.26 

/ ^ 
/ « 

/ ^ 

1 I I 1 i 1 1 1 1 1... 1 . . . » . 

O CVJ 

10 ^ 

Log Li f t In Cyclat, z 

FIG. 5—Exact one-sided lower rolrnince limit analysis for the text example data—assuming 
Type 11 censoring and a Weibull life distribution [8]. Refer to Table I. 
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LITTLE ON ONE-SIDED LOWER STATISTICAL TOLERANCE LIMITS 17 

TABLE 2—Computation of parameter estimates for the log-normal 
distribution (11] (z*j = log^z,). 

Z* «, b: a;Z*i b,Z*: 

144 
170 
183 
210 
256 

4.96981 
5.13580 
5.20949 
5.34711 
5.54518 

0.1183 
0.1510 
0.1680 
0.1828 
0.3799 

-0.4097 
-0.1685 
-0.0406 
+ 0.0740 
+ 0.5448 

0.587929 
0.775058 
0.875194 
0.977452 
2.106614 

5.322247 

-2.036131 
-0.865382 
-0.211505 
+0.395686 
+3.021014 

0.303682 

Taking the antilog, we may say with 95 percent confidence that 90 percent of 
the sampled log-normal population lies above 80 300 cycles. Refer to Fig. 6. 

Two-Parameter Weibull Distribution. Type I Censoring, and 
Two-Parameter Log-Normal Distribution, Type I Censoring 

Suppose that the sixth specimen in these example data had actually en­
dured 500 000 cycles before the test was terminated, that is, the sixth 
specimen was a runout at 500 000 cycles. Then Type I censoring obtains, and 

.99 

.70 

.60 

.01 

1 

NORMAL PROBABILITY PAPER 

o 

D 

« 
O 

4A 

.a 
1 

(0 

I I 

'i 
/ ' 

1 1 1 r . 1 1 1 1 

D 

D 
1-

• 
»/ 

/ f r 
/ (̂ 1 

/ CO 

/ "̂  
^ 1 

/ \ J* 1 
^^ z =6.322247+ 0.30368Zr 

1 1 1 1 I I J ..1 _L..-K. 

Log Life in Cycies, 2 

FIG. 6—Exact one-sided lower tolerance limit analysis for the text example data—assuming 
Type II censoring and a log-normal life distribution [11]. liefer to Table 2. 
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18 STATISTICAL ANALYSIS OF FATIGUE DATA 

the previous analyses are not strictly valid. Maximum likelihood (ML) com­
puter programs are available to analyze Type I censoring [14,15] but (1) the 
estimates of the parameters are biased, (2) the associated one-sided lower con­
fidence limits are approximate (precise only for large samples), and (3) the ap­
proximate (asymptotic) confidence limits may differ depending on whether the 
distribution function is written usingj; = (z — di)/d2,y = ^2(2 ~ ^i ) ,^ = 1̂ 
+ 02z» or3; = di + z/^i. There are several ways to correct for the bias of the 
estimates, and there are also different techniques to compute the associated 
approximate (asymptotic) one-sided lower confidence limits. Thus, there are 
numerous alternative analyses available—so many that a relatively comprehen­
sive summary has not yet been attempted even in the statistical literature. 

Table 3 compares one-sided lower tolerance limits computed using four dif­
ferent ML-based analyses for the case where the test for the sixth specimen 
was suspended at 256 000 cycles (Type II censoring). In general, the approx­
imate (asymptotic) ML-based tolerance limits can differ quite markedly from 
the exact BLU tolerance limits for small sample sizes, depending in part on 
which alternative procedures are arbitrarily used in ML-based analyses. 
Moreover, the respective results obtained by assuming a log-normal versus a 
Weibull distribution can differ markedly, particularly when (1 — (3) is small, 
say 0.10 or less. Thus, intelligent use of such tolerance limits involves some ex­
perience and judgment regarding their sensitivity to various analytical pro­
cedures and assumptions. The more comparative analyses one generates for 
the given set of data, the broader perspective one has to make the necessary 
engineering decisions. 

Discriminating Between the Two-Parameter Weibull and 
Log-Normal Distributions 

Because the two-parameter Weibull and log-normal distributions usually 
differ so markedly at small percentiles {P = 0.01 and below), especially for 
small samples, a brief discussion of a statistical procedure for discerning be­
tween these two distributions may be helpful to some readers. 

Dumonceaux and Antle 1/6] provide critical values for the ratio of maximiz­
ed likelihoods to discriminate between these two distributions. First, both 
distributions are fitted to the data using maximum likelihood analyses,^ and 
then the respective maximum likelihood values are used to form a ratio, which 
is in turn compared with tabulated percentiles of the corresponding sampling 
distribution that were established by digital computer simulation. Refer to 
Table 4. Generally, it is desirable to keep the a (Type 1) error below 0.10 and 
while attaining a statistical power of at least 0.80. Preferably, a is at least 0.05, 
and the power is at least 0.90. Observe that given a complete sample (no cen-

FORTRAN listings of the appropriate computer programs may still be available by writing to 
Antle. 
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LITTLE ON ONE-SIDED LOWER STATISTICAL TOLERANCE LIMITS 19 

TABLE 3—One-sided lower A-basis and B-hasis tolerance limits for the text example data 
IType II censoring maximum likelihood analysis!." 

ML-Based Analysis 

B-basis 
A-basis 

B-basis 
A-basis 

4.48 
3.60 

4.70 
4.31 

Two-Parameter Weibull Distribution 
3.14 3.00 1.16 4.09 
0.79 0.68 0.26 2.80 

Two-Parameter Log-Normal Distribution 
4.26 4.21 2.15 4.45 
3.39 3.39 1.71 3.86 

, / • 

4.39 
3.40 

4.65 
4.19 

BLU-Based 
Analysis 

3.97 
2.44 

4.39 
3.68 

"Sets a, b, c, and d pertain to elliptical joint asymptotic confidence regions for y = (z — 
6i)/62,y = ^2(2 — 9|);j ' = 6^ + 62Z; undy = 0] -t- z/62, respectively; Set e pertains to they'omf 
asymptotic region defined by Bartlett's likelihood ratio procedure (which is independent of how 
the linear>• versus 2 relationship is written); and Set / pertains to the standard asymptotic prob­
ability interval defined by Lawless' likelihood ratio procedure. 

TABLE 4—Selected critical values of the ratio of maximized 
likelihoods IRML) 116). 

n 

a = 

(RML),'^" 

(a) Critical Values of (RML) 
Hypothesis Versus Weibi 

20 1.038 
30 
40 
50 

1.020 
1.007 
0.998 

(b) Critical Values of (RML) 
Hypothesis 

20 
30 
40 
50 

0.10 

Power 

a = 

(RML),.'''" 

0.05 

Power 

'^" and Power of the Test for Log-Normal 
ill (Alternative) Hypothesis 

0.61 1.082 0.48 
0.75 
0.85 
0.91 

1.044 
1.028 
1.014 

0.63 
0.76 
0.83 

"" and Power of the Test for Weibull 
Versus Log-Normal (Alternative) Hypoth( 

1.041 0.57 1.067 
1.019 
1.005 
0.995 

0.74 
0.85 
0.91 

1.041 
1.026 
1.016 

;sis 
0.43 
0.62 
0.75 
0.82 

soring), a "minimum" sample of about 35 is required to discriminate ade­
quately between the two distributions. Clearly, for a sample size of 10 to 20 our 
ability to discriminate between the Weibull and log-normal distributions is not 
good. The discrimination problem is even more severe for censored samples. 

Life Distribution Not Assumed Known in Analysis 

All replicated measurements involve variability—due in part to the variabili­
ty of the measurement process itself and in part to the "intrinsic" variability of 
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20 STATISTICAL ANALYSIS OF FATIGUE DATA 

the measurand. Even in the simplest possible situation, a measurement, M, 
may be analytically partitioned (explained) as 

M = X + 6 

in which X is a random variable with mean, ixx, and variance, ox^, where ox^ 
is the "intrinsic" variability of the measurand under perfect measurement or 
test conduct conditions and 6 is a random variable with mean, n^, and 
variance, CTJ^, where â ^ is the additional (spurious) variability associated with 
imperfect measurement or test conduct conditions. If ii^ = 0, the measure­
ment is unbiased. But whether /̂ ^ = 0 or not, the distribution of M depends 
on the distributions of X and 5. Specifically, both distributions must be known 
to state (assert, establish) the distribution of M. In fatigue applications, the 
additional variability associated with material processing, manufacturing, and 
service loading and environments must be considered and evaluated. Thus, an 
analytical assumption that the log-normal or the WeibuU distribution ac­
curately describes the fatigue life of any real device always lacks credibility. I 
elaborate on this point in Ref 17. 

Ideally, we would like to establish a lower one-sided tolerance limit which 
does not depend on the exact form of the underlying life distribution. The 
standard nonparametric lower tolerance limit meets this criterion, but it re­
quires larger sample sizes than are practical in fatigue applications. 

Standard Nonparametric One-Sided Lower Tolerance Limit 

Given a life distribution with a continuous probability density function 
(PDF), and a randomly selected ordered sample of size n, Wilks [18] showed 
that 

Prob[Z, < ^ , _ 3 ] = 7 - l - / 3 " (17) 

in which the random variable, Z | , is the smallest observation of an ordered life 
sample of size n, and ^, _ 3̂ is the 100(1 — /3)"̂  percentile of the life distribu­
tion. Accordingly, the numerical realization of Z], denoted Z|, can be used to 
establish a nonparametric one-sided lower tolerance limit. 

Sample size n should be chosen so that some appropriate value of 7 is ob­
tained in Eq 17, given some specified value of ;8. For example, a sample size of 
approximately 30 is required to establish a B-basis tolerance limit, whereas a 
sample of approximately 300 is required to establish an A-basis tolerance 
limit.* 

Modified One-Sided Lower Nonparametric Tolerance Limit 

If it appears reasonable to assume that the slope of PDF of the continuous 
life distribution \% strictly increasing in the interval 0 < z < ^„, where ^„ per-

**A-basis (one-sided lower) tolerance limit: 7 = 0.95, ji = 0.99; B-basis (one-sided lower) 
tolerance limit: 7 = 0.95; B = 0.90. 
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LITTLE ON ONE-SIDED LOWER STATISTICAL TOLERANCE LIMITS 21 

tains to the 100a"' percentile of the life distribution, then it can be shown that 
(mathematical details omitted) 

Prob [Z,/c < 1̂ _0] > 1 - [1 - (1 - 0)c^" = 7 (18) 

where c > 1 and (1 — 0)c^ < a. In this case, the minimum sample size re­
quired to attain a prescribed value of y, given the desired value of /3, depends 
on the minimum value of a that appears reasonable. For purposes of perspec­
tive, / ' ( z ) is strictly increasing up to a equal to about 0.16 for a normal 
distribution, 0.21 for the logistic distribution, 0.07 for the largest extreme 
value distribution (skewed to the right), and 0.32 for the smallest extreme 
value distribution (skewed to the left). Given the Weibuli distribution in Eq 
12, / ' ( z ) is strictly increasing only for $2 > 2. Specifically, for 62 — 2.5, a = 
0.07; for^2 = 3.0, a = O.U-Jordj = 4.0, a = 0.16; for612 = 5.0, a = 0.20; 
and for 2̂ = 10.0, a = 0.26. 

Table 5 shows that, if it were reasonable to assume that / ' (z) is strictly in­
creasing up to about the tenth percentile, 30 specimens could be used to ob­
tain both an A-basis and a B-basis tolerance limit. The former would be ap­
proximately Z|/3.13, whereas the latter would be Z|/1.00. It is apparent in 
Table 5 that a sample size of about 20 is statistically acceptable if it appears 
reasonable to assume/'(z) is strictly increasing up to the fourteenth percen­
tile. But even this sample size is sufficiently large to prevent Eq 18 from find­
ing extensive application in fatigue analyses. 

Numerical Example—Suppose a sample of 22 fatigue test specimens ex-

TABLE 5—Modified one-sided nonparametric tolerance tables: 
minimum sample size n versus a^^jii for y = 0.95 and the related C values 

7 

0.95 

'^niin 

0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
O.Il 
0.12 
0.13 
0.14 
0.15 
0.20 
0.25 
0.30 

" inin 

149 
99 
74 
59 
49 
42 
36 
32 
29 
26 
24 
22 
20 
19 
14 
11 
9 

B-Basis 

/3 = 0.90 

1.00 
1.04 
1.08 
1.13 
1.18 
1.21 
1.39 
1.54 
1.68 

/3 = 0.95 

1.00 
1.09 
1.17 
1.26 
1.34 
1.40 
1.48 
1.53 
1.60 
1.67 
1.71 
1.96 
2.18 
2.38 

A-Basis 

& = 0.99 

1.41 
1.73 
1.99 
2.23 
2.44 
2.62 
2.83 
2.99 
3.13 
3.30 
3.43 
3.57 
3.73 
3.82 
4.39 
4.88 
5.32 
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22 STATISTICAL ANALYSIS OF FATIGUE DATA 

hibited a minimum life, z,, equal to 121 000 cycles. Suppose further that, 
assuming a Weibull distribution, the best linear unbiased and maximum 
likelihood estimates for $2 are, respectively, 4.15 and 4.34. The assumption 
that the data follow a two-parameter Weibull distribution is roughly equivalent 
to the assumption that / ' ( z ) is strictly increasing up to about the seventeenth 
percentile. Entering Table 5, we see that for n = 22, amin = 0.13, which is less 
than 0.17, and thus we, in turn, obtain the factor c for a B-basis tolerance 
limit (c = 1.13) and compute the desired B-basis tolerance limit as 
121 000/1.13 = 107 000 cycles. The corresponding A-basis tolerance limit is 
121 000/3.57 = 33 900 cycles. 

Conclusion 

Tolerance limit analyses involve the fundamental problem that spurious 
variability damages the credibility of quantitative (predictive) analyses 
(whereas this variability need not damage the credibility of comparative 
analyses based on appropriately planned experimental programs). Never­
theless, if predictive analyses are required (mandatory), one-sided lower 
tolerance limits are appropriate in situations pertaining to material 
specifications. 
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ABSTRACT: The constant-amplitude fatigue behavior of welded joints in two types of 
normalized structural high-strength steel has been studied in an interlaboratory program 
within the European community. The statistical design and analysis of a part of that pro­
gram is described. This part was aimed at establishing complete ^-A^ curves for three types 
of fillet welded joints with reference to a comprehensive statistical test plan. The test plan 
closely linked the activities of six laboratories involved in testing and three welding in­
stitutes fabricating the specimens under specified conditions, and it organized the reparti­
tion of the specimens to the stress levels to be applied and to the laboratories. Some restric­
tions, however, were imposed on the test plan due to limitations in test load capacity in 
some of the laboratories and to limitations in time and costs. 

The results were evaluated according to the concept followed in planning, using various 
methods of analysis that were outlined and compared in treating the 753 test results 
available and in deducing characteristic figures of the fatigue strength at 2 • lO*" cycles. The 
assumption of a "uniform" slope of S-N curves for welded joints in structural steel proved 
to be reasonable. Moreover, it was possible to analyze the additional variability of the 
results caused by sharing the tests at each stress level among several laboratories or caused 
by fabricating equal portions of the specimens in three welding institutes. 

KEY WORDS: fatigue tests, (complete) S-N curves, welded joints, structural steel, 
statistical test plan, (comparative) statistical analysis, laboratory effects, welding effects, 
material effects, fatigue. 

In order to evaluate the fatigue properties of normalized fine-grain higher 
strength structural steels in the welded condition, an interlaboratory program, 
sponsored by the European Coal and Steel Community, was carried out by 

'Director and research fellow, respectively, Fraunhofer-Institut fiir Betriebsfestigkeit (LBF), 
Darmstadt, Federal Republic of Germany. 

Head of research laboratory, Dalmine SpA, Laboratori di Ricerca, Bergamo. Italy. 
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seven laboratories in five countries of the European community in the period 
from July 1968 to December 1976. The participating laboratories were the 
Centre de Recherches Metallurgiques (CRM), Liege, Belgium; the Institute de 
Recherches de la Siderurgie Fran?aise (IRSID), St. Germain-en-Laye, France; 
the Fraunhofer-Institut fUr Betriebsfestigkeit (LBF), Darmstadt, and the 
Max-Planck-Institut fiir Eisenforschung (MPI), DUsseldorf, Germany; the 
Dalmine SpA, Laboratori di Ricerca, Dalmine, Bergamo, and the Acciaierie e 
Ferriere Lombarde Falck, Centro Ricerche e Controlli, Milano, Italy; and the 
Technische Hogeschool, Stevin-Laboratorium, Delft, the Netherlands. Three 
welding institutes were engaged in fabricating the specimens: the Centre de 
Recherches Metallurgiques (CRM), Liege; the Institut de Soudure (IFS), 
Paris; and the Instituto Italiano della Saldatura (IIS), Genova. 

To ensure close cooperation among the participating laboratories and 
welding institutes, a working group, responsible for the detailed planning and 
for the realization of the test program, was constituted. Members of the work­
ing group for all or part of the contract period were E. Haibach (chairman), J. 
de Back, G. Bollani, J. M. Diez, H. P. Lieurade, R. Olivier, P. Rabbe, F. 
Rinaldi, R. V. Salkin, and P. Simon. 

The results of that program and the particulars of its organization have 
been published in detail elsewhere [1,2].-^ The present paper describes the 
statistical design and analysis of a main part of that interlaboratory program. 
It refers to S-N tests for three stress ratios on three types of welded specimens 
in two types of steel, and these tests were shared among six laboratories. In 
statistical terms this is an example of an incomplete block-designed experi­
ment. (Additional test series, not dealt with in this paper, were concerned 
with similar tests on notched specimens [1,2], low-cycle fatigue tests [3], tests 
on larger welded sections, and crack propagation tests [2]; the latter two 
types of test were contributed by the Stevin Laboratorium.) 

Starting Point 

The starting point of the program was characterized by the following situa­
tion: 

1. The allowable stresses of fatigue-loaded welded joints, as given by the 
various codes, differed significantly even when the comparison was restricted 
to rather simple and well-defined types of joint [4,5]. 

2. Among the prevalent codes there was none that distinctly gave 
allowable stresses of welded joints fabricated from the newer types of fine-
grain higher strength structural steels, according to Euronorm 113 [6]. 

This situation turned out to be unsatisfactory from a technical and 
economic point of view as well. In either case, a major reason was supposed 

•'The italic numbers in brackets refer to the list of references appended to this paper. 
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to be a lack of reliable fatigue data. For welded joints in higher strength 
materials, the available number of experimental data might have been 
thought to be too small to allow a new code to be set up. For welded joints in 
usual materials, a reanalysis of literature data revealed a wide range of scat­
ter associated with the fatigue-strength figures reported for nominally com­
parable types of joints. However, it could not be determined by subsequent 
studies why the fatigue-strength values observed in comparable test series 
by different laboratories resulted in stress figures that differed by a ratio of 
as much as 1:3. The question remained whether the scatter was due to 
particular material or welding conditions, to laboratory effects, or to the 
method of evaluation applied to the test results. As a consequence, the differ­
ing assessment of the allowable stresses in design codes could be understood 
to be essentially dependent on the particular sample from the literature data 
that had been considered. 

In order to prevent the mentioned difficulties from also being associated 
with the results from the intended investigation, the existing contacts among 
laboratories in different countries of the European community suggested set­
ting up an interlaboratory program on a statistical basis broad enough to ob­
tain reliable results and to allow general conclusions. Moreover, from an ap­
propriate design of such an interlaboratory program one could expect to find 
some explanation of the scatter observed in the literature data. 

Test Program 

Two types of higher strength structural steel were selected: 

(a) a structural steel Fe E 355, in accordance with Euronorm 25, and 
(b) a vanadium-alloyed fine-grain structural steel, Fe E 460, correspond­

ing with Euronorm 113. 

The plate materials, in 12-mm thickness, were delivered in the normalized 
condition, as rolled, and without any further treatment. The tolerances in 
plate thickness of Euronorm 29 were accepted. The chemical and mechanical 
properties were found to meet the standards; the actual mechanical proper­
ties are given in Table 1. 

Two non-load-carrying fillet types of joint (K2 type) and a cruciform load-
carrying fillet type of joint (K4 type) were tested (Fig. 1). The "K2 flat" 
specimens were fabricated by welding them in the flat position and by subse­
quently grinding the weld toes in order to provide a favorable weld profile. 
The fillets of the "K2 vertical" specimens were made by welding in the ver­
tical up position, resulting in a less favorable weld profile. The K2 specimens 
normally fail by fatigue cracking which start at the toe of the fillet and prop­
agates through the plate material. The K4-type specimens usually fail by 
cracking which starts at the root of the weld and propagates through the weld 
metal. 
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TABLE 1—Actual mechanical 

Type of Steel 

Fe E 355, normalized 
Fe E 460, normalized 

Plate 
Thickness, 

mm 

12 
12 

Yield 
Strength, 
N/mm^ 

420 
515 

properties of materials. 

Ultimate 
Strength 

570 
660 

Elon­
gation, 

% 

28 
24 

KV 
( -20° C), 

J/cm^ 

55 
54 

K2 FLAT 

K2 VERTICAL 

K4 FLAT 

FIG. 1—Types of joint tested. 

Figure 2 presents a survey of the test series provided for the part of the pro­
gram considered here. In both types of material the three types of specimens 
were tested to establish the S-N curves for completely reversed loading (stress 
ratio /? = —!), for zero-tension loading (/? = 0), and for fluctuating tension 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



28 STATISTICAL ANALYSIS OF FATIGUE DATA 
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FIG. 2—Siinvy of the test program. 

loading at a high constant mean stress (resulting in /? > 0.4) by means of en­
durance tests at preselected stress levels and (separate from the statistical test 
plan) by staircase tests at 2 • 10'' cycles. A total of 18 S-N curves resulted from 
this program, and they comprised 753 individual results. 
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Fabrication of the Specimens 

The material was ordered to be delivered in plates of 2100 by 1100 by 12 
mm with special indication of the rolling direction. The plates were flame cut 
into assemblies of about 525 by 550 mm; each assembly contained five 
60-mm wide specimens (Fig. 3). A fully randomized scheme to distribute the 
required number of flame-cut assemblies to the three welding institutes and 
to the particular types of specimens was developed in a computer program by 
means of random numbers assigned to each assembly. Thereafter, the 
assemblies were taken and grouped by following an increasing order of these 
random numbers. Remaining assemblies were stored as stock. 

Each of the three welding institutes was ordered to fabricate one third of 
the estimated number of specimens of each type by following a well-defined 
specification. A manual welding in a special welding jig was required and the 
use of basic coated electrodes suitable for the parent materials and specified 
according to the International Standards Organization (ISO) or American 
Welding Society (AWS) classification. To comply with this specification, 
responsibility for the selection of the particular trademark of the electrodes 
and of the appropriate operating conditions was left to the particular in­
stitute. Further details specified were the size and shape of the fillets, the 
welding position, and the welding sequence, with restarting positions of new 
electrodes only allowed on the intermediate strips between the specimens. 
Finally, before the assemblies were cut each specimen was marked to identify 
the type of steel, the number of the plate and assembly, and the position of 
the specimen within the assembly. 

Elaboration of the Testing Conditions 

The elaboration of the testing conditions started with a forecast of the 18 
S-N curves to be established, under the assumption that the fatigue strength 
of welded joints in higher strength structural steels and in mild steel will not 
differ too much and that a uniform slope of A; = 3.75 will apply to the S-N 
curves for a constant stress ratio. This forecast, checked by some preliminary 
tests, allowed a detailed estimate of the test levels, of the required test loads, 
of the number of tests, and of the resulting testing time. 

For each S-N curve three approximately equidistant test levels were 
predetermined wherever meaningful. Of these, the upper level was definitely 
specified in order to observe a sufficient distance from the yield strength, for 
above that level the ^-A^ curve was expected to bend to the left (low cycle 
fatigue domain, see Fig. 4). Except for the R > 0.4 series, the test levels for 
specimens from Steel Fe E 460 were the same as for Steel Fe E 355 to ensure 
the possibility of directly comparing the two materials on the basis of the 
number of cycles to failure obtained. For the R > 0.4 series a different mean 
stress was chosen equal to two thirds of the specified minimum yield strength 
values, that is, a„^ — 240 N/mm^ or &„, = 320 N/mm^, respectively, in order 
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to allow for the higher strength of the Fe E 460 material. In addition to the 
defined test levels in the finite life region, and separate from the statistical 
test plan, a staircase test series at 2-10*' cycles was provided for each S-N 
curve in order to produce a particular estimate of the fatigue strength at N = 
2 • 10* cycles. 

Later, the test plan was realized in partial stages, and each of these stages 
was followed by a preliminary analysis of the results so far obtained to allow 
the specified testing conditions of subsequent series to be adjusted, if 
necessary. In order to have new test results available without delay a telex 
code was agreed on for transmitting them to the secretariat. 

Test Plan 

The random number technique mentioned earlier was used again to dis­
tribute the specimens to the particular test levels in such a way that a balance 
of the specimens from the three welding institutes was achieved for each test 
level, together with a partial balance among Positions 1 to 5 of the specimens 
within the assemblies. 

The concept of distributing the test series to the laboratories was worked 
out under the assumption that any laboratory effects contributing to the 
overall scatter of the test results could be detected with high probability. In a 
number of test series, however, the participation of certain laboratories was 
not possible because their testing machines were not capable of applying 
alternating loads or loads at the upper stress levels. Furthermore, the 
amount of work (number of tests and number of cycles) had to be balanced 
among the laboratories. In developing the test plan these restrictions turned 
out to be rather limiting; for illustration of the adopted test plan see Tables 4 
and 5 in the Appendix. 

A stress level was considered as an experimental unit. For the 18 ^'-A' 
curves (of two types of steel, three types of specimen, three stress ratios) there 
was a total of 42 stress levels, and theoretically these were to be combined 
with 18 treatments (by three welding institutes and six laboratories). Hence, 
42 X 18 = 756 specimens would be required to provide a single replicate of 
each condition, but only 429 specimens were tested at the 42 levels (a mini­
mum of 9 specimens per level), a circumstance which had direct conse­
quences for the analyses of the results [7]. 

In particular, it was decided to realize a fully balanced comparison of the 
six laboratories by means of randomized blocks comprising those stress levels 
in Steel Fe E 355 that all six laboratories were able to apply (Blocks a and b 
in Table 4 in the Appendix), where (in Block a) 2 X 18 notched specimens 
were tested, in addition, because of their more clearly defined fatigue proper­
ties. In the remaining series for Steel Fe E 355, not all factors could be 
perfectly balanced. The testing laboratories were considered in a way that 
allowed the analysis in terms of balanced incomplete blocks, consisting of 
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four laboratories in testing at each stress level (Table 4). For the Fe E 460 test 
series the test plan was developed at a later stage, hence a similar but 
somewhat simpler test plan was adopted (Table 4). 

Testing Procedure 

For all test series the compulsory test conditions were given to the 
laboratories in terms of the maximum load, /̂ niax. 'ind the minimum load, 
F„;„, as calculated from the predetermined stress levels and the test section. 
The test section was defined by the nominal width of the specimen and by a 
reference plate thickness (12.3 mm for Fe E 355 plates and 12.5 mm for Fe E 
460 plates) that was determined by measuring a small sample in advance. 
The responsibility for a correct performance of the tests was left to the 
laboratories. Only some general recommendations had been given. The 
recommended modes of a static and a dynamic calibration of the load-
measuring device were based on an ISO proposal [8]. In addition, a method 
was described for checking the exact alignment of the clamping devices by 
means of a test bar applied with strain gages. After the specimens had been 
delivered and the corresponding instructions had been distributed to the 
laboratories, the complete test program was carried out without any dif­
ficulties by following the established test plan. 

After the statistically designed experiment for the finite life region was 
completed, the staircase test series was carried out. A complete staircase test 
series was performed by a single testing laboratory. It consisted of 18 ran­
domly selected specimens in groups of 6 specimens from each welding in­
stitute. These three groups were tested sequentially in order not to disturb 
the staircase scheme by systematic differences that might exist between the 
specimens of different origin. By extrapolating straight downward on the 
already existing S-N curve to 2 • 10** cycles, the mean level to start the stair­
case testing was determined. A step increment equal to one tenth of that 
mean level in terms of stress range (about 0.8 times the standard deviation as 
obtained in the subsequent analysis. Table 3) was expected to result in an up-
and-down sequence of optimum significance in the case of welded joints. 

Analysis of the Test Results 

The test results available from realizing the described test plan may be 
analyzed under various aspects and by various statistical methods; for a com­
plete listing of the individual results see Refs. 1 and 2. The following is a 
summary of the analyses aimed at elaborating some general conclusions on 
the validity of a uniform slope and scatter band of the S-N curves, on 
laboratory and welding effects that may explain the reasons for the scatter of 
the published fatigue strength values of welded joints, and on the 
dependence of the fatigue strength values and their scatter on the method of 
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evaluation applied. The results were taken as they had been obtained, but at­
tempts were made to identify the reasons for obviously strange results; only if 
it was clearly justified were those results left out of the analysis. 

Graphical Method 

A first step in the analyzing process was a plotting of the individual results 
in log-log S-N diagrams for a check by inspection (Fig. 4). The different 
symbols used in plotting the results distinguish between the testing 
laboratories and the three welding institutes involved. From this it appeared 
that the differences between results produced by the six laboratories and be­
tween the specimens fabricated by the three welding institutes were not ex­
tremely pronounced, since the particular scatter distributions overlap. Hence 
the analysis was continued by a standard procedure of computing the mean 
and standard deviation of log A'̂  for each of the stress levels tested and by 
computing the mean and standard deviation of the stress (both 5n,ax and A S) 
at 2 • lO*" cycles from the staircase test series (Tables 2 and 3). The outcome of 
these computations was plotted in addition to the data points to mark the 
span of scatter defined by a probability of survival of P^ = 0.9, 0.5, and 0.1 
(mean ±1.28 standard deviations, providing a Gaussian distribution of log 
N). Finally, to complete the graphical analysis, S-N curves were fitted by 
averaging the data points. A scatter band of uniform slope and width was 
used to describe the S-N curves for the two constant stress ratios oi R = — 1 
and R = 0. According to that uniform scatter band the averaging S-N curve 
is a straight line, which may be represented analytically in the form 

yV = 7VA-(A5/A5A)-* (1) 

for Ps = 0.5; R = constant; and ^max < •S'yieid- where A5A is the stress range 
for Pj = 0.5 at JV^ = 2-10* cycles, and where a slope k — 3.75, together 
with the indicated span of scatter {P ^ = 0.9 toP^ = 0.1), is assumed to hold 
independent of the type of joint. Although in the planning stage this uniform 
scatter band of slope k — 3.75 was adopted only as a reasonable hypothesis 
derived from previous experience [9], its significance could be substantiated 
through the analysis of the present results. In the case of a high constant 
mean stress, the test results indicate some shallow type of scatter band, but 
when plotting the results as a function of stress range, A5, (instead of 5n,ax) 
the slope and width of the scatter band become more consistent with the 
uniform scatter band as well. 

From comparing the results for Steels Fe E 355 and Fe E 460 at the in­
dividual stress levels, it was found that the same S-N curves could be as­
signed to the equivalent test series of the two plate materials in the case of R 
= — 1 and R — Q. The S-N curves for the two types of steel differ for the 
high constant mean stress testing conditions because of their difference in 
mean stress. 
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As a result of the graphical analysis, the fatigue strength may be evaluated 
in terms of the stress range, AJ'A, to be read from the diagrams for P^ = 0.5 
and NA = 2-10* (Fig. 4 and Table 2). 

Effect of Tolerance in Plate Thickness 

When calculating nominal stress with some nominal or average figure of 
the plate thickness, the statistical variation in plate thickness is included in 
the scatter of the test results. In order to gain some idea about that influence, 
a comparative analysis of the Fe E 355 results was made by readjusting them 
according to the actual values of plate thickness measured for each specimen 

- ' ' i , readjusted ^ i ' ^'reference' 'measured/ Wltn K O./J (J.) 

Although this readjustment led to an average decrease of the number of 
cycles by 5.2 percent, which reflects a difference between the reference 
thickness of 12.3 mm and the average thickness measured of 1.3 percent, no 
significant reduction in scatter of the individual test results was achieved by 
this kind of evaluation. 

Overall Scatter 

When an analysis of the scatter adhering to the test results is intended, it is 
more convenient to adopt a model of the S-N curves that shows a scatter 
band of constant width (standard deviation of log N independent of the stress 
level) than the uniform scatter band of variable width used in the graphical 
analysis. Then, with reference to the S-N diagram, the scatter of the test 
results may be analyzed by considering the horizontal distances of the in­
dividual data points from the corresponding mean curve (P^ = 0.5), defined 
by its uniform slope, k = 3.75, and by the particular value of ASjs, derived 
from the graphical analysis (Table 2). Due to the logarithmic scale in plotting 
N, these distances conform to the transformed variable log [NyNj*], where 
Âi is the number of cycles from Test i at the stress level AS,, and A'j* is the 
number of cycles to be read from the average ^-A' curve at that level 

N* = 2- lOHASi/AS/,)-^'^^ (3) 

according to Eq 1. 
When plotting the values of N;/N;* on a logarithmic scale in a prob­

abilistic diagram (Fig. 5), an overall average value to 1 is to be expected, if 
the graphically derived S-N curves provide an average fit of the test results. 
In fact, all data points in the probabilistic diagram may be fairly well 
described by a straight line passing through N^/N-,* — I at P = 0.5. 
Separately averaging the results for Steels Fe E 355 and Fe E 460 would 
result in figures of N]/N\* = 1.036 or 0.952, respectively. Moreover, all the 
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RELATIVE NUMBER OF CYCLES [H-^/U-^J 

FIG. 5—Overall analysis of scatter on a relative scale: N, = number of cycles to failure in test: 
N,* = number of cycles calculated from the average S-N curve (Pj = 0.5) at the stress level 
tested. 

data points keep within the 0.95 confidence Umits to be derived for the 321 
test results considered [10]. The span of scatter characterized by the figure 

T^ = {lN;/N*]p^o.9}-m/Ni*]p=o.i} = 1:3.1 

(log [l/Tfj] = 2.56 X standard deviation of log [N^/Ni*] providing a normal 
distribution) hardly exceeds the values experienced with conventional test 
series for welded joints [9]. Hence, it may be concluded that the derived S-N 
curves do give a good overall average description of the test results. 

Analysis of the Laboratoiy Effects 

An analysis of the laboratory effects is presented in Fig. 6, in addition to 
the preliminary analysis based on only a part of the stress levels, described in 
the Appendix, Table 6. 

Again, the transformed data, N\/N;*, have been considered, and this 
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transformation may be understood here as a means to eliminate the stress 
level, the stress ratio, and the type of specimen as variables from the test plan 
(Table 7). What remains is a separate test plan for the separately tested Fe E 
355 and Fe E 460 specimens, each test plan showing six treatments (by six 
laboratories) with a perfect (partial) balance of the welding institutes for the 
Fe E 460 (Fe E 355) series, but with a different number of tests for the par­
ticular treatments (Table 7, read vertically). 

In Fig. 6 the shaded beams depict the mean (P^ = 0.5) and the span of 
scatter {P^ = 0.9 to 0.1) of the test results, as produced by the indicated 
laboratories. Although some systematic trends become obvious, behind 
which an effect of the testing frequency may be anticipated, neither the 
means nor the spans of scatter have been found to differ significantly. The in­
dicated spans of scatter include the variance due to the three welding in­
stitutes involved, however. When converted in terms of stress (according to 
the slope k = 3.75 of the S-N curves), the maximum variation, Vmax. of the 
mean values around the overall mean is ±6.5 percent, and within this level 
of significance the results from the six laboratories are fairly comparable. 

Analysis of the Welding Effects 

In the same way an analysis of the welding effects has been performed 
(Fig. 7) for which not only the two types of steel but also the three types of 
specimen have been separated into six test plans. Each of these test plans 
shows three treatments (three welding institutes) with an equal number of 
tests for the particular treatments, and with a perfect (partial) balance of the 
laboratories for the Fe E 460 (Fe E 355) test series. Here the laboratory ef­
fects are included in the indicated spans of scatter. 

A maximum range of variation in stress, V„^^^, of + 9 percent was found 
for the K2 flat specimens with their weld toes ground, whereas the variation 
is considerably smaller (about ±6.5 percent maximum) for the K2 vertical 
and K4 flat specimens, which are sensitive to influences of the welding pro­
cedure only. As an explanation, it may be anticipated that grinding the weld 
toes of the specimens introduces some additional scatter. In grinding the 
CRM specimens, obviously a most effective increase in fatigue life was 
achieved. The distinctly lower scatter associated with the IIS specimens in­
dicates a rather careful grinding operation, particularly with those from the 
Fe E 460 material; but the careful grinding evidently caused a reduction of 
the test section, which appears as an unwanted effect not taken into account 
when the nominal stress was calculated. 

Covariance Analysis 

Considering the results of each S-N curve in log A5/log N coordinates, the 
graphical analysis has shown that straight lines of equal slope may fit the sets 
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42 STATISTICAL ANALYSIS OF FATIGUE DATA 

of data in a reasonable portion of the sloped part of the S-N curves. 
Therefore, an analysis of covariance was carried out for the sloped part of the 
S-N curves; for details see the Appendix. 

Among the results of this analysis, the evaluation of eventual variations of 
slope is worth mentioning. In comparing the particular S-N curves by taking 
the average slope of it = 3.72 as a reference, no significant differences have 
been found in eight out of twelve cases (two steels, three types of joint, two 
stress ratios, R = ~\ and 0), but the following anomalies have been iden­
tified in the remaining four cases: 

1. S-N curve for K2 flat specimens in Steel Fe E 355 tested atR = — 1. At 
the upper stress level failure of the specimens occurred outside of the welded 
test section; hence, no covariance analysis was carried out for that S-N curve. 

2. S-N curve for K2 vertical specimens in Steel Fe E 355 at R = — 1. A 
quadratic component was found in the covariance analysis, perhaps because 
the upper stress level was chosen too close to the yield strength of the base 
material; an adjusted straight line was established after eliminating the up­
per level, and the remaining data confirmed the average slope. 

3. S-N curve for K4 flat specimens in Steel Fe E 355 tested at /? = +0 .1 . 
The analysis showed a significant difference in slope for the specimens from 
two welding institutes {k = 4.80) from those of the third (k — 3.72); when 
the cruciform-type specimens from the former two institutes were examined, 
their root surfaces were found to be in close contact, whereas the specimens 
from the third institute showed some root opening, and that difference may 
well explain the different fatigue behavior observed at high and low stress 
levels. 

4. S-N curve of K2 vertical specimens in Steel Fe E 460 tested atR = — 1. 
A marked unbalance of the laboratory effects appeared when the averages of 
the data obtained in each laboratory were considered (see Fig. 12, in the Ap­
pendix). 

In addition to the best fit regression lines, the scatter bands defined by P^ 
= 0.9 and 0.1 ( ± 1,28 standard deviations of log AO have been computed and 
presented in diagrams; Fig. 8 gives an example. The computations followed 
by homogeneity tests indicate that the standard deviations of log N differ 
significantly when the three types of joint are compared. When treating the 
effect of the welding institute on the fatigue strength at ^ = 5-10^ cycles, 
there is evidence of such an effect for 7 out of the 12 S-N curves, whereas in 
some other cases an effect may be supposed, although the data do not differ 
significantly. Finally, the fatigue strength values for A/ = 2 • 10*" cycles and P^ 
= 0.5 have been derived by extrapolating the best fit regression lines (Table 
2). These figures deviate from the staircase test results by less than 13 per­
cent. 

In conclusion the outcome of the covariance analysis confirms the 
hypothesis of a linear log A5/log N dependence and of a uniform slope ap-
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44 STATISTICAL ANALYSIS OF FATIGUE DATA 

plying to S-N diagrams of welded joints in structural steel, when established 
for a constant stress ratio and when plotted in terms of the stress range. For 
further details see Ref. [//]. 

Bastenaire-Type S-N Curves 

A computing algorithm proposed by Bastenaire [12] is aimed at fitting the 
following function to a set of fatigue test results 

N = A exp ^ 1 - /{S - E) (5) 

where 

N = number of cycles to fracture (or failure criterion), 
S — stress amplitude (or some other variable proportional to it), 
E = endurance limit, and 

A,B,C — parameters. 

Equation 5 may take various degenerated forms; with C = 0, one gets the 
equation 

\/N = {\/A)-{S - E) (6) 

If Equation 6 is applicable to fatigue data, it means that the data can be 
represented by the linear regression of the random variable \/N on the stress 
amplitude; if there are runouts at several stress levels, the statistical distribu­
tion of the fatigue life reciprocal 1 /N must be regarded as a normal censored 
distribution, and it has to be processed by a special program. In general, 
estimation of the parameters A, B. and C is more complex because Eq 5 is 
nonlinear in relation to these parameters, and an iterative algorithm is used 
to estimate A. B, and C. 

The Bastenaire type of analysis was applied to the present sets of data, too. 
The results, published elsewhere in detail [13], are included in Tables 2 and 
3; a typical set of the so-derived S-N curves is presented in Fig. 9. 

Values of the Fatigue Strength at 2 • 10^ Cycles 

Table 2 gives a summary of the fatigue strength values at 2 • 10^ cycles as 
obtained from 

(a) the staircase test series, 
(6) the graphical analysis by means of the uniform S-N scatter band, 
(c) the covariance analysis in the S-N diagram, and 
(d) fitting the Bastenaire-type S-N curves. 
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The probability of survival associated with these values is P^ = 0.5. On a 
general basis the results from the four types of analysis compare fairly well. 
The maximum differences amount to 16 percent, but a typical difference is 6 
percent. In two cases the results from the staircase tests seem to be com­
paratively too high, but the reason for this is unknown. 

In order to derive definite fatigue data applicable to design and dimension­
ing of welded constructions, an averaging of the equivalent figures from the 
various analyses appeared to be a reasonable solution. This averaging pro­
cess has been made in two steps: (l)individually for each of the two types of 
steel considered, and (2) by a global averaging, disregarding the difference in 
material. The average values for the two types of material differ by less than 4 
percent. The test series with a high constant mean stress have to be excluded 
in the second step of averaging due to the previously mentioned difference in 
mean stress for the two types of steel. 

Scatter Associated with the Fatigue Strength Values 

In combination with the fatigue strength values of Table 2, the scatter of 
the individual test results has to be considered (Table 3). Listed are the coef­
ficients of variation in percent, defined as the ratio of the standard deviation, 
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s, to the fatigue strength value for P^ = 0.5, and as obtained by the following 
methods of analysis: 

(a) from the staircase tests, 
(b) from averaging the particular analyses of the stress levels tested, 
(c) from the covariance analysis, 
(d) from the Bastenaire-type analysis, and 
(e) from the overall analysis of the S-N curves (Fig. 5). 

Although the listed figures show some remarkable differences, there is little 
indication that these differences have any reasonable tendency. The average 
values prove to be much more uniform, but the values from the staircase 
analysis appear to be either slightly lower than the others or, in two cases, 
much higher, which is not surprising with this kind of test method. 
Therefore, the values from the staircase tests have been excluded when com­
puting the averages for the particular types of specimen. On a global basis 
there is quite a good agreement between the overall analysis and the average 
values from the three remaining methods of analysis and also with the width 
of the scatter band plotted in Fig. 4. As a final result, a coefficient of varia­
tion of 0.125 may be taken as a reliable estimate of the scatter associated with 
the average fatigue strength values given by Table 2. 

Comparison with Data from the Literature 

Finally, the present test results are compared with data from the literature 
(Figs. 10 and 11). Of course, this comparison is lacking in the material 
aspect, for there are no results reported in the literature that exactly apply to 
the two types of materials tested here. The samples presented were selected, 
however, to be consistent with the present investigation in terms of specimen 
geometry and the stress ratio. 

The comparison of fatigue data of different origin may be biased because 
the reported data normally were derived by rather different methods of 
evaluation. Therefore, a reanalysis of the individual test results was made by 
replotting of the results in (log-log) S-N diagrams and by a graphical best fit 
of the uniform scatter band of slope k = 3.75 to the data points. The position 
of the scatter band defines the particular value of the characteristic stress 
range, ASf^ = AS(N = 2 • lO*", P, = 0.5), and this procedure agrees with the 
present graphical analysis in the S-N diagram. Nevertheless, the obtained 
fatigue strength values show a reasonable variation. Therefore, the com­
parison has been made in terms of a probabilistic diagram. From there it 
may be seen that the K2 vertical specimens obviously define a lower limit of 
variability, as was anticipated when specifying the vertical welding position. 
On the other hand the fatigue strength values of the K2 flat specimens clearly 
tend toward the upper limit of the distribution, and again this appears to be 
predetermined by the favorable weld profile specified. The fatigue strength 
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50 STATISTICAL ANALYSIS OF FATIGUE DATA 

values of the K4 specimens show less variation; the present data form the 
lower end of the distribution. Another question of particular interest is 
whether any correlation exists between the observed fatigue strength values 
and the type of base material. The presented samples, however, clearly in­
dicate that an effect of the base material on the fatigue strength is less signifi­
cant than other effects. In particular, welding effects appear to be of major 
importance. 
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APPENDIX 

The distribution of the test series to the testing laboratories is outlined in Table 4. 
Due to the known importance of the weld profile on the fatigue life, the welding ef­
fects were given high priority in the balancing effects. Therefore, at each stress level 
the same number of specimens was provided from each of the three welding institutes. 
Additionally, it was intended for the Fe E 355 test series to involve at each stress level 
as great as possible a number of testing laboratories by means of a balanced in­
complete block structure (Blocks b to f). For the Fe E 460 test series, a direct balance 
of the welding effects for each laboratory was preferred. Table 5 illustrates the reparti­
tion of the specimens to the particular test series and to the testing laboratories. In the 
coding of the specimens, the letters distinguish the plates, the integer number in­
dicates the assembly, and the decimal number indicates the specimen position (see 
Fig. 3). 

Based on the indicated blocks, an analysis of variance could be carried out on each 
line of Table 4 allowing for a comparison among the laboratories involved. This type 

TABLE 5—Repartition of the specimens to the particular test series and to the testing 

R 

- 1 

+0.1 

0.4 

Level 

3 
1 
5 
3 

4 
5 
3 

lis'' 

P2.1 

K5.1 
F 1.4 

CRM" 

IFS 

F4.5 
AA8.3 

LL 7.3 

CRM 

BB 2.4 
X 7.2 
W 5.5 

L 1.2 

IIS 

L6.2 
KK 2.5 

L6.5 

Z0.35 
U3.3 
B5.3 

IRSID 

IPS 

D5.1 
DD 7.4 
M 2.2 

L2.2 
C2.4 
V4.2 

CRM 

T3.3 
X7.I 
DD 2.4 

Z5.1 

L 1.4 

IIS 

F 1.3 
F 1.1 
AA 1.4 

Z3.3 
L6.1 
B5.4 

LBF 

IFS 

LL 7.5 
F4.3 
V 4.1 

HH 6.3 
R. 3.4 

CRM 

Z5.2 

MM 2.2 
T3.5 

BB 2.2 
B8.5 
BB 2.5 

' Laboratories. 
Welding institutes. 
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of preliminary analysis was particularly useful for controlling, in due time, anomalous 
trends that might have occurred for some laboratory results and for checking for any 
systematic interlaboratory differences. In addition, in Block a the laboratory situation 
was checked by 36 tests on notched specimens for which the intrinsic scatter may be 
expected to be less than that for the welded specimens (three tests by each laboratory 
at each of two stress levels, stress ratio ^ = +0 .1 , Steel Fe E 355). The corresponding 
analysis of variance is presented in Table 6 as an example. It shows significant dif­
ferences between the laboratories (approximately 10 percent in terms of stress). Also 
the laboratory averages differed significantly in some blocks tested and not in others. 
For comparison, the overall analysis in Fig. 6 shows a more satisfactory picture. Table 
7 gives the reduced test plan on which Figs. 6 and 7 were based. 

In spite of the laboratory effects identified through the variance analyses, the 
number of laboratories and the comparatively large intrinsic scatter of the welded 
specimens made it possible to analyze the slope of the S-N curves without taking into 
account the differences among the laboratories in all cases but one, as mentioned in 
the text (Fig. 12). 

For all log S/[og N diagrams, regression lines were calculated and drawn, and the 
80-percent confidence limits of single values were indicated by parallel straight lines. 
The standard deviation used was obtained by pooling the contributions of the residual 
line and of the welding institutes in order to represent the actual situations in welding 

TABLE 6—Example of the analysis of variance. Block a: 
36 notched specimens: 2 stress levels ILEV): 6 laboratories (LABS): 

variable examined: log N,. 

Source of Variation 
Degrees of 
Freedom 

Sum of 
Squares 

Mean 
Square '^calculated 

Between LABS 
Between LEV 
LABS X LEV 
Residual 
Total 

5 
1 
5 

24 
35 

0.35730 
0.95736 
0.17480 
0.43727 
1.92673 

0.07146 
0.95736 
0.03496 
0.01822 

3.92**" 
* 

1.92' 

"tubulated (5,24; 0.99) = 3.90. 
Very large as expected; of no practical interest. 

'/"tabulaled (5.24; 0.90) = 2.10. 

laboratories (example refering to the K2 vertical specimens in Steel Fe E 355. 

MPl Dalmine Faick 

JIS IFS CRM IIS IFS CRM IIS IFS CRM 

AA8.4 
AA 1.2 
AA 1.5 F4.'t 
CC 4.3 D 5.2 

U 3.5 
Z3.I 

E7.2 

L2.5 

FFS.3 
V5.1 

LL6.I 

BB2.3 
V5.4 

K 5.2 
P2.4 

GG 7.5 V 5.3 
GG 7.3 
L2.1 LL6.2 
HH6.1 D 1.3 
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FIG. 12—Laboratory effects associated with the test series for K2 vertical specimens in Steel 
Fe E 460 tested at R = -I. 

TABLE 8—Example of the analysis of covariance." 

Source of 
Variation 

Welding 
institute 

Within 
Between 
Common 
Adj. means' 
Total 

CRM 
IFS 
IIS 

. / • 

S 
5 
5 

15 

17 

Ix^" 

0.0457 
0.0461 
0.0447 

0.1365 

0.1369 

EAI-

-0.1628 
-0.1390 
-0.1649 

-0.4667 

-0.4737 

Ev^ 

0.6827 
0.6001 
0.7024 

1.9852 

2.1786 

. / • 

4 
4 
4 

12 
2 

14 
2 

16 

Deviation from 
Regression 

t v ' -
(Ixvf / 

Lx' 

0.1022 
0.1807 
0.0945 
0.3774 
0.0116 
0.3891 
0.1503 
0.5398 

Line 

Mean 
Square 

0.0256 
0.0452 
0.0236 
0.0315 
0.0056 
0.0278 
0.0754 
0.0337 

"Eighteen specimens: K2 vertical, Steel FeE355, stress ratio R = — 1 ; 2 stress levels (upper 
level is disregarded because it is too close to yield strength); variables examined: x = log S; y = 
log yVji null hypothesis: no significant difference of the fatigue data N; is caused by the welding 
institutes; therefore, the 18 test results give a correct estimate of life expectance for P^ = 0.5. 
Previous check: Bartlett's test on homogeneity of variance. 

''Stress based on individually measured thickness of the specimens. 
'To individuate the central point position of the regression line. 
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practice. For all other considerations, only the variance of the residual line was used. 
The covariance analysis was carried out according to the scheme of Table 8. 
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Society for Testing and Materials, 1981, pp. 55-74. 

ABSTRACT: A statistical analysis was performed on fatigue test data for aluminum, 
titanium, steel, and nickel materials. The data for the titanium, steel, and nickel were ob­
tained from spectrum fatigue tests, whereas the data for aluminum were obtained from 
both constant amplitude and spectrum fatigue tests. The analyzed data consisted of a total 
of 553 S-N test groups with 2417 specimens and 1288 spectrum test groups with approx­
imately 5000 specimens. 

The distribution of logarithmic standard deviation of fatigue life for these test groups 
was analyzed with normal, logarithmic, and two-parameter Weibull probability distribu­
tion functions and with 2-deg polynominal equations. The best fit was evaluated using the 
coefficient of correlation and the chi-squared goodness of fit test. None of the distribution 
functions or polynomial equations provided the best fit for all of the distributions of the 
logarithmic standard deviation of fatigue life for the selected sets of test groups. A com­
parison is also made of three methods of calculating scatter factors. 

KEY WORDS: statistical analysis, fatigue, standard deviation, test life reduction facton, 
normal distribution function, logarithmic distribution function, Weibull distribution func­
tion, 2-deg polynomial equations, chi-squared goodness of fit test, spectrum fatigue test 
data, S-N fatigue test data, aluminum, titanium, steel, nickel 

Nomenclature 

c Joint probability confidence level of (cl) (c2) 
c\ Mean life confidence level 
c2 Logarithmic standard deviation confidence level 
e Cell size 

F,u Ultimate tensile strength 
g Factor of one half 
/ /"̂  variance in a set of variances or count number 
./' f^ specimen in a test group 
k_ Number of test groups 
/ Mean log of fatigue life of specimens tested in a group 

'Design specialist and staff scientist, respectively, Lockheed-California Co., Burbank, Calif. 
91520. 
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/, Log of fatigue life of,/"' specimen in a test group 
m Total number of logarithmic standard deviations or total number of 

data points 
MN/m^ Meganewtons per square metre 

n Total number of specimens 
«, Number of specimens in /"' test group 
P Probability 
R Reliability level or probability of no failure 
r Number of coefficients in equation or correlation coefficient 
S Unbiased sample standard deviation 
Si Sample standard deviation of the Z"' test group 

Sp^ Scatter factor for probability of failure, P, and joint confidence 
level, c 

W Weibull variate equal to In In [1/1 — P] 
X Normal deviate 
Xi The /"' fatigue failure in a test group composed of n specimens 
Y S t anda rd deviation of log test life or logarithm of s tandard deviation 

of log test life, as defined when used 
z Normal deviate 

Zc\ Normal deviate for mean life confidence level, c\ 
Zp Normal deviate for probability of failure, P 
)8 Confidence level 
V Degrees of freedom 
a Populat ion s tandard deviation 

Oci S t anda rd deviation for confidence level, c2 
(J, S t anda rd deviation for j ' * " test group 

a„ S t anda rd deviation for «•'' test group 
ffs Unbiased est imate of populat ion s tandard deviation 
a^ S t anda rd deviation for confidence level, (3 

Chi-squared variate ,2 

T h e fatigue life of an aircraft s t ructure is generally based on the results of 
representative full-scale component fatigue tests . D u e to budge t and schedule 
restraints, only one or two components are usually tested for critical areas of 
the s t ruc ture . T o obtain confidence in achieving a specified fatigue life, the 
test results are factored by a life-reduction or scatter factor. Since only a few 
structural details are replicated in any componen t , t he confidence level based 
only on the componen t test results is not very high. Therefore, addit ional test 
da t a are used to define the confidence level in achieving a specified reliability 
corresponding to a probabili ty of no fatigue failures for untes ted s t ructures . 

T h e variability in fatigue test results is generally expressed in terms of a 
probabili ty distribution function. Two of these functions commonly used to 
represent fatigue d a t a are the two-parameter logarithmic and two-parameter 
Weibull distr ibution functions. T h e choice of one function or the other is a 
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matter of preference since most studies have indicated that either function can 
be used to represent fatigue scatter of identically tested specimens over the 
probability, P, range of 0.05 < P < 0.95. No one probability distribution 
function provides the best fit to available large sets of data for probability 
values below 0.05 and above 0.95. Stagg [1-3]^ summarizes many investiga­
tions that have been made to determine the type of distribution function for 
fatigue test data and concludes that the logarithmic distribution provides a 
reasonably good approximation for most data sets. In this paper, the scatter 
characteristics of fatigue data are investigated in terms of a logarithmic 
distribution of fatigue lives. 

The pooling of data sets for evaluating fatigue scatter has also been studied 
by various investigators [1-10]. The effect some variables have on a fatigue 
scatter is summarized in the following sections. 

Type of Material 

The scatter for both Type 7075 and Type 2024 aluminum alloys is similar 
[2,7,10] and did not vary with product form [10] except for hand forgings [ 7], 
in which it was greater. For titanium and low-strength steel (Fju < 1655 
MN/m^, that is, 240 ksi) the scatter in S-N data is the same or greater than for 
aluminum alloys [9]. The combined scatter for spectrum loading tests con­
ducted on low-strength steel and nickel-base alloys was less than that for 
aluminum alloys [5]. 

Type of Test Histoiy 

Test histories can be classified generally as constant amplitude and variable 
amplitude. Three types of variable amplitude fatigue tests that have been con­
ducted for aircraft structures are illustrated in Fig. 1. For scatter evaluations, 
previous investigations have generally combined data for the three types of 
spectrum tests. Tests have also been conducted with the sequence varied 
within a block or flight. Jost and Verinder [8] found that the loading sequence 
did not significantly influence scatter in the fatigue life of full-scale structure 
tests. 

Tension-tension and tension-compression S-N AsAdi [6] exhibit similar scat­
ter, which is less than that for compression-compression fatigue data [7]. Five 
studies [6-10] indicate that the scatter for S-N tests is greater than for variable 
amplitude loading spectrum tests. Other studies [4,7,8] indicate that the scat­
ter characteristics are similar for S-N testing and spectrum testing over the life 
range of 10̂  to IC" cycles for aluminum alloys or if the stress range experienced 
by the material is similar for the two types of testing [3,5]. Jost [8] also found 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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FIG. 1—Types of fatigue loading histories. 

that maneuver-loading spectra of structures exhibited less scatter than S-N 
tests and gust-loading spectra exhibited more scatter than S-N tests. 

Number of Fatigue Loading Cycles 

The scatter in spectrum fatigue test data was found to be independent of 
fatigue life [4,5,10], For constant amplitude fatigue tests, the scatter was con­
stant for aluminum alloys over the life range of 70 to 10* cycles [4,7] and 10̂  to 
10̂  cycles [8] and for titanium alloys up to 4 X 10̂  cycles [9]. Schijve and 
Jacobs [4] reported that the scatter did not vary with the number of cycles ap­
plied in spectrum fatigue tests. However, Abelkis [6] indicates that scatter 
varied with fatigue life and generally increased with increasing life for both 
S-N and spectrum testing. 

Type of Specimen 

Unnotched fatigue specimens have been found to exhibit less scatter than 
notched specimens [1,6,7]. Scatter does not vary with the geometry of the 
notch [7,70]. The scatter characteristics are similar for aluminum notched, 
joint, and structural specimens [5,6,70] and for titanium notched, lap, and 
butt-joint specimens [9]. The scatter is greater for bonded joints [7]. 

Type of Loading (Testing) 

Axial-loaded and flexure-loaded specimens exhibit similar scatter character­
istics which are less than for notched rotating bending tests [7]. Tests con-
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ducted using mechanical shakers had more scatter than servo control test data 

\m. 
Specimen Fabrication 

Ultracarefully prepared specimens [ 7] or specimens made with a very fine 
finish [10] exhibit less scatter than specimens made by using conventional 
fabrication methods and finishes. 

In this study, scatter characteristics were collected and evaluated for test 
data applicable to aircraft structures. The two primary variables studied were 
(1) material: aluminum, titanium, and combined steel and nickel-base alloys; 
and (2) type of loading history: simple block spectra loading, flight-by-flight 
spectra loading, and constant amplitude loading. 

Test Data 

The variable amplitude-loading spectrum test data analyzed for scatter 
were obtained from literature searches [11.12]. The data selected for analysis 
consisted of only test groups with three or more variable amplitude loading 
levels and with all of the test specimens failed, that is, no runouts. In addition, 
test groups that contained unnotched or bonded specimens were not included. 
Also omitted were test groups that contained specimens either tested under 
narrow-band random loading or subjected to any service experience or preload 
before testing. 

The selected and statistically analyzed spectrum test data are summarized 
in Table 1. Test groups containing only two specimens with simultaneous 
failures were not included in the statistical analysis because the logarithmic 
standard deviation of these groups was equal to zero. 

The spectrum test data summarized in Table 1 were obtained on specimens 
fabricated from aluminum, titanium, steel, and nickel alloys. The aluminum 
alloys were Types 2024, 2218, 7075, 7079, and 7178. The titanium alloys were 
alpha-Ti-8Al-lMo-lV, alpha-beta-Ti-6Al-4V, and beta-Ti-13V-llCr-3A. Fi­
nally, the steel and nickel alloys that were statistically analyzed together con­
sisted of low-alloy steel, carbon steel, Types 4340 and 300M high-strength 
steels. Types 301, Phl4-8Mo, and 17-7PH stainless steels, and Inco 718 nickel-
base alloy. 

The scatter characteristics of constant amplitude fatigue test results were 
statistically analyzed by using selected data [7.10]. The data were selected on 
the following basis: 

1. Only aluminum alloys were considered; these alloys were Types 2020, 
2024, 2124, 6061, 7075, 7076, 7079, 7175, and 7178. 

2. Test groups containing only two specimens were not included in this 
statistical analysis. These specimens were not considered to be part of the same 
population since two-specimen groups were sometimes tested in series. There 
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is generally less scatter associated with specimens tested in series than there is 
with two independently tested specimens. 

3. Fatigue test data were not included for unnotched specimens. Fatigue 
failures generally do not occur in unnotched areas of aircraft structures, and, 
therefore, the scatter characteristics of unnotched data are not pertinent to 
these types of structures. Also the scatter for unnotched specimens has been 
shown to be different from that for notched or joint-type specimens. 

4. The data for spot-welded and bonded specimens were not used because 
the fatigue characteristics of these specimens are significantly different from 
the corresponding characteristics for notched or mechanically fastened speci­
mens. 

5. Only axially loaded specimens were considered since this is the most 
representative loading for primary aircraft structures. 

6. The only test groups considered were those containing all failures, that is, 
no runouts. 

7. The fatigue data for test groups containing a specimen with a minimum 
life of less than 100 cycles were not included because such test lives are well 
below the operational life of aircraft structures. 

8. The data obtained in mechanical shaker test machines were excluded 
because the fatigue test results from this type of equipment are generally not 
used to evaluate the fatigue characteristics of aircraft structures. 

The final amount of S-N data available for statistical analysis consisted of 
604 test groups and 2683 specimens. 

To see if there was any trend for scatter of constant-amplitude test data to 
increase with the mean fatigue life, the S-N data were subdivided into 24 data 
sets of approximately 100 specimens each (91 minimum and 150 maximum). 
The average logarithmic standard deviation, that is, standard deviation of the 
log of life, and the geometric mean fatigue life was calculated for each data set 
consisting of 25 or 29 test groups. The results of these calculations are plotted 
in Fig. 2. 

The average logarithmic standard deviation for the 24 data sets was 0.127. 
The last two data sets indicated a considerably higher average value of the 
logarithmic standard deviation than the first 22 sets. Therefore, the decision 
was made to exclude all S-N test groups with mean test lives above a million 
cycles. The remaining 553 test groups with 2417 test specimens were statistical­
ly analyzed assuming that the logarithmic standard deviation is independent of 
fatigue life. 

Regression Analysis of the Distribution of Logarithmic Standard Deviations 

A series of linear regression analyses was performed by using an SPSS com­
puter program [13] to determine if the standard deviation of the logarithm of 
fatigue life for a set of fatigue test groups would fit a normal, logarithmic, 
Weibull, or quadratic distribution function. These groups were tested under 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



62 STATISTICAL ANALYSIS OF FATIGUE DATA 

0.20 

I 

y 0.14 h 

2 0-12 
o 
_ j 
LU 

u 
< 0.10 
> < 

0.08 

29 TEST-
GROUPS 

i " • " - Q / 0. 

OVERALL AVERAGE 
/LOGARITHMIC O 
/ STANDARD DEVIATION 

127 

0 0 Q 

—o-
O Q 

o 

o 

lO'' 10=" 

GEOMETRIC MEAN CYCLESTO FAILURE OF 25TEST GROUPS 

FIG. 2—Correlation of the average logarithmic standard deviation versus cycles to failure for 
24 data sets consisting of 25 or 29 test groups. 

either variable amplitude spectrum type or constant amplitude S-N type 
loadings. Each test group consists of a compatible set of essentially identical 
specimens subjected to virtually the same fatigue test loads. The standard 
deviation, based on the logarithms of all the fatigue failure lives in a test group, 
was calculated from the following equation 

standard deviation = 
J '• = " / ' = " \ 2" 

E iog;>r,2 - E logji^, 
« — 1 /•=i V / = i 

1/2 

(1) 

with Xj being the Z"' fatigue life failure in a test group composed of n 
specimens. To distinguish the standard deviation of log life from the standard 
deviation for the distribution of standard deviation, the standard deviation in 
Eq 1 will be referred to as logarithmic standard deviation. 

The first analysis was made with the normal distribution function for 
logarithmic standard deviation and was based on the linear regression of the 
uniformly spaced normal deviate, z, with respect to compatible sets of 
logarithmic standard deviations. The value of z corresponds to the number of 
multiples of standard deviation in the normal distribution of logarithmic stan­
dard deviation by which an observed value is different from the median value 
of logarithmic standard deviation. Each value of z also represents an area 
under the curve of the normal distribution function, which is related to a 
specified probability of occurrence, P. of an observed value of logarithmic 
standard deviation. 

The probability, P, was evaluated by ordering the values of logarithmic stan-
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dard deviation sequentially from the lowest to the highest value. Each of the 
ordered values was assigned a count number which varied continuously from 1 
to m. where m is defined as in Eq 2. The probability corresponding to each 
value of logarithmic standard deviation was then computed by using the 
following equation [14] 

P = '-^^ (2) 
m - (2^ + 1) 

where 

/ = count number, 
g = 1/2, and 

m = total number of logarithmic standard deviations being analyzed. 

For this type of sequentially ordered data, the median value of logarithmic 
standard deviation has a count number of [(m/2) — g]/m if m is odd. If m is 
even, the median is the average value of [{(m/2) — g}/mY^ and the [{(m/l) — 
g + I j / m ] * ranked values of logarithmic standard deviation. 

The linear regression analysis of the normal distribution of logarithmic stan­
dard deviations led to an equation of the form expressed in Eq 3 

Y=^A+BX (3) 
with 

Y = logarithmic standard deviation 
and 

X = z 

Equation 3 was also used for the linear regression of a logarithmic distribu­
tion with 

Y = logio of the logarithmic standard deviation 
and 

X = z 

The linear equations and correlation coefficients, r, derived by this method 
are shown in Table 2. The correlation coefficient, r. for the logarithmic 
distribution was significantly larger than that for the normal distribution 
(which is not shown). The improvement in correlation occurs because 
multiplying by 2 the right-hand side of the linear logarithmic equations on this 
table would provide regression of the logarithmic variance, that is, the square 
of the logarithmic standard deviation, with y being a logarithm to the base 10. 
In most instances, the variance is more normally distributed than the standard 
deviation, and the logio of the standard deviation follows the statistical trends 
of the variance. 

The linear regression was conducted of the logio of the logarithmic standard 
deviation with respect to the Weibull variate, W. with the variables in Eq 3 
given by 

Y = logio of the logarithmic standard deviation Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
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TABLE 2—Summary of equations representing the probability 

Item 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Material 

aluminum 

titanium 

steel and 

nickel 

aluminum 

Type of Testing 

flight-by-flight 

flight-by-flight 

block 

flight-by-flight 
and block 

flight-by-flight 

flight-by-flight 

block 

flight-by-flight and 
block 

S-N 

No. of Test Groups 

290, n = 2 

329, n > 2 

325, n > 2 

654, n > 2 

lines 2 + 3 
219, n > 2 

42, n > 2 

83,n > 2 

125, n 2 2 
lines 6 + 7 
553, n > 2 

Linear 

F 

0.978 

0.993 

0.981 

0.986 

0.985 

0.978 

0.978 

0.982 

0.993 

Logarithmic Equation 
with X as the Variable 

Equation 

y = - 1 . 2 8 9 + 0.479Jf 

Y= - I . I 3 I +0.307X 

Y= - 1 . 1 8 7 + 0.363X 

Y= - 1 . 1 5 8 + 0.337;if 

Y= -1.121 +0.373Jf 

Y= - 1 . 1 2 8 + 0.455A-

Y = -0.946 + 0.329X 

Y= - 1 . 0 0 7 + 0.384;f 

r = - 1 . 0 3 9 + 0.313X 

"Key: 
It = number of specimens in a test group 
Y = logjQ of the logarithmic standard deviation of fatigue test life 
X = number of multiples of the standard deviation of the normal distribution of Yhy which an observed value is different from 

the median value of Y (Note: the median value of Y corresponds to the geometric median value of the distribution of 
logarithmic standard deviation of fatigue test life.) 

1^= In In [1/1 - P/ 
P = probability of equalling or exceeding a specified value of Y 

and 

X=W = \nln 
1 -P 

where, 
P — value expressed in Eq 2 

Some improvements occurred in the coefficients of correlation, r. when the 
linear regression of the Weibull method was employed, as shown in Table 2. 
The resulting linear equations are also shown in Table 2. 

Finally, polynomial regression analyses were performed by using an 
analytical expression of the type given in Eq 4 for both the logarithmic and 
Weibull distributions of the logarithm standard deviation. 

Y = A+BX+CX^ (4) 

The resulting quadratic equations are shown in Table 2. 
The chi-squared test was conducted to determine the goodness of fit of the 

equations given in Table 2 to the data for the logarithmic standard deviations. 
Each of the nine data sets was subdivided into a number of cells, e. If the total 
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distribution of logarithmic standard deviation of fatigue test life." 

Linear Weibull Equations 
with W as the Variable 

2-deg Quadratic Logarithmic 
Equations with X as the Variable Equation 

2-deg Quadratic Weibull 
Equations with W as the Variable 

Y = -1.218 + 0.479X - O.OTIOX' 0.998 

Y = -1.109 + 0.307X - 0.02I9X^ 0.988 

>' = -1.142 + 0.J63X - 0.0453;f^ 0.996 

Y = -1.122 + O.mX - 0.0361X^ 0.995 

Y = -1.075 + 0.373X - 0.0449X^ 0.994 

Y = -1.102 + 0.455X - 0.0264Ar^ 0.964 

Y = -0.906 + 0.329X - 0.0403X^ 0.993 

Y = -0.960 + 0.384Jif - 0.0474X^ 0.992 

Y = -1.017 + 0.313^ - 0.0213X^ 0.989 

Y = -1.068 + 0.383W 

Y = -0.993 + 0.239W 

Y = -1.021 + 0.288W 

Y = -1.005 + 0.265W 

Y = -0.951 + 0.295W 

Y = -0.926 + 0.355W 

Y - -0.795 + 0.262W 

Y = -0.832 + 0.305W 

Y = -0.898 + 0.244W 

Y = -1.072 + 0.401 W 
+ 0.0071 IW^ 

Y = -1.001 + 0.279W 
+ O.OISSW^ 

Y = -1.025 + 0.306W 
+ 0.00730W^ 

Y = -1.010 + 0.289W 
+ 0.00930W^ 

Y = -0.958 + 0.327W 
+ O.OUIW^ 

Y = -0.950 + 0.447W 
+ 0.0409W^ 

Y = -0.798 + 0.272W 
+ O.0O393W^ 

Y = -0.839 + 0.338W 
+ 0.0135W^ 

Y = -0.905 + 0.280W 
+ 0.0144W^ 

number of data points was less than 200 (Items 6, 7, and 8), the cell size was 
determined by dividing the total number of points by 5. For more than 200 
points the cell size was determined from 

e = 4[0.7S(m- ly] - 1^211/5 (5) 

where m = total number of data points. The results of the chi-squared 
goodness of fit test are summarized in Table 3. The degrees of freedom for 
each data set were calculated from 

v = e — I — r (6) 

where r — number of coefficients used to define the equations given in Table 
2. 

An equation is considered a good fit to the test data at the 5-percent 
significance level, that is, when there is a 5 percent probability of obtaining a 
chi-squared variate greater than the tabulated value. Only data Sets 7 and 9 
are acceptable for the linear logarithmic distribution. The linear Weibull 
distribution would be accepted for data Sets 1, 3, 5, 7, and 8. For data Set 7 
the linear Weibull distribution provides a better fit than the linear logarithmic 
distribution. Except for data Set 7, the quadratic equations in Â  or W provide 
better fits to the data than the linear equations. The degree of fit for data Set 7 
is about the same for both the linear and quadratic equations. 

None of the equations provided a good fit to data Set 6. However, when data 
Set 6 was combined with data Set 7 (data Set 8), a good fit was obtained for 
both the linear and quadratic equations in W. 
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To get an idea of the meaning of goodness of fit, the test data are compared 
with the distribution equations in Figs. 3, 4, and 5 for data Sets 2, 5 and 9. It is 
obvious from Fig. 3 that the quadratic equation in X provides the best fit of 
those shown and that the other two equations are not acceptable by the chi-
squared test. The logarithmic distribution plots as a straight line in Fig. 3 
where the X scale is linear for z. In Fig. 4, the Weibull distribution is accep­
table, whereas the logarithmic distribution is not. The Weibull distribution 
plots as a straight line in Fig. 4, where the W scale is linear for In In [1/(1 — 
P)]. Finally, the quadratic distribution in X provides a good fit to the data in 
Fig. 5 where the logarithmic and Weibull distributions are unacceptable. 
Also the X scale is linear for z in Fig. 5. 

The values obtained for the logarithmic standard deviations from the four 
equations for each data set are summarized in Table 4 for the 95, 90, and 50 
percent probability values. There is not much difference in the 50 percent 
probability values obtained for each distribution; however, there is a signifi­
cant difference near the tails of the distribution. Except for data Set 6, the 
Weibull distribution yields the lowest calculated values for a^ and the 
logarithmic distribution the highest values, with the X and W quadratic 
distributions falling in between for probability values greater than 90 percent. 
When equations are used for calculating the value of a^, the equation pro­
viding the best fit, as indicated by the chi-squared test in Table 3, was used. 

W=Ln ̂ " L;] 

1.0 
-5 4 -3 -2 1 1 

< 
> 

0.1 

0.01 

I I I—r 

ALUMINUM 
•PLT-BYFLT 
> 3 SPECIMENS 

•PER GROUP 
329 TEST GROUPS 

T 1 r 
LOGARITHMIC 
V = 1.131+0.307X-

-LOGARITHMIC 
Y = -1.109 + 

0.307X-0.0219X' 
1 1 L 

X = NORMAL OEVIATE.z 
0.0011 I I I I I I I I I I I I I I I I I I I 

0.01 0.110.5 2 5 20 40 60 80 98 
PERCENTPROBABILITY 

- I 
99.8 99.99 

FIG. 3—Comparison of probability distribution equations with data for aluminum Jlight-by-
flight test of a group with three or more specimens. 
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X = NORMAL DEVIATE, z 
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> 
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a 
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< 

1.0 

0.10 

•2 •1 0 1 2 3 
— I \ 
TITANIUM 
FLIGHTBYFLIGHT 
> 2 TEST SPECIMENS 
PER GROUP 
219 TEST GROUPS 

- LOGARITHMIC 
- Y = -1.121 + 

0.373X 

0.01 

I ' I f I — " 1 — r - T T 
5 10 20 50 70 90 99.9 

PERCENT PROBABILITY, P 

FIG. 4—Comparison of probability distribution equations with data for titanium flight-by-
flight tests. 
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Y = 0.898 + 
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FIG, 5—Comparison of probability distribution equations for aluminum S-N tests of a group 
size of three or more. 
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TABLE 4—Summary of calculated value of logarithmic standard 
deviation for various levels of probability, 

Item 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Type-of-Test Data 

flight-by-flight 
aluminum, 2 
specimens/group 
flight-by-flight 
aluminum, > 2 
specimens/group 
block spectrum 
aluminum, > 2 
specimens/group 
Items 2 and 3 
spectrum loading 
aluminum, >! 
specimens/group 
flight-by-flight 
titanium, S 2 
specimens/group 
flight-by-flight 
steel and nickel > 2 

specimens/group 

block spectrum 
steel and nickel ^ 2 
specimens/group 
Items 6 and 7 
spectrum loading 
steel and nickel > 2 
specimens/group 
S-N 
aluminum, > 2 
specimens/group 

Prob­
ability, % 

50 
90 
95 
50 
90 
95 
50 
90 
95 
50 
90 
95 

50 
90 
95 
50 
90 

95 

50 
90 
95 
50 
90 
95 

50 
90 
95 

Logarithmic Standard Deviation 

Linear 
Equation 

in A" 

0.05 
0.21 
0.32 
0.07 
0.18 
0.24 
0.07 
0.19 
0.26 
0.07 
0.19 
0.25 

0.08 
0.23 
0.31 
0.07 
0.28 

®" 
O.ll 
0.30 
0.39 
0.10 
0.31 
0.42 

0.09 
0.23 
0.30 

Quadratic 
Equation 
in X and 

X^ 

0.06 
0.19 
0.24 
0.08 
0.18 
0.22 
0.07 
0.18 
0.22 
0.08 
0.18 
0.22 

0.08 
0.21 
0.26 
0.08 
0.33 

® 
0.12 
0.28 
0.34 
0.11 
0.28 
0.35 

0.10 
0.22 
0.28 

Linear 
Equation 

in W 

0.06 
0.18 
0.22 
0.08 
0.16 
0.19 
0.07 
0.17 
0.20 
0.08 
0.16 
0.19 

0.09 
0.20 
0.24 
0.09 
0.23 

® 
0.13 
0.27 
0.31 
0.11 
0.26 
0.32 

0.10 
0.20 
0.23 

Quadratic 
Equation 
in W and 

W^ 

0.06 
0.18 
0.24 
0.08 
0.17 
0.21 
0.07 
0.17 
0.21 
0.08 
0.17 
0.21 

0.08 
0.21 
0.26 
0.08 
0.28 

® 
0.13 
0.27 
0.32 
0.11 
0.28 
0.35 

0.10 
0.22 
0.26 

" ® is beyond the range of data. 

The results summarized in Table 4 indicate that aluminum alloys have the 
least scatter, titanium somewhat higher, and the combined data for steel and 
nickel-base alloys the largest. The scatter characteristics for the various 
aluminum and titanium alloys were similar. However, the scatter for the 
various steel and nickel materials may be a function of material strength, as in­
dicated by results reported by Whittaker [9]. Therefore, the scatter for the 
steel materials summarized in Table 4 should not be considered typical of all 
steel and nickel alloys. More spectrum fatigue data are needed for steel alloys 
to determine the relation between fatigue scatter and material strength level. 
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Comparison of Scatter Factor Equations 

The scatter factors were calculated by using Eq 7 [6], 8 [15,16], and 9 
[17,18], as expressed here for the various sets of data, and are summarized in 
Table 5 for reliability values of 0.90 and 0.95 and a confidence level of 0.95. 
The appropriate values of the logarithmic standard deviation used in the 
calculations are also given in Table 5. 

Spc = antilog a 
v« 

(7) 

ff is determined from evaluating scatter of available appropriate test data and 
assuming that sample variances, S,^, are from populations with equal 
variances, that is, a^^ = 02^ = . . . = a„^. Then an unbiased estimate of the 
population standard deviation is given by 

* _ l / 2 

where 

a = a. 

Tf iij — k 

" (l—l)^ 
s^ = L — — for each sample 

./=i n — k 

Sp^, = antilog a,2 + z„ (8) 

where 

c = (cl)(c2) 

a^i is determined from evaluating scatter of available appropriate test data 
assuming that sample variances, 5",̂ , are from populations with equal 
variances, that is 

a,2 - 02' = 

Then Sj^/a^ is a chi-squared distribution with n — k = v degrees of freedom, 
therefore, 0^2 is given by 

"c2 
(xV.),2 1/2 
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72 STATISTICAL ANALYSIS OF FATIGUE DATA 

for very large sample sizes the confidence limits are small and 0^2 == <^- If sam­
ple variances, a,^, do not fit a chi-squared distribution, then it cannot be 
assumed that <JJ came from populations with equal variances [6]. Then a^ is 
replaced by a^ and 

Sp.c = antilogZpCTg 1 + -^ 
n 

1/2 
(9) 

The scatter factors determined from Eq 7 are lower than those determined 
by either Eq 8 or 9. This is to be expected since the unbiased estimate (50 per­
cent confidence) of the logarithmic standard deviation is used in Eq 7. Except 
for the block loading tests at /? = 0.90, the scatter factors from Eq 9 are the 
largest. 

The values of S}/a^ should form a x^/i' distribution if the variances of a set 
of fatigue test groups of the same sample size all have the same value of 
population variance, a^. Such a distribution would form a linear plot on chi-
squared paper with a degree of freedom equal to the sample size minus 1. In 
Fig. 6 two sets of S}/a^ values for test groups of sample size 4 are plotted on 
chi-squared paper with 3 degrees of freedom for aluminum S-N and spectrum 
fatigue test data. Since neither set of the plotted values is linear, it cannot be 
concluded that either set of test groups is from populations with equal 
variance. Similar plots for sets of test groups with other sample sizes of 5, 6, 
and 7 specimens were also examined, and none of the sets formed linear plots 
on the appropriate chi-squared paper. Therefore, Eq 9 is recommended for 
general use to determine the reliability and confidence levels associated with a 
specified life based on a limited number of tests conducted on full-scale 
structures. 

Conclusions 

No single distribution function provided the best fit to the standard devia­
tion of the log of test life for all of the analyzed sets of test data. The two-
parameter Weibull distribution provided the best fit to the logarithmic stan­
dard deviations for the majority of the spectrum test data between probabili­
ties of 10 and 90 percent. The logarithmic distribution of these standard devia­
tions provided the best fit for S-N test data in the same range of probabilities. 
Below and above probabilities of 10 and 90 percent, respectively, the cor­
responding 2-deg polynomial equations provide the best correlation. 

This investigation indicates that aluminum alloys have the least scatter, with 
the scatter for titanium alloys a little higher, and that for the combined data 
for steel and nickel base alloys the largest. Because the set of data is small and 
the scatter for the various steel and nickel alloys may be a function of material 
strength, these findings should not be considered typical of all steel and nickel 
alloys. 
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FIG. 6—Chi-squared probability plot for 3 degrees of freedom of aluminum S-N and spec­
trum data of sample size 4. 

Equations 7 and 8 assume that the test sample variances are from popula­
tions with equal variances. The variance of logarithmic fatigue life for fatigue 
test groups does not seem to fit a chi-squared distribution as it would if the test 
groups were from populations with the same variance. Therefore, the use of 
Eq 9 appears to be the logical choice for determining test life reduction factors. 

References 

[/] Stagg, A. M., "An Investigation of the Scatter in Constant Amplitude Fatigue Test Results 
of Aluminium Alloys 2024 and 7075," C.P. No. 1093, Aeronautical Research Council, Lon­
don, England, April 1969. 

\2] Stagg, A. M., "An Investigation of the Scatter in Variable Amplitude Fatigue Test Results of 
2024 and 7075 Materials." C.P. No. 1123, Aeronautical Research Council, London, 
England, May 1969. 

\3] Stagg, A. M., "Scatter in Fatigue-Elements and Sections from Aircraft Structures," RAE 
Technical Report 69155, Royal Aeronautical Establishment, Furnborough, England, 1969. 

[4] Schijve, J. and Jacobs, F. A., "Program Fatigue Tests on Notched Light Alloy Specimens of 
2024 and 7075 Material," NRL-TR M. 2070, National Aeronautical Research Institute, 
Amsterdam, the Netherlands, 1960. 

[5] Davis, C. S. and Young, L., "A Comparison of Fatigue Life and Reliability from Constant 
and Variable Amplitude Loading Tests," Proceedings, Twenty-third Annual National 
Forum, American Helicopter Society, Inc., Washington, D.C., 10-12 May 1967. 

[6] Abelkis, P. R., "Fatigue Strength Design and Analysis of Aircraft Structures, Part I. Scatter 
Factors and Design Charts," AFFDL-TR-66-I97, Part I, Air Force Flight Dynamics 
Laboratory. Wright-Patterson Air Force Base, Dayton, Ohio, June 1967. 

[7] Whittaker, I. C. and Besuner, P. M., "A Reliability Analysis Approach to Fatigue Life 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



74 STATISTICAL ANALYSIS OF FATIGUE DATA 

Variability of Aircraft Structures," AFML-TR-69-65, Air Force Material Laboratory, 
Wright-Patterson Air Force Base, Dayton, Ohio, April 1969. 

[8] Jost, G. S. and Verinder, F. E. "A Survey of Fatigue Life Variability in Aluminum Alloy Air­
craft Structures," Report SM. 329, Aeronautical Research Laboratories, Department of 
Supply, Melbourne, Australia, Feb, 1971. 

(9) Whittaker, I. C. "Development of Titanium and Steel Fatigue Variability Model for Ap­
plication of Reliability Analysis Approach to Aircraft Structures," AFML-TR-72-236, Air 
Force Material Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, Oct. 1972. 

[10] Impellizzeri, L. F., Siegel, A. E., and McGinnis, R. A., "Evaluation of Structural Reliability 
Analysis Procedures as Applied to a Fighter Aircraft," AFML-TR-73-150, Air Force Material 
Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, Sept. 1973. 

[11] Young, L., Davis, C. S., and McCullock, A. J., "An Evaluation of Fatigue Test Life Reduc­
tion Factors for Spectrum Loading Tests—Part II—Fatigue Test Data," Lockheed Report 
LR 19024, Lockheed Co., 11 Aug. 1965. 

[12] Young, L. and Ekvall, J. C , "Reliability of Fatigue Testing," Lockheed Report LR 29270, 
Lockheed Co., Dec, 1979. 

]13] Nie, N. H., Hull, C. H., Venkins, J. G., Steinbenner, K., and Bent, D. H., Statistical 
Package for the Social Sciences, 2nd ed., McGraw-Hill, New York, 1975. 

[14] Cochran, W. G., Annals of Mathematical Statistics. Vol. 23, 1952, pp. 315-345. 
[15[ Kaechele, L., "Probability and Scatter in Cumulative Fatigue Damage," Memo 

RM-3688-PR, Rand Corp., Santa Monica, Calif., Dee. 1963. 
116] Butler, J. P., International Conference on Structural Safety and Reliability, A. M. Freuden-

thal, Ed., Pergamon Press, New York, 1972, pp. 181-211. 
[17] Impellizzeri, L. F., Structural Fatigue in Aircraft, ASTM STP 404, American Society for 

Testing and Materials, Philadelphia, 1966. 
[18] McCulloch, A. J. and Walsh, J. E., Journal of the American Statistical Association, Vol. 62, 

March 1967, pp. 45-47. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



S. Nishijima^ 

Statistical Fatigue Properties of 
Some Heat-Treated Steels for 
Machine Structural Use 

REFERENCE: Nishijima, S., "Statistical Fatigue Properties of Some Heat-Treated Steeis 
for Macliine Structural Use," Statistical Analysis of Fatigue Data. ASTM STP 744. R. E. 
Little and J. C. Ekvall, Eds., American Society for Testing and Materials, 1981, pp. 
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ABSTRACT: A practical method for establishing the P-S-N diagram is proposed. The 
method is essentially based on consideration of the distribution of strength deviation 
values for individual test data determined against the mean S-N curve of the population. 
Thus an S-N curve for 1 percent failure probability can be derived from the fatigue test 
results using 100 specimens. 

A series of statistically planned fatigue tests was conducted according to the proposed 
method, in order to obtain basic fatigue data about different materials most commonly 
used in mechanical industries. This paper deals with the results for some typical carbon and 
low-alloy steels with different heat treatments, the tests being on smooth specimens in ro­
tating bending, and discusses the variation in statistical properties between materials. 

KEY WORDS; fatigue, statistical analysis, statistical properties, P-S-N diagrams, fatigue 
strength, fatigue strength variation, rotating bending fatigue tests 

Statistical fatigue propeities of metallic materials have been recognized as 
one of the important classes of information needed for reliable design of ma­
chines and structures that experience fluctuating loads during use. Many in­
vestigations have been conducted that reveal fundamental statistical charac­
teristics of fatigue failure, which have resulted in the development of various 
statistical approaches to laboratory fatigue testing [1-4].^ 

In fatigue tests, the applied stress (or strain), 5, is an independent variable, 
and the number of cycles to failure, N, is a dependent variable described by a 
certain distribution function whose shape changes according to S. The scatter 
in fatigue life at a prescribed stress level is generally studied as the relation 

'Head, First Laboratory, Fatigue Testing Division, National Research Institute for Metals, 
Tokyo, 153 Japan. 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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76 STATISTICAL ANALYSIS OF FATIGUE DATA 

between N and the proportion of failed specimens, P, prior to the N cycles. 
The scatter in N is believed to be due mainly to the variation in the properties 
of each specimen, differences in the test conditions, and uncertainty in the 
fracture process itself. 

Another concept for scatter in fatigue is the PS relation, in which the per­
centage of failed specimens, P, at different levels of S is considered by pre­
scribing the number of cycles, N. This is the same as examining the distribu­
tion of specimens whose life is coincident with N, and in such a case the value 
of S can be regarded as the strength of the specimens. The scatter in S is 
believed to have the same cause as that in N. 

It is known that these two concepts of scatter in fatigue, life scatter (.P-N) 
and strength scatter (PS), can be adequately expressed on the P-S-N dia­
gram, a family of S-N curves each corresponding to a particular value of fail­
ure probability, P. An ordinary way of establishing such a P-S-N diagram 
for a given material is to determine experimentally the P-N relations at dif­
ferent S values and draw S-N curves using N values expected for the P pre­
scribed. Obviously a hundred tests are needed to get N values at P = 1 per­
cent for only a single value of S, and thus nearly a thousand tests are needed 
to determine a complete P-S-N set up to P = 1 percent. 

The aim of the present paper is to give a more practical method of pro­
ducing P-S-N diagrams with an accessible number of specimens and to show 
some typical results for several of the heat-treated steels most popularly 
employed in mechanical industries. The data presented here are a part of the 
series of studies undertaken at the National Research Institute for Metals 
(NRIM), Tokyo, Japan, with the view of providing engineers with the basic 
statistical fatigue data for current structural materials. Detailed and more 
comprehensive results will be found in the references: the statistical fatigue 
properties for carbon and chromium-molybdenum steels, including their 
heat-to-heat variations [5]; for differently heat-treated carbon, chromium-
molybdenum, nickel-chromium-molybdenum, and Type 403 steels, showing 
the effect of a notch [6]; for Types 5083 and 7075 aluminium alloys, also 
showing the effect of a notch [7]; and for butt-welded joints of high-strength 
steels, demonstrating the effect of stress concentrations due to reinforce­
ment [8]. 

Theoiy 

Figure 1 demonstrates a typical data scatter in the fatigue of smooth speci­
mens of a ferrite-pearlite carbon steel, S25C (see later paragraphs for experi­
mental details). One can easily recognize the two-way distributions sche­
matized in the figure—those in life and those in strength. The shape of the 
life distribution is strongly dependent on the stress level, but the strength dis­
tribution appears to show similarities at different life levels, as was shown ex­
perimentally in some previous works [9,10]. 
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78 STATISTICAL ANALYSIS OF FATIGUE DATA 

Let a specimen have a life A/, at a stress 5,. On the basis of the strength dis­
tribution at Nj, the strength inherent in the specimen is reflected in the de­
viation from the mean, Sj — S„iNj), where S^{Nj) designates the mean 
strength of the material at Nj. If we assume that the deviation in strength for 
different Nj values varies in proportion to S„, or, in other words, that the co­
efficient of variation in strength is constant, we can consider for many speci­
mens the set of relative strength deviation values 

- - ^ ^ - 1 (1) 
SJNj) 

as a statistical variable reflecting the strength distribution of the material. 
For the example in Fig. 1, the distribution of r,-, is illustrated on the right-
hand side of the figure. 

Two questions now arise: how to determine S^iNj) and how to examine the 
distribution of r,,. 

One of the means of determining S„ at a prescribed Nj is probit analysis 
using weighting, based on the normal distribution law [11]. Introducing a 
normalized variable, jc,, using the standard deviation, s, where 

Xi = (2) 

s 

the density and the probability of failure at iV, are, respectively 

(t>{Xi) = nr— e x p ( j - ] ( 3 ) 
IITT 

and 

P, - xl^ixi) = J _„ <t>{x)dx (4) 

The values of X/ in Eq 2 can be related to observed values of P, using the in­
verse function of ^, as 

x, = r • ( / ' , • ) = - 5 , - ^ (5) 
5 S 

Since Eq 5 represents a linear relation between the test stress, S,-, and the 
observed value, x, = ^~'(P/), we can estimate 5„, and s from experimental 
data by an ordinary least squares method. The computation is done taking 
into account the weighting for x,-, 

n,{<l>ixi)V 
(b) ^P{x,){l -HXi)} 
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where «, is the number of tests performed at 5,. An iterative process is 
necessary because x, in Eqs 5 and 6 is also influenced by S„ and s. The prac­
tice for the calculations is found in Ref / / . Finally, the solutions are of the form 

^m - - f ;̂  S (7) 

(o) 

and the standard error in S„ is 

With these calculations being done for various Nj values, the best-fit mean 
S~N curve can be computed numerically, using l/e^ as the weighting for S^. 
Figure 1 shows the best-fit polynomial curve, avoiding any prejudice as to the 
shape of the S-N curve, which agrees very well with the observed values of 
median life at different stress levels. 

It now becomes possible to examine the distribution of the relative strength 
deviation values (Eq 1) by regarding all of them as a set of order statistics. 
The cumulative probability corresponding to a specimen of rank number / is 
evaluated in Eq 10, the approximated equation for median rank plotting 

„ J - 0.3 

where M is the total number of tests. If there are some data from unfailed 
specimens, the rank value should be calculated according to the theory of 
multiply censored order statistics [12], as 

In this equation, K is the rank number of data counted regardless of the 
failure or nonfailure of specimens, and JQ is the rank value attributed to the 
failed datum immediately before the /C* under consideration. The density 
distribution of the relative strength deviation demonstrated in Fig. 1 was ob­
tained in this way. 

The relative strength distribution having been determined, a complete 
P-S-N diagram can be composed easily by shifting the mean S-N curve ac­
cording to the deviation values for the prescribed failure probabilities pre-
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dieted from the distribution. Thus, only a hundred specimens will be enough 
to obtain a P-S-N set up to P = 1 percent. 

Experimental Woric 

The materials studied were sampled from those commercially available as 
hot-rolled bars of 19 to 25 mm in diameter, which conformed to the Japanese 
Industrial Standard (JIS). Here the results for 0.25C steel, 0.45C steel, 0.35C-
lCr-0.2Mo steel, 0.39C-1.7Ni-lCr-0.2Mo steel, and 0.15C-0.5Si-12Cr steel 
will be discussed. 

Table 1 gives the chemical composition from the check analysis. Different 
heat treatments were performed at NRIM, using salt baths, to investigate the 
effect of heat treatment on the scatter in fatigue: these treatments were nor­
malizing and high and low-temperature tempering after quenching. 

Fatigue tests were conducted at NRIM using 20 rotating bending machines 
of the uniform bending moment type, at 3000 rpm, conforming to the JIS 
testing standard (Z 2274). Atmospheric conditions in the testing room were 
not severely regulated; some informal data are as follows: temperature, 13 to 
27°C; humidity, 35 to 85 percent; sulfur dioxide (SO2), 0.03 ppm, and oxides 
of nitrogen (NO ĵ), 0.08 ppm. The specimens were of a smooth cylindrical 
type with 8-mm diameters, finished by longitudinal polishing with 600-grade 
waterproof silicon carbide papers. The number of specimens used in a series 
of tests was variable but more than 100. 

All the processes of sampling, heat treatments, and the execution of tests 
were carefully controlled, because of statistical considerations in order to 
avoid any intrusion of extraneous effects on the resulting variation in fatigue 
properties. In this regard, Vickers hardness was measured on the shank of 
each specimen before testing, verifying that the hardness distribution obeys a 
normal distribution law. An example is displayed in Fig. 2 for S25C steel. 

Results 

Table 2 lists the mean and coefficient of variation (percentage of estimated 
standard deviation to mean) for each material, obtained from 10 to 20 ten-

TABLE 1 —Chemical composition (weight percent). 

JIS Desig­
nation 

S25C 
S45C 
SCM435 
SNCM439 
SUS403 

Heat 
Code 

Z 
W 
D 
0 
0 

C 

0.28 
0.46 
0.35 
0.40 
0.14 

Si 

0.30 
0.28 
0.24 
0.25 
0.27 

Mn 

0.46 
0.81 
0.72 
0.68 
0.44 

P 

0.026 
0.014 
0.016 
0.023 
0.022 

S 

0.015 
0.016 
0.017 
0.020 
0.018 

Cu 

0.043 
0.058 
0.14 
0.11 

Cr 

0.039 
0.058 
0 .% 
0.71 

11.76 

Ni 

0.018 
0.022 
0.070 
1.71 
0.16 

Mo 

0.17 
0.16 
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FIG. 2—Example of the Vickers hardness distribution of specimens. 

sion tests. The results of the Vickers hardness measurements, as well as the 
fatigue strength at 10̂  cycles, are also tabulated in the same manner for com­
parison. The difference in heat treatment and, therefore, in microstructure 
of the materials is identified by a numeric code, as explained in the footnote 
to the table. 

For the results of the fatigue tests, the values ofS„ were estimated by probit 
analysis at 0.1 intervals in log N. This resulted normally in 20 to 30 plots of 
S„-N data, which could then be used to compute the mean S-N curve, as the 
best-fit polynomial equation. Figure 3 compares, on normal probability 
paper, the distribution shapes for the relative strength deviation values (Eq 
1) for different materials. Obviously, the distributions appear almost normal 
in these cases. 

In Fig. 4 are displayed P-S-N diagrams, each as a set of S-N curves for 
prescribed failure probabilities. The curves labeled 1, 10, 90, or 99 percent 
were obtained by shifting laterally the mean S-N curve by the amount, S, 
which was equivalent to the corresponding relative deviation value in Fig. 3. 
As can be seen in each diagram in Fig. 4, the distribution of data points is 
satisfactorily expressed by the curves, which confirms that the method of 
analysis was applied successfully. It should be particularly noted that in the 
case of SCM435 steel tempered at 450°C, the S-N curves fall again for cycle 
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TABLE 2—Mechanical properties given as mean (top) and coefficient of variation 
in percent (bottom). 

J IS Desig­
nation 

S25C 

S45C 

SCM435 

SNCM439 

SUS403 

Test 
Code" 

ZO 

WO 

Wl 

Dl 

D2 

01 

OI 

Yield 
Stress, 
N/mm^ 

332 
1.5 

450 
2.1 

667 
i3 

923 
3.7 

1243 
6.8 

882 
0.7 

461 
1.3 

Tensile 
Strength, 
N/mm^ 

506 
1.7 

689 
1.3 

811 
1.0 

1041 
1.8 

1373 
4.6 

974 
0.4 

653 
0.9 

Elonga­
tion, % 

38.5 
3.2 

30.5 
1.9 

25.5 
3.1 

16.6 
5.4 

11.4 
9.6 

19.7 
8.6 

26.9 
4.8 

Reduction 
of Area, 

% 

60.9 
1.9 

54.3 
1.5 

63.1 
1.1 

61.3 
1.5 

51.1 
3.9 

63.9 
0.9 

73.3 
0.5 

Vickers 
Hard­
ness 

143 
1.6 

198 
1.0 

270 
1.4 

331 
0.9 

434 
1.1 

314 
1.1 

219 
0.7 

Fatigue 
Strength 

at 10' 
Cycles 

N/mm^ 

259 
1.7 

314 
1.7 

421 
2.1 

598 
2.4 

698 
2.6 

539 
2.7 

385 
0.9 

"Numeric code represents the types of heat treatment and microstructure; 
0 = normalized, presenting ferrite-pearlite structure 
1 = quench-tempered, high-temperature-tempered martensite 
2 = quench-tempered, low-temperature-tempered martensite 

Relative strength deviation, r̂ -

FIG. 3—Distribution of relative fatigue strength deviation (normal probability paper). 
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FIG. 4a—P-S-N diagram for S25C steel normalized at 880°C. 
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FIG. 4A—P-S-N diagram for S45C steel normalized at 845°C. 
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FIG. 4rf—P-S-N diagram for SCM435 steel tempered at 600°C. 
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FIG. 4e—P-S-N diagram for SCM435 steel tempered at 450°C. 

ranges higher than 10̂  cycles. A similar anomaly can be observed for 
SNCM439 steel tempered at 630°C, but the degree of change is less pro­
nounced. 

Discussion 

In the present work, the normality of the fatigue strength distribution and 
the constancy of the coefficient of variation have been assumed as the basis of 
the statistical analysis. In reality, both of these are not mandatory. As seen in 
Fig. 3, the relative strengths in fatigue are distributed normally in this work, 
as is the Vickers hardness of the materials, but it could be different for other 
experimental conditions [6,7\. If other distribution functions were chosen for 
analysis, it would be enough to modify Eqs 2 to 6 as required, according to 
the distribution. The assumption of a constant coefficient of variation is also 
an empirical hypothesis observed for a wide range of materials tested, with 
both smooth and notched specimens, but it is not general [7). A more gen­
eralized transformation than that in Eq 1 could be used to homogenize the 
variation, as required. The use of the coefficient of variation has, however. 
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FIG. 4/—P-S-N diagram for SNCM439 steel tempered at 630°C. 
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FIG. 4g—P-S-N diagram for SUS403 steel tempered at 725°C. 
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the great advantage of allowing the possibility of direct comparison between 
materials and between different mechanical properties. 

The second fall in the S-N curve in the very high cycle region raises grave 
problems in practice. In general, this phenomenon becomes more evident 
when the steel is less tempered and consequently harder, whereas it is scarcely 
observed in sharply notched specimens, even for very hard materials [6]. 
These observations are for fatigue in laboratory air, and similar effects are 
familiar in corrosion fatigue [13]. This seems to suggest a harmful effect of 
atmosphere, which should not be neglected in long-term fatigue life evalua­
tion. For simplicity, it is assumed in Fig. 4 that the coefficient of variation in 
fatigue strength is constant even for very high cycle ranges. It would seem, 
however, that further extensive studies are needed to know whether this 
assumption is pertinent. 

As stated earlier, some variation in fatigue test results is believed to be at­
tributable to the nonuniformity of specimens in strength, which can be 
evaluated from the variation in the Vickers hardness of specimens. The co­
efficient of variation of the hardness, ^H, is in general smaller than that of the 
resultant fatigue strength variation coefficient, f„,, as shown in Table 2. This 
difference may be considered as being due to a variation introduced during 
the fatigue process itself, or what may be called net fatigue variation. This is 
evaluated from 

to = ^ KH' (13) 

and appears to increase with increasing material hardness, as seen in Fig. 5. 
This tendency is consistent with our knowledge of materials properties in that 
hard materials are generally sensitive to the presence of defects, which affect 
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FIG. 5—Change of net fatigue variation with Vickers hardness of materials. 
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directly the scatter in the initiation of fatigue cracks, on one hand, and to the 
suggested harmful effect of the environment, on the other. 

Conclusion 

A new method of analysis has been proposed to investigate the statistical 
properties of materials in fatigue. More than 100 specimens were used in the 
present series of fatigue tests to obtain an S-N curve for 1 percent failure prob­
ability, although the number of specimens could be reduced according to 
the required level of failure probability. The success of the method was 
demonstrated by the analysis of test data for smooth specimens of several 
heat-treated carbon and low-alloy steels. It was shown that the fatigue 
strength of these materials follows a normal distribution, as did their Vickers 
hardness. The net fatigue variation, or the variation introduced during the 
fatigue process itself, appeared to increase with increasing materials hard­
ness. It is believed that the proposed method of analysis offers an accessible 
approach to the evaluation of the statistical nature of fatigue for a variety of 
materials, and thus contributes to the enrichment of our knowledge in ma­
terials science. 
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ABSTRACT; This paper discusses the need for defining the shape of S-N curves, the 
various kinds of test data available for this purpose, and the problems in their statistical 
evaluation, including the assumptions that must be made. 

A method is proposed for finding the "cutoff" point, that is the endurance at which 
conventionally shaped S-N curves change slope to the horizontal. It is based on max­
imum likelihood principles and deals with runouts in a statistically acceptable way. A 
sharp or a continuous transition from the horizontal to the sloped straight line log 5/log 
N curve may be considered. 

The method can be used for analysis and comparison of fatigue test results with a com­
puter program, described and listed elsewhere by the authors, but it is subject to certain 
amendments, which are described In the paper. 

KEY WORDS: S-N curve, log 5/log N curve slope, endurance limit, statistical analysis, 
maximum likelihood method, computer program, fatigue 

The determination of the shape of S-N curves and, in particular, of the en­
durance limit or the "cutoff point" at which they change to a nearly hori­
zontal line, is not a purely academic exercise. For quite a number of com­
ponents the endurance limit is a design criterion. Moreover, it is found in 
cumulative damage calculations that the position of the cutoff point has a 
considerable effect on the stress that is calculated as tolerable for a given load 
spectrum when such calculations are based on Miner's rule as modified by 
fracture mechanics considerations [/].•' The main interest here lies in the 
design of relatively large welded components for which test data are scarce at 
high values of endurance. 

'Bridge development engineer, British Railways Board, London NWI 6JU, Great Britain. 
^Director, Fraunhofer-Institut fur Betriebsfestigkeit (LBF), Darmstadt, Federal Republic of 

Germany. 
•'The italic numbers in brackets refer to the list of references appended to this paper. 
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Figure 1 shows S-N curves with differing slopes (k = —3.00 to —3.75) 
and different cutoff points (N^ = 2 10̂ , 10-10^ or oo); these differences ap­
pear between S~N curves for welded joints given in existing standards, 
although these standards are based on more or less the same series of 
published test results. From the differing S-N curves, the endurances under 
spectrum loading (Gaussian random process) have been calculated by the 
modified version of Miner's rule jind plotted in terms of the maximum stress 
amplitude, 5a, in the spectrum (5a = 5.255m,s)- Considerable differences are 
found not only in the stress at the endurance limit but also in the fatigue 
strength for spectrum loading calculated for high-endurance values, that is, 
values above 10̂  cycles where experimental verification is not practicable 
because of the testing time and cost. Obviously the effect of the different 
cutoff points is more pronounced than that of the differing slopes. 

The authors had to deal with this problem, concerning the slopes of 
straight-line approximations to the S-N curve, and developed a method that 
would not only determine the "best" common slope to fit a number of sets of 
individual test data (meaning data obtained on similar types of specimens in 
different laboratories) but would also deal with runouts in a statistically ac­
ceptable way [2]. This technique was based on maximum likelihood and used 
the support, as Edwards terms the logarithm of the likelihood [3], to select 
best common lines. The aim of this analysis was not so much to determine a 
good summary description of an individual set of data as to determine the 
parameters of the most likely parent population common to a number of sets 
of data for apparently similar types of specimens and, further, by way of 
finding confidence limits, to determine the range of such populations which 
must reasonably be considered to have produced the data. 

It had been hoped that the same technique would allow the position of the 
cutoff point to be determined when the shape of the S-N curve is approx­
imated by a pair of straight lines, one of which is horizontal; but certain dif­
ficulties, discussed in this paper, were encountered in this procedure, which 
led to a need for modifying the procedure and introducing an additional 
criterion for defining the location of this point. 

Possible Definitions of tlie S-N Curve 

Any statistical analysis must be based on some assumptions about the 
shape of the S-N curve, however large or small the number of parameters 
used to define it. Various formulas for continuous curves to represent the 
stress-endurance relationship have been suggested since Wohler (Table 1). 
These functions represent simple straight-line approximations in either 
log-linear or log-log coordinates that change to the horizontal at the en­
durance limit, or hyperbolic or S-shaped functions that approach the en­
durance limit, E, and the ultimate strength, R, as well. 

The straight-line approximation may be found to give a poor fit in the case 
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92 STATISTICAL ANALYSIS OF FATIGUE DATA 

TABLE \—Proposed equations for S-N curves. " 

1870 Wohler log yv = a - bS ior S > E 
1910 Basquin log A/ = a - 6 1 o g 5 f o r 5 > £ 
1914 Strohmeyer log A/ = a - felog \S - E] 
1924 Palmgren log (N + d) = a - fclog [S - E] 
1949 WeibuU log (N + d) = a - b\og [(S - E)/(R - E)\ 
1955 Stussi log N = a - 6 • log [(5 - E)/(R - S)] 
1963 Bastenaire \ogN = a - 1-log [5 - £:] + [(5 - £')/fc]'^ 

"Key: 
E = endurance limit 
R = ultimate strength 
a. b, c. and d = parameters 

of well-documented data, as shown in Fig. 2. Equally, the assumption that 
the logarithms of the endurance are normally distributed with the same stan­
dard deviation at all stress levels is evidently untrue. The S-shaped types of 
S-N curves, like those suggested by Weibull, Stussi, or Bastenaire, may be 
considered to provide a more appropriate representation of the data if the 
analysis is aimed at the best possible description of an individual set of data 
(Fig. 3). It is evident that the more usual sets of fatigue test results (Fig. 4, 
for example), which contain relatively few points and show considerable scat­
ter, cannot be used to determine the shape of an S-N curve on their own. In 
those cases it is hardly possible to find values for even a single parameter, 
such as the slope, with reasonable narrow confidence limits. 

Regarding the various suggestions for the statistical distribution of test 
results at individual stress levels, it has been shown, for example, that there 
is little to choose between a log-normal and an extreme value (Weibull) 
distribution in the range in which data exist {4\. That one of these distribu­
tions leads to ridiculous results when extrapolated beyond that range is, in 
the authors' view, of little interest in the analysis of data, though it may well 
be important in attempts to calculate the reliability of large numbers of 
structural components by extrapolating from endurances reached in tests to 
those required in service. 

Possible Statistical Methods 

The statistical methods that can be used to analyze fatigue test results 
range from the crude blunderbuss approach, in which all results from similar 
types of specimens are treated as one sample and a straight line is put 
through the lot by regression analysis, to the ultrarefined approach, where 
multiple regressions are calculated with transformed data to produce various 
shapes of curves. These methods can be further extended to deal with 
runouts and various assumptions about the statistical distribution of the in­
dividual test results. 

The method of analysis appropriate in any given case should be selected on 
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FIG. 3—Bastenaire's S-shaped type of curve fitted to a set of data. 
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FIG. 4—/I more usual set of data and straight line fitted graphically or by regression. 
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the principle that the simplest statistical model that will fit the available data 
with acceptable precision is the right one to use. In this context, precision 
refers to the inferences drawn about the parent population that might have 
produced the data rather than to a description of the individual set of data, 
which is, after all, given by a table of results without any trouble whatsoever. 

Multiple regression may be appropriate for well-documented data, such as 
those shown in Fig. 2, but it must be pointed out that the data will have to be 
transformed to give dependent variables with a constant standard deviation if 
available statistical packages are used in the analysis. Otherwise the regres­
sion and the confidence limits calculated will be distorted. In any case, if the 
data contain runouts, a method based on maximum likelihood is needed to 
take account of these (Fig. 2). 

The same methods, however, cannot be applied to data such as those in 
Fig. 4 because it is not possible to determine whether the results show con­
stant or variable standard deviation at different stress levels. In such cases it 
is the authors' contention that any information concerning the shape of the 
S-N curve must be derived from a number of comparable sets of such data. A 
graphical analysis developed on the assumption of a uniform shape of the 
S-N curves for comparable test series but allowing for variation in the 
parameter 5^ that defines the fatigue strength at 2-10^ cycles has been 
described elsewhere in detail [5] (Fig. 4). A similar analysis in terms of con­
ventional regression analysis would require the determination of the in­
dividual lines, a test to check whether they could all have come from a com­
mon population of such lines, and then the determination of the best fit line 
and its confidence limits [6], 

This whole process is far simpler if the method of maximum likelihood is 
accepted. The support, defined as the logarithm of the likelihood, can be 
calculated for any number of parameters separately for all the sets of data, 
and the total support for each parameter can be obtained by summing the 
appropriate support values. In this way, the best supported values for various 
parameters of the S-N curve can be found on the assumption that all the sets 
of data have these parameters in common. It is prudent, of course, to check 
that none of the individual sets is so far removed from the "best fit" parent 
population as to make the hypothesis untenable. 

Combining Sets of Data 

The technique of combining individual sets of data can be illustrated by 
applying it to samples drawn from a normally distributed population: If the 
population mean is /x and its variance a^, the probability of drawing a sample 
value, j^i, is 

1 
PT exp 

V2ir 
J_ fyj-t^V dy (1) 
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96 STATISTICAL ANALYSIS OF FATIGUE DATA 

the logarithm of which is 

yi Ina + In-
dy 

(2) 

The last term in this expression is constant for all values of fx and a and, 
therefore, of no interest in likelihood ratio or support calculations. The sup­
port from a sample of n values of j j is given by 

S\}V=-^W'i(y,-t>.Y+n-\na^ (3) 

( j - ^ ) 2 + 5 2 + \na^ (4) 

if J is the sample mean and 5̂  is the sample variance. [Here i^ is the square of 
the maximum likelihood estimator, T,(y\ — y)^/n, and not that of the un­
biased estimator having « — 1 as its divisor]. 

For runouts in fatigue tests, the probability is given by the condition that 
no failure has occurred up to a certain value of y\, where y\ would be the 
logarithm of the endurance. The probability is 

/2ir 

{yi-ix)/a 

exp 
- 1 . 2 di (5) 

and the support is 

SUP = In 
(y-^-lii/a 

exp 2 ^ 
d^ (6) 

Inferences about the parent population in terms of ft, and a are obtained by 
maximizing support in terms of these variables, algebraically where possible 
and numerically otherwise. 

The numerical method is illustrated in Table 2, which shows matrices of 
support values for various combinations of ^ and a for two such samples. The 
first two matrices allow the most likely joint values of ti and a to be found and 
produce the same results as conventional statistical methods. If it is as­
sumed, or known, that the two samples have been drawn from the same 
population, then Matrix 3, whose values of support are the sums of the values 
in Matrices 1 and 2, must be used. A mean of /x = 9 and a standard deviation 
of a = 4 are found as the best estimates. 

If it is believed that the means are independent of the standard deviations. 
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TABLE 2—Matrices of support values for various combinations of the mean, fi. and standard 
deviation, a, for two samples drawn from a normally distributed population. 

Standard 
Deviation a -

of Population 

Mean, n, of Population 

4.5 6.0 7.5 9.0 10.5 12.0 13.5 

Matrix 1: Sample 1 (jr = 6; i = 2; H = 3) 

-19.5 -36.4 -60.0 -90.4 

-7 .0 -11.2 -17.1 -24.7 

-5 .5 -7.3 -10.0 -13.3 

-5 .4 -6 .4 -7 .9 -9 .8 

-5 .6 -6.3 -7.2 -8.4 

-5 .9 -6 .4 -7 .0 -7.9 

-6.2 -6 .6 -7 .1 -7 .7 

-6 .5 -6 .8 -7.2 -7.7 

1 

2 

3 

4 

5 

6 

7 

8 

-9 .4 

-4 .4 

-4 .3 

-4 .7 

-5 .2 

-5 .6 

-6 .0 

-6 .0 

-6 .0 

| - 3 . 6 | 

-4 .0 

-4 .5 

-5 .1 

-5 .5 

-6 .0 

-6.3 

-9.4 

-4 .4 

-4 .3 

-4 .7 

-5.2 

-5 .6 

-6 .0 

-6.4 

Matrix \b 

-6 .0 

-3 .6 

-4 .0 

-4.5 

-5 .1 

-5.5 

-6 .0 

-6.3 

Matrix \a 

-4.3 -3 .6 -4 .3 -5 .4 -6.3 -7 .0 -7 .7 

Matrix 2: Sample 2 (J: = 12; s = 3; n = 3) Matrix 2b 

-13.5 -16 .9 

- 5 . 5 - 6 . 3 

5.2 

5.2 

-4.8 

1 -97 .9 -67 .5 -43 .9 -27 .0 -16 .9 

2 -26 .6 -19 .0 -13.1 - 8 . 8 - 6 . 3 

3 -14 .2 -10 .8 - 8 . 2 - 6 . 3 - 5 . 2 

4 -10 .3 - 8 . 4 - 6 . 9 - 5 . 9 - 5 . 2 - 5 . 0 

5 - 8 . 7 - 7 . 5 - 6 . 6 - 5 . 9 - 5 . 5 - 5 . 4 - 5 . 5 

6 - 8 . 1 - 7 . 3 - 6 . 6 - 6 . 1 - 5 . 8 - 5 . 8 - 5 . 8 

7 -7 .8 -7.2 -6 .7 -6 .4 -6 .2 -6 .1 -6.2 

8 -7 .8 -7 .3 -6 .9 -6 .7 -6 .5 -6 .5 -6 .5 

-13.5 

-5 .5 

-4 .8 

-5 .0 

-5 .4 

-5.8 

-6 .1 

-6 .5 

Matrix 2a 

- 7 . ! -7 .2 -6 .6 -5 .9 -5.2 -4.8 - 5 . 2 
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TABLE 2—Continued 

Standard 

of Population 

1 

2 

3 

4 

5 

6 

7 

8 

9 

4.5 

-31 .0 

-18 .5 

-15 .0 

-14 .0 

-13 .7 

-13 .9 

-14 .2 

-14 .5 

-12 .1 

Mean, /i, of Population 

6.0 7.5 9.0 10.5 12.0 

Matrix 3: Samples 1 and 2 Combined 

-73 .5 -53 .3 -46 .5 -53 .3 

-22 .5 -17 .5 -15 .8 -17 .5 

-14 .8 [ - ' 2 . 5 
1 

-12 .9 -11 .7 

-12 .6 -11 .8 

-12 .8 -12 .2 

-13 .2 -12 .8 
L _ _ — _ _ _ - _ _ _ - . 

-13 .6 -13 .3 I 

-14.1 -13 .8 

-11 .8 

-11 .2 

-11 .5 

-12 .0 

-12 .6 

-13 .2 

-13 .8 

-12 .5 \ 
i. 

-11 .7 

-11 .8 

-12 .2 

-12 .8 

1 - 1 3 . 3 

-13 .8 

Matrix 2a 

-10 .8 -10 .9 -11 .3 -11 .5 

-73 .5 

-22 .5 

-14 .8 

-12 .9 

-12 .6 

-12 .8 

-13 .2 

-13 .6 

-14.1 

-11 .8 

13.5 

-31 .0 

-18 .5 

-15 .0 

-14 .0 

-13.7 

-13 .9 

-14 .2 

-15 .5 

12.9 

Matrix 36 

-19 .5 

- 9 . 1 

- 8 . 8 

- 9 . 5 

-10 .5 

-11 .3 

-12.1 

-12 .8 

the best supported value of the mean to fit both samples is obtained by sum­
ming the best supported values for mean from each column independently of 
the corresponding values of standard deviation (Matrices la, 2a, and 3a). 
According to this hypothesis, the best supported mean value would be 6.9 
(found by interpolation of Matrix 3a) instead of 9. If, however, it is believed 
that the standard deviations are independent of the means (Matrices \b,2b, 
and 35), the best supported value of the standard deviation common to the 
two samples would be a value of about 2.5 (found by interpolation of Matrix 
36), which is quite different from that which would be obtained if both 
samples were taken to be from one population (3.93, or approximately 4 
from Matrix 3). 

Confidence Limits 

It is not enough to determine the most likely value of a parameter. Since it 
is known that samples drawn from a given population will show variations in 
their properties, it must also be accepted that a given sample could have 
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come from a range of populations which do not differ "overmuch" from the 
best supported population. What is accepted as "overmuch" will depend on 
the particular circumstances and the known scatter in experimental results to 
be expected from a particular type of test. In conventional statistical analyses 
this range of a parameter is given by confidence limits, which are defined by 
stating the probability of being right, in the long run, in asserting that the 
true value of the parameter lies within these limits [7]. 

In the method of support, Edwards replaces this criterion with one of 
not exceeding a certain likelihood ratio, which, in terms of the logarithm of 
that ratio, amounts to a loss of 2 units of support to correspond roughly to 
the conventional 95 percent confidence limit and a loss of 4.5 units of support 
to correspond to the conventional 99.8 percent confidence limit [3]. 

Which of these approaches one uses may be a matter for argument, though 
Edwards gives strong reasons for preferring his method. In terms of practical 
application to the type of analysis described in the following sections, Ed­
wards's method is very much simpler. 

Applying this idea to the figures shown in Matrix 3 of Table 2 would, for 
example, suggest that the value of fi could, with a loss of 2 units of support, 
lie anywhere between 6 and 12, a result which is hardly surprising in view of 
the large sample variance. It should be noted that this range is obtained by 
choosing the populations with the widest range of /*, irrespective of the value 
of a. It corresponds to that which would be found from Student's t distribu­
tion and thus takes full account of the sample size. 

Support calculations can also be used to test the hypothesis that the 
variances in Samples 1 and 2 might be different values for samples taken 
from populations with a common variance. If the best support values for 
standard deviations in Matrices lb and 2b are added, it will be found by in­
terpolation that the best supported value is about 2.5, and its support is 
—8.90 (Matrix 3b). This is the support for the hypothesis that the two stan­
dard deviations are different values obtained from populations with the same 
variance. It may be compared with the support for the hypothesis that the 
two standard deviations come from separate populations, for which the total 
support is given from the Matrices lb and 2b by (—3.6) -I- (—4.8) = —8.4. 
This value is only a little greater than that for the previous hypothesis, and 
therefore the hypothesis that the two variances come from sources with the 
same variance could be accepted. A similar computation for the values of the 
mean, fj., (Matrices la, 2a, and 3a) would show a loss of support of 2.4 for the 
hypothesis that the two means are values drawn from populations with the 
same mean. 

The Support Method Applied to S-N Curves 

The only difference between this calculation and a form of regression 
analysis is that both /x and a become functions of the independent variable, x. 
These functions are defined by a number of parameters, for example, two 
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parameters, m and c, to define a straight line of the mean line, ft(jc), as mx 
+ c and either a constant or similar simple function to define aix). The best 
supported (most likely) values of these parameters are then found by 
evaluating the support for all possible combinations and picking the best 
supported joint combination. It is evident from Eq 3 that this process will 
produce a least squares solution if a normally distributed population is 
assumed and is thus equivalent to normal regression analysis. Confidence 
limits for regressions are more complex, but those for the mean values of the 
slope and other parameters of the mean line can be taken from matrices, as 
illustrated for sample values in Table 3. 

When the support method is applied to the analysis of S-N data, the 
transformed variables log N and log S^ are most commonly treated. To 
specify the shape of the S-N curve, {a) the fatigue strength 5^ at 2 • 10^ cycles, 
(b) the slope, k, (c) the standard deviation, s, of log N or log S^ (see the 
following section), and {d) the position of change of slope N^ at stress 5^ are 
to be considered as parameters of a simple model (Fig. 5 Curve a). The sup­
port matrices may be established by a computer program [8] as a function of 
two of these parameters, such as joint values of 5^ and k, with the standard 
deviation and the value of N^ kept constant. (For a description and listings of 
the developed computer programs, see Refs 8 and 9). 

Matrices 1 and 2 in Table 3 apply to comparable sets of results. When the 
two sets are combined by summing the matrices in Matrix 3, the best sup­
ported joint values of slope and fatigue strength are k = —3.37 and 5 A = 68 
N/mm^. If we were to allow for differing values of Sp,, however, the best sup­
ported value of slope independent from 5^ would be found by individually 
summing the highest support values in each column; a best supported value 
of slope of A: = —3.75 results (Matrix 1 + Matrix 2). 

The sample for Matrix 2 has been plotted in Fig. 4. As the cutoff point was 
chosen outside the range of the present data to simplify the example (N^ > 
10^), direct comparison may be made of the best slope of the regression line 
and its confidence limits, as shown in Fig. 4, with the best supported value of 
k and the framed areas of the matrix in which the loss of support is less than 
2 units. 

The Support Method for Defining the Shape of ^-A' Curves 

If a more detailed analysis of the shape of the S-N curve (Fig. 5) is intend­
ed by means of the maximum likelihood method, a slightly modified concept 
for the support computations is to be preferred [9]. The matrix of the support 
values is determined as a function of the Slope k and the standard deviation, 
s, for a fixed value of the cutoff point, N^, whereas the endurance limit, S^, 
is determined by maximizing the support for each combination of the other 
parameters. This computation is repeated for various values of the cutoff 
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point to find the most appropriate value from the corresponding support 
values. 

Another modification studied for comparison with the simple model of the 
S-N curve (Fig. 5 Curve a) was an extended model showing a continuous 
change of slope from the steep line of Slope A: to a flat (not necessarily 
horizontal) line of Slope ki, in order to allow a better fit to the realistic shape 
of S-N curves [9] (Fig. 5 Curve b). An additional parameter, a, was introduc­
ed to specify the mode of transition. A first estimate of a among typical 
values a = 10 to 1(X) may be found by inspection of the set of data in ques­
tion; for a = 00, the extended model degenerates to the simple one changing 
slope abruptly. Analytically, the S-N curve for the extended model is given 
by the equation 

y = y ( * + ki)-x + j{k - k,) \\x\ + --In 
a 

1 -t-e-24v| ( < 

where Y = log N/N^, and x = log S/Sg. 
In examining sets of data, it appears as a marked characteristic of the 

point where these curves change from a relatively steep straight line to the 
nearly horizontal that there is a considerable increase in the standard devia­
tion of the endurances at that level (Fig. 2). Among several possibilities to ac­
count for this phenomenon, the adopted solution was based on the assump­
tion that each individual test result represents a similar shape S-N curve but 
shifted vertically in relation to the mean line (Fig. 5). Physically, this 
assumption is based on the concept that the fatigue strength of a specimen is 
a function of the size of a defect at the origin of the failure, that the sizes of 
the defects are random and log-normally distributed, and that the random 
values of endurances found in tests are a measure of these defect sizes, and 
hence of the fatigue strength expressed as a stress at a certain endurance. In 
other words, for analysis of the scatter the data points have to be converted to 
some reference endurance value according to the S-N relationship defined by 
the shape of the S-N curve. For a linear log 5/log N relationship of Slope k, 
for example, one would obtain the standard deviation of log S equal to the 
standard deviation of log Â  divided by |A:|. 

This concept leads to parallel scatter bands and implies the assumption of 
a standard deviation of log .S" independent of log N. Hence, if log S is con­
sidered to be normally distributed, the distribution for the logarithm of the 
endurance will be grossly unsymmetrical in regions of changing slope. It 
does, however, show the increased scatter of the endurances in that region, 
which can be seen in experimental data (Fig. 2). 
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104 STATISTICAL ANALYSIS OF FATIGUE DATA 

In combination with the extended model of the S-N curve (Fig. 5 Curve b), 
this change in standard deviation also offers an additional criterion for the fit 
of the curve, namely, that standard deviation of log S, determined separately 
for the lower and upper stress levels using the same curve, should not differ 
significantly. In terms of support calculations, the condition is checked by 
finding the loss of support when the support for the line which best satisfies 
the other conditions calculated for the line as a whole (SUP 1) is compared 
with that for the same line, but calculated separately and summed for the 
steep and flat portions by allowing for different standard deviations while 
maintaining all other parameters (SUP 2) [9]. The total support for any given 
line with its change of slope point is then that for the best fit line which also 
best satisfies the additional criterion. This leads to 

(SUP1) + (SUP1-SUP2) or (2 • SUP 1 - SUP 2) (8) 

niustration of the Described Method 

The described method of determining the shape of S-N curves will be il­
lustrated with reference to the well-established set of data presented in Fig. 2 
first (Table 4). In case of an S-N curve with the slope changing abruptly to 
the horizontal, the best supported cutoff point is found by interpolation be­
tween computer runs 3 and 4. It yields a value of Â^ = 1.8 •10*' with a sup­
port of about 237.5, combined with a slope ot k = —5.8 and an endurance 
limit of SE — 90 N/mm^. An obviously better fit is obtained with an S-N 
curve of continuously changing slope (Run 8), for which the maximum sup­
port is SUP 1 = 251.7, applying to a cutoff point NE = 3.0-10 ,̂ a slope k = 
—5.0, and an endurance limit S^ = 75.2 N/mm^. But it has also to be 

TABLE 4—Jointly best supported parameters of the S-J^ curve as a function of the 
cutoff point derived for the data from Fig. 2. 

Run 
No. 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 {a = 25) 

Cutoff 
Point, 

Slope Changing 
0.6-10*' 
1.0-10* 
I.S-IO*" 
2.0-10*' 
3.0-10*" 

10.0-10* 

Slope 
k 

Abruptly 
4.00 
5.00 
5.50 
6.00 
6.50 
7.75 

SDof 
Log 5, 

Endur­
ance 

Limit, 

N/mm2 

to the Horizontal 
0.0326 98.1 
0.0228 
0.0176 
0.0162 
0.0175 
0.0246 

94.8 
91.2 
89.5 
86.7 
79.5 

Slope Changing Continuously to the Horizontal (a = 
2.0-10* 4.50 0.0215 76.8 
3.0-10* 
5.0-10* 
3.0-10* 

5.00 
5.50 
5.25 

0.0194 
0.0176 
0.0185 

75.2 
72.6 
77.8 

Support 
SUPl 

213.0 
230.9 
236.5 
236.5 
221.6 
130.7 

20) 
249.5 
251.7 
250.8 
251.1 

Addi­
tional 

Criterion 
(2 SUPl 
- SUP2) 

249.0 
250.9 
248.2 
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recognized that the confidence limits for N^ and k are much wider in the lat­
ter case. From the additional criterion, a maximum support (2 SUP 1 — 
SUP 2) of 250.9 is obtained. By fitting a parabola to the calculated points 
(Runs 7 and 9), it may be deduced that by considering SUP 1, a maximum of 
support is to be expected for a value A'̂  = 3.46-10* with confidence limits of 
2.09 and 5.74-10*. Using the additional criterion (2-SUP 1 - SUP 2), the 
result is a maximum supported value N^ = 3.11-10* with confidence limits 
of 1.98 and 4.89-10*. Hence, the value of N^ is found to be slightly lower, 
and the confidence limits become narrower when the additional criterion is 
used. Figure 6 allows a comparison of the derived curves with the data 
points. 

Considering a cutoff point at NE = 10̂ , the abruptly changing S-N curve 
gives, with a rather low support of 130.7, the simple straight-line approxima­
tion of slope k — —7.75, as shown in Fig. 2. If a more realistic estimate of a 
straight line to fit the sloped part of the -̂A'̂  curve is wanted, the data at the 
lower three or four stress levels in Fig. 2 should be neglected (Table 5). 
Although a decision of that kind seems reasonable for the present set of data, 
it should be noted that, practically, it is quite unusual to have such well-
established sets of data available, so that neglecting data would result not 
only in a loss of information but also in a guess rather than an inference based 
on fact. 

Therefore, in order to check the method with some more realistic sets of 
data, a smaller sample was selected from the data in Fig. 2, comprising the 
tests on the levels 5a = 90, 110, and 140 N/mm^ only. The results are given 
in Table 6, and they may be compared with those in Table 4. Although the 
best supported parameters of the abruptly changing S-N curve (Run 18) 
compare fairly well with those derived from the complete set, the continu­
ously changing S-N curve gives a somewhat strange result (Fig. 7) typical of 
data such as those shown in Fig. 8. It is clear from this figure that for all data 
of this type the "best fit" line will be such that the horizontal portion passes 
through the row of results at the lowest stress level and, in the extreme case 
shown, leaves the value of N^ undefined. The previous sample illustrates that 
this would also be true if some form of continuous curve were used instead of 
two straight lines. The least squares method of fitting S-N curves with a 
cutoff point is, therefore, unsatisfactory for data for which the sloped part of 
the S-N curve is not significantly determined. The special reason that the 
method did work quite satisfactorily in the case of the abruptly changing S-N 
curve in the previous example is the exceptional situation that the lowest level 
is rather close to the endurance limit expected. The obvious difference in the 
standard deviation of the logarithm of the endurances, however, suggests 
that the flat portion of the curve should pass somewhere near the results at 
the lower stress level. 

In case of this simplified example, however, most of the considered curves 
in the bottom of Table 6 are similar in shape near the three stress levels, and 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



106 STATISTICAL ANALYSIS OF FATIGUE DATA 

i n 
i n 

II 
. X 

8 
II 

0 
, 

CM 

t 
H 
Z 
o 
O) 

II 
LU 

(/) 

CD 
O 
' 
00 
•— 
II 
UJ 

Z 

o 
i n 
II 

2C 

o 
II 

» 
CM 

F 
F 
2 
<N 
i n 
r-« 

II 
LU 

in 

CD 
o 
'— 
,_ 
CO 
II 
UJ 

Z 

•I T o 

CD 

o 

i n 
o 

o o o 
o o o 

in 

(_ijuui/N j'^S apniiiduuD ssaj;s 

z 
V) 
(U 
^^ o 
>» 
o 
«̂ -o 
u . 
(U 

JO 

E 
=> 
c 

3 
o 
a 

.c 
*2 c 
o 
o 
u 
SI, 
o • « « 
Vi 

Oc 
.c • , w 

Oc 
s 
o 

-s 
u 

*" 
u 

e 3 
o 
-H 

1 1 
•a 
fe -e 

-̂  
« d 

o 
^ 
^ *-5. 
e •§ 

1 
•i 
00 
s • K l 

Oc 
e 
0 

• « 

u 

«^ 
ii-a» 
l'*̂  S 
0 s 
• . S 
2 ' ^ 
& a 
a ,3 u •« 
z ^ 
C^iS 
•a " 
u u 
l-s 
0. 0 
5 -3 -a •0 a, 
t" ** 

J*=> 
«?3 

-~ Ô 3 
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TABLE 5—Jointly best supported parameters of a straight line S-N curve 
when neglecting the data at the lower stress levels of Fig. 2. 

Endurance Limit, S^, 
N/mm2. 

Without Data 
at the Lower 

Support, SUP 1 

Without Data 
at the Lower 

Run 
No. 

11 
12 
13 
14 
15 

Slope 
k 

7.75 
6.00 
5.75 
5.50 
5.25 

SDof 
Log 5, 

s 

0.0246 
0.0162 
0.0138 
0.0144 
0.0185 

All 
Data 

79.5" 

2 
Levels 

78.4 
68.5 
66.7 
64.8 

3 
Levels 

79.0 
68.2 
66.3 
64.3 
62.1 

4 
Levels 

79.9 
68.3 
66.3 
64.2 
61.9 

All 
Data 

130.7 

2 
Levels 

161.2 
220.3 
211.8 
203.3 

3 
Levels 

136.7 
192.1 
194.6 
194.3 
190.9 

4 
Levels 

114.1 
154.9 
157.2 
157.2 
155.6 

"Best supported values (underlined) to be compared within columns only, as support changes 
with the number of tests considered. 

TABLE 6—Jointly best supported parameters of the S-N curve as a function of the 
cutoff point derived for a selected sample of data from Fig. 2 

(tests on levels S^ = 90, 110, and 140 N/mm^ only). 

Run 
No. 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 

Cutoff 
Point, 

NE 

0.610* 
1.0-10" 
1.5-10* 
2.0-10* 
3.0-10* 

Slope 
1.0-10* 
1.5-10* 
2.0-10* 
3.0-10* 
4.5-10* 
6.0-10* 

Slope 

Chang 

Slope 
k 

SDof 
Log 5, 

s 

Endurance 
Limit, 

SE, N/mm^ 

Changing Abruptly to the Horizontal 
3.50 
4.50 
5.50 
6.00 
6.75 

0.0326 
0.0215 
0.0144 
0.0132 
0.0169 

97.3 
93.0 
91.4 
89.8 
88.1 

ing Continuously to the Horizontal (a 
3.25 
3.75 
4.25 
4.75 
5.25 
5.50 

0.0244 
0.0211 
0.0186 
0.0167 
0.0151 
.0.0176 

78.4 
76.4 
76.0 
74.2 
72.7 
71.2 

Support, 
SUPl 

84.5 
98.4 

106.8 
100.3 
81.0 

= 20) 
107.0 
105.0 
104.4 
103.3 
99.6 
94.4 

Additional 
Criterion 

(2 SUP 1 -
SUP 2) 

107.1 
105.0 
104.5 
103.3 

therefore the additional criterion does not furnish any better discrimination. 
This also illustrates the fact that over a narrow range of stress values various 
curves may be equally satisfactory, though they may be quite different when 
extrapolated. 

As pointed out in the foregoing, the situation in treating sets of data 
similar to those in Fig. 7 may be markedly improved if the parameters of the 
S-N curve are derived by combining a number of comparable sets of such 
data. An example is given in Table 7. In this analysis, nine comparable sets 
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equally good lines 

as f i t ted by program 

number of cycles N(log.) 

FIG. 8—The strange shape of lines fitted by program is typical of the extreme case of data re­
stricted to two stress levels. (Neither maximum likelihood nor least square fits can distinguish 
between the lines shown.) 

TABLE 1 jointly best supported parameters as a function of the 
cutoff point to define a comnion shape of the S-N curve for nine 

comparable test series on notched specimens in quenched and tempered 
steel 42CrMo4 (stress concentration factor K, = 2.5, 3.6, or 5.2: 

stress ratio R = —I or 0). 

Run 
No. 

27 
28 
29 
30 

Cutoff SD of 
Point, Slope Log S, 

Ni: k s 

Slope Changing Abruptly to the Horizontal 

0.20 •10'' 4.75 0.0204 
0.25 -10* 5.00 0.0194 
0.30 lO* 5.25 0.0185 
0.45 •10*' 5.50 0.0207 

Sum of 
Support, 
SUPl 

339.7 
347.1 
339.5 
281.2 

Slope Changing Continuously to the Horizontal (a = 30) 
31 0.30 10* 4.50 0.0215 332.9 
32 0.325-10'' 4.50 0.0215 334.1 
33 0.35 -lO" 4.75 0.0204 332.4 
34 0.45 10* 5.00 0.0194 330.4 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.
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of data have been combined by summing the appropriate support values to 
define the "shape parameters" NE, k, and s. while the position of the thus-
defined S-N curves was fitted individually for each set through the value 
determined for the endurance limit, SE. The jointly best supported shape 
parameters are N^ = 0.25-10^, A; = —5.0, and s = 0.0194, in case of the 
abruptly changing S-N curve, or NE = 0.325-10^, k = —4.5, and s — 
0.0215, in case of the continuously changing S-N curve. In both cases the 
confidence limits are reasonably narrow, but the support of the abruptly 
changing S-N curve is significantly higher than for the continuously changing 
curve. This is because the abruptly changing curve provides a better sup­
ported approximation of most of the present sets. 

A similar analysis by the graphical method is presented in Fig. 9 \10\. Here 
the test results were plotted on a relative scale for which the individual value 
of the endurance limit, SE, was the reference stress. As a consequence, all 
data points coincide in one scatter band. The shape parameters to be derived 
from the scatter band, NE = 0.3 • 10^, k — —5.0, and s < 0.04, are found in 
good agreement with the parameters determined by the maximum likelihood 
analysis. In Table 8 the common shape parameters derived by the three 
methods mentioned and the corresponding values of the endurance limits are 
compared with those obtained by an individual best fit to each of the nine 
sets of results. While the values of the endurance limit derived individually or 
by the common shape S-N curve show only slight differences, the individual 
values of Slope k differ considerably. Further, for all sets a highly significant 
loss of support has to be stated for the common shape S-N curve when com­
pared with the individual best fitting shape of the curve. 

This example shows that inferences as to the shape parameters of the S-N 
curve are more closely defined when based on a large number of results even 
if these have been taken from several independent sets of data (Table 7). This 
is only achieved, however, by sacrificing accuracy, since common shape 
parameters do not fit individual results as well as individual parameters 
(Table 8). Whether, and to what extent, this can be accepted is a matter of 
professional judgment and not mathematics. 

The example also illustrates the differences in results that different 
methods and assumptions can give. 

Conclusions 

1. The most appropriate statistical method for the analysis of fatigue test 
results depends on the data to be analyzed. If the results contain runouts, the 
method used must allow their proper consideration. The inferences drawn 
from a statistical analysis depend on the method used. Its choice must be a 
matter of careful professional judgment. 

2. S-N curves need several parameters for their definition, at least two for 
a straight line and more for the complex shapes required for certain data. 
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TABLE 8—Parameters of the graphically derived, of the individually best fitting, and of the 
commonly best supported S-N curves for nine comparable test series on notched specimens in 

quenched and tempered steel 42CrMo4." 

Set 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Graphical 
Fit, 

N£ = 0.30 

•irf", 
k = 5.0, 

SE 

215 
180 
165 
135 
165 
135 
190 
160 
105 

S-N Curve Changing Slope Abruptly 

NE = 0.25- lo^ 
Individual Best Fit 

k 

4,50 
5.00 
4.75 
5.25 
5.25 
5.50 
5.25 
5.50 
4.50 

SE 

214 
190 
171 
146 
176 
147 
202 
175 
106 

SUPl 

41.1 
43.1 
58,4 
52.0 
35,8 
28.7 
65.1 
19.3 
45.0 

/V^ = 0.25•10^ 
* = 5.0 

SE 

216 
191 
173 
144 
172 
141 
199 
173 
109 

SUP 1 

38.5 
40.7 
54.7 
50.8 
35.0 
21.5 
58.0 
14.6 
33.7 

^ £ 

S-N Curve Changing Slope 
Continuously 

= 0.35- 10^ 
Individual Best Fit 

k 

4.25 
4.25 
4.25 
4.50 
5.25 
5.50 
4.75 
5.25 
4.25 

SE 

190 
168 
150 
127 
167 
138 
178 
156 
95 

SUPl 

38.5 
37.3 
54.1 
49.9 
37.0 
35.6 
60.4 
25.1 
36.6 

Aff = 0.35-10^ 
k = 4.5 

SE 

192 
170 
153 
129 
153 
125 
175 
154 
97 

SUPl 

35.3 
36.4 
51.6 
50.4 
32.0 
22.8 
53.8 
21.6 
30.8 

"Values of endurance limit S^ in N/mm^. The individual best fit is computed with the in­
dividual standard deviation, common shape fitted with the global value of standard deviation. 

Unless the set of data to be analyzed contains a large number of results, these 
parameters can only be determined statistically within wide confidence 
limits. They can be determined within closer limits using a number of dif­
ferent sets of data from similar tests on the assumption that the shapes of the 
S-N curves are similar for all these data and that the curves differ only in one 
parameter. (A method for doing this is outlined in the paper). 

3. For other than straight-line S-N curves, the method of least squares 
does not necessarily lead to the physically most acceptable line, particularly 
concerning the position where the curve changes from a relatively steep slope 
to a flat slope. It is shown that the position of this point is indeterminate in 
the case of certain sets of data and is not well determined by the least squares 
fit even when good data are used. 

4. In view of this difficulty, an additional criterion is required for the best 
fit curve, namely, that the curve should also be a best fit on the assumption 
that the standard deviation of the logarithm of the stress remains constant 
along the curve. This further criterion produces a more reasonable result for 
the location of the point at which the change of slope occurs. In practice, it is 
better to use a shape of S-N curve with a gradual change of slope. 
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ABSTRACT: A two-segment distribution is proposed for representation of the fatigue 
life of modem high-performance composite materials. Each segment is a two-parameter 
Weibull distribution. Bquations of the maximum likelihood method in estimating 
parameters are derived, and an iterative solution scheme is presented. Several example 
problems are included. 

KEY WORDS: maximum likelihood estimation, Weibull distribution, censored 
samples, composite materials, fatigue, strength, statistical analysis 

Nomenclature 

k Subscript which denotes a segment (k = 1,2) 
F{x} Cumulative distribution function 
f(x) Probability density function 

a/f Weibull shape parameter of the k^^ segment 
fill Weibull scale parameter of the k^^ segment 
9ic Alternate form of the scale parameter (0t = jS^ "̂*) 
6 Value of JT separating the two segments ( that is, the intersection point) 

N Total sample size (N = ri] + n2 + nj + n^) 
It 1 Number of failed sample points with a value < 6 
n2 Number of failed sample points with a value > 6 
«3 Number of suspended sample points with a value < 6 
«4 Number of suspended sample points with a value > 6 

' Professor and visiting assistant professor, respectively. Department of Mechanical Engineer­
ing, Drexel University, Philadelphia, Pa. 19104. 
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!C, Value of the /"̂  failed specimen ordered so that x, < jc, + | 
V, Value of the /"' suspended specimen ordered so that>', < y 

Due to their light weight and high strength, modern high-performance 
composite materials, such as graphite fiber embedded in epoxy matrix, have 
been used as structural parts in military and commercial aircraft. They are 
also being used in sporting goods (skis, tennis rackets, and golf clubs) and 
are being considered as structural material for automobiles in the 1980s. At 
the present, the composites have one disadvantage; that is, their strength and 
fatigue life have larger scatter than those of metals. Extensive testing is cur­
rently being carried out to characterize these materials in order to under­
stand their behavior better and to facilitate design applications. 

In studying the test data of fatigue life distribution of composites we have 
observed that in certain cases the distribution is best represented by two dis­
tribution functions, one in the low life region and one in the high life region. 
In this paper, we shall present the maximum likelihood method of estimating 
parameters of a two-segment distribution where each segment is a two-pa­
rameter Weibull distribution. 

Two-segmented distribution first appeared in Weibull's paper \l\} In in­
troducing the distribution now bearing his name, Weibull considered two 
types of this distribution—a simple type and a complex type. His simple type 
is a standard three-parameter Weibull; the complex type is the sum of two 
subpopulations. The distribution function of the complex type appears as 
two straight-line segments in the Weibull coordinate. Weibull showed a few 
examples, including one on the length of cyrtoideae (a kind of sea shell), and 
one on the fatigue life of steel; the latter example will also be used for our 
present approach. Weibull used three-parameter Weibulls for each of his 
subpopulations and used the trial-and-error method and curve fitting by eye 
in estimating parameters. 

In 1959, Kao [2] also discussed the two-segmented Weibull distribution in 
connection with failure of electronic tubes. He proposed that the failure can 
be classified into two types; one is sudden or catastropic failure (infant mor­
tality) and the other is wear-out or delayed failure. The distribution function 
of the life of the tube is the sum of two distributions, each of a subpopula-
tion. Kao called this a "mixed distribution," which is similar to the "multi-
risk" model discussed by Herman and Patell \3\. Kao further demonstrated 
that when the characteristic life of the wear-out distribution is large, the 
mixed distribution can be approximated by a "composite distribution," 
which is essentially that of the two-segmented Weibull discussed in this 
paper. He used a two-parameter Weibull for each segment, placed some re­
strictions on the values of the two shape parameters, and used graphical 
curve fitting in estimating the parameters. 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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Srivastava [4] studied the problem of life distribution of a specimen sub­
jected to two alternating stress levels. He assumed that the Weibull shape pa­
rameters for these two stress levels are the same but the scale parameters are 
different. The combined distribution for many alternating periods at each of 
the stress levels is derived. 

In reliability engineering, the concept of multisegment distribution is also 
being used. One example is the piecewise-linear failure rate (hazard func­
tion) model, which is one version of the well-known "bathtub curve" [5]. 
Mann, Schafer, and Singpurwalla [6] also discuss a "two component com­
posite distribution," which is similar to that described by Kao [2], 

It seems that the maximum likelihood estimation (MLE) method has not 
been applied to the two-segment Weibull distribution with unknown param­
eters. In this paper, we shall first derive the equations of the MLE method, 
with progressive censoring capability. The general approach is similar to that 
used by Cohen [7], who has applied the MLE to a single Weibull function, 
with progressive censoring. A few illustrative examples are given. Two of 
these examples are for the fatigue life of composite materials. 

Two-Segment Weibull Distribution 

Let us consider the two-segment Weibull distribution with a probability 
density function defined as 

fix) = - ^ x « * ~ ' e x p 
c"* 

e. 
(1) 

and the corresponding cumulative distribution function 

F{x) = 1 — exp 

where 

e. 
(2) 

k = \ for X < 8 
and 

k = 2 for X > 6 

Each of the two segments is a two-parameter Weibull distribution. In gen­
eral, at X = 6, fix) is discontinuous, but F{x) is continuous. When the 
domain of x extends from zero to infinity, we have the condition 

f(x)dx = 1 (3) 
Jo 

which is equivalent to F(8)i^ = , = /"(S)^ = 2-
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Combining Eqs 2 and 3, we obtain 

e^ = 02 8"^ - « 2 (4) 

This equation reduces the number of independent parameters from five to 
four. We shall consider a,, a2' ^2- and 8 as our independent parameters. 

With a given value of 8, we shall use the maximum likelihood method in 
estimating the values of the parameters a^ and d/^ for a random sample of N 
specimens containing («] + 122) failed specimens and (nj + n^) suspended, 
or censored, specimens. The censoring can be progressive, that is, any num­
ber of specimens can be censored at any time. 

The likelihood function for this distribution may be written as 

L = const n —'-x,'"! ~ "exp 
/ = 1 6] 

Xi° 

' I + "2 

n 
= /;, + ! 

-^.X.(a2- Dexp 

" 1 

• n exp 
/ = 1 e, 

.0(2 

'^2 

n exp 
/ = "3 + 1 

(5) 

Eliminating 0] by Eq 4 and taking logarithms of Eq 5, we have 

l n l = lnC + H , [ l n a i + ( a 2 - a i ) l n 5 - l n ^ 2 ] + («! - 1) S Inx, 
/ = I 

- 6°2~ ' * I02" 

" 1 " 1 

•• = 1 / = 1 

<̂ 2 
+ /72ln—— + (0(2 - 1) 

"1 + "2 
E In x, 

/ = «, + ! 

^ , - ' 
"-1 + «d 

E X,«2+ E 
/ = /I, + 1 

(6) 

Our task now is to find values of the four parameters that maximize the 
likelihood function, L, or its logarithm, In L. From Eq 6, it can be seen that 
In Z, is a continuous function of the parameters a i , 02, and 62, but a discon­
tinuous function of 8. In maximizing i , ' = In £, we cannot use directly the 
equation dL '/d8 = 0, because L ' has a discontinuity at every data point 8 = 
Xj. 

To solve this problem of maximization of a discontinuous function, we 
shall adopt the following procedure. First, we shall find the values of a,, 02, 
and dj that maximize Z.' for a given value of 8. Then, we shall find the value 
of 8, when combined with its corresponding values of a | , a2» ^nd ^2. that will 
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maximize L '. For the first step, we derive the equations of vanishing of the 
derivatives of L ' with respect to «], a^, and Qi, or 

3 1 ' 
= 0 = Hiai '—Hi In 6 + E Inx, 

^ 2 ^ 1 5 0 : 2 - a i E x,"! lnjc,+ E 3',"'In J, 

+ e2~ '6"2-ai in6 
"3 

L/=l /=1 
(7) 

dL' 
= 0 = H,ln6 - e 2 ~ ' 5 " ^ " " ' l n 6 

r "I H3 

E A:,«I + E yi"^ 
/ = I / = 1 

+ "20:2-' 

"I i"2 
+ E lnjc , -6l2- ' 

I = 1 + /(, 

"1 + "2 ".1 + "4 

E Xi"^\nxi+ E yi"^\x\yi 
/ — /? I + 1 / = // ^ + 1 

(8) 

3 1 ' 
= 0 = -Hl6l2~' + e2~^5''2-«l 

" I "3 

E A:,"I + E j,«i 
/ = 1 ;• = 1 

H2C2 - • + 0 2 " ^ 
" l + " 3 "3 + "4 

E x,-2+ E 3;/ 
/ = H I + 1 I = ;n + I ' I 

(9) 

For a given value of 6, Eqs 7, 8, and 9 are solved by a numerical iterative 
scheme for values of «] , 0:2, and 62- A first estimation of the values of a, and 
ai is made. These values are substituted into Eq 9 and the value of Q^ is solved. 
These values are then used in Eqs 7 and 8 to obtain new estimates of oj and 
ai- This process is repeated until the values of all the parameters have con­
verged. 

This solution scheme has been programmed for use on an IBM 370 com­
puter. The convergence criterion used in this program compares the value of 
each parameter to its respective value in the previous iteration. If 

l « / t ~ a-Kprevious) I < 0 . 0 0 0 1 

and if 

L " ^ ^ft (previous) J 
< 0.0001 

(10) 

(11) 
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the values of ai^ and Ŝ  are considered satisfactory and the iteration process is 
stopped. For all the data sets we have studied, convergence has always oc­
curred within 40 iterations, even when the initial estimates were an order of 
magnitude higher than their final value. 

This set of values of «] , aj, and 62, which maximizes X ' for a given 6, will 
be denoted by 5] , a2' and 62' The likelihood function is then/ , ' (5), oti, 62, 5). 

To find the value of 8 that maximizes!,' (a| , 012, 62, 5) let us consider first 
the set of discrete values 6 

L' U„|) = L' («!, aj, Sj^x,,) 

twe 

A I ' =L'{x,„ + ,)-L'(x,„) 

Then the increment of L ' between 6 = x,,, + 1 and 6 = x„, is 

ln( —^ ) + (H| - IXa, - a2)['n^,M - lnJ^», + il 

(12) 

— (a2 - ai) U„i)«2-«i-i (x„i + i - jc„,) 
t'2 

,x," 

(̂ 2 02 

If among the x, values x„, = JC„, gives a maximum value of Z,', then 

A I ' > 0 for «, < m 

Ai , ' < 0 for «1 > w 
(14) 

From Eqs 13 and 14, the value of 6 = x,„ that maximizes I , ' among the dis­
crete points 6 = A:,,, can be obtained. Next, let us investigate the value of i , ' 
for values of b in between the data points A:,, , and J:„ , + 1, or x,,, < b < jc„, + 1. 
In varying 6 within this range, the values of n \ and itj do not change, and L ' 
is a continuous function of b. Taking the derivative, we obtain, for x,,, < 6 < 
•^«i + 1 

dL' 
db 

«i (a i — tt2) 

e,b 
1 "' 

-(3,"i + — E xr 
/ / 1 /• = 1 

(15) 

For the range of values of b between jc,,, and x„^ + 1, the sign of dL '/db is 
governed by the terms within the brackets of Eq 15. For the usual case of /8] 
> je„|, it is negative. If /3| < x„,, it could be positive. In either case, its sign 
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does not change when 8 is varied within the range. Therefore, the maximum 
value of L ' occurs at the data point 6 = JC,,, = x,„. 

Illustrative Examples 

We shall present four examples. The first one involves a set of data points 
taken from a known two-segment distribution. The second one is the fatigue 
life of Bofors ST-37 steel, which was originally studied by WeibuU. The last 
two examples involve the fatigue life of graphite-epoxy composite materials. 

Idealized Data Set 

In the first example, we shall start with a hypothetical two-segment Wei­
buU with known values of parameters, select a few points from it, and then 
apply the MLE to determine the parameters corresponding to these points. 
These are then compared with the original distribution. The hypothetical dis­
tribution selected has the following values 

a, = 2.0 a2 = 0.5 

(3, = 2.3 X 105 02 = 4.0 X 105 

6 = 1.913 X 105 

Twenty points were selected from this distribution with equal AF between 
points. These points, together with the curve of MLE of the distribution, are 
shown in Fig. 1. The agreement is satisfactory. It can be shown that as the 
number of points increases, the estimated values of the parameters approach 
the original value. 

In addition, for this data, the value of L' was calculated at several values 
of 6. The results are shown in Fig. 2. As can be seen, L' attains its maximum 
at the data point xio, and has continuously decreasing value between data 
points. 

Bofors Steel 

The data for this example are taken from WeibuU's paper [1]. Fatigue life 
data of 235 specimens of Bofors St-37 steel under rotating beam tests were 
recorded. The lives of individual specimens were not given; only the numbers 
of specimens that failed within certain life intervals were tabulated. These 
data are reproduced in Table 1. In applying our MLE equations, we have 
assumed that all specimens with life within a given interval have life at the 
upper limit of the interval. The results are shown in Fig. 3. The data points 
are shown by vertical lines bounded by circles, the location of which are cal­
culated according to the median rank formula [8]. 

WeibuU's original fitted curve is also shown in Fig. 3. He used two three-

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



CHOU AND MILLER ON TWO-SEGMENT WEIBULL DISTRIBUTION 121 

4J 
d 

-H 
O 

H I 

a W 

« o 

O 

4J 
•H 
fu 

4-1 
i J -H 
(3 b^ 

^ S ^J 
00 C 
<U (U 
w a 1 U) 
a) a 

i-< M 
CO 
C o 
•H s W E-

1 
1 
1 

^ 

CN) 

• 00 
4J 
B 
O 
S og 
01 

t/3 

0 

» H 

OJ 
w 

i H 

00 
O 
w 

1 u 
V C 

00 8 
a 00 
^ a) 
CO CO 

-3-
u-1 

• O 

e^ 
CM 

• CM 

r^ 
p^ 

• o 

8 

u-i 
O 
i - l 
X 

i H 
OV 

CO 

iri 
O 
i H 
X 

CN 

m 
o 
1-1 
X 
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TABLE \—Fatigue of Bofors steel [1]." 

Life, Cycles 

12 500 to 17 500 
17 501 to 22 500 
22 501 to 27 500 
27 501 to 32 500 
32 501 to 37 500 
37 501 to 42 500 
42 501 to 47 500 

Number of 
Specimens 

5 
43 
78 
44 
23 
14 
8 

Life, Cycles 

47 501 to 52 500 
52 501 to 57 500 
57 501 to 62 500 
62 501 to 67 500 
67 501 to 72 500 
72 501 to 77 500 
77 501 to 82 500 
82 501 to 87 500 
87 501 to 92 500 

Number of 
Specimens 

6 
4 
3 
2 
1 
1 
1 
1 
1 

"Rotating beam test at ± 32 kg/mm^. 

parameter Weibull distributions and fitted the curve to the data points visu­
ally. 

Figure 3 is plotted in the "Weibull coordinates"; two-parameter Weibull 
functions appear as straight lines, while three-parameter Weibull distribu­
tions do not. 

Fatigue Life of Composite Material, Complete Samples 

In Ref 9, Ryder and Walker tested graphite-epoxy composite laminates 
which were typical of those used for aircraft structures. We shall study his 
data for fatigue life under tension-tension fatigue of the Laminate II com­
posites. Details of the specimen lay-up, testing condition, and fatigue life are 
given in Table 2. Twenty failed data points are available, which represents a 
complete sample without censoring. 

The results are shown in Fig. 4. The solid curve is the estimated two-seg­
ment Weibull, and the dotted line is an MLE of a single-function Weibull. 
The two-segment Weibull shows a good fit to the data. 

Fatigue Life of Composite Material, Censored Samples 

In Ref 10, Wang, Chou, and Alper have studied the fatigue life of unidi­
rectional graphite-epoxy composites. They used 24 specimens, 20 fatigued to 
failure and 4 suspended (censored) at 10* cycles. Their data are reproduced 
in Table 3. The estimated distribution is shown in Fig. 5. Again, the fit is sat­
isfactory. 

In this case it was found that L' attained maximum value locally at two 
places. The first maximum occurred at the value shown in the figure. The 
second occurred at the third from the last failed data point {x\-i). In order to 
obtain the best fit to the data in the low life region, the first maxima was 
chosen for the representation of this sample. 
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FIG. 3—Comparison between the experimental data and the two-segment distribution for 
fatigue life of ST-37 steel (Ref \). 
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TABLE 2—Ryder-Walker tension-tension fatigue tests [9].° 

11 491 
17 578 
40 270 
41200 
44 830 

51 848 
54 187 
58 530 
59 320 
60 912 

64 070 
69 711 
70 049 
70 497 
71400 

81571 
87 373 
116 667 
367 644 
513 600 

"Fatigue life, cycles: maximum stress = 50 ksi, f = 10 Hz, Gr/E 
(0/+45/90/ - 452/90/ + 45/0),. 

TABLE 3—Wang-Chou-Alper tension-tension fatigue tests [10]." 

30 
69 
90 
260 
286 

288 
380 

1570 
3 269 
5 653 

5 984 
8609 
11362 
12 119 
15 529 

15 754 
18 995 
22 515 
97 009 
149 356 

1000 000* 
1000 000* 
1 000 000* 
1 000 000* 

"Fatigue life, cycles: 6 ply Gr/E unidirectional; maximum stress = 171 ksi, F = 9.5 
Hz. 

*Suspended (censored). 

Concluding Remarks 

We have shown that the fatigue life of certain materials can be represented 
by a two-segment distribution, each segment a two-parameter WeibulL The 
maximum likelihood method is applied for parameter estimation with satis­
factory results. We have not studied the failure mechanism or the cause of 
the failure. It is very likely that two separate failure mechanisms are present. 
The identification of the fatigue life distribution with two segments of distri­
bution will facilitate the search for the failure mechanisms. 

The three-parameter Weibull distribution is often used to represent data 
that do not agree with a single two-parameter Weibull. With the present 
method of conveniently fitting a two-segment, two-parameter Weibull, it 
seems that there is no need to use the three-parameter Weibull. If the vari­
able involved should have a domain from zero to infinity, like fatigue life, 
there is no physical reason to impose a finite minimum value, as the location 
parameter does in the three-parameter Weibull. Also, the two-parameter 
Weibull has the convenience that its shape parameter gives an indication of 
the degree of scatter in terms of the central value, just like the coefficient of 
variation. For the three-parameter Weibull, the shape parameter gives the 
degree of scatter in terms of the central value minus the location parameter, 
which is more difficult in making comparisons. For instance, in terms of the 
two-parameter Weibull, the population which has the larger shape parame­
ter has smaller scatter. This type of statement cannot be made for the shape 
parameter of the three-parameter Weibull. Further discussion on this point 
will be made in a separate paper. 
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APPENDIX 

^ Designation: E 739 - 80 

Standard Practice for 
STATISTICAL ANALYSIS OF LINEAR OR LINEARIZED 
STRESS-LIFE iS-N) AND STRAIN-LIFE (e-N) FATIGUE 
DATA' 

This standard is issued under Ihe fixed designation E 739: the number immediately following the designation indicates the 
year of original adoption or. in the case of revision, the year of last revision. A number in parentheses indicates the year ol' last 
reapproval. 

1. Scope 
I.I This practice pertains only to S-N and 

e-Â  relationships that may be reasonably ap­
proximated by a straight line-(on appropriate 
coordinates) for a specific interval of stress or 
strain. It presents elementaiy procedures that 
presently reflect good practice in modeling and 
analysis. However, because the actual S-N or 
e-A' relationship is approximated by a straight 
line only within a specific interval of stress or 
strain, and because the actual fatigue life dis­
tribution is unknown, it is not recommended 
that (d) the S-N or e-N curve be extrapolated 
outside the interval of testing, or (b) the fatigue 
life at a specific stress or strain amplitude' be 
estimated below approximately the fiflh per­
centile (P 3! O.OS). As alternative fatigue models 
and statistical analyses are continually being 
developed, later revisions of this practice may 
subsequently present analyses that permit more 
complete interpretation of S-N and €-N data. 

2. Applicable Documents 
2.1 ASTM Slandardy. 
E 206 Definitions of Terms Relating to Fa­

tigue Testing and the Statistical Analysis 
of Fatigue Data'' 

E467 Recommended Practice for Verifica­
tion of Constant Amplitude Dynamic 
Loads in an Axial Load Fatigue Testing 
Machine^ 

E 468 Recommended Practice for Presenta­
tion of Constant Amplitude Fatigue Test 
Results for Metallic Materials^ 

E 513 Definitions of Terms Relating to Con­

stant-Amplitude, Low-Cycle Fatigue Test­
ing" 

2.2 Special Technical Publications:^ 
STP313 ASTM Manual on Filling Siraighl 

Lines 
STP 588 Manual on Statistical Planning and 

Analysis for Fatigue Experiments 

3. Significance and Use 
3.1 Materials scientists and engineers are 

making increased use of statistical analyses in 
interpreting S-N and t-N fatigue data. Statis­
tical analysis applies when the given data can 
be reasonably assumed to be a random sample 
of (or representation of) some specific defined 
population or universe of material of interest 
(under specific test conditions), and it is desired 
either to characterize the material or to predict 
the performance of future random samples of 
the material (under similar test conditions), or 
both. 

4. Terminology 
4.1 The terms used in this practice shall he 

used as defined in Definitions E 206 and E 513. 
in addition, the following terminology is u.sed.' 

4.1.1 independent variable the selected and 
controlled variable (namely, stress or strain). It 

' This practice is under the Jurisdiction of ASTM Com­
mittee tl-** on Fatigue and is Ihe direct respi^nsibilily of 
Suhcduunillce \-.W.{)(\ on Slati.stical Aspects of ratiguc. 

Current edition approved June 12. IMltt). Published Au­
gust mo. 

• Annual Bixik oj ASTM Slanilarils. Part 10. 
' Available from ASTM. 1916 Race St.. Philadelphia. Pa. 

mm 
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is denoted X herein when plotted on appropri­
ate coordinates. 

4.1.2 replicate {repeat) tests—nominally 
identical tests on different randomly selected 
test specimens conducted at the same nominal 
value of the independent variable X. Such rep­
licate or repeat tests should be conducted in­
dependently; for example, each replicate test 
should involve a separate set of the test machine 
and its settings. 

4.1.3 dependent variable—Ihe fatigue life N 
(or the logarithm of the fatigue life). 

NoTi; I—Log (A') is denoted y herein. 

4.1.4 log-normal distribution—the distribu­
tion of N when log {N) is normally distributed. 
(Accordingly, it is convenient to analyze log 
(N) using methods based on the normal distri­
bution.) 

4.1.5 run out—no failure at a specified num­
ber of load cycles (Recommended Practice 
E468). 

NOTE 2—The analyses illustrated herein do not 
apply when the data include either run-outs (or sus­
pended tests). Moreover, the straight-line approxi­
mation of the S-N or e-A' relationship may not be 
appropriate at long lives when run-outs are likely. 

NoTfi 3—For purposes of statistical analysis, a 
run-out may be viewed as a lest specimen that has 
either been removed from the test or is still running 
at the time of the data analysis. 

5. Types of S-N and e-N Curves Considered 

5.1 It is well known that the shape of S-N 
and e-N curves can depend markedly on the 
material and test conditions. This practice is 
restricted to linear or linearized S-N and t-N 
relationships, for example, 

log A/= /( +B(S) or (la) 
\o%N = A + B(«). or (lb) 
log A/ = /( + fl(logS)or (2a) 
log/V =/ ( + B (log 6) (2b) 

in which S and t may refer to (a) the maximum 
value of constant-amplitude cyclic stress or 
strain, given a specific value of the stress or 
strain ratio, or of the minimum cyclic stress or 
strain, (h) the amplitude or the range of the 
constant-amplitude cyclic stress or strain, given 
a specific value of the mean stress or .strain or 
(c) analogous information stated in terms of 
some appropriate independent (controlled) 
variable. 

Noil 4 In certain cases the amplitude of the 

stress or strain is not constant during the entire test 
for a given specimen. In such cases some effective 
(equivalent) value of 5 or e must be e.stablished for 
use in analysis. 

5.1.1 The fatigue life N is the dependent 
(random) variable in S-N and e-N tests, 
whereas 5 or € is the independent (controlled) 
variable. 

NOTE 5—In certain cases the independent vari­
able used in analysis is not literally the variable 
controlled during testing. For example, it is common 
practice to analyze low-cycle fatigue data treating the 
range of plastic strain as the controlled variable, 
when in fact the range of total strain was actually 
controlled during testing. Although there may be 
some question regarding the exact nature of the 
controlled variable in certain S-N and c-JV tests, there 
is never any doubt that the fatigue life is the depen­
dent variable. 

NoTt 6—In plotting S-N and t-N curves, the 
independent variables S and c are plotted along the 
ordinate, with life (the dependent variable) plotted 
along the abscissa. Refer, for example, to Fig. 1. 

5.1.2 The distribution of fatigue life (in any 
test) is unknown (and indeed may be quite 
complex in certain situations). For the purposes 
of simplifying the analysis (while maintaining 
sound statistical procedures), it is assumed 
herein that the logarithms of the fatigue lives 
are normally distributed, that is. the fatigue life 
is log-normally distributed, and that the vari­
ance of log life is constant over the entire range 
of the independent variable used in testing (that 
is, the scatter in log N is assumed to be the 
same at low S and e levels as at high levels of 
S or e). Accordingly, log N is used as the 
dependent (random) variable in analysis. It is 
denoted Y. The independent variable is de­
noted X. It may be either S or e. or log S or log 
E, respectively, depending on which appears to 
produce a straight line plot for the interval of 
S or 6 of interest. Thus Eqs I and 2 may be re-
expressed as 

Y = A + BX (.1) 

Equation 3 is used in subsequent analysis. It 
may be stated more precisely as ii.vi.\ = A -h 
BX, where |JL>|.V is the expected value of Y given 
X 

Noll 7 For testing the adequacy of the linear 
model see 8.2. 

Nori! 8 The expected value is the mean of the 
conceptual population of all Y'a given a specific level 
of X. (The median and mean are identical for the 
symmetrical normal distribution assumed herein for 
Y) 
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6. Test Planning 

6.1 Test planning for S-N and e-N test pro­
grams is discussed in Chapter 3 of Ref (2). 
Planned grouping (blocking) and randomiza­
tion are essential features of a well-planned test 
program. In particular, good test methodology 
involves use of planned grouping to (a) balance 
potentially spurious effects of nuisance vari­
ables (for example, laboratory humidity) and 
(b) allow for possible test equipment malfunc­
tion during the test program. 

7. Sampling 

7.1 It is vital that sampling procedures be 
adopted which assure a random sample of the 
material being tested. A random sample is re­
quired to slate that the test specimens are rep­
resentative of the conceptual universe about 
which both statistical and engineering inference 
will be made. 

NOTE 9—A random sampling procedure provides 
each specimen that conceivab^ could be selected 
(tested) an equal (or linown) opportunity of actually 
being selected at each stage of the sampling process. 
Thus, it is poor practice to use specimens from a 
single source (plate, heat, supplier) when seeking a 
randonl sample of the material being tested unless 
that particular source is of specific interest. 

NOTE 10—Procedures for using random, numbers 
to obtain random samples and to assign stress or 
strain amplitudes to specimens (and to establish the 
time order of testing) are given in Chapter 4 of Ref 
(3). 

7.1.1 Sample Size—The minimum number 
of specimens required in S-N (and e-A') testing 
depends on the type of test program conducted. 
The following guidelines given in Chapter 3 of 
Ref (2) appear reasonable. 

Minimum 
Type of Test Number of 

Specimens'* 

Preliminary and exploratory (exploratory re- 6 to 12 
search and development tests) 

Research and development testing of com- 6 to 12 
ponents and speciinens 

Design allowables data 12 to 24 
Reliability data 12 to 24 

'* irihe variability is large, a wide conlldence band will be 
obtained unless a large number of specimens are tested (See 
8.1.1). 

7.1.2 Replication—The replication guide­
lines given in Chapter 3 of Ref (2) are based on 
the following definition: 

% replication " 100 11 - (total number of dif­
ferent stres-s or strain levels used in testing/total 

number of specimens tested)) 

TypeofTesI Percent Repli-
^*^ cation^ 

Preliminary and exploratory (research l7 to33min 
and development tests) 

Research and development testing of 33 to 50 min 
components and specimens 

Design allowables data SO lo 75 min 
ReUabiUly data 75 lo 88 min 

' Note that percent replication indicates the portion of the 
total number of specimens tested that may be used for 
obtaining an estimate of the variability of replicate tests. 

7.1.2.1 Replication Examples—Good repli­
cation: Suppose that 10 specimens are used in 
research and development for the testing of a 
component. If two specimens are tested at each 
of five stress or strain amplitudes, the test pro­
gram involves 50% replications. This percent 
replication is considered adequate for most re­
search and development applications, Poor rep­
lication; Suppose eight different stress or strain 
amplitudes are used in testing, with two repli­
cates at each of two stress or strain amplitudes 
(and no replication at the other six stress or 
strain amplitudes). This test program invtjives 
only 20% replication, which is not generally 
considered adequate. 

8. Statistical Analysis (Linear Model Y m A 
+ BX, Log-Normal Fatigue Life Distribu­
tion with Constant Variance Along the En­
tire Interval of X Used in Testing, No Run­
outs or Suspended Tests or Both, Com­
pletely Randomized Design Test Prtigram) 

8.1 For the case where (a) the fatigue life 
data pertain to a random sample (all K, are 
independent), (/>) there are neither run-outs nor 
suspended tests and where, for the entire inter­
val of X used in testing, (c) the S-N or t-N 
relationship is described by the linear model 
Y " A + BX (more precisely by \t.y\x = A + 
BX), (d) the (two parameter) log-normal dis­
tribution describes the fatigue life Â , and (c) 
the variance of the log-normal distribution is 
constant, the maximum likelihood estimators 
of A and B are as follows: 

A-f-^X (4) 

2 {Xi-X)iY,- Y) 
( - 1 

J 
2 (Jf, - Xf 

(5) 

where the symbol "caret" (') denotes estimate 
(estimator), the symbol "overbar" (") denotes 
average (for example, f =S*., Yt/k and X = 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



132 STATISTICAL ANALYSIS OF FATIGUE DATA 

E 739 

Sf-, Xilk), y, - log iVi, Xi - S, or «,, or log Si 
or log €i (refer to Eqs 1 and 2), and k is the 
total number of test specimens (the total sample 
size). The recommended expression for esti­
mating the variance of the normal distribution 
for log Â  is 

2 ( y i - Y(f 

k-1 (6) 

in which fi = A + BXt and the (<: - 2) term in 
the denominator is used instead of k to make 
6^ an unbiased estimator of the normal popu­
lation variance a'. 

NoTB II—An assumption of constant variance is 
usually reasonable for notched and joint specimens 
up to about [If cycles to failure. The variance of 
unnotched specimens generally Increases with de­
creasing stress (strain) level (see Section 9). If the 
assumption of constant variance appears to be du­
bious the reader is referred to Ref (S) for the appro­
priate statistical test. 

8.1.1 Cotfidence Intervals for Parameters A 
and B—The estimators A and B are normally 
distributed with expected values A and B, re­
spectively, (regardless of total sample size k) 
when conditions (a) through (e) in 8.1 are met. 
Accordingly, confidence intervals for param­
eters A and B can be established using the { 
distribution. Table 1. The confidence interval 
for A is given by A ± ipOA, or 

L* 2 (Jfi - Xfi 
(7) 

(8) 

and for B is given by B ± tpOn, or 

i8 ± /;,<T s (* - its' 

in which the value of (;, is read from Table I 
for the desired value of P, the confidence level 
associated with the confidence interval. This 
table has one entry parameter (the statistical 
degrees of freedom, n, for i). For Eqs 7 and 8, 
n - A - 2. 

NOTE 12—The confidence intervals for A and B 
are enact if conditions (a) through (e) in 8.1 are met 
exactly. However, these intervals are still reasonably 
accurate when the actual life distribution difTers 
slightly from the (two-parameter) log-normal distri­
bution, that is, when only condition (d) is not met 
exactly, due to the robustness of the (statistic. 

NOTE 13—Because the actual median S-N or t-N 
relationship is only approximated by a straight line 
within a specific interval of stress or strain, confidence 
intervals for A and B that pertain to confidence levels 

greater than appioximately 0.95 are not recom­
mended. 

The meaning of the confidence interval as­
sociated with, say. Eq 8 is as follows (NOTE 14). 
If the values of (;, given in Table I for, say, 
/> - 95 % are used in a series of analy,ses 
involving the estimation of fi from independent 
data sets, then in the long run we may expect 
95 % of the computed intervals to include the 
value B. If in each instance we were to assert 
that B lies within the interval computed, we 
should expect to be correct 95 times in 100 and 
in error 5 times in 100: that is, the statement 
"B lies within the computed interval" has a 
95 % probability of being correct. But there 
would be no operational meaning in the follow­
ing statement made in any one instance: "The 
probability is 95 % that B falls within the com­
puted interval in this case" since B either does 
or does not fall within the interval. It should 
also be emphasized that even in independent 
samples from the same universe, the intervals 
given by Eq 8 will vary both in width and 
position from sample to sample (This variation 
will be particularly noticeable for small sam­
ples.) It is this series of (random) intervals 
"fluctuating" in size and position that will in­
clude, ideally, the value B 95 times out of 100 
for P " 95%. Similar interpretations hold for 
confidence intervals associated with other con­
fidence levels. For a given total sample size k, 
it is evident that the width of the confidence 
interval for B will be a minimum whenever 

S (X -J(f 

is a maximum. Since the Xi levels are selected 
by the investigator, the width of confidence 
interval for B may be reduced by appropriate 
test planning. For example, the width of the 
Interval will be minimized when, for a fixed 
number of available test specimens, K, half are 
tested at each of the extreme levels ATmin and 
.̂ m... However, this allocation should be used 
only when there is strong a priori knowledge 
that the S-N or e-N curve is indeed linear— 
because this allocation precludes a statistical 
test for linearity (8.2). See Chapter 3 of Ref (2) 
for a further discussion of efficient selection of 
stress (or strain) levels and the related specimen 
allocations to these stress (or strain) levels. 

No IE 14—This explanation is similar to that of 
STP313. 
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8.1.2 Confidence Band for the Entire Median 
S-N or e-N Curve (that is, for the Median S-N 
or e-N Curve as a Whole)—If conditions (o) 
through (e) in 8.1 are met, an exact confidence 
band for the entire median S-N or c-N curve 
(that is, ail points on the linear or linearized 
median S-N or t-N curve considered simulta­
neously) may be computed using the following 
equation: 

A + BX± 
I (X-

T 
Z (X. 

Hf 

Rf 
(9) 

in which Fp is given in Table 2. This table 
involves two entry parameters (the statistical 
degrees of fttedom m and m for F). For Eq 9, 
Hi X 2 and n* •• (A - 2). For example, when 
A - 7 , fo.Bi-5.7861. 

A 95 % confidence band computed using Eq 
9 is plotted in Fig. I for the example data of 
8.2.1. The interpretation of this band i« similar 
to thai for a confidence interval (8.1.1). 
Namely, if conditions (a) through (t) are met, 
and if the values of i> given in Table 2 for, 
say, /> t> 95 % are used in a series of analyses 
involving the construction of confidence bands 
using Eq 9 for the entire range of X used in 
testing; then in the long run we may expect 
95 % of the computed hyperbolic bands to in­
clude the straight line V^Y\X " A + BX every­
where along the entire range of X used in 
testing. 

NOTE 15—Because the actual median S-N or t-N 
relationship is only approximated by a straight line 
within a specific interval of stress of strain, confidence 
bands which pertain to confidence levels greater than 
approximately 0.9S are not recommended. 

While the hyperbolic confidence bands gener­
ated by Eq. 9 and plotted in Fig. 1 ate statisti­
cally correct, straight-line confidence and tol­
erance bands parallel to the fitted line |lnx ~ 
A + BX are sometimes used. These bands are 
described in Chapter S of Ref (3). 

8.2 Testing the Adequacy of the Linear 
Model—In 8.1 it was asiiumed that a linear 
model is valid, namely that \t.r\x = A + BX. If 
the teiit program is planned such that there is 
more than one observed value of Y at some of 
the Xi levels where / > 3, then a statistical test 
for linearity can be made ba.sed on the F dis­
tribution. Table 2. The log life of theyth repli­
cate specimen tested in the ith level of X is 
subsequently denoted Y,y. 

Suppose that fatigue tests are conducted at / 
diflerent levels of A'and that nti replicate values 
of Kare observed at each Xj. Then the hypoth­
esis of linearity (that ii.Y\x''A+ BX) is rejected 
when the computed value of 

2 m , ( f , - f,)V(/-2) 

^ ('») 
X 2 ( n - ?.)V(*-/) 
I-1 /-I 

exceeds Fp, where the value of Fp is read from 
Table 2 for Che desired significance level. (The 
significance level is defined as the probability 
in percent of incorrectly rejecting the hypoth­
esis of linearity when there is indeed a linear 
relationship between X and fim'-) The total 
number of specimens tested, k, is computed 
using 

/t - Z m. (II) 

Table 2 involves two entry parameters (the 
statistical degrees of freedom ni and n: for F). 
For Eq 10, «i - (/ - 2). and »ij - (* - /)• For 
example, fo.i» - 6.9443 when ^ - 8 and / - 4. 

The Ftest (Eq 10) compares the variability 
of average value about the fitted straight line, 
as measured by their mean square (NOTE IS) 
(the numerator in Eq 10) to the variability 
among replicates, as measured by their mean 
square (the denominator in Eq 10). The latter 
mean square is independent of the form of the 
model assumed for the S-N or i-N relationship. 
If the relationship between ixvix and X is indeed 
linear, Eq 10 follows the F distribution with 
degrees of freedom, (/ - 2) and ( * - / ) . Other­
wise Eq 10 is larger on the average than would 
be expected by random sampling from this F 
distribution. Thus the hypothesis of a linear 
model is rejected if the observed value o r f (Eq 
10) exceeds the tabulated value Fp. If the linear 
movel is rejected, it is recommended that a 
nonlinear model be considered, for example: 

Mm --^ + " ^ + t'>f' (12) 
NOTE 16—Some readers may be templed to use 

existing digital computer software which calculates a 
value of r. Ihe so-called correlation coerficienl, or r', 
the coefncient of delerminalion, l« ascertain the suit­
ability of the linear model. This approach is not 
recommended. (For example, r • 0.993 with f - .1.62 
for Ihe example of 8.3.1, whereas r •• 0.988 and H <• 
21.3 for similar data set generated during the 1976 
E09.08 low-cycle fatigue round robin). 

NOTE 17—A mean square value is a specific sum 
of squares divided by its statistical degrees of free­
dom. 
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8.3 Numerical Examples: 
8.3.1 Example I: Consider the following 

low-cycle fatigue data (taken from a 1976 
E09.08 round-robin test program (laboratory 
43)): 

Plastic Strain Ampli­
tude—Unilless 

0.01636 
0.01609 
0.00675 
0.00682 
0.00179 
0.00160 
0.00163 
0.00053 
O.00OS4 

(a) Estimate parameters 
spective 9$ % confidence 
First, restate (transform) 
logarithms (base 10 used 
use in practice). 

Xi - log (4t;,/2) 

(Independent Variable) 

-1.78622 
-1.79344 
-2.17070 
-2.16622 
-2.74715 
-2.79588 
-2.78252 
-3.27572 
-3.26761 

N 
Fatigue Life 

Cycles 

168 
200 

1000 
1180 
4730 
8035 
5254 

28617 
32650 

A and B and the re-
intervals. 
the data in terms of 

herein due to its wide 

Y, - log Af, 

(Dependent Variable) 

2.22531 
2.30103 
3.00000 
3.07188 
3.67486 
3.90499 
3.72049 
4.45662 
4.51388 

Then, from Eqs 4 and S: 

-^- -0 .24474 4 «-1.45144 

Or, as expressed in the form of Eq 2b: 

l o g ^ - -0.24474 - 1.45144 log (A€,/2) 

Also, from Eq 6: 

i ' -0 .07837/7-0 .011195 

Or, 

d-0.1058 

Accordingly, using Eq 7, the 95 % confi­
dence interval for A is UP - 2.3646) [-0.6435, 
0.1540], and, using Eq 8, the 95 % confidence 
interval for B is [-1.6056, -1.2974). 

The fitted line f - l o p W - -0 .24474 -
1.45144 log (A€,/2) - -0 .24474 - l.45144.)lf is 
displayed in Fig. 1, where the 95 % confidence 
band computed using Eq 9 is also plotted. 
(For example, when A«p/2 - 0.01, X -
-2 .000, Y = 2.65814, yi„w„b.„d - 2.65814 -
0.15215 - 2.50599 and K^,,^ - 2.65814 -t-

0.15215 - 2.81029.) 
The fitted line can be transformed to the 

form given in Appendix XI of Recommended 
Practice E 606 as follows: 

l o g ^ - -0.24474 - 1.45144 log {4«,/2) 

log (4ep/2) - -0.16862 - 0.68897 I ^ 

4e,/2 - 0.67823 (/f)-"""^ 

Substituting cycles (N) to reversals (2JV/) gives 

A t , / 2 - 0.67823 m 
Aep/2 - 0.67823 (W"'^ (2^ , )" '*^ 

4^ /2 -1 .09340 (2i«,)"««' 

The above alternative equation is shown on 
Fig. 1. 

Ancillary Calculailons: 

J f - - 2 . 5 3 1 7 2 P -3 .42990 

t 
r {X, -X)'- 2.63892 
i-i 

> 
HX,-X)(Yi- ?)' -3.83023 

J I (-2.53172)'!"' „ . „ ^ 

d«-0(2.63892)"'-0.06513 

(b) Test for linearity at the 5% significance 
level. 

We shall ignore the slight differences among 
the amplitudes of plastic strain and assume 
that / » 4 and K • 9. Then, at each of the four 
Xi levels, we shall compute fi using Yi -
-0.24414 - 1.45144jifi and ft using f, -
J^Yy/mt. Accordingly, Fam " 5.79, whereas F 
computed (using Eq 10) - 3.62. Hence, we do 
not reject the linear model in this example. 

Ancillary Calculations: 

Numerator (F) - 0.0532/2 
Denominator (F) - 0.0368/5 

8.3.2 Example 2: Consider the following 
low-cycle fatigue data (also taken from a 1976 
E09.08 round-robin test program (laboratory 
34)): 

4t,/2 
Plaiilic Strain Ampli­

tude—Unitless 
0.0164 
0.0164 
0.0069 
0.0069 

N 

Fatigue Life 
Cycles 

133 
133 
563 
694 
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A«p/2 
Plastic Strain Ampli­

tude—Unitless 

0.0018S 
0.00175 
0.00054 
0.00058 
0.000006 
0.000006 

N 
Fatigue Life 

Cycles 
3515 
3860 

17500 
20330 
60350 

121500 

The F test (Eq 10) in this case indicates that 
the linear model should be rejected at the S % 
significance level (that is, F calculated - 9.08, 
where f3,6.0.06 " 5.41). Hence estimation of .4 
and B for the linear model is not recommended. 
Rather, a nonlinear model should be consid­
ered in analysis. 

9. Other Stadstkal Analyses 

9.1 When the WeibuU distribution is as­
sumed to describe the distribution of fatigue 
life at a given stress or strain amplitude, or 
when the fatigue data include either run-outs 
or suspended tests (or when the variance of log 
life increases noticeably as life increases), the 
appropriate statistical analyses are more com­
plicated than illustrated herein. The reader is 
referred to Ref (4) for an example of relevant 
digital computer software. 

NOTE 18—It is not good practice either to ignore 
run-outs or to treat them as if they were failures. 
Rather, maximum likelihood analyses of the type 
illustrated in Ref (4) are recommended. 
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TABLE t Vthm of I, (Ak>tnclc4 fkna STP 313) 

—_ 
n 

4 
5 
6 
7 
8 
9 

10 
I I 
12 
13 
14 
IS 
16 
17 
18 
19 
20 
21 
22 

90 

2.1318 
2.0 ISO 
1.9432 
1.8946 
I.8S9S 
1.8331 
I.8I2S 
1.7959 
1.7823 
1.7709 
1.7613 
I.7S30 
I.74S9 
1.7396 
1.7341 
1.7291 
1.7247 
1.7207 
I.7I7I 

95 

2.7764 
2.5706 
2.4469 
2.3646 
2.3060 
2.2622 
2.2281 
2.2010 
2.1788 
2.1604 
2.1448 
2.1315 
2.1199 
2.I09H 
2.1009 
2.09.10 
2.0860 
2.0796 
2.0739 

"^ Pis the probability in percent that the random variable 
/ lies in (he interval from —/;, to +tp. 

" n is not sample size, but the degrees of freedom of /. thai 
is. n ™ A - 2. 
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TABLE 2 Valws oT Fr' (AhMracM liwa STP 3U) 

Degrees of Freedom, iii 

Degrees of Freedom, its 

' 
2 

3 

4 

5 

6 

7 

8 

9 

10 

II 

12 

1} 

14 

IS 

I6I.4S 
4052.2 

I8.SI3 
98.503 

10.128 
34.116 

7.7086 
2I.I9« 

6.6079 
16.258 

5.9874 
13.745 

5.5914 
12.246 

5.3177 
II.2S9 

5.1174 
10.561 

4.9646 
10.044 

4.844) 
9.6460 

4.7472 
9.3302 

4.6672 
9.0738 

4.6001 
8.8616 

4.5431 
8.6831 

199.50 
4999.5 

19.000 
99.000 

9.5521 
30.817 

6.9443 
18.000 

5.7861 
13.274 
5.1433 

10.925 
4.7374 
9.5466 
4.4590 
8.6491 
4.2565 
8.0215 
4.1028 
7.5594 
3.9823 
7.2057 
3.8853 
6.9266 
3.8056 
6.7010 
3.7389 
6.5149 
3,6823 
6.J589 

215.71 
5403.3 

19.164 
99.166 
9.2766 

29.457 
6.5914 

16.694 
5.4095 

12.060 
4.7571 
9.7795 
4.3468 
8.4513 
4.0662 
7.5910 

38626 
6.9919 

3.7083 
6.5523 
3.5874 
6.2167 
3.4903 
5.9526 
3.4105 
5.7394 
3.3439 
5.5639 
3.2874 
5.4170 

224.58 
5624.6 

19.247 
99.249 

9.1172 

28.710 

6.388J 

15.977 

5.1922 
11.392 
4.5337 
9.1483 
4.1203 
7.8467 
3,8378 
7.0060 
3.6331 
6.4221 
3.4780 
5.9943 
3.3567 
5.6683 
3.2592 
5.4119 
3.1791 
5.2053 
3.1122 
5.0354 
3.0556 
4.8932 

' In each row, die top figures are values of F oonesponding to P - 95 Id. the bottom figures correspond to P - 99 <̂ . Thus, 
the top figures pertain to the 5 % significance level whereas the bottom figures pertain to the I % significance level. (The 
bottom figures are not recommended for use in Eq 9). 
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_J r-

S 
\-. 

V 

9% Confidence sands for the 

Median c-N Curve as a wbole 

•Log N = - 0.2itiil>t - l . ' iSl'i ' i Log At / 2 

(or A<p/2 = 1.093^0 (2^1. )'°"''®^^^) 

0 .10 58 

-•—H—I M i l l 

Example Data 

- I — I I I 11 H 

MO' 
_ j S • S 

CYCLES TO FAILURE 

K 

- I — I I I I I I I 

MO* MOS 

NnTH—The 95 % confidence band for the c-^ curve as a whole w. based on Eq 10. (Note that the dependent variable. 
rutguc life, is plotted here along the abscissa to conform to engineering convention.) 
FIG. I Fined Retadmnhip Bctwen (he Falifiic LMe /V (F) and Ike Plastic Strain An|«tude U^l (A) for the Example 

DalaGhrea 
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Summary 

The paper by Little is an appropriate introductory paper for this Special 
Technical Publication. There is much confusion among practicing engineers 
regarding the use and meaning of probability statements associated with 
fatigue test data. Little explains the difference between confidence, predic­
tion, and tolerance expressions and includes illustrative examples. He also 
covers one-sided lower statistical tolerance limits for log normal and WeibuU 
distributions for Type I and Type II censoring. He then discusses the use of 
maximum likelihood analysis to generate estimates that may be compared with 
analogous estimates generated by alternative statistical procedures. Fatigue 
life data are generally not either log normal or WeibuU distributed; therefore, a 
nonparametric approach for establishing tolerance limits, as discussed by Lit­
tle, is more appropriate. This, however, requires larger sample sizes than are 
generally practical in fatigue applications. For most future applications the 
maximum likelihood estimation technique, which is referenced and referred to 
in Little's article, will be the preferred statistical analysis procedure for analyz­
ing fatigue life data. 

The paper by Haibach, Olivier, and Rinaldi discusses practical aspects of 
planning and conducting round-robin fatigue test programs, which in this case 
consisted of 753 S-N tests carried out by six test laboratories with specimens 
fabricated by three welding institutes. Anyone contemplating a round-robin or 
interlaboratory test program should review this paper thoroughly. With any 
program of this type it is necessary to keep test scatter among laboratories to a 
minimum so the effects of significant variables can be accounted for in the 
statistical analysis with a minimum number of specimens. In this regard 
preliminary estimates of the results were made and confirmed by preliminary 
testing so the proper load levels could be selected for testing. Also, recom­
mended modes of static and dynamic calibration of the load-measuring device 
were made, and a method was described for checking the exact alignment of 
the clamping devices. The variables considered in the study included two 
materials, three types of welded specimens, three stress ratios, and two to four 
stress levels. The program gives very complete results for the constant 
amplitude fatigue properties for the materials and specimens tested. However, 
at some additional cost, programmed tests should have been conducted to 
evaluate the effect of representative service loadings on the fatigue life of these 
materials and joints. 

Young and Ekvall have made a very extensive evaluation of variability in 
spectrum (5000 specimens) and S-N (2417 specimens) fatigue test data. The 

138 
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SUMMARY 139 

results provide an estimate of the variability one can expect in fatigue tests of 
different materials (aluminum, titanium, steel, and nickel) and with different 
types of testing (flight-by-flight, block loading, and constant amplitude). A 
review is given of different statistically based equations used for determining 
scatter factors which have been applied to test results for safe-life designed 
parts. The paper illustrates how probability distribution functions can be used 
to fit the variability in fatigue test data by using regression analysis. The 
methods can be applied to evaluate the scatter in other types of test data, such 
as those from fracture toughness tests, crack growth tests, and others. 

Nishijima considers the distribution of strength deviation values of in­
dividual test results about the median S-N curve. With this approach all the 
samples tested can be combined to develop the median S-N curve and a 
P-S-N diagram. Nishijima uses probit analysis to estimate the medium fatigue 
strengths at small intervals in the life scale. The values obtained from the pro-
bit analysis were used to compute the best-fit polynomial equation of the S-N 
curve. The deviations about the median curve are pooled to determine the 
distribution of relative strength values and to develop P-S-N diagrams. 
Although the fatigue strength for the seven materials considered appears to be 
normally distributed, Nishijima points out that not all fatigue limit data sup­
port an assumption of normality. The advantages of the approach are that the 
data can be pooled to estimate variability in fatigue strength, runout data can 
be included in the analysis, and a more general shape of the median 5 - ^ curve 
can be obtained. This last point was demonstrated by the falloff in the curve 
for two materials above 10̂  cycles, which was attributed to the effect of en­
vironmental exposure. Nevertheless, the problem remains that a fairly large 
number of specimens is still required to develop a reliable P-S-N diagram. 

Spindel and Haibach studied some of the problems associated with fitting 
5-yV curves to fatigue test data. They used the "support approach," based on 
maximum likelihood principles, to investigate fitting S-N curves with up to 
five parameters: (1) the fatigue strength at 2 X 10* cycles, (2) the slope of the 
linear portion of the S-N curve, (3) the standard deviation of the logarithm of 
applied stress amplitude, and (4) and (5) the position at which the slope 
changes, in terms of cycles and stress amplitude. A computer program, 
discussed elsewhere, was used to define the optimum combination of 
parameters by a trial and error procedure—that is, by varying some 
parameters while other parameters are held constant. A method of combining 
sets of similar data and defining confidence limits is also discussed. The results 
of this method indicate that S-N curves can be determined within closer limits 
by using several sets of data from similar tests, assuming that the curves are 
similar and differ only in one parameter. Also, a better fit curve can be ob­
tained if it is assumed that the standard deviation of the logarithm of stress re­
mains constant along the curve and the slope is permitted to change gradually 
from the high-stress to the high-cycle range of data. This last assumption dif­
fers from that used in Nishijima's paper, where the coefficient of variation is 
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assumed constant, rather than the standard deviation. Also both of these 
assumptions differ from that used in regression analysis, where the variance of 
the logarithm life is assumed constant over the entire range of the independent 
variable, stress. The methods discussed by Nishijima and by Spindel and 
Haibach are more appropriate for large samples of test data. 

Chow and Miller illustrate the use of maximum likelihood analysis in 
estimating the parameters of a relatively sophisticated mathematical model. 
The model assumed in their analysis is a two-segment distribution where each 
segment is a two-parameter WeibuU distribution. The maximum likelihood 
method includes data for any number of specimens censored at any time as 
well as for failed specimens. An iterative procedure for obtaining three 
parameters while holding the intersection point constant was programmed on 
the IBM 370 computer. Convergence to a solution was obtained within 40 
iterations for all the data sets these authors studied. The optimum value of the 
intersection points is then determined for the three parameters obtained from 
the maximum likelihood analysis. It appears that the values obtained for the 
three parameters will depend on the initial choice of the intersection point, 
and one should perform the analysis for several values of the intersection point 
to obtain the best fit. Also the examples of test data given in the paper do not 
clearly demonstrate that the two-segment WeibuU distribution is better than a 
single three-parameter WeibuU distribution. 

This volume also includes a reprint of the ASTM Standard Practice for 
Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life 
(e-^) Fatigue Data (E 739-80). The practice introduces maximum likelihood 
estimation and a statistical test for assessing the adequacy of the mathematical 
model, but it is rather a modest document, leaving room for numerous exten­
sions. In particular, one hopes that in the 1980s the practice will be extended 
to cover maximum likelihood analyses which permit (a) employing a nonlinear 
S-N curve, (b) including suspended tests (runouts) in the data, (c) assuming 
that the variance of fatigue life increases along the S-N curve, (d) presuming 
that a WeibuU or some other distribution describes the random variability of 
fatigue life along the S-N curve, (e) considering independent multiple modes 
(causes) of failure, and (/) comparing two or more S-N curves using the 
likelihood ratio test statistic. 

R. E. Little 
University of Michigan, Dearborn, Mich. 

48128; symposium chairman and editor. 

/. C. Ekvall 
Lockheed-California Co., Burbanic, Calif. 

91520; symposium cochairman and editor. 
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Index 

a posteriori probability, 5 
a priori probability, 4 
A-basis tolerance limit, 21 
Analysis of covariance, 40, 41, 53 
Analysis of variance, 50, 51 

D 

Degrees of freedom, 8, 65 
Distribution 

Log-normal (see Log-normal dis­
tribution) 

Normal (see Normal distribution) 
Weibull (see WeibuU distribution) 

B 

B-basis tolerance limit, 21 
Bias, 21 

E 

Endurance limit, 89, 91, 92, 104-
112 

Experiment design 
Incomplete block, 25, 50 

Censoring 
Type I, 12 
Type II, 12 

Censored samples, 14, 123 
Chi-square distribution, 70, 72, 73 
Chi-square paper, 72, 73 
Chi-square test (see Goodness of fit 

test) 
Coefficient of variation, 78 

Mechanical properties, 78, 85-87 
Confidence intervals, 6 
Confidence limits, 6, 38, 94, 98, 99, 

132 
Correlation coefficient, r, 63-65, 133 
Covariance, analysis of, 40, 41, 53 

Fatigue strength, 36, 76, 100, 101 
Coefficient of variation, 78 

Fatigue tests 
Types of loading, 57, 58 
Runouts, 96, 130 

Goodness of fit test 
Chi-square test, 64-66 

H 

Hardness distribution (see Vickers 
hardness) 
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I 

Interlaboratory test program, 25-32 

Normal population 
Mean estimator, 7 
Standard deviation estimator, 7 

Least squares analysis, 100, 109, 112 
Weighted, 78, 79 

Linear regression analysis, 61 
Normal distribution, 63 
Quadratic {see Polynomial regres­

sion analysis) 
Weibull distribution, 64 

Logarithmic standard deviation, 61-
63 

Probability distribution equations, 
64, 65 

Probability distribution plots, 67, 
68 

Probability and confidence level 
values, 71 

Log-normal distribution, 16, 57, 
64-68, 92, 95, 131 

M 

Material properties 
Mechanical, 27, 82 

Maximum likelihood analysis, 18, 
90, 95, 109, 110 

Estimator, 96 
Likelihood ratio, 18, 19, 99, 140 
Support, 90, 95 

Median rank {see Probability plot­
ting position) 

Median value, 63 
Miner's rule, 89, 90 
Multiple regression analysis, 64, 65 

N 

Nonparametric tolerance limit, 20 
Normal distribution, 62, 63, 78, 95 

O 

One-sided probability intervals, 4 
One-sided lower tolerance limits, 11 
Ordered data, 14, 63, 79 

P-S-N diagram, 76 
Polynomial regression analysis {see 

Multiple regression analysis) 
Population standard deviation, 70 
Precision, 95 
Probabilistic diagrams, 37, 38, 47, 

67, 68, 73 
Probability 

a posteriori, 5 
a priori, 4 
Expression, 3, 6, 8, 10 
Interval, 5 
Limits, 4 
Normal, 96 
Plotting positions, 63, 79 

Probit analysis, 78 

R 

Random interval, 6 
Random numbers, 29, 32 
Random variable, realizations of, 4 
Replication recommendations, for 

S-N testing, 131 

Sample size, 131 
Sampling, 131 
Scatter 

In fatigue life, 59, 76 
In fatigue strength, 45, 76, 103 
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Laboratory effects, 38 
Variables affecting, 57, 76 
Welding effects, 40 

Scatter factors, 70 
S-N curve 

Analytical form, 35, 44, 90, 91, 
94, 100, 103, 104-112, 130 

Confidence band, 137 
Graphical plots, 31, 33, 45, 77, 

82-86, 91, 93, 94, 100, 102, 
106, 108, 111, 137 

Slope, 29, 35, 42, 90, 91, 94, 100, 
103, 104-112, 130-132 

Support method, 99, 100, 104-110 
Staircase tests 28, 32, 33 
Standard deviation, 62, 78, 95, 96, 

99, 100, 103, 104, 107, 109, 
112 

Standard error of the median fatigue 
limit estimate, 79 

Support values, 97, 98, 100, 101 
Suspended tests (see Censoring) 

Test plan, 32, 49 
Randomized Blocks, 32 
Replicates, 32 

Treatments, 32, 40 
Test program (conduct), 11, 131 
Tolerance Interval, 6, 10 
Tolerance Limit 

A-basis, 20 
B-basis, 20 
One-sided lower, 11 
Nonparametric, 20 

U 

Unbiased estimator of population 
variance, 132 

Variability (see Scatter) 
Variance, 63, 95, 99 

Analysis of, 50, 51 
Vickers hardness distribution, 81 

Coefficient of Variation, 87 

W 

WeibuU distribution, 14, 18, 56, 
61, 64-68, 92, 135 

Two-segment, 116 
Welded joints, 26, 27, 76, 90 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 12:04:49 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.




