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Foreword 

This publication, Fracture Mechanics, contains papers presented at the 
Twelfth National Symposium on Fracture Mechanics which was held 21-23 
May 1979 at Washington University, St. Louis, Missouri. The American 
Society for Testing and Materials' Committee E-24 on Fracture Testing of 
Metals sponsored the symposium. P. C. Paris, Washington University, pre
sided as symposium chairman. 

 



Related 
ASTM Publications 

Part-Through Crack Fatigue Life Predictions, STP 687 (1979), $26.65, 
04-687000-30 

Fracture Mechanics Applied to Brittle Materials, STP 678 (1979), $25.00, 
04-678000-30 

Fracture Mechanics, STP 677 (1979), $60.00, 04-677000-30 

Elastic-Plastic Fracture, STP 668 (1979), $58.75, 04-668000-30 

Fractography in Failure Analysis, STP 645 (1978), $36.50, 04-645000-30 

Flaw Growth and Fracture, STP 631 (1977), $49.75, 04-631000-30 

 



A Note of Appreciation 
to Reviewers 

This publication is made possible by the authors and, also, the unheralded 
efforts of the reviewers. This body of technical experts whose dedication, 
sacrifice of time and effort, and collective wisdom in reviewing the papers 
must be acknowledged. The quality level of ASTM publications is a direct 
function of their respected opinions. On behalf of ASTM we acknowledge 
with appreciation their contribution. 

ASTM Committee on Publications 

 



Editorial Staff 

Jane B. Wheeler, Managing Editor 
Helen M. Hoersch, Associate Editor 

Helen Mahy, Assistant Editor 

 



Contents 

Introduction 1 

Prediction Methods for Fatigue Cracic Growth in Aircraft Material— 
lAAP SCHIJVE 3 

Fractographic Measurements of Cracit-Tip Closure—R. M. PELLOUX, 
M. FARAL, AND W. M. MCGEE 35 

Fatigue Crack Propagation in Nylon 66 Blends—R. W. HERTZBERG, 
M. D. SKIBO, AND J. A. MANSON 49 

Cyclic Inelastic Deformation Aspects of Fatigue-Crack-Growtb 
Analysis—B. N. LEIS AND AKRAM ZAHOOR 65 

Effect of Prestressing on Stress-Corrosion Crack Initiation in 

High-Strength Type 4340 Steel—w. o. CLARK, JR. 97 

Tensile Cracks in Creeping Solids—H. RIEDEL AND I. R. RICE 112 

Evaluation of C* for the Characterization of Creep-Crack-Growth 
Behavior in 304 Stainless Steel—ASHOK SAXENA 131 

Elastic-Plastic Fracture Mechanics for High-Temperature Fatigue 
Crack Growth—KUNTIMADDI SADANANDA AND 
PAUL SHAHINIAN 152 

Stress Intensity Factor Due to Parallel Impact Loading of the 
Faces of a Crack—i. s. ABOU-SAYED, P. BURGERS, 
AND L. B. F R E U N D 164 

A Critical Examination of a Numerical Fracture Dynamic Code— 
L. HODULAK, A. S. KOBAYASHI, AND A. F. EMERY 174 

Elastic-Plastic Analysis of Growing Cracks—j. R. RICE, 

W. J. DRUGAN, AND T-L. SHAM 189 

Discussion 220 

Direct Evaluation of J-Resistance Curves from Load Displacement 
Records—j. A. JOYCE, HUGO ERNST, AND P. C. PARIS 222 

 



Estimation of J-Integral Uncertainty—D. E. CORMAN 237 

Effects of Specimen Geometry on the Ji-R Curve for ASTM A533B 
Stee l—M. G. VASSILAROS, J. A. JOYCE, AND J. P. GUDAS 251 

Measurement of Crack Growth Resistance of A533B Wide Plate 
Tests—s. J. GARWOOD 271 

A Stability Analysis of Circumferential Cracks for Reactor Piping 

Systems—H. TADA, P. C. PARIS, AND R. M. GAMBLE 296 

The Ubiquitous r; Factor—c. E. TURNER 314 

A J-Integral Approach to Development of ij-Factors—p. c. PARIS, 

HUGO ERNST, AND C. E. TURNER 3 3 8 

Temperature Dependence of the Fracture Toughness and the 
Cleavage Fracture Strength of a Pressure Vessel Steel— 
HEIKKI KOTILAINEN 352 

Statistical Characterization of Fracture in the Transition Region— 
I . D. LANDES AND D. H. SHAFFER 3 6 8 

Quasi-Static Steady Crack Growth in Small-Scale Yielding— 
R. H. DEAN AND J. W. HUTCHINSON 3 8 3 

Fully Plastic Crack Solutions, Estimation Scheme, and Stability 
Analyses for the Compact Specimen—VIRENDRA KUMAR 

AND C. F. SHIH 4 0 6 

Crack Analysis of Power Hardening Materials Using a Penalty 
Function and Superposition Method—GENKI YAGAWA, 

TATSUHIKO AIZAWA, AND YOSHIO ANDO 439 

Dynamic Finite Element Analysis of Cracked Bodies with 
Stationary Cracks—s. MALL 453 

Mode I Crack Surface Displacements and Stress Intensity Factors 
for a Round Compact Specimen Subject to a Couple and 
Force—BERNARD GROSS 466 

On the Equivalence Between Semi-Empirical Fracture Analyses 
and R-Curves—T. W. ORANGE 478 

 



A Modification of the COD Concept and Its Tentative Application 
to the Residual Strength of Center Cracked Panels— 
K.-H. SCHWALBE 5 0 0 

Development of Some Analytical Fracture Mechanics Models for 
Pipeline Girth Welds—ROLAND DE WIT AND J. H. SMITH 513 

Ductile Fracture Behavior of Wrought Steels—E. P. COX AND 
F. V. LAVSfRENCE, JR. 5 2 9 

Fracture Behavior of A36 Bridge Steels—RICHARD ROBERTS, 

G. V. KRISHNA, AND JERAR NISHANIAN 5 5 2 

Summary 578 

Index 000 

 



STP700-EB/JUI. 1980 

Introduction 

This volume represents the Proceedings of the Thirteenth National 
Symposium on Fracture Mechanics, a very special symposium in a number 
of ways. 

First, it was held at Washington University on 21-23 May 1979, under the 
Technical Chairmanship of Professor Paul C. Paris. Dr. Paris, along with 
Professor G. R. Irwin, was one of the founders of the National Symposium 
on Fracture Mechanics when it was initiated in 1965 at Lehigh University. 
Further, when ASTM Committee E-24 took over the sponsorship of the 
symposium in 1969, Dr. Paris became Chairman of E-24's Symposium 
Committee and remained an important element in the planning of many of 
the symposia up to and including 1979. The Thirteenth Symposium was a 
significant technical success, attested to by the breadth of national and 
international authors and subject matter which follow. We are indebted to 
Paul Paris for this fine meeting in the excellent facilities of Washington 
University. 

Second, the Thirteenth Symposium was a notable one for the acknowledg
ment given to an E-24 contributor whose untimely death shocks the frac
ture industry. Special recognition was made to the valuable association of 
Dr. Kenneth Lynn of the Atomic Energy Commission with the fracture test
ing, materials evaluation, and energy industries. The occasion was marked 
by a presentation to Dr. Lynn's widow, and by the opening of the Kenneth 
Lynn Laboratory at Washington University. 

Finally, the meeting was notable for its international impact, as papers 
were included from experts from Great Britain, Hungary, Japan, France, 
and West Germany. These, together with contributions from an impressive 
list of U.S. experts, assure the lasting value of this volume. 

On behalf of the membership of ASTM Committee E-24 on Fracture 
Testing, the ASTM Symposium Committee chaired by Dr. Jerry Swedlow, 
and the fracture community in total, I want to express my appreciation to 
Dr. Paris for his role as Technical Chairman of the meeting. In addition, I 
would like to recognize the efforts of Tina Paris, Louise Cummings, Mario 
Gomez, and the ASTM Staff, notably Joseph J. Palmer, for their parts in 
other arrangements for the meeting. 

/ . G. Kaufman 
Chairman, Committee E-24. 

Copyright 1980 by ASTM International www.astm.org 

 



Jaap Schijve^ 

Prediction Methods for Fatigue 
Crack Growth in Aircraft IVIaterial 

REFERENCE: Schijve, Jaap, "Prediction Methods for Fatigue Craclt Growtli in Aircraft 
Material," Fracture Mechanics: Twelfth Conference, ASTM STP 700, American Society 
for Testing and Materials, 1980, pp. 3-34. 

ABSTRACT; In the first part of the paper a survey is given of relevant knowledge on 
fatigue crack growth and qualitative and quantitative understanding of predictions. 
Aspects of cycle-by-cycle predictions and characteristic K prediction methods are 
discussed. In the second part recent work on prediction problems is reported. This in
cludes (a) crack growth under flight-simulation loading with crack closure measure
ments, (b) predictions for flight-simulation loading based on a constant crack opening 
stress level, and (c) crack growth under pure random loading with different 5,^^-values, 
two irregularities and two crest factors. 

The random load tests were also carried out to explore the usefulness of K^^^. The 
paper is concluded with some indications for future research and a number of conclu
sions. 

KEY WORDS: crack propagation, fatigue (materials), predictions, flight-simulation 
loading, random loading, crack closure, fractures (materials) 

Nomenclature 

a 
Aa 

C 
da/dn 

K 
k 
P 
R 

^mf 
•^op 

(Semi) crack length 
Increment of a in one cycle 
Geometry factor, or crest factor 
Crack growth rate 
Stress intensity factor 
Irregularity factor 
Load 
9 . / V 
'-' min ' '^ max Mean stress in flight 
Crack opening stress 

' Professor, Production and Materials Group, Department of Aerospace Engineering, Delft 
University of Technology, Kluyverweg 1, Delft, The Netherlands. 
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4 FRACTURE MECHANICS: TWELFTH CONFERENCE 

t Thickness 
W Specimen width 
T *^ m^'^ rms 

Fatigue cracks in aircraft structures and materials are still an urgent prob
lem for reasons of both safety and economy. Unfortunately, prediction of 
crack growth is a complicated problem because many aspects are involved. 
One significant feature is the complex nature of load-time histories occurring 
in service. Progress of improving prediction techniques is made slowly. How
ever, modern experimental techniques and computer facilities suggest that 
further improvements are possible. In the first part of this paper a survey is 
given of the present state of knowledge on fatigue crack growth including 
qualitative and quantitative understanding of predictions. Reference is made 
in this part to developments in experimental techniques and indications ob
tained from fatigue of aircraft structures. 

The second part is dealing with some recent work on prediction fatigue 
crack growth in aluminum alloys, carried out in the Department of Aero
space Engineering, Delft University of Technology, Delft, The Netherlands. 
This includes: (a) crack growth under flight-simulation loading with crack 
closure measurements, (b) crack growth predictions for flight-simulation 
loading based on a constant crack opening stress level, and (c) crack growth 
under random loading to explore the usefulness oiK^^ and to observe effects 
of irregularity and crest factor. 

The paper concludes with a brief discussion on the relevance of research 
programs for solving the problem of crack growth prediction techniques and 
a summary of some conclusions. 

Aspects of the Problem of Fatigue Crack Growth 

Any newcomer in the field of fatigue must be overwhelmed by the vast 
amount of literature. J. Y. Mann compiled about 6000 references over the 
period 1951 to 1960 [7]^, and probably more appeared in years afterwards. 
The subject index of Mann's book illustrates the abundant variety of aspects 
associated with fatigue problems. 

Numerous papers on theoretical or experimental studies refer to practical 
problems, but usually this is done in a superficial and indirect way. The im
pression emerges (right or wrong) that fatigue and fracture mechanics have 
become disciplines in themselves with a practical significance, which should 
be self-evident. It is a relevant question then to see which problems we try to 
solve and which problems we should try to solve. This point will be 
elaborated in this paper to some extent with respect to fatigue crack growth. 

^The italic numbers in brackets refer to the list of references appended to this paper. 

 



SCHIJVE ON PREDICTION METHODS 5 

For this purpose some aspects of the state of knowledge have to be recapit
ulated. The areas that will be discussed herein are as follows: 

1. Laboratory observations on fatigue crack growth. 
2. Theoretical prediction methods. 
3. Developments in experimental procedures. 
4. Service experience. 
5. Practical relevance of research programs. 

The first four items are discussed hereafter, while the last one is briefly 
touched upon in the discussion at the end of this paper. 

Laboratory Observations on Fatigue Crack Growth 

It is convenient to divide fatigue life into two periods: (1) crack initiation 
period, and (2) crack growth period. The life is completed by final failure in 
the last cycle. Microscopical studies have shown that crack initiation occurs 
early in the fatigue life if not immediately. However, microcrack growth 
usually is a slow process for a long time and this may be considered as part of 
the initiation period. The crack growth period then starts when a macrocrack 
is present. Although it is difficult to define the transition from the initiation 
period to the crack growth period, some comments may clarify the idea. In 
the first period microcrack growth is still a local process with hardly any ef
fect on macroscopic stress and strain distributions. However, in the second 
period, fatigue is no longer a localized surface phenomenon, and stress and 
strain distributions are significantly affected by the crack. Bulk properties of 
the material become important. One significant conclusion is: predictions of 
crack initiation life on one hand and predictions of crack growth on the other 
hand require different prediction techniques. For predictions on the initia
tion period /sr,-factors and a Neuber-type analysis can be relevant. However, 
for crack growth predictions other means should be adopted. 

A number of relevant aspects of macrocrack growth include the following: 
early initiation, striations, Aa during load increase only, stress ratio {R) ef
fects, load sequence effects (interaction effects), crack closure, and en
vironmental effects. 

Striations are a well-known feature by now, frequently used to indicate the 
nature of service fatigue failures. Striation patterns have shown that some 
crack front advancement (Aa) occurs in every load cycle. This has prompted 
prediction techniques to calculate Aa for each cycle (see later). Originally it 
was proposed by Paris et al [2] that the crack rate was a function of the range 
of the stress intensity factor {AK), which was approximated by a simple 
power relation 

Aa = -^ = C AK'" (1) 
an 
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It was observed later that the effect of the stress ratio R = 5niin /S^ax could 
not be ignored. The so-called Forman equation is a well-known relation in
cluding this effect 

da 
dn 

CAK"' 
(1 - R)K, - AK 

(2) 

More empirical relations can be found in the literature, but a derivation on 
physical arguments appears to be very problematic. 

Some decades ago it was observed that peak loads produced large delays of 
crack growth. An illustration from Ref J is given in Fig. 1. Such delays have 
led to the definition of so-called interaction effects. It implies that Aa in a 
load cycle will depend on what occurred in the preceding cycles. Similarly, a 
load cycle will affect Aa in subsequent cycles. Actually interaction effects 
have to be expected, because Aa will depend on such factors as crack tip 
blunting, shear lip developments, crack closure, cyclic strain hardening and 
residual stresses around the crack tip, all factors produced by the preceding 
load history [4]. Apparently the phenomenon can be rather complex. 

Sequence effects are the result of interactions. In Fig. 1 the same peak load 
cycle is applied in two different sequences (Case A: positive — negative, Case 
B: negative — positive), and the growth delays are highly different. It may be 
argued that the example in Fig. 1 is not a good one, because the maximum 
load rangey41X2 (downwards) occurs in Case A but not in Case B. Similarly, 
B1B2 (upwards) occurs in Case B but not in Case A. This distinction should 
be made because it is expected that crack extension (Aa) will occur during 
increasing load only. This was recently confirmed by work of Bowles [5], who 

2024-T3 Alclad , t = 4 mm , W = 80 mm 

720 750 

Number of cycles ( kc) 

CA 
S „ = 8,0 k g / m m ' 

S Q = 2.5 kg /mm^ 
Peak load cycle 5^ = 12 0 kg/rr 

FIG. 1—Different delays depending on sequence in peak load cycle [3] (Note: 2024-T3 
Alclad. t = 4 mm. W = 80 mm; CA S„ = 78.5 N/mm^, S^ = 25.4 N/mm^; Peak load cycle 
S^ = 118 N/mm^). 
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developed a new technique for fatigue crack tip observations. The distinction 
should also be expected from considerations on reversed plasticity and crack 
closure (see in later section). 

Crack closure has now become a well-known phenomenon, but it remains 
a remarkable fact that it was overlooked for so many years until Elber in 1968 
discovered this phenomenon [6]. Until that time crack growth delays were ex
plained by residual compressive stresses in the crack tip area ahead of the 
crack. Fatigue crack growth should be considered as the result of cyclic slip 
at the crack tip, and the conversion of this microplasticity into crack exten
sion [7], which can be activated by the environment [8]. It should not be ex
pected that residual stress will affect slip, but it may well promote the conver
sion of slip into crack extension. It is important to realize that this requires 
the crack tip to be open. A stress singularity at the crack tip is present only if 
crack closure has been removed. It is difficult then to see how residual 
stresses ahead of the tip could be important. The more essential part of the 
question is whether the crack is open or not, and this depends on the plastic 
deformations left in the wake of the crack. 

Finally reference should be made to environmental effects on fatigue crack 
growth. Obviously the effect will depend on the material-environment com
bination. Our knowledge of crack growth under corrosive conditions is in
creasing, but the subject is too extensive to be summarized here. One obser
vation should be mentioned. For crack growth in aluminum alloys the 
aggressive component of normal air is water vapor. Small amounts are suffi
cient to produce a saturated damaging effect under load frequencies occur
ring in practice. From this argument and from the observation that crack 
extension occurs under increasing load only, it was deduced that an ac
celerated test to simulate service loading can be allowed [9]. This was con
firmed by flight-simulation tests at 10, 1, and 0.1 Hz, which gave the same 
crack growth rates. Such a "time compression" is probably not allowed for 
mild steel in salt water environments. 

Theoretical Prediction Techniques 

The major aspects to be recognized here are as follows: 

1. Type of loading—constant-amplitude (CA) loading and variable-
amplitude (VA) loading. 

2. Geometry of crack front—straight crack front (plane problem) and 
curved crack front (three-dimensional problem). 

3. Type of prediction method—cycle-by-cycle method and characteristic 
K method. 

The most simple problem is the prediction of a simple through crack in a 
structure of sheet material under CA loading. For the material concerned. 
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crack growth data should be available as graphs or analytical relations, 
representing 

-^=f(AK,R) (3) 

Many data have been published, but it is also easy to determine the relation
ship in a fairly small number of tests on simple specimens. Secondly, 
K-values for the case of application are required. Sometimes/sT-values can be 
directly obtained from handbooks [10-12]. In other cases calculations have 
to be made, either by clever superpositions of known solutions, or by finite 
element methods. Several successful applications have been reported in the 
literature. 

A relatively simple three-dimensional problem is a semi-elliptical surface 
crack in the center of a plate specimen. The value of/iT varies along the crack 
front. Reasonably accurate A^-values seem to be available for semi-elliptical 
cracks [13]. Unfortunately, if the crack grows according to Eq 3, the shape 
will not remain semi-elliptical. As a result, the problem of a semi-elliptical 
crack, which is so easily specified, requires already a fairly elaborate amount 
of calculations to predict how the curved crack front will move onwards. 

VA loading offers significant prediction problems in view of the interaction 
effects defined before. Several methods have been proposed (reviewed in Ref 
4) and two main lines will be recapitulated here. 

Cycle-By-Cycle Calculations—These calculations start from simple crack 
length additions 

a = flo + TiAaj (4) 

where a,, is the initial crack length and Aa, is the crack length increment in 
cycle (/), and these increments have to be predicted. The Willenborg model 
[14] and the Wheeler model [15] are accounting for interaction effects by 

with 

J^j, , = /(A/r,,/?,) (6) 

similar to Eq 3, while |8, accounts for the interactions. In both methods jS, is 
assumed to depend on plastic zone sizes associated with load cycle (i) and the 
preceding cycles. Simple assumptions are made for this purpose. As a result 
crack growth delays after a peak load are obtained, but negative interactions 
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(crack growth accelerations) can not be predicted, although they do 
occur [3]. 

From a physical point of view, crack closure appears to offer better argu
ments for interaction effects [16]. Then Eqs 5 and 6 have to be replaced by 

^ « ' = ( ^ ) c A = / ( ^ ^ e « „ ) (7) 

which is the relationship between crack rate and AK^ff as proposed by Elber 
[6], The problem still remains to calculate the crack-opening stress level (5op) 
in cycle (?) from which A^eff.i ^^^ to be deduced 

AK^f = C • (5max — 'S'on) • V̂ TTo" = CA^eff V W (8) 

Different delays in Fig. 1 for Case A and Case B can be understood if crack 
closure is considered. In Case B the load range B\B2 will cause a large plastic 
zone. If the crack tip is penetrating into this zone, it will meet with a high 
crack opening stress level and significant growth retardation will occur. In 
Case A an equally large plastic zone will occur at peak load A i and the crack 
tip will be plastically opened. The load range AiA2 will then cause a con
siderable reversion of plasticity ahead of the crack tip. As a result lower crack 
opening stress levels will follow later on and the delay is much smaller. Both 
analytical studies on cyclic plasticity at the crack tip [17-19] and some ex
perimental evidence [20,21] confirm the argumentation. Some work is now 
going on to introduce crack closure into cycle-by-cycle calculations for com
plex load time histories [21-23]. It is easily understood that elasto-plastic 
calculations for each load cycle is a rather elaborate procedure. It then seems 
reasonable to look also for acceptable simplifications. 

Elber [24] measured Sgp during random load tests with a short return 
period, and he found it to be approximately constant during a test. He then 
defined effective stress ranges of the random loading by 

max "^op if "^min < Sop (9) 

and 

It means that those parts of stress ranges which are above Sop are supposed to 
be effective. Subsequent derivations of equations in Ref 24 are not rather ex
plicit, but it is equivalent to substituting A5eff according to Eqs 9 and 9a into 
Eq 8 and A/iTeff-values thus obtained into Eq 7. No further interactions are 
supposed to occur. In a later section of this paper, the idea will be carried on 
somewhat further in view of application to flight-simulation test results. It 
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should be pointed out here that an approximately constant S^p can be ap
plicable only if the VA-loading may be considered to be stationary as dis
cussed in Ref 25 (fourth lecture). It implies that load sequence properties 
should be constant, while crack growth on a macro-scale should not show ap
parent discontinuities (that is, delays observable from the crack growth 
curve). 

Characteristic K Methods—These methods were adopted in the literature 
for random loading and flight-simulation loading. It requires that the VA-
loading is stationary and fully characterized by a single stress level, 5char- A 
characteristic /iT-value is easily defined 

^ c h a r — e s c h a r ^ " • ' ^ ( 1 0 ) •̂  char ' - '^ char 

The crack rate should then be a function of ATchar only. Paris [26] adopted 
this idea for random loading, for which Eq 10 becomes 

Krms — CSrms ^ T f l ( H ) 

Crack growth results can then be represented by 

- ^ = / ( / ^ . „ J (12) 

and this has found some confirmation in the literature [27-29]. It should be 
clear that Eq 12 represents empirical results, which can be used for predic
tion purposes if the same type of random loading applies, including the same 
Srms^'Sm fatio. Writing Eq 12 in a more general form 

- ^ = /(^cha.) (13) 

an inherent advantage and disadvantage of the characteristic K method will 
be recognized as follows: 

1. Any change of a nominal or local stress level in a structure does usually 
not affect the character of the VA-loading in service. Effects of such changes 
on crack growth rates can thus be derived from an empirical relation like Eq 
13 obtained from simple laboratory specimens. 

2. The disadvantage is that the empirical relation in Eq 13 has to be 
established for each relevant VA-loading and unfortunately many types of 
VA-loadings occur in various structures. For instance, random loadings are 
not of the same type if the spectral density functions are different, or if the 
crest factor or the S^^/S^ ratio are different (discussed further in section on 
crack growth under random loading). 

The applicability of Eq 13 to flight-simulation loading was checked fairly 
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extensively at the National Aerospace Laboratory in Amsterdam. The mean 
stress in flight, 5„y^was adopted as the characteristic stress level to define A";„y 
analogous to Eq 11. It was hoped to find a unique correlation between da/dn 
(growth rate per flight) and K^j, but the first results were not very positive 
{30]. It was argued that similar crack rates to be obtained require similar 
/iT-values, and in addition similar J/sT/da-values to account for the preceding 
history. Usually the requirements of both similar K and similar dK/da are 
incompatible. Later on more data of flight simulation tests were compiled by 
Wanhill [31]. He concluded that K„f could be used for crack growth predic
tion as a first approximation, provided the flight-simulation loading is sta
tionary. He emphasized that K„f cannot account for load spectrum varia
tions, such as different truncation levels, different numbers of low-amplitude 
cycles, etc. 

Experimental Developments 

Some developments have had a most significant impact on fatigue research 
programs. The combination of closed-loop fatigue machines with computer 
controlled programs should be especially mentioned here. A closed-loop elec-
trohydraulic loading system can apply any load time history that can be 
generated as an electrical command signal. Computer controlled signal 
generation has led to most versatile possibilities for programming of load-
time histories. It includes aspects as load sequences, wave shapes, and fre
quency. Moreover, any random sequence of loads can exactly be reproduced 
in subsequent tests. Flight-simulation tests and random load tests can now 
be adopted for a variety of testing purposes. It has already initiated a stan
dardizing of two different types of flight-simulation loading (TWIST [32] 
and FALSTAFF [33]) and probably more will follow. It is also easily under
stood that the characteristic A"-method requires basic material test data 
under relevant loading histories. Without computer controlled fatigue 
machines this would be practically impossible. 

Another development to be mentioned here is the automatic measurement 
of crack length by the electrical potential drop method. Each type of 
specimen has to be calibrated for this purpose. Computer control is possible 
again. It is now possible to obtain crack growth data for any type of load se
quence by employing routine procedures. 

Service Experience 

One might hope that service experience on fatigue problems is well 
documented in the literature, but this is only partly true. Table 1 helps clarify 
the situation. Most information in the literature is on the origin of cracks. If 
cracks are found in service it is a highly practical question to know whether it 
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TABLE 1—Crack growth in real structures. 

Origin of Cracks Source of Information 

Incidental cases (corrosion pits, damage, etc.) ̂  aircraft in service 
Systematic occurrence (bolt and rivet holes, \ full-scale test 

fillet, etc.) J component tests 

is an isolated case or a symptomatic one. Solutions to cure the problem will 
depend on the answer to this question. Remedial actions are taken as soon as 
a crack is noted because it should not be there. As a result crack growth data 
from service experience are highly exceptional, and moreover the load history 
will not be accurately known. The best data are coming from full-scale tests 
and component testing, usually carried out to prove the fail-safety of a new 
structure. Such data are scattered through the literature and usually the 
description is not sufficiently complete to be used by other investigators for 
checking prediction methods. Moreover, real structures do not have the 
geometrical simplicity of laboratory specimens. Nevertheless, a coordinated 
program to compile available data of crack growth in structures, with rele
vant information on the structure and its fatigue loading, would be most in
structive to set the scene of the prediction problem. 

Results of Some Recent Crack Growth Studies 

Crack Growth Under Flight-Simulation Loading 

Tests were carried out on sheet specimens (thickness = 2 mm, width = 
100 mm) of 2024-T3 Alclad and 7075-T6 Clad material. A standardized 
flight-simulation loading (TWIST [32]) was used. Different truncation levels 
were adopted and the well-known effect of faster crack growth for lower trun
cation levels was found (Fig. 2). During these tests numerous crack closure 
measurements were made with a crack opening displacement (COD) meter. 
It was hoped that the tests would indicate higher crack closure levels if the 
truncation level was higher. This would offer an explanation for the trunca
tion effect and perhaps a basis for improved prediction techniques based on 
crack closure. Unfortunately, the crack closure measurements showed a 
rather chaotic picture which did not allow a simple evaluation {34]. However, 
two lessons could be learned from the results: 

1. The most severe flights with the highest maximum loads significantly 
changed the crack closure level. 

2. The COD meter was located in the center of the specimen during all 
measurements, since locating the meter near the crack tip for all measure
ments is very elaborate. Unfortunately, a determination of S'op becomes less 
accurate. 
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Examples of crack closure measurements are shown in Fig. 3. During a 
severe flight (No. 2936), a significantly enlarged plastic zone is formed (/-p ~ 
[J^mnx^^o.i]^^^ = 1-45 mm), and plastic crack tip blunting will occur. As a 
result Sop is relatively low immediately after this flight {A i in Fig. 3), and the 
nonlinear behavior below A i shows that the crack is not fully closed under 
the compressive load applied. After the severe flight, the crack tip has to 
grow into the newly formed plastic zone, and this implies that 5op now is very 
high (see Point C2 after flight No. 3180). The crack has grown then from 12.1 
to 12.5 mm (Aa = 0.4 mm). The P-COD record contains two linear parts 
(A2B2 and C2D2) from which the first one (A 2^2) is parallel to AjBi . Equal 
compliances indicate equal crack lengths, which means that the crack was 
open until a = 12.1 mm during the load increase ^42^2- However, the very 
last part of the crack (from a = 12.1 mm to a = 12.5 mm) was still closed 
during AjBj, while it was opened during the load increase B2C2. During 
further crack growth S^^ is decreasing (Points C3 — C4 — C5 — C^), but 
then another severe flight occurs (No. 3841). The same process is repeated 
and after flight No. 4105 even three linear parts can be observed: {!) A-jB^ 
parallel t oAiBj corresponding to a = 12.1 mm, (2) C7D7 parallel to C^De 
corresponding to a = 17.5 mm, and (3) E^F^ corresponding to a = 20.1 
mm. The successive openings are schematically shown in Fig. 4. 

In Fig. 3, A2B2 and C2D2 correspond to a = 12.1 mm and a — 12.5 mm 
respectively; that is, the slope difference is no more than 3 percent. Although 
this can be observed, it will be clear that the transition points Bj and C2 can
not be accurately indicated. In spite of this, it is evident that the line 
C6C5C4C3C2 (and also the lineE^Ej) are going upwards. It means that 5op 
during the first part of crack growth after a severe flight will be extremely 
high. This was confirmed in more accurate measurements during CA tests 
after a peak load [4]. In later flights in Fig. 3, Sop comes down, but it is possi
ble that the linear parts C3D3, C4D4, and C5D5 (corresponding to appar
ently open cracks) consist of two linear parts with almost equal slope as a 
result of somewhat less severe flights in between. It should be realized that 
the very end of a crack (tenths of millimeters and even smaller) can be closed, 
while this cannot be observed empirically. At the same time one must face 
the problem that the physical meaning of 

AATeff = i : „ a x - ^ o p (14) 

as it was originally suggested by Elber [6] might break down if a very minute 
part of the crack tip is closed only. 

The P-COD records with more than one linear part are obtained as a result 
of local contacts behind the crack tip (Fig. 4). This phenomenon was ob
served before [20], and apparently it also follows from analytical studies 
[17,19]. It may be expected that it can be included in a cycle-by-cycle calcula
tion in the future. At the same time it has to be recognized that the above 
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1 I 

plastic zones by severe fl ights 

FIG. 4—Schematic picture of crack opening in different stages during a flight simulation test. 

evidence of flight-simulation tests indicates that crack closure will be then 
rather complex. 

Secondly, a formal application of A/iTeff may not be fully justified any 
longer from a physical point of view. There is a limit to the level of sophistica
tion that is still feasible. Under such conditions simplified approaches, giving 
sufficient credit to physical observations, should be explored. The introduc
tion of an average crack closure level for a stationary VA loading should be 
considered as such an approach. 

Crack Growth Predictions for Flight-Simulation Tests 

In a previous investigation [35], crack growth was studied under flight-
simulation loading with the following main variables: (a) different truncation 
levels, {b) omission of low-amplitude cycles, and (c) omission of ground-to-
air cycles. Some other aspects studied were omission of taxiing loads in the 
ground-to-air cycle (GTAC), application of gust cycles in a programmed low-
high-low sequence instead of a random sequence, and application of all gust 
cycles in reversed order. Especially the first three issues, implying fairly 
drastic load spectrum variations, seem to be critical for proving the validity 
of a prediction model. This is one reason to adopt the result of Ref 35 for a 
first exploration. The second reason is that CA test results were also obtained 
for the materials testsed in Ref 35. 

The model to be discussed here starts from Elber's observation, which was 
an approximately constant crack opening stress level during pure-random-
load tests [24]. Three basic assumptions for the model are: 

1. During a stationary VA loading, the crack opening stress level (i'op) 
may be regarded to be constant. 

2. The value of the constant 5op under stationary VA-loading i ; is a function 
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of the maximum stress (5max)vA and the minimum stress (5n,in)vA occurring 
in the VA loading. Moreover, this function is the same one applicable to CA 
loading. 

3. Stress ranges are effective as far as they are above Sop (Fig. S). 

The third assumption was adopted by Elber [16], see Eqs 9 and 9a but in
stead of the second one he used ^op-values measured in the random load tests 
for which predictions were made. However, it is thought that the second 
assumption on ^^p involves some obvious elements. The maximum load in a 
stationary VA test will determine the maximum plastic zone. This zone 
should have a large effect on the plastic deformation left in the wake of the 
crack, which causes crack closure. Some substantiation comes from simple 
measurements (light reflection) on plastic deformation around cracks grown 
under flight-simulation loading (Ref 25, second lecture). For a flight-
simulation test it implies that Sop will depend on the truncation level of the 
load spectrum. It should also be expected that the minimum stress level will 
be significant in view of reversed plasticity, occurring in the crack tip plastic 
zone. Confirmation is offered by analytical work [17-19]. Consequently, the 
stress ratio for stationary VA loading defined as 

(•^min) P _ ^-mln-'VA , . _ , 

(."Jmax/VA 

should be a significant parameter to estimate (5op)vA. which has been as-

gust load spect rum 

1 f l i g h t 

FIG. 5—Example of flight profile (low truncation level) with S^ level and effective stress 
ranges. 
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sumed to be constant. The validity of the model has been checked as yet for 
2024-T3 sheet material only. For this material Elber found [16] 

AATeff 'S'max ~ ^ 
— = 0.5 + OAR (16) 

AK 

which can be also written as 

.̂ op = S^^AO.5 + OAR + OAR^) (17) 

The applicability of this equation on our own CA data was checked first. 
These data include iSa-values corresponding to /?-values 0.73, 0.52, 0.23, 
0.03 and —0.11. An R effect was clearly observed, but plotting da/dn as a 
function of A/̂ eff. brought all data points on a single curve with a very nar
row scatter band [36]. This curve has been used for the predictions on the 
flight simulation tests. 

According to assumption (2), Eq 17 now implies 

(5„p)vA = ('ymax)vA [0-5 + 0.1(/?)vA + OA^WK^ (18) 

where {R)yi>, follows from Eq 15. It is noteworthy that the applicability of Eq 
18 can be checked for Elber's own random load test results, because he 
reports (5n,ax)vA and (5min)vA- ^^^ îx different random load histories in Ref 
24, the results are shown next. Although there are differences, the com
parison is promising. 

(i'op)vA in MPa (Measured 
Eq 18 

Difference, (%) 

Predictions on crack growth rates for the flight-simulation tests in Ref 35 
will now be made. Previously, the VA loading was required to be stationary 
in order to justify a constant 5op. Another advantage of the stationarity 
should be exploited. The crack extension in cycle (r) according to the crack 
closure concept adopted will be equal to 

' ^ ) , - / ( A ^ e « „ ) (19) 

If there are «, stress ranges Ai'eff,, in a certain period, the average crack 
growth rate in that period follows from 

104 
102.8 
-1.2 

53 
51.4 
-3.0 

87 
86.6 
-0.5 

102 
102.8 
0.8 

56 
51.4 
-8.2 

89 
86.6 
-2.7 
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da\ "'\dnji 

dn /VA Erti 
(20) 

In this equation ida/dn)yx and {da/dn)i should apply to the same a-value 
and da/dn data have to be derived from CA tests plotted as a function of 
AATeff. 

Predictions of da/dn for the test series with various types of flight-simula
tion loading can novif be made. Steps to be followed are: 

1. For each test series calculate S^^ from 5max and 5niin (Eqs 15 and 18). 
2. For each possible effective stress range (Fig. 5), determine how many 

times (n,) it will occur. 
3. For each effective stress range, determine the related crack rate from 

the CA data in the form da/dn = fiAK^ff). 
4. Combine information from Steps 2 and 3 by substitution in Eq 20 to 

give {da/dn)YA.-

The last Steps 3 and 4 have to be repeated for a sufficient number of 
a-values to see how the predicted crack rate depends on crack length. It still 
should be pointed out that Step 2 can be done in two different ways. One way 
is a simple counting analysis with Sop as a kind of lower boundary condition. 
Another method followed here is to calculate the statistical expectation from 
the statistical data on flight types and gust cycles [37]. 

Although this work is still being continued, illustrative results can be 
presented. Predicted crack growth rates are presented in Figs. 6 through 8 
together with test results. Predicted crack growth lives are obtained by in
tegrating the inverse of the growth rate over a crack growth interval from a = 
14 mm to a = 50 mm. Results are compared with test data in Figs. 9a-d. In 
these figures predictions based on noninteraction (ignoring crack closure) are 
shown also. 

Effect of Truncation—Figure 6 shows that there is moderate agreement 
between predicted and actual crack rates. Figure 9a confirms the trend of in
creasing crack growth life for higher truncation levels. Apparently, the trend 
is also indicated by the Sgp model. If crack closure is ignored (noninterac
tion), the latter figure shows that there is no predicted effect of the truncation 
level at all. This is not surprising because the rarely occurring high loads 
hardly contribute to a noninteractive damage summation. 

Omission of Low-Amplitude Cycles—Omitting low-amplitude cycles of the 
flight-simulation tests implied a lower number of cycles per flight. An ex
treme case was also investigated (that is, to have only one positive gust per 
flight, that means the largest one occurring in each flight). Omitting cycles 
gave lower crack rates as should be expected, and this empirical trend is also 
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FIG. 6—Effect of truncation level on crack growth rate in flight-simulation test. 

predicted (Figs. 7 and % and c). It should be noted that a 1:1 relation be
tween predicted life and test life, a result sometimes observed in Fig. 9, does 
not imply that the crack growth rate is also accurately predicted (Fig. 6 
through 8). For a reliable prediction method it should be required that the 
growth rate is predicted reasonably well. A good prediction of crack growth 
life is then obtained automatically. 

Omitting Ground-to-Air Cycles {GTAC)—The results in Figs. 8 and 9d 
are somewhat disappointing. The tests indicate a significant growth rate 
reduction if the GTAC are omitted. The prediction gives a small reduction 
only. The latter results are obtained because omitting the GTAC changes 
('5mm)vA from - 3 . 4 to +0.4 kg/mm^, and /?VA from -0 .250 to +0.029; 
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FIG. 7—Effect of omitting low-level amplitude cycles on crack growth in flight-simulation tests. 

whereas, S^^ changes from 6.80 to 6.845 kg/mm^ only. The small change of 
î op explains the predicted results obtained. At this point it should be asked, 
how a fairly drastic change of S^^ can give such a small change of Sop. To 
answer this question, Elber's results leading to Eq 18 have been replotted in 
Elber's manner (Fig. 10a), and in another way preferred by the author (Fig. 
\0b). Clearly enough Elber's results do not extend any further down as i? = 
— 0.1, and an applicability below this value was never claimed. Figure 106 
shows that Elber's function for Sop goes through a minimum at i? = — 0.125, 
and it would be rather strange if such a minimum would exist. Elasto-plastic 
analysis of Newman [17\ indicated the trend of the dotted line in Fig. 106, 
which appears to be more plausible. A similar trend was also predicted by 
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FIG. 8—Effect of omitting ground-to-air cycles on crack growth in flight-simulation tests. 

Ftihring [19]. As a matter of fact, other lines can be drawn through Elber's 
data points giving credit to the expected trend following from analytical 
work. From such a line a larger shift of 5op after removing the GTAC would 
have followed, and a more significant effect would have been predicted as in
dicated by the test results. 

It is thought that a systematic picture is emerging from the above results. 
A model with a constant crack opening stress level, depending on maximum 
and minimum stress in a stationary VA loading, is capable of predicting the 
trends of significant load spectrum variations. The quantitative accuracy is 
still insufficient, but this may well be a consequence of insufficient knowl
edge about crack opening stress levels. 
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FIG. 9—Crack propagation lives (a = 14 mm to SL = 50 mm), comparison between prediction 
and test results of flight-simulation tests. 

Elber's formula, Eq 16, assumes S^^ to be independent of crack length and 
^max- However, both analytical studies [17,19,38] and experimental work 
[20,39] have shown that some effects do exist. In Fig. 106 Newman's curve 
applies to5n,ax/>S'o.2 = 0.4, but he found different results for other 5max/«S'o.2 
ratios. 

The literature cited indicates lower Sop/S^ax for high /sTmax-values. It is 
noteworthy then, that experimental curves in Fig. 6 through 8 merge together 
for large a-values corresponding to high K-values. 
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FIG. 10—Crack-opening stress as a function of R. Experimental results of Elber. 

Crack Growth under Random Loading 

An investigation on the applicability of Krms for correlating crack growth 
under random loading was started some time ago and is still being con
tinued. Variables of the first test series [40] were: Srms. irregularity factor k, 
and truncation of high amplitudes (crest factor C). Tests were carried out on 
2024-T3 Alclad sheet specimens (thickness = 2 mm, width = 100 mm) with 
a central crack. The random load was applied by computer control of a 
closed loop fatigue machine. For this purpose, a load signal generating pro-
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cedure, developed in Germany, was adopted [41]. It starts from a two-
dimensional density function proposed by Kowalewski, which can be 
written as 

h{M,A)dMdA = 1 
^^V27r(l-/2) 

exp 
- (M/g)^ 

2(1 - py 

exp 
-(A/ap 

2/2 ?)^(f: 
(21) 

The range between two successive peak values (a maximum p and a 
minimum q or the reverse) is equal to 2A with a mean value M. The ir
regularity factor k{= 1/7) is defined as the ratio of the number of peak 
values and the number of mean crossings, and a is the standard deviation of 
the random signal. Defining Srms as the root-mean-square of (S — S^) im
plies that Srms — "• Both a and k can be derived from the power spectral 
density function, *(w), assuming the random signal is Gaussian. 

Equation (21) is used to fill a matrix with numbers corresponding to the 
frequency of occurrences of ranges between 32/j-levels (maxima) and ^-levels 
(minima). The computer makes a random walk through the matrix, which 
produces a random signal satisfying Eq 21. Two specimens are shown in Fig. 
11 for a narrow band random signal and a broader band signal. 

Broad band 1.43 ) 

-ii#ll 
Narrow b ond ( k = 1.01 1 

FIG. 11—Samples of load histories in random load test. 
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In the tests the ratio 7 = S^/S^ms was kept constant (7 = 3.28), which 
should be required for the applicability of Krms (= CSrms^fira). The return 
period of the random signal was chosen to correspond to 10^ positive zero 
crossings (actually mean crossings). As a result the crest factor C, defined by 

*JmflY * J n 'max (22) 

becomes C = 5.25. Crack growth tests were carried out at five different S^-
values. Averages of two tests are presented in Figs. 12 and 13 for broad- and 
narrow-band loading, respectively. It was hoped that both figures would con
firm the applicability of 

-^=f{K,„J (23) 

However, a small but systematic effect of S„ is observed. Higher ^^-values 
give slightly higher crack rates. Consequently, an average curve in Figs. 12 
and 13 representing Eq 23 can be applicable only in an approximate way. 

On the average crack rates in Fig. 13 for narrow band random loading are 
about 1.5 times faster than for broadband random loading in Fig. 12. In 
both figures the cycle definition for da/dn is one minimum plus one max
imum. However, if the definition of one cycle is based on two mean crossings 
the factor 1.5 reduces to (1.01/1.43) X 1.5 = 1.06, and the difference be
tween crack rates should be considered as negligible. A similar trend was 
found in Ref 28. 

A somewhat more significant effect is observed if the random signal is ar
tificially truncated until S^^JS^^^ = 3.31 (Figs. 14 and 15). In practice, 
mechanical systems with their own characteritic response will usually damp 
high amplitude excitations. Since such a truncation was known to have a 
significantly harmful effect on crack growth under flight-simulation loading, 
it appeared desirable to see whether this also applied to pure random 
loading. The results in Fig. 14 again indicate some effect of 5„ , while Fig. 15 
illustrates the effect of truncation. A fairly drastic truncation increased the 
crack rate 1.3 to 2 times. This is a fairly modest effect as compared to the ef
fect observed in flight-simulation tests. 

Discussion 

In the first part of this paper, physical aspects of fatigue crack growth rele
vant to prediction methods were surveyed. This was followed by a discussion 
on two different prediction methods: (1) cycle-by-cycle calculations and 
(2) characteristic/iT methods. The significance of crack closure for explaining 
interaction effects was emphasized. In the second part, aspects of both 
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FIG. 12—Crack growth rates for broadband random loading. 
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FIG. 13—Crack growth rates for narrow band random loading. 
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FIG. 14—Crack growth rates for truncated broadband random loading. 

methods were studied as part of recent test series. It is obvious that a cycle-
by-cycle calculation is more universal than the characteristic/T-method. The 
problem is that a cycle-by-cycle prediction method to be accepted should in
clude the possible occurrence of both positive and negative interactions. So 
far the introduction of crack closure seems to be the only available way to 
satisfy this requirement. However, a cycle-by-cycle calculation then becomes 
fairly elaborate. A sufficient simplification to avoid this was to adopt a con
stant crack-opening stress level, which was considered to be justified for a 
stationary VA loading. Results thus obtained indicate that such a calculation 
model might open a useful perspective. However, it was also clear that the 
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FIG. 15—Effect of truncation on crack growth under random loading (curves derived from 
Figs. 12 through 14). 

quantitative knowledge of crack opening stress levels is still insufficient. It is 
stimulating to see that this can be improved by elasto-plastic analysis, but 
measurements seem to be desirable as well. 

An important practical point is that the major part of present research is 
restricted to through cracks in sheet materials. It was pointed out that cracks 
with curved crack fronts offer additional problems, while brief reference was 
made to limited information of fatigue crack growth in service. Anyhow, 
many cracks in service are known to have curved crack fronts. It is sufficient 
to refer to semi- or quarter-elliptical cracks at bolt holes in joints. In view of 
the practical relevance of such cracks it is definitely desirable to compile 
more data on crack growth of various types of cracks. 
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To summarize some indications of previous parts of the paper, the follow
ing points may be observed: 

1. Until now much research was carried out on the effects of peak loads in 
CA tests or other very simple loading programs. Beyond any doubt this has 
been very useful to recognize and understand interaction effects. A second 
benefit of this type of test is that it stimulated analytical studies employing 
elasto-plastic mechanics, which proved to give most useful indications. We 
thus have learned to appreciate available tools for developing prediction 
techniques. 

2. At the same time there is a risk to overlook the question of which prob
lem one wants to solve. That problem is to predict crack growth of cracks 
with curved crack fronts as well, in components with more complex 
geometries than a sheet specimen, under highly variable fatigue loads. Since 
information of crack growth under such conditions will not come from ser
vice experience, it has to be generated in the laboratory. 

Some recommendations appear to be a logical outcome now: 

1. Crack growth data should be produced under well specified conditions 
concerning the following aspects: 

(a) Materials and specimen geometry should be representative for details 
of aircraft structures, which are supposed to have a critical nature. 

(b) Fatigue loads to be applied should cover a variety of load-time 
histories which are relevant for aircraft utilization. 

2. For the evaluation of prediction techniques to be applied on the above test 
results, sufficient basic information must also be made available with 
respect to: 

(c) Basic crack growth data for the material concerned, 
(d) Crack closure behavior of the material, and 
(e) Relevant A'-values. 

It will be understood that a plea is made here for approaching the problem 
from the practical side. If we would stidk to a step-by-step evolution from 
simple cases to more complex problems, there is a certain risk of never 
reaching a practical solution. 

Conclusions 

1. Pertinent physical information on the process of fatigue crack growth is 
now available. It provides guidelines to account for load cycle interactions in 
the prediction of fatigue crack growth under VA loading. Crack closure is an 
important observation in this respect. 

2. A cycle-by-cycle prediction method is more universal than a method 
based on characteristic K-values. However, the former one is more elaborate, 
while satisfactory methods are not really established as yet. 
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3. Crack closure measurements were made during flight-simulation tests 
on two aluminum alloy sheet materials. The results illustrate that crack 
closure can be a fairly complex phenomenon during service simulation 
loading. The effect of severe flights on the crack opening stress level (Sop) 
was clearly noted. 

4. For the prediction of crack growth under stationary VA loading it was 
proposed that: (a) 5'op may be considered to be constant, (b) the level of i'op 
depends on the maximum and the minimum stress occurring in the VA 
loading, and (c) this dependence is the same one applicable to CA loading. 
This method was applied to flight-simulation test results with essentially dif
ferent load spectra and the results appear to be promising. However, more 
quantitative information on S^p levels is desirable. 

5. Crack growth tests under pure random loading (with S^'^S^ms =3 .28 ) 
were carried out on 2024-T3 Alclad specimens. Five different 5;„-values and 
two irregularity factors were used. As a rough approximation the growth rate 
for different J^-values is a function of K^ms only. However, a small but 
systematic effect of S„ was recognized. The growth rate (millimetres per 
mean crossing) was practically similar for narrow band (k = 1.01) and 
broadband (k = 1.43) random loading. If the maximum stress amplitudes of 
the random loading were truncated a significant increase of the growth rate 
was observed. 

6. It appears that crack growth data for more practically relevent cracks 
are highly desirable. Guidelines for research on this topic have been outlined 
briefly. 

References 

[1] Mann, J. Y., Bibliography on the Fatigue of Materials, Components and Structures, Vol. 
2, 1951-1960, Pergamon Press, London, 1978. 

[2] Paris, P. C , Gomez, M. P., and Anderson, W. E. "A Rational Analytic Theory of 
Fatigue," The Trend in Engineering, Vol. 13, 1961, pp. 9-14. 

[3] Schijve, J., Engineering Fracture Mechanics, Vol. 6, 1974, pp. 245-252. 
[4] Schijve, J. in Fatigue Crack Growth Under Spectrum Load, ASTM STP 595, American 

Society for Testing and Materials, 1976, pp. 3-23. 
[5] Bowles, C. Q., "The Role of Environment, Frequency and Wave Shape during Fatigue 

Crack Growth in Aluminum Alloys," Ph.D. thesis, Delft University of Technology, Delft, 
The Netherlands, Aug. 1978 (also Department of Aerospace Engineering, Report LR-270, 
1978). 

[6] Elber, W., "Fatigue Crack Propagation," Ph.D. thesis, University of New South Wales, 
Australia, 1968 (see also Engineering Fracture Mechanics, Vol. 2, 1970, pp. 37-45). 

[7] Schijve, J. in Fatigue Crack Propagation, ASTM STP 415, American Society for Testing 
and Materials, 1967, pp. 415-457. 

[8] Vogelesang, L. B., "Some Factors Influencing the Transition from Tensile Mode to Shear 
Mode Under Cyclic Loading," Department of Aerospace Engineering, University of Delft, 
Delft, The Netherlands, Report LR-222, 1976. 

[9] Schijve, J., "Fundamental and Practical Aspects of Crack Growth under Corrosion Fatigue 
Conditions," Proceedings, Institution Mechanical Engineers, Vol. 191, 1979, pp. 107-114. 

[10] Tada, H., Paris, P., and Irwin, G., "The Stress Analysis of Cracks Handbook," Del 
Research Corp., fiellertown. Pa., 1973. 

 



SCHIJVE ON PREDICTION METHODS 33 

[//] Sih, G. C , "Handbook of Stress Intensity Factors for Researchers and Engineers," Lehigh 
University, Bethlehem, Pa., 1973. 

[12] Rooke, D. P. and Cartwright, D. J., "Compendium of Stress Intensity Factors," Her Maj
esty's Stationery Office, London, 1976. 

[13] Newman, J. C , Jr., "A Review and Assessment of the Stress-Intensity Factors for Surface 
Cracks," NASA TM 78805, National Aeronautics and Space Administration, Washington, 
D.C., Nov. 1978. 

[14] Willenborg, J. D., Engle, R. M., and Wood, H. A., "A Crack Growth Retardation Model 
Using an Effective Stress Concept," AFFDL-TM-FBR-71-1, Air Force Flight Dynamic 
Laboratory, Dayton, Ohio, 1971. 

[15] Wheeler, O. E., Journal of Basic Engineering, Transactions of the American Society of 
Mechanical Engineers, 1972, pp. 181-186. 

[16] Elber, W. inDamage Tolerance in Aircraft Structures, ASTM STP 486, American Society 
for Testing and Materials, 1971, pp. 230-242. 

[17] Newman, J. C , Jr., in Cyclic Stress-Strain and Plastic Deformation Aspects of Fatigue 
Crack Growth, ASTM STP 637, American Society for Testing and Materials, 1977, pp. 
56-80. 

[18] Ogura, K. and Ohji, K., Engineering Fracture Mechanics, Vol. 9, 1977, pp. 471-480. 
[19] FUhring, H., "Elastic-Plastic Crack Closure Analysis of Dugdale Crack Plates Based on 

Fracture Mechanics," (in German), Report of Institut fflr Statik und Stahlbau, Technische 
Hochschule, Darmstadt, Heft 30, 1977. 

[20] Paris, P. C. and Hermann, L., Lecture presented at the International Union on Theoretical 
and Applied Mechanics colloquium, 30 Aug.-4 Sept., Delft, The Netherlands, 1976. 

[21] Bell, P. D. and Wolf man, A. in Fatigue Crack Growth Under Spectrum Loads, ASTM 
STP 595, American Society for Testing and Materials, 1976, pp. 157-171. 

[22] Eidinoff, H. L. and Bell, P. D., "Application of the Crack Closure Concept to Aircraft 
Fatigue Crack Propagation Analysis," Proceedings of the International Committee in 
Aeronautical Fatigue Symposium, Darmstadt 1977, paper 5.3 

[23] Dill, H. D. andSaff, C. R. m Fatigue Crack Growth Under Spectrum Loads, ASTM STP 
595, American Society for Testing and Materials, 1976, pp. 306-319. 

[24] Elber, W. in Fatigue Crack Growth Under Spectrum Loads, ASTM STP 595, American 
Society for Testing and Materials, 1976, pp. 236-247. 

[25] Schijve, } . , Engineering Fracture Mechanics, (four lectures on fatigue), Vol. 11, 1979, pp. 
167-221. 

[26] Paris, P. C , "The Growth of Fatigue Cracks Due to Variations in Load," Ph.D. thesis, 
Lehigh University, Bethlehem, Pa., 1962. 

[27] Paris, P. C , The Fracture Mechanics Approach to Fatigue, Fatigue an Interdisciplinary 
Approach, Syracuse University Press, Syracuse, N.Y., 1964, pp. 107-132. 

[28] Smith, S. H., Fatigue Crack Growth Under Axial Narrow and Broad Band Random 
Loading, Acoustical Fatigue in Aerospace Structures, Syracuse University Press, Syracuse, 
N.Y., 1965, pp. 331-360. 

[29] Swanson, S. R., Cicci, F., andHoppe, W., itiFatigue Crack Propagation, ASTM STP 415, 
American Society for Testing and Materials, 1967, pp. ill-idl. 

[30] Schijve, J., Jacobs, F. A., and Tromp, P. J., "Fatigue Crack Growth in Aluminum Alloy 
Sheet Material under Flight-Simulation Loading, Effects of Design Stress Level and 
Loading Frequency," NLR TR 72018, Amsterdam, The Netheriands, 1972. 

[31] Wanhill, R. J. H., "Engineering Application of Fracture Mechanics to Flight Simulation 
Fatigue Crack Propagation," International Conference in Fracture Mechanics in Engineer
ing Application, Bangalore, March 1979 (also NLR MP 78015). 

[32] de Jonge, J. B., Schtitz, D., Lowak, H., and Schijve, J., "A Standardized Load Sequence 
for Flight Simulation Tests on Transport Aircraft Wing Structures," LBF Report FB-106, 
NLR TR 73029, March 1973. 

[33] Anonymous, "Description of a Fighter Aircraft Loading Standard for Fatigue Evaluation: 
FALSTAFF," Combined report of the NLR, LBF, lABG and F-fW, March 1976. 

[34] Provo Kluyt, J. C , "Significance of Crack Closure for Crack Growth in 7075-T6 and 
2024-T3 Al Alloys under Flight Simulation Loading with Different Truncation Levels," (in 
Dutch), Ph.D. thesis, Department of Aerospace Engineering, Delft University of 
Technology, Delft, The Netherlands, April 1978. 

 



34 FRACTURE MECHANICS: TWELFTH CONFERENCE 

[35] Schijve, J., Jacobs, F. A., and Tromp, P. J., Crack Propagation in Aluminium Alloy Sheet 
Materials under Flight Simulation Loading," NLF TR 68117, Amsterdam, 1968. 

[36] Schijve, Jaap, "The Stress Ratio Effect on Fatigue Crack Growth in 2024-T3 Alclad and 
the Relation to Crack Closure," Memorandum M-336, Department of Aerospace 
Engineering, Delft, The Netherlands, Aug. 1979. 

[37] Schijve, J., "Statistical Transformations of Load Histories Applied in Flight-Simulation 
Tests," Department of Aerospace Engineering, Delft University of Technology, Delft, The 
Netherlands, Memorandum M-303, 1978. 

[38] FUhring, H. and Seeger, T., Engineering Fracture Mechanics, Vol. 11, 1979, pp. 99-122. 
[39] Katcher, M. and Kaplan, M. in Fracture Toughness and Slow-Stable Cracking, ASTM 

STP 559, American Society for Testing and Materials, 1974, pp. 264-282. 
[40] ten Have, A. A., "A^^^ -̂correlation in Digitally Generated Random-Load Fatigue Tests on 

2024-T3 Al Sheet Material, Ph.D. thesis. Department of Aerospace Engineering, Delft 
University of Technology, Delft, The Netherlands, Oct. 1978. 

[41] Fischer, R., HUck, M., Kdbler, H. G., and SchOtz, W., "Criteria for the Evaluation of 
Fatigue Strength of Materials and Components at Present and in the Future," (in 
German), Industrie Anlagen-Betriebsgesellshaft Report 14224601,1975 and Laboratorium 
Far Betriebsfestigkeit, Report 2909, 1975. 

 



R. M. Pelloux,' M. Faral, • and W. M. McGee^ 

Fractographic Measurements of 
Crack-Tip Closure 

REFERENCE: Pelloux, R. M., Fatal, M., and McGee, W. M., "Fractographic Mea
surements of Crack-Tip Closure," Fracture AfecAanici.- Twelfth Conference, ASTMSTP 
700, American Society for Testing and Materials, 1980, pp. 35-48. 

ABSTRACT: Relative changes in striation spacing resulting from a sudden change of the 
load range were used to measure crack-tip closure under plane-strain conditions. The 
tests were performed in a 2124-T351 aluminum alloy. The difference between the open
ing and closure rates of the crack tip was quantitatively measured by comparing striation 
spacings for two different programmed load blocks. It is concluded that crack-tip closure 
occurs principally in the plane-stress region of the crack front. In the center of the 
specimen, under plane strain, the average value of K^^/K^^^ is less than 0.20 for AK 
varying from 10 to 35 MPaVm. 

KEY WORDS; crack tip closure, crack tip opening, fatigue crack grovrth, programmed 
loads, electron fractography, aluminum alloy fractures (materials), crack propagations 

Since the crack-tip closure concept was introduced by Elber [1],^ a large 
number of theoretical and experimental investigations of this phenomenon 
have been carried out. A thorough review [2] of the experimental results 
published so far show large discrepancies in closure measurements. These 
discrepancies are due to differences in techniques; that is, they are all 
macroscopic techniques. These techniques include surface displacement 
gages, photography, laser interferometry, electrical potential, ultrasonics, 
photoelasticity, and bulk interferometry. 

By contrast with this extensive work, the authors decided to use a micro
scopic technique to measure Kop. This technique makes use of electron-
fractography and of programmed load testing to correlate a change in stria
tion spacing with a sudden change of the stress intensity factor range. 
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The preliminary results of this fractographic approach were reported in a 
previous paper [3]. Since then a quantitative analysis of the results was per
formed by comparing the crack tip opening and closure displacements as a 
function of the applied stress. This paper reports on the quantitative analysis 
of the crack closure measurements obtained by the fractographic technique. 

Materials and Test Procedures 

All the fatigue tests were performed on compact tension specimens (width 
(W) = 63.5 mm, thickness (B) = 12.7 mm) in the long transverse orienta
tion. The alloy 2124-T351 was received from Alcoa as fully heat-treated 
plates, 12.7 mm thick. Alloy 2124-T351 was selected because it is relatively 
free of large inclusions and it shows well-defined fatigue striations. Chemical 
composition and mechanical properties of the alloy are given in Table 1. 

The tests were run at 10 Hz with R = 0.05. K^^^^ varied with crack length 
from 11 to 38 MPaVm from the beginning to the end of each test. The load 
block diagrams referred to as R and T, respectively, in Figs. 1 and 2 were in
serted when the crack lengths reached values corresponding to Âmax levels of 
11, 13.8, 16.5, 22, and 33 MPaVm. The load blocks were run at 0.25 Hz, and 
the load output was recorded on a chart recorder. All the tests were per
formed on a servohydraulic machine interfaced with a digital computer. 
Crack length was monitored with a X30 traveling microscope by reading a 
reference grid engraved on one side of each specimen. Crack length measure
ments were accurate to ±0.025 mm. All the tests were designed so that the 
crack front would advance beyond the boundaries of the plane-stress plastic 
zone size created by the overloads D and H of the block diagrams R or T 
before the next block program was applied. 

Electronfractography was performed by scanning microscopy of the frac
ture surfaces and by transmission electron microscopy of two stage plastic-
carbon replicas. The shadowing direction was opposite to the crack growth 
direction. All the fractographic results for the closure measurements were 

TABLE I—Alloy 2124-T351. 

Chemical Composition 

Al Cu Mg Mn 

balance 3.84 L33 0.46 

Fe Si 

0.09 0.05 

Long Transverse Tensile Properties 

Yield Tensile 
Stress Strength 

2 9 6 M N m " 2 451 MN m^^ 

Elongation, 
% 

25 
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FIG. 1—Description of the R load program. 
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taken from the plane strain region of each specimen typically along a 5-mm 
length of the crack front at the midsection of the specimen. 

Principle of the Fractographic Technique 

The general principle of the fractographic technique is based on the one to 
one correlation between crack tip opening displacement and crack advance 
per cycle, da/dn. This correlation has been demonstrated previously [4] for 
aluminum alloys in the range of stress intensity factors studied here; that is, 
from 10 to 40 MPaVm. The principle of the method is shown in Fig. 3 with 
two load blocks, A and B. In Fig. 3, if Kfnia ̂  > ^op > the striations of the A 
cycles will be smaller than the baseline striations. On the other hand, MK^ig^ 
B < ATop there will be no difference between the base line striations and the B 
cycles striations. 

Calculations of the crack tip opening displacements (CTODs) for different 
load ranges are included in Fig. 2 in order to show the difference between the 
cyclic CTOD associated with reversed plastic flow and the monotonic CTOD 
resulting from a load excursion (cycle 456), which extends the plastic zone 
beyond the steady-state cyclic plastic zone. On the basis of the CTOD 
calculations, there will be a difference between the striation spacings of load 
cycle 456 and cycle 78. These CTOD calculations can be done either with the 
assumption that K^^ = 0, or that K^^ has a finite positive value. 

One may assume in a first approximation that da/dn per cycle is propor
tional to the CTOD effective with CTOD f̂f being defined as follows 

CTOD,„ 

where 

Y — flow stress, 
E = elastic modulus, and 
A — constant. 

With 

-«̂  max '**- op 

'^ max "• min 

A-fiTeff — U • A'appi if A'op > A'mjn 

AATeff — •^•'i^appl if •''^op < ^mi n 
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Test Programs 

The methodology described in Fig. 3 was used with the fractographic data 
obtained from the block diagrams R and T shown in Figs. 1 and 2. The pro
grammed load blocks shown in Figs. 1 and 2 were designed as follows: 

1. Block A (50 cycles) is the continuation of the steady-state crack growth 
condition at 0.25 Hz instead of 10 Hz. 

2. Block B (10 cycles) is used to obtain a measurement oiKo^ by (a) vary
ing AÂ B and keeping K^^^,^ constant in the type R tests; {b) varying A/f^ and 
keeping /sT̂ nin constant in the type T tests. 

3. Block C (10 cycles) is designed to show that the base line crack growth 
rate and the closure effect are not affected by block B. Block C also serves to 
separate B from the load marker D. 

4. Block D (2 cycles) is a crack front marker which is used to locate B and 
also to introduce a crack retardation effect and a change of K^^. 

5. Block E (50 cycles) allows a steady crack growth rate to develop after 
the overloads. E will also provide a measure of the retardation effect due to 
block D. 

6. Block F (10 cycles) is identical to block B and by comparing (da/dn^) 
to (da/dnp), one can calculate K^^ following the D overloads. 

7. Block G (10 cycles) is identical to block C. 
8. Block H is a four loads crack front marker (different from D). 
9. Block K isa return to the baseline load range before the frequency was 

returned to 10 Hz. 

Type R Tests Shown in Fig. 1— 

R=^T^^ioT block B 
-"• max 

The notation oiRS, R6 refers to R = 0.5, R = 0.6. If {AK)B is such that 
^ minfl < ^op there will be no fractographic difference in da/dn spacing be
tween A and B and C. If (AK)B is such that K'^mB > ^op. one can deter
mine Kgp from a single test. 

(CTOD)4 _ (doMnU _^_ (AK^fjAl _ (K^.. " ^ o p ) ' 
— yi. — ^ 

(CTOD)B ida/dn)B (AKB)^ (^max - ^^'mm)' 

that is 

^ max 

= 1 - % / F ( l -R) 
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X is obtained from the fractographic measurements of da/dn averages for 
blocks v4 a n d £ . 

Type T Tests Shown in Fig. 2— 

T = 
K 'mâ  for block B 
^mux for block A 

The notation T^, T^ means T = 0.4, T = 0.5. 
A CTOD analysis gives the following relations between CTOD ratios and 

da/dn ratios 

(CTOD)^ _ {da/dn)^ _ (A/JTeff̂ )̂  
- .— ^ 

v ^ max ^oo) 

( C T O D ) B {da/dn)B i^K^tts)^ \^ max "-op) 

that is 

K_ op 
1 - T-IX 

1 - V Z 

Again X will be obtained from the ratio of fractographic measurements. 
The dependence of the calculated CTOD upon A/T or A^̂ ax is given 

graphically in Fig. 4, which presents three nondimensional sketches of 
CTOD (da/dn per cycle) versus K. Figure 4a shows that for a given value of 
K, the value of CTOD during closure of the crack tip is greater than during 
its opening. This observation is directly derived from the "reversed 
plasticity" behavior of the plastic zone at the tip of a fatigue crack [5]. Also, 
if one assumes a constant loading rate, the crack tip opens up at a faster rate 
at the end of the cycle than at the beginning. The reverse is true during 

FIG. 4—Sketches of the CTOD versus K relationships; (a) CTOD versus K during opening 
and closure, (b) CTOD versus Kfor R5 and T6, and (c) CTOD versus K with closure at K„p. 
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unloading. Figure 4b gives an illustration of the CTOD sequence for a B cy
cle for /?4 and T6 for the case where K^p = 0. Finally, in Fig. 4c one sees that 
a finite value of K^^ results in a CTOD effective which is much lower than the 
expected CTOD. 

So far it was assumed that Kgp = /î ciosure as shown in Fig. 4c. Neumann [6] 
has shown by a finite element analysis that K^p could be different from K 
closure with K^p being a strong function of R, the loading ratio. If one 
assumes with Neumann, that Kgp ^ A'ciosurc then we can see that the B 
blocks of the R programs will measure a /(̂ closure > while the B blocks of the T 
program will measure a K^p. For this work with a steady-state K^^^/K^^.^ = 
0.05, the authors have assumed K^p = Â ciosure in order to facilitate the inter
pretation of the fractographic results. 

Crack retardation following the D loads is measured directly by comparing 
(da/dn)^ to {da/dn)c- This retardation effect is the result of an increase in 
A'op following the two overload cycles of D. K^p following D could also be 
determined by comparing {da/dn)^ to (da/dn)f. 

Test Results 

A log-log plot of da/dn versus AK for steady crack grovrth rate (/? = 0.05) 
is best represented by the following equation 

^ ' = 8 X 10-8 AK^ (AK in ksiN/iiT.) 
dn 

in the range 5 X 10"* in. < dl/dn < 5 X 10^'' in. Extensive measurements 
of striation spacings show an excellent agreement between microscopic and 
macroscopic crack growth rates in the range of growth rates mentioned 
above. 

Some typical fractographs of the R programs are given in Figs. 5-8. Figure 
5 which is a scanning electron microscope (SEM) fractograph of R2 shows 
clearly the positions of the crack front for overloads D and H. The 30 percent 
overloads result in a well-defined crack-tip stretching associated with the 
large fatigue striations. Each side of the matching faces of the fracture sur
faces shows the same stretched ridges. For AK < 16.5 MPaVm, the fatigue 
striations were not clearly resolved with the SEM and the transmission elec
tron microscope (TEM) replica technique was used extensively. Figures 6 
and 7 show low- and high-magnification fractographs for /?5 at 16.5 MPavin. 
All the striation measurements were taken on 8 by 10 in. enlargements of the 
micrographs in order to obtain maximum accuracy. Note that since the 
method uses ratios of mean striation spacings, there was no need for tilt cor
rections. A typical R2 program is shown in Fig. 8. The difference in striation 
spacing between B and A and C blocks is very small, indicating that /^ mm of 
B block is slightly above K^p; that is, K^p is of the order of 0.2 K^^^. 
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FIG. 5—An SEM fractograph of R5 showing overload blocks D and H. 

 



44 FRACTURE MECHANICS: TWELFTH CONFERENCE 

FIG. 6—^ typical ABCDEFGHK sequence for R5 (TEM replica—K„ 11 MPaVm). 

clearly an increase in Kop/Kj^;^^ to a value of 0.3 at the surface and 0.2 in the 
center of the crack front. 

The T tests, which measure a K^p instead of Â ciosurc seem to indicate a 
high value of K^p. For instance, 20 cycles of B block with a T3 program do 
not show any striations. It seems that the problem of measuring a K^p with 
the T program is related to the number of cycles of the B block and the 
microscopic resolution of the B fatigue striations. The tests performed so far 
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FIG. 7—A sequence ABCD/or R5 (TEM replica—K^max 

had too few cycles in the B block of the T program. A residual stress effect 
could also account for the high K^p measurements obtained with the T pro
grams. 

Discussion 

The following observations have been made: 
The fractographic technique is good enough to show that closure in the 

plane-strain region of the specimen is very small. Closure in the plane-stress 
part of the crack front can be detected by the inflection point on the /?-curves 
(Fig. 9). We found A'ciosure//sT̂ ax < 0.2 during steady-state crack growth and 
^closure/̂ max = 0.3 following a 30 percent overload. 

The programmed loads fractography technique used to study crack closure 
is very powerful although it is limited to crack growth rates greater than 5 X 
10"* in. The best application of the technique is its use to verify finite ele
ment models of crack growth under programmed loads. 

The test results confirm McEvily's model [7] that closure is a localized 
phenomenon associated with stretched ligaments near the surface of the 

 



46 FRACTURE MECHANICS: TWELFTH CONFERENCE 

FIG. 8—A typical sequence ABCDEFGHK/or R2 (TEM replica—K„„^ = 11 MPaVm). 

specimen in the pseudo-plane stress region. Figure 10 is a sketch showing the 
closure sites as a function of a/amax • 

The marked difference between the cyclic and monotonic calculations of 
CTOD is observed with the two cycles of the D overloads. The first D stria-
tion is much larger than the second D striation. Microscopic crack retarda
tion measurements following the D and H overloads have been performed. 
The results will be reported in a second paper. 

Conclusions 

1. Fractographic measurements of crack closure show that crack closure 
is very small in the plane-strain region of a crack tip. 

2. Values of Kop/K^ax < 0-20 were measured for 2124-T351 aluminum 
alloy in the range of AA -̂values of 10 MPa\& < AK < 35 MPaVm. 

3. An increase in Kgp from 0.2 to 0.3 was observed following two cycles of 
overload of 30 percent above A'max • 

4. In spite of its limitations the fractographic technique is very useful to 
investigate the crack tip behavior in the plane strain part of the specimen. 
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FIG. 9—Summary of the crack growth rate data for the R and T programs. The data is 
reported as da/dn^/da/dng for R and T programs before the overloads D and as 
da/dnp/da/drig after the overloads D. 
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ABSTRACT: Fatigue crack propagation (FCP) rates were measured in nylon 66, an 
impact-modified nylon 66, and in blends of the two resins as a function of the stress 
intensity factor range ^K and cyclic frequency. Significant reductions in FCP rates 
were observed with increasing additions of the impact-modified polymer to pure 
nylon 66, though the relative ranking of the various blends was found to depend on 
the magnitude of AAT and test frequency. These differences were related to specimen 
heating associated with certain blend compositions and high ^K levels. Crack tip 
temperatures increased with increasing AA' level and were as high as 125°C (257°F) 
in the impact-modified nylon 66 that had been moisture equilibrated at room tem
perature. Other tests revealed that this material represents the first polymeric solid 
to exhibit higher fatigue crack growth rates with increasing cyclic frequency. 

KEY WORDS: fatigue (materials), crack propagation, fracture mechanics, engineering 
plastics, hysteretic heating, frequency, impact modification, nylon 66 blends, plasticity 
corrections, modulus normalization, fractures (materials) 

The current demand for light-weight structural materials has directed 
the attention of component designers to the increasing use of engineering 
plastics. Though a number of these materials may possess satisfactory 
tensile strength and modulus, their selection for certain applications has 
been restricted by their low toughness. Considerable success in overcoming 
this property deficiency has been achieved through the addition of a rubbery 
second phase to such amorphous and mesomorphic polymers as polystyrene 
(PS) and poly(vinyl chloride) (PVC). These materials have been shown to 
possess superior toughness, resulting from enhanced localized shear banding 
and crazing [1,2]J A parallel improvement in fatigue resistance has also 
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been noted [3-7]. For example, fatigue crack growth rates in neat PVC 
have been reduced by as much as two orders of magnitude with the addition 
of 6 to 14 percent of a methacrylate-butadiene-styrene copolymer (MBS). 

Since crystalline polymers as a class are generally stronger and tougher 
than most amorphous polymer counterparts, including rubber-modified 
blends, there has been less incentive for the development of an impact-
toughened crystalline polymer. Recently, however, an impact-toughened 
semi-crystalline nylon 66 was introduced by the DuPont Chemical Company 
with the designation of Zytel ST801. This blend possesses Izod toughness 
values more than an order of magnitude greater than those exhibited by 
unmodified nylon 66 in both the wet and dry as-molded conditions [8]. In 
addition, ST801 exhibits pronounced surface lubricity. This latter property 
is especially desirable in applications involving the need for a minimization 
of friction such as in mechanical slides and gear drives not requiring oil. 

As a result of its superior strength, toughness, and lubricity, this material 
already is finding application in components subjected to repeated loadings. 
For this reason, a thorough understanding of the fatigue response of this 
material is needed. This paper is concerned with an evaluation of the 
fatigue crack propagation (FCP) behavior of ST801 as well as intermediate 
blends of ST801 and pure nylon 66. In addition, attention is given to the 
effect of cyclic frequency on both FCP rates and cyclic lifetimes. 

Cyclic frequency was chosen as a major test variable in this investigation 
based on numerous and conflicting reports of its influence on cyclic life 
[9-20]. On one hand, standard reversed bending experiments conducted 
with various polymeric solids at 30 Hz, according to ASTM Test for Flexural 
Fatigue of Plastics by Constant-Amplitude-of-Force (D 671-71), have shown 
that failures in unnotched specimens can take place by either mechanical 
or thermal processes. Regarding the latter, cyclic induced hysteretic heating 
is known to cause specimen softening and eventual melting. Since the rate 
of hysteretic heating is related directly to the test frequency, an increase 
in test frequency has been often associated with attenuated fatigue life 
[9.10,21]. By sharp contrast, an entirely different frequency dependence 
has been observed in fatigue crack propagation experiments involving 
precracked test specimens. For some polymers, FCP rates decreased with 
increasing cyclic frequency while in other polymers, FCP rates remained 
unchanged with different test frequencies [2,13-20]. Numerous studies 
have shown that the beneficial influence associated with fatigue testing at 
higher cyclic frequencies in some polymers was attributed to a resonant 
condition between machine test frequency and the jump frequency of 
segmental motions associated with the /3-damping peak [13-16]. It has been 
argued that this damping condition, when localized at the crack tip, leads 
to crack-tip blunting and associated reduction in FCP rates. Pertinent to 
this paper, this rationalization of material behavior has been supported 
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by FCP experiments conducted on rubber modified poly(phenylene oxide) 
and acrylonitrile-butadiene-styrene. Since no damping information is avail
able regarding Zytel ST801 or blends containing Zytel ST801 and nylon 66, 
it is not clear what type of frequency sensitivity might be found in these 
materials. Furthermore, the frequency sensitivity of FCP rates might be 
expected to depend on the blend ratio with the latter affecting overall 
damping response. 

Experimental Procedures 

Most of the materials used in this investigation were received in the form 
of dry, as-molded plaques (76 by 128 by 7.5 mm) of pure nylon 66 (Zytel 
101), Zytel ST801, and blends containing 25, 50, and 75 percent Zytel 
ST801. These plaques were stored in a dessicator to preclude moisture 
pickup. In addition, certain tests (description follows) were performed on 
Zytel ST801, which was moisture equilibrated in laboratory air. 

Compact tension fatigue specimens were machined to a width of 61 mm 
and a height-to-width ratio of 0.6. Initial notches were introduced both 
parallel and perpendicular to the injection molding direction. After ma
chining, all specimens were stored again in a dessicator except those speci
mens that had already absorbed moisture. 

All fatigue testing was performed on an 8.8-KN MTS machine. To 
minimize total test time, specimen precracking to initiate a sharp crack 
from the machined notch was usually carried out at 50 to 100 Hz. In the 
high concentration ST801 blends, however, this usually resulted in excessive 
crack tip heating. To eliminate the possibility that this heating might affect 
subsequent FCP measurements, all specimens were allowed to cool for at 
least 1 h before actual data collection commenced. Crack propagation data 
were obtained at test frequencies of 1 to 100 Hz. For the more compliant 
ST801-nylon 66 blends, the test machine was incapable of supplying 
sufficient displacement to generate 100 Hz at the desired load. Consequently, 
these materials were tested at a maximum frequency of 30 to 50 Hz. A 
traveling microscope was used to make crack length measurements over 
typical increments of 0.15 to 0.30 mm. The test machine was stopped 
briefly (usually for a period less than 15 s) for such readings. Crack growth 
rates were related to the crack tip stress intensity factor range AK where 
AK = YA(p/^, and Y = 29.6 - 185.5 (a/w) + 655.7 (a/wy - 1017 
(a/w)^ + 638.9 (a/w^. The load ratio R (that is, K^JK^^^) was held 
constant at 0.1. 

A thermocouple was placed within a test plaque of moisture equilibrated 
ST801 to permit measurement of the crack tip temperature. A 1.6-mm hole 
was drilled from the top of the specimen to the plane of the machined 
notch and about 15 mm from the notch tip. The hole was filled from the 
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bottom with an epoxy resin using a hypodermic syringe. Before the epoxy 
resin had cured, the thermocouple was inserted with the junction being 
located along the anticipated crack plane. 

Results and Discussion 

Comparative Fatigue Behavior 

A series of fatigue tests was conducted to determine the FCP response 
of dry, as-molded blends of Zytel 101 containing 0, 25, 50, 75, and 100 
percent ST801 both parallel and perpendicular to the injection molding 
direction. Single experiments were conducted on these five materials in 
each orientation. In addition, some additional data were obtained from 
other specimens tested at two different test frequencies. No significant 
variation in FCP rates (less than 20 to 30 percent) as a function of specimen 
orientation was noted in any of these materials when tested at 10 Hz (Fig. 
1). In view of this apparent isotropic response, these data were taken to 
represent essentially duplicate tests of all five material blends. 

Certain trends in fatigue crack propagation behavior are to be noted. 
The pure nylon 66 polymer (Zytel 101) exhibited a log-log linear relationship 
between the FCP rate da/dN and the stress intensity factor AA". For the 
ST801-101 blends, a definite break in the curve is noted, corresponding 
to a change in the dependence of da/dN on AA". (Even pure Zytel 801 
shows a modest change in slope above A.K = 3 MPaVm.) From Fig. 2 it is 
seen that the point of inflection, corresponding to the da/dN — AK slope 
change, decreased to lower AK levels with increasing amounts of Zytel 
801. All slopes were lower at lower AK levels, hereafter referred to as 
Region I; the slopes were higher at the higher AK levels (that is. Region II). 
It is clearly evident that pure nylon 66 exhibited the highest crack growth 
rates and hence the poorest fatigue resistance of all the blends. A signi
ficant reduction in FCP rates was observed with increasing addition of 
ST801 to pure nylon 66, though the relative ranking of the various blends 
was found to depend on the stress intensity factor range AK. 

The enhancement of fatigue resistance in the rubber-modified crystalline 
blends is, therefore, similar to that observed in the rubber-modified amor
phous plastics as discussed earlier [5-7]. At this point it is not clear what 
micromechanisms are responsible for the attenuated crack growth rates 
in the ST801 blends. For example, it is possible that the superior fatigue 
properties of the ST801 blends may have been derived as a direct result of 
the presence of the toughening second phase or as a result of the very fine 
nylon 66 spherulite size (less than l-/nm diameter) associated with the 
ST801 polymer. 

During the course of these fatigue experiments, it was observed that the 
crack-tip region became hot to the touch, particularly at high AK levels. 
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Since the pure ST801 material experienced the greatest amount of heating, 
an attempt was made to quantify the temperature rise at the crack tip in 
this polymer. The plaque used in this experiment was moisture-equilibrated 
at 50 percent relative humidity. The variation in thermocouple temperature 
readings as a function of the distance between the thermocouple and the 
advancing crack front is shown in Fig. 3. It is seen that significant specimen 
heating occurred when the crack tip was as much as 14 mm from the 
thermocouple location with the temperature rising to 125°C (257°F) when 
the crack tip reached the location of the embedded temperature probe. 
(At this point, the stress intensity factor was 3.2 MPaVm.) Research in 
progress has shown that the specimen crack-tip temperature elevation 
depends strongly on both moisture content of the nylon 66 and on the 
amount of ST801 in the blend. For example, dry nylon 66 experienced no 
crack tip heating, whereas a specimen equilibrated with moisture at 50 
percent relative humidity revealed a 15°C (59°F) crack-tip temperature 
elevation [22], Likewise, the extent of crack-tip heating in dry specimens 
decreased with decreasing ST801 content from a maximum of 55°C (131 °F) 
in pure ST801 to 5°C (41 °F) in the 25 percent ST801 material [23]. Though 
the 125°C (257°F) crack-tip temperature in the moisture equilibrated 
ST801 specimen probably represents a "worst case" situation, it is clear 
that all of the dry specimens containing ST801 had experienced varying 
amounts of hysteretic heating. As a result, the yield strengths and elastic 
modulii of these specimens would be expected to decrease and adversely 
affect fatigue resistance. 

Other experimental findings provide additional confirmation for the 
deleterious influence of gross specimen heating on fatigue crack propa
gation behavior in some of these nylon blends. Transient decreases in 
FCP rates were noted following any lengthy interruption in specimen 
cycling. A corresponding increase in specimen stiffness was found with each 
such rest period. Both observations are consistent with the fact that the 
specimen should become cooler with prolonged interruption in load cycling. 
It was also found that FCP rates at 10 Hz in ST801 were higher immediately 
after having been precracked at 50 Hz as compared with precracking at 
10 Hz or after allowing for a suitable rest period following precracking at 
the higher frequency. 

The relative ranking of these nylon blends in terms of their fatigue 
resistance can now be reexamined in light of the preliminary specimen 
temperature measurements and other considerations. An attempt has been 
made to account for the shift in slope of the da/dN — AK plots in terms 
of a plastic zone correction. In this manner, an effective crack length and 
associated effective A/f-value (AK^ff) can be defined and compared against 
the effective crack growth rate (also taking into account the change in 
effective crack length). Since the crack-tip temperature is presumed to 
increase continuously with increasing AK level, the proper choice of the 
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FIG. 2—Fatigue crack propagation behavior in Zytel 801/101 blends tested at 10 Hz-
uncorrected for crack-tip plasticity. 

120 -

o 
« 100 -

u 
"̂  8 0 -

^ 6 0 -

I i 
y 2 0 -

/ 

/ 

ZYTEL ST 801 
3 0 Hz 

TC. ot 3.2 M P a ^ 0 

14 12 10 8 6 4 2 0 -2 
DISTANCE BETWEEN CRACK TIP AND THERMOCOUPLE, mm 

FIG. 3—Thermocouple temperature as a function of its distance from the crack tip. 
Specimen moisture equilibrated to 50 percent relative humidity. 

 



HERTZBERG ET AL ON FATIGUE CRACK PROPAGATION 5 7 

yield strength value for use in the plastic zone size computation is unclear. 
As a first approximation, room temperature yield strength values for each 
blend were used for the data corresponding to Region I (from 78 MPa for 
nylon 66 to 56 MPa for ST801). The yield strengths used to correct the 
Region II data were based on values corresponding to crack tip temperature 
measurements from current though incomplete studies (78 MPa for nylon 
66 to 42 MPa for ST801). The plastic zone correction was assumed to 
reflect half of the Dugdale plastic strip dimension (that is, 7r/16 K^^^/ay^^). 
Plastic zone size-corrected data are shown in Fig. 1 as dashed lines. The 
arrow indicators shown in the ST801 data correspond to a plasticity cor
rection of 15 percent to the applied A/sT-value. Any larger correction at 
still higher A.K levels was truncated at a maximum ratio A/STeff/A âpp = 
1.15. When these data are compared directly (Fig. 4), it is seen that though 
the FCP data from the ST801-rich blends are shifted the most, the ranking 
of the various materials is relatively unchanged. 

It is informative also to normalize the FCP data relative to specimen 
stiffness since crack growth rates are known to increase with decreasing 
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FIG. 4—Fatigue crack propagation behavior in Zytel 801/101 blends tested at 10 Hz— 
corrected for plasticity. 

 



58 FRACTURE MECHANICS: TWELFTH CONFERENCE 

elastic modulus [3]. To this end, the crack growth rate curve for each 
material was normalized by the dynamic modulus for that particular blend. 
The use of the dynamic modulus rather than the tensile or flexural modulus 
for the data normalization is based on previous results that showed the 
elastic modulus of several polymers during fatigue cycling of compact 
tension specimens to be in agreement with values reported from dynamic 
mechanical measurements [24]. Using a modulus ratio between nylon 66 
and pure ST801 of 2.4, based on preliminary measurements by Webler 
[25], the moduli of all blends were assumed to decrease linearly from a 
value of 4.2 GPa for dry nylon 66 [24] to 1.75 GPa for dry ST801. When 
the da/dN — AK^ff results shown in Fig. 4 are normalized by these re
spective moduli values, it is seen that the ST801 blend is now the most 
fatigue resistant material examined in this investigation (Fig. 5). Since no 
data are available to determine the extent of specimen heating during the 
FCP tests, it was not possible to modify the normalization procedure, using 
elevated temperature modulus values. From the foregoing computations, 
we conclude that the relatively poor FCP response of the STSOl-rich blends 

I0-' I I I I 1 1 — 
ZYTEL ST 801 

4.0 X|0'^ 

FIG. 5—Fatigue crack propagation behavior in dry Zytel 801/101 blends. Data corrected 
for crack-tip plasticity and normalized with respect to elastic modulus. 
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in Region II was due to lower yield strengths, which in turn gave rise to 
larger plastic zones than in the lean ST801 blends and lower elastic modulii, 
the latter resulting in larger cyclic strains per unit stress intensity level. 
This situation was aggravated by hysteretic heating-induced further reduc
tions in these two properties. 

Since the extent of specimen heating will depend upon such geometrical 
factors as specimen thickness, specimen planar dimensions and associated 
stress intensity factor calibration, and net section stress, the relative fatigue 
performance of the ST801 blends will depend on specimen geometry. For 
example, some crack-tip heating was generated in a compact tension (CT) 
specimen whereas a single edge notched (SEN) specimen experienced 
considerably greater heating across the entire unbroken ligament when 
tested at a comparable AK level. Since the K-calibration factor for the CT 
specimen is roughly five times greater than that for the SEN specimen, 
the gross stress in the SEN specimen would have to be five times greater 
than a CT specimen of the same crack length. This much higher gross 
stress in the SEN specimen is believed to be responsible for the observed 
difference in the extent of specimen heating. As such, one must proceed 
cautiously when attempting to apply, in a design situation FCP data from 
the ST801 material if component heating occurs. 

Frequency Effects on FCP Response 

The pronounced degree of specimen heating measured in ST801 blends 
at high AK levels provides the first opportunity to determine whether FCP 
rates in a polymeric solid might increase with increasing frequency. As 
noted earlier, fatigue crack growth rates in all other engineering plastics 
have either remained unchanged or decreased with increasing test frequency. 
Any differences between the FCP-frequency sensitivity of the ST801 blends 
and these other materials may well lie in the much greater degree of damping 
that takes place within the 801/101 blend crack tip damage zone. In some 
of these materials, the increase in temperature that takes place in this zone 
is apparently more intense so as to cause general softening of the specimen. 
To verify this point, a series of additional fatigue tests were conducted to 
determine the FCP-frequency sensitivity of nylon blends containing 0, 
25, 50, 75, and 100 percent ST801. These experiments were conducted 
over a frequency range from 1 to 100 Hz with the maximum permissible 
frequency being dependent on the specific blend and the limitations of the 
test machine. For example, tests of pure ST801 were conducted at fre
quencies only as high as 30 Hz since the large compliance of this material 
did not permit the required test loads to be applied with any greater 
machine cyclic frequency. The fatigue results for this material are shown 
in Fig. 6a. Clearly, FCP rates at a given AK level are seen to increase with 
increasing cyclic frequency. ST801, therefore, represents the first polymeric 
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solid reported to exhibit higher fatigue crack growth rates with increasing 
cyclic frequency. As stated above, this behavior is believed to be caused 
by large-scale crack tip damping that results in appreciable specimen 
heating. The smaller degree of frequency sensitivity noted at low AK levels 
in this material is attributed to an associated smaller plastic zone size that 
decreases the amount of hysteretic energy available for specimen heating. 

With a 75:25 blend of ST801 and nylon 66, higher crack growth rates 
again were observed with increasing test frequency, though to a much 
smaller degree as found with pure ST801 (Fig. 6b). This is believed to be 
related to a lesser amount of damping in this polymer blend. The 50:50 
ST801-nylon 66 blend revealed no clearly defined frequency sensitivity, 
reflecting a balance between the deleterious effect of hysteretic heating 
induced specimen softening and a beneficial effect of localized crack tip 
blunting, which acts to decrease the effective AK level at the crack tip 
(Fig. 6c). The results shown in Fig. 6c? suggest that the limited amount of 
ST801 in the 25:75 ST801-nylon 66 blend serves mainly to blunt the crack 
and contributes little to overall specimen heating. Consequently, FCP 
rates are seen to decrease slightly with increasing test frequency, thereby 
showing this material to behave like a number of other engineering plastics 
[3,13-20]. Lastly, FCP rates in the pure nylon 66 showed no frequency 
sensitivity in the range from 1 to 100 Hz (Fig. 6e) [13,24]. As discussed 
earlier, this insensitivity of FCP rates to cyclic frequency in pure nylon 66 
may be attributed to the absence of a resonant condition between machine 
test frequency and the jump frequency of segmental motions associated 
with the j8-damping peak [13-16]. 

When the results shown in Fig. 2 and 4 are reexamined, it is desirable 
to separate specimen hysteretic heating effects from fundamental differences 
in fatigue response among the various nylon blends examined in this investi
gation. This may be done by making FCP data comparisons at a lower 
test frequency—say 1 Hz. Such a comparison is made in Fig. la, where 
reduced FCP rates are shown to correspond to increasing ST801 content. 
Note that the greatest influence of ST801 additions on fatigue resistance 
occurs at lower concentrations and becomes minimal at concentrations 
greater than 75 percent. This behavior closely parallels results reported 
previously for the PVC-MBS rubber-modified system [7]. 

As a final note, plastic zone corrections and modulus normalization of 
these 1-Hz FCP data clearly reveal that ST801 exhibits the greatest fatigue 
resistance (Fig. lb). The fact that the ST801 fatigue resistance ranks 
highest when evaluated at 1 Hz as opposed to 10 Hz is attributed to speci
men heating and associated loss of stiffness at the higher test frequency. 

Conclusions 

The fatigue resistance of Zytel ST801 (an impact-toughened nylon 66), 
nylon 66, and 25, 50, and 75 percent blends of these two compositional 
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FIG. 7—Fatigue crack propagation behavior in Zytel 801/101 blends tested at 1 Hz—(a) 
uncorrected data, and (b) data corrected for crack tip plasticity and normalized with respect 
to elastic modulus. 

extremes has been examined with a significant reduction in FCP rates 
being observed with increasing addition of ST801 to pure nylon 66. The 
relative ranking of the various blends was found to depend, however, on 
the stress intensity factor range, AK, and test frequency. A considerable 
degree of hysteretic heating has been noted in blends containing large 
amounts of ST801 with crack tip temperatures in moisture equilibrated 
ST801 recorded to be as high as 125°C (257°F). Experiments have shown 
that FCP rates in ST801 nylon 66 blends either increase, decrease, or 
remain unchanged as cyclic frequency is increased. By itself, ST801 rep
resents the first polymeric solid reported to exhibit higher fatigue crack 
growth rates with increasing cyclic frequency. It is proposed that these 
FCP variations reflect the balance between gross hysteretic heating (which 
lowers the elastic modulus overall) and crack-tip blunting (due to highly 
localized heating). 
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ABSTRACT: The objective of this paper is to examine the general utility of a /-based 
analysis of cyclic plasticity aspects in fatigue-crack growth. Preliminary analysis of data 
which indicates / may be appropriate is reviewed, and it is shown that these data repre
sent a unique test case where cyclic plasticity aspects may be inconsequential. Details of 
the /-integral are elaborated in the sense of possible limitations to the usefulness of the 
deformation theory in applications to cyclic plasticity. The phenomenology of fatigue 
crack growth under variable amplitude loading is reviewed, and residual deformations 
and stresses at the crack tip and in the wake of the crack are identified as essential 
features of the history dependent flow process associated with crack growth. Each of 
these aspects is elaborated and discussed with regard to the use of a single characterizing 
parameter; first for stationary, then for growing cracks. It is observed and concluded that 
/controlled near field (/NP) must be used on a cycle-by-cycle basis if a /based analysis is 
to potentially account for cyclic plasticity. A number of crucial analytical and experi
mental tests of the ability of / ( /NP) to adequately characterize these effects are 
enumerated. It is also concluded that the use of a single parameter/based analysis for 
fatigue-crack-growth assessment in structures subjected to variable amplitude loading 
may be tenuous. 

KEY WORDS; J-integral, cyclic plasticity, / near field, fatigue crack growth, defor
mation theory, fractures (materials), crack propagation 

The last twenty years have been witness to a renaissance in the design-
analysis philosophies and technologies related to the structural fatigue 
damage process. Toward the end of the 1950s, Paris et al [1,2]^ made use of 
the formalization of Irwin [3,4] that characterized the linear elastic near 
crack-tip stress field to describe the fatigue crack growth rate in tension 
panels. Somewhat later, in the early 1960s, Smith [5] introduced the concept 
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that fatigue life was controlled by local stresses and strains and pointed out 
the importance of notch root residual stresses. Some years later, these 
thoughts were echoed by Grover [6] and thereafter by Crews and Hardrath 
[7] in 1966 and by Topper et al [8] in 1968, the latter suggesting the local 
stress-strain approach in the context of Neubers' [9] rule. In 1968, Rice [10] 
(and others, for example, see Ref 11), introduced the concept of a path in
dependent (/) integral that was advanced as being useful to describe the 
nonlinear near crack-tip field. Also in 1968, Neuber [12] demonstrated that 
the near field surrounding a crack-like defect obeyed the same form of rela
tionship derived for notches. Finally, in that same year, Hutchinson [13], 
and Rice and Rosengren [14], developed descriptions of the plastic stress-
strain fields for power-law hardening materials in the context of tension 
loaded center cracked (Mode I) panels. 

The first noted analytical developments were derived and presented in the 
restricted and rigorous framework associated with continuum mechanics 
analyses. These developments have nevertheless been adapted to the solution 
of a broad range of practical problems. Paris et al [1,2], Schijve et al [15], 
and Topper et al [8] etc., postulated two basic technologies in the context of 
these developments. These authors utilized parametric forms extracted from 
the rigorous mechanics in conjunction with the assumption that such 
parameters establish similitude between the damage rate process in a struc
ture and that operative in a reference data base [16]. One of these 
technologies [8] sought to assess the damage rate in terms of crack nucleation 
using small diameter smooth specimens. The second [1,2,15] sought the 
prediction of crack growth using data developed from sharply flawed 
geometries. Both technologies therefore, facilitated the use of simply 
developed test data to assess the damage rate in a structure. 

The just noted nucleation and growth technologies have evolved along 
divergent paths until recently. The nucleation technology utilized a non
linear, history dependent approach to assess damage at notch roots and other 
fatigue critical locations. A nonlinear approach was adopted largely as a con
sequence of test data for notched coupons that showed nominal stress based 
(linear elastic) analysis failed to account for local residual stresses developed 
during a preload cycle in otherwise constant amplitude cycling (for example, 
see Ref 16). On the other hand, carried by early successful correlation of 
constant amplitude data and the simplicity of linear elastic mechanics as 
compared to nonlinear solutions, the crack growth technology focused on 
linear elastic characterization of the driving force for crack growth, elastic 
stress intensity factor, K. More recently, because of inherent limitations 
in linear elastic fracture mechanics (LEFM) analysis in situations where 
either the near crack-tip plasticity is not so confined or the flow process and 
the displacement field in the wake of the crack exhibit a history dependence 
due to variable amplitude cycling, there has be€n a tendency towards in
elastic measures such as the J-integral for fatigue crack growth analysis. 
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The purpose of this paper is to assess the utility of single parameter fields 
such as J-integral to characterize the inelastic flow process during fatigue 
crack growth. In so doing, the tie between the idealized rigorous mechanics 
of this flow process and the practicalities of the history dependent crack 
growth process is examined. Consider this tie in the context of Fig. 1 which 
schematically depicts the role of logic and models in the evolution of engineer
ing analysis. Note that the deductive logic, rigorous mathematics, and ra
tional mechanics of the applied mechanics discipline are transformed into 
useful and practical physical models for engineering analysis through induc
tive logic and sometimes arbitrary postulates. Often this inductive logic and 
the arbitrary postulates begin as rational speculation initiated and substan
tiated by experiments and observation. With a view to Fig. 1, this paper 
discusses the assumptions inherent in nonlinear mechanics analysis in the 
context of the phenomenology of damage and, through inductive logic and 
postulates, examines the applicability of the analysis in terms of appropriate 
experimental results. Because many of the issues considered relate to the 
history dependence of the plastic flow process, analogies will be drawn with 
the corresponding problems in the now well developed nonlinear nucleation 
analyses [17-19]. 

Specifically, the paper concentrates on a J-integral analysis of fatigue 
crack growth, since related preliminary data correlation is encouraging [20]. 
First, the fundamental postulate that some measure of / relates one to one 
with an increment of crack advance is examined in terms of current observa
tions. Of particular concern here is the assumption of similitude in the 
damage rate processes made when the rate process in some laboratory test is 
used to assess the damage rate in a structure or other specimen geometry. 
Next, the phenomenology of fatigue crack nucleation and growth is ex
amined to show that both can be considered to be a consequence of reversed 
plasticity. Because both share a common mechanism, observations related to 
the history dependence of the flow process in nucleation analysis can be used 
later to help resolve corresponding problems in propagation analyses. 
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FIG. 1—Role of logic and mechanics in developing engineering analysis. 
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Thereafter, inelastic fields in cracked domains are discussed in terms of the 
J-integral and the related assumptions of the deformation theory are 
elaborated; both stationary and growing cracks being considered. Then the 
cyclic inelastic flow process in singly and multiple connected domains is 
elaborated, and an approach, which facilitates the use of the deformation 
theory to model this process, is advanced, discussed, and demonstrated as 
being useful in the context of stationary cracks. A rational definition for the 
range of /; A/, follows directly from these considerations. Problems 
associated with the growing cracks are then examined. Finally, critical 
analytical and experimental tests of the general utility of / to deal with 
fatigue crack growth analysis which follow from this consideration of both 
stationary and growing cracks are elaborated. 

J Based Correlation of Fatigue Crack Growfli Rate Data 

Over the last decade, several authors have addressed fatigue crack growth 
analysis under, or near, limit load-displacement cycling. Early efforts [21] 
centered around the inelastic stress-strain intensity concept introduced by 
Neuber in 1968 [12] and by others [13,22], More recently, interest has 
focused on the use of a/based analysis [20,23,24]. The form of these descrip
tions of the near crack-tip field can be shown to be comparable. Not surpris
ingly then, data correlation on either basis yields comparable results. As 
shown in Fig. 2, reproduced from Ref 20, the degree of consolidation 
achieved using such inelastic parameters is remarkable at least for crack 
growth in laboratory samples under a cyclic history with a monotonically in
creasing peak cyclic value of /. 

Several open questions remain regarding the consolidation shown in Fig. 
2. To what extent is this correlation a consequence of the character of history 
imposed? That is, can any general conclusions be drawn in view of this cor
relation of data developed for a cyclic history with a monotonically increasing 
peak value of/? Also, how can one apply the results of this correlation to the 
analysis of crack growth in structural geometries subjected to other constant 
or variable amplitude histories? That is, what requirements must be imposed 
to establish similitude between the damage rate process in this test data and 
that in other components subjected to other loadings? 

There are two central issues examined by such questions. First, under 
what circumstances can a deformation theory crack tip characterizing 
parameter like/be used in cyclic loadings? Second, given a correlation such 
as in Fig. 2, which suggests a one to one correspondence between some 
measure of / and fatigue crack growth rate, what requirements must be im
posed to ensure similitude between the damage processes being compared? If 
such are necessary, will these requirements be so restrictive that data, such as 
in the figure, will have no general utility? Both central issues will be ex
amined in this paper. 
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FIG. 2—Correlation of fatigue crack growth data in terms of J and K [20]. 

Before passing to further consideration of these questions, some comment 
on the approximate and preliminary nature of the data analysis of Fig. 2 ap
pears appropriate. First, a deep-crack compliance based approach was used 
to estimate the maximum value of/associated with crack opening, /max- This 
formula was applied in situations where the remaining ligament supports 
other than bending stresses. Thus, there may be some question as to the in
terpretation and accuracy of / . Second, this formulation was applied, for a 
portion of the data correlated, in situations where the apparent value of / j ^ 
for the material was significantly exceeded so that their stationary crack 
value of /max neglects the decrease in J^^^ due to stable tearing at the crack 
tip. Indeed, it is quite remarkable that this tearing, coupled with fatigue 
crack advance (two crack advance mechanisms), are correlated by the value 
of/max-

Such problems aside (as Paris has noted "Mother Nature is not too harsh 
after all" [25]), the definition of A/ of Bowling and Begley [20] does con
solidate these data. With regard to Fig. 3, also reproduced from Ref 20, note 
from Part (a) of the figure that the ratio of the minimum to maximum loads 
changes from cycle to cycle (that is, R changes in a LEFM-A.fir context). But 
more importantly, Part {b) shows that the value of/max (or A/) increases on 
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FIG. 3—Aspects of a J based analysis for fatigue crack growth [20]—(a) load versus deflection 
hysteresis loops during deflection control to a sloping line: and (b) variation with cycles of crack 
length and J. 

each cycle. The question might be asked of this and other such data con
solidations [23,24]—does 7 (AT) work because its value is monotonically in
creasing as in its successful applications to elastic plastic crack initiation in 
fracture toughness testing? (That is, does A/ work because prior cyclic near 
tip history is wiped out on each new cycle?) If so, these data represent a 
unique test history that may be of limited direct significance either in at
tempts to develop fatigue crack growth rate data in the region of general 
yielding, or in demonstrating the utility of / in fatigue crack growth 
analysis. That it is essential to account for such history effects may be infer
red by analogy to their significance in nonlinear nucleation analysis [19,26]. 
But before this analogy is ascribed significance, it must be shown that fatigue 
crack nucleation and growth share a common mechanism, as discussed next. 
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Phenomenology of Fatigue Crack Nucleation and Growth 

The fatigue damage process can be considered as the coupled action of 
cyclic inelastic strain and tensile stress. It is considered to occur in the 
uniform section of a low cycle fatigue (LCF) test specimen or at a crack tip. 
That is, an element of material suffering fatigue damage does not know if it 
is in a smooth LCF specimen, at a notch root, or at a crack tip. (However, it 
does suffer different damage rates that pertain to the geometry and its loca
tion within it.) Several authors have presented microstructural evidence 
which support this posture. Laird [27] has indicated that the mechanical 
response of the LCF specimen is a macroscopic measure of the reversed 
plasticity damage process leading to nucleation. Thus, variables such as 
stress and strain which depict mechanical response may serve as measures of 
the reversed slip damage process during nucleation. Comparable to nuclea
tion, Neumann [28], Broek [29], and others indicate the growth of nucleated 
cracks is a geometric consequence of slip. As such, during crack growth, 
measures of the propensity to slip (near crack tip stress and strain) or the ex
tent of slip (changes in crack tip geometry or position) may serve as near 
crack tip measures of the crack growth process [30]. 

In view of the foregoing, the key point is that nucleation and growth share 
a common mechanism so that understanding gained in modeling nucleation 
can be brought to bear, by analogy, to models of growth. Given that nuclea
tion and growth share a common mechanism, it follows that the need to 
define nucleation and growth regimes is artificial in a micromechanics sense. 
It has, however, been convenient to introduce such a division because the 
total damage process spans a scale from angstroms to meters—ten (or more) 
orders of magnitude. Indeed, the above noted two basic technologies evolved 
largely for this reason. (That is to say, the macromechanics which deal with 
macrogrowth in the context of a homogeneous isotropic media cannot be ex
pected to deal with the failure process that leads to slip band decohesion and 
nucleation. Similarly, the macromechanics that deal with nucleation cannot 
be expected to deal with failure at the atomic scale.) 

The two just noted basic technologies, therefore, find their application to 
artificial phases of the total damage process by virtue of the data base used to 
calibrate them. One, the LCF geometry, emphasizes nucleation and the 
associated damage process. The other, the fatigue crack growth (FCG) 
geometry emphasizes the macrogrowth damage process. Neither explicitly 
models the damage process that occurs, rather they utilize parametric forms 
that reflect this process and must therefore be calibrated using test data.^ 
Both basic technologies assume that if the damage processes are similar in 
different components, the damage rate in one can be assessed using data 

•'it is significant to note that many authors have postulated apparently successful models of 
constant amplitude fatigue crack growth based on LCF concepts [31]. Others have successfully 
formulated models of LCF behavior based on FCG analysis [24]. Such formulations often com
pare closely; what differs are the empirical constants and their values. 
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developed from the other. As noted earlier, some circumstances under which 
this similitude between damage processes is difficult to achieve due to in
elastic (history dependent) action will be elaborated in terms of the / based 
near-tip stress-strain measures of the propensity to slip discussed in the next 
section. 

Stress-Strain Fields in Craclced Domains 

Several reviews exist that document the nature of the inelastic stress-strain 
field in a cracked domain. Early reviews [32,33] have concentrated on anti-
plane problems. Subsequent reviews [34] have addressed inplane problems in 
power-hardening materials in the context of the deformation theory of 
plasticity. Because in the present, the authors consider fatigue crack growth 
where crack extension increments are small in a given cycle, the near-tip field 
is examined in the sense of small strains and rotations. This is not to say that 
such a field exists at a propagating crack tip. Rather it is done in the spirit 
that such a field may, through parametric representation, characterize the 
driving force for crack growth. In this respect, it is presumed that inade
quacies in this representation are geometry independent and occur to the 
same extent from crack tip to crack tip in a given material. As noted earlier, 
if such is the case, the increment in crack advance is uniquely characterized 
by the parameter and is simply determined by calibration tests. For the linear 
elastic case, K [3] is such a parameter. 

Near Crack-Tip Field and the J-Integral 

For present purposes, suffice it to state that near tip stress and strain 
fields'* can be characterized [13,14] with reference to Fig. 4 by 

- (-L-V^'^^' + ̂ h in X 

(1) 

The nomenclature is defined in Fig. 4 except for^j, (6,n) and f,̂  (d,n), which 
are universal functions of 6 that depend only on n, and for/, which denotes 
the J-integral [10] which is a measure of the dominant singularity at the crack 
tip. McClintock [35] suggested the form of Eq 1 with regard to the work of 
Refs 10 and 13. 

•"The term near field is taken herein to mean the dominantly proportional field characterized 
by 7. 
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The integral / is defined with a view to Fig. 5 as 

Wdx2 — tijOy —-'• ds 
T \ dxj 

(2) 

for two dimensional problems. In the equation, njaij is the traction vector 
defined by the outward normal itj to the contour T, ds is an increment of 
distance along the contour, M, is the displacement vector, and Wis given by 

W = W(ey) Opg depg (3) 

Again in the context of the deformation theory, / can be defined with 
reference to Fig. 6 as [10,34] 

J = -
djU/B) 

da 
dP 

da ^ 
38^ 

da 
dP (4) 

R= Region of intense flow 

R « r « planar dimensions of the problem 

Power-Law Hardening 
Wlises ^Aateriat 

FIG. 4—Elastic plastic field in relation to J. 
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In this equation U/B is the potential energy normalized per unit thickness. 
Under limit load conditions, dP/da is constant, so that 

(5) 
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for displacement control. In cracked domains characterized by a single 
length dimension involving the crack size, Rice et al [36] have shown that J in 
Eq 4 can be evaluated in terms of a pseudo-potential energy defined as the 
work producing displacement of the load due only to the presence of the 
crack. Thus, with a view to Fig. 7 

/ = — X area 
Bb (6) 

Restrictions to Ensure the Validity of J 

/ is defined in the context of the deformation theory and as such is subject 
to certain restrictions. Most notably, VK(ey) is a path independent function so 
that in a plasticity sense, the loading must be monotonic and 

« / X5, (7) 

where €,/is the plastic part of the total strain tensor, €,/, (e,/ = tif + ef, 
iff = elastic part), Sy is the deviatoric stress tensor, and X is a scalar pro
portionality factor. Also / is defined in terms of small strains and rotations, 
so that the region of intense plastification at the crack tip is not inherent in/. 
If the single parameter / is to characterize the fracture process, the near field 
must be dominant, that is, the flow process must be / controlled [37\. 
Related to this is the issue of path independence. McMeeking's [38] conclu
sion is that / is effectively path independent within the region where small 
strain theory is applicable. But, as noted by Rice [39], situations where prior 
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FIG. 7:—Evaluation of J for a deeply cracked beam. 
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cycling (as in fatigue) introduces residual stresses could lead to path 
dependence at distances that are large compared to the crack tip opening 
displacement (CTOD). 

There are also limitations to the utility of a parameter defined for sta
tionary cracks subjected to monotonic loadings when extended to applica
tions where the crack advances and the loading is cyclic, as in the fatigue 
crack growth process examined here. One must first define a range of/, A/, 
that is consistent with both LEFM and the cyclic control condition. Given 
such a definition, one must also establish the increment of crack growth over 
which the driving force for growth is characterized by / for the crack's initial 
position. These issues are elaborated on, in turn, by analogy to crack ad
vance under monotonically increasing load in the following. 

Clearly, the applicability of the J-integral rests on how well the assump
tions of the deformation theory of plasticity are justified for the problem 
under consideration, which as noted above requires proportional stressing 
throughout the body. Under monotonically increasing load or load-point 
displacement, crack growth invariably involves unloading at the trailing por
tion of the advancing crack tip and some nonproportional loading. (Cyclic 
loading gives rise to cyclic plasticity and its residual effect on the crack tip 
which in turn creates a more complex stress-strain field and nonproportional 
loading.) Unfortunately, it is rather difficult to quantify these effects in terms 
of crack tip characterizing parameters like / at this time. Fortunately, 
however, the strict requirements of the deformation theory, can be somewhat 
relaxed in some circumstances [40]. 

The satisfaction of Drucker's [41] basic requirements (inequalities) for a 
strain hardening material may be assumed as the basis for justification for 
such relaxation. For example, a consequence of Drucker's inequality on 
positive work requirements for a yield surface which is not smooth (no unique 
normal) is that the strain rate, dei/, must merely point towards the convex 
region bounded by the cone of normals to the yield surface [40]. Deformation 
theory may still be used for further successive plastic deformation as long as 
the strain vector, deyP, points toward the convex region and is bounded by 
normals to the yield surface at the point. It is in this spirit, that even though 
departure from proportional strains may occur, the J-integral may be used as 
the crack-tip characterizing parameter given that other restrictions, such as 
those just set forth, are imposed. 

Restrictions, postulated in the context of crack growth under mono
tonically increasing load or load-point displacement, regarding the existence 
of predominantly proportional strain [37] may be interpreted for fatigue 
crack growth if the effects of cyclic plasticity, crack growth, etc., can be 
viewed as resulting in a region of nonproportional strains. If after Â  number 
of cycles of fatigue loading, the region of proportional strains dominate, that 
is to say if predominantly proportional strains still exist, then / will still con
trol the damage process occurring at the crack tip. By analogy to Ref J7, the 
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dominance of proportional strains requires that (a) the crack growth, da, 
should be small compared to the characteristic length of the region con
trolled by the singular crack tip field, Eq 1, and {b) the parameter 

d/ A 
da J » 1 (8) 

where 

dJ = the increment of Jin N number of cycles, 
J = the maximum value of Jin iV cycles, 

da = the crack growth in N cycles, and 
b = the remaining ligament. 

The lowest value of w which ensures the dominance of proportional field is 
not known yet. But, co-values as low as ten have been found to work well for 
stable crack growth under monotonically increasing load or load point-
displacements. For fatigue crack growth, the lower limit on w has to be found 
experimentally. 

Consider now the operational definition of the range of / , AJ, for fatigue 
loading. For a given material and type of constraint ahead of the crack tip, / 
can be expressed as a function of applied load and crack length (Eq 4). 
Under monotonically increasing P or 6, there exists a unique value of /. 
However, if the same equation is applied for a loading-unloading cycle in a 
spectrum, the value of 7 will not be unique because it will depend on the past 
history of cyclic plastification. In order to account for the hysteresis effects 
which will vary from one situation to another (for example, a laboratory 
specimen to a real structure) it then becomes necessary to define / on cycle by 
cycle basis, which in turn means that the stress-strain field left over from the 
previous cycle should be incorporated in the next cycle. Moreover, during 
crack growth, the contribution t o / due to the increment in da should be in
cluded. In fatigue crack growth, the contribution of this term is small in a cy
cle, but may become significant over an accumulated number of cycles. 
Finally, the problem of bifurcation in the force displacement path due to 
crack closure must be also addressed. 

Each of the just noted restrictions on the validity of the deformation 
theory, the cyclic uniqueness of/, and the issues related to/based similitude 
in the damage rate process, are dealt with after the next section. 

Having defined the formalism to characterize the near tip field in terms of 
Fig. 1, the applied mechanics description of the idealized problem, the 
physical reality that must be characterized in an engineering analysis of the 
problem will be presented in the following section. Thereafter, these two will 
be tied together through inductive logic and postulates substantiated by 
observation and then problems in evolving the rigorous mechanics to deal 
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with plasticity aspects of fatigue crack growth will be identified and dis
cussed. 

Cyclic Plasticity in Cracked Domains 

Phenomenology 

If attention is limited to a conservative (linear) system, Eq 1 indicates the 
\/r singularity in the product of stress and strain, for the nonlinear case ap
pears as the usual l/Vr in either stress or strain found for LEFM. As a conse
quence of the linear elastic response, it follows from Eq 1 that 

/ = ^ = G (9) 

where 

a = 1 for plane stress and 1 — i'̂  for plane strain, and 
G = the Griffith energy. 

Equation 9 is considered valid into the region of confined flow since such a 
restriction is imposed on K. Clearly, however, the equation only has meaning 
in a practical sense so long as K establishes similitude between cracked 
bodies. Similitude in the sense of LEFM leads naturally to a restriction on 
the ratio of plastic zone size to crack size and other relevant dimensions of 
the cracked body. Likewise it requires that the fields through and into which 
the crack grows are comparable. As such, load histories that lead to different 
elastic-plastic distributions of stress and strain preclude the use of the single 
parameter K to define these distributions. Thus, while the far field stresses 
and crack geometries may be identical (identical K), K provides a unique 
characterization of stress-strain fields only if the loading histories are also 
identical; it is likewise for a far field assessment of the near field through the 
presumed path independence of the J-integral. Such a point may seem trivial 
in the context of fracture criteria, and indeed it is since the loadings increase 
monotonically. It also may seem trivial for cyclic (fatigue) loadings if the 
cyclic histories do not create residual fields that differ. ̂  

To be ascribed any general utility in fatigue crack growth data correlation 
or in analysis of crack in structural configurations, a/based analysis must be 
capable of accounting for history dependence. Thus, the problem arises: 

^It might be noted in this regard that the correlation of the fatigue data by Dowling [20] was 
found for cyclically increasing A/ histories, some values of which were well above / j ^ for the 
material examined. It should be emphasized that previous successes with fatigue crack growth 
data correlation for near limit load cycling using an inelastic stress intensity [21] have been 
achieved only in the context of a constant amplitude history. 
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given one can suitably define a range in / for fatigue tests, how does one ac
count for differences in the history in the structure as compared to that in the 
reference data base developed in the laboratory sample.^ Differences in the 
history between the laboratory idealization of constant amplitude cycling and 
service loadings are apparent as retardation, crack closure, etc., in LEFM 
analysis. These effects are a manifestation of current plastic action on the 
near tip stress-strain field and of current and prior plastic flow on the force 
displacement field both ahead and in the wake of the crack. A variety of 
phenomenological observations clearly indicate the significant impact of 
these plasticity related consequences on the growth rate [42]. Likewise, the 
material ahead of the crack plastic zone undergoes cyclic damage that may 
change the microstructure as compared to constant amplitude. Similitude in 
this complex scenario may be difficult to approximate if not impossible to 
achieve. The extent to which it is achieved may not be important for histories 
that erase the effects of prior plastic action. But for histories that involve a 
range of applied stresses or blocks of small and large stresses, the growth rate 
at lower levels will be sensitive to microstructural preconditioning [43]. 

Consider this phenomenology in the context of similitude between damage 
processes; one is a reference state and the other occurs in some other test 
specimen or in a structural component. For a reference state such as that 
represented by the data in Fig. 2, some numerical value of / relates to a 
history independent flow process in a cracked domain which, except in its 
latter stages at large crack sizes, reflects limited closure of the crack faces. 
Furthermore, the range of/presented on the abscissa has been defined in a 
fashion that attempts to circumvent closure problems, consistent with the re
quirement that the work producing displacement be due only to the presence 
of an open crack. For this range of/to relate uniquely to crack growth, it is 
necessary that / be computed in accordance with a definition that is valid for 
the problem at hand, the computed value of/uniquely reflects the near field, 
and the material at the tips of two fields with equal / possess a statistically 
equivalent resistance to crack growth. 

The present paper addresses only the validity and uniqueness of/, leaving 
the third aspect of microstructural preconditioning for subsequent examina
tion. These two will be examined in remaining segments of this section. 
Cyclic plasticity in gradient fields will be examined in terms of recent ex
perimental and analytical studies [19,26,44]. The analogy between these 
studies and the response of cracked domains will be developed for stationary 
cracks in terms of both force-displacement and stress-strain fields. 

Cyclic Plastic Flow in Gradient Fields 

The just noted factors occur at crack tips and are a consequence of the gra
dient due to the crack. If the crack is far removed from other stress raisers that 

*Dowling expressly avoided such effects (.[20], p. 95). 
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may elevate/sT (or/) as compared to a cracked panel, then the gradient is due 
solely to the crack. To the extent that crack advance is small in fatigue 
loadings as compared to elastic plastic fracture, some insight as to the 
plasticity at a crack tip can be gained from a consideration of that at a notch 
root. For such purposes the crack is presumed stationary.^ Of course, 
because the flow at the crack tip is more confined, near tip constraint i? not 
reflected to the same extent. The flow processes at cracks and notches may, 
however, be analogous. This section will examine this analogy in the context 
of models of the gradient fields developed in nonlinear analyses for crack 
nucleation, for example, Ref 19. 

Notch Analogy to a Stationary Crack 

Linear elastic approaches to assess crack advance (LEFM AA"; Refs 
1,2,15,16) and crack nucleation (LEFM ^K/sfp; Ref 45) equate the damage 
rate to a parameter that is linear in far field stress. Thus, the damage rate is 
postulated as being directly proportional to the far field stress. Nonlinear 
analysis for crack nucleation, however, estimates the damage rate in terms of 
the far field stress transformed into critical location measures of damage, 
then damage is assessed. Thus, in contrast to linear approaches that involve 
a single step to assess damage, nonlinear nucleation analysis involves two 
steps. It will now be demonstrated that the first of these nonlinear transfor
mations, illustrated in Fig. 8, must be applied on a reversal-by-reversal basis 
if the merits of nonlinear analyses are to be exploited. By analogy, it will be 
postulated that / must likewise be applied reversal by reversal if the utility of 
this nonlinear parameter is to be exploited fully in fatigue crack growth 
analysis. 

Nominal load 
history 

Component geometry; notch 
and crack configuration 

TRANSFORMATION 

Mechanics analysis for nominal 
stress transformation to notch-

root strain and stress 

Model of material 
deformation response 

TRANSFORMATION 

Cycle-counting damage 
assessment and 
accumulation 

OUTPUT 

Total life 
prediction 

INPUT 

Model of material-
crack initiation or 

propagation behavior 

FIG. 8—Essential features in the direct fatigue-analysis procedure. 

^The assumption of a stationary crack may not be physically realistic. If on one reversal the 
crack grows out of the /-controlled regime or extensive unloading occurs, the utility of 7 as a 
characterizing parameter is questionable. For other situations, the assumption of the stationary 
crack does not impact on the analogy drawn. 
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The analogy is developed first in terms of the deformation response of an 
element of material loaded uniaxially and subjected to a variable amplitude 
strain sequence, as shown in Fig. 9a. With reference to the figure, note that 
such hysteresis typically exhibits the many transient responses characteristic 
of metals subjected to cyclic load identified in Part b of the figure. Constant 
amplitude transients, cyclic hardening-softening and cyclic relaxation (the 
counterpart of cyclic creep in load control), have been identified and 
modeled since the 1950s and 1960s, respectively. Memory, the term applied 
to the material's repository for prior inelastic strain sequences, is illustrated 
in Part c of this figure. The notion of memory has been identified in 
rheological studies since the 1950s. The response shown in Part a can be 
simulated in a very simple way if the memory is accounted for. Such uniaxial 
models can be extended to multiaxial behavior through the introduction of 
equivalence criteria, but again memory must be accounted for in these 
models. 

Models to simulate responses such as that of Fig. 9a have been postulated 
in the context of the deformation theory [9,26,44] and, as evident in Fig. 10a, 
are quite accurate. The essence of these models is that a unique relationship 
between stresses, a,̂ , and strains, e;,, exists in six dimensional stress and 
strain spaces for either ranges or amplitudes, provided that hysteresis 
segments defined by these relationships are established from reversal end 
point to reversal end point and memory is accounted for in the models. On a 
given reversal, the loading is monotonically increasing in view of the sign con
vention of Fig. iOb. Such a path is characterized by a form that embodies Eq 
7, which may be stated as 

o = t{t) (10) 

On a given reversal, such a path could be also expressed in terms of potential 
functions 

da at 

4>{a)= eda and \Pit) ^ adt (11*) 
Jo Jo 

Equations 11a and b are strictly valid for conservative systems in the same 
sense that 7 has been derived. (See Eqs 2, 3, and 7.) The essential point is 
that equations of this form have been successfully applied in engineering 
models of cyclic stress-strain response. This success follows, however, only 
when the equations are applied cycle by cycle and memory is accounted for in 
the models. 

To draw an analogy between the above cycle-by-cycle application of the 
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FIG. 9—Essential features of the cyclic plastic flow process—(a) hysteresis in the cyclic plastic 
flow process for a uniaxial sample; (b) cyclic inelastic material deformation behavior; and (c) il
lustration of memory of prior plastic deformation. 
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"v <̂ i 

FIG. 10—Modeling of cyclic plastic flow process—(a) prediction superposed on test results for 
a beam in pure bending (after Ref 19); and (b) sign convention for loop segments. 

deformation theory and application of / requires the existence of similar 
functions at the scale of the cracked domain (compare Eq 3). Therefore, con
sider next the force-displacement response of a doubly connected domain, a 
circularly notched plate, results for which are shown in Fig. 11a. Note from 
this figure that the force-displacement response exhibits the same character 
as that developed in stress-strain space for a similar forcing function (com
pare Figs. 9a and 10a). That is to say, the character of the response in stress-
strain space is conserved in this particular transition from material element 
to structure.* 

In view of the foregoing, for the class of structures and loadings 
represented in Fig. Ua, the force-displacement response apparently can be 
stated as potential functions analogous to Eqs 11a and b as long as the 
segments defined by these relationships are assembled in accordance with the 
structures memory of prior inelastic flow. Thus, by analogy to Eqs 11a and b. 

*This has been demonstrated for a variety of model structures [19\. 
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(a) Test Results (b) Prediction 

FIG. 11—Comparison of the predicted and measured far field force-local strain responsefora 
notched plate subjected to variable amplitude loading (after Ref 19). 

segments of the force-displacement response shown in Fig. 11a can be ex
pressed in the general form 

P_= ^(A) (12) 

With regard to Fig. life, note that when hysteresis segments are defined by 
Eq 12 and coupled together in accordance with the materials (structures) 
memory for prior inelastic flow, the response in Part (a) of the figure can be 
accurately simulated. The key point here is that potential functions such as 
Eqs 3 and 10 through 12 can be utilized in engineering models of the force 
displacement response of a doubly connected domain. Care must, however, 
be taken to apply this deformation theory on a reversal-by-reversal basis con
sistent with the concept of memory; otherwise, deformation theory will, in 
general, lead to significantly erroneous predictions. It follows then by 
analogy that / must be likewise applied on a reversal-by-reversal basis if this 
deformation theory is to prove useful in fatigue crack growth analysis. 

Note that the force displacement response just discussed involves a far field 
(nominal) force and the displacements integrated over a short gage length for 
an element of material at the notch root. The question arises—does the 
response in all elements follow such a function and is this response unique? 
Recent work [19,46] suggests that, if the strains and rotations are small, 
bifurcation and global instability are precluded, the external loading is pro
portional, and the material is cyclically stable, all material elements are pro-
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portionally stressed and deform in-phase with the loading.' In such cases, 
the force displacement relationships expressed as potential functions are 
postulated as being unique. Of course, numerically different functions exist 
for different material elements. With regard to cracked domains and/, such 
functions are postulated as being unique for a stationary crack outside the 
zone of intense plastic flow. Such functions are dependent strongly on the 
crack size in the same way that they depend on the notch configuration. For 
propagating cracks, such functions are postulated as being unique so long as 
unloading occuring during extension is not significant. This, of course, limits 
the extension on a given reversal. 

Consider in view of the foregoing, the evaluation of / based on its pseudo-
potential energy interpretation. As given earlier in Eq 4, /can be interpreted 
as the potential energy difference between two identically loaded specimens 
of unit thickness having neighboring crack sizes [10]: J = —dU/da. With 
respect to Fig. 6, the P — 8 relationships involved are unique in the context 
of the preceding discussion. (Since such an approach to evaluate / is valid 
regardless of the extent of the elastic-plastic field or the size of the crack, care 
must be taken to use the work associated with the crack, (that is, 
ĉrack = t̂otai ~ n̂o crack-) Consequently, unique values of Jda or / for the 

case of certain deep crack configurations are found as a function of load and 
crack length from compliance techniques [36,47,48]. Now, in the case of 
fatigue cycling, the range / would sensibly be equal to 

A/ = |/i - /ol (13) 

along a given segment, where/Q and/i are the values of/ at the end points of 
the P — 5 segment as illustrated in Fig. 12. As indicated in the figure, the 
near field value of A/ is equal to J^^^^ over a given cycle. 

Whereas Eq 12 defines hysteresis paths that are geometrically similar for 
both ascending and descending paths, such paths are not always obtained in 
the force-displacement response of cracked domains. Indeed as evident in 
Fig. 3a, bifurcation in these paths does occur due to crack closure and con
comitant load transfer across these faces during both loading and unloading. 
As noted earlier, such bifurcation invalidates the use of deformation theory 
for models of notch response such as that in Fig. 11. 

Clearly closure and the associated bifurcation indicate / is not globally 
path independent. But the utility of / in such cases is not contingent on 
global path independence. It does, however, require that / be, to an 
engineering approximation path, independent in a portion of the cracked 

' in multiaxial states, such relationships exist only in the sense of postulated equivalence 
quantities. Principal strains and stresses computed from equivalent strains do not necessarily 
satisfy equilibrium or compatibility. 
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FIG. 12—Definition of Alfor an example case of a deeply cracked beam. 

body that contains the crack tip and plastic zone. Expedient use of / in 
fatigue crack growth analysis would require that the near field response be a 
unique function of the far field load-displacement response provided load 
transfer across crack faces is accommodated. Figure 13 schematically 
characterizes the concept of near field / , /NF, representative of the domi-
nantly proportional field in contrast to the more usual far field value. Of 
course, the range of / ^ F must correspond to that value defined for the 
reference damage data (compare Fig. 2) if the damage processes are to be 
compared. Given /^p is so evaluated, it is reasonable to postulate the exis
tence of closed force displacement loops with geometrically similar ascending 
and descending branches (as in Fig. 9). As such, the response may be 
characterized by the form of Eq 12. Dowling and Begley [20] and Mowbray 
[23] have in their operational definition of AJ based on crack related work 
producing displacement, partially accounted for these possible differences 
between / and /NF-

The just noted use of /NF parallels the essence of the first step in the 
nonlinear nucleation analysis shown earlier in Fig. 8. With regard to 
nonlinear nucleation analysis, this first step is essential in situations where 
far field measures of the damage process (for example, Kt) fail to portray the 
notch root damage rate because of history dependent plastic action. In such 
cases, local residual fields not only relate nonlinearly to, but also may have a 
sense opposite to, the applied far field loading. For such cases, the local con-
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FIG. 13—Concept of near field J in applications to variable amplitude cyclic histories. 

trol condition is provided from [49] either accurate finite element analyses 
(FEM), approximate notch analysis (for example, Neubers' rule) or the 
strain equivalence principle. As evident in Ref 18, this refinement yields ac
curate estimates of the local damage rates. 

Unfortunately, computation of / on a contour near the crack tip does not 
follow from simple rules as those used for notches (for example, Neubers' 
rule). Thus, in a practical sense difficulties remain in both computing and 
implementing J^^. Moreover, it is not clear as to the existence of a / con
trolled near field, /NF, and the demarcation between/pF and/Np. 

Thus far, the uniqueness of / and A/ have been postulated by analogy to 
other applications of the deformation theory to cyclic loading problems. It 
has been noted that, for the uniqueness of 7 to be retained in such problems, 
the J-integral approach must be applied on a load reversal by load reversal 
basis. In the sense that laboratory testing leads to often symmetric closed 
loops in force-displacement space, the reversal-by-reversal application of / 
through A/ for purposes of fatigue analysis requires closed loops be iden
tified in a variable amplitude / sequence such as would be found in some 
structural application. By way of analogy, consider the response shown in 
Fig. 9a. Rainflow cycle counting, introduced in Japan in 1968 by Endo [50] 
and popularized on this continent by Dowling since 1973 [51], is used to 
identify closed loops for purposes of damage assessment in crack nucleation 
analysis. It is known for comparable crack nucleation problems that both the 
range of the damage parameter and its mean value influence the damage 
rate. This is also true for confined plasticity in fatigue crack growth using 

 



88 FRACTURE MECHANICS: TWELFTH CONFERENCE 

LEFM [42]. It is likely then that parameters that couple the range of/ and its 
mean value (compare Fig. 12) such as that form postulated by Walker [52] 
for LEFM analysis may be appropriate.'" Such problems are, however, 
beyond the scope of the present paper. 

Stress-Strain Response in the Near Crack-Tip Field, Stationary Cracks 

Consider now the stress-strain response in the near crack-tip field for a sta
tionary crack. The near crack-tip field exists as a compatible displacement 
field confined by some elastic field in all but limit load cycling cases. Depend
ing on the relative size of the plastic zone embedded in the elastic field, the 
plastic zone will be constrained by the elastic field in a manner which 
depends on the load sequence and magnitude. This constraint leads to essen
tially fully reversed stressing in material elements in the intensely deformed 
region. However, moving away from this zone to the elastic-plastic boundary, 
material elements will sustain a residual stress that may remain active or 
cyclically relax. A region of complex response such as this exists at notch 
roots [49], yet the force displacement response in such regions is still ap
parently unique as is evident in Fig. 11, and so can be characterized in Eq 12. 

The residual stress field near the notch is only apparent when the strain 
field in this zone is mapped into stresses (see footnote 9). As such the ques
tion must be raised—are far field force-displacement estimates of/sensitive 
to this local residual field, which can act locally to either close or open the 
crack and alter growth rates in order of magnitude. •' Again, however, it 
must be emphasized under these conditions that the near field characterized 
by a far field value of / can only be valid if there is path independence 
throughout the body. Consequently, the value of/NF must be evaluated on a 
contour that reflects the near field stress-strain state, that is, in the / 
dominated zone. By analogy to the notch and in light of Refs 19,26,44,46, it 
is probable that all material elements within deform in phase in the near 
field. If such is the case, the deformation theory is valid and/Np is unique for 
purposes of engineering analysis. 

In view of the foregoing, a far field value of A/by itself cannot be expected 
to correlate damage rates at crack tips if the residual fields differ. Of course 
if the difference is only minor, A/ will appear adequate. Also, if the subse
quent / history at the crack tip wipes out the difference between residual 
fields. A/ will correlate damage rate data. One such case is a stable increas
ing A/ history in fatigue testing, as for example Ref 20. 

The question to be asked is—if far field compliance measures of / are in-

'"it might be noted that the Walker parameter has the same general form as other parameters 
that have been useful in nonlinear nucleation analysis (for example [53,54]). 

"Consider here results for a single tension overload in an otherwise constant amplitude his
tory [55]. For such problems, closure in the wake of the crack is minimal. There is, however, a 
compression field at the crack tip for the tension overload case that may act to retard growth. 
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adequate, can the global path dependence of Eq 2 be utilized to measure the 
extent of the residual field by its analytical evaluation along a contour in the/ 
dominated process zone? Unfortunately, reversed plasticity solutions for/on 
various contours in the plastic zone are lacking, even for simple coupon 
geometries. A related question also arises—given the near tip residual field 
can be represented in terms of the local path independence of/NF, how does 
one apply /^p concepts to structures with complex redistribution through 
plastic action? Also, how does one deal with structural applications where 
the far field loading is out of phase so that not even global force-displacement 
relationships for the structure are unique? Unfortunately, this last problem 
is beyond the scope of the present knowledge so that attention is hereafter 
limited to uniaxially loaded coupon specimens. 

The above issues cast considerable doubt on the general utility of/based 
analysis for fatigue crack growth. Little can be rigorously said presently 
about these uncertainties. However, one can identify several crucial tests that 
can be formulated to quickly ascertain the potential utility of / . These are 
collectively examined after the consideration of advancing cracks in the next 
section. 

Force-Displacement Fields in Cracked Media-Stable Propagating Cracks 

Aside from problems in the definition of / and A/ and the limitation in 
crack advance per cycle detailed earlier, propagating cracks pose one further 
significant problem. Under the action of variable amplitude loading, prior 
tension (or compression) overloads generate nonplanar crack faces as il
lustrated in Fig. 14. Upon release of the external load, contact between adja
cent asperities results, and load transfer occurs across them. To the extent 
that several such asperities may exist due to a range of overloads, the near 
crack tip field again can be no longer prescribed by a far field (global) 
evaluation of / (or A/). However, as for the stationary crack given that the 
compatible displacement field in the remaining ligament can be approx
imated from the far field force displacement response, the associated boun
dary conditions could be imposed so as to compute /NP on a scale refined to 
reflect the near crack tip response. This concept has been shown in Fig. 13. 
Note that tension overloads reduce the load for crack closure through contact 
of asperities, whereas compression overloads would increase the load. Of 
course, overloads of mixed sign would result in an effect related to the domi
nant plastic field and the magnitude of the subsequent load cycles. Such 
shrinking of the contour used to compute / could lead to an effective / con
cept that parallels that for the LEFM K [42]. 

In contrast to the prior introduction of /NF for stationary cracks, the in
fluence of history dependent flow in the wake of the crack on /NF changes as 
the crack grows. Eventually, the near field may grow out of the region in
fluenced by residual deformations. Alternately, some subsequent overload 
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a reference condition such as that shown in Figure 2. 

FIG. 14—Nonplanar crack faces due to history dependent residual deformations. 

may wipe out the influence of prior residual deformations. Thus, the logistics 
of computing and implementing a concept like /NF are much more involved 
than for a stationary crack. And, as with stationary cracks, there is uncer
tainty as to both the validity of deformation theory and the existence and uni
queness of ̂ Np. 

Unless a concept such as/jsip is valid, it is unlikely that a single parameter 
measure of the near field will provide general utility in fatigue crack growth 
analysis. The next section, therefore, outlines several crucial tests that serve 
to assess the existence and uniqueness of/^F- In view of the above, residual 
stresses at stationary crack tips, bifurcation and near tip closure, material 
transient response in the plastic zone, and residual deformations in the wake 
of the crack must be examined by such crucial tests. 

Commentary on Crucial Tests of /-Based Fatigue 
Crack Propagation Analysis 

Clearly, if / or /NF concepts are to be useful in fatigue analysis for other 
than data correlation of unique (trivial) test cases, the just elaborated dif
ficulties must be resolved. A number of crucial tests can be identified, some 
analytical, others experimental. The analytical tests are essential to evaluate 
the value of / ^ F under various conditions of closure and material transient 
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response. 12 Results of appropriate parametric analysis will facilitate direct 
determination of the validity of deformation theory and the existence, uni
queness, and utility of the/Np concept. Certain experiments provide indirect 
assessment of these same issues without recourse to the idealizations and 
assumptions in analysis. 

From an analytical point of view, it is essential to show that a unique value 
of/NF exists as a function of crack length for a given far field value, /pp. This 
requires / ^F to be virtually path independent at least within the plastic zone 
but away from the intensely nonlinear region. For simplicity and convenience 
in analysis, Jj^p should be path independent over some portion of the body 
that encloses the plastic zone. To facilitate analysis, the value of /pp should 
likewise be reasonably path independent over a substantial segment of the 
body and be related to /NF ^S a function of crack length and far field load. 

If such studies fail to indicate the existence and uniqueness of a concept 
such as /NF. J based analysis can be of little practical utility in general ap
plications to fatigue crack growth studies. However, if the existence and uni
queness of/NF is indicated, parametric analysis can be gainfully employed to 
assess the sensitivity of the (presumed unique) value of / ^ F to a range of 
overload levels first for stationary, then for growing cracks. In the first in
stance, the relationship obtained would serve to make the first transforma
tion indicated in Fig. 8. Guidance as to the sensitivity of/NF to load transfer 
across crack faces as a consequence of prior overloads would allow as a func
tion of crack position from the parametric study of overloads as a function of 
crack position. While such parametric results would be strictly valid for a 
given boundary value problem, much of the response simulated in the 
analysis is a local effect. As such, any relationships between / ^ F and /pp so 
developed might scale approximately to other geometries on the basis of /pp 
as a function of crack size. 

Parametric analysis also can be used to assess the sensitivity of /^p to dif
ferent degrees of transient material response in the plastic zone. For certain 
classes of materials, such studies will indicate the error in estimating /NP 
assuming stable material response. If/NP is shown to be only mildly depen
dent on this transient response, one of the major concerns for the utility of/ 
becomes practically inconsequential. 

From an experimental point of view, one very simple test condition could 
indirectly explore many of the same aspects. As an example, a compact ten
sion specimen instrument with near tip clip gages, as well as the usual load 
point clip gage, might be subjected to the incremental step-tests shown in 
Fig. 15. Such tests would indicate if the near tip displacement response is a 
unique nonlinear function of far field load. Appropriately instrumented 

'^As Rice [39] indicates, results of such analysis may not lend themselves to conclusive inter
pretation. 
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15—Incremental step histories—(a) symmetric incremental step test, and (b) asym
metric incremental step test. 

FIG. 

Specimens would indicate the extent of the near field region related to J^Y i" 
terms of elements of material observed to deform somewhat out of phase with 
the far field because of closure effects. For such a study, care must be taken 
to guard against crack advance so that a tough steel may be the best test 
material. 

The type of load history shown in Fig. 15 also provides for the study of 
history effects on the far field value of / . For stationary cracks, these effects 
are due to transient response (compare Fig. 9b) in the plastic zone (as is evi
dent at notch roots [55] at loads well below limit load). They cause the force-
displacement response to change throughout the body, as is evident in Fig. 
16 in terms of the notch root and far field stress-strain response of a notched 
coupon subjected to several blocks of the history in Fig. 15a. Likewise, this 
load history could be used to study the effects of prior overloads on /NF and 
the attendant crack growth by including a block of cycles for each peak 
shown in Fig. 15. 

By imposing blocks of this history shown in Fig. 15, the near and far field 
displacement response can be compared as a function of far field load. If for 
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FIG. 16—Transient response in the near and far fields of a notched plate—FEM results [53]. 

such a history these responses are comparable, it is likely for that material 
that 7NF and Jpp relate one to one. Thus, /pp may be adequate for crack 
growth analysis under reasonably general load histories. Also by imposing 
such a history, the far field value of / could be determined as a function of 
crack position. If this definition of/pp does not differ significantly as com
pared to results for static loading, the value of/pp can be considered for prac
tical purposes history insensitive. Furthermore, if crack growth for such a 
history is found to be essentially history insensitive, the value of/pp probably 
could be used for general purpose crack growth analysis for that material. 

Unfortunately, based on results for notched plates [19], it is unlikely that 
these trends will develop, except for the very soft steels and near limit load 
cycling. In all other situations, the results of the previously noted analysis will 
be necessary if / based concepts are to find general utility in fatigue crack 
growth analysis. 

Suminaiy and Conclusion 

The problems in the analysis of fatigue crack growth using a single 
parameter characterization of the crack tip field have been enumerated. In
cluded in this discussion were local residual stress and displacement fields 
associated with overloads in variable amplitude service loads, transient 
material response, and similitude between / fields as required in comparing 
some reference data base with the damage process in a structure for purposes 
of crack growth analyses. These problems have been discussed in terms of 
the requirements for the validity of the deformation theory. It has been em-
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phasized that these problems exist because of differences between various 
damage states being compared in terms of / for purposes of fatigue crack 
growth analysis. Because these differences result in a path dependence of/pp 
as compared to / N P , the concept of a near field value of/ was introduced. 
Discussion focused then on the existence and uniqueness of/NP and on rela
tionships between/NP and/pp. In that/Np must exist and be unique and sim
ple relationships must exist between/pp and/Np if/based concepts are to be 
useful in fatigue crack growth analysis, several crucial tests of the potential 
utility of / in such analysis were outlined. Throughout, the discussion was 
augmented and interpreted in terms of experience and test results for 
nonlinear analysis to assess structural fatigue crack nucleation. 

Based on the results and discussion of this paper, the following can be 
concluded: 

1. Preliminary indications of the utility of / based fatigue crack propaga
tion analysis represent unique experimental conditions where cyclic plastic 
aspects have not been explicitly explored. Such data consolidation is a 
necessary but not sufficient condition to demonstrate the utility of / based 
concepts in applications to fatigue crack growth analysis in structural com
ponents subjected to generalized loadings. 

2. History dependent residual stresses, residual deformations, and tran
sient material response may confound the general utility of a deformation 
theory. To circumvent these difficulties requires the cycle-by-cycle evaluation 
of/ at a scale that reflects nonlinear action related to those history dependent 
phenomena. The value of / so defined was termed / controlled near field, 
/ N P . 

3. Crucial tests of the utility of a /based analysis of fatigue crack propaga
tion can be elaborated in terms of/NP. 

4. For general structures subjected to variable amplitude loading, fatigue 
crack growth analyses based o n / concepts may be tenuous. 
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Effect of Prestressing on 
Stress-Corrosion Crack Initiation in 
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ABSTRACT; A preliminary investigation was conducted to evaluate the influence of 
both tension and compression prestressing (in air) on the subsequent stress-corrosion 
crack initiation behavior of two high-strength AISI type 4340 steels, 1240-MPa (180-
ksi) and 1480-MPa (215-ksi) yield strength. Crack initiation testing was conducted with 
edge-notched, round tensile specimens subjected to a hydrogen sulfide (H2S) gas en
vironment. Test results are expressed in terms of the critical combination of maximum 
elastically calculated notch stress and square root of the notch radius required to induce 
stress-corrosion cracking. Results show that prestressing can have a significant effect 
on subsequent stress-corrosion behavior. In general, tension prestressing increased the 
resistance to stress-corrosion crack initiation and compressive prestressing decreased 
the resistance. The susceptibility to stress-corrosion crack initiation was increased by as 
much as a factor of 4 to 1 as the result of compressive prestressing. 

KEY WORDS; initiation, stresses, corrosion, fractures (materials), notch, steels, 
crack propagation, corrosion 

Recently, experimental data have been developed which demonstrate 
that a modified fracture mechanics approach may provide a widely appli
cable quantitative method for the characterization of environment induced 
(stress-corrosion) crack initiation behavior at blunt notches in high-strength 
steels.^ The essence of the proposed technique is to establish the critical 
combination of maximum elastic notch stress, Oj^i^^ and notch root radius, 
r, required to yield stress-corrosion crack initiation and subsequently, to 
relate these parameters to the applied maximum stress and notch radius 

' Manager, Fracture Mechanics, Structural Behavior of Materials Department, Westinghouse 
Research and Development Center, Pittsburgh, Pa. 15235. 

^Clark, W. G., Jr., in Flaw Growth and Fracture, ASTM STP 631, American Society for 
Testing and Materials, 1977. 
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I 
associated with a component of given material exposed to a particular en
vironment. The fracture mechanics relationship between effective stress 
intensity, A"] and notch radius is used to compute ffmax as follows^ 

K, = l im - ^ (r)i^2 
r->0 2 

(1) 

^max 

2Ki 
(2) 

This approach to the determination of a^ax yields results similar to the 
more conventional stress concentration techniques but in many cases, 
determining a^^y^ from Ki is more easily accomplished. In an actual applica
tion, the value of Ki is determined by assuming that the notch is a crack 
with a depth equivalent to the notch depth. Ki is determined from the 
appropriate stress intensity expression for the geometry and loading 
configuration involved and ff^ax is determined from Eq 2. The values of 
ffmax and r associated with the component involved are then compared with 
the critical combination of Omux and r required to induce stress-corrosion 
cracking. The critical values of a^^x and r, typically expressed as Omax* 
versus Vr, must be determined experimentally for the specific material 
and environment involved. Such data developed for two high-strength 
AlSl type 4340 steels using several test specimens and notch sizes are 
shown in Fig. 1. Note the geometry independent nature of the relationship 
between ffmax* and VF and the onset of stress-corrosion cracking. This 
characteristic provides the basic advantage of the a^ax* approach to stress-
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FIG. 1—Maximum failure stress versus \fc (1 ksi — 6.89 MPa). 

^Clark, W. G., Jr. in Cracks and Fracture, ASTM STP 601, American Society for Testing 
and Materials, 1976. 
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corrosion crack initiation. Specifically, simple laboratory test specimens 
can be used to predict the stress conditions required to induce stress-
corrosion cracking which in turn, can be related to the stress conditions 
associated with actual components. Consequently, the ffmax* concept offers 
significant potential as a valuable tool for material selection and hardware 
design. 

The (Tmax* concept described above and in footnote 2 is a relatively new 
development, and substantial additional testing and analyses are required 
to adequately verify the usefulness of this concept as a valuable design 
parameter. Such effort involving very long-time crack initiation testing, 
various environments, different notch geometries and lower-strength 
materials is currently underway and will be reported upon completion. 
Note also that the Omux* concept addresses the stress or strain (ffmax* versus 
Vr̂ can be related to localized strain, see footnote 2) conditions required to 
develop stress-corrosion cracking at a notch and not the time involved for 
the crack to develop. The characterization of incubation time in terms of 
a„ax* and VFis also currently under investigation. 

Despite the limited amount of data available and the large amount of 
verification testing yet required, the ffmax* versus \fr concept appears to 
offer a unique quantitative approach to the characterization of stress-
corrosion crack initiation behavior which in turn, can provide a valuable 
tool for the evaluation and further understanding of the mechanisms of 
stress-corrosion cracking. One area of particular concern involves the 
influence of prestressing on the subsequent development of stress-corrosion 
cracking at blunt notches. 

This paper describes the results of a preliminary evaluation of the effect 
of both tension and compression prestressing (in air) on the stress-corrosion 
crack initiation performance of two high-strength AISI type 4340 steels 
exposed to a hydrogen sulfide gas (H2S) environment. The results are 
expressed in terms of the maximum elastically calculated notch stress 
associated with prestressing and the subsequent Om^x* parameter required 
to develop a stress-corrosion crack. Crack initiation results developed with 
and without prestressing are compared. 

Material and Specimen Preparation 

The material involved in this investigation consisted of quenched and 
tempered AISI type 4340 steel heat treated to 1241-MPa (180-ksi) and 
1482-MPa (215-ksi) yield strength levels. The 1241-MPa (180-ksi) yield 
strength material was obtained as 7.62-cm (3-in.) thick forged plate, and 
the 1482-MPa (215-ksi) yield strength material was obtained as 14.05-cm 
(7.5-in.) diameter forged bar stock. The nominal chemical composition, 
heat treatment, and room temperature tensile properties of the forgings are 
summarized in Table 1. The room temperature fracture toughness deter-
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TABLE 1—Chemical composition, heat treatment and room temperature tensile properties 
of materials investigated. 

Chemical Composition, weight % 

Material C Mn Si P S Ni Cr Mo V 

1241 MPa 0.36 0.63 0.25 0.010 0.010 2.54 0.86 0.39 0.093 
(180 ksi) yield 

1482 MPa 0.41 0.81 0.27 0.006 0.009 1.88 0.91 0.37 
(215 ksi) yield 

Heat Treatment 

1241 MPa Austenitized 4 h at 849°C (1560°F), water quenched; double tempered 
(180 ksi) yield 4 h at 582°C (1080°F) and furnace cooled. 

1482 MPa Austenitized 2 h at 816°C (1500°F), oil quenched; tempered 10 h at 
(215 ksi) yield 316°C (600°F) and air cooled. 

Tensile Properties at 23.9°C (75°F) 

Yield Strength 
Tensile Strength (0.2 % offset) Elongation in Reduction in 

MPa (ksi) MPa (ksi) 50 mm (2 in.), % Area, % 

1241 MPa 
(180 ksi) yield 

1482 MPa 
(215 psi) yield 

1338 
(194) 
1724 
(250) 

1234 
(179) 
1482 
(215) 

14 46 

10 38 

mined in accordance with ASTM Test for Plane-Stain Fracture Toughness 
of Metallic Materials (E 399-74 is 165 MPaVm (150 ksiVitT.) and 82.4 
MPaVm (75 ksiVInr) for the 1241-MPa (180-ksi) and 1482-MPa (215-ksi) 
yield strength material, respectively. The JS'iscc'* for these materials in a 
345 kPag (50 psig) H2S gas environment measured as the result of both 
long-time constant displacement and rising load tests is 28.6 ± 5.5 MPaVm 
(26 ± 5 ksiVirT) for the 1241-MPa (180-ksi) yield material and 18.7 ± 
3.3 MPaVin (17 + 3 ksiVE!) for the 1482-MPa (215-ksi) yield material [2]. 

Figure 2 shows the 1.28 cm (0.505-in.) diameter edge-notch, round 
tensile specimens used for all crack initiation testing conducted in this 
investigation. The notch details and corresponding stress concentration 
factors, Ki, are also included in Fig. 2. Note that the notch depth is the 
same for each of the three notch radii, 0.48 cm (0.188 in.). In all cases 
the test specimens were taken from the "as received" material, such that 
the plane of the notch was parallel to the long-transverse direction of the 
plate (radial plane of the bar) and perpendicular to the major axis of the 
original forging. 

''A'ISCC equals the value of the plane-strain stress intensity factor below which an existing crack 
will not grow due to stress corrosion. 
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.0938 

Al l Dimensions in Inches 
1 i n . = 2.54 cm 

Net Section Area 0.13 sq. in. 

K, = 3 

FIG. 2—Notched tensile bar used for crack initiation studies (1 in. = 2.54 cm). 

Experimental Procedure 

All of the stress-corrosion crack initiation testing involved in this investi
gation was conducted at room temperature 26.7°C (80°F) in a 345-kPa 
gage (50-psi-gage) H2S gas^ environment in accordance with the rising-load, 
accelerated stress-corrosion test procedure described by Clark and Landes.* 
Specifically, the notched specimens were subjected to slow-rate tensile 
loading (500 lb, 2.22 MN/min) in the H2S gas and the load corresponding 
to the onset of stress-corrosion cracking determined. Because of the ex
tremely rapid rate of crack growth associated with stress-corrosion cracking 
in the material-environment system involved here (high-strength 4340 steel 
exposed to H2S gas), the load corresponding to the initiation of a crack is 
essentially identical to the load required to cause failure of the specimen. 
Thus, in this investigation, specimen failure and crack initiation are 
synonymous. 

Figure 3 presents a schematic illustration of the environmental chamber 
used to coiiduct the hydrogen sulfide crack initiation tests. 

Prior to crack initiation testing, as defined above, several specimens of 
each of the three notch radii involved were subjected to either compressive 
or tensile loading in a laboratory air environment. In each case, the maxi-

'Volume percent, 99.6, (liquid phase) H2S, typically 31-ppm water. 
'Clark, W. G., Jr., and Landes, J. D., Stress Corrosion—New Approaches, ASTMSTP610. 

1976. 
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FIG. 3—Environment chamber used for crack initiation testing (tensile specimens). 
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mum air environment preload was maintained for 15 min and the notch 
surface examined (under load) carefully with a X30 binocular microscope 
to identify any evidence of cracking developed as the result of prestressing. 
None of the tests reported here revealed any evidence of cracking due to 
the prestress loading. 

In addition to the prestress testing, a series of notched specimens (not 
prestressed) were also tested in tension to failure in laboratory air. These 
results were used to establish guidelines for the prestressing operation. 
Prestressing was limited to stress levels less than 80 percent of the air 
environment fracture stress. 

Experimental Results 

Tables 2 and 3 present the results of all blunt notch testing for the 
1241 MPa (180 ksi) and 1482-MPa (215-ksi) yield strength steels, respec
tively. The prestressing and failure (initiation in the case of the H2S tests) 
conditions are noted. The results are expressed in terms of the applied load, 
P; the net section stress, Onex (P "=" net section area); the maximum elastically 
calculated notch-stress, ffmax. and the nominal stress intensity factor, /sTj. 
Ki is computed from the cracked body stress intensity expression for the 
edge-notch specimen involved (see footnote 2). For the test specimen and 
notch depth used here, Kj = 7 P. a^ax is computed from Eq 2 when 
Ki = 7 P (ff„ax — 7.9 P/yfr). The results of the air-environment tension 
tests to failure are also noted in Tables 2 and 3. 

Figures 4 and 5 present the results of prestressing in air (expressed in 
terms of the net section stress) on the subsequent (j„et value required to 
produce specimen failure (crack initiation) in H2S gas. This method of 
presenting the data was chosen only to provide a convenient graphical 
display of the raw test result, and it must be recognized that such a plot 
is not geometry independent. However, these data do illustrate the potential 
significant effect of prestressing on subsequent stress-corrosion crack 
initiation behavior. Note from Fig. 4 that tension prestressing appears to 
have a small beneficial effect on the resistance to stress-corrosion crack 
initiation in the 1241-MPa (180-ksi) yield strength steel. In addition, 
compressive prestresses on the order of —902 MPa ( — 130 ksi) appear to 
have little if any effect on crack initiation behavior. However, compressive 
stresses beyond —902 MPa ( — 130 ksi) have a very significant effect on 
initiation behavior. Specifically, for all notch sizes, compressive stresses 
on the order of —1110 MPa ( — 160 ksi) reduce the net section stress for 
crack initiation by nearly 50 percent compared to nonprestressed specimens. 

Figure 5 shows that the effect of prestressing in air has an even more 
dramatic effect on subsequent stress-corrosion crack initiation in the 
1482-MPa (215-ksi) yield strength material. Note that for each notch 
geometry evaluated, there appears to be a consistent effect of prestress 
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FIG. 4—Effect of prestressing on net section failure stress in H2S gas (1 ksi = 6.S9 MPa, 
1 in. = 2.54 cm). 
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FIG. 5—Effect of prestressing on net section failure stress in H2S gas (1 ksi = 6.89 MPa, 
1 in. = 2.54 cm). 

level on subsequent crack initiation behavior. Specifically, these limited 
data imply that a direct relationship exists between the magnitude of the 
prestress level and the net section stress required to induce cracking. 
Figure 5 shows that the critical net section stress level required for crack 
initiation can vary by a factor of as much as 4 to 1 with prestress levels 
between 1241 MPa ( + 180 ksi) and -902 MPa (-130 ksi). Note that for 
each notch radius, tension prestressing increased the anefvalue required for 
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cracking and compressive prestressing decreased the critical value of ffnef 
Clearly, prestressing in air prior to exposure to an aggressive environment 
can have a very significant effect on blunt-notch stress-corrosion crack 
initiation. In particular, the potential detrimental effect of compressive 
prestressing must be addressed in actual design considerations. The 
importance of this behavior is further illustrated by the fact that in the 
case of the 1482-MPa (215-ksi) yield strength material containing a 0.025-cm 
(0.01-in.) radius notch and subjected to compressive prestressing at —744 
MPa (—108 ksi); failure subsequently occurred in H2S gas at a ffnet level 
lower than that required to cause failure with an equivalent existing 
precrack (90 MPa, 13 ksi versus 173 MPa, 25 ksi). 

Although the potential significance of the effect of prestressing on 
subsequent stress-corrosion crack initiation performance is clearly apparent 
from the consideration of data expressed in terms of net section stress 
(Figs. 4 and 5), such results are not applicable to other configurations. 
In order to develop data which can be related to other loading situations 
and thus, provide useful design information, it is necessary to consider 
the ffmax* concept discussed previously. The results of all blunt notch 
testing expressed in terms of the elastically calculated maximum notch 
stress and corresponding VFare presented in Figs. 6 and 7 for the 1241-MPa 
(180-ksi) and 1482-MPa (215-ksi) yield strength materials, respectively. 
In these figures, the solid curve represents (Jmax*> the critical combination 
of <̂max and vT associated with the onset of stress corrosion cracking in 
H2S gas (from Fig. 1, no prestressing). The starred points present the 
results of the air environment fracture tests. The open points show the 
specific prestress â ax level (in air), and the corresponding solid points 
(connected by the dashed lines) show the ffmax level associated with the 
subsequent onset of stress-corrosion cracking in H2S gas. Figures 6 and 7 
also show the pattern of prestressing used in this investigation. Specifically, 
the fracture strength (expressed as ffmax) for each notched bar was deter
mined in air, and these values were established as the limits for prestressing. 
Subsequently, the test specimens were subjected to both tension and 
compression prestressing at ffmax levels on the order of 80 percent of the 
ffmax associated with failure in air. It was expected that prestressing at 
stress levels near the fracture strength of the materials would reveal the 
largest potential effect of prestressing on crack initiation performance. 

Figures 6 and 7 show that for both steels and all notch radii, tension 
prestressing results in an elevation of the ff^ax level required to yield stress-
corrosion crack initiation. Again, as in the consideration of the ffnet data 
(Figs. 4 and 5), somewhat more resistance to cracking is developed by 
tension prestressing in the higher-strength steel than in the lower-strength 
material. The significance of compressive prestressing on the susceptibility 
to stress-corrosion crack initiation is also apparent in both Figs. 6 and 7. 
Examination of the data shown in Fig. 6 for the lower strength steel 
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FIG. 6—Effect of prestressing on cTniax at failure (1 ksi = 6.89 MPa, 1 in. — 2. 54 cm). 

indicates relatively little effect of prestressing on the 0.228-cm (0.09-in.) 
radius notch test results. However, the overall magnitude of the prestressing 
level is also significantly lower than that encountered in the other test 
specimens. For the smaller notch radii tests, the effect of compressive 
prestressing can be very significant, reducing the â ax value for crack 
initiation by 50 percent. However, as shown in Fig. 6, the potential detri
mental effect of compressive prestressing appears to be strongly dependent 
on the specific compressive prestress level. Note that only a small difference 
in compressive prestress level accounts for the large decrease in crack 
initiation resistance. Such behavior implies that some kind of threshold 
level may exist above which compressive prestressing has little effect on 
subsequent crack initiation behavior. Sufficient test data were not available 
to examine this phenomenon in the higher strength material (Fig. 7). As 
was the case for tension prestressing, compressive prestressing appears 
to have a more significant effect on the higher-strength steel than on the 
lower strength-material. 
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Discussion 

The results of this investigation, although preliminary in nature, clearly 
demonstrate the potential significance of prestressing in air on the subse
quent stress-corrosion crack initiation performance at blunt notches in 
high-strength steels. The fact that virtually all engineering structures are 
likely to be subjected to overloads or prestressing as the result of proof-
testing, fabrication, and shipping and handling prior to exposure to service 
makes the consideration of prestressing effects an important practical 
concern. The data presented here show that prestressing can either increase 
or decrease susceptibility to stress-corrosion crack initiation, and the 
expected behavior can be characterized in terms of the elastically calcu
lated maximum notch stress. Compressive prestressing tends to increase 
the susceptibility to cracking, and tension prestressing reduces the sus
ceptibility. Obviously, this behavior is related to the magnitude of residual 
stresses associated with the specific prestressing conditions. Compressive 
prestressing results in residual tension stresses which ultimately combine 
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with the subsequent applied tensile stress to produce cracking at lower 
applied stresses than those required for cracking without prestr6ssing. The 
opposite conditions prevail for tensile prestressing resulting in an apparent 
increased resistance to cracking. Whether residual stresses alone account 
for the behavior observed in this investigation cannot be determined from 
the data currently available. Prestressed air tests must be conducted and 
the results compared with equivalent environmental tests to develop a 
quantitative measure of the specific role of residual stresses in stress-corro
sion crack initiation. 

The tests conducted in this investigation with edge-notched tensile 
specimens are limited to the evaluation of net section prestress levels on 
the order of the yield strength of the material (limit load conditions for 
a tensile test). However, often in real applications it is possible to develop 
significantly higher stress levels that could have even more effect on sub
sequent stress-corrosion behavior. Consequently, the results of this study 
cannot be considered to reflect the maximum potential effect of prestressing 
on crack initiation performance. 

The variation in the effect of prestressing on stress-corrosion crack 
initiation behavior encountered between the two steels investigated here 
implies that it is rational to expect significant differences in behavior 
between more dissimilar materials. In view of the significant role of residual 
stresses on the effect of prestressing on subsequent crack initiation, it is 
likely that the strain hardening characteristics of a material may be an 
extremely important factor in the consideration of prestress effects. It is 
highly possible that materials not normally susceptible to stress-corrosion 
cracking in a particular environment may in fact become susceptible as 
the result of prestressing. 

In this investigation an attempt was made to characterize the effect of 
prestressing on subsequent stress-corrosion crack-initiation behavior in 
terms of a parameter that is applicable to actual design considerations. 
However, like any other design parameter, if the appropriate information 
associated with the structural component is not available, the parameter is 
of limited value. With regard to the application of the ffmax* concept to 
predicting crack initiation in potential aggressive environments, it is im
portant that the loading conditions and appropriate stress levels associ
ated with the application be well established. Often, developing such 
information is the most difficult aspect of any design analysis. 

Summary and Conclusions 

A preliminary evaluation of the effect of both tension and compression 
prestressing on subsequent stress-corrosion crack initiation behavior at 
blunt notches was conducted with two high strength AISI type 4340 steels. 
The prestressing was conducted in air, and the crack initiation testing was 
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conducted in 345-kPa (50 psig) gage H2S gas. All testing involved edge-
notched round tensile specimens with three different notch radii, the results 
expressed in terms of both applied net section and elastically calculated 
maximum notch stresses. 

The pertinent conclusions associated with this investigation are sum
marized below. 

1. Prestressing in air can have a significant effect on the subsequent 
stress-corrosion crack-initiation behavior at blunt notches in high strength 
steels. 

2. Tension prestressing in air results in improved resistance to subse
quent stress-corrosion crack initiation at blunt notches. 

3. Compressive prestressing in air can have a severe detrimental effect on 
subsequent stress-corrosion crack initiation behavior. The maximum elas
tically calculated notch stress required to induce stress-corrosion cracking 
could be reduced by as much as a factor of 4 as the result of compressive 
prestressing. 

4. Additional tests with specimens which permit net section prestressing 
beyond the yield strength of the materials are required to establish the 
maximum potential effect of prestressing in air on subsequent stress-
corrosion crack initiation. 
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An important result of the analysis is that small-scale yielding may be defined. In creep 
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Under elevated temperature creep conditions in ductile solids, macro
scopic cracks grow by local failure of the highly strained material near the 
crack tip due to the initiation and joining of microcavities, sometimes aided 
by local corrosion. These processes are often confined to a small fracture pro
cess zone near the crack tip. The aim of the present paper is to analyze the 
stress and strain fields that encompass the process zone and set boundary 
conditions on its behavior. In the analysis, the fracture process zone is 
assumed to be negligibly small. This kind of analysis is necessary to gain in
sight into the problem of which macroscopic loading parameter governs 
crack growth under creep conditions. As candidates for relevant loading 
parameters, the stress intensity factor "̂1 [i],^ the net section stress ffnet P], 
the path independent integral C* [3,4], and the crack tip opening displace
ment rate 6 [5] have been proposed. For a more comprehensive survey of the 
recent literature, see Refs 6 through 8. The question of the "right" loading 
parameter is far from being academic; if, from laboratory crack growth tests, 
growth rates in large structures are to be predicted, it may be too conserva
tive to use the stress intensity factor as the correlating parameter. This is 
clearly demonstrated in the work of Koterazawa and Mori [9], where the 
crack growth rate drops by two orders of magnitude if the specimen size is 
chosen as 20 mm instead of 8 mm, although the nominal stress intensity fac
tor is kept constant. On the other hand, the use of the net section stress as the 
correlating parameter between laboratory tests and large structures can lead 
to unconservative predictions in cases where the stress intensity factor should 
have been used. 

Based on a Dugdale model, Riedel [8] and Ewing [10] have worked out 
conditions under which the stress intensity factor is the relevant parameter 
for creep crack growth. More recently, Riedel [7] has confirmed these results 
by the analysis of a stationary shear crack (Mode III) in an isotropic material 
that is capable of elastic and creep deformation everywhere. The key feature 
of the analysis is that "small-scale yielding" conditions may be defined. In 
creep problems, small-scale yielding means that elastic strains dominate 
almost everywhere in the specimen except in a small "creep zone," which 
grows around the crack tip. The creep zone boundary has been defined for 
stationary cracks as the locus where creep strain and elastic strain are equal. 
If crack growth ensues while the creep zone is still sufficiently small com
pared with the specimen size, the stress intensity factor governs crack 
growth. 

In the present paper, the stress analysis of a stationary crack under creep 
conditions is worked out for tensile loading (Mode I). Both small-scale 
yielding as well as the case where the whole specimen creeps extensively 
("fully yielded case") are considered. For small-scale yielding, the stress in-

'The italic numbers in brackets refer to the list of references appended to this paper. 
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tensity factor Ki governs crack growth initiation; whereas the path-indepen
dent integral C* [3,4] is the relevant loading parameter for the case of exten
sive creep. Finally, it is pointed up that, for growing cracks, Ki and C* re
main the loading parameters, which determine the crack growth rate. But 
the relation between the crack growth rate and the loading parameter may 
become complicated, for instance, dependent on the previous history of load
ing and crack growth. The stress analysis of growing cracks will be further 
discussed in two forthcoming papers [11,12]. 

Constitutive Equations, Initial and Boundary Conditions 

The authors will consider here the two-dimensional problems of plane-
stress or plane-strain tension, known also as Mode I. A crack is embedded in 
a material that may be classified as a Maxwell-type elastic-nonlinear-viscous 
material, where the nonlinear behavior represents power law creep. Creep 
deformation is assumed to be incompressible. The deviatoric strain rate ten
sor, £' is related to the deviatoric stress and stress rate tensors, a' and &' by"* 

Here, G is the elastic shear modulus. The creep exponent n and the tempera
ture-dependent factor B are the parameters of the power law creep relation 
e = Ba", measured in uniaxial tension creep tests. The equivalent tensile 
stress Og is given by (see footnote 4) 

2«^ ' : a ' ) (2) 

If elastic compressibility is admitted, the traces of stress and strain tensors 
are related via the bulk modulus K 

1 tr £ = — tr «r (3) 
3K 

The material law stated in Eqs 1 to 3 is supplemented by the equilibrium con
dition 

V - a = 0 (4) 

""in the tensor notation used throughout this paper, boldface quantities are tensors. A dot be
tween two tensors indicates summation over one index; a double dot indicates summation over 
two indexes. I is the two-dimensional unit tensor; that is, I :I = 2, V is the three-dimensional 
gradient operator, and V ^ is the Laplace-operator. A prime indicates the deviant part of a 
three-dimensional tensor. Traces are the sum of the three diagonal tensor components. 
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and by the compatibility relation which, for plane problems, has the form 

V . ( V e ' ) = | v 2 ( t r € ) - V2e33 (5) 

where V j = 0 for plane problems. In the direction of the crack front 
(x3-axis), we have an additional equation, either €33 = 0 (plane strain), or 
<̂33 — 0 (plane stress). 

The initial condition is that a load is applied suddenly to the cracked 
specimen at the time, t = 0. According to the material law stated in Eq 1, the 
instantaneous response of the material is elastic. Therefore, at time t = 0, 
the elastic stress distribution [13] prevails in the cracked body. 

Boundary conditions are prescribed on the traction-free crack faces, n-a 
= 0 (n = normal vector on crack face), and at infinity. For small-scale 
yielding (short time response), it suffices to regard the crack as being of semi-
infinite extent, with the boundary condition at infinity being the requirement 
of asymptotic approach to the elastic singular field characterized by the 
stress intensity factor [13]. 

The problem stated in the preceding Eqs 1 through 5 will now alternately 
be formulated in terms of the Airy stress function, <t). It is related to the in-
plane components of the stress tensor by 

ff = - VV<^ + Iv2</) (6) 

thus automatically fulfilling the equilibrium condition (Eq 4). Inserting the 
stress tensor according to Eq 6 into the material law (Eqs 1 through 3) and 
inserting the resulting strain rate tensor into the compatibility condition (Eq 
5), one arrives at an equation for the Airy stress function, <t>. 

For plane strain, the deviatoric stress component (733' cannot be expressed 
in terms of </>; the plane-strain condition €33 = 0 forms an additional equa
tion. Thus, for plane strain we have two coupled equations for <̂  and a33' 

2^-^V2(V2<A + (t33') 

-5V-(V-[(I(V2</, - a33') - 2VV<A)a,«-i]] = 0 (7) 

(^-^ V 2^ + -^ d33 ' ) + BC33 Ve"-1 = 0 (7a) 

where 

E = Young's modulus, 
V = Poisson's ratio, and 
• = time derivative. 
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The equivalent stress a^ is given in terms of <j) and a^i' as 

a, = — ( 2 ( VV<^: V V 0 ) - (v20)2 + Za^^'^Y'^ (8) 

For incompressible material {v — 1/2), Eqs 7 and la are simplified since ff33' 
= 0. 

For plane stress the governing equation for the Airy stress function has the 
form 

| r V V - 5 V -[v •[(lv2<A - 3 vv<^K"-*]) = 0 (9) 

and the equivalent stress is 

<̂e = : ; | - [3 (VV<A:VV0) - (v2 ,^ )2 ] i /2 (10) 

The authors use either a polar coordinate system (r, 6) with 6 = 0 directly 
ahead of the crack and the origin at the crack tip, or Cartesian coordinates 
{x, y) with the x-direction parallel to 6 = 0. 

The equations for <(>, (Eqs 7 and 9), together with the expressions for a^ are 
nonlinear partial differential equations of fifth order with three independent 
variables, namely, r, d, and t. Because of the complexity of the equations, no 
closed-form solutions can be expected, in general. On the other hand, 
numerical methods have particular stability problems with the rapid stress 
redistribution near crack tips in strongly nonlinear elasto-viscous materials. 
The authors show here, however, that an approximate but rather complete 
picture of the stress and strain fields can be achieved by analytical methods. 
In the following sections, first the asymptotic behavior near the crack tip is 
studied, which is common to the small-scale yielding and the fully yielded 
case and to intermediate cases. Then the fully yielded case follows, which is 
relatively simple, and finally the small-scale yielding case, which is more 
complicated, is treated by means of self-similar solutions. 

The Asymptotic Field Near the Crack Tip 

Near the crack tip (/• — 0), the elastic strain rates can be neglected in the 
material law, Eq 1, compared with the creep rates. The reason is that the 
creep exponent usually is greater than one (n = 4 to 6 is typical), which 
makes the creep rates (ocd") much larger than the elastic strain rates (oca), if 
the stress near the crack tip is unbounded. As a consequence, the linear 
terms in the partial differential Eqs 7 and 9 can be neglected for r — 0. This 
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leads to exactly the same asymptotic problem which is known from the 
analysis of rate-insensitive "power law" strain-hardening materials. 
Hutchinson [14] and Rice and Rosengren [15] (referred to as HRR hereafter) 
have given the form of the stress and strain singularities 

air, e, t) = ylWff(e)r-i/(«+i> (11) 

The creep strain and strain rate has an r""''̂ ""'"̂ ^ singularity. The angular 
functions a{d) are given graphically in Refs 14 through 17. Here, we under
stand 0^6) normalized as in Ref 17, such that the function, 0^(6), which 
belongs to the equivalent stress, is normalized to unity at its maximum value. 
The amplitude. A, of the HRR-stress field is a function of the time and of the 
applied load. It cannot be specified by analyzing the asymptotic problem 
alone. In the deformation theory of power-law hardening plasticity, the 
amplitude of the HRR-field could be specified by means of the J-integral 
[14,15]. Analogously, the amplitude of the HRR-field will be specified in 
terms of the C*-integral for the limiting case of extensive creep of the whole 
specimen (see next section). This case corresponds to steady-state creep, thus 
elastic strain rates vanish and the material responds as if it were purely 
viscous. For small-scale yielding, however, the elastic as well as the creep 
strain rates are important. Neither/nor C* are then path-independent, and 
approximate methods must be applied to determine the amplitude Ait). 

Extensive Creep of the Whole Specimen 

The material law stated in Eq 1 has the property that the stresses become 
time-independent i& —• 0) after long times it — 00) if the load is kept cons
tant and geometry changes can be neglected. This latter condition, in par
ticular, implies that the crack must be effectively stationary. So, for a = 0, 
the constitutive Eqs 1 through 5 take the form of nonlinear elastic materials, 
if the strain rate is replaced by strain. The same nonlinear elastic material 
law also describes the fully plastic limit for power law hardening materials. 
This case has been studied extensively in the literature [18-22] and the 
results can immediately be used here by writing strain rate instead of strain, 
and the path-independent integral C* [3,4] instead of the J-integral [13]. The 
C*-integral can be measured at the loading pins of cracked specimens [3]. Its 
relation to the applied load has also been calculated numerically, reading C* 
instead of J in Refs 18 through 22. On the other hand, C* is related to the 
amplitude of the near tip singular field [14,15] by 

Ait - 00) 
C* l/(n + l) 

(12) 
BI, 

In plane strain, numerical values of the factor/„ range from 3.8 (for « = 00) 
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to 6.3 (for n = 1) [17\. Plane-stress values of/„ are 2.87 (for n = 13) and 
3.86 (for n = 3) [16]. 

According to Eq 12, C* is the loading parameter that determines the near-
tip singular field, and thereby the initiation of crack growth, if the whole 
specimen creeps extensively. 

Small-Scale Yielding 

In a previous paper [7] it has been shown that small-scale yielding can be 
defined under creep conditions. The small-scale yielding solution is valid as 
long as the creep zone is sufficiently small compared with the dimensions of 
the specimen. It may be also called a short-time solution, since it describes 
the development of stresses and strains shortly after the load is applied at 
t = 0. 

The solution of the small-scale yielding problem is now shown to be possi
ble in terms of self-similar functions. It follows the same lines as in the Mode 
III case [7], and also the nature of the time-dependence of stresses and 
strains is the same. 

Observe that the stress field a at any point r, 6 at (short) time t after load 
application is a function of the following set of variables and material param
eters 

r, e, t,Ki,E,B, V, n 

Further, from the form of the differential Eqs, 7 and 9, for </>, and hence for 
the stress field, it is clear that^", B, and t can enter only as the product iS'J?^ 
and one notes that {EBt)~^'^"~^'> has the same physical dimensions as does 
stress. Accordingly, from standard considerations of dimensional consis
tency, the stress field a for small-scale yielding, or short times, has the form 

a = (£'5f)-i/("-»F[(£'50-2/(«-i)r/A'i2, 6, n, v] 

where F is a dimensionless function of its (dimensionless) arguments. In fact, 
for plane stress the function F is independent of v, since v appears in neither 
the differential Eq 9 nor the boundary conditions. The detailed formulation 
of a solution in the above "self-similar" form is discussed next, introducing 
notations paralleling those of Ref 7. 

Self-Similar Solutions 

For plane strain, the self-similar stress function and stress component (J33' 
that satisfy Eq 7 as well as the initial and boundary conditions have the form 

<t>{r, 0, t) = - ^ - ^ f^^—F^T *(^' e)T^'^"-'^ (13«) 
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(̂ 33 '('•- G, t) i:33'(/?,e)r-i/<«-i) 
1 - 1 / 

The dimensionless time T and radial coordinate R are given by 

r = — ^ f : 5f 

(13fe) 

2 Vl - »/ 
(14) 

/? = 
1 / ( I - »')^iV 

27r 

(15) 
f2/(n-l) 

The dimensionless shape functions # and £33' obey the following differential 
equations (where the operator V is now understood to act in the dimension
less (/?, 6) coordinate system) 

- 2 V^A + / ? - ^ W 2 $ + E33') + V- f V 

•-> 3 9 \(n-l)/2 
- ( V V * : V V ' i ' ) - - ( v 2 $ ) 2 + -E33'2 

( 2 V V $ - I ( V 2 * - E 3 3 ' ) ) 

= 0 (16a) 

1 , „ A \ (1 - 2f) V^# + 3E33^ 
2 ' - + ^ a / ? ; 3 ( 1 - . ) 

+ ^33' | ( VV«^: V V $ ) - ^(V2$)2 + ^E33'2 
(n-l)/2 

= 0 {16b) 

For plane stress the same form for <̂  as defined by Eqs 13a, 14, and 15 may 
be assumed, but with 1 — v replaced everywhere by 1. In this case, Eq 9 
reduces to 

-^^'{1 + ̂ ^^^'^ + 

V- V 
3 1 \(n-l)/2 

( 3 V V * - I V 2 $ ) ( - ( V V * : VV>i>) - - (V2f>)2 = 0 

(17) 

The boundary condition at infinity is the elastic field. In dimensionless form 

$(« - oo) = -i?3/2cos3-
3 2 

(18) 
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For plane strain, one also has the boundary condition 

E33'(/? ^ c») = - ^ (1 - 2P)R -1/2 cos? (19) 

Once the shape functions # and E33' are known by solving the differential 
Eqs 16 and 17, subject to traction-free crack surface boundary conditions, 
stresses and strains can be calculated. The stress tensor has the form 

^ -r- i / (n-i)E(/?,^) (20) 
1 

where the in-plane components of the dimensionless shape function £ follow 
from # 

E = - V V $ + Iv2* (21) 

The factor I — v must be replaced by unity for plane stress. Further, from 
Eq 11 it is known that E must become infinite in the form /?-'/(!+«) as 
/? — 0. The elastic strain, e^\ follows from Eq 20 by Hooke's law. The creep 
strain, e", can also be expressed in terms of E, using Eq 1 

(" = r - i / ("- i 'E"( iR, e) (22) 

with 

3 f" /3 \(n-l)/2 do 

Here, E ' = E '(p, ^) is the deviatoric part of E and the integral on p is done 
with 6 fixed. The total strain, t, is given by the sum £ = €*' + e". 

A precise graphical presentation of the stress and strain fields would re
quire the numerical solution of the nonlinear partial differential Eqs 16 and 
17, which will be attempted in future work, in analogy to the solutions ob
tained in Mode III [7]. 

Approximate Description of the Small-Scale Yielding Stress and Strain Fields 

Presently, no numerical solutions of Eqs 16 and 17 are available, but a 
qualitative description of the stress and strain fields is possible. First the 
authors note that the time dependence of the stresses and strains (Eqs 20 
through 23) is the same as in Mode III [7]: the initial elastic stress concentra
tion at the crack tip is relaxed by creep deformation, and the stresses are dis-
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tributed more homogeneously across the specimen, while creep strains 
develop preferably in a creep zone which grows around the crack tip. 

Using Eqs 11 and 20, one knows the r and t dependence of the near-tip 
HRR-field, which can now be specified except for a numerical amplitude fac
tor a„ . (This factor will be calculated approximately in the next subsection, 
where the authors show a„ » 1.) Thus, the near tip stress and strain fields, 
for small-scale yielding, are 

nKj^ 

•Kin + D^EB 

l/(n + l) 
ff(9)(rt)-i/(«+i) (24) 

6 = - 5 ( « + l)a„« 
7r(« + D^EB 

n/(n + l) 

o'ma.m" - 1 . 
rn/(n + l) (25) 

One now knows the asymptotic fields at infinity (linear-elastic field) and near 
the crack tip (HRR-field, Eqs 24 and 25). One can now assemble approxi
mate solutions by simply extrapolating the asymptotic fields to the locus 
r^id, t), which is defined by the equality of the equivalent stresses of the 
remote elastic and the near tip HRR-field. This definition leads to 

-<'•" = i ( f (« + \yE"Bi 
2«a„«+i 

2/(«-l) 
Fm (26) 

with the angular function 

cos 
2 _ 

Fm = 
(1 - 2»')2 + 3 sin2 - I 7«+i)/("-i) 

laMV 
(27) 

This form applies for plane strain; for plane stress, the expression 1 — 2»' 
must be replaced by unity, and "oeiO) and a„ have their plane stress values. 

The creep zone boundary has been defined by equating the equivalent 
creep strain e^," to the equivalent elastic strain e^ '̂ [7]. If one uses this defini
tion and calculates the strains from the assembled stress field described 
above, the result for the creep zone boundary r„(d, t) has the same func
tional form as rj except for the angular function Ff^{6): 

2ir 

1 /K (n + D^E^Bi 
2Ma„«+i 

2/(«-l) 
F„ie) (28) 

According to Eq 28 the creep zone expands in proportion to ^2/(n-i)_ j j ie 
angular functionsFi(6) and F„{6) are shown in Fig. 1. Within the accuracy 
of the present method, the creep zone boundary runs into the crack tip. More 
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FIG. 1—Polar diagrams of the angular functions Fi(S) (dashed lines) and Vcr(6) (solid lines), 
for plane strain (upper half) and plane stress (lower half). Creep exponent n = 3. 5, 13. 
Poisson's ratio v = 0.3. 

accurate methods, however, might lead to a creep zone boundary which hits 
the crack faces behind the crack tip. 

Approximate Calculation of the Factor a„—The proper way to calculate 
the dimensionless factor a„ , which appears in the results of the preceding 
subsection, would be to solve the partial differential Eqs 16 and 17 
numerically; the amplitude of the near tip singular field is then part of the 
result. In the present paper, however, the authors estimate the value of a„ by 
means of the path-integral J [/3]. The quantity W = \a:de, which appears in 
the J-integral, is understood as an integral over the deformation history at 
each material point. With this definition of W, the J-integral is, in general, 
path-dependent for creep problems. One assumes, however, t ha t / i s approx
imately path-independent. The reason why one regards this as a reasonable 
approximation is the following: creep straining takes place mainly in the 
creep zone. In this region, the HRR-field is a good approximation that 
becomes asymptotically exact as r — 0. Further, one finds that it is possible 
to eliminate both coordinates (r, 6) from Eqs 24 and 25, thus showing that 
stresses and strains in the HRR-region behave as if there were a unique rela
tionship e{a), independent of (r, d) at any instant of time 
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e = ^B(n + l)ta'a,"-^ (29) 

The existence of a unique stress-strain relation, however, implies path-
independence of J. For the stress-strain relation stated in Eq 29 the value of 
the J-integral has been calculated in Refs 17 and 18 as a function of the am
plitude of the near tip field 

J„ = in + l)BtI„lAit)]"+' (30) 

In the elastic field, / has the well-known value [13]: 

rK^il — v^)/E for plane strain 
/oo = (31) 

(JC^/E for plane stress 

Assuming approximate path-independence of J (that is, !„ » J a,), one ob
tains the amplitude of the singularity 

A{t)^ 
KiHl - p2)/E i/(«+i) 

(n + l)BI„t 

and, with the definition of a„ according to Eqs 11 and 24, 

(32) 

a„ « 
n + 1 x(l - v^) !/(« + !) 

(33) 

This form is for plane strain. Numerical values are 03 = 0.912 and ai3 = 
0.975 for f = 0.3. For plane stress the factor (1 — v^) must be deleted, and 
the plane stress value for the integral /„ [16] must be inserted. Numerical 
values are a„ = 1.015 independent of n, within 1/2 percent accuracy. 

It is interesting to note that with this approximate value of a„, Eq 33, the 
near tip fields of a and e for small-scale yielding have the same form as for the 
extensive yielding case (Eqs 11 and 12), provided that C*, which governs the 
amplitude of the latter case, is replaced in all formulas by 0/(1 + n)t (here 
G = (1 — v^) Ki^/E for plane strain and K^/E for plane stress). 

Assessment of the accuracy—Unfortunately, the error of the approxima
tions in the previous two subsections can be hardly estimated analytically. 
Therefore, one applies the approximate method to Mode III and compares 
the results with the numerical results, which are then available [7]. It turns 
out that the approximate method under-estimates the amplitude of the 
HRR-field by 5, 15, and 30 percent for « = 4, 3, and 2, respectively, whereas 
it gives the field amplitude exactly for w — 00 (elastic-perfectly plastic mate
rial) in Mode III. The practical range of creep exponents is « = 4 to 6 and 
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sometimes higher; in this range the approximation is very close to the exact 
Mode III result. On the other hand, as « — 1 the concept of a growing creep 
zone becomes ill-defined, and this may result in the inaccuracy of the ap
proximation at low n. Figure 2 shows a comparison between the numerically 
calculated stress and the approximately calculated stress which is composed 
of the HRR-field near the crack tip and the elastic field far from the crack 
tip. With the strains calculated from this stress field, one obtains a creep 
zone size which coincides within 20 percent accuracy with the value 
calculated numerically [7]. 

In conclusion, the approximate methods work well for Mode III, and the 
authors now proceed assuming their approximate validity for Mode I, too. 

Criteria for Small-Scale Yielding versus Extensive Creep of Whole Specimen 

From the preceding analysis it is clear that the stress intensity factor Ki 
and the integral C* characterize the near tip field (and thereby crack growth 
behavior) in opposite limiting cases as follows: a description by Ki applies if 
the crack grows while the specimen behaves in a predominantly elastic man
ner except in a creep zone that is small compared with the specimen size 
(brittle failure); the C*-integral applies if crack growth is accompanied by ex
tensive creep of the whole specimen (ductile behavior). 

As an example, the initiation time for growth of a pre-existing sharp-
tipped crack as a function of the loading parameter is calculated. One 

2.0 

0.5 

FIG. 2—Stress component Era versus distance from crack tip, 'R, for Mode III, normalized as 
in Eqs 13 to 15 but with 2 G instead o /E / ( l — p). Comparison of approximate analytical result 
(dashed line) with numerical result (solid line). Analytical curve is given byLes = R-'^^^forR 
> 1.59 and I^j = 0.863 R~^^^for R < 1.59. Arrows indicate creep zone boundary: num — 
numerical result; an = approximate analytical result. Creep exponent ti = 4. 
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assumes that the crack starts to grow once a critical equivalent strain, e^, is 
attained at a small structural distance, r^, from the crack tip. For plane 
stress r^ is defined directly ahead of the crack (d = 0), and for plane strain it 
is measured in the direction where 'ogid) is a maximum. The near tip strains 
are given by Eq 25 for small-scale yielding. Inverting Eq 25, one obtains the 
crack growth initiation time, ?,, as a function of the stress intensity factor 

I, Cf 
1 

E"B(.n + 1) 

n + 1 lirEh 

2«a„«+i Ki^ 
(34) 

If extensive creep of the whole specimen precedes crack growth initiation, the 
strains are given by inserting Eqs 11 and 12 into Eq 1. Then the initiation 
time depends on C* 

ti = e,B -l/(n + l) ^nrc 

c* 
«/(« + !) 

(35) 

Now some practical guidelines will be discussed as to how one can decide 
whether or not small-scale yielding conditions prevail in a given test situa
tion: 

1. A direct approach would be to estimate the creep zone size experimen
tally, for example, by observation of a polished specimen surface near the 
crack tip. Extensive creep of the whole ligament can be detected by measur
ing the displacement at the loading pins. 

2. The second possibility would be to calculate the creep zone size from Eq 
28 and compare it with the specimen size. Since the material parameters B 
and n play an important role in Eq 28, this formula is strictly limited to 
power law creep. 

3. A formula for the creep zone size, which will be approximately valid for 
more general creep laws than pure power-law creep, is obtained if the time in 
Eq 28 is replaced by any one of the strain components, ey. Using Eq 25 with 
Eq 28 leads to 

rcA6,t) = 0„(e„) 
/67e,y(r,g„,f)r"/("- l)-|2(n + l ) / (n- l ) 

{Ki/E) 
F^m (36) 

with the numerical factor /3„ 

n + 1 

33/2„«„"+iay'(0„)?,"-i(ejJ 

2(n + l ) / (n- l ) 
(37) 

In Eqs 35, the strain component ey is supposed to be measured at a position 
(r, do) by means of a high-temperature strain gage. The position (r, do) must 
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be within the creep zone; dg is an arbitrary angle and the result of Eq 36 is in
dependent of do. For plane stress, it will be convenient to measure e^g directly 
ahead of the crack tip (dg — 0). For plane strain, larger tensile strains can be 
measured above the crack tip (^^ = ir/l) with the axis of the strain gage 
oriented at an angle Q — 3x74. Then numerical values for /3„ are ^T, = 0.212 
and /3i3 = 0.238 for plane strain, and 1S3 = 0.074 and /3i3 = 0.067 for plane 
stress. Thus, Eqs 36 and 37 provide a rough estimate for the creep zone size 
even if the creep exponent n is uncertain, since the result in this form is not 
strongly dependent of n, if n is large. 

4. The creep zone size can also be expressed in terms of crack opening 
displacement (COD), 8, which is sometimes convenient to measure. The 
resulting relation depends on the definition of COD: one definition of COD is 
to measure the distance between the two crack faces at the point where the 
creep zone boundary hits the crack faces behind the crack tip. With the ap
proximations of the present theory, this point cannot be determined (see Fig. 
1), but the relation between r„ and 6CZA (COD at the creep zone boundary) 
must have the form 

= I3„' 
Ed czb 

K, 
FcA0) (38) 

The factor I3„ ' can only be estimated by analogy with the Mode III case [7]. 
The result is ^n 'F^^iir/l) = 0.3. The advantage of Eq 38 is that it allows an 
estimate of the creep zone size independently of the creep parameters B and 
n. So it may be suspected that Eq 38 is approximately valid for more general 
creep laws than pure power-law creep. A practical drawback of Eq 38 is that 
COD at the creep zone boundary will be hard to measure precisely. 

COD can also be defined at the point where the line 6 = 135 deg 
originating from the apex of the crack profile, intersects the crack profile 
[23]. This COD value will be denoted by 6,. With this definition of COD, one 
obtains 

r„ = &n' 8 U i FcrW (39) 

with 

/3„" = 
n + 1 (27r) 1/2 

n |i/^(7r)|a„''+i 

2(n + l ) / (n- l ) 
(40) 

The angular part, iigiO), of the displacement function is 

(41) 
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Typical numerical values are for plane strain: fSj" = 0.63, /Ss" = 0.40, and 
0u" = 0.32; and for plane stress: /Sj" = 0.127, ^5" = 0.116, and jSij" = 
0.108. 

5. Finally, the characteristic time for the transition from small-scale yield
ing to extensive creep of the whole specimen can be estimated analytically. 
Figure 3 shows the time-dependence of the amplitude A(t), of the near tip 
singular stress field. The short-time limit is given by the small-scale yielding 
result (Eq 32), and the long-time limit is given by Eq 12. The characteristic 
time, ti, for the transition defined in Fig. 3, is 

ti = in + 1)C* 
(42) 

for plane strain; for plane stress, replace 1 — j / ^ by 1. Small-scale yielding 
prevails if the time is sufficiently small compared with the characteristic time 
?i. In Eq 42, C* is considered as a quantity that is known from a numerical 
analysis of a nonlinear viscous (or, by analogy, small strain nonlinear elastic) 
problem [18-22]. For a center-cracked strip, for instance, Goldman and 
Hutchinson [18] give 

C* = aoa V3/ ^ ( T ' " 
-V (43) 

The crack length is 2a, the strip width \s2b;J is given graphically in Ref 18 as 
a function of a/b and of the creep exponent n\ Oa, and £00" are the remotely 

t / t , — • -

FIG. 3—Time-dependence of the amplitude of the HRR-near tip stress field, A(t). The short-
time (small-scale yielding) is described by Eq 32. After long times (extensive creep of the whole 
specimen) the value given in Eq 12 is approached. The characteristic time, \\, is defined by 
equating long- and short-time solutions. Creep exponent: n = 4. 
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applied stress and creep strain rate. With Eq 43 the transition time is given 
by 

a^ (V3/2)"- ' / (a/&, 1) 
' Ee^" 1 + n Jia/b, n) 

The material parameter B does not appear in Eq 44, but the creep exponent 
n has a significant influence. According to Eqs 44 and 28, the creep zone size 
at the time ti is approximately 1/10 of the half crack length, a. 

Discussion 

Apart from the approximations which are involved in the analysis of the 
small-scale yielding case, further limitations of the present theory must be 
kept in mind. 

Firstly, the theory has been worked out for a material law which, besides 
elastic deformation, allows for pure power-law creep only. However, the 
general conclusion, that a creep zone near the crack tip can be defined, will 
not be altered if more general creep laws are valid, as long as the creep rate 
increases stronger than linearly as a function of the stress. From the form of 
Eqs 36 through 42, it is expected that the size of the creep zone can be 
estimated even if the creep law is different from a pure power-law relation. In 
this connection, the authors remark in passing that the solution presented for 
small-scale yielding is also valid for creep laws which include, approximately, 
transient effects through a time-hardening expression of the form e = a/E + 
B{t)a", provided that the product Bt in our solution is everywhere replaced by 
\'oB{r)dT. 

Secondly, the theory is based on the assumption that the fracture process 
zone is always negligibly small compared with the creep zone and the speci
men dimensions. In very ductile materials and small specimens, however, the 
fracture process zone may spread over the whole cross section of the cracked 
specimen. This situation can no longer reasonably be described by power law 
creep. The stress and strain distribution in the net section is likely to be more 
homogeneous in such a situation than predicted by the present theory. Under 
these conditions, the net section stress could be the loading parameter to 
determine the lifetime of cracked as well as uncracked specimens. 

Thirdly, the theory does not cover the range between small-scale yielding 
and extensive creep of the whole specimen. One might expect that an inter
polation between the two limiting cases is particularly doubtful for a large 
plate with a small center-crack under tension. In this case, the creep zone 
size at the transition time t^ is about one-tenth of the half crack length. This 
first appears to be far away from extensive creep of the whole plate. However, 
if one estimates the strain rates at the transition time by simply adding the 
remotely applied creep rate eoo'̂ '" = BoaJ', to the creep rate obtained for 
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small-scale yielding, it turns out that the elastic strain rates are considerably 
smaller than the creep rates everywhere except near the creep zone boundary 
where they are of equal order of magnitude. The condition for the extensive 
creep limit to be valid is that the creep rates are much larger than the elastic 
rates everywhere. This starts being fulfilled at the transition time. Hence, 
there is no big gap between the validity of the small-scale yielding and the ex
tensive creep case. Of course, if a higher degree of accuracy is required, the 
limiting cases are separated by a period of time where neither of them is ac
curate enough. 

Finally, the analysis has been confined to stationary cracks. For growing 
cracks, the conclusions concerning the applicability of Ki and C* are not 
fundamentally altered, but the situation becomes more complicated. The 
singular field immediately at the tip of a growing crack can no longer be the 
HRR-field when elastic effects are present [11]. As a consequence, the in
fluence of the loading parameters on the near tip strains becomes more com
plicated than, for instance, the one given in Eq 25. In addition, the stress and 
strain fields become dependent on the prior history of the loading parameter 
and of the crack growth. This will be discussed in greater detail in a forth
coming paper [12]. 

Conclusions 

An important result of the stress analysis is that a creep zone near the 
crack tip can reasonably be defined and calculated. The size in relation to 
specimen size and crack length determines which loading parameter governs 
crack growth initiation and growth rates. In large cracked specimens or 
structures (crack length and specimen size are large compared with the creep 
zone), the stress intensity factor is the loading parameter that correlates 
crack growth rates between specimens of different shape. In specimens that 
are small compared with the creep zone, but large compared with the frac
ture process zone, the path-independent integral C* is the relevant loading 
parameter. If the ligament width of the specimen becomes comparable with 
the size of the fracture process zone (which has been neglected in the present 
analysis) the net section stress possibly determines the lifetime of a specimen. 
Excessive crack tip blunting will have a similar effect. 

Criteria for small-scale yielding have been developed. They are either 
based on the comparison of specimen size and creep zone size or on the com
parison of the test duration with a characteristic time that can be calculated 
analytically. 

Acknowledgments 

H. Riedel was supported in this work by the Max-Planck-Gesellschaft, 
Munich, and by a visiting appointment in the NSF Materials Research Labo-

 



130 FRACTURE MECHANICS: TWELFTH CONFERENCE 

ratory at Brown University; J. R. Rice was supported by Department of 
Energy Contract EY-76-S-02-3084 with Brown University. Helpful discus
sions with W. J. Drugan of Brown University are gratefully acknowledged. 
We would also like to thank C. F. Shih of General Electric Research Labora
tory and C. Y. Hui of Harvard University who provided numerical tables of 
the functions ^6). 

References 

[1] Robson, K., "Crack Growth in Two Carbon Steels at 450°C," International Conference on 
Creep Resistance in Steel, Verein Deutscher Eisenhiittenleute, Dttsseldorf, 1972. 

[2] Harrison, C. B. and Sandor, G. N., Engineering Fracture Mechanics, Vol. 3, 1971, pp. 
403-420. 

[3] Landes, J. D. and Begley, J. A. in Mechanics of Crack Growth, ASTM STP 590, American 
Society for Testing and Materials, 1976, pp. 128-148. 

[4] Nikbin, K. M., Webster, G. A., and Turner, C. E. in Cracks and Fracture, ASTM STP 
601, American Society for Testing and Materials, 1976, pp. 47-62. 

[5] Haigh, J. R., Materials Science and Engineering, Vol. 20, No. 2, 1975, pp. 213-224. 
[6] Sadananda, K. and Shahinian, P., Fracture Mechanics, N. Perrone, H. Liebowitz, D. 

Mulville, and W. Pilkey, Eds., University Press of Virginia, Charlottesville, Va., 1978, pp. 
685-703. 

[7] Riedel, H., Zeitschriftfur Metaltkunde, Vol. 69, No. 12, 1978, pp. 755-760. 
[8] Riedel, H., Materials Science and Engineering, Vol. 30, 1977, pp. 187-196. 
[9] Koterazawa, R. and Mori, T., Transactions of the American Society of Mechanical Engi

neers, Journal for Engineering Materials and Technology, Vol. 99, Oct. 1977, p. 298. 
[10] Ewing, D. J. F., International Journal of Fracture, Vol. 14, No. 7, 1978, p. 101. 
[11] Hui, C. Y. and Riedel, H., submitted to International Journal of Fracture. 
[12] Riedel, H. (research in progress). 
[13] Rice, J. R., in Fracture: An Advanced Treatise, H. Liebowitz, Ed., Vol. 2, Academic 

Press, New York, 1968. 
[14] Hutchinson, J. V/., Journal of Mechanics and Physics of Solids, Vol. 16, No. 1, 1968, pp. 

13-31. 
[/5] Rice,}.^. aniRosengKn,G.f., Journal of Mechanics and Physics of Solids, Vol. 16, No. 

1, 1968, pp. 1-12. 
[16] Hutchinson, J. W., Journal of Mechanics and Physics of Solids, No. 5, Vol. 16, 1968, pp. 

337-347. 
[17] Shih, C. F. in Fracture Analysis, ASTM STP 560, American Society for Testing and Mate

rials, 1974, pp. 187-210. 
[18] Goldman, N. L. and Hutchinson, J. W., InternationalJournal of Solids and Structures, 

Vol. 11, 1975, pp. 575-591. 
[19] Parks, D. M. in Numerical Methods in Fracture Mechanics, A. R. Luxmoore and D. R. J. 

Owen, Eds., Department of Civil Engineering, University College of Swansea, Jan. 1978. 
[20] Ranaweera, M. P. and Leckie, F. A. in Numerical Methods in Fracture Mechanics, A. R. 

Luxmoore and D. R. J. Owen, Eds., Department of Civil Engineering, University College 
of Swansea, Jan. 1978, pp. 450-463. 

[21] Hutchinson, J. W., Needleman, A., and Shih, C. F. in Fracture Mechanics, N. Perrone, H. 
Liebowitz, D. Mulville and W. Pilkey, Eds., University Press of Virginia, Charlottesville, 
Va., 1978, pp. 515-528. 

[22] A Plastic Fracture Handbook, C. F. Shih et al, Eds., General Electric Research Labora
tory, in preparation. 

[23] Tracey, D. M., Transactions of the American Society of Mechanical Engineers, Journal of 
Engineering Materials and Technology, Vol. 98, April 1976, pp. 146-151. 

 



Ashok Saxena^ 

Evaluation of C* for the 
Characterization of Creep-Crack-
Growth Behavior in 304 
Stainless Steel 

REFERENCE: Saxena, Ashok, "Evaluation of C* for the Characterization of Creep-
Crack-Growth Behavior in 304 Stainless Steel," Fracture Mechanics: Twelfth Con
ference, ASTM STP 700, American Society for Testing and Materials, 1980, pp. 
131-151. 

ABSTRACT; An experimental program to characterize the creep-crack-growth behavior 
of 304 stainless steel at several temperatures was conducted. Crack growth rates, da/dt, 
obtained from center crack tension and compact type specimens were correlated by the 
energy rate line integral, C*. Experimental data indicate that minor differences in 
chemistry and microstructure do not significantly influence da/dt versus C* relation
ship. Also, in the range of 538 to 705°C (1000 to 1300°F), the da/dt versus C* relation
ship is not significantly affected by temperature. Simple analytical methods of esti
mating C* are also evaluated. 

KEY WORDS; creep, crack, propagation, 304 stainless steel, fracture mechanics, 
static loading, fractures (materials) 

Several structural components of modern power plants operate in the 
elevated temperature regime where the possibility of creep deformation is 
an important design consideration. In addition, many of these components 
are of such large sizes that inspection and repair limitations preclude the 
assumption of a defect free structure. Consequently, the evaluation of the 
structural integrity of these components requires the capability to predict 
the subcritical crack growth behavior under creep conditions. 

This paper attempts to establish an appropriate parameter for the char
acterization of creep crack growth behavior of American Iron and Steel 
Institute's (AISI) type 304 stainless steel. Although other parameters are 
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discussed, the main thrust of the paper is directed towards evaluation of 
the energy rate Hne integral, C*, proposed by Landes and Begley [1]^ and 
independently by Nikbin et al [2]. In addition, the influence of tempera
ture, heat-to-heat variations, and microstructure, on creep-crack-growth 
behavior of 304 stainless steel is also explored. 

Parameters for Characterizing Creep Cracic Growtli 

Several field parameters have been proposed for characterizing the creep-
crack-growth rate behavior of metals. These parameters include; stress 
intensity, K [3], contour integral, J [4], crack-tip opening displacement rate, 
A [5,6], net section stress [7], and energy rate line integral, C* [1,2]. These 
parameters are briefly evaluated in the subsequent discussion. 

Stress Intensity, K 

The relationship between creep crack growth rate, da/dt, and K was 
investigated by Siverns and Price \3\ and also by Harrison and Sandor [7]. 
In these studies, even though only one specimen geometry was used, the 
success of K in describing da/dt was at best moderate. For more than one 
specimen geometry the correlation is expected to be worse. However, for 
Udimet 700 at 843°C (1550°F), Sadananda and Shahinian [8] reported 
good correlation between da/dt and K. These data were also obtained on 
one specimen geometry, but good correlation was reported among tests 
conducted at different loads. These apparently contradicting observations 
may be explained as below. 

Figure 1 shows a schematic of the deformation zones ahead of a crack 
subjected to load in the creep regime. Upon loading, a plastic zone is formed 
instantaneously at the crack tip. The size of the plastic zone can be char
acterized in terms of K and the yield strength of the material. Also sche
matically shown is the K zone, of finite size, in which the near crack tip 
elastic stress and deformation fields apply. If the plastic zone size becomes 
comparable to the size of the K zone, K loses significance. Under such 
conditions, the crack tip stresses and strains can be characterized by / . 
With time, the stresses in the vicinity of the crack begin to relax due to 
creep deformation. The size of the relaxation zone increases as time accum
ulates. When the relaxation zone becomes comparable in size to the K 
zone size, neither K or J uniquely characterize the stresses and strains at 
the crack tip. Hence, these parameters are unsuitable for characterizing 
crack growth rate, da/dt, as was observed by Siverns and Price [3]. For 
creep resistant materials, such as Udimet 700, temperatures as high as 
843°C (1550°F) are not sufficient to cause extensive creep deformation. 

^Italic numbers in brackets refer to the list of references appended to this paper. 
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Plastic Zone 

Elastic Plus Plastic (instantaneous, t = 01 

0 Creep Deformation, (t >0I 

Distance from Crack Tip, r-

FIG. 1—Schematic representation of the deformation zones ahead of the crack tip at ele
vated temperatures. 

Hence, stress relaxation at the crack tip is limited to a very local region, 
which is smaller compared to the K zone size. Under these circumstances, 
K will continue to characterize the crack growth rate behavior as it does for 
the small-scale yielding case. Thus good correlation of da/dt with K appears 
to exist as reported by Sadananda and Shahinian [8]. 

Net Section Stress 

Experimental data for evaluating net section stress for characterizing 
creep crack growth rate are mixed. Harrison and Sandor [7] reported 
modest correlation between da/dt and net section stress in Cr-Mo-V steel 
using center crack tension specimens only. Other studies [9] involving vari
ous specimen geometries, including some with nonuniform stress fields, 
reported lack of correlation of da/dt with net section stress. Since net sec
tion stress does not describe the magnitudes of stress, strain, or strain rate 
in the crack-tip region, it is not expected to correlate with crack growth rate. 

COD Rate, A 

Some investigators have reported correlation between crack-tip opening 
displacement rate, A, and da/dt [3,4]. Estimation of A involves determining 
the location of the plastic (or inelastic) hinge (point ahead of the crack tip 
where deflection is zero) and interpolating between the hinge point and load 
line deflection rate [10]. Also, A and C* (to be described in the following 
paragraph) may be related uniquely as K and A are related in linear-elastic-
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fracture-mechanics [//] and, hence, may be conceptually equivalent. A 
more rigorous proof is not available at this time. 

C* Line Integral 

The C* parameter is a path independent energy rate line integral de
fined by analogy io J [1,2]. It is given by 

C* = W* dy - Ti 
'dx 

ds (1) 

where 

^ * Jo Oydkij (2) 

As illustrated in Fig. 2, F is the line contour taken from the lower crack 
surface to the upper crack surface. W* is the strain energy rate density 

C" = 
a +Aa Aa 

(b) 
Load Line Displacement Rate 

FIG. 2—(a) Crack-tip coordinate system and arbitrary line integral contour (b) schematic 
illustration of the energy rate interpretation ofC*. 
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associated with point stress, a ,̂ and strain rate, ,̂y. J, is the traction vector 
defined by outward normal, «,, along T, Tj = ffyfij. The displacement 
vector is denoted by M, and s is the arc length along the contour. 

The energy rate interpretation of C* was given by Landes and Begley [/] 
also, by analogy to the J-integral. They defined C* as the power difference 
between two identically loaded bodies having incrementally differing crack 
lengths, Fig. 2. 

dU* 
€*=-—- (3) 

da 

U* is the power or energy rate per unit thickness defined for a load P and 
displacement rate u. Based on an analogy to McClintock's [12] work on / 
describing the nature of the singularity in the crack-tip region, Goldman 
and Hutchinson [13] have shown that C* characterizes the stress and strain 
rate in the vicinity of the crack tip in the secondary creep regime as follows 

For materials undergoing secondary creep deformation (steady state), the 
stress and strain rate is commonly related by 

^ = a ( i ) (5, 
Co \ f f o 

where, ig and Oo are reference strain and stress, respectively, and a and n 
are material constants. Substituting Eq 5 in Eq 4 one obtains 

/C*\ 1/(1 + «) 
o, « ( - j (6) 

n/n + 1 
4 « ( - ) (7) ^'J V r 

where, r is the distance to the crack tip. Thus, C* characterizes the crack-
tip stress and strain rate field under conditions of local secondary creep 
behavior. 

Experimental work on Discalloy [/], alloy 718 [4], and ICr-Mo-V steel [14] 
show that C* correlates well with creep crack growth rate. However, there 
are still some questions about the ability of C* for correlating crack growth 
rates obtained from different specimen geometries [/]. 

In this paper, C* is used to characterize creep crack growth behavior of 
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304 stainless steel using two different specimen geometries. Simple methods 
of estimating C* values are evaluated and recommendations for future work 
are provided. 

Experimental Procedure 

Material and Specimen Preparation 

The test material used in this investigation was AISI type 304 stainless 
steel (heat 24348 of Jessop steel) supplied in the hot-rolled, annealed, and 
pickled condition in the form of a 64-mm (2.5-in.) thick plate. The chemi
cal composition of the material is given in Table 1. Tensile properties of 
this material at room temperature and at 594°C (1100°F) are given in 
Table 2. 

Center crack tension (CCT) and compact type (CT) specimens. Figs. 3 
and 4, respectively, were machined with the notch oriented in the long 
transverse direction (TL) per ASTM Test For Plane-Stain Fracture Tough
ness of Metallic Materials (E 399-78). All specimens were precracked 
approximately 2.5 mm (0.1 in.) at room temperature prior to testing. 
The terminal value of AK for precracking was approximately 13.2 MPaN/m 
(12 ksiVin.). 

Creep Crack Growth Tests 

Creep crack growth tests were conducted under constant actuator de
flection rate (approximately constant load-line deflection rate) using a 
servohydraulic test system. The test setup for compact specimen is shown 
in Fig. 5. The temperature in the test section was controlled to +2°C 
(±36°F) of the desired value. The load, load-line displacement, and crack 
length were continuously monitored using load cell, linear voltage dif
ferential transformer (LVDT) and electrical potential system (described 
later in the section), respectively. A typical test record involving measure
ment of load, crack length, and load-line deflection against time is shown 
in Fig. 6. 

The CCT specimens were each tested at a single constant displacement 
rate ranging between 0.075 to 0.3 mm/h. On the CT specimens, the dis
placement rate was changed three times in a step fashion between 0.025 
and 0.15 mm/h (0.001 to 0.006 in./h) at crack extension intervals of 
approximately 5 mm (0.2 in.). This procedure was shown previously to yield 
more data points from each specimen [/]. To avoid any influence from the 
transient period following a displacement rate change, crack extension 
immediately following the change was not included while calculating 
growth rates. The tests were terminated when the crack had grown through 
75 to 90 percent of the initial uncracked ligament. At this point, the 
specimen was cooled to room temperature and cyclically loaded until failure 
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FIG. 3—Schematic of a center crack tension specimen. 
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FIG. 4—Schematic of a compact type (CT) specimen. 
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FIG. 5—Test setup for compact specimen. 

occurred. Thus, an additional bench mark was created for comparing the 
crack length from electrical potential measurements. 

Electrical Potential Technique for Monitoring Crack Extension 

Crack length was monitored using a direct current, constant current 
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FIG. 6—A typical test record obtained for a displacement rate controlled test on a CCT 
specimen. 

electrical potential system [15]. The location of the input and output 
current leads are shown in Figs. 3 and 4 for the two specimen geometries. 
These locations were found to provide optimum conditions for crack length 
measurements [15,16]. 

For CCT specimens, the percent change in output voltage was related to 
the percent change in uncracked ligament by rearranging the analytical 
calibration equation proposed by Johnson [15]. The analytical calibration 
was verified by comparing the predicted values of final crack length to 
those directly measured on the fracture surface. Correction factors were 
thus calculated for each individual test and applied to the electrical potential 
measurements. 

For CT specimens, an experimental calibration curve. Fig. 7, was ob
tained between output voltage and crack extension by extending crack 
length under fatigue loading at 594°C (1100°F). Surface crack length 
was recorded at 1.25-mm (0.05 in.), intervals while a continuous record 
of electrical potential was obtained on a strip chart recorder. The specimens 
were also bench marked periodically (four to five times during a 2-cm 
(0.8 in.) crack extension) to assure that proper tunneling corrections were 
applied to the visual crack length measurements obtained on the surface. 
The starting crack length for the creep crack growth tests was between 
an a/W of 0.48 to 0.51, for which consistent calibrations in Fig. 7 were 
obtained. 
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FIG. 7—Crack extension versus change in electrical potential for 304 stainless steel, CT 
specimen at 594°C (1100°F). 

Data Reduction 

Crack growth rate, da/dt, at various crack lengths was calculated by 
dividing two successive crack length measurements by the elapsed time. 
C* was calculated by a multiple specimen graphical technique developed 
by Landes and Begley [7] and also by a simplified method developed from 
analogy to fully plastic solutions for the J-integral reported by Hutchinson 
et al [17,18]. In the subsequent discussion, the latter is referred to as single 
specimen analytical method. These methods of estimating C* are described 
in detail in the following discussion. 

Mulitple Specimen Graphical Procedure 

A schematic illustration of the multiple-specimen graphical technique [/] 
used for reducing the data is shown in Fig. 8. The raw data consist of a 
plot of load, load-line displacement and crack length as a function of 
time. In Step 1, the load versus displacement rate is plotted for various 
crack lengths. The area under the load versus displacement rate plot is the 
energy rate, U*, or power applied to the specimen. In Step 2, U* is plotted 
as function of crack length at various displacement rates. By definition, 
Eq 7, C* is the slope of the U* versus "a" curve. In Step 3, the crack 
growth rate, da/dt, is plotted as a function of C*. 
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Recorded Raw Data 
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Cracl( Lengtti 
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C ' 

Step 3 

FIG. 8—Various steps involved in reducing creep crack growth rate data for constant dis
placement rate test. 

This data reduction procedure requires that several specimens be tested 
in order to obtain only a few data points. Also, large errors can result 
during determination of the slope, dU*/da, which will directly affect the 
accuracy of C*. This error can be reduced by testing a large number of 
specimens at different displacement rates and using regression methods for 
calculating slopes. However, it would require longer test periods and 
extensive costs. Due to these disadvantages, an alternate procedure for 
estimating C* was also used. 

Single Specimen Analytical Method 

Hutchinson et al [17,18] have proposed equations for estimating J under 
fully plastic conditions of loading for pure tension and pure bending 
conditions. These equations can be modified to estimate C* provided the 
uncracked ligament of the specimen is undergoing secondary creep. For 
the CCT and CT specimens, C* is given by Eqs 8 and 9, respectively 

C* = ae„a„il - 2a/W)agi(2a/W, n){P/P„) n + 1 (8) 
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C* = aOoUW - a)hiia/W, n){M/M„)" + ' (9) 

where a, n, €„, and Og have been defined earlier in Eq 5; and gi and hi 
are functions of crack length and the strain rate hardening exponent, n. 
These functions will be further discussed later. P and M are the applied 
load and moments respectively. PQ and MQ are limit load and limit moment, 
respectively, and are given by 

f = 2(W- 2a)ff„/V3 plane strain (10a) 
Po\ 

[_ = (W — 2a)ffo plane stress (106) 

f = 0.364 aoiW — a)2 plane strain (11a) 

I = 0.2679 Co {W - a)2 plane stress (116) 

Equation 5 can be rewritten with fewer constants as follows 

e = A{a)" (12) 

where 

eo<r„a 
n + 1 (13) 

Substituting Eqs 10, 11, and 13 into Eqs 8 and 9 for plane strain, one 
obtains the following for CCT specimen 

^ (1 -2a/W)" ^^•^^''^'^^ (14) 

for CT specimen 

C* = Ah,ia/W,nHW - a) [^^^^^^ _ ^^,j ^^^^ 

Note that M has been replaced by P (W + a)/2 in Eq 15. The functions gi 
and hi were reported by Hutchinson et al [17,18] for plane-strain conditions 
for selected a/W-values and are plotted in Fig. 9 for n-values of interest 
in this study. 

Constants A and n for 304 stainless steel at 594°C (1100°F) have been 
recently reported by Gowda et al [19]. These constants were obtained by 
testing under multiaxial conditions of loading. They subjected tubular 
specimens to internal pressure (using argon gas) and simultaneous axial 
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FIG. 9—Nondimensional parameters gi and hi in Eqs 8 and 9 as a function of crack length 
for CCT and CT specimens, respectively [18]. 

load. Creep rate data were obtained for principal stress ratios {R = a/a-i^ 
of 1.0, 1.5, and 2.0 and were plotted in the form of effective stress and 
effective strain rate to normalize the data for various /?-values. For the 
values of R above, n and A were reported as 6.0 and 2.13 X 10~'*, re
spectively, when stress is expressed in mega pascals and strain rate in 
strain per hour. Substituting these constants along with values of gj and 
Aj, C* was determined at various crack lengths for all specimens tested. 

Values of C*, estimated from the two techniques described previously, 
are compared in Table 3 for both specimen geometries. The discrepancies 
between the C*-values calculated from the two techniques is between 8 to 
40 percent. Several reasons that may explain this discrepancy are as follows. 
Firstly, the constants A and n in Eq 12 were developed for a different 
heat of 304 stainless steel than used in this study. The values of C* are 
sensitive to these material parameters. Secondly, the calculations used 
plane-strain anlysis for the entire specimen. Although plane-strain condi
tions may prevail in the crack-tip region, the bulk of the specimen will be 
in plane-stress condition. Thirdly, for CT specimens, there is a tension 
component not accounted for in Eq 15 that was developed for pure bending. 
Finally, the estimates of C* were obtained from a graphical method, 
which in itself may have scatter normally associated with experimental 
results. 

Due to the approximate linear relationship between da/dt and C* for 304 

(71 and (72 are the maximum and minimum values of the principal stresses. 
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TABLE 3—Comparison of C* values estimated from the graphical technique to those 
obtained from eqs 8 and 9. 

Specimen Type 

CCT 
CCT 
CT 
CT 
CT 
CT 
CT 

a/WoT2a/W 

0.65 
0.675 
0.595 
0.675 
0.740 
0.675 
0.800 

C* 

Eq 8 or 9 

1.45 X 10^ 
1.79 X 10^ 
2.05 X 10^ 
2.9 X 10^ 
8.4 X 10^ 
2.9 X 10^ 

10.8 X 10^ 

(J/m ^ • h ) 

Graphical Method 

2.21 X 10^ 
2.4 X 10^ 
3.48 X 10^ 
5.2 X 10^ 
7.8 X 10^ 
4.8 X 10^ 
7.3 X 10^ 

Conversion factor—J/m^-h = 5.70 X 10 •'in.-lb/in.^-h. 

stainless steel as shown in Fig. 10, an 8 to 40 percent discrepancy in 
estimating C* implies a similar variability in growth rates. The scatter in 
growth rates from a single data reduction procedure itself is larger than 
the factor of 1.4. In view of this observation, the discrepancy in the C* 
estimates mentioned above are not large enough to cast doubt on the more 
significant results of this study. 
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FIG. 10—Creep crack growth rate of 304 stainless steel at 594°C (1100°F) as a function of 
C* for two specimen geometries. Filled points were obtained by multiple specimen data re
duction technique and open points by fully plastic plane-strain solutions. 
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Results and Discussion 

In this section of the report, the influence of specimen geometry on 
da/dt versus C* behavior is examined using data from heat 24348 of 304 
stainless steel. Additional creep crack growth rate data on two micro-
structures in the temperature range of 538 to 705°C (1000 to 1300°F) on 
another heat of 304 stainless steel from the previous work of Begley [20] 
are also described. By comparing results from the two heats of 304 stainless 
steel, the influence of minor chemistry differences (heat-to-heat variations) 
on creep crack growth rate are characterized. 

Effect of Specimen Geometry 

The da/dt versus C* behavior at 594°C (1100°F) is plotted in Fig. 10. 
Different symbols have been used to represent data from the two specimen 
geometries and the two procedures used for estimating C*. At low C*-values 
there is a good agreement between the crack growth rates obtained from 
the CCT and CT specimen geometries. For C*-values above 2.9 X 10^ 
J/m^'h (16.5 in. "lb/in.^'h), there is an upturn in growth rates obtained 
from CCT specimens. The upturn (deviation from CT data) began when 
the uncracked ligament became smaller than 7.5 mm (0.3 in.) or 2a/W > 
0.7, and may be explained as follows. 

It is possible that a minimum size of uncracked ligament may be required 
to obtain geometry independent creep crack growth rate data. Such criteria 
are required in plane-strain, Ki^ fracture toughness testing (per ASTM 
E 399), in elastic-plastic /jc testing [21], and fatigue crack growth rate 
testing (per ASTM Test for Constant-Load-Amplitude Fatigue Crack 
Growth Rates Above 10~*m/cycle (E 647-78T)). Further, the analytical 
results of McMeeking and Parks [22] have shown that for a /-controlled 
stress and strain field to hold in the crack tip region, a minimum ligament 
size proportional to J/Oo should be maintained. They also show that the 
minimum ligament size requirements are considerably larger for CCT 
specimens compared to a bend type CT geometry. By analogy, these results 
imply that for maintaining a C* dominated stress and strain rate field 
during creep crack growth testing, the ligament size required for CCT 
specimens will be larger than that for CT specimens at equal C*-values. 
Hence, the upturn in the crack growth rates obtained on the CCT specimen 
may be attributed to the breakdown of C* dominance of the stress and 
strain rate fields. More experimental data and analytical studies are needed 
to resolve this issue completely and to set specimen size limits for creep 
crack growth testing. 

Despite the upturn in the crack growth rates under certain test conditions 
described previously, it can be tentatively concluded from the data of 
Fig. 10 that C* provides a geometry independent characterization of creep 
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crack growth rates for 304 stainless steel. Demonstration of specimen 
geometry independence of test data is important in fracture mechanics 
testing because it substantiates the use of laboratory test data for making 
service life predictions of cracked components. 

Influence of Temperature and Material Variables 

Figure 11 shows creep crack growth rate data for a different heat of 304 
stainless steel in as-quenched and quenched and sensitized conditions'* at 
538, 649, and 705°C (1000, 1200, and 1300°F) from tests conducted by 
Begley [20]. Standard 25.4-mm (1-in.) thick CT specimens were used to 
obtain the data, and a multiple specimen graphical technique was used for 
reducing the data. For comparison, the scatter band from Fig. 10 is also 
plotted. 

All the data in Fig. 11 lie either within the scatterband obtained for 
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FIG. 11—Creep crack growth rate as a function of temperature and heat treatment for 304 
stainless steel. "S" refers to sensitized treatment and "Q" refers to an "as quenched con
dition. " 

''The average tensile properties of the material for these two heat treatments are reported 
in Table 2 at three temperatures. 
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594°C (1100°F) or very close to it. This behavior is in contrast to the creep 
rupture life of 304 stainless steel obtained from smooth specimens, which 
is affected significantly by temperature and also by minor differences in 
chemistry [23]. 

The lack of significant temperature effect on da/dt versus C* relationship 
can be rationalized as follows. During creep crack growth testing under 
constant displacement rate control or under constant load control, the 
increasing deformation is accommodated by: (a) crack growth and (ZJ) 
additional inelastic creep deformation of the specimen. Now, consider two 
creep crack growth tests being conducted under constant displacement 
rate control in which only the test temperatures are different. The applied 
displacement rate, specimen geometry and size, and the crack lengths are 
identical. Since creep deformation rate will be higher for the specimen 
being tested at the higher temperature, the crack growth rate will have to 
be lower for that specimen to maintain equal displacement rate. Also, the 
load obtained for the higher temperature test at equal crack lengths is 
expected to be lower. Hence, a lower C*-value is predicted for this test, 
which is consistent with the lower crack growth rate. If these tests were 
conducted under constant load, the C* and, thus, the crack growth rate 
obtained would be higher for the higher temperature test. This would be 
due to the higher deflection rate obtained at the higher temperature under 
these conditions. 

The above rationale is purely a mechanics based argument. In materials 
where fundamental mechanisms of cracking are different for various 
temperatures, more significant differences in da/dt versus C* behavior are 
expected. Also, more significant differences may exist at growth rates 
lower than those for which data were obtained in this study. 

Summary and Conclusions 

Results of an experimental program to characterize the creep crack 
growth behavior of 304 stainless steel are described. The energy rate line 
integral, C* is evaluated as a field parameter for geometry independent 
characterization of creep crack growth behavior. The following pertinent 
conclusions can be made from the results of this investigation. 

1. C* is a promising candidate parameter for characterizing creep crack 
growth rate, da/dt, in cracked members undergoing predominantly second
ary creep. When da/dt was expressed as a function of C*, data from CT and 
CCT specimen geometries collapsed on a single trend. 

2. It was observed that, when 2a/W was greater than 0.7 for CCT 
specimens, an upturn in growth rates and deviation from CT data occurred. 
This is tentatively attributed to insufficient ligament size of the specimen. 

3. Crack growth rates in 304 stainless steel as a function of C* are 
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not significantly affected by temperature (in the range of 538 to 705°C 
(1000 to 1300°F)), heat treatment, or minor chemistry differences. 

4. A single specimen analytical method was developed to calculate C* 
using an analogy to the fully plastic / solutions. C* estimates from this 
method were different by 8 to 40 percent from those obtained from the 
multiple specimen graphical procedure. 

5. Recommendations for future work are provided. 

Recommendations for Future Work 

Specific areas that need more work in order to advance technology for 
predicting creep crack growth behavior, using C* parameter are outlined 
below. 

1. More creep-crack-growth data should be generated at various tempera
tures and on different materials to further evaluate C* and understand 
its limitations. Tests covering lower growth rates should be performed. 

2. Finite element techniques should be developed for obtaining numerical 
solutions to cracks in elevated temperature members. The feasibility of 
such analysis is clearly demonstrated by Wilson et al [24]. 

3. Single specimen analytical procedures for estimating C* should be 
developed for other geometries. This is important for application of the 
data in life prediction schemes. The accuracy of the presently available 
expressions should be further verified. Also, these solutions should be 
modified to account for behavior under primary creep. 

4. After establishing the C* parameter for characterizing steady state 
creep crack growth rates, the problem of characterizing crack initiation 
at notches and that of characterizing incubation time should be approached. 
Incubation time is defined as the period between the application of the 
load and the onset of crack growth. This could account for a substantial 
portion of service life during creep loading. 
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ABSTRACT; Application of linear elastic and elastic-plastic fracture mechanics para
meters to high-temperature fatigue crack growth is examined to determine which 
parameter provides a better correlation of crack growth data. It is concluded that the 
J-integral concept is applicable to fatigue, and methods of determination of / for both 
load-controlled and displacement-controlled fatigue are discussed. The J-integral 
parameter is shown to be better than the linear elastic parameter K in correlating fatigue 
crack growth, particularly so in materials that undergo metallurgical changes during test 
resulting in changes in flow properties. Application of the J-integral concept to time-
dependent and combined cycle and time-dependent crack growth is discussed in detail. 

KEY WORDS: fracture mechanics, fatigue, creep, crack growth, high temperature, J-
integral, load-controlled, displacement controlled, time dependent, fractures (ma
terials), crack propagation 

Linear elastic fracture mechanics techniques have been used successfully 
to predict fatigue crack growth rates in many materials particularly at low or 
room temperature. This success is based on the fact that a single parameter, 
namely, stress intensity factor/t [1],^ can adequately describe the stress field 
around the crack tip provided the extent of plastic flow at the tip is small. 
Paris [2] has shown that a large body of fatigue crack growth data can be uni
quely correlated on the basis of stress intensity factor range, ^K, as 

^ = B{MO" (1) 

'Research metallurgist and supervisory metallurgist, respectively, Thermostructural Mate
rials Branch, Material Science and Technology Division, Naval Research Laboratory, Washing
ton, D.C. 20375. 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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where constants B and n depend on the material. The extent to which the 
linear-elastic parameter is applicable, however, is limited particularly when 
plasticity effects at the crack tip became appreciable. Dowling and Begley 
[3,4] have recently shown that in such cases the nonlinear parameter, 
J-integral, has a much broader range of applicability in terms of specimen 
dimensions or stress intensity values in predicting fatigue crack growth rates. 

Since the limitation of linear-elastic fracture mechanics becomes more evi
dent with increasing temperature, particularly because of decrease in yield 
stress of materials with temperature and because of incipience of nonlinear 
time-dependent effects such as creep and environmental interactions, use of 
nonlinear parameters such as J-integral for predicting crack growth at high 
temperatures becomes important. During the past few years there has been a 
significant amount of fatigue crack growth data generated at the Naval 
Research Laboratory on several thermostructural materials, and using this 
previously published data the authors examine in this report to what extent 
the J-integral concept is applicable for fatigue crack growth and what its 
limitations are. 

J-Integral Concept for Fatigue 

The concept of J-integral was orginally introduced by Rice [5] and its ap
plicability as fracture criteria was proposed by Begley and Landes [6]. The 
value of J-integral can be experimentally determined for a cracked body from 
the load-displacement curve using a simple form of an equation as 

\ dU 
B da 

(2) 

where B is the specimen thickness and / is proportional to the change in 
potential energy U due to infinitesimal crack extension da at a given crack 
deflection 6. Strictly the J-integral concept is valid only for monotonic de
formation, and irreversible deformation during unloading would invalidate 
its applicability for fatigue. In fact, fatigue damage itself arises only because 
of the irreversibility of plastic flow during loading and unloading [7]. In spite 
of these arguments, initial attempts to use J-integral for fatigue were suc
cessful [3] and this may be explained by the following. It is known from 
several experimental investigations that a material develops' a characteristic 
cyclic stress-strain behavior [8] under fatigue which is different from that 
under monotonic deformation and yet unique for a given set of experimental 
conditions such as temperature, environment, etc. At a microlevel this means 
that the material ahead of the crack tip acquires a characteristic plastic zone 
that is different from that under monotonic deformation and yet unique for a 
given crack length and loading condition [9,10]. This uniqueness of cyclic 
plastic zone implies that strain energy for a crack increment is unique for a 
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given crack length and load. Therefore, the J-integral concept is applicable 
under fatigue although its value at a given crack length differs from that 
under monotonic deformation. Experimental verification may be the only 
proof that can be provided at this stage for the validity of J-integral to fatigue 
crack growth. 

Determination of J-Integral for Fatigue 

Fatigue crack growth rates in fracture-mechanics type specimens can be 
determined either under displacement-controlled or load-controlled condi
tions although for some specimen geometries one may be more convenient 
than the other. For displacement-controlled fatigue, determination of 
J-integral is rather straightforward and follows directly from Eq 2. This is il
lustrated schematically in Fig. 1. In particular, the rising part of the load-
displacement hysteresis loops in Fig. la for crack lengths a^, ai are displaced 
to a common origin as in Fig. lb. J-integral is then given by the hatched area 
[3]. 

For load-controlled fatigue, there is an ambiguity in terms of defining the 
proper limits of integration. It has been shown [11] that the following pro
cedure ensures that J-integral is compatible to the A/f-value, and it involves 

LOAD 

LOAD 

FIG. 1—Methods of determination of J-integral for displacement-controlled (a and b) and 
load-controlled (c and A) fatigue. 
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selecting minimum load as a reference point for the integral. In particular 
the rising parts of the load-displacement hysteresis loops in Fig. Ic for crack 
lengths «! and 03 ^^^ displaced to a common origin as in Fig. Id, and 
J-integral is determined from the hatched area. Thus, this definition of 
J-integral implies that in the load-controlled fatigue the cumulative cyclic 
strain such as 61, 82 (Fig. Ic) has no effect on the subsequent fatigue crack 
growth. In effect it is similar to the AK concept. Depending on minimum 
and maximum loads a proper J-integral can be determined which reflects R 
effects or mean stress effects, just as in da/dN versus AA" plots. 

Application of J-Integral for High-Temperature Fatigue 

For displacement-controlled fatigue, Dowling and Begley [3\ have shown 
that J-integral has a broader range of applicability in terms of AK or 
specimen geometry [4]. In particular, it was shown that the existence of Stage 
3 in a da/dN versus AK plot disappears when the data are represented in 
terms of A/-values for A533B steel at room temperature. On the other hand, 
correlation of crack growth data for load-controlled fatigue was unsuccessful 
and these authors attributed it to ratcheting. However, it was shown recently 
that AJ can be defined for load-controlled fatigue along the lines of Fig. Ic 
and d, and the data are consistent with those in terms of AK [11]. Figure 2 
shows the applicability of J-integral for load-controlled fatigue with reference 
to high temperature fatigue crack growth in Udimet 700. The crack growth 
rate data are specifically represented in terms of y/AJ-E, where E is the 
Young's modulus so that the relative merits of linear and nonlinear 
parameters can be easily compared. The extent of spread in the data is less in 
terms of AJ than in terms of AK. These results along with Dowling and 
Begley's results [3] demonstrate that the J-integral concept is applicable for 
fatigue, in spite of the lack of any theoretical justification for this. Since 
nonlinear effects become more pronounced at high temperature, use of 
J-integral becomes important. Note that Stage 3 in Udimet 700 persists even 
in terms of AJ, and this is related to the change in the micromechanism of 
crack growth from transgranular to intergranular at high stress intensities. 
[Ill 

The superiority of J-integral over AK in correlating crack growth behavior 
becomes apparent when one considers cases where the metallurgical struc
ture becomes unstable during the test. For example, if any time-temperature 
dependent transformations occur at test temperatures, the microstructure of 
the material ahead of the crack tip changes to a different extent in each 
specimen depending on the duration of the test. This in turn may cause a 
large spread in the da/dN versus AK plot for the same specimen geometry. 
Here the inapplicability of the linear-elastic parameter is not due to its 
limitation per se but due to its inability to take into consideration the changes 
in flow properties of the material ahead of the crack tip. On the other hand, 
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FIG. 2—High-temperature fatigue crack growth data for Udimet 700 in terms of {a) stress in
tensity range and (b) J-integral parameter. 

since J-integral is determined using load-displacement curves, which reflect 
the in situ changes in flow properties of the material, it could be a better 
parameter to use to characterize crack growth in such materials. Thus, / as 
determined from the load-displacement curves is a kinematic parameter that 
takes into consideration kinematic changes in the flow properties of the 
material ahead of the crack tip. 

Figure 3 shows the crack growth data [12] for 20 percent cold-worked Type 
316 stainless steel which undergoes slow recovery at the test temperature 
593°C (1100°F). In fact, because of this recovery, this material shows a 
significant enhancement in crack growth rates under creep-fatigue condi
tions [13\. There is a large spread in the crack growth data in terms of AiC, 
particularly so at the lower load where the specimen was at the test 
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FIG. 3—Crack growth data for 20 percent cold-worked stainless steel in terms of (a) stress in
tensity range and (h) J-integral parameter. 

temperature 20 to 40 times longer than those tested at higher loads. Clearly, 
the extent of spread in the crack growth data is less in terms of A/ than in 
terms of AAT. 

At high temperatures, in addition to recovery, there could be other types of 
time-temperature dependent transformations, such as precipitation, overag-
ing, etc., that could occur which could alter the flow properties of structural 
material depending on the length of its service. For such cases the crack 
growth data in terms of AK cannot provide a reliable prediction of the com
ponent life, /-integral appears to be more suitable for such materials. It is 
reasonable to expect that a simple da/dN versus AJ plot may be sufficient to 
predict the fatigue crack growth rates in materials that differ to a small 
degree in chemistry or processing conditions, provided these differences do 
not contribute to large changes in flow properties or in their environmental 
sensitivity. 

Of interest here is that crack growth rates in terms of AJ in each stage 
could be represented by 

da 
dN 

= B (\fAJ-E)" (3) 
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where constants B and n are material properties. Clearly, in the limit of 
linear elastic behavior, this relation reduces to the Paris relation represented 
by Eq 1. 

Time-Dependent Crack Growth 

With increase in temperature, crack growth under cyclic load could 
become increasingly time-dependent and for such cases both AK and A/ 
parameters may not correlate crack growth rates. In the extreme case of 
purely time-dependent crack growth, linear parameter K^^^ or its nonlinear 
counterpart/max may be better in correlating crack growth rates, /^ax can be 
determined following the same procedure used for A/ except the load-
displacement curves in Fig. 1 are now extrapolated back to zero load. Crack 
growth was found to be time dependent in Alloy 718 at 650°C (1200°F), 
where the combined effects of stress ratios, R and hold-times on fatigue 
crack growth rates were studied [14]. 

Figures 4 and 5 illustrate this case where crack growth rates in Alloy 718 
are represented in terms of AK and AJ (Fig. 4) and K^^^ and J^^^ (Fig. 5). 
Although A7 parameter is better than AK, the spread in the data in terms of 
both parameters for different /?-values is more than an order of magnitude. 
This spread is significantly less when plotted in terms of K^^^^ or Jniax> 
although crack growth rates for continuous cycling and for 1-min hold fall in 
separate bands. That crack growth in this alloy is predominantly time-
dependent at 650°C (1200°F) for these test frequencies can be seen clearly in 
Fig. 6 where da/dt (da/dN times frequency) is represented in terms of K„^^ 

ALLOY 718 
650 X 

0.17 Hz 

FIG. 4—Crack growth rates in Alloy 718 in terms of AK and AJ. 
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K IMPav^rii) 
^ a , E (MPav^) 

FIG. 5—Crack growth rates in Alloy 718 in terms of ^max ""'^ ^n 

and /max- It is interesting to note that Â max- and /^ax-values are nearly the 
same, and this is because crack growth in this alloy occurs essentially under 
elastic conditions. This is related to the high tensile and creep strengths of 
the alloy and its poor resistance to environmental interactions. 

There is still some spread in the crack growth rate versus/^ax (Fig- 6), and 
this could be related to the errors involved in extrapolating the load-
displacement curves for high R tests to zero load in order to determine Jm^x-
value. Also another reason for the spread could be the fact that crack growth 
in the alloy may not be completely time-dependent, and there is some con
tribution to crack growth from cycle-dependent processes, the extent of 
which varies with R. 

The foregoing results raise two pertinent questions concerning the ap
plicability of J-integral for high-temperature crack growth. First, can the 
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ZERO HOLD-
1-MIN HOLD-

FIG 

K „ „ (MPavml '/J^:, E I M P a ^ ) 

6—Crack growth rates, da/dt, in Alloy 718 in terms of K „ ^ and J„ 

J-ititegral concept be applicable to time-dependent crack growth or should 
one resort to the more complex rate-dependent integral, J* \15-1S\1 (The 
authors favor the use of /* instead of C* for this integral since it is closely 
related to J-integral.) Second, what parameter is suitable for crack growth 
where both time-dependent and cycle-dependent processes occur simul
taneously and when these processes interact with one another giving rise 
to creep-fatigue interaction or creep-fatigue-environmental interaction? 

To answer the first question, it may be concluded on the basis of Fig. 6 
that theoretically it is possible to define a characteristic J-integral value for 
time-dependent crack growth. There are, however, some experimental dif
ficulties in determining / , characteristic of a crack length when crack growth 
occurs under static load. Here the difficulty is in obtaining a load-
displacement curve characteristic of a given crack length without unloading 
the specimen and thus without introducing cyclic load effects. J-integral was 
determined for crack growth under static load in Alloy 718 {17\ and Udimet 
700 [18] using a lengthy data reduction scheme. It is not clear whether the 
large spread obtained in the crack growth data was due to the limitation of 
the parameter or due to incorrect / values. Turner and his coworkers [20\ 
have determined /-integral for crack growth under static load, however, us-

 

file:///15-1S/1
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ing a constitutive relation for creep deformation and assuming that the 
material ahead of the crack tip behaves similar to bulk material. Thus, 
J-integral may be applicable to time-dependent crack growth although it may 
be difficult to determine for crack growth under static load. 

Referring to the second question, it is difficult to assess at this stage which 
fracture mechanics parameter is suitable when both time-dependent and 
cycle-dependent procesess occur simultaneously, particularly so when there 
are synergistic effects. Figure 7 illustrates a case where crack growth in 
Udimet 700 [20] is represented in terms of A/. Crack growth rate decreases 
and then increases with increase in A/. A similar effect was noticed in terms 
of AK as well. Such crack retardation has been observed in several alloys 
[14,21-23], particularly when the stress intensities are less than the threshold 
stress intensity for creep-crack growth. The retardation occurs due to creep 
deformation which causes crack tip blunting, thereby contributing to stress 
relaxation at the crack tip. Since the extent of this relaxation depends in
dependently on load, crack length, and specimen geometry the fracture 
mechanics parameters may not be useful in predicting the crack growth 
behavior. On the other hand, if crack growth occurs continuously by a com-

20 
(MPoym) 
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FIG. 7—Crack growth rates in Udimet 700 under creep-fatigue conditions. 
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bination of time- and cycle-dependent processes, fracture mechanics con
cepts may be applicable. Crack growth may then have to be correlated by a 
complex combination of both J^^^ and A/-integral parameters depending on 
the relative ratio of cycle and time-dependent processes. The procedures may 
become more complex when there are synergistic effects. 

Summary and Conclusions 

Applicability of J-integral to high-temperature fatigue crack growth has 
been examined. Based on available experimental results it is concluded that 
the J-integral concept is applicable for fatigue conditions both at low and 
high temperatures, in spite of the fact such validity is not apparent from 
theoretical considerations. 

The method of determination of J-integral for both load-controlled and 
displacement-controlled fatigue was discussed. It is shown that J-integral is 
better than linear parameter, K, particularly at high temperatures where 
nonlinear effects become more pronounced. For example, if metallurgical 
structural changes occur during test as a result of time-temperature depen
dent transformations, then J-integral provides much better correlation than 
linear elastic parameter K. 

It is further concluded that the J-integral concept may be applicable even 
to time-dependent crack growth although conceptual problems exist in the 
experimental determination of/-values for crack growth under static load. A 
combination of both /^ax and A/-integral may be required to characterize 
crack growth under conditions where both time- and cycle-dependent pro
cesses occur simultaneously. 

The present analysis shows that J-integral is a promising parameter for 
elastic-plastic fatigue crack growth. Additional work using different 
specimen geometries and materials is required before the limitations of the 
parameter can be fully ascertained. 
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ABSTRACT; The plane-strain response of an unbounded elastic body containing a semi-
infinite crack subjected to a pair of concentrated forces suddenly applied to the crack 
faces at some distance from the crack tip is determined. The forces act on opposite faces 
of the crack, in the plane of the crack, and in the same direction. An exact solution is 
obtained within the framework of linear elastodynamics using a fundamental solution 
obtained from dynamic elastic dislocation theory. If the loading is quasi-statically ap
plied, then the stress intensity factor is zero. However, if the loads are suddenly applied, 
the stress intensity factor varies with time, and, for a short time, it takes on very large 
values. As time becomes large compared to the transit time of a Rayleigh wave from the 
load point to the crack tip, the stress intensity factor decays to zero. The same procedure 
may be applied for growing cracks subjected to the same type of loading. 

KEY WORDS; fracture mechanics, dynamic fracture mechanics, stress intensity factor, 
dynamic stress intensity factor, impact loading, fractures (materials), crack propagation 

In recent years, two analytical methods for determining the dynamic stress 
intensity factor for stationary and propagating cracks have been developed. 
In the first approach, the fracture process is viewed as the negation of trac
tion arising from the applied loading on the prospective fracture plane. The 
traction at a particular point on the fracture plane is negated at the instant 
that the crack tip sweeps past that point. This viewpoint has been adopted by 
Freund [1-4^ and Fossum [5] in the formulation and solution of several dy-
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namic crack propagation problems. A second method for determining the 
dynamic stress intensity factor, which has been found useful in some cases 
involving rapid loading, is based on the viewpoint that certain transient dis
placements arising from the applied loads must be negated to account for the 
presence of the crack. Taking this viewpoint, Freund [6] has shown that the 
notion of a fundamental solution for negating displacements, based on a 
moving elastic dislocation problem, is quite useful in obtaining solutions for 
a class of elastodynamic crack problems. Similar procedures have been fol
lowed by Achenbach and Tolikas [7], Freund [8], and Nilsson [9]. The same 
general procedure is applied here to yield some unusual results for a particu
lar elastic crack problem. 

The plane-strain problem under consideration is represented in Fig. 1. 
Two forces of magnitude To per unit length in the j-direction are applied to 
the crack faces at a distance, /, from the tip as shown. The forces are parallel 
and act in the same direction. It is a well-known result that if the loads are 
quasistatically applied then the stress intensity factor is identically zero [10]. 
However, if the loading is suddenly applied as in the case of impact, then the 
stress intensity factor exhibits a complicated transient behavior, and it takes 
on very large values for a short period of time. It is the purpose here to out
line the analysis by means of which this transient behavior may be deter
mined. 

Formulation of the Problem 

The body is stress free and at rest for time ^ < 0 and the crack face loading 
is suddenly applied at ^ = 0. The symmetry of the problem with respect to 
the X-axis makes possible a reduction to a half-plane problem in the region 
z > 0. The displacements are represented in terms of the displacement po
tentials <̂  and }p> where 4> is the longitudinal wave potential and ^ is the shear 
wave potential, and the displacement components are derived from the po
tentials according to 

U = <l),x- 4',z, W = <j),^ + \l/,x (1) 

ToH(t) 
- T " -= 

ToH(t) 

FIG. 1—The plane-strain elastodynamic crack problem. 

 



166 FRACTURE MECHANICS: TWELFTH CONFERENCE 

where uix, z, t) and w{x, z, t) are the components of displacement in the x-. 
and z-directions, respectively, and commas denote partial differentiation. 
The boundary conditions for the problem at hand are 

a,,{x,0,t) = 0 x<0 (2) 

<7„(jc, 0, t) = ~ToH{t)6(x + /) - 0 0 < X < 00 (3) 

w(x, 0,t) = 0 x>0 (4) 

where 6 and H ate the Dirac-delta function and the Heaviside-unit step func
tion, respectively. 

Direct application of integral transforms to the wave equations governing 
(̂  and \p, along with the boundary and initial conditions, leads to a functional 
equation of the Wiener-Hopf type but one of nonstandard form; that is, one 
in which the transform of the kernel is not an algebraic function. Thus, the 
indirect approach introduced in Ref 6 is followed. The solution is constructed 
by superposition of the solutions of two separate problems. The first is a half-
plane subjected to a tangential surface force, the dynamic version of Bous-
sinesq's problem, and the normal component of surface displacement Wg is 
calculated. The second is the response of a body containing a crack to an 
edge dislocation climbing in the x-direction out of the crack tip. The solution 
of these two problems will be added in such a way as to recover the solution of 
the original problem. 

Modified Boussinesq Problem 

The problem considered in this section is the dynamic response of an elas
tic half-plane, z > 0, to a concentrated impact force, To, applied tangen-
tially to the surface of the half plane, as shown in Fig. 2. The body is at rest 
for time ^ < 0, and the boundary conditions are 

a,M,0,t) = 0 - o o < $ < o o (5) 

ToH(t) 

FIG. 2—Suddenly applied tangential load on the edge of a half plane. 
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(^xzii, 0, t) = -T.mmt) - 0 0 < ^ < 00 (6) 

This problem may be solved by the following standard procedure [11]. First, 
displacement and stress components are expressed in terms of 4> and ^ ac
cording to Eq 1. Then, the one-sided Laplace transform on time and the bi
lateral Laplace transform on $, defined by 

F(\,z,s)=\ e-^'^M e-"M, z, t)dt di (7) 
J —00 J o 

are applied to the governing equations, initial conditions, and boundary 
conditions. The solutions of the resulting ordinary differential equations for 
the double transforms of 0 and yp, denoted by $ and ^ , which satisfy all con
ditions are 

$(X,2 ,5 ) = ^ | ^ e - ^ - (8) 

*(X, z,s)=-^ ^̂  ^ .^f ' e-^^^ (9) 

where fx is the elastic shear modulus, a = (a^ — X^)'^^, 0 = (b^ — X )̂*^^ 
and 

R{X) = 4X2a^ + (2X2 _ ^2)2 (10) 

The quantities a and b are the inverses of the longitudinal and shear wave 
speeds of the material, and c is the inverse of the Rayleigh wave speed, so 
that Ri+c) = 0. Branch cuts are introduced in the complex X-plane along 
a, b < |Re X| < oo, Im X = 0 and branches of a, /3 with positive real parts 
everywhere in the cut plane are selected. 

Once the transformed potentials are determined, as in Eqs 8 and 9, the 
transformed normal displacement of the surface z — 0, say Wg(\, 0, s), is 
known. The corresponding normal surface displacement in the physical 
plane is given in terms of the Laplace transform inversion integrals by 

WB(^, 0, 0 = T ^ [ z ^ [ e^^^i+'^WgiK 0, s)sd\ds (11) 
ITTI J^J Im ]g^ 

where 51 and 5 2 are the usual inversion paths for the unilateral and bilateral 
Laplace transforms, respectively. Following the distortion of the contour 52 
and the mutual annihilation of the integrals, which is common in the Cag-
niard-deHoop scheme [//], it follows that, for ? > 0 

 



168 FRACTURE MECHANICS: TWELFTH CONFERENCE 

rt n . w 2 ^ " r ^ X|a|/3(2X^ - &^) 

w,(|,o,.)--^J^ JW "^^ 
+ 2c^-^--2h(-c)M^(-c)| ^(^ _ ̂ ^̂  

2/ci'(—c) 

(12) 

where K = 2(^2 _ ^2)^ ^(x) = R(\)/K(C^ - x^), and^(X) = 16(aVZ»2 - l)x6 
+ 8(3fo2 - 2a2)X'' - 3i'*X2 + fc^. The first term in Eq 12 arises from a 
branch Hne integral, and the second term arises from a simple pole at X = 
— c, which is crossed during distortion of the contour J?2- Equation 12 is the 
main result of this section, and it is subsequently used to calculate the re
quired stress intensity factor for the stationary crack. 

Fundamental Solution 

In the previous section the z-component of the displacement Wg was cal
culated. To satisfy the boundary conditions of the original problem, an addi
tional displacement w must be added to Wg such that the z-component of the 
displacement ahead of the crack tip will be identically zero, and then the 
stresses ahead of the crack tip can be calculated. For that purpose the 
following problem is considered. The entire plane containing the semi-
infinite crack is taken to be at rest for time T < 0. At time T = 0, an edge 
dislocation with strength 2A starts to climb in the jc-direction with constant 
velocity, v, as shown in Fig. 3. The faces of the crack are traction free. Again 
the problem considered is symmetric with respect to the x-axis, and it may 
be viewed as a half-plane problem in the region z > 0. Solution of the equa
tions of motion is sought in this region, subject to the following boundary 
conditions 

a,,{x, 0, T) = 0 jc < 0 (13) 

T < 0 

r > 0 U— vr 

] z I 

FIG. 3—Moving dislocation problem that leads to the fundamental solution. 
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axzix,0,T) = 0 — o o < x < o o (14) 

w(x, 0, T) = AHivT -x) x>0 (15) 

This is precisely the problem analyzed in the second section of Ref 6, and 
therefore only the form of the solution is presented here. Following the same 
general procedure based on integral transforms that was outlined in the pre
vious section, it can be shown that the normal stress on the line z = 0 is given 
by 

<J,,{X,0,T)= ImG + i-T/x) (16) 
TTJC 

for T > ax, where G+ is a complicated function defined explicitly in Ref 6. 
Equation 16 is that part of the fundamental solution that is required to find 
the dynamic stress intensity factor. 

Stress Intensity Factor 

The displacement w^d , 0, t) given in Eq 12 can be rewritten as 

wei^, 0,t) = ^ — f \g{\)d\ +AcWt - cO (17) 

where the definitions of gi\) and/(c) are obvious from Eq 12. The distance 
coordinates ^ in wg and x in the fundamental solution are now related by ^ = 
X + I and the corresponding time coordinates t and T ate related hy t = T 
+ al. Thus, the crack face loads are applied in the crack problem at time 
^ = 0, place X = —I, and the stress intensity factor at the crack tip x = 0 
is zero until r = 0 ov t = al. The first wave arriving at the crack tip is the 
cylindrical longitudinal wave radiating out from the loading point; the time 
of arrival is < = a/ or T = 0. It is observed that w^ is a homogeneous function 
of degree zero of ^ and t; that is, it depends on the ratio t/^ only. Thus, any 
given displacement level radiates out along the x-axis at a constant speed. In 
particular, the displacement level wsi^/t) radiates out at speed ^/t for ^ > 0. 
The speed varies between zero and the longitudinal wave speed. Consider 
a particular value of speed in this range, say v. The time at which the cor
responding displacement level wgiy) arrives at JC = 0 is TQ = (1 — av)//v. As 
was observed before, the displacement level WB^A^^) arrives at r^ = 0. The 
speed of the displacement level arriving at x = 0 at any instant of time r can 
be found by setting T = TQ = (1 — av)//v and solving for v, the result being 
V = Vj = 1{T + al). With this information, a superposition integral whose 
value is exactly equal but opposite to the normal displacement Wg for 
X > 0 may be determined. 
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Let Aq(x, z, T; V) represent any scalar element of the fundamental solution, 
such as a stress component. Recall that in deriving the fundamental solution, 
it was assumed that a dislocation in the z-component of displacement of 
magnitude, 2A, began to extend from the crack tip at time r = 0 at speed v. 
If the dislocation began moving at r = TQ , instead of at T = 0, then the solu
tion would be Aqix, z, T — Tg', v). Suppose further that the intensity of the 
dislocation is 2 dwg, instead of 2A. The solution of this modified problem is 
q{x, z, T — To', v)dwB. Finally, if w^ itself is some function of v, the result 
may be summed over an appropriate range of v, which is the case here. Let
ting Q* and Qg represent the corresponding elements of the solution of the 
impact loading problem of the crack and the impact loading of the half 
plane, respectively, the final result is 

Q*ix, z, t) = Qeix, z, t) + Qix, z, t)H{t - al) (18) 

where 

Q{x, z,t)=- r qix, z,T~T„;v^^^ dv (19) 

In particular, if the normal displacement of the surface is considered for 
X > 0, then ^ = 1 and Q = -wgiv). But Qg = wgiv), so that Q*ix, 0, T) 
= 0 for A: > 0, as it should be according to boundary condition (Eq 4). Rela
tion (Eq 19) actually represents the complete elastic field for the crack prob
lem under consideration. As was stated in the beginning of this paper, how
ever, the main interest is in the strength of the stress singularity at the crack 
tip as a function of time. 

The total normal stress on the plane, z = 0, ahead of the crack can be de
termined by letting Aqix, z, T) in Eq 19 be a^^{x, 0, T). The total stress will be 
CT22*(jc, 0, t). The stress intensity factor, which is time dependent, is defined 
in terms of this stress component by 

Kit) = lim i2-KxY'^a,,ix, 0, t) (20) 
;c-0 + 

The normal stress a^^^ is not singular at J: = 0, so that the stress intensity 
factor Kit) is determined from Eq 19 alone. In working with the integral of 
Eq 19, it is more convenient to change the variable of integration from v to 
X = 1/v. Then, after substituting the explicit expressions from Eqs 17 and 
19, the normal stress component is 

rp p(/4-ax)// 'y 
a, , (x ,0 , t ) = ^ -g(X)- Im G . ( - ^ d\ 
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+ I /(c) Im G+ 6(X - c) dc (21) 

Multiplying Eq 21 by {litxy^ and then letting x — 0 + , the stress intensity 
factor is found to be 

"7x1/2 T 2K Xg(X) (c + \)S + {\) 
X .1, (A* 

+ 
/(c) 2c-5 + (c) 

(A « _ „11/2 c)i/2 a + (c) 

X)î 2 „ + (X) 

H(,h* - c) 

d\ 

(22) 

where h* = (T -\- at)/1 = t/l and a+, S+ are defined in Eqs 13 and 14 of 
Ref6. 

Equation 22 is the main result of this section. It should be observed in Eq 
22 that h* in the upper limit of integration does not exceed b, while h* in the 
integrand is not limited. Therefore Eq 22 may be written in the form 

' 9 \ l / 2 T 

+ 
/(c) 

2K ["• g(X) (c + X)5 + (X) 
TT J, (/i*-X)i/2 „^(x) 

2c-5 + (c) 

dX 

(A* - c)i/2 a_^(c) H(A* - c) (23) 

where m is the smaller of t/l and b. 
For numerical consideration Poisson's ratio, v, was taken equal to 1/4. 

In this case, the ratios of the slowness are b^ = 2 a^ and ĉ  = 3.549 a^. The 
normal displacement, wg, and the stress intensity factor, K{t), have been 
evaluated numerically, and the results are shown in Figs. 4 and 5. 

JD 0.2 

h? 
pj 0.1 

0 1 I I 

2.0 

FIG. 4—Nondimensional normal surface displacement for the problem in Fig. 3. 
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FIG. 5—Nondimensional stress intensity factor versus time for the problem in Fig. 1. 

Figure 4 shows the component of the displacement Wg normal to the sur
face of a half plane z > 0. If attention is fixed on the point ^ = I, the even
tual position of the crack tip, the initial motion of the surface is an outward 
displacement at ? = al. At time t = bl the surface will have moved inward, 
and it maintains the same value of normal displacement until t = cl, where
upon a large jump in displacement occurs and the displacement remains con
stant afterwards. If attention is fixed on fixed time t, then Fig. 4 shows the 
profile of the surface at time t where ^ = 0, the point of load application, will 
be represented in Fig. 4 by oo on the abscissa. As ^ increases the point t/a^ 
moves toward the origin on the abscissa. Figure 5 shows the stress intensity 
factor versus t/al. It is seen in Fig. 5 that the stress intensity factor takes on 
negative values upon the arrival of the first wave &tt — al. It decreases until 
it reaches a minimum value at t/al = 1.05 and then begins to increase, 
reaching zero at t/al = 1.44. At time t/al = 1.69, K{t) reaches a small max
imum. When the Rayleigh wave arrives at the crack tip, t/al — 1.884, the 
stress intensity factor jumps to + oo, and it starts to decrease in proportion to 
{t — cl)~^^^. As the time increases to large values, K{t) decays to zero, which 
is the exact value when the load To is applied statically to the crack faces 
[10]. 

Conclusion 

If symmetric tractions, acting in the plane of the crack and in the same 
direction on opposite faces (as in Fig. 1), are applied quasistatically to the 
faces of a crack, then the elastic stress intensity factor is zero. It has been 
shown here, however, that if such loading is rapidly applied then the stress 
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intensity factor is nonzero and it varies with time. Furthermore, for a short 
time, the stress intensity factor takes on large values, comparable to the 
values it would have if normal crack face tractions of the same magnitude 
were applied. Thus, in certain cases of impact loading, these crack face trac
tions, which act in the plane of the crack, may indeed be important. It is 
observed in Fig. 5 that the stress intensity factor is negative for a short time 
before it becomes positive. This may be interpreted as indicating that the 
crack faces near the tip, press against each other for a short time (with 
K = 0) before the crack begins to open. 

Problems concerned with elastodynamic crack growth under the action 
of parallel impact loading of the crack faces have also been analyzed by 
means of the procedure outlined here [12]. The general features of the stress 
intensity factor dependence on time are similar to those for the stationary 
crack shown in Fig. 5. The more realistic case of a crack rapidly growing in
ward from the edge of an elastic half plane under the action of parallel im
pact loading, as well as other types of loading, has recently been analyzed by 
Burgers and Freund [13]. It appears that the presence of the free surface has 
a significant effect on the time dependence of the stress intensity factor. 
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ABSTRACT: After upgrading the energy dissipation algorithm, numerical experiments 
were conducted to assess the reliability of the explicit dynamic finite element code, 
HCRACK. Two dynamic fracture specimens (that is, the wedge-loaded rectangular dou
ble cantilever beam (RDCB) specimen and the wedge-loaded tapered double cantilever 
beam (TDCB) specimen), which were studied experimentally by Kalthoff, Beinert, and 
Winkler, were then analyzed with this updated fracture dynamic code. Using the ex
perimentally determined dynamic fracture toughness, Kuy, versus crack velocity, a, rela
tion, the RDCB specimen was analyzed first by the "propagation method" where good 
agreements between calculated and measured KID versus a relations were observed. The 
calculated a versus time, t, relation was then used as input data in the "generation 
method" where the resultant Ki^ were virtually identical to those obtained in the prop
agation method. Error analyses of the generation method also were made first by using 
the experimentally determined a versus ( relation and secondly by artificially perturbing 
this relation. 

A TDCB specimen was then analyzed with both the propagation and generation 
methods by using the Km versus i relation established for this specimen and the 
measured a versus t relation, respectively. The computed A'lp obtained by both methods 
were in good agreement with the experimental results, showing that either approach can 
be used in analyzing fracture. 

KEY WORDS: dynamic fracture, dynamic finite element analysis, dynamic fracture 
toughness, crack arrest stress intensity factor, fractures (materials), crack propagation 

For the past three years, two of the authors have used a two-dimensional 
elasto-dynamic finite element code, which was based on HONDO [1],^ to 
compute the dynamic stress intensity factor for a crack propagating with a 
prescribed velocity [2-5] by applying to each node a nodal force sufficient to 

'Physicist, Fraunhofer-Institut fUr Werkstoffmechanik, Freiburg, West Germany. 
^Professors, Department of Mechanical Engineering, University of Washington, Seattle, 

Wash. 98195. 
^The italic number in brackets refer to the list of references appended to this paper. 
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release the node. This numerical procedure was later modified to include a 
startup procedure for computing dynamic stress intensity factor, dynamic 
energy release rate, fracture energy, kinetic energy and strain energy at each 
increment of crack advance [6,7], Also the impulse stress waves generated by 
the instantaneous application of a nodal force to model the release of a crack-
tip node was reduced by varying the force over the time necessary for the 
crack tip to advance one nodal distance. Physically, this procedure models a 
more gradual transit of the crack-tip between two adjacent finite element 
nodes and is similar to that developed by Keegstra [8-10] with the exception 
that our restraining nodal force is completely eliminated when the crack-tip 
reaches its adjacent node. Other nodal force release mechanisms include 
those of Malluck and King [//] and Rydholm, Fredriksson, and Nilsson [12] 
with different postulated rates of nodal force release. The dissipated energy 
during a crack extension based on any of the above three nodal force release 
mechanisms is then computed from the nodal force versus nodal displace
ment relation during this incremental crack extension. In general this nodal 
force versus nodal displacement relation is nonlinear and is goverened by the 
dynamic state surrounding the propagating crack tip, thus requiring the 
monitoring of nodal force or nodal displacement or both at every incremental 
time in the dynamic finite element analysis. Interestingly enough, recent 
studies showed that the differences in the mechanism of nodal force release 
[13,14] caused little changes in the resultant dynamic stress intensity factor. 
It is thus of no surprise that good to excellent agreements were claimed by all 
[6,11,12] when these three crack tip energy dissipation procedures for com
puting the dynamic stress intensity factor was checked by analyzing the 
Broberg problem [15]. 

The preceding procedure of computing dynamic stress intensity factor for 
a crack whose velocity is prescribed to be equal to measured one in a 
dynamically fracturing specimen was termed "generation calculation" by 
Kanninen [16,17], who also expressed reservations on the accuracy of this 
numerical approach. The "propagation calculation" in contrast to the 
"generation calculation" is based on an assumed dynamic fracture 
toughness, Kijy, versus crack velocity, a, relation which is then used to prop
agate a crack [16-23].* The assumed KIQ versus a relation is considered 
correct when the calculated crack propagation history coincides with the ex
perimental data, and the Kix) at crack arrest, if any, is considered to be the 
crack arrest toughness, Ki^, sought by some in predicting fracture arrest of a 
dynamically propagating crack. 

While one can debate the merits of propagation versus generation calcula
tions, only one study, which involved both propagation and generation 
calculation using the same numerical algorithm [23], has been published to 

^Note that Keegstra in Refs 8-10 used the propagation calculation to compute KIQ versus a 
relations in fracturing specimens. 
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date. Since the limited study in Ref 2J did not provide a comprehensive error 
assessment of the two procedures, this paper will report on our comparative 
studies using two Araldite B fracture specimens which were analyzed by 
Kalthoff et al by the method of caustics [24,25]. 

Dynamic Finite Element Analysis 

In the previous studies cited above [6,26], the dynamic fracture dynamic 
code HCRACK was shown to be an efficient and inexpensive method for 
simulating dynamic fracture problems. Numerical experiments proved that 
reasonable numerical accuracy can be obtained by using coarse meshes of 
conventional elements (see Figs. 1 and 2) and a moderate number of time 
steps; for example, about 150 steps for crack propagation and subsequent ar
rest in a RDCB specimen shown in Fig. 1. Unlike the implicit dynamic finite 
element codes used by others, however, it was difficult to accurately prescribe 
the rate of nodal force release since the input nodal force would not generally 
be in equilibrium with the dynamic state of stress in the adjoining finite 
elements in this explicit finite element code. As a result, an in-depth study on 
the performance of our fracture dynamic code was conducted for different 
crack tip force release rates, different calculation procedure for the dynamic 
stress intensity factor, and different finite element breakdown. A brief 
description of some of these findings are presented in the following. 

As mentioned above, the algorithm for artificially prescribing an input 
nodal force at the crack tip for each time step for prescribed decrease in the 
resultant residual nodal force in the dynamic code is not straight-forward, 
and often a complete release of the nodal force cannot be achieved in the 
prescribed time period. The basis of the numerical method is to define the 
force, F„' which must be applied to a node at time step n such that the time 
variation of the stress follows the form shown in Fig. 3. In an implicit code. 
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FIG. 1—Wedge-loaded RDCB specimen. 
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FIG. 3—Gradual release of the nodal force at the crack tip. 

application of F„ would result in the same calculated force at the end of the 
time step. With the explicit code, however, the calculated force at the end of 
the increment, F„^, will rarely be equal to Fj. Accordingly, the force at the 
next time step, F„+i', must be adjusted not only to compensate for the error, 
but also to yield the desired value at the end of the time step. The simplified 
method used in Ref 26 was replaced by the following equation and typical 
results are shown in Fig. 3. 
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" pi 
F ,J = F '^ — F , .prescribed _ V; J. Q ) 

At the beginning of the crack propagation history when the first crack tip 
node is released (see Fig. 3), excellent agreement between the prescribed 
(linear decrease in this case) and actually achieved nodal forces is noted; 
while for the sixth node that was released later (see Fig. 3), some deviations 
between both nodal forces are noted. Initial static equilibrium prior to crack 
propagation most likely contribute the excellent results in the former case. 

Also noteworthy is the recent study by Malluck and King [13] who com
pared energy release rates for the two distinctly different functions oiF/Fo = 
[1 — b/A]^^^ and F/F^ = [1 — b/A]^^^, where b is the distance between 
hypothetical crack tip location and the released crack tip node, A is the inter-
nodal distance, and F and Fg are the instantaneous and original crack tip 
nodal forces, respectively. Their results showed no significant differences in 
the calculated dynamic stress intensity factors for crack speeds lower than 25 
percent of the shear wave velocity; that is, c < 0.25 C2. Our use of a linearly 
decreasing nodal force, F/Fg = [1 — b/A], with constant crack velocity be
tween the two adjoining finite element nodes is thus justified. 

The dynamic stress intensity factor was computed directly by the total 
strain energy released from an instantaneous balance of the total energy of 
the entire specimen [7] as 

Gi = 2{E„ - £„+i)/(a„+, - a„) (2) 

where E„, E„+i are the total strain energies for crack lengths of a„, a„+i, 
respectively when the crack extended from node n to node n + 1. The 
dynamic stress intensity factor, Ki, was then computed from Gj using 
Freund's relation [27\. Alternatively, the value of Gi was computed by energy 
dissipated at the released node as 

m 

Gi = [wiAFi + E («, + «,_,)AJ^,]/(a„+i - a„) (3) 
1=2 

where m is the number of time steps between nodes n and n + 1, M, and 
A Fj are displacement and decrease of force at the released node «, respec
tively. 

Figure 4 shows the dynamic fracture toughness, K^^, associated with 
crack propagation and arrest in one of Kalthoff's RDCB specimens [24] com
puted by both Eqs 2 and 3 using the "propagation method." Although details 
of this analysis are described in the following section, the results are shpwn in 
this section as an indication that little difference can be noted in the KID ob
tained by the two algorithms. 

As shown in Fig. 4, the forced linear decrease in the crack tip nodal force 
improved the simulation of the smoothly propagating crack and eliminated 
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FIG. 4—Dynamic fracture toughness in wedge-loaded RDCB specimen. 

the spurious oscillations in dynamic stress intensity factor observed previ
ously [2-5]. It is uncertain, however, to what extent this smoothing pro
cedure may hide the true oscillations of the dynamic stress intensity factor 
eventually induced by the reflected stress waves that emanated from the run
ning crack. 

Specimens and Material Data 

The two specimens analyzed by the dynamic finite element code are the 
wedge-loaded, RDCB and TDCB specimens which were investigated ex
perimentally by Kalthoff et al [24,25]. Specimen geometries of these Araldite 
B specimens and their finite element idealizations can be seen in Figs. 1 
and 2. 

Although the rigid loading wedge between the two loading pins will pre
vent any inward displacement of the loading pins, these pins are free to leave 
the wedge and travel outwards. The resultant dynamic stress intensity factors 
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in the presence of separating pins could vary significantly during crack prop
agation [26]. The smaller mass density and the two orders of magnitude 
larger compliance of the Araldite B specimens in comparison to the steel 
specimen studied in Ref 26 should have reduced the additional input energy 
due to any possible separation of the loading pins, and thus constant loading 
pin displacement were prescribed at the pin holes. 

Material constants of Araldite B used for this dynamic finite element 
analysis after Ref 24 are modulus of elasticity-E = 3.38 GPa, Poisson ratio of 
fi = 0.33 and mass density, p = 1047 kg/m^. The experimentally deter
mined dynamic fracture toughness Kuj, versus crack velocity, a, relations 
used in the propagation calculations of RDCB and TDCB specimens are 
both plotted in Fig. 5 [24,25], respectively. Crack length as a function of time 
used in the generation calculations of the RDCB specimen was taken from 
Fig. 5 in Ref 24 but is not reproduced in this paper. 

For the dynamic crack initiation in the RDCB specimen, the dynamic 
crack initiation stress intensity factor, A'JQ, as reported in Ref 24, was used 
and the subsequent dynamic stress intensity factors were computed from the 
energy released at the node adjacent to the reference crack tip node, except 
the set of KIQ data noted in Fig. 4. Since an experimentally determined A'IQ 
was not reported in Ref 25, a statistically computed A'IQ, which was back 
calculated from the median of Kalthoff's measured oscillating /sTio-values 
[25] after crack arrest, was used in the analysis of the TDCB specimen. 
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from Ref 24. 
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Results 

RDCB Specimen 

The first numerical analysis involved a propagation calculation for the 
RDCB specimen of Fig. 1 using the K^) versus a relation of Fig. 5 and a 
KiQ = 2.32 MN m^̂ .̂ The resulting dynamic fracture toughness and crack 
tip motion of this propagation calculation are shown in Figs. 6 and 7, respec
tively. The "propagation" crack tip motion from Fig. 7 was then used as in
put data for the generation calculation. This result is not plotted in Fig. 6 
since the Kix) versus a relations obtained by both the propagation and 
generation calculation were indistinguishable. 

As an additional numerical experimentation, however, the measured crack 
length, a, versus time, t, relation of Ref 24 was used as input to the genera
tion calculation, and the resultant/(TiD-curves are also shown in Figs. 6 and 7. 
Despite the lack of complete agreement between the two /sTio-curves obtained 
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by propagation and generation calculation, the shapes of these two curves are 
very close. Although both A îQ-curves agree well with experimental data dur
ing the first half of dynamic crack propagation as shown in Fig. 7, a distinct 
difference is noted by a second local maximum, which occurs in both prop
agation and generation calculations prior to crack arrest, but which does 
not occur in the experimental results. The similarity between the propagation 
and generation /sTio-curves is more apparent in Fig. 8 where the second max
ima in the two calculations occur at the same time. The higher /iTiD-values in 
the generation calculation at lower measured crack velocities during much of 
the crack propagation will result in a general shift of two K^Q versus a rela
tions in Fig. 5. 

Figure 6 also shows that the computed crack jump distance is 4 percent 
shorter of the measured one in the propagation calculation but by definition 
is equal to measured distance in the generation calculation. Although the 
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propagation calculation is terminated when the computed dynamic stress in
tensity factor falls below the minimum A îp-value in Fig. 5, the generation 
calculation is continued up to the prescribed crack tip length and crack ar
rest time. Significantly lower dynamic stress intensity at the instant of crack 
arrest is noted. 

The sensitivity of the dynamic stress intensity factor, which is calculated by 
the generation method, to the instantaneous crack velocity is further 
demonstrated in Fig. 8. In order to assess the sensitivity of K^) obtained by 
the generation method to the input data, a numerical experiment was con
ducted by artificially perturbing the smooth experimental curve of the crack 
tip motion in Fig. 8. The result was a severely perturbed Ki^ also shown in 
Fig. 8, where discrete increases and decreases in crack velocities are followed 
by local minima and maxima oiKiQ, respectively. 

 



184 FRACTURE MECHANICS: TWELFTH CONFERENCE 

2.5 T " T 

2,0 

to 
CO 
LiJ 
z 
I 
n 
o 
» -
uj 
r) 
o <: 
cc 

S 
<t 

0,5 

NUMERICAL RESULTS 
- - • - - GENERATION CALCULATION FROM 

MEASURED a VS t 
— • PROPAGATION CALCULATION FROM 

MEASURED KjD VS 0 

EXPERIMENTAL RESULT 
X KALTHOFF ET AL 

I 

^ 6 

_ L 
0 50 100 

CRACK LENGTH,Q , mm 

FIG. 9—Dynamic fracture toughness in wedge-loaded tapered DCB specimen. 

TDCB Specimen 

Figure 9 shows the KID ^S a function of a computed by the propagation 
method, using the Kuj versus d relation of Fig. 5 and by the generation 
method using experimentally determined a versus t relations for the TDCB 
specimen together mth experimental data from Ref 25. A second maximum, 
which resembles that found previously in the RDCB specimen, in Ki^ can be 
observed. The computed crack jump distance obtained by the propagation 
method is shorter than the experimental one by 12 percent. In the propaga
tion calculation, the computed KID increased again to a value approaching 
experimental K^) after the initial crack arrest. Subsequently, computed KJD 
oscillated around the few experimental points. 

Figure 10 shows the ATID versus t relations obtained by both propagation 
and generation calculations. Although the two calculated KID ^^^ i" excellent 
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DCB specimen. 

agreement with each other except for the initial phase of crack propagation 
in this TDCB specimen, the calculated KYQ are lower than the measured Ki^ 
just prior to and after crack arrest. Previous experience with steel TDCB 
specimens [4,5,26] indicate that this small underestimate could be attributed 
to the possible separation of the loading pins from the loading wedge during 
crack propagation. 

Conclusions 

The results of the present and of the previous studies using HONDO II 
show that the dynamic stress intensity factor for a crack propagating in a 
finite two-dimensional body can be computed relatively inexpensively with an 
accuracy sufficient for many practical purposes. Very close agreements be-
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tween the A'm obtained,by the generation and by the propagation calculations 
should dispel the reservations [16,17] about this dynamic fracture algorithm. 

When used in conjunction with measured crack position versus time data, 
the generation method with proper care can be used to accurately calculate 
the dynamic stress intensity factor during the fast crack propagation and 
crack arrest. 

On the other hand the uncertainty in the KID versus a relations, particu
larly in the region of very low velocities together with limitation in the finite 
element modeling of dynamic crack propagation, offers little chance for 
simulating the crack propagation and crack arrest event by the propagation 
method when the dynamic stress intensity factor oscillates in a narrow range 
about the crack arrest stress intensity factor as shown by some experimental 
results with the single edged notch specimens reported in Ref 25. 

Discussion 

It has been a common practice by all, including the authors, to verify their 
fracture dynamic code by analyzing the Broberg problem [15] for which the 
dynamic solution is available. Good agreements in these studies cannot be 
construed as verification of numerical solutions generated for cracks prop
agating in finite specimens composed of real materials. The discrepancies 
between the computed and the experimentally determined ATjo-values shown 
in Figs. 6 and 9 could have arisen from the viscous damping in Araldite B 
which was not modeled in the elasto-dynamic analyses described in this 
paper. A study of the time-dependent energy balance during crack propaga
tion and arrest suggests that the consistently appearing second maxima in 
the calculated A ĵo-curves are real phenomena based on elastic analyses. It is 
interesting to note that the limited experimental Ki^ versus a relation ob
tained for RDCB specimens machined from high-strength steel [25] is in 
qualitative agreement with our elastic analysis of the RDCB specimen. 
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of Growing Cracks 

REFERENCE: Rice, J. R., Drugan, W. J., and Sham, T-L., "Elastic-Plastic Analysis 
of Growing Cracks," Fracture Mechanics: Twelfth Conference, ASTM STP 700, Ameri
can Society for Testing and Materials, 1980, pp. 189-221. 

ABSTRACT; In an extension of eariier studies by Rice and Sorensen, a discussion is 
presented on the elastic-plastic stress and deformation fields at the tip of a crack which 
grows in an ideally plastic solid under plane strain, small-scale yielding conditions. The 
results of an asymptotic analysis suggest the existence of a crack-tip stress state similar 
to that of the classical Prandtl field, but containing a zone of elastic unloading between 
the centered fan region and the trailing constant stress plastic region. The near tip 
expression for the rate of opening displacement 5 at distance r from the growing tip is 
found to have the same form suggested by Rice and Sorensen 

& = aJ/a„ + &(ao/E) a In (R/r) 

but now the presence of the elastic wedge causes |8 to have the revised value of 5.08 (for 
Poisson ratio c = 0.3). Here, a = crack length, Oo = yield strength, E = elastic 
modulus, and / denotes the far-field value, namely, (1 — v^)K^/E for the small scale 
yielding conditions considered. The parameters a and R cannot be determined from 
the asymptotic analysis, but comparisons with finite element solutions suggest that, at 
least for small amounts of growth, a is approximately the same for stationary and 
growing cracks, and R scales approximately with the size of the plastic zone, being 
about 15 percent to 30 percent larger. For large scale yielding it is argued that a similar 
form applies with possible variations in a and 0, at least in cases which maintain 
triaxial constraint at the crack tip, but in the fully yielded case R is expected to be 
proportional to the dimension of the uncracked ligament. The model crack growth 
criterion of Rice and Sorensen, requiring a critical 6 at some fixed r from the tip, is 
reexamined in light of the more accurate solution. The results suggest that the J versus 
Aa relation describing growth will be dependent on the extent of yielding, although it is 
suggested that this dependency might be small for highly ductile materials, provided 
that a similar triaxial constraint is maintained in all cases. 

KEY WORDS; elastic-plastic crack mechanics, stable crack growth, ductile tearing 
fracture, fractures (materials), crack propagation 
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The aim of this paper is to describe recent studies on the stress and 
deformation fields at growing plane strain crack tips in elastic-ideally 
plastic solids, and to interpret the results in terms of criteria for stable 
crack growth. In both respects the work is an extension of a recently 
published study by Rice and Sorensen [1].^ 

The next section presents the principal results of a recent analysis [2] of 
the asymptotic stress field at a growing crack tip where one finds, contrary 
to the assumption of Ref 7, that a full Prandtl field cannot exist at the tip 
but, rather, its "centered fan" and trailing "constant stress" sectors are 
divided by an elastic unloading zone. The net stress triaxiality in front of 
the crack and, indeed, the entire near tip stress distribution differs little 
from that of the Prandtl field, which may explain why the effect was not 
revealed in previous finite element simulations of crack growth [1,3]. The 
authors find the same expression as in Ref 1 for the asymptotic form of the 
near tip openings, but with a revised value of their parameter /3 (see Eqs 19 
and 21). 

The following section analyzes recent finite element studies [4] of 
(limited amounts of) stable crack growth under small-scale yielding condi
tions, based on a refinement of mesh size as suggested in Ref / to more 
accurately determine parameters such as R and a (again, see Eqs 19 and 
21) in their expression for the near-tip crack openings. The asymptotic and 
finite element results seem to be consistent with one another, and together 
they provide a reasonably complete understanding of the near tip field, at 
least for limited amounts of stable growth, although numerical results still 
leave some uncertainties in the determination of a and R. 

Subsequent portions of the paper examine a criterion for crack growth, 
in the form suggested in Ref / , requiring that a fixed crack surface open
ing, 8c, be maintained at a small characteristic distance rm (intended to 
coincide approximately with a "fracture process zone" size) from the tip 
for continuing growth. Crack growth, under small-scale yielding, is dis
cussed based on the criterion and, in addition, a discussion is included on 
some possible implications of the criterion for large-scale yielding (but in 
geometries like deeply-cracked bend specimens, maintaining a crack tip 
triaxial constraint similar to that of the Prandtl field even under fully 
yielded conditions). 

The authors' considerations suggest a dependence of the J versus crack 
growth (Aa) relation on the extent of yielding, although for highly ductile 
materials (large values of the Paris tearing modulus T[5,6]) these depen
dencies might sometimes be relatively small. An Appendix to the paper 
compares some possible definitions of/for fully plastic specimens. 

^ The italic numbers in brackets refer to the list of references appended to this paper. 
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Asymptotic Near-Tip Fields for Stationary and Growing Craclcs 

Rice [7,8] and Hutchinson [9] have constructed asymptotic plane-strain 
crack-tip stress states for ideally plastic solids by slip line methods, and 
have analyzed the nature of the strain singularities within "centered fan" 
sectors for loading of a stationary crack. Similar methods have been adopted 
for growing cracks, where the nature of the elastic-plastic strain singularity 
in centered fan sectors moving with the tip has been discussed by Rice and 
Sorensen [/], Rice [8,10], and Cherepanov [//] . 

For the present discussion it is convenient to follow a development of 
Rice and Tracey [12] which analyzed directly, within conventional "small 
strain" assumptions, the stress state ay — OyiO) resulting as r -> 0 at the 
tip of a crack in an ideally plastic solid under plane-strain conditions (r, 6 
are polar coordinates centered on the tip as in Fig. la). They observe first 
that since the stress at the tip must be bounded, terms of the form r daij/dr 

FIG. 1—Stress field at crack tip consists, in yielded sectors, of either (a) centered fan or (b) 
constant stress regions. The full Prandtl field (c) results for a stationary crack, at least at 
small-scale yielding, but must be modified (d) with an elastic unloading sector for a growing 
crack. 
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in the stress equilibrium equations must vanish as r -» 0, and hence the 
equilibrium equations reduce to the two ordinary differential equations 

ffrr — ffee + dort/dB = 0 (1) 

2are + daee/de = 0 (2) 

Also, they assume that the plastic yield condition in highly strained mate
rial at the tip reduces to the form 

{aee - Onf/A + Ore'^ = ff„2/3 (3) 

that is, that the maximum shear stress in the plane of straining is limited 
to the yield in shear, ffo/V3 (where, using the Mises shear to tension con
version, ffo is the tensile yield strength). 

Equation 3 can either be accepted as an approximate criterion of plane-
strain yielding or can be motivated in the following way. The three-dimen
sional Prandtl-Reuss-Mises theory is based on the plastic flow rule 

DijP = A sij where A = \lDijP DIJP/s^n s^„ > 0 (4) 

and where 

Sij = the deviatoric part of ay, and 
DijP = the plastic part of the strain rate tensor Dij. 

The latter is defined (relative to Cartesian coordinates x\, X2, xs) by 

2Dij = dvi/dxj -f dvj/dxi (5) 

where V( is the velocity in (M, is the displacement and the superposed dot 
means time derivative), and consists of elastic and plastic parts such that 

1 + J' V 
Dij = Dif + DijP = ^ bij - — Sij iJkk + ^Sij (6) 

for isotropic elastic response. For elastic loading or unloading the term 
with A is deleted. In the ideally plastic case A is not determined directly by 
the stress rates, but variations in stress during plastic response must satisfy 
the yield condition 

SijSij/2 = ffo^/3 (7) 

In plane strain, if Szz = 0 (where the z axis is perpendicular to the x,y 
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plane of deformation), Eq 7 reduces to Eq 3. Now, by Eq 4 it is clear that 
whenever 

DzzP/^DijPDijP = 0 (8) 

Szz — 0, SO that Eq 3 results. But since the plane-strain crack tip is expected 
to be the site of a plastic strain singularity, while the plastic strain in the z-
direction is bounded (since total z strain and its elastic portions are bounded), 
Eq 8 is expected to be asymptotically valid as r -• 0, so that Eq 3 becomes 
the appropriate form of the yield condition at the tip. This argument is 
suggestive but not fully satisfactory because, as will be seen, the assump
tion of Eq 3 leads to the possibility of "constant stress" angular sectors at 
the tip, which do not produce unbounded plastic strain. Nevertheless, we 
continue by assuming that Eq 3 is valid within plastically deforming zones 
at the tip, noting that it must be valid within singular sectors and that the 
arguments based on it lead to fields in agreement with numerical finite 
element solutions \12\ for the now well-documented case of loading of a 
stationary crack. 

Rice and Tracey \12\ showed that the only solutions of the equilibrium 
Eqs 1 and 2, valid within plastic regions at the tip for which Eq 3 is met, 
are of the following two types: 

1. Centered fan sectors, in which 

(Trfl = ± Oo/^, Orr = oes = Constant ± (2ao/V3)6 (9) 

and which have the interpretation in terms of slip lines shown in Fig. la; 
or 

2. Constant stress sectors, in which stresses Oxx, Oxy, Oyy (that is, referred 
to Cartesian coordinates) are independent of d and meet Eq 3; these have 
the interpretation in terms of slip lines shown in Fig. lb. 

Hence, the crack-tip stress state consists of an array of plastic angular 
sectors of Type 1 and/or 2, among or between which there may be sectors 
that respond elastically (or currently respond elastically, but may previously 
have been yielded). 

If we seek a solution of the equilibrium Eqs 1 and 2 corresponding to 
plastic response at all angles 6 about the tip, then the only solution corre
sponding to Mode I loading for which all stresses are continuous (note: 
equilibrium considerations alone require continuity of oee and are, but not 
Urr) is that of the Prandtl field shown in Fig. Ic. This field was hypothesized 
by Rice [7,8] as the near tip solution for well-contained yielding; it is 
known to result as the nonhardening limit of the Hutchinson-Rice-Rosengren 
[13,14] singularities and seems to be well substantiated by numerical 
solutions for small-scale yielding at a stationary crack tip [12]. (On the 
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other hand, it is known that fully plastic solutions for nonhardening mate
rials show a wide variety of crack tip stress fields, some of which involve 
discontinuities in Orr and angular sectors that are stressed below yield). 

It was assumed in Ref 1 and previous studies of growth [8,10,11] that 
the same Prandtl field of Fig. Ic provides the stress state at a growing 
crack tip. However, as will be shown, this cannot be the case. It is still true 
that the stress field within plastic regions must consist of a combination of 
centered fan and constant stress sectors, but it is found that there must be 
a sector of elastic unloading between the fan and the trailing constant 
stress region as shown in Fig. Id. The details of the analysis are compli
cated and, since the emphasis here is on the interpretation of results in 
terms of stable crack growth, they are reported separately [2]; only the 
major ideas and results are outlined here. 

First, Rice and Sorenson [/] have presented the form of the velocity field 
in a centered fan stress field, of type in Eq 9, which moves with the crack. 
This is obtained by integration of the rr and 66 components of Eq 6, noting 
that Srr = see = 0 in a fan zone. For example, if a is crack length and the 
fan begins at 6 = Tr/4 as in Figs. Ic and d (it cannot begin at any smaller 
angle, nor at any larger angle, if the angular sector ahead of the tip is to 
be plastic, this due to the requirement of continuous shear stress), then [/] 
as r -• 0 

v. = ^ ^ f « s i n ^ l n ( l ) + / ' W 

. ( ^ - c o s . ) [ l n ( f ) 2(2 - v) CTo . / 1 
V3 E 

3i 
2 - V 

(10) 

where the functions/(^) and g{r), and length R, are undetermined by the 
asymptotic analysis, except that g{0) = 0. The functions/ and g, in addi
tion to being functions of 6 and r, respectively, will be homogeneous func
tions of degree one (and possibly linear) in a and in the rate of whatever 
parameter describes the intensity of the applied load. One may compute 
the components oiDy and, since the Dtf are known in terms of ijij, oi DyP. 
The only nonvanishing component of DyP referred to the polar coordinate 
system is, as r -> 0 

(Observe that since the rate quantities are referred to a moving polar 
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coordinate system, one cannot write Vr = dur/dt, Dre = dere/dt, etc., 
although similar equations are valid for Cartesian components). 

Owing to the path-dependence (in strain space) of plastic stress-strain 
relations, the nature of the near tip displacement and strain field is funda
mentally different for a stationary versus a growing crack. For the station
ary crack, a = 0, under monotonic load increase the only nonvanishing 
plastic strain in the fan is ere'', and this is given by an expression of the 
form 

er0P = F{e)/r, as r ^ 0 (12) 

where F(d) is undetermined by the asymptotic analysis. Further, the dis
placements at r = 0 vary with 6 in the fan so that a discrete opening 
displacement results at the tip (the field on the size scale of this opening 
must be determined by a finite strain analysis). But when the crack length 
a is increasing continuously with the level of applied loading, asymptotic 
integration of Eq 11 in the manner described by Rice [10] (in the fan) and 
including the strain discontinuously accumulated by the velocity discon
tinuity at the leading edge of the fan leads to [2] 

eijP = •-—- J Gy(e) In (E.\ + Hy(e), as r - 0, (13) 

where, referred to Cartesian coordinates as in Figs. Ic and d, 

G^A^) = -Gyyid) = - 2 sin 0 

G^yid) = GyM = ln[tan (e/2)/tan (ir/8)] (14) 

+ 2 (cos e - 1/V2) 

and where the functions Hy{d) are undetermined by the analysis but will 
depend, in a presumably monotonically increasing manner, on the ratio 
(/(applied load)/da. Further, for the growing crack the displacements in 
the fan vanish at r = 0 and hence there is no discrete tip opening dis
placement. 

Now, the difficulty with assuming the full Prandtl field of Fig. Ic for the 
growing crack is that there is a nonremovable discontinuity of velocity Vr at 
the boundary between the fan C and back constant stress zone B. Such 
discontinuities are permissible within an ideally plastic model, but only if 
they correspond to positive plastic work. Such is not the case here because, 
from Eq 10, Vr -^ + oo as r ^ 0 along the fan side and Vr is necessarily 
bounded along the constant stress side. Since are is positive, it does negative 
work on this discontinuity. 
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Several possible remedies were explored [2]. One could try to continue 
the field beyond the back boundary of C, in Fig. Ic, by assuming an elastic 
zone throughout B and enforcing full continuity of velocities at the back 
boundary, but it is then found impossible to find a solution that does not 
violate yield and that meets crack surface boundary conditions. It was 
therefore attempted to terminate the fan at some initially unknown angle 
^1, as shown in Fig. Id, necessarily bordering on an elastic sector, and to 
admit the possibility that there may be a trailing plastic region B as shown 
in Fig. Id, necessarily a constant state region. Alternatively, it is easily 
shown that a plastic region B must exist, in the sense that the entire region 
6 > 6i cannot be elastic, since by Eqs 13 and 14 material points emerge 
from the fan with a negatively infinite exx'' as r -• 0, requiring further yield 
to avoid unbounded "residual" stresses. The full details are given in Ref 2 
where it is found, for v — 0.3, that 

di « 115°, 02 = 163° (15) 

and Fig. Id has been drawn to correspond to these angles. The corre
sponding angles are approximately 112 and 162 deg for v = 0.5. 

The resulting Cartesian stress components Oxxiff), ayy{B), axy{B) are plot
ted in Fig. 2 for this field and for the full Prandtl field of Fig. Ic. What is 
remarkable is how little they differ, oyy and Oxy being barely distinguishable 
from the Prandtl values (the maximum value of Oyy, occurring in the front 
constant stress sector F, is approximately 1 percent less than the Prandtl 
value of (2 + 7r)ffo/V3), and Oxx showing only a slight dip below the Prandtl 
value in the elastic sector. Presumably, this closeness has obscured the 
differences between the actual and the Prandtl fields for a growing crack in 
previous numerical simulations [1,3,4] where, to the accuracy expectable of 
such methods, the results were interpreted as verifying the presence of the 
Prandtl field. 

The form of the crack opening rate 6 (here 6 is the opening between 
upper and lower crack surfaces) very near the tip has been also obtained in 
Ref 2. The result has the same form as in Ref / ; namely 

6 = / 3 ^ a l n [ — W i , as r ^ 0 (16) 

where 
;8 = 5.083 for v = 0.3 (17) 

The value is ,8 = 4.385 for v = 0.5. (In Ref 1, the value j8 = 4(2 - y)/V3 
= 3.93, for V = 0.3, was obtained based on the analysis of velocities 
within the unapplicable full Prandtl field of Fig. Ic). A is undetermined by 
the asymptotic analysis but is homogeneous of degree one in a and in the 
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O-M/O-O 

3.0 FULL PRANDTL FIELD 

MODIFIED FIELD 
CONTAINING ELASTIC 
SECTOR, tj = 0.3 

2.0 

FIG. 2—Comparison of crack-tip stress state for a growing crack (dashed lines, based on 
field of Fig. 16) with the Prandtl field for a stationary crack (solid lines, based on field of Fig. 
Ic). Stresses are made dimensionless by tensile yield strength. 

rate of applied load increase. Indeed, for rates of applied load which do 
not finitely change the elastic-plastic boundary (for example, a negative 
load rate, inducing elastic response in large portions of the previously 
plastic zone), one expects A to be linear in a and the load rate. Any con
venient parameter may be used to measure the applied load and, without 
loss of generality, one may use the far-field value of the J-integral, noting 
that it is well-defined for contained yielding (and may be essentially so for 
some general yielding cases) since the far-field is elastic, and that the use 
of / in this case carries no implication that it is path-independent or has 
any meaning whatever in the near-tip plastic region. Accordingly, one 
writes 

A = aJ/oo + nd (18) 

with a and /x undetermined by the asymptotic analysis, and then absorb fi 
into the first term of Eq 16 to write, finally 
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6 = a — + / 3 - ^ a In (^, as r - 0 (19) 
ao E \r J 

where now R has been replaced by a new length parameter R, also undeter
mined by the asymptotic analysis. In the next section the approximate 
determination of a and R is discussed, by fitting numerical results from 
finite element studies [4] to the theoretical results. 

It is of interest to compare near tip crack openings for stationary versus 
growing cracks. Setting a = 0 in Eq 19, one obtains for monotonic load
ing of a stationary crack 

1« (S)r=o = I adJ/ao = aJ/cTo for a constant (20) 

(Note that by dimensional analysis a is constant in the small-scale yielding 
limit; it is thought to be approximately constant up to the general yielding 
range for geometries such as a deeply-cracked bend specimen). But when 
the crack is growing so that a increases continuously with / , asymptotic 
integration of Eq 19 in the manner of Rice and Sorenson [/] yields 

ar dJ Oo , f eR\ „ , . , , 
6 = ; h/Sr —In , as r -> 0 (21) 

Oo da E \ f / 

where e is the natural logarithm base. One sees that 5 = 0 at the tip, but a 
well-defined crack tip opening angle does not exist since d8/dr -- oo at 
r = 0. 

With future discussion in mind, one may rewrite this expression as 

E8 
&aoR 

a 1 
— J + n 
/3 \ 

' eRV 
. '• / . 

r 
R 

(22) 

where T = {E/ao^)dJ/da is the Paris tearing modulus. Now, as will be 
seen in the next section, and as is suggested in Ref 1, R is found to be 
comparable in size to the maximum plastic zone radius, at least under 
small-scale yielding conditions, and a/0 is of the order 0.1. Hence in high 
T materials, where 0.1 T greatly exceeds the logarithmic term everywhere 
except for values of r that are minute fractions of the plastic zone dimen
sion, the near tip crack opening is almost linear in r and the concept of a 
crack opening angle has approximate validity. For example, if T = 200 (in 
the range of reported values [5] for the more ductile structural metals) the 
term OAT is more than 5 times the logarithmic term for all values of r 
greater than approximately 5 percent of the maximum plastic zone radius. 
At the other end of the ductility spectrum, say T = 20, the logarithmic 
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term exceeds O.IT out to distances r of approximately 40 percent of the 
plastic zone radius (probably beyond the range of validity of the asymptotic 
result), and no meaningful definition of an opening angle could be given. 

For purposes of illustration, near-tip crack opening profiles are compared 
in Fig. 3 for a stationary crack and for growing cracks with various values 
of T, taking for simplicity a = 0.65, 0 = 5, and R = 0.2 EJ/uo^ (close to 
the value estimated in the next section for small-scale yielding), so that the 
left side of Eq 22 is just 8/{J/ao). Hence, Fig. 3 compares, approximately, 
the near tip profiles that would result at a given / level under small-scale 
yielding. The curve marked T = 0 might be thought of as a crack growing 
under environmental influences with negligible change in / . 

Comparison with Finite Element Results for Growing Cracl̂ s 

In Ref 1 an attempt was made to identify the parameters a and R 
appearing in Eqs 19 and 20 for the crack opening, by correlating the 
theoretical result against a finite element solution by Sorensen [J] for 
plane-strain crack growth under small-scale yielding conditions. It was 
remarked in Ref / that a numerical solution with a much finer mesh would 
be needed to determine more definitively the above parameters. But the 
tentative conclusions were reached that R scales approximately with the 
size of the plastic zone and that a is approximately the same for a growing 
crack as for monotonic loading of a stationary crack. Further, two attempts 
were made in Ref / to check the theoretical /3 value against values inferred 
from the numerical results. Both inferred values were too large compared 

FIG. 3—Opening profiles near the tips of growing cracks with various values of 1 = 
(E/(ro^)dJ/da, and near a stationary crack tip: based on a = 0.65, 0 = 5, R = 0.2 EJ/CTO^ 
(= plastic zone size). 
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to what was then thought to be the theoretical value (3.93, for v = 0.3). 
However, as remarked, the true value of /3 based on the field of Fig. U is 
found to be 5.08 for v = 0.3, and this is not far from the inferred value of 
4.8 in Ref 1, based on displacement increments at the second node back 
from the tip. 

A refined mesh finite element solution of the kind advocated in Ref / 
has now been carried out by Sham [4]. Some of the results are discussed 
here. The formulation of the small-scale yielding problem, type of elements 
used, and general features of the mesh layout are in all respects similar to 
those of [3] except the mesh is finer, so that the plastic zone size in the 
range for which crack growth is studied is of the order 50 times the side 
length of the smallest elements. These smallest elements are of uniform 
size along and adjacent to the path of crack growth, and consist of squares 
laid out in a rectangular array, with each square made up of four constant-
strain triangular finite elements sharing a common node at its center. The 
material is an ideally plastic Mises solid with v = 0.3, and the loading, as 
appropriate for small-scale yielding, is specified in terms of the far field 
Mode I stress intensity factor, K. Some of Sham's results will be reported 
in terms of 7, where it is to be understood that / has the "far-field" value 
appropriate for contours in the elastic region, namely (1 — v^)K^/E. 

The load versus crack length history is shown in the inset diagram in 
Fig. 4, where Ko is the load required to yield the first element. The load is 
first increased without crack growth to slightly below 10 ATo, then 3 one-
element crack growth steps are simulated (by incremental unloading of 
crack tip nodes at fixed K), each followed by an increase in K at fixed 
crack length, and then 8 further one-element crack growth steps are simu
lated at fixed K. 

Sham [4] reported the near tip stress fields for both the stationary and 
growing crack cases to be consistent with the full Prandtl field of Fig. Ic. 
But as shown in Fig. 2, the differences between the full Prandtl field and 
its modification with the elastic sector of Fig. Id are small. The numerical 
results for stresses are not accurate enough (presumably because they are 
based on a mesh with nonsingular elements at the tip; compare Ref 12) to 
distinguish between the two, and can equally be regarded as being 
consistent with the field associated with Fig. Id for the growing crack. 
Nevertheless, Sham reports that all crack growth steps are accompanied by 
elastic unloading of some elements behind the tip, of locations coinciding 
roughly with the location of the elastic sector in Fig. Id. Further, elements 
adjoining the crack surfaces near the tip are found to yield in a direction 
corresponding to extension in the x-direction of Fig. Id, as predicted 
within Region B, and which is expected since material points emerge 
from the fan with a value of e^^P which becomes negatively infinite at the 
tip. Thus, these features as well as the element stresses near the tip are 
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FIG. 4—Finite element results for increments Ad of crack surface opening due to load 
increase at fixed crack length, based on finite element solution for small-scale yielding with 
load history as shown, (a) Load increases following one-element steps of crack growth, (b) 
Last few increments of monotonic loading of stationary crack. 

consistent with the theoretical analysis [2] of the field at a growing crack 
tip. 

For small load increase at fixed crack length, Eq 19 suggests a variation 
A 6 in crack tip opening displacement given by 

(A6)r=o = a i^J/oo (23) 

Thus, we are able to estimate the dependence of a on the amount of crack 
growth by estimating (A6)r=o from the numerical results for the various 
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load increases at fixed crack length shown in Fig. 4. This is accomplished 
in Fig. 4a for the three load steps following growth, by plotting A6/(AJ/ao) 
at the crackline nodes as a function of r/{K/ao)^. The results suggest that 
at least for the rather modest amounts of crack growth considered, the 
incremental openings for load increase at fixed crack length are unaffected 
by growth; that is, that a is essentially constant during growth. To deter
mine the relation between d and / for monotonic loading of a stationary 
crack, one observes that by dimensional considerations a is constant during 
monotonic loading under small-scale yielding conditions, but that its value 
is most accurately estimated from numerical solutions by using data from 
the range in which the plastic zone size is large compared to element size. 
Accordingly, in Fig. 4b A8/{AJ/ao) versus r/{K/ao)^ is shown from data 
based on the last few increments of loading of the stationary crack, as 
indicated. 

The points of Figs. 4a and b superpose on one another everywhere 
except in the region of upturn. If the upturn region is ignored and the data 
are extrapolated to the tip, as shown by the dashed line, AS/(AJ/ao) = 
0.53 is obtained in both cases; that is, a = 0.53, the value being the same 
for both the stationary and growing crack. This value of a is somewhat 
smaller than the accepted value of approximately 0.65 for the stationary 
crack (see Ref 1 for a summary of results), whereas a » 0.65 is consistent 
with the opening at the first node back from the tip in Fig. 4b. If we use 
similarly the opening at the first node in Fig. 4a to estimate a for the 
growing crack, then the values of a are higher (0.69, 0.71, 0.72 at the end 
of the three growth steps) than for the stationary crack; that is, by amounts 
ranging from 6 to 11 percent. The interpretation of these results is further 
clouded by the upturns in A 6, which occur within a region for which the 
finite element mesh of [4] undergoes a reduction by a factor of 2 in element 
size (starting three elements behind the original crack tip), and may indi
cate inadequacies of the numerical treatment. 

The last 8 one-element steps of growth (Release Steps 4 to 11) at fixed K 
grow the crack away from the region of discontinuity in mesh size. Ob
serving from Eq 21 that for growth at constant K (hence constant / ) the 
near tip opening is 

'=^J^'^{f)' (24) 

comparison of the finite element results for 8 with this formula provides a 
means of estimating R and of seeing to what extent the numerical results 
are consistent with the theoretical value of 13. To do so, the formula is 
rewritten as 
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and Eb/oor is plotted against ln[e{K/ao)^/r], so that /3 is given by the 
slope and R is determined from the axis intercept. This is done in Fig. 5 
for the finite element openings along the path of growth at constant K, 
using data at the end of each of the Release Steps 6 to 11. The data for 
each release step form a straight line, confirming the logarithmic depend
ence in Eq 24, and the slopes are very close to one another; 0 = 5.4 can be 
taken as a representative value. This is close to, but somewhat larger than, 
the theoretical value of 5.08. The corresponding values of R as determined 
from axis intercepts are shown in Fig. 5, and these cluster about the value 

R « 0.21 K^/ffo^ « 0.23 EJ/ao^ (26) 

which seems to be essentially independent of the amount of growth. Fur
ther, Sham [4] estimates a maximum plastic zone radius, which is approxi
mately 0.16 (/ST/CTO)̂  for stationary crack and which increases slightly with 
growth, to approximately 0.18 (K/<Jo)^ at the end of the eleven growth 

26 

[̂ ff 
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5.410 
5.350 
5.370 

0.220 
0.209 
0.201 
0. 199 
0.206 
0.213 

in[e(K/o-o)^/r] 

FIG. 5—Correlation of finite element results for crack opening B, in growth at constant J, 
witk theoretical result. Each set of points corresonds to total S-values, along the path of 
constant J growth, after a one-element growth step. Resulting estimates of (3 and R are shown. 
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steps. Thus, the value estimated above for R essentially scales with the 
plastic zone size but is about 15 to 30 percent larger. 

Again, however, the interpretation of numerical results is not unambigu
ous. For example, if lines with the theoretical slope /3 = 5.08 are fit to the 
data of Fig. 5, the value of R is found to decrease with crack growth, from 
R « 0.35 (K/oo)^ at Release Step 6 to/? « 0.21 {Kloof at Release Step 11. 

Clearly, much remains to be done to determine expressions for the 
parameters a and R and for their dependence on crack growth, not only 
for the small-scale yielding case examined here but also for larger scale 
yielding. Lacking more definitive information, we will assume tentatively 
for the subsequent discussion of crack growth that a is approximately 
constant and that R scales with the plastic zone size (in the form R = 
0.2 EJ/GO^ for small-scale yielding). 

Speculations on Large-Scale Yielding 

The numerical results just surveyed, as well as those in the original Rice 
and Sorensen study [/], were for the small-scale yielding limit, in which the 
plastic response is fully determined by the surrounding elastic K field. 
However, the results of the asymptotic analysis should be valid for larger 
scale contained yielding of ideally plastic solids, although R and a must 
then be expected to depend on the extent of yielding. For example, the 
tentative relation, R « 0.2 EJ/oc}, cannot be expected to persist at large-
scale yielding because the dimensions of the plastic region no longer scale 
directly with / . 

Finally, for fully yielded ideally plastic specimens, of a geometry that 
retains constraint comparable to that of the Prandtl field (for example, 
deeply-cracked bend specimens [15]), growth of the crack still requires that 
centered fan sectors of near tip stresses be moved through the material. 
This introduces logarithmic singularities of the type multiplying a in ex
pressions like those of Eqs 10 for the near tip velocities, and leads, ulti
mately, to an expression in the form of Eq 16 for the near tip opening 
rates, namely 

6 = ) 3 ^ d In/ '—] + i , a s r - > 0 

For a geometry like that of the tension specimen with deep double edge 
cracks, for which the full Prandtl field provides the near tip state for the 
stationary crack case, the construction of Fig. \d is expected to apply 
during growth so that 0 has the same value as given earlier, Eq 17. For a 
geometry like that of the deeply cracked bend specimen, the stress field for 
a stationary crack is very close to that of the full Prandtl field [15], and 
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hence a similar value of /3 is expected in that case (we leave open the ques
tion of whether the value would be identical). 

Regardless of the extent of yielding, A in Eq 16 will be homogeneous of 
degree one in a and in some loading parameter such as the imposed dis
placement (say, q) at the load point. For reasons discussed earlier, the 
authors believe it may be appropriate to regard the dependence as being 
linear in a and q, say 

A = ^q + 'jla 

where ^ and /I are parameters undetermined by the asymptotic analysis. 
Now, suppose a quantity / , to be associated in an as yet imprecise way with 
the J-integral, is defined in some way, for all extents of yielding, such that 
/ is linear in q and a. Then one can write, analogously to Eq 18, 

A = a//(To + /ifl 

where, again, a and n are undetermined by the asymptotic analysis. In the 
Appendix the authors discuss two different ways of defining J: one (Jj) 
based on a far field contour; another (Jd) based on a "deformation theory" 
definition, that is, Jd is the same function of a and q as for monotonic 
loading to q with a fixed. Different definitions of / will lead to different 
values of n (and perhaps a). Thus, when one follows the steps from Eqs 16 
and 18 to Eqs 19 through 21, which are now seen to apply to all extents of 
yielding, it must be recognized that R will depend on the way that / is 
defined, since it incorporates the fia part of the expression for A. 

To apply dimensional considerations in order to understand the behavior 
of R, say, as a function of/, it is now necessary to be more precise about 
the definition of / at large-scale yielding. In particular, in the limit of a 
fully yielded specimen of rigid-ideally plastic material, it is obvious that 6 
at the tip must take the form 8 = ioq where w is some parameter (possibly 
dependent on the geometry of the cracked body). Further, one observes 
that for rigid-plastic materials this expression for 5 is equally valid for 
stationary or for growing cracks (that is, it is independent of a). Now, if R 
is to remain well defined in the rigid-plastic limit, as Oo/E ->• 0, it is neces
sary that whatever expression one adopts for / be such that in this limit / 
depends only on q and not on d. Otherwise the term R in Eq 19 would have 
to contain a factor exp[(constant) X E/aJ to cancel out the Og/E in front 
of the In term of Eq 19, and thus annul the a dependence of/, as Oo/E -* 0. 
It is shown in the Appendix, for the rigid-plastic bend specimen, that / / , 
the value of the J-integral associated with an appropriate far field contour, 
has this property, whereas/^ does not. The authors do not, however, suggest 
that Jf will have this property for all specimen geometries, and, indeed, it 
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is found that Jd has the appropriate property in the case of a tension speci
men with deep double edge cracks. 

With the understanding that / has been appropriately defined so that R 
has no spurious dependence on a term like exp[(constant) X E/oo], one 
now observes that the terms containing R in Eqs 19 and 21 arise from 
moving a centered fan stress distribution through an elastic-plastic ma
terial. Thus, R should scale approximately with the size of the region over 
which such fan-like stress fields prevail. Hence, with reference to the 
deeply-cracked bend specimen of Fig. 6, R should saturate in size to some 
fraction of the ligament dimension b as fully plastic conditions are attained. 
Hence, as shown in Fig. 6, one expects R to increase linearly with / at first, 
as appropriate to the small-scale yielding regime, but then to saturate as / 
further increases. The saturation level of i? = A/4 is only a guess and 
much further correlation of the asymptotic analysis against numerical 
results will be necessary to establish this level and, indeed, the full de
pendence of R onj. 

There is, of course, already an approximation built into the notion that 
R should depend on / (and, of course, on geometric dimensions such as 
crack depth and ligament size): R should have at least some dependence 
on the amount of prior crack growth. However, as suggested by results for 
small-scale yielding, this dependence seems to be minor, probably because 
the shape and size of the currently active plastic zone is not strongly af
fected by prior growth. The point needs further clarification, but is neglected 
in our subsequent discussion of crack growth criteria. 

Investigation of a Ductile Craclc Growth Criterion 

Here we investigate implications of the ductile crack growth criterion 
proposed in Ref / . This is based on the opening 6 at a small characteristic 
distance from the tip, but, as will be seen, the criterion is similar in form 

FIG. 6—Speculation on the variation of R with J over the entire range of yielding. The 
linear variation at low J is expected to become nonlinear as shown and to finally saturate in 
value {the level = '/4 is a guess) at general yielding. 
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to other criteria which might be proposed based on other parameters of the 
near tip deformation field, for example, on local plastic strain. 

It is important to remember, however, that the criterion is based on the 
deformation field, and makes no reference to the stress distribution. Such 
might be considered reasonable in the sense that the maximum tension 
immediately at the crack tip is always essentially the same (equal to the 
Prandtl value or a percent or so lower) for the highly constrained geometries 
that are considered, so that the only variable features of the near tip field 
are the levels of strain and opening displacement. But it is possible that the 
critical levels of deformation could, in some cases, be influenced by the 
"preconditioning" (for example, microcrack or cavity nucleation) of ma
terial elements by high stress levels experienced before the crack arrives. 
This preconditioning could be more severe when the region of triaxially 
elevated stresses extends over larger versus smaller size scales ahead of the 
crack. On the other hand, for cases of ductile rupture in which cavity 
nucleation is limited to the immediate vicinity of the crack tip (say, over a 
size scale comparable to the tip opening displacement for a stationary 
crack), the size scale over which the triaxially elevated stress state extends 
ahead of the crack is expected to be unimportant, and a growth criterion 
based on local deformations seems appropriate. 

The model criterion of the Rice and Sorensen study [/] assumes that 
growth initiates by large plastic strains associated with opening at the 
stationary crack tip, and that once growth has thereby occurred over a 
distance comparable to the fracture process zone, subsequent growth 
continues in a mode for which a geometrically similar (in a sense to be 
made precise) profile of crack opening is maintained very near the tip. The 
criterion for growth is stated in Ref / as the requirement (Fig. 7) that a 
critical opening 6 = 6̂  be maintained at a small characteristic distance r^ 
(called Al in Ref / ) behind the tip. Thus, from Eq 21, the criterion for 
continuing crack growth is 

- 5 ^ = ^ ^ + ^ f I n / ^ ) (27) 
rm (Jo da E \rm J 

Since R is regarded as a function of / (though specimen dependent; that is, 
dependent also on a, at large-scale yielding (Fig. 6)), Eq 27 can be re
garded as a first order differential equation which determines the manner 
in which / must vary with a in order to continue to meet the crack growth 
criterion. The initial condition is that / = /ic (the initiation value) at a = 
Uo (the initial crack length). 

It seems appropriate to regard rm as a size comparable to that of the 
"fracture process zone," although this is, of course, not a sharply defined 
size. It is tempting to identify be with the crack-tip opening displacement, 
6ic = aJic/oo, at the onset of growth, but experimental observations are 
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FIG. 7—Crack growth criterion of Ref 1 requires that a critical opening 5c be maintained 
at small distance T^ behind the tip. As discussed at the end of the paper, the criterion is 
similar qualitatively to others based on other deformation parameters (for example, plastic 
strain) of the near tip field. 

well-known to reveal crack profiles during growth that suggest much less 
near tip opening than at initiation. Thus, 8c is regarded as an independent 
empirical parameter, sometimes much smaller than du. Indeed, as dis
cussed in Ref / , Sic might more sensibly be regarded as a measure of the 
fracture process zone size, and hence of /•„. 

Now, the solutions to Eq 27 show the manner in which / must vary with 
a, beyond the/ic point, to meet the crack growth criterion. In some cases, 
for example, sufficiently low 8c/rm and high Oo/E, it may happen that the 
value of dJ/da calculated from Eq 27 at the /ic point is negative. In such 
cases, immediately unstable crack growth is expected. For more ductile 
materials (that is, sufficiently large 6c/rm and small Oo/E), the calculated 
dJ/da is positive and integration of the equation leads to a / versus a ~ oo 
relation which must be followed for stable growth. It may happen, however, 
that the predicted dJ/da at some point in the growth history falls below 
what the loading system can supply, and at that point unstable crack 
growth occurs. Specifically, let JA{Q,a) be the "applied" / where Q is a 
monotonically increasing measure of the intensity of loading. In different 
cases Q may represent an imposed force or stress, or an imposed load-
point displacement (or a displacement imposed on a compliant loading 
system attached to the cracked body). Then, if/(a) represents the solution 
of Eq 27 for the given cracked body and initial conditions ( / = /ic when a 
— Oo), the variation of Q with a satisfies 

JAid a) =J(a) (28) 

and instability (dQ/da 
and 

0) occurs when, simultaneously, this equation 

dlAiO, a)/da = dJia)/da (29) 
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are met. These equations have a well-known graphical solution in terms of 
tangential contact of the curves / = /(a) and / = /4(Q,a), for fixed Q, on a 
/ versus a diagram, although our work carries no implication that the 
"resistance" curve J{a) is invariant to specimen geometry at large-scale 
yielding. 

It is of interest to note, however, that the criterion of Ref / for crack 
growth can be rephrased in a manner which makes no reference to the 
"microscale" parameters rm and 5c. The authors develop this approach 
here noting that Eq 21 can be rephrased in the form 

5= 0r^ln—, as r ^ 0 (30) 

where 

p = « exp (1 + aT/$) (31) 

Thus, the criterion for crack growth with a geometrically similar profile 
very near the tip is that p remain constant during crack growth. One 
evaluates p in terms of the values of R and the tearing modulus T at the 
onset of crack growth under small-scale yielding conditions. 

Since 

R = \EJ/a„^ where, Eq 26, X « 0.2 (32) 

for small-scale yielding, the corresponding value of R is 

R = \EJ\Jao^ 

and one defines a new fracture parameter To as the value of T at the onset 
of growth under small-scale yielding. Hence the critical value of p may be 
identified as 

p=(X£7ic/ffo2) exp(l + ass,ro//3) (33) 

where Ussy ( « 0.65) is the value of a appropriate to small-scale yielding; 
one notes the possibility that a ^ assy, for example, at general yielding. 

Thus, the criterion for crack growth with a geometrically similar profile 
very near the tip is, by comparing Eqs 31 and 33, that 

R exp(l + ar / /3) = (XEJic/oo^) exp(l + ussyTo/p) 

This growth criterion may be rearranged to the form 
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E dJ assy & ( R 
T s - y — - = - ^ 7 - 0 - - I n - — — ^ (34) 

CTo da a. a \\EJ\c/ao , 

which is valid for all extents of yielding (assuming that conditions of plastic 
constraint remain such that a stress field like that of Figs. \d and 2 results 
very near the tip). The new fracture parameter To which enters here can, 
of course, be expressed in terms of the microscale parameters 5c and rm, 
and the relation is 

^ E 8c §_ 
1 O 

OLssy (JQ Tfn OCssy \ rmOo^ / 

However, as is clear from the form of Eq. 34, the growth criterion can be 
phrased entirely in terms of the macroscale parameters/ic and To-

For crack growth under small-scale yielding one identifies a as assy in Eq 
34 and uses Eq 32 for R. Hence, the growth criterion in this case is 

T = —r — = To In (—- (35) 
Oo^ da assy \Jic I 

This equation has been integrated by Rice and Sorenson [/] and the results 
are shown in Fig. 8 where the authors have set, in this paper, a = 0.65, 
/3 = 5.08 and plotted 

y//ic versus (a — ao)/[0.2£7ic/ao^] 

for a range of values of To. Here the crack growth (a — a©) has been made 
dimensionless by a quantity that is equal approximately to the maximum 
radius of the plastic zone at the onset of growth. All the curves in Fig. 8 
exhibit a plateau, corresponding to steady state growth (that is, dJ/da -> 0), 
at J levels given by 

Jss = /ic exp(asj>'To/|3) = / k exp(0.128 To) 

For materials with large To-values, say To > 25, this level is so large (for 
example, Jss > 25 Ju) that in cracked bodies of practical sizes, large-scale 
and finally, fully-plastic yielding conditions will occur well before J ap
proaches/«, invalidating the calculation. Of course, even for crack growth 
under small-scale yielding, the instability condition of Eqs 28 and 29 will 
usually be met before J reaches Jss. 

More generally, at large-scale yielding, the crack growth criterion takes 
the form of Eq 34 with a ^ assy. Further, R = \EJ/a,? at small-scale 
yielding but (Fig. 6) deviates from this at larger scale yielding and finally 
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0.2EJic/<^5 

FIG. 8—Predicted variation of J with a — ao/or small-scale yielding. Curves are drawn for 
different values of To, which is the value o/(E/ao^)<U/da at the onset of growth under small-
scale yielding conditions. Based on a = 0.65, 0 = 5.08. Growth criterion of Ref 1 can be 
stated in terms of the "macroscopic" parameters Jic and To, rather than the "microscopic" 
parameters of Fig. 7. Note that a — ao is scaled by what is, approximately, the maximum 
plastic zone radius at the onset of growth. 

saturates in value at fully yielded conditions. The argument of the In term 
in Eq 24 is the ratio of R to the value that it would have at the onset of 
growth under small-scale yielding conditions. It is this In term which 
exhibits the sensitivity of the growth criterion at full plasticity to specimen 
size. For example, taking the numerical values of j8 and assy as above, 
setting X = 0.2 as suggested in Eq 32, and guessing as in Fig. 6 that the 
saturation value of jR is approximately fe/4, one has at fully yielded condi
tions 

T = 
E dJ 
Oo- da 

« 1.3 To - 10.0 In 

To - 7.8 In 
V0.2£'/ic/ffoV 

CXssy 

OLfy 

( b/A \̂ 
\Q.2EJic/ao^ ) 

(36) 
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for the bend specimen, where afy (the value of a for fully yielded condi
tions) has been taken as 0.51 in the last version, so that OLssyloijy «= 1.3. 
This value of afy is suggested by the rigid-plastic solution (see Appendix). 

Two observations can be made. First, if crack growth begins under fully 
yielded conditions the growth curve / versus a — ao (according to the 
ideally plastic model and other assumptions that have been made) is quali
tatively different from that for small-scale yielding. The value of T is then 
essentially constant for amounts of growth that are small compared to 
ligament size (so that b in Eq 36 does not change significantly) and, if the 
formula is regarded as being accurate for large amounts of growth, T 
actually is predicted to increase with a — Oo (since b diminishes), in 
marked contrast to the small-scale yielding behavior in Fig. 8. 

Second, the (essentially constant) value of T for small, fully plastic 
growth will not be identical to To. The difference between the two arises in 
part because of the ratio assy/ajy in Eq 36. If this ratio were near to unity 
(as it seems to be for the deeply double edge-cracked tension specimen; see 
Appendix), then the difference between T and To would generally be 
negligible for high To materials, since the argument of the In term in Eq 36 
will seldom be very small or large compared to unity in practical cases. But 
for low To materials the differences could be significant. For example, the 
argument of the In term is approximately equal to the ratio of the quarter-
ligament size to the plastic zone size corresponding to onset of growth in a 
large specimen, sustaining small-scale yielding conditions. For a specimen 
that is sufficiently small that /ic conditions are attained only in the fully 
plastic regime, this ratio is expected to be less than unity, so that T 
exceeds To (or To cxssy/ajy if variations in a are considered). 

For example, consider a material that is tested in a specimen size at the 
limit of what is regarded as the permissible range for a valid fully plastic 
Jic test, namely, b = 25/ic/ao. Then Eq 36 predicts 

r « [To + 7.8 In (E/3lao)]assy/ajy 

= [To + 22]assy/afy « 1.3 To + 28, for Oo/E = 0.002 (37) 

= [To + I3]assy/afy « 1.3 To + 17, for Co/E = 0.006 

where the last expressions given for each strength level are based on 
assy/ajy = 1.3, as for a bend specimen. Note that when the observed 
fully plastic T-value is sufficiently small, T^ would have to be negative. 
Such a material would be expected to show immediately unstable fracture 
when tested in specimens that are large enough to meet small-scale yield
ing conditions, although it exhibits stable crack growth in small, fully 
plastic specimens. On the other hand, if the fully plastic T-value is large. 
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say, greater than 100, the effect of the In term can be disregarded and 
differences between T and T^ arise only because a^ differs from a^sy 

In fact in this latter case of high T materials, the In terms in Eqs 34 and 
36 are negligible, and, hence, the / versus a — Uo relation, at least for 
small amounts of growth, is expected to show negligible dependence on 
specimen size in the fully yielded range. In this respect our conclusions are 
in partial agreement with those of Hutchinson and Paris [6], and this is of 
interest because the basic assumptions are very different in the two 
approaches. Hutchinson and Paris appeal to strain hardening of the ma
terial (whereas the authors have neglected hardening in the present ap
proach) and assume that this hardening is sufficiently strong to create 
a Hutchinson-Rice-Rosengren (HRR) singular zone near a stationary 
crack tip, so that the near tip field is then uniquely characterized by / . 
Next, they consider crack growth under increasing imposed displacement 
on the specimen, and observe that if the imposed displacement increases 
rapidly enough with increasing a, effects of strongly nonproportional 
stressing are limited to a small neighborhood of the tip, whereas at greater 
distances the stress histories are such that the approximation of deforma
tion plasticity theory is valid. Hence, they assume that a far field value of J 
is well-defined and path-independent everywhere except very near the tip, 
and this assumption has confirmation from the numerical studies of Shih 
[16], which are based on incremental plasticity and model observed crack 
growth in a high T material. Hence, for sufficiently large T, and degree of 
hardening, and for sufficiently limited amounts of crack growth, Hutchin
son and Paris assume that the growth process takes place in a surrounding 
HRR singular field that is uniquely characterized by / , so that there is a 
universal relation o f / t o a — ao. Further, their work carries the implica
tion that this same relation would apply for small-scale yielding, although 
our work does not support this notion, even for high T materials, when the 
ratio assy/ctfy of Eq 36 differs from unity. (We also note that Hutchinson 
and Paris [6] tacitly assume that this far field/-value, say, / / , can be equated 
to the "deformation theory" function Jd = Jdiq.a). We show in the Ap
pendix that the two are definitely different in the rigid-plastic limit, al
though the differences between jf and Jd will often be small for high T 
materials). 

In comparison to the Hutchinson and Paris approach, our growth cri
terion is based on the actual structure of near tip fields as predicted for a 
material of the incremental plasticity type. Indeed, the near tip fields are 
strongly influenced by the path-dependent constitutive response of such a 
material. On the other hand, we have modeled the material as ideally 
plastic and this probably tends to overestimate dependences on the extent 
of yielding, particularly those arising from differences between assy and afy, 
since, on the basis of the HRR fields, hardening is widely thought to lead 
to a lessened dependence of a on the extent of yielding than predicted from 
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ideally plastic solutions. Also, while it is clear that an incremental formula
tion of the plasticity equations is correct physically, there is reason to 
believe that models of the Prandtl-Reuss-Mises type, which assume 
invariant shapes of yield surfaces in stress space, may not be fully adequate 
for strongly nonproportional stress histories as experienced near a growing 
crack. 

While it is of interest that the authors' approach and that of Hutchinson 
and Paris [6] are consistent, at least to the neglect of a variations, for high 
T materials, it is well to remember that both approaches rest on assump
tions that require more study for full understanding of their range of 
validity. Also, enthusiasm over this concurrence of conclusions should be 
tempered by the recognition that the high T materials may be so resistant 
to crack growth that unstable crack propagation is seldom likely to be a 
practical problem. On the other hand, for low T materials, which are more 
prone to instability, the conditions which Hutchinson and Paris state for 
validity of a universal / versus a — Uo relation are not met, and the authors' 
work suggests significant dependencies on the extent of yielding and speci
men size. 

The authors close this section by outlining an alternate crack growth 
criterion based on near tip plastic straining. The centered fan velocity field 
of Eq 10 includes the function/(^), which is homogeneous of degree one in 
a and in the rate of applied load. If, analogously to the transition from Eq 
16 to 19 in the expression for 6, one assumes this dependence to be linear 
in a and the load rate, then it is straightforward to show that the asymptotic 
integration leading to Eq 13 for eyP yields expressions of the form, as r -^ 0, 

etiP = V6 -jGij{d)ln [Lij (6) + - M,ie) f-
Oo da 

(38) 

in the fan for a continuously growing crack (here no summation is implied 
by repeated indexes). The functions Gy{6) are given by Eqs 14, but the 
functions £,y(^), of length dimensions, and the dimensionless functions 
Mjjid) are undetermined by the asymptotic analysis. 

Similarly, the equivalent plastic shear strain JP, with rate defined by 

yP = yTlDyPDyP = 2DreP in the fan (39) 

is obtained by integration of Eq 11, adding on the yP accumulated dis-
continuously at the front boundary of the fan. This results in 

vP = 
2(2 - v) ao 

V6 E 
{y/2 + In 

r tan(e/2)1 
tan(7r/8) ]'" r Oo da 
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where the length function L{6) and dimensionless function M{d) are again 
undetermined by the asymptotic analysis. For example, setting 0 = x/2, 
yP represents the equivalent shear strain accumulated in the forward part 
of the fan and is given by 

7-= 1.88(2-.)flnf^U^f^ (41) 
E \r / Oo da 

where L = X(ir/2), M = Miir/l). Although verification would require 
detailed comparison with numerical solutions in a region where these have 
great inaccuracies, it seems reasonable to expect that X scales with the size 
of the plastic region (being approximately proportional to EJ/oo^ for small-
scale yielding) and that M is approximately invariant to growth. Hence, the 
features of the terms in this equation are expected to be similar to those of 
analogous terms in Eq 21. 

Accordingly, if one requires as a criterion for continuing crack growth 
that all points closer than a certain small characteristic distance rm above 
and below the tip have accumulated a plastic strain equal to or greater 
than a critical value yc^ as the crack approaches, one obtains 

M dJ Oo / L \ 
ycP = -—- + 1.88 (.2- v)- ln( (42) 

Oo da E \rm / 

as the differential equation governing growth. This is identical in form to 
the criterion studied here (compare Eq 27) and is expected to lead to 
qualitatively similar conclusions. 
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Authors' note: Since presentation of the paper we learned of the work of 
L. I. Slepyan ("Growing Crack During Plane Deformation of an Elastic-
Plastic Body," Izv. AN SSR. Mekhanika Tverdogo Tela, Vol. 9, 1974, pp. 
57-67). Using methods of asymptotic analysis similar to those of Ref 12 
and, for the growing crack, Refs 8 and 10, Slepyan determines the form of 
the near tip stress and deformation fields for a crack growing under steady-
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state conditions in an ideally plastic Tresca material. He comes to the same 
conclusions as in Ref 2 on the necessity of an elastic unloading zone of the 
form shown in Fig. Id. The results of Ref 2 have a slight dependence of 
the unloading zone boundary angles di, 62 on the Poisson ratio, since Ref 2 
is based on the Mises model; whereas Slepyan's work, based on the Tresca 
model, does not. But for v ~ V2 the results are identical. 

APPENDIX 

Interpretation of / at Full Plasticity 

To clarify the interpretation of the term involving J in Eq 19, and dJ/da in Eq 
21, for fully plastic specimens, consider the cracked bend specimen of Fig. 6 to 
consist of rigid-ideally plastic material. Let 0 be the rotation of one end of the 
specimen relative to the other. Then the moment required to continue deformation 
is [10] 

M = (0.63/A/3)(7O6^ (42) 

and the rate of opening at the tip is 

t = 0.37 be (43) 

These formulas are valid for stationary or growing cracks, and when the latter is 
integrated for a continuously growing crack one obtains, for small r, 

b = 0.37 rb dd/da (44) 

As remarked in the text, if Eqs 19 and 21 are to reduce to Eqs 43 and 44 in the 
rigid-plastic limit (oo/E -» 0) with bounded In /?, it is necessary that the definition 
of J be such that in this limit it reduces to an expression for which / depends only 
on d and not on a. 

The authors examined two candidate definitions of / . First, the "deformation 
theory" definition takes 7 to be the same function of 6 and a (or 6) as it would be if 
the current rotation d were imposed at a fixed value of b, namely the current b-
value. This 7, called 7d, is given in the rigid-plastic case by the well-known expression 

7d = 7 Me = [2(0.63)/V3](ToAe = 0.73 Oobd (45) 
b 

It does not have the desired feature, because 

Jd = 0.73 Oo(be - da) (46) 

An alternate definition is the far field contour 7, called Jf, and for definiteness 
this is taken on the dashed line contour V\ + r2 + r3 coinciding with the specimen 
boundary in Fig. 6. Thus 
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Jf=2\ (Wdy - Ti dui/dx ds) (47) 
Jr i+r2+r3 

(the factor 2 appears because only one half of a complete contour is considered), 
where 

W= [oijduj (48) 

is the density of stress working, T,- the traction and M,- the displacement vector. The 
term with T,- vanishes on stress free surfaces Tj and r 3 , and it makes no net contri
bution on T2 since each dui/dx is uniform there (the boundary is rigid). The inte
grated value of each Ti on Fi vanishes since the loading is pure bending. Also, W 
vanishes on the rigid boundaries Fj and Fs, whereas on Fi it has the value 

W= -(2<7o/V3)e^ = -(2ao/-^)duy/dy (49) 

since those points along Fi that yield do so in compression under stress Oyy = 
— i2<jo/V3). Hence 

/ / = 2 Wdy = (2(7o/V3) [-2uyP] (50) 
J r i 

where UyP is the vertical displacement at point P in Fig. 6. Now, the motion of the 
rigid portions of the rigid-plastic specimen is well-known to consist of rotation about 
a "hinge point" having an x coordinate that extends a distance 0.37 b ahead of the 
tip [10], and hence 

2uyP ^ -(b - 0.37*) e ^ -OMbe (51) 

Thus 

Jf = [2(0.63)/V3]ao bdB = 0.73ao bdO (52) 

where the integral follows the history of crack growth (that is, b will in general vary 
with 6). It is obvious that Jy = Jj of Eq 45 when the crack does not grow as 6 is 
applied. But when the crack is growing J^ exhibits the desired feature 

jf=0.73aob9 (53) 

(that is, independent of d) 
Hence, the symbol / , which is used when discussing the fully plastic case, can 

consistently be identified with a far field value like J/, although not with the de
formation theory value Jd- Further, Eq 43 yields in the rigid-plastic case 

6 = 0.37 be = 0.51 jf/ao (54) 

This is the origin of the value afy = 0.51 used in the text for the fully yielded bend 
specimen. 

Also, one observes that since 

jf = Jd + Jd a/b 
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dJf/da = dJd/da + Jd/b (55) 

for the rigid-plastic bend specimen, one expects the same to be approximately valid 
for a fully yielded elastic-plastic bend specimen. Hence, if 

and 
CTo^ da 

Td = —T - 7 - (56) 

(7o da 

where 7 / should be considered as the T of Eqs 36 and 37, then 

Td = Tf~EJd/ao^b (57) 
in this case. That is, the value of the tearing modulus is sensitive to the definition 
used for J, and Td may turn negative with increasing growth while T/ remains 
positive. In particular, Eq 37 for the value of T (interpreted as Tj) at the onset of 
growth in a fully plastic bend specimen with b = ISJic/Co becomes, in terms of Td, 

Td '^ [To + 7.8 ln(£'/31a<,)]a^^^/a;^ - E/lSoo 

= 1.370 + 8, for (To/£• = 0.002 (58) 

= 1.3 To + 10, for ao/E = 0.006 

where assy/afy has been set equal to 0.65/0.51 = 1.3 again. Hence, even though 7rf 
is fundamentally an incorrect parameter within the incremental, ideally plastic 
model, its use does seem under typical conditions to bring the fully plastic T-value 
somewhat closer to To. In fact, if the differences between ajy and ocssy were neglected, 
the difference between Td and To in the foregoing expressions would be 2 and 6, 
respectively. 

Finally, the authors remark that J/ does not seem to be the appropriate definition 
of / for all rigid-plastic specimens. For example, suppose the specimen in Fig. 6 is 
considered to represent one half of a double edge cracked tension specimen, with 
cracks deep enough to validate the Prandtl field over the uncracked ligament, and 
let U be the extension of one end of the specimen relative to the other. Then it is 
straightforward to show [10] that the deformation theory value is 

Jd = [(2 + ir)/V3}aot/ = 2.97a<,t/ (59) 

whereas / / does not seem to have any unique value for the case of a growing crack 
(due to nonuniqueness of the stress field in rigid regions of the specimen) for the 
contour r shown. In this case it is Jd which exhibits the desired feature that / is 
independent of a. Also, the rate of opening at the crack tip is [10] 

^ = 2U = 0.67 Jd/oo (60) 

 



RICE ET AL ON ELASTIC-PLASTIC ANALYSIS 219 

Hence, a/y = 0.67 in this case, which is very close to what the authors estimated as 
the small-scale yielding value. Thus, lessened differences between T and To are 
expected for this type of specimen, particularly when T is based on Jd. 

Finally, for the center-cracked, rigid-plastic plane strain tension specimen it is 
elementary to show that 

Jd=Jf=(2aa/\[3)U (61) 

provided that Jf is evaluated on a contour similar to that in Fig. 6, and that the 
opening rate at the tip is 

t ^ U = 0.87 S/oo (62) 

However, this specimen does not have a Prandtl-like stress state at its tip, and 
cannot be discussed in terms of the analysis in the body of the paper. 
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Discussion 

M. P. Wnuk^ {written discussion)—The last slide shown by you gives an 
impression that the crack opening displacement (COD) criterion and the 
condition of attainment of a critical strain in the material element ahead of 
the crack front could be regarded as being equivalent. I would like to note 
that the latter criterion was first used by McClintock in 1958 and the 
equivalence of the "final stretch" (that is, a constant COD sustained at a 
fixed distance from the tip of a moving crack) was pointed out by Wnuk in 
1972 and then again in 1974. 

Your refined Prandtl slip line field associated with a quasi-static plane 
strain crack gives beautiful results, at least within the small-scale yielding 
range. In particular, your equation of a fracture resistance curve is so nice, 
since it is identical within an accuracy of a numerical constant with 
Wnuk's equation given in 1972 as derived from the final stretch model. 

Your comments about possible solutions in the large-scale yielding range 
are rather speculative. It would appear to be a worthwhile project to com
pare these conjectures with the existing closed-form solutions based upon 
the final stretch concept (now in print in the International Journal of 
Fracture Mechanics). I agree, for example, with one of your conclusions 
that the tearing modulus of Paris is not a material property in a fully 
plastic situation. 

/. R. Rice (author's closure)—Thank you for your comments. We are 
indeed aware of the relation of the crack growth criteria that we discuss 
(based on critical opening angle, and on critical accumulated strain, both 
referenced to a characteristic distance from the tip) to your "final stretch" 
interpretation of the Dugdale-Bilby-Cottrell-Swinden (DECS) line plastic 
zone model. A mathematically similar form (see Eqs 27 and 42 of our 
paper) to that predicted by the "final stretch" criterion results, and this has 
been commented upon in the earlier work by Rice and Sorensen in Ref / 
upon which the present paper is based. I agree that comparisons of our fully 
plastic results with analogous results from the final stretch criterion would 
be interesting. But the DECS model is of an ad hoc type and does not 
generate a field meeting accepted forms of the yield condition and plastic 
flow rule. Its divergence from more exact solutions is particularly marked 
in the plane strain case. 

Further, the DECS model does not show the sensitivity of fully plastic 
crack tip fields to specimen geometry (for example, bend versus center-
cracked) that we discuss. Thus agreement or not with predictions of the 

' Northwestern University, The Technological Institute, Department of Civil Engineering, 
Evanston, 111. 60201. 
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final stretch model can hardly be taken as a condition for judging 
suitability of more exact analyses. 

Finally, we do conclude that at least for materials which can be modeled 
with reasonable accuracy by the ideally plastic model that we adopt, the 
tearing modulus (T) will not be a universal material property. Differences 
between T-values for small, fully plastic bend specimens and large speci
mens, sustaining contained yielding would, we think be most marked for low 
T materials; that is, for those materials that are most readily fractured. 
For such materials the fully plastic J-values are expected to overestimate 
(in a predictable way, at least once present uncertainties with the fully 
plastic analysis are resolved) those prevailing for well-contained yielding. 
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ABSTRACT; The objective of this work was to experimentally develop a key curve for 
compact specimens of HY130 steel and to use this experimental function to generate the 
J-resistance curve from load displacement records alone using the analysis of Ernst et al. 
Eight 1/2T compact tension specimens with crack lengths from a/W = 0.59 to 0.94 were 
used to generate a series of load displacement records, which were assembled in a com
puter file as the key curve for geometrically similar compact specimens of this steel. 
Using this file, J-resistance curves (J-R curves) for IT compact specimens were then ob
tained directly from the load displacement records and compared with unloading com
pliance J-R curves obtained for the same specimens. The critical /-values were found to 
be identical, but the new analysis gives much lower J-R curve slopes beyond the critical/ 
for nonside grooved specimens. For side grooved specimens in which the crack does not 
tunnel, however, the J-R curves for the two methods were nearly identical. The J-R curves 
evaluated using the key curve method showed much less dependence on crack length than 
those obtained by the unloading compliance method. Agreement between the predicted 
and measured final crack length was excellent using the key curve method. 

KEY WORDS: elastic-plastic fracture, J-integral, fracture toughness, slow crack 
growth, J-resistance testing, HY130 steel, unloading compliance, key curve method, tear
ing modulus, fractures (materials), crack propagation 

The principal objectives of the work described herein are as follows: 
1. To develop a "key curve" or F l function following the work of Ernst et 

al [/]3 for an HY130 steel using a series of subsize compact specimens; 
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2. To apply this function to determine the magnitude of corrections to the 
calculation of / and the subsequent calculation of the tearing modulus 
produced by crack growth; 

3. To apply this function to determine J-R curves from load displacement 
records of a matrix of IT compact specimens of HY130 steel reported by 
Gudas et al [2]; 

4. To compare the resulting J-R curves with the J-R curves obtained by 
Gudas et al [2] by their unloading compliance method as well as with 
physical measurements of crack extension obtained after each test; and 

5. To compare the resulting J-R curves with multispecimen results avail
able on this material. 

This paper is an extension of recent work by Ernst et al [/] in which the 
authors show, among other things, that it is possible to construct J-R curves 
directly from load displacement records for simple specimen geometries if a 
"key curve function" is available for the material. 

In the Ernst et al [/] analysis, dimensional analysis is used to show that for 
simple geometries in which the plasticity is confined to the uncracked liga
ment region, the load displacement relationship must have the form 

BT^^^^ \W' W W' W' '"^t^"^' propertiesj (1) 

where: 

P = applied load, 
A = total load line crack opening displacement, 
a = crack length, 
b = uncracked ligament, 
B = specimen thickness, 
W — a + b — specimen width, and 
H = specimen height. 

It should be noted that in the work by Ernst et al [/], A/Wwas separated in
to elastic and plastic parts and the resulting / and crack extension expres
sions had elastic and plastic contributions. This separation was done only as 
an analytical convenience. In this experimental work it is more convenient to 
use the total load line displacement. 

Assuming here the applicability of deformation plasticity theory, the for
mula for the path independent J-integral is given by [3] 

- 1 / dP 
^ W I \d{a/W)^J 

Substituting for P from Eq 1 into Eq 2 gives / as 

\dA (2) 
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/ = W^ d(a/W) w ' (3) 

The differential of / can be written as 

dJ = -rr- dA + ~— da 
oA da 

(4) 

Now evaluating from Eq 3 the terms of Eq 4 and substituting in Eq 4 gives 

dJ 

+ 

lb 
W 

F\ 
b^ dFl 

4b_ 
^W^ dia/W) 

W^ d(a/W) 

dFl 

dA + - 1 yyf^dA 

dA 
b^ d^Fl 

^W^ d(a/W)^ 
dA 

(5) 

da 

This differential expression can now be reintegrated along any convenient 
path in the a/W — A/W space to obtain/, at least if the partial derivatives 
dFl/d(a/W) and d^Fl/dia/W)^ and the differential crack extension da are 
somehow available. To obtain an expression for differential crack extension 
Ernst et al [/] take the differential of Eq 1 with A/W and a/W as variables 
to give 

dP = -r-- dA + -r— da 
dA da 

(6) 

Evaluating the coefficients in terms of Fl gives 

dP b' dFl 
W^ d{A/W) 

Solving for da gives 

dA + -Ai 9/^1 2b 
W^ dia/W) W 

da 

b^ dFl 

da 
_ W^ djA/W) dA-dP 

2b_ b]_ dFl 
W W^ 

W 

(7) 

(8) 

Equations 5 and 8 together now allow calculation of dJ corrected for crack 
extension and the ratio dJ/da gives the Paris et al [4] tearing modulus from 

-* mat 1 __ 
dJ E 
da Or} 

(9) 
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Terms involving Fl or dP in Eqs 5 and 8 can be evaluated from the load 
displacement record of the specimen. The terms involving 

dFl d^Fl , dFl 
•.and -d(a/W) di^a/W)'^ d(A/W) 

must be obtained from the key curve and cannot be obtained from the load 
displacement record of the test specimen. 

The following sections describe the method used to evaluate an F l func
tion for the compact specimen geometry for a particular HY130 steel. 
Subscale (1/2T) specimens were used to obtain the F l function experi
mentally so that load displacement values to larger A/W levels could be 
achieved in the IT specimens without crack extension occurring. Blunt 
notched specimens were considered but fatigue cracked specimens were used 
in order to model as closely as possible the geometry of the IT test specimens. 

Experimental details of developing the experimental key curve function 
are given in the following section. In a later section the key curve is applied to 
a series of IT compact specimens of the same material and J-R curves are 
developed and compared with results from the unloading compliance method 
and the multispecimen method. 

Key Curve Function Development 

Material 

HY130 steel plate supplied in 25-mm thickness was used for all tests. The 
chemical composition of the plate is described in Table 1 and the mechanical 
properties are presented in Table 2. 

Testing 

Modified 1/2T compact specimens were produced according to Fig. 1, all 
with crack planes oriented in the T-L orientation. All specimens were 
machined from the center section of the 25-mm plate. A total of eight 
specimens were fatigue precracked to crack lengths between 0.59 and 
0.94 a/W. 

All tests were carried out at ambient temperature using computer data ac
quisition. A standard fracture mechanics clip on displacement gage was 

TABLE 1—Chemical composition of HY 130 steel. 

Components, weight % 

V S Cu Al Co Ti 
0.043 0.004 0.022 0.021 0.02 0.008 

c 
0.11 

Mn 
0.76 

P 
0.005 

Si 
0.03 

Ni 
5.00 

Cr 
0.42 

Mo 
0.53 
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TABLE 2—Tensile mechanical properties of HY130 steel. 

Yield Strength, 
0.2% MPa 

Ultimate Tensile 
Strength, MPa 

Elongation, 
% in 2 in. 

Reduction of 
Area, % 

937 978 21 55 

FIG. 1—Compact specimen (1/2TCT) geometry (measurements in millimetres). 

mounted on the integral knife edges in the load line of each specimen. Using 
the computer interactive system for unloading compliance J-R curve deter
mination described by Joyce and Gudas [5], the initial specimen compliance 
was carefully measured at loads below one half the expected limit load. Then 
starting from zero load, a load displacement record was run to a final crack 
opening displacement (COD) of 2.5 mm. In order to obtain as smooth a 
curve as possible, no unloadings were taken and no attempt was made to 
determine when crack extension initiated in these specimens. A uniform 
crosshead speed of 0.125 mm/min was maintained throughout each test. 
Data points were taken approximately every 0.002 mm of displacement and 
the load displacement file was stored on magnetic tape. After testing, each 
specimen was heat tinted at 370° C (698° F) for 20 min and broken open in 
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liquid nitrogen. The fatigue crack length was measured using a nine-point 
average technique. 

Key Curve Assembly 

The digital load displacement records for each of the eight subsize 
specimen tests were sent to the U.S. Naval Academy's time sharing system. 
For each file the load and displacement were normalized to give 

p- ^PW 

(10) 

- • = # 

where 

B = the specimen thickness, and 
b = the uncracked ligament. 

The displacement scale was then smoothed and reduced by an interpola
tion routine to contain evenly spaced displacement values at 0.0125-mm in
tervals, to facilitate numerical differentiation. The eight separate files were 
then assembled into a key curve file otx,y, z triples where 

^ W 

w (11) 

_PW 
^ Bb^ 

or 

PW 
Bb^~^^\VV'w'^^'^^'^^"') (1^) 

where Cj, C2, etc., are terms which are assumed to be identical for the 1/2T 
calibration specimens and the IT specimens, test specimens to which the 
analysis is to be applied. Geometrical and material similarity were controlled 
as closely as possible between the two specimen sizes to assure, following 
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Rice, et al [6] and Ernst et al [1], that the Fl function of Eq 12 applies to 
both the 1/2T and IT compact specimens of this plate of HY130 steel. 

Discussion 

The result of assembling normalized load displacement records of the 
eight 1/2 compact specimens gives the Fl function shown in the computer 
graphics drawing in Fig. 2. The eight grid lines intersecting the a/W axis are 
the normalized load displacement records for the eight 1/2T specimens. 
Crossing grid lines are shown at 0.0625-mm intervals. TheFl function was 
not used beyond A/W = 0.05 because the load was approaching the max
imum load in the shortest cracked specimens at this value of load line dis
placement, implying that crack extension was imminent or even occurring in 
these specimens. This cutoff limits the maximum load line crack opening 
displacement to 2.5 mm for a IT specimen, but this is adequate in the 
material tested here to produce a J-R curve as specified by Clarke et al [7] in 
their Ji^. testing recommendation. The a/W-\a.\ues used for each specimen 
were those obtained from the nine-point averaged measurements of the fa
tigue crack. In Fig. 3 a reduced view of the function is shown along the A/W 
axis to define clearly the dependence of the function on a/W. From this view 
it was noticed, that for this material, F l is only a weak function of a/W, fall
ing off linearly with a/W for a fixed A/W. For this reason terms of Eq 1 in
volving d^Fl/d{a/wy were set to zero. 

Applications of the Key Curve Function 

An application of the experimental key curve function to the determina
tion of J-R curves directly from load displacement records was done by an 

100,000 

a/W 

A / W 

FIG. 2—Computer graphics plot of experimental key curve for HY130 steel. 
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60,000 

48,000 

36,000 

F1 

24,000 

12,000 

FIG. 3—Selected A/W sections of the key curve function showing dependence of Fl on a/W. 

analysis of data reported previously by Gudas et al [2] on this same HY130 
steel. In that work J-R curves for a matrix of specimens with a/Wirom 0.54 
to 0.81 for 12 + 25 percent side grooved and nonside grooved specimens had 
been obtained using the computer interactive unloading compliance tech
nique. Digital load displacement records were obtained for all of these 
specimens and recorded on computer files. Typical load displacement 
records are shown in Fig. 4 for these specimens. 

The unloading compliance J-R curve results had shown that the average Jjc 
for all geometries was 153.5 KPa • m ± 10 percent. The tearing modulus, T, 
of Eq 9 was shown to be distinctly lower for side grooved specimens than for 
nonside grooved specimens. The tearing modulus was independent of a/W 
for side grooved specimens. For nonside grooved specimens, T was larger by 
a factor of two for specimens with a/W = 0.81 compared to specimens with 
a/W ~ 0.54. It was shown that the unloading compliance method under
estimated crack extension when compared to a nine-point average of 
measured values obtained after heat tinting and breaking open the 
specimens whenever crack tunneling was present. If side grooves were used to 
straighten the crack front, the crack extension estimated by the unloading 
compliance method corresponded closely with the nine-point measured 
average. 

To obtain J-R curves directly from the load displacement curves of these 
specimens, discrete versions of Eqs 5 and 8 were written; namely 

dJ„ = 
2b_ 
W FU 

dFV 

+ 

W^ d(a/W)„ 

2 V r i AA i 46 f dFl* 

6A„ 

6A, 

(13) 

8a „ 
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TZ2 a/U = 0 . 5 5 

g 40000_ 

FIG. 4—Plot of load displacement records of three HY130 ITCT compact specimens. 

and 

Z.2 dF\* 

ba„ = lb ^. fe2 QFi* 
F\„ — 

(14) 

W " W^ dia/W)„ 

At each point on the load displacement record of a specimen the total / and 
Aa are 

J^ L dJ„ (15) 

Aa E 5a„ (16) 

In foregoing equations the terms without asterisks are evaluated from the 
specimen load displacement curve. The terms with asterisks are evaluated 
from the Fl calibration curve file shown in Fig. 2. For the small amounts of 
crack extension considered here, the remaining uncracked ligament b was 
assumed to remain constant. 
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A small computer program was written on the U.S. Naval Academy's time 
sharing system that evaluates Eqs 12 through 16, generating for each point 
on the specimen's digital load displacement record a Aa-/pair on a J-R curve 
for the specimen. Each point, n, of the load displacement record gives F\„ 
and dPn directly. The specimens measured crack length-obtained by a heat-
tint nine-point average measurement technique, and the A/VK at each point 
of the specimens load displacement record locates a position on the Fl 
calibration function for the material shown in Fig. 2. Numerical differentia
tion techniques are used about this point to determine 

aFl" 
d{a/W)„ 

and 
dFl* 

d(a/W)„ 
(17) 

These values give 8a„ from Eq 14 and subsequently a 8J„ from Eq 13. Sum
mation of these values using Eqs 15 and 16 gives running totals of J and Aa. 
Stepping through complete load displacement curves like those of Fig. 4, ig
noring all data points on the unloadings, gives J-R curves like those shown in 
Figs. 5 through 7. 

Discussion of Results 

In the original plan for this work, it was felt that it was overly optimistic to 
expect to obtain J-R curves directly from load displacement records by using 

UNLOADING COMPLIANCE 

KEY CLTRVE ANALYSIS 

^ KEY CURVE ANALYSIS 
CCORRECTEP FOR CRACK GROWTH) 

C MEASURED CRACK EXTENSION AT MERKLE CORTEN J 
• MEASURED CRACK EXTENSION AT RICE J 

I .BE-3 a.001 5 

CRACK EXTENSION m. 

FIG. 5—Comparison of the key curve J-R curve and unloading compliance result for a non-
face grooved HY130 compact specimen with a/W = 0.81. 
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IS0_ 

UNLOADING COMPLIANCE 

'O 
- KEY CURVE ANALYSIS 

KEY CURVE ANALYSIS 
(CRACK GROUTH 

CORRECTED) 

C MEASURED CRACK EXTENSION AT MERKLE CORTEN J 

• MEASURED CRACK EXTENSION AT RICE J 

I.0E-3 0,0015 a.002 0.00ZS 

CRACK EXTENSION m. 

FIG. 6—Comparison of the key curve J-R curve and unloading compliance result for a non-
face grooved HY130 compact specimen with a/W = 0.67. 

450 

UNLOADING COMPLIANCE,, 

1^' ^ KEY CURVE ANALYSIS 

X KEY CURVE ANALYSIS 
(CRACK GROWTH CORRECTED) 

A MULTISPECIMEN DATA a/U=0.72 MERKLE CORTEN J 
* MULTISPECIMEN DATA c,/W=0.72 RICE J 
C MEASURED CRACK EXTENSION AT MERKLE CORTEN J 
• MEASURED CRACK EXTENSION AT RICE J 

I.0E-3 0,0015 

CRACK EXTENSION m. 

FIG. 7—Comparison of the key curve analysis J-R curve and unloading compliance result for 
a nonface grooved UY130 compact specimen with a/W = 0.81. 
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the key curve method. Nonetheless, it appeared that the magnitudes of crack 
growth corrections to / could be evaluated, and that success in this would 
justify the effort involved in obtaining the key curve. The first analysis in
volved using Eqs 13 and 15 to evaluate the crack growth corrected/, obtain
ing the crack extensions from the unloading compliance results. When this 
was successful, calculation of crack extensions were added using Eqs 14 and 
16, and it was found, somewhat surprisingly, to be very accurate. Only after 
these successes was the analysis of the side grooved specimens attempted 
because it was realized that the side grooves caused a degree of geometric 
dissimiliarity between the key curve specimens and the test specimens. 

Figures 5 through 7 show J-R curves comparing the results of the key curve 
method to the unloading compliance J-R curves for nonside grooved 
specimen. Key curve results with and without the crack grovrth corrections 
are shown to demonstrate the magnitude of the corrections. (The crack 
growth correction terms are in the second bracket of Eq 13.) It should be 
noted also that the lumpiness in the J-R curves resulted from the unloadings 
present on the load displacement records, and if these were smoothed out 
more carefully (or did not exist), smoother J-R curves would have resulted. 

Also plotted on these figures are the final measured crack extensions 
plotted at the final unloading compliance, Merkle-Corten [8] corrected, 
/-values; and at the /Rj^e-values where 

2A 
Bb /Rice = ^ (18) 

is the value of/ calculated from the area under the load displacement record, 
A, without an additional tensile correction. 

The major component of / for both methods is this J^^ce value, and it is 
calculated by both methods in an identical fashion from the specimen load 
displacement record. The key curve method gives tensile corrections smaller 
by a factor of three or more than those predicted by the Merkle-Corten 
analysis. These corrections were also independent of crack length since 
dFl*/d{a/W)„ was found not to vary with crack length. 

Corrections t o / resulting from crack growth were on the order of a 25 per
cent reduction in / increments beyond Ji^., resulting in an appreciable reduc
tion in the material tearing modulus. Again little effect on these corrections 
could be attributed to specimen crack length. 

The major difference between the key curve R-curve (without crack growth 
corrections) and the unloading compliance R-curve was derived from the 
crack extension predictions. For all specimens the key curve method 
predicted more crack extension than the unloading compliance method. The 
key curve method crack extensions agreed more closely with the measured 
nine-point average crack lengths found at the conclusions of the tests. 

The combination of crack growth corrections, reduced tensile component 
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correction, and the increased crack extension predicted, means the key curve 
tearing modulus is about one half of that obtained with the unloading com
pliance method. 

Figure 8 shows a comparison of the J-R curves resulting from the key curve 
analysis and the unloading compliance method for a 12 percent side grooved 
specimen. Here the two J-R curves without crack growth corrections are 
nearly identical by all measures. Similar results were found for all the side 
grooved specimens. 

Also shown in Fig. 7 is the result of four multispecimen tests on this 
material that are plotted here with and without the Merkle-Corten correc
tion. For these specimens a/W = 0.72. Good agreement is found between 
the multispecimen curve and the key curve result for the a/W = 0.81 
specimen. 

As crack extension takes place in the nonside grooved specimens of this 
material, crack tunneling occurs. This will eliminate the geometric similarity 
between the 1/2T specimens with straight fatigue cracks and the IT 
specimens with the tunneled crack front and will introduce errors into the 
key curve analysis. This is possibly the reason the key curve method under
estimates the crack extension for the a/W = 0.55 specimens, which tunnel 
dramatically, while overestimating the crack extension slightly for the 
deepest cracks, which tunnel only slightly. 

For the side grooved specimens, geometric similarity does not exist at the 

KEY CURVE ANALYSIS 

- KEY CURVE ANALYSIS 
<CRACK GROWTH 

CORRECTED? 

C MEASURED CRACK EXTENSION AT MERKLE CORTEN J 
• MEASURED CRACK EXTENSION AT RICE J 

1 .0E-3 0,00IS 

CRACK EXTENSION m. 

FIG. 8—Comparison of the key curve analysis J-R curve and unloading compliance result for 
a 12 percent face grooved HYI30 compact specimen with a/W = O.Sl. (Total cross section 
reduction was 12 percent using a 45 deg included angle Charpy notch cutter.) 
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beginning of the test, but in these specimens the crack front remains straight 
as crack extension occurs so that there is no variation in the degree of 
geometric similarity during the test. 

The key curve method as used here is a lengthy and complex method to 
evaluate the J-R curve for a material. The resulting J-R curve is, however, a 
considerable improvement over results obtained by unloading compliance 
methods or multispecimen methods. The key curve method adds a correction 
for crack extension and evaluates the tensile loading component without the 
fully plastic approximations used in the Merkle-Corten [8] analysis. Inac
curacies remain in the experimental evaluation of the Fl function and in the 
numerical differentiation of -Fl to obtain the quantities used in Eqs 5 and 8 
to evaluate the J-R curve. The key curve will, hopefully, act as a standard by 
which to evaluate the correctness of simpler methods. 

Conclusions 

The following conclusions can be drawn from this work: 
1. An experimental/^! key curve can be obtained from subsize specimens, 

assembled in a computer file, and used to determine J-R curves from 
digitized load displacement records of geometrically similar specimens of the 
same material. The J-R curves that result from this analysis are complete in 
that a point on the J-R curve exists for each point on the digitized load dis
placement record. This is an improvement over previous methods that give 
J-R curves consisting of only a few discrete points through which curves must 
be fit. 

2. The Fl function obtainable from fatigue cracked 1/2T compact 
specimens of this steel was restricted to A/W-values <0.05. This allowed 
analysis of IT compact specimens to a load line COD of 2.54 mm in this 
HY130 steel, which was adequate to obtain 1.5 mm of crack extension. 

3. For this range of crack extension, the crack extension corrections t o / 
were on the order of 10 percent of the total/ , but about 25 percent of the in
crements of / beyond /jj,, resulted in an equivalent reduction in the tearing 
modulus. 

4. The tensile correction term was found to be considerably smaller than 
that given in the Merkle-Corten equation. For this material, this correction 
was found to be independent of crack length, which was possibly due to the 
limited plasticity of the HY130 material tested. 

5. J-R curves resulting from the key curve analysis of the HY130 matrix 
specimens were much more self-consistent with just a slight tendency to lower 
T-values for shorter crack lengths. Tearing modulus values from the key 
curve method agree well with those obtained for side grooved specimens 
using the unloading compliance method. Generally, the tearing moduli for 
nonside grooved specimens obtained by the unloading compliance appear to 
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be high due to effects of crack tunneling on crack length estimates obtained 
by a compliance technique. 

6. Final crack length predictions from the calibration function method 
corresponded very accurately with final crack length measurements. 

7. The J-R curves found using the key curve analysis agreed well with the 
results of multispecimen tests done on this alloy. 

8. If the key curve method were to be extended to situations involving 
large amounts of crack extension, it would be necessary to use blunt notched, 
subscale specimens in order to have an accurate Fl function free of crack ex
tension effects. 
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ABSTRACT; A method for determining the effect of random experimental error on the 
calculation of J and crack length extension Ao is presented. Predictor-corrector equa
tions for determining Aa are also derived and their convergence properties studied. The 
application to a three-point bend specimen is considered and numerical results pre
sented. 

KEY WORDS: fractures (materials), J-integral, J-R curves, elastic plastic fracture me
chanics, crack length extension, crack propagation 

The J-integral has proven to be a useful parameter in describing the inten
sity of elastic-plastic deformation and the stress field near a crack tip {1\.^ 
Under elastic conditions or in cases where the deformation theory of plastic
ity is applicable [2], the J-integral is path independent. More recently Paris 
and Hutchinson [J] have obtained conditions, under the assumption of 
small-scale yielding, which guarantee /-controlled growth. Thus, informa
tion about near crack tip conditions can be obtained by taking a path suf
ficiently far away from the tip. The path independence of/ in combination 
with stress-strain field data created by a finite element analysis provides an 
analytical method of determining / . Alternatively, a large number of experi
mental procedures have been developed for the determination of / from ex
perimental data alone. Most recent among these methods is the "key curve" 
method for determining/ and crack length extension, da, proposed by Ernst 
et al [4]. To be useful to the test engineer, however, some means must be 
provided for assessing the sensitivity of a given method to experimental error. 
For example, suppose two identical specimens are loaded to construct a J-R 
curve. Suppose further that the load cell and displacement gage are accurate 
to 1 percent. On the basis of each test, two different J-R curves are con-

' Formerly, research engineer, Center for Fracture Mechanics, Washington University, St. 
Louis, Mo. 63130; presently, research engineer, John Hopkins University, Applied Research 
Laboratories, Laurel, Md. 20510. 

^ The italic numbers in brackets refer to the list of references appended to this paper. 
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structed. The test engineer must then decide how much variation in the 
curves is due to the inaccuracy of load displacement measurements and how 
much variation is attributable to perhaps slight differences in material prop
erties. This paper provides a first attempt to answer questions of this type. 
To accomplish this goal, a sensitivity analysis of the key curve method is 
presented. Here load and displacement are considered to be random vari
ables. The idea now is to determine how calculations of / and crack length 
change depend on the random nature of the load-displacement measure
ments. Alternatively, a simple modification of the analysis presented here 
will give error estimates in J-da calculations which arise due to imperfect 
knowledge of the calibration function, -FjCApL/w, a/w), and its partial de
rivatives. 

The major topics to be treated here are organized as follows. The section 
immediately following contains a brief review of the key curve method. The 
basic equations of the sensitivity analysis of this method are also presented 
here. The next section contains an application of the general equations for
mulated in the preceding section to a special case; a three-point bend 
specimen obeying a Ramberg-Osgood constitutive law. In the Appendix is 
found a description of a program developed to calculate / and crack length 
extensions, da, using load-displacement records alone. 

Probabilistic Formulation of the J-Integral 

In review the J-integral is defined as [5] 

Wdy -T~ds (1) 
ax T 

where 

W = strain energy density, 
T — path of integration, 

ds = increment of distance along the path, 
T = traction vector on the contour, and 
u = displacement vector on the contour. 

Rice has also shown that / can be equivalently written as 

7i^\ „̂ = - t7it\ 

where A is the work producing component of load point displacement for the 
load, p. 
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Following [4] J is divided into elastic and plastic parts, /EL and/pL- Here 
/ E L is just defined as 

which is the familiar Griffith elastic energy rate G{a, p). 7pL is simply 

where 

A = AEL + ApL (5) 

/ = /EL+/pL (6) 

with AEL and ApL the linear elastic and plastic components of load point dis
placement A respectively. 

The Key Curve Method 

In this section a brief description is presented of the key curve method. 
A more detailed treatment is found in Ref 4. 

The basic idea of Ref 4 is to utilize a dimensional analysis argument to ob
tain the following result 

_ b \ /ApL a\ 

with 

b = remaining ligament, 
W = specimen width, 
a = crack length, and 
p = load per unit thickness. 

When this equation is combined with the equations defining /pL the result is 

/pL = 2Z,J^ i T ^ ^ A p L - - ) ^ - ^ ^ ^ V (8) 

Taking differentials of Eq 7 and solving for da one gets 
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b^ 

w^ 

2b_ 

W 

dFi 

<^r"" 
f i  l l dFi 

d{a/W) 

da = -— ^ '—. r= (9) 

Finally combining Eqs 3 and 8 the equation 

J=Gia,p),-2t\^ F.clA,,--l ^ ^ c / A , , (10) 

is obtained. The two Eqs 9 and 10 represent the basis of the key curve 
method. 

Before presenting a discussion of the sensitivity analysis of the key curve 
method, the problem of how to determine the calibration function, F^, 
should be discussed. In general any method should have the following prop
erties: (a) it must permit large plastic displacement prior to the initiation of 
crack growth, and (b) it must also be such that the basic geometry of the 
specimen, and in particular the structure of the/-field itself, should not be 
altered. 

A first method for determining the calibration function, F j , is to utilize sub-
sized specimens. Suppose one desires to construct a J-R curve for a full-sized 
compact specimen. First a load-displacement test is performed on sub-sized 
specimens of the same material with exactly the same dimensional propor
tions as the full-sized specimen with one important difference. The sub-sized 
specimens are chosen with a/w values that vary slightly from the full-sized 
specimen to larger values. The load-displacement record for these sub-sized 
specimens and the full-sized specimen is plotted on the basis of pW/b^^ 
versus A/Was shown in Fig. la. The elastic displacement is then subtracted 
from the curve and a plot of pW/bg^ versus A^i^/W is obtained (Fig. lb). 
The quantity pVK/^o^ for the subsized (on crack-growth) specimens is the 
calibration function Fi. The slope of subsized specimen curves gives 
dFj /d(Api/W) and the spacing of the curves gives dFi /d{a/W). One major 
advantage of using subsized specimens to "bracket" the load-plastic dis
placement curve of the full-sized specimen is that relatively long load-plastic 
displacement records are obtained. This permits greater accuracy in calcula
tion of dF\ /3(ApL/VK) in the range of crack growth for the full-sized speci
men. 

A second method for determining the calibration function, F^, involves 
the extrapolation of load-plastic displacement information from the region 
where no crack growth occurred into a region of large plastic displacement. 
This involves utilization of curve-fit techniques. The validity of this method 
depends to a great extent on the sensitivity problem and is discussed later. 

 



GORMAN ON ESTIMATION OF J-INTEGRAL 241 

IU° 

Sub-size specimens 

IU° 

FIG. 1—Evaluation o/Fr using sub-sized specimens. 

Calculation of the Aa 

The sensitivity analysis of the key curve method will now be considered. As 
a first assumption suppose that the calibration function/"iCApL/VK, a/W) is 
known. This information can take the form of either knowledge of the func
tional form, say Fi = 63 500 (ApL°-^*), or in a digitized version of load-plas
tic displacement records for various a/Ws. 

For simplicity the case of a continuous-time load-displacement test record 
is considered. The transformation to the discrete case is straight-forward. 
Suppose that the crack-length, a, is known. The elastic displacement can be 
written in terms of the compliance function c(a) as follows 

AEL = c{a)p (11) 

Solving for the plastic displacement using Eq 11 and substituting the result 
into Eq 9 there results 
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-dp 

da = 

c TT::; — - — ^ — r 1 

"K1?: w 
2bFi _ b^ dFi 

W W^ d(a/W) 

(12) 

For the case of small increments in total displacement, dA, Eq 12 suggests 
two numerical schemes for determining da. First suppose that the function 
c{a) is given. A simple Taylor expansion gives to second order 

dc = c(a + da) — c(.a) ~ c '{a)da 

so that after some algebra, Eq 12 can be solved for da to give 

62 dFi 

(13) 

-dp 

da = 

"^ W^ ,/A^ 

W 

+ 
""K^ 

dA 

W Ŵ2 f ̂ ^ ("' /ApA d{a/W) 

(14) 

On first examination there appears to be a serious problem with the actual 
implementation of Eq 14. In order to use Eq 14, knowledge not only of the 
compliance function c(a), but also its derivatives, c '(a), is required. In prac
tice c{a) may be known only approximately [6] giving rise to the possibility of 
large error in the calculation of its derivative. A simple inequality can be de
rived which guarantees that Eq 14 is insensitive with respect to accuracy in 
the calculation of c '(a). A material obeying a Ramberg-Osgood constitutive 
law is assumed. Under the assumptions of Ilyushins' theorem [7], the calibra
tion function F^ is separable into the form 

^'[w'w)'^{w){w) (15) 

where typically « ~ 0.1. 
Now from Eq 14 one has insensitivity with respect to accuracy in c '(a) pro

vided 

2* r, b^ ,. . 3Fi 

w) 
(16) 

Equation 16 can be rewritten using Eq 15 to give the simple inequality 
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2ApL » nbc '(a)p (17) 

Physically, Eq 17 can be interpreted as follows. Suppose that we are in the 
range of large plastic-displacement. Equation 17 then tells us that we can 
neglect terms containing c '(a) provided the elastic displacement does not 
vary greatly with crack length. 

An alternate numerical procedure can be developed for the determination 
of crack-length extension da. Here an iterative predictor-corrector method is 
used. 

dcp = c(ap)-c{a) (18) 

dop = ap — a (19) 

doc = 0^ — 0 (20) 

where 

a = crack-length at stage i, 
Op = predicted crack-length at stage i + 1, and 
a^ = corrected crack-length at stage i + I. 

As a first assumption assume 

dc^O (21) 

The idea here is to utilize Eq 12 to predict a crack-length extension dap on 
the basis of zero compliance change. Using this predicted crack-length, a^, 
the change in compliance, dcp, can be estimated. Thus, the pair of equations 
obtained is 

Predictor 

*p 

A£L\ 1 W^ , /ApL 

Fi b^ dFi 

W W^ d{a/W) 

, W J / \W, 
^"o = ^ fc2 sjr^ (22) 

Corrector 

-dp ^^ - ^ 7 . ' X + M + - ^ 7 . ' V idA-pdCp) 

da^ — r7"z Ti ~z (23) 

W W^ d{a/W) 

 



244 FRACTURE MECHANICS: TWELFTH CONFERENCE 

The predictor-corrector pair can then be repeated until a convergence 
criteria of the form is satisfied 

\da^ — dopl < e (24) 

Sensitivity Analysis 

In this section the sensitivity analysis of the key curve method is now pre
sented. It is this analysis that provides the means of determining the effect 
of random experimental error in measurements of load and displacement on 
the calculation of J and crack-length extension da. The method of solution is 
simple. Let [/?,], [A,] be the measured load displacement sequence. Define 

A,. = A,- + r,^. (25) 

Pi = Pi + Vpi (26) 

where 

ri^ = a Gaussian random variable with mean zero and variance a^^, and 
rjp = a Gaussian random variable with mean zero and variance Op^. 

In this analysis then the size of the relative experimental error is intimately 
related to the relative size of a^ and Op with respect to A andp. Now, suppose 
that the randomized load-displacement sequence is used to calculate J-da 
using Eq 10 and either Eqs 12 or 22 and Eq 23. The quantities/-c?a are then 
viewed as random variables. The size of the random error is J-da and is then 
expressed parametrically in terms of Op and (TA minus the experimental error. 
The statistical correlation between the random variables jj^ and rip is an 
additional input parameter for the problem. Physically, the latter represents 
a coupling between errors in load-cell calibration and displacement gage 
calibration. 

The method of solution to this problem is straight-forward. Given the 
load-displacement sequence [Pj], [A,] the equations presented are pro
grammed on a digital computer and a Monte Carlo type simulation per
formed. The end result of this simulation is then the probability density and 
distribution functions of / and da. The latter furnishes confidence intervals 
for J-da which then reflect the uncertainty associated with the resulting 
J-R curve. 

As stated before, the method described above treats load and displacement 
measurements as random variables. The calibration function, F^, was as
sumed to be known. An alternate viewpoint may prove to be beneficial. Sup
pose that the load-displacement measurements are deterministic (non-ran
dom). The idea now is to place all the experimental uncertainty in the Fi 
function. Thus, the calibration function, Fi, is treated as a random variable 
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with a specified distribution. The variance of this distribution then furnishes 
an estimate of the accuracy of the curve fit. The difference between these two 
viewpoints is indicated below. In the first case a two-dimensional random 
process is obtained. The load-displacement measurements are "smeared" 
out into a rectangle. Using the defining relationships for plastic displace
ment and the calibration function, F^, it is seen that the two-dimensional 
distribution for load-displacement is transformed into a geometrically 
similar distribution in the Fi -plastic displacement space. Now in the second 
case where Fi is treated as the random variable, a one-dimensional random 
process is obtained. Through use of the equation 

it is seen that the randomization of Fi, for a fixed crack-length, can be 
related to an equivalent randomization of load measurements. Thus, at least 
in the special case of no-crack growth, the case where the calibration func
tion, Fi, is treated as a random variable can be treated as a special case of 
the more general problem discussed earlier. 

In the case where crack growth is permitted, an order of magnitude 
analysis can be used to relate the randomization of i^i to an approximate ran
domization in the load. To perform this analysis a first order difference type 
of argument is used. First, note that the remaining ligament b can be written 

b = b„ + Ab (28) 

where 

bo = initial remaining ligament, and 
Ab = random variable <3C bg (in the probability sense). 

Similarly the calibration function can be written 

Fi=Fi + AFi (29) 

so that 

b^Fi = {bo + Ab)^{F^ + AFi) (30) 

or retaining terms at most linear in the A operator the approximate result 

b2Fi=bo^iFi +AFi) + 2b„AbFi (31) 

is obtained. The first term corresponds to a randomization in the load at 
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fixed crack length, while the second term corresponds to a first order correc
tion due to crack length change. 

Application to Three-Point Bend Specimen 

The application of the equations of the previous section to a specific exam
ple is now considered. Nine three-point bend specimens fabricated from 
tooled steel were tested at 250°C (482°F). The initial crack lengths tested 
ranged from 16.26 to 19.05 mm (0.64 to 0.75 in.). Precracking was done at 
room temperature. Using results generated by Ernst [7], the material was 
shown to obey a Ramberg-Osgood constitutive law defined in Fi plastic dis
placement space by 

In order to perform the sensitivity analysis discussed earlier, it is conven
ient to treat the growing and nongrowing crack cases separately. 

The Nongrowing Crack 

First, let us assume a nongrowing crack. The objective, then, is to deter
mine the effects of random errors in load-displacement measurements on the 
calculation of the J-integral. A simple FORTRAN IV program was written to 
perform this analysis. The values of load and displacement obtained in the 
laboratory were treated as nominal values. Using a zero mean Gaussian 
number generator, the experimental measurements were randomized. As 
stated previously the variance of the Gaussian random variables was taken as 
an input parameter for the simulation. The degree of correlation between the 
randomized load and displacement was an additional input parameter. A 
Monte Carlo simulation was then performed to generate the probability den
sity function for / . In the simulation conducted here displacements were 
sampled with an interval spacing of 0.0254 mm (0.001 in.). The simulation 
was conducted on the basis of a sample size of 200. Results of this simulation 
for the case of stochastic independence of load and displacement measure
ments are displayed in Fig. 2. It is to be noted that as tr^^, Op^ are decreased 
a proportional decrease is observed in o/. From Fig. 2 it is also noted that 
t h e / integral, based on Gaussian uncorrelated load-displacement measure
ments, is also of the Gaussian type. This is just the Central Limit Theorem. 
In the case where a^/A = Op/p = 0.01, the size of random error commonly 
occurring in a laboratory test [8], standard deviations of / on the order of 1 
percent were observed. 

In order to determine the effect of the degree of coupling between load-cell 
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FIG. 2—Probability density ofi-based on Monte Carlo simulation. 

and displacement gage error on the uncertainty in J, a Monte Carlo simula
tion was performed for the extreme cases of independent errors and unity 
correlated errors. From the results illustrated in Fig. 3 it is evident that the 
degree of correlation in the experimentally important case discussed 
previously has negligible effect on the random error associated with / . 

The Growing Crack 

The growing crack problem is now considered. Using the method de
scribed earlier, digitized load-displacement records were randomized. Crack 
length extensions were calculated using the predictor-corrector equations 
developed previously. All tests conducted here were for the case of Op ^ 
0.01 p, a^ = 0.01 A. Monte Carlo results indicated that, as before, / is nor
mally distributed with standard deviation aj ~ 0.03 / . Crack length exten
sions calculated from the randomized data were comparable to those ob
tained for the determination check case. Additional results of the simulation 
indicate that for a^/A = Op/p — 0.03, standard deviation in / calculations 
on the order of 5 percent and variation in crack-length extension on the order 
of 8 percent are obtained. 
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FIG. 3—Effect of coupling on J distribution. 

TABLE 1—Summary table of standard deviation of}, Aa based 
on Monte Carlo simulation. 

a A, op, % 
Nongrowing, % 

oj 

Growing, % 

1 
5 

10 
20 

3 
7 

14 
30 

3.4 

Discussion of Results 

Qualitatively it is seen that the key curve method, at least for the case con
sidered here, presents a reliable method for calculating / and crack-length 
change Aa. Small random errors in load displacement measurements on the 
order of those commonly occurring in laboratory tests lead to comparably 
sized error in determination of / and Aa. It is also noted that the effect of cor
relation of load-displacement errors is negligible for this important case. 
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In summary, a methodology for determining the effect of experimental 
random error in load-displacement measurements on J-R curve construction, 
based on the key curve method, has been presented. Although the numerical 
results presented here are limited to a specific type of specimen, the basic 
method is applicable to all two-dimensional configurations. Indeed, the 
general idea of a Monte Carlo simulation to determine confidence intervals in 
J-R curve construction could prove useful also for finite element based 
methods. 

The predictor-corrector equations presented herein, in every case ex
amined, were seen to converge within three iterations to six place accuracy. 
As stated before, these equations utilize only information available from a 
single test record and greatly facilitate the use of the key curve method. 

APPENDIX 

Simulation Procedure 

A simple FORTRAN IV program was developed to perform the calculation neces
sary for computing / and Aa. This program is designed to operate in two phases. 
The first part deals with the creation of a data file for the calibration function, 
Fi(Api^/W, a/W). As described in a previous section of this paper, load-displacement 
records are generated for the nongrowing cracked specimens at various a/Ws. These 
analog records are then digitized for subsequent processing and storage either on 
magnetic tape or disk. Using the measured initial crack length and the compliance 
function, c(a), a sequence of plastic displacements is calculated. Values of the cali
bration function, Fi(ApL/W, a/W), are then generated using the equation 

W ' W 
pW 

(32) 

Schematically the procedure is shown in Fig. 4. 
The second phase of the program deals with the calculation of/and Aa on the basis 

of a single load-displacement test. Here extensive use is made of the data files on the 
calibration function, Fi^A^i^/W, a/W), created in Part 1 of the program. Calcula-

, PW 
Magnetic 
tape fo r 
storage 

F i . A p L 

FIG. 4—Schematic for calibration curve determination. 
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Digitizing 
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Ai+1 

interrogate 
data file 

Predictor-
corrector 

to get aj + i 
* J, /ia 

FIG. 5—Procedure for determining ], Aa. 

tions are performed in an incremental manner. At Step / in the test the following 
quantities are available. 

1. a, 
2. A,-, A,+i 
3. Cj 

4. PhPi+i 
5. (ApL),-

Through interrogation of the data files created in Part 1 and Eq 32 the quantities 
aFi/aCApL/WO and a/'i/3(a/W0 are evaluated. 

The predictor-corrector equations are then used to obtain a ,+ i . Using the com
puted value of fl,+i, it is simple to update the compliance and plastic displacements 
through the equations 

Ci+i = c(ai+i) (33) 

(34) 

This defines all the quantities necessary at step i + 1. The process is then repeated 
until the test is completed. 

A block diagram of the procedure is illustrated in Fig. 5. It is noted that to perform 
the Monte Carlo simulation the basic structure of the program is unchanged. The 
only modification necessary is in the addition of a random input to the load-displace
ment measurements. 
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ABSTRACT: Two experiments were performed with ASTM A533B steel to evaluate 
effects of compact specimen geometry on the J\ versus crack growth resistance curve 
and evaluate validity limits for /-controlled crack growth. Side groove depth and crack 
length ratios were investigated with IT compact tension specimens (ITCT) of HSST-02 
plate. An investigation of thickness to ligament ratios over a broad range was con
ducted with 2T plan compact specimens using HSST-03 plate. All tests were performed 
at 150°C (302°F) using a computer-interactive unloading compliance test procedure. 

Results showed that side grooves straightened the crack growth. With HSST-02 
plate, total side groove depth of 20 percent is required to eliminate crack tunneling. 
With this steel, side grooves served to reduce / j ^ from nonside groove measurements 
and also resulted in less measurement variability. A change in slip mode from planar to 
cross-slip did not affect the tearing modulus measurement, which was shown to be 
insensitive to thickness to ligament ratios ranging from 0.63 to 3.89. The minimum 
w required for /-controlled crack growth for this material was shown to be on the order 
of one when considering less than 6 percent crack extension. 

KEY WORDS? elastic-plastic fracture, computer interactive testing, side grooves, 
crack extension, J-integral, A533B steel, B/b ratio, Jj-R curve, fractures (materials), 
crack propagation, /-controlled growth, tearing modulus 

The use of the J-integral to characterize the fracture toughness of elastic-
plastic materials has been shown to be valid and broadly applicable [1]? 
Substantial advances have been made in the development of routine single 
specimen Jjc test procedures [2,3]. Importantly, the utilization of informa
tion from such testing has been expanded into the areas of crack growth 
beyond initiation [4] and instability of /-controlled crack growth [5,6]. 
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These concepts are directly related to the / j versus crack growth resistance 
curve which, with HY 130 steel, has been shown to be dependent on 
ligament ratio and side groove geometry using compact specimens [7]. 
The objective of this investigation was to further explore the effects of 
specimen geometry using ASTM A533B steel to define possible validity 
limits for both Ji^ and /-controlled crack growth. The approach included 
a detailed investigation of side groove and crack length effects using IT 
compact tension specimens (ITCT). An additional series of experiments 
was performed with 2TCT plan specimens to determine effects of the slip 
mode on Ji^ and the tearing modulus by varying the thickness to ligament 
ratio from 0.4 to 3.9. 

Experimental Procedure 

ASTM A533B steel was used for all tests. The side groove experiments 
were performed with material from HSST-02 plate, while the ligament 
ratio tests used HSST-03 plate. The chemical composition and mechanical 
properties of the respective plates are presented in Table 1. 

For the side groove experiments, 24 modified compact specimens (ITCT) 
were produced according to Fig. 1. All cracks were placed in the T-L 
orientation. Specimens were fatigue precracked according to ASTM Test 
for Plane-Strain Fracture Toughness of Metallic Materials, (E 399-78) to 
crack lengths of 0.5, 0.6, 0.7, and 0.8 a/W, where a is the crack length 
and W is the specimen width. After precracking, side grooves were machined 
into some of the specimens with a standard Charpy cutter along the 
nominal crack plane to total section reductions of 10 or 20 percent. This 
test matrix is summarized in Table 2. 

The ligament ratio tests were carried out with modified 2T compact 
specimens. In order to vary the ratio of specimen thickness to remaining 

TABLE 1—Chemical composition and room temperature mechanics properties of ASTM 
A533B steel (HSST-02 and HSST-03). 

Plate 
HSST-02 
HSST-03 

Plate 

HSST-02 
HSST-03 

Chemical Composition 

Element, weight % 

C Mn Ni Mo Si S P 
0.22 1.48 0.68 0.52 0.25 0.018 0.012 
0.20 1.26 0.56 0.45 0.25 0.018 0.011 

Room Temperature Mechanical Properties 

0.2% Yield Strength, 
MPa 

448 
462 

Ultimate Tensile 
Strength, MPa 

621 
613 

Total Elongation, % 

19 
24 
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.006 
±.001 

FIG. 1—Drawing of IT compact specimen used for side groove investigation (1 in. 
25.4 mm). 

TABLE 2—Summary of test matrix for side groove investigation 
using ASTM A533B steel (HSST-02). 

Side Groove, % 

a/W 

0.5 
0.6 
0.7 
0.8 

0 

2 
2 
2 
2 

10 

2 
2 
2 
2 

20 

2 
2 
2 
2 

"ASTM A533B steel, 150°C (302°F) 

ligament {B/b), several specimens were produced with thicknesses of 50.8, 
25.4, and 12.7 mm, respectively. Cracks were placed in the S-L orientation 
and fatigue cracks were produced according to ASTM E 399 criteria. 
Figure 2 presents the matrix of thickness to ligament ratios included in 
this study. It should be noted that these specimens were not side grooved. 

All tests were carried out at 150° C (302°F) utilizing the computer 
interactive unloading compliance test facility of Joyce and Gudas [J]. A 
schematic of the test arrangement is shown in Fig. 3. This facility allows 
for on-line, real-time gathering and analysis of digitized load and displace
ment data. /i(. tests are carried out by performing a series of approximately 
10 percent unloading during the course of a normal fracture mechanics 
type test. From compliance measurements, instantaneous values of crack 
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0.5" 1.0" 2.0" THICKNESS 

FIG. 2—Test program for thickness to ligament ratio investigation using ASTM A533B 
steel (HSST-03). 
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FIG. 3—Schematic of computer interactive unloading compliance test arrangement. 
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length and change in length are determined [3]. /j is calculated according 
to the expression [8] 

BniW ~ a) 

where 
/3 = multiplicative factor == 2 obtained from Merkle-Corten analysis of 

the compact specimen, 
A = area under the load-displacement curve, 

B„ = minimum specimen thickness, 
W = specimen width, and 
a = instantaneous crack length. 

The compliance formula used for these calculations was that of Saxena 
and Hudak [9]. 

For ITCT specimens, /jc-values were computed from the intersection of 
the crack opening stretch line (/ = lof-Aa) with the least squares fit of 
data points, which fell at least 0.15 mm beyond the blunting line and did 
not exceed 1.5 mm in crack growth from that point. For the 2TCT and 2T 
plan specimens, / j^ was calculated from a range of total crack growth, 
which did not exceed 3.0 mm beyond the 0.15 mm offset of the blunting 
line. Tearing modulii were calculated according to the following expres
sion [6] 

r = 4 ^ (2) 
a 2 da 

where 

T = tearing modulus, 
dJ\/da = slope of/j versus crack extension curve, 

E = elastic modulus, and 
Og = flow stress (assumed 483 MPa). 

At the conclusion of testing, specimens were heat tinted at 380°C (716°F) 
for 30 min to mark the extent of crack growth. After breaking open at 
liquid nitrogen temperature, the crack length and crack extension were 
measured at nine equally spaced points across the crack front including 
the two surfaces. An average value of the two surface measurements was 
used as a single point in computing crack dimension and crack growth. 
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Results and Discussion 

Side Groove Geometry Study 

The results of the IT compact specimen tests with various side groove 
depths and crack lengths are described in Table 3. This table includes 
/]c and tearing modulus values, a summary of estimated and measured 
crack growth, multiples ofJi^/co for validity analysis, and the computed w 
value at 6 percent crack extension. The w factor has been defined by 
Hutchinson and Paris [4] as 

and the requirement that co must be much greater than 1 was seen as 
sufficient criteria for /-controlled crack growth. Figures 4 through 7 are 
plots of /[ versus crack extension data for specimens where a/W — 0.5, 
0.6, 0.7, and 0.8, respectively. Figure 8 is a plot of/jc versus the crack length 
ratio for all tests in this series, and Fig. 9 is a plot of the tearing modulii 
versus crack length ratio. 

Several points can be made from examining these results. In the first 
place, the side grooves acted to eliminate crack tunneling for this material 
as shown previously with HY 130 steel [7]. Figure 10 is a photograph of 
specimens with a crack length ratio of 0.7. It can be seen that without side 
grooves, crack tunneling is substantial. However, 10 percent side grooves 
reduce crack tunneling, and 20 percent equalizes the crack extension 
across the specimen width. This degree of side grooving results in close 
correlation between compliance based crack growth prediction and the 
physical measurement as reported in Table 2. 

From Fig. 8 it can be seen that the scatter of Ji^ data is reduced with 
side grooving, and /[(.-values are generally below those measured with 
no side grooved specimens. The /jj, data from 20 percent side grooved 
specimens is closely grouped in the range 200 to 247 KJ/m^. Finally, it 
should be noted that several of the nonside grooved specimens do not meet 
postulated validity criteria based on requiring B > 40 Ji^/oo [/]• These 
specimens demonstrated on elevation of Ji^ of about 50 percent when 
compared to side grooved specimens. 

Figure 9 shows that tearing modulus measurements were generally 
affected by side groove depth. With this steel, specimens with 20 percent 
side grooves provide the lowest tearing modulus measurements at all but 
the largest a/W ratio. The difference in tearing modulus measurements 
between 10 and 20 percent side grooved specimens reflects the fact that 
crack front tunneling is not completely eliminated with 10 percent side 
grooves. Interestingly, Fig. 9 shows that tearing modulus measurements 
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for all specimen geometries are initially reduced with increasing crack 
length, then increased at the greatest crack length. The minimum tearing 
modulus measurements are produced in the range 0.6 to 0.7 a/W. 

Thickness to Ligament Geometry Study 

As stated earlier, the purpose of this experiment was to determine 
effects of varying slip mode on Jj,, and the tearing modulus of ASTM A533B 
steel. Figure 11 shows the type of crack growth developed in 25-mm-thick 
specimen with various crack lengths, and Fig. 12 shows the type of crack 
growth in 13, 25, and 50-mm specimens with a/W ratios of the order of 0.6. 
Substantial cross slip was developed in the thinnest specimens and a lesser 
degree of tunneling occurred in the thicker specimens. Figures 13 to 15 
present the /] versus crack extension data for 13, 25, and 50-mm-thick 
specimens, respectively. Table 4 presents the results of all tests in this 
series in the same format as that of the side groove investigation. 

As shown in the previous section, final crack extensions estimated from 
unloading compliance are smaller than the average from the nine-point 
measurement. This difference is reduced as specimen thickness increases 
and crack tunneling is reduced. Figure 16 is a plot of tearing modulus 
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versus B/b for this test series. There is no strong dependence of T on the 
thickness to ligament ratio for these specimens where B/b ranged from 0.4 
to 3.9. This same conclusion is reached in considering only the 50-mm 
specimens, which represented a B/b range of 1.5 to 3.9. Review of Table 4 
shows that the tearing modulus measurements with these widely varying 
specimen geometries range from 97 to 128. There is no apparent pattern 
of r as a function of thickness and w, where oi ranged from 1.35 to 7.87. 
This lack of Ji-R curve dependence on w indicates that the minimum w 
required for /-controlled crack growth may be of the order of one, and not 
substantially greater than one as suggested by Hutchinson and Paris [4]. 
This point is made from computations of ui for 6 percent crack growth 
which also coincided with the limits at which /j - Aa data were gathered 
in these tests. The w independence must be further explored with greater 
ranges of crack growth and with different materials. 

From Table 4, it can be also seen that/ic as calculated here is apparently 
dependent upon specimen thickness. Ji^ from 50-mm specimens is con
sistently greater than Ji^ measured from 25 and 13-mm-thick specimens. 
This is at least partly due to the method of measuring /jc by fitting a straight 
line to a parabolic JyR curve. However, superposition of Figs. 14 and 
15 shows that the J^R curves for thicker specimens are generally elevated 
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FIG. 10—IT compact specimens ofASTMA533B steel, (HSST-02) where a/W = 0. 7. 

above those of thinner specimens along their complete length, and calcu
lating /jc using only 1.5 mm of crack extension would give results similar 
to those presented in Table 4. 

In this cross-slip investigation, one 2T specimen was tested with 20 percent 
side grooves. It is interesting to note that the /le-value was reduced from 
other 2T specimens, and the dJi/da measurement was the lowest in this 
set of data. Figure 15 includes this specimen and as shown in the side 
groove experiment, crack growth was straight for this specimen geometry. 

Conclusions 

The objective of these two investigations was to explore the role of 
specimen geometry on the three parameters /j,,, T, and w at 6 percent 
crack growth. The principal variables included side groove depth, crack 
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FIG. 11—Twenty-five millimetre thick, 2T compact specimens of ASTM A533B steel 
{HSST-03) with various crack lengths. 

length, and thickness to ligament ratio. The following conclusions are 
warranted from these tests with ASTM A533B steel conducted at' ISCC 
(302°F): 

1. Side grooves in compact specimens serve to straighten the front of 
crack growth and result in lower /j versus crack growth resistance curves 
and resultant tearing modulus values than nonside grooved specimens; 

2. Side groove depth on the order of 20 percent is required to fully 
straighten the crack front and result in agreement between unloading 
compliance and physical crack extension measurements; 

3. /ic-values are somewhat reduced when side grooves were employed 
both for IT and 2T specimen geometries, but less variability was present 
in the side groove results; 

4. The mode of slip when varied from planar to cross slip does not effect 
the tearing modulus measurement. The tearing modulus is insensitive to 
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thickness to ligament ratios ranging from 0.63 to 3.89 in compact speci
mens; 

5. The minimum oj required for /-controlled crack growth may be on the 
order of one when considering 6 percent or less crack extension. 
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ABSTRACT: Nine 500-mm-wide, 110-mm-thick A533B Class I wide plates were tested 
at -|-70°C (158°F). Three crack types were used: (1) semi-elliptical, (2) surface notched, 
and (3) through-thickness center cracked. Various notch depths were employed. The 
progress of the stable propagating ductile tear resulting in the specimen from the use of 
the relatively stiff wide-plate rig was marked periodically using an unloading technique. 

Estimates of the crack propagation resistance jR-curves for these tests were made 
and compared to resistance curves obtained from small scale laboratory bend specimens. 

The crack morphology exhibited by the surface notched wide-plate specimens, which 
propagate in the through-thickness direction, was essentially normal ductile rupture in 
contrast to the through-thickness crack, which showed mostly shear rupture. 

Semi-elliptical notched specimens initially behaved in a similar fashion to the surface 
notched, and after penetration of the plate thickness, continuing propagation behaved 
as a center cracked plate. 

Derivations of a simple estimation formula for the jR-curves for the surface notched 
and semi-elliptical geometries have been made. Using these formulas, comparisons of all 
tests with the crack propagating in the L-T and L-S orientations were made. 

The results of large-scale tension and large- and small-scale bend tests indicate that 
laboratory tests give reasonable lower bound estimates of the more structurally relevant 
tension situation in the L-T orientation where full-plate-thickness bend specimens are 
employed. 

In the L-S orientation much more restrictive thickness requirements are necessary to 
achieve conservative estimates from laboratory bend tests and as an initial guideline 
the requirement B > 25(/^/ay) is suggested for surface notched geometries although 
this may not be restrictive enough for very ductile materials. 

KEY WORDS: ductile fracture, fracture toughness, steels, elasto-plastic analysis, crack 
initiation, crack propagation, geometry, shape, fracture (materials) 
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Nomenclature 

A 
a 

^max 

« o 

B 
c 

D 
GR 

J 
JR 
L 

L-T 

L-S 

P 
q 
R 
S 
U 

w 
z 

Aa 
V 

Ou 

Oy 

e 

i 

L 

n 

P 

Y 

Aspect ratio (a ̂ ax /2c) 
Crack length 
Maximum length, through thickness, of semi-elliptical notch. 
Initial crack length 
Specimen thickness 
Half-length of surface of semi-elliptical notch 
Specimen height 
G resistance (the value of crack extension force after some crack 
growth) 
The J-integral 
/ resistance 
Constraint factor 
Specimen extracted in the rolling direction, notched in the transverse 
plane 
Specimen extracted in the rolling direction, notch through the thick
ness 
Load 
Displacement 
Resistance to fracture 
Span 
Energy under load displacement record 
Specimen width 
Knife edge thickness 
Incremental crack extension 
Multiplication factor relating / and U 
Ultimate tensile stress 
Yield stress 
Elastic 
Initiation 
Limit load value 
Current value 
Plastic 
Yield value 

The measurement and analysis of the crack growth resistance of structural 
steels has received much recent attention [1-6].^ Ongoing studies have in
volved the adaptation of existing yielding fracture mechanics to attempt to 
characterize the behavior of a crack in structural steel extending by a ductile 
mechanism in the presence of large-scale plasticity [5,6]. The intention of 
this research is to solve the current problem concerning the determination of 
allowable flaw sizes, in particular for the nuclear industry. 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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Current assessment techniques tend to use the initiation of tearing as a 
measure of the material toughness. However, this seems an unduly conserva
tive approach when viewed in the light of subsequent large toughness in
creases in crack growth resistance with crack extension often exhibited by 
these ductile materials. 

The behavior of the material with crack extension can be measured in 
terms of the crack growth resistance or R-curve [1,2,6]. If a move is to be 
made away from the use of initiation of tearing as the characteristic tough
ness value, then the measure of toughness to be employed must be obtained 
from a consideration of the resistance curve of the material and the relevant 
driving force curve, which describes the applied loading conditions. 

It would appear that the resistance curve is not a material parameter being 
dependent on test piece geometry [6-8]. The object of this test program is to 
evaluate the possibility of using laboratory test piece resistance curves to 
describe the behavior of the more structurally significant large-scale tension 
tests with through thickness, surface and semi-elliptical cracks. 

Analysis 

Recent work has concentrated on the use of the J-integral for describing 
the resistance of a stable tear. Initially any crack extension was considered by 
many to cause an invalidation of the theoretical justification of the use of the 
J-integral for elastic-plastic materials [9,10]. This argument was based on 
the fact that the nonlinear elastic analog, which is the premise upon which 
the J-integral is applied to elastic-plastic materials, can only be relevant to 
monotonic loading. Hence crack growth, with its accompanying relaxation of 
the original crack tip, invalidates this premise. 

Recently, theoretical justifications have been made allowing the use of 
J-integral procedures for the description of crack growth, provided a " / 
dominant field" is maintained [/ /] . This condition is dependent on the pa
rameter w = idJ)/(da)(W — a)/(y) which has to be : » 1. Other investiga
tions have intimated that crack growth should not exceed 6 percent of the 
remaining ligament for steels such as A533B [5], and for the center cracked 
tension geometry the size requirement of 25 to 50 J/ofiov, should be increased 
to200//afiowU-2]. 

Prior to these theoretical justifications, resistance curve measurements 
have been made with cracking extending beyond the now prescribed limits 
for / dominance [2,6,8]. This has been done on the basis that no theoretical 
claims have been made for Jj^ measurements. Instead the JR techniques 
developed have been assumed to provide comparative estimates of the tough
ness that would be experienced in contained yielding structural situations; 
that is, the GR resistance curve. 

Evaluation of/« for the standard test geometries is based on measurement 
of the area under the load displacement diagram. For extensive amounts of 
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tearing, corrections must be made to these area measurements to take ac
count of the crack extension that has occurred. Initially, a method known as 
the "three-parameter technique" based on the J-U relationship developed 
by Rice, Paris, and Merkle [13] and Sumpter [14] was employed. However, 
a simpler estimation method has been developed based on the final load and 
displacement measurements [15]. The comparison of these methods was 
carried out in Ref 6, and a good correlation obtained between the simple 
estimation and three-parameter techniques with the former technique pro
viding conservative estimates. 

This simple estimation method was originally developed for the three-
point bend and center cracked tension (CCT) geometries in Ref 6. However, 
the method is extended to compact tension (CT), single edge notched speci
mens (SENT), and semi-elliptical geometries in the Appendix. 

To summarize, the formulas used for / determinations in this paper were 
as follows: 

For bend with 0.4 < a„/W < 0.7 (Ref 16 sets these limits of applicability) 

T — Pnin I Lay ,„r x n^ 

L was assumed to be 1.3 for the geometry chosen. 
For CCT 

. ^ P„gp(l - 2r? J + 2r,^P„q„ Loygp 

2B(W - 2a„) 2 

L was assumed to be 1.155 for this geometry [14]. 
For single edge notch tension (see Appendix) 

2B{W-a„) ^ 2 (^) 

L was also taken as 1.155 
For semi-elliptical surface notched tension (see Appendix) 

r PnQn , Lirc„ (A) 

\Trc„ 2 

For a conservative estimate L was assumed to be unity. 
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Experimentation 

Specimen Design 

Nine 508-mm-wide, 110-mm-thick, 915-mm-long tension specimens were 
tested in the wide-plate rig. All tests were on parent plate in the "as received" 
condition to A533B specifications. The chemical and mechanical properties 
are given in Table 1. Three types of notch were employed: (1) surface, (2) 
semi-elliptical, and (3) center cracked, see Fig. 1. Hence, crack propagation 
is through thickness for the surface notched (SENT) (that is, the L-S orienta
tion), while the CCT geometry has a crack in the L-T orientation. The semi-
elliptical notch behaves as a combination of SENT-CCT with propagation 
both through the plate thickness and along the width of the specimen. Three 
of each notch type were used with different a/W ratios. 

Seven types of bend specimen were employed (see Table 2). Types 1, 4, 5, 
and 6 were extracted in the L-T orientation with 2, 3, and 7 in the L-S orien
tation. Full thickness (110 mm) specimens were used for Types 1, 2, and 6 
with widths of 250, 125, and 500 mm, respectively. Types 3, 4, 5, and 7 were 
half thickness (53 mm) with widths of 65, 250, 125, and 125 mm, respec
tively. All specimens had an initial a<,/VF of 0.4. 

Experimental Details 

All tests were carried out at +70°C (158°F) to ensure fully ductile be
havior of the A533B employed. 

All bend tests were conducted using a conventional 1800 kN hydraulic uni
versal machine at a crosshead speed of 2 mm/min. Load was monitored 
against crosshead displacement, which was corrected for extraneous dis
placement by indenting the rollers into the broken halves of the specimen 
after the test, as described in Ref / 7. 

For the wide-plate tension tests, load was monitored against the displace
ment of the clip gage mounted across the mouth of the notch in the center of 
the specimen with a knife edge spacing of 17.5 mm. Moveable knife edges 
were employed since periodic adjustments of the knife edge spacing was 
necessary due to the large displacement encountered in the tests. It was un
necessary to correct for extraneous displacement in these tests because of the 
use of a mouth opening mounted clip gage. 

To remount the clip gage, periodic unloadings to zero of the wide place 
specimens were necessary. All tests in this program behaved in an entirely 
stable manner achieving a maximum load with stable tearing, via microvoid 
coalescence, continuing thereafter under a decreasing load. In the majority 
of the bend tests, initiation of tearing occurred after net section yield of the 
specimen but well before maximum load. 
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10 

Surface Semi-elliptical Tlirougli tliickmis 

FIG. 1 —Crack types—wide plate specimens. 

Type 6 bend and the wide plate tests, however, experienced net section 
yield and initiation of tearing at very similar displacements. 

Prior to testing, all specimens were fatigue precracked. The bend speci
mens were precracked according to British Standards Institute's (BSI) DD19 
specifications [18]. The surface notched and semi-elliptical wide plates were 
fatigued in bending. Some difficulty was experienced in obtaining a fatigue 
crack in the latter specimens. Specimen 1006 with D/W = 0.21 had little or 
no fatigue propagation, and hence the initial notch diameter would approxi
mate to the thickness of the abrasive slitting wheel used to cut the initial 
notch of 0.15 mm. Specimen 1007 also had a fatigue crack length of < 1 mm 
in places along the crack front. The center cracked specimens were fatigued 
in two halves as three-point bend specimens, and the halves were electron 
beam welded to form the wide-plate specimens. 

The Type 6 bend specimens had to be tested using a clamp and beam 
arrangement to double the effective load of the test machine since these 
specimens required a center point load of ~3000 kN. 

To obtain crack growth resistance curves for the smaller bend specimens it 
was necessary to load a series of specimens to various displacements to 
achieve different amounts of crack extension. The specimens were then un
loaded, cooled to below the transition temperature, and fractured to reveal 
the amount of stable tearing. This "break open" procedure was also used 
for the wide-plate specimens. However, it was found that the periodic un-
loadings during the test had left marks on the fracture surface presumably 
caused by the fracture faces coming together at the crack tip when complete 
unloading occurred (Fig. 2). Hence, it was possible to plot a number of 
points for these specimens and to obtain an approximate resistance curve 
from each individual specimen. This "unloading marking" method was also 
found to work on the larger bend tests (Types 1, 4, and 6). Test results in
volving repeated unloadings were compared with monotonically loaded speci
mens, and very similar values were obtained indicating little or no effect of 
the unloadings on the load, displacements, or amounts of stable crack 
growth experienced. 

After final fracture of each specimen, average measurements of initial 
crack length and the amounts of stable tearing were taken. 
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FIG. 2—Wide plate fracture surfaces (a) surface notch, (b) semi-elliptical, and (c) center 
cracked. 

Alternating current potential-difference-monitoring of crack extension 
was carried out on all tests; however, determination of initiation and the 
accuracy of stable crack determinations were found to be inconsistent. 
Where potential measurements could be calibrated from unloading crack 
marks however, it was found possible to evaluate the shape of the resistance 
curve between these points by using crack extension measurements derived 
from the potential difference readings. 

Results 

Initiation Determination 

The aim of this test program was to evaluate the geometric and orienta
tion dependence of the R-curve in A533B. Since the entire resistance curves 
were being monitored, very few specimens were stopped with small amounts 
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of crack extension; therefore, the initiation of tearing value for the different 
geometries was not obtained directly. Values could be derived from the po
tential difference traces, but these results must be treated with extreme cau
tion. In view of this, four Type 5 and Type 7 (100-mm-wide, 50-mm-thick) 
specimens in the L-T and L-S orientations were tested following ASTM 
Subcommittee E24.01 on Fracture Mechanics Test Methods, Task Group 9 
recommendations [19] to evaluate initiation values in the two test orienta
tions. The results of these tests are given in Fig. 3. Unlike Ref 19 specifica
tions, this figure plots values of / against crack extension excluding stretch 
zone. This obviates the need for a blunting line construction and initiation 
values can be read off the figure at Aa = 0. These are 0.4 MJ/m^ and 0.3 
MJ/m^ for the L-T and L-S orientations, respectively. The slope of the resis
tance curve was obtained employing a linear regression analysis. 

Although, as stated previously, accurate initiation values were liot ob
tained for the other specimen types the results obtained would indicate very 
similar values to those obtained in Fig. 3 for the relevant crack orientation. 

Bend Resistance Curves 

In all, seven specimen types were tested. Results for Types 1, 4 to 6 in the 
L-T orientation are given in Fig. 4, while Types 2, 3, and 7 in the L-S orienta
tion are depicted in Fig. 5. 

J'MJ/m2' 

0.5 

A533B+70OC W = 100mm 
B = 50mm 
Span =400mm 
/̂W =0.4-0.5 

Type 5 - L-T 
Type 7 - L-S 

•^-0.30 

0.5 

Crack extension excluding stretch zone (Aa)mm 

1.0 

FIG. 3—Initiation determination from bend specimens in the L-T and L-S orientations. 
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jR(MJ/„f) 

B= 110 Type 4 W = 260 B = 53 
B= 53 Type 6 W = 500 B= 110 

All dimensions in mm. 

2'! 3.1 

/ncremenfjl crack extension Aafmm} 

SO 

FIG. 4—Bend resistance curves L-T orientation. 

Type 2 W« 126 B= 110 
Type 3 W = 66 B = 63 
Type 7 W = 125 B = 63 

All dimensions in mm. 

20 30 iO 

incremental crack extension Aa (mm) • 

FIG. 5—Bend resistance curves L-S orientation. 
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In all cases 7R-values were calculated using the formula given in Eq 1 
based on the final load, corrected total, and plastic displacements and final 
crack length. 

Wide Plate Tension Tests 

Three center cracked tests were carried out, the results from which are 
shown in Fig. 6. Three different 2a„/W ratios were used (0.27, 0.42, and 
0.52). Each point marked on the figure indicates an unloading position. / ^ 
estimates were made using Eq 2 with the incorporation of the correct rj^ fac
tor based on the gage length of the measurement point to the width of speci
men ratio (D/W), and the 2a/W ratio. In this instance D/W was the knife 
edge spacing divided by 508 mm, which was approximately 0.03. Although 
the knife edge spacing was altered during the test, the value of TĴ  was found 
to be insensitive to this change in the D/W when compared to the 
dependence on 2a/W. Values of t^g were found to be in the range 2.0 to 0.5 
for 2 0 / ^ between 0.3 and 0.8. Crack propagation in these specimens was in 
the L-T orientation. 

Single edge notch tension specimens were tested with three ag/W ratios 
(0.3, 0.34, and 0.47). 

These specimens were surface notched along the 508-mm edge (see Fig. 1); 
hence, these tests had an effective width of 110-mm and thickness of 508-mm 
with crack propagation in the L-S orientation. 

Results of these tests are given in Fig. 7. J^ calculations were carried out 

JO 

JfflMj/'r^ ) 
W = 508mm.B = 110mm. 

A 1 0 4 3 - ^ = 0 . 2 7 

20 30 40 50 SO 70 

Incremental crack extension ialmm) -— -

SO 90 too 

FIG. 6—Crack propagation resistance, center crack tension. 
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A 1044-i^ = 0,47 

20 30 

Incremental crack exfensiQnAn(mm} _ 

FIG. 7—Crack propagation resistance, single edge notch tension. 

using Eq 3, which is derived in the Appendix. r)g values in this case were 
found to vary between 5 and 1.9 for a/W in the range 0.3 to 0.8. 

The final three wide-plate specimens had semi-elliptical surface defects 
as shown in Fig. 1. All specimens had an a^n^^/lc ratio of 0.16 with Omax^^ 
ratios of 0.21, 0.34, and 0.5. As in the single edge notch tests, width was 
taken as 110 mm and specimen thickness as 508 mm. Crack propagation oc
curred in both through thickness (a) and width (2c) directions (see Fig. 2). 

JR calculations were made using Eq 4, as determined in the Appendix, for 
initial propagation of the crack, which is assumed to occur at a constant 
aspect ratio with a ̂ ax and 2c being defined by actual measurements at each 
unloading point. Once the crack had propagated through thickness, the CCT 
analysis was assumed to apply as given by Eq 2. 

Values of J^ for this geometry are plotted against average crack extension 
in Fig. 8. 

For the initial part of the curve this incremental crack extension is the 
average through-thickness extension, while for the final section, which 
behaves as a CCT specimen with two crack fronts, Aa refers to propagation 
along one crack front only. 

Discussion 

Bend Tests 

The initiation of tearing toughness in the L-T orientation would appear 
higher than in the L-S direction as evident from Fig. 3 (which gives/;'s of 0.4 
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CCT analvsis 
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FIG. 8—Crack propagation resistance, semi-elliptical notch tension. 

and 0.3 MJ/m^, respectively). Subsequent propagation would indicate a 
steeper slope for the L-S orientation with the same value of toughness being 
obtained for both orientations after 1 mm of crack extension. When viewed 
in the light of the scatter, which is normally experienced with / , determina
tions using the multispecimen technique, however, the results in Fig. 3 show 
very similar behavior between the orientations. 

The effect of different specimen configurations in the L-T orientation can 
be seen in Fig. 4. A distinct geometric dependence is evident but there is a 
complicated relationship between width and thickness and their effect on the 
resistance curve. Generally the larger the B/W ratio the lower the resistance 
curve. In this orientation, however, there appears little effect of width on the 
full thickness plate results. Type 6 with a 500-mm width does give a higher 
resistance curve than the Type 1 with 250-mm width, but the difference is 
small compared to the effect of crack orientation in the wide plate tests. 

Figure 5 depicts the geometric effect in the L-S orientation. Here a much 
larger effect is exhibited than in Fig. 4. Types 2 and 3, with similar B/W 
ratios, follow the same resistance curve, while Type 7 with a smaller ratio has 
a much steeper R curve. 

Wide Plate Tests 

The behavior of the center cracked wide plates is shown in Fig. 6. Similar 
curves are obtained for all three specimens. There would appear to be little 
effect of the lag/W ratio. 

A typical fracture face for the CCT geometry is shown in Fig. 2. Crack ex
tension in this geometry starts with normal ductile rupture tunneling in the 
center of the specimen with 45 deg shear lips forming near the surfaces. As 
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extension proceeds so the shear lip width increases, until after 40 mm of 
crack extension full 45 deg shear occurs. The knee in the resistance curve 
would appear to coincide with the point on the fracture surface when the 
shear lips are almost fully formed. 

The crack growth resistance curves relating to the surface (or single edge) 
notched specimen behavior are given in Fig. 7. As in the CCT case, no abso
lute effect of the a„/Vrratio can be ascertained. Since the crack is propagating 
through thickness these curves relate to the L-S orientation. A typical frac
ture surface is shown in Fig. 2 (the major portion of the fracture surface 
being normal rupture, small shear lips forming near the surface). 

From Fig. 7 it can be seen that a peaking of the resistance curve appears to 
occur after 35-mm of crack extension. This phenomenon could be attributed 
to the reduction in the percent of shear fracture present due to the increasing 
bending component and hence constraint factor, as the crack approaches 
the back surface of the specimen. 

The semi-elliptical surface notched specimens behaved in a similar fashion 
to the SENT test specimens, with the majority of the fracture surface being 
formed of normal ductile rupture. In this case however, the shear lips tended 
to form on the front surface of the specimen inhibiting crack extension in the 
thickness (2c) direction (see Fig. 2). In the center of the specimen however, 
the crack appears to propagate with an almost constant a max/2c ratio until 
the crack penetrates the back surface after which further extension occurs 
as if the specimen were center cracked. 

This behavior makes analysis particularly difficult. As stated in the 
Appendix, a JR analysis of the semi-elliptical crack can be approached in 
three ways. The conservative approach is to assume propagation through 
thickness only. The least conservative way assumes propagation with a con
stant a max/2c ratio. The most realistic assumption would seem to be assum
ing a constant a^^^/lc ratio but impose the actual value of a max (which is 
incidentally the maximum through thickness value rather than the average as 
in the other geometries) and 2c which exist at each unloading position. This 
should still provide a conservative estimate since the resulting crack front 
geometry assumed will leave a larger remaining ligament than actually 
present in the test geometry. Once the crack becomes through thickness the 
CCT formulations apply. 

Values of//J using the constant aspect ratio with test a max ^^^ 2c values 
are plotted in Fig. 8 for the three specimens tested. If any trend due to 
«max/^ ratio is to be interpreted from this figure it would be that the larger 
the ratio, and thus the nearer the specimen is to becoming a CCT geometry, 
the steeper the R-curve. 

The resistance curve for specimen 1046 propagating as a through-thick
ness crack (L-T orientation) is also plotted in Fig. 8, which would appear to 
be remarkably consistent with prior propagation in the semi-elliptical mode 
(L-S orientation). 
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A comparison of results from the bend and tensile tests is made in Fig. 9. 
The entire bend result scatter band falls below the CCT scatter band enhanc
ing confidence in the use of the bend geometry tests for the conservative pre
diction of structural resistance curves using full-thickness specimens. 

In contrast, nonconservative estimates of more structurally relevant 
geometries result in the L-S orientation, particularly for the initial part of 
the curve, as can be seen from inspection of Fig. 10. Good correlation is ob
tained between semi-elliptical and surface notched defects, however, which 
is consistent with their similar fracture appearance. 

The major reason for the steeper bend resistance curves in the L-S orienta
tion is due to thickness effects. The wide plates had an effective thickness of 
508 mm, while the maximum thickness of the bend specimens tested was 110 
mm. Hence, the fracture surface of the bend tests contained a much larger 
shear lip proportion than did their tensile counterparts. 

Therefore, to provide conservative estimates of through-thickness propa
gation (L-S orientation), some thickness criteria are obviously necessary. As 
a first approximation the plane strain requirements specified in British 
Standard (BS) 5447 [20] could be applied, that is 

B > 2.5 ('-^Y (5) 
ay 

in terms of / this converts to 

B>2.S^ (6) 
ffy2 

For the specimens tested herein where/, = 0.3 MJ/m^, B would have to be 
greater than 720 mm and even thicker if more representative values of tough
ness after some crack extension occurred were used. 

A more reasonable criterion would be to adopt the ASTM E24:01:09 Task 
Group recommendations [19] over the entire range of the resistance curve for 
plane strain validity; thus 

B > 25 — (7) 
ay 

Hence, on the basis of the results from the SENT geometry at initiation 
(/, = 0.3 MJ/m^) a thickness 5 > 16 mm would be required; after 10-mm 
crack extension (Jj^ = 6.5 MJ/m^)B > 355 mm; and after 20-mm extension 
(7/; = 10 MJ/m^) B would have to be >547 mm for continuation of plane-
strain conditions. 

These requirements would not be necessary, of course, if full-thickness 
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plate specimens are employed for the description of crack propagation in the 
L-T orientation, since although they would not necessarily be plane strain 
curves they should still provide conservative estimates of the structural curve. 

Conclusions 

1. The initiation toughness of A533B plate tested in the L-T and L-S ori
entations was determined as 0.4 and 0.3 MJ/m^, respectively. Although 
the initiation toughness was slightly lower in the L-S orientation, the initial 
resistance curve slope was steeper. Hence, generally similar behavior was 
exhibited by the two orientations. 

2. Three-point bend specimen tests in the L-T and L-S orientations with 
variable width and thickness indicated distinct geometric effects on the crack 
propagation resistance curves. Generally the larger the thickness to width 
ratio the lower the resistance curve. However, the indications are that once a 
certain thickness is reached there is little effect of width on the resistance 
curve. The geometric effect which does exist indicates the smaller the width 
the more conservative the result. 

3. Center-cracked wide plates form much larger shear lips than their 
equivalent thickness bend counterparts and exhibit much steeper resistance 
curves. Hence, provided full thickness bend specimens are employed conser
vative resistance curves should always be obtained for most structural appli
cations with cracking in the L-T orientation. 

4. Surface and semi-elliptical notched wide plate specimens having crack 
propagation in the L-S orientation behave in a very similar fashion for the 
initial period of crack propagation. However, once the semi-elliptical crack 
breaks through to the back surface of the specimen the test specimen be
haves as a CCT with propagation in the L-T orientation. 

5. In the L-S orientation conservative resistance curves are not neces
sarily obtained from bend specimens of thickness equivalent to the plate 
thickness. In this orientation the thickness must be governed by plane strain 
thickness requirements and as an initial guide it is suggested that the ASTM 
E24.01.09 Task Group guidelines are extended to R curve testing in this ori
entation. This gives the requirement 

5 > 2 5 — 
ay 

to provide conservative estimates of tensile resistance curves in the L-S ori
entation. There is no evidence to suggest that such severe restrictions are 
necessary for crack length or width, and in fact it would appear that the 
smaller the width the lower the R-curve. 
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APPENDIX 

The Determination of Jg (the Value of / for a Propagating Crack) from a Single 
Specimen for SENT and Semi-Elliptical Surface Notch Tension (SESNT) Geometries 

The calculation of JR for the three-point bend and center-cracked tension geome
tries was derived in Ref 6 and the relevant formulas stated in Eqs 1 and 2. 

The method is based on a postulated loading curve of the crack length of interest 
(Fig. 11). 
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FIG, 11—Postulated load-displacement diagrams: (a) actual load displacement record and 
postulated nonlinear elastic behavior, (b) an approximation to the nonlinear elastic curve. 
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The area under this curve (U total) is given by 

where 

[/total = f/p + f/g (8) 

. . _Pn+PL ,„-
^ P - 2 ^^ 

Ue = ^('in-qp) (10) 

The plastic component of / can be derived from the equation 

d(Up) 
' ' — ^ ^ • " » " 

assuming rigid plastic behavior (that is, P„ = Pi in Eq 9) 
then 

1 d(Pi)q^ 

^P~~T ^ '̂ ^ ^ ^̂  

B da 

for the SENT geometry 

Pl = LaYB{W-a) (13) 
then 

Jp=LaYqp (14) 

since for rigid plastic behavior 

U 

PL 

then 

U 

qp = — (15) 

/ „ = (16) 
B{W-a„) 

The value of / after crack initiation can be related to the elastic and plastic areas 
under the postulated load displacement diagram by 

J=Je+Jp = + ^ ^ (17) 

B(W-a„) B(W-a„) 

from Eq 16 
Vp ~ 1 
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Hence, by combining Eqs 9, 10 and 11 

2B(W-aJ 2B(W-a„) 

and rearranging and substituting for P^ from Eq 13 gives, for the SENT geometry 

Pngp(i - Ve) + VePn9n Loygp 

2B(W - a„) 2 

The semi-elliptical surface notched tension geometry is very difficult to analyze be
cause of the curved crack front and propagation in both width and thickness direc
tions. 

To obviate the need for the lengthy and difficult calculation of r)g two approaches 
can be applied. 

(1) For large plastic displacements the elastic contribution (t/g) could be ignored, 
or (2) For large plastic displacements since Ug < Up, and, except for very deep 
cracks for the tension geometries r/g > rjp, a less conservative assumption than the 
first approach is to assume that Ve — Vp hence 

r,„U tota.1 
J = (20) 

remaining ligament area 

If the crack is assumed to be semi-elliptical and limit load is based on the remain
ing ligament area then 

P, = Lcy(wB-^^^^) (21) 

To calculate /-values in this configuration three different assumptions can be 
applied: 

(1) Assume propagation through thickness only, that is, in the a direction using 
actual a max measurements; 

(2) Assume propagation at a constant aspect ratio {A = a^^^/2c) measurements 
using actual a max', and 

(3) Assume (2) with actual measurements of both a max and c. 

Assuming Propagation Through Thickness Only That is, constant c 

from Eqs 12 and 21 

Lovvc 
^ = - 1 ^ ^ . (22) 

then substituting for ^p from Eq 15 and for Pi from Eq 21 

TTC Up 
J= ^ (23) 

2B 
WB 
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therefore 

wc 
V . - ^ (24) 

Hence, assuming rfg — rip and since 

U total = 1- ~ (25) 

therefore from Eq 20 

TC Pnqn + Pllp 

2 WB ^ 

substituting for Pi from Eq 21 in Eq 26 gives 

/ = ^ ^^ + Layq„ (27) 
4B / i ra„a^c\ 45 '^^'^ 

Wff -
2 

Assuming propagation at constant A ( = a max/2c) 

Rearranging Eq 21 withy4 = "max/2c 

/ ' x ^ . L a y ^ t y l l - ^ ° " " " ' ) (28) 

then from Eqs 12 and 21 

that is 

lira max n ^iis^iayW'o (29) 

Tra, 

2AB B 

then substituting for qp from Eq 15 and for PL from Eq 28 

J = ?![f^ ^̂ £ (30) 
AWBA 5(1 - TOr^^J/AWBA) 

then assuming r/g = rip from Eq 25 and substituting for Pi from Eq 28 
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J(A) = 1 (31) 
/2WBA a„ax\ 4Afi 

JM I — — 
\ TO max 2 

Note that Eq 31 is exactly twice the numerical value of Eq 27. 

Assuming propagation at constant A with test values of c and a max 

If Eq 31 is used with current values of c and 
flmax t̂ can be rearranged by substitu

tion of y4 = a max/2c to give 

J — 1 LavQa (32) 

2B(WB/Trc„ - amax/2) 2B '^ 

For the CT geometry Merkle and Corten [21] give the r\p factor as 

2(1 + a) "^ (1 + a2) 

where 

(33) 

2a„ \ % J - J ^ U 2 - f ^ ^ + l) (34) 

therefore Eq 17 becomes for the CT geometry 

rteUe 2(1 + a) t /„ 
/ = — 1 (35) 

B{W-a„) (1 + a 2 ) i f f ( M ^ - a „ ) 

Combining Eqs 9, 10, and 35 gives 

, _ nePniqn - ^p) , (.P„ + P^qp (1 + a) 
J — 1 — (36) 

2B{W - a„) B{W - a„) (1 + a^) 

where P^ in Eq 36 is given by 

PL=L(jYBaiW-a„) (37) 

A simpler form of Eq 36 may be obtained using the analysis of Ref 22, which is 
similar to the Merkle and Corten approach with the exception of an assumption that 
the CT specimen has a moment arm of {a„ + 0.6(W — a„)). Using this expression the 
limit load equation becomes 

LaymW^a^ (38) 
4(0.4a„ + 0.6W0 
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Using Eq 38 in the analysis described above (see SESNT section) gives 

1 
Vp = 1 + 

0.6 + 
0.4a. 

W 

(39) 

and the / estimation formula becomes 

Pngpfl + 

J = 

+ 1 + 

0.6 + 
0.4a, 

W 

" Ve\ -^ Pn<lnVe 

2B{W - a„) 

0.6 + 
0 ^ 

W 

1 -
W 

0.6 + 
W 

oylp (40) 
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ABSTRACT: The high ductility and toughness of the stainless steel reactor piping system 
have made it virtually certain not to experience unstable crack extension. The present 
study attempts to provide theoretical assurance that the piping system will not suffer 
unstable crack extension even if severe circumferential cracking should occur. The 
analysis is based on the tearing instability concept and the tearing modulus criterion. 
Simplifications are conservatively made to facilitate the complicated analysis. The results 
are presented parametrically in graphical forms for convenience of general use. An ap
plication to a specific example is also discussed. 

The results indicate that the ratio, L/R, is of major importance in consideration of 
crack stability, where L is the length of the pipe between supports and R is the radius of 
the pipe. It is shown that unstable crack extension would not occur in stainless steel pip
ing systems designed in accordance with the American Society of Mechanical Engineers' 
(ASME) code even if severe circumferential flaws were present, provided that the values 
of L/R are less than about 200. Since the values of L/R for boiling water reactor (BWR) 
stainless steel piping systems are generally much smaller, large margins against unstable 
fracture are assured for these systems. When L/R exceeds 200, a more detailed analysis 
would be necessary to demonstrate crack stability. 

KEY WORDS: stainless steels, reactor piping systems, stress corrosion cracking, 
J-integral, J-R curves, tearing instability, tearing modulus (J) , fractures (materials), 
crack propagation 

Circumferential cracks have been observed in some boiling water reactor 
(BWR) piping systems. These cracks normally initiate at the inner surface of 
the pipe wall and grow radially and circumferentially by stress corrosion (and 
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perhaps fatigue). Most of these intergranular stress corrosion cracks can be 
detected through inservice inspection before propagating through the wall. 
When cracks become through-the-wall, leak detection systems are capable of 
sensing the leaks. Further, materials used for the piping system, typically 
like Type 304 stainless steel, exhibit such high ductility and toughness that it 
is very unlikely to suffer sudden fracture even when relatively large flaws are 
present. In fact, all of the recent leaks due to stress corrosion cracking have 
been observed in stainless steel piping that did not fracture. 

However, in order to provide assurance that piping subjected to stress cor
rosion cracking will leak before breaking, it is necessary to show that a 
through-wall crack, which leaks, grows in a stable manner and that it does 
not cause sudden pipe fracture. In the present study, a fracture mechanics 
analysis is performed to assess the stability of crack extension in the piping 
system. The analysis is based on the tearing stability concept and the tearing 
modulus stability criterion [1].^ The criterion is valid for materials whose 
failure is characterized by gross yielding and subsequent plastic instability. 

The concept of tearing modulus, T, has been developed on the basis of the 
J-integral resistance curve and the nondimensional quantities T^^^ and J'appi-
These quantities are defined by 

_E_ <f/niat AT — - ^ — 
'"'" ~ " 2 aa "PP' ~ a 2 da 

^mat — —7 ~T^ and T^„r,i — r — (1) 

where 

E — Young's modulus, 
Og — an appropriate flow stress, 
a = the relevant flaw size in the stability analysis, 

•̂ mat — the value of / following the material resistance curve, and 
/ = the applied value of / . 

The condition of stability of crack growth is given by 

T'mat > Tappi stable (2a) 

T̂mat < Tappi unstable (2A) 

When Eq 2a is satisfied with a substantial margin, the stable crack growth is 
assured. Rigorous accounts of the concept of T and its applicability are 
found in Refs 1 and 2. 

In this study, a simplified, conservative stability analysis is made 
parametrically. In the analysis the pipe is treated as a beam whose cracked 
cross section is subjected to plastic limit moment. Since segments of the 

•'italic numbers in braclcets refer to the list of references appended to this paper. 
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crack on the compressive side may close and carry the compressive load, the 
analysis is made for both cases with and without crack closure. Numerical 
results are presented graphically. The stability of cracks observed in actual 
reactor pipings is also discussed. 

Method of Analysis 

The fracture mechanics analysis of tearing stability based on the concept 
of tearing modulus, T, as defined by Eq 1, requires the knowledge of the ap
plied value of / (or its differential form dJ) in terms of crack size and other 
geometric details and the loading system configuration and stiffness. 

To facilitate the analysis, the pipe is treated as a beam subjected to bend
ing and axial loads. For materials and operating conditions of interest, it is 
sufficient to examine the crack stability in ductile tearing. In the analysis, 
therefore, the following conditions are imposed: 

1. The cross section containing a crack is fully yielded, while the other 
part of the pipe is elastic; and 

2. The material is perfectly plastic (nonhardening). 
That is, the cracked section of the pipe is subjected to the plastic limit mo
ment, Mp. 

Under these conditions, a conservative analysis is assured for the following 
reasons. The applied value of/calculated from an approximate formula, Eq 
4, is an overestimate of/based on the definition, Eq 3. Also, it is known that 
the tearing portion of the J-integral resistance curve is in general an increas
ing function with decreasing slopes with respect to the crack extension. 
Therefore, the overestimated value of / corresponds to an underestimated 
value of Tmat on the J-resistance curve. 

Then it is convenient to use the following definition of / [3\ 

where 

A = the crack area, 
M = a bending moment applied on a cracked body, and 
(i> = the corresponding angle of rotation. 

When perfectly plastic behavior is assumed and the limit moment is reached, 
Eq 3 is rewritten in the form (see Fig. 1) 

/ = - — - ^ . 0 (4) 
oA 

It is noted that the axial force is normally a built-in load, such as internal 
pressure, and independent of flaw size, and that it is not usually expected to 
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Cracked 

-Yielded 

FIG. 1—Limit moment, M^, and angle of rotation, 0. 

be large enough to cause gross yielding of the net section. The influence of 
the axial force on the /-value is taken into account, in effect, as changes in 
the location of neutral axis and the limit moment, Mp. Thus, Eq 4 will pro
vide a reasonable approximation. If/ is known as a function of crack size and 
other variables, then the stability analysis may be performed for each 
specified loading system. 

The geometry of the cracked section of the pipe is assumed to be as shown 
in Fig. 2, that is, the section contains an internal circumferential crack in ad
dition to a through-wall crack. The following notation is used in the present 
analysis (Fig. 2): 

R = radius of the pipe measured to the middle of the wall, 
t = thickness of the pipe wall, 

26 = angle contained by the through-wall crack, 
a = depth of the circumferential crack, 

Oo = flow stress, and 
P = axial force. 

Cracked 

FIG. 2—Cracked section of pipe. 
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In addition, it is convenient to introduce the following nondimensional quan
tities 

_ a 
a — -

t 

P = 
(lirRt) Oo 

(5) 

(6) 

Since a part of the crack located on the compressive side may close and carry 
some compressive load, the analysis considers the two extreme cases; that is, 
(a) no crack closure occurs on compressive side, or (6) the crack closes com
pletely on compression side and carry compressive load. These two situations 
are shown in Fig. 3. 

It is readily seen that the location of neutral axis defined by angle a (Fig. 
3), the limit moment, Mp, and^ the /-value, etc., are functions of four 
variables; that is, t/R, 6, a, and P; and depend on condition (a) or (b) cited 
previously. However, for simplicity, one may assume that the pipe is a thin-
walled cylinder, that is 

t/R « 1 (7) 

Under this assumption, one of the parameters, t/R, is eliminated from the 
analysis. Also it should be noted that, when the axial force, P, is due to an in
ternal pressure, p, P is related to p by 

P = 
1 /R 

(8) 

The expressions for the location of neutral axis, a, the limit moment, Mp, 
and the /-value are given below in terms of the remaining three parameters. 

\V ^'''\^J 

— No Crack Closure 

(a) 

t 
a 

- C ^ o 

+cr 
o (f^? n D ^ r " i f i 

\ ^ O^^^^Q^/ 

— Crack Closure 

(b) 

-t 
-a 

- C ^ o 

+cr 
o 

FIG. 3—Location of neutral axis, a. 
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0, a, and P for both cases (a) and (b). A simplified crack instability analysis 
follows. 

Location of Neutral Axis 

The location of the neutral axis is defined by an angle a as shown in Fig. 3; 
a = aifi, a, P) is readily written as follows, 

(a) With no crack closure (Fig. 3a) 

« = ^ + f T ^ (9) 
2 2 1 — a 

{b) With crack closure (Fig. 36) 

^ " " " + T - ^ f̂  + !̂  (10) 2 — a 2 — a \ 2 

Plastic Limit Moment, Mp 

Now that the location of neutral axis is known, the limit moment, Mp, is 
also readily calculated by geometrical considerations. It is convenient to nor
malize Mp in the form 

Mp = 4a„R^t Mp (6, a. P) (11) 

Note that 4 OoR^ t is the limit moment^of the gross section of the pipe (0 = 
a = 0) under pure bending (P = 0). Mp is a nondimensional representation 
of the limit moment, which is given by 

(a) With no crack closure 

Mp = it-a) ( c o s a - ^ s i n e ) + -^ P s i n a (12) 

where a is given by Eq 9. 
(b) With crack closure 

Afp = (1 - a) - ; — ~ cosa - » sin^ I + -r- P s i n a (13) 

where a is given by Eq 10. 
The numerical values of Mp are plotted against 6 in Figs. 4 and 5 for 

various values of each parameter and for both cases with and without crack 
closure. 

The limit moment, Mp, increases slightly as the axial force, P, increases 
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Mp =4o;R t Mp {e,a,p) 

NO CRACK CLOSURE 

10 20 30 40 

- ^ Q (degree) 

FIG. 4—Mp versus 6, without crack closure. 

p 
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0.25 

0.50 

with other variables unchanged. However, it should be noted that the 
magnitude of bending moment, which can be externally applied on the 
cracked section, decreases due to the axial force. To obtain the applied value 
of/, the total magnitude, Mp, is used in Eq 4. 

Expression of] 

Since the stability of extension of the through-wall crack in the cir
cumferential direction is sought, / should be calculated along the radial edge 
of the crack. Referring to Fig. 2, the increment of crack area, dA, is given by 

dA = 2Rt(l a)de (14) 

Substituting this into Eq 4 and combining with Eq 11, / is calculated as 
follows 

J = -
2a„R 

1 - a 

/ is conveniently normalized in the form 

dMp 

de 
(15) 
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/ = i<x,R)J = (a,R)Fj(e,a. P) • 4> (16) 

where/ = Fj {d, a, P) • 4)\s & nondimensional representation of/ and 

Fj{e,a.P) 
2 m„ 

(17) 
I-a be 

Combining Eqs 9, 10, 12, 13, and 17, Fj (8, a, P) is written in the following 
simple form. 

(a) With no crack closure 

FJ = sma + cosp — — :: r cos a 
2 1 -a 

(b) With crack closure 

(18) 

FJ = sm a + COS 9 — -~ ~ zrz: cos a 
2 1 — a/2 

where a is given by Eqs 9 and 10, respectively. 

(19) 

a. 0 . 6 -
12 

Mp = 4 o ; R t Mp (8,a,P) 

WITH CRACK CLOSURE 

30 40 50 

*^ 9 (degree) 

0=0.75 

p 
» 
• 
* 

• 

0.00 

0.125 

0.Z5 

o.so 

FIG. 5—Mp versus B, with crack closure. 
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The numerical values of i ^ are presented in Figs. 6 and 7 for various values 
of the parameters. 

The preceding analysis of / and the subsequent stability analysis are 
readily generalized for a cracked beam with an arbitrary cross section sub
jected to the limit moment (Fig. 8). It is interesting to note that / is always 
given in the form 

ooh -IJ]4> 

or 

= '^o{h-\^)<t> (20) 

where, referring to Fig. 6 

h = vertical distance from the neutral axis to the crack edge, 
B = width of the beam at the location of neutral axis, 
P = axial force, and 

Ap = area given by P/oo-

The expressions of J given by Eqs 16, 18, and 19 can be alternately obtained 
directly from Eq 20. 

2.0|-

J=o;'R«Fj {e,a,ph4> 

NO CRACK CLOSURE 

0=0.75 

m 

5=0.5 

5=0.25 
Any o 

5=0.0 

p 
K 

• 
* 
• 

0.00 

0.125 

0.25 

0.50 

20 30 40 50 

»~ 9 (degree) 

60 

FIG. 6—Fj versus 8, without crack closure. 
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iffo.o 

J=o; -R-Fj ( e , a,?)•<#> 

WITH CRACK CLOSURE p 

» 
• 
* 
• 

0.00 

0.125 

0.25 

0.50 

10 20 30 40 50 60 
»- Q (degree) 

FIG. 7—Fj versus 6, with crack closure. 

-Crack 

J = - „ . 9 =o-o(h-J ^ 
B,aa 2 B, •)c^ 

FIG. 8—Cracked beam with arbitrary cross section. 

Simplified Instability Analysis 

It is now possible to make a conservatively simplified instability analysis of 
crack extension in the piping system. The analysis employs the similar pro
cedure discussed in Ref / . That is, referring to Fig. 9, when a rotation 4>< is 
imposed at the fixed ends of the beam, ^ is written in the following form con
sidering separately the elastic part, (̂ ei. and the plastic part, <̂pi 

0 — <Ael + 0p (21) 
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k ^pi 

-Crack 

_JL 

k 

-(^el -Yielded 

- L 

FIG. 9—Fixed beam under uniform bending, 0 = constant. 

The total rotation, 0, remains constant during the examination of stability 

d^ — d<}>e\ + d(|>p^ — 0 

The elastic part of rotation, 0ei. has the form 

L ML 
»ei — EI 

(22) 

(23) 

where 

M = Mp (limit moment, Eq 11) 
/ = TTRH 

The plastic part of the rotation, </)p|, is from Eq 16, 

/ 1 
0pi — 

ffoR Fj 
(24) 

where Fj is given by Eqs 18 and 19. 
Since the extension of the through-wall crack in the 6 direction is sought, 

from Eq 23 

" de EI 

Combining Eqs 11 and 17, rf(^ei is written in the form 

'^'^'' " ~ "7 ^ ̂ ^ ~ "̂  (I" '̂ ^̂ '̂ "• ̂ ^"^^ 

(25) 

(26) 

Also, from Eq 24, noting that both / and Fj contain 6 
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d<t>pi = ^ d J + ^ dFj (27) 
dJ oFj 

For convenience, one writes this in the following form 

1 J / I \ dFj 

Substituting Eqs 26 and 28 into Eq 22 and noting that the crack increment in 
the 6 direction is R dd, one has 

JL.^=j.,^e,-a,P).^ + FAe,a,P)-^^ (29) 

where F j and Fi are related to Fj as follows 

Fi = — a - 'a) Fj^ (30) 
•K 

and 

1 dFj 

Thus, Tappi in the instability condition, Eq 2b, is given by 

- 7 - I F 
T'appi = Fiie,a,P) ^ + F2{d,a,P)^f^ (32) 

From Eqs 18, 19, 30, and 31, F^ and Fi are written in the form 
(a) With no crack closure 

f, = — (1 - a)Fj^ (33) 
TT 

and 

1 1 TT "P 

Fi = •= TT (cosa — 2 s\r\d + ^ :; = sina) (34) 
Z t ] 2 1 a 

where a and Fj are given by Eqs 9 and 18, respectively. 
(b) With crack closure 

Fi = — (1 - a)F/2 (35) 
TT 
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and 

F^= ^ ^ 
1 1 1 - a 
2 Fj 1 a/2 cosa — 1 

a . . . X 
— sin^ + -:r 2 1 ^ ^ ^ ^ i ° « j ( 3 6 ) 

where a a n d i v are given by Eqs 10 and 19, respectively. 
The numerical values of F^ and Fj are presented against ^ in Figs. 10 

through 13, for various values of parameters and conditions with and without 
crack closure. 

Considering that the first term on the right-hand side of Eq 32, Fi-(L/R), 
results from relaxation of the elastic deformation of the beam (or pipe) dur
ing the crack increment, one may reasonably expect that the uniform bend
ing condition imposed in the present analysis is more severe than other 
loading conditions or pipe geometry provided the length of pipe, L, between 
the supports is equal. For example, consider a simply supported pipe sub
jected to a concentrate load that causes the maximum bending moment 
equal to Mp at the cracked section as shown in Fig. 14. When one imposes 
the condition that total vertical displacement at the load point remains con
stant {dA = 0) during the instability analysis, Tappi is given by 

1 - L - JE 
Tappi = -F, id, a.P)j + F2 (6, a, P) — (37) 
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FIG. 10—Fi versus 6, without crack closure. 
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FIG. 11—Fi versus ft with crack closure. 
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FIG. 12—F2 versus 6, without crack closure. 
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FIG. 13—F2 versus 6, with crack closure. 

Crack 

FIG. 14—Simply supported beam, A = constant. 

where F\ and F2 are the same functions as in Eq 32. Note that the change in 
loading condition results in the change in the coefficient of the first term and 
does not change the second term. Thus, Tappi given by Eq 32 is expected to 
provide the upper bound of the r^ppi-value in real structural situations. 

Application 

Consider a 711 mm (28 in.) BWR stainless steel recirculation outlet line, 
which might contain a large intergranular stress corrosion crack in its wall. 
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This line was selected because it is the largest in a BWR and has the largest 
possible coolant loss should a pipe rupture occur. The geometry of the 
cracked section is as follows (refer to Fig. 2): 

R = 356 mm (14 in.) 
t = 38 mm (1.5 in.) 

26 — 100 deg (for example) 
a = a/t = 0.75 (for example) 

The applied pipe loading is assumed to be the BWR design pressure and a 
bending moment sufficient to produce a fully plastic bending moment in the 
remaining ligament of the cracked pipe section. The flow stress, CTQ, is 
assumed to be 345 MPa (50 ksi) accounting for hardening. Then, from Eq 8, 
the value oiP is approximately 0.1. 

a„ = 345 MPa (50 ksi) 

P = 0.1 

For these values of variables, the functions F^ and Fj in Eq 32 are read from 
Figs. 10 through 13. That is, 

(a) With no crack closure (Figs. 10 and 12) 

Fi = 0.24 

F2 = - 0.28 

{b) With crack closure (Figs. 11 and 13) 

Fi = 0.4 

F2 = - 0.44 

Therefore, the Tappi is conservatively given by 

L\ . , JE 
^appi = 0.4 ( - j + ( - 0 . 2 8 ) ^ 3 ^ (38) 

Using an experimental crack resistance curve for stainless steel [4] and 
assuming a significant crack extension, it is seen that the/-value is upward of 
700 kJ/m2 (4000 in.-lb/in.2). Taking/ = 700 kj/m2 (4000 in.-lb/in.^) for 
conservativeness 

Tapp, = 0.4 ( - 1 - 1.0 
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The value of T^^^ for stainless steel is normally larger than 200 [4]. Assuming 
that Tniat = 200, Eq 2 requires 

X = 183 m (600 ft) 

for instability. 
It should be noted that, from Figs. 10 through 13, for the range of 

variables considered in the present study 

L JE 
%pi < 1.3 — + 0.5 

Thus, the instability criterion, Eq 2b, always requires a very large value of 
L/R for instability. 

This implies that the unstable crack extension cannot occur in the stainless 
steel reactor piping system designed in accordance with the American Society 
of Mechanical Engineers' (ASME) design code provided that its L/R is not 
too large. 

Summary 

It has been known that the stainless steel reactor piping system subjected 
to stress corrosion cracking is virtually sudden-fracture-proof because of its 
high ductility and toughness. The present study attempted to provide 
theoretical assurance that the piping system is in fact "fracture-proof." 

The analysis is based on the tearing instability concept and the tearing 
modulus stability criterion. A conservative analysis successfully demon
strated that sudden fracture would not occur from circumferential cracks in 
the stainless steel piping system designed in accordance with the current 
design code, and limiting the L/R to values less than 200. The values oiL/R 
for BWR stainless piping systems are generally substantially less. When L/R 
exceeds 200, a more detailed analysis would be necessary to assure crack 
stability. 
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The Ubiquitous t] Factor 
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1980, pp. 314-337. 

ABSTRACT: The i; factor relates G or J to elastic or plastic work per unit ligament 
area rather than to the differential of work per unit crack advance. In principle this 
adds nothing to the understanding of fracture, but in practice it provides convenient 
relationships for the analysis of several fracture problems. The ij factor can be ex
pressed in terms of compliance, load or displacement, instead of work, and can be 
determined experimentally or analytically. Expressions are given for a selection of 
elastic, nonlinear, and plastic cases in some of which deep and shallow notch behavior 
differs markedly. 

Application to elastic and plastic test analyses, a / based design curve including an 
approximate treatment of residual stresses, and both elastic and plastic instability 
problems are outlined. 

KEY WORDS: fractures (materials), test methods, J-integral, plasticity, toughness, 
work to fracture, elastic-plastic fracture mechanics, crack propagation 

When regarded as rate of change of potential energy with crack growth, 
G or J can be related to the rate of change dw/dA, of the area, w, under 
the load displacement curve with change of crack area A. Prior to initiation 
this area equals the mechanical work done so that by algebraic manipula
tion G or J can be related to work done in a given configuration. Such a 
relationship perhaps adds nothing to understanding but appears useful in 
certain practical circumstances. The relationship also allows a simple ex
planation of certain, sometimes puzzling, features; such as, the variation 
of (nominal) specific surface energy, w/Bb, with ligament width (where w is 
work done andBb is the ligament area thickness5, breadth b); the radically 
different behavior of shallow notch and deep notch pieces and hence a 
derivation of the well-known crack opening displacement (COD) design 
curve or its related counterpart in terms of / ; rationalization of the rela
tionship between equivalent energy and various methods of estimating / ; 
certain instability behavior and so on. Most of these problems have been 
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studied before. The object of the present paper is to bring them together 
and point up the essential unity of the term that arises in them all; that is, 
the relationship between G or J and work done, the 17 factor. 

Some Common Uses of 1; Factors 

In the development of linear fracture mechanics (LEFM) relationships 
have been stated between the energy release rate, G, and the elastic work 
done, w, in the form U]^-^ 

G = v^iW^i/Bb (1) 

A related expression was used by Marshall et al [2] and the same con
cept arose in Ref 3. In a linear elastic system of compliance <j) 

Wei = Qq/2 = (/)QV2 = q^/2<l> (2) 

where Q is load and q is displacement of the loading points. Thus, 

_ b dw 
Ve\ — 7~ 

w da 
(j> da 

(3) 

where b is the ligament W — a, and if K is expressed in terms of the well-
known LEFM shape factor Y (that is, K = Ya\[a for other than crack-
line loading) then 

r/e, = 6^2^! Y^ada (4) 

The unnotched compliance, (^„, is used in evaluating the integral in Eq 4 
so that r/ei is a function of absolute length, as well as of a/W. A useful 
expression for the notched to unnotched compliance ratio is 

<t>„/<i>^ = 2Y^ab/WT]^id (5) 

where d is either tensile gage length, D, or 5/9, and S is the span in three-
point bending. Some values of jjei are shown in Fig. 1 by way of example. 
A similar term has been used to relate / to work done in yielding mechanics. 
Tension and bending cases were discussed by Rice et al [4]. The relation
ship is of the form 

•^pi = ripiWpi/Bb (6) 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
^ Reference / used the reciprocal notation for r) and did not include shear deflection in evaluat

ing T) for three-point bending. 
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3 PT BEND S/W= 4 

FIG. 1—Some examples of the elastic factor rjei [29]. 

where for the well-known case of deep notch bending (strictly, pure bending) 
rjpi = 2 for a/W greater than about 0.6. This was applied to three-point 
bending tests, but early use was restricted to cases where the elastic work 
was negligible or could be subtracted from the total. 

Expressions for use with compact pieces have been described by Merkle 
and Corten [5]. Sumpter and Turner [6] suggested evaluating/ in the two 
components 

J = ('7e|Wel + VplWpl)/Bb (7) 

for cases where rĵ , and rjpi were not closely similar. Dawes [7] and Chipper-
field [8] have applied this method in bending down to a/W = 0.2 with 
apparent success. 

More recently the realization that ijei ~ 2 for deep notch bending 
(S/W = 4, a/W greater than about 0.4) has led to the use of Eq 6 where 
/ and 7} are overall terms, as discussed by Srawley [9], and w, is the total 
work, elastic plus plastic. Thus 

J = r)gWt/Bb (8) 

For the limit state r/p, has been evaluated w^i = QLR, where Qi is the limit 
load, to give 

*??! — 
b QQL 

QL da 
(9) 

writing 

Qi=L B(W - a)Nay/D^-'^ (10) 
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where L is the plastic constraint factor, and for tension N — 1, D = gage 
length, or for three-point bending of beams of rectangular cross-section, 
N = 2,D = S (the span), then 

b dL 
L da 

Vpi=N--^^ (11) 

If, as in many deep notch cases, the constraint factor does not vary sig
nificantly with crack length, then as commonly known 

Vp\ = N(l for tension, 2 for bending) (12) 

but clearly, the more general case is where both terms in Eq 11 are 
significant. 

•q Factor for Widespread Plasticity 

Much of the foregoing is already known and has been summarized else
where [10] but is recounted here as a preamble to the further discussion. 
Two simple models of the r; factor are outlined here for extensive plasticity. 

The rj factor has recently come to the fore in studies of stable crack 
growth [11,12]. Following the analysis of tearing by Paris et al [13], for 
which the use of the / theory was justified as rigorous by Hutchinson and 
Paris [14], a generalization of Eq 9 (that is, expressed for any load Q, not 
just the limit state) was evaluated experimentally [12] leading to the real
ization that this experimental term was indeed identical to the rj factor of 
Ref / / . This experimental evidence for 17pj and also the computational evi
dence for rjo described in Ref 10 (as discussed later here in connection with 
Figs. 2a,b) showed that at least for some configurations rj was essentially 
independent of degree of deformation. A heuristic treatment leading to 
that result is given below. Another treatment in terms of / theory is offered 
in Ref 15. 

As a first model for nonlinear (nl) behavior, the load-displacement re
lation is expressed as a power law 

Q = q"/1r (13) 

where ^ is a compliance function that depends on a/W but not on Q or q, 
then the work done w„i is 

w„, = Qq/(n + 1) (14) 
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S/W = 4 
S / W = 8 

DISPLACEMENT q / q y 

FIG. 2a—The effect of extent of deformation on the overall factor, ri^, in three-point bend
ing, from finite element computations in plane strain. NOTE: qy is the displacement at yield 
of the uncracked body. 

N W H L I M I T 

DISPLACEMENT q/q y 

FIG. 2b—The effect of extent of deformation on the overall factor, rig, in tension. A, B — 
SEN with mild work hardening, deformed with ends kept parallel: for A, D/W = 4, a/W = 
0.05: for B, D/W = 4, a/W = O.l. C, D = CCP nonwork-hardening: for C, D/W = 2, 
2a/W = 0.5: for D, D/W = 2.5, 2a/W = 0.0625. 

and 

fi/„, = - a w n i / a a | , = (w„|/*)(£f^/da) 

whence using the form of Eq 6, but with the suffix, nl 

7?„, = (b/-^)(d-ir/da) 

(15) 

(16) 
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= -(b/Q)idQ/da)\ (16a) 

inb/q)(dq/da)\Q (166) 

Within the assumptions of this model, r;„i exists, Eq 16, as a constant for 
a given configuration. Note that Eq la is the form used for the experimental 
work of [12] although they are derived in a different way. Equation 16a 
reduces to Eq 9 for the limit state result, and if « = 1 all the above reduce 
to the LEFM cases. For real elastic-plastic materials it appears that Eq 13 
can be interpreted either as an approximate fit to the whole load deflection 
diagram, in which case, /, w, rj, etc., relate to the total (elastic plus plastic) 
behavior, or Eq 13 can be interpreted as the nonlinear part, additive to the 
separate linear elastic part as in Eq 7, in which case q must itself be divided 
into elastic and plastic components q^i and qp\. 

If ^ is moreover independent of the exponent n of the load deflection 
diagram then ^ = 0 (that is, the LEFM value of compliance) and ijni — Vei-
The circumstances under which the variables are completely separable in 
this way are not clear and require further examination. The computational 
evidence suggests that although rjpi is independent of degree of plasticity 
for only a small range of configurations. Fig. 2c (the deep notch bending 
or related cases), the overall factor r;,, is more nearly (though not entirely) 
independent of degree of plasticity for a much wider range of cases (Fig. 
2a, b), for which there is by implication a near independence of TĴ  on n 

FIG. 2c—The effect of degree of plasticity on the ratio of plastic to elastic factor T)^\/T]^\. a, 
b, = mild work-hardening: for a. SEN, D/W = 4, a/W = O.l.forb, three-point bend, S/W = 
4^ a/W = 0.1. c, d. — nonwork hardening; for c, three-point bend, S/W = 4. a/W = 0.5. for 
d, CCP, D/W = 2.5. 2a/W = 0.0625. 
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from the elastic case of « = 1 to the mildly work-hardening, for which 
« = 0.1 might be representative. 

The second model of interest is the so-called shallow-notch work-hardening 
behavior, where yield of the gross section remote from the notch can occur 
if the inequality 

a^w^ < XM(jf, (W - a)^ (17) 

is met. CT{| is a work hardened flow stress notionally taken as the tensile 
strength, or some estimated average strength, iV = 1 in tension, iV = 2 in 
pure bending, L is the plastic constraint factor, and M is the plastic shape 
factor relating first yield of the section to the limit state {M = 1 . 5 for 
bending of beams of rectangular section). If the inequality, Eq 17, is not 
met, then yield is restricted to the slip field associated with the ligament 
ahead of the crack. This must be so for nonwork hardening and is often so 
for the deep notch configurations used in standard specimens unless there 
is a very high degree of hardening. For shallow notches (such as, a/W < 0.1) 
in tension (where L = 1, M = 1, N — 1), first yield of the gross section 
occurs for a very mild degree of hardening and is thus found in nearly all 
cases other than the ideal nonhardening behavior. This spread of yield to 
the "remote cross-sections" away from the notch region radically affects 
the relationships between the notch stress intensity as measured by /, and 
the overall work or displacement values as seen in the next section. 

An approximate allowance for this behavior can be stated that helps 
understanding even if barely adequate for numerical purposes. Let suffix t 
denote "total" (that is, elastic plus plastic), and suffix o denote "overall" 
(that is, the whole component comprising notched region, n, and gross 
section remote from the notch, r), then write the work terms as two ratios, 
a and /3 

= OiWpy, (18) 

and 

w,„ = 0We,„ (19) 

If for shallow notch tension the plastic deformation is assumed to be 
rather uniform along the gage length once the inequality, Eq 17 has been 
met, then approximately a = D/D„ where D„ is identified with the gage 
length influenced by the notch (that is, the slip line region for nonhardening 
behavior); D„ — 2{W — a) for single edge notch (SEN), or Z)„ = W — 2a 
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for double edge notch (DEN). For any given load-displacement diagram 
the ratio of overall to (linear) elastic work, (3, can be estimated. For very 
shallow notch tension where the diagram approximates closely to an elastic 
triangle plus a plastic rectangle, /3 — {IqE/Doy) ~ 1 = {le/cy) ~ 1-
Thus, applying Eq 7 

no = U,, + ,,p,(i8 - l)/a]/;8 (20) 

Note even if elastic and plastic terms are not combined, the effective value 
of r/pi becomes 

)7p,(eff) - r,p,(/3 - l)/a/3 (21) 

As a very simple application of this approximation the following estimates 
are offered for comparison with a value extracted from an elastic-plastic 
finite element computation in which / was calculated from the contour 
integral and w from the total work done. The configuration is single edge 
notch, D/W = 4, a/W — 0.1 with mild hardening (not strictly power law) 
for which n — 0.12 in Eq 13, up to qE/Doy = 3. As a first estimate for 
simple tension (nonhardening) rj^^ = N = \. ks & better estimate (allowing 
for hardening) [15] Tjp, = 1 — n = 0.88. Using Eq 20 with r/̂ i = 0.2, 
D/W = 4, D„/W = 1.8, then at a deformation e/ey = 3, jjj, is evaluated 
as rjo = 0.356. This compares with the computed value of rĵ  = 0.33. 
According to the present simple estimate, as e/ey — oo the upper limit 
of r]g (for n small) is (1 — n)/a — 0.394 here. Such an estimate is perhaps 
sufficient to show that the overall picture contains the correct features, 
although simple "back of envelope" estimates are hardly adequate. A 
weakness of the elastic plus plastic analysis is that for small amounts of 
plasticity there seems reason to suppose (Fig. 2c) that the rj-value for the 
plastic component is not the same as the limit state value. The alternative 
of estimating r/ni from the power law hardening model requires a knowledge 
of ^ , and if it is assumed ^ = </> (the LEFM compliance) then r;„| = ijg]. 
Some computed values of jj,,, evaluated from / contour and work done in 
plane strain finite element computations are shown (Fig. 2a,b). The con
figurations include shallow and deep notches, bending, and tension. No 
data has been collected for a high degree of hardening. The broad trend 
of these results is that rĵ  is approximately independent of the degree of 
deformation, the more so for bending and rather less so for the tension 
cases. In no case studied is there the large variation that at first seemed 
likely when Tjei-values were known and ijpj was taken as N. However, for 
the shallow notch where the absolute value of jj is rather small there may 
be a significant increase from r/g) to rjpi (take into account the previously 
cited example •q^^ = 0.2, jjpj = 0.33, as computed, where both are signifi
cantly less than A'̂  = 1, yet differ by 50 percent from each other), so that a 
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statement "rj^ is approximately independent of deformation" requires care
ful interpretation according to circumstances. 

Some Uses of the rj Factor 

Test Procedures 

The original use of rj in the author's previous analysis [/] was to show 
that the term w/Bb sometimes used in impact testing, where work is the 
only variable measured, is not equal to G, but can be related to it. If data 
are available for various notch depths (strictly with evidence that w = Qq/2, 
with no "tail" to the diagram) then from Eq 1 a plot of work to fracture 
against the "modified area" Bb/rjgj will have a slope G^, as seen in Fig. 3, 
Curve A. This method was used [2] for impact tests on brittle plastics. 
The unmeasured kinetic energy displaced the line from the origin (Fig. 3, 
Curve B) but appeared to give the slope substantially as required. 

M O D I F I E D AREA B b / l x l l O ^ m ^ ) 

FIG. 3—Determination of G/c by linear plots of work to fracture versus the modified area 
Bh/i]ei: A—Poly-methyl-methacrylate (PMMA) static tests [1]; B—PMMA, impact tests [2]; 
and C—aluminum alloy L95WP, impact tests. 
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Some recent data on a high-strength aluminum alloy are shown, Fig. 3, 
Curve C. The resulting value of G^ from the slope gives a toughness value 
in terms of K that compares favorably with conventional Kj^ tests. It is 
supposed that for this material there is a negligible effect of strain rate on 
toughness. Dynamic load-deflection records to picture more fully the work 
to fracture were not taken in this particular study, so that the near agree
ment in toughness value with that anticipated should not be regarded as 
definitive. 

The direct relationship of toughness to work, extended to plasticity by 
Eq 6, is the basis of the one specimen technique for finding Z ,̂. The re
quirement for detecting the onset of crack growth so that the work is 
measured up to that point only, parallels the requirement of "no tail" to 
the diagram in the LEFM use. Thus, use of Eq 6 overcomes the need for 
calibration using more than one crack length as originally introduced by 
Begley and Landes [16] but may still require the use of more than one 
specimen to determine the onset of growth. Following the experimental de
termination of 7] by Ernst et al [12] for a particular material and configu
ration, methods are now becoming available to determine both onset of 
growth and current crack length for the determination of the R-curve from 
a single test. 

Other Estimates of J 

A statement that rj is independent of the degree of deformation clearly 
relates the concept of equivalent energy to the / theory. This statement 
implies nothing about the procedures that may be attached to the use of / 
or equivalent energy [17], or the absolute relevance of either, but merely 
points out that an equivalent G, G^q, derived from an elastic diagram of 
equal area, w, will be numerically related to / by 

G,q/r,ei = J/Vo = w/Bb (22) 

Clearly, if rj^i — rio, as has been realized for some time for deep notch 
three-point bending, where for S/W = 4 both terms are approximately 2, 
then Ggq — J. The evidence of Fig. 2 is that the near constancy of rig with 
respect to deformation extends, at least approximately, over a wider range 
of configurations than was at one time realized. The relationship between 
/ and work can be approximated in various ways. Thus 

/ = G{w,/w,OiVo/Vei) (23) 

where w, is the total work done (OXAC), Fig. 4, and w^i is the actual 
elastic work (BAC). If a value for TĴ  is known then / is best estimated 
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DISPLACEMENT q 

FIG. 4—Load displacement diagram showing apparent compliance OA and actual elastic 
compliance BA (parallel to OX). 

from Eq 8. If a value for r/o is not known but the assumption ijo = ijei is 
nevertheless made, then an estimate for / is 

/ = G(w,/Wel) (24) 

As just noted, this would be reasonable for bending cases for all notch 
depths but less valid for tension beyond contained yield. / can also be 
expressed in terms of the apparent compliance OA (Fig. 4). Using the 
suffix (a) to denote the values associated with the apparent configuration 
for which OA is the compliance. 

(25) 

Data computed in bending with mild work-hardening show the term 
{w,/b) « (Wa/fe„) to within a few percent for shallow and deep notches 
(up to J/G — 2). Although this relationship does not seem fundamental, 
it is quite plausible and allows the approximate statement 

J - GaiVo^Vela) (26) 

If r/o == 7?ei and also r/̂ i is independent of crack length in the range b to ba, 
then 

/ - G„ (27) 
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This approximation would not be unreasonable for many cases of con
tained yield where it is analogous to / = G{a + rp)/a but with the size of 
plastic zone, r^, now evaluated by effective compliance rather than by the 
usual Irwin correction factor. It would also be reasonable for extensive yield 
in deep notch bending, S/W = 4, where ijo = JJ = 2 over a range of 
notch depths, but not for other circumstances where either rj„ > jĵ i or TĴ I 
varies significantly with crack length. 

^-Displacement Relationships and the J Design Curve 

If Eq 6 is differentiated for the limit case with Wpi = Qiq and ijpi con
stant, then 

dJ^x/dq = VpiQi/Sb (28) 

The form of this expression was given by Bucci et al [18], but it is usually 
discussed for the case, Eq 12, where r/pi = N. The excellent agreement 
found [19] for both deep and shallow notch tension between computed 
data for center cracked panel (CCP) nonhardening cases (where inequality, 
Eq 17, is not satisfied) and Eq 28 with i/pi = iV = 1 is shown in Fig. 5a, 
Curves A, B, and C. But with mild work hardening sufficient for inequality, 
Eq 17, to be satisfied (for SEN'' with a/W = 0.1), the results. Fig. 5a, 
Curve D [20], require the insertion of iĵ jf from Eq 21. 

Values for three-point bending are shown. Fig. 5b. Agreement with the 
simple theory is excellent for the deeper notches, A-a and B-b, but is in
adequate for shallow notches, C-c, where yield breaks back to the front 
surface of the beam, requiring use of Eq 11 rather than Eq 12 for esti
mating r). If the abscissa of Fig. 5 is changed from displacement q to strain 
in the uncracked body, then the Curves C are representative of the / design 
curve [20-22]. Based on data computed in plane strain for shallow notch 
cases, 0.025 < a/W < 0.1 in tension and bending and for certain other 
cases of cracks emanating from or buried beneath a hole in a plate in 
tension and at the bore of a thick cylinder under pressure (represented in 
two dimensions), it was shown [22,23], that the upper edge of the com
puted data could be represented by the three equations, as summarized [10] 

for e/ey ^ 0.85; that is, LEFM 

JE/Y^oy^a = (e/ey)2 (29) 

"•it is clear from other data that the difference between the cases is not due to the change 
from CCP to SEN but from nonhardening to mildly hardening as judged in relation to Eq 17. 
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q E / 0(Jy 

DISPLACEMENT 

FIG. S«—Computed values of i-contour integral versus displacement showing comparison 
with slopes in the plastic regime as predicted by simple theory. Tension plane strain—(A) 
slope in plastic regime from simple theory (18); (B) Nonwork hardening, CCP, a/W = 0.5: 
(C) Nonwork hardening, CCP. a/W = 0.0625; and (D) mild work hardening. SEN, a/W = 0.1 
[20]. 

DISPLACEMENT 

FIG. 5^—Three-point bending, plane strain, mild work hardening. A, B. C computed: 
a. b. c. simple theory: A-a, a/W = 0.5: B-b, a/W = 0.3, and C-c. a/W = O.l. 
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for 0.85 < e/ey < 1.2; that is, contained yield 

JE/Y^ay^a < 5[ie/ey) - 0.7] 

for e/ey > 1.2; that is, uncontained yield 

JE/Y^ay^a < 2.5[(e/ey) - 0.2] 

(30) 

(31) 

The COD design curve [24] as now used [25], defines an equivalent 
crack, a, such that Y^a = -m, by the equations 

dE/aya = ie/ey)'^ tor e/ey < Q.S 

bE/aya = {e/ey) - 0.25 for e/ey 2: 0.5 (32) 

The COD and / design curves were compared in Refs 23, 24. The a termi
nology is used in Fig. 6, where / is also translated to COD by 7 = mayd. 
It is usually found that 1 < w < 3 and in extensive yield the slope of the 
COD curve agrees well with the / formulation if w = 2 (Fig. 6). In the 
LEFM regime the agreement is better if m = 1, but there are a number of 
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other differences [24] that must be considered if close agreement is re
quired. The point at issue is that the / analysis provides a curve that con
tains the 17 factor via Eq 28. The dependence of rj on configuration (via 
Eqs 11, 20 and 21) allows the whole group (JE/Y^oy^a) to be sufficiently 
independent of geometry (for shallow notches and mild work hardening) to 
permit the establishment of a simple one curve design concept when ex
pressed against e/ey. This concept parallels in all general trends the COD 
design curve itself already supported by extensive experimental data, yet 
based on no firm theoretical formulation since the original Dugdale model 
did not allow the yield of the gross section or changes in constraint that 
determine the relevant value of ??. 

A further use of the ij factor was incorporated into the / design curve 
[24,27] to allow for residual stresses. It is well-known that the / contour 
integral is not path-independent in the presence of residual stress but the 
close similarity between COD and / suggests that the satisfactory experience 
gained in using COD for residual stress cases [28] must have its counter
part in / theory, if rigor is dropped in favor of simplicity. It was therefore 
argued [27] that for rule of thumb purposes in which residual stress values 
are not known in detail, the effects could be allowed for in the following 
three steps: (1) effect of the procedure causing the residual stress (for ex
ample, welding, cold forming) on material toughness (including weld metal 
and heat affected zone (HAZ) if need be); (2) treatment of "long range" or 
"reaction" residual stress fields, if any, as conventional loads, probably 
displacement controlled, and (3) treatment of "short range" or equilibrium 
stress fields through the rj factor. The maximum elastic strain energy, w, in 
the short range fields is VaY^/2E, where V is the volume affected, of order 
Blh where B is plate thickness, / is the length, and h is the width of the 
zone affected by high residual stress. Thus, applying Eq 1 

G = i7»iay^ (33) 
' ' ' ^ lEBiW -a) 

Taking the shallow crack value of rĵ i for tensile loading, r/ei '^ &a/D, 
G is estimated for two cases: a transverse weld, I = W, h = D, in which a 
crack could sever the plate by running parallel to the weld line, and a 
longitudinal weld for which the effective width W is identified with the 
extent of the residual stress region h and for which the length / over which 
a crack would relax the stresses is identified as D. In both cases h is of 
order two or three B, as is / for the longitudinal weld, but the precise 
relationship is not required in the above approximations. Thus, in both 
cases, the effective G for residual stress is expressed by the relationship 

= 1 (34) 

 



TURNER ON THE r, FACTOR 329 

Expressing G as J^[, the design curve of Eqs 29-31 is moved by unity on 
the scale JE/Y^ay^a to allow for the combination of yield level residual 
stress and applied stresses that enter the plastic regime. On the ordinate 
of Fig. 6, the /-design curve is moved by w units. Although the procedure 
of adding G (or /)-values appears not to be conservative if the combined 
applied and residual stresses are elastic (and could therefore be treated by 
LEFM if the stress values were known), the present procedure offsets this 
by assuming the residual stresses to be of yield level. The concept is again 
heuristic. It acts in the same direction as the procedure in the COD design 
method, which adjusts the abscissa e/ey by unity for yield stress level 
residual stresses, but is less demanding. Further features relevant to the 
whole design diagram pertaining to notch depth and work-hardening in 
connection with inequality of Eq 17 and to the effect of the unnotched 
body (or remote parts of the component) being in plane stress or plane 
strain are discussed elsewhere [23,27] but are not directly associated with 
the present discussion on use of the r] factor. 

Instability 

Since there are many expressions for K in terms of load, dG/da \ Q can 
be evaluated easily. Neglecting crack line loading cases the common form 
for KisK = Ya^ so that 

dG 
da 

G^ 
a 

. . la dY 
Y da 

(35) 

Various other quantities can then be expressed in terms of dG/da\Q and TJ^I, 
perhaps more conveniently than in other ways [29], Thus, from Eq 1 and 
for brevity, writing r/ei as r; 

b dG _ ^ , _b^ dt] , _6 dw 
G da T) da w da 

(36) 

Using the notation 

then 

^+--^=Mv) (37) 
1) da 

b dG _ J. . . , b dw . - j j . 

G da w da 
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and 

b bG 
G da 

Eq 35, also 

b dG 
G da 

fi(v) + v 

^ b ^ 2b dY 
a Y da 

A(v)-v 

(39) 

(39a) 

(40) 

Whence 

dG 
da 

dG 
da 

~2v 
B 

(41) 

For those cases where G is independent of gage length (that is, neglecting 
crack-line loading and short span beams where shear is significant), then 
/ i ('?) + "0 must be independent of gage length, although / j (rj) — 97 is not, 
and this follows from Eq 4. The order of magnitude of some of the terms 
can be assessed for the common specimens. As seen Fig. 1, for deep notches 
ri is about two (for bending) and one (for tension) though decreasing with 
increase of gage length or span, and tending to about d>a/d (d = D for 
tension, d = S/9 for bending) for shallow notches. Values of (b/r]) (,di)/da) 
lie between zero or slightly negative (deep-notch bending with S/W = 4) 
and about b/a, which is of order unity except for shallow notches. More 
precise values can, of course, be found from Eqs 3, 4, or 39. If fracture 
initiates at G, and the toughness does not vary with crack growth or im
plied variables such as strain rate, then for unstable growth at constant 
displacement dG/da\^ must be positive, that is, the purely geometric relation 

fM > V (42) 

must be fulfilled. For unstable growth at constant load the requirement is 

/ , ( , , ) + » , > 0 (43) 

and since rj is always positive this is nearly always so except for the crack-
line loaded cases here excluded, in which drj/da may be strongly negative. 
The effect of external compliance can be included by using an effective 
gage length or span. Thus, a structural or machine compliance can be 
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written </>„ = BEW/d^i (where d = D for tension and 5/9 for bending). 
This term will greatly affect r; and hence the constant displacement case, 
but not the constant load case, which as already noted is independent of 
length within certain restrictions. 

The statements of unstable growth, Eqs 42 and 43, only ensure that on 
reaching G = G, growth will at first continue. There is no assurance that 
growth will continue to the extent that the ligament is completely severed. 
In short, the sign of dG/da even if initially positive may change to negative 
for certain configurations. If it is assumed that there is no dissipation other 
than by fracture, then the total work, Wf, to sever the ligament is (for 
constant toughness) 

wy = GiB{W - a) (44) 

Thus, the condition for total severence is that when G = G,- at the same 
time w = uy. This condition is met for geometries where 

V < 1 (45) 

The real problem is, of course, dynamic, and the preceding simple treat
ment implies that any kinetic energy generated when G > G, is returned 
to the fracture process as the crack spreads to regions where G < G, so 
that the elastic energy available (at constant displacement, with no further 
external work input) is just sufficient to provide the total work of fracture. 
The effect of gage length can again be included in estimating 77 so that the 
meaning of "external work" can be "external to the component" if the real 
gage length is taken or "external to the structure" if the effective gage 
length is taken, while still neglecting inertia for this static model. Clearly, 
if for reasons of material, temperature, or strain rate, some mean tough
ness, G„, is known to be more relevant than G,, then the statement for 
complete instability (after initiation at G = G,) becomes 

V ^ Gi/G^ (46) 

If, as may well be the case for some structural steels at low temperature, 
the mean toughness for propagation is perhaps only half of that for initi
ation, then since JJ is two or less for most of the conventional testpiece 
shapes (it is slightly in excess of two for compact tension (CT) specimens), 
complete separation is to be expected even in a stiff machine. If fracture 
toughness increases with crack growth as in the conventional picture of 
crack resistance or R-curves, then unstable growth requires not only G > G, 
but also dG/da > dR/da. Crack-line load cases in which G decreases 
with crack length even at constant load are here neglected. The well-known 
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tangency condition for instability can be expressed in a simple way for 
either load or displacement control (including finite compliance within the 
latter case as an effective gage length, d^ff) by using Eqs 39 or 40 as ap
propriate. Thus, for unstable crack growth with finite compliance (with 
êff = ^actual for "fixed grip") 

f [/!(>?)-r?] > ^ (47) 

For fixed load, unstable growth requires 

X[ / i ( ' ? ) + ' ? ] ^ - ^ (48) 
b da 

With high compliance, represented by an effective gage length d̂ ff ~* °° 
then r/ei -> 0 so both expressions reduce to the same term. This formu
lation emphasizes that the applied term dG/da is but a simple multiple 
of G given by one of the geometry dependent expressions (/i (?;) + r])/b. 

The problem of stable growth in the plastic regime has recently been 
described in terms of / [30] using the R-curve analysis of [31]. The rele
vance of ijp, is briefly recalled. The R-curve is seen as a measure of total 
dissipation of plastic work to which shear lips contribute a part but by no 
means the whole. Thus, a major component of the R-curve is gross plastic 
work not necessarily immediately adjacent to the crack surface. This dissi
pation of work is expressed in the form of a material property through 
dJ/da and appropriate size and configuration factors, BiW — a) and r/p,, 
that in essence allow the original geometry dependent increment of work, 
dw, to be normalized in terms of / by differentiation of Eq 6. The argu
ment was summarized in [11] and is not repeated here. Expressions similar 
in form to Eqs 36-41 have been written down [32] to relate dJ and rj if the 
power law expression, Eq 13, is used. Additional terms in n arise (where 
n 9^ 1) as given in the Appendix. Equation 39 does not, of course, apply 
unless rjni = T/gi, but subject to the uncertainties already discussed, esti
mates of rjpi or rj„i can be made and used for assessing the applied severity 
(Tapp in the notation of Ref 13) in problems of ductile tearing. It can be 
also noted that if w » 1 (where w = {d/J){dJ/da) as in Ref 14) then the 
Jr curve for material tearing resistance {T^at ^^ the notation of Ref 13) 
reduces to that found in conventional / testing. If a correction of the form 
•̂ corr = -^(1 ~ (Aa/b)) is introduced, it is relevant for deep notch bending, 
but not as a generality, since, as pointed up elsewhere [33], J^orr — J '^ dJr 
only for that case, because the term/i(r;) — T] then has the value —1 
which leads to the desired result. 

The elastic energy release rate, /, available in the presence of plasticity, 
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was expressed [11] in terms of the elastic component of displacement, 
9ei and the t} factor. For near limit load, Qi, the expression was 

B I ^ B G - ^ (i/p, - r,e,) - ^ (49) 
i/pi oa 

The total work dissipation rate during crack growth also involved tj, and 
was expressed (for the case w » 1) as 

Bdw/da = B(b/r]pi)(dJ,/da) (50) 

Prediction of unstable growth was made when the available rate, Eq 49, 
exceeded the dissipation rate, Eq 50. 

Although this analysis gives the same term T^^^^ = {E/aY^){dJ,/da) for 
the measure of resistance to tearing as that found by Paris et al [13] and 
indeed the same dominant parameters in the applied term, nevertheless, 
the coefficient of T p̂p contains the term (»/p| — r/ei) among others. It is 
relatively easy to show that for a tough material and with little external 
compliance, unstable growth is often impossible since Tmat ^ T'app, but 
if an actual prediction of instability is required (as T^^^ is reduced by 
continued crack growth or if T^^^ is increased through compliance) then 
the numerical values are clouded by uncertainty over the term (r/pj — r/ei) 
which, as seen from the data of Fig. 2, may in some cases become the 
small difference of similar quantities. More detailed discussion of the 
comparison between Refs / / and 13 will be offered elsewhere [33], but for 
the prediction of the instability event it seems better estimates of ij in 
contained yield and full plasticity are required. It was also suggested [10] 
that the combined term rj/BiW — a) accounts for size and configuration 
in a way that at least conceptually performs the role of Broberg's "screening 
function" [34], defining the fraction of overall work that reaches the tip. 

Stress State 

Two rather indistinct uses of T; are noted with some reservations on 
validity. There is some computational evidence that the variation of rj with 
extent of deformation reflects the change of constraint, if any, from elastic 
behavior to plastic behavior, but the evidence is not clear since the "far 
boundaries" which, of course, partly determine constraint, also affect the 
work done. The variation in r) appears to arise from the constraint factor in 
Eq 10 being in effect a function of the extent of deformation (although the 
plastic constraint factor itself is defined only for the limit state), so that 
the effects of variation of constraint (Eq 11) and of degree of deformation 
(Eqs 18-21) combine. As discussed [15] this may mean that rjpi does not 
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exist in the strict sense in that the variables of deformation and configu
ration are no longer separable. The relation of fracture to stress state is 
uncertain. Despite a large amount of evidence there is still no agreement 
in the literature on whether / , is a suitable criterion for all degrees of tri-
axiality. The writer inclines to the view that a one-parameter criterion should 
be a reasonable measure of crack-tip severity for a given degree of tri-
axiality. Insofar as the datum measure is usually taken as Ki^ (or Gi^.) 
(that is, plane-strain conditions in LEFM which is itself a condition of high 
triaxiality (Oyy-.a^^-.a^^ = 1:1:2c)), then other conditions of high triaxiality 
such as high work-hardening, contained yield (the Prandtl slip field) or 
extensive yield for those configurations that maintain high constraint 
(for example, bending and similar curved slip line fields) should all be 
relatable to the / analysis, which when used in plane strain, models high 
constraint. It may be argumentatively less relevant to the cases in extensive 
plasticity where low constraint is found even in plane strain, since these 
would not relate to the LEFM datum. Thus, a one parameter discussion of 
fracture initiation or instability may have to be restricted to constraint 
that closely matches the particular application or be accepted on a lower 
bound basis. For lower bound data the high constraint configurations of 
deep-notch bending or compact tension are usually deemed adequate 
although for a lower bound R-curve the appropriate direction of propaga
tion and absence of shear-lip would also be necessary. The present dis
cussion tentatively links the statements of the invariance or otherwise of ri 
with degree of deformation, to maintenance of constraint so that the / 
dominated field continues to match the plane-strain LEFM field that is 
used as the datum. 

A similar possible relevance of rj also tentative as yet, arises in connection 
with creep cracking where relationships have been reported between crack 
growth rate and both a /-like term (called C* in Ref 35 and / in Ref 36) 
and work rate, Qdq/dt [37]. Insofar as both correlations are valid, a term 
corresponding to the r? factor is implied linking C* to work rate in analogy 
with / to work, although there is insufficient evidence to judge whether its 
value would match that of 7?e|. By analogy between power law hardening 
and secondary creep rate, it is likely to do so at least in those configura
tions where rjp) = rjel-

Conclusions 

The Tj factor provides a direct relationship between work per unit area, 
w/Bb, and crack tip deformation as measured by G in linear elastic, or / 
in nonlinear or plastic regimes. The relationship is complementary to and 
self consistent with the well-known definitions of G or / in terms of energy 
rate per unit crack advance. Analytical methods exist for evaluating the 
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term for simple cases when the variables of geometry and the degree of 
deformation are separable, and experimental, computational, or approxi
mate methods can be used even when the use is not rigorous. Adoption of 
the factor to reexamine a range of fracture problems offers a certain in
sight, heuristic rather than rigorous, into test methods, design curves, 
effects of residual stress, instability, and so on that assists in the evaluation 
of approximate procedures and helps link together otherwise disparate 
problems. 
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APPENDIX 
Relations Between dl and i; for Power Law Loading 

If loading is described by Eq 13 and area under the loading deflection diagram 
by Eq 14, then subject to the restrictions on separation of variables, discussed [15], 
ijnl is defined by Eq 16, and relationships comparable to Eqs 36-41 are 

A ^ — 1 4- A '̂J 1 A ^^ 
J da Tj da w da 

(51) 

where here ri implies )j„| whereas in Eq 36 it referred to ijep Similarly, the fiiv) 
notation of Eq 38 here implies use of r/nj and 

b dJ 
J da 

b dJ 
J da 

Mv) + j ; 

— / i ()?) — V 

(52) 

(53) 

whence 

b dJ 
J da 

b dJ 
J da 

M + 1 / 
»/ — 

(54) 
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ABSTRACT: Relating work done on a notched or cracked test piece directly to other 
fracture parameters, such as the J-integral, has been of interest at least since the develop
ment of the Charpy test. In this paper relationships between / and work are explored. 
The conditions for the existence of direct relationships are explained, and some cases 
where such relationships do not exist are observed. Moreover, these relationships are 
explored in terms of Turner's r/-factors, which are useful both in J-integral test analysis 
methods and for structural analysis. 
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The Tj-factor is a factor relating/ to the work per unit uncracked ligament 
area in loading a cracked body. An approach to provide the r;-factor with a 
mathematical basis will be given here, which is based on the dimensional 
analysis of load-displacement relationships of Ernst, Paris, Rossow, and 
Hutchinson [i]^ and earlier such developments of Rice, Paris, and Merkle 
[2]. Following these works, [1,2], the J-integral may be written first in its 
alternative forms 

/ = 4 ) (wdy-Ti^ds 
dx 
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where the second of these forms with P, the load (per unit thickness) and 6, 
the work producing component of load point displacement is of most interest 
here. Now, it is always possible with elastic-plastic behavior to split the dis
placement, 6, into its elastic, 6EL, and plastic, 6pL, parts, so that 

6 = 6EL + 5PL (2) 

Making use of this separation, Eq 2, of elastic and plastic parts in Eqs 1 pro
vides the separated form of / as in Refs 1 and 2, and as previously used by 
Sumpter and Turner [3], 

J = JEL+JPL (3) 

where 

•'^^- I da 5 EL 

and 

_ r«EL a/j 

0 ^« 
C?6pL 

5 PL 

Now, with these definitions in Eq 3, it is clear that /EL is the Griffith energy 
rate, S, computed as if no plasticity is present. It is therefore well defined, as 
well as already understood. Consequently, it shall be used to define the elas
tic rj-factor, r/gL, and later attention will be given to/pL and the plastic rj-fac-
t o r , 7?PL. 

Elastic q-Factor 

The linear-elastic displacement, 6EL. can be always written in terms of the 
elastic compliance, C, as 

6EL = CP (4) 

Moreover, S can be also always written in terms of the compliance derivative, 
dC/ba, as 

The elastic work (per unit thickness), WEL. is defined as the work re-
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covered by linear elastic unloading (with the crack length fixed) from any 
point on an elastic-plastic load-displacement record. Therefore 

ŴEL = ^ (6) 

Making use of Eq 4 to eliminate 5EL in Eq 6 and rearranging it to substitute 
for P^ in Eq 5 gives 

/EL = - ^ | ^ ^ E L (7) 

Now defining the elastic rj-factor by the relation [3] 

where b is taken to be the uncracked ligament ahead of the crack. Com
paring Eqs 7 and 8, it is noted that I/EL may be always written 

_b_d£_ b dP 

'^^^' C da ~ P da 
(9) 

5 EL 

This relationship, Eq 9, shows that TJEL always exists for converting the elas
tic work, V ÊL, directly into/EL by Eq 8. 

Moreover, it is pointed up that stress intensity factor, K, formulas may be 
used to compute C and dC/da as follows. Noting that Q = K^/E' may be 
combined with Eq 5, then 

dC_ ^ IjK/P)^ 

da £ " 

This may be integrated to give 

where CNC is the elastic compliance with no crack present. Thus, Eqs 10 and 
11 combined with Eq 9 show that I/EL can be found directly from no more 
information than elastic stress intensity factor formulas, as an alternative to 
making use of Eq 9 directly through experimental determinations of com
pliance. 
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Plastic v-Factors 

In order to develop the plastic jy-factor, »/PL, it is appropriate to begin 
by referring to the last term of Eq 3, /pL, and its definition there. In order 
to evaluate/pL, the functional relationship for load, P, in terms of crack size, 
a; plastic displacement, 6PL; and other dimensional lengths, L, W, B, etc., 
must be known. Since in addition only the material's stress-strain properties 
also influence that functional relationship, the dimensional analysis argu
ments [1,2] lead to 

PL _ /6^^ a W B \ 

^ - / - i ^ — , p - , - , . . . , etc. j (12) 

or alternatively (equally appropriate) where both sides of Eq 12 are simply 
multiplied by b/L, noting b = W — a, to give 

^ 2 ( ^ , - - - •••-etc . ) (13) L = p {h^k ± }^ M. 
b ' V X ' L' L' L' 

In addition, other appropriate forms may be produced,'' but F^ and Fj will 
be seen later to be most appropriate in those cases where predominately 
bending and tension, respectively, of the remaining uncracked ligament, b, 
occurs. 

Proceeding by substituting Eqs 12 and 13 into the final term of Eq 3, 
noting db = ~da, leads to 

lb r̂ p"- b^ f̂ pL aF, 

L Jo L^ Jo g /± .^ 

and 

L 

Jo ^ ''0 a 

Resubstituting for Fi andF2 in the first terms of the right sides of Eqs 14 and 
15 gives 

2 r*PL ^2 rSpL aF , 
/pL = - Fd6pL - 7 7 - — i - c/6pL (16) 

* Jo ^^ Jo Q f±) 

''Substituting P/b{L/b)"' with any m for the left side of Eq 12 or 13 and using dph/b, instead 
of Spi^/L, etc., in the functions produces other forms. 
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and 

/pL = T Pdbp^ - - - — ^ ĉ 6pL (17) 
0 

a 

Now in Eqs 16 and 17 the first term of the right side of each contains the plas
tic work, W p̂L, (per unit thickness) which is 

PrfSpL (18) 
0 

Thus, the plastic work, W^i^, so defined is the total work, W, minus the elas
tic work, V ÊL, as defined by Eq 6. In addition, the plastic r;-factor, 7?PL, is 
defined in a manner consistent with its elastic counterpart in Eq 8 by [3] 

JPL- nFL—T' (19) 

Moreover, it is specified that ?7PL may depend on crack length, a/L, but that 
it will not depend on the extent of plastic deformation bpi^/L, by definition. 
At this point it is readily seen that Eqs 16 and 17 can be reduced to the form 
of Eq 19 with Eq 18 inserted, only if the second integrals on the right sides of 
Eqs 16 and 17 can be reduced to JQ'"'' Pddpi^ forms. Since this reduction will 
occur only under special additional conditions, as defined here IJPL (Eq 19) 
does not always exist for all structural and specimen configurations and 
material combinations. On the other hand, for many configurations they do 
indeed exist and are of great computational convenience. 

In general, the plastic rj-factors only exist where the crack length depend
ence, a/L, and plastic displacement dependence, dp^/L, can be separated 
in Fi and F2 (or alternative functions of their form). Let us assume that this 
is possible, then and only then 

FA¥^T^--) = ^.(¥^--\HJ~...] (20) 

or 

L ' L' J ^'\L ' / '\L 

Under such conditions, Eqs 20 or 21, the second integrals of Eq 16 or 17 
would become 

L ' L' " n X ' y ' Vi 

F2(¥>T>--) = Q2(¥^...\HJ^,...] (21) 
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or (similarly) 

«PL aj-i 

0 a JL 
dSpL -

dH 

'̂r 
SPL 

Sic/6 PL 

dH 

^'T 
Hi 

6 PL 
Fidd PL 

â  

l̂i b'H, Jo 

4 PL 
W6 PL 

spL a/T 

0 a -i i 
ddpi — 

1 3^7 

a ( | ^ *^^ 

8 PL 

PrfS PL 

Substituting Eq 22 or 23 into Eq 16 or 17 gives 

b dHi 1 J C«PL 

/pL = y 1 i'̂ iSpL 2 -
i / ^ \ i ? l 

(22) 

(23) 

(24) 

or 

1 PSPL 

Finally, comparing these results with Eqs 18 and 19, it is seen that 

b dHi 1 

(25) 

JJPL — 2 -
'•.If H, 

(26) 

or 

'?PL — 
a/f. • - f 

1 

H2 
(27) 
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In addition, other forms may be possible or as noted earlier, it may be that 
TjPL does not exist for some configuration-material combinations. As perplex
ing as this result may be, let the discussion proceed to cases where 77 PL clearly 
does exist and provides useful results. 

A General Condition for the Existence of ijpĵ  

In general, ?jpL will exist if a separation of variables can be found in the 
form of Eq 20 or 21 (or alternate form). This separation may be viewed as 
shown in Fig. 1. 

Now, plotting P/b{L/b)"' = i^with the appropriate m as with Eq 12 or 13 
versus dpi/L, if all of the curves for each constant a/Z-value are of heights F 
in constant scale to each other, then the separation exists. Further, if this 
scaling exists for some range of a/X-values from 6pL = 0 to some limiting 
values of SPL'™'*, then the separation of variables exist over that region. That 
is to say, if the condition 

F 

F 

5 PL 

L ' 

5pL 

L ' 

(f),-1 
(r)/-] 

= C,y(constant) (28) 

for any values of (a/L)j, and {a/L)j, and for all 6pL/X-values for the region 

r). a a 
X Vx 

and 

Curves for constant values of a /L 

FIG. 1—P versus &PL records are plotted. 
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8 PL 6 PI"™* 
0 < ^ < -^— (29) 

then within that region the separation of variables will exist and therefore 
ijPL will exist for the region. It has been proven [4] that r;pL does not exist if 
this condition is not met, and indeed it can be seen that the JJPL approach will 
give approximately correct results sufficiently accurate to be practically 
useful if the condition is only slightly violated (by small amounts or for small 
parts of the region). 

Taking a more practical view, the condition of Eq 28 for the region, Eq 29, 
may be tested experimentally by testing identical configurations with identi
cal material differing only in their (a/L)-values to produce P versus 6pL 
records, which can be plotted as in Fig. 1 and tested numerically. Subsized 
(or blunt notch) specimens of the configuration-material combination may 
be utilized for this purpose which will avoid having crack growth occur prior 
to the SpL'^'Vi of applicability. In this way the existence of i7pL can be 
directly and experimentally determined, and indeed the idea of the separa
tion of variables was first noted by Ernst [4] from this behavior of experi
mental data. 

On the other hand. Turner [3] and subsequent work [5] has observed the 
existence of the r;pL approach through finite element computations. How
ever, subsequent attention here will be directed to specific analytical condi
tions for which the r/pL approach is possible. 

Examples of Specific Conditions for which t/p^ Exists 

Power Hardening Materials 

Ernst [4] has also shown for power hardening material, characterized by 

i=(ir (30, 

that Ilyushin's theorem may be invoked to show that the condition for exis
tence of TjpL, through Eq 28 with unlimited region (Eq 29), is met for any 
two-dimensional configuration. This is very significant. First, the elastic 
case, N = 1, where it was previously shown that rjgL always exists, is a limit
ing case of this proof. Therefore, for nearly elastic behavior, N -^ I, includ
ing small-scale yielding and highly hardening materials, the method should 
be practical for almost all configurations. 

Further, for the tendency towards rigid-perfectly-plastic materials, 
N = oo, the other limiting case, I/PL always exists. That is to say that for 
situations where a limit load has been attained considerably prior to a point 
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at which J is to be computed, then the 7j-factor method should work very well. 
For moderate amounts of hardening, oo > N > say 10 (or perhaps lower) it 
is seen that the method should work very well. Indeed power hardening, for 
all values of A'̂ , is usually a fair approximation for developing load-displace
ment relations whenever displacements are very large, compared to elastic 
displacements, so existence of rj-factors for power hardening shows a strong 
tendency toward existence for very many practical cases. 

Pure Bending of a Small Remaining Ligament 

Rice's case [2] of pure bending moment, M, (per unit thickness) on a 
small remaining ligament, b, ahead of a crack approaching perpendicular 
to a free boundary is one where TJPL can be shown to exist for any elastic-
plastic material (with a monotonic stress-strain relation). For such a case, 
dimensional considerations lead to 

e=f{^) (31) 

where 6 is the relative work producing rotation of the applied moments, M. 
Now, 6 may be split into its elastic and plastic parts where 

M /M\ 
e = ÊL + ^PL = « - ^ + /pL ( - ^ j (32) 

hence 

»PL =/PL (TT) (33) 

which may be inverted 

^ = FidpO (34) 

This result may be compared directly with Eq 12 by noting that it is appropri
ate to substitute M = PL and 0pL = dp^/L, then 

—^ = F (~r~, material properties ] (35) 

where the variables are already separated as in Eq 20, since a/L is absent, or 
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Hi is simply a constant. Thus, referring to Eq 26, since dHi/d(a/L) = 0, 
then 

rjPL = 2 (36) 

and it always exists for arbitrary material properties for this configuration. 
Similarly, the elastic parts of Eq 32 may be separated and using Eq 9, 

the result is 

17 EL = 2 (37) 

for this configuration. Also referring to Eqs 3,8, and 19, if TJEL = IJPL = ») as 
in Eqs 36 and 37 for a given configuration, then 

J _ 1?EL^EL , nPL^PL 

b b 
(38) 

= f ( H ^ H L + ^ P L ) - ^ 

where JJ can now be interpreted as a total work, W, r/-factor. Of course, all of 
these results were available in Rice et al [2], but the repetition gives some new 
prospective on »;-factors. 

Deeply Cracked Beams 

For example, for the bending of a deeply cracked beam, where the plastic
ity is confined to the remaining ligament (uneffected by other boundaries) 
then it is clear that 

rjPL = 2 (39) 

with the remainder of the beam such as its length and loading arrangement 
unspecified (except that no appreciable beam shear shall exist at the liga
ment). Now on the other hand, from Eqs 9, 10, and 11, it is clear that TJEL is 
not in general equal to two. However, r/̂ L can be altered by simply changing 
the compliance of the beam away from the cracked section, that is, CNC 
changes, so that »/EL can be often adjusted to two. This is precisely the case 
of the three-point bend specimen with s/W = 4, so that both rj-factors are 
two. For that specific configuration, Eq 38 may be again invoked, simplify
ing the determination of J. Moreover, it is clear that other beam configura
tions could be designed to have this same advantage. 
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Now, the advantage just illustrated is unusual since from Eq 9 and from 
Eqs 26 and 27 it is clear that TJEL ^^^ VPL are not only usually not equal but 
indeed both may be dependent on the crack size, a/L. However, specimens 
could be designed so that rĵ L înd rjpL exist and are equal at least at one 
convenient value of crack size, so that very simple relations such as Eq 38 
could be used to determine / . It is suggested here that a modified compact 
specimen might well be specifically designed for optimum J-integral testing 
convenience. 

Tension of a Small Remaining Ligament 

Rice et al [2] also considered the case of a small remaining ligament, b, 
subject to a remote tension force, P (per crack tip and unit thickness). The 
more general modified form of F2 is adopted here to accommodate finiteness 
of the tension specimen. It is 

b ^[b ' L' L' 
(40) 

In a fashion similar to the previous discussion this form leads to 

r r̂ PL 
JpL — , Pdbpi^ -

P8 PL b_ pPL dF^ 
db PL (41) 

Now if the separation of Fj is possible in the usual form 

^'=°'iT)«'(r (42) 

Then Eq 41 may be reduced to 

•^PL — 

5 PL 

Pdb PL 
0 

2 -
Pb PL 

6 PL 

Pdb 

b_ 

L 
PL 

dHj 1 

For such conditions 

•nvL = 2 
Pb PL 

«PL 

Pdb 

b_ 
L 

dH^ 1 

PL 

(43) 

For tension of a small remaining ligament, the a/L dependence of Fj disap-
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pears, and then the last term in Eq 43 goes to zero. Hence, for tension it 
should always be small compared to one. Moreover, it is observed that the 
middle term on the right side of Eq 43 is slightly greater than one and tends 
to one as deformations, 6pL, increase. Therefore, if TJPL exists for tension, its 
value will tend to one or will be a bit less than one. Finally, if TJPL is to exist 
in the strict sense for tension, then in addition to separation, Eq 42, the mid
dle term of Eq 43 must be constant (independent of the extent of deforma
tion, 6PL). 

Again, it is clear here that Turner's observation, for example, Ref 3, of 
i/PL = 1 (or slightly less) for tension of a ligament is sound. Moreover, if a 
tension specimen can be designed so that r/̂ L ~ lypt — !> then again the 
most convenient form, Eq 38, would be appropriate and useful for evaluating 
J directly from total work, W, done in loading. 

Other examples of conditions for the existence of ijpL can be found, but 
those provided above are sufficient to illustrate the argument to be made 
here. Therefore, the discussion will proceed to examples of situations where 
r/PL does not exist. 

Examples of Conditions Where î p̂  Does Not Rigorously Exist 

If the nature or location of plasticity present changes radically during load
ing, then rjpL may not exist (with specific exceptions or approximations). 

An example of such a case is where plasticity at a location remote from 
the uncracked ligament region occurs at some stage of deformation. The 
effect of remote plasticity can be viewed in terms of the existence condition, 
Eqs 28 and 29, with reference to Fig. 1 to observe the effects. Suppose for a 
compact specimen of low a/L (that is, a/W) that yielding near the loading 
pins occurs, whereas it does not for high a/L. Moreover, for low a/L and 
hardening, the commencement of remote yielding would occur at different 
values of 5PL/X. Then it is clear their load versus plastic displacement curves, 
as on Fig. 1, cannot meet the condition, Eq 28 for existence of ijpL, except for 
a/L and 6pL/X-values, that is, the region of Fig. 1, where no remote plasticity 
has occurred. Therefore, in general, the r;-factor method should not be used 
where plasticity has occurred remote from the uncracked ligament region, 
except where further justification is given. 

However, from a practical point of view, if the effects of the remote plastic
ity can be removed, then an JJPL may be found for computation of/PL from 
plastic work, V^PL, as in Eq 19. For example, for a long uniaxially loaded 
tension specimen, if plasticity at loading pins (or grips) occurs, gage length 
points between the pins and crack location can be selected (remote from 
both) so that measurement of displacements appropriately evaluates work 
within the gage length excluding effects of the remote plasticity. 

On the other hand, where hardening causes the gradual spread of plastic
ity throughout the length of a tension specimen, no precise rj-factor evalua-
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tion method is present. Nevertheless, Turner [5] reports some success with 
approximate evaluation of J through ?j-factors, where the plastic work is 
adjusted by subtracting the remote plastic work (outside the perfectly plastic 
slip field) in an approximate way. 

Another example of a situation where rjpL does not rigorously exist is the 
case where the plasticity at the remaining uncracked ligament changes form 
substantially as it develops from small-scale yielding into the fully plastic 
state. This would cause the early portion of the load-displacement curves of 
Fig. 1 to be nonsimilar according to Eq 28. Under such conditions, evalua
tions of/pL by Eq 19 would not be correct, but as deformations proceed well 
into the fully plastic state, applying the ij-factor method via Eq 19 etc., would 
become an increasingly better approximation. 

Therefore, the preceding examples illustrate conditions where the rj-factor 
method is not strictly or rigorously applicable, but it is also made clear that 
certain modifications or approximations may be possible to permit practical 
evaluations of J by the r)-factor method for some special cases in violation 
of rigorous conditions for applicability. 

Summary and Discussion 

The existence of the 7/-factor method is not necessary for the evaluation of 
/ , which alternately can be found by other means directly from its definitions, 
Eq 1. However, the ry-factor method is a great simplification in finding/, 
both in specimens and in structural components for circumstances where it 
is applicable either in a rigorous or approximate way. 

Indeed, although the previous discussion here has been formulated on the 
basis of computations of / using equations employing //-factors, such as 
Eq 19, which were written as if no crack growth has occurred, they can be 
easily adapted for growing cracks. For previous discussion of such adapta
tion see Refs 1 and 6. However, a correct method for determining / for any 
point on Fig, 1 is to take the load-displacement record with no crack growth 
for the a/L, which passes through the point and makes the computation ac
cording to Eq 19, etc. The computation will be correct provided that the 
point is in the region of applicability of r;-factors, Eqs 28 and 29, and if the 
conditions for "strict deformation theory" apply [6]. Therefore, the ij-factor 
method can be adopted whether or not crack growth occurs. 

It is also noted here that this work on / , especially using ij-factor methods, 
impacts directly on the conditions for which the so-called "equivalent energy 
method" may be applied. In particular, it is shown here that Eq 38 is appli
cable only under severely limited conditions (TJPL exists and J/EL — '?PL)' ^"d 
it is observed that "equivalent energy" is not applicable unless Eq 38 applies, 
exactly or at least approximately. Moreover, crack growth prior to instability 
[7] may interfere and thus can in addition invalidate "equivalent energy" 
even for those few cases where Eq 38 does apply. 

 



PARIS ET AL ON A J-INTEGRAL APPROACH 351 

Finally, some examples of configuration material combinations and condi
tions have been given here where the rj-factor method is rigorously applicable 
or approximately applicable. On the other hand, some combinations and 
conditions have been identified where rjpL, as defined here, does not exist. 
This work is not a full clarification of conditions where rj-factors can be 
usefully applied, but hopefully it is a fair beginning in that direction. 
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ABSTRACT: A new model for the temperature dependence of the fracture toughness 
has been sought. It is based on the yielding processes at the crack tip, which are thought 
to be competitive with fracture. Using this method a good correlation between measured 
and calculated values of fracture toughness has been found for a Cr-Mo-V pressure 
vessel steel as well as for A533B. It has been thought that the application of this method 
can reduce the number of surveillance specimens in nuclear reactors. 

A method for the determination of the cleavage fracture strength has been proposed. 
It can be measured either with low temperature tensile tests or with slow bend tests of 
Charpy V-notch specimens. 

KEY WORDS: temperature dependence, cleavage fracture, cleavage strength, fracture 
toughness, fractures (materials), crack propagation 

There have been many efforts to correlate the ordinary tensile properties 
with the fracture toughness Ki^ [1-8]? Most of these attempts fail, however, 
to give a proper temperature dependence for the fracture toughness. This 
is mostly due to a lack of material data over a sufficient temperature range. 
The starting point in the calculations is usually the plastic zone at the crack 
tip. Using the stress concentration inside the plastic zone, it has been possi
ble to calculate a microstructural unit Xg over which the stress has to exceed 
the critical cleavage fracture strength Ofc needed to cleave the material. This 
then poses the following questions: What is the distance Xg, how is oŷ  mea-
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sured, what is the yield strength and its temperature dependence? In the 
following there will be a thorough analysis of these problems. 

Experimental 

The steel studied experimentally was a low-carbon low-alloy pressure 
vessel steel with a bainitic microstructure. The analysis of the steel was 
0.15C-2.7Cr-0.6Mo-0.3V, and has been heat-treated to three different 
conditions (see Table 1). 

The yield strength (0.2 percent proof strength) has been determined over 
the temperature range 12 to 300 K for each heat treatment condition. The 
results are given in Fig. 1. 

The fracture toughness, Kj^, has been measured using 25-mm thick three-
point bend and compact tension (CT) specimens. Because the thickness of 
the specimens was insufficient, the real value of Ki^ (Fig. 2) has been esti
mated using Chell and Milne's [10] method. The validity of the estimated 
fracture toughness values has been checked by testing a 75-mm-thick speci
men at the temperature of 185 K. The result was 3105 Nmm"^^^, and it is 
marked with a dark dot in Fig. 2. The measured value meets all require
ments of ASTM Test for Plane-Strain Fracture Toughness of Metallic Ma
terials (E 399-78). Thus, the curve drawn in Fig. 2 seems to be justified. 

In spite of the small thickness, all specimens showed a cleavage type 
fracture surface at all testing temperatures. The measured and estimated 
fracture toughness values are also given in Table 2. 

For the determination of the cleavage fracture strength ff/c for the Cr-Mo-V 
steel in condition T, a set of V-notched specimens were tested in three-point 
bending. The general yield strength and the fracture strength coincide at 
100 K as can be seen from Fig. 3.^ 

The general yielding has been analyzed in two different ways using the 
methods proposed by Clausing [13]. The third method utilizes the log F 
versus log Dp plot, in which F is the force and Dp is the plastic part of the 
displacement. The first deviation from the linearity in this plot has been 
taken is the point of general yielding (wcy^). 

TABLE 1—Heat treatment, yield strength ay, and lath packet size d;,. The steel A533B 
(HSSTP Plate 2) has been taken from Ref 9. 

Steel 

K 
T 
M 

A533B 

T^, °C 

980 
980 
950 
870 

T,,°C 

7M 
670 
610 
660 

ar, Nmm ^ 

380 
600 
960 
480 

db, nm 

2.4 
2.4 
2.4 

^Here, the general yield strength must be understood as equivalent to the uniaxial yield 
strength, because the influence of the constraint factor (1.26) was removed in calculation. 
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50 100 150 200 250 

TEMPERATURE (K) 
300 

FIG. 1 — Yield strength {0.2 percent) as a function of temperature for Cr-Mo-V and A533B 
steels. Note: Condition M—18650 tempering parameter, condition T—20100 tempering 
parameter, and condition K—22000 tempering parameter. 

Discussion 

The yield strength of a steel can be generally divided into two parts, the 
temperature independent part ff^ and the temperature dependent part a^. 
It has been proven that for many materials the yield strength obeys the law 
given by Yaroshevich and Ryvkina [14] 

Oy- Oi, + [ffyCO) ~ %]e ~mT (1) 

where 

ay = yield strength, 
ayiO) = yield strength at 0 K, 

ff^ = temperature independent part of the yield strength. 
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FIG. 2—Measured and estimated fracture toughness. 
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TABLE 2—Measured and estimated fracture toughness. 

Steel 

K 

T 

M 

T. K 

78 
118 
148 
77 
77 
123 
148 
148 
160 
173 
173 
185 
200 
223 
260 
223 
253 

KQ. ,̂ , 
Nmm ^ 

1490 
2440 
3710 
990 
885 
1300 
2760 
1805 
2070 
2440 
2540 
3105 
2370 
3035 
2830 
1995 
2390 

Kj, 
Nrnrn̂ ''̂  

2530 
4725 

3025 

2280 
2645 
2740 

2760 
4715 
7535 

KB, 

Nmm ^̂^ 

935 
695 
1525 
2435 

2150 

2290 
3635 
5500 

/fled. 

Nmm"3^^ 

2840 

2060 

2415 
4120 
6285 

^̂ Qp' „ 
Nmm-^^2 

3185 

2240 

2750 
5905 
8360 

Type of 
Specimen 

CT 
CT 
CT 
3-p 
3-p 
3-p 
3-p 
CT 
3-p 
CT 
CT 
CT 
3-p 
3-p 
3-p 
CT 
CT 

NOTE: 3-p = three point; Kj = Ki^ estimated after Ref 10; K^ = Ki^ estimated from COD; 
Ki^^ = Ki^ estimated from the equivalent energy method [ / / ] ; KQ^ = Ki^ estimated by 
making a plane stress plastic zone correction [12]. 
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FIG. 3—General yield stress and fracture stress as function of temperature for Cr-Mo-V 
steel in condition T. Note: General yield 1—19.68 ay, general yield 2—LogF-LogDp deviation 
of linearity, and general yield 3—D p = 0.0254 mm displacement. 

m = constant, and 
T = absolute temperature. 

For the steels studied the factors in Eq 1 can be solved [15] and they are 
given in Table 3. 

It is now possible to estimate the cleavage fracture stress. Assuming that 
the cleavage fracture stress Of^ is equal to the yield stress oyiO) at 0 K, the 
specimen breaks when the maximum stress o^"""" at the tip of the notch 
has reached the cleavage fracture strength, {ajc = ayiO) = ffy^™*"). The maxi
mum stress Oyy'"^" can be calculated using the method of Hill [16] and Green 
and Hundy [17]. The calculation gives a value Oj,̂ ™'"' = KOQY, where K is the 
plastic stress concentration factor and equals 2.18 for the 45 deg inclined 
angle of the notch using Tresca's yield criterion. However, a more detailed 
study by Ewing [18] gives K = 1.94. 

Now it is possible to solve the critical temperature at which the fracture 
and general yield strength are equal, that is, by putting o^"^" = ay(0) = 

KOcY 

m OYW — a^ 
K 

(2) 
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Steel 

K 
T 
M 

A533B 

TABLE3—Vo/ues 

Oft, N m m ~ ^ 

285 
500 
905 
450 

o/ the constants in Eq 1. 

ayiO), Nmm"2 

1630 
1755 
1955 
1677 

TO, 1/K 

0.0104 
0.0104 
0.0104 
0.0126 

where 

Tc = critical temperature at which cry = CGY^ and 
K = plastic stress concentration factor. 

For the Cr-Mo-V steel, Eq 2 gives a value T^ = 109 K. From Fig. 3 one 
can see that the measured value is 100 K, which is in close agreement with 
the calculated temperature. 

The cleavage fracture strength can be now calculated using the OQY (100) 
values and K. Depending on the method used to obtain the general yield 
stress, a cleavage fracture strength between 1736 Nmm~^ and 1891 Nmm^^ 
can be calculated. This calculated value is very close to the measured oyiO) 
value in uniaxial tension. For this reason the yield strength at 0 K is taken 
as the cleavage fracture strength in the following. 

Methods for the Estimation of the Temperature Dependence ofKi^. 

The first attempt to correlate Kj^ with tensile properties was made by 
Krafft [19] using the Equation 

Ki,=E- n V 2 ^ (3) 

where 

E = Young's modulus, 
n = strain hardening exponent, and 

dr — the size of a process zone in which the fracture process is taking 
place. 

Hahn and Rosenfield \_4\ have used a semi-empirical dependence between 
Kxz and the tensile ductility similar to Krafft's equation, that is 

/(:,e = (2/3£'ffyw2gy)'^2 (4) 

where 

n — strain hardening exponent, and 
tf — true strain at fracture of a smooth tensile bar. 
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However, this equation does not give a correct temperature dependence of 
Kic for the steels under consideration, because the yield strength increases 
much faster than ej decreases with decreasing temperature. 

A second approach of Hahn at al [3] gives an empirical solution 

<^fc _ / ^ I c 

-^ — a ' <^Y \ Oy / (5) 

where 

a, (8 = empirical constant, and 
Ofc = cleavage fracture strength. 

A similar kind of solution has been given by Irwin et al [20], by postu
lating a temperature dependent fracture toughness 

Ku = - ^ ^ ^ ^ Ku(TJ (6) 
ay 

where T^ = critical temperature. Rosenfield et al [21] have also found ex
perimentally that in a limited temperature range Ki^ is inversely dependent 
on the yield strength. 

Krafft and Sullivan [22] have postulated a correlation between the yield 
strength and the fracture toughness 

Ku = May-'-^ (7) 

where M = constant. The same result has been obtained later [6,7]. 
An attempt to correlate the yield strength, cleavage fracture strength, 

and fracture toughness has been made also by Malkin and Tetelman [23]. 
They proposed a formula in which Ki^. is given as a function of the notch 
root radius p 

Ki,(p) = 2Mayiexp[ay,/ay - 1] - ly^'^f^ (8) 

For some materials they have found a limiting value of p = p^, below which 
the fracture toughness is independent of p. Knowing p^, a dependence be
tween ay and Ki^ can be found. 

Application of the Methods 

Hahn et al [3] have found for a number of steels that Eq 5 can be written as 
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This means that the left hand side of Eq 9 should be constant over a tem
perature range in which the fracture is essentially cleavage type. This ap
plies, of course, when assuming a temperature independent aj^. The results 
of this can be seen in Fig. 4 for A533B and for the Cr-Mo-V steel in the 
heat-treated condition T. 

The curve of the Cr-Mo-V steel swings up at the temperature of 140 K, 
but the fracture appearance of the specimens is still of plane strain (cleav
age) type at a temperature of 223 K as can be seen in Fig. 5. The specimen 
tested at 260 K showed also a cleavage type fracture, but it was initiated by 
0.3 mm stable growth. 

The reason for this could be the temperature dependence of ajc, or that 
Eq 9 fails to describe the behavior of mechanical properties correctly. In 
fact by plotting afc/ay against Ki^/ay, the factors a and j3 in Eq 5 can be 
obtained and the results are given in Table 4 and Fig. 6. 

Hahn et al [3] give a = 2.35 to 2.82 and 0 = 0.36 to 0.43 for A533B. If 
for the best fit the temperature range is limited, and only /(Tic/ffy-values be
low 3.6 mm'̂ 2 ^re considered, then a = 1.75 and 0 = 0.5 are obtained for 
A533B. As a consequence, Eq 5 has to be rewritten for the different steels 
as follows 

Cr-Mo-yiT):Ki,aY^ 
1.79 

(10a) 

A533B: Ki^ay - / _ ^ 
1.75 
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FIG. 4—Temperature dependence ofKic OY • 
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FIG. 5—Fracture appearance of the specimens (three-point bend specimens are marked 
BB). 

TABLE 4—Calculated Constants 

Steel Q: 

K 1.63 
T 1.79 

A533B 2.21 

a and /3 of Eq 5. 

)3 

0.27 
0.23 
0.24 

As one can see there is a remarkable difference between these two steels. 
As a conclusion one can claim that the procedure presented by Hahn et al 
[3] is not a universal one, but the procedure can be used as an experimental 
search for the temperature dependence of the fracture toughness. The pro
cedure can also be used for estimating the cleavage fracture strength. 

The cleavage fracture strength of the steel A533B is appreciably higher 
than given Hahn et al [3], who give a value of 1035 Nmm"^. It is interesting 
to note that Parks [24] has given a value of 1690 Nmm"^, which is very 
close to the value found in this work. 

Equations 6 and 7 give approximately the same behavior as Hahn 
et al [3] (Eq 9, Fig. 4). Equations 6, 7, and 10 could be given in a general 
form 

Ki^ = May''' (11) 
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where M, p = constant. Equation 11 can describe the fracture toughness 
properly within a certain temperature range when the constants M and p 
are determined experimentally. 

The validity of Eq 8 can be checked if a constant value for notch root 
radius p is found. If one calculates the p value using the results given in 
Figs. 1 and 2 and Table 2, assuming again that <Ty(0) = a/c- one does not 
get a constant p for the whole temperature range. This is true for both 
steels under consideration. However, the cleavage fracture strength given in 
Table 3 has been used in Eq 8, but the cleavage fracture strength is not 
necessarily the same as that "critical tensile stress" used by Malkin and 
Tetelman [23]. The fracture stress can be estimated when the p^-value is 
assumed to be 50 fim for A533B steel [23]. The calculation using Eq 8 
gives a value 2200 Nmm"^. This value is very close to the value 2130 Nmm"^, 
which was given by Malkin and Tetelman [23] and is exactly the same 
value as given by Knott [25]. However, these values differ markedly from 
the values given in this work and by Parks [24]. The difference between 
the fracture stresses in the various works could be the reason for the poor 
correlation between Ki^ and ay. It should be remembered that the Po-value 
has not been measured for the A533B steel, but only assumed. To check 
the existence of p^ for the Cr-Mo-V steel, a set for Charpy size specimens 
with varying notch root radii has been tested at liquid nitrogen temperature. 
The results are given in Fig. 7. 
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As one can see, there does not seem to be any constant p^-value. This 
experimental result is consistent with the calculation of the root radius. 

Knowing the cleavage fracture strength, the method for revealing the 
temperature dependence of the fracture toughness proposed by Ritchie 
et al [2] can be applied. In this method the stress distribution at the crack 
tip can be used for estimating a critical distance X„. When the stress is 
higher than the cleavage fracture strength over the length Xg, the critical 
condition for cleavage has been reached. Ritchie et al [2] used the Rice-
Johnson [26] stress distribution, which takes crack tip blunting into account. 
However, a drawback of the stress distribution is that the curves are given 
for certain values of Oy/E and for certain strain hardening exponents. 
Therefore, a sufficiently accurate stress distribution for the whole tempera
ture range cannot be found. In spite of this a calculation has been carried 
out using the values oy/E = 0.0025 and oy/E = 0.0050 with a strain 
hardening exponent n — 0.1. The results can be seen in Fig. 8. 

In this figure the calculated values for Xg, using the stress distribution 
given by Tracey [27], are also plotted. As one can see there is no constant 
value of X„, but the curves tend to approach a minimum at low tempera
tures. For the Cr-Mo-V (T) steel the X^""'" is about 65 /xm for both the 
Rice-Johnson and Tracey distributions, and for A533B the minimum value 
is about 100 /xm using the Rice-Johnson's solution and about 70 fim for 
Tracey's solution. This minimum value corresponds fairly well with Parks' 
[24] result of 75 fim. 
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The reason for the nonconstant value of X in the case of the Cr-Mo-V 
steel might be that the Ofc/ay ratio is fairly small being between 1.6 and 3.0. 
In the case of A533B the ratio varies between 2.2 and 3.4. At low a/c/ffy-
values the stress distribution is very flat and also large errors in the estimates 
can be made. For the Cr-Mo-V steel the Xy'"'"-\alue does not correspond to 
any microstructural unit, for example, as found by Ritchie et al [2]. 

Due to the varying X^-value no reasonable Kic versus T curve can be 
estimated for the Cr-Mo-V steel, however, for A533B an estimate in the 
temperature range of 140 K to 240 K could be made, because Xg is ap
proximately constant. 

In summary it can be stated that the Krafft and Sullivan [22], the Malkin 
and Tetelman [23], the Hahn et al [3] and the Ritchie et al [2] methods 
can give satisfactory results in certain cases, but they do not give any 
universal solution and are material dependent. 

A New Approach for the Temperature Dependence of the Fracture 
Toughness 

The toughness of a material depends on its ability to yield. That means 
that if the plastic zone at the crack tip is small the yielding cannot relax 
the stresses and the cleavage fracture strength is exceeded. At very low 
temperatures near to the absolute zero, the very first slip causes fracture 
due to the undisturbed singularity of the stress at the crack tip. At these 
extreme temperatures the toughness may not depend on the critical distance 
[2], but merely on the strain energy stored in the sample. The toughness 
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may not be determined by plastic flow only, but also by adiabatic effects 
at possible crack tips and by the probability of the crack initiation. 

When the temperature increases, more and more plastic flow occurs. 
At some temperature a homogeneous plastic flow occurs, and a proper 
plastic zone forms at the crack tip. With further temperature increase, 
the toughness depends on the possibility of plastic flow that is, on the 
activation energy of yielding. The activation energy and volume of yielding 
increase with both temperature and the plastic zone size. However, this is 
due to the decrease of the temperature dependent part of the yield strength. 
One can conclude that there is a small fracture volume, the size of which 
is inversely dependent on the temperature dependent part of the yield 
strength. The size of the process volume is directly related to the plastic 
zone size and to the fracture toughness. One can now write 

ry ~ K,,~— (12) 

where y4 is a factor depending on the yield strength, because the size of the 
plastic zone is a function of the yield strength. Above a certain temperature, 
Kic can be given as 

Xle = K„+k^ (13) 

where k. Kg = constant. Combining Eqs 1 and 13 one can obtain an 
exponential dependence between the fracture toughness and the tempera
ture. Basically the same kind of dependence, but without any theoretical 
explanations, has also been obtained by Nakamura et al [28] for a number 
of iron and iron alloys. 

The fracture toughness K\^ has been plotted as a function of oy/oe ' " 
Fig. 9. There seems to be a linear relationship and the straight lines 
converge at ay/oe = 1.5 to 2 and at Ki^ = 1000 Nmm"^^^. The values of 
the steel A533B deviate from the linear relationship probably because the 
fracture mode changes from cleavage to ductile tear at higher temperatures. 

Using the data of Fig. 9 the constants Kg and k can be deduced, and a 
correlation between the measured and calculated values of the fracture 
toughness can be obtained Fig. 10. The points lie very close to the 1:1 
correlation. 

Application of the Method 

The proposed method can be applied to estimate the fracture toughness 
shift after irradiation. The increase of the yield strength can be attributed 
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to the temperature independent part only. Then the temperature Tc can be 
calculated using Eq 2, and the temperature shift due to the irradiation can 
be estimated. New values of fracture toughness can be calculated after 
Eq 13 assuming that constants K^ and k are the same. The validity of 
the calculation can be checked with one or two irradiated specimens. The 
advantage of this method is to reduce the number of surveillance specimens. 

Summary 

The cleavage fracture strength of the Cr-Mo-V steel has been determined 
by means of slow bend tests as well as tensile tests. A good agreement 
between the results of the tests has been found. A new theory for the 
determination of the temperature dependence of the fracture toughness has 
then been presented. It is based on the competition of plastic flow and 
fracture at the crack tip. The determining factor is the temperature de
pendent part of the yield strength, as well as the size and homogeneity 
of the plastic zone. 
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ABSTRACT*. Fracture toughness results are measured in the transition region for 
an ASTM A471 Ni-Cr-Mo-V steel on two specimen sizes IT compact tension (CT) 
and 4T-CT. The results are typical for steels in the transition in that the smaller 
specimen toughness values are greater than the larger specimen results. Two explana
tions are given for this behavior. One explanation, based on loss of constraint, suggests 
that small specimens cannot be used to characterize the toughness of a large structure 
in the transition region. A second explanation, based on a statistical model, suggests 
that small specimen results when properly analyzed can be used to characterize the 
toughness of large structures. 

The results of these tests and others support the statistical model as the proper 
explanation for the observed difference in toughness between small and large speci
mens in the transition. The model gives a method for analyzing small specimen results 
to properly predict the toughness of a large structure. 

KEY WORDS: fracture toughness, J-integral, Ni-Cr-Mo-V steel, transition effects, 
WeibuU statistics, specimen size effects, cleavage fracture, fractures (materials), 
crack propagation 

The fracture toughness of steels used in large structural components has 
in the past been determined from tests of very large specimens using /Ti,. as 
a toughness characterizing parameter [1,2].^ Developments in elastic-
plastic fracture methodology, using the J-integral as a characterizing 
parameter [3], have provided a technique for determining these same 
toughness results from smaller specimens [4,5]. For steels that exhibit a 
fracture mode transition, an apparent problem exists with the small speci
men fracture toughness evaluation. Toughness values obtained in the tran-
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sition region from small specimens may greatly overestimate the equivalent 
toughness measured on larger specimens [6,7], implying that small speci
men results are not suitable for characterizing the toughness of large 
structures. 

This observation is usually explained in terms of a loss of constraint [7]. 
The smaller specimen has less thickness than the larger specimen and less 
crack-tip constraint is developed during loading causing higher measured 
toughness in the small specimens. The loss of constraint explanation implies 
that small specimens cannot be used to characterize the toughness of 
large structural steel components in the transition region. The British 
method for crack opening displacement (COD) testing (DD19) requires 
that test specimens have the full thickness of the component being charac
terized [8]. 

The loss of constraint explanation is not completely consistent with the 
observed fracture toughness results for small specimens. In this paper a 
different rationale is proposed to explain the difference in toughness between 
small and large specimen test results. This explanation is based on a 
statistical distribution of toughness properties. Fracture toughness data is 
generated in the transition to illustrate typical transition toughness proper
ties. A model based on extremal statistics is presented. This model suggests 
that small specimen toughness results can be used to characterize the 
toughness of large structures if these results are properly analyzed and 
applied. 

Transition Beliavior 

The problem with transition toughness characterization is illustrated 
by the schematic in Fig. 1. Toughness determined from small specimens in 
the transition exhibits considerable scatter but on the average is higher in 
value than the toughness determined from larger specimens. This implies 
a lower transition temperature for the small specimens and suggests that 
the small specimen toughness results may not adequately predict the 
toughness of a larger and thicker structure. 

An explanation based on loss of constraint in the smaller specimens 
offers one rationale for this difference. The smaller specimens that have 
less thickness do not develop triaxial constraint equivalent to the larger, 
thicker specimens and therefore exhibit higher toughness. This explanation 
suggests that small specimens should never be used to characterize the 
toughness of large structures in the transition region. The constraint 
explanation is questionable in two respects. Small specimens, which are of 
the deeply cracked bend type (compact or bend bar), do develop a good 
deal of geometric constraint. Also the loss of constraint model is not con
sistent with observed toughness behavior as will be illustrated in later dis
cussion. A statistical explanation can be proposed which is more consistent 
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FIG. 1—Schematic of small specimen fracture toughness data in the transition region. 
Small specimen has toughness data scatter that makes the transition temperature appear 
lower, and the toughness appear higher than the targe structural toughness. 

with the observed behavior and provides a method for estimating the 
toughness of a large structure from small specimen results. 

Experimental Details 

The material used in the test program is an ASTM A471 Ni-Cr-Mo-V 
rotor steel (Heat 388). It has a yield strength of 765 MPa (111 ksi) and an 
ultimate tensile strength of 1007 MPa (146 ksi) [9]. The Charpy impact 
energy test results for this material are shown in Fig. 2. The 50 percent 
ductile fracture appearance transition temperature (FATT) is approximately 
294 K (70°F). 

Test specimens of the compact geometry were machined in two sizes, 
a IT compact tension (CT) specimen, 1-in.-thick (small specimen) and a 
4T-CT specimen, 4-in.-thick (large specimen). The material was in the form 
of a large disk. Previous results showed that there was a variation in Charpy 
impact properties from the inside diameter to the outside diameter of 
the disk [9], implying that the fracture toughness properties may also 
show this variation. Therefore specimens were carefully taken so that the 
crack tip after precracking were all a constant distance from the inside 
diameter of the disk. This was done to eliminate any variation in tough
ness due to the specimen location. 

The specimens were tested by loading monotonically until a cleavage 
fracture occurred. Tests were conducted at a number of temperatures 
going through the transition. The majority of the tests were conducted at 
three temperatures—294, 311, and 325 K (70, 100, and 125°F). In some 
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FIG. 1—Charpy impact data for ASTM A471 steel (Ni-Cr-Mo-V heat 388). 

cases no cleavage was observed after a considerable amount of loading, 
and the specimen was unloaded without cleavage. Nearly all of the tests 
exhibited some plasticity before cleaving, and the toughness was charac
terized by the J-integral using the method of/-calculation proposed by the 
ASTM working group [5]. The value of / for cleavage was labeled J^; 
toughness for specimens that were unloaded before cleavage was charac
terized at the point of maximum load and displacement. 

Results and Model Rationale 

The toughness results for the ASTM A471 steel were plotted as a func
tion of temperature. Fig. 3. A total of 31 specimens were tested, 26 IT-CT 
specimens and 5 4T-CT specimens. At each of the three principal test 
temperatures, eight IT specimens and one or more 4T-CT specimens were 
tested. The data further illustrate the problem associated with small speci
men testing in the transition in that the IT specimens show a good deal 
of scatter for a given temperature and have higher toughness on the average 
than the 4T specimens. As the temperature is increased in the transition 
range, the scatter becomes greater, and the difference between the IT 
specimen average and 4T specimen lower bound becomes greater. 

An explanation for this behavior can be given in terms of a statistical 
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FIG. 3—Fracture toughness (J) for cleavage versus temperature for an ASTM A471 steel. 
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FIG. 4—Schematic showing the difference in fracture toughness sampling size between 
large and small specimens. 
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model [4]. The rationale for this model is given in Fig. 4. The toughness 
of a given heat of material is proposed to be variable, differing throughout 
the material and particularly along the crack front. Additionally, the 
fracture toughness of any specimen is proposed to be governed by the 
point or region of lowest toughness along the crack front. Larger specimens 
contain a greater sampling of these variable toughness points or regions 
and are more likely to contain a low toughness region. Smaller specimens, 
correspondingly, sample less of the variation in toughness and on the 
average should exhibit higher toughness. However, when a large number 
of smaller specimens are tested, the toughness should show a good deal 
of scatter ranging from values near the large specimen toughness to values 
much greater than the large specimen toughness. This is exactly the behavior 
exhibited by the results from the Ni-Cr-Mo-V steel shown in Fig. 3. 

The explanation given by Fig. 4 is not the statistical model itself (this 
will be given later); rather it gives a rationale for the model. The two 
important points from this rationale are that toughness varies along the 
crack front, and that the point or region of lowest toughness controls the 
fracture toughness of the specimen. This rationale suggests that extremal 
statistics can be used to both characterize the scatter in the smaller speci
men toughness results and predict a distribution of toughness for larger 
specimens. 

Additional support for the rationale given in Fig. 4 can be taken from 
two sources. First, the fracture surfaces of specimens tested in the transition 
suggest a controlling region of lowest toughness. Figure 5 shows the fracture 
surfaces of three IT-CT specimens. The first was tested at 227 K (51 °F) 
below the transition. It shows a fairly homogeneous fracture surface with 
no clear region of fracture initiation, suggesting that the fracture event 
was initiated at many points along the crack front. The other two speci
mens were tested in the transition and show distinct regions along the 
crack front where the fracture originated. This suggests that the fracture 
was initiated by a region of low toughness. Figure 6 shows a fracture 
surface for a 4T-CT specimen tested at 294 K (70° F) in the transition 
range. This fracture surface shows two regions where the fraction appears 
to have originated, again suggesting a region of lower toughness that causes 
the fracture. 

Additional support for a statistical explanation is given in Figs. 7 and 8. 
Figure 7 shows fracture toughness results for an A533B steel [10]. A large 
specimen was tested that gave a valid A'jj.-value. Small specimens (1/2T, 
IT, and 2T-CT) were tested and evaluated by J-integral techniques, which 
showed results similar to those in Fig. 3. The smaller specimens had a 
great deal of scatter ranging from below the ATî -value to much higher 
values. Figure 8 shows results for an A216 cast steel [11] where again small 
specimens evaluated by / showed a good deal of scatter ranging from 
values near valid A^i^-results to much higher values. 
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(a) Tested at 227 K below the transition, no single fracture initia
tion point {Jc = 19.3 KJ/m^). 

(b) Tested at 294 K in the transition, fracture initiation near center 
Uc = 172 KJ/m^). 

(c) Tested at 211 K in the transition, fracture initiation to the right 
of center (Jc = 206 KJ/m^). 

FIG. 5—Fracture surfaces for IT-CT specimens of Ni-Cr-Mo-V steel showing regions of frac
ture initiation. 
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(a) 4T-CT tested at 294 K in the transition, two apparent regions 
of fracture initiation (J^ = 126 KJ/m^). 

(b) IT-CT specimens from Fig. 5. 

FIG. 6—Fracture surface of the 4T-CT specimen of Ni-Cr-Mo- Vsteel compared with the IT 
specimen of Fig. 5. 
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Statistical Model 

The rationale given in Fig. 4 suggests that the fracture toughness results 
for the Ni-Cr-Mo-V steel could be correlated with a statistical model such 
as a WeibuU distribution. The toughness results for the IT-CT specimens 
tested at 294 K (70°F) are plotted on a Weibull graph in Fig. 9. The 
linear distribution of data points indicates that the Weibull model was an 
appropriate one for this data. The form of the Weibull distribution function 
can be given by 

i^i(x) = 1 - e - ( ^ / * ) ' , x>0 (1) 

where F^{x) is the Weibull distribution function, 6 is a scale parameter, 
and c is the shape parameter also called the Weibull slope since it is the 
slope of the straight line in Fig. 9. The slope for the results at 294 K 
(70°F) is approximately five. The IT-CT toughness results for the Ni-Cr-
Mo-V steel at 311 K and 325 K (100 and 126°F) were also plotted on a 
Weibull graph. These plots are not shown here, but they also gave accept-
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FIG. 8—K at fracture versus temperature for an A216 WCC grade cast steel. 

able linearity although not as good as for the 294 K (70°F) results. The 
slopes for these cases were approximately four and two, respectively. 

Using the constants from the Weibuli distribution function, the mean 
and standard deviation of the distribution can be analytically determined. 
The purpose for developing a statistical model is to use the IT-CT results 
to predict what the 4T-CT results (or any other specimen size) should be. 
If the WeibuU model holds for these larger sized specimens, than a Weibuli 
distribution function can be developed for them from the IT-CT distribu
tion. From this a mean and standard deviation can also be analytically 
determined. 

Using the rationale given in Fig. 4 the distribution function for 4T-CT 
results can be developed by the following steps. î xCx) is the probability 
that a given IT-CT specimen has a fracture toughness value less than x. 
The probability that the toughness is greater than x is 1 — F^{x) or e -(*/*)^ 
The distribution function for the 4T-CT specimen is taken from the proba
bility that four IT-CT specimens have toughness greater than x or equiva-
lently the minimum toughness for four IT-CT specimens is greater than x. 
This probability is [1 — /"lU)]" or [e-'*/*)"]''. This can be written as 

exp 
(4) l /Cv 
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FIG. 9—Weibull distribution versus i^ plotted on Weibull paper—Ni-Cr-Mo-V results at 
294 K. 

The Weibull distribution function for the 4T-CT specimen, F^ix), is then 

f4{x) = 1 — exp 
b 

(2) 

The mean value of the distribution for the IT-CT specimens is approxi
mately given by the scale parameter b. It can be seen from Eq 2 that the 
mean for the 4T-CT distribution would be b/4^^'^. Using a similar argument, 
the distribution function for any size of specimen can be determined, and 
the mean would be reduced by a corresponding factor (that is, for size A'̂  
the mean is reduced by l/./V'^0-

Using this factor, values of the mean toughness for the 4T-CT can be 
calculated to compare with the experimentally observed value. Table 1 
gives values of the mean and standard deviation for the IT-CT specimens. 
Calculated mean values for the 4T-CT specimens are compared with the 
observed values in Table 2. Figure 10 compares the observed mean for 
the IT-CT results, the calculated mean for the 4T-CT, and the observed 
4T-CT results. For each of the three temperatures, the calculated mean 
falls very close to the lowest observed value for the 4T-CT results. 
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TABLE 1—Mean and standard deviation for the IT-CT toughness 
results." 

Temperature, K 
Mean Toughness, Standard Deviation, 

KJ/m2 KJ/m2 

294 
311 
325 

156 
259 
451 

31 
89 

209 

°ASTM A471 steel, eight tests at each temperature. 

TABLE 2—Calculated mean from the Weibull distribution for the 
4T-CT specimen compared with the experimentally observed value. 

Temperature, K 
Calculated Mean, 

KJ/m2 
Observed Value, 

KJ/m^ 

294 
311 
325 

118 
183 
225 

126 
175 

229,566 
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FIG. 10—Fracture toughnes for cleavage, Jc, versus temperature comparing IT-CT mean 
and Weibull estimates with 4T-CT values. 
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Discussion 

The close agreement between the predicted mean for the 4T and the 
lowest observed toughness value may be partly fortuitous; however, it does 
illustrate how the statistical model should work. The results at 294 and 
311 K (70 and 100°F) were probably more representative of how the Weibull 
model should work. At 325 K (125°F) the Weibull slope is only two; this is 
fairly close to a slope of one where the Weibull model becomes meaningless. 
It appears that the toughness at 325 K (125°F) is very close to being con
trolled by a ductile fracture mode; at 339 K (150°F) tests on both IT and 
4T specimens were completely ductile. It is realistic to assume that this 
model works only for cleavage fracture in the transition region. 

The results presented for the Ni-Cr-Mo-V rotor steel and the other 
supporting data appear to affirm the statistical model rather than a loss of 
constraint explanation. Two points are worth noticing relative to loss of 
constraint. The IT-CT specimens of Ni-Cr-Mo-V steel exhibit toughness 
results that in a few cases are as low or lower than the 4T-CT specimen 
results. This behavior is very often observed in the transition. Because the 
specimens are all identical, it would be hard to explain why some of the 
IT specimens lose constraint while others do not. One of the 4T-GT speci
mens of Ni-Cr-Mo-V steel at 325 K (125°F) showed a very high toughness 
level. This is hard to explain by loss of constraint because this would 
indicate that the 4T specimen had lost constraint while some of the smaller 
IT specimens did not. It is much easier to explain this result from a statis
tical model. The 4T specimen with the high toughness value simply did 
not contain a region of low toughness as did the other 4T specimen and 
several of the IT specimens. 

The statistical explanation for the observed fracture toughness behavior 
in the transition is easier to accept than the loss of constraint argument in 
that it suggests that small specimens can be used to characterize the 
toughness of large structures. The loss of constraint argument not only 
suggests that full thickness fracture toughness specimens should be tested 
but could also suggest that full thickness results are questionable. A com
pact specimen that has the same thickness as the component may not give 
adequate toughness characterization because that specimen could have a 
different crack tip constraint than a structural component with a flaw, 
such as a partial thickness crack. The loss of constraint argument might 
suggest that only full sized component structures can be tested to determine 
toughness in the transition region. 

The results presented here do not imply that small specimens never 
lose constraint; there are many possible small specimen geometries that 
could have less constraint than larger specimens. However, deeply cracked 
specimens of the bend type, such as a compact specimen with crack length 
to specimen width ratio of greater than 0.5 and full proportional thickness 
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to width ratio, 0.5, have a geometric constraint that should give them a 
constraint nearly equivalent to that of a larger specimen. 

A statistical model that is based on the Weibull distribution may only be 
one of many that would adequately characterize the transition toughness 
behavior. The approach taken here should be treated as a first attempt 
to describe the observed toughness behavior. This approach may have many 
areas for improvement, but as a first attempt it looks very promising. The 
problem of dealing with small specimen toughness results in the transition 
is an important one. It is hoped that the approach given here will encourage 
other workers to consider possible approaches to this problem. 

Conclusions 

1. For steels that exhibit a fracture mode, transition fracture toughness 
results measured on small specimens in the transition region generally 
overestimate the results obtained from larger specimens, implying that small 
specimens may not be appropriate for characterizing the toughness of large 
structures. 

2. Two explanations have been discussed in this paper. One is that the 
smaller specimens have less crack tip constraint than the larger specimens 
causing higher toughness. The second is that the material has a variable 
toughness, and fracture is controlled by the region of lowest toughness 
along the crack front. A statistical model based on a Weibull distribution 
can explain the difference in toughness. 

3. Results from an ASTM A471 Ni-Cr-Mo-V steel and other steels 
support the statistical model rather than the loss of constraint explanation. 

4. With a proper application of the statistical model, transition fracture 
toughness results from small specimens can be used to characterize the 
toughness of large structures. 
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ABSTRACT; A numerical analysis of quasi-static, steady-state crack growth under 
small-scale yielding conditions has been carried out for antiplane shear (Mode III) and 
plane strain. Mode I. In addition to results for an elastic-perfectly plastic solid, the 
study includes results relating to the influence of strain hardening on stable crack 
growth. Limited results based on a corner theory of plasticity give some indication of 
the extent to which stable crack growth predictions are sensitive to the type of plasticity 
theory used. 

KEY WORDS: elastic-plastic crack growth, plane strain. Mode III, steady crack 
growth, small scale yielding, fractures (materials), crack propagation 

Crack-tip plasticity is primarily responsible for the phenomenon of stable 
crack growth in metals under monotonically increasing load or displace
ment conditions. As the crack advances, a material element just above or 
below the plane of the crack experiences a distinctly nonproportional history 
of straining; that is, the relative proportions of the strain components vary 
strongly as the tip passes beneath or above the element. By contrast, a 
material element in the vicinity of a stationary crack experiences predomi
nantly proportional plastic loading. An elastic-plastic solid offers consider
ably more resistance to nonproportional strain histories than to proportional 
ones, and this is the main source of stable crack growth. In small-scale 
yielding the strain at a given distance from the tip in the plastic zone is 
larger in the stationary problem than it is in the steady growth problem at 
the same value of the stress intensity factor K. 
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For a stationary crack in an elastic-perfectly plastic solid the strains 
increase as 1/r as the distance from the tip r is diminished. For a growing 
crack the strain singularity is the weaker, In (1/r), as has been discussed by 
Rice [1]^. The character of the singular behavior at the tip of a growing 
crack in a hardening material has been found for linear strain hardening 
by Amazigo and Hutchinson [2]; but for more realistic hardening charac
terizations, such as power law hardening, the near-tip singularity fields 
have remained elusive. 

In carrying out a numerical analysis of a growing crack starting from its 
stationary state it is necessary to specify a near-tip fracture criterion or 
some relation between the crack advance and the applied load or displace
ment parameter. Various techniques have been proposed for such analyses 
and some of the most recent papers pursuing this approach are included in 
Ref 3. As the crack advances, the increment in applied load or displace
ment needed to achieve a given increment of growth diminishes. In small-
scale yielding the crack approaches nominally steady-state growth condi
tions, with an unchanging stress intensity factor K, following a crack 
advance which is one or two times the plastic zone size associated with the 
steady-state K. It is this steady-state problem which is studied in the 
present paper. Small-scale yielding is invoked, and all traces of the transient 
growth period are assumed to have been left far behind the current crack 
tip. As seen in Fig. 1, the crack is semi-infinite with a wake of residual 
plastic strains trailing behind the advancing tip. The formulation and solu
tion of the steady-state problem does not require the specification of a 
fracture criterion. Instead, K plays the role of a scaling parameter to which 
all stress and strain quantities are related. Studies of the steady-state prob
lem in Mode III have been published by Chitaley and McClintock [4] and 
by Andersson [5], who also considers plane stress in Mode I. 

The present paper begins by reexamining the Mode III problem. Some 

FIG. 1—Steady-state crack growth in small-scale yielding. 

3 The italic numbers in brackets refer to the list of references appended to this paper. 
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modification of the Chitaley-McClintock solution for elastic-perfectly plastic 
materials is noted. The effects of strain hardening and of corner develop
ment on the yield surface are also taken into account, and an attempt is 
made to assess their influence on the level of K required for steady-state 
growth compared to the K needed to cause crack growth initiation. The 
second part of the paper deals with plane-strain crack growth in Mode I 
for hardening and nonhardening materials. Contact with the recent results 
of Rice and Sorensen [6] and Rice, Drugan, and Sham [7] is made in the 
steady-state limit. 

Numerical Analysis of Steady Growtli 

In the small-scale yielding limit, the elastic singularity field is imposed 
as the far field limit via a semi-infinite crack as depicted in Fig. 1. Thus, 
as r -* 00 

^ fijie) (1) 

where the 0-variations depend on the symmetry of the field with respect to 
the crack plane y = 0. The material is elastically isotropic and the stan
dard definition of K is employed throughout. It is imagined that the crack 
has grown from the left in Fig. 1 under steady-state conditions at constant 
K. The stress and strain fields around the moving crack tip will appear 
unchanging to an observer moving with the tip. At any fixed material 
point an increment of any quantity such as the stress is given by 

ay = — a doy/dx (2) 

where a is the increment of crack advance. 
It is convenient to nondimensionalize the equations. In Mode III the 

dimensionless quantities are 

GTQW 

7a = Gy„/To 

- ( ! / ' 

7̂ « = ^a/'^O 

(3) 

where 

TQ = the yield stress in shear, 
G = the elastic shear modulus, 
w = the displacement in the z-direction, 
Ta = Oa3' ^nd 7„ = le^j . 
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The dimensionless problem is independent of K. A similar nondimensional-
ization will be used for the Mode I problem. 

A displacement-based finite element method is employed in the analysis. 
In a standard vector notation, the variational equation of equilibrium is 

aTbtdA= F^ 6u ds (4) 

where dA is an area element and tractions F from Eq 1 are applied on a 
circuit with line element, ds, far from the tip. The strains and displace
ments are given in terms of the nodal displacements U by 

e = BU and u = RU (5) 

where small-strain theory is assumed. The stresses are given by 

a = D«(£ - tP) (6) 

where D'' is the elastic constitutive matrix and tP is the plastic strain. With 
K*" = ) B^D''B cM as the elastic stiffness matrix, the nodal displacements 
must satisfy 

K'-U = R^F ds + B^D^eP dA (7) 

The iterative procedure for solving Eq 7 is as follows: 
1. Given the estimate of e'' from the / — 1'*' iteration, use it in Eq 7 to 

compute the i^^ estimate of U, U*''. 
2. Compute 7*'' everywhere from U'' ' . 
3. Compute a''* in the elastic region ahead of the plastic zone using 

ffW = D'•£( '• ' . 

4. Using the steady-state relation 

doij/dx = D'}fi^i de^/dx (8) 

integrate in the negative jc-direction through the elastic-plastic elements to 
obtain ff<'\ where de/^/dx is obtained by taking appropriate differences in e*'' 
between elements. Here D^'' is the instantaneous tangent moduli from the 
elastic-plastic constitutive relation. In the active plastic zone where the 
yield condition is currently met, D''P is the matrix of the loading moduli, 
while D*"? takes on elastic values where the stress falls within the yield 
surface. A technique similar to that in Rice and Tracey [8] was used to 
compute the normal to the yield surface for the current iteration. 

5. Compute the /"' estimate of the plastic strain everywhere using 
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eP = e (D") " l - i , 

6. Repeat Steps 1 through 5 until convergence is achieved. 
The basic element used was the constant strain triangle. The finite element 

mesh, shown schematically in Fig. 2, is composed of triangles and quadri
laterals, the latter being formed from four triangles with the center node 
condensed out. A mesh consisting of 1609 degrees of freedom before con
densation was used in the Mode III calculations, while twice that number 
was used in the Mode I calculations. In Mode III the size of the smallest 
quadrilateral element was 0.4 percent of the distance to the elastic-plastic 
boundary directly ahead of the crack on the x-axis, while the corresponding 
figure in plane strain Mode I was 3 percent or about 1 percent of the height 
of the plastic zone in the j-direction. 

A form of parameter tracking was used to facilitate convergence of the 
iteration scheme. The elastic solution (e^ = 0) was used to produce the 
first iteration for a high hardening case. When this case had converged the 
hardening parameter (either the tangent modulus for the linear straining 
hardening or the hardening exponent for power hardening) was decreased 
and the distribution of eP in the previous case was used to start the new 
iteration. The elastic-perfectly plastic cases required the most iterations to 
achieve satisfactory convergence and 50 to 100 iterations were used. The 
elastic stiffness matrix K^ in Eq 7 remained unchanged during all the 
computations, and therefore was formed and decomposed only during the 
initial elastic solution. 

Steady Growth in Mode III 

Elastic-Perfectly Plastic Material Behavior 

Results for the elastic-perfectly plastic case will be discussed first to show 
the relationship with the previous work on this problem by Chitaley and 

FIG. 2—Coarse representation of finite element grid. 
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McClintock [4]. In Mode III the Mises and Tresca yield conditions both 
reduce to 

+ r/ = 70̂  (9) 

Prandtl-Reuss equations (J2 flow theory) were assumed in conjunction with 
E q 9 . 

The plastic zone is shown in Fig. 3 using the nondimensional coordinates 
as axes. For comparison, the plastic zone for the corresponding stationary 
problem in small-scale yielding is also shown. The elastic-plastic boundary 
of the stationary problem is circular and extends a distance w'^iK/ro)^ 
ahead of the tip. The position of the elastic-plastic boundary for the growing 
crack was interpolated from the numerical results. Its distance ahead of 
the tip at the plane of the crack is about 10 percent greater than for the 
stationary problem at the same K, that is 

r„ = 0.36 (^/ro)2 (10) 

The zone computed by Chitaley and McClintock extended about 5 per
cent beyond the stationary zone ahead of the crack. However, the main 
difference between the zone of Fig. 3 and that computed by Chitaley and 
McClintock is that their active zone was confined between two radial lines 
emanating from the tip at about 20 deg on either side of the plane of the 
crack. The active zone of Fig. 3 extends to almost ± 6 0 deg from the plane 
of the crack. The numerical scheme employed by Chitaley and McClintock 
appears to have involved the built-in assumption that the slip lines (that is, 
the straight lines along which the resolved shear stress equals TQ) all pass 

STEADILY 
GROWING CRACK 

y 

(K/r„) 

FIG. 3—Active plastic zone for steady-state crack growth in an elastic-perfectfy plastic 
material in Mode III small-scale yielding. 
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through the crack tip. In other words, they assumed the plastic zone could 
be characterized by a centered fan of slip lines. Numerical results presented 
here indicate that this is not the case as can be seen from the lines of maxi
mum shear stress shown in Fig. 3. For lines making an angle less than 
about 20 deg with y — 0 it does appear that the lines focus at the tip, but 
for angles greater than this the lines would intersect the plane of the crack 
behind the tip if extended out of the active plastic zone. The greater the 
angle with the x-axis, the further back the point of intersection. 

In light of these findings we have reexamined the asymptotic analysis of 
Chitaley and McClintock for the stress field at the crack tip in Mode III. 
In particular, the possibility of a wedge shaped sector of nonfocused slip 
lines was considered, as suggested by the above results, in addition to the 
sectors containing a centered fan and elastic unloading considered by 
Chitaley and McClintock. The authors were unable to find an asymptotic 
stress field different from that of Chitaley and McClintock which was con
sistent with the requirement that the plastic work rate of the near-tip 
stresses be everywhere positive. Even though the smallest quadrilateral 
element at the tip used in calculating the results of Fig. 3 was less than 
0.4 percent of the size of the active plastic zone, there is no evidence in the 
results to suggest that the asymptotic stress field, with its ±20 deg focused 
fan and elastic unloading outside the fan, is approached. Assuming that 
the asymptotic field of Chitaley and McClintock is correct, it would appear 
that it is attained only at distances that must be less than 1 percent of the 
plastic zone size. 

The strain ahead of the tip on the jc-axis can be obtained by integrating 
the slip line equations with the result for r < r^ 

To 1 + ln{rp/r) + ~lnHrp/r) (11) 

where 70 = TQ/G is the yield strain in shear. Since the estimate of r^ 
(Eq 10) is only about 5 percent larger than that of Chitaley and McClintock, 
the authors' findings for the strain ahead of the crack are in fairly close 
agreement with theirs. To give some indication of the accuracy of the 
present numerical results for the strains, one notes that the computed re
sults for yy agreed closely with Eq 11 for values of jy/yo less than 15, 
corresponding to r/Vp greater than 0.01, as will be seen in a subsequent 
figure. 

Curves of the crack opening displacement, 8 = w{x, y = 0'^) — 
w(x, y = 0~), behind the tip are shown in Fig. 4. Included in that plot 
for comparison purposes are curves for the stationary problem for an 
elastic material and for an elastic-perfectly plastic material; namely, the 
curve for the growing crack in an elastic-perfectly plastic material and 
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steady-state 

Stationary Perfectly-Plastic 
Elastic 
Smooth Power Hardening ,n = 5 
Corner Power Hardening, n = 5 
Perfectly-Plastic 

1.0 

•6 (KVGTO) 

(K /To) ' 

FIG. 4—Comparison of crack opening (shearing) displacements in Mode III for stationary 
and growing cracks. 

curves for two hardening materials, which will be discussed below. In 
steady growth in an elastic-perfectly plastic material, the crack opening 
displacement goes to zero like r In (1/r) as JC = —r goes to zero. A numeri
cal fit to the finite element results for 5, which is displayed in Fig. 5, gives 

Linear Strain Hardening 

With 

= 0.83 In (12) 

T = (r,2 + jy^y^ (13) 

the incremental flow law for plastic loading of a linear strain hardening 
material in antiplane shear is 

G,7(3 = ar^ + (1 — 0)7^7/7 for f > 0 (14) 

where G, is the constant tangent modulus of the shear stress-strain curve 
and a — G,/G. For elastic unloading or within the yield surface, f̂  = Gyg. 

Amazigo and Hutchinson [2] have determined the crack-tip singularity 
fields for steady-state growth in the linear hardening material (Eq 14). 
Asymptotically as r — 0, they find 

r0 ~ r'fffid), yp ~ r^-^id), r-s T 1 /T) H'(^) (15) 
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NUMERICAL 

ASYMPTOTIC 

( K / T o ) Z 

20 

10 

NUMERICAL 

THEORETICAL 

.03 .04 05 0 6 

0 = 0 

.07 

FIG. 5—Comparison of numerical results with theoretical results chosen to give best fit as 
discussed in the text for Mode III. 
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where s and the ^-variations depend on a. With 7 as the nondimensional 
radial distance defined in Eq 3, Eq 15 implies that the strain just ahead of 
the crack on y = 0 and the crack opening displacement just behind the 
crack should be of the form 

Jy/yo = C^r' + C2 (16) 

8GTO 

K 2 = C3P+' (17) 

where c j , C2, and cj are undetermined constants. (It is possible that there 
are additional singular terms, of lower order than r\ which should appear 
in Eq 16. These have not been determined and are not taken into account 
here.) The coefficients in Eqs 16 and 17 were chosen to fit to the finite 
element results. Solid line curves in Fig. 5 are from Eqs 16 and 17 with the 
coefficient values shown in Table 1. The finite element values are shown as 
solid dots. The j-values in Table 1 are taken from Ref 2, Table 1. Included 
in Fig. 5 are the elastic-perfectly plastic finite element results, together 
with curves from Eqs 11 and 12. 

The strain hardening parameter a has relatively little influence on the 
location of the elastic-plastic boundary as can be seen in Fig. 6. The angu
lar extent of the active zone near the tip on either side oi B = 0 increases 
as a increases in approximate agreement with the predictions of the asymp
totic analysis of Ref 2. The present numerical results reveal a very small 
reversed zone of plastic yielding in the wake behind the tip. But this sec
ondary zone extended less than 2 percent of the height of the plastic zone 
above and below the crack flank. The effect of this secondary zone, which 
was taken into account in Ref 4 but not in Ref 2, appears to play a neg
ligible role in Mode III. 

These results can be used to obtain some insight into the role of strain 
hardening as it affects stable crack growth in small-scale yielding. First, 
consider a strain-based fracture criterion similar to the one proposed by 
McClintock and Irwin [9] where crack growth can initiate or continue if 
ahead of the crack in the plastic zone 

yy = yc at r = r^ (18) 

a 

0.1 
0.2 

TABLE 1—Coefficient values. 

S C\ C2 

-0 .207 5.25 - 6 . 3 5 
-0 .277 2.61 - 3 . 0 6 

C3 

2.30 
2.02 
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(K^r„)' 

FIG. 6—Effect of linear hardening parameter a on active plastic zone shape in Mode III. 

Reviewing quickly for the elastic-perfectly plastic case (a = 0), one uses 
the strain ahead of the crack in the stationary problem 

lyho = rp'/r where r/ = ir ^{K/TQ)^ (19) 

together with 7^ from Eq 11 for the steadily growing crack and the growth 
criterion from Eq 18 to determine the ratio of K^^ needed to drive the 
crack in steady-state to K^ needed to initiate growth. If one approximates 
Tp in Eqs 10 and 11 by r̂ * in Eq 19, as McClintock and Irwin did, one 
obtains 

{K,,/K,)^ = (7o/7c) exp [V2(7,770) - 1 - 1] (20) 

showing that K^s /K^ may be very large if the "fracture strain," -^^, is many 
times the yield strain, 70. 

For the linear hardening material the strain ahead of the crack in the 
plastic zone of the small-scale yielding stationary problem can be shown 
from Ref 10 to satisfy 

1 
r — 7r(l — a) L 7 

To 
1 

In 
orjy 

"Tv + (1 — «)7o 
(21) 

where r is again given by Eq 3. For a -» 0, Eq 21 yields Eq 19; and for 
a ?£ 0, Eq 21 gives 7^/70 - (2xaF)-'/2 as r - 0. The full relation (Eq 21) 
was used in the following calculation. Using Eq 21 for the stationary prob
lem and Eq 11 or 16 for the steady-state problem, together with the im
posed growth criterion (Eq 18), the ratio K^s/K^ for a = 0, 0.1 and 0.2 
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was calculated. The ratio, which depends only on 7C/TOI is plotted in 
Fig. 7. Note that the curve for the elastic-perfectly plastic case (a = 0) is 
not exactly as indicated by Eq 20, since in Fig. 7 the more accurate result 
for rp from Eq 10 has been used. Although linear hardening does not 
provide a very realistic representation of most stress-strain behavior, the 
trend with increasing hardening in Fig. 7 is clearly a decrease in the poten
tial for stable crack growth. The exponential-type dependence of K^^/K^ 
on large 7c/70, as typified for the zero hardening case by Eq 20, results 
from the weak logarithmic strain distribution (Eq 11) ahead of the growing 
crack. Hardening leads to a more robust singularity in the strains (see 
Eq 16 and Table 1) and consequently to smaller values of K^^/K^ at large 

7r/7o-
An alternative growth criterion, which will be used later in the Mode I 

analysis, is based on a critical crack opening displacement (COD) a given 
distance behind the crack, as has been employed by Rice and Sorensen [6] 
in their Mode I analysis, that is 

8 = 8, at r = r, (22) 

For the stationary problem in Mode III small-scale yielding [10] 

1 

TT 

8 

1 

52 

a 
— 

— 

n 
a [l 

a 
x ( l -

J+-

a)2 

(1 — a)x 
In l - - | ( l - a ) J 5 < ^ 

TT 

( 1 - a + l n a ) - ^ 6 > ^ 
2ir 

(23) 

TT 

where? = w{r, ir) — w(r, — TT) and r a n d vv are given in Eq 3. The growth 
criterion (Eq 22) was used in conjunction with the numerical data for the 
growing crack and for the stationary crack (Eq 23) to generate K^^/K, as a 
function of 8c/{-yQrc) for a = 0, 0.1 and 0.2. The results are shown in 
Fig. 8. Again one sees a decrease in the potential for stable crack growth 
with an increase in hardening. 

Power Hardening with Smooth and Cornered Yield Surfaces 

A limited study was made for a power hardening material that deforms 
in monotonic shearing according to 

7/70 = T/TQ T < TO 

(24) 

= ( T / T O ) " T > TO 

The asymptotic form of the singularity fields is not known for a growing 
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a = 0 

re 
20 30 

FIG. 7—Dependence of Kss/Kc on hardening in Mode III as predicted from a near-tip 
growth criterion based on attainment of a critical strain yea distance tc ahead of the tip. 

FIG. 8—Dependence of Kss/Kc on hardening in Mode HI as predicted from a growth 
criterion based on attainment of a critical shearing displacement 6c a distance tc behind the tip. 
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crack in a power law material, as has already been mentioned. Our main 
concern here will be to contrast the results from two different flow theories, 
both of which satisfy Eq 24 in pure shear. One employs the classical smooth 
isotropic hardening surface based on Eq 13 (that is, J2 flow theory), and 
the other is a recently proposed [//] law, called Ji corner theory, in which 
a corner develops on the yield surface at the loading point. Subsequent 
yield surfaces for the two theories in antiplane shear are shown in Fig. 9. 

Plastic loading according to the classical J2 flow theory requires 

ia = G-'f, + iG,-' - G- i ) r „7 /7 (25) 

where G, is the current tangent modulus whose dependence on T is obtained 
from Eq 24. 

The plastic strain-rate given by the second term in Eq 25 is constrained 
to lie along the normal to the yield surface. In a nonproportional stress 
history, such as that shown in Fig. 9 where the ratios of the stress com
ponents change, the stiffness associated with the component of stress incre
ment, which is tangent to the yield surface, is necessarily the elastic value. 
Crack growth inherently involves strongly nonproportional stressing in 
material elements lying above and below the plane of the crack, as men
tioned in the beginning of this paper. Isotropic hardening based on the 
smooth Mises yield surface tends to overestimate the resistance of an 
elastic-plastic material to nonproportional deformation. A corner theory of 
plasticity, by contrast, probably underestimates somewhat the resistance 
to nonproportional deformation, although perhaps not significantly. Thus, 
a comparison of results based on the two theories may give some indication 
as to whether the extensive stable crack growth predicted by classical flow 
theory (as indicated by the large values oiKss/K^) is realistic. 

Full details of J2 corner theory are given in the paper by Christoffersen 
and Hutchinson [/ /] . In their notation, the angle between the axis of the 
corner (see Fig. 9) and the stress-rate is given by 

cos ^ = T^Jjir^T^f^) (26) 

The total strain-rate is given by 7„ = dW/df„ where W is the stress-rate 
potential defined by 

W^^QW)fJ, (27) 
2G 

The strain-rate is 

Gfa = [Q + jQ' cotan jS^f^ ~ ^ Q' (^'" -̂  '=°̂  ^r'T^f/r (28) 
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SUBSEQUENT 
YIELD SURFACE 

INITIAL YIELD 
SURFACE 

SUBSEQUENT 
YIELD SURFACE 

INITIAL YIELD 
SURFACE 

FIG. 9—Two yield surfaces employed in the Mode HI power hardening calculations. 

where Q' = dQ/d^. The function Q(/3) provides a smooth transition from 
a proportional loading increment (0 = 0) to elastic unloading for /3 > jSj, • 
For proportional loading the predictions of Eq 25 and 28 are identical, 
and for nearly proportional loading the strain-rates from Eq 28 coincide 
with the predictions of the J2 deformation theory of plasticity. The function 
Q(/3) used in the calculations reported below is specified by the function 
g{(l)) defined in Ref / / , Eq 2.46 (with m = 3 and (9o = 0). 

The active plastic zones for the smooth theory and corner theory with 
« = 5 are shown in Fig. 10. Ahead of the crack the plastic boundaries are 
essentially coincident. The corner theory unloading boundary trails the iso
tropic hardening unloading boundary. The corner theory active zone is 
somewhat larger than that for isotropic hardening, reflecting the diminished 
resistance of the corner theory material to nonproportional stress histories. 

Curves of COD behind the tip for the classical flow theory and the corner 
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FIG. 10—Comparison of active plastic zones in Mode III for power hardening (n = 5) for 
two yield surface characterizations. 
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theory for « = 5 are included in Fig. 4. Over the portion of the plastic 
zone in which the present results are accurate (that is, to within about 
1 percent of the plastic zone size from the tip), there is rather little dif
ference in the results for the two theories. The COD, a given distance 
behind the tip, is slightly larger for the corner theory material than for the 
smooth yield surface material. This small difference again reflects the 
lowered resistance that the corner theory material offers to nonproportional 
plastic deformation. 

The strain ahead of the crack from the two theories is shown in Fig. 11. 
Here again the difference is small but now the strain from the smooth 
yield surface solid is slightly larger than the other, at least for strains less 
than 15 70 for which the authors' results are accurate. This somewhat sur
prising interchange can be rationalized by noting that the deformation on 
the line ahead of the crack is exactly proportional (T^ = 0), while non-
proportional deformation takes place above and below the plane of the 
crack. Examination of the numerical results indicates that the standard 
flow theory solid tends to concentrate the straining in the region ahead of 
the crack, compared to the corner theory solid. Although the effect is not 
large, the corner theory solid shows relatively more straining above and 
below the line of the crack, consistent with what one would expect and 
consistent with its slightly larger opening displacement. 

Our study of the influence of reduced resistance to nonproportional flow 

Perlectly-Plostic 

Power I Smooth Yield Surface-
^•"^"'"9 Corner Yield Surface-

FIG. 11—Strain ahead of crack in Mode III for power hardening theories and comparison 
with elastic-perfectly plastic distribution. 
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as modeled by the corner theory has not been sufficiently extensive to 
warrant the apparent conclusion that the effect is not very large. It is pos
sible that larger discrepancies will emerge closer to the tip at higher strain 
levels. One also notes that use of the corner theory results, as opposed to 
the standard flow theory results, with the critical strain criterion (Eq 18) 
would yield slightly higher estimates of K^^/K^. On the other hand, use of 
the corner theory results for the opening displacement with Eq 22 would 
give slightly lower estimates of this ratio, at least over the range considered 
here. Nevertheless, it does appear that the influence of strain hardening 
may be more significant than the corner effect. 

Steady Growth in Plane Strain Mode I 

In the plane strain study a piecewise-power law material was assumed 
whose uniaxial stress-strain curve is given by 

e/co ~ O^OQ O < GQ 

(29) 
= (a/ao)" a > ao 

where 

OQ = the uniaxial yield stress, 
fo ~ OQ/E = the yield strain, and 
E = Young's Modulus. 

The classical incremental theory (Ji flow theory) was used to generalize 
Eq 29 to multiaxial states. This theory assumes isotropic hardening based 
on the Mises surface (that is, J2 = i/2 sySy = constant, where Sy is the 
stress deviator). The material was taken to be elastically isotropic with 
Poisson's ratio, v. Included in Eq 29 for « -* 00 is elastic-perfectly plastic 
behavior. 

Amazigo and Hutchinson [2] obtained singularity fields for the plane 
strain, Mode I problem for linear strain hardening. However, they ne
glected the effect of reversed plastic loading along the flank of the crack 
behind the tip. The present numerical results indicate that substantial re
versed loading occurs in plane strain, and therefore its omission in Ref 2 is 
likely to render those results inaccurate. For this reason no attempt was 
made to use the linear hardening material in the present plane strain study. 

The elastic-plastic boundary of the active plastic zone is shown in Fig. 12 
for the elastic-perfectly plastic material (n = 00) and for n = 3 and 10. 
Poisson's ratio was taken to be f = 0.3 in all cases. The zone in which 
"reversed" plastic flow occurs, trails behind the tip as shown with a width 
that is approximately 15 percent of the vertical extent of the plastic zone 
for « = 10 and 00. 
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n =3 
10 
00 

FIG. 12—Active plastic zone in plane strain Mode I small-scale yielding for two levels of 
power hardening and elastic-perfectly plastic behavior. 

Stresses near the tip as determined from the finite element results for the 
elastic-perfectly plastic material are shown in Fig. 13. The numerical re
sults are compared with the asymptotic near-tip stress field recently deter
mined by Rice et al [7]. These new asymptotic stresses differ only by about 
1 percent from the stresses of the Prandtl field, except in the neighborhood 
ot 9 = 135 deg, where the differences are on the order of 10 percent. The 
main difference between the new asymptotic field and the Prandtl field is 

Analytical [ 7 ] 
x.o Numerical 
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FIG. 13—Comparison of the near-tip numerical stress results with asymptotic field of 
Ref 7 for plane strain Mode I. 
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the presence of a wedge of elastic unloading extending from approximately 
6 = 115 deg to B = 163 deg, whereas yield is satisfied for all d in the 
Prandtl field. There is no evidence in the authors' numerical results of 
elastic unloading near the tip. As can be seen in Fig. 12, the active plastic 
zone appears to fully surround the tip. It is quite likely that the mesh 
refinement used in the present calculations is not sufficient to reveal the 
wedge shaped unloading region. In Mode III it was noted that the mesh 
used indicated a substantially smaller wedge of elastic unloading near the 
tip than that predicted by the Chitaley-McClintock asymptotic field. In 
plane strain, the mesh used in this analysis is relatively coarser (the smallest 
quadrilateral element is about 3 percent of the distance to the elastic 
plastic boundary ahead of the crack) and this may explain the authors' 
failure to observe any elastic unloading near the tip. 

Curves of the nondimensional COD behind the crack for the steady 
growth problem are shown in Figs. 14a and b. The linear elastic curve 
(w = 1) is shown in Fig. 14a. The numerical values from the finite element 
calculations for the elastic-perfectly plastic case in — <») are shown as 
solid dots in Fig. 146. As the tip is approached the opening displacement 
goes to zero as 

6 = /3-frln(-f) (30) 

where, following the notation of Rice and Sorensen [5], j8 is a numerical 
constant (with no relation to the angle /3 used in the corner theory), 
e = 2.7183 and R = ciK/oo)'^ where c is another numerical constant. The 
best least-square fit of Eq 30 to the four computed values of 6 nearest the 
tip (see Fig. 14fc) gives 

/3 = 4.28 and c = 0.71 (31) 

The analysis of Rice et al [7], which employs the asymptotic near-tip 
field mentioned above, gives the theoretical value /3 = 5.08. Fixing ^ at 
5.08 and choosing c to give a best least-square fit of the same four values 
of b, one finds 

^ = 5.08 and c = 0.28 (32) 

This latter estimate of c is in reasonable agreement with the value obtained 
in Ref 7 from a fit of numerical data for the transient growth of a crack. 
Curves from Eq 30, using Eq 31 and 32, are shown in Fig. 146. There is 
relatively little difference between the two curves for x/{K/aQ)^ in the range 
-0.001 to -0.02. 
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FIG. 14—Crack opening displacement in plane strain Mode I (a) effect of hardening, and 
(b) numerical values for elastic perfectly plastic case (n = oo) and comparison with asymptotic 
formula. 

The results for 5 for « = 3, 10 and oo have been replotted as 8/ieor), 
where eg — o^/E, as a function of r/(/<r/ao)^ in Fig. 15. It is in this form 
that the results are most convenient for predicting K^^ /K^. from a near-tip 
fracture criterion based on a critical 6. 

Following Rice and Sorensen [6], and also Ref 7, one again adopts the 
near-tip criterion (Eq 22) for initiation and continuation of crack growth. 
For a given value of d^/^eQr^) and n, the value of r^/iKss/of^)'^ for steady-
state growth can be read off the abscissa of Fig. 15. The value of r^ /(K^ /OQ )^ 
for initiation of growth can be read from the corresponding curve for the 
stationary problem. These two values supply the ratio (K^^/K^)^ for a given 
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( K / < r o ) 2 

FIG. 15—Normalized crack opening displacement in plane strain Mode I. 

pair 6c/(€o''c) and n. Curves obtained in this manner are plotted in Fig. 16 
for n — 3, 10 and oo. For the stationary problem the authors derived 
curves of b/^e^r) versus r/^K/oQ)^ from Ref 12 for « = 3 and oo and from 
Ref 6 for « = 10. However, the n-dependence of the stationary solution for 
b plays a relatively minor role in determining the influence of hardening on 
the variation of K^^/K^ with b^/ieor^) in Fig. 16. Primarily, the influence 
of hardening on the curves in Fig. 16 is due to the dependence of the 
steady growth solution of Fig. 15 on the hardening index n. 

The strong dependence of K^^ IK^ on hardening is qualitatively similar to 
what was found in Mode III for linear hardening. The curves in Fig. 16 
were not extrapolated to values of b^ /(eo'^c) beyond about 32, corresponding 
to the limit to which the numerical results are felt to be accurate. Rice and 
Sorensen [6] suggest that values of b^/{t(^rc) larger than 100 may be appro
priate for certain intermediate strength pressure vessel steels with unusually 
high tear resistance. Then, values of K^JK^ will be enormous for light to 
moderate strain hardening (10 < n < oo, say) as can be seen from the 
trends of Fig. 16. But it is also clear from these trends that the elastic-
perfectly plastic result for a given b^./{eQrc) appears to significantly over
estimate the potential for stable crack growth in a hardening material. It 
seems reasonable to assume that the same conclusion holds for the entire 
transient growth process. That is, one expects that the normalized resistance 
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Kss f 

FIG. 16—Effect of hardening on Kss/Kc in plane strain Mode I as predicted by a criterion 
based on the attainment of a critical opening displacement b^a distance TQ behind the current tip. 

curve in small-scale yielding (that is, Kg /K^ as a function of Aa), as pre
dicted using a near-tip fracture criterion such as the one employed here, 
will be strongly influenced by small to moderate amounts of hardening. 
Predictions for elastic-perfectly plastic solids will tend to be unconservative 
when strain hardening is present. 
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ABSTRACT: This paper presents the fully plastic solutions for the compact specimen 
and an estimation scheme that exploits these solutions to generate crack driving force 
diagrams under contained and large-scale plasticity conditions. 

Plane-strain and plane-stress fully plastic solutions for compact specimens are ob
tained for a wide range of crack length to width ratios and for hardening exponent n of up 
to 20. The calculations are based on deformation plasticity theory and use the finite ele
ment method for incompressible deformation developed by Needleman and Shih. Rele
vant crack parameters like the J-integral, crack opening displacement, mouth opening 
displacement, and load-line displacement are appropriately normalized and tabulated. 
Simple formulas are given for estimating the relevant crack parameters from contained 
yielding to fully plastic situations using the elastic and the tabulated fully plastic solu
tions. The results thus obtained are compared with accurate finite element solutions for 
stationary and extending cracks based on flow theory of plasticity. 

Crack driving forces in terms of the J-integral and crack opening displacement are 
computed for A533B compact specimens using the above estimation scheme. Assuming 
that the conditions for/-controlled growth are satisfied, the load-displacement behavior, 
stable crack extension, and the point of instability can be determined from the crack 
driving force diagrams if the material /-resistance curve is known. Comparisons of the 
predictions with actual test measurements for several different sized compact specimens 
show good agreement. 

KEY WORDS: compact specimen, plane strain, plane stress, fully plastic solutions, 
elastic-plastic estimation scheme, crack growth, instability, creep crack growth, limit 
load, J-integral, crack opening displacement, resistance curve, tearing modulus, frac
tures (materials), crack propagation 
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In two earlier publications Shih [1]^ and Shih and Hutchinson [2] pro
posed a relatively simple procedure for estimating solutions to contained and 
large-scale yielding crack problems where the load is monotonically in
creased and the crack is stationary. The essential ingredients for the estima
tion procedure are the linear elastic solutions as tabulated by Tada [3] and 
the fully plastic solutions as tabulated by Shih, Hutchinson, Goldman, 
Needleman [1,2,4-6], Ranaweera and Leckie [7] and Parks [8]. The estima
tion procedure exploits the scaling laws associated with linear elastic and 
fully plastic solutions to interpolate over the range from small-scale yielding 
to large-scale yielding. The method also accounts for strain hardening and 
the stress strain representation of material behavior. In [1,2] the simple 
estimates were compared with full numerical calculations; the interpolation 
formulas for the J-integral, crack opening displacement 8, and other relevant 
crack parameters were found to be fairly accurate. 

Subsequent to the investigation by Begley and Landes [9,10] and Green 
and Knott [11], which led to the characterization of the onset of crack growth 
by the critical value of / and 8, denoted by Ji^. and 8ic respectively, experi
mental data on stable crack extension became available. The data from 
Clarke et al [12], Griffis and Yoder [13], Clark et al [14], and Shih and 
Andrews [15,16] suggest that limited amounts of crack growth is 
characterizable by the/or 8 resistance curve. The latter experimental studies 
[15,16] were complemented by analytical and finite element studies of the 
growing crack based on measured crack growth behavior. Simultaneously, 
Paris et al [17] initiated an approach for analyzing crack growth stability 
based on the concept of a J-integral resistance curve. Pursuing similar lines, 
Hutchinson and Paris [18] and Zahoor and Paris [19] employed formulas 
based on the deep crack approximation in Ref 20 and the interpolation for
mulas in Refs / and 2 to examine the stability of small amounts of crack 
growth under/-controlled growth conditions. 

In this paper the plane-strain and plane-stress fully plastic solutions for 
the compact specimen are presented. These solutions are appropriately nor
malized and comparisons with the deep crack approximations are made. Im
proved interpolation formulas for J-integral and other relevant crack 
parameters are compared with experimental data and full numerical calcula
tions for the growing crack. Crack driving force diagrams in terms of / and 
the tearing modulus are computed for A533B steel compact specimens. The 
load-displacement behavior of the specimen, amount of stable crack exten
sion, and the maximum load are determined directly from these diagrams. 
These predictions are compared with test measurements for a number of 
compact specimens. The J-integral resistance curve may be obtained directly 
from the crack driving force diagrams in conjunction with the measured 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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load-displacement record. Examples that illustrate this feature and sensitiv
ity analyses are reported. 

FuUy Plastic Solutions for Compact Specimens 

Considered here is a class of small strain fully plastic crack problems for 
incompressible power law materials as in Refs 1,2,4, and 5. In simple ten
sion, the strain is related to the stress by 

e/eo = a(a/a„)" (1) 

where Og and to are some reference stress and strain (the connection &„ = Eeo 
can always be made, but is not necessary), n is the hardening exponent, a is a 
material constant, and£' is the Young's modulus. At one limit given by n = 
1, (1) represents linear elastic behavior while at the other limit of n — «>, (1) 
gives rigid-perfectly plastic behavior. Generalizing this uniaxial relationship 
by J2 deformation theory of plasticity leads to 

, -5 _ « —1 r* 
t,7 o / "e \ ^ii 

Co 7 ff, 

2 — where 5/, is the deviator stress and a^ is the effective stress defined by a, 

As first noted by Ilyushin [2/], a solution to a boundary value problem in
volving a single load or displacement parameter, which is increased 
monotonically, has two important properties. First, the field quantities in
cluding crack parameters like the J-integral and crack opening displacement 
increase in direct proportion to the load or displacement parameter raised to 
some power dependent on n. For example, if P is the load parameter, the 
stress at every point is proportional to P while the strain is proportional to P". 
The second property follows from the first. Since the stress and strains at 
every point increase in exact proportions, the fully plastic solution based on 
Eq 2 is also the exact solution to the same problem posed for flow theory of 
plasticity. 

For fully plastic crack problems of the type described by Eq 2, the material 
is fully nonlinear and incompressible. In anti-plane shear or plane stress 
problems examined in Refs I, and 2, the incompressible deformation do not 
introduce any additional complexity on the finite element method. Thus, 
fully plastic solutions were obtained for a number of crack configurations us
ing a modified Newton-Raphson scheme coupled with parameter tracking for 
solving the fully nonlinear system of equations. The iterative scheme is 
discussed in the Appendix of Ref /. In plane-strain problems, the enforce
ment of the incompressibility constraints complicates the displacement finite 
element method. 
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Incompressible deformation can be accommodated within the framework 
of the finite element method in a variety of ways and these are briefly dis
cussed elsewhere [6]. In this paper the authors employ the finite element 
method developed in Ref 6 to obtain the plane strain fully plastic solutions. 
The method is formulated from the virtual work equation based on deviatoric 
quantities. The incompressibility constraint is imposed directly on the ad
missible displacement field by direct elimination of nodal displacements. 
This leads to a stiffness matrix that is symmetric and positive definite. A 
modified Newton-Raphson iterative scheme [/] is employed to solve the 
nonlinear system of equations. Once a convergent solution for the displace
ment is obtained, the hydrostatic stress is determined using the principle of 
virtual work. 

Fully Plastic Plane-Strain Solutions 

Plane-strain fully plastic analyses were carried out for the standard ASTM 
compact specimen for a/b = 'A, Vs, V2, Vs, and V4 and for « = 1, 2, 3, 5, 7, 
10, 13, 16, and 20. As illustrated in Fig. la, a is the crack length and b the 
specimen width. Because of symmetry along the crack, only the upper half of 

(a) 

b) 

\ 
h = 0.6b ^ 
h, = 0.275b 1 
D = 0.26b 
d = 0.26b 

\ 
\ 

B - 0.6b 1 

B; Thickness | 

A 

\ 

X. 4> n.-r 

VTSjr -T--f T-D v j y » 
P 

•*—a—*• ^ 0 ^ 

FIG. 1—(a) Geometry of ASTM standard compact specimen; and (h) finite element mesh for 
upper half of compact specimen with a/b = -V* (within the semicircular hole are eight rings of 
elements; the load is applied at the node shown by the dot). 
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the specimen was modeled. A typical finite element mesh for the case a/b = 
/̂8 is shown in Fig. \b. The quadrilateral consists of four constant strain 

triangles; the former are grouped in substructures in which all linearly in
dependent incompressibility constraints are satisfied. As discussed in Ref 6 
these substructures are employed as the basic building blocks of the finite 
element grid. The loading pin hole could not be conveniently accommodated 
using the substructures and therefore was not included in the present model; 
the effect of not including the hole will be discussed subsequently. 

As shown in Fig. 1, the model had 15 quadrilaterals in the circumferential 
direction about the crack tip (from 6 = 0 to TT) and 20 elements in the radial 
direction from the tip to the external boundaries. The meshes used for the 
other values of a/b also had the same number of elements and were similar to 
the one shown here. In these analyses the singular crack tip element was not 
used because of the associated convergence problems for large n-values. In
stead, the mesh had a small hole at the crack tip with radius equal to 1 to 2 
percent of the crack length or the remaining ligament, whichever was the 
smaller dimension. This circumvented some of the numerical difficulties at 
the crack tip and the solution converged fairly rapidly. The hole was very 
small in size, and numerical experimentation showed that it had virtually no 
effect on the J-integral, mouth opening displacement, and the load-line 
displacement for the range of n examined. In most cases, the difference 
amounted to less than 1 percent. 

Following the procedure in Refs / and 6, linear or modified Newton-
Raphson interations were employed to obtain the fully plastic solution. The 
parameter tracking technique was used by which the appropriately scaled 
solution corresponding to M = 1 was taken as the initial guess to obtain the 
n = 2 solution, and which in turn is used as the starting point for « = 3 and 
so on. For « > 5, the Newton's iterations did not always converge, and it 
seemed necessary to employ several linear iterations typically before using the 
Newton's method. For n > 10, direct application of Newton's iterations 
could lead to numerical instability, and, therefore, mostly linear iterations 
were employed. It typically took three Newton's iterations for n < 5, five 
linear iterations plus three Newton's iterations for 5 < « < 10 and eight 
linear iterations for « > 10. The computations were performed in single 
precision (about 14 digits) on the CDC 7600. In similar calculations for a 
center-cracked plate (CCP), Newton's iterations worked well for the entire 
range of n investigated [22], It is suspected that the numerical difficulties 
with the compact specimen is partially due to the high stress gradient across 
the ligament. 

The present results for the linear elastic case corresponding to « = 1 were 
compared with the results of Newman [23] without the pin hole. For all a/b 
ratios, the average value of the J-integral computed over a wide range of con
tours using the line-integral definition given by Rice [24] is within 2 percent 
of the value given in Ref 23. The variation from path to path is less than 1 
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percent from the average value. The mouth opening displacement, 6, at the 
outer edge was also within 2 percent of Ref 23 for all the values of a/b con
sidered here. The load line displacement, Ax, is of similar accuracy except 
for the extreme a/b ratios where it differed from Ref 23 by 4 percent. 

As mentioned earlier, the present results do not include the effect of a pin 
hole. Newman [23] has investigated the effect of a pin hole on K (or J), 6, and 
Ax. He found that for n = 1, the effect is negligible for a/b > 0.4. For 
nonlinear materials (n > 3) and under fully plastic conditions, the deforma
tion concentrates along the uncracked ligament; that is, the ligament is 
much more compliant than the remaining body. Thus, it is argued that for n 
ranging from 7 to 20, which is the case for most structural steels, the error 
associated with ignoring the pin hole is negligible. The comparison of the 
fully plastic results with the deep crack formulas in a later section also sup
ports the above inference. 

As discussed in the previous section, an important characteristic feature of 
the fully plastic solutions is that they are scalable. The results obtained here 
for various a/b and «-values were normalized using the following scheme 
[1.2,4] 

J = aaoe„chiia/b, n) {P/PoY + ' (3) 

6 = ae.ahiia/b. n)(P/PJ" (4) 

Ax = aeMiia/b, n)(P/P„r (5) 

where 

P = the load per unit thickness, and 

c = b — a = the uncracked ligament. 

It is noted that hi, hi, and hi in the above equations are functions of a/b 
and n alone. Pg is the limit load per unit thickness and is given by (see Ap
pendix 1) 

Po = 1.455 jjcCTo (6) 

where r; is defined as 

V - fy.2(^,.2 
J/2 

^ + 1 ] (7) 

This limit load is obtained by using the procedure of Merkle and Corten 
[25]. An upper bound limit load for the compact specimen in plane strain 
can also be calculated by using the Rice's method [26] or the Green and 
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Hundy field [27]. A comparison of the limit load derived by these different 
procedures is discussed in Appendix 1. 

In Eq 4, 5 is the mouth opening displacement of the crack at the outer edge 
(that is, 8 = Uy(0, 0+) — UyiO, 0~). In Eq 5 the crack opening displacement 
at the load line is given by A^ = Uy{d, 0+) - Uy(d, 0'). 

The calculated values of h^, hi, and hj for the plane-strain compact 
specimen are presented in Table 1 for a/b = V4, %, V2, Vs, VA, and 1 and for 
n = 1, 2, 3, 5, 7, 10, 13, 16, and 20.̂  The h's for « = 1 were taken from the 
elastic solution [23] with the pin hole effect included and using the nor
malization scheme, Eqs 3 to 5. Poisson's ratio v was taken to be 0.5 for the 
« = 1 situation to indicate the elastic limit of the incompressible fully plastic 
formulation. For a/b = V2, Vs, and VA, the plots of hi, hj, and h^ versus l/« 
are shown in Figs. 2 and 3, respectively. These plots are useful for inter
polating and extrapolating the A's corresponding to various values of n and 
a/b. Similar plots of A1, A2, and A3 versus a/b for fixed values of n can be also 
constructed. 

Fully Plastic Plane Stress Solutions 

Fully plastic plane-stress analyses based on Eq 2 were also carried out for 
the compact specimen using a conventional displacement finite element 
method [2,22]. The same iterative scheme as discussed in the previous sec
tion was employed to solve the nonlinear system of equations associated with 
the plane stress formulation.'' The meshes for the plane-stress analyses were 
identical to the corresponding plane strain meshes. 

The plane-stress fully plastic solutions are normalized in the same form 
(Eqs 3 through 5) as for the plane-strain case, except that the limit load ap
propriate to the plane-stress situation as discussed in Appendix 1 and given 
by 

P„ = 1.072vca, (8) 

is used in the normalization and r/ is as in Eq 7. The plane-stress solutions re
quire less iterations to converge^ when compared to plane-strain solutions. 
The values of h^, hi, and hj are tabulated in Table 2. For purposes of inter
polation and extrapolation, the h's can be plotted in the format of Figs. 2 
and 3. 

•'Values for a/b — 1 are obtained by extrapolation—see Appendix B. 
''To check out the plane-stress computer code, the center cracked panel was analyzed. The 

fully plastic solutions for a wide range of n were within 1 to 2 percent of the earlier results 
tabulated in Ref 2. 

^Measured by the error norm based on Li-
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COMPACT SPECIMEN. PLANE STRAIN 

0.5 - / / , 

a/b = 1/2 

;b = 5/8 

a/b = 3/4 

0 2 0 4 0 6 0 8 

FIG. 2—h| versus Vn for a compact specimen in plane strain. 
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FIG. 3—h2 and h3 versus y^for a compact specimen in plane strain. 
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Evaluation of Fully Plastic Solutions 

An expression for / in terms of the load-displacement record has been ob
tained by Merkle and Corten specifically for the compact specimen [25]* 

JMC = - [-VT^iX \ Pd^L (9) 
2 n + n 
c Vl + r,^/ JO 

One can evaluate Eq 9 using the fully plastic results and see how closely JMC 
agrees with / for various values of n. Using Eq 5 in Eq 9, one has 

Dividing Eq 10 by Eq 3 gives the ratio in terms of JJ and A3 and h 

JMC _ J ^ {_^\ /_'L_\ /^L"L'7\ ^ 

by 

J OgC \c / \« + 1/ \1 + r) / "1 

An expression by Rice et al [20] valid for deep cracks in bending, is given 

JRPM = \ \ PdAL (12) 
c 

In terms of the fully plastic results 

W = 2«^^J [-)Po[y] h. (13) 

The ratio JRPM^J is 

JRPM _ '^PQ f a \ / w \ ^3 

/ a„c \c J \n + 1/ hi 
(14) 

The ratios, Eqs 11 and 14, for the plane-stress problem using Eq 8 for Pg, 
were computed from the numerical values of hy and A3 in Table 2. Plots of 
Eqs 11 and 14 against l / « for a/b equal to V2 and Â are shown in Fig. 4. 
From the graphs it is clear that the accuracy of formulas expressed in Eqs 9 
and 12 increases with larger crack length (for fixed crack width) and n 
values. The Merkle-Corten expression also appears to be better suited for 
compact specimens. For « > 3, J^c is within 3 percent of/-value for a/b s 

*The second term to J^c may be ignored for a/b ratios greater than 0.45 [25]. 
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FIG. 4—Values ofi^Q/} and Ii^p^/J from Eg 11 and 14 under plane strain and plane stress 
condition. 

Vs. The authors interpret this as indicating that Eqs 9 and 10 are ap
propriate for purposes of calculating / for a wide range of hardening 
materials as long as the remaining ligament is fully yielded. The trend and 
consistency of the approach to the deep crack limit also attests to the 
numerical accuracy of the fully plastic solutions. 

Equations 9 and 12 were also evaluated using the fully plastic plane-strain 
solutions tabulated in Table 1. The ratios thus obtained are shown by dashed 
curves in Fig. 4 for a/b — V2 and V4. Generally the trends of the plane-strain 
results are similar to the plane-stress results. However at higher M-values, the 
ratio deviates from unity by about 5 percent or so. This is probably due to the 
numerical errors in Ai, A2, and A3 at large values of n and do not suggest a 
departure oiJuc ^I^^JRPM from the tmeJJ Based on these checks, one ex
pects errors of up to 7 percent in the plane-strain values of hi, hi, and A3 at 
the larger n-values. Using the same reasoning, the plane-stress values should 
be considerably more accurate. 

In Tables 1 and 2, Aj, A2, and A3 are tabulated at several values of a/b and 
n. Procedures for the purpose of extrapolating the A's for the complete range 
of a/b and n, especially for the limit of a/b -> 0, are discussed in Ref 2. To 

' i n the plane strain calculations, the iterations converge rather slowly for the larger n-values. 
The errors noted may be partially attributed to the techniques employed to improve the rate of 
convergence. 
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carry out the estimation schemes, crack analyses, and the examination of 
crack growth stability to be discussed subsequently, it is desirable to express 
hi, hj, and h^ as analytic functions of a/b. For this purpose, the h's at any 
paticular «-value are expressed as a polynomial in a/b where the coefficients 
of the polynomials are obtained by least square analyses of the tabulated 
values in Tables 1 and 2. 

Estimation Sclieme for Elastic-Plastic Specimens 

Consider the Ramberg and Osgood stress strain law, which in uniaxial ten
sion has the form 

^ = ^ + a(^)" (15) 

For materials that may be approximated by Eq 15, the J-integral, mouth 
opening displacement, 6, and the load line displacement is given by the sum 
of the adjusted linear elastic and fully plastic contributions. In abbreviated 
notation, the elastic-plastic formulas are of the form \1,2\ 

J = J{a„n = 1) +J{a,n) 
8 = 8{a„ « = 1) + 8{a, n) (16) 

Ai = Ai(a^, n = 1) + Ai(a, n) 

where a^ is the adjusted or effective crack length that will be defined later. 

Elastic-Plastic Interpolation Formulas 

In the linear elastic range, the parameters / , b and Â  are given by 

, aFi\a/b) . 
E'b^ 

(17) 

8 = -jr Vi(a/b)P (18) 

^L = j r V2(a/b)P (19) 

where P is the load per unit thickness, the functions Fi, Vi, and Vi are given 
in Ref 3, and E' = E for plane stress or £" = E/{1 — v^) for plane strain. 
These expressions are rewritten as 
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(20) 

(21) 

(22) 

where/i = aF^/b'^,f2 = Vi, and/3 — ^i- In the fully plastic state,/, 5, and 
Ax are given by Eqs 3, 4, and 5, respectively. 

Using the quantities defined in Eqs 3 through 5 and 20 through 22, the 
estimation scheme Eq 16 can be written in the following form for the entire 
range of elastic-plastic deformation 

J = Mae) ^ + « aoe„chi(a/b, n) iP/Por+' (23) 

6 = MaJ ~ + ae„ah2{a/b. n)(P/P„)" (24) 

Ai = Mae) ~ + ote„ah,{a/b. n)(P/P„)" (25) 

The crack length adjustment employed in this paper is slightly different 
from the effective crack length of the earlier papers [1,2], To ensure continu
ity of the partial derivatives of / and A^ with respect to applied load at P = 
Pg^, the authors have chosen to use an adjusted crack length given by 

ae = a + (j>ry (26) 

where 

^> - i m (t; 
and |8 == 2 for plane stress and /3 = 6 for plane strain. The length r̂  is based 
on Irwin's idea of a plastically adjusted crack length, but modified to account 
for strain hardening [i] . As an additional simplification, r̂  is taken as an ex
plicit function of the elastic stress intensity factor AT [1,2], 

Edmund and Willis [28] have shown that the asymptotic correction using 

*The crack driving force or the tearing modulus involve such partial derivatives. 
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Ty alone (Eq 27) is rigorously correct for the antiplane shear problem (0 = 2 
in this case). The appropriate correction for the plane-strain situation, based 
on the leading term of their asymptotic analyses, is about a third of Eq 27. 
The additional crack length adjustment based on the higher order terms will 
involve details of the overall geometry and loading beyond that supplied by 
K; but these corrections will slightly increase the adjusted length. The 0 fac
tor in Eq 26 attempts to reduce the overadjustment under conditions of con
tained plasticity, while at the same time restrains the plasticity adjustment r̂  
in the fully plastic regime where the contributions to /, 6, and A^ must be 
dominated by the second term in Eqs 23 through 25. Motivated by the above 
arguments, and without any further justifications, the authors choose to 
define ct> by 

<t> = :;- ( 2 8 ) 
^ 1 +(P/PJ2 ^ ^ 

Comparison of Estimation Scheme with Full Numerical Calculations and 
Experimental Measurements 

In this section, the estimation formulas (Eqs 23 through 25) are compared 
with the full numerical calculations and the experimental data for several 
compact specimens reported in [15,16,29], Coefficients of the Ramberg-
Osgood law (Eq 15) appropriate to A533B steel at 93°C (199.7°F) were ob
tained by the least square fit of the uniaxial stress strain data. Values of the 
coefficients are a = 1.115 and n = 9.7, and p, E, and a^ are taken to be 0.3, 
29 X 10* lb/in.2 and 60 X 10̂  lb/in.2, respectively. 

The J-integral crack driving force diagrams are computed for a 4T com
pact specimen in plane strain using Eqs 23 through 25 and the material prop
erties given above. Figure 5 shows the crack driving force for two limiting 
situations; the solid line indicates the variation of/with crack length with the 
applied load held fixed, and the dashed line corresponds to displacement 
held fixed. To determine the load-deformation behavior of a 4T compact 
specimen with initial crack length of 4.615 in., the experimentally measured 
/ resistance curve denoted by JR [16,29], which is indicated by the heavy solid 
line, is superimposed on the diagram at an initial crack length of 4.615 in. 
Equilibrium of crack growth requires that the applied / equals the material 
resistance/^. Thus the values of P and A^ associated with the respective solid 
and dashed lines that intersect at a particular point on the JR curve is the set 
required to maintain crack growth. By repeating the process at different 
points along the JR curve, the complete load-deformation behavior is ob
tained. Alternatively, the P-Ai curve can also be obtained by solving numeri
cally, for example by the Newton's method, the nonlinear set of equations 
(Eqs 23 and 25) for values of/ and a given by the JR curve. 

Figure 6 shows the load-deflection behavior obtained by the foregoing pro-
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p = 60 kipslin. 66 

4.8 5.0 

CRACK LENGTH (in.) 

FIG. 5—J-integral crack driving force diagram for a 4T, T-52 compact specimen in plane 
strain with 25 percent side groove—A533B steel at 93.3°C (200°F), E = 29 X 10^ ksi, P = 0.3, 
CTo = 60.1 ksi, a = 1.115, n = 9.708 (1 ksi = 6.89 MPa). 

200.0 

100.0 

50.0 o EXPERIMENT 
ESTIMATION SCHEME 
FULL NUMERICAL CALCULATIONS 

0.20 0.40 0.60 

LOAD LINE DISPLACEMENT (in.) 

0.80 

FIG. 6—Comparison of predicted and experimentally measured load-displacement relation
ship for 4T, T-52, 25 percent side groove compact specimen in plane strain with a^/b = 0.577, 
b = 5 in. Results from full numerical calculations based on J2 flow theory of plasticity are 
shown by the dashed tine. 

cedure, the measured load-deflection record for the A533B steel 4 T compact 
specimen with an initial crack length of 4.615 in., and the finite element 
crack growth calculations for the configuration based on Jj flow theory of 
plasticity. The agreement between all three results is very good, in fact the 
estimated curve follows completely the trend of the experimental data and 
the full numerical calculations. Details concerning the experimental data 
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and the crack growth calculations based on flow theory are given in Refs 15 
and 29. 

Following the above procedure, the load-displacement behavior of several 
compact specimens are determined. Comparisons of the results from the 
estimation scheme, the full numerical calculations, and the experimental 
data [29] are shown in Figs. 7 through 9 for plane-strain and in Fig. 10 for 
plane-stress conditions. In all cases, the estimated curves follow the 
measured data fairly accurately. 

o EXPERIMENT 
ESTIMATION SCHEME 
FULL NUMERICAL CALCULATIONS 

_x, 
0.2 0.4 0.6 

LOAD LINE DISPLACEMENT (in.) 

FIG. 7—Comparison of predicted and experimentally measured load-displacement relation
ship for 4T, T-61, 25 percent side grooves, plane-strain compact specimen with a^/b = 0.8, 
b = 5 in. Results from full numerical calculations based on J2 flow theory of plasticity are also 
included. 
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FIG. 8—Comparison of predicted and experimentally measured load-displacement relation
ship for two 4T compact specimens in plane strain with 12.5 percent side grooves. Bp/b = 0.615 
for T-32 and a„/b = 0.718 for T-22. 
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FIG. 9—Comparison of predicted and experimentally measured load-displacement relation
ship for two 4T compact specimens in plane strain. T-21 has a^/b = 5.274 and 12.5percent side 
grooves, and T-51 has a^/b = 0.736 and 25 percent side groove. 
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FIG. 10—Comparison of predicted and experimentally measured load-displacement relation
ship for compact specimen in plane stress—4T plane, 1 in. thick, a„/b = 0.553. Predictions 
employ plane stress fully plastic results. 

Predicting JR Curve from Load-Displacement Record 

There exists considerable experimental data in the form of load-
displacement curves for several materials, particularly for irradiated 
specimens, and it would be of some interest to infer the material JR curve 
from this data. Next, it is illustrated how the estimation scheme can be used 
to obtain the//; curve fromP-Ax record. 
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Using the appropriate deformation properties, the J-integral crack driving 
forces are computed according to Eqs 23 through 25 for the specific crack 
configuration under consideration. On the J-integral diagram identify the 
soHd Hne and the dash line (for example, Fig. 5) corresponding to the respec
tive measured pair of load and load line displacement (that is, the values ofP 
and AL for a point on the P-Ai record). The intersection of these two lines 
give the value of J and crack length a that satisfy the given P and Ax for this 
particular crack configuration. By repeating the process for other measured 
pairs of load and load line displacement (that is, other points on the P-Ai 
record), the/^ curve may be constructed. Alternatively, given theP-Ai data 
and the initial crack length a,,, the nonlinear equation (Eq 25) can be solved 
numerically by the Newton's method to obtain a and thus Aa. Knowing P and 
a, J can be obtained from Eq 23. This procedure would give the material 
JR-AO curve from the given P-Az data. 

In Fig. 11, the JR curve determined from the J-integral diagrams in con
junction with the load-displacement record are compared with actual ex
perimental data from two specimens under plane strain conditions. The 

T-32, 4T-CS, 12 5%S.G 

O EXPERIMENT 

ESTIMATION SCHEME 

0.4 0.6 

Aa, in 

T-52. 4T-CS, 25%S.G 

o EXPERIMENT 

ESTIMATION SCHEME 

0,4 O.e 

Aa. in 

FIG. 11—Predicted Jĵ  curve using the J-integral crack driving force diagram in conjunction 
with the measured load-displacement records for compact specimen T-52 and T-32. The ex
perimentally measured JR curve from T-52 and T-32 are included. 
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authors noted good agreement between the predicted and actual curve. The 
comparison clearly suggests that the JR curve can be estimated to a fair 
degree of accuracy using Eqs 23 through 25 and the load-displacement 
record. 

Effect of Variation of JR Curve on Structural Deformation Behavior 

The experimentally determined//; curves are subject to varying amounts of 
scatter depending on the technique employed for measuring crack extension; 
for example, heat tinting or unloading compliance. It is certainly affected 
by the procedure for defining the amount of crack extension in situations 
where the leading edge of the crack has a thumbnail shape. The sensitivity of 
load-displacement record or the deformation behavior to variations in the JR 
curve is examined here for the plane strain situations. Details of this analysis 
are given in Ref 22. 

Figure 12 illustrates the situation where /jc is either 30 percent too high or 
30 percent too low. The deformation behavior of the compact specimen 
determined by the procedure discussed in a previous section, for the respec
tive JR curves are included. For this specimen configuration and the a/b 
ratio, it appears that moderate variation in /ic has little influence on the 
deformation behavior. 

Figure 13 illustrates the situation where the slope of the JR curve is either 
30 percent too high to 30 percent too low. The figure suggests that the slope 
of the JR curve has a greater influence on the specimens deformation 
behavior. 

i 

A533 - B STEEL, 200° F 
PLANE STRAIN COMPACT SPECIMEN 
a„ ; b = 0.577 1.3 J, , 

0.0 0.2 0.4 0.6 0.8 

LOAD LINE DISPLACEMENT, Aî  ( ins ) 

FIG. 12—Effect of variation in Ji,, on load-displacement behavior for T-52 compact 
specimen. For A533B steel, the mean li^was taken to be 1825 in. Ib/in.^ and d}/da to be 2.50 X 
W* in. lb/in.K 
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FIG. 13—Effect of variation in slope o/Jj^ curve on load-displacement behavior for compact 
specimen T-52. 

Finally, the cases where both the /jc and the slope of the JR curve are 30 
percent too high or 30 percent too low are examined. The effect of these 
variations on the deformation behavior is shown in Fig. 14. 

These analyses suggest that the deformation behavior of a flawed structure 
is relatively more sensitive to variations in the slope of the material JR curve 
than to variations inJi^. This means that experimental measurements of the 
slope of the JR curve should be carried out with relatively greater care and 
precision. It also appears that in the context of crack growth stability and 

1500 

50.0 

A533 B STEEL, 200° F 
PLANE STRAIN COMPACT SPECIMEN 
an/b = 0.577 1.3 J.p, 1.3 dJ/da 

0.2 0.4 0.6 

LOAD LINE DISPLACEMENT, 4^ I ins ) 

0.8 

FIG. 14—Effect of variation in Jj,. and slope of ij^ curve on load-displacement behavior for 
compact specimen T-52. 
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overall deformation behavior, the manner of definition of/jc (that is, whether 
it be based on onset of crack extension of some fixed or relative amount of 
crack extension) is not important so long as the JR curve is correctly 
measured. 

On the whole, the load-deformation behavior is not very sensitive to varia
tions in the JR curve. This is probably due to two factors; namely, the low 
strain hardening of the material and the fully plastic condition of the 
specimen under evaluation. Under contained plasticity conditions, the load 
deformation behavior of a cracked body will be more strongly dependent on 
the/R curve. 

Crack Growth Stability Analyses 

The resistance curve approach, based on K, for treating crack growth 
stability under conditions of linear elastic fracture mechanics or small-scale 
plasticity is fairly well-known and is discussed in detail in an ASTM publica
tion [30]. The extension of this approach to deal with fully plastic situations 
have been described by Paris et al [17] and by Hutchinson and Paris [18]. 
The following discussion follows the treatment in Ref 18. 

At any applied load, P, and crack length, a, the condition for continued 
crack growth is 

J{a, P) = jR{Aa) (29) 

where JR is a function of the amount of crack growth only. Crack growth is 
unstable if 

f-\ ^ ^ (30) 
da jt^j da 

The subscript in Eq 30 denotes a partial derivative with Aj- held fixed; Aj the 
total displacement is defined by 

Ar = A + CMP (31) 

where CM is the compliance of a linear spring placed in series with the 
cracked body. In this and subsequent sections A and Ax are used inter
changeably. 

Paris et al [/ 7] introduced the nondimensional quantities 

E /dJ\ _ E djR 
-— and TjR - —- —-
. oa /^y o/ da 

Tj = -1 h - and 7>̂  = — — ^ (32) 
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The instability criterion (Eq 30) can be phrased in terms of the tearing 
modulus 

Tj > TjR (33) 

The crack driving force can be expressed more conveniently through 

CM + (34) 

The stability of crack growth can also be analyzed through the use of the 
crack opening displacement parameter [15,31]. As in the previous situation, 
equilibrium of crack growth requires 

b{a, P) = SRiAa) (35) 

and instability develops if 

^ \ > ^ (36) 
da J^j. da 

The quantity dbR/da is sometimes called the crack opening angle and is a 
measure of the material resistance to crack growth. The crack driving force 
and the crack growth resistance can be expressed again in terms of respective 
dimensionless parameters 

^ _ E /d6\ , ^ _ E dbR 
T& = — ( - r - and T^R = j - (37) 

Oo \da J^j. Oo da 

and condition (Eq 36) can be restated as 

T, > T,R (38) 
Stability Diagrams for Compact Specimen 

The estimation scheme (Eqs 23 through 25) was employed with the expres
sion of Eq 34 to compute the crack driving force for the compact specimen. 
The material deformation behavior is assumed to be governed by Eq 15. 

For a typical structural steel, the tearing modulus "applied" Tj is shown in 
Fig. 15 as a function of/ normalized by ca^/E by solid and dashed lines for 
plane stress and plane strain conditions respectively. The specimen has an 
a/h ratio of 0.75 and the wide range of C^^CM = ECj^) is intended to span a 
wide range of system compliance ranging from a typical rigid grip test 
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FIG. IS—Numerical results for Tj versus EJ/iaJ^ c) for A533B steel compact specimen with 
a„/b = 0. 75 for various values of C^. Typical test machine compliance C^ = 10. 

machine and a soft loading machine. For a typical test machine with CM 
ranging from 10 to 100, Tj will always be less than five. Now TJR for most 
structural steels ranges from 20 to 200 [17,15]. Thus it is apparent that stable 
crack extension will almost always be observed in compact specimens tested 
in a typical rigid or displacement controlled machine. However it can be seen 
that the driving force Tj increases fairly rapidly with compliance. 

A consistent difference was noted between plane-strain and plane-stress 
driving force. With all quantities being equal (that is, the in-plane dimen
sions, material deformation properties, etc.), 7> associated with plane-strain 
condition is larger than that for plane stress condition. This was also noted in 
Ref 18. 

The variation of Tj with crack length at several constant load levels for a 
soft testing system {C^ — 1000) is shown in Fig. 16. The dependence of TVon 
applied load, crack length, and system compliance is clearly illustrated. 

Discussion 

The estimation procedure (Eqs 23 through 25) coupled with a crack initia
tion criteria, based either on/or crack tip opening displacement 6,, could be 
employed to assess the combination of load and crack length that will cause 
the onset of crack growth in a structure. Such analyses assumes that the so-
called Hutchinson-Rice-Rosengren (HRR) singularity [33,34] dominates over 
a microstructurally meaningful distance at the crack tip. The conditions and 
the minimum size requirements essential to the validity of a one parameter 
crack initiation criterion based on / or 6̂  (/ and 6, are the amplitudes of the 
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_ FIG. 16—Variation of plane strain Tj with crack length at several levels of applied load for 
CM = 1000—A533B steel, 4T compact specimen. 

HRR singularity) have been discussed by McMeeking and Parks [34] and 
Shih and German [35]. In essence, the uncracked ligament must be larger 
than some multiple oiJic/oo or bi^. 

Similarly continued crack growth and growth instability can be examined 
using Eqs 23 through 25 coupled with Eqs 29 and 30. The conditions for / 
controlled growth have been discussed by Hutchinson and Paris [18] and 
Shih and Dean [36]. It appears that the/approach is valid for growth up to 6 
percent of the uncracked ligament that has fully yielded. 

It is also noted that with a slightly different interpretation of Eq 2, the fully 
plastic results (Tables 1 and 2) are directly applicable to a stationary crack in 
a material undergoing steady state power law creep [4]. Landes and Begley 
[37] successfully correlated creep crack growth data by the C* parameter. 
They employed a rather complex experimental technique to obtain C*. If the 
steady-state creep properties are known, then C* is readily determined from 
Eq 3 (replace/by C* in Eq 3). Haigh [38] proposed to use 5, as a creep crack 
growth parameter. It is noted that the C* or 8, approach are equivalent (as 7 
and bt are both equivalent in time independent plastic fields [31]), and both 
may be computed using the fully plastic results of Tables 1 and 2. The 
regimes of applicability of the K parameter and the C* or 6, parameters are 
discussed in a recent paper by Riedel and Rice [39]. 

Summary and Conclusions 

In this study a catalog of fully plastic solutions for the compact specimen 
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was developed, and the estimation procedure to analyze crack growth and in
stability was employed. The following summarizes the present study: 

1. Fully plastic plane strain and plane stress solutions were obtained for 
the compact specimen over a wide range of crack length to width ratio and 
hardening exponent. The solutions were appropriately normalized and are 
tabulated in Tables 1 and 2. 

2. The estimation scheme was refined to ensure the continuity of the crack 
driving forces during the transition from contained plasticity to large-scale 
yielding. Crack driving force diagrams were generated for the compact 
specimen. These diagrams together with the material JR curves were 
employed to obtain load-displacement behavior of several compact speci
mens with different crack lengths. In all the cases examined, the load dis
placement relationships thus determined are in good agreement with the ex
perimentally measured load-displacement record. The estimated loads are 
generally about 5 percent lower than the measured loads, but the estimated 
load deflection curve follows the trend of the experimental curve completely. 

3. The load-displacement records for specific compact specimens together 
with the J-integral diagrams for the configurations under consideration, were 
successfully employed for obtaining the material JR curve. 

4. The tearing modulus, Tj, was computed for the compact specimen and 
displayed as a function of applied load, crack length, and systems com
pliance. The diagrams illustrate the role of system compliance and clearly 
suggest that very soft systems are necessary to induce unstable crack growth 
in compact specimens. 

5. Preliminary investigations show that all things being equal, the crack 
driving forces assuming plane strain conditions are larger than the cor
responding forces assuming plane stress condition. This factor coupled with 
the general observation that the material resistance to continued crack 
growth is larger for nonplane-strain conditions than for plane strain condi
tions suggests that stability analyses based on plane strain assumption will be 
conservative. 

6. The fully plastic results show that the Merkle-Corten formula for/for 
the compact specimen is accurate as long as a/b > 0.4 and « > 2. The ex
pression by Rice, Paris and Merkle is suited for deep cracks a/fc > 0.75,M > 2. 
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APPENDIX I 

Limit Load Analysis of the Compact Specimen 

Limit load analyses of the compact specimen are presented here. Both plane-strain 
and plane-stress conditions are considered. A comparison of the limit load values ob
tained by using different procedures is also discussed. 

First, a perfectly plastic compact specimen (CS) under plane strain is considered. 
The applied limit load P^ imposes an axial force and a moment on the uncracked liga
ment. If the effect of axial force is ignored, which would be a reasonable assumption 
for deep cracks, the Green and Hundy analysis [27] of a deeply cracked beam in pure 
bending can be also applied to the CS. The corresponding slip line field under this 
assumption is shown in Fig. 17a. It is noted that the center of rotation, Q, is at a 
distance of (a + 0.369c) from the load line and, therefore, the moment about Q due 
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o 

FIG. 17—Various deformation mechanisms for a deeply cracked compact specimen—(a) 
Green and Hundy slip line field for plane strain, (b) slip line field corresponding to the Rice's 
model for plane strain, and (c) lower bound stress distribution at the plastic collapse without 
considering the stress redistribution due to crack. For plane stress o^' = Og and Og' = (2/\f3)ao 
for plane strain and (d) Ford and Lianis slip line field for plane stress condition. 
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to Pg is (a + 0.369 c)f „, and this should be equal to the Green and Hundy limit mo
ment of 0.364 OQC^ under the collapse conditions. This gives 

0.364 <7„c2 
Pn = — (39) 

a + 0.369 c 

Rice [26] obtained an upper bound limit load solution for an edge cracked panel 
with the uncracked ligament subjected to both an axial force and a moment based on 
the slip line field as illustrated in Fig. I7b. Following Rice's procedure, Pg can be 
readily obtained as 

Po=:^'^oc 
0.3 + VO.9 + 0.4 f 

where 

r ^ 1 + 1.1025 
1 + a/b 

1 - a/b 

(40) 

(41) 

and the factor of 2/VJ accounts for plane-strain condition. Bucci et al [40] employed 
this solution in their J-integral estimation procedure. 

An alternate analysis was proposed by Merkle and Corten [25], which introduces 
the effect of axial force into the deep crack formulas for the J-integral. Following their 
procedure, which assumes the stress field as shown in Fig. 17c, and multiplying the 
net section limit load by the Green and Hundy constraint factor of 1.26, yields the 
following expression for Pg 

2 
Pg = 1.26 - p - ijcag (42) 

V3 

where 

V — ^T-(v)—(v-1 
The limit load values calculated by the methods discussed above is plotted in the 

form of Pg/(2/\[2i)agb versus a/b in Fig. 18. The experimental data shown in this 
figure is taken from Shih et al [29]. The experimental Pg is taken as the maximum 
load reached in a test, a/b corresponds to the ratio at the maximum load, and Og was 
taken to be 413.7 MPa (60 ksi), which is the yield stress for A533B steel at 93.3°C 
(200°F). As a/b increases, the effect of axial force decreases and, therefore, as ex
pected, the three curves approach one another. The experimental data are in good 
agreement with the calculated values for a/b > 0.6, the regime where all three ap
proaches give almost the same values. Experimental data are not available for a/b < 
0.5, and it is not clear which of the three is the most appropriate curve. The trends 
suggest that Eq 42 may represent a lower bound solution to the problem. Never
theless, the three approaches discussed here do provide solutions that are in 
reasonably good agreement in the range of practical interest. For the calculations 
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PLANE STRAIN COMPACT SPECIMEN 

GREEN AND HUNDY 

EXPERIMENTAL 

r~~o~^ 

FIG. 18—Limit load for a compact specimen in plane strain. 

discussed in the section on crack growth stability, the limit load given by Eq 42 was 
used that gave values of h functions within a range convenient from the viewpoint of 
interpolation and extrapolation. 

A similar analysis is carried out for plane stress. Here one cannot directly employ 
the solutions due to Green and Hundy and Rice as they are basically derived for plane 
strain condition. Instead, the analysis by Ford and Lianis [41] for the case of the 
deeply cracked beam under pure bending is employed to obtain the limit load for the 
deeply cracked compact specimen. Their slip line field [41] is depicted in Fig. lid. By 
equating the applied moment with the limit moment, one obtains 

Pn = 
0.268 OQC^ 

{a + 0.464 c) 
(44) 

To account for the effect of axial force in the plane-stress compact specimen, one 
follows the procedure used in the plane-strain problem. In other words, the net section 
limit load, which corresponds to the stress distribution shown in Fig. 17c, is 
multiplied by the Ford and Lianis constraint factor of 1.072, and this gives the follow
ing expression for P„ 

1.072 •qccig (45) 

where r] is still given by Eq 43. 
The plot of Po/agb versus a/b obtained from Eqs 44 and 45 is shown in Fig. 19. 

Equation 45 is employed in the normalization scheme to obtain the h functions 
for the plane-stress compact specimen. 
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COMPACT SPECIMEN, PLANE STRESS 

FORD AND UANIS 

0.2 0 4 0 6 0,8 

FIG. 19—Limit load for a compact specimen in plane stress. 

APPENDIX n 

Calculations of h Functions for tlie Limit a/b -> 1 

First consider the plane strain situation for which the limit load expressions are 
derived in Appendix 1. As a/b — 1 the applied load approaches the pure bend situa
tion; therefore the various slip line fields will approach the Green and Hundy solution. 
Moreover, JMC^J and JRPM/JJ discussed in the section on the evaluation of fully 
plastic solutions, will approach unity for a/b — 1. Substituting Eq 39 for Pg in Eq 14, 
one obtains the following expression for JRPM^J 

JR PM = 0.728 
h^ 

a + 0.369 c n + 1 hi 
(46) 

As a/b — 1, c/a — 0 and therefore a/(a + 0.369 c) — 1. Also, IRP^/J — 1 for this 
limit. Using these in Eq 46, one obtains 

/n + 1 
h^{a/b - ! , « ) = 1.374 (—-— ] hi(a/b - 1, n) (47) 

Since h\ is approximately linear in a/b for large n, the values of h\ for a/b -^ 1 can be 
obtained rather easily by extrapolating to the limit using the values at V2, Vs, and ^/A. 
Equation 47 is then used to calculate h^ for a/b -~ 1 and for various values of n. 
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Knowing hi and hj, one next evaluates hj using the following procedure. From Eqs 
4 and 5 one has 

— = - ^ (48) 
Ai hi 

which is valid for all a/b and n values. Using the Green and Hundy slip line field, 
shown in Fig. 17a, and assuming that the crack opening profile is linear for deep 
cracks, it follows that 6/Ai is also related by 

d _ a + 0.369 c + 0.25 A 

Al " a + 0.369 c 

In Eq 49 the term 0.25 b comes from the distance between the points at which 6 and 
Ai are measured according to the ASTM specimen as illustrated in Fig. 1. For a/b — 
1, Eq 49 reduces to 

6 
= 1.25 (50) 

Equating Eqs 48 and 50 gives the following expression for h2 in terms of A3 

hjia/b ~ I, n) = 1.25 h3(,a/b~ I, n) (51) 

Similar results for the plane stress case are obtained by using the Ford and Lianis 
expression (Eq 44) in place of the Green and Hundy solution. Carrying out the details, 
one readily obtains 

/ « + l \ 
h3(a/b - ! , « ) = 1.866 ( 1 hiia/b ~ 1, n) (52) 

h2(a/b - ! , « ) = 1.25hiia/b - 1, «) (53) 

The plane stress values of hi for a/b — 1 are also obtained by extrapolating from 
the values for a/b = V2, Vs, and ^/4. 
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ABSTRACT; Crack analysis is performed for plates characterized by the power harden
ing material law. A new superposition method of the analytical and the finite element 
models is proposed with the use of the penalty function, which is frequently adopted to 
solve the optimization problems. The characteristic distributions of the stress and strain 
around the crack tip are calculated and compared with the analytical results. Numerical 
discussion is also made regarding the effects of the crack length to plate width ratio and 
the power exponent in the hardening law on the nondimensional values of the J-integral, 
the crack opening displacement, and the residual load point displacement. 
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Various numerical formulations based on the finite element methods have 
been developed in order to calculate the stress intensity factor, K, in the 
linear fracture mechanics [1-3].^ Among these techniques, Yamamoto et al 
[4,5] and Yagawa et al [6-9] have proposed the independent superposition 
methods of the analytical and the finite element methods in a variety of linear 
fracture mechanics problems. As is well known, however, the fracture and 
the fatigue behaviors of most engineering materials under loadings clearly 
depend on the elastic-plastic stress and deformation states in the vicinity of 
the crack tip. In connection with this problem, the dominant singularity has 
been obtained by Hutchinson [10,11] and Rice and Rosengren [12] for a 
power law hardening material in which the plastic strain is proportional to 
the stress raised to a power n. This singularity in the form of the asymptotic 

'Associated professor, graduate student, and professor, respectively, Department of Nuclear 
Engineering, University of Tokyo, Kongo, Bunkyo-ku, Tokyo, Japan. 

^The italic numbers in brackets refer to the list of references appended to this paper. 

439 

Copyright® 1980 by ASTM International www.astm.org 

 



440 FRACTURE MECHANICS: TWELFTH CONFERENCE 

solution shows that the stress components at the crack tip have the form, 
f.-i/(n+i) (j. = distance from the crack tip), for the plane-stress as well as the 
plane-strain conditions. Incorporating the singularity in the crack-tip ele
ment, the singular element methods have been reported by several research
ers [13-16] to study the effectiveness of the numerical fracture mechanics in 
this case. 

With the use of the penalty function method, one of the powerful pro
cedures in the optimization problems under nonlinear constraints, the pres
ent authors propose in this paper a new superposition method, which allows 
us to analyze rather straightforwardly both linear and nonlinear crack prob
lems with any complex boundary conditions. With the Fourier expansion, 
which is adopted as the analytical term with the singularity, the characteris
tic distributions of the stress and strain around the crack tip are calculated 
and compared with the Hutchinson's results obtained by eigen-value analysis 
[10,11]. Further discussion is made on the effects of the crack length to plate 
width ratio and the power n on the nondimensional values of the J-integral, 
the crack opening displacement, and the residual load point displacement. 

Basic Formulation—Linear Elastic Case 

In order to avoid the complexity in deriving the basic solution technique, 
the formulation is limited to the linear elastic case in this section. 

The usual form of the potential energy, x, for the finite element displace
ment model becomes the quadratic one as follows [17] 

T = y L ĵ [̂ ][dj - L̂ J in (1) 

where 

[d] — the nodal displacement vector, 
[K] = the stiffness matrix, and 

[f] = the nodal force vector. 

As is well known, the minimization of ir with respect to [d] yields the simul
taneous equations that are solved for [dj. Considered here is the case where 
the equality constraint is additionally provided as follows 

[A][d] = [h] (2) 

where [A] and [b] are, respesctively, a proper matrix and a vector. According 
to the external method of the optimization problem, the minimization prob
lem of Eq 1 under the constraint of Eq 2 can be transformed into the uncon
strained minimization problem of the following functional 
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X* = Y L Ĵ [K][d] - Idj (f] + y ( L Ĵ [AY 

- lbj)[K]{[AM-{h]) (3) 

where t denotes the transpose of matrix, and [K] is the penalty coefficient 
matrix with the diagonal elements being a, which is called the penalty coeffi
cient, and the other elements null. The penalty coefficient a has the property 
that as a tends to infinity, the minimization problem of ir* is equivalent to 
that of TT with the constraint of Eq 2 under the appropriate condition, that is, 
the Kuhn-Tucker's condition [18]. 

Next, the superposition technique is explained with the aid of Eq 3 and its 
application to the two-dimensional crack analysis (Fig. 1). As the figure 
depicts, the finite element displacement, [d'^j, and the analytical one, [d'^j, 
including singular function are superposed in the near crack tip region V^', 
and the usual finite element model is used in the surrounding region V*"'. 
The virtual boundary between these two regions are designated as 5""' , 
where the appropriate continuity conditions must be satisfied. The traction 
forces T/o' and T/̂ * are prescribed on the boundaries 5̂ *°̂  of V "̂) and Sj-^'' of 
V î), respectively, and the boundary displacements M/"^ and M/^' on SJ°^ of 
VW) and 5„(» of V^', respectively. 

FIG. 1—Continuum with crack that is fictitiously divided into the regular region V*"' and the 
singular region V*". 
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As is already shown by Yagawa et al [6], Eq 1 in this case can be written as 
follows 

,r = Y ld''d^\ 
KFA J^AA 

\_dPd^\ (4) 

where 

{K^\= \QL\\D\\Q\dY 
1 yU; 

\K^\ = W^\^ = \ [B]'[D][Q] dV 
y(l) 

(5«) 

(5c) 

Here [B] and [Q] are defined as 

(6a) 

(6Z,) 

where [e ĵ and [e'̂ ) denote the strains pertinent to the finite element and the 
analytical displacements, respectively. The matrix [D] in Eqs 5a to 5c is the 
usual stress-strain matrix. The vectors [f^] and [f̂ j are the forces relating, 
respectively, to (d^j and [d'^j. The subsidiary conditions in this case are the 
geometrical boundary conditions on 5„'*" and 5'„<'', and the continuity condi
tion on 5'^'"^ which can be written formally as follows 

(7) 

where [A] is a proper matrix. 
The present constrained problem can be transformed into the uncon

strained one as Eq 3. Incorporating Eq 7 in Eq 4, one has the functional to be 
minimized as follows 
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TT — 

1 
- L̂ .̂ d^j 
2 

- KFF JCAF-

KFA J^AA 

Cd^ 
. 

\d^ 
IdF, d^\ 

+ Y Id^, d^\ [AY[A] I , ^ (8) 

The formulation mentioned above is extended to the nonlinear crack prob
lems in what follows. 

Nonlinear Crack Problems 

Though the stress singularity of the crack in linear elasticity is given by 
\/^fr, it is usually difficult to determine the singularity with consideration of 
the nonlinear behavior of materials. Hutchinson [10,11\ and Rice and Rosen-
gren [12] have obtained the singularity in full plasticity, where the constitu
tive equation is given as follows 

e" - KG" (9) 

where 

? = the equivalent strain, 
a = the equivalent stress, 
n = the strain hardening exponent, and 
K = the proportional coefficient. 

Employing the Jj deformation theory, the multiaxial stress-strain law be
comes as 

(10) 

where [a'] is the stress deviation. 
According to eigen-value analysis by Hutchinson [10,11], the singularity of 

stress is represented in the form /--i/fn+D, and the distributions of the dis
placement, strain and stress near the crack tip are given, respectively, as 
follows 

[u] = KK," ri/(«+i) [u{e)] -= KK, rî (« + i) [u{d)] (11) 

[ej = KK," r-«/("+i) (e(̂ )) = KK, r-«/(n + i){e-(0)} (12) 
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[a] = «Ji:^-i^(«+i) [did)] (13) 

where K„ is the plastic stress intensity factor, K^ is the plastic strain intensity 
factor, and [u(d)], [e{d)], and [5(9)] are the characteristic functions of 6 with 
{r,d) being the polar coordinates around the crack tip. Rice and Rosengren 
[12] have obtained this singularity based on the fact that the strain energy 
density of cracked continuum has 1/r singularity and that the J-integral 
value must be finite even at the crack tip. Yagawa and Miyazaki [19] have 
calculated the characteristic function by combination of the superposition 
method and the Lagrange multiplier's method. According to their result of 
Mode I crack analysis of a square plate, the characteristic functions obtained 
by Yagawa and Miyazaki [19] and Hutchinson [10,11] agree qualitatively 
well. Special element methods have also been applied to the similar problems 
by several investigators [13-16]. 

In this paper, the authors first take up the Mode I crack analysis of the 
rectangular plate with a center-notched crack as shown in Fig. 2. Here, it is 
assumed that V = V^' in Eqs 5a through 5c and the analytical displacement 
{w*. v^) is superposed on the finite element displacement over the whole 
region. As the former, the expansions used are as follows 

Â l 
uA = r^/(n+i) 2: a^cos^e 

m = l 
(14) 

N2 
yA = ^l/(« + l) Y, 

m = l 
sm — 9 (15) 

where a„ and b^ are unknown coefficients to be determined, and ^ i and Nj 

• t t f ! 
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- • F l 
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f M t 

0 
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FIG. 2—Rectangular plate with a center crack. 
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are numbers of Fourier terms adopted in the calculations. From the sym
metrical geometry and the boundary conditions of the structure, only a 
quarter of the pla.te ABOCD in Fig. 2 is analyzed under the following bound
ary conditions 

u = u^ + u^ = 0, 

Oy — 0, 

V = v^ + v^ = 0, 

Ox = 0, 

Oy = ffO' 

Txy = 0 on AB 

T;̂  = 0onBO 

T^ = Oon OC 

Txy = 0 on CD 

Txy = 0 on DA 

(16) 

(17) 

(18) 

(19) 

(20) 

The functional in this case corresponding to Eq 8 in the linear case can be 
written as follows 

'r* = —T-Tl 6tdy-\ \ii\{i}dS + - ^ \ (Mp + MA)2ds 
« + 1 Jv Ĵ ^̂ o)'- 2 J5(^) 

+ - ^ o,^dS + -^\ rx?dS (21) 

where aj, a2, and a^ are penalty coefficients, and [S^'^B) dS and Ĵ Ĉ O) dS 
denote, respectively, the line integrals on AB and BO in Fig. 2. Equations 
16a, 17a, and 17b are taken into account in Eq 21 as the penalty terms. 
Especially, the stress free requirement on BO, which is considered important 
to obtain accurate results, is enforced by the last two terms of the right hand 
side of Eq 21, although this is the natural boundary condition without these 
two terms. Equation 18a is satisfied by adopting Eqs 14 and 15 as the analyti
cal displacement and constraining v^ to be zero on OC. The other boundary 
conditions, Eqs 166, 186,19a and b, and 20a and b are usual natural bound
ary conditions in Eq 21. 

The combination of Eq 21 with the nonlinear constitutive law, Eq 10 yields 
the authors' functional, from which one obtains the nonlinear simultaneous 
equations with respect to the nodal displacement vector \_dj — \_d^ d^^j . 
In order to solve the nonlinear equations, the Newton-Raphson method was 
employed. As for the convergence of the solution in the case of « = 3, six 
iterations are found enough to have the difference of the potential energies 
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between two succeeding iteration steps to be less than 1 percent of the total 
potential energy. Also, the central processing unit's time per an iteration in 
this case is about 16 s with the HITAC 8700/8800 system employed in the 
University of Tokyo. 

Based on the test in linear analysis of cracked plate [20], the authors set 
«!, aj, and aj in Eq 21 to be 10^ with the word length of 64 bits. 

Singular Characteristic Functions in Nonlinear Crack Problems 

Figures 3 and 4 show, respectively, the calculated distributions of di/ and 
€ ^ y for the plate of L/W = 2.0, X = a/W = 0.25 and n = 3. In this case, 
N(= Ni + N2) is set to be 20 and a quarter of the plate is idealized as is 
depicted in Fig. 5. The strain distributions in Fig. 4 are obtained from the 
following relations 

e-A = (^A)n-l(gA 

e-/ = (^^)n-i a / 

5 / (22a) 

(22b) 

7r/=y(^'^)"~'x,/ (22c) 

Comparing the present results with the solutions by Hutchinson [10,11] as 
given in Figs. 6 and 7, it can be seen that the strain distributions are nearly 
the same with each other except eg-̂  at small value oi 6. As for the stress 
distributions, both results agree well at least qualitatively. 

The relation between n and the characteristic function at the crack tip is 
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FIG. 3—Normalized stress distributions around the crack tip. 
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FIG. 4—Normalized strain distributions around the crack tip. 
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FIG. 5—Examples of the finite element mesh for a quarter of the plate. 
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studied in what follows. Substituting Eqs 11 through 13 into the definition of 
the J-contour-integral which is given as [21] 

J = 
it+i 

n + 1 
Kff-̂  cos9 — ((7̂ -4 cos^ + T;n,̂  sin^) 

dx 

(7^-4 cos6i + 0- / sinei) — dd (23) 

one obtains the relation as follows 

J=KK,"+'I„ (24) 

where 

/ „ = 
-or (« + 1 

* "+'cose sin6 { a, [ u 

T'r* ( " r + " ^ j j + ^ ^ J iS^r + '̂r̂ Wfl) C0S(9 dd (25) 

Table 1 shows the comparison of /„ for several values of « between the pres
ent solution and Hutchinson's one [/ /] . It can be seen from the table that 
both results are in good agreement for the whole range of n compared. 
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Evaluation of Nonlinear Fracture Parameters 

In the continuum with the crack that has the r"''^'""*'!' type singularity, the 
J-contour-integral is defined as the invariant path integral around the crack 
tip and is determined, uniquely corresponding to the singularity, as a func
tion of the crack geometry, the geometry of specimen as well as the loading 
condition. 

According to Shih and Hutchinson's definition [16], the authors represent 
the nondimensional parameters of the J-integral, the crack opening displace
ment (5, and the residual load point displacement A, respectively, in the 
following form 

/ = a/c(l-X)^i(X,«)ff„et"+i (26) 

S = aKg2(Kn)aaet" (27) 

A = fl/cg3(X,«)a„et" (28) 

where a„et is the net section stress, gi, g2, and gj are the nondimensional 
representations of 7, 5, and A, respectively, which are only dependent on X 
and n, and A is defined as 

^ — ^crack ~ ^no crack (29) 

Here, Arrack is the load point displacement of cracked plate and A„o crack is 
that of uncracked plate. Acrack ^nd An,, ĉ ck can be, respectively, written as 
follows 

1 f̂  2 r 
Acrack = ^ J _ t v ( x . i ) - v(x. -£)] ^ = ^ j v ( x , i ) dx (30) 

TABLE 1-

n 

Present 
(X = 0.25) 

Hutchinson 

-Variation 

1.0 

4.76 

4.71 

of I„ with the values 

3.0 

3.85 

3.86 

of the strain 

5.0 

3.41 

3.41 

hardening exponent n. 

7.0 9.0 

3.10 2.86 

3.03 
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Anocrack = 2Le^ = ILKO^" (31) 

where £„ and a^ are the uniform strain and stress at the far end of plate, 
respectively. 

In order to study the effect of X as well as n on the nondimensional non
linear fracture parameters g 1,^2' andg3, the authors analyze the rectangular 
plate of L/W = 2.0 with a center-notched crack of length 2a as is shown in 
Fig. 2. With the use of the same element mesh which is depicted in Fig. 5 for 
a quarter of the plate, one obtains the/-value as the half-circle path integral 
at the adjacent elements to the crack tip, 6 as the crack opening displacement 
in the tensile direction at the center of the crack, and A as the displacement 
in the tensile direction at the loading end. Table 2 shows the nondimensional 
parameters gi, g^, and ^3 for various values of X and n corresponding, re
spectively, t o / , 6, and A. 

Table 3 also shows the nondimensional parameters gi andg2 for the same 
plate but here X = 1/2 and n is up to 7. As seen from these tables, the dif
ferences between the present results and those of Shih and Hutchinson [16] 
are very small; whereas, the solutions by Ranaweera and Leckie [22] under
estimate the parameters. 

Summary and Conclusions 

1. A superposition method coupled with the penalty function method is 
proposed and found effective for the nonlinear crack analysis with complex 
boundary conditions. 

2. The characteristic distributions of displacement, strain, and stress for 
the cracked plate with r~i/*«+') stress singularity are determined using the 
superposed Fourier expansion with the singularity. 

3. Through the nonlinear crack analysis of the cracked rectangular plate. 

TABLE 3—Nondimensional nonlinear fracture parameters gj and g^ with the values of the 
strain hardening exponent n fX = 1/2). 

Present 

Ref 76 

Ref 22 
(Coarse mesh) 

Ref 22 
(Fine mesh) 

n 

g\ 
82 

gl 
gl 

gi 
gl 

gl 
gl 

1.0 

2.223 
2.365 

2.212 
2.382 

2.192 
2.355 

2.198 
2.367 

3.0 

2.046 
1.724 

2.056 
1.703 

1.994 
1.668 

2.016 
1.682 

5.0 

1.817 
1.291 

1.812 
1.307 

1.608 
1.166 

1.750 
1.263 

7.0 

1.597 
1.097 

1.644 
1.084 

1.222 
0.864 

1.382 
0.904 
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such nondimensional nonlinear fracture parameters as gi, gj, and g3 are 
found to be in excellent agreement with Shih and Hutchinson's results. 

4. The present analysis considers only the problem of plane stress condi
tion. The special formulation is necessary for the problem of plane strain 
condition, and a relating work will be reported in a forthcoming paper. In 
the latter case, the incompressibility of plastic strain is to be taken into ac
count by adding the additional penalty term to the right hand side of Eq 21. 

References 

[/] Gallagher, R. H. in Numerical Methods in Fracture Mechanics, A. R. Luxmoore and 
D. R. J. Owen, Ed., University College Swansea, Swansea, U.K., 1978, pp. 1-25. 

[2] Apostal, M. C , Jordan, S., andMarcal, P. V., "Finite Element Techniques for Postulated 
Flaws in Shell Structures," EPRI SR-22 Special Report, Electric Power Research In
stitute, 1975. 

[3] Benzley, S. B. and Parks, D. M. in Structural Mechanics Computer Programs, W. Pilkey, 
K. Saczalski and H. Schaefter, Eds., University Press of Virginia, Charlottesville, Va., 
1974, pp. 81-102. 

[4] Yamamoto, Y. and Tokuda, N., International Journal of Numerical Methods inEngineer-
ing. Vol. 6, 1973, pp. 427-439. 

[5] Yamamoto, Y. and Sumi, Y., IntemationalJournal of Fracture, Vol. 14,1978, pp. 17-38. 
[6] Yagawa, G., Nishioka, T., Ando, Y., and Ogura, N. in Computational Fracture Me

chanics, E. Rybicki and S. Benzley, Ed., American Society of Mechanical Engineers, 
Special Publication, 1975, pp. 21-34. 

[7] Yagawa, G. and Nishioka, T., IntemationalJournal of Numerical Methods in Engineer
ing, Vol. 12, 1978, pp. 1295-1310. 

[8] Yagawa, G. and Nishioka, T., International Journal of Numerical Methods in Engineer
ing, Vol. 14, 1979, pp. 727-740. 

[9] Nishioka, T. and Yagawa, G., Proceedings, Japan Society of Mechanical Engineers, No 
770-11, 1977, p. 1-3. 

[10] Hutchinson, J. W., Journal of the Mechanics and Physics of Solids, Vol. 16, 1968, pp 
13-31. 

[11] Hutchinson, J. yf., Journal of the Mechanics and Physics of Solids, Vol. 16, 1968, pp 
337-347. 

[12] Rice, J. R. and Rosengren, G. F., Journal of the Mechanics and Physics of Solids, Vol. 16 
1968, pp. 1-12. 

[13] Goldmann, N. L. and Hutchinson, J. W., International Journal of Solids Structures, Vol 
11, 1975, pp. 575-591. 

[14] Barsoum, R. S., International Journal of Fracture, Vol. 12, 1976, pp. 463-466. 
[15] Atluri, S. N., Nakagaki, M., and Chen, Wen-Hwa in/Yaw Growth and Fracture, ASTM 

STP 631. American Society for Testing and Materials, 1977, pp. 42-61. 
[16] Shih, C. F. and Hutchinson, J. W., Journal of Engineering Materials and Technology, 

1976, pp. 289-295. 
[17] Zienkiewicz, O. C , The Finite Element Method in Engineering Science, Third Ed., 

McGraw-Hill, New York, 1977. 
[18] Jacoby, S. L. S., Cowalik, J. S., and Pizzo, J. T., Iterative Methods for Nonlinear Op

timization Problems, Prentice-Hall, New York, 1972. 
[19] Yagawa, H. and Miyazaki, N., Nuclear Engineering Design, to be published. 
[20] Yagawa, G., Aizawa, T., and Ando, Y., Proceedings, Japan Society of Mechanical 

Engineers, No. 780-12, 1978, pp. 164-171. 
[21] Rice, I. R., Transactions, American Society of Mechanical Engineers, Series E 35-2, 1968, 

pp. 379-386. 
[22] Ranaweera, M. P. and Leckie, F. A., Proceedings, First International Conference on 

Numerical Methods in Fracture Mechanics, 1978, pp. 450-463. 

 



S. Mam 

Dynamic Finite Element Analysis of 
Cracked Bodies with Stationary 
Cracks 

REFERENCE: Mall, S., "Dynamic Fiidte Element Analysis of Craclied Bodies with 
Stationary Craciss," Fracture Mechanics: Twelfth Conference, ASTM STP 700, Ameri
can Society for Testing and Materials, 1980, pp. 453-465. 

ABSTRACT: A dynamic finite element analysis utilizing a simple singular element 
(obtained from a degenerate eight-node isoparametric element) was used to investigate 
three elastodynamic problems with stationary cracks. The first problem, involving a 
centrally cracked rectangular bar (subjected to uniaxial tension with Heaviside-function 
time dependence) was analyzed in order to compare the present simple singular 
element formulation with previously developed higher order singular element formu
lations. In the second problem, a three-point bend specimen of birefringent material 
(under drop-weight testing) was analyzed to compare the dynamic stress intensity 
factors obtained from the present analysis with the experimental counterpart. Ex
cellent agreement between the present results and those from previous investigations 
(both numerical as well as experimental) demonstrates the capability and reliability of 
this simple singular element formulation for solving fracture dynamics problems with 
stationary cracks. The third problem, involving a three-point bend specimen of 
A533B steel, suggests a potential application of the present method in instrumented 
impact tests. 

KEY WORDS: fracture dynamics, instrumented impact test, dynamic finite element 
method, fractures (materials), crack propagation 

For the last few years, the author and his colleagues have investigated 
the transient response of three-point notched bend specimens in the drop 
weight testing mode [1-3].^ In these investigations [1,2] dynamic tear test 
specimens machined from brittle and ductile photoelastic polymers, that is, 
Homalite-100 and polycarbonate, were analyzed for dynamic fracture 
response before and after rapid crack propagation using combined dy
namic photoelastic and dynamic finite element methods. Subsequently, 

'Assistant professor. Department of Mechanical Engineering, University of Maine, Orono, 
Me. 04469. 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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this finite element method was employed to determine the dynamic initiation 
fracture toughness, Kid in notched bend specimens of A533B steel and 
6061 aluminum alloy [J]. The dynamic finite element method utilized the 
HONDO code [4], which is a two-dimensional solid finite element pro
gram, to calculate the time-dependent displacements, velocities, accel
erations and stresses. The HONDO code employs the four-node isopara
metric quadrilateral element with an explicit time integration scheme. On 
the other hand, Aberson et al [5] have solved several stationary crack 
elastodynamic problems with the help of special crack tip singular elements. 
They have formulated singular elements of eight-nodes for the opening 
mode and ten-nodes for the mixed-mode problems based on William's 
eigenfunctions [6]. These very high order elements have been shown to 
perform well in analysis of fracture dynamic problems with stationary 
cracks; however, their use in modeling the running crack was not en
couraging [7]. Another application of the special singular element in 
stationary crack problems under dynamic loading was demonstrated by 
Glazik [8]. Glazik employed the singular element formulation of Benzley 
[9] where the singularity at the crack tip is modeled by supplementing the 
first order term in bilinear displacement field of a quadrilateral element. 
This special singular element was employed in conjunction with special 
transition elements to ensure compatibility between singular and regular 
elements. 

The purpose of this paper is to present results of dynamic finite element 
analyses of fracture dynamic problems with stationary cracks using an 
alternate but a very simple singular crack tip element. A simple singular 
element can be formulated from an eight-node isoparametric element 
either by placing the mid-side nodal coordinate on any side (connected 
to the crack tip) at the quarter point of that side adjacent to the crack or 
by collapsing one side [10,11]. This distorted eight-node isoparametric 
element is attractive to users since regular eight-node elements are already 
available in many widely distributed finite element computer programs, 
and thus saves the user the effort of incorporating a special singular 
element in existing programs. This simple singular element has received 
a fair deal of attention in static fracture problems (for example, see Ref 
12) and the present study is thus its natural extension in fracture dynamics. 
The present paper deals with three problems. The first problem is a theo
retical problem that involves a centrally cracked strip whose ends are 
subjected to suddenly applied and maintained tension and is usually 
referred to as Chen's problem [13]. Chen's problem has almost become 
the benchmark problem for a fracture dynamic problem with a stationary 
crack, and was selected to compare the results obtained from this simple 
singular element formulation with that obtained from special singular 
elements of Aberson et al [5] and Glazik [8]. The second problem is the 
analysis of a three-point bend specimen whose dynamic stress intensity 
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factors from instant of impact up to rapid crack propagation were obtained 
with the help of a dynamic optical method. It provides a further check 
of the present dynamic finite element analysis. The third problem deals 
with the application of the present analysis to determine the dynamic 
initiation fracture toughness, Ku of an instrumented impact specimen of 
A533B steel. Results of these investigations are summarized here. 

Distorted Eight-Node Singular Element 

Barsoum [10] and Henshell and Shaw [11] have independently shown 
that the eight-node isoparametric, planar element can be slightly modified 
to incorporate the required inverse square root singularity characteristics 
of linear fracture mechanics. (This concept has also been extended in case 
of three-dimensional, plate and shell formulation.) This singularity can 
be achieved in two manners. In the first approach, the singularity can be 
obtained by placing the mid-side node of the side connected to the crack 
tip at quarter position adjacent to the crack tip. In the second approach, 
one side of an eight-node element is collapsed to form a triangular qua
dratic isoparametric element, and the mid-side node is then placed near 
the crack tip at the quarter point. Reference 10 gives the complete dis
cussion of the reason this element behaves in this unique way, so no theory 
of this element is mentioned here. It has also been shown that the col
lapsed eight-node triangular element possesses the same (1/V7) singularity 
in the interior as on the boundary; while the rectangular element has the 
(1/Vr) singularity only on its boundary. Furthermore, Barsoum [14] has 
shown that total strain energy of an eight-node triangular element remains 
bounded, while that of the distorted eight-node rectangular element is 
unbounded. The collapsed triangular element was, therefore, employed in 
the present work with nine-point Gaussian integration quadrature as 
recommended by previous investigators [10-12,14]. 

Dynamic Finite Element Analysis 

The finite element NONSAP code [15] was employed in the present 
investigation. This program can handle both static and dynamic problems 
and has built-in capability of using four- to eight-node isoparametric 
quadrilateral elements. The time integration schemes available are both 
Wilson's 6- and Newmark's /3 methods with both consistent and lumped 
mass formulations. In the present investigation, Newmark's method (with 
parameters a and 6 equal to 0.25 and 0.5, respectively) was utilized due to 
two following reasons: (1) this method is unconditionally stable for this 
choice of parameters in linear problems, and (2) Rydholm et al [16] have 
successfully employed these values for rapid crack propagation studies. 

 



456 FRACTURE MECHANICS: TWELFTH CONFERENCE 

Chen's Problem 

One of extensively treated (numerically) stationary crack problems is a 
rectangular bar with a central crack loaded dynamically by a uniform 
tension aoH(t), where H{t) is the Heaviside step function. Chen [13] 
solved this problem with the help of finite-difference method (The Hemp 
Code). Later, Aberson et al [5] analyzed this problem extensively with a 
finite element method employing the special crack tip singular element. 
Recently, Glazik [8] has investigated this problem with Benzley's special 
crack tip element [9] as well as with a regular isoparametric element. The 
author with his colleagues [3] have also solved Chen's problem with regular 
isoparametric elements. Obviously, the present dynamic finite element 
analysis incorporating a singular eight-node quadratic triangular element 
was first assessed with the help of Chen's problem. 

Figure 1 shows the finite element breakdown of one quadrant of the 
rectangular bar of Chen's problem [13]. A plane strain condition of de
formation is assumed. The material of the bar is a linear elastic with 
Young's modulus of 200 GPa, Poisson's ratio of 0.3 and density of 5 g/cnP 
[13]. In Fig. 1, elements marked "A" are singular eight-node quadratic 
triangular elements, those marked " B " are regular eight-node quadratic 
elements, those marked "C" are regular five-node quadratic elements and 
unmarked are four-node regular isoparametric elements. One important 
consideration in the dynamic finite element method is the size of time step 
for the integration scheme. It has been suggested that the time step should 
be equal to d/c, where d is the characteristic dimension of the element and 
c the wave velocity [17]. Three time steps of 0.148, 0.074 and 0.037 /is 
corresponding to the transit time of longitudinal wave across the two 
end-nodes, end- and mid-nodes, and end- and quarter-nodes of the col
lapsed triangular element were used. These three time steps yielded the 
dynamic stress intensity factors within + 0.5 percent of each other; thus, 
the time step based on transit time of wave across the smallest size of ele
ment can be employed without any noticeable gain over the accuracy due to 
small time steps based on mid-point or quarter-point dimensions. Figure 2 
shows the normalized dynamic stress intensity factor versus time relation
ship with 0.148 fis time step and lumped-mass formulation along with 
Chen's result obtained from finite difference method [13]. The dynamic 
stress intensity factors were calculated by simply comparing the dynamic 
crack opening displacement (COD) of the node close to the crack tip to its 
static value. This ratio of dynamic and static COD is also the ratio of 
dynamic stress intensity factor to the static value. This simple procedure 
for computing the dynamic stress intensity factor was successfully em
ployed in the previous investigations by the author with his colleagues 
[1-3] and also by Glazik [8]. Figure 2 shows that the present finite element 
results are in excellent agreement with Chen's finite difference analysis 
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FIG. 1—Finite element breakdown of Chen's problem. 

[13] except over two time periods. These two regions correspond to the 
arrival times of the Rayleigh surface wave at the crack tip from the other 
tip and its subsequent reflection as marked by Ri and R2 in the Fig. 2. 
This deviation in the results obtained from finite element and finite dif
ference analysis in the vicinity of Ri and R2 was also observed by Aberson 
et al [5], Glazik [8] and Mall et al [3]. 

To demonstrate further the validity of the present analysis, a comparison 
of results (for Chen's problem), obtained from special singular elements 
by Aberson et al [5] and Glazik [8] with present simple singular element 
formulation, are shown in Figs. 3 and 4. Figure 3 compares results with 
lumped mass formulation, while Fig. 4 is for a consistent mass formu
lation. The results of Figs. 3 and 4 are in excellent agreement with each 
other. The deviation among these three results occurring near instants of 
arrival of Rayleigh surface wave (R\ and R2) at the crack tip, in Figs. 
3 and 4, can be attributed to the character of different singularity formu
lations. In the present analysis, the lumped mass model yields the max-
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FIG. 2—Dynamic stress intensity factors for Chen's problem obtained by finite element and 
finite difference methods. 

imum value of stress intensity factor 2 percent higher than reported by 
Chen [13], while the consistent-mass model yields a value 2 percent lower 
than that of Chen. The lumped-mass formulation, thus, provides the 
conservative peak value and also results a substantial saving in com
putation time. It seems, therefore, that excellent results could be expected 
in solving fracture dynamics problems of stationary crack with lumped-
mass formulation in the present analysis. The following two analyses 
endorse this statement. 

Kalthoff s Specimen 

Kalthoff et al [18] have reported results of drop weight impact testing 
of notched-bend specimen where the instantaneous dynamic stress intensity 
factors were measured directly by utilizing the method of shadow pattern 
(caustics). The notched bend specimens with dimensions 550 by 100 by 
10 mm, nominal crack length of 20 mm and support length of 400 mm, 
were machined from an epoxy resin, Araldite B. Twenty-four shadow spots 
at successive time intervals were recorded with the help of a high speed 
camera that provided the history of directly measured dynamic stress 
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FIG. 3—Dynamic stress intensity factors for Chen's problem with lumped-mass formulation. 

intensity factor from the instant of impact to the time of crack initiation. 
They have pubHshed these results for three specimens with different sharp
ness of the starter notch [18]. The impact (tup) load-time history and also 
the dynamic stress intensity factor-time history of the three reported 
specimens closely correspond to each other except for the time of crack 
initiation (and thereby critical dynamic stress intensity factor), which 
depends on the sharpness of the starter crack. In the present analysis, 
all three specimens are treated as a single specimen. 

Figure 5 shows the finite element breakdown of half of Kalthoff's spec
imen. The material properties of Araldite B were as follows: (a) Young's 
modulus of 3660 MPa, (b) Poisson's ratio of 0.392, and (c) density of 
1.15 g/cm'' [18]. Figure 6 shows the idealized tup load-time history, which 
is the average of the three experimental curves of Fig. 2 of Ref 18. This 
load-time history was input as the time dependent boundary condition at 
the node corresponding to the impact point, which was also given an 
initial (experimental) impact velocity of 5 m/s. Since the specimen is 
relatively thin (10 mm), the plane stress condition was assumed in the 
finite element analysis. The results of this computation are shown in 
Fig. 6, where the numerically obtained dynamic stress intensity factor is 
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FIG. 6—Dynamic stress intensity factors for Katthoff's specimen. 

compared with its experimental counterpart. The curve representing the 
experimental dynamic stress intensity factor in Fig. 6 is again the average 
of experimental data for three specimens shown in Fig. 2 of Ref 18. Figure 
6 shows an excellent agreement between the experimentally and numerically 
obtained dynamic stress intensity factors, and thus endorsing the validity 
of present dynamic finite element analysis utilizing the simple singular 
element. The time-phase difference between dynamic stress intensity 
factor and load-time curve correspond to the time taken by the plate-wave 
from the impact point to the other side of the specimen and then back 
to the crack tip. This closely corresponds to recorded experimental results. 
This dynamic analysis further confirms that crack initiation in the in
strumented impact test need not necessarily correspond to the recorded 
peak tup load, a phenomenon also observed by the author and his col
leagues [1-3] in their experiments. 

Loss' Specimen 

Loss has conducted a series of instrumented drop-weight impact tests of 
25.4-mm thick specimen of A533B steel at various temperatures [19]. 
These specimens, possessing dimensions of 228.6 by 50.8 mm, support 
length of 203 mm, and with nominal crack length of 25.4 mm, were fatigue 
precracked. With the objective of developing a simple procedure to com
pute the dynamic initiation fracture toughness, Ku without any dynamic 
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analysis, Loss [19] instrumented these specimens with a 3.2 by 3.2 mm 
strain gage near the crack tip as indicated in Figs. 7 and 8. Prior to impact 
testing, a static calibration was established between the strain gage near 
the crack tip and tup load. During the actual impact test, the dynamic 
strain of the same gage was recorded. The recorded dynamic strain in 
conjunction with static calibration was used to compute dynamic bending 
moment. The dynamic initiation fracture toughness (KM) was, then, 
obtained from this dynamic bending moment from expression of fracture 
toughness (A'le) for a three-point bend specimen given in ASTM Test 
for Plane-Strain Fracture Toughness of Metallic Materials (E 399-74), with 
the assumption that dynamic bending moment so measured is proportional 
to the instantaneous stress intensity factor as computed under static load
ing. Here the present dynamic analysis with simple singular element of 
one of Loss' specimen tested at — 18°C (—0.4°F) is presented, and Loss' 
simple procedure to obtain Ku is discussed. 

Figure 7 shows the finite element breakdown of half of Loss' specimen. 
The material properties of A533B steel were as follows: (a) Young's mod
ulus of 207 GPa, (b) Poisson's ratio of 0.3, and (c) density of 7.9 g/cm^ 
[19]. The dynamic finite element analysis was conducted under plane stress 
condition. Figure 8 shows the idealized (tup) load-time history of its 
experimental counterpart that was obtained with the help of strain gages 
located on the tup (50 mm from the tup tip), and was used as input in the 
dynamic finite element analysis. The node corresponding to impact was 
also given the experimental impact velocity of 2.4 m/s as initial condition 
in finite element analysis. Figure 8 shows the reasonable agreement be
tween the experimental and numerically computed dynamic strain at the 
location marked "strain gage" of this figure. The precipitous drop in the 

APPLIED TUP LOAD 

FIG. 7—Finite element breakdown of Loss' specimen. 
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FIG. 8—Dynamic strains at a location in Loss' specimen. 

experimental dynamic strain depicted in Fig. 8 represents the rapid crack 
propagation that was not modeled in the dynamic finite element analysis. 
The computed dynamic strain with assumed stationary crack, thus, con
tinues to increase even after experimentally observed crack propagation. 

Figure 9 shows the development of dynamic stress intensity factor ob
tained from the COD from the instant of impact to the time of crack 
initiation, as well as the dynamic stress intensity factor obtained from 
numerically computed dynamic strain at the gage location as per Loss' 
procedure. The excellent agreement between dynamic stress intensity 
factors obtained from dynamic finite element analysis and from Loss' 
procedure, as shown in Fig. 9, suggests that dynamic analysis (to compute 
Kid) can be replaced by this simple analysis. However, it should be em
phasized here that the success of Loss' procedure depends on the suitable 
location of strain gage, which has been previously demonstrated in Refs 
1 and 2. 

Conclusions 

The results presented herein clearly demonstrate that the simple singular 
element obtained from a degenerate eight-node isoparametric element is 
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FIG. 9—Dynamic stress intensity factors for Loss' specimen from two procedures. 

a viable alternative to special crack tip elements for the dynamic finite 
element method in case of fracture dynamic problems with stationary 
crack. The simplicity, wide availability, and saving in extra effort of 
formulation are undoubtedly advantages of this simple eight-node tri
angular singular element over the special crack tip singular elements. 
A straightforward procedure in conjunction with this singular element 
resulted in dynamic stress intensity factors that are in excellent agreement 
with their counterparts, obtained either numerically by previous investi
gators or computed directly through experimental measurements. Further
more, a demonstration of the present analysis indicates that there is a 
potential application of this method in augmenting the instrumented 
impact tests, such as Loss' procedure. 
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Mode I Crack Surface Displacements 
and Stress Intensity Factors for a 
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ing and Materials, 1980, pp. 466-477. 

ABSTRACT: Mode I displacement coefficients along the crack surface and stress 
intensity coefficients are presented for a radially cracked round compact specimen, 
treated as a plane elastostatic problem, subjected to two types of loading; a uniform 
tensile stress and a nominal bending stress distribution across the net section. By 
superposition the resultant displacement coefficient or the corresponding stress intensity 
coefficient can be obtained for any practical load location. Load line displacements 
and stress intensity coefficients are presented for A/D ratios ranging from 0.40 to 0.95, 
where A is the crack length measured from the crack mouth to the crack tip and D 
is the specimen diameter. Through a linear extrapolation procedure, crack mouth 
displacements are also obtained. Experimental evidence and comparisons with other 
investigators shows that the results of this study are valid over the range of A/D 
ratios analyzed for a practical pin loaded round compact specimen. 

KEY WORDS: crack propagation, fracture tests, stress intensity factors, crack surface 
displacements, boundary collocation analysis, fractures (materials) 

Nomenclature 

A Crack length measured from crack 
mouth to crack tip 

a = A + W — D Crack length measured from load line 
to crack tip 

B Specimen thickness 

' Materials engineer, Structural Materials, National Aeronautics and Space Administration, 
Lewis Research Center, Cleveland, Ohio 44135. 
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D 
E 

E' 

E'Bv/P 
Ki = Kip + Kifif 

L 

M 

P 
V = Vp + VM 

vp 

VM 

W 

z = [{A + W) 
- (A: + D)]/{A - 0.15£>) 

r = K^/f^ap + ffM)V^(l - A/D) 

dz = (D - W)/(A - 0.15D) 

Ap(z) = E'vp/apA 

AM{Z) = E'VM/OMA 

A{z)=E'v/{ap+ aM)A 

V 

OM = 6M/BiD - A? 

ap = P/B(D -A) 

Disk diameter 
Young's modulus 
Effective modulus, equals E/{1 — i^) 
for plane strain or E for plane stress 
Influence coefficient 
Mode I stress intensity factor Ki = KIM 
when Op = 0, and Ki = K^p when 

Distance measured from load line to 
centerline of disk 
Resultant moment at nominal neutral 
axis position 
Applied pin load 
Resultant vertical displacement at lo
cation z across the crack surfaces 
Vertical displacement across the crack 
surfaces at z resulting from a fictitious 
uniform net section tension 
Vertical displacement across the crack 
surfaces at z resulting from a fictitious 
nominal net section bending 
Distance measured from load line to 
circumference of specimen ( i + D/2) 
Cartesian coordinates (Fig. 1) 
Dimensionless location along the crack 
surface for 0.3 < z < 1 
Stress intensity coefficient T = Tp 
when OM — ^, and F = TM when 
ap = 0. 

Dimensionless distance from load line 
to crack mouth 
Displacement coefficient as a function 
of z due to Op 
Displacement coefficient as a function 
of z due to OM 

Resultant displacement coefficient as a 
function of z 
Poisson's ratio 
Component of fictitious linear net sec
tion bending stress at crack tip result
ing from moment, M 
Component of fictitious uniform net 
section tensile stress resulting from ap
plied load, P 

 



468 FRACTURE MECHANICS: TWELFTH CONFERENCE 

M Value associated with net section bend
ing 

p Value associated with net section ten
sion 

ASTM Committee E24 on Fracture Testing is currently considering the 
round compact specimen (edge-cracked disk) for incorporation into ASTM 
Test on Plane Strain Fracture Toughness of Metallic Materials (E399-78). 
Pursuant to this task, a program to evaluate the round compact specimen 
was initiated by ASTM Task Group E24.01.12. 

The objective of this paper is to aid in the establishment of the round 
compact specimen as an alternate standard for the determination of the 
plane strain fracture toughness (Ki^) in international testing and certifica
tion standards. The round compact specimen geometry, when compared to 
existing standard specimens, is most efficient in testing round bar stock 
because of the low cost of fabrication. Displacement and stress intensity 
coefficients were obtained herein for the range of ratio of crack length-to-
specimen diameter, A/D, from 0.40 to 0.95 (where A is the distance from 
the crack tip to the circumference). Displacement coefficients Ap and A^ 
and stress intensity coefficients Tp and F ^ apply to two types of specimen 
loading; Ap (or Fp) to a uniform distribution of stress across the net section, 
and AM (or F^) to a nominal bending stress distribution across the net sec
tion (Fig. 1). While these types of load are in themselves impractical, the 
two coefficients can be combined to represent any practical case of loading 
by a pair of equal and opposite forces normal to the crack (pin loading). 
The appropriate displacement (or stress intensity) coefficient A (or F) is ob
tained from a linear combination of displacement coefficients Ap and Aj^ 
(or Tp and F^^). 

LOAD LINE 
DISPLACEMENT 

CRACK MOUTH 
DISPt;^CEMENT 

LOAD POINT 
DISPLACEMENT 

+ 

NOMINAL UNIFORM TENSION 

' " M • "> 

NOMINAL BENDING 
(Op - 0 ) 

V 

A 

z=. 

__ 
p̂ 

( '" VP 

+ 
+ 

"M 

{^h 
FIG. 1—Application of superposition principle to obtain the resultant displacement at a 

given location. L. along the crack surface of a round compact specimen. 
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In obtaining the crack surface displacement solution, the same boundary 
conditions on the stress function and its derivative given in Ref / were used. 
Through a linear extrapolation of the displacement coefficient function at 
the load line, the crack mouth displacement coefficient is obtained. 

For small A/D ratios the differences between the actual distribution of 
loading forces in a pin-loaded specimen and the distribution assumed in 
the analytical model may be significant. Crack displacements often become 
sensitive to these differences as the pin hole nears the crack tip or the crack 
surface. To verify the applicability of the present results to the smallest 
A/D ratios of practical interest, calculated displacements are compared 
with experimental measurements. Fisher and Buzzard [2]^ experimentally 
obtained the influence coefficients across the crack surfaces along the load 
line and crack mouth for a given load line location {W/D — 0.7407) with 
A/D ratios varying from 0.398 to 0.909 (Fig. 1). Comparisons of load point 
and load line displacements were made at A/D = 0.398 and 0.909. In 
addition, comparison is made with displacement coefficients for the stan
dard rectangular compact specimen. These results were obtained assuming 
a parabolic shear distribution along the load line. The boundary conditions 
on the stress function and its derivative are given in Ref 3. Further com
parisons are made with analytical results of other investigators for the round 
compact specimen given in Refs 4 and 5. 

Displacement coefficients Ap and A^ and stress intensity coefficients 
Vp and VM are presented in tabular form, and as least squares best fit poly
nomials. An example is provided illustrating the use of coefficients A/, and 
I^M to obtain load line and crack mouth displacements. Examples are given 
in Ref / illustrating the use of coefficients Tp and V^-

Approach 

For a given A/D ratio and at a given z location, the displacement co
efficients are defined as follows 

Apiz) = E'np{z)/apA (1) 

AM(Z) = E'vM{z)/aM/^ (2) 

Mz)=E'v{z)/(ap + aM)A (3) 

Applying the superposition principle as shown in Fig. \, v = vp + v^, one 
obtains 

A(z) = [ap/{ap + aM)]^p{z) + [OMACP + aM)]A;v/(z) (4) 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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Since OM = 6M/B{D - A)^ where M = M„ + P{2L + A)/2 and ap = 
P/B(D —A). Substitution into Eq 4 together with some algebraic manipu
lation results in 

, . ^ PDjl - A/D)Ap{z) + 3[2M„ + PD{U/D + A/D)]AM{Z) 

^^' PDH + 6L/D + 2A/D) + 6M„ ^ ' 

The influence coefficient E 'Bv/P can be obtained directly from Eq 3 and 
4 as 

E'Bv/P = 
(A/D)(l - A/D)Lp{z) + 3{A/D){2M„/PD + 2L/D + A / I » A M ( Z ) 

(1 - A/D)^ ^^' 

To obtain the crack mouth displacement coefficient, the slope of A(z) is 
assumed constant at and beyond the load line location x = 0, hence zo — 
(A + W - D)/{A - 0.15D). Thus 

dA/dz\^o — lcfp/{(Jp + aM)]dAp/dz\^o + WM/(<^P + OM)]dAM/dz\^o 

and it follows that 

Amo = A|,„ + dA/dz\,,8z (7) 

where 

6z = {D - W)/{A - 0A5D) 
mo = mouth and 
zo = load line location. 

Similarly, the crack mouth influence coefficient is 

E 'Bv/P\^„ = E 'Bv/Plo + d{E 'Bv/P)/dz\,„8z (8) 

For a given A/D ratio stress intensity coefficient Tp, T^, and T are defined 
as 

IP — 

^M — 

ap\fA(l - A/D) 

aM^A{\ - A/D) 

{ap + aA/)V/i(l - A/D) 

(9) 
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By superposition one has 

K^ = K,p + KiM (10) 

Applying Eq 9 and 10 one obtains 

r = (-^^)r^ + (r^^)rM dD 

If at load line L, a load P is applied through pins and the moment M^ = 0, 
after algebraic manipulation of Eq 11 one obtains a more common form 

KBVD I A/D \ ^^ ^ 3[{A/D) + {1L/D)]^^ ^^2) 
1 - {A/D) I '^ 1 - (A/D) 

Results and Discussion 

The resultant displacement solution of the cracked disk problem is 
obtained by superposition of two types of loading as shown in Fig. 1. The 
first type of loading is based on a constant net section stress ap = P/ 
[B(D —A)] resulting in the displacement coefficient Ap as a function of 
ffp and A/D. The second solution is based on a nominal pure bending stress 
where a^ = 3[P(v4 + 2L) + 2Mo]/[B{D - Af] at the crack tip from 
which the displacement coefficient AM as a function of a^ and A/D is 
obtained. The values of Ap and AM, Table 1, are obtained using the 
boundary collocation method and stress function boundary conditions 
described in Ref / . 

Table 2 contains comparisons of the present influence coefficient results 
(Eqs 6 and 8 with Mo = 0) with those of Refs 2 through 5. The results 
in Ref 4 are for a point load at location L = 0.25 D and 3; = 0.2 D (Fig. 1 
and Table 2), thus, W/D — 0.75. The influence coefficient values obtained 
herein along the load line are in very good agreement with those published 
in Ref 4. For the influence coefficient at the crack mouth, good agreement 
was obtained for A/D ratios greater than 0.7. 

For W/D = 0.7407, which is the value being considered for standardiza
tion, good agreement among the present results, those of Ref 5, and the 
experimental results of Ref 2 at the crack mouth and load line is obtained 
over the whole range of A/D ratios. The experimental results were obtained 
on a specimen geometrically similar to the proposed standard round 
compact specimen. The test specimen had the following dimensions: D = 
20.42 cm, B = 2.73 cm, and W = 15.12 cm. The material used, 6061-T651 
aluminum, had a modulus E — 689.48 X 10' N/m^. A least squares best 
fit polynomial of sixth degree, In (E'Bv/P) = Q + C^X + CjA'̂  + CjA'̂  + 
C4X'^ + CsX^ + CbX^ (where X = \ + A/W - D/W) is fitted to the 
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TABLE 2—Comparison of analytical results with those of other investigators 
[a/W = (A/D + W/D - 1)/(W/D)]. 

A/D 

0.400 
0.450 
0.475 
0.500 
0.550 
0.600 
0.625 
0.650 
0.700 
0.750 
0.775 
0.800 
0.850 
0.900 
0.950 

Analytical Results 
Collocation Method 

Across 
crack 

at load 
line 

8.437 
12.02 

16.77 
23.32 
32.68 

46.67 
68.81 

106.5 

177.8 
335.9 
800.0 

3356 

At 
crack 
mouth 

18.29 
23.33 

30.15 
39.55 
52.92 

72.74 
103.8 
156.1 

254.3 
470.3 

1099 
4536 

E'Bv/P 

Newman (Ref 4) 

Across 
crack 

at load 
line 

7.602 

15.86 

31.76 

67.90 

176.9 

At 
crack 

mouth 

13.35 

25.51 

48.44 

99.38 

250.3 

Gregory (Ref 4) 

Across 
crack 

at load 
line 

9.335 
12.88 

17.62 
24.16 
33.53 

47.53 
69.67 

107.4 

178.6 
336.8 
801.1 

3379 

At 
crack 

mouth 

14.10 

26.40 

49.36 

100.3 

250.8 

Analytical Results 
Using Collocation 

Method for 
Standard 

Rectangular 
Compact 
Specimen 

Across Crack 
at Load Line 

8.36 

14.17 

22.78 

36.89 

63.2 

122.6 

304.7 

NOTE—W/Z) = 0.750 

experimental displacement data sets (a) measured at the crack mouth, and 
(fe) measured across the load line. The experimental influence coefficient 
values in Table 3 are then obtained using this fitting function for inter
polation. 

On comparing the load line experimental results with the present values, 
the percent variations ranged from —0.3 to +4.0 over the whole range of 
A/D ratios. At the crack mouth, the percent variation ranged from +2.3 to 
+6.8 over the whole range oiA/D ratios. While the experimental specimen 
approached plane stress conditions, the specimen thickness was 2.73 cm 
and a thinner test specimen should reduce these variations. 

It should be appreciated that there can be a limitation on the applicability 
of the present results to the practical pin loaded cracked disk. When the 
crack tip is very close to the load line (small A/D ratios), differences in 
displacement coefficient values can occur since there is a significant 
difference between the actual distribution of loading forces and that 
assumed in the model. 

As described earlier, the influence coefficients of Table 2 and 3 were 
obtained by application of the superposition principle to those computed 
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A/D 

0.400 
0.407 
0.450 
0.482 
0.500 
0.550 
0.556 
0.600 
0.630 
0.650 
0.700 
0.704 
0.750 
0.778 
0.800 
0.850 
0.852 
0.900 
0.950 

TABLE 3—Comparison of analytical results with those of other investigators 
[a/W = 

Experimental Results 
(Ref2) 

Across crack 
at load line 

7.91 
8.34 

11.17 
13.72 
15.46 
21.38 
22.18 
30.07 
37.28 
43.50 
65.11 
67.18 

101.7 
133,6 
169.5 
319.0 
327.7 
760.2 

At crack 
mouth 

17.03 
17.65 
21.61 
25.14 
27.57 
36.06 
37.22 
48.75 
59.26 
68.24 
98.92 

101.8 
149.7 
193.7 
243.0 
448.8 
460.9 

1050 

(A/D + W/D -- 1)/(W/D)]. 

E'Bv/P 

Analytical Results 
Collocation Method 

Across crack 
at load line 

7.89 

11.35 

15.94 
22.28 

31.34 

44.91 
66.39 

103.0 

172.3 
326.2 

778.0 
3269 

At crack 
mouth 

17.89 

22.78 

29.46 
38.69 

51.83 

71.33 
101.9 

153.5 

250.3 
463.4 

1083 
4477 

Specimen Modeled with 
Loading Pin 1 

Across crack 
at load line 

7.90 

13.51 

22.45 

37.95 

67.72 

134.8 

334.6 

1ole(Ref5) 

At crack 
mouth 

17.54 

25.32 

38.29 

60.72 

103.2 

197.5 

474.6 

NOTE—W/D = 0.7407 

functions given in Table 1, with load line L/D = 0.2407 and 0.2500. The 
results of Table 1 are limited to an L/D maximum of 0.35 (Ref / ) . The 
lower bound on L/D for crack load line displacements depends on the 
length of the crack and the lower bound of z, which is 0.3; for example, 
A/D = 0.40 and z = 0.30, since x = 0, L/D minimum = 0.175, and 
for A/D = 0.95 and z = 0.30, since x ~ 0, L/D minimum = - 0 . 2 1 . 
Here the negative value indicates that L (Fig. 1) is measured to the right of 
the disk centerline. 

Fitting functions for Tp and TM, Table 4 (Ref 1), were obtained by linear 
and nonlinear least squares best fit regression analyses, respectively. These 
functions are 

TM = 5.611 - 21.246 ~ + 38.149 - ^ 
D D 

- 32.169 - ^ + 10.320 (^ 

and 
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0.02l04[iA/D) - 0.525] 
[(A/D) - 0.525] KA/D) - 0.0798] + 0.0625 

These functions are considered to be accurate to less than a percent of the 
computed solution in the range 0.40 < A/D < 1. Clearly, the accuracy of 
application is dependent upon how well the assumed model boundary 
conditions approximate the real boundary conditions. Examples illustrating 
the use of these functions are given in Ref / . The limit values for Tp and 
TM as A/D->1 were obtained from Ref 6. 

Summary and Conclusions 

The solution obtained provides crack displacements and stress intensity 
coefficients for any combination of bending moment and normal forces 
acting on the round compact specimen. These combinations of loads are 
not restricted to a single load line to specimen diameter ratio. The loading 
of the specimen is characterized by the statically equivalent combination of 
resultant forces and moment chosen to act through the mid-net section. 
The advantage of this approach is that the influence coefficient and stress 
intensity coefficient for any reasonable load line location can be obtained 
efficiently by superposition of two complementary fictitious cases; namely, 
net section tension where the value of the moment is zero and net section 
bending where the value of the resultant normal force is zero. 

On comparing the load line experimental influence coefficient results 
with the present values, very good agreement was obtained over the whole 
range of A/D ratios (0.40 to 0.95); thus, verifying the accuracy of the 
mathematical model. Comparison of the crack mouth experimental in-

TABLE 4—Values of stress intensity coefficients Fp and FM 
for the edge cracked disk. 

A/D 

0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00° 

Tp 

0.3857 
0.4538 
0.4901 
0.5090 
0.5184 
0.5228 
0.5246 
0.5251 
0.5251 
0.5249 
0.5242 
0.522 
0.521 

TM 

1.4172 
1.2695 
1.1551 
1.0637 
0.9885 
0.9255 
0.8717 
0.8252 
0.7845 
0.7487 
0.7168 
0.682 
0.663 

"Limit values obtained from Ref 6. 
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fluence coefficient results with the analytical results of this investigation 
showed good agreement over the whole range of A/D ratios. Comparisons 
of stress intensity coefficients with those of other investigators are given 
inRef/ . 

Example 

The results in Table 2 and 3 are for a round compact specimen with load 
P at load line location L (or equivalent location x = 0), MQ — 0 and 
Op = P/B(D - A) and au = 3^(21 + A)/B{D - Af. 

For the following geometry, where L = ZJ/4 {W/D = 0.75) and A/D = 
0.55, to obtain the displacement across the crack at the load line and at 
crack mouth, it follows that W/D = 0.75 and zo = 0.75. 

From Eq 6 and Table 1 

0.55(0.45) APUO + 1.65(0.5 + 0.55)AM\,O 
E'Bv/P 

(1. - 0.55)2 

Ap\,o = 1.10031 - 5.38109zo + 8.96387zo^ - 9.41258zo3 = -1.86426 

AMIZO = 0.30182 + 3.85332 zo - 1.46881 zo^ + 1.48341 zo^ = 2.99142 

Thus, at the load line E 'Bv/P = 23.315. 
To obtain the crack mouth influence coefficient, differentiating Eq 6 and 

evaluating the derivative at the load line one obtains 

0.55(,0A5)dAp/dz\,„ + 1.65(0.5 + 0.55)dAM/dz\,o 
d{E'Bv/P)/dzi„= — 

= 25.978 ^ " - ^ ^ 

dAp/dz\,o = -7.8190 and (/AM/C^Z |zo = 4.1534 

For this case 8z — 0.625, and from Eq 8 one obtains the crack mouth in
fluence coefficient. 

E'Bv/P = 23.315 + 25.978 (0.625) = 39.55 
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ABSTRACT: This paper examines the relationship between several semi-empirical frac
ture analyses (SEFA) and the R-curve concept of fracture mechanics. The conditions for 
equivalence between a SEFA and an R-curve are derived. A hypothetical (imaginary) 
material is employed to study the relationship analytically. Equivalent R-curves (ERC) 
are developed for real materials using data from the literature. 

For each SEFA there is an ERC whose magnitude and shape are determined by the 
SEFA formulation and its empirical parameters. If the R-curve is indeed unique, then 
the various empirical parameters cannot be constant, and vice versa. However, for one 
SEFA the differences are small enough that they may be within the range of normal data 
scatter for real materials. 

KEY WORDS: fracture properties, crack growth, resistance curves, residual strength, 
semiempirical analyses, crack propagation, fractures (materials) 

Nomenclature 

a Length of single-tip crack or half-length of double-tip crack, equals 
«o + A 

£" Effective modulus, equals E for plane stress or £•/(! — c )̂ for plane 
strain, where E is Young's modulus and v is Poisson's ratio 

G^ Strain energy release rate 
GR Crack extension resistance 
Gc Strain energy release rate or crack extension resistance at instability 
Ki Opening-mode stress intensity factor 

n Number of crack tips (one or two) 

' Research engineer. National Aeronautics and Space Administration-Lewis Research Center, 
Cleveland, Ohio 44135. 

478 

Copyright® 1980 by ASTM International www.astm.org 

 



ORANGE ON SEMI-EMPIRICAL FRACTURE ANALYSES 479 

W Specimen width 
Y Stress intensity calibration factor, Ki/a4a, a dimensionless func

tion of X 
a Sensitivity factor, Eq 1 
A Effective crack extension (sum of physical crack extension plus a plastic 

zone correction) 
X Relative crack length, na/W 
a Stress normal to crack 

a„ Ultimate tensile strength 
(Tys Yield strength 

c At critical or instability condition 
„ Original value prior to loading 

This paper examines the relationships between several semi-empirical 
fracture analyses (SEFA) and the R-curve concept of fracture mechanics. 
These relationships may explain why a serni-empirical fracture analysis will 
yield good results with one set of data and poor results with another. They 
may also indicate which analyses deserve further consideration. 

Over the past decade a number of SEFA have been presented [1-5] .̂  These 
analyses all attempt to correlate failure stresses for precracked tension 
specimens with initial crack length over a range of crack lengths. The cor
relations involve the determination of one [1-3] or two [4,5] empirical param
eters from test data. The parameters are treated as material properties, 
which are independent of the specimen and crack configuration but which 
are functions of specimen thickness and such variables as heat treatment and 
test temperature. The analyses do not always provide good correlations using 
data sets other than those chosen by the original authors. To date these 
analyses have only been formulated for and applied to test specimen con
figurations. Thus their applicability to the design of complex structural con
figurations is uncertain. 

The progressive development of the R-curve concept has been reviewed in 
Ref 6. The concept postulates that, for a given material and thickness, there 
is a unique relationship between the amount of stable crack growth under 
rising load and the crack-tip stress intensity factor. This relationship is called 
the crack-extension resistance curve, or R-curve, and represents the response 
of the material in the vicinity of the crack tip to externally imposed loading. 
If the R-curve is known, both failure load and critical crack length can be 
predicted (as functions of initial crack length) for any specimen or structural 
configuration for which an appropriate stress intensity analysis is available. 
Thus, the R-curve concept appears to be a more useful method than any of 
the semi-empirical analyses. 

If the R-curve for a given material and thickness is available, one can 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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calculate fracture stress as a function of original crack length for any test 
specimen configuration. The converse should also be true. That is, if a rela
tionship between fracture stress and original crack length is available, one 
should be able to calculate the corresponding R-curve. This observation was 
the impetus for the present study, which was undertaken to test the following 
hypotheses: 

1. For each SEFA there is an equivalent R-curve (ERC) whose magnitude 
and shape are determined by the SEFA formulation and its empirical param
eters. The ERC is equivalent in that it predicts exactly the same relationship 
between fracture stress and original crack length as the SEFA. 

2. A SEFA will correlate residual strength data (fracture stress against 
original crack length) closely if its ERC closely matches the actual R-curve of 
the material in question, and will correlate poorly if the match is poor. 

This paper first reviews some characteristics of the R-curve concept when 
applied to finite-width specimens. Next the conditions for equivalence be
tween a semi-empirical analysis and an R-curve are derived. A hypothetical 
material is employed to study the relationship between R-curves and semi-
empirical analyses. Finally, equivalent R-curves are developed for real 
materials using data from the literature. 

R-Curve Concept 

The R-curve concept and its historical development are reviewed in Ref 6. 
A general representation of the concept is shown in Fig. la. The strain energy 
release rate is given by the expression 

G^ = Y^o^a/E' 

and represents the driving force (per unit thickness) tending to cause crack 
propagation. The material's resistance to crack propagation, G/e, is a func
tion of crack extension, A. At the critical stress a^ the driving force curve and 
the R-curve are tangent. Beyond the point of tangency the driving force in
creases faster with crack length than does the material's resistance. This in
stability condition represents the failure of the body. The point of tangency 
defines the fracture toughness, Gc, and the critical crack length, 2 a^. For an 
infinite body, K is a constant and the driving force curve is a straight line. 
Thus, both the fracture toughness, G^, and the amount of crack extension at 
instability, A ,̂, increase with increasing original crack length. 

For cracks in simple finite bodies and test specimens, the trends are some
what different. If one defines a dimensionless sensitivity factor as 

X dY , , . 
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CRACK LENGTH, a 

(a) GENERAL REPRESENTATION Of R-CURVE INSTABILITY CONCEPT. 

Locys OF 
INSTABILITY / , 1. b \ / 
POINTS f / f 1/ 

,•^^1 1 H "~^~^-L. 
.'^ 1 A A / ~̂  / / / / / / / N 

/ / / / / G^/ 
/ / 
' / 

w % 7 
''R ""A / CR / 

S / 

\ \ 
\ 

GR \J 

RELATIVE CRACK LENGTH, » 

(bl R-CURVE INSTABILITY FOR A WIDE RANGE OF INITIAL CRACK LENGTHS. 

FIG. 1—R-curve instability concepts. 

then the crack driving force curve and its slope (for constant stress) are 

E'GA = Y^a^a 

E ' ^ = Y^aHl+la) da 

For convenience, the crack extension resistance curve and its slope are 
written here as 

g(A)^E'GR 

g'{A) sE'dGn/dA 

At the instability point, GA = GR and dG^/da = dG/j/d A (see Fig. la). If 
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g{A) and g' (A) are mathematically describable, the instability point is deter
mined by the simultaneous solution of two equations 

E'G, = Y,^a,Ha„ + AJ = giAJ (2) 

dG, 
E' 

da 
= y , 2 ^ , 2 ( l + 2 a J = g ' ( A J (3) 

The coefficients Y and a are usually expressed as trigonometric or poly
nomial functions of the relative crack length X. As a result, a closed-form 
simultaneous solution is seldom possible, and numerical methods must be 
used to solve for A^. Then G^ = g(A^)/E' and the fracture stress a^ is deter
mined from Eq 2. 

As the initial crack length is increased from zero, both G,, and Â , increase. 
However, due to the fact that dY/d\ continually increases with X, both Gc 
and A^ reach maximum values, which depend on the specimen width, W, 
and the forms of both the driving force curve and the R-curve, As a^ is in
creased still further, both G^ and Â , begin to decrease. This behavior is 
shown schematically in Fig. 1 b where instability curves are shown for a wide 
range of initial crack lengths. The locus of all instability points is shown by 
the dotted line. From Fig. lb it is also apparent that there are pairs of 
original crack lengths, say {ag)i = 0.2 Wand (00)2 ~ ^-^ ^' which will have 
the same critical crack extension, (A^)) 2, and fracture toughness, (Gc)i,2' 
From Eq 2, the fracture stresses for these original crack lengths are re
lated by 

((7J2 ( n ) i («O)I + ( A , ) L 2 

K ) l iYj2 \ K ) 2 + (A,)l,2 

Thus, there is a relationship between fracture stresses for short cracks and 
long cracks that is implicit in the R-curve concept, and this relationship is a 
function of the specimen type and the shape of the R-curve. 

It should be noted that, in this paper, A is the "effective" crack extension. 
It is the sum of the physical crack extension plus an adjustment to account 
for the effect of crack-tip plasticity. 

Equivalency Analysis 

In the preceding section it was shown that, if a mathematical formulation 
of the R-curve is available, fracture stress can be determined as a function of 
original crack length. In this section it will be shown that, if an equation for 
fracture stress as a function of original crack length is available, the equiv-
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alent R-curve can be determined. In this paper, only the case where specimen 
width, W, is constant is considered. Parallel derivations for the cases where 
a„ is constant and where a^/W is constant are given in Ref 7, which contains 
a more complete treatment of this same subject. 

Differentiating both sides of Eq 2 with respect to Â , 

^A, 
-£G, = y 2 a 2 . 2 a . 

da 

dA ̂
+ 1 + y,2(fl„ + A,) 

X 
dA, 

- ( a j 2 + y ^ 2 2 dOo 

dA, 
+ 1 ^g'(K) 

and substituting Eq 3, results in 

0 = ff2 (1 + 2a,) 
dop 

dA, 
+ (fl„ + A J ^ ^ ( a , 2 ) 

for W = constant 

Assume that there is a function, / , such that one can define 

f {ao) ^ d{a?ydao 

Then Eq 4 becomes 

da, 
0 dA, 

(l + 2 a , ) / ( a J + (ao + A , ) / ' ( a J 

and since dag/dA, ^ 0, one has 

0 = (1 + 2 a , ) / ( a „ ) + (a„ + A J / ' l a J 

For cracks in infinite bodies, a = 0 and Eq 5 becomes 

/ ( « o ) 
A, = 

- / ' ( « o ) 

(4) 

(5) 

(6) 

which, after substituting the infinite-body formulations ioxf{a„) a n d / '(«„) 
from the Appendix, gives Â , for any OQ in terms of the empirical parameters. 
Then terms can be rearranged to give a^ as a function of A .̂, say 

ao = F{A,) 
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Substituting this function into Eq 2 yields 

E'G, = Y,HF{A,) + AJ -/[/-(A,)] (7) 

Since Eq 6 gives Â . for any value of ao, Eq 7 must give E' Gc for any and all 
values of A ,̂ which is a definition of the R-curve. Thus, after writing the 
function F in terms of the empirical parameters, it is appropriate to write Eq 
7 in the general terms of E'GR and A, rather than£"G<, and A .̂ The end 
result is an explicit ERC formulation in terms of the empirical parj^meters. 

To determine the ERC for cracks in finite bodies, an indirect method is re
quired. First, the finite-body formulations for/(ao) and / ' {ag) from the Ap
pendix are substituted into Eq 5. Because of the more complicated nature of 
the finite-body formulations, it is unlikely that an explicit function /"(A ,̂) will 
be obtainable. But for any given value of A,., AQ is a root of Eq 5, which may 
be found by standard numerical methods and which represents a single value 
oiF{A^). Substituting this value into Eq 7 yields a discrete point on the ERC. 
By incrementing Â , and repeating the calculation, the ERC can be deter
mined point by point. 

Analytical Comparisons 

Dimensionless Equivalent R-Curves 

It is helpful and more efficient to first compare SEFA and ERC on an 
analytical basis. This is most easily done using the problem of a crack in an 
infinite plate as a baseline. 

The infinite-body ERC for Kuhn's analysis [/] is obtained using the 
method described in the paragraph containing Eqs 6 and 7. Substituting Eqs 
21 and 22 from the Appendix into Eqs 6 and 7 with Y^^ = it yields 

A, = V^ /C„ (8) 

where Cm is an empirical parameter having units (X~'^^). Equation 9 is 
plotted in dimensionless form in Fig. 2a. This curve obviously resembles an 
R-curve and might be expected to closely match some (but not all) ex
perimental R-curves. 

The infinite-body ERC for Orange's analysis [2] is obtained in the same 
manner. Using Eqs 23 and 24 (Appendix) results in 

A, = (/(:„/(7„)2/7r (10) 
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3.5r 

DIMENSIONLESS CRACK EXTENSION. Cf, A 

la) KUHN'S ANALYSIS IRtF. I I . 

X X J_ 
.2 .i .6 .8 10 

lENSIONLESS CRACK EXTENSION. lOyj/Kjl^, 

Ibl FEDDERSEN'S ANALYSIS IREF. 31. 

DIMENSIONLESS CRACK EXTENSION, l<J„/K,l 'A 

(CI NEWMAN'S ANALYSIS (REF. 4). 

DIMENSIONLESS CRACK EXTENSION. (0^,/K^(.)' " A 

(dl BOCKRATH'S ANALYSIS IREF. 5). 

FIG. 2—Dimensionless R-curves equivalent to various semi-empirical fracture analyses for a 
crack in an infinite plate. 
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£ ' G ^ = / r „ 2 (11) 

where K^ is an empirical parameter having units {FL~^^^). These equations 
define a single point. In order to relate this single point to the R-curve con
cept, the point may be thought of as the corner of a step-function, and that 
step-function might in turn be considered as a very simple approximation of 
an actual R-curve. 

The infinite-body ERC for Feddersen's analysis [3] is obtained by sub
stituting Eqs 25 and 26 (Appendix) into Eqs 6 and 7 as before, yielding 

27 (K,y 3 
(12) 

E'GR^KC^ 1 + 

-f 

Aw /ffys^^ 

9 \K 

^11 
4 ^ /gys 

9 \K^ 

(13) 

for a„ < (9/47r)(A'c/ays)^ where iiT̂ , is an empirical parameter having units 
(/Z~-'/2) Equation 12 requires that critical crack extension decrease as 
original crack length increases from zero. This is in direct opposition to the 
R-curve concept and is not supported by any data known to this author. 
Equation 13, which is plotted in Fig. lb, does not look at all like an R-curve 
but does satisfy the requirements of coincidence and tangency. For «„ = 0, 
the point of tangency is the right-hand terminus of the curve. As a,, increases, 
the point of tangency moves downward and leftward along the curve. Finally, 
at flo = (9/47r)(/i';,/ay^)2, the point of tangency is the left-hand terminus. 

The infinite-body ERC for Newman's analysis \4\ is obtained by sub
stituting Eqs 31 and 32 (Appendix) into Eqs 6 and 7 as before, yielding 

A , -
i r 

(14) 

E'GR = 
2 A 

mVx + {aJKfY ^ 
(15) 

whereKj'\% an empirical parameter having units {FL~^''^) and m is a dimen-
sionless empirical coefficient which is not greater than unity. Equation 15 is 
plotted in dimensionless form in Fig. 2c. This ERC is asymptotic to E' GR = 
K/, and the coefficient m determines the rapidity of the approach. As m 
decreases from unity to near-zero, the ERC develops a progressively sharper 
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knee. The flexibility of this two-parameter ERC should allow it to match 
R-curves for a wide range of real materials. 

The infinite-body ERC for Bockrath's analysis [5] is obtained by sub
stituting Eqs 33 and 34 (Appendix) into Eqs 6 and 7 as before, resulting in 

A, = («/2)a„ (16) 

\oi/(2 + u) 
E'GR = 

ic , / 2 W ( 2 + w) 
•f (2 + co)/:rcM-jAJ (17) 

where 

o) = a dimensionless empirical coefficient, and 
Kjc = an empirical parameter having irrational units (FD'). 

Equation 17 is plotted in Fig. 2d. This ERC has no asymptote, and its slope 
is infinite at A = 0. Except for notation, it is identical to the R-curve model 
proposed by Broek (Ref 8, Eq 10). Brock's model was derived using R-curve 
concepts and the experimental observation that for small cracks in wide 
specimens, the critical crack length is often proportional to the initial crack 
length. 

At this point we can state the following. For each SEFA, in its infinite-
body form at least, there is indeed an ERC. For four of the analyses con
sidered, the ERC resembles or approximates an actual R-curve. The ERC for 
Feddersen's analysis [9] does not resemble an R-curve and will not be con
sidered further. 

Comparisons Using Synthetic Data 

Hypothesis (2), introduced earlier in this paper, postulates that a SEFA 
will correlate residual strength data closely if its ERC closely matches the ac
tual R-curve and will correlate poorly if the match is poor. To test this 
hypothesis one would need, as a minimum, both residual strength data (for 
several specimen sizes having a wide range of crack lengths) and R-curve 
data for two materials having significantly different R-curve shapes. Since no 
such body of data is known to this author, it was necessary to synthesize one. 
This was done by formulating two R-curve equations using the following 
guidelines. First, to avoid exact fits, neither equation should be mathe
matically equivalent to one of the ERC formulations previously derived. Sec
ond, one R-curve should have a definite knee, the other should be gently 
curving. Using these equations, synthetic test data can be generated by in
stability analysis for any specimen size and type. An advantage of this ap
proach is the total absence of data scatter. 

"Unobtainium" is assumed to be a heat-treatable material. Since the 
material is imaginary, the units will be left to the reader's imagination. In the 
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annealed condition, its ultimate tensile strength is 150 and its R-curve is 
given by 

E'GR = 8000 VlOA - A2 (18) 

In the aged condition, its ultimate tensile strength is 200 and its R-curve is 
given by 

^ , ^ _ 50 OOP ^ , , „ . , E GR = arctan (10 A) (19) 

These are shown in Fig. 3. The coefficients in Eqs 18 and 19 were selected so 
that the significant features of both curves would lie within the ranges 0 < 
E'GR < 25 000 and 0 < A < 1. 

The pseudo-test data points are calculated using conventional instability 
analysis as follows. Dividing Eq 2 by Eq 3 and rearranging terms gives 

0 = 
g(AJ 
g'(AJ 

ap + Ac 
1 + 2a, 

(20) 

The functions giA^) and g'(Ac) are given by either Eq 18 or 19 and their 
derivative. The factor a, is determined using Eq 1 and the secant stress in
tensity calibration factor for uniformly-loaded center-crack specimens [9]. 

CRACK EXTENSION, A 

FIG. 3—R-curves for hypothetical material "unobtainium. " 
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Then, for prescribed values of OQ and W, Â  is the least positive root of Eq 20. 
This root can be found by any of several numerical methods. Next, Â  is sub
stituted back into Eq 18 or 19 to calculate £'G^.. Finally, the fracture stress 
(Tc is obtained from Eq 2. 

The "specimens" that are studied here were sized as follows. For the 
infinite-width pseudo-tests, the initial crack half-lengths a^ were chosen (by 
trial and error) to give A^-values, well distributed over the entire R-curve. 
For the finite-width pseudo-tests, the specimen widths were fixed at eight 
times (first series) and four times (second series) the largest initial crack half-
length in the infinite-width series. The calculated values of stress and crack 
extension at instability are given in Table 1. The values of stress and initial 
crack length were then used as inputs to the various semi-empirical analyses. 

The empirical parameters were determined as follows. Kuhn's parameter 
[/] C„ was calculated for each specimen in t̂he infinite-width series using Eq 
21. The simple average of seven values, C„, is given in Table 1. The bar is 
used here to denote the average value for one data set. Orange's parameter 
[2], Ku, was also calculated for each specimen in the infinite-width series 
using Eq 23. The average value K^ given in Table 1 is a weighted average 
determined in the same manner as that of Ref 2, Eq 6. Newman's parameters 
[4] Kj and wTwere determined using the least-squares procedure given in Ref 
4, Appendix C. Bockrath's parameters [5] Kxc and w were determined by a 
least-squares fit of Eq 33 (Appendix). Since Bockrath's method is restricted 
to cases where the crack area is less than 10 percent of the gross area, speci
mens having Co > W/20 were excluded from the least-squares fit. 

The equivalent R-curves were calculated as follows. For the infinite-width 
series, the empirical parameters from Table 1 were simply substituted into 
the appropriate one of Eqs 9,11, 15, or 17. For the finite-width series, the in
direct method (described in the paragraph containing Eq 7) was used. 
Specifically, Eqs 29 and 30 or Eqs 33 and 34 (Appendix) were used along 
with Eqs 5 and 7 and the appropriate empirical parameters. 

The residual strength of the infinite-width "unobtainium" is shown in Fig. 
4. For the annealed condition, Bockrath's SEFA provides a nearly perfect fit 
to the pseudo-data. When ranked according to the sum of the squares of 
deviations, Newman's SEFA, Kuhn's, and Orange's follow in that order. For 
the aged condition, the ranking is quite different. Here Newman's SEFA pro
vides a nearly perfect fit, with Orange's, Kuhn's, and Bockrath's following in 
that order. The equivalent R-curves (ERC) are shown in Fig. 5. For the an
nealed condition, the Bockrath ERC matches the actual R-curve almost per
fectly. When ranked according to the integral of the square of the deviation, 
the Newman ERC, the Kuhn ERC, and the Orange ERC follow in that order. 
For the aged condition, the Newman ERC is the best match to the actual 
R-curve; the Bockrath ERC, the Kuhn ERC, and the Orange ERC follow in 
that order. The Orange ERC, although crude, is a better approximation for 
the aged material than for the annealed. 
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TABLE 1—Pseudo-test data for hypothetical material "unobtainium" and fitted 
empirical parameters. 

W = oo w = W = 4.4 

Oo 

0.10 
0.21 
0.32 
0.44 
0.56 
0.80 
1.10 

^m 

Ku 
KTC 

u 
Kf 
m 

Ac 

0.0980 
0.2015 
0.3008 
0.4044 
0.5036 
0.6897 
0.9016 

1.355 
111.8 
62.13 

1.853 
165.7 

Oc 

112.56 
93.25 
83.70 
77.08 
72.36 
65.82 
60.36 

0.8549 

Ac 

0.0971 
0.1939 
0.2773 
0.3529 
0.4137 
0.4996 
0.5580 

60.76 
1.727 

172.8 

Cc 

112.42 
92.75 
82.71 
75.43 
69.98 
61.79 
54.09 

Ac 

0.0945 
0.1757 
0.2313 
0.2692 
0.2901 
0.2986 
0.2713 

not computed 

0.8497 

59.52 
1.642 

159.6 

ffc 

112.00 
91.36 
80.08 
71.29 
64.26 
52.84 
41.02 

0.7800 

NOTE—Annealed Condition; Ou = 150. 

W = 00 W = 96 VK^ 48 

flo 

0.05 
0.36 
1.0 
2.0 
3.2 
6.4 

12.0 

t̂ m 
Ku 

KTC 
a 

Kf 
m 

Ac 

0.0953 
0.2014 
0.3067 
0.4135 
0.5093 
0.6978 
0.9346 

1.820 
140.7 
63.80 
0.838 

163.3 

Cc 

162.93 
100.08 
69.77 
52.91 
43.37 
31.93 
23.95 

0.7266 

Ac 

0.0953 
0.2014 
0.3064 
0.4121 
0.5054 
0.6791 
0.8566 

66.57 
1.151 

166.0 

<Jc 

162.93 
100.07 
69.74 
52.82 
43.21 
31.50 
22.87 

not ( 

0.7378 

Ac 

0.0953 
0.2013 
0.3055 
0.4081 
0.4942 
0.6286 
0.6760 

:omputed 

68.38 
1.310 

168.4 

(Tc 

162.92 
100.05 
69.64 
52.58 
42.73 
30.21 
19.60 

0.7469 

NOTE—Aged Condition; CT„ = 200. 

Since the Orange ERC is rather crude and since Kuhn's SEFA is equiv
alent to a special case of Newman's (see Appendix, following Eq 32), these 
two were not considered further. The Newman and Bockrath ERCs for the 
finite-width center-crack series are shown in Figs. 6 and 7. Here the same 
trends are seen as in the infinite-width series. The Bockrath ERC is the better 
match for the annealed condition, while the Newman ERC is the better 
match for̂ the aged condition. Note in Table 1 that the empirical parameters 
K-pc, cj, ATy, and m"all vary slightly with specimen width. The ERCs shown in 

 



ORANGE ON SEMI-EMPIRICAL FRACTURE ANALYSES 491 

KUHNSEFA, tO. 121) 

ORANGE SEFA, EO. (23) 

NEWMAN SEFA, EQ. (29) 

BOCKRATH SEFA, EQ, ( 3 3 ) 

D PSEUDODATA 

INIF(AL CRACK HALF-LENGTH, a „ 

la) ANNEALED CONDITION, 0, . • 150. Ibl AGED CONDITION, o, , • 200, 

FIG. 4—Residual strength of hypothetical material "unohtainium, " infinite-width series; 
various SEFA fit to pseudo-test data. 

Figs. 5 through 7 are also distinctly different for different specimen widths, 
but the differences are slight. 

The results of this exercise using synthetic data can be summarized as 
follows. Hypothesis (2), presented at the opening of this discussion, postu
lates that an SEFA will correlate residual strength data closely if its ERC 
closely matches the actual R-curve and will correlate poorly if the match is 
poor. Strictly speaking, this hypothesis cannot be proven, since the ERC 
magnitude and shape depend on empirical parameters that must be obtained 
from residual strength data. However, the converse appears to be true. That 
is, if a SEFA correlates residual strength data closely, its ERC will closely 
match the actual R-curve. Furthermore, it is apparent that if for a given 
material and thickness the R-curve is unique, the various empirical param
eters are not, and vice versa. 

Comparisons Using Actual Test Data 

As mentioned earlier, experimental studies containing both residual 
strength and actual R-curve data are relatively few in number. Nevertheless, 
enough were found in the literature to allow some comparisons to be made 
using actual data obtained from real materials. 

NASA Data for 2014-T6 Aluminum Alloy 

In Ref. 10 this author presented test data for 2014-T6 aluminum alloy 
specimens 1.5-mm (0.06-in.) thick, tested at 77 K (-320°F). Figure 14 of 
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- KUHN ERC, EO. (9) 
— ORANGE ERC, EO. (11) 

NEWMAN ERC. EQ. (15) 
BOCKRATHERC, EQ. (17) 
ACTUALR-CURVE 

la) ANNEALED CONDITION. 

.4 .6 
CRACK EXTENSION. A 

Ibl AGED CONDITION. 

FIG. 5—Actual R-curves and ERCs for hypothetical material "unobtainium, " infinite-
width series. 

that reference presented typical curves of crack growth against applied stress 
for notches of six initial lengths in 30-cm (12-in.) wide specimens. Those 
curves were developed by plotting individual crack growth data points for 
replicate specimens, then drawing a smooth curve to give a good visual 
average. For the present report, those data were reanalyzed. The crack ex
tension resistance and effective crack length were computed for each data 
point as 
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E'GR = ff^Traeff secant (7raeff/W) 

«eff = a + (E'Gn/l-KOys^) 

respectively. Since these equations are transcendental, an iterative solution 
was required. A total of 176 data points were obtained from 17 specimens 
with initial crack lengths {lag) ranging from 3 to 100 mm (1/8 to 4 in.). The 
empirical parameters for the Newman and Bockrath SEFAs were determined 
in the manner described earlier. As before, only specimens with a,, < W/20 
were included in the Bockrath analysis. The fitted empirical parameters are 
listed in Table 2. 

Residual strength is shown in Fig. 8a. Newman's SEFA gives a good fit 
over the entire range. Bockrath's SEFA fits the short-crack data fairly well, 
but the fit would be poor if extrapolated to longer cracks. The R-curve data 
points and the equivalent R-curves are shown in Fig. 8fe. Both ERCs fit the 
data rather well, with Bockrath's somewhat better at small crack extensions 
and Newman's somewhat better for larger extensions. These results suggest 
that the ERC concept applies to real data as well as to synthesized data. 

Boeing Data for 2219-T87 Aluminum Alloy 

Earlier it was shown using synthetic data that, if the actual R-curve is 
unique, one obtains slightly different values of the empirical parameters 
from data sets for specimens having different widths. Data from the Boeing 
Company for 2219-T87 aluminum alloy specimens have the same charac-

5 .6 0 
CRACK EXTENSION, A 

la) WIDTH, W • 8.8. (bl WIDTH, W . 4 4. 

FIG. 6—Actual R-curve and ERCs for hypothetical material "unobtainium, "finite-width, 
annealed condition. 

 



494 FRACTURE MECHANICS: TWELFTH CONFERENCE 

NEWMAN ERC 

• BOCKRATH ERC 

J ( I ACTUAL R-CURVE 

CRACK EXTENSION, A 

(bl WIDTH, W • « . 

FIG. 7—Actual R-curve and ERCs for hypothetical material "unobtainium, "finite width, 
aged condition. 

teristics. These data originally appeared in an internal report [//] but are 
also tabulated in Ref/. Center-crack specimens 2.5-mm (0.10-in.) thick were 
tested. The data for specimens 60 and 120 cm (24 and 48 in.) wide are used 
here because they cover a wide range of initial crack lengths. 

Bockrath's analysis was not applied since only one of the wider specimens 
had tto < W/IQ. Newman's parameters were determined separately for each 
specimen width, and somewhat different values were obtained as can be seen 
in Table 2. The residual strength curves fit the data quite well, as can be seen 
in Fig. 9a, with the average error being less than 3V2 percent. Using a 
method that is outside the scope of this paper, it was found that the actual 
R-curve for this material could be estimated by 

E'Git = 8.07 X 1015 AO-554 
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NEWMAN SEFA (REF. 41 

BOCKRATH SEFA (REF. 51 

Q TEST DATA (REF. 101 

1 2 3 4 

INITIAL CRACK HALF-LENGTH, a., cm 

.5 1.0 1.5 
INITIAL CRACK HALF-LENGTH. a„. ir 

I L 

.5 1.0 

CRACK EXTENSION. A, cm 

I \ \ 

lal RESIOUAL STRENGTH. 

. 1 . 2 . 3 . 4 .5 . 6 
CRACK EXTENSION. A, in . 

m [QUIVAUNT R -CURVES lERCI ANO TEST DATA. 

FIG. 8—Residual strength. ERCs, and R-curve data points for 2014-T6 aluminum alloy 
sheet at 77 K (Ref 10). 

FROM NEWMAN SEFA 
— FROM ESTIMATED 

R-CURVE 
ISEETEXTI 

0 10 20 30 40 50 
INITIAL CRACK HALF-LENGTH, a„ , cm 

I I i \ I L 
0 4 8 12 16 20 

INITIAL CRACK HALF-LENGTH, a„ , i n . 

lal RESIDUAL STRENGTH. 

2 4 6 8 10 
CRACK EXTENSION, A, cm 

I I 1 I I 
0 1 2 3 4 

CRACK EXTENSION, A, in , 

Ibl EQUIVALENT R-CURVES lERCl AND ESTIMATED R-CURVES, 

FIG. 9—Residual strength, ERCs, and estimated R-curve for 2219-T87 aluminum alloy sheet 
(Ref 1). 
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where£" GR is in Newtons squared per cubic metres, and A is in centimetres, 
or by 

£ " G R = 11.2 X 109A0-554 

where E'G^ is in pounds squared per cubic inches, and A is in inches. 
Residual strengths calculated from this equation using conventional in
stability analysis are also shown in Fig. 9a. The agreement is very slightly 
better than for Newman's SEFA, the average error being less than 3 percent. 
The estimated R-curve and the Newman ERCs are shown in Fig. 9b, and as 
expected the differences are small. Although these data tend to support the 
concept of a unique R-curve, the differences are so small as to be within the 
bounds of probable data scatter. 

Concluding Remarks 

The results of this study lead to the following conclusions: 
1. For each SEFA there is an ERC whose magnitude and shape are deter

mined by the SEFA formulation and its empirical parameters. The ERC is 
equivalent in that it predicts exactly the same relationship between fracture 
stress and initial crack length (residual strength) as the SEFA. 

2. If, for a given set of data, a SEFA correlates residual strength closely, 
its ERC will closely approximate the effective R-curve of the test material. 

3. Of the five SEFAs examined, Newman's [4] appears to be the most 
generally useful. Bockrath's SEFA [5], which is only formulated for quasi-
infinite bodies, is too restrictive for widespread use. Three references, namely 
/ through 3, do not appear to warrant further consideration. 

4. If the effective R-curve is indeed unique, then the various empirical 
parameters cannot be constant, and vice versa. 

The analytical comparisons made herein indicate that the variations in 
Newman's parameters are small enough that the differences may well be 
within the range of normal data scatter for real materials. Thus, a very care
fully planned and conducted experiment would be required to determine 
which concept (R-curve or SEFA) is more appropriate. 

APPENDIX 

Semi-Empirical Fracture Analyses 

Paul Kuhn (1968) 

Equations 3 and 4 of Ref 1 give the fracture stress for a finite-width center-crack 
plate. For an infinite plate, these may be rewritten and differentiated as 

 



498 FRACTURE MECHANICS: TWELFTH CONFERENCE 

/ ( a J = (7„2 [ 1 + c „ V ^ ] - 2 

where C„ is an empirical parameter having units {L~^'^). 

(21) 

(22) 

T. W. Orange (1969) 

Equation 8 of Ref 2 gives the fracture stress for a finite-width center-crack plate. 
For an infinite plate, this reduces to 

/ ( a J = ^ „ 2 [^„^ + (K^/aJ^r^ (23) 

/ ' ( « » ) = - / ( « o ) K + ^«^/T<^«^]~* (24) 

where K^ is an empirical fracture toughness parameter having units (FL~^''^). 

a E. Feddersen {1970) 

For an infinite plate, Eqs 6 and 10 of Ref 3 reduce to 

— ^ 2 /(oo) = ays 1 
4 T /(Ty,\2 

/ ' ( a < , ) = - / ( a „ ) 

for Qo < (9/4ir)(ii:<,/ays)2 and Eq 7 to 

27 V^, 

27 /KA^ 

STT \ a , 

/ ( a j = ^,V7ra„ 

(25) 

(26) 

(27) 

(28) 

for Oo > (9/4TrK^c/<'ys)^' where Uys is the material's yield strength and K^ is an em
pirical fracture toughness parameter. 

/ . C. Newman {1972) 

Equation 12 of Ref 4 for a finite-width center-crack plate can be rewritten and dif
ferentiated as 

Aa„)=Kf = * ' .2 VTTflo sec{'!rao/WJ + V 
1 — Xo a„ J 

- 2 

/ ' ( « o ) = 
/(«») 

xflo / za 
1 + -777- tan W W 

TTOQ sec 
W + 

(29) 

2Xo W^y 

a-K)^ ou 

•Ka„ sec 
7r«o 

W + 
1 wAT/ 

1 — X„ a,. 

(30) 
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which, for an infinite plate, reduce to 

/ ( a J = Kf'^ {-i^ + m/f /ZaJ -2 (31) 

/ ' (flo) = - / ( « » ) V l ^ \-fWo + mKf/c^ ] - 1 (32) 

where Ay is an empirical fracture toughness parameter and w is a dimensionless em
pirical coefficient, which is not greater than unity. Note that if one allows m = 1 and 
Kf = a„ ^fK/Cfn, Eq 31 reduces to Eq 21. 

G. Bockrath (1972) 

Equation 13 of Ref 5 for a center-crack plate is limited to X^ < 0.1, which approx
imates an infinite plate. Thus 

f(a^) = KTc^(a„)-T^ (33) 

where w is a dimensionless empirical coefficient and Kxc 's an empirical parameter 
having irrational units of (FL"). 
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Linear elastic calibration function for stress intensity 
Ultimate tensile strength 
Specimen width 
Crack tip opening displacement 
Critical 8 
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6, 6 at initiation of stable crack growth 
^max ^ at max imum load 

a Applied stress 
ffc Stress at m a x i m um load 
Oy Yield s t rength 

(7o.2 Yield strength defined for 0.2 percent plastic strain 
0) Length of plastic zone 

In the linear elastic regime, critical values of fracture mechanics p rop
erties {Kc, Kic, A îscc etc.) are determined experimentally by measur ing the 
critical stress, a^, and by comput ing t h e critical stress intensity using t h e 
appropr ia te calibration function of the specimen the test is done on 

TiTlc = ffcVTTO I f(a/W) | specimen (1) 

Assuming Ki^ to be a material constant , it can be applied to the behavior 
of a real s tructure taking now the appropr ia te calibration function of the 
structure. Asking for the critical stress one obtains 

Ki. 
— (2) •^Ifia/W) structure 

This procedure is outlined schematically in Fig. 1. Since there are numerous 
solutions for f(a/W) in the l i terature, the step symbolized by Eq 2 can be 
done in many cases without any problems. 

The situation in elastic-plastic fracture mechanics is qui te different. 
Calibration functions for J-integral and crack opening displacement (COD) 
exist only for some very simple geometries. In the case of C O D the cali
brat ion functions are lacking even for the simple fracture mechanics speci
men geometries. There are indeed some numerical solutions [1,2];^ however, 
closed form solutions would be preferable. I t is common practice to deter
mine the critical crack opening displacement, 5^, by extrapolat ion of the 
crack mouth opening to the crack t ip . There is no doubt tha t much of the 
scatter observed in dc is due to this experimental procedure [3,4]. It is 
believed tha t more consistent results would be obtained if 5,, would be de
termined via critical stress and calibration function. 

In the present paper the development of such a calibration function for 
a simple specimen geometry and the application to the prediction of residual 
strength of thin sheets is described. 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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SPECIMEN — 
K i c & 

calibr, function 
of structure 

STRUCTURE 

K: 

Kic = 0,\/Tia f (a/W) 
KT, 

UTla f ( Q / W ) struct 

In this example 
h°/W)|„,,„<|f(a/W)|,p,, 

STRUCTURE 

Kic=const,, f (a/W),^,„t.ie 

EXPERIMENTAL K 

CRACK LENGTH 

FIG. 1—Application of fracture mechanics properties to real structures. 

Theory 

For the infinitely extended plate Dugdale [5] derived his classical solu
tion for the length of the plastic zone 

in — a sec 1 (3) 

The crack tip is opened by the amount [6] 

8 = a In 
TTE 

sec 
ira 

2CT„ 
(4a) 

OOy 

= a In 
•KE 

CO 1 

— + 1 
a 

(46) 

Now the latter relation is assumed to be valid also in the case of finite 
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widths provided the proper expression for w is inserted. For a strip of finite 
width Bilby et al [7] presented a solution for the plastic zone for a linear 
array of cracks 

2W 
a /, arcsin xa TTff - 1 (5) 

This relation also represents, approximately, a strip of width 2 W. Com
bining {4b) with (5), one obtains the crack-tip opening displacement for a 
sheet of finite width subjected to a tensile stress a 

6 = —- a In 
TTE 

2W 
arcsm 

ira 

ira irff (6) 

The problem is that contrary to linear elastic fracture mechanics (LEFM) 
the calibration function does not only depend on geometry but also on the 
load a/oy. 

A normalized plot of 6 is shown in Fig. 2. The individual curves of the 
normalized 5 are terminated by the general yield envelope, which is ob-
tained by equating the net section stress. 
From this one obtains 

a„, to the yield strength. 

8E 2 C2W 
— = — In arcsm 1 
Aoytt TT l^ ira 

(7) 

The influence of finite width on 8 is obvious from Fig. 2. The results 
agree very well with numerical calculations of Erdogan and Bakioglu [/]. 
It is also obvious that at general yield, finite widths exhibit finite dis
placements. 

If the critical value of 6, that is, 6^, is considered as a material constant 
(for a given thickness) and if d^ has been determined experimentally, the 
failure stress for all a and W can be calculated by solving Eq 6 for a 

2ay 
Or = — a r c c o s 

sm 
ira 
2W 

sm exp 
b^E-K 

^OyU 
ira 

2W 

(8) 

It can be seen from Fig. 2 that the use of a finite width solution is well 
justified since the infinite width solution yields nonconservative failure 
stresses if the defect length can no longer be neglected with respect of the 
width of the structural part. When using this relation numerical problems 
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FIG. 2—Normalized crack-tip opening displacement calculated by Eq 6. 

arise for low a/W values combined with net section stresses close to the 
yield strength; cut-off errors of the computer can cause nonconverging 
results. 

An alternative approach for calculating the crack-tip opening displace
ment for finite widths is as follows: the infinite width solution 

6 = - £ a In 
•KE 

sec 
•KO 

(9) 

is assumed to be applicable to finite width if an equivalent effective crack 
length 

a,n''^ = a-fHa/W) (10) 
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is inserted, where f{a/W) is the linear elastic calibration function. In 
addition, the plasticity correction 

« - « + ! " (11) 

with 03 from Eq 3 is included inf{a/W). Setting 

., , „„ I Tfl / ir(a + co/2) ,^,, 
Ha/W) = J s e c — - J s e c , ^ (12) 

one obtains with these assumptions 

8a 
5 = —„ a sec 

irE I 2W - T 
ira 

sec — 
ZOy 

. \] 
- ' 

] 
1, 

In 
J 

xa 
sec —— 

lOy 
(13) 

This expression approaches analytically the infinite width solution (Eq 9) 
when a/W — 0. Here the calibration function is given separately by the 
factor sec ( . . . ) ; it contains both the effects of geometry and of the load 
level through the plasticity correction. In Eq 6 the calibration function 
cannot be separated from the remainder of the expression. 

Equation 13 is plotted in Fig. 3. In spite of the crude approximation, 
applying a linear elastic solution to an elastic-plastic problem, the devi
ations from Eq 6 are not large. The greatest differences occur at 6 for 
general yield; however, the errors in stress are small. The procedure under
lying Eq 13 has the advantage that linear elastic solutions can be used that 
are available for numerous cases. 

The formalism based on the Dugdale model is attractive since it is 
capable to describe the material behavior from linear elasticity to fully 
plastic situations. This effect has been already recognized and applied by 
various authors, that is, [8,9]. 

Check of Prediction Capability 

If the critical COD, §<,> were independent of geometric variables such as 
thickness, width, and crack length, and if Eq 6 were the exact solution to 
the finite width problem, predictions with high accuracy could be expected 
when applying Eq 8 to experimental results. However, the following prob
lems may arise: 

1. If Sj. is taken as a measure of crack growth initiation (5,), it is ex
pected to be independent of specimen width and crack length within the 
scatter of material properties. Some experimental results [10] seem to 
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FIG. 3—Normalized crack-tip opening displacement calculated by Eq 13. 

support this assumption. On the other hand, 6n,ax. the value of 6^ at in
stability, depends on width and crack length due to the R-curve effect, 
Fig. 4a. No 6,-values obtained on center cracked panels and close enough 
to general yield to justify the application of an elastic-plastic analysis were 
available to the author. However, tests on center cracked panels with sys
tematic variation of specimen width and crack length had been done in the 
author's laboratory [/ /] ; 6, is very low in the elastic range, whereas 6niax ""C' 
fleets elastic plastic conditions. This is shown schematically in Fig. 4Z?. 
Although 5„ax varies with a and W, Fig. 5, the COD concept was tenta
tively applied to 6n,a, as described below. The error introduced thereby is 
not expected to be very large because the largest variations of 6̂  = 6n,ax 
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FIG. 4—(a) Influence of specimen width and crack length on 8; and dmax,' and (b) location 
of S] and &max with respect to general yield obtained in the tests analyzed by the COD concept. 

occur close to general yield where variations in 6 are accompanied by small 
variations in a (see Figs. 2 and 3). 

2. Comparisons with numerical results of Ref / had shown that the 
accuracy of Eq 6 is fairly good. However, the Dugdale formalism is 
based on elastic-ideally plastic material behavior. To account for work 
hardening, a flow stress 

ff, - 0.5(00.2 + UTS) (14) 

was used. This is a crude approximation of the real influence of work 
hardening. 

The experimental data was obtained on 2-mm-thick center cracked 
tension specimens of 2024-T3, 7475-T761, and 7075-T6 aluminum. In 
addition, data of 7075-T6 clad aluminum were used. In the first step, the 
critical 6 (6 at maximum load) was calculated for all experiments according 
to Eq 6. For the calculations the fatigue precrack length a^ was used. 

The results for 2024-T3 aluminum are shown in Fig. 5. Due to the 
"R-curve effect," 5^ varies with specimen width and Oo/W. Part of the 
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FIG. 5—b^for 2024-T3 (2 mm thick) aluminum as a function of W and ao/W. 

variation of 6,, is also due to yielding effects because at general yield dif
ferent W and different a^/W lead to different 6^,-values. In the second 
step, regardless of its variation, 6̂  was assumed to be constant for each 
specimen width; that is, 6̂ . at a„/W = 0.6 was taken as that value which 
is roughly representative for all a^/W, Fig. 6. It will be seen immediately 
that the error introduced thereby is small. From these d^ia^ = 0.6) for 
each specimen width of the four materials investigated the failure stress, 
a,., was calculated by Eq 8, Fig. 6. Typical results are shown in Fig. 7. 
For a„/W -~ 0 the calculated critical stress approaches the flow stress 
used for calculation, in this case 0.5(ao.2 + UTS). Thus, unlike LEFM 
which overestimates the load carrying capacity of parts with small cracks, 
the COD-concept yields failure stresses that are automatically bounded by 
the flow stress used for calculation. 

The accuracy of prediction was checked for all experimental data; the 
results are compiled in Fig. 8. It can be seen that the results are close to 
the 45 deg line. 

Thus, in order to obtain the failure stress of a panel of a given width as 
a function of crack length the following three-step procedure is proposed: 
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1. Measure the critical stress, a^, of a specimen having the width the 
information is required for and having a^/W ~ 0.6; 

2. Calculate 6̂  for a^/W = 0.6 by Eq 8 or alternatively by Eq 13; and 
3. Calculate a^ ~ f(a„/W) by Eq 8 or alternatively by iteration when 

using Eq 13. 
Compared with R-curve concepts the application of the COD-concept in 

the form described above has the following advantages: 
1. No crack length measurement is required. The specimen must only 

be precracked and fractured. The only quantity to be measured is the 
critical load. 

2. The fracture behavior of a given width can be approximately described 
by a single parameter, d^. 

3. Unlike LEFM the fracture stress is automatically bounded by the 
flow stress. 

However, the disadvantage is that no conclusion can be drawn from one 
width to another. This disadvantage may be overcome by a COD based 
R-curve. In this case, however, crack length measurements are again 
necessary. This problem of a COD R-curve is presently being investigated 
at the Research Centre Geesthacht. 

<3Y=0,5(<3O2+UTS) 
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o ^ 
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o o ] / 
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FIG. 6—6c at a/W = 0.6 is used to calculate the failure curve by Eq 8. This procedure is 
carried out for each specimen width separately. 
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FIG. 8—Compilation of 83 measured and calculated fracture stresses for 2024-T3, 7475-
T761, 7075-T6. and 7075-T6 clad aluminum. 

Conclusions 

1. By simple assumptions it is possible to derive two closed-form solu
tions for the crack tip opening displacement of a center cracked panel of 
finite width. 

2. The effect of finite width is that the larger the width the closer the con
dition of net section yield is approached. 

3. It is proposed to determine COD data via critical stress and appro
priate calibration function instead of using empirical formulas relating b to 
the clip gage displacement. 

4. Test data of four aluminum alloys were used to calculate 6 ,̂ which 
turned out to depend both on specimen width and crack length. 

5. For a given width b^ can be considered as constant to calculate the frac
ture stress as a function of crack length. 

6. The fracture stresses calculated thereby represent reasonable assess
ment of the actual behavior of the specimens. 
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ABSTRACT; Analytical models based on fracture mechanics technology are developed 
to establish predicted critical defect sizes for sharp, circumferential defects in pressurized 
pipe. These models are only intended to provide a theoretical basis for establishing 
predicted critical defect sizes. The general problem considered here is that of a surface-
defect in a plate; that is, the flat plate analogy is used here for a pipeline. Failure is con
sidered to occur when the ligament ruptures and provides a leakage path. The fracture 
mechanics model used, called the collapsed ligament model, is based on the work of Er-
dogan and Bakioglu, which is in turn based on the Dugdale model. The collapsed liga
ment model assumes plastic collapse in the depth direction but any fracture mechanics 
model in the length direction. To illustrate the use of these theoretical models for defects 
in pressurized pipes, curves are derived that show the predicted critical defect sizes. In 
these curves, the defect depth is plotted versus the defect length for a given set of material 
properties and applied stress. Defects having sizes that fall below this curve are not ex
pected to extend. On the other hand, it is assumed that defects with sizes which fall above 
the curve will extend. 

KEY WORDS: collapse, cracks, delects, failure, fracture mechanics, girth welds, 
pipeline, plasticity, strength, stress, toughness, fractures (materials), crack propagation 
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E Young's modulus 
F Geometrical factor in stress intensity factor 
K Stress intensity factor 
r Radius of pipe 

W Pipe circumference, lirr (or plate width) 
a Geometry angle, 1:0/W 

ai Dugdale angle, TTff'/2(To' 
a2 Geometrical Dugdale angle, a i / ( l — cj) 

b Crack tip opening displacement (CTOD) at plastic zone 
60 CTOD at ligament 
5i Normalized CTOD at plastic zone, E{6 — 6^) /Wao 
62 Normalized CTOD at ligament, E^h^ — b^fWoQ 
CT Applied tensile stress 

CTo Flow strength 
a' Equivalent applied stress 

CTo' Equivalent flow strength 
CTi Normalized stress, CT/CTQ 

CT2 Normalized equivalent stress, CT'/CTQ 

Fracture mechanics provides a relationship between the stress, strength, 
toughness, and geometry of a structure to predict a critical defect size. A 
critical defect size is one which the analysis predicts will extend under the 
defined service conditions. The material properties required for a fracture 
mechanics analysis are strength and toughness. The toughness can be classi
fied by the failure mode. In order of increasing toughness they are: linear-
elastic, elastic-plastic, and plastic collapse. Most pipeline girth welds under 
normal operating conditions are believed to behave in an elastic-plastic or 
plastic collapse fracture mode. 

For the present study only "sharp" (crack-like) defects are considered 
from an analytic viewpoint. Furthermore, this paper will deal only with 
surface-defects; that is, defects that have not penetrated through the pipe 
wall. Girth-weld defects are typically oriented circumferentially, and conse
quently the axial stresses are used in the fracture mechanics analysis. 

The analytic expressions, which are derived below, provide the theoretical 
basis for developing predicted critical defect sizes. Safety factors to account 
for uncertainties in stress, defect size, and material properties must be ap
plied to these curves to establish the allowable defect size curves. From the 
theoretical models developed here, expressions are derived that relate the 
defect depth to the defect length for a range of selected design and material 
parameters. To illustrate the use of these theoretical models for developing 
predicted critical defect sizes, plots were made based on each model 
developed. The design and material parameters used as input data for these 
plots were assumed from values that are typical of steel pipe. The following 
values were assumed: thickness, 5 = 12 mm (0.47 in.); radius, r = 60 cm 
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(24 in.); circumference, W = 377 cm (150 in,); stress, a — 400 MPa (58 ksi); 
flow strength, OQ = 450 to 550 MPa (65 to 80 ksi); Young's modulus, 
E = 200 000 MPa (29 000 ksi); and crack tip opening displacement (CTOD), 
6 = 0.05 to 0.2 mm (0.004 to 0.008 in.). The range for plotting of the typical 
defects dimensions was chosen as follows: defect depth to wall thickness 
ratio, a/B = 0 to 0.5; and defect length to circumference ratio, 2c/W = 0 to 
0.1. 

The models that follow are based on a deterministic approach. This ap
proach assumes that explicit input parameters predict explicit values of the 
results. However, it should be recognized that due to the natural variability 
of those input parameters it is more realistic to use a probabilistic approach 
in which this variability is quantitatively assessed. This would result in a sen
sitivity analysis with bands rather than curves in the plots below. However, it 
is then necessary to know the variability of the input parameters. Such infor
mation must come from the specific application for which the model is used. 
Since this paper addresses only the general problem of a pipeHne, the prob
abilistic approach is left for future consideration. 

The Models 

Wilkowski and Eiber [Ip have reviewed several analytical models for 
determining the critical size of through-wall cracks in pipes. Some of these 
theories took the curvature and bulging of the pipe wall into account. The 
theories differed from each other in their quantitative results. The scant ex
perimental data available did not permit a critical assessment of the accuracy 
of the proposed theories. 

The simplest approach reviewed was the flat plate analogy using the 
Dugdale crack model. Because defects in girth welds are oriented cir-
cumferentially, bulging is not significant and, therefore, defects in girth 
welds may be assumed to behave in a manner similar to a flat plate pulled in 
tension. Wilkowski and Eiber [/] further state that the Dugdale relationship 
has the unique feature that it is applicable for linear-elastic, elastic-plastic, 
and plastic collapse fracture behavior. 

The authors therefore decided to adopt also the flat plate analogy for the 
present work. The general problem considered here is that of a surface-defect 
of length, 2c, and depth, a, in a plate of thickness, B. Failure is considered to 
occur when the ligament, (B — a), ruptures and provides a leakage path. 
The fracture toughness is measured by the CTOD. When this quantity ex
ceeds the critical value for the material, it is assumed that defect extension 
occurs. This is taken as the failure criterion, even though the extension may 
not be unstable, as could be the case in a very tough material. 

Under small-scale yielding, failure of the ligament can be treated using a 

^The italic numbers in brackets refer to the list of references appended to this paper. 
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conventional linear-elastic fracture mechanics (LEFM) approach. However, 
when the net section stress on the ligament approaches the flow strength, OQ, 
the LEFM approach is unconservative and elastic-plastic fracture mechanics 
(EPFM) must be used. 

Two fracture mechanics models were chosen for the present study: the first 
due to Begley [2], and the second based on work by Erdogan and Bakioglu 
[3]. Both models use the flat plate analogy, and hence do not account for the 
curvature of the pipe. Both models are based on the collapsed ligament 
model. 

The Collapsed Ligament Model 

This model uses the CTOD for the measurement of fracture toughness. 
The defect geometry is illustrated in Fig. 1. A flat plate is considered under 
uniform tension, a, with a defect of length 2c at its center. The thickness of 
the plate is B and the depth of the defect is a. For convenience the plate has 
also been given a width W. Initially this width is taken to be infinite, W = oo. 
However, by taking W finite we also have the finite flat plate analogy, where 
the width of the plate equals the circumference of the pipe [/]. The ligament 
is the material that remains between the defect and the surface of the plate. 
Hence, it has a length 2c and a depth {B — a). 

The model works by analogy with a through-defect, a = B. For a through-
defect under tension, a, the defect will open up, with or without plastic zones 
at each tip. For the surface-defect, when a < B, the collapsed ligament 
model assumes that the whole ligament collapses, that is, yields plastically. It 

f f f f f f 

(a ) 

Eza: 
k- -2c 

FIG. 1—Surface defect with fully yielded ligament and plastic zones. 
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is further assumed that the defect opens up as for an equivalent through-
defect, but by a smaller amount, because the flow strength, ao, in the liga
ment opposes the applied stress, a, and exerts a closing force, given by 

Fc = 2c{B - a)ao (1) 

The flow strength, ao, is often assumed to lie somewhere between the yield 
strength and the ultimate tensile strength, usually halfway [/]. If the closing 
force is taken to be distributed over the combined defect-ligament area, 2cB, 
it gives a closing stress on the equivalent through-defect of 

which then opposes the remote stress, a. Hence, the equivalent through-
defect sees an equivalent stress of 

ff' = (T - (1 - a/B)ao (3) 

The model is then applied by using well-known fracture mechanics expres
sions derived for the through-defect, where the applied stress, a, is replaced 
by the equivalent stress, a'. 

There are two CTODs of physical interest in this model. The first, termed 
6, occurs at the equivalent through-defect tip, that is, at the boundary with 
the plastic zone. The second, termed 6o, occurs at the midpoint of the 
surface-defect front, that is, at the boundary with the ligament. The basic 
assumption, which allows the application of fracture mechanics to this 
model, is that when either of these CTODs exceeds a particular critical value 
for the material then defect extension will occur. As mentioned above, this is 
taken as the failure criterion, even though the extension may not be unstable. 
Exceeding the critical value for 8 will then lead to extension of the defect 
length, 2c. Exceeding the critical value for 8Q will lead to extension of the 
defect depth, a, and if enough extension occurs in this direction the surface-
defect may become a through-defect. 

It will be recognized that when the defect length, 2c, is very large, the 
critical equivalent stress, a ' , for defect extension will be very small. From Eq 
3 this leads to the condition 

j 3 ^ - a o f o r e - 0 0 (4) 

that is, the net ligament stress equals the flow strength. This is the plastic 
collapse condition in its simplest form. For tough materials it will be a con
servative condition, but for brittle materials it may not be conservative. This 
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point can be checked for any particular case by comparing Eq 4 with the cor
responding fracture mechanics relation. This will be done in another 
publication. 

Thus, in the collapsed ligament model one can use any appropriate rela
tion from fracture mechanics in the width direction, but in the thickness 
direction the model always assumes plastic collapse. 

The Begley Model 

The Linear-Elastic Model 

Begley [2] considered a linear-elastic CTOD model and a plastic-zone-
corrected model. The latter will be discussed below. In the linear-elastic 
model the value of 6o is given by the elastic opening of the equivalent 
through-defect at its midpoint (see Ref [4], Eq 3.59) 

_ 4cg' -,. 
<̂o ^ (5) 

where E is Young's modulus. Begley accounted for the effect of residual 
stresses by subtracting a residual portion 6̂  from SQ. If we do this in Eq 5, 
combine it with Eq 3, and solve for the defect depth, a, 

a =B 
a_ Ejdo — 8r) 

(70 4CTOC 
(6) 

This equation is the basic prototype relation between the critical defect sizes, 
a and 2c, in terms of the applied stress, a, and the material properties: the 
flow strength, OQ. Young's modulus, E, and the CTOD, 6o. Equation 6 is 
plotted as the dotted lines in Fig. 2 for several values of the CTOD, 6o, and 
the typical values of the other parameters mentioned in the beginning of this 
paper. In the present study the authors have for convenience ignored the 
residual stresses and set 6̂  = 0. 

It will be noted that for a large defect length, 2c, the curves (Eq 6) ap
proach the asymptotic value a = B(l — a/oo), that is, the simple plastic col
lapse condition (Eq 4). 

It is convenient to convert Eq 6 to dimensionless terms, because the 
number of free parameters is then reduced to a minimum, and hence a plot 
of the equation has then wider applicability. The following dimensionless 
terms are defined: relative defect depth, ai — a/B; relative defect length, 
ci = 2c/W; normalized stress, CTJ = a/ao', and normalized CTOD, 62 = 
Eido- 8,)/Woo. 

In these relations the pipe circumference is introduced as W, even though 
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FIG. 2—Predicted critical defect sizes for the Begley model. Comparison of the linear-elastic 
and plastic-zone-corrected models. 

it does not appear in Eq 6, because it provides a convenient measure of com
parison for the defect length, 2c. With these substitutions Eq 6 becomes 

1 - ai + '/262/ci (7) 

Only two parameters, the normalized CTOD S2 and the normalized stress ai, 
now enter into the equation, and it is clearly simpler in form than Eq 6. 

The Plastic-Zone-Corrected Model 

Begley [2] corrected for the plasticity extending beyond the defect length 
with the Irwin plastic-zone adjustment. According to Irwin the effective 
defect length is given by 

Ceff = c + (/i:/ao)V27r 

where K is the stress intensity factor. 

By eliminating K between Eqs 8 and 9 one can solve for Cgff 

(8) 

(9) 

Ceff • 1 - yi{a'/ao)^ 
(10) 
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Using Cgff for c in Eq 5 then provides a plasticity-adjusted SQ 

^"= E[\-V2{a'/aon ^^^^ 

This relation in conjunction with Eq 3 is also plotted in Fig. 2 (solid lines) 
and compared with Eq 6 (dotted lines). It is seen that the plasticity adjust
ment does not greatly alter the curves, but the adjustment does increase 
somewhat with increasing toughness, Sg, and with increasing defect depth, a. 

In dimensionless terms Eq 11 simplifies to 

= _ 2 c i a ^ 

where the normalized equivalent stress is defined 

02 — o' /OQ = ffl ~ 1 + «! (13) 

the second equality following from Eq 3. In terms of 02 Begley's linear elastic 
model Eq 7 becomes simply 62 ~ 2ciff2 (compare Eq 12). 

The Erdogan Model 

The Model for SQ 

Erdogan and Bakioglu [3] base their model on the Dugdale model. In that 
model it is assumed that the plastic zone (Fig. 1) is fully yielded and exerts a 
closing stress, OQ, on the applied stress, a, giving a net stress on the plastic 
zone of a — OQ, Dugdale then derives the CTOD for a through-defect in 
terms of a and ag. Erdogan and Bakioglu show that for a surface-defect the 
same equations apply with a and CTQ replaced by the equivalent stress, a', and 
the equivalent flow strength, OQ'. The CTOD for the ligament is 

4cao' 1 + sin(7ra'/2ao') 
1 — sin(ira72ao') 

(14) 

To obtain the equivalent flow strength, OQ' , note that the net stress on the 
plastic zone must be the same for a through-defect as for an equivalent 
through-defect 

a — ffo — '^' ~ <^o' (15) 

From Eq 3 this gives 
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ao' = (a/B)ffo (16) 

For small values of wa'/lag' Eq 14 approaches the linear-elastic Begley 
model (Eq 5). 

In Eq 14 (7' and CTQ ' ^^e functions of a, given by Eqs 3 and 16. Hence, one 
can again plot c versus a as is done in Fig. 3 (solid lines) for the same 
parameters as used before. The linear-elastic Begley model (Eq 6) is also 
plotted for comparison (dotted lines). Comparing Figs. 2 and 3 shows that 
the Erdogan model gives a larger effect of plasticity than the plastic-zone-
adjusted Begley model, especially for increasing toughness, 8Q, and in
creasing depth, a. 

Relationships of Eqs 6 and 14 are again plotted in Fig. 4, but now in
dicates a fixed value of the CTOD and for several values of the flow strength, 
CTQ- The effect of plasticity increases with decreasing flow strength. 

It is again convenient to convert Eq 14 to dimensionless form. For this it is 
useful to define the angle 

« ! = ira'/2ao' = ira2/2ai = irioi — 1 + a{)/2ay (17) 

by Eqs 3, 16, and 13. Hence Eq 14 becomes 

^2 = — c j a j l n 
1 + sin «! 

_1 — sin «! 
(18) 

DEFECT LENGTH, c (in) 

4 

DEFECT LENGTH, c (cm) 

FIG. 3—Predicted critical defect sizes. Comparison of the Erdogan model with the Begley 
model for three different values of the CTOD, 6o, at the ligament. 
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DEFECT LENGTH, c (in 

DEFECT LENSTH, c (cm 

FIG. 4—Predicted critical defect sizes. Comparison of the Erdogan andBegley models for the 
CTOD, SQ. "t the ligament and for three different values of the flow strength, CTQ. 

For small a j this reduces to Begley's linear-elastic model 62 ~ 2c^a2. In 
dimensionless form it is clear that still only two parameters, 62 and aj, are 
needed to plot the equation. Figure 5 shows several curves in approximately 
the same range as for Fig. 3, and Fig. 6 shows several curves in approxi
mately the same range as Fig. 4. 

The Model for 8 

As mentioned before Erdogan and Bakioglu [3] also used the CTOD for 
the plastic zone, given by the well-known Dugdale expression 

6 = (Scao'/irE) In sec (ira'/lao') (19) 

The values of a' and CTQ' are again given by Eqs 3 and 16. The linear-elastic 
value for the CTOD at the plastic zone is obtained when •KO'/IOQ' is small. 
Then Eq 19 reduces to 

d = ira'^c/ao'E (20) 

In dimensionless form the CTOD for the plastic zone (Eq 19) reduces to 

61 = (4/7r)ciai In sec a j (21) 

and the linear-elastic CTOD (Eq 20) reduces to 
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61 = -Ka^c^/la^ (22) 

where the normalized CTOD at the plastic zone is defined by 

61 = E{h - 8,)/ Wao (23) 

Equations 21 with 17 gives a relationship between a j and Cj with the param-

tu 0 . 3 •• 

82 = 0 .005 

' Wa-„ 

SOLID LINES: ERDOGAN MODEL 

DOTTED LINES; BEGLEY MODEL 

0.02 0.04 0.06 O.C 

RELATIVE DEFECT L E N G T H , 2 c / W 

FIG. 5—Predicted critical defect sizes. Presentation in dimemionless form. Comparison of 
the Erdogan and Begley models for three different values of the normalized CTOD, 82. «' the 
ligament. 

SOLID LINES; ERDOGAN MODEL 
DOTTED LINES: BEGLEY MODEL 

0 0.02 0.04 0.06 0.08 0.10 

RELATIVE DEFECT LENGTH, 2 c / W 

FIG. 6—Predicted critical defect sizes. Comparison of the Erdogan and Begley models for the 
normalized CTOD, dj, at the ligament and for three different values of the normalized stress, 
a/ao-
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eters 61 and aj. This relation is plotted in Fig. 7 (solid lines) over the same 
range and for the same parameters as in Fig. 5. The values of the normalized 
CTOD, 5), in Fig. 7 have been chosen, the same as the values for 82 in Fig. 5 
for comparison. The curves for 5i are generally similar but lie somewhat 
higher than those for 62- This would indicate that for the parameters con
sidered here the defect would tend to extend in the depth direction rather 
than the length direction. However, this conclusion could be altered if the 
fracture toughness is higher in the depth direction than in the length direc
tion. 

Equations 22 with 13 gives a relationship between a^ and cj for the linear-
elastic case. This relation is also plotted in Fig. 7 (dotted lines) for com
parison. 

Finally, Eqs 21 and 22 are also plotted in Fig. 8 for a fixed value of the nor
malized CTOD, §1, several values of the normalized stress, a^ = O/OQ, and 
the same values of the other parameters as in Fig. 6. 

The Effects of a Finite Circumference 

Using the results of Erdogan and Bakioglu [3] it is possible to modify the 
Dugdale expressions for CTOD (Eqs 14 and 19) in an approximate way to ac
count for the finite circumference of the pipe, W. This is known as the finite 
flat plate analogy [1]. The result is lengthy and more conveniently written 
down in the dimensionless forms. The resulting modifications of Eqs 18 and 
21 are 

c i g , ( l - Ci)F^ 
bj = , In 

irv(a tan a ) 

1 + sin a 

1 — sin a 
In 

1 + sin ai 

1 — sin a i -
(24) 

0.005 

Sr = 0 . 8 

SOLID LINES^ EROOG&N MODEL 

DOTTED LINES. LINEAR ELASTIC MODEL 

0.02 0.04 0.06 0.08 

RELATIVE DEFECT LENGTH, 2c/W 

FIG. 7—Predicted critical defect sizes. Comparison of the Erdogan and linear-elastic models 
for three different values of the normalized CTOD, 5], at the plastic zone. 
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Si E S 

Wcr„ 

SOLID LINES- EROOGAN MODEL 

DOTTED LINES LINEAR ELASTIC MODEL 

0.02 0.04 0.06 0.08 

RELATIVE DEFECT LENGTH, 2 c / W 

0.10 

FIG. 8—Predicted critical defect sizes. Comparison of the Erdogan and linear-elastic models 
for the normalized CTOD, b,,, at the plastic zone and for three different values of the normalized 
stress, O/OQ. 

6i = (4/x)ciai(l — Ci)^F^ In sec a2 

where the authors have defined 

a = irc/W = 7rci/2 

a2 = (xa ' /2ao ' ) / ( l - 2c/W) = a j / d - Cj) 

(25) 

(26) 

(27) 

Here F{-irc/W) is the usual geometrical factor for the stress intensity factor. 
For a center cracked plate it is given by the Irwin expression 

F{a) = V(tan a/a) (28) 

It was found that these modifications had a negligible effect on the curves in 
Figs. 2 through 8 for the parameters and range considered here. These equa
tions will start showing a significant effect when the defect length, 2c, ap
proaches the circumference, W, and more details will be reported in another 
publication [6]. 

The Net-Section Flow-Strength Model 

When the fracture toughness becomes very large it is seen that both Eqs 24 
and 25 reduce to 

aj — •ir/2 (29) 
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From Eqs 27 and 17 this is equivalent to 

(Jl = 1 - Cifl, 

ff/(l - 2ca/WB) = ao 

(30) 

(31) 

The quantity 2ca/ WB represents the fraction of cracked area in the cross-
section of the plate or pipe. Hence, Eq 31 states that the net section stress 
equals the flow strength. This condition could be regarded as a generaliza
tion of the simple collapse condition (Eq 4). This criterion was found to ac
count very well for fracture of Type 304 stainless steel plates and pipes by 
Kanninen et al [5]. 

For the values of the normalized stress, aj = (X/OQ, from 0.7 to 0.9, which 
are plotted in Figs. 6 and 8, it is found that the relation (Eq 30) falls outside 
the range considered for a/B and 2c/ W. In Fig. 9 the relation was plotted 
(Eq 30) for values of the normalized stress from 0.96 to 0.98. The authors 
conclude from these results that the net-section flow-strength model may not 
always give conservative answers if the fracture toughness is not large 
enough. 

Summary 

The curves in Figs. 2 through 8 represent the expected predicted critical 
defect sizes for the parameters and models considered. For a defect with a 
given depth and length, if the point falls below the curve on the plot it will not 
extend, but if the point falls above the curve it is assumed that the defect will 
extend and may lead to failure. 

0.02 0.04 0.06 0,08 

RELATIVE DEFECT LENGTH, 2c/W 

FIG. 9—Predicted critical defect sizes for the net section flow strength model. 
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The statistical variation in the material parameters has not been taken into 
account in this study. No safety factors have been assumed in these graphs. 
Verification experiments are now needed to assess the practical applicability 
of these theoretical curves. 

Fracture mechanics methods have been used to develop several analytical 
models for predicted critical defect sizes of sharp circumferential surface-
defects in pipes. Several theoretical limitations apply to these models, which 
are listed here for convenience: 

1. Since the flat plate analogy for a pipe was used, the models do not ac
count for bulging. 

2. No bending of the sheet is assumed in the vicinity of the defect. 
3. In the collapsed ligament model the defect is assumed to have a rec

tangular shape. 
4. The ligament is always assumed to be completely yielded. 
5. No work-hardening is assumed. 
6. A critical value of the CTOD is assumed to be the fracture mechanics 

criterion for failure. 
7. Slow stable crack growth is ignored. 
8. The Irwin plastic zone in the Begley model and the Dugdale plastic 

zone in the Erdogan model are not realistic representations of plasticity at 
the crack-tip. 

All of the above limitations have been used in previous work and have been 
claimed to offer satisfactory agreement between theory and experiment. 
However, how valid or accurate they are has never been explicitly assessed. 
Therefore, no quantitative measure of their validity can be given at this 
point. 

Future plans call for experimental work to determine the overall predict
ability of the models. However, the validity and accuracy of the individual 
limitations cannot be assessed in the immediate future. 
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ABSTRACT: A two failure criteria model based on plasticity limit load (LL) theory 
and linear elastic fracture mechanics (LEFM) is proposed for characterizing the 
fracture behavior of ductile structural metals. Failure is considered to occur at the 
lower load predicted by the two failure criteria. The variables involved in the two 
failure criteria model are: fracture toughness (K^), tensile strength (S^), relative crack 
length (a/W), and geometry. A dimensionless parameter, K^/S^W'^''^ was defined. The 
fracture toughness failure criterion was found to dominate at low values of K^/S^W^ , 
and the LL failure criterion controls fracture at large values. 

KEY WORDS: ductile fracture, fracture properties, mechanical properties, cracks, 
crack propagation, brittle fracture, plastic deformation toughness, steels, fractures 
(materials) 

Nomenclature 
a Crack width or length 

Aa Change in crack length 
B Specimen thickness 
b Uncracked ligament 
d Span distance of bend specimen 
E Young's modulus 
/ Value of the J-integral 

/ic Value of the J-integral at the onset of crack extension in plane strain 
K Stress intensity factor 

/sTic Critical value of K in plane strain 
L Specimen length 
P Load 
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Pm Maximum load (collapse load) 
PK Collapse load predicted by the fracture toughness failure criterion 
Pi Collapse load predicted by the limit load failure criterion 

5 Gross section stress 
Sm Gross section collapse stress (at maximum load) 
So Tensile flow stress 
Sy Tensile yield strength 
W Specimen width 
To Shear flow stress 

The ductile metals widely used in engineering applications may fracture 
at loads beyond the yield strength after extensive plastic deformation has 
occurred. The fracture loads of these high toughness metals often cannot 
be successfully predicted by linear elastic fracture mechanics (LEFM), 
particularly for the small thicknesses in common use. Attempts to char
acterize ductile, post-yield fracture of these materials using elastic-plastic 
fracture mechanics analyses have not been too successful. One of the most 
promising of these elastic-plastic analyses is the J-integral proposed by 
Rice [1].^ Experiments have shown that the J-integral can be used to 
estimate the plane-strain fracture toughness of ductile metals undergoing 
elastic-plastic deformation [2,3]; thus, the J-integral may provide a single 
parameter characterization of post-yield fracture. However, a standard 
test method has yet to be established. 

Recent investigations by the authors [4-7] and Dowling and Townley 
[8] have shown that post-yield fracture may be also characterized using 
both fracture mechanics and plastic limit-load failure criteria. The fracture 
toughness (FT) failure criterion predicts a fracture whenever the crack-tip 
stress intensity exceeds the material's fracture toughness. The limit load 
(LL) failure criterion predicts fracture (or collapse) when the load on the 
uncracked ligament reaches the limit load of the body. The limit load is 
the maximum load that a body can sustain without undergoing unlimited 
plastic deformation [9,10]. The two failure criteria concept is that the 
maximum (collapse) load or fracture stress of a body would be the lower 
value predicted by the two criteria. 

Two Failure Criteria Model for Ductile Fracture 

An example is given below of the two failure criteria model for a center-
cracked-tension specimen (CCT). The gross section stress at collapse (S^) 
for the CCT specimen geometry is [ i i ] 

•'The italic numbers refer to the list of references appended to this paper. 
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= ^ ' - i ^ ) • ^ - - l i F " ^ ' - " - - ! <" 

where 

P„ = collapse load, 
B = specimen thickness, 

2W = specimen width, and 
2a = crack width. 

The shear flow stress at fracture (TO) is replaced by either the von Mises or 
Tresca yield criterion. The collapse stress predicted using the von Mises 
yield criterion is 

sJ' = ~Su(\-^A (2) 

Similarly, the collapse stress using the Tresca yield criterion is 

(3) ^ • - ^ ) 
The predicted values of collapse stress calculated using the von Mises and 
Tresca yield criteria are shown as solid lines in Fig. 1. The region between 
these lines labeled "limit load failure criterion" is the range in collapse 
stress predicted by the LL failure criterion. Most test data fall within this 
shaded region since most metals obey neither the von Mises nor Tresca 
yield criterion, exactly. 

The collapse stress predicted by the fracture toughness failure criterion 
for the center-crack specimen geometry {Sj^) is 

SJ = ^\.u. (4) 
/ x a V 

where K^ is the fracture toughness measured either by ASTM Test for Plane-
Strain Fracture Toughness of Metallic Materials (E 399-78) test procedures 
{Kic) or by a J-integral test (he)- The "fracture toughness failure criterion" 
is shown in Fig. 1 crossing the "limit load failure criterion" region. The 
value of SJ^ is dependent on K^, a, and W; whereas, SJ^ and S^'^ are 
dependent on 5„, a, and W. Consequently, as Su, W, and K^ change, the 
values of S^ also change; and the intersection between the LL and FT 
failure criteria may be eliminated so that only one failure criterion prevails 
regardless of the relative crack length. For the case where an intersection 
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FIG. 1—Illustration of the two failure criteria model for a center cracked tension specimen. 

does occur, such as shown in Fig. 1, the collapse stress will be that of the 
failure criterion which operates at the lower stress. In Fig. 1, the LL 
failure criterion controls fracture at smaller values of a/W, and the FT 
failure criterion controls fracture at larger values of a/W. 

A transition from one failure criterion to another should occur whenever 
S,„^ = SJ^. This condition will occur only at certain combinations of 
specimen dimensions, tensile strength, fracture toughness, and crack 
length (see Fig. 1). The crack length for this transition can be determined 
by equating the LL and FT collapse loads given by Eqs 2 to 4. 

*Jm or o«, — i3™ (5) 

which, for the CCT geometry and the Tresca yield criterion, becomes 

'"^'-w (6) 

ira sec 
wa 

2W 

Equation 6 can be rearranged in terms of a/W to yield 
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K. 

5„m^ 
/^ a \ / -Ku •Ka\ 

(7) 

The right-hand side of Eq 7 is multiplied by 2/3'^^ when the von Mises 
yield criterion is desired. 

The quantity K^/SuW^'^ relates the strength, fracture toughness and 
section size to the controlling failure criterion. This quantity is plotted versus 
a/W for the CCT specimen in Fig. 2 and for the three-point bend specimen 
in Fig. 3. When K^ is low and Su is high (that is, a low value of K^/Su W^'^) 
the fracture toughness failure criterion controls the fracture behavior. 
Increasing K^ and decreasing Su raises the quantity of K^/Su W^'^ into the 
limit load controlling region. Crack length also influences which failure 
criterion controls. Referring to Trajectory B in Fig. 2, at Kc/S^W^'^ = 

L imit Load Failure 
Criterion Dominates 

Trajectory A 

Von Mises 

0.4 o.e 

a/W or l -b /W 

FIG. 2—Limit load and fracture toughness failure criteria controlled fracture regions for 
the center cracked tension specimen. Trajectory "A" describes a failure that proceeds by 
limit only. Trajectory "B" describes a failure that begins as a limit load failure, changes to 
brittle fracture, and then back to limit load. 
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^ 

0,4 0.6 

a/W or l-b/W 

FIG. 3—Limit load and fracture toughness failure criteria controlled fracture regions for 
the three-point bend specimen. 

0.65, the controlling failure criterion changes from LL to FT at small 
a/W{~O.V) and from FT back to LL at large a/W{~Q.%). 

A third illustration of the two failure criteria model is given for the 
compact specimen (CS). Since an exact limit load solution is not available, 
upper [12] and lower bound solutions are shown for both the von Mises 
and Tresca yield criteria. To be conservative, the lower bound LL solution 
was used in the analysis of the wrought steel data presented in a later 
section. The lower [13] bound LL expression for the collapse load is 

PL = 2 + 2 
2-\ 

1 + 
w 

2TOBW (8) 
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upon using the von Mises yield criterion Eq 8 becomes 

PL 

BW 2 + 2 m 1/2 
1 + 

w 
>l/2^« 

Using the Tresca yield criterion, the collapse load is 

2n PL 

BW - K ^ y 
1/2 

— 
r a 11 
1 + — 

L ^ J J 
Su 

The FT failure criterion for a compact specimen is 

PK ^ ^ic 
BW YW^'^ 

(9) 

(10) 

(11) 

where Y is the compliance function for a compact specimen given in the 
ASTM E 399 Ki^ test method. The concept of the two failure criteria 
model for the compact specimen is illustrated in Fig. 4. 

a. 
o 

b 
W 

or (I-
W 

FIG. 4—Illustration of the two failure criteria model for the compact specimen whose 
limit load failure criterion is approximated by upper and lower bound limit load solutions. 
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Application of the Two Failure Criteria Model to Wrought Steels 

Background 

The use of the two failure criteria model to characterize the fracture 
behavior of wrought steels was tested by collecting and reanalyzing ex
perimental data [2,3,14-16] for a variety of structural steels. These data 
were obtained from J-integral fracture toughness studies which used 
compact, three-point bend and four-point bend specimens. Only studies 
that reported both the collapse loads (maximum load values) and J-integral 
fracture toughness values were reanalyzed. The critical fracture toughness 
values determined from the J-integral tests have been denoted K^ to 
distinguish these values from the ASTM E 399 fracture toughness "A'lc"; 
hence, all /fc-values are /-derived; that is 

K2 = / j ^ (12) 

The steels considered range in yield strength from 283 MPa for the hot-
rolled A570E steel to 1200 MPa for the quenched and tempered 4340 steel 
are indicated in Table 1. 

Results 

The reanalyses have been grouped by specimen geometry. For the CS 
specimens, the collapse loads were divided by the specimen width and 
thickness and plotted versus uncracked ligament per specimen width in 
Figs. 5-8. The collapse loads of the three-point and four-point bend 
specimens were divided by thickness and plotted versus uncracked liga
ment. These results are shown in Figs. 9 through 14, respectively. Using 

TABLE 1—The steels considered range in yield strength. 

Steel 

A570E 
A533B 
lEAEG 
lEAFD 
Ni-Cr-Mo-V 
AISI 4340 
A514 
AISI 4340 

Specimen 
Type 

CS" 
CS, 3PB* 
CS 
CS 
3PB 
4PB'' 
4PB 
4PB 

Sy (MPa) 

283 
496 
731 

1110 
855 
779 
758 

1200 

Refs 

14 
3 

14 
14 
2.3 
15 
16 
15 

°CS = compact specimen. 
*3PB = three-point bend specimen. 
'4PB = four-point bend specimen. 
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FIG. 5—Comparison of A570E steel compact specimen data with collapse loads predicted 
by the limit load and fracture toughness failure criteria [14]. 

the analysis previously discussed (Fig. 4), the collapse loads predicted by 
the LL and FT failure criteria are shown in each figure and compared 
with the experimental results. Also shown are the limit loads that were 
determined assuming a flow stress equal to the uniaxial yield strength of 
each material. Limit loads based on the uniaxial yield strength reflect the 
onset of net-section plastic deformation and permit the effect of work 
hardening on the LL failure criterion to be seen. 

The reanalyses for which the measured collapse loads are predicted by 
the LL failure criterion are Figs. 5,6,9>11-13. The measured collapse 
loads generally lie between the von Mises and Tresca LL curves. The 
Tresca yield criterion is slightly conservative. Very conservative LL collapse 
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FIG. 6—Comparison of A533B steel compact specimen data with collapse loads predicted 
by the limit load and fracture toughness failure criteria [2,3]-

load predictions result for the lower strength steels when the collapse 
stresses are calculated using the uniaxial yield strengths. Those materials 
that do not work-harden appreciably, that is, the higher strength quenched 
and tempered steels, exhibit little difference between the limit loads 
calculated using either the yield or tensile strengths. Reanalyses for which 
the measured collapse loads agreed with the FT failure criterion are shown 
in Figs. 7 and 8. 

The effect of section size is illustrated in Fig. 6 in which the collapse 
loads agree with those predicted by the LL failure criterion for the specimen 
dimensions tested. However, the collapse loads predicted by the FT failure 
criterion decrease with increasing section size. Continuing to increase 
the section size should result in a change in the controlling failure criterion. 
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FIG. 7—Comparison of lEAEG steel compact specimen data with collapse loads predicted 
by the limit load and fracture toughness failure criteria [14]. 

An example of such a change is shown in Fig. 14 for the high-strength 
4340 steel specimens. The 4340 steel collapse loads are characterized by 
the LL failure criterion for the smaller values of the uncracked ligament, but 
at the larger values of the uncracked ligament, the collapse loads are 
controlled by the FT failure criterion. 

Discussion 

Two Failure Criteria Model 

The experimental results and analyses shown in Figs. 5-14 illustrate 
that ductile fracture can be understood using a two failure criteria model. 
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FIG. 8—Comparison of lEAFD steel compact specimen data with collapse loads predicted 
by the limit load and fracture toughness failure criteria [14]. 

In all instances, the experimental data agreed with the lower of the two 
collapse loads predicted by the two failure criteria model. The limit load 
controlled failures generally exhibited collapse loads lying between the 
values predicted using the von Mises and Tresca yield criteria. Limit 
loads based on the uniaxial yield strength showed no consistent relationship 
with measured collapse loads; consequently, predictions based on the limit 
load approach should be made equating the flow stress to the ultimate 
strength. 

The FT failure criterion characterized the fracture behavior of the 
higher strength steels. The collapse loads of specimens controlled by the 
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FIG. 9—Comparison of A533B steel three-point bend specimen data with collapse loads 
predicted by the limit load and fracture toughness failure criteria [2,3]. 

FT failure criterion were less than the loads necessary to cause net-section 
yielding (the yield strength limit loads). 

A comparison between the predicted controlling failure criterion and 
experimental results is offered in Fig. 15 for the three-point bend specimens. 
All the reported data were apparently limit-load-controlled failures. Figure 
15 illustrates an important aspect of the two failure criteria model, namely, 
the possibility of an a priori characterization of fracture behavior. If the 
tensile strength and fracture toughness are known, the controlling failure 
criterion can be predicted for a given geometry and section size. 
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FIG. 10—Comparison of Ni-Cr-Mo-V steel three-point bend specimen data with collapse 
loads predicted by the limit load and fracture toughness failure criteria [2,3]. 

Effect of Subcritical Crack Extension 

Subcritical crack extension is thought to affect the two failure criteria 
fracture model by altering the load-crack-length trajectory prior to collapse. 
Studies of resistance to crack extension (R-curves) using the J-integral have 
shown a geometry and section size dependence [19]. As a result, ex
perimentally determined /jc-values may vary with specimen size and 
geometry. Subcritical crack extension begins when the applied / exceeds 
/jc. The stress-crack-length trajectory from this point to fracture is de
pendent on the tearing behavior of the material. Final fracture should 
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b,mm 

FIG. 11—Comparison of low-strength AISI 4340 steel four-point bend specimen data 
with collapse loads predicted by the limit load and fracture toughness failure criteria [15]. 

occur when the stress-crack-length trajectory intersects either the LL or 
FT failure criteria. 

The effect of subcritical crack extension is illustrated in Fig. 16 for a 
butt weld containing an incomplete joint fusion. In the absence of sub-
critical crack extension, the stress-crack-length trajectories are depicted by 
the "A" lines. Subcritical crack extension is thought to alter the stress-
crack-length trajectory in the manner of the curves labeled "B". Curves 2 
and 4 in Fig. 16 illustrate how subcritical crack extension could change the 
controlling failure criterion. 
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FIG. 12—Comparison of A514F-LT steel four-point bend specimen data with collapse 
loads predicted by the limit load and fracture toughness failure criteria [16]. 

The stable tearing behavior of structural materials has been described 
by Paris et al [18] in terms of a tearing modulus (7) (Fig. 17). The first 
crack extension is attributed to crack-tip blunting in proportion to the 
applied / 

Aa = 
25„ 

(13) 

where S^ = the tensile flow stress. When the applied / reaches Jic, crack 
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FIG. 13—Comparison of A514F-TL steel four-point bend specimen data with collapse 
loads predicted by the limit load and fracture toughness failure criteria [16]. 

extension by "stable tearing" begins. The slope of the stable tearing 
portion of the curve is used to determine T 

dJ E 
~ da 5 2 

(14) 

The effect of stable tearing can be incorporated into the two failure 
criteria model for a center-crack tension specimen since unstable tearing 
was stated to occur [18] whenever 
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W 

Substituting Eq 12 into Eq 14 and combining this with Eq 15 results in 

^ diO \ L 
T 2= < — 

da 5-2 - W 

(15) 

(16) 

When Eq 16 is integrated and subsequently divided by W^'^ 

1/2 

5„ 

K^ /L_ _a_y 
^oW^'^ ~ \W' W) 

(17) 

b.mm 

FIG. 14—Comparison of high-strength AISI 4340 steel four-point bend specimen data 
with collapse loads predicted by the limit load and fracture toughness failure criteria [15]. 
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FIG. 15—Comparison of the three-point bend specimen data from a variety of steels. 

Values calculated using Eq 17 for various values of {L/Wy^ are shown 
in Fig. 18 for the center-crack tension specimen. Subcritical crack exten
sion precedes final fracture in the region lying above the appropriate 
(L/Wy^ line, and below this line, no subcritical crack extension occurs 
prior to fracture. Bodies prone to subcritical crack extension follow a 
Kc/SuW^''^ —a/W trajectory (horizontal lines in Figs. 2 and 18) until 
another of the failure criteria is encountered or the crack extends across 
the entire specimen. 

Conclusions 

The collapse stresses of flawed, wrought structural steels were predicted 
by a two failure criteria model that is based on plastic limit load theory 
and linear elastic fracture mechanics. 

For a given geometry and crack length, the fracture behavior was shown 
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FIG. 17—J-integral R-curve illustrating the crack tip behavior as J increases. The crack 
tip blunts in the region 0 < J/S„ < J/c/S^ followed by stable crack extension by tearing 
when J/So > J/e/S,,. 
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FIG. 18—The effects of stable tearing on the fracture behavior of center cracked tension 
specimens. Subcritical crack extension may occur at a constant value o/ K^ /S^ vTV until either 
the limit load or fracture toughness failure criterion controlled region is encountered. Trajectory 
"A" predicts tearing followed by limit load. Trajectory "B" predicts, tearing, limit load, brittle 

fracture then, finally, limit load behavior during fracture. 

to depend on the fracture toughness, strength, and section size of the body. 
Fracture governed by the fracture toughness failure criterion occurred for 
low values oi K^/SuW^'^, and limit load controlled fractures occurred for 
high values of/(Tc/̂ uW '̂'2. 

Subcritical crack extension by stable tearing was considered. Crack 
extension may change the controlling failure criterion, thereby resulting 
in a lower collapse stress. For specimens with very low length-width ratios, 
the entire fracture process may be controlled by stable tearing. 
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ABSTRACT: This report examines the fracture toughness behavior of three heats of A36 
steel in terms of Charpy V-notch (CVN) and critical stress intensity level (Kic) at an inter
mediate rate of loading (that is, one second rise time to failure). These results are con
trasted with current toughness requirements of the American Association of State High
way and Transportation Officials (AASHTO) and the "H" testing frequency. 

KEY WORDS: A36 steel, CVN testing, Kic testing, fractures (materials), fracture con
trol, crack propagation 

The Federal Highway Administration of the United States Department of 
Transportation proposed in 1972 that toughness requirements [1]'* be ap
plied to the purchase of steels to be used in bridge construction. This pro
posal, which took the form of a requirement of a minimum Charpy V-notch 
(CVN) energy at a specified temperature, was taken up and modified by the 
American Iron and Steel Institute (AISI). This modified proposal [2] was 
presented to the American Association of State Highway and Transportation 
Officials (AASHTO) who subsequently adopted the proposal. The adoption 
of such requirements was the result of a number of recent fracture related 
bridge problems [3,4,5]. 

The specific details of the original AASHTO CVN requirements are set 
forth in Table 1. In addition to Table 1 it was required that the CVN testing 
be conducted in accordance with ASTM Sampling Procedure for Impact 
Testing of Structural Steel (A 673-77), such that all materials are tested to an 
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•'structural research engineer. Office of Research, Federal Highway Administration, Wash-
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The italic numbers in brackets refer to the list of references appended to this paper. 
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TABLE 1—AASHTO fracture-toughness specifications for bridge steels. 

ASTM 
Designation 

A 36 
A 572° 

A 440 
A 441 
A 242 
A 588° 

A S H 

Thickness 

up to 4 in. mechanically fastened 
up to 2 in. welded 

up to 4 in. mechanically fastened 
up to 2 in. welded 
over 2 in. welded 
up to 4 in. mechanically fastened 
up to 2V2 in. welded 
over 2V2 to 4 in. welded 

Energy Absorbed (ft-lb)/temperatufe, °F 

Zone 1* 

15/70 
15/70 
15/70 
15/70 
15/70 
15/70 
15/70 
15/70 
20/70 
25/30 
25/30 
35/30 

Zone 2* 

15/40 
15/40 
15/40 
15/40 
15/40 
15/40 
15/40 
15/40 
20/40 
25/0 
25/0 
35/0 

Zone 3* 

15/10 
15/10 
15/10 
15/10 
15/10 
15/10 
15/10 
15/10 
20/10 

2 5 / - 3 0 
2 5 / - 3 0 
3 5 / - 3 0 

Conversion factor: 
1 ksi = 0.145 MPa 
1 in. = 25.4 mm 

If t- lb = 0.737 J 
°C = (°F -32) /1 .8 

"If the yield point of the material exceeds 65 ksi, the temperature for the CVN value for 
acceptability shall be reduced by 15°F for each increment of 10 ksi above 65 ksi. 

''Zone 1: Minimum service temperature 0°F and above; Zone 2: Minimum service tempera
ture from —1 to —30°F; and Zone 3: Minimum service temperature from —31 to —60°F. 

"H" frequency except the A514 material, which is to be tested to a "P" fre
quency. These frequencies are defined according to ASTM A 673 as 

Freqaencf of Testing 

5.1 Frequency (H) Heat Testing: 
5.1.1 Plates and Shapes—One impact test (a set of three specimens) shall be made for 

each 50 tons (45 Mg) of the same type of product produced on the same mill from each 
heat of steel. The impact tests shall be taken from different as-rolled or heat-treated 
pieces of the heaviest gage produced unless there are insufficient pieces of the heaviest 
gage material produced to comply with the number of tests required in which case the 
testing shall proceed to the next heaviest piece produced. An as-rolled piece is the unit 
piece rolled from a slab, billet, bloom, or directly from an ingot. 

5.2 Frequency (P) Piece Testing: 
5.2.1 Plates and Shapes—One impact test, (a set of three specimens) shall be made 

from each as-rolled or as heat-treated plate or shape. 

The fracture mechanics basis for the current AASHTO CVN requirements 
have been discussed by Barsom [2]. The essential features of the arguments 
put forward to justify the AASHTO specifications are very simple. Firstly, it 
was assumed that typical bridge loadings or stress time variations can be 
classified as an intermediate rate of loading when compared to static and 
impact loading. This is quite reasonable when compared to actual data [6] 
that show about a 1-s rise time to maximum load. 
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Secondly, the assumption was made that a definite temperature shift exists 
between the static and dynamic fracture response of bridge steels as mea
sured by a critical stress intensity level, Ki^. This is shown schematically in 
Fig. 1. The level of the temperature shift is dependent upon the static room 
temperature yield strength of the material and is expressed as [7] 

215 - 1.5(r„ (1) 

where 

Ts = temperature shift in °F, and 
Oy = static room temperature yield strength, ksi. 

The shift from the dynamic to the intermediate fracture response curves is 
estimated as approximately 75 percent of T̂  [7]. This is also shown in Fig. 1. 

Thirdly, another point behind the ASSHTO requirements was that the 
region of the dynamic Ki^ versus temperature curve where the K level begins 
to rise rapidly from the approximately horizontal portion of the K-curve 
corresponds to the temperature transition region of the CVN curve obtained 
for the same material. Figure 2 shows this schematically. Thus, the CVN 
curve can be used to locate the point of upswing of the dynamic Kjc-curve 
along the temperature axis. 

The final item as discussed by Barsom was that the fracture response of the 
two materials which he studied, ASTM steels A36 and A572, Grade 50 in 
thicknesses of 35.6 and 37.3 mm, respectively, showed a definite departure 
from plane-strain fracture behavior at approximately 27.8''C (82°F) above 
the temperature transition point. Furthermore, Barsom [2] proposed that 
the temperature of the CVN level can be used to conservatively estimate the 
temperature transition point. This is reasonable since at a CVN level of 20 J 
the corresponding K level is about 45 MPaVm. This is well above the K 
plateau or well into the transition region. 

STATIC INTERMEDIATE DYNAMIC 

TEMPERATURE > 

FIG. 1—Schematic representation o /K versus temperature for a structural grade steel. 
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CVN 

TEMPERATURE 

FIG. 2—Schematic representation of correspondence of temperature transition regions and 
the temperature transition point with the 20 J {15 ft-lb) temperature. 

The above four items, (1) 1-s or intermediate loading for bridges, (2) defi
nite temperature shift T^, (3) CVN-^ correspondence of temperature transi
tion regions, and (4) temperature transition point plus 27.8°C (82°F) for 
nonplane-strain behavior were then combined with the philosophy that the 
materials shown in Table 1 should have adequate notch toughness so that at 
the lowest expected service temperature nonplane-strain behavior can be 
guaranteed at an intermediate rate of loading. All of this is illustrated in 
Fig. 3 for a hypothetical 248-MPa yield strength material with a lowest ex
pected service temperature of — 17.8°C (0°F). 

To achieve the objective of nonplane-strain behavior at — 17.8°C (0°F) it is 
required that the 20 I temperature transition point occur for an internxediate 
loading rate 27.8°C (82°F) below the - 17.8°C (0°F) temperature or -45.6°C 
(—50.1°F). Since an intermediate rate of loading is appropriate for bridges, 
the temperature transition point on the dynamic curve should occur 0.75 T^ 
above the -45.6°C (-50.1°F) point. For a 248-MPa yield strength material 
T, as per Eq 1 is approximately 88.9°C (192°F) or 75 percent of J , is 66.7°C 
(152.1°F). Thus, the transition point should occur on the dynamic ^c-curve 
at -45.6°C (-50.1°F) plus 66.7°C (152.1°F) or at 21.1°C {70°F). Since 
the 20 J CVN temperature is proposed as a conservative estimate [2] of the 
dynamic fracture toughness transition point, a material with a measured 
CVN response of 20 J or better at 21.1°C (70°F) would meet the desired re-

 



556 FRACTURE MECHANICS: TWELFTH CONFERENCE 

• 70*' -50° 0° 

TEMPERATURE 

FIG. 3—Schematic representation of AASHTO requirements for a —17.7°C (0°/^ lowest 
expected operating temperature. 

quirements. It is obvious that the use of CVN tests for specification purposes 
is much more sensible than the use of the more costly K^ tests assuming all 
of the previous discussion is correct. 

As already noted, the 1973 AASHTO CVN specification further required 
for quenched and tempered steels, such as A514, a " P " or piece testing fre
quency be employed for the CVN tests (ASTM A 673). For all other bridge 
steels and "H" or 45-Mg increment, heat testing frequency is used for the 
CVN tests. The use of a "P" frequency certainly offers more comfort in the 
knowledge of the properties of a specific piece of steel than an " H " test 
procedure. Furthermore, its use for quenched and tempered steels is gen
erally reasonable. For the nonquenched and tempered steels the ability of the 
"H" testing frequency to adequately describe the CVN properties of each 
piece of steel plate from a single heat of steel is certainly open to question. 

The primary goal of the research described in this report was to examine 
the suitability of an "H" testing frequency for the nonquenched and tem
pered bridge steels. The material chosen for this was an ASTM A36 bridge 
steel. Along with the primary goal it was hoped that further justification for 
the temperature shift T^ could be found in the present results. 

Experimental Program 

Test Material 

The A36 material tested in this program was obtained from three plates of 
steel, each from a different heat. These plates were purchased to the 1973 
AASHTO Class 2 CVN requirements for bridge steels as shown in Table 1. 
Two of the plates were 38.1 mm thick while the third was 50.8-mm thick. 

 



ROBERTS ET AL ON FRACTURE BEHAVIOR 5 5 7 

Three locations were tested from each plate for a total of nine test locations. 
Details of the specific locations tested relative to the larger plates are shown 
in Fig. 4. The chemical compositions of the nine test locations are given in 
Table 2. Measured mechanical properties as well as mill reports are given in 
Table 3. Due to material size limitations, standard 12.7-mm round tension 
specimens were used for the tension tests rather than plate type specimens. 

CVN Testing 

Standard CVN tests were performed for each of the nine test locations. 
The CVN tests were performed in accordance with ASTM Standard for 
Notched Bar Impact Testing of Metallic Materials (E 23-72). Thirty speci
mens were prepared from each test location. All specimens had their notch 
normal to the plate rolling direction or in the L-T orientation as described 
in ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials 
(E 399-78). All specimens were from the quarter thickness point of the 
plates. Five specimens were tested at the AASHTO specification temperature 
4.4°C (39.9°F), three at -12.2°C (10°F), and three at 21.1°C (70°F). The 
remaining 19 specimens were tested to indicate the full CVN response of the 
plates. 

Nil-Ductility Transition 

Six nil-ductility transition (NDT) specimens, as per ASTM Method for 
Conducting Drop-Weight Test to Determine Nil-Ductility Transition Tem
perature of Ferritic Steels (E 208-69) were prepared from each of the nine 
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Test 
Location 

A" 
B" 
C 
E" 
F" 
G" 
1° 
I" 
K" 

X* 
Y* 
Z* 

Heat 
Number 

496X0881 
496X0881 
496X0881 
491X1031 
491X1031 
491X1031 
402P7031 
402P7031 
402P7031 

491X1031 
496X0881 
402P7031 

XABLE 3 -

Yield, 
ksi 

33.1 
33.1 
30.5 
34.1 
33.6 
33.8 
34.6 
34.5 
34.6 

40.8 
40.7 
44 

-Tensile properties. 

Xensile 
Strength, 

ksi 

62.1 
62.2 
57.5 
61.5 
62.1 
66.0 
62.6 
62.6 
62.6 

68.5 
66.1 
70 

Elongation 
Gage, % 

2/38.6 
2/38.7 
2/39.7 
2/38.9 
2/38.2 
2/37.2 
2/36.3 
2/36.7 
2/36.3 

8/28.5 
8/39.0 
2/34 

Reduction of 
Area, % 

65.7 
64.8 
69.8 
67.9 
67.4 
65.9 
64.8 
65.9 
65.3 

Conversion Factor—1 ksi = 0.145 MPa. 
"Average of two readings. 
* Mill report data, average of two plate type specimens. 

test locations. These were tested in accordance with ASTM E 208 require
ments. 

Ke Fracture Toughness Testing 

Four 3-point bend fracture toughness specimens were prepared from each 
of the nine test locations (see Fig. 5). These specimens were 304.8 mm long, 
76.2 mm high, and 38.1 mm thick. Each specimen contained a crack ap
proximately 25.4 mm long which had been extended to its final length by 
means of low amplitude fatigue loading. All cracks were normal to the roll
ing direction of the plates or of the L-T variety as per ASTM E 399. 

The fracture toughness specimens were all tested at an intermediate rate 
of loading so that a time to failure of about 1 s occurred. Two specimens 
were tested at the lowest ambient temperature corresponding to the Group 2 
category, — 34.4°C (—29.9°F). The remaining two specimens were tested at 
a temperature which corresponded to the 20 J CVN temperature level minus 
(-17.4°C) (0.75(215 - 1.5a^)°F). Details of the K^ testing procedure have 
been described extensively elsewhere [8,9]. 

Experimental Results 

CVN Results 

The CVN response in terms of adsorbed energy, lateral expansion, and 
fracture appearance data for each test location are presented in Figs. 6 
through 14. 
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FIG. 5—Three-point bend K specimens (1 in. = 25.4 mm). 
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FIG. 6a—Kc and CVN versus temperature—location A (1 ksi\fin. —0.9MPa'fm, 1ft lb • 
0.737J. "C = (°F - 32)/1.8. 

 



ROBERTS ET AL ON FRACTURE BEHAVIOR 561 

- 1 0 0 

TEMPERATURE " F " 10" 

FIG. 6fc—Fracture appearance and lateral expansion versus temperature—location A 
(1 mil = 0.025 mm. °C = (°F - 32)/!.8). 
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FIG. la—K^ and CVN versus temperature—location B (1 ksivin. =0.9 MPa \[m, 1 ft • lb = 
0.737J. "C = {°F - 32)/1.8). 
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FIG. 76—Fracture appearance and lateral expansion versus temperature—location B 
a mil = 0.025 mm, °C = (°F - 32)/1.8). 
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FIG. 8a—Kc and CVN versus temperature—location C (1 ksi-/Jn. — 0.9 MPaVm, Ift-lb = 
0.737J. "C = (°F - 32)/1.8). 
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FIG. 8i—Fracture appearance and lateral expansion versus temperature—location C 
(1 mil = 0.025 mm. °C = (°F - 32)/1.8). 
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FIG. 9a—¥̂ ^ and CVN versus temperature—location E(i ksi-Jln. = 0.9 MPa'4m, Ift-lb — 
0.737J, "C = (.°F - 32)/1.8). 
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FIG. 9i—Fracture appearance and lateral expansion versus temperature—location E 
(I mil = 0.025 mm. °C = (°F - 32)/1.8). 
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FIG. 10a—KcandCVNversus temperature—locationF(\ ksi^fJn. = 0.9MPaVm, Ift-lb • 
0.737J. °C = ("F - 32)/1.8). 
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FIG. 10b—Fracture appearance and lateral expansion versus temperature—location F 
(1 mil = 0.025 mm. "C = ("F - 32)/1.8). 
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FIG. 11a—KcandCVN versus temperature—location G( I ksi\fJn. = 0.9MPayfm, Ift-lb = 
0.737J. "C = {"F - 32)/1.8). 
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FIG. 116—Fracture appearance and lateral expansion versus temperature—location G 
(1 mil = 0.025 mm, °C = {°F - 32)/1.8). 
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FIG. 12a—Kc and CVN versus temperature—location I {I ksisTin. = 0.9 MPaVm, Ift-lb 
0.737J, °C = CF - 32)/1.8). 
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FIG. lib—Fracture appearance and lateral expansion versus temperature—location I 
(1 mil = 0.025 mm. °C = (°F - 32)/1.8). 
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FIG. 13a—Kc and CVN versus temperature—locationJ(\ ksi^Tin. = 0.9 MPaVm, Ift-lb 
0.737 J, "C = {-=F - 32)/1.8). 
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FIG. 13b—Fracture appearance and lateral expansion versus temperature—location J 
U mil = 0.025 mm, °C = (°F - 32}/1.8). 
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FIG. 14a—KcandCVNversus temperature—location K {I ksi^in. = 0.9MPa\fm, Ift-lb 
0.737J. °C = (°F - 32)/1.8). 
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FIG. 146—Fracture appearance and lateral expansion versus temperature—location K 
U mil = 0.025 mm. °C = (°F - 32)/1.8). 

NDT Temperature Results 

The results of the NDT tests are Hsted in Table 4 and are shown in Figs. 6 
through 14. 

Kc Results 

The results of the individual K tests are presented in Table 5. The results 
were analyzed using the equation for K proposed by Wilson [10]. All values 
reported in Table 5 are for fracture toughness levels that reflect a plasticity 
correction and were computed with the formula [10] 

K = 
PL 

{W - a')^'^/B 
(2) 

where 

B = specimen width (38.1 mm), 
W — specimen depth (76.2 mm), 
P = maximum applied load, 
L = span length (254 mm), 

a ' = effective crack length. 
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TABLE 4—NDT test data. 

Material 

A 

B 

C 

E 

F 

G 

I 

J 

K 

-40 -20 

X 

X 

0 

X 

0 
X 

0 
X 

0 
0 
0 

o 
o 

0 
0 

+20 

x" 

X 

X 

X 

X 

X 

0 

0 

o 

X 
X 

X 
X 

0 
0 

X 
0 

0 
0 

0 
X 

+40 

0* 
0 
0 

0 
0 
0 

o 
0 

0 
o 
0 

0 
0 

0 
0 
o 

+60 NDT, °F 

+35 

+35 

+ 25 

+35 

+25 

+35 

+5 

+5 

+5 

Conversion Factor—"C = (°F -32) /1 .8 . 
"x indicates break. 
*o indicates no break. 

a = measured crack length, 
ry = plastic-zone size, and 
a' = a + ry. 

The plastic zone size, ry, was defined as 

•*' 2 i r V ff„ 

KV 
(3) 

where Oy is yield stress. 
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TABLE Sa—Slow bend fracture toughness data. 

Tempera
ture, °F 

- 3 0 

- 1 1 0 

- 1 1 5 

- 1 2 5 

A 

71.0 
81.9 

51.9 
45.2 

B 

67.4 
72.7 

51.1 
40.7 

C 

76.1 
75.6 

55.1 
45.2 

K, 

E 

82.5 
75.1 

54.7 
35.5 

(ksiVin 

F 

83.1 
78.3 

48.8 
76.6 

Conversion Factor: 
°C = (°F -32) /1 .8 
1 ksiVSnT = 0.9 MPaVin 
" Iteration scheme for calculating K did not converge. 

T) 

G 

75.0 
73.2 

43,0 
43,0 

I 

93.5 
86.8 

55.6 
39.5 

J 

a 

74.6 
68.1 

K 

a 

72.8 
57.2 

Equations 2 and 3 were solved by a simple interaction method {8\. The 
value of Gy corresponded to the temperature and loading speed of the test 
conditions. This was determined by the following equation [8] 

<̂ Yd — <^Ysl+75°F,to + 
174 000 

(T + 459) log (2 X IQiOf) 
- 2 7 . 4 (4) 

where 

t = loading time to maximum load (second), 
to = time of load application for a static test (50 s), 
T — testing temperature (°F), 

<̂Ys = yield stress (ksi), and 
o'Yd — yield stress adjusted for temperature and strain rate at test condi

tions (ksi). 

Discussion of Results 

Nominal Material 

The results of the chemical analysis as shown in Table 2 for each test loca
tion meet the ASTM's compositional specifications set out for A36 material 
(see ASTM Standard for Structural Steel (A 36-77a)). The mechanical tests: 
yield strength, ultimate strength, and elongation as measured by the mill 
tests also meet the ASTM A 36 specification. However, the tension tests as 
run in this program fell short of the 248-MPa yield strength level. The data 
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TABLE 5b—Fracture data. 

Test 
Location 

A 
A 
A 
A 
B 
B 
B 
B 
C 
C 
C 
C 
E 
E 
E 
E 
F 
F 
F 
F 
G 
G 
G 
G 

K 
K 
K 
K 

Ai** 
(in.) 

1.02 
1.07 
1.20 
1.01 
1.03 
1.05 
1.01 
1.02 
1.03 
1.08 
1.05 
1.03 
1.12 
1.04 
1.04 
1.02 
1.07 
1.04 
1.11 
1.06 
1.07 
1.05 
1.04 
1.02 
1.04 
1.67 
1.06 
1.08 
1.05 
1.05 
1.05 
1.25 
1.10 
1.10 
1.30 
1.02 

r 
(°F) 

- 3 0 
- 3 0 

- 1 2 5 
- 1 2 5 

- 3 0 
- 3 0 

- 1 2 5 
- 1 2 5 
- 3 0 
- 3 0 

- 1 1 0 
- 1 1 0 

- 3 0 
- 3 0 

- 1 1 0 
- 1 1 0 
- 3 0 
- 3 0 

- 1 1 0 
- 1 1 0 
- 3 0 
- 3 0 

- 1 1 0 
- 1 1 0 
- 3 0 
- 3 0 

- 1 2 5 
- 1 2 5 
- 3 0 
- 3 0 

- 1 1 5 
- 1 1 5 

- 3 0 
- 3 0 

- 1 2 5 
- 1 2 5 

^ m a x 
(kips) 

31.0 
34.5 
19.5 
19.9 
29.2 
31.0 
22.5 
17.8 
33.0 
31.6 
23.5 
19.6 
33.2 
32.4 
23.5 
15.5 
35.0 
33.8 
19.8 
32.4 
31.6 
31.2 
18.5 
18.8 
40.2 
20.5 
23.6 
16.5 
40.0 
37.0 
31.8 
34.5 
40.0 
42.0 
25.0 
25.0 

t" 
(sec) 

1.6 
1.8 
1.3 
1.3 
1.6 
1.6 
1.3 
1.2 
1.5 
2.6 
1.5 
1.5 
1.3 
1.6 
1.5 
1.0 
1.9 
2.5 
1.3 
1.9 
1.3 
1.3 
0.9 
1.5 
2.5 
1.0 
1.7 
1.0 
2.0 
2.2 
1.9 
1.1 
2.0 
2.3 
1.1 
1.2 

K/ 
(ksiVin7) 

71.0 
81.9 
51.9 
45.2 
67.4 
72.7 
51.1 
40.7 
76.1 
75.6 
55.1 
45.2 
82.5 
75.1 
54.7 
35.5 
83.1 
78.3 
48.8 
76.6 
75.0 
73.2 
43.0 
43.0 
93.5 
86.8 
55.6 
39.5 

s 
g 

74.6 
68.1 

g 

g 

n.9, 
57.2 

Conversion Factor: 
1 in. = 25.4 mm 
°C = (°F - 32)/1.8 
1 kip = 224 N 
1 ksiViaT = 0.9 MPaVm 
"Initial crack length—average of three readings as per ASTM E 399-78. 
*Test temperature. 
'̂ Fracture load. 
''Time to attain fracture load. 
'Kc calculated as per Eq 2 of text. 
•^Fracture surface of all specimens showed absolutely no evidence of shear lips. 
* Iteration scheme for calculating K did not converge. 
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reported in Table 3 for each location are the average of two 12.7-mm round 
tensile tests conforming to specimen Type 1 of Fig. 6 of ASTM Methods and 
Definitions for Mechanical Testing of Steel Products (A 370-77). The ulti
mate strength, percent elongation for a 50.4-mm gage length and reduction 
of area all meet the ASTM A 36 requirements. The 19.2 MPa difference be
tween the minimum standard for A36 material and the values measured with 
the 12.7-mm round specimens is not felt to be of significance in relationship 
to the overall objectives of the project since all other areas of material per
formance were satisfactory. While various reasons for the differences be
tween mill reported and current measured values of the tensile properties 
were carefully examined, no satisfactory explanation was uncovered. 

CVN Results 

The general results of the CVN tests as illustrated in Fig. 6 through 14 do 
not show any outwardly surprising results. All test locations exhibited the 
normal upper and lower shelf behavior with a definite temperature transition 
region. The results from locations A, B, and C, which came from heat 
496T0881, show more dispersion than do the results from the other two heats 
of steel when comparing the CVN test results from location to location. Test 
locations E, F, and G show reasonable agreement while locations I, J, and K 
show very close agreement in overall CVN response. Heats 496T0881 and 
491T1031 generally showed higher transition temperatures and higher upper 
shelf behavior than heat 402P7031. 

The observation that for an A36 type material the NDT corresponds to ap
proximately the 20 J temperature [11] is well-founded based on the current 
data. Table 6 highlights this. For a given heat of steel, the NDT showed no 
more than a 12.2°C (10°F) variation between test locations while the 20 J 
level showed a maximum difference of 9.4°C (48.9°F) for heat 491T1031. 
The maximum difference between the NDT and the 20 J temperature was 
8.3°C (46.9°F) and occurred for Location G. 

The five CVN tests that were run at the specification temperature of 
4.4°C (39.9°F) are set out in Table 6 as a means of convenient comparison. 
It is obvious from this table that all test locations met the 20 J requirement at 
4.4°C (39.9°F). Also, if the worst three CVN tests out of the five run had 
occurred first (that is, 14.9, 23.0 and 33.9 J for test location B), the results 
of these three tests would still have passed the 20 J average at 4'.4°C (39.9°F). 
There is a fair amount of scatter in the average levels for the five 4.4°C 
(39.9°F) CVN tests within a specific heat. This is to be expected as this test 
temperature is in the transition region for the material. 

Based on the above observations about the CVN results, the question of 
the suitability of "H" testing to establish the fracture response of each piece 
of steel from a 45-Mg piece of steel can be considered. The best way to do 
this for the current data is to carefully examine the 20 J temperatures for a 

 



5 7 4 FRACTURE MECHANICS: TWELFTH CONFERENCE 

"3 

I 

oa 

<: 

o 

OQ 

a 

o o o o o 

I/) O lO in I/) 
\ 0 -H ^ (S r s 
T-i rv» -H r j o) 

o 
o 

o o o o o 

O O O O IT) 

O O O O 1/1 

vo U1 i/i VO O 

1/5 O O O O 

o o o ir> ir> 

O O O 00 O 

bo 
A 
t J 

v> 
> < 

>.x> 
00 *-
;H O 
to (« C -O 
w< 

>« 

1/1 

1/1 

1/1 

>/1 

1/1 

1/1 

<M 

O 

o 

o 
(N 

oo 

1/1 

Q 2 

00 a 

"< t^ ^ *^ 

K II ^ - i i 

C T II « 
§̂  * o !2 

 



ROBERTS ET AL ON FRACTURE BEHAVIOR 575 

given heat. First, suppose that the lowest observed 20 J temperature was the 
actual specification temperature. For heat 491T1031, test Locations E, F, 
and G, this would mean the imaginary specification temperature would be 
— 7.8°C (18°F) corresponding to location F. If this was the case, test loca
tions E and G would not meet the specifications. In terms of the 20 J tem
perature, test location E would miss by 9.4°C (48.9°F). For the other two 
heats, the temperature difference would not be as great, 5.6°C (42.1°F) for 
heat 496T0881 and 1.1 °C (34°F) for heat 402P7031. 

The preceding thoughts and the data considered indicate for materials 
similar to the A36 material tested in this program that if a heat of steel is 
tested according to an "H" testing frequency and if the chosen test location 
nominally meets the 20 J requirement then there is a possibility that other 
areas of the heat of steel tested may not meet the specification. This is not 
surprising when one considers the statistical value of any material property. 
The exact difference is not evident from the limited data of this research. It 
certainly can be at least 9.4°C (48.9°F) as shown by the 20 J temperature dif
ference for heat 491T1031. The question of whether or not such behavior is 
acceptable within the philosophy and intent of the AASHTO CVN require
ments is quite important. 

In the original deliberations, which resulted in the 1973 AASHTO specifi
cation, it was decided that a suitable minimum operation temperature for a 
given strain rate would be 27.8°C (82°F) above the point where K/oy^ is 
about 0.9. This plus conservatism in Eq 5 (see in next section) was felt to 
cover the variability that can be encountered in a 45-Mg piece of steel. The 
current CVN data when compared with the K data that follows does not pro
vide any basis for disagreement with this philosophy. However, where it is 
desirable to know the fracture properties within closer tolerances, such as in 
fracture critical members, it certainly is reasonable to test each piece rather 
than rely on an "H" testing frequency. 

K Results 

The results of the intermediate or 1-s K tests are listed in Table 5 and 
shown in Figs. 6, 8, 10, 12, and 14. Along with these data are shown the 
trend line or curve based on the measured CVN data for the test location and 
the relationship proposed by Barsom [2] 

K, = V S E C W (5) 

where 

Kc = stress intensity level in psiViiT. corresponding to Ki^ for slow bend 
CVN results and Ki^ for standard impact CVN results, 

E = Young's modulus in pounds per square inch, 
CVN = Charpy energy in foot-pounds. 
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The trend curve shown on the right is the predicted dynamic Ku response 
based on the CVN data and Eq 5. The trend curve to the left is the result of 
shifting the dynamic trend curve by 0.75 T^ as previously discussed in the 
introduction. 

The K data, which was obtained at test temperatures equal to the 20 J 
temperature minus 0.75(215 — l.Str^), all show reasonable agreement with 
the intermediate trend line. In all cases the prediction by Eq 5 is conser
vative. Also the phenomenon of K suppression discussed by Barsom et al 
[12] is evident in all K tests at -34.4°C (-29.9°F). For this temperature the 
specimen thickness did not meet the size requirements of ASTM E 399. The 
K tests at the lower temperatures did meet the specimen requirements for 
valid Kic measurements. The phenomenon ofaK suppression is highlighted 
in Fig. 15 after Barsom et al [12]. 

In general the K data at -34.4°C (-29.9°F) all exhibited nonplane-
strain type behavior only in terms of specimen size requirement. At the 
lower temperature the results did meet the size requirements for valid Ky^ 
measurements. Also the levels of fracture toughness observed are consistent 
with the concept of a temperature shift and also with proposed techniques 
for predicting K levels based on CVN information. 

Conclusions 

With the foregoing in mind it is now possible to reflect on the data col
lected and draw a few modest conclusions. These are: 

1. The temperature shift, T^, appears real as reflected through the use of 
0.75 Tj to predict intermediate rate behavior. 

A 533 STEEL 
a, 
CT 
0 = 

^ 

s = 6 9 k » l ATT 

SPECIMENS 
B 
2G 

- 0 , 5 0 

75 F 

, T H I C K N E S S , i f i c h e 

FIG. 15—Effect of suppression on Kic for proportional specimens of A533 steel taken from 
Ref 12 (1 ksisfm. ~ 0.9 MPa->Im, 1 in. = 25.4 mm). 
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2. The use of Eq 5 gives conservative results for the data collected. 
3. The use of an "H" testing frequency for fracture critical members of 

A36 material may not prove adequate where detailed knowledge of the frac
ture properties of each piece are desired. 
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