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STP590-EB/Feb. 1976 

Introduction 

The content of this book continues to present the state of the art in 
"Fracture Mechanics Applications and Research" as exemplified by 
earlier symposium volumes, that is, ASTM Special Technical Publications 
513 and 514 (1972), 536 (1973), and 559 and 560 (1974). The themes of 
fracture mechanics analysis which continue to be dominant interests in 
this book are applications to elastic-plastic fracture through J-integral 
methods, instability and material property analysis through R-curve 
methods, fatigue crack growth phenomena and life estimation, creep 
cracking analysis, and applications of fracture mechanics to particular 
engineering problems in fracture control. 

The success of the Eighth National Symposium, as evidenced by the 
papers in this volume, is largely due, not only to the authors, but also to 
the many people associated with ASTM Committee E-24 who contribute 
enormously of their efforts toward assisting the symposium each year. 
Moreover, the effective assistance of Jane Wheeler and (the late) Donald 
Wisdom of the ASTM staff, as well as the crucial on-site coordination and 
assistance of John McLaughry, Director of Special Programs at Brown 
University, are especially cited as having been essential to the final result 
of producing this book. 

J. R. Rice, professor 

P. C. Paris, visiting professor 
Brown University, Providence, R . I .  
02912; symposium co-chairmen. 
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C. F. Shih  1 

J-Integral Estimates for Strain 
Materials in Antiplane Shear 
Plastic Solution 

Hardening 
Using Fully 

REFERENCE: Shih, C. F., "J-Integral Estimates for Strain Hardening Materials 
in Antiplane Shear Using Fully Plastic Solution," Mechanics of Crack Growth, 
ASTM STP 590, American Society for Testing and Materials, 1976, pp. 3-26. 

ABSTRACT: General procedures are proposed which utilize the elastic and the 
fully plastic solutions to interpolate behavior from the small-scale yielding range 
to the fully plastic range. The relations between the J-integral, load point 
displacement, crack opening displacement, and the applied load thus developed, 
are applicable to test configurations and cracked bodies in general. To assess the 
accuracy of the estimated relationships, a detailed numerical investigation, 
which employs an accurate finite element approach, is carried out for a particular 
configuration under antiplane shear. The results obtained from the full numerical 
calculations, for values of the applied load well into the fully plastic range, are in 
excellent agreement with the estimated results. 

KEY WORDS: crack propagation, elastic properties, plastic properties, plastic 
deformation, stresses, strains, shear properties 

In recent experiments, Begley and Landes [1] 2 have demonstrated the 
potential of the J-integral as a fracture initiation criterion in the large-scale 
yielding range. In this paper some relatively simple approximate formulas 
are proposed for estimating the relations between the path-independent 
integral, J, the applied stress, the load point displacement, and the crack 
opening displacement for cracked bodies of strain hardening elastic- 
plastic materials. The formulas make use of results from the elastic 
solutions and the fully plastic solutions to interpolate from the small-scale 
yielding range to the fully plastic range. The approximate interpolation 

1 Research fellow in applied mechanics, Division of Engineering and Applied Physics, 
Harvard University, Cambridge, Mass. 02138. Presently with Corporate Research and 
Development, General Electric Company, Schnectady, N. Y. 12345. 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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4 MECHANICS OF CRACK GROWTH 

procedure is similar in a number of respects to that suggested by Bucci et 
al [2] for elastic-perfect plastic materials. The formulas apply to the 
fracture analysis of cracked bodies as well as the analysis of test 
specimens which sustain large-scale plasticity prior to fracture. 

In the first part of the paper, the fully plastic solution to the problem of 
an edge crack in a finite width slab under antiplane shear is presented. 
Then the general estimation procedure to predict the relationships be- 
tween J ,  the load point displacement, the applied stress, etc., in the 
large-scale yielding range is introduced. Finally a detailed assessment of 
the accuracy of the method is made. A particular configuration under 
antiplane shear is chosen for this assessment. Estimated predictions are 
compared to the full numerical calculations for materials characterized by 
two different stress-strain relations, the Ramberg-Osgood relation, and 
the piecewise power hardening relation. 

Fully Plastic Problem for Antiplane Shear 

A discussion of fully plastic crack problems of the type considered here 
has been given by Goldman and Hutchinson [3]. In this paper attention is 
restricted to a small strain formulation of plasticity in antiplane shear. In 
simple shear the pure power hardening law is 

T/To = a(~/ro)" (1) 

where a is a dimensionless constant and T0 and T0 are reference values of 
the strain and stress. The generalization of Eq 1 based on the J2 
deformation theory of plasticity gives 

T~/To = cz(~'dT0)" - %J% (/3 = 1, 2) (2) 

where 

I"B = ~'~3, and, 
Te 2 = 7-12 -{- T2 2. 

The plane of the crack is taken to lie in thex2 = 0 plane with its edge along 
the x3 axis as shown in the insert in Fig. 1. The crack has length a and the 
width of the slab is b. The body is subjected to a remotely applied shear 
stress ~'2 = r = (at h = oo) and the edges x, = - a  andx,  = b - a are trac- 
tion free. By symmetry this problem is equivalent to the center-cracked 
slab with crack length 2a and width 2b subjected to the same loading. 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
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SHIH ON J - I N T E G R A L  E S T I M A T E S  5 
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FIG. 1--4?urves o f  J and ~ normalized with respect to the applied load P. Dotted lines are 
extrapolations. The results corresponding to a/b = 0 are taken f rom R e f  7. 

Within the context of a deformation theory of plasticity, the path- 
independent integral, J ,  is defined by [4,5] 

J = f  (Wdx2 + T x O_u_u ds) (3) 
Jr Oxl 

where 
W = strain energy density, 
F = any contour in the x~, x2 plane which encircles the crack tip, 
T = traction acting on F, and 
u = displacment vector. 

Another quantity which will be examined in detail is the crack opening 
displacement at the edge of the slab denoted by 8. This is defined as 

a = w(x l=  - a ,  x 2 = 0  + ) -  w(xl= - a ,  x2=O-)  (4) 

where W ( X 1 ,  X2) is the displacement in the x3 direction. 

As discussed in Ref 3, the solution to a traction boundary value 
problem based on Eq 2 has the simple functional form 

rJro  = (z~/ro)§ x2/a, a/b,  n) 

"YJYo = a(r=/ro)'~C/~(xl/a, x2/a, a/b,  n) (5) 

w/(voa) = a(r=/ro)"i~(x,/a, x J a ,  a/b,  n) 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
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6 MECHANICS OF CRACK GROWTH 

Furthermore,  for  the J-integral and the crack opening displacement,  6 

J = OtroYoa(r=/Zo)"+lj(a/b, n) (6a) 

6 = OlYoa (z~/'ro)n6(a/b, n) (6b) 

where the quantities topped by C) are dimensionless functions.  It may 
be noted that the functional form of Eq 6b also applies to other 
displacement-like quantities, notably the residual load-point displacement 
which will be defined later. The  character  of the solution to the field 
quantities, as expressed by Eq 5, demonstrates that this solution is valid 
for both Jz deformation and Jz flow theory as long as the applied stress is 
increased monotonically.  

Define P to be the total shear load per unit thickness carried by the slab, 
that is 

P = r=b (7) 

and denote by Pnmit the limit load for a perfectly plastic slab (n = cr that 
is 

Plimit = "gO( b -- a) (8) 

A convenient normalization of J for tabulation purposes based on Eq 6a is 
in Ref  3 

J/(zoyoa) 

p t n+l 
= f , ( a / b ,  n) (9) 

Similarly, a suitable normalization of  6 is 

a/(yoa) 

\Plimit / 

- f2(a/b,  n) (10) 

Values of 7"1 and f2 were calculated using an accurate finite element 
method which is discussed briefly in the Appendix. These values are 
given in Table 1 and are presented graphically in Fig. 1 in the form of plots 
off~ and f2 as a function of  1/n for  several values of  a/b.3 

The specimen configuration with h/b = 3 was used in all the finite element calculations. 
For purposes of numerical crack analyses, this configuration may be regarded as a slab of 
finite width and infinite height. 
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SHIH ON J-INTEGRAL ESTIMATES 7 

TABLE 1--Values of  fl to fs. a 

1 1.5 2 3 5 7 10 15 20 

f l  1.5708 1.9389 2.2709 2.8638 3.8654 . . . 5.7878 . . . 8.5240 
f2 2.0000 2.3338 2.6444 3.2090 4.1748 . . . 6.0445 . . . 8.7267 

a _ 0 f3 0.3927 0.4722 0.5281 0.6050 0.6957 . . .  0.7999 . . .  0.8765 
b f4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

f~ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

f l  1.3899 1.6206 1.7916 2.0232 2.2301 2.2855 2.2214 
f2 1.7465 1.9221 2.0544 2.2266 2.3544 2.3442 2.2404 

a _ 1 f~ 0.3987 0.4772 0.5324 0.6088 0.6984 0.7553 0.8036 
b 8 f4 0.1717 0.2489 0.3289 0.4895 0.7843 1.0216 1.2665 

fs  0.0983 0.1295 0.1601 0.2198 0.3331 0.4358 0.5653 

f~ 1.2423 1.3744 1.4467 1.5065 1.4795 1.3892 1.2670 
f2 1.5268 1.5820 1.6017 1.5813 1.4532 1.3113 1.2163 

a _ 1 f3 0.3997 0.4799 0.5353 0.6133 0.7086 0.7644 0.8211 
b 4 f4 0.3002 0.4076 0.5060 0.6706 0.8779 0.9658 1.0541 

f~ 0.1966 0.2577 0.3159 0.4241 0.6041 0.7365 0.8666 

f~ 1.0006 1.0044 0.9836 0.9250 0.8148 0.7316 0.6350 0.5310 0.4668 
f2 1.1116 1.0176 0.9281 0.7798 0.5899 0.4824 0.3893 0.3042 0.2598 

a = _1 fa 0.4049 0.4878 0.5501 0.6444 0.7675 0.8416 0.8963 0.9448 0.9609 
b 2 f4 0.4381 0.5128 0.5561 0.5830 0.5373 0.4687 0.3875 0.3042 0.2598 

f5 0.3942 0.5040 0.5992 0.7477 0.9109 0.9716 0.9954 0.9998 1.0000 

f~ 0.8046 0.7502 0.7035 0.6329 0.5414 0.4803 0.4121 
a 3 f2 0.6818 0.5258 0.4220 0.3020 0.2026 0.1606 0.1272 

fa 0.4327 0.5475 0.6415 0.7808 0.9194 0.9707 0.9956 
b 4 3"4 0.4049 0.3843 0.3501 0.2836 0.2014 0.1607 0.1272 

f5 0.5939 0.7310 0.8295 0.9389 0.9942 1.0000 1.0000 

a The results corresponding to a/b = 0 are taken from Ref 7. 

For the linear elastic case (n = 1) the solution is known exactly for all 
a/b [6], for the finite crack in an infinitely wide slab (a/b = 0) analytical 
solutions have been obtained for the complete range of n by Amazigo [7]. 
The curves corresponding to a/b = 0 have been taken from this reference.  
In the present numerical calculations, f l  and f2 have been obtained for 
values of  the strain hardening exponent  up to n = 10 (n = 20 for case of 
a/b = 1/2). The sections of the curves indicated by dashed lines are 
extrapolations. 

The relation between J and the crack opening displacement,  3, can be 
obtained by eliminating P/enmi t  f rom Eqs 9 and 10 with the result 

J/(ToToa) 

o~-vn(8/yoa)~n+ a)tn 
= f3(a/b, n) (11) 

where f ,  involves f l  andfz  and is also given in Table 1. This relationship, 
Eq 11, is shown in Fig. 2. It may be noted that in the limit of perfect  
plasticity (n -~ o~) j = T08 for all a/b. 
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8 MECHANICS OF CRACK GROWTH 
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FIG. 2---Curves o f  J normalized with respect to 8. In Fig. 2a the curve for aPo = 1/8 is not 
shown since it practically coincides with the curve for a/b = O. 

We will later want  to est imate the load point d isplacement  of  a slab of 
finite height. For  this purpose  let A be the load point displacement  of  a 
slab of height 2h where the stress is applied at x2 = +-h according to 
r~ = T ~~ as shown in the insert  in Fig. 1, that  is 

1 # b - a  

A(h) = b - J - a  [w(x l ,  h) - w ( x l , - h ) ] d X l  (12) 

For  finite values of  n, A ~ ~ as h ~ ~ with all other  quantities remaining 
constant.  For  an uncracked slab of height 2h, A is given by  2 h y  = where 
Y=/To = a(T=/ZO) "" Define a residual load point  displacement  for the 
cracked body according to the well defined limit 

Ac = limit [A(h) - 2 h y  ~] (13) 
h ---~ ~ 

For  purposes  of  fracture analyses of c racked  bodies,  the load point 
displacement  for  a slab of  finite height, 2h, is approximated  very  accu- 
rately by 

A(h) = A c + 2hT ~ (14) 

as long as h/b  is greater  than about  2. Values o f f 4  are tabulated in Table 1 
where f4 is defined by 

Ac/(y0a) 
o~(p/Pnmit)n = f 4 ( a / b ,  n)  (15) 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
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SHIH ON J- INTEGRAL ESTIMATES 9 

Using Eqs 10 and 15, it can be seen that 

Ac/8 = A(a/b,  n) (16) 

wheref~ = f j f 2  is given in Table 1 and is plotted in Fig. 3. Note that in the 
limit of perfect plasticity (n ~ o~), A c = A = ~ for all a/b. 

E s t i m a t i o n  P r o c e d u r e s  for  T w o  S t r a i n - H a r d e n i n g  L a w s  

In this section simple procedures to estimate large-scale yielding 
behavior utilizing only the linear elastic and the fully plastic solutions are 
proposed. These procedures are valid for cracked bodies subjected to in 
plane or out of plane loadings. However, in this paper they will be 
illustrated in the context of the antiplane shear problem. The accuracy of 
these procedures will be assessed in the next section. 

First we introduce the estimation procedure for a material governed by 
the stress-strain law due to Ramberg and Osgood which for pure shear 
takes the form 

y/Co = ~/~o + ~(~/~a" (17) 

To motivate our proposal, consider an infinitely wide slab of height 2h 
with a semi-infinite slit as shown in Fig. 4a. The clamped boundaries are 
given constant shearing displacements, that is, w(xl, h ) =  Wo and 
w(xl, - h )  = -Wo. For this problem J can be calculated exactly [4]. Let 
the shear stress, r2, far ahead of the crack be denoted by ~ ,  then J is given 
by 

1 co 2 / ~ n  = ,+1 
J/(2hroTo) = }(y Y,o) + a(. .--7~l(r /To) 

\ rt T l/ 
(18) 

1.0 

.8 

Ar 
--if- .6 

.4 

0 
(o) 

n =aO.~ 

.6 n - 3  

I I I I ~o /b=u  
,2 .4 .6 .8 1.O 0 .2 .4 .6 .8 1,O 

1 ( b ) o/b 

F I G .  3----Ratio of  the residual load point displacement to the crack opening displacement. 
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10 MECHANICS OF CRACK GROWTH 

. . . . . . . . . . . . . .  . . . .  

I. '~t z, t 

(o) 

LINEAR 
ELASTICITY 

PURE POWER ~ , /  
I HARDENING / 

~-0 I ' / / / / /RIEGE|ISE POWERI 

V//// / / / /V/// / /A 
1 Y~/Yo 

7/7o 
(b) 

FIG. 4----(a) Infinitely wide slab with semi-infinite slit, (b) stress-strain curves for pure 
shear. 

Note also that the solution to the fully plastic problem for the configura- 
tion of Fig. 4a is (using the notation of Eq 6a) of  the form 

J = 2ha~'oYo(~'=/7o) "+~(n )  (19) 

where for this problem j~(n) = n / (n  + 1). Fur thermore ,  in the case of  
antiplane shear, Eq 19 holds without modification for the value of J 
corresponding to linear elasticity (n = 1). 4 Thus,  in terms of the dimen- 
sionless numberJ~(n),  the solution, Eq 18, for the infinitely wide slab may 
be rewrit ten as 

S/(2hzoTo) = (z|  = 1)+ a(z=/Zo)"+~f6n) (20) 

Guided by Eq 20, an obvious  candidate for approximat ing the relation 
between J and P for  the slab of width b and crack length a is 

~-0Y0a[(b - a)/b]  
= f l ( a / b ,  n - -  1)  

+ ( e ) " + '  
(2D 

4 In plane strain problems, fl(n = 1) is a function of Poisson's ratio. 
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SHIH ON J-INTEGRAL ESTIMATES 11 

where f~(a/b, n) was defined in Eq 9 and recall P = r=b and 
e n m i t  = r0(b - a). Note  that for sufficiently small values ofP/Pnmit, Eq 21 
reduces to the wel l -known linear elastic solution while for  large P/Pnmit 
Eq 21 approaches  the fully plastic prediction,  as it should. 

To obtain a more  refined approximate  relationship, we follow Bucci et 
al [2] and modify the linear elastic contribution using I rwin ' s  idea of  a 
plastically adjusted crack length. For  example ,  for  an elastic-perfect 
plastic material  (n = oo) the second term in Eq 21 makes  no contribution 
for P/Pnmit < 1. But  it is known that  the linear elastic prediction starts to 
noticeably underes t imate  the actual value of J when P exceeds  0.5 Plimit. 
To account  for this d iscrepancy in an approximate  manner ,  we replace Eq 
21 by 

roYoa[(b - a)/b] 
xfl(aefr/b, n = 1) 

+ ~ ~ , ~ j  f~(a/b, '0 (22) 5 

where 

and 

aaf  = a + r ,  

x ( ) b - aeff 

(23a) 

(230) 

The adjustment  to the crack length for strain hardening material is given 
by 

, (n , )  
r ~ =  ~ ~ \ r0 / (24) 

where Kxx~ is the elastic stress intensity factor,  and the introduction of 
(n - 1)/(n + 1) takes into account  strain hardening in a manner  consistent  
with the small-scale yielding antiplane shear solutions [5]. In I rwin ' s  
original proposal ,  the value of Kin in Eq  24 is a function Ofaefr, thus, Eq 24 
gives an implicit relation for r~. To simplify the approximat ion  procedure ,  
we follow Bucci et al [2] and calculate Km based on the original crack 
length a .  For  the present  crack problem,  Kn~ can be related to fl(a/b, 1) 
but it may be more  convenient ly expressed  by the exact  formula  

P N / ~  2 2 / ~  ~'a 
Km - b v T r a  tan 2b (25) 

5 In the original report, Harvard University Report DEAP S-10, the factor X should appear 
in the Eqs 22, 26, 27, 31, 32, and 33, as indicated in this paper. The calculations in that report 
were performed with this additional factor. 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



12 MECHANICS OF CRACK GROWTH 

From Eqs 23, 24, and 25 we have the simplest explicit adjustment to the 
elastic solution. The differences in the adjusted elastic solution due to the 
two slightly different definitions for aon are rather small, at least in this 
particular application. In the application of Eq 22, aefr is calculated 
according to Eqs 23a, 24, and 25 for P -< Plimit. For P > Pnmit, aerr is taken 
to be the value associated with P = Pnmit. Note that enmit is calculated 
from Eq 8 based on the actual crack length. 

Following the same line of reasoning, formulas for estimating the crack 
opening displacement and the residual load point displacement for the 
Ramberg-Osgood material are 

(&) (&)" (3"oa) - ?r n = 1) + a f2(a/b,  n) (26) 

and 

Ac - ( o  P ~  ) x f4 (ae . / b ,  
(~) , - - , ira, , ,  

n = 1) + a f4(a /b ,  n) (27) 

where aeff is calculated according to the same prescription just given. 
Next, consider the piecewise power hardening law which in pure shear 

is given by 

3'13'o = Tl~'o for T--T0 

3"/3"0 = (T/T0)" for T>T0 
(28) 

According to Eq 28, the exact result for J ,  for the infinitely wide slab of 
Fig. 4a, is given in terms of the stress far ahead of the crack, T =, by 

J/(2hTo3,o) = (T~/To)2/2 for T~176 

= 1/2 + [n/(n + 1)] [(z=/T0) "+1 -- 1] for T~176 
(29) 

The right hand side of Eq 29 is just the shaded area under the stress-strain 
curve in Fig. 4b. In terms of the elastic and fully plastic solutions (see Eqs 
19 and 20), Eq 29 may be rewritten as 

J/(2hroYo) = (T=/ro)2fl(n = 1) for T=<--TO 

= f ( n  = 1) + [(T=/TO) " + ' -  1]f(n)  for T=>TO 
(30)  

Copyr ight  by  ASTM Int ' l  (a l l  r ights  reserved) ;  Sa t  Dec   5  09:42:07 EST 2015
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SHIH ON J-INTEGRAL ESTIMATES 13 

where 
suggested by Eq 30, to the finite width slab is 

zo~.a[(b - a)/b] = xf~(aeff/b, n = 1) 

f o r  e ~ Plimit 

=xf l (aen /b ,n  1)+  [ ( p ~ )  n+a 1] = -- f l (a/b,  n) 

f o r  P > Plimit 

again f ( n )  = n/(n + 1). The straightforward generalization, 

(31a) 

(31b) 

where aen in Eq 31a is given by Eq 23 and where aen in Eq 31b is taken as 
the value associated with P = P n m i t .  Similarly, we propose the following 
formulas for estimating the crack opening displacement and the residual 
load point displacement for the piecewise power hardening material 

yoa xf2(aerr/b, n 1) for P -< Plimit (32a) 

= xfe(aen/b, n = 1) + - 1 fz(a/b,  n) for P > Pnmit (32b) 

and 

A~ _ ( oP )xf4(aefdb, n = 1) forP-<Pnmi t  (33a) 
'yoa .t limit / 

= xf4(aeff/b,n = 1)+  [ ( p ~  )n_, 1] f4(a/b ,n)  for P >  Plimit (33b) 

A quantity frequently measured in fracture toughness tests is the load 
point displacement. As mentioned earlier, this displacement may be 
estimated by using the simple formula 

A(h) = A c + 2h3, ~ (14) 

where 2h is the distance between the load points. For a Ramberg-Osgood 
material, 3, = and Ac in Eq 14 are given by Eqs 17 and 27; for piecewise 
power hardening, they are given by Eqs 28 and 33. As long as h/b -- 2, Eq 
14 should be an excellent approximation to the load point displacement. 

Thus far, expressions for J,  8, Ac, and A have been given in terms of the 
load parameter P. The relationships between J and ~ and J and A may be 
obtained by simply eliminating (numerically) P from the earlier expres- 
sions. Of particular interest is the relation of J to A. Bucci et al [2] 
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14 MECHANICS OF CRACK GROWTH 

proposed a procedure to approximate this relationship for an elastic- 
perfect plastic material. Adopting an approach similar to Ref 2, Rice et 
al [8] obtained analytical expressions for J in terms of A and P based on 
elastic-plastic material behavior for several deeply notched configura- 
tions. In the nonhardening limit, the two procedures proposed in this 
section are equivalent to the procedure presented elsewhere [8]. 6 

An Assessment of the Proposed Estimation Procedures 

For this assessment we have chosen the edge crack configuration 
with a/b = 1/2 and h/b = 2 subject to a uniform out of plane shear ~-= (see 
insert in Fig. 1). Boundary value problems associated with this configura- 
tion, for material behavior governed by the stress-strain characterizations, 
Eqs 17 and 28, considered previously and generalized using Jz deforma- 
tion theory, were solved by the finite element method. A brief description 
of the numerical calculations is given in the Appendix. 

First we consider the boundary value problem associated with the 
Ramberg-Osgood characterization. Accurate numerical solutions corre- 
sponding to high (n = 3) and (n = 10) strain hardening were obtained 
for values of the applied load, P,  well into the large-scale yielding range. 
In the stress-strain curve Eq 17, a is taken to be 3/7, which is the same 
choice made by Ramberg and Osgood for their tensile stress-strain 
relation. At each load level, the quantities J ,  ~, and A are computed. 
These are tabulated in Table 2 for values of P ranging from 0.6PH,nit to 
2Plim~t. The corresponding estimated values due to the proposed formulas 
for the Ramberg-Osgood material are given in Table 3. A comparison of 
the calculated and estimated values, for both cases of high- and low-strain 
hardening, reveals that they are in excellent agreement. The relationships 
between J and P,  A and P,  and J and A are plotted in Figs. 5 to 7. The 
latter relationship is obtained by numerically eliminating P from the first 
two relationships. 

In these figures, the linear elastic solution (without plasticity adjust- 
ment) and the fully plastic solution are given by Curves 1 and 2, 
respectively. The rigid-perfect plastic curve is included to illustrate the 
influence of strain hardening. Curve 3 (dotted line) represents the 
estimated results due to the proposed Eqs 22, 27, and 14. The results from 
the full numerical calculations are given by Curve 4.7 

These same relationships for the piecewise power hardening material, 

6 In Ref2,  the perfect plastic portion of the J - A relationship parallels the rigid-perfect 
plastic solution and is tangent to the plastically adjusted elastic solution. In the procedure of 
Rice et al and in ours, the perfect plastic portion also parallels the rigid-perfect plastic solution, 
but it intersects the plastically adjusted elastic solution at values of J and A associated with 
the attainment of limit load. 

7 When Curves 3 and 4 are too close to be identified separately in the figures, they are 
shown by a single curve. 
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SHIH ON J-INTEGRAL ESTIMATES 15 

TABLE 2---Results from full numerical calculations for Ramberg-Osgood material. 

n PIPlimit J/(roT0a) 8/(y0a) A/(3~0a) 

0.60 0.2095 0.7507 2.80 
0.80 0.4120 1.087 3.913 

n = 3 1.00 0.720 1.490 5.143 
1.20 1.166 1.974 6.535 
1.40 1.794 2.554 8.124 

3 1.60 2.652 3.247 9.941 
7 1.80 3.800 4.068 12.02 

2.00 5.294 5.033 14.39 

0.60 0.1965 0.7135 2.6969 
0.80 0.3830 1.0210 3.6510 

n = 10 1.00 0.7310 1.4680 4.7379 
1.10 1.100 1.8681 5.4616 
1.20 1.845 2.5967 6.5226 

3 1.25 2.490 3.1814 7.2787 
7 1.30 3.410 3.9917 8.2653 

1.35 4.751 4.1108 9.5668 
1.40 6.652 6.6469 11.2933 

Eq 28, are plotted in Figs. 8 to 10. An examination of the plots of J as a 
function of P and the A as a function of P shows that in the immediate 
vicinity of P equal to elimit, the estimated values of J and of A may differ 
from the calculated values by as much as 15 percent. At higher load 
levels, these discrepancies diminish. Despite these differences, the esti- 
mated and calculated curves of J as a function of A are in good agreement 
over the entire range of loading considered, for both cases of high- and 
low-strain hardening. This is particularly significant since it is from this 

TABLE 3--Estimated results using Eqs 22, 26, and 27for Ramberg-Osgood material. 

n P/enmlt J/("r o"Y oa) ~/(yoa) A/(yoa) 

0.60 0.211 0.770 2.829 
0.80 0.417 1.128 3.943 

n = 3 1.00 0.738 1.573 5.205 
1.20 1.188 2.064 6.604 
1.40 1.819 2.651 8.198 

3 1.60 2.681 3.350 10.021 
7 1.80 3.830 4.178 12.104 

2.00 5.331 5.151 14.480 
0.60 0.189 0.715 2.695 
0.80 0.358 1.013 3.642 

n = 10 1.00 0.702 1.484 4.755 
1.10 1.075 1.881 5.484 
1.20 1.832 2.613 6.552 

3 1.25 2.479 3.200 7.310 
7 1.30 3.411 4.012 8.297 

1.35 4.750 5.132 9.597 
1.40 6.658 6.669 11.321 
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16 MECHANICS OF CRACK GROWTH 
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(1) Linear elastic solution. 
(2) Fully plastic solution for pure power hardening material. 
(3) Predictions based on plastically adjusted elastic and fully plastic solutions. 
(4) Results from the full numerical solution for a Ramberg-Osgood material. 

FIG. 5--Curves of  J as a function of  P for (a)high-strain hardening (n = 3), (b) Iow-strai 
hardening (n = 10). 
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(1) Linear  elastic solution. 
(2) Fully plastic solution for pure power  hardening material.  
(3) Predictions based on plastically adjusted elastic and fully plastic solutions. 
(4) Results from the full numerical  solution for a Ramberg-Osgood material.  

FIG. 6---Curves of A as a function of P for (a) high-strain hardening (n = 3), (b) low-strain 
hardening (n = 10). 
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(1) Linear elastic solution. 
(2) Fully plastic solution for pure power hardening material. 
(3) Predictions based on plastically adjusted elastic and fully plastic solution. 
(4) Results from the full numerical solution for a Ramberg-Osgood material. 

FIG. 7-----Curves of  J as a function of  A for (a)high-strain hardening (n = 3), (b) low-strain 
hardening (n = 10). 

relationship that the critical value of J is obtained usually in fracture 
toughness tests. The calculated and estimated values of J ,  8, and A for 
values of P ranging from 0.6 elimit to 2 Plimit a r e  tabulated in Tables 4 and 
5, respectively. 

The relationship between J and ~5 is also of some interest [9]. Again this 
relationship is constructed easily since both J and 8 are known in terms of 
the applied load P. The estimated relationships between J and 8 for the 
two material characterizations (Ramberg-Osgood and piecewise power 
hardening relations) are in excellent agreement with the results obtained 
from the detailed finite element calculations as can be verified from the 
tables. 

Conclusion 

The results that have been presented thus far demonstrate that reason- 
ably accurate approximate relationships among J ,  8, A, and P, which take 
into account strain hardening, may be constructed from the adjusted 
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(1) Linear elastic solution. 
(2) Fully plastic solution for pure power hardening material. 
(3) Predictions based on plastically adjusted elastic and fully plastic solutions. 
(4) Results from the full numerical solution for a piecewise power hardening material. 

FIG. 8--Curves of  J as a function of  P for (a)high-strain hardening (n : 3), (b) low-strain 
hardening (n = 10). 
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(1) Linear elastic solution. 
(2) Fully plastic solution for pure power hardening material. 
(3) Predictions based on plastically adjusted elastic and fully plastic solutions. 
(4) Results from the full numerical solution for a piecewise power hardening material. 

FIG. 9--Curves of A as a function of P for (a) high-strain hardening (n = 3), (b) low- 
strain hardening (n = 10). 
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(1) Linear elastic solution. 
(2) Fully plastic solution for pure power hardening material. 
(3) Predictions based on plastically adjusted elastic and fully plastic solutions. 
(4) Results from the full numerical solution for a piecewise power hardening material. 

FIG. lO--Curves o f  J as a function o f  A for (a) high-strain hardening (n = 3), (b) low- 
strain hardening (n = 10). 

elastic and fully plastic solutions. They also reveal that these relationships 
can be quite sensitive to the degree of strain hardening. 

To illustrate the last statement, relationships between J and A, obtained 
from the full numerical calculations, are plotted in Fig. l l a  for the 
Ramberg-Osgood characterization and in Fig. l lb  for the piecewise 
power hardening characterization. In these figures Curve 1 represents 
the linear elastic solution, Curves 2 and 3 are the relationships obtained 
from the finite element calculations corresponding to high- (n = 3) and 
low- (n = I0) strain hardening materials, respectively. The rigid-perfect 
plastic solution (from limit analysis) is given by the straight line through 
the origin. The relation of J to A for an elastic-perfect plastic material is 
given by Curve 4. This curve parallels the rigid-perfect plastic solution for 
P > Plimit and intersects the adjusted elastic curve at the point corre- 
sponding to the attainment of the limit load, according to the estimation 
procedure [8]. As mentioned earlier, this curve is also the limit of our 
estimated solution for n ~ ~. 
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22 MECHANICS OF CRACK GROWTH 

TABLE 4-----Results from full numerical calculations for piecewise power 
hardening material, 

n P/Plimit Jl(To3'oa) 8/(y0a) A/(y0a) . 

0.60 0.190 0.6928 2.561 
0.80 0.350 0.9541 3.598 

n = 3 1.00 0.581 1.250 4.541 
1.20 0.936 1.623 5.555 
1.40 1.680 2.272 6.854 

ot = 1 1.60 2.905 3.226 8.473 
1.80 4.720 4.520 10.460 
2.00 7.280 6.197 12.924 

0.60 0.196 0.7107 2,6945 
0.80 0.375 1.0045 3.6355 

n = 10 1.00 0.669 1.3850 4.6493 
1.10 1.000 1.7573 5.3330 
1.20 2.270 3,0146 6.9064 

a = 1 1.25 3.600 4.1710 8.2231 
1.30 5.550 5.8593 10.074 
1.35 8.480 8.2662 12.6436 
1.40 12.707 11.6477 16.1903 

For  both stress-strain characterizations,  Figs. 1 la  and b clearly show 
that at the same value of the load point displacement, the value of  J for a 
low-hardening material (n = 10), may differ from the elastic-perfect 
plastic estimate by as much as 20 percent.  Fur thermore ,  a comparison 
between Figs. 1 la and b shows that the curve for n = 3 for a Ramberg- 
Osgood characterization differs considerably from the curve for n = 3 for 

TABLE 5--Estimated results using Eqs 31, 32, and 33 for piecewise power 
hardening material. 

n PIPlimit Jl(~'o3'oa) 8/(~/0a) A/(y0a) 

0.60 0.185 0.698 2.682 
0.80 0.336 0.957 3.595 

n = 3 1.00 0.540 1.239 4,526 
1.20 1.036 1.806 5.751 
1.40 1.854 2.598 7.143 

ct = 1 1,60 3.108 3.653 8.731 
1.80 4.932 5.006 10.543 
2,00 7.477 6.697 12.607 

0.60 0.188 0.714 2.694 
0.80 0.347 0.995 3.624 

n = 10 1.00 0.565 1.317 4.586 
1.10 1.158 1.937 5.603 
1.20 2.622 3.338 7.398 

c~ = 1 1.25 3.969 4.553 8.807 
1,30 5.977 6.294 10.740 
1.35 8.926 8,755 13.389 
1.40 13.197 12.188 17.007 
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(1) Linear elastic solution. 
(2) Strain hardening solution for n = 3. 
(3) Strain hardening solution for n = 10. 
(4) Estimated elastic-perfect plastic solution. 

FIG. 11---Curves of J as a function of  A for (a) Ramberg-Osgood characterization 
(b) piecewise power hardening characterization. 

the piecewise power hardening relation. Nevertheless, the curves for 
n = 10 for the two material characterizations are reasonably close to each 
other. 

Finally, note that in the estimation schemes presented, we have made 
use of Irwin's plasticity corrections to adjust the elastic contribution to 
the estimated solution in the range between the small-scale yielding and 
the fully plastic state. If more accurate plasticity corrections are available 
for this intermediate range, the relationships among J ,  8, A, and P may be 
estimated to greater accuracy, particularly in the case of the piecewise 
power hardening characterization. Despite the simplicity of the estimation 
schemes discussed in this paper, the investigation has shown that 
large-scale yielding behavior in antiplane shear as measured by the 
parameters J, ~, A, and P may be predicted fairly accurately for a broad 
range of elastic-plastic materials. 

The procedures just proposed can be applied without essential modifi- 
cations to inplane problems. Of course this will entail use of the analogous 
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elastic and fully plastic solutions for the plane problem in question. At the 
writing of  this paper, only solutions for the fully plastic center  cracked 
strip under plane strain are yet available [3]. It can be hoped that the 
accuracy achieved by the simple estimation procedure  in the antiplane 
shear problem discussed here will continue to hold for  plane problems, 
although this remains an open question. This question, as well as the 
solution to additional fully plastic plane problems, will be left for future 
work. 
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APPENDIX 
Descriptions of an accurate finite element method, which embeds the dominant 

singularity solution of the near-tip through the use of a singular tip element, have 
been given elsewhere [3,10,11]. Typically the singular element has a radius of 
0.02a. The region between the tip element and the boundary is represented by 
conventional elements. For this analysis we have chosen to work with quadrilat- 
eral "elements" that are formed from four constant strain triangular elements. 
The common node of the four triangular elements (or the midnode of the 
quadrilateral) is removed by static condensation. This results in considerable 
savings in computer storage and in the total number of matrix operations 
associated with the solution of the system of algebraic equations. We will restrict 
our attention, in this appendix, to several computational details pertinent to this 
investigation. 

For fully plastic crack problems of the type described by Eq 28 the material is 
fully nonlinear and incompressible. In plane strain situations, enforcement of the 
incompressibility constraint complicates the numerical procedure. In antiplane 
shear this difficulty does not arise; nevertheless, the problem is still fully nonlinear. 
To avoid the comparatively large stiffness terms that may arise from elements that 
are virtually stress free, the pure power hardening law is slightly modified to allow 
a linear relationship between the stress and strain, for stresses less than rc where 
Tc/~0 is much less than unity. 

The finite element discretization of the nonlinear boundary value problem 
results in a system of nonlinear equations. We briefly discuss Newton's method 
for solving the nonlinear system of equations. 

A(w)w = b (34) 
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At the ith iterate, Newton's  method gives 

I OA(w), w"l -1 
Aw, = A(w,) + ~ " i  iJ (b - A(w,)w,) (35) 

where 
W i +  1 = W i + m w  i 

The second term of the Jacobian involves the derivatives ofA.  It is precisely this 
term that is responsible for the second order convergence attainable with 
Newton's method. If this term is absent, the resulting iterative process is only first 
order convergent. 

For the pure power hardening law, Eq 2, and the Ramberg-Osgood relation Eq 
17, the derivatives OA/Ow are continuous for all values of w. In this case, the 
iterative process as given by Eq 35 is second order convergent. Assuming that 
matrix, A, is fairly well conditioned and a good initial estimate of the solution is 
available, the initial solution will converge very rapidly to the actual solution. The 
initial solution may be obtained by the process of parameter tracking. Thus, the 
solution to the n = 1 case can be used as the initial estimate to the n = 3 case, the 
n = 3 solution as the initial estimate to the n = 5 case and so on. 

The derivatives OA/Ow = (OA/Oy/Ow), associated with the piecewise power 
hardening relation is given by Eq 28, are discontinuous at re = z0 (or 7e = 70). 
Then the iterative process described by Eq 35 is numerically unstable for this 
class of problems. In this case, linear iteration will work; however, the conver- 
ence is only of first order. To "smooth"  the abrupt change in OA/Ow at 7~ = 70 
OA/Ow = 0 for 7e < 70) every OA/Ow term generated during the formation of the 
element stiffness matrix is multiplied by the factor 

f=  [ ) " - l ]  / 7,> ,,, forT _>7 ~ 

It may be noted that f approaches unity for 7~ > > 7,, and f--> 0 as 7e --> 70. In the 
present calculations m was taken to be 4. With the preceding modification, the 
rate of convergence is not quite second order but definitely better than the 
convergence rate associated with linear iterations. 

The quantity of primary interest in this paper is the J-integral. As discussed 
elsewhere [3,10,11], J may be obtained from the formula 

J = e~7,~yoKi,KJn = otroToK~)~n+l)lnln (36) 

where K,~ and K, are the plastic stress and strain intensity factors and I ,  is 
a numerical constant. The finite element approach which embeds the dominant 
singularity solution allows K,, and K, to be computed directly. Thus J associated 
with a particular crack problem may be obtained rather easily from Eq 36. 

Alternatively, J may be obtained by computing the integral given by Eq 3 along 
a contour, F, which encircles the crack tip. An accurate technique for this 
purpose is discussed in Ref II .  Briefly, the contour, F, passes through selected 
midnodes of the quadrilateral "e lements" ;  the quantities (stresses and displace- 
ment gradients) associated with a particular midnode are obtained by averaging 
the quantities associated with the four triangular elements that comprise the 
quadrilateral. The values of the J-integral, so computed for different contours 
throughout the body are in excellent agreement. Specifically, the values of J 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



26 MECHANICS OF CRACK GROWTH 

computed on various contours differed by less than 1 percent for the pure power 
hardening and Ramberg-Osgood characterizations. For  the piecewise power 
hardening relation, where there is a distinct yield stress (also note that at yield 
stress, the slope of the stress-strain curve is discontinuous), J ' s  computed for 
contours away from the elastic-plastic boundary differed by less than 3 percent. 
For contours close to or intersecting the elastic-plastic boundary the differences 
may reach 10 percent for low-strain hardening materials (n -> 10); this is consistent 
with the averaging technique used in the computations |11]. 

A comparison of the values of J ,  obtained from Eq 36 and from the latter tech- 
nique, reveals that they are in good agreement for high-strain hardening materials. 
For low-strain hardening materials (n -> 10), they may differ by as much as 15 
percent for levels of applied stress well into the fully plastic range. Since at low- 
strain hardening, the values of J computed by the latter technique for different 
contours throughout the cracked configuration are within 1 percent of the average 
value, we conclude thatJ  obtained from Eq 36 is inaccurate at high levels of applied 
stress for low-strain hardening materials. 
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ABSTRACT: A JIe test procedure using a single deeply cracked specimen is 
proposed. The crack extension is measured by partially unloading the specimen to 
determine the elastic compliance. J~c tests were made using ASTM A469 steel. 
Compact specimens from 1/2T to 5T were tested. No size effect was found. 
Results from two independent laboratories are presented and are in agreement. 
The errors due to simple formulation of J~ calculation, periodic partial unloading, 
and simplified analysis for the extension of deep cracks in compact specimens 
are explored. The measurement point of crack extension for establishing J~c is 
discussed. The results indicate that a practical and effective single specimen test 
procedure has been developed. 

KEY WORDS: crack propagation, fracture tests, fracture properties, tests, 
steels, plastic properties, elastic properties, elastic deformation, fracture 
strength 

The elastic-plastic stress-strain response of cracked structures has been 
characterized by Rice [1,2] 4 and Hutchinson [3], and the crack tip region 
response described in terms of a path independent integral termed J~. 
Begley and Landes noted that J~ is a field quantity similar to the stress 
intensity factor, Kx [4]. Accordingly they formulated a fracture criterion 
around Ji in a fashion similar to that normally done with K~. They used 
Rice's [2] definition that the J-integral (referred to as Ji in the remainder of 
the report) is related to the rate of change in area under the load versus 
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28 MECHANICS OF CRACK GROWTH 

load-point-deflection curve with respect to change in crack length. 
Fracture toughness as defined through J~ was termed J1e for plane strain 
crack tip constraint. 

Since J~ is analyzed based on the deformation theory of plasticity, 
significant unloading cannot be permitted without serious questions. 
Because of this, Begley and Landes [5] chose to use a Jxc test procedure 
involving the use of multiple specimens. They suggested measuring the 
crack extension in each of the several identical specimens after marking 
the crack depth at various values of load-point displacement, and break- 
ing open each specimen to measure the marked crack length. The marking 
may be made, for example, by heat tinting the crack surface after 
unloading the specimen. This procedure normally has required four to six 
specimens to obtain a single value of Jic- 

To overcome the use of multiple specimens, aJi~ test procedure using a 
single deeply cracked compact specimen is proposed. The crack exten- 
sion is measured during repeated partial unloading of the specimen using 
linear elastic compliance calculations. Justification will be given as to why 
this unloading does not seriously affect the results considering the 
previously mentioned limitation in deformation theory of plasticity. 

A number of tests to determine J~ were made using ASTM A469 steel. 
The extent of crack growth selected as a measurement point criterion for 
Ji~ is discussed. Various criteria are compared. 

Compact specimens of sizes ranging from 1/2 to 5 in. thick were tested 
and the results compared. The 5-in.-thick specimens were tested accord- 
ing to ASTM Test for Plane Strain Fracture Toughness of Metallic 
Materials (E 399) at -10,  5, 32, and 75~ J~c test temperatures ranged 
from 5 to 250~ Results were obtained from two independent 
laboratories. 

Theoretical Considerations 

A c c u r a c y  o f  Jt  Calcu la t ion  

Rice et al [6] showed that a simple formula for J~ is 

2A 
Ji - B (w  - a) (1) 

where bending loading is applied to a specimen deeply cracked compared to 
the width w; A is the area under the load versus load-point-displacement 
curve; B is the specimen thickness; and a is the crack depth. 

The applicability of Eq 1 to the compact specimen can be dem- 
onstrated. To do this, it is noted that for essentially elastic loading 

J1 = GI (2) 
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where G~ is the elastic strain energy release rate. Equation 2 is a necessary 
condition for the formula to be used. Available elastic analyses will be 
used to show that this condition is satisfied and, therefore, demonstrate 
the applicability of Eq 1. 

Srawley and Gross [7] gave the results of a boundary collocation 
K-calibration for the compact specimen. They gave a table o f f (a /w)  in 
which 

KIB(w - a )  zl~ 
f (a /w)  = P(2w + a) (3) 

where P is the load. The tabulation of f (a/w)  will be used to compare with 
values in the same form as Eq 3 resulting when Eq 1 is employed. The 
latter values will be termed J(a/w). Assuming Eq 2 holds and using 
P • 8 = 2A,  Eq 1 becomes 

P x 6  
G1 - (4) 

B(w - a) 

where 8 is the load line displacement and ( w -  a) is the remaining 
ligament. G~ is related to K~ for plane strain deformation through 

G1E 
KI ~ - (5) 

( 1  - v 2) 

where E is young's modulus and v is Poisson's ratio. Substitution of Eq 4 
into Eq 5 and in turn into Eq 3 yields the following expression forj~a/w) 

cEB (w - a) 
f ia /w)  = 1 C ~2) x (2w + a) (6) 

In this expression, c is the compliance defined at the load line 

c = - -  (7) 
P 

The elastic compliance at the load line has been given by Tada et al [8] 
a s  

V 2 ( a / w )  x (1  - v z) 
c = (8) 

E x B  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  S a t  D e c   5  0 9 : 4 2 : 0 7  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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TABLE 1--The functions f(a/w) and f(a/w), Eqs 3 and 9 comparing 
the accuracy of Eq 1 to elastic collocation results. 

a/w f(a/w) f(a/w) f / f  

0.4 1,419 1.21 0,85 
0.5 1.364 1.23 0.90 
0.6 1.326 1.24 0.94 
0.7 1.312 1.23 0.94 
0,8 1.311 1.24 0.945 
0.9 1.311 1.26 0.965 
1.0 1.311 1.32 1.008 

Substituting Eq 8 into Eq 6 gives the desired expression f o r f ( a / w )  

W - -  a 

f ( a / w )  = V2(a/w) llz • 2w + a (9) 

A comparison o f f ( a / w )  w i t h ~ ( a / w )  is given in Table 1. Note that in the 
range of (a /w)  from 0.6 to 0.8, the ratio o f f ( a / w )  t o f ( a / w )  is constant, and 
thatT(and thus K~ calculated from Eqs 1 and 5) is about 6 percent low. 
This is considered an acceptable error and hence, Eq 1 is considered 
verified for the compact specimen loaded in the essentially elastic range. 
The error in the plastic range is also expected to be small. 

Calculation o f  Crack  Ex tens ion  

A simple formula can be obtained relating the crack extension to the 
change in elastic compliance of the compact specimen. For the deeply 
crack specimen, the applied load may be considered to be a moment M 
applied to the remaining ligament of length (w - a). The angular rotation 
of the applied moment 

16 M 
0 -  E • B • ( w -  a) 2 (10) 

The compliance then is 

0 

M 

16 1 
- • ( 1 1 )  

E B  (w - a) 2 

The derivative 

-32 
dc - 

EB 

d(w - a) 
- - -  • ( 1 2 )  (w - a) z 
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Dividing Eq 12 by Eq 11 gives 

or rearranging ~ 

dc 2da 

c (w -a )  

(w - a) dc 
da - x (13) 

2 e 

An alternate derivation for the foregoing result may be obtained from 
analysis of the compact specimen using the compliance relation of Tada et 
al [8]. 

That result is 

w - a de 
da - ~  x - -  x g (a /w)  (14) 

c 

The values for g(a /w)  are given in Table 2, and they indicate that Eq 13 
will over estimate the crack extension by about 10 percent for 
0.6 _< (a/w) <- 0.8. 

Exper imenta l  Errors Due  to Unloading 

As mentioned earlier, the theoretical concept of JI does not permit 
"significant" unloading. The experimental expedient of unloading to 
measure the elastic compliance must be, therefore, shown to not mate- 
rially affect the experimental fracture toughness results. For that reason 
tests were performed with and without unloading and results compared. 
This can also be demonstrated further through physical reasoning by 
showing that the unloading crack tip plastic zone side remains small 
compared to the process zone size [9], Zp, existing at the time unloading is 
initiated 

Zp-~Ji/o' ,  (15) 

TABLE 2 Factors g(a/w) for the crack extension Eq 15. 

a/w g(a/w) 

0.5 0.808 
0.6 0.872 
0.7 0.891 
0.8 0.906 
0.9 O.934 
1.0 1.000 

5 An analogous equation can be derived for load changes at limit load. 
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where tru is the yield stress. Also the unloading plastic size, r , ,  is 
approximately 

\ 
where K1 is calculated for the unloading only. 

The criterion then for limiting unloading will be established as 

(16) 

ru < a (17) 
Zp 

where ot is to be a number much less than 1.0 
A suitable value for a may be selected at about 0.01. For 10 percent 

unloading in our tests of 1T compact specimens a typical value for o~ i s  
0.002. Further assurance that unloading will not affect results may be 
obtained by realizing that the extent of unloading was not as large as the 
loading prescribed for precracking specimens by ASTM Method E 399. 
We were assured then that 10 percent unloading would not materially 
affect the results. 

Material 

The material tested was a steel similar to that specified by ASTM A469. 
The mill analysis is shown in Table 3. This steel was procured as a 
22-in.-diameter round forging in a quenched and tempered (ll00~ 
condition. The mechanical properties of this material at various tempera- 
tures are shown in Table 4. The temperatures span the range used for Jic 
testing. The Charpy impact properties taken from a depth of 41/2 to 5 in. 
below the quenched surface are shown in Table 5. 

AllJlc specimens were of the compact design. The size of the specimens 
tested range from 1/2T to 5T. The compact specimens were all taken from 
the forged cylinder with the crack propagation planes either radial or up to 
45 deg to the radial plane. All the crack tips were located at 4 to 9 in. from 
the axis of the forging. 

Test Procedures 

The linear elastic fracture toughness (K~e) of this material was deter- 
mined using 5T specimens according to ASTM Method E 399 at - 10~ 
and +5~ 

TABLE 3--Chemical analysis of test material. 

Element C Mn P S Si Ni Cr V Mo 

% 0.22 0.31 0.011 0.012 0.23 3.63 0.07 0.11 0.27 
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TABLE 4--Mechanical properties of specimens (0.505-in. round tension specimens). 

Temperature + 5~ 75~ 175~ 

0.2% yield strength, psi 93 000 88 800 85 000 
Tensile strength, psi 109 000 103 000 10l 000 
Elevation in 2 in., % 24.0 22.5 23.0 
Reduction of area, % 58.3 60.6 59.8 
Fracture stress, psi 194 200 195 200 184 100 

For the test temperatures 32 and 75~ values of fracture toughness are 
estimated based on KQ values (both occurred at abrupt failure points).The 
fracture toughness values are shown in Table 6. 

For the J-integral testing, the compact specimens were modified to 
permit measurement of load-line displacements. Specimens of 1/2T, IT, 
and 2T sizes (Fig. 1) were used in this test program. 

Fatigue precracking was accomplished at peak loads less than 1/2 the 
expected limit load [10]. The crack lengths were extended by fatigue 
precracking to obtain crack lengths to-specimen-width ratios (a/w) from 
0.70 to 0.80. 

The specimens were loaded under ram position control in a closed loop 
electrohydraulic test machine. The heating of the specimens was ac- 
complished by wrapping resistance heating tapes around the specimen 
and insulating with glass wool insulation. Cooling was accomplished by 
allowing liquid nitrogen vapor to pass through a chamber surrounding the 
specimen. The temperature was controlled to within ___5~ 

All load and displacement signals were recorded on an x-y plotter and 
were normally stored in digital form in the core memory of a PDP-8 
computer. The testing procedures fell in two categories, (1) no-unloading 
and (2) unloading. For those specimens in (1) the load displacement points 
were stored in digital form so that curves could be easily reproduced and 
the J~ value quickly calculated. For those tests with unloading (2), a linear 
signal was subtracted from the displacement signal; the result was plotted 
versus load. The subtracted signal was proportional to the load and the 

TABLE 5--Charpy V-notch impact properties of specimens, a 

Temperature, ~ 

Absorbed 
Energy, Fibrous 

fl-lb Appearance,% 

25 32.5 40 
50 40.0 48 
75 49 60 

125 72.5 87 
175 87 100 

a 50 percent fracture appearance transition temperature (FATT) = 50~ 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



34 MECHANICS OF CRACK GROWTH 

TABLE 6---ASTM fracture toughness tests ASTM Designation E 399 5T compact 
specimens. 

Test Average Load Deflection KQ, 
Temperature, ~ PQ, lb Crack Length, in. Curve Types psi- (in.) 1~2 

-I0 188000 4.668 III 103000 
5 187000 4.675 III 103000 

32 262000 4.595 III 142000 
75 325000 4.662 III 180000 

constant of proportionality was equal to the initial elastic compliance of 
the specimen. A typical load displacement curve is shown in Fig. 2. A plot 
with the elastic compliance signal subtracted is shown in Fig. 3. 

The test procedure  for category (2) tests called for unloading 10 to 20 
times. The unloading lines remained vertical until crack propagation took 
place at which time the lines changed slope proportionally to the change in 
compliance of the specimen. This measurement  technique is capable of 
detecting crack length changes of less than 0.001 in. 

The unloading was accompl i shedwi th  a ramp command signal which 
allowed loading and unloading at equal rates. The load was never  reduced 
by more than 10 percent  of the calculated limit load. 

The foregoing testing system was duplicated in all of its essential 
features in a second laboratory.  A limited number  of tests were performed 
on the second system. These results are included and identified as being 
from a second laboratory. 

The calculated value of J~ at various points is given by Eq 1 and the 
change in crack length by Eq 13. Values of the compliance changes were 
taken from the load-inelastic displacement record just  described. 

Results 
The results of calculating the J~c values from the crack extension data, 

using the various criteria described next, are shown in Table 7. The codes 
for the various columns are as follows: In column 1 the first digit of  each 
row is the specimen size (that is, 1/2 means 1/2T specimen size), whereas 
the second and third digits are the location number  and the serial number,  
respectively. Results of tests from the second laboratory are those 
designated as " l - 3 - X "  in Table 7. In column 2 the test temperature is 
given in ~ In column 3 the procedure  category is identified as described 
in the Test  Procedures.  In columns 4 through 7 the subscripts on the 
critical stress intensity factor,  K, are as follows 

F LD = first load drop, 
J/2tr~ = intersection point of the Aa = J/2o-v line with the J~ versus Aa 

curve,  
FG = first measurable crack extension, and 
SF = specimen failure (fast fracture or separation). 
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36 MECHANICS OF CRACK GROWTH 

FIG. 2.--Typical load deflection curve. 

FIG. 3--Typical load versus inelastic displacement diagram. 
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In columns 8 and 9 the values under b and Pmax are the remaining ligament 
(w - a) and the maximum load in each test. 

All fracture results in Table 7 are expressed in terms ofKt (ksi �9 (in.) 1/2) 
which is related to J~ in the elastic range by Eqs 2 and 5. 

Curves and their scatterbands of Kt versus temperature are shown in 
Fig. 4 for the various J~r criteria. 

Crack growth resistance data, J~ versus Aa, are shown for some 
specimens tested with unloading at 175~ in Fig. 5. 

The fracture toughness values obtained with 5T specimens are plotted 
versus test temperature in Fig. 6. 

Discussion 

Once Begley and Landes [4,5] showed that the J-integral has promise as 
a failure criterion, a great deal of interest was generated in Jgc testing 
because of the obvious advantages of reduced specimen size and reduced 
specimen cost. It soon became apparent that standards were necessary to 
define the point at which the value of JI was considered critical, that is, 
J~c. As these standards are not yet defined, a number of options are still 
open to discussion. Following are just a few of the criteria commonly used 
in defining a point on the Jt versus Aa curve considered J~. 

Criterion l 

Using the crack extension equivalent to J~/(2tr~) or the crack opening 
stretch (COS) [6]. 

Criterion 2 

Using the first load drop found in the load-displacement record and 
calculating the value of Jr corresponding to this point. 

Criterion 3 

Using the value of Jr calculated at the point of first measurable crack 
extension. 

Criterion 4 

Using the value of J~ calculated at the specimen failure point (fast 
fracture or specimen separation). 

In recent JIc testing by Begley and Landes [5], they have shown a good 
correspondence between J~c values obtained through Criterion 1 and 
valid K~e values.-The procedure used by Begley and Landes requires four 
to six specimens to measure J~c. 

The object of our test program was to develop a procedure for the 
determination of J[e from a single specimen test. A method of determining 
unloading slopes was used to calculate the crack extension at any load 
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40 MECHANICS OF CRACK GROWTH 

FIG. 4------Scatterbands for the Jic criteria. 

pont. By noting the slope change, as seen in Fig. 3, and calculating the 
change in compliance from this new slope, the crack extension, Aa, can 
be calculated from Eq 13. J~ values may be calculated from Eq 1 
corresponding to the load necessary for a crack extension, Aa. A typical 
plot of J~ versus Aa is shown in Fig. 5. 

Now let us refer to Fig. 4 and compare the various criteria for 
determining JIe. It was necessary to raise the temperature of the speci- 
mens so that slow crack extension could be detected before the onset of 

5000 

IK'LB 2000 

,~176176 t 
* •  

x 2T SPECIMEN 
o IT SPECIMENS 
a II2T SPECI MEN 
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FIG. 5---Crack growth resistance curves for tests at 175~ 
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FIG. 6---ASTM fracture toughness, A469 Steel, 5T compact specimens. 

rapid crack growth. At temperatures below 100~ rapid fracture occurred 
before any sign of slow crack growth. It appears, therefore, that all the 
criteria are applicable below this temperature. The J~e values measured, 
using all of the foregoing criteria, are essentially the same for tempera- 
tures below 100~ 

By heating the specimens to temperatures of 100~ and above, all four 
of the criteria can be applied to the J~ versus Aa curve to determine J~e. 
The values obtained using each of the criteria will be different, however. 
The scatterbands of the results K~ versus temperature for the various 
fracture criteria, in Fig. 4, shows at higher temperatures, the divergence 
in results. The divergence is greatest for the criterion which depends on 
final failure or separation of the specimen. 

The final separation or failure of the specimen criterion shows an ever 
increasing K~ value for higher temperatures, whereas all the other criteria 
show a leveling off trend of the K~ values at higher temperatures. This 
difference between the results of Criterion 4 and the other criteria is due 
to the slow crack extensions that occur; we would expect higher gi  values 
due to the force necessary to drive the crack and also due to the 
breakdown of the relationship, Eq 1, used to calculate Ji. 

Specimen size effects only appear at large crack extension values as 
seen in Fig. 5. To eliminate the effect of specimen size, a short crack 
extension criterion should be used such as (a) first measurable crack exten- 
sion or (b) intersection of the J~ versus/Xa curve with the ~a = J~/2~r~ line. 

There are two findings worth noting in Fig. 5 which differ somewhat 
with the findings of Begley and Landes. 

1. The initial slopes of the J~ versus Aa curves are vertical rather than 
on the line Aa = J~/2try. 
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2. The crack extension curves are linear beyond the intersection of the 
J1 versus Aa and the Aa = J~/2o'u line. 

Work is continuing on both the testing of compact specimens and on 
testing three- and four-point bend bars. 

Condusions 

1. J~e testing using a single specimen to determine aJ~ versus Aa curve 
has been successfully executed and duplicated in two independent 
laboratories. Good agreement in results was achieved. 

2. The practice of measuring compliance changes to determine crack 
extension in aJic test has been shown to be sensitive and practical in both 
laboratories. 

3. The simple formulations for relating J~ to the area under load- 
deflection curve, Eq 1 and for relating crack extension to compliance 
change, Eq 13 have been shown to be sufficiently accurate for testing 
purposes for deeply cracked compact specimens. 

4. Effects on results due to unloading are negligible when unloading is 
limited to less than 10 percent of the limit load. 

5. The measurement point for determiningJ~c should be limited to short 
crack extensions. A suggested value is Aa = Ji/2cr,. 

6. No effects of specimen size and geometry on J~c were found for the 
range of specimens tested providing the J~ criterion is limited to short 
crack extension. 

7. The results indicate that a practical and effective single specimen 
test procedure has been developed. 
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ABSTRACT: Good agreement was found between elastic plastic (Jzc) and 
previously developed conventional linear elastic (Ki~) critical fracture toughness 
values for five materials. The materials investigated included four rotor forging 
steels (ASTM A471 Ni-Cr-Mo-V, ASTM A469 Ni-Mo-V, ASTM A470 Cr-Mo-V, 
and AISI 403 modified 12Cr) plus an ASTM A217 21/4Cr-lMo cast steel. A 
resistance curve test technique recently developed by Landes and Begley was 
employed to obtain the J~e fracture toughness values. Elastic plastic fracture 
toughness tests were performed with 1-in.-thick compact tension specimens at a 
minimum of three temperatures per material, the highest temperature being that 
where upper shelf fracture toughness behavior was first expected. The fine agree- 
ment between the elastic plastic and linear elastic critical fracture toughness 
values for this class of steels further supports the realization that the elastic plastic 
Jlc fracture criterion, based largely on the path independent J-integral proposed by 
Rice, extends the concepts of linear elastic fracture mechanics into the elastic 
plastic fracture regime. Thus, it is now possible to obtain critical fracture 
toughness values with small specimens over a wide range of temperatures for 
tough materials. 

KEY WORDS: crack propagation, fracture strength, mechanical properties, 
steels, fracture tests, stress analysis 

Problems are often encountered in applying linear elastic fracture 
mechanics to the lower-strength, higher-toughness materials commonly 
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44 MECHANICS OF CRACK GROWTH 

used for many structural applications. In order to meet the requirement 
of essential elastic behavior, structures of interest must be very large. 
Linear elastic fracture toughness specimens become massive (even though 
the maximum temperatures for valid test results based on the ASTM 
Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399-72) 
are often as much as 400 to 500~ below service operating temperatures), 
and critical crack sizes at elastic stress levels are large enough to be of 
little practical concern. More often the practical problem concerns 
relatively small defects adjacent to stress concentration sites where the 
extent of plasticity rules out the use of linear elastic fracture mechanics. 
Consequently, Begley and Landes developed an elastic plastic J~c fracture 
criterion to provide a direct extension of fracture mechanics into the 
elastic plastic fracture regime [1,2]. 2 

The purpose of this investigation was to determine experimentally 
elastic plastic Jic fracture toughness results and compare them with 
conventional linear elastic K~c fracture toughness results obtained previ- 
ously according to ASTM Method E 399-72. Four rotor forging steels 
(ASTM A471 Ni-Cr-Mo-V, ASTM A469 Ni-Mo-V, ASTM A470 Cr-Mo- 
V, and AISI 403 modified 12Cr) plus an ASTM A217 21/4Cr-lMo cast 
steel were the materials investigated. 

A resistance curve test technique developed by Landes and Begley was 
employed to obtain the Ji~ fracture toughness values [4]. Elastic plastic 
fracture toughness tests were conducted at a minimum of three tempera- 
tures per material with the highest temperature being that where upper 
shelf fracture toughness behavior was first expected. One inch thick 
compact tension specimens were utilized for all the elastic plastic fracture 
toughness tests. 

Keep in mind, linear elastic fracture mechanics technology provides a 
one parameter fracture criterion for a limited class of problems; those of 
cracked bodies with small-scale yielding where the crack tip plastic region 
is at least an order of magnitude smaller than the physical dimensions of 
the component. Clearly, it would be very desirable to have a fracture 
criterion which, by direct extension of the concepts of linear elastic 
fracture mechanics technology, could enable us to predict fracture in 
structures in cases of both large- as well as small-scale plasticity. The 
elastic plastic J~ fracture criterion, based largely on the path independent 
energy line integral J developed by Rice [3], has been proposed to satisfy 
the foregoing objectives. 

As advanced by Begley and Landes [1 ], the physical significance of J 
for elastic plastic materials is that it is a measure of the characteristic 
crack tip elastic plastic field. As such J can be viewed as a single 
parameter characterization of the crack tip elastic plastic field, obviously 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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very similar to the role of  K relative to linear elastic f racture  mechanics.  
This is possible from the descript ion of the strain hardening plastic crack 
tip singularity given by Hutchinson [5] and Rice plus Rosengren [6]. In 
fact, McClintock has shown that by combining J with the Hutchinson,  
Rice, and Rosengren crack tip model the near  tip values of  stress and 
strain can be expressed as a function of J [7]. This is directly analogous to 
the stress field equations of  linear elastic fracture mechanics .  In addition, 
for linear elastic behavior  the J-integral is identical to G,  the energy 
release rate per unit crack extension [1,8]. Therefore ,  the Jic fracture 
criterion for the linear elastic case is identical to the K~c fracture  criterion. 
Consequently,  the similarities be tween the JIe and KI~ fracture  criterion 
become apparent.  Hopefully,  the fine agreement  found be tween  the linear 
elastic and elastic plastic critical fracture toughness values for  the class of  
steels invest igated will fur ther  support  the Jlc elastic plastic fracture 
criterion as a direct extension of  linear elastic fracture mechanics  technol- 
ogy which can enable us to predict  fracture in structures in cases of  both 
large- as well as small-scale plasticity. 

Materials and Specimens 

The materials tested include four rotor  forging steels (ASTM A471 
Ni-Cr-Mo-V, ASTM A469 Ni-Mo-V,  ASTM A470 Cr-Mo-V,  and AISI  403 
modified 12Cr) plus an ASTM A217 21/4Cr-lMo cast  steel [9-13]. The 
chemical composi t ions and room temperature  (except  where  noted) 
mechanical  propert ies  of  these five materials are presented in Tables  1 
and 2, respectively.  The room tempera ture  yield strengths of  these steels 
ranged from 60.7 ksi for the ASTM A217 21/4Cr- lMo cast  steel to 135.0 
ksi for the ASTM A471 Ni-Cr-Mo-V rotor  forging steel. Therefore ,  all 
these materials could be considered medium strength steels. 

One inch thick compac t  tension specimens were used to generate  the 
fracture toughness data. In all cases ,  the elastic plastic f racture  toughness 
specimens were removed  f rom the corresponding f ractured large-scale 
linear elastic fracture toughness  specimens.  Concerning the four  rotor 

TABLE 1--Chemical compositions of  four rotor steels (ASTM A471 Ni-Cr-Mo-V, ASTM 
A469 Ni-Mo-V, ASTM A470 Cr-Mo-V, and AISI 403 modified 12Cr) plus an ASTM 

A217 21/4Cr-lMo cast steel. 

Chemical Compositions, weight percent 

Material C Mn P S Si Ni Cr Mo V Sn Sb 

Ni-Cr-Mo-V 0.28 0.29 0.010 0.008 0.20 3.80 1.76 0.49 0.14 0.019 0.001 
Ni-Mo-V 0.25 0.66 0.008 0.012 0.23 2.92 0.25 0.43 0 .09 . . . . . .  
Cr-Mo-V 0.30 0.82 0.006 0.010 0.32 0.15 1.02 1.12 0.25 . . . . . .  
12Cr 0.13 0.57 0.009 0.006 0.33 1.60 12.32 0.55 . . . . . . . . .  
21/4Cr-lMo 0.15 0.53 0.016 0.015 0.25 . . .  2.33 0.98 . . . . . . . . .  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  S a t  D e c   5  0 9 : 4 2 : 0 7  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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T A B L E  2--Mechanical properties (75~ except where noted) o f  four  rotor steels (ASTM 
A471 Ni-Cr-Mo-V, ASTM A469 Ni-Mo-V, ASTM A470 Cr-Mo-V and A1S1 403 modified 

12Cr) plus an ASTM A217 21/4Cr-lMo cast steel. 

Mechanical  Propert ies 

0.2% Yield Ul t imate  Reduct ion Energy  
Strength,  Strength,  in Area~ Elongation,  Level ,  FATT,  a 

Material ksi ksi % % ft. lb ~ 

Ni-Cr-Mo-V t35.0 148.3 56.7 16.6 25 110 
Ni-Mo-V 85.5 104.5 62.5 21.8 19 145 
Cr-Mo-V 90.8 113.7 46.9 17.1 6 2t5  
12Cr 98.9 119.1 48.5 16.8 42 68 
21/4Cr- 1Mo 60.7 83.1 42.8 17.6 82 12 

a FATT = fracture appearance  transi t ion temperature .  

forging steels, test specimen orientation within the various rotor forgings 
(for both the J~c and K~c fracture toughness specimens) placed the 
specimen notch directions as near radial as possible. 

Figure 1 illustrates the compact tension specimen geometry. Note that 
these specimens were modified so displacements could be measured at 
the specimen centerline of loading. Prior to conducting fracture tough- 
ness tests, the compact tension specimen starter notches were extended 
to fatigue crack severity. In order to avoid introducing any bias to the test 
results, the amount of crack tip plasticity created during fatigue precrack- 
ing was limited to amounts significantly less than those anticipated in the 
subsequent fracture toughness tests. For all compact tension specimens 
involved in this program, a fatigue stress intensity (Ks) of 25 ksi~-nn. 
accomplished precrack initiation, while fatigue stress intensities of 20 and 
15 ksiX/~n, generated the initial and final crack extensions, respectively. 
Precrack lengths were controlled to produce a "deep notch" specimen, 
a/w = 0.6, where a is the crack length measured from the specimen 
centerline of loading and w is the specimen width (2.0 in. for a 1-in.-thick 
compact tension specimen, see Fig. 1). 

Experimental Procedure 

Fracture toughness tests were conducted at a minimum of three tempera- 
tures per material. The first series of tests was performed normally at a 
temperature 50 to 75~ above the maximum temperature of valid fracture 
toughness results per the ASTM Method E 399-72 generated with 1-in.- 
thick compact tension specimens. A second series of tests was conducted 
at the temperature where zero percent brittle fracture first occurred in the 
Charpy V-notch impact test results. Upper shelf fracture toughness 
values are generally observed first at this temperature. The final test 
temperature was taken approximately midway between the above two 
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FIG. 1--Jlc type toughness specimen (1 in. thick). 

test temperatures�9 This temperature was often nearly equivalent to the 
particular material's fracture appearance transition temperature (FATT). 
The FATT as employed here is defined as the temperature at which the 
Charpy V-notch fracture surface is 50 percent brittle (granular) and 50 
percent ductile (fibrous). 

A thorough description of the resistance curve test technique is given in 
Ref 4. Briefly, the testing procedure is to: (a)load each specimen to 
different displacement values, (b)unload each specimen and mark the 
crack (hint tinting was used in this case), and (c) pull the specimen apart 
and measure crack extension. A resistance curve was then constructed by 

plotting J for each specimen versus its corresponding crack extension. 
The formula developed by Rice et al for calculating J from single 
specimen tests [14] 

2A 
J -  

Bb  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  S a t  D e c   5  0 9 : 4 2 : 0 7  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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where 
A = area under  the load-displacement curve taken at the displacement 

of interest, 
B = specimen thickness, and 
b = remaining uncracked ligament 

was utilized to obtain J values. The critical value of J(Jic) was obtained by 
extrapolating the resistance curve backward to the point of zero crack 
extension due to actual material separation. Note  that critical elastic 
plastic fracture toughness values (JD are based on crack initiation, not on 
an absolute value of crack extension as is the case for linear elastic 
fracture toughness values (KD. Finally, Corresponding KI~ values were 
calculated from the relationship between elastic plastic and linear elastic 
fracture mechanics parameters  [1,8] 

] - -  9 2  

JIe = GIe = - - K I t  2 
E 

where 
v = Poisson's  ratio and 

E = Young's  modulus. 

As an alternative to the resistance curve test technique,  if the test 
temperature is low enough that the fracture toughness specimens experi- 
ence a 100 percent  cleavage fracture upon failure, the testing procedure  is 
modified to: (a) test one specimen to failure by 100 percent  cleavage; 
(b) load a second specimen to a centerline of loading displacement one or 
two mils less than that exper ienced by the failed specimen, unload the 
second specimen and mark the crack; and (c) if, as expected,  the second 
specimen experiences no crack growth, the J value obtained from the first 
specimen is termed J~c and a full resistance curve is not necessary. This 
procedure was utilized to obtain J~c values at a minimum of one test 
temperature relative to each of the five materials investigated. 

Finally, Landes and Begley have proposed a size requirement  which 
must be met by an elastic plastic fracture toughness test specimen to 
assure valid fracture toughness results [4]. This size requirement  is stated 
analytically as 

a , B , b ,  >- 25 J 
ory 

and has been adhered to in the present  work. 
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Results and Discussion 

J resistance curves relative to ASTM A471 Ni-Cr-Mo-V, ASTM A469 
Ni-Mo-V, ASTM A470 Cr-Mo-V, and AISI 403 modified 12Cr rotor 
forging steels plus ASTM A217 21/4Cr-lMo cast steel are presented in 
Figs. 2 through 6, respectively. Those temperatures where the fracture 
toughness test specimens experienced a 100 percent cleavage fracture upon 
failure (full resistance curve was not necessary) are revealed in Table 3. 
To provide a visual illustration, the specimens which comprise the 300~ 
resistance curve relative to AIS] 403 modified 12Cr rotor steel (Fig. 5) are 
arranged in order of decreasing crack extension in Fig. 7. Note how the 
heat tinting procedure for marking the cracks makes the crack extension 
experienced by each of the specimens easily visible. 

The fracture toughness (both K~c and Jic) versus temperature results 
relative to Ni-Cr-Mo-V, Ni-Mo-V, Cr-Mo-V, and modified 12Cr rotor 
forging steels plus 21/4Cr-lMo cast steel are illustrated in Figs. 8 through 
12. In all cases, the solid lines through the linear elastic fracture toughness 
test results were drawn before the elastic plastic test results were added to 
these figures. Good agreement was obtained between the linear elastic 
(K~) and elastic plastic (J~) fracture toughness results for all five materials 
at all test temperatures. In a few cases, this may not be obvious. Apparent 
inconsistencies between linear elastic and elastic plastic fracture tough- 
ness results occurred in three instances; ASTM A471 Ni-Cr-Mo-V rotor 
forging steel at 150 and 250~ plus ASTM A217 21/4Cr-lMo cast steel at 
-150~ To help explain the first two apparent inconsistencies an 
"equivalent fracture toughness" (defined subsequently) was added to two 
of the fracture toughness temperature relationships (note Figs. 8 and ll). 

Concerning the ASTM A471 Ni-Cr-Mo-V rotor forging steel (Fig. 8), 
the elastic plastic fracture toughness values at 150 and 250~ are consider- 
ably lower than the linear elastic fracture toughness results. Note that 
unlike the other four materials, this is the only material where valid linear 
elastic fracture toughness values are available at upper shelf tempera- 
tures. In fact, upper shelf linear elastic K~ behavior for low to inter- 
mediate strength steels was first observed on this rotor steel [9]. Recall 
that linear elastic fracture toughness values are based on 2 percent 
effective crack growth (that is, including the effect of plastic zone 
formation). Therefore, at 150~ where 6-in.-thick compact tension 
specimens produced the valid fracture toughness results per ASTM 
Method E 399-72, fracture toughness was based on approximately 0.120 
in. crack growth. Recall, the corresponding elastic plastic fracture tough- 
ness value was based on crack initiation (zero crack growth due to actual 
material separation). Observing the 150~ Ni-Cr-Mo-V resistance curve 
(Fig. 2), note for 0.120 in. crack growth J equals 990 lb/in. The corre- 
sponding value of linear elastic fracture toughness (termed the equivalent 
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FIG.  2---J resistance curves for  an A S T M  A471 Ni-Cr-Mo-V rotor steel at temperatures o f  
150 and 250~ 
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fracture toughness, EFT) equals 180 ksivq-~., which checks with the 
linear elastic fracture toughness value predicted in Fig. 8. 

It should be pointed up that the equivalent fracture toughness (EFT) 
was utilized only as a means to relate the linear elastic and elastic plastic 
fracture toughness values and to demonstrate that the resistance curve 
test method for predicting elastic plastic fracture toughness provides in 
effect a "lower limit" fracture toughness value at elevated (approaching a 
material's upper shelf) temperatures. The EFT was not employed to 
substantiate linear elastic versus elastic plastic critical fracture toughness 
values or vice versa�9 As has been documented [4], the EFT can vary 
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T A B L E  3--Temperatures where the specimens experienced 
100 percent cleavage fractures and a full  resistance curve 

was not necessary. 

Material Tes t  Tempera tu re ,  ~ 

Ni-Cr-Mo-V 75 
Ni-Mo-V 75, 150 
Cr-Mo-V 75,200 
12Cr 0 
21/4Cr-lMo - 150 

FIG. 7--Fracture surfaces o f  A1SI 403 modified 12Cr rotor steel specimens tested at 
300~ arranged in order o f  decreasing crack extension. 
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FIG. 8 Temperature dependence of yield strength and fracture toughness for an ASTM 
A471 Ni-Cr-Mo-V rotor steel. 

enormously depending on the arbitrary selection of specimen geometry 
used to determine a resistance curve (especially for materials which 
produce steeply rising resistance curves with increasing crack growth) 
and is, therefore, not a single valued function of crack growth. It is the 
author's opinion, however, that the EFT provides the only effective 
means of relating linear elastic and elastic plastic fracture toughness 
values which would otherwise be unrelatable due to the different crack 
extension values which define their critical measurement points. 
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FIG. lO---Temperature dependence of  yield strength and fracture toughness for an ASTM 
A470 Cr-Mo-V rotor steel. 

Observing the fracture toughness values for ASTM A471 Ni-Cr-Mo-V 
rotor forging steel at 250~ although 8-in.-thick compact tension speci- 
mens were utilized at this temperature, 7-in.-thick specimens would be 
adequate to obtain valid fracture toughness results per ASTM Method 
E 399-72. Therefore, valid fracture toughness values at 250~ would be 
based on 0.140 in. crack growth. The 250~ Ni-Cr-Mo-V resistance curve 
(Fig. 2) extrapolated to 0.140 in. crack growth yields a J value of 1500 
lb/in. The corresponding EFT equals 221.3 ksi lX/q~-., which is moderately 
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403 modified 12Cr stainless rotor steel. 
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FIG. 12 Temperature dependence o f  yield strength and fracture toughness for  an ASTM 
A217 21/4Cr-lMo cast steel. 

higher than the value of linear elastic fracture toughness predicted in 
Fig. 8. 

An additional instance where the equivalent fracture toughness was 
utilized to clarify an elastic plastic fracture toughness result occurs for 
AIS1403 modified 12Cr stainless rotor steel at 75~ For this 12Cr stainless 
rotor steel, where linear elastic fracture toughness data, although invalid 
per ASTM Method E 399-72, was available at 75~ the EFT was based on 
0.050 in. crack growth. Since J1c is based on crack initiation, the author's 
feeling is that reasonable estimates of J are best calculated out to a 
maximum of 5 percent crack growth (based on 1-in.-thick elastic plastic 
fracture toughness specimens), when no valid linear elastic fracture 
toughness data are available for comparison purposes. 

Regarding the ASTM A217 21/4Cr-lMo cast steel (Fig. 12), the elastic 
plastic fracture toughness value at -150~ is higher than the correspond- 
ing valid linear elastic fracture toughness results. Recall that this material 
experienced a 100 percent cleavage fracture at this temperature and a full 
resistance curve was not necessary. This higher fracture toughness value 
is logical considering the property variability of the cast steel and the 
relative sampling size of Jlc and K[~ specimens. Where a 1-in.-thick 
specimen was employed for the elastic plastic test, 2- and 4-in.-thick 
specimens were utilized for the linear elastic fracture toughness tests. The 
crack tip leading edge thus sampled two or four times the property 
controlling near tip volume of the 1-in.-thick elastic plastic specimens. In 
general, smaller specimens will more likely be entirely composed of tough 
material while larger specimens will more likely contain a low toughness 
region and thus exhibit a relatively low Kic or Jic value. As shown by the 
data for 21/4Cr-lMo cast steel at -150~ the larger the specimen the 
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lower the fracture toughness. The tendency for Jie values to lie somewhat 
above the Kic curve at low temperatures (where 100 percent cleavage 
fractures occur and a full resistance curve is not necessary) is interpreted 
as a Weibull type phenomenon rather than an intrinsic effect of specimen 
size on toughness. 

Therefore, with each of the three apparent inconsistencies explained, 
the fine agreement between elastic plastic (J~c) and linear elastic (K~c) 
critical fracture toughness values for all five materials at all test tempera- 
tures becomes clear. 

Conclusions 

The development and success of an elastic plastic fracture criterion 
which directly extends the concepts of linear elastic fracture mechanics 
into the elastic plastic fracture regime will result in both immediate and far 
reaching consequences. 

Naturally, foremost is the ability to predict failures in cases of large- 
scale yielding. Providing the critical elastic plastic fracture toughness (J~e) 
of a particular material is known and an elastic plastic analysis (which 
describes J as a function of the loading parameter and crack size) is 
available for a specific structure of interest manufactured from this same 
material, it is now possible to prevent failures by observing appropriate 
precautions which will ensure that the applied level of J in the structure 
never exceeds J~c. 

Several less obvious benefits also originate from the development and 
success of an elastic plastic fracture criterion. First is the tremendous 
savings in both material and machining costs relative to the compact 
tension specimen sizes required for J~e as opposed to KIc fracture 
toughness tests. For the five materials investigated, 1-in.-thick compact 
tension specimens adequately produced valid upper shelf elastic plastic J~ 
fracture toughness values. At the identical temperatures, compact tension 
specimens up to 8-in.-thick were required to obtain valid linear elastic K~c 
fracture toughness test results. Thus, it is now possible to obtain critical 
fracture toughness values with small specimens over a wide range of 
temperatures for tough materials. 

Secondly, the maximum temperature for valid linear elastic K~c fracture 
toughness results for this class of steels (even with massive specimens) is 
normally less than 300~ Naturally, the actual service operating temper- 
atures experienced by many structural components are often several 
hundred Fahrenheit degrees higher. When performing a fracture 
mechanics analysis, some of the procedures presently employed to obtain 
the operating temperature fracture toughness values are to: (a) extrapo- 
late the fracture toughness temperature curve to the operating tempera- 
tures of interest, (b) estimate the fracture toughness by utilizing one of the 
correlations developed between fracture toughness and Charpy V-notch 
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impact properties [15], or (c)simply use the maximum valid fracture 
toughness value available. With the development and success of the 
elastic plastic fracture criterion, however, it is now possible to obtain 
actual fracture toughness values at specific service operating temperatures 
with small compact tension specimens. Thus, increased confidence can be 
placed in the fracture mechanics analysis techniques utilized to predict 
the critical flaw sizes required to cause failure of specific structural 
components. 

A final important and far reaching outcome of the elastic plastic fracture 
criterion and the small-scale specimens now required to obtain valid 
fracture toughness results concerns the future possibility that lower limits 
of fracture toughness relative to specific temperatures (possibly the actual 
intended service operating temperature) be included in material specifica- 
tions and acceptance standards. This is presently the case for tensile and 
Charpy impact properties. With the small specimens now required for 
fracture toughness tests, ample material is generally available to manufac- 
ture the necessary fracture toughness specimens from core bars, etc. 
Therefore, at least for this class of steels, a giant step forward toward 
increased product integrity and structural reliability may now be possible 
by requiring that specific minimum fracture toughness standards be 
satisfied as an integral part of the material specifications and acceptance 
standards. 
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ABSTRACT: Tests were conducted to determine Jtc from resistance curves of J 
versus crack extension, obtained from fatigue-precracked specimens of a titanium 
6A1-4V alloy. Specimens of various geometries were employed, all in three-point 
bending. Crack extensions were delineated by heat tinting. 

Results obtained with J computed from the equation, J = 2A/Bb, are compared 
to those obtained with the compliance technique, using the plane-stress solutions of 
Bucci et al. Jle results are compared with a valid K~c value for this material. 

The range of ratios of crack length to specimen width (a/W) is explored over 
which the equation J = 2A/Bb applies. The decrease in crack extension at 
experimental limit load (Aa~-~ax--~ Aac) is examined as the ratio of specimen 
thickness to uncracked ligament (B/b) is increased. Variation in J1r from specimens 
cut from different positions through the plate thickness is also examined. 

KEY WORDS: crack propagation, fractures (materials), elastic-plastic fracture, 
mechanical properties, crack extension, titanium alloys, compliance calibration, 
fracture initiation 

A growing body of experimental evidence [1-5] 2 supports the critical 
value of Rice's J-integral [6, 7], Jic, as a criterion for the initiation of crack 
extension in elastic-plastic fracture. Recent J-integral studies demonstrate 
success with an unload/heat-tint, resistance-curve technique to determine 
Jic in steel [3], titanium [4], and aluminum [5] alloys. The purpose of this 

I Metallurgists, Strength of Metals Branch, Engineering Materials Division, Naval 
Research Laboratory, Washington, D. C. 20375. 

z The italic numbers in brackets refer to the list of references appended to this paper. 
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paper is to present in the open literature the first J-integral studies of a 
titanium alloy. 

In this work, eight different types of fatigue-precracked, three-point 
bend specimens have been tested. For several of these, resistance curves 
of J versus crack extension (Aa) have been obtained by heat tinting 
multiple specimens of a given type which have been unloaded from 
different points on the respective diagram of load (P) versus load point 
displacement (8). For purposes of comparison, evaluation of the J-integral 
has been made by two methods: (1) the Begley and Landes compliance 
calibration technique [1,2], using the plane-stress plastic-zone-size cor- 
rected solutions of Bucci et al [8] which simulate well the experimental P 
versus 8 traces obtained from the precracked specimens, and (2)the 
approximation equation proposed independently by Rice et al [9] and 
Srawley [10] 

2A 
J = (1) 

Bb 

where 
A = area under the P versus 8 curve at the point of interest, 
B = specimen thickness, and 
b = uncracked ligament. 

To define the point of initiation of crack extension, Aa~, and hence JK~, it 
is necessary to select a criterion, perhaps somewhat arbitrarily at this 
point. The one used in this work was proposed recently by Paris [11], 
namely, that Aac be defined by the largest amount of actual crack 
extension (1 percent) permitted in the smallest allowable K~c specimen 

E.]Ie 
Aa~ = 0.025 o.y 2(1 _ z,2) (2) 

where 
E = Young's modulus, 

O-ys = uniaxial yield strength, and 
u = Poisson's ratio. 

Values of J~ obtained in this study are compared to a valid K~e value for 
this alloy via 

Kit2 (1  - v2) 
JIr = G i e -  (3) 

E 

where material constants G~r and Ktc are critical values of the crack 
extension force and stress-intensity factor, respectively. 
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The specimen type of  least  thickness is used to examine  for possible 
variation in Jic as a function of position through the plate thickness.  In 
another  series of  tests,  the range of ratios of  crack length to specimen 
width (a /W)  is explored over  which Eq 1 holds. 

Experimentation 

Material and Specimens  

All specimens were cut f rom a 1-in.-thick plate of  mill-annealed 
Ti-6A1-4V alloy with the chemical  composi t ion and mechanical  propert ies  
given in Table 1, Light photomicrographs  in Fig. la reveal  a microstruc- 
ture consisting of  elongated pr imary a grains dispersed in an ~ - / 3  
Widmanst~itten (basketweave)  matrix.  Extensive  crossrolling is evident 
from these micrographs and seems to be reflected in the tensile proper-  
ties, determined with s tandard 0.505-in.-diameter specimens.  The yield 
strength in both the longitudinal (L) and t ransverse  (T) directions is 124 
ksi; Young 's  modulus is 18.55 x 103 ksi in the T direction. The mode  of 

TABLE l--Alloy composition and mechanical properties. 

Chemical Composition, (weight percent) 

AI V Fe C N H O Ti 

6.0 4.1 0 .05 0.023 0.008 0.005 0 .06  balance 

Tensile Properties 

0.2% Offset Tensile 
Yield Strength Strength 

Reduction of 
ksi MPa ksi MPa Area, % Elongation, % 

Young's Modulus 

• l0 s ksi GPa 

Transverse Direction (T) 
124.4 868.3 133.8 933.9 39.5 13.5 (in 2 in.) 18.55 

Longitudinal Direction (L) 
124.1 866.2  130.5 910.9 39.5 16.5 (in 1,4 in.) 18.56 

129.5 

129.5 

Specimen Type 

Stress Intensity Factor Data 

2.5 

Pmax/Po K~, ksix/~ff. < B, a, W - a Ko = K~e 

A (a) 
(b) 
(c) 

C (a) 

1.12 
1.09 
1.11 

1.23 

59.7 yes 
n o  

yes 
n o  

n o  
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64 MECHANICS OF CRACK GROWTH 

(a) Light photomicrographs of microstructure; etched with Kroll's reagent. 

FIG. 1---Definition of alloy microstructure and mode of crack extension. 

crack extension in this alloy is microvoid coalescence, as illustrated by 
the replica electron micrograph of Fig. lb. 

Cross sectional geometries of the eight types of three-point bend 
specimens used, Types A through H, are presented in Fig. 2 with a list of 
dimensions. Thicknesses (B) range from 0.250 to 1.000 in., widths from 
0.658 to 1.500 in., ao/W ratios from 0.313 to 0.745 and B/b ratios from 0.61 
to 2.99. All specimen types, with one exception, were machined from the 
plate midthickness, that is, with equal amounts of metal removed from the 
plate surfaces relative to the B dimension. In the case of Type E, 
subscripts are used to designate position of the specimen relative to plate 
thickness, that is, Ec from the center or plate midthickness versus Es cut 
from as near the plate surface as possible. All specimens were fatigue 
precracked at levels of stress-intensity factor permitted by ASTM Test for 
Plane-Strain Fracture Toughness of Metallic Materials (E 399-72), with 
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(b) Replica electron fractograph of dimpled rupture. 

FIG. l--(Continued). 

crack orientations all in the TL  direction. These specimen types exhibited, 
to varying degrees, loading behavior  characteristic of the lower end of the 
elastic-plastic regime. That  is, all exhibited limit loads which were 
substantially less than those expected for the fully plastic state, which may 
be approximated for three-point bending by [8,12] 

B 
PL = 1.456 Crts~- (W - a) 2 (4) 

where 
o-ts = uniaxial tensile strength and 

S = span length. 
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FIG. 2----Cross-sectional views o f  specimen types and list o f  dimensions. Shaded portion 
o f  cross section indicates ligament b x B. 

Moreover, behavior of the specimen type with the most highly con- 
strained crack (Type A) appeared to be only marginally "invalid" with 
respect to ASTM Method E 399-72, as only one specimen of three of this 
type examined for KQ provided a valid K~c value of 59.7 ksix/in., as noted 
in the stress-intensity factor data of Table 1. 

Test Procedure 

All specimen types were tested in the fixture shown in Fig. 3a. A clip 
gage was used to measure ~ as illustrated; a supplementary gage can be 
seen to span the crack mouth opening in accord with ASTM Method 
E 399-72. The span between rollers was S = 5.975 in. All tests were 
conducted in room-temperature air. 

To determine the point on a P versus 6 diagram at which crack extension 
initiated, multiple specimens of a given type were loaded to various points 
on the respective P versus ~ diagram (anywhere from the incidence of 
nonlinearity to maximum load), followed by complete unloading, as illus- 
trated in Fig. 3b for specimens of Type C. Specimens were then heat 
tinted in a circulating-air furnace at 600~ (589 K) for 2 h and broken open 
for examination. Crack extensions corresponding to the points of 
unloading in Fig. 3b are shown in the photograph of Fig. 3c. Initial 
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fatigue-precrack length was measured according to ASTM Method 
E 399-72, as was the crack extension delineated by heat tinting, that is, 
the amount of crack extension was taken as an average of that measured 
at the quarterpoints of specimen thickness. Inasmuch as the initiation of 
crack extension is a heterogeneous nucleation process, this is admittedly 
an arbitrary measure of crack extension and, therefore, should be kept in 
mind as a potential source of scatter in results. Uncertainty in individual 
measurements is ~ _+ 0.001 in. 

In one of the ways used to evaluate the J-integral, the Begley and 
Landes technique was used to obtain a compliance calibration from P 
versus 8 diagrams generated for several a/W ratios from plane stress 
plastic zone size corrected solutions of Bucci et al. These P versus 
traces were integrated graphically using the trapezoidal rule, with incre- 
ments of 0.005-in. displacement. These solutions simulate well the 
experimental P versus 8 traces obtained from the precracked specimens, 
as  illustrated in Fig. 4 for specimen Types A through D; notable 
deviations at some of the greatest displacements are attributable to crack 
extension in the precracked specimens. In using Eq 1 to evaluate the 
J-integral, it is appropriate to note that A has been taken to be area under 
the actual experimental P versus 6 trace, minus the component owing to 
the test fixture, in accord with the Srawley formulation. 

Results and Discussion 

Comparison of  Resistance-Curve Data 

Resistance-curve data of J versus Aa for specimen Types A through D 
are presented in Figs. 5a and b, for which J was evaluated from the 
compliance calibration technique and Eq 1, respectively.  Curves 
sketched for each specimen type in Fig. 5a are shown as solid lines in 
Fig. 5c for comparison with the respective dashed curves from Fig. 5b. At 
lower values of Aa, the scatter in data defined by the solid lines overlaps 
quite well that from the dashed lines, although near Aa = 0 there is a 
tendency toward slightly lower J values as calculated from Eq 1. On the 
other hand, at the higher values of Aa, the dashed curves indicate notably 
greater J values, as maximum load (Pmax) is approached, than do the 
respective solid lines, particularly for specimen Types C and D. This 
may be a reflection of Landes and Begley's prediction that J values 
computed by Eq 1 would be overestimated, particularly at greater Aa, 
owing to the influence of crack growth effects on A [3]. By comparison, 
the compliance technique would not be expected to so overestimate J. 

To infer levels of J~e from Figs. 5a and b, Aac can be estimated from Eq 
2 to be approximately 6 • 10 -3 in., by using the mean extrapolated value 
of J for Aa = 0 in Fig 5, or from the value of KIe noted earlier. From Fig. 
5a, it follows that J~c = 188 to 235 in.lb/in. 2 or 211 -+ 24 in.lb/in); this 
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FIG. 3--Test procedure: multiple specimens o f  each type were loaded in three-point bend 
test fixture shown in (a) to various points on respective P versus 6 diagram as shown in (b); 
then they were unloaded and heat tinted to reveal crack extensions as shown in (c). Case 
illustrated is for specimen Type C, with individual specimen numbers identified in (b) and 
(c). 
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FIG. 4--Comparison of P versus 8 diagrams obtained from precracked specimens (solid 
curves) to those generated from plane-stress plastic-zone-size corrected solutions of Bucci 
et al [8] (dashed curves). 
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compares  with J~c = 158 to 209 in.lb/in.  2 or 184 ___ 26 i n . l b / i n / i n f e r r e d  
from Fig. 5b. This amounts  to a variation in Jic o f  < ___ 12 percent from 
Fig. 5a and < +_ 15 percent from Fig. 5b. These  correspond to variations 
in Kit o f  < --- 6 percent and < + 7 percent ,  respectively.  This is substan- 
tially less variation than might well  be found in K[~ testing o f  mill-annealed 
titanium alloy plates [13]. The quest ion as to which of  the two  mean 
va lues ,J~  = 184 or 211 in- lb / in) ,  is the more  accurate is a m o o t  point. The 
value of  K~r cited in Table 1 translates to J~  = 170 or 192 in.lb/in.  2, 
depending on whether  the factor (1 - v 2) should be included or not  in Eq 
3 [14,15]. Moreover  it can be argued that the quoted K]~ value may be in 
fact lower than the average value for the plate material, inasmuch as two  
out of  three KQ tests failed to provide a valid g i c  determination.  

Specimen-Size Analysis 

It has been est imated that "legal" J~  determinations can be obtained 
with specimens of  limiting dimensions  [3,16] 

a, B, b > a JIr (5) 
O'flow 

a mrn 
0 0.508 1.016 1.524 2.032 2.540 3.048 3.556 

600  I ] I I I I I 
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(a) Data for J evaluated by compliance calibration technique. 
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FIG. 5---Resistance curves of J versus Aa for specimen Types A through D, from which JIe 
is defined at Aae. 
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1064 

532 -~ 

with a = 50 and O'flow taken as the mean of O-ys and o-ts. For a level of 
J~c = 195 in. lb/in. 2, this means for the present alloy that a, B,  and b must 
exceed about 0.08 in. This value is exceeded by the respective dimensions 
of all specimens, Types A through H. 

Variation o f  Jic with Position Through the Plate Thickness 

Specimens E~ and Es were unloaded at displacements near the initiation 
point and heat tinted. ResuRs are plotted in Fig. 6a relative to the data 
scatterband obtained near initiation in Fig. 5a, for specimen Types A 
through D with J evaluated by the compliance method. A substantial 
difference i n J  values is evident between the two specimens: for Aa = 12 
and 13 mils, respectively,  specimen Ec exhibits a level of J = 256 
in .lb/in. 2, whereas J = 159 in. lb/in. ~ for specimen Es. 

As might be expected,  replica electron fractographs of actual heat- 
tinted crack extension reveal significantly larger dimples in the region of  
greater toughness,  namely,  the plate midthickness,  Fig. 6b, than appear in 
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the region near the plate surface, Fig. 6c. (Note that heat tinting has done 
little to obscure fractographic features in this alloy). Though the micro- 
structure of this alloy is relatively uniform for a mill-annealed plate of 
Ti-6A1-4V, the primary a-phase was somewhat greater in percentage and 
more elongated in shape at the plate midthickness; the grain size of the 
a - f l  Widmanst~itten matrix was also somewhat finer there than near the 
surface. On the other hand, Rockwell  C hardness measurements (HRC) 
made through the plate thickness showed little variation. On the face 
normal to the L direction, HRC varied from - 3 1  at the center to - 3 2  at 
the surface; however,  on the face normal to the T-direction, HRC was 
higher in the center ( -33 .5 )  than near the surface ( -32 .0 ) .  

Effect of  a/W and B/b Ratios on Jlc Determination 

Specimex~ Types F, G, and H were tested to explore the range of a/W 
ratios for which J may be calculated via Eq 1; Srawley [10] has suggested 
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(a) J-integral data evaluated by compliance calibration technique and plotted 
relative to data for specimen Types A through D near initiation. 

(b) Replica electron fractograph of crack extension at plate midthickness after heat 
tinting. 

(c) Replica electron fractograph of crack extension near plate surface after heat 
tinting. 

FIG. 6--Differential in toughness between plate midthickness region and region near 
plate surface, as revealed from specimens Ee and Es, respectively. Dimple size is notably 
larger in region corresponding to position o f  Ee than that o f  E s, shown in (b) and (c) 
respectively. 
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FIG. 6----(Continued). 
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that the range should extend from 0.2 to 0.95. Specimens of these three 
types were unloaded near the initiation point and heat tinted. Results are 
plotted in Fig. 7 relative to the data scatterband obtained near initiation in 
Fig. 5b for specimen Types A through D. For specimen Type F 
(a/W = 0.313), the J value calculated from Eq 1 is obviously too high, 
namely, 306 in.lb/in. 2 at Aa = 3 mils. Though for specimen Type G 
(a/W = 0.598) the J value appears reasonable, that for specimen Type H 
is obviously too low with J = 148 in.lb/in. 2 at Aa = 13 mils. 

In view of the derivation of Eq 1 by Rice et al, the result for 
specimen Type F might not be unexpected; however, for a deeply cracked 
specimen such as Type H, it is. From Table 2, which summarizes J~c data 
obtained via Eq 1 for the different specimen types, it is evident that 
specimen Type H has the smallest dimension b (0.167 in.). Though this 
dimension is about twice the limiting value of 0.08 in. suggested by o~ = 50 
in Eq 5, perhaps this limiting value is too low for the present case; that is, 
maybe a ~ 100 or greater. It is pertinent to note that for the case of bend 
bars of a rotor steel, Landes and Begley [2] noted a decrease in apparent 
J1c for a specimen with b < 50 J~c/Onow. Similarly for the case of specimen 
Type F, it is possible that specimen size limitation could be a factor in the 
result, since Type F has the smallest dimension a of all types examined, 
namely, 0.206 in. 

In the interest of developing a single specimen test f o r  J ie  , a s  opposed to 
the multiple specimens required by the unload/heat-tint, resistance-curve 
technique, Corten has proposed [17] that J~ can be obtained from a single 
specimen if B/b --> 2 and if Pmax/PL >- 0.85; that is, under these condi- 
tions, it is proposed that Aapmax --~ Aac. For each specimen type listed in 
Table 2, the B/b ratio is given as well as the experimentally observed 
Pm~x, the ratio Pmax/PL, and the value of J corresponding to Pmax, namely 
JPmax. Also included are values of crack extension found at Pmax, Aaemax, 
for comparison with Aa near the initiation point, Aac. In Fig. 8, Aac, JPmax 
and Pmax/PL are plotted versus B/b. It is evident that none of the 
specimen types exhibit Pm~x/PL >-- 0.85, as they range from a low of 0.40 
for Type A to a high of 0.56 for Type H. However, it is readily apparent 
that Aaemax is an inverse function of B/b, with Aapmax ranging from a high 
of 0.149 in. at the lowest B/b = 0.61, to a low of Aa = 0.013 in. at the 
highest B/b = 2.99. Values of JPmax vary similarly with B/b. Though these 
trends support Corten's basic idea, unfortunately it may be difficult to 
design "legal" J~c specimens of this alloy to attain Pmax/PL >---0.85. 
Comparison of Types D and G, specimens of equal B and a/W ~- 0.6, 
shows that reduction of W from 1.5 to 0.66 in. led to an increase of 
Pm~x/PL from 0.45 tO only 0.55; however, W could not be so reduced much 
further ff the size limitation on a and b is indeed ~0.2 in. for this alloy 
(that is, ff ct = 100 in Eq 5). 
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FIG. 7---Data of J versus Aa for specimen Types F through H, with J computed from 
J = 2A/Bb and plotted relative to data for specimen Types A through D near initiation. 
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FIG. 8---Influence o f  thickness to ligament ratio (B/b) on crack extension at experimental 
limit load (Aapmaz), Jpraax and PmaJPL. 

Summary 
Tests were conducted to determine J~c from resistance curves of J 

versus crack extension obtained from fatigue-precracked specimens of a 
titanium 6A1-4V alloy. Three-point bend specimens of eight geometries 
were employed, with crack extensions delineated by heat tinting. Find- 
ings from this work include: 

1. Over the range a/W = 0.45 to 0.60, the determination of J~c obtained 
with J computed from the equation J = 2A/Bb agrees quite well with that 
obtained by evaluating J via the compliance calibration technique; 
moreover, these determinations of J[~ are in good agreement with a valid Kle 
value for this alloy. 

2. At the greater crack extensions, as experimental limit load is 
approached, resistance curves obtained withJ computed as J = 2A/Bb are 
notably higher than those obtained with J evaluated by the compliance 
method. 

3. In exploring the range of a/W over which the equation J = 2A/Bb is 
applicable, erratic results were obtained at ratios of 0.31 and 035. Though 
the former might be interpreted to be outside the range of applicability, 
the latter may imply that the specimen size limitation defined by a, B, 
b > ot(J~JO'now) was violated at a surprisingly high level of t~ ~- 100. 
Further work is suggested to determine whether ~ might indeed be this 
high for titanium alloys in general. 

4. Significant variation in J~ was found from specimens machined from 
different positions through the plate thickness. This finding has serious 
implications regarding any future standard method for J~ testing: If Jtc 
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80 MECHANICS OF CRACK GROWTH 

results obtained from relatively small, thin specimens are to be used to 
estimate toughness of a thick plate from which they are cut, such 
specimens should be made at multiple positions through the plate thick- 
ness. If the variance of Jic with position exceeds some specified percent- 
age, the estimate for the thick plate should not be legal, at least until 
some rational averaging procedure is adopted. 

5. Crack extension at maximum load was found to vary inversely with 
B/b. For B/b ratios ranging from 0.61 to 2.99, Aapmax decreased from 
0.149 to 0.013 in. Values of JPmax similarly decreased with increasing B/b 
ratio. 
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N. E. Dowling I and J. A. Begleyl 

Fatigue Crack Growth During Gross 
Plasticity and the J-Integral 

REFERENCE: Dowling, N. E. and Begley, J. A., "Fatigue Crack Growth During 
Gross Plasticity and the J-Integral," Mechanics  of Crack Growth, ASTM STP 590, 
American Society for Testing and Materials, 1976, pp. 82-103. 

ABSTRACT: An attempt is made to apply the J-integral concept as an elastic- 
plastic criterion for fatigue crack growth. Compact tension fracture specimens of 
A533B steel are subjected to gross cyclic plastic deformations, and fatigue crack 
growth rates up to 0.01 in./cycle are obtained. The results show correlation with 
J-integral values estimated from load versus deflection hysteresis loops. Also, 
agreement is obtained with the extrapolation of linear elastic fatigue crack growth 
rate data. 

KEY WORDS: fatigue (materials), cracking (fracturing), crack propagation, plastic 
deformation, cyclic loads 

Fatigue crack growth rates during gross plasticity are experimentally 
investigated, and the test results are interpreted in terms of the J-integral 
concept. The possibility of predicting fatigue crack growth rates under 
elastic-plastic conditions in a manner analogous to the linear elastic 
fracture mechanics approach to fatigue is considered. It is hoped that the 
results of this preliminary study will stimulate expanded discussion and 
research on elastic-plastic fatigue cracking behavior. 

Preliminary 

In this section, the limitations of linear elastic fracture mechanics and 
the need for more general criteria are first considered. Next,  the 
J-integral concept as employed in static fracture toughness testing is 
discussed. Finally, some comments are made concerning the relationship 
between fracture mechanics criteria and fatigue crack growth rate. 
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DOWLING AND BEGLEY ON FATIGUE CRACK GROWTH 83 

Limi ta t ions  o f  L inear  Elast ic  Frac ture  M e c h a n i c s  

Linear  elastic fracture mechanics is based on the analytical result that 
the elastic stresses surrounding a crack tip are distributed in a manner  that 
is independent of  applied load or geometry  [1,2]. 2 The intensity of  the 
stress field surrounding a crack tip may thus be uniquely described in 
terms of  the applied load and member  geometry.  Hence,  stress intensity 
factors, which are functions of  applied load, component  dimensions, and 
crack length, are employed [1,2]. The resistance of metals to both static 
fracture [3] and fatigue cracking [4] are commonly  expressed in terms of 
stress intensity factors. 

As the mathematical equations used to define stress intensity factors 
are based on linear elastic behavior,  important  limitations on the use of 
linear elastic fracture mechanics arise when materials capable of plastic 
deformation, such as engineering metals, are considered. With reference 
to Fig. la ,  linear elastic fracture mechanics is not valid unless the region 
of plasticity surrounding the crack tip, ry, is small compared to both the 
crack length, a ,  and the remaining ligament of uncracked material, b. If  
the plastic zone is not small, plasticity effects are significant, and stress 
intensities determined by the methods of linear elastic fracture mechanics 
have no meaning. In such cases, more general criteria capable of  handling 
plasticity effects are needed. 

For  a small crack in a region of plasticity associated with a notch, as in 
Fig. lb, linear elastic fracture mechanics is also invalid. Consider a crack 
length, a ,  which is of the same order  of  size or smaller than the notch root  
radius, p. The local stress concentrat ing effect  of  the notch is significant, 
but this effect cannot be evaluated by linear elastic analysis due to the fact 
that the plastic zone, ru, is not small compared to other  significant 
dimensions, p and a. Linear  elastic fracture mechanics is valid for 
configurations similar to Fig. lb after  the crack grows to a length that is 

(a) Plastic zone small compared 
to t~oth crack length and ligament 

(b) Fatigue crack in a region 
of p~asticity associated with a 
notch 

FIG. 1---Relative dimensions governing the applicability of linear elastic fracture 
mechanics. 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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8 4  M E C H A N I C S  OF C R A C K  G R O W T H  

large compared to the root radius of the notch, and then only if the crack tip 
plastic zone is small compared to both the remaining ligament, b, and the 
effective crack length, a ', which includes the notch length. 

The behavior of small cracks near notches, as in Fig. lb, is of major 
practical importance. It is not generally feasible to design engineering 
structures or machines so that localized plasticity does not occur at 
regions of stress concentration. Fatigue crack initiation usually occurs at 
such locations and can be predicted based on the local elastic-plastic 
notch strains [5-8]. However, the available fracture mechanics proce- 
dures cannot predict growth rates for such cracks until they have grown 
out of the region of plasticity associated with the notch. Thus, a 
significant portion of the fatigue life for many practical problems cannot 
be predicted with currently available technology. The problem of small 
cracks near plastically deformed notches is difficult due to its geometric 
complexity. Some approximations may be made [9], but additional ana- 
lytical and experimental work will be necessary before fatigue problems of 
this nature can be handled effectively. Fatigue test results for plastically 
loaded cracked members of simpler geometry, such as standard fracture 
mechanics specimens, will contribute to an understanding of this problem 
and, in the future, can be expected to aid in its solution. 

J-Integral Concept 

The mathematical basis of the J-integral concept in terms of nonlinear 
elasticity is described in Ref 10. Values of J may be determined from load 
versus deflection curves as indicated in Fig. 2a. At a given deflection, 80, 

P! 
a i 

I ~  ~'~" _1 /~'~ i 
[,," J: --~ ~-/ i / o  
o 6 

(a) Potential energy difference 

P ,o 
6 

tb) Rice et. al. approximation 

Thickness B 

FIG. 2---Determination o f  J frorn load versus deflection curves, 
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DOWLING AND BEGLEY ON FATIGUE CRACK GROWTH 85 

the potential energy change, dU, caused by a small increase in the crack 
length, da, is related to J as follows 

1 dU 

where B is the specimen thickness. Deflections, 6, are measured coinci- 
dent with the applied load vector.  

Load versus deflection curves for several different crack lengths may 
be used with Eq 1 to determine empirical relations between J and 
deflection at various values of crack length [11,12]. The procedure  
employed is similar to the compliance method [13] of  determining the 
linear elastic strain energy release rate, G. In fact, if the specimen 
behaves in a linear elastic manner,  that is, if the load deflection lines in 
Fig. 2a are straight, then J reduces [10] to G, which is in turn simply 
related [2] to the stress intensity, K. 

g 2 
J = G = (2) 3 

E 

For  elastic-plastic materials, the quantity U in Eq 1 cannot  be inter- 
preted as the potential energy, rather  it is the elastic-plastic work 
necessary to deflect the specimen. In this case, J loses its physical 
interpretation in terms of  the potential energy available for  crack exten- 
sion, but it retains physical significance as a measure of the intensity of  the 
characteristic crack tip strain field [11 ]. Note that this latter interpretation 
of J is similar in philosophy to the stress intensity concept ,  K, which 
gives the intensity of  the linear elastic stress field surrounding the crack 
tip. This crack tip strain field interpretation of  J accounts  for its success as 
a geometry independent static fracture toughness criterion for engineering 
metals under elastic-plastic conditions [11,12,14]. 

The mathematical developments  leading to the J-integral concept  
imply, for elastic-plastic materials, that the concept  is valid where 
deformation theory of plasticity is valid [10]. As deformation theory of 
plasticity cannot directly account  for  the plasticity effects observed on 
unloading, there is some question concerning the applicability of the 
J-integral concept  to cyclic loading. The most relevant unanswered 
question is the following: Does the J-integral concept  have meaning 

a If the specimen thickness is sufficient to cause a condition of plane strain, the elastic 
modulus, E, employed in Eq 2 should be replaced by E/(1 - ~,2), where v is Poisson's ratio 
[2]. As this correction causes a change of only about 10 percent, it is not of great importance. 
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86 MECHANICS OF CRACK GROWTH 

relative to the changes that occur in the crack tip stress and strain fields 
during the loading half of one fatigue cycle? 

As the limitations of the J-integral concept are not definitely known, the 
concept may have more general applicability than can be mathematically 
verified at this time. Thus, laboratory experiments which probe the limi- 
tations of the J-integral concept are appropriate. It is in this spirit that 
an attempt will be made in this investigation to appy J to cyclic loading. 

It is somewhat inconvenient to apply Eq 1 to elastic-plastic materials as 
test results from several specimens are needed in the compliance proce- 
dure employed [11,12]. Fortunately, an approximation is available which 
allows J values to be determined from a single load versus deflection 
curve [15]. This approximation, which is valid only for deeply notched 
compact tension and bend bar specimens, is illustrated in Fig. 2b. The 
approximate J value at a given deflection is simply related to the area 
under the load versus deflection curve 

J = Bb Pd8 (3) 

Compact tension specimens are employed in this investigation and cyclic 
J values are determined in a manner related to Eq 3. 

Criteria for Fatigue Crack Growth 

The relationship between stress intensity and fatigue crack growth rate 
obtained from linear elastic fracture mechanics is shown schematically in 
Fig. 3. At intermediate values of stress intensity range, AK, a straight line 
is usually obtained on a log-log plot of AK versus cyclic crack growth rate, 
da/dN. The following relatinoship [4,16] results 

da/dN = C(2xK)" (4) 

where C and n are constants for a given material and stress ratio 
(Kmin/Kmax). 4 At low values of AK, crack growth rates fall off rapidly, and 
there appears to be, for a given material and stress ratio, a threshold value 
of AK below which fatigue cracks will not grow [17,18]. 

It is significant that fatigue crack growth rates of magnitudes corre- 
sponding to the linear and threshold regions of the da/dN versus AK curve 
occur for small cracks where plasticity precludes the use of linear elastic 
fracture mechanics. This is the case for surface cracks in a uniform cyclic 
plastic strain field, as during low-cycle fatigue tests after crack initiation, 

4 The cons tan ts  C and n are also affected by tempera ture  and chemical  envi ronment ,  and 
these latter factors  result  in f requency effects.  Envi ronmenta l  factors  are beyond  the scope 
of this paper. 
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FIG. 3--Relationship between fatigue crack growth rate and stress intensity. 

and is also the case for small cracks growing in regions of cyclic plasticity 
associated with notches. Criteria for fatigue crack growth which account 
for plasticity effects, and which could be used in place of AK where it does 
not apply, are needed. 

As indicated in Fig. 3, unstable behavior occurs at high AK values and 
results in a rapid increase in the crack growth rate just prior to complete 
failure of the specimen. There are two possible causes of this behavior. 
First, the increasing crack length during constant load testing causes the 
peak stress intensity to reach the fracture toughness of the material, and 
the unstable behavior is related to the early stages of brittle frac- 
ture [19,20]. And second, the growing crack reduces the uncracked area 
of the specimen sufficiently for the peak load to cause fully plastic limit 
load behavior. The first possibility is operative for high-strength, low- 
toughness metals [19,20], where the specimen sizes normally used for 
fatigue crack growth rate testing behave in a linear elastic manner at K 
levels equal to the fracture toughness. The second possibility, plastic limit 
load behavior, is probably common for ductile metals, particularly if the 
fracture toughness is high. 

Where plastic limit load behavior causes unstable crack growth, AK 
values have no meaning as the limitations of linear elastic fracture 
mechanics have been exceeded. In other words, the apparent effect is not 
real but is related to the fact that the AK values determined are not 
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88 MECHANICS OF CRACK GROWTH 

appropriate criteria for fatigue crack growth due to plasticity effects. The 
interesting possibility is raised that straight line daMN versus AK be- 
havior for ductile metals can be observed at higher AK levels by testing 
larger specimens. Conversely, unstable behavior is expected at lower AK 
values for smaller specimens. This is due to the fact that the extent of 
plastic deformation depends, to a first approximation, on only the stress 
intensity level and the flow strength of the materiaP and, therefore, 
becomes smaller relative to the specimen size if the specimen size is 
increased [21]. Note that this is the same size effect that necessitates the 
minimum specimen size requirement in Kic testing. (See ASTM Test for 
Plane-Strain Fracture Toughness of Metallic Materials, E 399-73.) 

In this investigation, fracture mechanics specimens are subjected to 
gross plastic deformations, and fatigue crack growth rates are measured. 
The test results are interpreted in terms of the J-integral concept. There 
has been limited previous work by others [22-24] on fatigue crack growth 
during plastic deformation. However, no criterion having general applica- 
bility has been developed, nor has any attempt been previously made to 
apply the J-integral concept to fatigue crack growth. 

The remainder of this paper is first concerned with describing the 
laboratory techniques and data reduction procedures employed. Next, the 
test results are presented. Following discussion of the test results, 
conclusions are drawn and recommendations for related future work are 
made. 

Experimental Techniques 

Material, Specimens, and Laboratory Tests 

The material tested was A533B pressure vessel steel having a yield 
strength of 70 ksi and a Charpy fracture appearance transition tempera- 
ture (FATT) of 95~ Specimens having the dimensions shown in Fig. 4 
were machined from this material. These specimens were identical to the 
ASTM standard compact tension specimen (ASTM Method E 399-73) 
except that modifications were made to accommodate clip gages. Specifi- 
cally, the machined slot was widened at the front of the specimen, and 
knife edges were machined under the centers of the loading pin holes. An 
ASTM standard double cantilever clip gage (ASTM Method E 399-73) 
was attached to these knife edges and was used for measuring deflections 
along the loading line. Also, four pairs of shallow threaded holes were 
machined in one side of the specimens. These were used to attach knife 
edges for a second clip gage that was employed to measure displacements 
across the crack tip. This second clip gage was moved as the crack grew 
so that it was always attached at the pair of holes closest to the crack tip. 

For small-scale plasticity, the plastic zone size is estimated [21] to be rv = (KIo'~,)212~r. 
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FIG. 4---Dimensions in inches of  compact tension specimens used for fatigue crack growth 
during gross plasticity. 

All tests were conducted on a closed loop electrohydraulic testing 
system, and crack lengths were monitored visually with a low-power 
travelling microscope. The clevis and other loading fixtures were mod- 
ified so that compressive loads could be applied during cycling. 

Simple control conditions are unsuitable for crack growth studies 
during gross plasticity, this difficulty being illustrated in Fig. 5. Under 

8 N 
la) Controlled load 

N 

(b) Controlled deflection 

FIG. 5---Behavior during cycling under simple control conditions for gross plasticity. 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



90 MECHANICS OF CRACK GROWTH 

load control, plastic limit load behavior in the uncracked ligament of the 
specimen causes the mean deflection to increase in an unstable manner. 
This behavior is related to the cycle dependent creep, or ratcheting, 
phenomenon observed in uncracked axially loaded specimens [25,26]. 
Unstable deformation behavior under load control causes the crack 
growth rate to increase rapidly, and little data can be obtained before 
failure of the specimen. Under deflection control, the mean load re- 
laxes [27] toward zero and the crack growth rate decreases. As it cannot 
be assured that crack growth delay effects [28] caused by the decreasing 
severity of the loading do not affect the data, simple deflection control is 
also disadvantageous. 

The difficulties with simple load or deflection control were avoided by 
controlling the deflection to a sloping line on a load versus deflection plot 
as indicated in Fig. 6. In other words, as the load dropped due to the 
increasing crack length, the deflection limit was increased. Intercept 
values for the sloping line used in each test, such as S and D in Fig. 6, 
were chosen so that the crack growth rate gradually increased with 
elapsed cycles. Typical crack length versus cycles data are shown in Figs. 
7 and 8. The specific choices of S and D used were based on experience 
obtained during preliminary tests. 

Deflection control to a sloping line as in Fig. 6 was achieved automati- 
cally by means of an analog control circuit. The control circuit employed 
is described in detail in Ref 29, and general discussion on limit control 
using an analog computer with closed loop mechanical testing equipment 
is given in Ref 30. 

A limited number of tests were also conducted under load control to a 

P 

~ 5 = ]8.44 kip L (~ ~ [ 

~ =  0.0963 in. 
8, Oeflection 

0.01 in ;Sp~! n~ 16 
FIG. 6-.-Load versus deflection hysteresis loops during deflection control to a sloping line. 
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FIG. 7--Variation with cycles of crack length and J for Specimen 15. 

sloping line as illustrated in Fig. 9. Again, it was possible to obtain 
gradually increasing crack growth rates. All sloping line control tests 
conducted are described in Tables 1 and 2. During these tests, load versus 
deflection hysteresis loops as in Figs. 6 and 9 were periodically recorded 
on an X-Y recorder. In addition to the sloping line control tests, two 
ordinary linear elastic, constant load, fatigue crack growth rate tests were 
conducted and are described in Table 3. 

Data Reduction 

Cyclic crack growth rates were determined from a versus N data, as in 
Figs. 7 and 8, by an incremental polynomial procedure. A second order 
polynomial was fitted through the first seven a versus N data points using 
least squares regression techniques. The first derivative of this polyno- 
mial was then evaluated at the central data point to obtain a crack growth 
rate, da/dN. The same procedure was then applied to the second through 
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FIG. 8--Variation with cycles of crack length and J for Specimen 16.  
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FIG. 9--Load versus deflection hysteresis loops during load control to a sloping line. 

eighth, third through ninth, etc., data points so as to obtain crack growth 
rates at various numbers of cycles during each test. 

Values of cyclic J were determined from areas under load versus 
deflection lines during rising load as indicated in Fig. 10. Note that the 
operational definition of AJ employed is related to the Rice et al 
approximation [15], discussed previously relative to Fig. 2b and Eq 3. As 
macroscopic crack closure behavior occurred, it was necessary to esti- 
mate the point at which the crack opened and to calculate AJ from the 
area above this point as indicated in Fig. 10. Others have detected crack 
closure by means of strain gages near the crack tip [31] or by changes in 
an electric potential applied to the specimen [32]. Unfortunately, neither 
of these methods could be used in this case due to difficulties associated 
with large plastic deformations. The best method available was, therefore, 
to measure displacements across the crack tip using a clip gage attached 
to the side of the specimen. 

Deflection from the side clip gage was plotted versus deflection from 
the clip gage at the loading pin holes. Changes in slope on such plots were 
observed and were interpreted as approximately corresponding to open- 
ing and closing of the crack. Crack opening deflections estimated from 

TABLE 1 Tests under deflection control to a sloping line. 

Specimen Test Frequency, Deflection Intercept Load Intercept 
No. Hz D, in. S, kip 

2, a < 1.25 1.0 0.0591 10.45 
2, a > 1.25 0.5 0.0750 9.18 
5, a < 1.15 0.5 0.1000 13.33 
5, a > 1.15 0.05 0.1133 13.33 

15 0.2 0.0770 14.82 
16 0.1 0.0963 18.44 
18 0.04 0.1250 21.00 
19 0.02 0.1722 18.83 
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TABLE 2--Tes ts  under load control to a sloping line. 

93 

Specimen Test Frequency, Deflection Intercept Load Intercept'  
No. Hz D, in. S, kip 

14 0.1 0.480 14.0 
17, a < 1.03 0.1 0.160 14.0 
17, a > 1.03 0.1 0.320 14.0 

side clip gage measurements  and from stiffness changes in load versus 
deflection hysteresis loops, as in Figs. 6 and 10, were compared.  The 
values obtained never  differed by an amount  that was significant com- 
pared to the maximum deflection, typical data being shown in Fig. 11. 
Therefore,  it was possible to estimate the crack opening point from load 
versus deflection hysteresis loops, which was found to be more conve- 
nient than the direct use of side clip gage data. As illustrated in Fig. 10, the 
specific procedure used involved the easily identifiable point where the 
curvature of the P-8 line changed prior to the peak compressive load being 
reached. This convention constitutes only a first order  correct ion for the 
effect of crack closure,  and no significance is at tached to its details. 

For  calculating AJ values, one might consider using the area above zero 
load, area CDEC in Fig. 10. However ,  significant reversed plasticity 
occurred during compressive loading, and even low-power visual obser- 
vation indicated that crack closure often did not occur  until considerable 
compressive load had been applied. The total area under the loading 
curve, area ADGA in Fig. 10, is also a possibility for  estimating AJ. 
However ,  it was not thought reasonable to assign any importance to that 
portion of a cycle during which the crack was closed. Also, z3./values 
estimated from the total area under  the loading line were observed to 
increase as the crack growth rate decreased during preliminary tests 
under simple deflection control. 

Thus, AJ values were estimated from load versus deflection hysteresis 
loops in a manner  related to the Rice et al approximation [15], and an 
attempt was made to account  for the effect of crack closure. Values of zL/ 
determined in this manner  are shown in Figs. 7 and 8 along with the 
corresponding a versus N plots. 

For  the tests under  load control to a sloping line, as in Fig. 9, there were 

TABLE 3---Linear elastic fa t igue  crack growth  rate tests.  

Test Frequency, Minimum Load, Load Range, 
Specimen No. Hz kip kip 

9 1.0 0.40 3.60 
13 1.0 0.60 5.40 
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FIG. lO----Operational definition of  cyclic J. 

no indications of crack closure from side clip gage measurements. Values 
of ~ , /were  estimated as previously described except that zero load was 
taken as the crack opening point. As shown in Fig. 9, the cyclic plasticity 
during these tests was small. Hence, the AJ values obtained were 
approximately equal to (AK)2/E, AK being simply related to load and 
crack length by the methods of linear elastic fracture mechanics. 

Test Results 

For two of the tests under deflection control to a sloping line, values of 
~J at various numbers of cycles are plotted in Figs. 7 and 8. Note that AJ 
increases with fatigue crack growth rate, da/dN, for the first part of each 
test, and then becomes approximately constant. Later, in most tests, both 
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FIG. 11--Estimated crack opening deflections for Specimen 16. 
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da/dN and AJ began to decrease. The data during decreasing da/dN were 
rejected due to the possible influence of  delay effects. 

A plot of da/dN versus nJ is shown in Fig. 12 for all of  the tests under 
deflection control to a sloping line. Also shown is a least squares line fit 
through these data which has the following equation 

d a  
- 2.13 x 10-8(A J) 1.s87 (5) 

dN 

Data are shown in Fig. 13 for the two tests under load control to a sloping 
line, and these data are compared to Eq 5. In Fig. 14, the deflection 
control AJ data of  Fig. 12 are compared to linear elastic fracture 
mechanics data for the same material. Results for  the two linear elastic 
tests conducted in this investigation are shown,  as are extensive test 
results from Paris et al [18] on a different heat of the same material, 
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FIG.  12--Fatigue crack growth rate as a function of J for deflection control to a sloping 
line. 
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Fig. 13 Fatigue crack growth rate as a function o f  J for  load control to a sloping line. 

A533B with 70 ksi yield. Note that AJ values for the linear elastic data in 
Fig. 14 are obtained from AK using Eq 2. 

The deformation behavior during deflection control to a sloping line 
was characterized by large cyclic plastic deformations, hysteresis loops as 
shown in Fig. 6 being typical. In the latter part of each test, gross stiffness 
changes due to closing of the crack at high compressive loads were 
observed. 

Where load, rather than deflection, was controlled to a sloping line, the 
cyclic plastic deformations were small, but large plastic deformations in 
the tensile direction accumulated during the tests. This incremental 
plastic deformation behavior is evident in Fig. 9, where the zero load 
deflection is observed to increase significantly with number of applied 
cycles. Figure 15 is a photograph taken near the end of the same test 
illustrated in Fig. 9, the increase in zero load deflection being also evident 
in this photograph. 

Several fracture surfaces resulting from fatigue crack growth during 
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FIG. 14---Comparison of fatigue crack growth rates during gross plasticity with linear 
elastic data. 

gross plasticity are shown in Fig. 16. The specimens farther to the right in 
Fig. 16 had higher growth rates. Note that fracture surface roughness and 
shear lip size increase with growth rate. Shear lips occupied only a small 
fraction of specimen width, and the crack front curvature was small, 
except for growth rates near 10-~in./cycle. The specimen on the extreme 
left in Fig. 16 is from one of the linear elastic tests, and all of the others are 
from tests under deflection control to a sloping line. The reader may refer 
to Tables 1 to 3 for the test conditions employed and to Fig.+12 for the 
crack growth rates involved. 

Discussion 

In Fig. 12, it can be seen that excellent correlation is obtained between 
cyclic J and fatigue crack growth rates for the tests under deflection 
control to a sloping line. The test data from all six specimens fall near a 
single straight line in Fig. 12. Wherever data points from more than one 
test fall together along this line, the combination ofda/dN and AJ obtained 
occurred at different crack lengths. For any given crack length between 
1.0 and 1.4 in., test results were obtained over approximately two orders 
of magnitude in crack growth rate. Thus, over a range of  crack lengths in 
the single specimen geometry tested, the cyclic J criterion employed is 
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FIG. 15--Specimen 14 after testing. 

independent of crack length. Note that the following interrelated quan- 
tities are involved in the convention used for computing A J: load range, 
elastic-plastic deflection range, crack opening deflection, and crack 
length. The success of the correlation between daMN and AJ implies that 
all of these factors, at least in an approximate manner, are taken correctly 
into account. 

As indicated in Fig. 14, the linear elastic data from this investigation are 
in reasonable agreement with the more extensive similar data from Ref 18, 
which are for a different heat of the same steel. In Fig. 14, the results of 
the gross plasticity J tests conducted under deflection control to a sloping 
line are shown as solid circles. Excellent agreement with the linear elastic 
test results is obtained in the limited region where both are available. 
Furthermore, all of the data in Fig. 14 for crack growth rates above 10 -7 
in./cycle fall along a single straight line. Thus, the gross plasticity da/dN 
versus zXJ data are in agreement with the straight line extrapolation on a 
log-log plot of the linear elastic fracture mechanics data. 

The reader may question the necessity of employing a complex AJ 
criterion which involves both load and deflection, and may ask if it is not 
sufficient to specify only the load and crack length as in linear elastic 
fracture mechanics. To illustrate that gross plastic deformation invali- 
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dates linear elastic fracture mechanics, stress intensity ranges were 
determined (ASTM Method E 399-73) from the crack length and effective 
load range, APe, defined in Fig. 10. These effective stress intensity ranges, 
AKe, were plotted against the measured crack growth rates. The correla- 
tion was much inferior to the correlation between daMN and AJ in Fig. 12. 
There were separate trends for each specimen, and the crack growth rates 
tended to become independent of AKe. The failure of AKe to correlate with 
the crack growth data is due to the fact that this parameter does not 
account for the cyclic plasticity effects which are important in these tests. 

The data for tests under load control to a sloping line, which are shown 
in Fig. 13, exhibit significant deviation from the straight line behavior 
observed in other tests. Above a certain AJ value, crack growth rates 
increase without further increase in 5,/. This behavior is related to the 
unstable increase in crack growth rate observed at the end of linear elastic 
crack growth tests on ductile materials. The only significant difference is 
that in this case the maximum load is gradually decreased as the mean 
deflection increases, as illustrated in Fig. 9. This control condition causes 
the behavior to be more stable in that the increase with cycles of the crack 
growth rate and mean deflection is gradual, rather than very rapid as 
under simple load control. 

Thus, it appears that incremental plastic deflection has an important 
effect on the crack growth rate that is not accounted for by either linear 
elastic fracture mechanics or by the definition of AJ employed. Note that 
AJ values determined as described earlier differ significantly from 
(AK)2/E only if there is significant cyclic plasticity. As the cyclic plasticity 
was small during the tests under load control to a sloping line (see Fig. 9), 
the AJ criterion is not expected to be any more successful than linear 
elastic fracture mechanics in explaining the behavior. The effect of 
incremental plasticity should be viewed as an effect of mean J,  analogous 
to the effect of mean K in linear elastic fracture mechanics. The crack 
growth behavior shown in Fig. 13, therefore, is interpreted as being 
caused by an increasing mean J ,  while AJ remains approximately con- 
stant. It is not surprising that, just as in linear elastic fracture mechanics, 
the range and the mean value of the controlling parameter must be known 
to predict the fatigue crack growth rate. 

It may be desirable in the future to investigate incremental plasticity 
(mean J) effects in detail. An important variable will probably be the crack 
closure level. Because of the increased mean deflection during a test 
similar to Figs. 9 and 15, considerable compressive load would have to be 
applied to cause the crack to close. Thus, one might postulate that the 
crack tip radius at zero load is significant and that more crack growtb will 
occur during each cycle than if the crack were closed, that is, had a small 
tip radius, at zero load. 

It is important to note that geometric independence of cyclic J has not 
been demonstrated. The highest priority for future experimental work is, 
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therefore, to conduct similar tests on another specimen geometry, such as 
a center cracked panel. Also, it should be shown that da/dN versus AK 
data for large linear elastic specimens correlate with da/dN versus AJ data 
from smaller specimen gross plasticity tests. Growth rates for small 
surface cracks in plastically deformed regions, both in uniform strain 
fields and near notches, should also be investigated. Hopefully, it will be 
eventually possible to develop a general criterion so that fatigue crack 
growth rate data for various geometries, specimen sizes, and conditions of 
plasticity will all fall along a single line on a plot similar to Fig. 14. 
Appropriate analytical work will of course also be necessary if significant 
advances are to be made toward developing a general elastic-plastic 
criterion for fatigue crack growth. 

Conclusions 

The results of this preliminary experimental study indicate that the 
J-integral concept may be applicable to fatigue problems where cyclic 
plasticity precludes the use of linear elastic fracture mechanics. If the 
trends observed for 1-in.-thick compact tension specimens of A533B steel 
are confirmed for other geometries, specimen sizes, and materials, it will 
become possible to handle practical elastic-plastic fatigue problems in a 
manner analogous to the linear elastic fracture mechanics approach to 
fatigue. Regardless of the future success or failure of the J-integral as a 
criterion for fatigue crack growth, the need will remain for a general 
elastic-plastic criterion which characterizes the crack tip strain field for 
cyclic loading. 

Some conclusions related to the specific test results obtained for 
compact tension specimens of A533B steel subjected to gross cyclic 
plasticity are as follows: 

1. Crack growth rates between 4 • 10 -5 and 10 -2 in./cycle show 
excellent correlation with values of AJ determined using the Rice et al 
approximation for bending type fracture specimens. 

2. The high crack growth rate da/dN versus AJ data are in agreement 
with the straight line extrapolation on a log-log plot of the linear elastic 
fracture mechanics data, 

3. Macroscopic crack closure during gross plasticity is an important 
effect and significantly influences the fatigue crack growth rate. 

4. Growth rates during incremental plastic deflection cannot be pre- 
dicted by a AJ criterion alone; a more general criterion that includes the 
effect of the mean J level is needed. 

Recommendations 

The encouraging test results obtained indicate that experimental work 
on the application of the J-integral concept to fatigue under elastic-plastic 
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conditions should definitely continue. Test results for other specimen 
geometries, specimen sizes, and materials are needed. An important goal 
of further research should be to develop methods for handling the difficult 
problem of small surface cracks growing in regions of plasticity associated 
with notches. 

The experimental work should be accompanied by, and should interact 
with, additional analytical work. Convenient methods of estimating J 
values for various geometries are needed, as are analytical results relating 
specifically to cyclic loading. In the event that future analytical or 
experimental results show that J is not a valid criterion for elastic-plastic 
fatigue crack growth, work of this general nature should nevertheless 
continue, and a more suitable criterion should be sought. 
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A Simple Method for Measuring Tearing 
Energy of Nicked Rubber Strips 

REFERENCE: Oh, H. L., "A Simple Method for Measuring Tearing Energy of 
Nicked Rubber Strips," Mechanics of Crack Growth, ASTM STP 590, American 
Society for Testing and Materials, 1976, pp. 104-114. 

ABSTRACT: A convenient test configuration for measuring critical tearing energy 
of rubber is to pull thin nicked strips of the rubber in extension. In the past, 
methods of measurements employed for this configuration are based on concepts 
which obtain "tearing energy" through differentiation with respect to the crack 
length. As a consequence, measurements have to be made on several identical 
specimens having different crack lengths. This paper describes a simple method 
based on the J-integral which requires no differentiation and calculates the tearing 
energy from measurements made on one specimen only. This allows an efficient 
use of test material and reduces the complexity of critical tearing energy measure- 
ment. 

Implementation of the J-integral method is illustrated on the uniaxial stretching 
of a nicked rubber strip. The accuracy of results obtained is found to be comparable 
to that obtained by existing methods. 

KEY WORDS: crack propagation, tear strength, fractures (materials), elastomers, 
mechanical properties, deformation 

This paper  descr ibes  a s imple  m e t h o d  for m e a su r i ng  the so-cal led " t ea r -  

ing ene rgy"  of n icked  r u b b e r  str ips in ex tens ion .  As  def ined  by  Rivl in  and  
Thomas  [1 ],~ the " t e a r i n g  e n e r g y "  T is the rate of  decrease  of  e las t ical ly  
stored energy  in a c racked  b o d y  per  un i t  v i r tual  i n c r e m e n t  of the crack 
surface area.  W h e n  T exceeds  a crit ical va lue  character is t ic  of the 
rubber ,  crack growth  occurs .  This  crit ical tear ing energy  concep t  was  first 
p roposed  by Rivl in  and  T h o m a s ,  and  it has s ince  been  verif ied in a 
n u m b e r  of expe r imen t s  i nvo lv ing  f rac ture  and  fatigue of r u b b e r  

spec imens  [2,3]. To i m p l e m e n t  this concep t  in  s t ruc tura l  design,  one  has 
to measure  first the cri t ical  t ea r ing  energy  of  the mater ia l .  A c o n v e n i e n t  

1 Associate senior research engineer, Mathematics Department, Research Laboratories, 
General Motors Technical Center, General Motors Corporation, Warren, Mich. 48090. 

The italic numbers in brackets refer to the list of references appended to this paper. 
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test configuration for such measurement  is to pull thin nicked strips of 
rubber in extension. Present ly there are two methods for measuring the 
tearing energy associated with this test configuration. This paper de- 
scribes a third method based on the J-integral. It will be seen that the 
J-integral method is the simplest of the three. Using the proposed method, 
we measure T for the specimen shown in Fig. 1 and compare  the results 
with those obtained by the other  two methods.  

Existing Methods for Measuring Tearing Energy 

For  a rubber strip of  unit thickness containing a crack, the tearing 
energy is defined elsewhere [1] by 

r=-\ 0 c / e  
where 

c = length of the crack measured in the undeformed geometry,  
Vc = elastically stored energy at crack length c, and 

r -- vertical advance 0~ of  the crack which occurs  while external 
boundaries are held fixed. 

t 
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FIG. l--~imple extension specimen with a cut in one edge. Dotted line shows the 
integration path chosen to evaluate the J-integral. 
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One method of measuring T, known as the total energy drop method, 
implements directly the definition of the tearing energy, Eq 1. It consists 
of first obtaining the load-displacement curves for a number of identical 
specimens having different crack length, Fig. 2a. This is known as 
compliance calibration. Next, at a given displacement~e, areas under the 
load-displacement curves are obtained which give the stored strain energy 
(Vc)e=ftoF dx. These values of (Vc)e are then plotted against corre- 
sponding crack length c and curve fitted to arrive at a (Vc)e versus c 
curve, Fig. 2 b. The negative of the slope of tangent to the curve is by 
Eq 1 the tearing energy at the given displacement~e and crack length c. 
The tearing energy at other displacements may be similarly obtained. 
Since it is a direct implementation of the definition, the total energy drop 
method is applicable in general to any test configuration employed to 
measure the tearing energy of a cracked body. Its shortcomings are the 
need to compliance calibrate a large number of specimens and the 
inherent inaccuracy involved in cure fitting and in performing graphical 
differentiation of the fitted curve. 

For the simple extension of a strip with an edge cut as shown in Fig. 1, 
compliance calibration may be avoided by postulating through dimen- 
sional arguments that the total energy drop in the specimen (Vo - V~), 
due to the presence of the crack is 

(Vo - Vc) = k(X)c2Wh, c / b  <- 0.20 (2) 

(a) 

i ~ c 2 

i = c i - ~  
i =CT 

X 
L 

(vc)t 

(b) 

F 

(c) 

--'-- C 

FIG.  2- - (a )  Load-displacement curves of  cracked specimens having various crack 
lengths, (b) stored strain energy versus crack length for a given displacement l, and (c) 
notation used in Figs. 2 a and b. 
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where 
h andb = 

W =  

Vo and Vc = 

k(X)  = 

undeformed thickness and width of the specimen, 
stored strain energy density in the specimen far removed 
from the crack, 
total energy in the specimen with and without the crack, 
and 
proportionality factor varying mainly with the stretch 
ratio ~ but otherwise independent of the material and the 
crack length. 

Differentiating Eq 2 with respect to the crack length c gives the tearing 
energy 

(OV~ ~ = 2k(h)c Wh, c /b  <- 0.20 (3) T = -  \-~-c / e 

As c, h, and W are measured easily, T may be determined from Eq 3 once 
k(h) is evaluated. This is accomplished by measuring the total energy drop 
(Vo - Vc) and using Eq 2 to evaluate k(h). Following this line of argument 
suggested by Rivlin and Thomas, Greensmith [4] devised an ingenious 
experiment to measure the total energy drop. A long strip of rubber is 
stretched with a force F0 to a stretch ratio X. The strain energy density in 
the specimen in this case is W = f,~(Fo/bh)dX. The specimen is then 
clamped at its midsection to make two similar specimens in series. Upon 
introducing a crack in one of the two specimens, Greensmith measured 
the additional force (Fo - Fc) necessary to return the clamp the distance I 
to its original central position and obtained the total energy drop 
( V o -  Vc) = f~o (Fo F~)dx. His results obtained for four natural 
rubber vulcanizates of widely varying mechanical properties confirm the 
independence of the total energy drop on W according to Eq 2 and indi- 
cate that k(h) is indeed independent of crack length and vulcanizate used. 
Figure 3 shows the variation of the factor k(~) with the stretch ratio h as 
determined by Greensmith. This figure, in conjunction with Eq 3, has 
since been used to evaluate the tearing energy associated with the simple 
extension specimen, Fig. 1, which has been employed extensively in 
studies of crack-growth behavior of rubber. Greensmith's approach is 
essentially a total energy drop approach except that by assuming the 
total energy drop to take the form of Eq 2, the need for compliance 
calibration and graphical differentiation are avoided. 

The second method is the crack-surface-displacement method de- 
veloped by Lake [5] and Lindley [6]. It focuses attention on deforma- 
tions occurring near the vicinity of the crack tip and evaluates the energy 
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FIG. 3--Values of  the proportionality factor k(k) plotted against stretch ratio h as 
determined by various methods. 

required to close the crack. By equating this energy with the total energy 
drop due to the opening of the crack, tearing energy may be estimated. 
Thus, let dx ~ be the undeformed differential length along the crack plane, 
o-(x 1) the stress normal to the plane before the crack is made, and 8(x 1) the 
separation of the mating surfaces of the crack after it opens. Assuming a 
linear relationship between force and deformation, the energy per unit 
thickness required to close the crack is l/2fo 8o-dxL Equating this energy 
with that lost due to the opening of the crack, we have 

( V  o - -  VC  ) ~- 1/2f0  ~o'dx I 

Differentiating the preceding equation with respect to the crack length c 
gives the tearing energy 

T = - ~  ac / e -  1 / 2 ~ 0  (4) 

Experimental implementation consists of first measuring along x 1 the 
strain (to compute stress tr) before the crack is made and the separation 8 
after the crack opens. The value of the integral l~/2fo 8o-dx ~ is then ob- 
tained by graphical integration. This is taken to be the total energy 
drop ( V o -  Vc) for a given crack length c. Other values  of  
( V o -  Vc) are obtained for identical specimens with different crack 
length and a ( V o -  V~) versus c curve is drawn. Graphical differ- 
entiation of the fitted curve then gives, by Eq 4, the tearing energy. 
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OH ON NICKED RUBBER STRIPS 109 

Lindley used this method to measure the tearing energy associated with 
the simple extension specimen. His results, presented in the form of Eq 3 
for comparison purposes, are shown in Fig. 3. They are in agreement with 
Greensmith's results. 

Because the tearing process is highly dependent on the deformations 
occurring in the vicinity of the crack tip, the crack-surface-displacement 
method is perhaps more sensitive than the total energy drop approach 
which measures T from far field deformations. However, it probably 
entails a larger experimental error because of the inaccuracy involved in 
measuring deformations occurring in a small region. The J-integral 
method to be described in the next section retains the sensitivity to near 
tip strain field but computes T based on far field deformations. But more 
importantly, the J-integral method involves only one specimen. Whereas 
in the two existing methods measurements have to be made on at least 
two identical specimens with two crack lengths (Ac apart) so that tearing 
energy T can be obtained by graphical differentiation, in the J-integral 
method the only measurements needed are made with a single specimen. 

J-Integral Method for Measuring Tearing Energy 

Theoretical Basis 

Consider, for unit thickness of material, the line integral 

where 

F = curve defined in the undeformed geometry which surrounds the 
crack tip as shown in Fig. 4, 

W = strain energy density, 
t = nominal traction vector on F, 
u = displacement vector, and 
s = arc length along F. 

X 2 

�9 X 1 

FIG. 4--Notation used in defining the J-integral. 
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110 MECHANICS OF CRACK GROWTH 

Rice [7] showed that this integral assumes the same value for any choice 
of curve F, that is, it is path independent, and that it may be interpreted as 
the potential energy drop in the body per unit virtual extension of the 
crack. Where the crack extends at fixed external boundaries, J is exactly 
T as defined in Eq 1. Consequently, J may be used to measure T. 
Although Rice's proofs were given in the context of infinitesimal deforma- 
tions with nonlinear stress-strain relation, the same conclusions hold true 
for finite deformations [8-10]. 3 We need only consider an integration path 
close to the crack tip to realize that J ,  hence the method based on J ,  is 
intimately related to deformations there. However, the property of path 
independence allows us to choose any convenient path far from the crack 
tip to evaluate J.  

To implement Eq 5, deformations are first measured along the chosen 
path. One technique is to print a circular grid onto the specimen as shown 
in Fig. 5. As the specimen is loaded, circles of diameter d deform into 
ellipses of diameter d,,ax and drain. By measuring these diameters, princi- 

FIG. 5--Circular grid pr in ted  on a nickel rubber strip. 

3 References  9 and 10 were brought  to au thor ' s  at tention by the  reviewers.  
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pal stretch ratios in the plane of the specimen may be computed: 
~11 = (dmax)/d and X22 = (dmi,)/d. 

This technique is suitable for rubber since large deformations are 
involved so that accurate measurements of the diameters can be obtained. 
Once deformations are known, the strain energy density W and compo- 
nents of the traction vector t along the chosen path are calculated from a 
known dependence of W on the stretch ratios. J is then evaluated 
according to Eq 5. Although in principle any path may be used, it is 
convenient to choose one which minimizes measurements and calcula- 
tions. For example, taking a path parallel to the x 1 axis renders the first 
term in the right hand side of Eq 5 zero, while choosing one along a stress 
free boundary (t = 0) or along a clamped boundary parallel to the x 1 
axis (Ou/Ox I = 0) renders the second term zero. These properties are 
made use of in the example illustrated in the next section. 

Experimental Implementation on the Simple Extension Specimen 

Since the tearing energy of the simple extension specimen has been 
measured already by the other two methods, Fig. 3, we choose to 
illustrate the experimental implemtation of the J-integral method on this 
same specimen so that comparison between methods can be made. 

Two specimens of width = 2.54 cm and length = 15.24 cm are cut from 
one larger rubber sheet of thickness = 2.03 mm. The material is as 
received natural rubber catalogue number DR-21-61 vulcanizing recipe 
and curing of which is available from Detroit Rubber Company, Detroit, 
Michigan. Circular grids of density 62 circles/cm 2 are then printed onto 
the specimens. One specimen is used to obtain the stress-stretch ratio 
measurements in simple tension. From these measurements, the depen- 
dence of strain energy density W on the stretch ratio is calculated. The 
other specimen serves as the test specimen. A slit of length = 0.50 cm is 
cut with a wetted razor blade at one edge of the specimen and at its 
midsection. 

Loading of both specimens consists of clamping the two edges of the 
specimen with grips and pulling these grips in an Instron universal testing 
machine at a constant rate of separation of 1.0 cm/min. Stretching force 
is recorded and a photograph taken of the circular grid before pulling the 
grips apart and at various predetermined grips separations. Photographic 
negatives of the circular grid are then projected on a large screen and 
diameters of the ellipses (circles in the undeformed state) measured off the 
screen. From these measurements, principal stretch ratios are calculated 
using formulae given earlier. For the simple tension test, stress tr is taken 
to be the stretching force divided by the undeformed cross-sectional area 
of the specimen. 

Figure 6 shows the stress tr versus stretch ratio X in simple tension. 
Here X is the ratio in which the specimen is stretched in the direction of the 
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16.0 I I 

12.o = 

4..0 
8,0 ~ /  ~ z 

4 . 0  - 2 . 0  

< 
m 

o.0 I o . o  
1.0 1.3 1.6 1 . 9  

STRETCH RATI 0,~,  

FIG. 6--Variation with stretch ratio h o f  tensile stress cr and  strain energy densi ty  W in 
simple tension. 

tensile force. Assuming the material to be elastic, the strain energy 
density is simply W(h) = f~ o-dh. Thus, from the o- versus h curve, W as a 
function of h may be obtained by evaluating the area under the curve from 
unity to a given stretch ratio h. The W versus h curve so obtained is shown 
also in Fig. 6. This curve will be useful in subsequent data reduction. 

To evaluate J ,  we choose the path shown in Fig. 1 where by symmetry 
only half the specimen need be considered. The contributions to the 
J-integral are those coming from edges AB and CD 

J=2 [fa.Wdx2+ fcoWdx ~] = 2  [fA.Wdx'-S~Wdx21 (6) 

Note that along the two edges, the rubber is under simple tension so that 
only edge strain need be calculated. Typical strain distributions measured 
along the two edges are shown in Fig. 7. It is evident that along edge AB 
deformation is one of uniform extension, while along edge DC strain is 
zero at the crack plane but within a short distance rises to a level identical 
to that in edge AB.  Figure 8 shows the strain distributions measured along 
edge DC at eight levels of stretching. With the edge strain distribution 
known, the corresponding strain energy density distribution may be 
obtained using the W versus h curve shown in Fig. 6. For example, Fig. 9 
shows the strain energy density distributions corresponding to strain 
distributions shown in Fig. 7. Implementing Eq 6, the value of the 
J-integral, hence the tearing energy, is twice the shaded area shown. 

The J-integral values of the specimen at eight levels of stretching have 
been obtained. The results presented in the form of Eq 3 are shown in Fig. 
3. They are in agreement with results obtained by other methods. 
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Concluding Remarks 

A method is proposed for measuring tearing energy in nicked rubber 
strips based on the Rice J-integral. When implemented on the simple ex- 
tension specimen, results indicate that the method can measure tearing 
energy in rubber with an accuracy comparable to that obtained by other 
methods. It is by far the simplest known method and eliminates the 
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FIG. 8---Strain distribution along the nicked edge o f  a nicked rubber strip at eight levels 
o f  stretching. 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



114 MECHANICS OF CRACK GROWTH 

~ 4.0 

i Q 
~ 3.0 

2.0 

1.0 
g 

~ m . 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

O/STANCE FROM CRACK PLANE 
SPECIMEN WIDTH 

FIG. 9---Strain energy density distribution along the two edges of a nicked rubber strip 
extended to a stretch ratio of 1.52. 

complexi ty  o f  compl i ance  cal ibrat ion and graphical  differentiat ion asso-  
ciated with exist ing methods .  M o r e o v e r ,  it requires  only one specimen.  

In principle,  the J-integral  me thod  may  be used to measure  tear ing 
energy  of  c r acked  rubbe r  c o m p o n e n t s  undergo ing  two dimensional  de- 
format ions .  
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A Study of Plane Stress Fracture in the 
Large-Scale Plastic Yielding Regime 
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Plane Stress Fracture in the Large-Scale Plastic Yielding Re,me,"  Mechanics of 
Crack Growth, ASTM STP 590, American Society for Testing and Materials, 1976, 
pp. 115-127. 

ABSTRACT: Three independent methods for measuring plane stress fracture 
resistance in the large-scale plastic yielding regime were tested and were found to 
give equivalent results. The three methods were the J-integral technique, a method 
based on the increase in compliance that accompanies the development of a plastic 
zone, and a method based on the direct measurement of the plastic work that must 
be done to cause fracture. 

KEY WORDS: crack propagation, fracture tests, stress analysis, plastic properties, 
elastic properties, beryllium 

Nomenclature 

J J-integral value or pseudo strain energy release rate, J. m -2 
Jerit Value of  J at fracture 

Strain energy release rate, J. m -2 
~/crit Value of ~ at fracture 

o- Remotely applied gross area stress, MPa 
F Applied force, N 
A Displacement measured remote from crack plane along the line of 

loading, mm 
v Displacement measured at crack mouth, mm 

U Pseudo potential energy or work done in loading a specimen to a 
given displacement, J 
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116 MECHANICS OF CRACK GROWTH 

a Crack length, mm; or half crack length of center cracked specimen 
h Specimen thickness, mm 

W Specimen width, mm 
E Modulus of elasticity, MPa 

o-ys Uniaxial tensile yield strength, MPa 
8 Displacement of crack surfaces, mm 
8t Displacement of crack surfaces at crack tip 

St* Value of 8t at fracture 
o-(8) Flow strength of the metal within the plastic zone as a function 

of the separation of imaginary crack surfaces extending through 
the zone, Mpa 

Y Same as o-(8), but assumed independent of 8 
ru Irwin estimate of plastic zone size, mm 
p Plastic zone length from Dugdale model, mm 

In their original development of the J-integral approach to fracture 
testing, Begley and Landes [1 ]8 experimentally verified the significance of 
critical J by showing that it was equal, within limits imposed by variation 
in materials, to a critical ~7 found from large linear elastic specimens of 
the same material. Such comparisons are not always possible, either 
because of the absence of linear-elastic data or because extremely large 
specimens would be required to develop the linear-elastic data. In the 
case of very tough materials that fail in plane stress, for example, the 
specimen size required for macroscopic linear-elastic behavior can be 
immense, and such specimens are all but impossible to acquire or test. It 
was considered desirable, therefore, to examine other independent ap- 
proaches to nonlinear analysis of plane stress fracture so that the veracity 
of critical J results might be tested experimentally in the absence of 
linear-elastic data. The two new approaches to nonlinear fracture analysis 
reported in the present paper are compliance technique and a plastic work 
method. The results from these are described, and they are compared to 
the results from critical J tests. 

Experimental Details 

Material 

Thin, cross-rolled-ingot sheet beryllium was chosen for the present 
study because this material can exhibit large nonlinear deflections in the 
absence of stable crack growth. Thus, the complexities that attend the 
presence of stable crack growth were avoided. A rather thin sheet (0.80 
mm thick) was chosen for the study because it was believed that fracture 

a The italic numbers in brackets refer to the list of references appended to this paper. 
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would occur in plane stress in this thin section. The beryllium sheet was 
annealed at 780~ for 1 h after warm cross rolling. This resulted in a fully 
recrystallized microstructure and an intercept grain size of 49/zm. The 
material was found to have a high degree of in-plane isotropy as indicated 
by the basal plane pole figure given in the Appendix. The chemical 
composition of the sheet is also recorded in the Appendix. 

The uniaxial, engineering tensile properties were determined; the 
averaged results from two specimens were 151 MPa yield strength, 302 
MPa ultimate stress, and 7.8 percent elongation. 

Fracture Resistance Test Procedures 

Specimen Types--Single edge notched (SEN) specimens of two differ- 
ent sizes were used in the present study. The SEN specimens were 31.75 
and 95.25 mm wide. Other dimensions were in accord with suggested 
geometry [2]. Machined edge slots in the specimens were extended, using 
electrical discharge machining (EDM), by a minimum of 1.3 mm to 
produce a relatively small slot root diameter (-0.12 mm). Fatigue cracks 
were extended from the EDM slots using procedures described next. Four 
small SEN specimens were prepared with edge slots of different lengths 
(11.43, 12.70, 13.97, and 15.87 mm--measured to the end of the EDM slot) 
to facilitate J-integral testing. The edge notch length to the end of the 
EDM slot in the large SEN specimen was 34.29 mm. 

Two double-edge notched (DEN) specimens were also tested. These 
were prepared by using EDM to introduce a slot opposite the edge notch 
in the small SEN-type specimen just described. The lengths of the two 
edge slots were adjusted so that a net ligament, 4.57 mm wide, remained 
centered on the specimen axis. The reasons for this particular specimen 
design are discussed later in the section on "Results and Discussion." 

Fatigue Precracking--All fracture specimens were fatigue precracked 
using a 200-kN capacity electro-hydraulic machine in tension-tension 
cycling to develop a sharp crack front. In the case of the SEN specimens 
cycling was carried out at a calculated stress intensity range of 2 to 15 
MPa. m ~/2. The relation between stress intensity and specimen geometry 
given by the calibration equation on page 12 in Ref 3 was used for the 
calculation. The fatigue cycling caused between 0.13 and 0.25 mm of 
fatigue crack growth in fewer than 105 cycles. The unusual design of the 
DEN specimens, however, made it necessary to fatigue precrack above 
the general yield stress. Reasons for this are discussed further in the 
"Results and Discussion" section. 

Crack Mouth Displacement--In all cases except the J-integral tests, the 
displacement in the fracture test was measured at the crack mouth. The 
crack mouth displacement gage that was used is described in Ref 3 on 
pages 35-37. Briefly, the displacement is measured by following the 
output of a foil resistance strain gage bridge mounted on the arms of the 
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1 18 MECHANICS OF CRACK GROWTH 

displacement gage. The output of the gage is calibrated in a fixture 
incorporating a barrel micrometer. The sensitivity of the method is 
somewhat better than 0.0025 mm. 

Load Point Displacement--In the case of the J-integral tests, it was 
necessary to measure the displacement along the line of loading in order 
to obtain a well-defined energy input to the specimen. To accomplish this 
the beam gage method illustrated in Fig. 1 was used. Figure 1 shows the 
gage sprung between two stops cemented onto the specimen. The gage 
parameters were designed to maximize linearity and sensitivity over the 
range of 0.25 mm displacement. The displacement is measured by 
following the output of foil resistance strain gages bonded to the midsec- 
tion of the beam gage. The length over which the displacements were 
measured was chosen equal to twice the specimen width (63.5 mm) 
because the work by Srawley et al [4] indicated that the rate of change of 
compliance with crack length is independent of gage length for gage 
lengths of 2• width and greater (for fully elastic SEN specimens). Two 
foil resistance gages were mounted on each side of the gage to form a full 
bridge. The outputs of two such gages on each side of the specimen were 
averaged to obtain the load point displacement. The sensitivity of the 
method is better than 0.002 mm. 

FIG. l--Photographs of the load point displacement gages in place on the small SEN 
specimen. 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



TARDIFF ET AL ON PLANE STRESS FRACTURE 119 

Fracture Test Procedures--All of the fracture tests were carried out at 
a constant cross-head velocity of 2 x 10 -6 m. s-L The J-integral tests 
were carried out on a screw driven, 600-kN-capacity machine, and the 
other tests were carried out on a 200-kN electrohydraulic machine. Force 
and displacement were recorded over the course of the test. 

In preliminary studies it was established that no detectable stable 
growth occurred prior to fast fracture in the present ingot sheet in the 
780~ condition of heat treatment. This was concluded following micros- 
copic examination of the crack tip during the course of the test. The 
absence of stable growth was confirmed by a later test in which the output 
of a strain gage mounted at the tip of the precrack indicated a gradual 
increase in strain as force increased with no indication of cracking prior to 
unstable fracture. It was' not necessary, therefore, to develop a sophisti- 
cated technique to monitor stable crack extension. Visual observation 
was used during each test, however, to verify that no observable stable 
growth had occurred. 

Results and Discussion 

Nonlinear Methods of Fracture Analysis 

J-Integral Method--The approach to the J-integral tests taken in the 
present study followed that first described by Begley and Landes [1 ]. The 
force-displacement behavior for four small SEN specimens, each contain- 
ing a different crack length, is given in Fig. 2. The J-integral values 
corresponding to the three shortest crack lengths were determined for a 
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FIG. 2--Force-versus-load point displacement results for the J-integral specimens�9 
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number of different displacements. To do this, the area between adjacent 
curves was measured with a planimeter to obtain a value for the pseudo 
energy release, dU, for various displacements. This energy value was 
then divided by the difference in crack length, da, and thickness to obtain 
a value for J (a pseudo energy release rate) at each displacement. The 
resulting J-versus-displacement relationships for three different crack 
lengths are given in Fig. 3. The critical J value is obtained at the point of 
fracture, and the values corresponding to three crack lengths are indicated 
in Fig. 3 (6160, 5510, and 5420 J.m-~). These values are considered to be 
within normally expected material variation. 

Begley and Landes found that the value of .]erit for the steel they 
investigated was the same within material variation as a linear elastic 
value of ~7 crit determined for the same steel by a different investigator 
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FIG. 3--J-versus-load point displacement for the small SEN specimens. 
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using larger specimens. Begley and Landes thus concluded that the J 
approach to nonlinear analysis yielded a result equivalent to a linear- 
elastic test. The mathematical basis for the J test was fully discussed by 
Begley and Landes and is not repeated here. Suffice it to say that J 
describes the elastic-plastic stress field in the same way that ~7 describes 
the elastic field in a linear-elastic situation. The values Of Jerit and ~ err are 
measures of the plastic work done at the crack tip up to the point of 
fracture. 

Begley and Landes pointed up that minimum specimen dimensions 
(including remaining ligament an crack length) required for a valid J result 
are determined by the dimensions over which the J parameter describes 
the crack tip stress field, It is necessary, therefore, to verify the validity of 
the J result by independent methods until sufficient experience or 
theoretical understanding or both acquired to allow minimum specimen 
size requirements to be defined. In the present instance, two other 
independent, nonlinear methods were investigated for comparison with 
the Jerit results. 

Compliance Method--Using the expression [5] that gives an approxi- 
mate dimension of the plane-stress plastic Zone, 

r~ ~ 27r 

and assuming that ~ e r i t  = Jerit, a zone of 11 mm is obtained at fracture for 
the present material. Since this is a very large multiple of the thickness of 
the present sheet (0.80 mm thick), it is reasonable to conclude that 
fracture occurs in plane stress. This makes it possible to test a second 
method of nonlinear analysis based in part on the Dugdale plane-stress 
model. 

Records of force versus crack-mouth displacement for both the large 
and small SEN specimens are given in Fig. 4. A method of analyzing these 
records is obtained if it is assumed that all of the deviation from linearity is 
due to the development of a plastic zone ahead of the crack tip. This is 
reasonable, since no stable crack growth was observed. If it is assumed 
that the development of a plastic zone ahead of the crack tip has the same 
effect on compliance as an amount of crack extension of equal length, 
then the plastic zone length can be deduced from the apparent compliance 
at the point of fracture and a prior correlation between compliance and 
a/W. As noted in Fig. 4, the apparent compliance is deduced from the 
reciprocal slope of the line drawn through the fracture point and the 
origin. A value of compliance compensated for modulus (taken as 
290 • 109 Nm -2 for beryllium) and thickness (0.80 mm) is then computed 
to give a value for Evh/F. A value for (a + papp)W (where papp is the 
apparent length of the plastic zone) is found from the correlation between 
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FIG. 4----Force-versus-crack mouth displacement behavior for SEN specimens of two sizes. 

Evh/F and a/W given in Ref 3 on page 37. The apparent plastic zone 
lengths at fracture found using this method are 10.7 mm for the large SEN 
and 6.08 mm for the small SEN. 

It is now possible to compute the fracture resistance if it is assumed that 
the plastic zone lengths found above represent the critical zone lengths for 
fracture independent of specimen configuration. This is done by first 
computing the remote applied stress required to develop these same 
plastic zone lengths in infinite center cracked (CC) specimens. The 
Dugdale [6] elastic-plasctic model for plane stress is used for this purpose. 
This model, originally developed by Dugdale, subsequently extended by 
Goodier and Field [7], and used by Hahn and Rosenfield [8] to account 
for the magnitude of plane stress fracture toughness, has proven very 
useful in the interpretation of the origin of fracture resistance. The basis 
for and the principle results of this model are described thoroughly in the 
previous reference and are not repeated here. The appropriate equation 
for calculation of the remote stress is, from the Dugdale model 
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~o- p 
sec = - -  + 1 (2) 

2Y a 

It is necessary to choose a value for the cohesive stress or the strength 
of the plastic metal (Y) within the zone for this calculation. A value for Y 
was taken as an average of the yield and ultimate strengths in uniaxial 
tension (Ir = 230 MPa). The values of  the remote  stress so computed are 
102 MPa (p = 10.07 mm, a = 34.7 mm), and 127 MPa (/9 = 6.08 ram, 
a = 11.7 mm).Values for  the fracture resistance can be found from these 
stresses using the relationship between _~, tr, and a that is appropriate for 
the infinite CC specimen in plane stress loading [9] 

trZTra 
g - (3) 

E 

Since p is a large fraction of a in both cases, a plastically corrected 
value of .~ is calculated using Eq 3, but with a replaced by a + p, 
following a suggestion by McClintock and Irwin [5]. This results in 
fracture resistance of 5050 J. m -2 for the 10.07-mm plastic zone and 3100 
J. m -2 for the 6.08-mm plastic zone. 

The plastic zone found from the test of  the small SEN specimen is 
significantly shorter  than that found from the test  of the larger SEN 
specimen. It is this difference in plastic zone length which results in the 
large difference in the computed values of fracture resistance. The 
difference results f rom the assumption that the plastic zone has the same 
effect on compliance as an equivalent amount  of crack extension. 
Actually, because a cohesive force acts on the elastic-plastic boundary,  
the specimen will be less compliant  than one with the plastic zone 
replaced by an equivalent amount  of  crack extension. Thus, the actual 
plastic zone length will be greater  than that found using the method just  
described. This effect is expected to be greater for  smaller specimens in 
which the zone will occupy a greater  fraction of  the net ligament width. 
The fracture resistance computed using the plastic zone length deducted 
from the compliance test of the large SEN is similar to the magnitude of 
the Jerit results given in the previous section. This suggests that the plastic 
zone length deducted from the compliance data for  the large SEN is about 
right. A more exact  deduction of  the plastic zone length from the 
compliance data would be possible by taking into acount  the effects of  the 
cohesive stress on compliance. It was not within the scope of  the present  
work to investigate this refinement.  

Plastic Work Method--The third method of fracture analysis is based 
on Rice's [10] proof  that 

f0 ~St* gc n t  = o-(6) d8 (4) 
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This proof applies strictly only to the Dugdale model, in which the plastic 
zone is a constant height strip that extends directly ahead of the crack 
tip [10]. Assuming the fracture of the present sheet can be reasonably 
approximated by such a strip model, it is apparent that the value of ~ crit can 
be obtained by measuring the area under the cohesive stress-crack opening 
displacement directly at the crack mouth if the specimen could be made 
small enough so that the elastic contribution to crack mouth displacement 
was small compared to te contribution from crack tip plasticity. To 
accomplish this it was appropriate to choose a specimen with a net ligament 
smaller than the plastic zone size at fracture so that the zone would span the 
entire ligament width. On this basis the net ligament width chosen was 4.57 
ram, considerably smaller than the plastic zone length estimated previously 
(11 mm). A double edge notched specimen was chosen so that ~(~) could be 
simply obtained from the applied force and net section area. The principle 
of the technique is illustrated in Fig. 5. It is evident that the crack tip 
displacement, ~t, indicated in Fig. 5 will be the same as the displacement of 
the upper and lower boundaries of the plastic zone and that this 
displacement, except for a small elastic contribution will be equal to the 
displacement measured at the crack mouth. This is most easily visualized if 
the plastic zone is imagined to be a hole in the specimen. 

It was necessary to fatigue the two DEN specimens above the general 
yield stress in order to develop a reasonable amount of fatigue crack 
growth in a reasonable time. This results because very low stress 
intensities are developed with this specimen design, even at net section 
stresses approaching the ultimate tensile stress. The areas under the 
curves in Fig. 6 were measured with a planimeter to obtain values of ~7 crit 
for the two specimens. As indicated in Fig. 6, the values obtained were 
5260 and 4660 J. m -2. 

Crack mouth displacement gage 1 

8tlz--------~I Force 

Force I 
FIG. 5--Principle of plastic work method for measuring fracture resistance. 
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FIG. 6---Net section stress-versus-displacement for double-edge notched specimens used 
to determine fracture resistance by plastic work method. 

Conclusions 

The results from each of the methods of analysis are summarized in 
Table 1. It is evident that all three methods of nonlinear analysis resulted 
in values that can, in view of normally expected material variation, be 
considered the same. This correspondence is taken as evidence that the 
methods used resulted in correct values for the fracture resistance. It 
might be expected that similar values would result from linear-elastic tests 
of very large specimens of the same thickness. The demonstration of this 
was, however, beyond the scope of the present program. 
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TABLE 1---Summary of  fracture resistance values found 
using three independent methods of  nonlinear fracture 

analysis. 

Jcrit or _.~critJm-2 

J-integral method 6160, 5510, 5420 
Compliance method,  

large SEN 5050 
Compliance method,  

small SEN 3100 a 
Plastic work method 5260, 4660 

a This low result probably results from the assumption that 
the plastic zone has the same effect on compliance as an 
equivalent amount of  crack extension as discussed in the text. 

FIG. 7---Basal plane pole figure and chemical composition of beryllium. 
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Phi losophy in Meta l lurgica l  E n g i n e e r i n g  at  the Mich igan  Techno log ica l  
Un ive r s i ty ,  H o u g h t o n ,  Michigan .  

APPENDIX 

Basal Plane Pole Figure and the Chemical Composition of the Beryllium Sheet 

The extent of in-plane isotropy of the annealed beryllium sheet is shown by the 
basal plane pole in Fig. 7. The chemical content is: 

C 0.069 Co <0.001 
Fe 0.138 Cu 0.007 
A1 0.072 Pb <0.001 
Mg <0.001 Mn 0.013 
Si 0.061 MO 0.003 
Ca <0.003 Ni 0.015 
CR 0.012 BeO <0.01 
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A Fracture Mechanics Approach to Creep 
Crack Growth 

REFERENCE: Landes, J. D. and Begley, J. A., "A Fracture Mechanics Approach 
to Creep Crack Growth,"  Mechanics of Crack Growth, ASTM STP 590, American 
Society for Testing and Materials, 1976, pp. 128-148. 

ABSTRACT: A fracture mechanics approach was used to study high-temperature 
creep crack propagation. Crack growth rates were correlated with the C*- 
parameter which is an energy rate line integral. For materials conforming to a 
nonlinear stress and strain rate relationship in the steady-state creep range, 
specifically, those which can be properly idealized as purely viscous (negligible 
elastic and transient creep effects), C* characterizes the crack tip stress and strain 
rate fields. 

Crack growth rate tests were conducted in the creep range on a discaloy 
superalloy at 1200~ (920 K). Two specimen geometries were tested, a center 
cracked panel and a compact geometry, to establish the geometry independence of 
this approach. The results showed that crack growth rate correlated with the 
C*-integral, while other parameters (K and nominal stress) failed to adequately 
characterize crack growth rate. 

KEY WORDS: crack propagation, stress analysis, mechanical properties, fracture 
properties, crack initiation, creep rate 

High-temperature creep behavior  has been the subject of extensive 
research. Much of the work has been focused on studying bulk material 
behavior. Typical  tests usually involve uniaxial tension specimens where 
time to rupture or strain rate is measured as a function of stress under  an 
applied constant load. In some cases, the response of a structure to 
multiaxially applied loading has been investigated. In this work on bulk 
material behavior,  the effect of macroscopic defects  has been largely 
ignored. 

Under  a uniform stress field in the creep range, defects  often develop as 
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voids and microcracks are formed in the material. These defects are 
frequently fairly uniformly dispersed. An analysis which considers an 
average strain response to an average applied stress is usually adequate to 
describe this creep behavior. However, there is some creep behavior 
where failure occurs by the initiation and propagation of a single macro- 
scopic crack. In these cases, the material behavior might better be 
characterized by an analysis which accounts for this single defect. 

A fracture mechanics approach provides a technique where material 
behavior is analyzed with the assumption of pre-existing cracklike de- 
fects. Analysis of material fracture frequently considers the initiation and 
propagation of cracks and the final failure as three individual steps. Each 
step can be analyzed separately. In the case of linear elastic behavior, the 
crack tip stress intensity factor, K, is a single parameter which can be 
used to analyze each of these separate steps of fracture behavior. K is a 
parameter which uniquely characterizes the crack tip stress and strain 
field. 

A fracture mechanics approach to creep cracking behavior must 
identify a parameter which successfully characterizes the crack tip 
behavior. A first approach to this analysis might be one to identify a 
parameter which can correlate creep crack propagation rates. A study by 
Siverns and Price on a 21/4Cr-1Mo steel has attempted to correlate creep 
crack growth rate with K [1 ].a The results shown in Fig. 1 demonstrate the 

Stress Intensity Factor, K, ksi i4i4i4i4i4i4i4i4i4Tn 
10 20 4o 60 80 

--1 ' I r / '  I ' I '  
10 / / 1 /  

/ j / / / -  10 ~ 

10- 2 / /  / 1  / 

:atterband I I - 10 -1  ~ 

 Jt/",catIer,an  '0- i 

io --~ ii I 
,~t' ~ I  2 1/4 Cr, 1 Mo Steel 
/ /  , /  565~ 11050~ _ 10 - 4  

. "  SEN Specimens 

10- 6 ( /  I I I I I I I l l  
10 20 40 60 80 100 

Stress Intensity Factor, K, MN/m 312 

FIG. l---Crack growth rate versus s tress  intensity f a c t o r  [ 1]. 

3 The italic numbers in brackets refer to the list of references appended to this paper. 
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130 MECHANICS OF CRACK GROWTH 

moderate success of this approach. Crack growth rates have been 
measured over five orders of magnitude. However,  the growth rate at a 
given value of K exhibits a scatterband of about a factor of 30. The data 
were collected on a single specimen geometry, a single edge cracked 
tension specimen. To demonstrate that K is a successful correlating 
parameter, data should be collected on different specimen geometries 
where the crack tip parameter can be analyzed separately from the other 
stress field parameters. 

It could be postulated that high-temperature creep behavior is not a 
typical linear elastic phenomena. Therefore, the linear elastic parameter, 
K, may not be the appropriate parameter to correlate creep crack growth 
rate behavior. A different parameter, C*, is proposed in this work as a 
parameter which better describes the crack tip region. C* is an energy rate 
line integral which uniquely characterizes the crack tip stress and strain 
rate field for materials following a nonlinear steady-state creep law. C* 
appears to be a more appropriate parameter to use for correlating creep 
crack growth rates. 

Crack growth rate studies were performed on a discaloy superalloy at 
1200~ (920 K) to test the applicability of the C*-parameter to correlate 
growth rates. Two different specimen geometries were used, a center 
cracked panel (CCP) and a wedge opening loading specimen, 1T-CT. The 
success of the C*-parameter in correlating creep crack growth rates was 
compared with attempts to use linear elastic parameters, K, and nominal 
stress, to correlate growth rate. 

C*-Parameter 
Definition o f  C* 

The C*-parameter is an energy rate line integral. It is defined for the 
two-dimensional case by 

(0fii ") 
C* = fv W* d y -  T~ \ ax / ds (1) 

where 

W* = f0 ~mn o-i t dEij (2) 

As illustrated in Fig. 2, F is the line contour taken from the lower crack 
surface in a counterclockwise direction to the upper crack surface. W* is 
the strain energy rate density associated with the point stress o-i~ and 
strain rate ~i~. Ti is the traction vector defined by the outward normal nj 
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FIG. 2---Crack tip coordinate system and arbitrary line integral contour. 

131 

along F, Ti = o-~jnj, ui  is the displacement vector  and s is the arc length 
along F. C* was originally suggested by Rice [2] as a path independent  
energy rate line integral. It is simply a modification of  the J-integral 
where strain and displacement,  ~j and / t i ,  are replaced by their rates, 
eo and hi. 

Goldman and Hutchinson [3] discussed how this parameter  could be 
applied to secondary or steady-state creep. A creep law in the form 

- -  = ot  ( 3 )  
E0 

where e0, o~, tro, and n are constants,  describes a nonlinear viscous 
behavior in materials. This law can be generalized to multiaxial stress 
state by 

n - - 1  

E0 2 c~ O'o (4) 

where o-e is an effective stress 

3 
~ 2 s~sij (5) 

and s~j is the stress deviator.  For  a steady-state creep behavior  conforming 
to this law Goldman and Hutchinson [3] described how C* is a single 
parameter characterizing the near-tip stress and strain-rate fields. 

1 , 

= ~,j (O) (6) oij  tro [C*/a  O'o eoIn] n+l r " 

n n 

i~l~= a ~o [C* /a  o'0 ~0/~] ,+1 r ( -  "~q-) ~, (O) (7) 
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132 MECHANICS OF CRACK GROWTH 

I ,  is a numerical constant  determined by n and mode of crack opening. It 
is tabulated for a given range of n elsewhere [4]. &,~ (O) and ~j (O) are 
dimensionless functions which characterize the distribution of stress and 
strain rate. 

For  linear elastic behavior,  the parameter  K uniquely characterizes the 
near-tip stress and strain field. For  crack propagation behavior under  
linear elastic condit ions,K correlates growth rate behavior.  It is reason- 
able to assume that for  materials following a steady-state creep law (Eq. 4), 
C* will correlate the growth rate behavior.  

It is important to note that the application of the C*-parameter to 
correlate creep crack growth rates assumes that the material is following a 
steady-state creep law as expressed by Eq 4. This assumes that all 
transient effects as well as elastic and short time plasticity effects can be 
ignored. Since the C*-parameter  is expressed as a path independent line 
integral, this assumption must apply not only to the crack tip area but to 
each point in the structure being analyzed. 

The use of C* to characterize creep crack growth is limited to a specific 
range of  cracking behavior.  However ,  this approach is not intended to be 
universal in its application. Rather it is intended as a first step in an 
approach to a complex problem. 

Power Rate Interpretation 

The relationship between the J-integral and the C*-parameter  suggests a 
method for measuring it experimentally.  J is an energy integral, and C* is 
an energy rate or power  integral. An energy rate interpretation of  J has 
been discussed by Rice [5] and Begley and Landes [6]. J can be inter- 
preted as the energy difference between two identically loaded bodies 
having incrementally differing crack lengths. 

dU 
J - d t  (8) 

where 
U = potential energy and 

= crack length. 

C* can be calculated in a similar manner  using a power  rate interpretation. 
Using this approach C* is the power  difference between two identically 
loaded bodies having incrementally differing crack lengths. 

OU* 
C* - (9) 

O( 

where U* is the power  or energy rate defined for  a load P and 
displacement ~ by 
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U* = fo ~ Pdit (10) 

This method for determining J is a pseudo-compliance measure of J[6]. 
It is shown schematically in Fig. 3. The similar method for measuring C* 
is shown in Fig. 4 for multiple specimens tested at differing displacement 
rates. The data are collected as load and crack length versus time for a 
constant displacement rate, Step 1. These data are then used to determine 
load as a function of displacement rate for various crack lengths, Step 2, 
and crack growth rate versus crack length, Step 5. The power or energy 
rate input, U*, is measured as the area under the curves in Step 2. U* is 
plotted versus crack length in Step 3. The slope of the curves in Step 3 is 
then C* as defined in Eq 9. C* can be plotted as a function of displace- 
ment rate, Step 4. Combining the curves from Steps 4 and 5 gives the 
desired result of crack growth rate versus C*, Step 6. 

This method for analyzing the data is not simple. However, C* appears 
to be an appropriate parameter for correlating crack growth rate data. 
This data reduction method can be used to demonstrate the feasibility of 
using the C*-parameter. In future work, an easier method for measuring 
C* can be studied. 

Experimental Technique 
The material used in this study was a Fe-Ni-Cr superalloy (Heat No. 

4574-7) generically labeled discaloy. The details of the material chemistry 
and mechanical properties are given in Table 1. 

Two specimen types were tested, a center cracked panel, CCP, 0.50 in. 

Load 

Load 

a 3 > a 2 > a I 

d 2 

V 

a 7 

FIG. 3---Energy rate determination of J. 
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I Load 
ct~:de~ I/ '<.. .Z~- Crack Gro~, Cr,ck I ~  ~ Displacement 
LengthL,,..,~__ - Length Rate I-""~-~[~ Rate 

time Crack Length 
Step One Step Five 

\ Crack Crack [ / 
Load ~ .  tLength (Srowlh 

Rate 
Displacement Rate C ~ 

Step Two Step Six 

Energy 

Crack Length Displacement Rate 
Step Three Step Four 

FIG. 4---Schematic showing six steps involved in C* data reduction. 

(13 mm) thick, Figs. 5a, and a 1T-CT compact specimen 1 in. (25 mm) 
thick, Fig. 5b. 

Attempts were first made to conduct the testing under constant loading 
conditions to conform with common practice in creep testing. However, 
under these conditions, the significant portion of the crack growth 
occurred during a small percent of the total test time. Adequate crack 
growth data could not be gathered with this test technique. Therefore, 
tests were conducted using a constant displacement rate. The tests were 
conducted on a closed loop electrohydraulic test machine where any 
desired transducer could be used to control loading. For the CCP 
specimens, the controlling transducer was a linear variable differential 
transducer (LVDT) placed across a 5 in. gage length on the specimen, 
Fig. 6. For the IT-CT specimens, the controlling transducer was an 
LVDT placed in the load line. Controlling displacement rate meant that 
one of the important variables in the data reduction scheme could be held 
constant. The variables monitored during the test were load and crack 
length. Crack length was monitored using an electrical potential system, 
Fig. 6. This could monitor crack length to within an accuracy of _0.010 
in. (0.25 ram). The input current for this system was 10 A producing a 
voltage drop in the range of 300 to 600/zV. This signal was then amplified 
and continuously recorded. 

The test temperature was 1200~ (920 K) for all specimens. This is 
about 100 K above half the absolute melting temperature for the discaloy 
material putting the tests well into the creep range. The temperature 
control was good for the CCP specimens _+2~ However, for the 1T-CT 
specimens, temperature control was not as good. Average temperatures 
for these specimens were estimated to be 10 to 15~ above 1200~ 
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FIG. 5a---CCP specimen. 
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FIG. 6----Schematic showing displacement controlled loading and electrical potential 
crack monitoring system on a CCP specimen. 

The initial tests were all conducted at a single displacement rate on a 
given specimen for the entire test. Displacement rates ranged from 
0.00013 in./h (0.0033 mm/h) to 0.0153 in./h (0.39 mm/h) for the CCP 
specimens and from 0.0010 in./h (0.025 mm/h) to 0.0080 (0.20 mm/h) in./h 
for the IT-CT specimens. Later tests were conducted using a rate cycling 
technique where three separate displacement rates were used in sequence 
on a single test. An example of this is shown in Fig. 7, where rates of 
0.001, 0.002, and 0.004 in./h (0.025, 0.050, 0.10 mm/h) were used on a 
single CCP specimen. The rate cycling technique was used to try to get 

~4 

E3 

I II 
Time 

FIG. 7----Schematic of displacement rate cycling sequence. 
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138 MECHANICS OF CRACK GROWTH 

enough data from a single specimen to complete the entire data reduction 
scheme. 

Results 

Data Reduction Scheme 

Since the data reduction technique used for these tests was somewhat 
complex, an example of each step will be demonstrated for some of the 
data gathered on the CCP specimens. The schematic of the data reduc- 
tion, Fig. 4, shows six different steps. These are illustrated by the actual 
data. 

Step l in Fig. 4 shows load and crack length measured as a function of 
time. Step l represents the actual data collected during the test. Since the 
tests were conducted at a constant displacement rate, time and displace- 
ment are interchangeable independent variables. Load and crack length 
are the dependent variables. Two examples of the data collected are 
shown in Figs. 8 and 9. These data represent over an order of magnitude 
difference in displacement rate. Figure 8 shows data collected for a rate of 
0.0010 in./h (0.025 mm/h), and Fig. 9 shows data for a rate of 0.0153 in./h 
(0.39 ram/h). These results show a pattern which was consistent for all 
CCP tests. The load increased initially with displacement and reached a 
maximum early in the test. Crack growth occurred just prior to the point 
of maximum load. Shortly after crack growth began, the curve of crack 
length versus time shows an almost constant rate of crack growth. This 
constant rate of crack growth is accompanied with a nearly constant rate 
of load decrease. Since the results considered in these tests were 
concerned with a secondary or steady-state creep phenomena, these 
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FIG.  8---Load and  crack length versus time f o r  discaloy at 1200~ (displacement  
rate = 1,0 mils~h). 
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FIG. 9---Load and crack length versus time f o r  discaloy at 1200~ (displacement  
rate = 15.3 mils~h). 

constant rates were taken to imply a steady-state region of creep crack 
growth. Data were analyzed only after maximum load; all transient effects 
were ignored. 

From the basic Step 1 data as represented in Figs. 8 and 9, two separate 
directions are taken in the data reduction scheme. They are the evaluation 
of C*, Steps 2 through 4 in Fig. 4, and the calculation of crack growth 
rate, Step 5 in Fig. 4. As illustrated, the crack growth rate is constant for 
each CCP test and can be easily calculated and tabulated for each 
specimen. This, however, was not the case for the 1T-CT tests; crack 
growth rate had to be evaluated as a function of crack length as shown in 
Step 5. 

The method for evaluating C* is not as easy and is demonstrated using 
the type of data shown in Figs. 8 and 9. An intermediate plot was used in 
going from Steps 1 to 2. This was a plot of load versus crack length for 
each displacement rate, that is, each individual test, Fig. 10. This 
intermediate step was an aid in constructing the Step 2 plot of load versus 
displacement rate for differing crack lengths (crack length = 2a for the 
CCP specimens), Fig. 11. The load versus displacement rate plot was 
used for determining the energy rate or power input, U*. U* was 
measured graphically by taking the area under the curve in Step 2, 
Fig. 11. U* was then plotted versus crack length, Fig. 12; this is Step 3 in 
the data reduction scheme. The slope of the curves in Fig. 12 is then a 
measure of C* per unit thickness. Taking the slopes of these curves and 
dividing by specimen thickness gives the final evaluation of C*. This is 
shown in Fig. 13, Step 4, where C* is plotted as a function of displace- 
ment rate. In the general case, C* is a function of both displacement rate 
and crack length. However, for the CCP specimen tests conducted at 
constant displacement rates, C* was independent of crack length as was 
crack growth rate. 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



140 MECHANICS OF CRACK GROWTH 

40 

3O 

20 

1 0 1 .  0 

Crack Length, mm 

30 35 40 
' 

Displacement 
Rate = 15. ) mils/hr 

10.0033 mm]h r) 
1. 0 m i t s / h r  
I0. 025 mm/h r) 

Discaloy 
1200 ~ F 

CCP Specimen 
I I I I I I 

1.1 1.2 L3 1.4 1.5 1.6 
Crack Length, 2a, in 

�9 15 

} 
�9 10  

�9 0S  

FIG. lO--Load versus crack length for various displacement rates (discaloy at 1200~ 

The final step leading to the desired result is the combination of Steps 4 
and 5 to produce a plot of crack growth rate versus C* Step 6. 

Crack Growth Rate Correlation 

Crack growth rate versus C* is plotted on log-log scales for all of the 
CCP specimens where each specimen was tested at a single displacement 
rate, Fig. 14. This plot shows a nearly straight line correlation except for 
the test run at the slowest rate of 0.00013 in./h (0.0033 mm/h). Although 
the data reduction is somewhat complex, the final result illustrates a good 
correlation. In Fig. 14, each point represents a single specimen. 

In an attempt to simplify the data collection, single specimens were run 
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FIG. 11--Load versus displacement rate for various crack lengths. 
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F I G .  12----Energy rate versus crack length for various displacement rates. 

at multiple sequenced displacement rates, Fig. 7. A single test then 
provides enough data to complete the data reduction scheme for C*. An 
example of the plot of load versus crack length (intermediate to Steps 1 
and 2) is shown in Fig. 15. In this test, load and crack length were 
evaluated after steady-state conditions had been achieved following a 
displacement rate change. Following the data reduction scheme shown in 
Fig. 4, crack growth rate versus C* could be evaluated for a single 
specimen. The values obtained by these tests are shown superimposed on 
the values obtained from single displacement rate tests, Fig. 16. These 
results show good agreement with the tests run at a single displacement 
rate. 
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F I G .  14---Crack growth rate versus C *  for CCP spec imens  tes ted at constant  displace- 
ment rates. 

Tests were conducted  on the IT-CT spec imen to demonstrate  the effect 
of  a radically different spec imen geometry.  The data reduction scheme  
was identical to that illustrated for the CCP specimens;  however ,  crack 
growth rate and C* were  not  constant  for a single test conducted  at a 
constant displacement  rate. The results from the 1T-CT spec imens  are 
shown in Fig. 17. A compilat ion of  all data col lected for both spec imen 
types is shown in Fig. 18. 
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F I G .  15---Load versus crack length for a single CCP specimen tested at multiple 
displacement rates. 
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FIG. 16---Crack growth rate versus C'for  all CCP specimens. 

To illustrate the success  of C* as a parameter in correlating creep crack 
growth rate other correlating parameters were considered. They are the 
stress intensity factor, K, and nominal stress. 

Crack growth rate versus K is plotted in Fig. 19. K was evaluated from 
crack length and load using the calibration given elsewhere [7]. Crack 
growth rate versus nominal stress is plotted in Fig. 20. The nominal stress 
values, o-,, used here were the net section stress on the uncracked 
ligament for the CCP specimen, 
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FIG. 17---Crack growth rate versus C'for 1T-CT specimens at a constant displacement 
rate. 
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FIG. 18--Crack growth rate versus C* for CCP and 1T-CT specimens. 

where 
B = spec imen thickness ,  
W = spec imen width, and, 
2a = crack length. 

For the 1T-CT spec imen the nominal  stress is a crack tip stress 
calculated from the combined  tension and bending stresses 
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FIG. 19--Crack growth rate versus stress intensity factor. 
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where a is the crack length. 

Discussion 

The results demonstrate the success with which the C*-parameter can 
be used to correlate creep crack growth rate. Considering each specimen 
type separately, the scatter in growth rate for a given C* is less than a 
factor of two. This is illustrated for the CCP specimen in Figs. 14 and 16 
and for the IT-CT specimen in Fig. 17. Combining the results from both 
specimens, Fig. 18 gives a scatter in growth rate of slightly greater than 
five for a given C*. 

Attempts to correlate growth rate using linear elastic parameters such 
as stress intensity factor, K, and nominal stress show results very similar 
to those of Siverns and Price [1]. For a consistent specimen type the 
scatterband on growth rate correlated with K is about a factor of 30, 
Fig. 19. However, comparing two radically different specimen types such 
as the CCP and IT-CT geometries shows virtually no correlation of the 
growth rates. The range of K which produces a given growth rate on the 
CCP specimens is completely different from the range of K needed to 
produce the same order of magnitude growth rate on the 1T-CT specimen. 
The results from correlating growth rate with nominal stress show the 
same trend, Fig. 20. Given a consistent specimen type the correlation is 
fair; however, changing the specimen types gives virtually no consistent 
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correlation. Results from individual tests indicated this lack of correlation 
using K and nominal stress. For the CCP specimens growth rate was 
constant for the entire test, while K decreased with increasing crack 
length. For the IT-CT specimens crack growth rate decreased with 
increasing crack length, while nominal stress increased. In contrast to this 
the evaluation of C* showed a consistent trend. In the CCP specimens 
both C* and growth rate were constant throughout the entire test for tests 
conducted at a single displacement rate. For the 1T-CT specimens C* and 
growth rate both decreased with increasing crack length. 

An important technique in a fracture mechanics approach is illustrated 
by these results. That is, in separating parameters which characterize the 
crack tip region from parameters which do not, radically different 
specimen types must be tested. The CCP specimen is loaded purely in 
tension, whereas the IT-CT specimen is primarily a bend type specimen. 
While the growth rate correlation with C* is extremely good for all of the 
CCP tests and is only fair for K and nominal stress, these tests alone 
would not establish C* as a crack tip parameter. Using a CCP specimen 
geometry, growth rate could be correlated reasonably well with any 
parameter which increases as the loading on the crack increases. Gather- 
ing growth rate data on a specimen type which nearly modeled the 
application geometry might be successful with many parameters. How- 
ever, if the geometry of the application were to differ slightly from the 
specimen geometry used, attempts to apply data in terms of the noncrack 
tip parameter might be seriously in error. Therefore, the establishment of 
a crack tip parameter such as C* can be extremely valuable for application 
to structural components. Testing can be performed on conveniently 
designed specimens, and the resulting data can be applied to a multitude 
of structural geometries. 

The data gathered by Siverns and Price [1] cover five orders of 
magnitude in growth rate and are very impressive from this standpoint. 
Results reported here cover only slightly more than two orders of 
magnitude. These tests were conducted so that the correlation could be 
studied in a reasonable amount of time; the longest test time was in the 
order of one month. However, for structural application, the slower 
growth rates would be of most interest. The data shown in Fig. 14 show 
almost a straight line correlation with the exception of the slowest test 
Which lies significantly below the line through the other test results. This 
raises an important question of how the C* correlation will extrapolate to 
the slower growth rates. Although the results from one test are not 
conclusive, it appears that there may be a radical change in the slope of 
the correlation line for slower rates. This is similar to the results of fatigue 
crack growth rate correlated with AK where the radical change in slope 
for slower growth rates leads to a threshold value of AK below which 
cracks do not propagate in fatigue [8]. If a similar trend is followed by 
creep crack growth, perhaps a similar threshold C* could be postulated. 
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The establishment of such a threshold parameter would be extremely 
valuable for applications. Future testing will concentrate in this area; 
however, the establishment of a C* threshold may possibly require testing 
times in the order of several years. 

An important criticism of the study of macroscopic creep crack growth 
is that creep damage does not often occur by the propagation of a single 
macroscopic crack. Rather creep damage occurs as voids, and micro- 
cracks develop somewhat homogeneously throughout the specimen. 
Some materials such as discaloy are known to develop single cracks; 
however, such materials seem to be in a minority. Most of these 
observations have resulted from tests on uniform specimens loaded in 
uniaxial tension. Some other observations have shown that nearly any 
material can develop a predominant macroscopicly propagating crack 
under special geometry and stress conditions. [9]. Such conditions are 
either a region of high stress concentration or a predominantly bend type 
of loading where the highest stresses are concentrated in a small area. 
Under these conditions, cracking is localized, and the result is a single 
predominant macroscopic crack. In structural applications, it is often 
these regions of high-stress concentration that are of most concern rather 
than regions of uniform stress. Therefore, the study of creep behavior in 
terms of single propagating crack is important. 

An important part of the study of material behavior is the anticipated 
subsequent application to structural components. An approach that 
cannot be applied to structures may be of some value in material 
evaluation and selection; however, this approach will ultimately be 
abandoned in favor of an approach which has a direct application. In 
concept C*-parameter is a very good prospect for application to struc- 
tures. Since it represents a parameter which characterizes the crack tip 
region, results from a single specimen geometry can be applied to a 
multitude of structural geometries. The problem of calculating C* for a 
crack in a structure is in practice somewhat complicated. If the material 
can be characterized in terms of Eq 4, where strain rate is measured as a 
nonlinear function of stress, C* could be calculated using the line integral 
definition given in Eq 1. This calculation would require a numerical 
analysis such as the finite element approach. A similar approach has been 
used to calculate the J-integral for the nonlinear stress-strain behavior 
encountered in plasticity considerations [10]. If the material properties 
represented in Eq 4 were known, this same approach could be used to 
calculate the C* for a crack in a structure. 

Conclusions 

1. A fracture mechanics approach is used to correlate creep crack 
growth behavior. The C*-parameter which is an energy rate line integral is 
shown to characterize the crack tip stress and strain rate field. 
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148 MECHANICS OF CRACK GROWTH 

2. The C*-parameter can successfully correlate creep crack growth 
rates for a discaloy superalloy tested at 1200~ (920 K). 

3. The stress intensity factor, K,  and nominal stress do not adequately 
characterize crack growth rates. This is demonstrated by considering two 
radically different specimen geometries,  the center  cracked panel and the 
compact specimen. C* correlates creep crack growth rates for these 
geometries, while K and nominal stress show no correlation. 

4. C* can be used as a parameter  to predict crack growth rate for 
structural applications. 
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Creep Cracking in 2219-T851 Plate at 
Elevated Temperatures 

REFERENCE: Kaufman, J. G., Bogardus, K. O., Mauney, D. A., and Malcolm, 
R. C., "Creep Cracking in 2219-T851 Plate at Elevated Temperatures," Mechanics 
of Crack Growth, ASTM STP 590, American Society for Testing and Materials, 
1976, pp. 149-168. 

ABSTRACT: The susceptibility of 2219 to time-dependent (creep) crack growth 
under sustained load has been evaluated, and, while no crack growth was observed 
at room temperature, it was observed at elevated temperatures at stress intensities 
(K~ec) well below K~r It appears that creep cracking will take place at stress 
intensities down to a threshold, designated K~cct, about 40 percent of K~c at 300OF, 
and preliminary check tests suggest that similar behavior would be in evidence at 
212 and 350~ in both the L-T and T-L orientations, though much work remains to 
be done in defining the extent of the temperature dependence. The rate of crack 
growth is controlled primarily by the instantaneous stress intensity factor and can 
be described by the following relationship: log da/dt = 0.085K - 4.14. 

KEY WORDS: crack propagation, mechanical properties, deformation, creep tests, 
fracture strength, stress analysis 

In 1968, Kaufman and Holt [1] 2 reported on their findings of time- 
dependent crack growth in 2219-T851 plate at elevated temperatures. In 
that work, the notch-stress rupture strength decreased significantly below 
the smooth-specimen stress rupture strength with increase in rupture time 
at temperatures in the range from 300 to 500~ as illustrated by the 
representative data in Fig. 1. Examination of the fractured specimens 
revealed that the reduction in stress rupture life was associated with a 
concentration of intergranular crack growth from the root of the notch; 

1Manager, Engineering Properties and Test Division, senior engineer, group leader, and 
technician, respectively, Alcoa Laboraories, Aluminum Company of America, Alcoa Center, 
Pa. 15069. 

Zl'he italic numbers in brackets refer to the list of references appended to this paper. 
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FIG.  l----Effects o f  notches on stress-rupture strengths o f  2219-T851 (1-in.) at 300 ~ 

the same cracking was found to be well distributed in smooth specimens. 
As a result of those findings, a program was begun to investigate the 
significance of this phenomenon on the service ability of this alloy 
utilizing fracture-mechanics concepts. 

In the intervening years, starting with the work of Lindborg on an 
austentic steel [2], time-dependent creep crack growth has been reported 
by others [2-9]. In 1970, Siverns and Price [5] noted that crack growth 
rates (da/dt) could be expressed simply in terms of stress intensity factor 
(K) in the form 

da/dt = constant K" (1) 

and data developed by some other investigators have supported this 
general trend [2,7]. Landes and Wei [6,9] developed a model for creep 
crack growth rate based on their work on 4340; the steady-state crack 
growth rate was related to the steady-state creep rate in smooth speci- 
mens, both being controlled by the time-dependent deformation process 
occurring at the crack tip. They also noted the presence of the three stages 
of creep in both types of behavior. In the first reported work on 
aluminum, Kenyon et al [7] showed the rate process dependency of creep 
crack growth in aluminum alloy RR58, equivalent to 2618, and proposed 
the relationship 

da/dt = A K" e-Q/RT (2) 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



KAUFMAN ET AL ON CREEP CRACKING 151 

In the present work we have evaluated the resistance of 2219-T851 to 
creep growth to establish the relationship between the notch stress 
rupture behavior observed previously and the creep crack growth proper- 
ties of this material, and evaluated this behavior in light of the relationship 
shown in Eq 1. 

Object 

The object of this investigation was to determine the rate at which 
cracks in 2219-T851 plate grow during exposure to sustained loads at 
elevated temperatures in the range from 212 to 350~ 

Material 

A single lot of 3-in.-thick 2219-T851 plate was used for this investiga- 
tion. The chemical composition is shown in Table 1 along with the tensile 
properties at room temperature and at temperatures as high as 350~ after 
1/2 and 100-h holding periods at these elevated temperatures. These 
strengths are in good agreement with the typical tensile and yield 
strengths for 2219-T851 plate which are presented in Fig. 2. It is apparent 
from the curves of Fig. 2 that, in the temperature range up to 300~ where 
most tests were made in this investigation, there is little effect of time at 
temperature on tensile strength and yield strength. 

The plane-strain fracture toughness, Kic of this material, determined in 
accordance with ASTM Test for Plane-Strain Fracture Toughness of Metal- 
lic Materials (E 399-72) 2-in.-thick specimens of the type shown in Fig. 3, 
under the time-temperature exposures contemplated for the sustained- 
load tests, are plotted as a function of temperature in Fig. 4. It is evident 
that the plane-strain fracture toughness of this material is also essentially 
independent of time and temperature over most of the range studied. For 
longer times at 350~ there is some indication that Kic is increasing with 
exposure time, as would be anticipated because of the increased ductility 
associated with substantial overaging. 

Procedure 

Plane-strain fracture toughness specimens of the type shown in Fig. 3 
were exposed to sustained loads in Saree Model D creep machines. The 
specimens were enclosed in a quartz lamp oven built especially for this 
purpose; the temperature of each specimen was monitored continuously 
with a fully embedded themocouple near the center of the thickness of 
each specimen just below the region of the crack. A strain-transfer device 
was attached to the faces of the compact tension specimen above and 
below the notch slot; differential transformers outside the furance on the 
opposite end of the strain-transfer device were used to continuously 
record crack opening displacement as a function of time. Crack opening 
displacements (COD) were converted to crack lengths with calibration 
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FIG. 2---Effect of time at temperature on tensile strength and yield strength of 2219-T851 
plate. 

curves, determined at each test temperature for the specimen and the 
strain-transfer system by gradually applying various loads to a calibration 
specimen in which various crack lengths had been simulated using a fine 
s aw  cut .  

Prior to sustained loading of the specimens, each was precracked by 
fatigue loading as required for plane-strain fracture toughness testing in 
ASTM Method E 399-72. This was done in Krouse axial-stress fatigue 
machines, and the final stages of crack growth were carried out at a stress 
intensity of about 12 ksix/in. (38 percent of KIc ). 

In initiating each test, the specimen was heated to the desired tempera- 
ture, allowed to stabilize for 1/2 h, and the desired load was applied. 

Tests were made at a variety of stress intensity levels at 300~ using 
T-L (long-transverse) specimens and a single test was made at 300~ with 
an L-T (longitudinal) specimen to check the influence of specimen 
orientation. Tests were also made at room temperature, 212 and 350~ to 
compare the general behavior at these temperatures. 

Once the COD data had been obtained and converted to crack length as 
a function of elapsed time, the data were computer analyzed to calculate 
and plot (a) rate of crack growth, da/dt, as a function of elapsed time; (b) 
change in stress intensity as a function of elapsed time; and (c) rate of 
crack growth, da/dt, as a function of the instantaneous stress intensity 
level. In all calculations the relationship for plane-strain stress intensity 
factor given in ASTM Method E 399-72 was used. 

Results 

Applied K~ versus time to fracture in all tests in presented in Fig. 5; the 
corresponding values of K1 at fracture are plotted in Fig. 6. The COD 
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FIG. 4---K~c versus temperature for 2219-T851 plate (3-in-thick). 
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156 MECHANICS OF CRACK GROWTH 

data from the tests at 300~ are presented in Fig. 7, and the derived curves 
showing crack length as a function of elapsed time are presented in Fig. 8. 
Computer printouts of da/dt and the instantaneous stress intensity factor 
as a function of time are shown in Figs. 9 and 10, respectively, and the 
computer printout of da/dt as a function of instantaneous stress intensity 
factor is shown in Fig. 11. Macro- and micrographs of fracture surfaces 
are shown in Figs. 12 through 19. 

Discussion of Results 

The data in Figs. 5 through 11 illustrate that at elevated temperatures a 
substantial amount of crack growth takes place in 2219-T851 plate at 
stress intensities considerably below KIc. At a stress intensity of 74 
percent complete fracture occurs in 27 h. Even at 49 percent K~c, only 
about 190 h are required for complete fracture. 

The times to fracture for T-L specimens at 300~ (Fig. 5) are nearly 
linear on a semilog plot to about 200 h. A single test at about 12 ksi~/~, or 
40 percent K~ was carried far enough (about 1200 h) to indicate that the 
linear trend does not continue and there is an indication of a threshold for 
crack growth (designated (K1~t) in the vicinity of about 12 ksi~/~. While 
the apparent "threshold" corresponds approximately to the stress inten- 
sity level at which the specimens were precracked, it is not believed that 
the two are related, though it is recognized that there is a need for 
experimental verification of this point. 

The relationship between applied stress intensity and time to fracture 
seems to be essentially independent of specimen orientation (L-T versus 
T-L) at 300~ and nearly identical at 300 and 350~ for T-L specimens. At 
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FIG,  7---Displacement data from tests (T-L crack orientation) of 2219-T851 plate 
(3-in-thick) at 300~ 
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F I G .  8----Crack length versus time for  2219-T851 plate (3-in-thick) at 300~ 

F I G .  9----da/dt versus time for  2219-T851 plate (3-in-thick) at 300~ 
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158 MECHANICS OF CRACK GROWTH 

FIG. IO--K versus time for 2219-T851 plate (3-in-thick) at 300~ 

212~ indicating that the behavior is temperature dependent. A need for 
further study of this temperature dependence is indicated. 

Fracture stress intensities (Fig. 6), seem nearly independent of test 
conditions and generally decrease with time to fracture. They are well 
above K~c, illustrating that plane-strain conditions are not retained 
throughout the test. 

It should be noted at this stage that no significant time-dependent crack 
growth has been observed in 2219-T851 at room temperature, even in 
severely corrosive environments [1]. A check test was made at room 
temperature as part of this investigation, and, in ambient air conditions, 
no appreciable crack growth was obtained in 1000 h at about 95 percent 
K~c. It is clear that the phenomena described herein are associated with 
moderately high temperatures; it is assumed to be related primarily to 
creep deformations because of the absense of enviroments that result in 
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KAUFMAN ET AL ON CREEP CRACKING 159 

FIG. 11----da/dt versus K fo r  2219-T851 plate (3-in-thick) at 300~ 

stress corrosim cracks of 2219-T851, but additional verification is also 
needed on this point. 

With the use of the calibration relationships, the crack growth data in 
Fig. 8 were derived from the COD data in Fig. 7. These crack length 
versus time curves serve as a basis for development of the curves of Figs. 
9, 10, and 11. 

From the data in Figs. 8 and 9, it is clear that the general trend is for the 
rate of crack growth to increase with time during the test. However in 
most tests, and particularly those at the lower K1 level, there was an 
apparent decrease in crack growth rate during the early part of the tests. 
This initial decrease is believed to be associated with the decreasing creep 
rate during the primary stage of creep in smooth specimens, that is, the 
re-initiation of crack growth in the material in the crack-tip plastic zone 
upon loading. Thus, it is possible that little or no crack extension occurred 
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FIG. 12--Fracture surface of Kite fracture in 2219-T851 plate at 300~ 
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FIG. 13----Fracture surface of Kit fracture in 2219-T851 plate at 300~ 
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162 MECHANICS OF CRACK GROWTH 

FIG. 14--Crack tip profile o f  a Klccfracture in 2219-T851 plate at 300~ 

FIG. 15---Crack profile o f  a Klccfracture in 2219-T851 plate at 300~ 
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FIG, 16--Initial Kr~fracture in 2219-T851 plate at 300~ 

during this part of the test; the increase in COD measurements might 
reflect only local creep strain. As the test progresses, however, the creep 
cracking phenomenon clearly prevails. 

The curves of Fig. 10 indicate that the instantaneous stress intensity 
factor continues to increase during the test, and fracture takes place at 
stress intensities well above the plane-strain fracture toughness of the 
material, as noted earlier. This observation is consistent with the presence 
of the large shear lips as shown in Fig. 12, and it is clear that final fracture 
is of a mixed mode, not in place strain. The rate at which crack growth 
takes place appears directly related to the instantaneous stress intensity 
factor (Fig. 11) with two notable deviations: (1) spikes at low stress 
intensity levels, believed to be associated with the primary-creep-type 
behavior just described, and (2) divergence of data at the upper (tertiary 
stage) end of the range, when the stress intensity factor increases above 
the plane-strain fracture toughness (around 32 ksix/~.),  a range as- 
sociated with mixed mode crack growth and fracture. 

The steady-state crack growth rate da/dt in Fig. 11 can be expressed in 
terms of K rather well by the expression 

log da/dt = 0.85K - 4.14 
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164 MECHANICS OF CRACK GROWTH 

FIG. 17--K~c~fracture in 2219-T851 plate at 300~ 

This differs in form from that presented by Siverns and Price, but the data 
are better represented thus than as a linear log-log relationship. Additional 
work with other sizes and types of specimens is required to establish with 
certainty the generality of the stress intensity dependence, and whether or 
not it is superior to the suggested dependence on the net section stress, as 
proposed by Harrison and Sandor [11], or the J-integral, as suggested by 
Landes and Begley. 3 

The fracture face of Fig. 12 shows the continuous growth of shear lips 
all the way along the fracture, not unlike that in the K~e specimen in Fig. 
13. However, it is evident in the K~cc fracture that there is a time- 
dependent region of crack growth which shows up somewhat lighter than 
the rest; this is taken to be the extent of creep crack growth during 
the life of the specimen. Crack profiles are shown in Figs. 14 and 15 
and suggest that the fracture is neither wholly transgranular or inter- 
granular; there is a suggestion, yet to be verified by a significant number 

aSee pp. 128-148. 
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FIG. 18--Low ductility facet  o f  a Ktccfracture in 2219-T851 plate at 300~ 

of observations, that the cracking is following lined-up constituent. 
There is no evidence of stress-corrosion cracking, as typified by the 
branching type of cracking seen in those alloys, orientations, and en- 
vironments, where stress corrosion cracking is observed in aluminum 
alloys. Scanning electron microscope photographs in Figs. 16 and 17 
demonstrate that the K~cc type of fracture has fewer small dimples than the 
K~c fracture and a number of flat facets which do not show up in the KI~ 
fracture. One of these is shown at progressively higher magnifications in 
Figs. 18 and 19. Intermetallic particles appear on the surface of these fiat 
facets, again presumably associated with the regions of lined-up constitu- 
tents. While this would suggest that higher purity alloys would be less 
susceptible to creep cracking, preliminary work on such alloys does not 
support this expectation. 

Summary 
The susceptibility of 2219 to time-dependent crack growth under 

sustained load has been evaluated, and, while no crack growth was 
observed at room temperature, it was observed at elevated temperatures 
at stress intensities (K~) well below KI~. The crack growth was substan- 
tially different in nature from stress-corrosion crack growth observed for 
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FIG. 19--Detail o f  low ductility facet of  a Ktc~fracture in 2219-T851 plate at 300~ 

some alloys in certain environments (2219-T851 is resistant to stress- 
corrosion cracking in all known environments) and is believed to be 
essentially a creep phenomenon; it is recognized that tests in a vacuum or 
inert gas will be required to prove this beyond any doubt. It appears that 
crack growth will take place at stress intensities down to a threshold, 
d e s i g n a t e d  gicet , of about 40 percent of K~e at 300~ and preliminary tests 
suggest that similar behavior would be in evidence at 212 and 350~ in 
both the L-T and T-L orientations, though much work remains to be done 
in defining the extent of the temperature dependence. The rate of crack 
growth is controlled primarily by the instantaneous stress intensity factor 
and can be described by the following relationship 

log da/dt = 0.85K - 4.14 
(3) 

This behavior has significance in service applications at elevated 
temperatures, as shown in Fig. 20, where the combinations of gross- 
section stress and crack size which would be expected to cause problems 
in 2219-T851 at 300~ are shown. The normal level for anticipation of 
problems with a material which is not susceptible to stress-corrosion 
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cracking and not subject to fatigue loading would be that associated with 
the K~r level. However, the tests described herein show that crack growth 
will initiate at stress intensities anywhere above about 12 ksix/~. ,  so that 
the Kiect curve, not the KIc curve, is the design curve of concern. In any 
application in which 2219 is exposed to stress intensities above 12 ksix/q-n-~. 
at moderate to high elevated temperatures, one should consider the 
possibility of subcritical crack growth. 

A number of questions remain to be answered about this behavior 
including (a) degree to which this behavior is independent of stress state, 
specimen size, and displacement measurement technique, (b) degree to 
which other alloys are subject to creep cracking, for example, 2124, 2419, 
and 2618, which show widely different resistance to creep rupture with 
sharply notched specimens, and (c) whether or not a true threshold for 
this behavior does exist. 
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Investigation of R-Curve Using Comparative 
Tests with Center-Cracked-Tension and 
Crack-Line-Wedge-Loaded Specimens 

REFERENCE: Wang, D. Y. and McCabe, D. E., "Investigation of R-Curve Using 
Comparative Tests with Center.Cracked-Tension and Crack-Line-Wedge-Loaded 
Specimens," Mechanics of Crack Growth, ASTM STP 590, American Society for 
Testing and Materials, 1976, pp. 169-193. 

ABSTRACT: This paper provides a comparison of the crack-line-wedge-loaded 
(CLWL) and center-cracked-tension (CCT) test methods for determining R-curves 
on a number of high-strength aluminum sheet alloys. In general, R-curves were 
reasonably close, differing only by amounts which could be explained by differ- 
ences in testing procedure and in crack driving force curve. Gross stress, Kc, and 
crack length at instability were predicted satisfactorily for CCT panels from CLWL 
R-curves. The test results for CCT specimens show that consistent Kc values are 
obtainable from specimens of various widths provided that the net-section stress at 
failure is below general yielding. 

KEY WORDS: crack propagation, residual stress, fracture strength, plastic proper- 
ties, elastic properties, stresses, aluminum alloys 

The  p r inc ip l e s  i n v o l v e d  in c r a c k  g rowth  r e s i s t a n c e  or  R - c u r v e  have  
been  k n o w n  for  o v e r  a d e c a d e ,  b u t  v e r y  l i t t le  has  b e e n  done  to d e m -  
ons t r a t e  the  p r e d i c t i v e  capab i l i t y  i nhe ren t  in th is  t e c h n o l o g y .  The  
p u r p o s e  of  this  w o r k ,  t he re fo re ,  was  to p r e s e n t  e x p e r i m e n t a l  e v i d e n c e  
d e m o n s t r a t i n g  the  a p p l i c a t i o n  o f  these  p r inc ip l e s  by  us ing R - c u r v e s  
d e v e l o p e d  wi th  c r a c k - l i n e - w e d g e - l o a d e d  ( C L W L )  s p e c i m e n s  to  p r e d i c t  
the  resul t s  o b t a i n e d  in c e n t e r - c r a c k e d - t e n s i o n  t e s t s  (CCT) .  The  p r o p e r t y  
o f  R - c u r v e s  u p o n  w h i c h  such  p r e d i c t i v e  capa b i l i t y  is p r e d i c a t e d  is tha t  

1Senior engineer, Douglas Aircraft Co., McDonnel Douglas Corporation, Long Beach, 
Calif. 90846. 

2Senior research metallurgist, Armco Steel Corporation, Middletown, Ohio 45042. 
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170 MECHANICS OF CRACK GROWTH 

they are a function of slow-stable crack extension only, independent of 
starting crack length in the specimen. Instability Kc can be predicted for 
an untested configuration by determining the appropriate stress level for a 
tangency condition between the crack driving force curve and the R-curve 
for the material. This instability prediction principle has been discussed in 
a number of reports [/-3] a but has seldom been applied. 

In some present analyses, the residual strength of a structure is calcu- 
lated using a failure criterion based on a known initial crack length, and 
crack length at instability is not measured. If the slow-stable crack growth 
is appreciable as has been observed in tests on some very tough materials, 
the error may be quite appreciable. The R-curve, on the other hand, 
provides the complete material fracture characterization, and can be used 
to calculate the residual strength more accurately. 

One very important aspect on the nature of R-curves which has been 
challenged by some investigators and to be tested in this investigation is 
an assumption that R-curves are independent of the specimen type [4]. 
Certainly, overall elastic stress distributions and hence crack driving 
force characteristics vary appreciably from one specimen type to another, 
and it has been suggested that the R-curve is affected by these differences. 
On the other hand, if crack growth resistance development is controlled 
by the crack and Mode I opening conditions, specimen type should be 
immaterial. The center-cracked-tension panel and the crack-line-loaded 
specimens of the present investigation provide a suitable contrast by 
which the foregoing consideration can be tested. The literature contains 
only a few examples where CLWL and CCT specimen R-curves have 
been compared [5,6]. These results have indicated that some small 
differences in R-curves exist, favoring slightly higher KR and Kc values for 
CCT tests. Generally the differences were so small as to be within 
expected experimental variability. 

Validity of Plane Stress Fracture Toughness, Kc 

No standard test procedure has been established for the determination 
of plane stress fracture toughness Kc, mainly because of the lack in 
consistency of Kc data. The major problem has been the variation of Kc 
values obtained from various test specimen widths and crack lengths. For 
many very tough materials, lower Kc values are obtained from specimens 
having insufficient width such that net-section yielding develops prior to 
fracture. Secondary effects, such as lack of crack buckling restraint and 
inability to measure critical crack length accurately, have also caused 
variation in Kc and are well known. 

~'I'he italic numbers in brackets refer to the list of references appended to this paper. 
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On 28 August 1972, D. Y. Wang presented a report at the Sixth National 
Symposium on Fracture Mechanics, giving the results of a number of 
wide panel tests made on a variety of aluminum alloys [7] showing a 
consistent pattern of Kc values. In addition to the determination of Kc, 
R-curves were shown for the slow-stable crack growth portion of the test 
records. The data tended to confirm some fundamentals of R-curve, 
namely, the independence of R-curve on specimen size and starting crack 
length. This, therefore, presented an excellent opportunity to make 
comparisons to CLWL developed R-curves and to make failure condition 
predictions from such tests. Specimen blanks were taken from broken 
halves of 48-in.-wide panel specimens. The materials and CCT specimens 
used are fully documented in Ref 7. To verify the consistent Kc value and the 
full range of the R-curve as an intrinsic material property, additional narrow 
width CCT specimens were added for the present study. The 18 and 24-in.- 
wide CCT specimens were made from the broken halves of the 36 and 48- 
in.-wide panels. In these narrow panels containing various initial crack 
lengths, a few panels were expected to fail in net-section yielding, but 
most specimens provided valid elastic K, data. 

This program also afforded an opportunity to check some of the 
recently proposed specimen size requirements for R-curve evaluation as 
stipulated in the new proposed recommended standard [8] which is 
presently available in Part 10 of the ASTM Annual Book of Standards 
under related material. In the proposed standard, it is optional to plot 
R-curves either in terms of physical or effective crack extension. Since 
the CCT panel R-curves had been reported in terms of physical crack 
extension, the CLWL developed R-curves will be presented here on the 
same basis using a procedure to be described in a later section. 

Program and Procedure 

The CCT program consisted of testing panels varying in width from 18 
to 120 in. Starting crack length to width ratios (aspect ratios, 2a/W) 
varied from 0.10 to 0.32. Crack extension was followed optically using 
two closed circuit TV cameras focused at each crack tip and also by direct 
visual recording as in Fig. 1. The composite pictures together with load 
were recorded on a video tape deck. In the tests of the 18 and 24-in.-wide 
specimens and some wider panels, an MTS clip gage was also used to 
measure the center crack opening displacement (COD) for compliance 
indicated crack lengths. A confirmation was obtained between the mea- 
sured displacement and that calculated by an elastic-plastic analysis, the 
discussion of which is beyond the scope of this paper. The critical crack 
lengths at instability were determined both from the TV video recording 
and the computed crack length from the critical COD data. The instability 
usually occurred at an abrupt drop in the load versus displacement curve 
for the panels which failed at stress levels below net-section yielding. 
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172 MECHANICS OF CRACK GROWTH 

FIG. 1---Overall view of  the test setup for a 48-in.-wide panel. 

All panels contained a 1-in. initial saw cut crack starter, and fatigue 
crack growth rate information was obtained during cracking to the desired 
starting crack length. In all cases, the highest final zkK was less than 45 ksi 
W/~ff., which was about 80 percent  of KR at the start of slow-stable crack 
growth in the R-curves of 2024-T3 and 7475-T761. Despite this, no 
significant adverse effect was noted on the resulting R-curves. 

In the wide panel tests, calculations for Kn and ~ were made in terms 
of physical crack dimensions, neglecting plastic zone contribution to 
crack length. This is usually not allowed in Kn determinations, but, since 
overall crack lengths were large with respect  to plastic zone contribution, 
the corresponding error in Kn calculation was relatively minor. In C L W L  
tests, the cracks are somewhat  shorter, and in some cases plastic zone 
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correction to the physical crack length could not be ignored without 
significant error in Kn. 

The CLWL specimens were oriented so the crack propagated in the 
same direction, T-L, as in the CCT tests. Two sizes of specimens were 
selected, 4C and 7C shown in Fig. 2. The testing procedure is available as 
a proposed standard and has been reported elsewhere [9]. All information 
necessary for determination of an R-curve is obtained from a double 
compliance test record, an example of which is shown in Fig. 3. 
Displacement at locations V 1 and V2, indicated in Fig. 2, are plotted on an 
x-y recorder using the output from two special clip gages shown in Fig. 4. 
The ratio of V1 to V2 at any selected point along the test record can be 
related to the effective crack leng;th (physical crack plus plastic zone 
correction) using a double compliance calibration curve. If the specimen 
is periodically partially unloaded, the return slopes are related to the 
physical crack lengths at those stopping points. The test record shows 
several locations of partial unloading. 

Results and Discussion 

In order to produce CLWL R-curves in terms of physical crack growth, 
Aa,, it was necessary to determine the compliance indicated plastic zone 
sizes. This is achieved by subtracting the compliance indicated physical 
crack length from the effective crack length at certain points. Compliance 

Z 

=x, . j  
t ~  

V2 

a 

W , _  

SPECIMEN A W 

4 C 3.1" 8.25" 

7 C 5.2" 14.0" 

FIG. 2--Compact wedge-loaded specimen H / W  = 0.6. 
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FIG. 3--Test record for 2024-T3 CLWL 7C specimen. 

methods inherently reflect experimental variability on individual physical 
crack and effective crack length determinations, so the errors were 
diminished through the use of plots of compliance indicated plastic zones 
like those shown in Figs. 5 and 6. The CLWL R-curve plotting points were 
then adjusted on the abscissa by subtracting the median rp values from Aa 
effective at selected KR values. An interesting feature in Figs. 5 and 6 is 
the comparison between compliance indicated plastic zone size and that 
calculated using the well known Irwin expression: rp = 1/2~KR ~/O'es 2. It 
appears that the Irwin expression works best on materials of high yield 
strength and low toughness. 

Figures 7 through 11 compare CLWL and CCT developed R-curves on 
the five materials tested. Some small discrepancy in the initial crack 
growth portion of the CCT panel R-curves was anticipated because crack 
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FIG. 4--Photograph showing instrumentation for double compliance measurements. 

extension less than 0.05 in. was ignored. Otherwise, it may be concluded 
that CLWL and CCT developed R-curves compare well, and no consis- 
tent pattern of difference was developed. 

The obvious difference between the R-curves derived from the tests of 
CLWL and CCT specimens is the amount of crack extension prior to 
termination. The crack extension can be greater in CLWL specimens than 
in CCT specimens due to the dissimilar shape of crack driving force curves, 
which in turn is related to the relative stiffness of the loading systems. 
In general, cracks tend to remain stable in crack-line-loaded specimens 
having rigid loading devices such as the wedge and split pin arrangement 
used here. The theoretical background on crack stability has been well 
documented in the work of Clausing [10] and of Gurney [11]. 

Prediction of CCT Panel Instability 

One principal objective of this investigation was to determine ifKc and 
gross stress at fracture could be predicted for the wide panel tests using 
R-curves developed with CLWL specimens. For this purpose, plots of Kn 
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The C L W L  R-curve was described in terms of  a least squares fit of a 
second order polynomial to the portion of the R-curve where tangency 
with the crack driving force curve was expected. 

KR = Co + C~ (/~e) + C2 (~/e) 2 (2) 

Solve for ha e and K c  

Given 
KR = K at tangent (3) 

where 

OK R OK 
I 

K = CCT crack driving force, 
ae = ao + Aae,  and  

a o = initial half crack length. 

(4) 
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from Eq 4 

/ ~ =~ 
0 ( A a e )  KR = ~- + - -  tan �9 W W 

Ca + 2C2 (Aa~) 1 [_( 1 7r 
C o -1- C1 (Aae) + C2 ( A a e )  2 = - ~ "  ao + Aa~) + --w tan 

~(ao w + Aae)] 

Solve for Aa~ by iteration 

O" : -  

Co + Cl(Aae) + C2(Aae) 2 

[~ r + Aa~) ] 
(ao + Aae) sec 

w 

In order to compare the preceding predicted Kc values to those reported in 
the CCT experiment, it was necessary to convert Aa effective to Aa 
physical and then recalculate Kc using a physical in Eq 1. 

Predicted and experimental results in terms of critical crack length, 
gross fracture stress, and Kc values are given in Table 1 and graphically 
compared in Figs. 12 through 14. Perhps the best correlation is given in 
Fig. 12; where gross stress at fracture is reasonably predicted 
over a wide range of material toughnesses and with specimens varying in 
width from 24 to 120 in. and starting crack lengths, 2a0, from 3.6 to 30 in. 
This correlation perhaps best demonstrates the usefulness of R-curve 
analysis. 

Figure 13 shows the comparison of Kc values. The greatest variation 
shown is at the highest Kc values from 120-in.-wide panel tests where 
instability crack length is most difficult to determine. 

Figure 14 compares predicted slow-stable crack growth prior to instabil- 
ity to experimental. This is the most sensitive part of estimation proce- 
dures, affected strongly by the way that the R-curve is fared through the 
data points. Therefore, these predictions gave the poorest comparison. 

General Observations 
R-curves are developed generally by selecting specific locations along 

the crack growth history to determine Kn and Aa, and individual datum is 
plotted. A smooth curve is then faired through the plotted points to 
represent the R-curve. The double compliance method of measurement is 
a continuum record of KR development, and it is oftentimes demonstrated 
that true crack extension history can be noncontinuous. In Figs. 8 and 9, 
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Gross Stress,  Pred ic ted  ksi 

F I G .  12---Failure stress of  center cracked panels predicted by CLWL R-curves. 

smooth plots of Kn versus Aa physical are used to represent the R-curves 
of 7475. A more precise representation is given in Figs. 15 and 16. The 
sporadic nature of these R-curves is evidence of sudden short bursts of 
crack extension. This same behavior was detected using visual methods 
of measuring crack growth in the CCT wide panels. 

Specimen Size  Limitat ions  

It was of interest to test the specimen size requirements according to 
Section 6 in the Proposed R-Curve Standard using the present results. For 
the CLWL specimen, the method stipulates that the uncracked ligament, 
(W - a), should be greater than 4/rr (Kmax/O-ys) ~ at the termination of 
the test, where K m a  x is the upper plateau KR. Table 2 compares 
specified (W - a), requirements to those developed in the present investi- 
gation. The preceding limit was set to ensure fully elastic behavior 
through plateau KR, but when some of the specimens of 2024-T3 and 
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200 

i.~ is0 

h 
0 

= I 0 0  

SO 

o o 

o D 

_ / ~  7475-T761 2~' < W ~ 120" 
C~" 7 0 7 5 - T 6 1 . 8 " ~  a o ~ 15" 

/ ~  7079-T6 

I i I I 
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P r e d i c t e d  K c ksi i~ .  

FIG. 13--Ke of center cracked panels predicted by CL WL R-curves. 

7475-T761 went plastic as indicated by strain gage on the back edge, the 
KR values reported are at this event. The table shows that the 4C size 
CLWL specimen is too small to test 7475-T761 and 2024-T3 up to plateau 
Kn values. The 7C size was just marginal for the 7475-T761 but too small 
to test 2020-T3 to upper plateau. Since the plateau of about 160 ksi 
x/~n_ in 2024-T3 was not achieved, the size requirements of the method, 
therefore, are supported by these results. 

For CCT tests, Figs. 17 through 19 compare experimentally determined 
Kc values for panels of varied sizes and aspect ratios (2a/W) to curves 
calculated for limiting Kc based on net-section yielding. In all three 
materials, the specimens that failed at stress below net-section yielding 
exhibited quite consistent Kc values which appear to be independent of 
panel width and aspect ratio. The maximum valid K~ data points are 
represented by horizontal dashed lines. In Fig. 17, the 2024-T3 specimens 
of widths up to 48 in. were failed through net-section yielding in which the 
apparent K~ increases with panel width and aspect ratio. The invalid K~ 
data points fell according to the analytical K-curves at net-section 
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FIG. 14--Crack growth to instability of center cracked panels predicted by CLWL 
R-curves. 

yielding. The slight scatter probably resulted from the variation in yield 
strength of the specimens from different sheets. For 7475-T61, only 
specimens with an aspect ratio of 0.10 developed net-section yielding in 
Fig. 18. Two 7475-T761 specimens developed yielding at an aspect ratio of 
0.10, as is shown in Fig. 19. 

Table 3 compares the experimentally indicated minimum width require- 
ment at 2 a/W = 0.3 to those stipulated in the "Proposed Recommended 
Standard for R-Curve Determination." Since the minimum specimen width 
requirements appear to be satisfied, and they are within the boundary of a 
net-section yielding criterion, the experimental data support a net-section 
yielding limitation for valid KR. 

Conclusions 

1. R-curves developed independently using CLWL and CCT speci- 
mens compare favorably when tested within the range of validity as 
stipulated in the "Proposed Recommended Standard for R-Curve Test- 
ing." 
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A a e f f ,  Inches 

FIG. 16---7475-T61 R-curve versus Aa effective. 

2. Consistent, Kc data and R-curves which were independent of panel 
width and initial crack length, were established from the test results of the 
18, 24, 36, 48, and 120-in.-wide CCT specimens in two alloys. The 
specimens which failed by net-section yielding produced the invalid Kc 
values. 

3. Instability stress, crack lengths, and K~ values were predicted for the 
CCT panel tests from the CLWL developed R-curves. Although there was 
some scatter in predicting crack growth prior to instability, K~ values and 
gross section stresses at failure were reasonably comparable to experi- 
mental results. 

4. Plastic zone estimates using the Irwin correction equation compare 
well with compliance indicated plastic zones only on materials with 
relatively high yield strength. 

5. The minimum specimen size requirements of the "Proposed Rec- 
ommended Standard for R-Curve Determination" were tested and 
appear to be satisfactory and conservative according to the results ob- 
tained in the present investigation. 
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188 MECHANICS OF CRACK GROWTH 

T A B L E  2----Comparison of specified specimen size requirements to experimental 
W-a @ Kma x or K at back edge yielding. 

C L W L  tes ts  I(w - a) required > 4 ~- K2max - 1 O.y82 

Required Exper imenta l  
Speci- Width,  Kn at W - a for W - a at Termi- 

Material men  in. Terminat ion  Plateau KR nation, in. 

7475-T761 

2024-T3 

7079-T6 

7075-T6 

7C 14 145.3 a 5.6 5.14 b 
7C 14 155.4 5.6 5.53 b 
4C 8.25 138.1 5.6 4.40 b 
4C 8.25 109.4 5.6 4. l0 b 

7C 14 135.6 17.6 6.4 b 
7C 14 140.6 17.6 6.0 b 
4C 8.25 108.2 17.6 4.4 b 
4C 8.25 107.3 17.6 4.25 b 

7C 14 79.5" 1.7 5.85 
4C 8.25 80.6 a 1.7 3.65 

7C 14 60.0 ~ 1.1 8.2 
4C 8.25 65.0 a 1.1 4.25 

'rl.Jpper plateau Kn, all other  tes ts  were s topped at strain gage indications o f  back edge 
yielding. 

bat  back edge yield as indicated by strain gage. 
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ABSTRACT: A method for analytical predictions of the thickness effect on fracture 
toughness, and of R-curves is presented. It is based on the recent observation that 
the fracture resistance KR is proportional to the local fracture strain ee,~o, where 
c~ = o'2/o-1, and fl = o3/~1 characterize the local stress state. As this stress state 
varies from the surface, where it is plane stress (a = 0,,fl = 0.61), to the center, 
where it approaches plane strain (a = 0.81,/3 = 0.61) for sufficiently thick speci- 
mens, the local fracture resistance varies correspondingly. The model proposed 
here assumes that the measured fracture resistance represents the average of the 
local GR values along the crack front. The calculated thickness effect is in excellent 
agreement with experimental results. From the same model an analytical expres- 
sion for R-curves is suggested with the additional consideration of the relation 
between the plastic zone size as a function of crack growth. The preliminary 
results of the predicted R-curves are in reasonable agreement with the experi- 
mental curves. 

KEY WORDS: crack propagation, ductility, fracture strength, stress analysis, 
plastic deformation, aluminum, stainless steels 

Effective utilization of fracture mechanics for engineering design and 
failure analysis requires that the fracture resistance of a material be 
known in the entire size range of its application. For thick sections 
fracture toughness characterization by KIc is now well established as the 
applicable design criterion. For thin sections the fracture resistance curve 
concept, R-curve, has been proposed by Irwin [1-2] 2 and is finding 
increasing interest. For a review of R-curve testing and analysis the 
reader is referred to the paper by Brown and Srawley [3] or to the recent 
papers by Heyer and McCabe [4-5]. 

1 Professor and research assistant, respectively, Department of Materials Science, 
Syracuse University, Syracuse, N.Y. 13210. 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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Figure 1 is a schematic representat ion of a typical R-curve where the 
fracture resistance R is plotted as a function of the crack length a.  Crack 
propagation occurs  under rising load until the point  of  tangency Gc 
between the R-curve and the crack driving force G-curve is reached.  For  a 
Griffith crack (infinite plate) this curve would be a straight line going 
through the origin, since G = cr27ra. At Gc the propagation becomes 
unstable. R-curves can be determined experimentally.  However ,  it would 
also be highly desirable to develop an analytical model  which can predict 
R-curves for various thicknesses from a limited number  of tests. Such an 
analytical model is presented in the following. The same model can also 
be used to predict  thickness effect on fracture toughness.  

Foundations of  the Model 

The model postulates that the fracture resistance of  a material, as 
determined experimentally,  is the average of the local resistance values of 
all the elements along the crack front and that the resistance of  each 
element is related directly to the local stress state through its relation to 
material ductility. These relationships have been discussed recent ly  [6-7]. 

Accordingly, the fracture resistance Kn can be expressed as 

K n = E'x/'S p * e- F,~t~ (1) 

where 
E = elastic modulus, 
S = shape factor  of the plastic zone ( -  1), 

p* = Neuber ' s  micro support  effect constant (p* -~ 0.001 in.), and 
~ r ~  = local fracture ductility. 

The subscripts a = o-Jo-1 and /3  = o-Jo-1 denote the local stress state. 
Plane strain is characterized by a = 0.81 and/3 = 0.61. At the surface, 
plane stress, a = 0 and/3  = 0.61. As the local ductility decreases with 
increasing stress biaxiality, so does the fracture resistance K R. Thus, a 
decrease in thickness or an increase in crack length influences the 
deformation mode such that the "p lane  stress charac te r"  of  the crack 
front is increased. Increased plane stress results in an increased fracture 
ductility [6], and, since the local fracture resistance KR (in units of  stress 
intensity factor) is proportional  to the local multiaxial fracture ductility [7] 
a decrease in thickness or an increase in crack length will increase the 
average fracture resistance. This is illustrated in Fig. 2. 

S t r e s s  D i s t r i b u t i o n  a t  the  C r a c k  F r o n t  

To determine the local fracture toughness along the crack front with the 
help of Eq 1 it is necessary to know the stress state, a(z)  and/3(z), along 
the crack front as a function of  distance from the surface, z. Unfortu- 

Copyright  by ASTM Int ' l  (a l l  r ights  reserved) ;  Sat  Dec  5  09:42:07 EST 2015
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198 MECHANICS OF CRACK GROWTH 

nately, experimental  data  on the values of  a(z)  and/3(z),  except  for  the 
limiting conditions of  plane stress and of plane strain, are not available. 
For  the present  purposes  a closed form solution which is believed to 
represent  a fair approximat ion was developed,  as indicated next. 

At the surface, that is, a tz  = 0 a n d z =  t, where t  is the plate or sheet thick- 
ness, a = o-2/o"1 = 0. The value of/3 is not known; however ,  Allen's [8] study 
of the stress distribution in the plastic zone suggests a value of/3 at the 
surface to be be tween 0.55 and 0.65 and its variat ion with thickness to be 
rather  small. At any location at the crack front,  where  the plane strain 
condition is reached,  a = 0.81 and/3 -- 0.61, as determined f rom slip-line 
field theory [9]. I t  was assumed that  a changes f rom 0 at the surface to 
0.81 under plane strain and that/3 remains  constant  at 0.61. for a the fo rm 

081[ z l 
ot = Q {1 + (z/Q)"} ~/" (2) 

is suggested. For  low z / Q  values,  a increases linearly, turns around at 
z-~ Q and asymptot ical ly  approaches  0.81 for z ~ oo. The sharpness of  the 
transition is determined by the choice of  the exponent  u. Q is a measure  of  
the transition zone,  the region f rom the surface to where  plane strain is 
reached,  and will be related to the plastic zone size rp. Figure 3 shows a as 
a function of z / Q  for  u = 4. As illustrated, a plane strain condition is 
nearly reached at z = Q. 

Relat ionship  B e t w e e n  Stress  S ta te  and  Ducti l i ty 

For  the effect of  stress state on fracture  ductility Weiss [6] p roposed  a 
volume strain fracture  criterion. Accordingly 

grF - (WM)l/n (3) 

where gF~0 is the effective fracture strain for the stress state (a, /3);  grF is 
the fracture ductility in tension, that  is, a = 0, /3 = 0; n is the strain 
hardening coefficient in the exponential  stress strain relation 6- = k~", 

1 
W -  

1 + a +/3 '  

M = {(1 + a +/3)  2 - 3(a + / 3  + 0,'/3)} 1/2 

Using the balanced biaxial or bulge ductility gF,~ = ~,~ = 0 as a reference,  the 
foregoing relationship becomes  

~'~,,~ = (2 W M )  ~ '%, ,  = ~,~ = o (4) 
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FIG. 3--Distribution o f  stress ratio a as a function of  the location (z/Q) below the 
specimen surface as predicted by Eq 2. 

Variation of  Local Fracture Ductility and Fracture Resistance Through 
the Thickness Along the Leading Edge o f  the Crack 

Combining Eqs 2 and 4 one obtains the local effective fracture strain 
distribution along the crack front. The distribution of the ratio (gr,~/gv,~ = 1, 

=0) as a function ofz/Q, the distance from the surface, has been calculated 
on the computer and is shown in Fig. 4 for n = 1.3 The fracture strain has its 
maximum at the surface and decreases with distance from the surface until 
it reaches the plane strain value. The local fracture resistance KR, in terms 
of stress intensity units, can be related to the multiaxial fracture ductility 
through Eq 1, and its variation with the distance from the surface along the 
leading edge of the crack will be similar to the ductility distribution shown 
in Fig. 4. The low fracture resistance in the interior explains the crack 
tunnelling effect frequently observed during experiments. 

8 It should be noted that  the n value as used  here  is not  the  convent ional  n value obtained 
from logarithmic plastic strain versus  s t ress  plots.  Ra ther  it is that  value  of n which  best  
character izes the  effective s t ress  strain curve  ~ = K~' ,  where  r is the  total strain,  f rom zero 
load to the onset  of  fracture.  Exper imental  Kic ve r sus  EFt=l,0=0 relat ionships obtained f rom 
Eq 1 correlate well with the  assumpt ion  of  n = 1 [10]. Ductility re la t ionships  are in good 
agreement with 0.45 <- n -< 1 [11]. For  the sake of  simplicity the following development  a s sumes  
n = 1; however ,  a correct ion for other  va lues  of  n can be incorporated.  
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FIG. 4---Variation of  local fracture ductility as a function of  the distance (z/Q), below the 
specimen surface as predicted by Eq 4, with n = 1. 

Average Fracture Resistance 

The average fracture resistance value for a specimen 
thickness is obtained from the local GR(z) or R(z) 4 values as 

1 f.2 
R = t 2ao R(z)dz (5) 

From Eq 1, the local fracture resistance, R(z) is written as 

R(z) = ESo*(gF)e(z) (6) 

Rewriting Eq 5, one obtains from Eqs 4 and 6 

2 ft/2 
= ESp*(gv,.=i,o=o)2~-Jo (2WU)2dz (7) 

n = ]  

4 Note that the average is taken over the local G~ (energy release rate resistance) and not 
Ka (stress intensity) values, following the practice by BIuhm [12] for similar calculations. 

of a given 
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When the plate thickness is such that the plane strain condition prevails 
over  a substantial portion of  the crack front,  gr(z) is essentially the same 
as gF (plane strain) and the corresponding W M  value (for o~ = 0.81 and 
/3 = 0.61) is 0.1395. Since the average fracture resistance under  this 
condition is the plane strain crack extension force GIe, one  obtains 

G~ = ESp*(O.279)z(gp)z,~ = 1,~ = 0 (8) 

Eliminating the ductility term from Eq 7 by using Eq 8 

Glc 2 f"= 
R -  (0.279)z t j0 (2WM)2dz (9) 

Since a,/3 can be expressed as a function z (Eq 2), W(z)M(z) is known,  and 
R can be obtained as a function of thickness for  any given material. 
Because of  the form of  Eq 2 , /?  is determined completely by Rmax (plane 
stress fracture resistance) or Rmi. (plane strain fracture resistance) and the 
ratio (Q/t). Since Q is assumed to be a multiple of  the plastic zone size rp, 
(Q/t) is also proportional  to (r,,/t) or to (G/t). Figure 5 shows the results of a 
computer  calculation of/~ versus (Q/t) for  7075-T6 aluminum. 

Thickness Effect 

In order to utilize the above concept  to predict the effect of thickness on 
fracture resistance, the R versus (Q/t) relationship has to be translated to 
/~ versus (G/t) relationship. According to the model,  Q is proportional  to 
rp, that is 

Q = Dry = FG (10) 

where F = DE/27ro-u 2, is a material constant.  Fo r  precise conversion of Q 
to G, it is necessary to know the value of D.  Previous studies [13] indicate 
that D = 4 represents a reasonable estimate. With 7075-T6 aluminum 
(o- ,=  66ks i  a n d E  = 10 • 1 0 3 k s i ) , F  = 1.5 (ksi) -a. From Fig. 5 and 
from the condition R = G for crack advance,  we obtain the desired R 
versus thickness relationship as shown in Fig. 6. Figure 7 shows the 
predicted fracture resistance in terms of  stress intensity units, K ~  as a 
function of thickness for three chosen values of  G1e. The experimental  
values of  Kc for various thickness for  7075-T6 and T651 aluminum along 
with the range of  Kic values reported by Kaufman [14] are also identified 
in the same plot. Comparison of  the experimental  values with those 
predicted by the model shows good agreement with G~e = 61.5 in.lb/in. 2 
corresponding to K~c = 26 ksiV]'ff. 
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FIG. 5---Average fracture resistance, R versus (Q/t) or (rJ t)  curve for aluminum alloy 
7075-T6, calculated from Eq 9. 
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FIG. 6---Average fracture resistance R versus thickness calculated for aluminum alloy 
7075-T6. 
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FIG. 7--Experimental and theoretical fracture toughness values for  aluminum alloy 
7075-T6 and T651 as a function o f  thickness. 

R-Curves 

It should be possible to extend these considerations to obtain an 
expression for R-curves,  that is, to obtain a relationship R = f(a0 + Aa). 
A schematic illustration of  the model is given in Fig. 2. From this and 
from Fig. 5 it is clear that increasing the plastic zone size increases the 
average crack extension resistance R.  The problem is to obtain an 
expression between Q or rp and the instantaneous crack length a. No such 
relation is readily available. It might, however ,  be possible to obtain one 
as follows. The plastic zone size at crack crack advance,  R = G is known 
to be a linear function of  R,  that is 

rp = A R  = A G  = A c r 2 g ( a / w )  (11) 
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204 MECHANICS OF CRACK GROWTH 

where 
A =  

g(a/w) = 

a 

w 

proportionality constant ,  
function of the specimen geometry and type of loading according 
to ASTM Test  for  Plane-Strain Fracture  Toughness of Metallic 
Materials (E 399-73), 
crack length, and 
specimen width. 

From Eq 11 we obtain 

dG~=eonst = Gd ln g(a/w) (12) 

and since G = R 

dR = ( ~ ) ~  _ dR (13) 
dG~ = eonst R In g(a/w) 

Equation 13 can be integrated and yields for the R-curve 

g(a/w) 
Ct 

R~ = Ra ~ + a In g(ao/W) (14) 

Figure 8 shows a family of  curves according to Eq 14 with Ra 0 = 0 and 
a =  1, 2, 3, and 4. 

The proposed model was tested on R-curves obtained from D. E. 
McCabe 5 on 7079-T6 aluminum, 7475-T761 aluminum, and PH 14-8Mo 
stainless steel. The KR curves for  these materials are shown in Fig. 9. 
From the points of tangency of R-curve and G-curve,  the value of Gr (or 
Kc) at instability is obtained. Using these values in Eq 14, KR is calculated 
as a function of  Aa. The predicted KR curves,  a = 4, for 7079-T6 
aluminum, 7475-T651 aluminum, and PH 14-8Mo stainless steel are also 
shown in Fig. 9. The approach presented here needs further experimental 
verification, especially with respect  of the applicability of Eq 13. Fur- 
thermore,  a more accurate solution would require a numerical t reatment  
based on Eq 9 which can be readily carded  out on a computer .  
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What R-Curves Can Tell Us About Specimen 
Size Effects in the Kic Test 

REFERENCE: Lake, R. L., "What R-Curves Can Tell Us About Specimen Size 
Effects in the K~ Test," Mechanics of Crack Growth, ASTM STP 590, American 
Society for Testing and Materials, 1976, pp. 208-218. 

ABSTRACT: Size effects in the KIc test were investigated by testing duplicate 
compact specimens in ten different combinations of five thicknesses and five 
widths. Curves of crack resistance as a function of crack extension were calculated 
in terms of strain energy release rate, G, rather than stress intensity factor, K. It 
was found that the entire set of data could be represented by a single linear equation 
of the form, R = Ro + pAa. The coefficient, P, was found to be an inverse function 
of specimen thickness. 

When this family of R-curves is compared with the driving force, G, curves for 
the various specimen sizes, it can be seen that the ratio of maximum toad to the 
measuring point load (Pmax/Po) in the record of a plane strain toughness test, 
depends primarily on the width/thickness ratio of the specimen. This ratio appears 
to bear no relation to the contribution of crack tip plasticity to the apparent crack 
extension at the measuring point. Accordingly, inclusion of a maximum value of 
this ratio in the validity requirements of ASTM Method E 399 for the purpose of 
restricting such a contribution is questioned. 

KEY WORDS: crack propagation, fracture tests, crack initiation, aluminum alloys, 
toughness, plastic analysis, strains, stresses 

To obtain greater assurance of linear elastic behavior in the K~e test, 
material specifications for the B-1 bomber required the use of specimens 
having in-plane dimensions substantially greater than those required by 
ASTM Test for Plane-Strain Fracture of Metallic Materials (E 399). This 
requirement had two effects. First, because the measuring point in ASTM 
Method E 399 is a function of relative, rather than absolute, crack 
extension, the larger specimens tend to give slightly higher values of K~c. 

1Staff research engineer, Engineering Properties Section, Kaiser Aluminum and Chemical 
Corporation, Pleasanton, Calif. 94566. 
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Second, because the specimen thickness requirement of ASTM Method E 
399 was unchanged, the use of specimens with W > 2B, 2 called the 
"alternate specimen" in ASTM Method E 399, was encouraged. The full 
consequences of the latter effect were not immediately apparent. 

The author's company had made measurements to determine Kit values 
on a considerable number of lots of 2000 and 7000 series aluminum alloy 
plate to establish a data base for statistical characterization of toughness 
resulting from normal production practices. The standard, W = 2B, 
specimen had been used for this work, and the larger specimen would 
certainly produce an upward shift in the data base. A preliminary 
investigation of specimen size effects was undertaken in an effort to 
assess the nature and extent of this shift without retesting all of this 
material. 

Material 

A lot of 2 1/2-in.-thick 2124-T851 alloy plate was chosen, more or less at 
random, from among those available. The chemical analysis of this plate 
is shown in Table 1, together with the composition limits published by the 
Aluminum Association for this alloy. The composition was typical for the 
alloy as it was then being produced. 

All of the toughness tests to be reported here were in the L---T 
orientation; hence, only the longitudinal tensile properties are of interest. 
They are: ultimate tensile strength - -71 .6  ksi; yield strength (0.2 percent 
offset) - -  67.3 ksi; and elongation in 4 diameters 6.8 percent. The yield 
strength was somewhat above the typical value published by the 
Aluminum Association but not unusually so. 

Duplicate measurements of toughness by ASTM Method E 399 using 
compact specimens (B = 1 in., W = 2 in.) centered at quarter thickness, 
gave valid K~c values of 25.4 and 25.0 ksix/~-. The minimum thickness for 
a plane strain test was, therefore, a bit less than 3/8 in. 

Procedure 

All tests were in strict compliance with ASTM Method E 399 with the 
exception of some specimen dimensions. 

Since a more accurate compliance curve was not immediately available, 
R-curves were calculated with the help of a curve "eyebal led" through 
pairs of values of a/W and EBv/P obtained from the measured specimen 
dimensions and initial slopes of the load displacement records, respec- 
tively, of some 125 K~ tests. The a/W values ranged from 0.423 to 0.650. 
This curve has since been compared with values of EBv/P calculated from 
Table 2, ASTM Proposed Recommended Practice for R-Curve Determi- 

2Throughout this paper any notation pertaining to specimen dimensions is that of ASTM 
Method E 399. 
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TABLE 2--Comparison of empirical compfiance calibration with one based on Table 2 of 
Proposed Recommended Practice for R-curve Determination. 

EBv/P EBv/P, Table 2 
a/w Empirical of Recommended Practice Difference, % 

0.425 40.06 40.99 - 2.32 
0.450 44.48 45.21 - 1.64 
0.475 49.68 50.05 -0.74 
0.500 55.64 55.61 +0.05 
0.525 62.22 62.08 +0.22 
0.550 69.36 69.66 -0.43 
0.575 77.47 76.67 + 1.03 
0.600 87.66 89.50 - 2.10 

nation, a Calculation was made  by linear extrapolat ion f rom values of  
E B v / P  at the load line and 0.1576 W outside the load line to the specimen 
face, 0.25 W from the load line. Results are shown in Table  2. 

Initial slope versus a / W  data  seem to be character ized by  considerable 
scatter. At least  this was found to be the case in setting up the compliance 
curve and in constructing the R-curves.  This scat ter  was t reated as though 
it resulted f rom variations in E.  All slopes f rom a part icular  test  were 
multipled by the factor  necessary  to make the initial slope equal to that 
which, according to the compliance curve,  cor responded to the measured 
value of ao/W for  that specimen.  

Results and Discussion 

The work was carried out  in two phases  with somewha t  different 
objectives. During the first, which was frankly explora tory ,  interest  was 
primarily in obtaining a feel for the t e s t - - see ing  if there were any 
experimental  difficulties with the relatively thinner spec imen and making 
a rough est imate of  the size effect. Duplicate specimens were  tested in 
three sizes: B = 1 in.; W = 4 and 6 in.; and B = 2 in., W = 4 in. 

Results of these tests compared  about  as expected  with the results f rom 
the earlier B = 1-in., W = 2-in. specimens.  There  was a size effect. Kic 
values for the l-in.-thick specimens increased f rom 1 to 1 1/2 ksiV~-n, with 
each 2 in. increase in W, and the 2-in.-thick specimens gave  slightly lower 
values than 1-in.-thick specimens  of the same width. One aspect  of  the 
results was very disturbing, however .  Both sets of  " s t a n d a r d "  specimens 
gave completely  valid results.  Both sets of  " a l t e r n a t e "  specimens,  in 
which W > 2B, failed to mee t  the Pmax/PQ < 1.10 requi rement  of  ASTM 

a1974 Annual Book of ASTM Standards, American Society for Testing and Materials, pp. 
669-683. 
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212 MECHANICS OF CRACK GROWTH 

Method E 399. Visual examination showed that  the s tandard specimens 
simply did not provide  enough crack extension to allow the shear lips to 
reach their equilibrium size. At this point,  R-curves  were  constructed for 
all eight specimens to see if they could shed fur ther  light on the reasons 
for the invalidity of the alternate specimens.  They  only added to the 
confusion since the curves for  all six of  the 1-in.-thick specimens fell 
within a narrow band whose limits were set by the two specimens with 
W = 4 in. The band was no wider than would be expec ted  f rom the same 
number  of  " iden t ica l "  specimens,  and the data f rom the two larger sizes 
should have been jus t  as valid as that  f rom the smaller.  

The purpose of  the P m a x / P Q  requirement  is stated in footnote 4 where it 
says,  with respect  to a proposal  to establish a limit on this ratio, 

The rationale behind this suggestion was to provide a restriction on the 
contribution of crack tip plasticity to the displacement at the measurement 
point Po.  The inherent assumption is that as the plasticity contribution to Po 
increases, it will be reflected in the increasing amounts of stable crack 
extension under rising load, and consequently in a progressively higher ratio 
of P m a x / e  o �9 �9 �9 

I t  is difficult to see how this reasoning applies in the present  case. 
Plasticity at the crack tip should result  f rom one or the other of  two 
causes,  acting alone or together.  I f  the crack length were too short,  linear 
elasticity could be  violated, or, if the specimen were not thick enough, 
through-the-thickness yielding could occur. The in-plane dimensions 
could hardly be at fault here,  for it was the data f rom the longer crack 
lengths which were being rejected. Nor  could the thickness be too small to 
provide plane strain restraint,  since standard specimens of the same 
thickness gave valid results. Indeed,  a specimen less than half as thick 
would have met  the plane strain requirements  of A S T M  Method E 399. 
Evidently there was something special about  the proport ions of  the 
standard specimen,  and more testing with several  different specimen sizes 
would be necessary  to find out what  it was. 

For  the second phase  of the investigation, duplicate specimens in six 
more sizes were machined f rom the broken  halves of  those already tested. 
The new sizes w e r e B  = 1/4 in., W = 1 in., and W = 2 i n . ; B  = 1/2 in., 
W = 1 in., and W = 2 in . ;  a n d B  = 3 /4 in . ,  W = 1 1 /2 in . ,  and W = 2in.  
Some idea of  the range of specimen sizes may  be gained f rom Fig. 1. 
Again, all of  the standard specimens gave valid Kic values,  and all of  the 
alternate specimens,  save one of  the 3/4 by 2 in. size which squeaked by 
with a ratio of  1.09, failed to meet  the P m a x / P Q  requirement .  

4Brown, W. F., Revision of E 399-70 T, Memorandum to Members of E 399-70 T Revision 
Task Group, and E-24 Executive Committee, 23 Sept. 1971. 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



LAKE ON SPECIMEN SIZE EFFECTS 213 

FIG. 1---Range of compact specimen sizes. The smallest was 1/4 in. thick; the largest was 2 
in. thick. 

Following the publication of the R-curve approach contained in the 
J-integral guidelines, 5 it was decided to plot our resistance curves in terms 
of G rather  than K. The picture which resulted from this approach  was 
surprisingly consistent.  The curves were  essentially straight lines sharing 
a common intercept  on the G axis and having slopes which decreased 
regularly with specimen thickness. Using least square methods,  we fitted 
an equation of the form 

R = Ro  + pAa  

to each of the sets of  crack resistance data. The number  of  points per  set 
ranged from 8 to 18, averaging just  over  14. In every  case,  the data points 
extended beyond the maximum of  the load d isplacement  curve.  The 
values o f  Ro  and p obtained from the fitting process  are listed in Table 2. 

The values of  the slope parameter ,  p, appeared  to be such a regular 
function of thickness that a least  square fit was a t t empted  here also. The 
quantity fl~c = ( K I e / O ' y )  2/B  was chosen as the thickness variable.  A value 
of Kit = 23.7 k s i ~ ,  obtained by the usual relation, K = x/-GE, f rom a 

5 ASTM Task Group E24.01.09 Guidelines forJ~c Tests, distributed with the minutes of the 
l0 Oct. 1973 meeting of the Task Group. 
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214 MECHANICS OF CRACK GROWTH 

value of G which was the average of the 20 values of R o listed in Table 3 
was used to calculate/3~c. (KiJo-y) 2 turned out to be 0.124 in. Again, a 
linear relationship was found. All of the data, over 280 points on 20 
curves, can be represented by the single equation 

R = 53 + (2787/3xc - 57)Aa 

where the units of R are inch-pounds per square inch. 
The fit of the equation to the data points may be judged from Figs. 2 and 

3 showing the curves for the 1/4 and 2-in.-thick specimens, respectively. 
In each figure the lines are derived from the foregoing equation. (All lines 
in each figure represent the same calculated R-curve, displaced as 
necessary to avoid confusion among the plotted points.) The points 
associated with each line are the actual data points for a different 
specimen of the same thickness. The first curve in Fig. 2 should probably 
have been omitted. The fatigue crack in this specimen was too short on 
one side and too long on the other. If the lines in Fig. 3 seem too low with 
respect to the points, remember that they were drawn through an average 
value of Go obtained from 20 curves. 

An explanation of the Pmax/PQ problem is fairly apparent in Fig. 4 
where the family of R-curves represented by the single equation given 
earlier (dashed lines) are superimposed on the family of curves showing 

TABLE 3---Equations for R-curves. 

Specimen W, in. B, in. R, in. lb/in. 2 

1 1 1/4 42.7 + 1207 Aa 
2 1 1/4 49.0 + 1421 Aa 

3 2 1/4 58.8 + 1378 Aa 
4 2 1/4 49.0 + 1430 Aa 

5 1 1/2 52.4 + 606 Aa 
6 1 1/2 56.9 + 741 Aa 

7 2 1/2 51.3 + 634 Aa 
8 2 1/2 48.2 + 556 •a 

9 1 1/2 3/4 50.5 + 360 Aa 
10 1 1/2 3/4 53.6 + 419 Aa 

11 2 3/4 48.5 + 394 Aa 
12 2 3/4 53.3 + 361 Aa 

13 2 1 55.8 + 297 Aa 
14 2 1 50.9 + 335 Aa 

15 4 I 54.8 + 289 Aa 
16 4 1 53.3 + 321 Aa 

17 6 1 55.2 + 289 Aa 
18 6 1 59.0 + 279 Aa 

19 4 2 57.6 + t17 Aa 
20 4 2 59.9 + 114 Aa 
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FIG. 2---47omparison o f  experimental and f i t ted R-curves. The points associated with each 
line were calculated from the load-displacement record o f  a different 1/4-in.-thick compact 
specimen. Both W =l-in. (left two curves) and W = 2 in. specimens are represented. 

the change in G with a at constant load (solid lines) for each of the 
specimen sizes tested. The G-curves are all drawn on the assumption that 
the initial value of a/W was 0.45. 

The standard specimen does possess special properties, at least for 
materials with the general level of crack initiation toughness shown here. 
The initial slope of the G-curve for a particular specimen size is just 

m 
c 

0.65 o.io 0.i5 0.~,0 0.~'5 0.~0 0.~,5 0~0 
zxo, in. 

FIG. 3----Further comparison o f  experimental and f i t ted R-curves�9 The points were derived 
from the test records o f  the 2-in.-thick specimens. 
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FIG. 4---Comparison of crack resistance curves (dashed lines) with crack driving force 
curves (solid lines). 

slightly less than the slope of the R-curve for the corresponding thickness. 
Only a modest increase in load is required to bring the two curves into 
tangency. When a thinner alternate specimen is used, a much greater 
increase is necessary to elevate and rotate the G-curve by the required 
amount. 

If a material of greater initiation toughness were being considered, the 
R-curves would be moved up in the diagram. We can only speculate as to 
how their slopes might change. There is qualitative evidence that initia- 
tion and propagation toughness of aluminum alloys do not respond in the 
same way to changes in microstructure. It is known, however, that the 
G-curves will rotate to the left as they move up, and it is quite possible 
that the relatively thinner specimens might meet the Pmax/PQ requirement 
under such circumstances. 

It is clear that the Pmax/PQ requirement rejected data from specimens 
showing excess plasticity but which nevertheless passed all of the validity 
checks of ASTM Method E 399-70 T. However, we believe the bad data 
were rejected for the wrong reason. At least some of the objectionable 
data cited in footnote 4 as having been rejected by the Pmax/PQ test were 
obtained from specimens in which B < W / 4  - -  outside the range of sizes 
permitted by ASTM Method E 399. The reference does not list the 
proportions of the specimens from which the rest of the rejected data were 
obtained, but it does indicate that they were less than 0.2 in. thick. It 
seems reasonable that all of these small specimens would have employed 
the same W dimension to minimize the cost of test fixtures. Judging from 
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the thickness and proportions of the thinnest specimens listed, W was 
probably either 5/8 or 3/4 in. Even if it were as small as half an inch, the 
specimens could not have been of  standard proportions.  ~ 

Before leaving Fig. 4, another  interesting feature of these curves should 
be noted. The relative positions of the W = l; B = l; and the W = 2, 
B -- 2 curves indicate that square specimens of  this type should exhibit a 
classic "br i t t l e"  load-deflection curve with no slow crack growth. Is it 
coincidence that the J-integral guidelines recommend such a specimen 
with thickness equal to twice the unbroken ligament length to obtain crack 
initiation at maximum load? 

Parenthetically, it should be noted that truly unstable crack propagation 
probably did not coincide with attainment of  maximum load in any of 
these specimens. Certainly it did not in any of the standard specimens. 
Observation of  the progress of the test and the very considerable crack 
extension which occurred under  slightly decreasing load in such speci- 
mens indicate that complete fracture of the specimen could have been 
easily prevented by stopping cross-head motion after reaching maximum 
load. 

To those familiar with the R-curve method which has been proposed for 
the determination of J~e, these results should not be surprising. Both 
approaches construct  a portion of  the curve of  crack resistance versus 
crack extension and extrapolate it back to zero crack extension to find the 
strain energy release rate at crack initiation. (There are minor differences, 
which can be easily reconciled, in the way in which the contribution of the 
crack tip plastic zone to effective crack extension has been handled.) Both 
approaches find the index of  crack initiation toughness to be independent 
of thickness throughout most of the range. Both agree that the index is 
nearly equivalent to the Kit value determined by ASTM Method E 399. 
The two approaches appear to be identical in principle. The main 
difference seems to be that one specimen is sufficient to provide the entire 
R-curve when we work in the range of  small-scale yielding. 

Such a unified picture of  fracture under  both large- and small- 
scale yielding seems to indicate a need to rethink and clarify the 
meaning of the terms "plane  strain" and "p lane  stress f rac tu re"  and the 
material thickness range associated with each term. Certainly, it is no 
longer meaningful to classify a thickness as belonging to one regime or the 
other without specifying whether  crack initiation or crack propagation is 
under consideration. In the case of  crack initiation, the value, Kle, which 
we are accustomed to think of  as plain strain seems to apply at any 
thickness above the maximum at which full slant fracture can occur. If by 

8It has since been learned, through private communication, that the W dimension of these 
specimens was, indeed, half an inch. Thus, they were within the requirements of ASTM 
Method E 399. They were "alternate" rather than "standard" specimens, and the conclusion 
is unchanged. 
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218 MECHANICS OF CRACK GROWTH 

plane strain crack propagation we imply, as I think most of us do, 
propagation against a near constant crack resistance, then attention must 
be confined to material many times thicker than that normally associated 
with this term. A plate 4 to 5 in. thick would be required to obtain a 
substantially horizontal R-curve in the 2124-T851 used in this work. We 
wonder if it is useful to continue to apply these terms, implying contrast- 
ing behavior to what is becoming increasingly apparent as a continuous 
spectrum? 

Conclusions 

We have found a pattern of fracture behavior for one aluminum alloy 
which distinguishes between crack initiation and crack propagation 
toughness. The former is independent of thickness, the latter strongly 
dependent on it. The pattern explains many of the size effects which have 
been observed in the KIe test. Inasmuch as many of these effects have 
been observed in alloys of different base metals, there is reason to believe 
that other materials will follow a somewhat similar pattern. 
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ABSTRACT: This paper describes the effect of specimen size on slow crack growth 
and fracture toughness of the titanium alloy Ti-6A1-4V. The load versus crack 
opening displacement curve rises steeply after reaching the end of the linear part. 
Stable crack extension starts within the linear part of the P-v-curve. The crack 
growth resistance curve is independent of thickness B until Ka in the range 
2 < B < 20 mm, leading to the conclusion that slow crack growth can occur in 
plane strain. 

The secant method, leading to KQ at 2 percent crack extension, yields a specimen 
geometry dependent fracture toughness. KQ increases with width, W and is only 
slightly dependent on thickness, B. 

The consequences of this behavior for fracture toughness determination in 
connection with the ASTM recommendation are discussed. 

KEY WORDS: fracture properties, crack propagation, toughness, titanium alloys, 
tests 

After the application of the Griffith concept on metallic materials by 
Irwin, the effect of the thickness of the material on the characteristic 
values of fracture toughness received research emphasis. During the first 
investigations the stress intensity factor at the onset of unstable crack 
propagation Kc was measured. It was established that Kc approaches a 
threshold with increasing thickness and that K~ increases with decreasing 
thickness and after reaching a maximum decreases again [1]. 2 Later, it 
was found that the threshold value, the fracture toughness Kic, could also 
be measured with thinner specimens, provided that in the center of the 
specimen there is small unstable crack propagation. This propagation 

1 DFVLR, Institut ffir Werkstoff-Forschung, Linder Hrhe ,  Germany. 
2 The italic numbers in brackets refer to the list of references appended to this paper. 
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220 MECHANICS OF CRACK GROWTH 

mode is characterized by a discontinuity (pop-in) of the load-crack 
opening displacement curve [2]. After the observation that the crack 
propagation can also occur continuously and that the crack opening 
displacement curve changes continuously from the linear to the nonlinear 
part, the secant method was introduced [3], leading to KQ, corresponding 
to a crack growth of 2 percent (neglecting plasticity effects). Different 
investigations showed an increase of Ka below a critical specimen 
thickness [3-5]. Therefore, for the determination of Kle, it was proposed 
that specimens be chosen with a thickness larger than a minimum value of 
Bc = 2.5 (K~c/O-~) 2. 

InASTM STP 463 results concerning the increase of KQ with increasing 
thickness have been reported for the first time. May [6] observed this 
effect on a titanium alloy, whereas Jones and Brown [7] observed it on a 
4340 steel for a small specimen width, whereas a decrease of KQ was 
observed for larger specimen width. Brown and Srawley [7] traced the 
thickness effect to a thickness dependent crack growth resistance curve. 
Jones and Brown however, had not measured K-Aa curves, but deter- 
mined Aa from the P-v diagram. 

Finally Kaufman et al [9,101 have established an increase of KQ with 
increasing specimen thickness for different aluminum alloys. By varying 
thickness B and width W it was found that KQ is not a direct function orB, 
but of the crack length a0. Crack growth resistance curves were not 
determined by Kaufman et al. 

This paper presents results of experiments with the titanium alloy 
Ti-6AI-4V. KQ and the crack growth resistance curve have been measured 
for different specimen geometries. 

Characteristic Values of  Fracture Mechanics 

In order to characterize the material behavior, some parameters must 
be calculated from the experimental results. In the following these 
parameters are summarized. 

Crack Growth Resistance Curves 

The behavior of a material with sharp cracks under increasing load can 
be described by the crack growth resistance curve (R-Aa or R-a curve, 
Fig. 1), indicating the energy necessary for crack propagation. Crack 
growth begins at a critical value Re. With increasing crack growth R 
increases, reaching a maximum value R,.  Unstable crack growth occurs 
in a load controlled test if the G-a curve touches the R-a curve. Between 
Re and Rc stable crack growth occurs. 

The R-a curves are dependent on the stress state at the crack tip. it is 
possible that very thick specimens, where the plane strain state in the 
specimen center predominates, show no stable crack growth but unstable 
crack growth starts at Re. 
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F I G .  1---Crack growth resistance----crack extension-curve. 

The stress intensity factors corresponding to the R values are: 

Ke: At the onset of stable crack growth. 
Kc: At the onset of unstable crack growth. 
K~c: At the onset of unstable crack growth at plane strain state, for 

example, in very thick specimens. 

For very thick specimens the threshold K~e of Ke should be equal to Ktc. 
This point will be considered further. 

According to common fracture mechanics concepts, the crack growth 
starts in the center of a specimen of medium size if K = Kxc = K~e. With 
increasing K the crack front bows outwards until at Ke unstable crack 
growth occurs. Below a critical thickness Be. the minimum thickness for 
Kit determination, there is also no plane strain state in the specimen 
center and therefore Kc is increasing with decreasing thickness (Fig. 2). 
Kc reaches the thickness independent value K~ at a thickness B/larger 
than Be. 

Load Versus Crack Opening Displacement Curves 

The evaluation of a load-crack opening displacement-curve yields the 
following K values: 

KQ: From pop-in load or from load, determined according to the 
secant method. 

K~cs: KQ, determined with the secant method, if all requirements of 
the ASTM recommendation are fulfilled. 

Kmax: From maximum load and a = a0 (neglecting the stable crack 
growth). 

Kc: From load at the onset of unstable crack extension (in a load 
controlled experiment the maximum load) and the real crack 
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FIG. 2--Effect of specimen thickness on Ke and Kc 

length including the stable crack extension. Due to the curved 
crack front at the onset of unstable crack extension, the correct 
value of Kc is difficult to determine. The calculation is therefore 
done, assuming a straight through crack front. 

Ka: From load at the first deviation from the linear part of the 
P-v diagram. 

It is necessary to examine for a given material whether KQ or Kits is in 
agreement with KI~ according to the preceding definition. 

Effect of  Thickness  on KQ 

Different Components of  Crack Opening Displacement 

The crack opening displacement, measured in a fracture mechanics 
test, can be separated into three components: 

(a) Elastic Deformation--During elastic deformation the relation be- 
tween the crack opening displacement v e~ (measured with a clip gage) and 
the load is as follows 

P - f (1) 

(b) Plastic Deformation at the Crack Tip--Plastic deformation at the 
crack tip yields to an additional crack opening displacement vp/. The 
relation between vpz and load P or stress intensity factor K can only be 
approximately calculated. Brown and Srawley [8] have published results 
of finite element calculations, obtained by Swedlow and Roberts.Some- 
what different results were obtained by' Markstrrm [11]. According to 
Markstrrm [11 ] a relation exists for each material between the nondimen- 
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sional qualities K,/cruX/ff and vpt/vet for specimens with a fixed ratio 
crack length ao: specimen width W: specimen thickness B. Given the 
validity of this relation, it becomes possible to modify the relations of 
Swedlow and Roberts for other specimen sizes. 

(c) Crack Extension-During a crack extension Aa, the functionf(a/W) 
in Eq 1 is altered, corresponding, to an increase of the crack opening 
displacement at a fixed load by Ver. The relation between v~r and Aa is 
given by 

vet 1 f '  ~(a~) 
- x Aa (2) 

Vet W f ( w )  

If fracture toughness is to be determined with the secant method, then at 
K~cs the ratio (vpt + v~r)/v~ is equal to 0.05. 

Vpl <~ Vcr 

If the plastic component of the crack opening displacement vpz can be 
neglected, the crack extension at KQ can be calculated from Eq 2 
with ao/W = 0.5, veJv~t = 0.05, f / f '  = 0.2. 

Aa = 0.02 x ao = 0.01W (3) 

It follows that the crack extension at KQ increases with increasing 
specimen width W. If K-Aa curves are independent of thickness B 
(Fig. 3a) KQ increases with increasing B; this holds for specimens with 
fixed ratio ao:W:B. It can be expected that the K-Aa curves are dependent 
on thickness below a minimum thickness, in such a way that for thinner 
specimens the crack growth resistance curve is shifted upwards (Fig. 3b). 

K I BI ( B2 

&a, &a 
a 

f 

,4 

~ ~ 2  Bt 
B2 

BI< B2<Ba 

AO 
b 

(a) K-Aa curves independent of B. 
(b) K-Aa curves depend on B. 

FIG. 3--1nfluence o f  K-Aa curves on K o. 
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Subsequently KQ decreases  with increasing thickness for  specimens with 
ao = W/2 = constant (1 ~ 2 ~ 3 in Fig. 3b). For  specimens with fixed 
ratio a : W ~  the crack extension Aa at KQ decreases  with decreasing B. 
Dependent  on the K-Aa curves  for different  thickness,  KQ can decrease  or 
increase with increasing thickness (5 ~ 4 ~ 3 in Fig. 3b). 

Vpl >~ Vcr 

If vcr can be neglected with respect  to vp~ at KQ, the plastic behavior  at 
the crack tip will determine the value o f K  o. The plastic component  of the 
crack opening displacement can be at tr ibuted to a crack extension Aaon. 
In Fig. 4 K-Aaefe curves  are plotted, calculated from the nondimensional  
curves of  the paper  of  Markstr6m [11 ] for  a low-strain hardening material 
and a yield strength of  910 MN/m 2. I t  can be seen that in any case KQ 
decreases with decreasing thickness B,  even if the stress state at the crack 
tip does not change (1 ~ 3). The decrease  of Ko is greater ,  if the reduct ion 
in thickness is connected  with a transition from plane strain to plane stress 
(1 --> 4). 

Vpl and Vrt Comparable 

If  at K Q the components  of crack opening displacement  v pt and v cr are of 
the same order  of magnitude, the curves of Figs. 3 and 4 must be 
superposed. KQ increases with increasing W and, for  specimens with fixed 
B / W  ratio, also with increasing B,  given that the K-Aa curves are 
independent of B. Only if the K-Aa curves are shifted higher up with 
decreasing thickness, is it possible that KQ decreases  with increasing 
thickness. 

~ 200 i 
z 

E 

~ 100 

a B=40mm, plane ;train 
b B=40mm, plane stress 

Z ~ C B= IOmm, plane strain 
~n d B: IOmm, plane stress 
uJ  
t ~  

1,9 

02 0.4 0.6 0.8 1.0 
APPARENT CRACK EXTENSION Aaeff.mm 

/ 

FIG. 4--Stress  intensity fac tor  as a func t ion  o f  apparent crack extension (after 
Markstr6rn [11]). 
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Procedure 

Material 

Two plates of the alloy Ti-6AI-4V were investigated. 

A. A forged and annealed plate of Contimet  GmbH with a size of  44 by 
880 by 880 mm. The results of  tension tests in L-direction were: 
o-u = 910 MN/m z o-, = 1017 MN/m 2. 

B. A rolled and annealed plate of  Friedr.  Krupp G m b H  3 with a size of 
82 by 285 by 800 ram. The results of  tension tests in L-direction 
were o-u = 937 MN/m 2 o-, = 974 MN/m 2. 

Both plates had a Widmanst/itten microstructure,  Plate B having 
unusual large grains of about 1 mm. Due to the large influence of  
microstructure on fracture toughness [12-15], both plates were investi- 
gated metallographically at different positions. It was found that Plate B 
had a region of deviating microstructure,  and the segment was discarded 
subsequently. Otherwise the homogenity of the plates were satisfactory. 
Part of the scatter of the results nevertheless may be due to a varying 
microstructure.  

Specimens 

Single edge notched specimens were made with the fracture plane in 
LS-orientation. Specimen dimensions are shown in Table 1. Besides 
ASTM standard specimens with W/B = 2, square specimens and speci- 
mens with W/B > 2 were used. Specimens of  one geometry  were 
taken at random from the plates. The smaller specimens were machined 
from the fractured halves of  the larger specimens. Fatigue cracks were 
produced in two load steps in 3-point bending. Final crack lengths were in 
the range 0.4 < a/W < 0.06. 

Test Procedure 

Nearly all fracture mechanics tests were done in 3-point bending with a 
Zwick testing machine. Only the thinner specimens (2 by 12, 6 by 6, 
6 by 12, 12 by 12 of Plate A and 2 by 10, 2 by 20, 2 by 40 of Plate B) were 
loaded in 4-point bending. The loading rate was 1 mm/min in 3-point 
bending and 0.5 mm/min in 4-point bending, leading to k between 0.8 
MN m -3/~ s -~ and 2.5 MN m -3jz s-L In this range of  K,  fracture toughness 
is nearly independent of the loading rate [16]. 

In order  to evaluate the crack growth resistance curve, different 
specimens of the same geometry were loaded to different K values, 
unloaded, and refatigued. By looking on the fracture surface with a light 

a This plate was placed at our disposal by VFW-Fokker GmbH. 
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TABLE 1--Results of  fracture toughness tests (mean values). 

K A a, K a  a, Kmax a, Kmax K a  
B, mm W, mm W/B MN m -3jz MN m -312 MN m -3jz Ka Ka avp ~ 

Plate A 

42 84 2 59.8 (6) 92.7 (5) 
38 38 1 55.2 (8) 82.5 (8) 
19 38 2 54.9 (8) 77.2 (8) 
19 19 1 51.5 (9) 72.5 (9) 
10 40 4 50.8 (3) 73.9 (3) 
10 20 2 46.8 (15) 72.2 (15) 
12 12 1 54.6 (7) 70.6 (6) 
6 20 3.3 52.4 (3) 73.8 (3) 
6 12 2 48.9 (15) 67.0 (15) 
6 6 1 49.9 (4) 61.0 (4) 
2 12 6 48.1 (5) 58.0 (5) 

Plate B 

78 78 1 38.8 (2) 79.3 (2) 
39 78 2 40.9(3) 83.5 (3) 
39 39 1 46.6 (2) 72.1 (2) 
20 78 3.9 38.1 (4) 79.3 (4) 
20 38.4 1.92 33.7 (4) 67.6 (4) 
20 20 1 33.0 (5) 63.1 (5) 
10 78 7.8 54.5 (3) 78.2(3) 
10 40 4 35.9 (4) 68.4 (4) 
10 20 2 33.3 (2) 58.2 (8) 
10 10 1 32.9 (3) 48.9 (3) 
5 40 8 39.7 (2) 68.3 (2) 
5 20 4 24.8 (2) 45.0 (2) 
5 10 2 26.4 (2) 45.0 (2) 
2 40 20 32.7 (1) 61.3 (1) 
2 20 10, 31.4 (4) 58.2 (4) 
2 10 5 25.0 (5) 43.5 (5) 

95.5 (5) 1.03 1.66 0.15 
89.3 (8) 1.09 1.50 0.20 
88.7 (4) 1.11 1.41 0.17 
80.6 (8) 1.12 1.43 0.16 
85.9 (2) 1.20 1.43 0.24 
83.4 (15) 1.16 1.45 0.17 
79.4 (6) 1.12 1.29 0.11 
90.5 (3) 1.22 1.41 0.29 
80.4 (14) 1.20 1.58 0.18 
71.6 (4) 1.18 1.19 0.0 
72.5 (5) 1.25 1.21 0.10 

78.'5"(5) i.'1�89 

7~i.'1 "(3) i.'14 

78.6(2) i. 7 
56.9 (1) 1.18 

2.04 0.34 
2.15 0.29 
1.57 0.22 
2.08 0.32 
2.00 0.38 
1.93 0.30 
1.51 0.11 
1.94 0.32 
1.76 0.36 
1.49 0.26 
1.72 0.28 
1.81 0.42 
1.71 0.39 
1.88 0.31 
1.89 0.40 
1.75 0.85 

a Number  of  tests are in brackets.  

microscope or a scanning microscope it was possible to measure the crack 
extension which occurred during the unidirectional loading. 

For determination of the onset of crack extension the potential method 
was used for Plate A in addition to the fracture surface observation. For 
titanium alloys the potential method is very sensitive [12]. 

Results 

P-v curves 

The P-v curves have a continuous transition from the linear to the 
nonlinear part. Characteristic for all P-v diagrams is the heavy rise of the 
curve after reaching PA, the load at the deviation from the linear part. 
Therefore, the ratio Ka/KA is very high (see Table l) varying between 1.19 
and 1.66 for Plate A, and between 1.49 and 2.15 for Plate B. The 
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determination of KQ is dependent strongly on the accuracy of the 
determination of the slope of the linear part of the P-v curve. For both 
plates and for nearly all specimens~, however, the slope-determination 
presented no problem. Nevertheless small changes in the slope yield 
considerable changes in KQ. 

For  Plate B the c r i te r ion  of the ASTM r e c o m m e n d a t i o n  
Av08pJAvp < 0.25 is not fulfilled for nearly all specimen geometries (see 

�9 t~ Q 

Table i). Some specimens of Plate A also showed values greater than 
0.25, the mean values for each geometry are, however, mostly smaller. 

The criterion Pmax/PQ < 1.1 will be discussed later on. 

Effect of Specimen Geometry on K o 

The mean values of KQ are included in Table 1. In Fig. 5 Ko is plotted 
against specimen thickness B and in Fig. 6 against width W. There is a 
general trend of KQ increasing with W. Apart from a few exceptions 
(2 by 40, 5 by 20 for Plate B, 2 by 12, 10 by 40 for Plate A) through all 
values ofKo a common curve can be drawn. Figure 5 shows clearly the 
independence of Ko from B for W = 20 mm (Plate A) and W = 78 mm, 
W = 40 mm, W = 20 mm with except ion B = 5 mm (Plate B). For  
W =  12mm, W = 4 0 m m  (PlateA) and W =  10mm (PlateB) KQ in- 
creases with increasing B. 

K-Aa Curves 

Figure 7 shows the scatterband of the K-Aa curves for Plate A. For any 
geometry the measurements were performed in a range a little beyond KQ. 
Therefore, the larger crack extension could only be measured with 
specimens with larger W. The values for different specimen geometries 
were distributed randomly on the whole scatterband. No thickness 
dependence of the K-Aa curves could be found. Figure 7 shows clearly the 
strong increase of K, especially at small crack extensions. In order to 
obtain a crack extension from 10/zm to 0.1 ram, K must be increased from 
48 MN m -3/2 to 66 MN m -3/~. 

Onset of Crack Extension 

It is convenient to define the onset of crack extension at K for 
Aa = 10/zm, because the dimple size of the fracture surface is about 10 
/xm. Extrapolation of the K-Aa curves to 10 ~m yields in Kle  = 4 8 . 8  -+ 8 
MN m-n~2 for Plate A. With the potential method a mean value of K = 42 
MN m -3/2 was determined for the onset of crack extension for all 
specimen geometries. 

A comparison of K~e with Ka (see Table 1) demonstrates the known 
result [12] that the onset of crack extension occurs in the " l inear"  part of 
the P-v diagram. 
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A a  = 0 . 0 2  ao - Aaea(filled points). 

Discussion 

Effect o f  Thickness and Width on Ko 

From the observation of the independency of K~ and of the K-Aa curves 
of the specimen thickness it can be concluded that the crack extension to 
the point Ka is governed by the plane strain state in the specimen center 
for all investigated specimens. The radius of the plastic zone at K~e = 48 
MN m -3/2 for Plate A is given by 

2 

1 (K1e~ = 148/zm 
rpl = ~ o-y ] (3) 

For specimens with W = 84 mm the radius increases at Ka to 550/xm. 
The ratio B/r~ at K~e is equal to 14 for the thinnest specimens with 
B = 2 mm. For ASTM standard specimens (B:W = 1:2) B/rpt = 76 for 
B = 42 mm and B/rp~ = 21 for B = 6 mm at KQ. For all these cases the 
plastic zone sizes are obviously small enough to determine the crack 
propagation by the plane strain state. According to this viewpoint the 
ASTM recommendation concerning the minimum specimen size 
(B/rp~ > 50) is suficient. Nevertheless this recommendation cannot avoid 
thickness dependent Ko values. 

Because of the independence of the crack growth resistance curves 
from B, Ko should increase with W according to the slope of the K-Aa 
curve, and should be independent of B for constant W, but only if at KQ 
the crack opening displacement vp~ can be neglected in comparison with 
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v~r. In a first approach KQ is independent of W. The slight increase of KQ 
with increasing B for constant W, which occurs in some cases is not in 
agreement with the considerations mentioned previously. A quantitative 
comparison between KQ and K at Aa = 0.02 ao(Kz~) is given in Fig. 7. In 
addition to the scatterband of the K-Aa curves, the different K-Aa values 
are plotted at Aa = 0.02ao = 0.01W. All KQ values, with the excep- 
tion of the specimens with cross section 2 by 12 and 10 by 40, are 
within the scatterband of the K-Aa values. Specimens with 42 by 48 cross 
section could not be compared, because the K-Aa curve was only 
measured up to the point Aa = 0.4 mm. The good agreement between KQ 
and K at Aa = 0.02ao supports the conclusion that vpt at KQ is negligible. 
If vp~ is. considered a smaller crack extension than 2 percent at KQ a shift 
of KQ in Fig. 7 to the left results. The amount of the shifting can only be 
estimated from the calculations by Markstrrm [11] or Roberts and 
Swedlow [8]. For this reason, the crack opening displacement vpz, at KQ, 
of specimens with W/B = 2, was determined from the diagram of 
Markstrrm for a low-strain hardening material and converted into an 
apparent crack extension Aaen according to Eq 2. In Fig. 7 KQ is shifted to 
the left by Aa~ff (filled symbols). It can be seen that for the specimens with 
cross section 6 by 12 the corrected values are outside the scatterband. 
Obviously the plastic component of the crack opening displacement is 
smaller than calculated according to Markstrrm. 

Consequences for Fracture Toughness Determination 

From the experimental results some conclusions can be drawn concern- 
ing the determination of fracture toughness Kic. From the thickness 
independence of the K-Aa curves, between B = 2 mm and B = 20 mm, it 
can be concluded that stable crack growth occurs also in the case of a pure 
plane strain state. Therefore in a plane strain state the crack propagation 
behavior cannot be characterized by onlyKic, but by the wholeK- Aa curve. 
Characteristic values are K~, at the onset of crack extension and the 
maximum value of K (K, corresponding to R ,  in Fig. 1). Each K value 
betweenKxe and K ,  is arbitrary. Kies, determined with the secant method, is 
also arbitrary, because K~c5 is a specimen width dependent point on the 
K-Aa curve. K~ is a real material constant, which is not only important as 
the stress intensity factor at the onset of crack extension but also in stress 
corrosion tests. Reference 17 showed that KI~ and Kiscc are nearly 
identical. K at the onset of unstable crack extension, which should be 
indicated as KIc according to the definition mentioned previously, is, 
contrary to K~, dependent on machine stiffness, loading rate, and 
specimen geometry. 

Kie determinations require much time and many specimens. Therefore, 
another way should be found to determine a material constant which is 
independent of specimen geometry. One possibility is to specify a fixed 
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specimen geometry for each material or for a group of materials for Kic 
determination. It is also possible to use a width dependent slope of the 
secant in such a way that for all specimen geometries K~c is measured at 
the same point of the K-Aa curve. 

The additional recommendation of ASTM that Kmax/KQ should be less 
than 1.1 leads to specimen sizes for which KQ -- K~c~ is in the upper range 
of the K-Aa curves. In Fig. 8 Kmax/KQ is plotted against thickness B 
for Plate A. This figure shows that B should be larger than 20 mm. This 
arbitrary restriction of valid tests leads to K~ values close to the 
maximum value K,. Nevertheless, this restriction also cannot avoid 
geometry dependent fracture toughness. 

It was shown that Av at 0.8 PQ is in some cases larger than 0.25Av atPo. 
The motivation behind the restriction of tests with too large Av at 0.8 PQ 
was to eliminate all specimens with too large vp~ at KQ. Even if the plastic 
deformation at the crack tip is so small that vp~ at KQ can be neglected, 
there can be considerable departure from the linear part of the P-v 
diagram at 0.8 PQ. The amount of the departure can be calculated from the 
K-Aa curve. From the K-Aa curve of Fig. 7 one can calculate that for 
specimens with W = 40 m m  AV0.aPc//AFpQ ----- 0.23 and for specimens with 
W= 10 m m  Avo.apQ/Avp Q = 0.22. It is not possible to make a statement 
about the amount of plastic deformation at the crack tip from the amount 
of the deviation from the linear part at 0.8 PQ. Therefore, the question 
arises, whether the restriction Avo.spQ/AvpQ < 0.25 is significant for 
titanium alloys. 

Conclusions 

The investigation of the effect of thickness on fracture toughness of 
Ti-6AI-4V yield the following results and conclusions: 

1. The load-crack opening displacement-curves rise steeply after reach- 
ing Pa, the load at the end of the linear region. Therefore, fracture 
toughness K~5, determined according to the secant method, is dependent 
strongly on the accuracy of the determination of the slope of the linear 
part of the P-v diagram. 

2. In a first approximation KQ increases with specimen width indepen- 
dent of thickness. This general tendency is partly superposed by a slight 
increase of KQ with thickness. 

3. The crack growth resistance curve is independent of thickness until 
KQ in the investigated range 2 < B < 20 ram. 

4. The effect of specimen dimensions on KQ can be traced back to the 
crack length dependent crack extension at Ko. 

5. The restrictions of the ASTM recommendations for valid tests 
(gmax/g  o < l .  l ,  AVO.8pQ/AVpQ ~ 0.25) cannot exclude the thickness effect. 

6. Characterization of crack propagation behavior in the plane strain 
state can only be done with the K-Aa curve. It should be considered in 
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Resistance to Plane-Stress Fracture (R-Curve 
Behavior) of A572 Structural Steel* 

REFERENCE: Novak, S. R., "Resistance to Plane-Stress Fracture (R-Curve 
Behavior) of A572 Structural Steel," Mechanics of Crack Growth, ASTM STP 590, 
American Society for Testing and Materials, 1976, pp. 235-242. 

ABSTRACT: The R-curve behavior of A572 Grade 50 steel was established over 
the temperature range - 4 0  to +72~ by using state-of-the-art procedures. Both 
linear-elastic-fracture-mechanics (LEFM) and crack-opening-stretch (COS) analyt- 
ical techniques were used in assessing experimental results obtained under 
load-control and displacement-control testing conditions. This study represents a 
pioneer effort in that it is the first known attempt to evaluate the R-curve behavior 
of a low-strength structural steel in some depth. 

Results showed a steep K~ transition behavior for 1.5-in.-thick (38 mm) plate, 
with minimum Kc values of 57, 155, and 318 ksi ~ .  (63,171, and 350 MNm -3/2) 
obtained at -40,  +40, and +72~ ( -40 ,  +4.5, and +~22~ respectively. A similar 
behavior was observed for 0.5-in.-thick (12.7 mm) plate, with minimum Kc values 
of 150, 273, and >380 ksi ~ .  (165, 300, and >418 MNm -3/2) obtained at the 
corresponding test temperatures. The results are discussed in relation to the 
influence of material and testing method, as well as in relation to earlier Kte results 
obtained at cryogenic temperatures. 

The minimum Kc values measured demonstrate extensive crack tolerance for 
A572 Grade 50 steel under all combinations of the test conditions studied. With one 
exception, these minimum behaviors can be translated into total critical flaw 
lengths that are at least seven times the plate thickness (2a~T ->_ 7B) for cracks 
embedded in large planar structures and subjected to tensile-stress levels equal to 
three fourths the yield strength. The applicability of act calculations obtained from 
R-curve measurements generally, and on the A572 Grade 50 steel specifically, is 
discussed in relation to typical structural members such as H-beams. 

KEY WORDS: crack propagation, fracture (materials), mechanical properties, 
stresses, strains 

* This paper is a summary of the complete paper published as ASTM STP 591. 
Senior research engineer, Heavy Products Division, Research Laboratory, United 

States Steel Corporation, Monroeville, Pa. 15146. 
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Summary 
Results of an extensive study concerning the R-curve behavior of 

ASTM A572 Grade 50 steel are presented. The study was conducted using 
fatigue precracked specimens to characterize the basic fracture behavior 
of this steel under conditions normally encountered in most structural 
applications. Under these conditions K~c measurements cannot be made; 
therefore, R-curve techniques were used to determine the (plane-stress) 
fracture behavior. Specifically, the study was conducted over the temper- 
ature (T) range from -40 to +72~ under so-called "stat ic"  loading rates 
(~ = 10 -5 s -1) and on plate thicknesses (B) of 1/2 and 1 1/2 in. Under such 
conditions the state-of-stress at fracture corresponds to plane stress (Kc) 
rather than plane strain (K~c), and the most efficient method of fracture 
characterization is that of an R-curve (plot of crack driving force, Kn, 
versus crack extension, Aa). 

State-of-the-art experimental and analytical procedures were used 
throughout the study. This included the use of both linear-elastic- 
fracture-mechanics (LEFM) and crack-opening-stretch (COS) analytical 
techniques. Experimental techniques included the use of both load- 
control and displacement-control testing conditions. Results were ob- 
tained on various size compact-tension (CT) specimens using the double- 
compliance (two clip gage) procedures for monitoring crack extension 
(Aa) developed earlier by McCabe and Heyer. 

Specific R-curve results were obtained on two different heats of ASTM 
A572 Grade 50 steel using a total of 24 CT specimens. Of this total, 14 
specimens had in-plane dimensions corresponding to 2T and 4T speci- 
mens and were tested under load-control conditions; the remaining 10 
specimens had in-plane dimensions corresponding to 4C and 7C speci- 
mens and were tested under displacement-control conditions. Twenty- 
two of the specimens tested were of a 50-ksi (345 MN/m 2) yield-strength 
A572 Grade 50 steel, and the two remaining specimens were of a 62-ksi 
(427 MN/m 2) yield-strength A572 Grade 50 steel. Both 1.5 and 0.5-in.- 
thick (38 and 12.7 mm) specimens were evaluated from the 50-ksi steel; 
the two specimens of the 62-ksi steel were both 1.5 in. thick. 

The current study represents the first known attempt to evaluate the 
R-curve behavior of a medium-strength structural steel in detail-- 
including the influence of temperature (T), plate thickness (B), yield 
strength (trys), and testing procedure (load-control versus displacement 
control). In addition, the present R-curve and Kc results from -40 to 
+72~ are compared with Kit results obtained earlier on the same two 
steels at lower (cryogenic) temperatures. Because of the unique character 
of this work and also because some of the results are contrary to prior 
expectations, the results of the investigation are reported in detail under a 
separate publication, ASTM STP 591, in order to preserve the documenta- 
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tion of the study. Such results are expected to be of value in the future for 
assessing studies of a similar nature conducted on constructional steels. 

The results, in general, demonstrate extensive crack tolerance at 
fracture for A572 Grade 50 steel under the conditions studiedwwith most 
fractures occurring under elastic-plastic conditions and requiring analysis 
by COS. The results show further that care must also be exercised in the 
application of plane-stress fracture data (R-curve and Kc) to structural 
components in order to ensure proper predictions of behavior in service. 
The specific results obtained from this study can be summarized as 
follows: 

1. A steep transition was observed in the plane-stress fracture behavior 
for the B = 1.5-in. specimens of the 50-ksi steel, with minimum K, values 
of 57, 155, and 318 ksi X/Tff. (63, 171, and 350 MNm -3/2) occurring at 
temperatures of -40, +40, and +72~ ~-40, +4.5, and +22~ respec- 
tively. 

2. No significant differences were observed in the Kc behavior of the 50 
and 62-ksi A572 Grade 50 steels. 

3. Greater overall resistance to fracture was observed for the B = 0.5- 
in. specimens than for the B = 1.5-in. specimens of the 50-ksi steel, with 
minimum Kc values of 150, 273, and >380 ksi ~ (165,300, and >418 
MNm -3j~) occurring at temperatures of -40,  +40, and +72~ respective- 
ly. However, this difference in the minimum resistance to fracture for the 
0.5 and 1.5-in.-thick specimens is partially the result of differences due to 
testing method (see conclusions 6 and 7). 

4. With the exception of three specimens, the fracture instability for all 
specimens was catastrophic in nature. The excepted specimens, all tested 
at +72~ included a 7C specimen with B = 1.5 in. that exceeded 
testing-machine capacity at Kn = 477 ksi x/Tn.. (525 MNm -3/~) and 
Aa = 0.86 in. (22 mm), and duplicate 4T specimens that exhibited slow, 
stable crack extension corresponding to Aa, _-> 3.50 in. (_--> 90 mm) at K, 
values of >380 and >503 ksi ~ (418 and 550 MNm-312). 

5. The repeatability of results for three of four sets of duplicate 
specimens was within _+ 15 percent of the average K,  value measured. The 
repeatability of results for the fourth set of specimens was within ---30 
percent of the average Kc value measured. 

6. The choice of testing procedure (load-control versus displacement- 
control) was found to influence the results. The K,  values for the 4T 
specimens tested under load-control conditions were 40 to 80 percent 
higher than the values for the corresponding 4C specimens tested under 
displacement-control conditions in direct comparison tests at three differ- 
ent temperatures. This influence of testing procedure was consistent and 
appears real, but could not be fully verified using statistical analysis 
procedures. 
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7. The effects of specimen thickness (B = 1.5 in. versusB = 0.5 in.) on 
Kc behavior evaluated in direct-comparison tests using only the load- 
control testing procedure were inconclusive. Results from 2T specimens 
tested at three different temperatures indicated a consistent influence, 
while results from 4T specimens tested at similar temperatures were 
consistent in indicating no influence. Local variations in fracture tough- 
ness were apparently large enough to mask the true effects of specimen 
thickness on Kc behavior. 

8. In relation to effects of specimen size, normal plane-stress fracture 
behavior (increasing Kr values corresponding to increasing values of ao) 
was generally obtained with both the load-control and the displacement- 
control testing methods at all temperatures. However, an inversion in this 
behavior occurred with each test method at -40~ These departures 
from expected behavior may be related to inherent variations in the local 
fracture toughness. 

9. The Kr results of the present study were shown to be consistent with 
earlier K~ results obtained from tests on the same steel at cryogenic 
temperatures. The central concept in resolving obvious differences in the 
corresponding Kc and K~ transition temperatures was the apparent 
existence of an intermediate K~c shelf, a behavior supported by the results 
of each of three different and entirely independent methods of analysis 
(J-integral, Krsuppression effect, and CVN specimen results). 

10. For normal stress levels used in design (crn = 3/40"ys), critical flaw 
sizes (act) for the B = 1.5-in. plate of the 50-ksi A572 Grade 50 steel were 
shown to be a~r = 1.80, 5.2, and 23.0 in. (46, 132, and 585 mm) for 
minimum representative behavior at -40,  +40, and +72~ respectively. 

11. For normal stress levels used in design, the critical flaw sizes for 
the B = 0.5-in. plate of the 50-ksi A572 Grade 50 steel were shown to be 
a~r = 4.0, 16.0, and >32.0 in. (100, 400, and >800 mm) for minimum 
representative behavior at -40, +40, and +72~ respectively. 

12. With two exceptions, the total critical flaw size (2a~r) for cracks 
centrally located in a large plate subjected to uniform tension stress were 
shown to be in excess of seven times the plate thickness, (2a~r ->7B) for 
all the eight different combinations of plate thickness and temperature 
investigated for the A572 Grade 50 steels. 

13. Values of at, calculated from measurements of plane-stress fracture 
resistance (R-curve and Kc measurements) can be applied validly only 
when the state of stress in the structural application is plane stress, and 
then only under the assigned material and test conditions (T, ~, and B). 
Accordingly, such values would be directly applicable to structures with 
larger planar dimensions (direction of crack propagation), including the 
web location for large H-beams. Such a~ values would not be directly 
applicable in confined structural regions, such as in the tension-flange 
region of H-beams (complete inapplicability) and the web region of 
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SECTION 
A-A 
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FIG. I---Schematic of procedure for measuring ~ct or COS at the actual crack tip (aaet) 
relative to applied load level (K~) under plane-stress conditions. 
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H-beams with small web dimensions (indirect applicability of acr values 
for assessing the confidence level of structural integrity). 

Many of the results above were obtained by using the COS analysis 
method under state-of-the-art conditions. Because this method of analysis 
is still undergoing development, the limitations of this technique are not 
defined precisely. Furthermore, many questions still remain concerning 
plane-stress fracture generally, even for results obtained under LEFM 
conditions. Nevertheless, the present studies have been an encouraging 
first step in the understanding of the plane-stress fracture behavior of 
A572 Grade 50 steel, and similar medium-strength constructional steels, 
and of the general applicability of plane-stress-fracture data (R-curve and 
K~ measurements) to structural components. 

In summary, a complete manuscript describing the results of the entire 
study in detail has been published by the photo offset method and is 
available under identical title as ASTM STP 591. Figures 1 through 5, 
taken from the complete manuscript, illustrate the nature of the experi- 
mental technique employed, typical R-curve results obtained under three 
of the test conditions investigated, and a summary comparison of part of 
the resulting Kc and earlier K~c behaviors measured as a function of 
temperature. 
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Running Ductile Fracture in a Pressurized 
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Fracture in a Pressurized Line Pipe," Mechanics of Crack Growth, ASTM STP 590, 
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ABSTRACT: A model is developed for steady state propagation of a ductile crack 
in an initially pressurized line pipe. The analysis is directed toward the high 
toughness range of material behavior, for which extensive yielding occurs in the 
pipeline walls, and the material is represented as rigid-ideal plastic. Further, to 
obtain a tractable model, kinematical assumptions are made so that the deformation 
of the shell is expressed in terms of a single unknown function of position along the 
shell axis, which is determined in accordance with a variational statement of the 
equations of motion. Separation of material is represented by a Dugdale zone of 
localized yielding, in which a critical opening displacement is attained for fracture. 
With these approximations, the required decay length of the pressure distribution 
necessary to drive the crack, for a given exit plane pressure and decay shape, and 
the profile of the opened fracture, are estimated. Inertial effects due to the shell 
walls and backfill and crack arrest by branching are discussed, although it is 
pointed up that a complete analysis must await further progress on the fluid 
dynamics of gas escape through the fracture opening. 

KEY WORDS: crack propagation, pipe lines, fracture properties, stresses, strains, 
plastic deformation 

Service experience has shown that ductile shear fractures can propa- 
gate long distances at very high rates in a large diameter pressurized line 
pipe, such as that used in gas transmission pipelines. With a view toward 
developing an understanding of this phenomenon, the American Iron and 
Steel Institute has sponsored a series of full-scale tests of large diameter 
pipes to determine the propagation and arrest characteristics of running 
ductile fractures. In each of these tests the pipe was instrumented with 
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crack detectors, strain gages, and pressure transducers, and the electroni- 
cally recorded data which were obtained are summarized elsewhere [1 ]. 3 
The present analytical investigation was undertaken in an effort to resolve 
various discrepancies which arose between observations and the basic 
assumptions of previous analytical models of the process. 

The mathematical model which has been proposed to represent the 
ductile fracture of line pipe by Hahn et al [2,3] and Duffy et al [4] has two 
main features. First, the crack is considered to be small in length 
compared to the pipe diameter, and, in the case of a long running fracture, 
a small "effective" crack length is employed. The driving force for this 
crack is taken to be a modified or reduced hoop stress derived from a 
measure of internal pressure at the crack tip. The second main feature is a 
fracture criterion which is a modified form of a critical crack tip opening 
displacement condition. In the analysis summarized by Maxey et al [5], 
the hoop stress acting at the crack tip was first reduced from the hoop 
stress corresponding to the nominal line pressure by taking into account 
the escape of gas through the crack opening. The crack driving force was 
then taken to be this reduced hoop stress, amplified by a factor which 
accounted for outward bulging associated with an axial crack in a 
cylindrical pressure vessel. The amplification factor was determined 
from Folias' analysis [6], wherein it is assumed that the crack length is 
small compared to the cylindrical shell radius and that the material 
remains elastic everywhere. This driving force was then substituted into 
the fracture criterion. By equating the fracture toughness to the product of 
critical crack opening displacement (COD) and apparent yield stress, the 
fracture condition was reduced to a relationship between the modified 
hoop stress and the fracture toughness, the latter being considered 
determinable from Charpy tests. 

The continued development of this work by Hahn et al [3 ] has included 
other features to make the model more realistic, such as decompression of 
the gas due to radial expansion of the pipe walls, strain rate sensitivity of 
the flow stress of the material, and further consideration of the ductile 
cracking process. Poynton and Fearnehough [7] recently summarized this 
work, and they concluded that two main factors contribute to mainte- 
nance of a running crack, these being related to the radial velocity of the 
pipe walls and the COD. 

The results from the instrumented full-scale tests, as reported by Ives et 
al [! ], indicate that the appropriate model of a running ductile fracture in a 
line pipe is not one in which the crack driving force is derived from the 
nominal hoop stress acting just ahead of the fracture. It appears instead 
that the crack is driven by the residual pressure acting on the flaps formed 
by the separated pipe walls behind the crack tip. The main results from 

a The italic numbers in brackets refer to the list of references appended to this paper. 
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the measurements, which support this conclusion, are that at about two 
pipe diameters ahead of the crack the circumferential strain distribution 
indicates ovalization of the pipe, the crack line being at one end of the 
minor axis of the oval. The longitudinal strains are much larger than the 
circumferential strains at this point, and they indicate deformation well 
into the plastic region. As the crack tip approaches the measuring station, 
the circumferential strain changes from a bending to a stretching mode. 
The inward motion and accompanying bending ahead of the crack is 
attributed [1 ] to the radial outward flaring of the shell walls under the 
action of the residual pressure. As the crack opens, the pipe walls 
experience significant circumferential displacement near the crack line, 
and this is associated with the large extensional strains in both the axial 
and circumferential directions near the crack tip. 

Deformation Field 

The work reported upon here was motivated by the desire to provide 
an analytical description of a running ductile fracture in a pressurized pipe 
which included the salient results of the full-scale tests as reported 
elsewhere [1 ]. In particular, relationships among the main parameters of 
the system were sought which had to be satisfied in order to sustain the 
running fracture. The complexity of the problem is well known, and, in 
order to obtain results in a reasonably short time, several major assump- 
tions were made. First of all, the ratio of pipe wall thickness to mean pipe 
radius is generally small compared to unity, and the theory of thin 
shells [8,9] is thus assumed to apply. While the subsequent method of 
analysis does not preclude the use of strain-displacement gradient rela- 
tions appropriate to large deflections, this complicating aspect is ne- 
glected for the time being, and the small deflection formulation for thin 
shells is adopted. 

In the actual tests, crack extension is clearly a transient process. The 
data indicate, however, that after the crack tip has moved from the 
initiator a distance of about four pipe diameters, a deformation field is 
achieved around the crack tip which is maintained essentially as the crack 
continues to grow. This implies that the fracture process is insensitive to 
the length of the crack, and, for the purposes of analysis, the crack is 
taken to be semi-infinite in length. In those tests in which the crack did 
indeed propagate from the initiator without arrest, it frequently did so at a 
constant rate in each uniform test section. Therefore, it is assumed that 
the tip of the semi-infinite crack moves at a constant speed along a 
generator of the cylindrical pipe, and that the deformation field as viewed 
by an observer moving with the crack tip is time independent. 

On the basis of these assumptions, the problem is still not in a form 
which can be analyzed without resorting to extensive numerical calcula- 
tions. Therefore, it is assumed that the entire deformation field of the shell 
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is determined by a single function of the axial coordinate, that is, all 
displacement and strain components are known once this single function 
of distance along the axis of the cylindrical shell is known. An important 
observation in making assumptions concerning the deformation is that 
generally thin shells tend to deform predominantly by bending, with 
minimal stretching of the middle surface. For a cylindrical shell, the only 
deformations satisfying strict inextensibility are those for which all 
generators of the cylinder remain straight during deformation. In the case 
of an axial fracture in a cylindrical shell, the generator ahead of the crack 
tip which forms the prospective fracture path is split by the crack into the 
two fracture surfaces. Behind the crack tip the shell walls flare outward, 
and the crack surfaces separate. This deformation is clearly incompatible 
with each generator remaining straight. Some middle surface stretching 
must accompany the flaring out of the shell walls at the tip of the 
advancing crack. Study of the shell strain-displacement relations suggests 
that the observed flaring of the walls is accompanied by stretching of the 
middle surface in the axial direction, which was reported in Ref l .  Thus, it 
is assumed in proposing a deformation field that the in-plane strain of the 
middle surface of the shell consists only of extension in the axial 
direction. The in-plane shear strain and the extension in the circumferen- 
tial direction are taken to be zero, except for the latter within a line 
Dugdale zone of plastic separation. 

Spatial coordinates on the shell surface are defined in Fig. 1. The mean 
radius of the undeformed shell is a, the shell thickness is h, the 
circumferential coordinate is 0, and the axial coordinate is ~:, the origin 

= 0 being fixed at the moving crack tip. If x is a spatially fixed axial 
coordinate and V is the speed of the crack tip, then s c = Vt  + x.  Because 
of the assumption of a quasi-stationary condition, all field variables 
depend on x and t only through (. The crack faces coincide with the lines 
0 < ~: < ~ ,  0 = +-7r on the shell. Following the fairly standard 
notation [8,9], the axial, circumferential and radial components of the 
displacement vector of a point initially at ((, 0) are denoted by u, v, w. 
The assumed displacement field is expressed in terms of a single unknown 

V 4  

FIG. l---Geometry of steady-state crack propagation in a pressurized pipeline. 
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function of s c, namely,  tk(~:), by  

w = ~(# )  O )  

v = - OO(() (2) 

1 
u = ~ a t O ' ( f ) O  z + g(~) (3) 

This displacement  field was const ructed by assuming that  each circular  
cross section deforms into a concentr ic  circle, and then by  requiring that 
the circumferential  and shear  strains of  the middle surface vanish.  The 
function g(~:) is arbi trary at this point.  The  corresponding strains are given 
by 

Ou 1 
ee - r  ~ -  - 2 atO"(~)OZ + g ' ( f )  (4) 

0 2w 
~e - - -  - q ; " ( ~ )  ( 5 )  

1 02w 1 Ov 1 
Ko - + - - -  +(~) (6) 

a z 002 a z O0 a z 

K.~O - -  

1 O2w 1 0 v  1 
- -  + - O + ' ( f )  ( 7 )  

a 0f00 a 0~ a 

where 
ee = axial strain, 

Ke and Ko = changes in axial and circumferent ia l  curva ture  of  the mid- 
dle surface,  and 

Ke0 = change in torsion of the middle surface.  

According to the usual theory  of  thin shells, the force var iables  conjugate 
to these strains are N e, the axial force per  unit length along the middle 
surface in the circumferential  direction, M e  and Mo,  the bending moment s  
per  unit length in the circumferential  and axial direct ions,  and Meo, Mot ,  
the twisting moments  per  unit length in the coordinate  directions.  The 
assumed constitutive relat ions for the force  and deformat ion  variables  are 
stated in a later section. 

The deformation field (Eqs 1 to 3) results  in zero circumferent ia l  strain, 
while the measurements  indicate the occur rence  of significant circumfe- 
rential strains near  the crack  line ahead of  the crack tip. This is accounted  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  S a t  D e c   5  0 9 : 4 2 : 0 7  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
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for in the model by including a one-dimensional plastic zone of the 
Dugdale type [10] ahead of the advancing crack tip. In effect, this 
concentrates all of the circumferential strain in this one-dimensional 
plastic zone. The plastic zone occupies the interval 0 > ~: > - R, as 
shown in Fig. 1, implying that ~k ~ 0 for ~: < - R. Of course, R is 
ultimately to be determined as part of the analysis. Within the plastic 
zone, relative motion of the crack faces is resisted by a cohesive stress 
which is defined in terms of T((), the cohesive force per unit length of 
middle surface. No bending moment  is transmitted across the cohesive 
zone. The amount  of crack opening 8(~:) is given by 

8(s c) = - 2 v ( ( ,  rr) = 2frO(C) (8) 

and the crack tip opening displacement is defined as 8t -= 27rtk(0). The 
definition of T(~:) is extended so that lr(~:) = 0 for ~: > 0. 

D i s t r i b u t i o n  o f  A p p l i e d  P r e s s u r e  

The applied loading in this problem is the internal pressure, and, 
because qJ = 0 for ~: < -  R, this must be specified in the range 
- R < ~: < ~. The experimental data suggest that the angular variation in 
Pressure acting on the pipe wall is small, for any fixed value of ~:. 
Consequently, it is assumed that the pressure distribution acting on the pipe 
wall is a function of axial coordinate, say p(sC), and is independent of the 
angular coordinate 0. The data also indicate that the pressure is reasona- 
bly uniform a diameter or so ahead of the crack, and hence in the cohesive 
zone interval - R  < ~ < 0, and the magnitude there is equal to the 
velocity dependent pressure at the crack tip employed in the analysis 
elsewhere [3] and [5]. Denoting this magnitude by po(V), it can be shown 
that 

po(V) I 2 (3' - 1)V.] "/2':'1 - 

- - -  + ( 9 )  
PL 3" + 1 (3' + 1)cL 

where PL and cL are line pressure and sonic speed of the gas at ~: ~ - ~, 
and 3/is the ratio of specific heat at constant pressure to specific heat at 
constant volume for the gas. For air 3' --- 7/5. The relation (Eq 9) is 
determined by analyzing a certain transient, one-dimensional flow in a 
semi-infinite pipe. Initially, the pressure and density of the gas within the 
pipe are spatially uniform and constant in time. At a certain instant the gas 
is allowed to escape through the end of the pipe, and, simultaneously, the 
pipe begins to " shor t en"  at a rate identified with the speed of crack 
propagation in the fracture model. If the boundary condition imposed at 
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the open end of the pipe is that the local particle velocity of the gas, 
relative to the moving end of the pipe, is the local sound speed, then it can 
be shown by the method of characteristics that the pressure at the exit is 
given by Eq 9. While the profile of the expansion wave propagating down 
the pipe from the open end is time dependent, the exit plane pressure itself 
does not depend on time explicitly. Behind the moving crack tip the 
pressure is assumed to decay continuously from P0 at the tip to zero at 
some distance, say h, behind the crack tip. Thus, to complete the 
definition 

l 
P0 - R < s ~ - - < 0  

p(s ~) -- p(~) 0 < ( -< h (10) 
0 h < ~ : < ~  

Equation of Motion for the Pipe Wall 

The fundamental physical principle governing the deformaion of the 
shell is taken to be the principle of virtual work. For any deformable body 
the principle can be stated in terms of any equilibrium distribution of 
internal stresses or generalized stresses which balance the applied loads 
(including, by D'Alembert's principle, inertial forces) and any unrelated 
distribution of compatible strains and associated displacements. For the 
problem at hand, the internal generalized stresses are N e, Me, Mo, M~o, 
Moe and the conjugate strains are (written in the more conventional form 
as variations in strain) gEE, ~Ke, 6K0, 8Ke0 SO that the internal virtual work is 

t~Wint = #t~Ee + MeSKe + MO6KO + ~ (Meo + Moe)6Keo ds (11) 

where S represents the entire middle surface of the shell. For application 
of the principle of virtual work to dynamical problems, the inertial 
resistance to motion is viewed as an external body force. Thus, the 
external virtual work has three contribt,Aions, namely, the virtual work 
due to the internal pressure p(~:), the cohesive stress in the plastic zone 
T(~:), and the inertial force per unit surface area which has components 
- pO2u/Ot 2, - p O 2 v / O l  2, - pO2w/Ot 2 where p is the mass density per unit 
area of the middle surface. Because the problem is quasi-stationary, the 
operation of time differentiation can be replaced by Va/Os The virtual dis- 
placements through which the external forces work are ~w(~:, 0), 8v(s c, -+Tr) 
and the vector with components 8u(~:, 0), ~v(s ~, 0), 8w(s ~, 0), respectively. 
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The external virtual work is then 

+ f_:2ma ae 
(12) 

The principle of virtual work then requires that 8Wint = 8W~xt, and this is 
fully equivalent to the Cauchy equations of stress equilibrium or of 
motion, if satisfied for every possible virtual deformation field. The 
approximation made here consists of requiring validity of the principle 
only for all virtual deformations generated by our kinematic assumptions, 
Eq 1 through 7. It remains to specify the behavior of the material of the 
shell walls. Because of the very extensive plastic deformation of the pipe 
which was observed in the tests, it is assumed as a first approximation 
that the walls of the shell behave in a rigid-perfect plastic manner. Even 
for this relatively simple type of material behavior, an analysis which 
takes into account all of the terms appearing in the virtual work equation 
would be prohibitively complicated. A preliminary analysis in which the 
shell walls were taken to be elastic showed that the effects of terms in the 
final differential equation arising from axial bending and torsion of the 
middle surface were negligible compared to those arising from circumfer- 
ential bending and axial extension, the latter being by far the dominant 
effect. With this as guidance, it is assumed that the shell offers negligible 
resistance to axial bending or torsion, that is, M e = 0 and Meo = Moe = O. 

Furthermore, inertial effects in the radial and circumferential directions 
appeared to be much greater than in the axial direction; .therefore, the 
latter is neglected. Incorporating these assumptions and the deformation 
described in Eqs 1 to 3, the principle of virtual work implies that 

o LL ao26,  (e) + 8g,(~) N(~, o) - ~ 8tp(~)M(~, O) 

- p(~)aq,(~:) + oV2(l + 02)$"(~:)8q,(~:) 1 ado 

+ 2T(r I d~: = 0 

(13) 

where N e -= N and Mo ~ M .  Finally, consistent with the idealized 
rigid-plastic description of material behavior to be described shortly and 
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with the kinematic assumptions, M((, 0) can be viewed as being indepen- 
dent of 0 and the magnitude of N is constant on any cross section, its sign 
being the same as that of de- As can be seen from Eq 4, the resultant axial 
force on any cross section of the shell will be zero if g(~:)= 
- 1/2atO'(sC)Tr2/4, and this choice is made. The integration with respect to 0 
can then be carried out in Eq 13. An integration by parts in the remaining 
integral yields 

f ~  [ 1  _ __1 M(~)_ ap(~) + T(~) a27r2N"(~) a 

(14) 

where it has been assumed that N '  and tO' vanish as } ~: I ~ ~, and that tO" 
and N" are piecewise continuous. The principle of virtual work applies for 
any arbitrary variation 8tO. The coefficient of 8tO in Eq 14 must vanish 
identically, which yields the field equation governing the deformation, 
that is 

1 
1 a27r2N"(~) _ __ M(~) = ap(~) - T(~) - pV2a 1 + to"(~) (15) 

a 

Rigid-Perfect Plastic Model 

The yield surface for the shell, phrased in terms of the retained shell 
generalized stresses N and M of Eq 15, was formulated assuming a Tresca 
condition. Because the axial normal traction N and circumferential 
bending moment M act on orthogonal planes of an element of the shell, it 
is perhaps obvious that the yield surface for these generalized stresses is 
precisely the same as that obtained when the generalized stresses used are 
the circumferential normal traction and the axial bending moment, 
respectively, since these act on corresponding faces. The derivation of 
this yield surface is given in Ref 11, and one quadrant of the yield surface 
obtained is shown in Fig. 2. 

The solid curve is the exact yield surface. The problem is further 
simplified by employing the approximate rectangular yield surface shown 
by dashed lines, and crossing the axial force axis at the 0.75 point. The 
axes are normalized with respect to No and M0, the yield resultants in pure 
extension and pure bending, respectively, which are given by 

No = o'oh, M0 = troh2/4 (16) 

where o-0 is the uniaxial tensile yield stress and h is the shell thickness. 
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FIG. 2-----One quadrant of exact and approximate yield surfaces for the generalized 
stresses N and M. 

Before proceeding with the solution, it is worthwhile to note that the 
deformation field ~b is intimately coupled with the stress fields N and M for 
this rigid-plastic model. From Eq 4 and the choice made for g(~:), the axial 
stretching rate ~ is proportional to tk"'(~:), and from Eq 6 the circumfer- 
ential bending curvature rate k0 is proportional to --~b' (~:). But these 
work-conjugate generalized strain rates, which are the components of the 
normal to the yield surface, apply only when the stress state is at yield. 
From Eq 8, the crack face opening 8(~:) is proportional to q~. Thus, for 
example, the bending moment M must be equal to -M0 at all points 
where the crack face opening profile has nonzero slope, including the 
Dugdale plastic zone. Because the crack faces are postulated to be sepa- 
rating in the deforming region, the moment stress may be taken as 
M(~:) = -M0 in Eq 15. 

In order to simplify Eq 15 further, the inertial terms, which were 
assumed to be small, were dropped, in essence by letting the mass density 
tend to zero. A perturbation technique, to be discussed later, dem- 
onstrates the validity of the assumption. 

This effectively removes the deformation field from the governing field 
equation to give 

aZzr z 

8 
- - N " ( ~ )  = a p ( ~ )  - T (~ )  - M o / a  (17) 

However, an associated deformation field consistent with the plastic 
potential relations in terms of the (to be determined) stress field is also 
obtained. 
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Since deformation begins at the tip of  the Dugdale zone,  and 
O(-R) = 0, we must have a discontinuity in the crack face curvature 
across s c = - R  of  some unknown magnitude qJ"0. We assume the curva- 
ture change to be positive; hence,  N ( - R )  = 0.75N0. Because there are no 
concentrated forces at the tip of  the Dugdale zone,  N' ( -R)  = O. 

Although no particular magnitude or distribution of the cohesive force 
in the Dugdale zone has been assumed, it will be at least of size o-0h, since 
the material is yielding. In any event,  its magnitude will exceed that of 
apo, for otherwise the entire uncracked portion of the shell would be at 
yield. For  the analysis performed here, the usual Dugdale assumption is 
made, and T(~:) is taken to be a constant, To, in the plastic zone. Thus the 
sign of N"(s c) is negative in - R  < ~ < 0, and so N(~:) decreases  from its 
yield value at ~: = - R .  Hence,  the curvature of the crack face opening 
remains constant in this region, so that the crack tip opening displacement 
8t is given by 

6t = ~RZO"o (18) 

At the crack tip, the right hand side of Eq 17 increases discontinuously 
by an amount  To to the positive value a p o -  Mo/a. The axial force 
resultant N continues to decrease in the region 0 < ( < hi < h with 
positive second derivative. The distance h~ is specified by the require- 
ments that the axial force reach reversed yielding with zero slope, so as 
not to violate the yield condition, that is 

N(hl) = - 0.75N0, N ' ( h 0  = 0 (19) 

At this point, the curvature of the crack face opening, which has remained 
at the constant value t0"0, changes sign to the negative value t0"i, which is 
admissible since the axial force is at yield in compression.  The right hand 
side of Eq 17 is still positive at ( = hi, so that N starts to increase away 
from yield. Hence,  the crack face curvature remains at the constant  value 
I~ttl. 

At some point a small distance to the left of ~ = h, the right hand side of 
Eq 17 changes sign continuously to a negative value, and, for 
h -  ~ < h2, is given by the constant value -Mo/a .  That  this is a 
small distance to the left of the poiat  ~: = h is seen by noting that apo is 
typically of  order  To, while Mo/a is of  order  To(h/a). The distance hz is 
given, in a similar manner to hi, by the conditions that the axial force 
reach tensile yield with zero slope 

N(X2) = 0.75N0, N'(X2) = 0 (20) 
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Here, the curvature of the crack face which has been the constant tk"l in 
hi < ~: < h2 increases discontinuously to zero. It is also assumed that the 
slope of the crack profile is zero at ( --- h2, and that no further deformation 
takes place for ~: > h2. Thus, the entire crack profile consists of two 
parabolas, which have matching values and slopes at hx, and which have 
zero slopes at - R  and hz, respectively. The shape of the crack face is 
shown schematically in Fig. 3. Because this is essentially a quasi-static 
plastic limit analysis, there is no characteristic displacement amplitude 
associated with the field qJ. Hence, this amplitude is determined by the 
critical crack tip opening St, which is meant to characterize the fracture 
toughness of the material. 

Another displacement parameter, to be discussed later, is the terminal 
crack face separation 6term for ~: > Xz, also shown in Fig. 3, which is given 
by 

8,err. = ~,(1 + XX/R)(1 + X2/R) (21) 

A simple graphical technique can be used to determine if an arbitrary 
pressure distribution p(~:), characterized by a magnitude P0, a decay length 
h and a particular shape, is sufficient to drive the crack. If pressure shape 
and decay length are given, then the pressure amplitude must be at least a 
specified value. Alternatively, if the pressure magnitude and shape are 
given, a necessary decay length is determined. This is the approach used 
here. 

Because the decay length ~ must be determined in terms of the material, 
structural, and other loading parameters, the axial coordinate ~: is 
nondimensionalized by dividing by h. Hence defining 

r = R / h ,  I1 = h i ~h ,  12 = h 2 / h  (22) 

the right-hand side of Eq 17 can be drawn as a function of the dimension- 

8Jerm 
FIG. 3----Schematic representation of the crack face opening profile. 
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less coordinate 7/ = ~/h, as shown in Fig. 4. Since there is no change in 
the first derivative of N between - r  and 12, there must be no net area 
under the curve of Fig. 4 between - r  and 12. Further,  there is no change in 
the value of N evaluated a t -  rand 12. Hence,  because there is no net area 
under the curve, an elementary application of the moment  area theorem 
furnishes a second requirement on the load distribution, namely, the total 
moment of the curve between - r  and 12 about any point be zero. 

Let  q = To + Mo/a - apo and m = Mo/a. Further, let the total area of 
the pressure part of  the loading in 0 <- ~1 -< 1 be a(apo), with 0 < a <- 1 
(for nonincreasing p(~:)), and the moment  of this portion of the pressure 
about the point r/ = 0 be given by/3(aapo), with 0 < / 3  -< 1/2. Thus, the 
two conditions become 

rq + ml2 = aapo (23) 

1 1 
qr 2 -~ ml22 = flaapo (24) 

which readily furnish the dimensionless plastic zone size and the point of 
terminal deformation behind the crack in terms of the load magnitude, p 0, 
a s  

aapo l ( ~  ctapoflm [ m ] ) , , 2 }  r - (q~- ~ r n )  1 - + 2 1 (25) q 

~apo tim 1/2 
/ z -  ( q ~ m )  { ~ - ( q + 2  aap0 [ 1 - q ]  ) - 1 t (26, 

The nondimensional distance from the crack tip to the change of crack 
face curvature, 11, is obtained implicitly from the fact that there is no 

"rr 2az N"('r/), 

AREA: = a(aPo) _ , ~ MOMENT ABOUT 'r/=0: =~(aapol  

0 P-'~O P' ~ ( / 'MO/~  = rn 

. t /  'lll--',~ [ J 
, ' + o + V i O O o  = , . . 

[ - -/2 

FIG. 4----Graphical solution of field equation for prescribed pressure amplitude. 
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change in the first derivative of N, evaluated a t -  r and I1, that is 

rq=foq [aP(~)-m]d~q (27) 

Finally, the absolute size of the loading decay distance h can be 
obtained by noting that the absolute value of the change in Nfrom - r to 11 
is 1.5N0. Applying the moment-area theorem again 

l fO I1 a27T 2 ~qr 2 + rl laP('0) - m "] dr/ - 8h ~ (1.5No) (28) 

It may be observed that a pressure level and the loading distances 
which are then obtained from Eqs 23 to 28 are sufficient to continue crack 
propagation regardless of material toughness as measured by St, a 
consequence simply of the rigid-perfect plastic constitutive model. This is 
represented by the vertical line of Fig. 5. In reality, the true elastic-plastic 
value of at, as would be calculated to correspond to fracturing under a 
given pressure magnitude at fixed shape and loading distance, is an 
increasing function of that magnitude and would have the form shown by 
the curved line of Fig. 5. This curve consists of the typical quadratic 
increase with load magnitude associated with small-scale yielding, fol- 

~t 

T R U E ~ ~  

Po 

PRESSURE AMPLITUDE,p 

RIGID, - -  PERFECTLY - PLASTIC MODEL 

FIG. 5---Crack opening displacement as function of pressure amplitude for fixed shape 
and loading distance. 
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lowed by a steep rise in the vicinity of the particular "limit pressure" 
chosen, perhaps existing even for pressure magnitudes in excess of this 
limit pressure, due to strain hardening. Thus the significance of the limit 
pressure andassociated load decay lengths of the rigid-perfect plastic 
idealization becomes clear: it is a measure of the driving force necessary 
to sustain crack propagation for high toughness (high St) materials and will 
vary only slightly from the true magnitude of driving force required, 
regardless of toughness, provided only that the toughness is sufficiently 
high. 

Linear Pressure Decay 

The analysis of the preceding sections was applied to the case of a linear 
pressure decay, from p 0 to O, over the decay length h. That is, 

I 
Po , - R - - < ~ - - < O  

p(~:) = p0(1 - ~:/h) , 0 < - ~ : -  h (29) 
0 , X<~: 

Thus, for this particular distribution, a = 1/2 and/3 = 1/3. The constant 
To was chosen to be equal to o-0h. The shell parameter a/h was set equal to 
56. 

The various loading distances were computed and are shown in Fig. 6, 
after making each dimensionless by dividing by the mean shell radius a, as 
a function of exit pressure magnitude P0. For typical line pressurizations 
and observed ductile crack velocities, most running fractures appear to 
have exit pressures in the range 0.3 < (apdTo) < 0.6, if To is based on the 
static yield strength. Thus, as we read from the figure, the required decay 
length h for propagation of the fracture under pressures in this range is 
predicted to lie between approximately 3.5 and 6.5 radii, the higher figure 
corresponding to the lower pressure and vice versa. The observed 
pressure decays [1] do not, of course, strictly comply with a linear 
variation; however, decay lengths in the range of 2 to 4 radii appear 
typical. The somewhat greater h predicted may be a result of the many 
approximations that have been made but may also reflect the fact 
illustrated in Fig. 5 that our calculations apply to the high toughness limit. 
The Dugdale plastic zone size R is predicted to lie between one and two 
radii. 

The first transition point M, at which the curvature of the outward 
flaring of the wall reverses, is seen to lie at approximately 70 percent of ~,, 
whereas the second transition point hz beyond which motion has come to 
a stop occurs much further downstream at a distance of approximately 32 
radii over the entire pressure range of interest. The terminal opening can 
be computed from Eq 21 for a given crack tip opening displacement by 
using the results of Fig. 6 as shown in Fig. 7 in the form t~term/a , where again 
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FIG. 6---Loading distances as a function of pressure magnitude for linear pressure decay. 

we have chosen a/h = 56 and where the crack tip opening displacement 
for fracture has been set equal to the wall thickness. Hence, terminal 
openings between a half and two radii are predicted, with the greatest 
opening at the lower driving pressure but longer decay length. These 
estimates seem to be of the correct general size, although terminal 
openings in this range can be accurately predicted only within an analysis 
which adopts the strain-displacement gradient relations appropriate to 
large gradients. 
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FIG. 7--Terminal crack separation 6ter,~ as a function of  pressure magnitude for fixed 
toughness and linear pressure decay. 
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Effects of  Wall Inertia 

The last two sections have neglected inertia of the pipe wall by setting 
p = 0 in Eq 15. Actual effects of wall inertia are assessed here in two 
ways. Somewhat surprisingly, both lead to the conclusion that wall inertia 
is a small effect over the crack speed range of interest, although there may 
be significant inertial effects due to backfill. A first estimate may be made 
by adopting the deformation function qJ as computed quasi-statically in the 
last section, and computing the pressure magnitude pi that would be the 
equivalent of the inertia term in Eq 15, namely 

p~ = - O V2 1 + tk"(~:) (30) 

For steel the density p per unit wall surface area is 15.5 lb s~/fO times h. 
Also, from Fig. 3, Eq 8, and the discussion following Eq 19 

1 { 8t/TrR 2 , - R  < ~ <  hi 

O"(~:) = XZ-8"(~ :) = I (31) 
-(St/TrR2)(R + hi)/(h2 - h0, hi < ~: < h2 

Thus, for the two ranges, the pressure in psi is 

{ R 
p i -  144~. 1 + ~ -  ( V ~ - )  (~--~--t)(R)2 1 , ~ ~ (32) 

a a 

Taking a/h  = 56, 8t = h, the ratios of R, hi, and h~ to a as in Fig. 6 for 
apo/To = 0.45, and V = 600 ft/s leads to equivalent pressures 

Pc = - 6.6 psi, 1.0 psi (33) 

These are so small by comparison to pressure levels of order 1000 psi at 
the crack tip that wall inertia seems to be a minor factor. 

Wall inertia was further examined through solving Eq 15 for the 
rigid-plastic pipeline by a linear perturbation in mass density from the 
quasi-static solution with p = 0. Thus p0 and the shape of the pressure 
decay, as well as 8,  are assumed to be given, p is perturbed from 0 to Ap 
(where Ap is the actual areal mass density of the shell), and the required 
change Ah in the pressure decay length, as well as the associated 
quantities AR, Ahl, Ah2, AO"o, and AO"I are calculated through equations 
that are linearized in the A quantities. These equations are solved in a 
similar manner to the graphical solution of a previous section. The 
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resulting formulae are cumbersome and are omitted here for brevity. 
However, we find that except at very high crack speeds, the changes A in 
all computed quantities due to inertia are typically two orders of mag- 
nitude less than their initial values. The most striking result of the 
perturbation scheme, however, is that to first order in Ap, the change A~ 
in the required pressure decay distance is precisely zero. 

While we have not attempted detailed calculations, it would seem by 
comparison of the masses involved that the inertia of any soil backfill 
would be of far greater importance than the inertia of the pipe wall. Since 
soil has typically one fourth the density of steel, a 1 1/2 in. thickness of soil 
around the pipeline is the inertial equivalent of a 3/8-in. steel wall. Many 
such thicknesses could be fit into a representative backcover depth, and 
the resulting inertia together with the small shear strength of the soil might 
make for effective negative pressure in Eq 17 of a magnitude sufficient to 
substantially affect the fracture propagation. 

Concluding Discussion 

The present analysis is incomplete in that we have considered only the 
structural portion of the problem. Specifically, for a given exit plane 
pressure Po, shape of pressure decay, and crack tip opening 8t for 
fracturing, we compute the required pressure decay length h (Fig. 6, for 
example) and the distribution 8(0 of crack opening (Figs. 3, 6, and 7). In 
fact, apart from all the approximations involved, we compute these only 
in the high toughness regime, as illustrated in Fig. 5. 

However, for a given p0, 8(~:), and velocity of propagation, the actual 
shape and length of the pressure decay is determined by the fluid 
dynamics of the gas escape. The solution of the latter problem is 
necessary to fully close the analysis and establish conditions involving 
material properties, geometric dimensions, and initial pressure levels for 
which the postulated long-running fracture can occur. This will require 
further work. However, the analysis done in conjunction with Fig. 4 
shows how the opening gap 8(~=) can be found through moderately 
straightforward calculations for an arbitrary pressure decay shape, and, if 
the fluid dynamics problem can be solved approximately in equally simple 
and general terms, it may be possible to couple the structural and fluid 
solutions effectively for a full analysis. We examined a simple formulation 
of the fluids problem as quasi-one dimensional flow along the pipeline 
axis, with mass loss by sonic exit through the crack opening. The local 
outflow rate at a point along the pipeline was taken as that appropriate to a 
slit opening of uniform gap size, equal to 8(~:) at that point, in a large tank 
at an average pressure equal to the local pressure in the one-dimensional 
flow model at that point. However, opening gaps 8 of the general size 
observed in the pressure decay lengths that it predicted were much in 
excess of the two to four radii observed. 
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The tacit assumption in the foregoing remarks is that arrest  will occur 
whenever conditions for a long running fracture cannot  be met. This is 
sufficient but may not be necessary for arrest. In particular, the possibility 
arises [1 ] that crack arrest  may occur  as a bifurcation in which strains in 
the axial direction, induced by the flaring out  of the shell walls, cause the 
easiest directions for fracture to lie at angles to the crack line rather  than 
straight ahead. Thus even if conditions for a long-running straight 
fracture, of the kind modelled here,  can be met in principle, it is possible 
that the crack will branch to a helical path and rapidly arrest. 

To study this possibility, we may estimate the nominal axial strain e~ 
near the crack tip by setting 0 = • in Eq 4, taking g '  as indicated after 
Eq 13, and setting tk" = ~t/TrR 2 from, Eq 32. Hence  

3rr a6t 
E r  8 R 2 (34) 

While this ignores local strain amplification by the crack tip itself, it does 
indicate that the tendency for crack branching, as measured by e~, will 
increase inversely with R for a given St. F rom Fig. 6 the tendency for 
branching will thus be greatest during steady-state propagation under 
conditions of  low exit plane pressures but correspondingly long decay 
lengths. For  a given initial line pressure, these lower exit plane pressures,  
which favor branching, result at the lower propagation velocities. Further,  
as we move through what seems to be the representat ive exit plane 
pressure range, 0.3 < apo/To < 0.6, the amount  of nominal axial strain at 
the crack tip changes by a factor  of four. The nominal strain magnitude 
itself, for 8t = h and a/h = 56, varies from approximately 2 to 0.5 percent  
at the limits of  this range. Axial strains of  approximately 1 percent  were 
observed just  ahead of the crack in the full-scale tests [! ]. 

Finally, we have taken no account  of rate sensitive material behavior,  it 
being understood instead that parameters such as To, No, and M0 are to be 
chosen in accord with the strain rates involved. For  example,  the time 
taken for the end zone to traverse a material point within it is R/V. 
Further,  if the deformation consists of localized necking throughout  the 
entire zone, the plastic strains are of  the order  g/h, and hence an 
approximate strain rate in accord with which To should be chosen,  is 
8~V/hR. For  S t =  h = 3/8 in., a = 20 in., and R/a as in Fig. 6 for 
apo/To = 0.45, this strain rate is approximately 2 • 10Z/s when V = 600 
ft/s, although the rate would be appreciably greater if localized necking 
does not set in at a material point until it is very  near the crack tip. 
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Mixed-Mode Fracture of Shear Panels 
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ABSTRACT: The mixed-mode fracture behavior of shear panels is analyzed in this 
study to provide suitable fracture criteria for the prediction of the residual strength 
of crack panels under a combined tension and shear loading condition. Finite 
element models which incorporate a special crack tip element are utilized in the 
analysis to compute the values of K~ and K.  and the detailed stress distribution in 
the crack tip regions. For comparison purposes, analyses are made using the initial 
crack configurations of the shear panels and a number of selected configurations 
after a small increment of slow stable crack growth. Failure analysis is made using 
these results together with test results obtained in a previous experimental study by 
Liu. It is found that a simple failure criterion of K= / (Ki)cr + Kn / (K.)cr = 1 is 
applicable to materials that are not extremely ductile. However, the maximum 
tensile stress theory should be used to complement this criterion for the purpose of 
predicting the crack growth direction. The mixed-mode criteria of the strain energy 
density function and the "angular"  stress intensity factor are also examined. In 
addition, it is shown that a predominantly Mode I condition is produced by oblique 
crack growth even after a relatively small crack growth increment. Hence, a pure 
Mode I fracture criterion can be used to predict the slow stable crack growth and 
subsequent failure of damage structures subjected to combined loads if a practical 
method can be found to estimate K~ during the crack growth period. It should be 
noted that the present study is restricted to a monotonically increasing loading 
condition. 

KEY WORDS: crack propagation, fracture properties, stresses, strains, damage, 
models, residual stress, shear panels 

For a damaged two-dimensional structural member under combined 
inplane loads, both the Mode I and Mode II singularities exist. Hence the 
failure behavior of such a damaged structure is, consequently, of a mixed 

Research specialist, Lockheed-California Company, Burbank, Calif. 91503. 
z Formerly with Lockheed-California Company, Burbank, Calif. 91503. Presently, member 

of technical staff, Structures Analysis, Space Shuttle Program, Space Division, Rock- 
well International Corp., Downey, Calif. 90241. 

263 

�9 
Copyright 1976 by ASTM lntcrnational www.astm.org 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



264 MECHANICS OF CRACK GROWTH 

/ 
22.5i~ 

7 

22..5 in. 

FIG. 1--Cracked shear panel configuration. 

mode nature. The problem of mixed-mode 3 fracture was first discussed 
in detail in 1963 by Erdogan and Sih [1]. 4 However,  it is only recently 
that this problem came under close scrutiny [2-5]. 

To simulate mixed-mode fracture behavior, center-cracked tension 
specimens with a slanted crack were used [2-4]. This type of specimen is 
inherently deficient in providing a complete range of mixed-mode fracture 
conditions. Furthermore, the width of these center-cracked specimens 
were inadequate in some instances, and gross plastic yielding of the net 
section occurred at the fracture load. Fracture specimens used in Ref 5, 
however, were of the shear panel type (see Fig. 1). With this type of 
specimen the complete range of mixed-mode conditions can be obtained 
by varying the crack orientation. The dimensions of these specimens were 
also large enough to eliminate the possibility of gross plastic yielding. 

In the past, various mixed-mode fracture criteria have been proposed 
either based on theoretical considerations or test results. Erdogan and Sih 
[1] proposed the maximum tensile stress theory and the critical strain 
energy density function criterion based on the Griffith-Irwin fracture 
theory [6]. The functional form of the strain energy density function, S, 
was derived recently [7]. Another proposed mixed-mode fracture criter- 
ion utilizes the concept of the "angular" stress intensity factor [8] which 
takes into account the directionality of the impending crack growth. The 
criterion of the additive strain energy release rate is then used to define 
the critical state. Lastly, it was shown [4-5] that the normalized quantities 
K~ / (K0cr and KH / (KH)cr obtained empirically can be approximated by a 

3 The term "mixed-mode fracture" is used herein to refer to the mixed Mode I and Mode 
II fracture. 

4 The italic numbers  in brackets refer to the list of  references appended to this paper. 
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straight line on the normalized K~ - K~ plane. This experimental observa- 
tion provided yet another possible mixed-mode fracture criterion. In view 
of the numerous failure criteria proposed, a review of these criteria clearly 
is needed. 

To conduct such a review on mixed-mode fracture criteria, an accurate 
stress analysis method is needed. Of the various analysis methods used in 
fracture analysis, the finite element method has proved to be applicable. 
However, the extremely detailed finite element modelling required in the 
crack tip region results in high computer and analysis costs. Furthermore, 
in spite of the extremely detailed finite element modelling, the accuracy of 
the resultant stress intensity factor usually is limited. 

In 1970 a special singular finite element [9] was introduced which was 
designed specially for the analysis of crack problems. Since then several 
researchers [10-13] have presented various special finite elements suitable 
for fracture analysis applications. All the special elements developed were 
found to be more accurate and efficient as compared to the conventional 
finite elements. 

The three requirements of adequate test data, a suitable stress analysis 
technique, and applicable fracture criteria are indispensable for a 
thorough examination of the phenomenon of mixed-mode fracture. These 
requirements are all available independently as discussed in the preceding 
paragraphs. It is the intention of this study to utilize the approach of the 
special cracked finite element to analyze test data generated from the 
shear panel tests. The emphasis is placed on a critical review of the three 
mixed-mode fracture criteria: (1) the empirical mixed-mode criterion, 
KI / (KI)cr + KIj / (Kll)cr = 1, (2) the strain energy density function criterion, 
and (3) the angular stress intensity factor concept. The maximum tensile 
stress theory is considered only in its applicability to the prediction of the 
crack growth direction. The additive strain energy release rate criterion 
is considered only in conjunction with the angular stress intensity factor 
concept. 

Shear Panel Finite Element Model  

The shear panel finite element models are constructed using a combina- 
tion of the singular cracked finite element and other conventional finite 
elements. The singular cracked finite element used in this study was 
developed based on the assumed stress function approach and con- 
sequently has the correct stress singularity of the crack problem. The 
initial development work of this singular element was done by Dr. 
Matthew Creager ~ in 1970. With subsequent improvements, the accuracy 

5 Dr. Creager is presently with the Del-West Associates, Inc., Woodland Hills, California. 
The development work on the cracked finite element was conducted under a company 
sponsored independent research program at the Lockheed-California Company, Burbank, 
California. 
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FIG. 2 The singular cracked finite element. 

of this particular cracked finite element has been demonstrated by 
correlation with existing solutions. Both the theoretical background and 
the numerical procedure involved are discussed in detail, with example 
problems, in Chapter 11 of Ref 14. The cracked finite element developed 
is square in shape and has a total of eleven nodal points as shown in Fig. 2. 
There are a total of eleven independent stress variables in the two 
complex stress functions of the element. The model solution is obtained 
using the NASA structural analysis (NASTRAN) system. The numerous 
built-in features of the NASTRAN system provide flexibility in the model 
setup and the solution precedure. The average central processing unit 
(CPU) time for a model with 450 nodes is approximately 200 s. 

The finite element model for a typical shear panel in its initial 
configuration is shown in Fig. 3a. The dimensions of the shear panels are 
the same as those tested in the experimental study [5]. The crack 
orientations of the shear panel models are/3 = 45, 60, 75, and 90 deg. Two 
cracked finite elements are used in each model, one for each end of the 
crack. Conventional triangular elements and quadrilateral elements, each 
consisting of four constant strain triangular elements, are used for the rest 
of the model. Bar elements are also used along the panel boundaries to 
simulate the actual pin-jointed loading frame. 

In addition to the four shear panel models analyzed, models of two 
shear panels after a small increment of crack growth are also studied. 
These two shear panels have the original crack orientations of/3 = 60 and 
75 deg. The additional small crack increment has a length of 0.25 in. and is 
oriented in the new crack growth direction. At each crack tip, one singular 
cracked finite element is used to cover the entire crack increment, as 
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294 NODES 
229 QUADRILATERAL AND TRIANGULAR FINITE ELEMENTS 
2 CRACKED FINITE ELEMENTS (CFE) 
40 BAR FINITE ELEMENTS 

] ] I II  
/ ] A \  \ \  A,\ 

/ ~ ~ - - -  - 

(a) Initial configuration, fl = 60 deg. 

SHADED A R E A  IN F IGURE 3-(a) 

(b) After 0.25 in. crack growth, B = 60 deg. 

FIG. 3---Detailed finite element models. 
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shown in Fig. 3b. A detailed discussion on the crack growth direction is 
presented later in the results and discussion section. It should be noted 
that the crack growth direction for the fl = 60 deg panel is 0 = -60  deg. 
This angle is an average value based on various theoretical predictions 
and the test result. For the/3 = 75 deg case, however, two crack growth 
directions, 0 = -40  and -30  deg, are chosen. The first angle value is 
based on the test result. 

Besides the element stress distributions for the conventional elements 
and the nodal displacements, the finite element model analysis also 
provides the values of the independent stress variables for the singular 
cracked finite elements. From these values, one can obtain the values of 
KI,  Ku, and the local stress distribution within the singular elements. The 
K~ and Kn values, in turn, can be used to calculate the values of strain 
energy release rate, ~, and the strain energy density function, S. 

M i x e d - M o d e  F r a c t u r e  C r i t e r i a  

In summarizing the various mixed-mode fracture criteria, one must 
begin with the additive strain energy release rate which was developed 
with the assumption that the crack will grow in its initial direction [1]. 
However, it was also pointed out in Ref 1 that the strain energy release 
rate for crack extension under general two-dimensional loading conditions 
may have a homogeneous quadratic form in terms of the Mode I and the 
Mode II stress intensity factors and can be written as 

AU 
- -  or _6' = a11Kl 2 + 2 alzKIKII + a22Kii 2 (1) 

8 

The crack growth direction is the one that gives a maximum strain 
energy release rate calculated using Eq 1. This hypothesis, however, was 
not developed completely until recently [7] when the strain energy density 
function, S, was introduced as the critical parameter 

S : a l l g i  2 + 2 a12KiKu + a22Kil 2 + a3zKlll 2 (2) 

The coefficients a 11, a 12, a22, and a33 are functions of the material elastic 
constants and the angle 0, where 0 is an angle measured counterclockwise 
from the crack line. One of the advantages of the strain energy density 
function over the concept of the additive strain energy release rate is its 
ability to estimate the crack growth direction. To provide this capability 
for the additive strain energy release rate criterion, the concept of the 
angular stress intensity factor was introduced recently [8] based on a 
limiting process as the propagating branched crack approaches zero 
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length. The additive strain energy release rate theory can then be 
redefined as 

~7 (0) = [/(~2(0) + /~,2(0)] / E  for plane stress (3) 

where/~l (0) and/~li (0) are the newly defined angular stress intensity 
factor for Mode I and Mode II, respectively. Crack growth will occur in 
the direction of maximum G (0) when this maximum reaches a critical 
value. 

Besides the three mixed-mode fracture criteria just discussed, it was 
observed experimentally [4-5] that the critical state for mixed-mode 
fracture of certain materials can be approximated by a straight line on the 
K~/(KOcr - Kn/(Kn)cr plane. However, this fracture criterion cannot pre- 
dict the direction of crack growth; therefore, an additional criterion is 
needed to provide this information. 

The maximum tensile stress theory [1] originally stated that crack 
growth will occur when the local maximum tensile stress in the crack tip 
region reaches a critical value and the crack growth direction is deter- 
mined by the orientation of the maximum tensile stress. However, it is 
difficult to justify the validity of a critical maximum tensile stress value 
within the framework of elasticity theory. Nonetheless, the loci of the 
maximum tangential stress in a region adjacent to the crack tip can be 
used to estimate the direction of impending crack growth. 

Results and Discussion 

The values of the Mode I and Mode II stress intensity factors and the 
distributions of the tangential stress are the primary analysis results used 
in this study. These results are presented here together with relevant 
discussions. The presentation is divided roughly into two groups, with 
one group consisting of results obtained using the initial crack configura- 
tions and the other group consisting of results obtained using configura- 
tions after a small increment of crack growth. Furthermore, the discus- 
sions of the critical state and the crack growth direction for the various 
criteria are presented as two separate subjects. 

The stress distributions of two finite element models (t3 = 45 and 90, 
deg), representing the initial crack configurations, are first examined to 
determine whether a pure shear condition exists in locations adjacent to 
the simulated loading frame. As shown in Fig. 4, the stress fields along the 
edges of the finite element models for the two cases of fl = 45 and 95 deg. 
are fairly close to a pure shear condition. This is particularly evident in the 
fl = 90 deg case where the crack tips are furthest away from the model 
boundary among all cases studied. 

The values of the Mode I and Mode II stress intensity factors are shown 
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F I G .  4---Shear stress distributions at two crack orientations. 

12 

in Fig. 5 and tabulated in Table 1. It is interesting to note that the values 
obtained based on the initial crack configurations are quite close to the 
estimates [5]. The correlation of  KH values is particularly good, while 
differences in KI are more appreciable. Note that the deviation in K~ 
increases when the condition of  pure Mode II is approached.  The 
existence of KI in the pure shear case of/3 = 45 deg implies that the ex- 
pected pure Mode II condition was not  attained. However ,  the ratio of 
K~/KI~ is small, and it is evident that a predominantly Mode II condition 
was reached. 

To avoid undue complexities, it is prudent and practical to seek a 
mixed-mode fracture criterion which is defined in terms of the initial crack 
configuration. In Fig. 5 it is seen that the values of the critical K~ and K~ 
derived using the initial crack configurations and fracture loads do not 
form a straight line on a K~-K~ plot as predicted by the empirical 
criterion. However ,  after the slow stable crack growth for the /3 = 90 
deg case is taken into consideration, an excellent correlation to a straight 
line can be established. From Table 1, it can be seen that the amount  of 
slow stable crack growth in the /3  = 90 deg case is substantially larger 
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than in any of the other three cases and, consequently ,  cannot  be neglect- 
ed. With this justification, it can be concluded that straight line can be 
used to represent the critical state of mixed-mode fracture. However,  
since the slow stable crack growth is neglected except in the/3  = 90 deg 
case, this criterion can only be applied to materials that do not exhibit a 
substantial amount of slow stable crack growth under combined loads. 

A linear least square fit, as shown in Fig. 5, provides the two critical 
values of (K0cr = 85.6 ksi X / ~ . ,  and (Kn)cr = 98 ksi X / ~ . .  The normalized 
K~ and Ku values obtained based on these critical values are presented in 
Fig. 6. The mixed-mode fracture criterion of K~/(K~)~r + K n / ( K H ) ~  = 1 
is then established readily. In view of the approximate nature of this 
criterion, estimates of the stress intensity factors obtained by Liu in Ref5 
can be utilized to further simplify the prediction procedure. However ,  it 
should be noted that an assumption of (KH)~ = (K~)~, was used. 

To evaluate the strain energy density function criterion, values of S 
were calculated using the Kt and KII values in Table 1. The results 
are shown in Fig. 7. It can be seen that an excellent agreement is ob- 
tained between the two cases o f /3  = 45 and 90 deg is the s low stable 
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crack growth for the latter case is taken into account.  The same 
excellent agreement is obtained between the two cases of/3 = 60 and 75 
deg. However ,  no correlation can be obtained between these two groups. 
It is unfortunate that the number  of present ly available shear panel 
test results is not  sufficient to render  a definite conclusion or 
explanation to this discrepancy. 

To evaluate the concept  of the angular stress intensity factor,  the 
critical energy release rates are obtained using Eqs 95 through 97 in Ref  
8. 

1 
a (0) = ~-  [K~2(0) + Kn2(O)] (4) 

w h e r e / ~  and/~n are the angular stress intensity factors,  and they can in 
turn be expressed in terms of the conventional  stress intensity factors.  

/~(0) = 3 + cos20 7+ 0/Tr / ( icos0 + ~-/~tlsin0 (5) 

( )(: ) 4 - O/Tr) ~ K n c o s 0 _  1 
/(it(0) = 3 + cos2'0 + 0/Tr ~-Kxsin0 (6) 

The estimated K~ and KII values are used as well as those obtained from 
finite element analysis. Both the initial crack configurations and the 
configurations after  crack growth are used in the calculation. The 
computed values of  the maximum energy release rate, however ,  do not 
support the hypothesis  of a constant critical value. It is clear then that the 
critical state cannot  be determined based on the initial crack configuration 
and the angular stress intensity factor  concept.  

Although the maximum tensile stress theory was discounted in the 
preceding section as a possible mixed-mode fracture criterion, an interest- 
ing observation can be made if the distributions of the tangential stress are 
examined. The distributions are shown in Fig. 8 in the normalized 
quantity of o-0/~r~, where o-s is the applied shear stress. It can be seen that 
the influence of  the higher order  stress terms have a negligible effect on 
the location and the values of (o-0/o-~)max in the two cases of/3 = 45 and 
90 deg. However ,  their effects are more prominent  for  the two other  cases 
of/3 = 60 and 75 deg. Fur thermore ,  it can be shown that, if the slow stable 
crack growth is taken into account,  a fairly good correlation of  the 
(OrO/O's)ma x values can be obtained among all cases studied (values of  tr0 
are computed at a constant radial distance of  r = 0.02 in. from the crack 
tip.) 
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Based on the initial configurations of the shear panels, the predicted 
crack growth directions using various criteria are summarized in Table 2. 
The direction of crack growth based on the maximum tensile stress theory 
and the strain energy density function theory are determined from the 
distributions of the tangential stress shown in Fig. 8 and the distributions 
of the strain energy density function shown in Fig. 7, respectively. The 
predicted directions based on the angular stress intensity factor concept is 
obtained from the distributions of the strain energy release rate. As shown 
in Table 2, the maximum tensile stress theory and the strain energy 
density function criterion offer a comparable accuracy in predicting the 
crack growth direction. 

The angular stress intensity factor concept, however, cannot offer a 
similar accuracy. This is particularly evident if the predicted values are 
based on values of K~ and KH obtained in this study. It should be pointed 
out that the predicted crack growth directions using the maximum tensile 
theory provide a slightly better correlation with the test results than those 
obtained using the strain energy density function theory, particularly in 
the /3 = 75 deg case. In view of this advantage on the part of the 
maximum tensile stress theory, it is suggested that this theory be used in 
the prediction of the crack growth direction. It should be of particular 
interest that the best prediction is obtained when the higher order stress 
terms are included as shown in Fig. 8. 

Discussion up to this point has been confined mostly to analysis based 
on the initial crack configurations. Finite element results were also 

TABLE 2---Crack growth direction for  shear panels with 
various initial crack orientations. 

Test Results 

fl = 45 deg fl = 60 deg fl = 75 deg fl = 90deg 

- 7 2 / - 7 5  -60 / -60  - 2 7 / - 3 2  0 

Strain energy density -80  -60  -40  0 
function using estimated 
K~ and Kn values 

Strain energy density -73.5 -57.5 -37.5 0 
function using finite 
element results 

Maximum tensile stress -70.5 -60  -43.2 0 
theory using estimated 
K~ and KII values 

Maximum tensile stress -69  -55 -32  0 
theory using finite (-69) ~ (-59) a (-39) a (0) a 
element results 

"Angular" stress intensity -75.2 -64.7 -46.5 0 
factor concept using 
estimated KI and K]I values 

Singular terms only. 
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278 MECHANICS OF CRACK GROWTH 

obtained for two cases (/3 = 60 and 75 deg) based on the configurations 
after a small increment of oblique crack growth was implemented as 
shown in Fig. 3b. The /3 = 45 deg case was not included due to its 
insignificantly small amount of crack growth prior to instability. From 
Table 2, it can be seen that the experimental crack growth direction for 
the/3 = 60 deg case was approximately -60 deg which agrees well with 
all the theoretical predictions. Hence the angle of -60 deg was chosen as 
the crack growth direction. For the/3 = 75 deg case, however, the situa- 
tion was more complex. The predicted crack growth angle based on 
various criteria, with one exception, was approximately -40 deg. The 
one exception was the predicted angle based on the maximum tensile 
stress theory using the values of K~ and KH obtained in this study with the 
higher order terms included. The predicted angle in this case was -32 
deg / -27 deg shown in Table 2. Hence two crack growth angles of -40 
and - 3 0  deg were used for the/3 = 75 deg case. 

Values of the Mode I and Mode II stress intensity factors after the small 
increment of crack growth indicate that a predominantly Mode I condition 
exists after crack growth, as shown previously for a slanted crack [15]. 
The respective values of Kz and KH are included in Table 1 and Figs. 5 and 
6. These values show an almost complete elimination of the Mode II 
condition. It is of interest to note that the two shear panels analyzed have 
relatively high initial KH values. The almost complete transition from a 
mixed-mode condition to a pure Mode I condition indicates that, for 
materials capable of significant crack extension before fracture under 
monotonically increasing load, only the K~ value needs to be considered. 
An analysis based on the R-curve concept would be more appropriate for 
these materials. However, there remains to be resolved the difficulties 
involved in finding a K I value for a crack configuration which includes a 
curved crack growth increment. 

As intended a comparison of the two models with different crack 
growth directions for the/3 = 75 deg case can be made based on the re- 
sulting values o f K  I and K n .  From Table 1, it can be seen that a higher K~ 
value is obtained for a crack growth angle of -30 deg as compared to Kx 
for a crack growth angle of -40 deg. The K~ values are negligible in 
both cases. This higher KI value further substantiates the selection of the 
maximum tensile stress theory for use in the prediction of the crack 
growth direction. 

The strain energy density function theory and the angular stress 
intensity factor concept can again be examined using values of K~ and K~ 
after the crack growth increment. However, as in the previous case, no 
correlation can be found for the calculated critical values using either 
criterion. 

As for the prediction of subsequent crack growth direction after this 
increment of crack growth, all criteria predict essentially the same 
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direction of approximate ly  0 deg. The zero angle of  crack growth is ex- 
pected because a pure Mode I condition exists after the crack  increment.  
The formation of  the curved crack growth pa th  as observed  in Ref  5 is 
possibly the result of  directional instability. 

Conclusions 

1. The singular cracked finite e lement  is useful  for the application of  
the finite e lement  method to fracture analysis.  

2. The simple mixed-mode  criterion ofK~/(KOcr + Kn/(KH)cr = 1 can be 
used to predict  failure for materials which are not ex t remely  ductile. The 
maximum tensile stress theory can be used to predict  the crack  growth 
direction. 

3. The higher order  stress te rms should be  included in the analysis of  
branched crack subjected to combined loads. 

4. A transition f rom a mixed-mode  condition to an essentially Mode I 
condition occurs  after a small increment  of  crack growth. Hence ,  a Mode 
I fracture criterion such as the R-curve  concept  should be used  to predict  
mixed-mode failure for  materials  capable  of  exhibiting significant slow 
stable crack growth before fracture under  monotonical ly  increasing load 
provided that  a practical means  can be found to calculate the K I value 
during this period. 
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A Finite-Element Analysis of Fatigue Crack 
Closure 

REFERENCE: Newman, J. C., Jr., "A Finite-Element Analysis of Fatigue Crack 
Closure," Mechanics of Crack Growth, ASTM STP 590, American Society for 
Testing and Materials, 1976, pp. 281-301. 

ABSTRACT: Experiments have shown that fatigue cracks close at positive loads 
during constant-amplitude load cycling. The crack-closure phenomenon is caused 
by residual plastic deformations remaining in the wake of an advancing crack tip. 
The present paper is concerned with the application of a two-dimensional, non- 
linear, finite-element analysis using an incremental theory of plasticity to predict 
crack-closure and crack-opening stresses during the crack-growth process under 
cyclic loading. 

A two-dimensional finite-element computer program, which accounts for both 
elastic-plastic material behavior and changing boundary conditions associated with 
crack extension and intermittent contact of the crack surfaces under cyclic loading, 
has been developed. An efficient technique to account for changing boundary 
conditions under cyclic loading was also incorporated into the nonlinear analysis 
program. This program was used subsequently to study crack extension and crack 
closure behavior in a center-cracked panel under constant-amplitude and two-level 
block loading. The calculated crack-opening stresses were found to be quantita- 
tively consistent with experimental measurements. 

KEY WORDS: crack propagation, plastic deformation, cyclic loads, stresses, 
residual stress, fatigue (materials), mechanical properties, plasticity tests 

Nomenclature 

{Q} 
R 
S 

Smax 
Stain 

So 
{v} 

" E f f e c t i v e "  plastic load vector,  N 
Stress ratio (ratio of minimum to maximum applied stress) 
Applied gross stress, N/m 2 
Maximum gross stress, N/m 2 
Minimum gross stress, N/m ~ 
Crack-opening stress, N/m z 
Generalized nodal displacement vector,  m 
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{dE} 

{aO-e} 
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[ge] 
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Displacements in x- and y-direction, respectively, m 
Total plate width, m 
Cartesian coordinates 
Incremental crack growth, m 
Effective stress-intensity factor range, N/m ~/2 
Incremental number of cycles 
Normal stress acting in y-direction, N/m 2 
Tensile yield stress, N/m 2 
Half length of crack, m 
Matrix relating total strains to nodal displacements, m -1 
Material crack-growth constants 
Incremental applied load vector, N 
Incremental plastic load vector, N 
Differential volume of triangular element, m s 
Incremental total strain vector 
Incremental elastic stress vector, N/m 2 
Incremental "initial" stress vector, N/m 2 
Elasticity matrix relating stress to total strain, N/m 2 
Relaxation parameter 
Spring stiffness in x- and y-direction, respectively, N/m 
Elastic stiffness matrix, N/m 
Diagonal matrix containing spring stiffnesses, N/m 
Elastic-stress concentration (ratio of o-~u in the highest 
stressed element to the applied stress, S) 
Applied load vector, N 

Until recently, fatigue cracked propagation was assumed to be related 
directly to the linear elastic stress-intensity factor [1] 2 during cyclic 
loading. Implicit in this concept were the assumptions that only the tensile 
portion of the load cycle was effective in growing the crack, and that 
cracks close precisely at zero load. Elber [2-4] has shown experimentally 
that fatigue cracks close at positive loads during zero-tension constant- 
amplitude load cycling. He has indicated that fatigue-crack closure may 
be a significant factor in causing the stress-interaction effects on crack 
growth (retardation or acceleration) under general cyclic loading. He has 
also postulated that the crack-closure phenomenon was caused by re- 
sidual plastic deformations remaining in the wake of the advancing crack 
tip. 

Kobayashi et al [5], and Anderson [6] using the finite-element method 
analyzed the steadily growing crack under a single monotonically increas- 
ing load. Since these investigations did not consider cyclic loading, 
crack-closure effects were not accounted for in the analysis. 

Newman and Armen [7], also using the finite-element method, have 

z The itafic number s  in brackets  refer to the list o f  references  appended to this paper.  
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analyzed an extending crack under cyclic loading which included the 
effects of crack closure. Their study was an initial attempt to analytically 
determine crack-closure effects and employed an element-mesh size 
which had elastic-stress concentration of about seven. In their analysis, 
the ratio of the smallest element size to the crack half length was about 
0.025. Their analysis demonstrated that the phenomenon of fatigue-crack 
closure could be modeled qualitatively by use of the finite-element 
method. 

In the present paper, a more efficient two-dimensional, nonlinear, 
finite-element analysis [8] was used to investigate crack extension and 
crack closure in a center-crack panel under cyclic loading. (The more 
efficient computer program required about one half of the central proces- 
sing unit (CPU) time and about one half of the storage requirements as the 
program used in Ref 7 for the same element mesh.) The present paper also 
demonstrates how the element-mesh size in the crack-tip region influ- 
ences the calculated crack-closure and crack-opening stresses. 
Element-mesh sizes nearly an order of magnitude smaller than that used 
in Ref 7 were investigated. The finer mesh size also allows for simulated 
crack-growth increments per cycle (as small as 0.08 mm) to be consistent 
with experimental observations for some of the applied stress levels 
studied. 

The panel material was assumed to be elastic-perfect plastic. The cyclic 
loads applied to the finite-element models of the panel were either 
constant-amplitude or two-level block loading. The crack-closure stresses, 
crack-opening stresses, crack-surface displacements, and residual 
stresses in the crack-tip region were determined as functions as applied 
stress. 

Finite-Element Analysis 

The elastic-plastic analysis of the center-cracked panel (Fig. 1) 
�9 employed the finite-element method and the initial-stress concept [9]. The 
finite-element model, Fig. 2, was composed of two-dimensional 
constant-strain triangular elements (unit thickness). Three different mesh 
sizes were used to model the crack-tip region, Fig. 3. In the initial-stress 
approach, the load-displacement relations for a discretized structure are 
written to include the effects of initial stresses, which are required in 
order to satisfy the yield criterion (von Mises) for an elastic-plastic 
material. These initial stresses produce effective plastic-load vectors 
which are applied to all elements which have become plastic and which 
maintain the permanent plastic deformation on those elements while the 
external loads are applied. The governing matrix equations for a dis- 
cretized structure are reviewed only briefly here to demonstrate how the 
material nonlinearity is accounted for and what is required to treat crack 
extension and intermittent contact or separation of the crack surfaces. 
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FIG. 1--<?enter-crack panel subjected to uniform stress. 

Solution Procedure for Elastic-Plastic Structures 

The application of the finite-element method to problems involving 
linearly elastic materials is straightforward because the material proper- 
ties are constant and only one solution is required to obtain displacements 
for the elastic structure. However, for elastic-plastic structures the 
coefficients in the stiffness matrix are functions of loading. Thus, the 
displacements usually are obtained by applying small load increments to 
the structure and either updating the coefficients of the stiffness matrix or 
applying an "effective" plastic-load vector after each load increment. The 
latter technique was used here. 

In general, the matrix equation which governs the response of a 
discretized structure under loads which cause plastic deformation is 

[K,] {U}, ~= {P}~+ {Q}IsI (1) 

where 
[Ke] = elastic stiffness matrix, 
{U} = generalized nodal displacement vector, 
{P} = applied load vector, and 
{Q} = effective plastic-load vector which accounts for elements in a 

plastic state. 

In the initial-stress method, the solution to an elastic-plastic problem is 
obtained by applying a series of small load increments to the structure 
until the desired load is reached, {P}~ = {p}~-t ___ {dP}. ({dP} was chosen 
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to be 5 percent  of the load required to yield the first element.)  The 
superscript i in Eq 1 denotes the current load increment,  and i - 1 
denotes the preceding increment.  After each load increment an iterative 
process is required to stabilize the plastic-load vector.  The subscript I in 
Eq 1 denotes the current  iteration, and I - 1 denotes the preceding 
iteration. During the i m increment a purely elastic problem is solved, and 
the increments in total strain {d~} and corresponding elastic stress {do-,} 
are computed from the displacements for every element.  Because of the 

y ,v 

\\\ \// 
/I//1//1//1\ ~ 
, .~ / l / / I / , d /~  
ABCDEF 

ai =i 

FIG. 2---Finite-elernent idealization of the center-crack panel. 
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Mesh I 

0.64 mm 

Mesh II 

\ / \ /  
/ \ / \  
/ / / /  
/ / / /  

0.16 mm 

Mesh III 

0.08 mm 

FIG. 3--Typical crack-tip region element sizes for Meshes 1, H, and IH. 

material nonlinearity the stress increments are not,  in general, correct.  If 
the correct  stress increment for the corresponding strain increment is 
{do-}, then a set of body forces or plastic-load vectors  {dQ} caused by the 
"init ial" stress {do- ~ ( = {do-e} - {do-}) is required to maintain the stress 
components on the yield surface. The correct  stress increment  {do-} is 
computed from the equations given in Ref  9. The plastic-load increments 
are computed from 

{dO}  = m=l ~ f [BIT {do- } dW m (2) 

where 
M = total number of elements, 

[B] = strain-displacement relationship, and 
T = matrix transpose. 

The integration is taken over  the volume of each element,  and the 
summation is over  all elements in the structure. For  elements which are in 
an elastic state or unloading from a plastic state, {dQ} = 0. The total 
plastic-load vector  is then computed as 

{Q}/= {Q}I : I + {dQ} (3) 

At the second state of  computat ion the new force system {Q}[ is added to 
the applied load vector,  and a new set of  displacements is obtained. 
Again, some of the stresses are likely to exceed the yield criterion, and a 
new set of  plastic-load increments is computed.  The iteration process is 
repeated until the change in the plastic-load vector  (Eq 2) is sufficiently 
small (0.1 percent  of the final values was chosen here). Usually, 5 to 15 
iterations are required to stabilize the plastic-load vector.  However ,  for  
configurations which have large strain gradients, more iterations are 
required. For  the cracked plate considered here and the particular 
element mesh used, 10 to 30 iterations were required. In order  to reduce 
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the number of iterations, a relaxation technique was incorporated into the 
nonlinear analysis program by using the equation 

{Q}I i = {Q}] Z I + g {dQ} (4) 

Where g is the relaxation parameter. Because the displacements from the 
preceding increment or iteration are used to compute the plastic-load 
increment, the plastic-load vector is underestimated. Thus, the relaxation 
parameter is used to increase the plastic-load vector and, consequently, 
increase the rate of convergence. For the finite-element mesh used here, 
the displacements were found to converge roughly twice as fast using 
g = 2 than using g = 1 (usual value for the initial-stress method). 

Solution Procedure f o r  Changing Boundary Conditions 

As previously mentioned, the finite-element analysis of an extending 
crack under cyclic loading must be able to account for changing boundary 
conditions during a specified load history. Usually, boundary conditions 
(free or fixed) in the finite-element method are satisfied by adding 
equations to, or deleting equations from, the overall system of equations. 
But the approach selected here was to connect two springs to each 
boundary node, as shown in Fig. 4. One spring was used to satisfy 
boundary conditions in the x-direction, and the other to satisfy conditions 
in the y-direction. Therefore, all nodes in the system had two degrees of 
freedom. For free nodes, the spring stiffness, ksx or ks~, was set equal to 
zero. For fixed nodes, the spring stiffness was assigned an extremely large 
value (10 7 times the modulus of elasticity of the plate material). The spring 
stiffness was added to the diagonal coefficient in the conventional elastic 
stiffness matrix. The use of springs to satisfy boundary conditions was 

~ Finite-element 
m e s h  

Boundary 

~ sy (Typical) 

II X 

FIG. 4---Springs connected to boundary nodes of a finite-element mesh. 
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selected because an efficient technique to modify coefficients of the 
elastic stiffness matrix was incorporated into the nonlinear analysis 
program. This technique involved modifying the coefficients of the 
Cholesky decomposition [10] of the elastic stiffness matrix. The number 
of computer operations required to compute the modified Cholesky 
factors was of the order of n 2 (n was the total number of degrees of 
freedom). In contrast, the number of operations required to obtain the 
original Cholesky factors was of the order of n 3. A detailed discussion of 
the coefficient-modification technique may be found in Refs 8 or 10. 

The coefficients of the elastic stiffness matrix are obtained from 

[/<el = f tsj  [Del [ ]avm + [/<s] (5) 
m = l  

where [De] is the elasticity matrix and the diagonal matrix [Ks] contains 
the elastic stiffness of the springs connected to the boundary nodes. 

The procedure for treating the nonlinear material behavior in the 
presence of changing boundary conditions remains unchanged from that 
previously presented for an elastic-plastic structure, except that all nodal 
displacements along the crack line were monitored to determine whether 
the nodes are to be released (crack extends), to open (crack opening), or 
to close (crack closure). 

To extend the crack, the crack-tip node was chosen arbitrarily to be 
released at maximum load (the stiffness of the boundary spring was set 
equal to zero and the stiffness matrix was updated) and the crack tip 
advanced to the next node. During crack extension, the nodal force 
carried by the crack-tip node was released automatically due to the 
change in the spring stiffness. To ensure that the stresses and total strain 
increments in the adjacent elements satisfied the yield condition and the 
Prandtl-Reuss flow rule, the iterative procedure, previously discussed, 
was used to redistribute the force previously carried by the broken node, 
and to stabilize the plastic-load vector. 

During each load increment (loading or unloading), the nodal displace- 
ments along the crack line were monitored to determine whether the crack 
surfaces had opened or closed. If the crack surfaces had opened (positive 
displacement of the spring), the stiffness of the boundary spring was set 
equal to zero, and the stiffness matrix was updated. If the crack surfaces 
had closed (negative displacement of the spring), the spring stiffness was 
set to the extremely large value, and the stiffness matrix was updated. 

Application of the Finite-Element Analysis to Cyclic Crack Extension 

Elber [4], on the basis of fatigue crack-closure experiments with 
constant-amplitude loading, proposed the following equation for fatigue- 
crack-propagation rates 
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At/ 
- C (AK~rr)" (6) 

AN 

where C and n are material constants and AK~ff is the effective stress- 
intensity factor range. He  proposed that the effective stress-intensity 
factor range be calculated by 

AKeff = ASeff ~ a (7) 

where 
a = half length of  the crack, 
a = boundary-correct ion factor, and 

ASerr = effective stress range, 

given by 

ASerr = Smax - So for So - Smin (8) 

where 
Smax = maximum stress, 
Stain = minimum stress, and 

So = crack-opening stress. 

Thus, the crack is assumed to propagate only during that portion of  the 
load cycle in which the crack tip is open. Equations 6 to 8 suggest, then, 
that the crack-opening stress can significantly influence crack growth 
under both constant- and variable-amplitude loading. 

The following sections give the results of  applying the finite-element 
analysis to an extending crack under cyclic loading. The center-cracked 
panel. Fig. 1, was subjected to either constant-amplitude or two-level 
block loading. 

The panel material was assumed to be elastic-perfect plastic with a 
tensile (and compressive) yield stress, o-0, of 350 MN/m 2 and a modulus of 
elasticity of 70000 MN/m 2. These properties are representat ive of an 
aluminum alloy material. The  cyclic stress-strain curve assumed for this 
material is shown in Fig. 5. The cyclic stress-strain curve was also taken 
to be the stabilized curve,  that is, the stress-strain behavior  was assumed 
to be unaffected by fur ther  cycling. (Crews [1 l]  has shown that in some 
materials the local stress-strain behavior  at a notch root  stabilizes in 
approximately 10 cycles.)  The solid line in Fig. 5 shows the behavior 
under tensile loading. The dashed line indicates the typical behavior 
during unloading. The dash-dot  line shows the behavior  during reloading 
from a compressive plastic state. 

In this study, no at tempt  was made to establish a failure criterion for 
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FIG. 5---Cyclic stress-strain curve for  an elastic-perfectly plastic material. 

crack growth. For any cyclic loading, the crack-tip node (for example, 
Nodes A, B . . . . .  or F in Fig. 2) was chosen arbitrarily to be released at 
the maximum applied stress regardless of the magnitude of the applied 
stress and of any prior stress history. Thus, the model provides no direct 
information on the amount of crack growth per cycle; this information 
must be obtained from Eq 6. Instead, the analysis provides only the 
crack-opening stress, So, to be used in Eq 8. Of course, the accuracy of 
the calculated crack-opening stresses would be affected by the mesh size 
chosen to model the crack-tip region. A finer element-mesh size would give 
more accurate results. Therefore, three different element-mesh sizes 
with progressively smaller elements, Fig. 3, were used to model the 
crack-tip region. Table 1 shows the elastic-stress concentration, the 
smallest element size, and the total number of elements and nodes used 
for the three different meshes. 

T A B L E  1---Comparison o f  stress concentration, smallest 
element size, and the number o f  elements and nodes for  

Meshes 1, H, and 111. 

~ ,  a 

Mesh K r  mm Elements  Nodes  

I 7.2 0.64 398 226 

II 14.4 0.16 533 300 

III  20.9 0.08 639 358 

" W = 4 6 0 m m a n d a  ~ 28mm.  
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Crack  Ex tens ion  Under  C o n s t a n t - A m p l i t u d e  L o a d i n g  Using M e s h  ! 

The following sections give the results of applying a constant-amplitude 
loading (R = 0) to Mesh I. These results are shown to demonstrate how 
the crack was allowed to propagate under cyclic loading and how the resi- 
dual plastic deformations remaining in the wake of the advancing crack 
cause the crack surfaces to close during unloading. Crack-surface dis- 
placements and residual stress distributions during the crack-growth pro- 
cess are also presented. 

The finite-element idealization and the coordinate system used for the 
center-crack panel are shown in Fig. 2 for Mesh I.The initial crack tip was 
located at Node A (see Fig. 2), so that the initial crack half length, ai, was 
27.3 mm. The total panel width was 460 mm. 

The constant-amplitude loading applied to the center-crack panel is 
shown in Fig. 6. The maximum gross stress was 0.4 O-o. As the cyclic 
stresses were applied, the crack initially opened at a infinitesimal stress 
due to the assumption of no prior plastic deformation. The symbol x 
indicates the point at which the most highly stressed crack-tip element 
initially yielded. The plastic-zone size along the x-axis at maximum stress 
was about 4.6 mm. At the maximum applied stress, Node A was allowed 
to displace (crack extension), and the crack tip advanced to Node B. 
(Note that the crack extension increment, Node A to Node B, is solely a 
consequence of the element-mesh size used and does not imply a 
crack-growth law.) The crack-growth increment (0.64 mm) was about 14 
percent of the plastic-zone size. During unloading, Node A was found to 

0,5 % = 350 MN/m 2 

0.4 

0.3 

S 

0.2 

0.1 

x In i t ia l  yield 
�9 Closure  s t r e s s  
o Opening s t r e s s  

- - - - S t a b i l i z e d  opening s t r e s s  

t .... 
Time  

FIG. 6---Constant-amplitude crack extension with Smax = 0.4 O-o and R = 0 using Mesh I. 
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292 MECHANICS OF CRACK GROWTH 

close at a positive stress (solid symbol) and was constrained against 
further motion. At zero applied stress, the contact (closure) stresses near 
Node A were large enough to cause the material along the crack surfces to 
yield in compression. When the panel was reloaded, Node A opened 
(open symbol) at a considerably lower stress than at which it had 
previously closed. Again, upon reaching the maximum stress, the next 
node (B) was also allowed to displace and the crack tip extended to Node 
C. During unloading, Node B closed at a slightly higher stress than that at 
which Node A had closed on the previous cycle. Further cycling and 
sequential release of the nodes indicated that the closure stress rapidly 
stabilized to approximately 43 percent of the maximum applied stress. 
The opening stress increased after each cycle until it converged to the 
previously established closure stress. 

Because the crack-closure and crack-opening stresses are a function of 
the crack-surface displacements, the variation of surface displacements 
with crack extension was investigated. The crack surface displacements 
for constant-amplitude crack extension with Smax = 0.4 o-0 are shown in 
Fig. 7. The displacement, v, in the y-direction was plotted as a function of 
the coordinate location, x. The lowest curve shows the displacements at 
maximum stress with the crack tip located at Node A (before crack 
extension). The other curves represent the crack-opening displacements 
at the maximum applied stress after each increment of crack extension. 
The sharp knee (slightly to the left of Node A) in the displacement curves 
is an indication of the extent of plastic deformation. 

To gain a qualitative understanding of the relationship between the 

0.20 S 

0.15 34 
{ 

0.10 
v, mm 

0.05 

0 A B C D E  

~ / ~ / - -  27.3 "1 ~ 0.64 (Typical) 

x, mm 

F I G .  7---Crack-surface d isplacements  under constant-ampfi tude crack extension with 
Smax = 0.4 ~o and R = 0 using Mesh  I. 
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F I G .  8---Crack-surface displacements during unloading after constant-amplitude crack 
extension (S,,,,~x = 0.4 ~o) with crack tip at Node E. 

residual plastic deformations near the crack tip and the crack-closure 
stresses, crack-surface displacements were computed for two similar 
configurations. The first configuration was a crack, with the tip initially at 
Node E, being opened for the first time by the maximum applied stress 
(Smax = 0.4 o-0). The second configuration was a crack which was grown 
incrementally from Node A to Node E by cyclic loading (also with 
Smax = 0.4 o-0). The results are shown in Fig. 8. The dash-dot curve is the 
surface displacements for the first configuration under the maximum 
stress. The solid curve is for the second configuration under the same 
maximum stress. The fully dashed curves show the displacements for the 
second configuration under a sequence of lower stresses for which the 
crack has closed successively from Node E to Node A. 

The difference between the maximum surface displacements for the 
two configurations, as identified by the shaded region in Fig. 8, is a 
measure of the residual plastic deformations which are left in the wake of 
the advancing crack tip, and which Elber has postulated as the major 
cause of crack closure during unloading. 

The displacement curves for lower stress levels further illustrate the 
crack-closure phenomenon. For example, a drop to 0.17 tr0 in applied 
stress caused the crack to close back to Node D. Upon complete removal 
of the applied stress, the crack closed back to Node A but remained open 
to the left of Node A. 

The stress distributions near the crack tip associated with these stages 
of unloading are shown in Fig. 9. At the maximum applied stress, the 
near-tip stress o-,u (solid curve), reaches at plateau in front of the crack tip 
(characteristic of an elastic-perfect plastic material). Because the local 
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F I G .  9--Local crack-tip stress distributions during unloading after constant-amplitude 
crack extension ( S , ~  = 0.4 cro) with crack tip at Node E. 

stresses are computed at the centroid of the elements (~ 0.3 mm from the 
crack surface), the stresses do not drop to zero immediately behind the 
crack tip. During unloading, the crack surfaces contact initially at Node 
D and the crack surfaces between Nodes A and E begin to support 
compressive stresses, as illustrated by Curves 3 to 5 of Fig. 9. 

Crack Extension Under Constant-Amplitude Loading Using Mesh II or 
III  

The following sections give the results of applying various constant- 
ampitude loading to Meshes II or III. These results are also compared 
with previous results obtained from Ref 8 using Mesh I. A comparison 
between the element sizes in the crack-tip region for Meshes I, II, and III 
are shown in Fig. 3. The smallest element size for Mesh III was nearly an 
order of magnitude smaller than that for Mesh I. The elastic-stress 
concentration for Meshes II and III was about 14 and 21, respectively. 

Stress Level-The constant-amplitude loading (R = 0) applied to Mesh 
III is shown in Fig. 10. The maximum gross stress was 0.4 o-0, identical to 
that applied to Mesh I, Fig. 6. The crack half length, a~, was 25.4 mm and 
was located initially in a mesh size identical to Mesh I. After eight cycles 
and eight growth increments, the crack tip was located in the finest mesh. 
The open symbols indicate the stresses at which the crack tip opens 
during loading, and the solid symbols indicate the stresses at which the 
crack tip closes during unloading. After the eighth cycle, the closure 
stress stabilized at about 75 percent of the maximum stress. The step in 
the closure stress between the seventh and eighth cycle was caused by the 
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0.5 �9 Closure s t ress  
[ | Opening stress .  
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F I G .  lO---Constant-amplitude crack extension with Smaz = 0.4 o-oand R = 0 using Mesh 
lII. 

change in mesh size. The closure stress seems to be governed by the 
maximum strain reached on the crack-tip element  prior  to crack exten- 
sion. However ,  the crack-opening stress was found to stabilize, after five 
cycles, at about 50 percent  of the maximum applied stress. This value of  
crack-opening stress is in good agreement  with the experimental  value 
(also 50 percent  of Smax) obtained by Elber  [4]. 

The plastic-zone size at maximum stress (0.4 O-o) and a crack half length 
of 28 mm was again about  4.6 mm. Thus,  the crack-growth increments per 
cycle (0.08 mm) were about 2 percent  of  the plasic-zone size. At this 
stress level and crack length, the actual crack-growth increment  per cycle 
for a 2024-T3 aluminum alloy material was about  0.1 mm [12]. Therefore ,  
the simulated crack-growth rates and the actual crack-growth rates were 
in good agreement.  In fact, the same stress history applied to Mesh II 
gave the same crack-opening stress as Mesh III, even though the growth 
increment per cycle was twice as large as that for  Mesh III. 

Figure 11 shows the stabilized crack-opening stress normalized to the 
maximum applied stress as a function of mesh size for various applied 
stress levels.The stress ratio (R) for all cases was zero.  For  stress levels 
greater than 0.2 O-o and less than 0.5 o-o, Meshes II and III gave 
crack-opening stresses within 10 percent  of  0.5 Smax. For  stress levels less 
than 0.2 o-0, a finer mesh size than Mesh III should be used. At an applied 
stress level of 0.5 O-o, Meshes I, II,  and III gave almost the same 
crack-opening stress. Stress levels greater  than 0.5 o- o were attempted, 
but the crack-opening stresses did not stabilize before the crack grew out 
of the fine mesh region. For  stress levels greater  than 0.5 O-o, the 
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FIG.  1 l---Stablized crack-opening stresses as a function of  mesh size under constant- 
amplitude loading (R = 0). 

crack-opening stresses are expected to be considerably lower than 0.5 
Smax because yielding would occur  over  a substantial portion of the net 
section. 

Stress R a t i o i T o  study the effects of  stress ratio on crack closure, 
calculations were made for R values between 0.5 and - 1 using Mesh III. 
Figure 12 shows a cyclic stress history with R = 0.5 and S m a x  = 0 . 4  o" o. 

S 
(7 o 

0.5 

0.4 

0.3 

0.2 

0.I 

�9 Closure s t ress  
& Opening s t ress  

------ Stabilized opening s t ress  

Time 

FIG.  12---Constant-amplitude crack extension with Smax = 0.4 r R = 0.5 using Mesh 
IlL 
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T i m e  

FIG. 13---Constant-amplitude crack extension with S m a x  = 0.3 ~roand R = -1 using Mesh 
I lL  

Again, the crack-tip nodes  were released at succeeding occurrences  of  
maximum stress. But in this case,  the crack surfaces did not close until 
the fourth cycle. The opening stress stabilized at about  68 percent  of  the 
maximum stress. This value of opening stress was about  5 percent  
higher than that measured  by Elber [4] on an aluminum alloy. 

Figure 13 shows the crack-closure and crack-opening stresses for 
R = - 1  and Smax -- 0.3 tro. During the compress ive  loading, all nodes 
along the crack surfaces closed. The crack-opening stress for all cycles 
was lower than the corresponding opening stress obtained for the R = 0 
c a s e  (Sma x = 0 . 3  O-o). This implies that the applied compress ive  stress 
caused the mateial along the contacting crack  surfaces to yield further in 
compression than the R = 0 case. The crack-opening stress stabilized at 
50 percent  of  the max imum stress. Therefore ,  according to Eq 6 the 
fatigue-crack-growth rates for R = - i should be approximate ly  two times 
faster  than the rates for R = 0 (n = 4 in Eq 6). This inference is consistent  
with the results obtained by Hudson [/2], who found about  the same 
difference between the crack-growth rates for  a 2024-T3 aluminum alloy 
sheet material at R = 0 and R = - I. 

To summarize  the effects of  stress ratio on crack-opening stresses,  Fig. 
14 shows the stabilized crack-opening s t resses  normalized to the maximum 
applied stress as a function of stress ratio using Mesh III .  The solid 
symbols denote the results at Smax = 0.3 tro and the open symbols  at 
Smax = 0.4 tro. The dashed curve shows the experimental  results ob- 
tained by Elber  [4J for R values between -0 .1  and 0.7. The agreement  
between the calculated and experimental  results at R = 0 and 0.5 are 
considered good. The results at negative R values show that the crack 

Copyr ight  by  ASTM Int ' l  (a l l  r igh ts  reserved) ;  Sa t  Dec   5  09:42:07  EST 2015
Downloaded/pr in ted  by
Univers i ty  of  Washington  (Univers i ty  of  Washington)  pursuant  to  License  Agreement .  No fur ther  reproduct ions  au thor ized .



298 MECHANICS OF CRACK GROWTH 

S o 

Smax 

1.0 

0.8 

0.6 

0.4 

0.2 

�9 Sma x = 0.3 ao 

o Smax = 0.4 % 

- - -  Elber (ReI. 4) 

0 

Mesh III 

/ 
/ /  

Ik / 
/ 

// 
/ 

/ 

_.8_~ j l  

0 I 1 I I 1 
- -01.5 0 0.5 l 

F I G .  14---Comparison o f  calculated (stabilized) and experimental crack-opening stress as 
a function o f  stress ratio (R). 

opening stresses were influenced strongly by the magnitude of the 
compressive stress. The applied compressive stresses cause the crack 
surfaces near the crack tip to yield in compression, thereby lowering the 
subsequent crack-opening stress. Further studies on measuring crack- 
opening stresses during fatigue-crack-growth rate tests at negative R 
values should be made to investigate this stress level effect. 

Crack Extension Under Two-Level Block Loading Using Mesh IH 

High-to-Low Loading-The high-to-low block loading applied to Mesh 
III is shown in Fig. 15. The maximum stress Smaxl (first level) was 0.4 o~ o 
and Smax2 (second level) was 0.3 O-o. The crack closure and opening 
stresses for the eight cycles of Smaxl were identical to those previously 
shown in Fig. 10. On the first cycle of Smax2, the crack-tip node was al- 
lowed to displace (crack extends). During unloading, the crack tip closed 
at a stress which was considerably lower than the previous closure stress 
for Sr~axl. When the panel was reloaded, the crack tip opened at a 
slightly higher stress than the stabilized opening stress for Sm,x~ 
(dashed line). During further cycling, the crack-opening stress increased 
after each cycle and reached a peak at the ninth cycle of Smax2. If more 
than eleven cycles of Smax2 were to be applied, the closure and opening 
stresses would be expected to converge to the dash-dot line (the stabilized 
opening stress for Smax2) as the crack grows out of the material yielded by 
S m a x l .  The last two cycles of S ma x2  show crack-opening stresses less than 
the peak value. 
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F I G .  15--High-to-low block loading crack extension with S,naxl = 0 .4  cro and 
S , , a ~  = 0.3 o-o using Mesh IlL 

The closure and opening stresses are governed usually by the node 
adjacent to the crack tip along the crack surface, but, under the high-to- 
low loading during the sixth to 1 lth cycle of Smax2, the closure and opening 
stresses were governed by nodes not adjacent to the crack-tip node. This 
behavior is illustrated in the sketch on Fig. 15. The sketch shows the 
crack-surface displacements along the crack line.Crack closure during 
unloading or crack opening during loading occurs at a node several 
element sizes to the left of the crack tip. This behavior shows the 
existence of a "hump" in the crack surfaces which was caused by the high 
loading. 

Because the crack-opening stresses for S m a x 2  a r e  considerably higher 
than the stabilized opening stress for S~ax2 the crack-growth rates 
(computed from Eq 6 are expected to be considerably lower than if the 
eight cycles of Smaxl had not been applied. This behavior has been 
observed and is referred to as crack-growth retardation or delay (see, for 
example, [13]). 

Low-to-High-Loading-Figure 16 shows the low-to-high block loading 
applied to Mesh III, for which S m a x l  = 0.3 tro and Smax2 = 0.4 O'o. The 
crack closure and opening stresses for SmaxX has stabilized at the eighth 
cycle. On the first cycle of Smax2, the crack-tip node was released again. 
During unloading, the crack tip closed at approximately 75 percent of the 
maximum applied stress. At zero applied stress, the material along the 
crack surface near the crack tip yielded in compression, and the sub- 
sequent opening stress was considerably lower than the stabilized opening 
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F I G .  16--Low-to-high block loading crack extension with Smax, = 0.3 ~o and 
Sma~ = 0.4 tro using Mesh 111. 

stress for Smaxl- During further cycling, the closure stress remained 
constant, while the opening stress increased after each cycle. The opening 
stress had not converged to the stabilized opening stress for Smax2 
(dash-dot line) after eleven cycles. If more cycles had been applied the 
opening stress should be expected to converge to the dash-dot line. 
Because the opening stresses for Smax2 are considerably lower than the 
stabilized opening stress, the crack-growth rates (computed from Eq 6) 
are expected to be higher than the crack-growth rates computed using the 
stabilized opening stress for Smaxz. This behavior in crack-growth rates 
has also been observed experimentally and is referred to as crack-growth 
acceleration [14]. 

Concluding Remarks 

A two-dimensional (plane stress) finite-element analysis which ac- 
counts for both nonlinear material behavior and changing boundary 
conditions under cyclic loading has been presented and used to study 
crack extension and crack closure in a center-cracked panel. The finite- 
element models of the panel were assumed to be composed of an 
elastic-perfect plastic material and was subjected to either constant- 
amplitude or two-level block loading. 

Although the failure criterion used in growing the crack was arbitrary, 
the calculated crack-opening stresses under constant-amplitude loading 
were quantitatively consistent with experimental measurements. The 
calculated crack-opening stresses under two-level block loading, when 
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used with E lbe r ' s  c rack-growth  equa t ion ,  gave c rack-growth- ra te  t rends  
( re tardat ion or acce le ra t ion)  cons i s t en t  with expe r imen ta l  obse rva t ions .  
Therefore ,  the f in i t e -e lement  analys is  pe r fo rmed  here gives fur ther  insight  
into the m e c h a n i s m  of  fa t igue-crack  growth  dur ing  cycl ic  loading.  
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A Preliminary Study of Fatigue Crack 
Retardation Using Laser Interferometry to 
Measure Crack Surface Displacements 

REFERENCE: Sharpe, W. N., Jr., and Grandt, A. F., Jr., "A Preliminary Study of 
Fatigue Crack Retardation Using Laser Interferometry to Measure Crack Surface 
Displacements," Mechanics of  Crack Growth, ASTM STP 590, American Society 
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ABSTRACT: A laser interferometry technique is described which is capable of 
resolving crack surface displacements to about 0.2 /zm. The method provides 
continuous measurements of the free surface crack profile in metal specimens 
without being limited by rigid body displacements. Using the laser interferometry 
procedure to determine fatigue crack profiles in 2024-T851 aluminum specimens, it 
was possible to measure the load at which the crack faces completely separate. 
These opening loads were correlated with peak tensile overloads and subsequent 
crack retardation. These results are discussed in terms of the Elber concept of 
fatigue crack closure. 

KEY WORDS: crack propagation, lasers, interferometry, fatigue (materials), 
measurement, cyclic loads, retarding, stresses, deformation 

Nomenclature 
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OL~ O~ 0 
d 

~d 
da/dN 

K 

g ie  
A K  

Crack length 
Angles between incident laser beam and fringe pattern 
Distance between reference grooves 
Relative displacement of grooves 
Fatigue crack growth rate 
Stress intensity factor 
Fracture toughness 
Cyclic range in stress intensity factor = Kmax to Kmin 
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gmax 
gmin 
Kopen 
gpeak 

k 

m ,  ~m 

N 
Q 

Qopen 
Qpeak 

R 

Maximum stress intensity in baseline load cycle 
Minimum stress intensity in baseline load cycle 
Stress intensity factor to separate crack faces 
Peak value of stress intensity during overload 
Wavelength of light 
Fringe order and change in fringe order 
Number of cycles 
Load ratio = K/Kmax 
Load ratio = Kopen/Kmax 
Overload ratio = Koeak/Kmax 
Stress ratio = Kmin/Kmax 

Accurate determination of crack surface displacements is often re- 
quired for fundamental investigations of crack behavior. As suggested by 
the following examples, displacement measurements may serve a variety 
of research purposes. Interferometric measurements of crack displace- 
ment in glass specimens, for example, were used by Sommer [! ]3 and by 
Crosley et al [2] for stress intensity factor calibrations. The crack opening 
displacement (COD) occurring at fracture has been suggested as a 
possible failure criteria for ductile materials [3]. Attempts to quantify the 
sensitivity of nondestructive methods of flaw inspection [4] have shown 
crack surface displacement to be an important variable (for example, 
flaws held shut by compressive stresses are more difficult to detect than 
those loaded in tension). Finally, determining the separation of fatigue 
crack surfaces as a function of applied load has received considerable 
interest during recent studies of crack closure as a possible mechanism for 
fatigue crack retardation [5-10]. 

A new method for measuring crack surface displacements applicable to 
these types of problems has been recently developed [11 ]. The technique, 
which employs laser interferometry, is quite sensitive (about 0.1 /xm 
resolution), is readily adaptable to laboratory measurements and has the 
capability of obtaining the entire crack displacement profile. The purpose 
of this paper is to use this new technique for some fundamental observa- 
tions of fatigue crack surface displacements under tensile peak overload 
conditions. 

Elber [5,6] explained fatigue crack retardation by the residual strains in 
the plastically deformed wake of the propagating crack. Since the residual 
compression must be overcome before the crack surfaces separate to 
allow propagation, the effective cyclic range in stress intensity factor is 
reduced. Elber suggests that peak loads change the local plastic deforma- 
tion, alter the closure stresses, and thus perturb subsequent crack growth. 

Elber originally observed closure with a clip gage which bridged the 
fatigue crack. Changes in linearity of load-displacement records indicated 

3 The italic numbers in brackets refer to the list of references appended to this paper. 
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304 MECHANICS OF CRACK GROWTH 

a significant tensile load was required to overcome the residual compres- 
sion. Similar measurements were made by Roberts et al [7] with foil strain 
gages instead of clip gages, and by Adams [8] who employed microscopic 
observations of reference points to obtain the load-displacement curve. It 
is important to note in all of these experiments that the opening load was 
determined from changes in the slope of the load-displacement record of 
two fixed points astride the crack. 

Buck et al [9] used ultrasonics to measure average crack depth in 
surface flawed specimens. Changes in apparent crack length determined 
the opening load. Although this ultrasonic technique was useful for 
part-through crack geometries, the closure load was inferred from a 
change in average crack size rather than by direct observation of the crack 
profile. Pitoniak et al [10] used interferometric techniques to study fatigue 
crack closure in polymethylmethacrylate specimens. Examination of the 
interference fringes provide a quantitative mapping of the entire three- 
dimensional crack profile as a function of load, but measurements were 
restricted to transparent materials. 

The technique described here has the significant advantage of providing 
continuous displacement measurements along the entire crack length in 
metal specimens with a sensitivity capable of determining when the crack 
physically separates at the specimen surface. This simple displacement 
measurement technique is described in the next section, followed by some 
observations of crack displacement profiles and a preliminary study of 
fatigue crack closure and retardation. 

E x p e r i m e n t a l  P r o c e d u r e  

The opening of a crack at a free surface can be obtained by laser 
interferometric measurement of the displacement of two grooves ruled on 
either side of the crack. This is illustrated schematically in Fig. 1. The 
grooves are V-shaped, causing the light rays to be reflected (diffracted) at 
angles -+a from the laser beam incident perpendicular to the specimen 
surface. Since the laser radiation is monochromatic and coherent, optical 
interference patterns are formed in space. This phenomenon is similar to 
Bragg X-ray diffraction. The equation locating the bright interference 
fringes is 

d s i n a = r n h  m = - +  1 ,2 ,3  . . . .  (1) 

where h is the wavelength of light and d is the spacing between grooves. 
In order to measure the displacement, 8d, it is convenient to fix the 
observation angle at a0 and observe the change in fringe order ~rn. The 
governing equation is then 

h 
- -  8 m  (2) 

8 d  - s in  ao  
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~ FILM 

FRINGES .~ C R A C K ~ ~  

/ /  ~GROOVES 

INTERFERENCE // F R I N G ~  FILM 

FIG. l----Schematic o f  the laser interferometric displacement technique, d is typically 
0.51 mm (0.020 in.), and c~ is typically 65 deg. 

The fringe shift, 8m, is obtained by comparing fringe pattern photo- 
graphs before and after the crack has opened (or partially opened). The 
distance on the film that a fringe has moved is converted to a fringe shift 
value, 8m, by dividing it by the original spacing between fringes. One can 
thus measure the displacement along the crack by measuring the shift of 
any one of the fringes at various positions along its length. In effect, the 
fringe motion is a magnified picture of the crack displacement at the 
specimen surface. Comparison of the fringe photographs requires an 
indexing procedure; a suitable reference is the pattern of fringes emanat- 
ing from the undeformed region in front of the crack. This concept of 
having the reference marks attached to the specimen removes the 
problem of relative motion between the optical system and testing 
machine and also permits before-and-after-test displacement measure- 
ments. 

The quantity h/sin or0 in Eq 2 is the calibration factor for this technique 
and is approximately 0.7/~m using h -- 0.6328/zm and o~0 = 67 deg. Note 
that establishment of c~o is all that is needed to calibrate the system. The 
resolution of the measurement is easily 0.1/~m which turns out to be quite 
adequate for our purposes. It has been demonstrated [12] that this laser 
interferometric technique can be used to measure strains as small as 2 
microstrain (5 • 10 -4/zm displacement). 

Although specimen preparation is not difficult, a fairly smooth and flat 
surface is required. Current practice is to lap one side of the specimen and 
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306 MECHANICS OF CRACK GROWTH 

then polish it using standard metallographic techniques. The lapping is not 
required; it is just more expedient. The grooves are applied by pressing a 
wedge-shaped diamond (110 deg wedge, 2.5 mm (0.1 in.) long) into the 
surface. This diamond is mounted in a holder adjacent to a toolmaker's 
microscope. A set of grooves is produced by pressing a row of indenta- 
tions below and parallel to the crack, and then shifting the diamond across 
the crack and repeating the process. The procedure is to polish the 
surface, initiate a fatigue crack, apply the grooves, and then test. Figure 2 
is a photomicrograph of a set of grooves with a spacing of 0.25 mm (0.010 
in.) straddling a fatigue crack. Grooves with a spacing of 0.51 mm (0.020 
in.) were used in the series of experiments discussed in this paper. 

The equipment needed for measurement is a small laser and two single- 
lens-reflex cameras without lenses. A 5 mW helium-neon laser was used, 
but a 1 mW laser would be adequate. The laser and cameras are mounted, 
as schematically illustrated in Fig. 1, on a stand adjacent to the testing 
machine. Panatomic X film is used and typically requires 1/30 s exposure. 

Figure 3 is a montage of fringe photos. The straight fringes on the left 
are in front of the crack tip and hence undistorted. The fringes emanating 
from grooves straddling the crack are distorted somewhat because of the 
distortion of the reflecting surfaces as the crack grows between them. 
However, one still makes valid displacement measurements as the crack 
opens; the zero fringe is simply no longer straight. Larger displacements 
than those in Fig. 3c are difficult because the fringes become too dense to 
resolve. The distortion of the fringes is affected by how straight the 
fatigue crack is and whether it wanders over toward one groove. In our 
experiments we had no problems with the crack wandering out of the 
0.51 mm (0.020 in.) groove spacing. 

Reduction of the data is effected by projecting the 35-mm film onto a 
ground glass screen and tracing a series of fringes obtained for various 
loads on the same piece of paper. A small computer with a digitizer is used 
to measure the fringe displacement from the zero load fringe and plot the 
curves. Data from both the upper and lower camera are plotted and then 
averaged. This averaging helps eliminate any local groove rotation and in 
effect smooths the displacement curves. Figure 4 is a typical plot; note 
that the crack is not fully open until Q = K/Kmax = 0.25. 

The foregoing description is brief; however, the procedure is straight 
forward. More information on the optical aspects may be found in Refs 11 
and 13. 

Crack Displacement Profiles and Opening Load Determination 

Fatigue crack surface displacements were studied in ASTM standard 
compact specimens machined from a single sheet of 2024-T851 aluminum 
(thickness = 2.54 cm = 1.0 in.). All specimens were oriented so that the 
crack grew perpendicular to the rolling direction of the plate. Tensile 
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. . . .  . C K  

:5 ._.~0.35 " ~ .  -- "-GROOVES 

........ -~T'~. ,~, " r  ~ "  ........ LOWER CAMERA 
k ".. . . . .  UPPER CAMERA 

2 s "~P .. . . . . . .  % I "~':I I - -  AVERAGE 

0.25 

I 0120 . , ~, �9 ,~. 

4 3 2 I 0 
DISTANCE FROM CRACK T IP-M M 

F I G .  4--Typical  crack surface displacements  f o r  various load conditions,  Q = K/Kma~- 
The 2024-T851 compact  spec imen was cycled be tween Kmax = 5.5 MPa .m u2 (5 ksi . in,  xm) 
and Kmt, = 0.55 MPa "m llz (0.5 ksi ' in .  112). 

properties of the test material are a 0.2 percent  yield strength of  448 MPa 
(65 ksi) and an ultimate stress of  483 MPa (70 ksi). Two instrumented 
specimens tested to ASTM Test  for Plane-Strain Fracture  Toughness of  
Metallic Materials (E 399) gave K~r values of  23.0 and 23.3 MPa-m 1/2 (20.9 
and 21.2 ksi ' in.ln).  Baseline fatigue crack growth rate data obtained at 
constant cyclic load (R = Kmin/Kmax = 0.1) are shown in Fig. 5. All 
fatigue tests were conducted at 40 Hz on a closed loop electrohydraulic 
fatigue machine at laboratory temperature and environment.  

Figure 6 shows the displacement curves for a crack grown at 
g m a  x = 5.5 MPa �9 m ~/2 (5.0 ksi �9 in. ~/2) wi thR = 0.1 as it opens (solid line) 
and as it closes (dashed line). As load is applied to the specimen, the crack 
as observed on the surface is completely open by Q = 0.25. As the load is 
decreased to complete the cycle,  the crack remains open at Q = 0.20 and 
is closed at the tip for  Q = 0.10. The small amount  of  hysteresis in the 
load-displacement cycle indicated by the crack tip closing at a smaller 
load than it opens has been reported previously [14]. 

Figure 7a is a plot of  the displacement profiles resulting from various 
loads applied to a cracked compact  specimen. The crack length was 
8.4 mm (0.33 in.) from the 1.27 cm (0.5 in.) notch as measured on both 
sides of the specimen. A load of 4.27 kN (960 lb) corresponds to 
Kmax = 5.5 M P a ' m  1/2 (5.0 ksi.in~Z). As load is applied to the specimen, 
the displacements become large enough to measure. However ,  measur- 
able displacement to the crack tip is not observed here until a load of  1.33 
kN (300 lb) is applied. Then,  very small displacements are measured 
across the tip until a load of  2.45 kN (550 lb) is applied. Higher loads lead 
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FIG. 5----Baseline da/dN versus A K  data for 2024-T851 aluminum. 

to larger displacements across the tip, and the resolvable displacement 
profile moves ahead of the tip. Note that these profiles represent the 
displacement between grooves located 0.25 mm (0.010 in.) above and 
below the crack. 

At higher loads, the response of the specimen should be given by the 

I-- Q:O.40 
4 ~  CRACK 

-- -  - ' " "  ",, OOVES 

~ o ~ o  - - .< .~ .  ----o.OS,NG 

, ~ . . ~ ~ .  
~, ..~., 

4 3 2 I 0 
DISTANCE FROM CRACK TIP-MM 

FIG. 6---Crack displacement  profi les as the crack opens and closes. 
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FIG. 7a--Displacement profiles used to determine the opening load. 

elastic crack tip displacement equations (see, for example, Refl5).  Figure 
7b is a plot of the displacement profile measured as the load is 
incremented from 2.67 kN (600 lb) to 3.78 kN (850 lb) and compared with 
the theoretical elastic displacement for a 1.12 kN (250 lb) increment. 
After the crack is fully open, the agreement is excellent near the tip. 

One way to determine when a crack is open all the way to its tip is to 
observe the crack on the surface with a microscope. This is, of course, 
rather difficult and insensitive. The laser measurement used here in effect 
magnifies the crack surface displacement to permit better resolution. The 
crack tip location is known a priori  because it is measured relative to the 
groove placement. The opening load is defined as the load required to 
measurably displace the grooves along the entire crack length (for 
example, the 1.33 kN (300 lb) profile in Fig. 7a). At a position 0.1 mm 
behind the tip, the theoretical elastic displacement on the crack face is 
only 8 percent less than that of a line 0.25 mm (0.010 in.) above it. Since 
this difference becomes smaller as one moves away from the tip, the 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



312 MECHANICS OF CRACK GROWTH 

3 
0 

I 2 '  

kul 

,.=, 

cn w 
o 

F'TICAL 

3 2 I 0 -'1 

OISTANCE FROM CRACK T IP  -- men 

FIG. 7b---Elastic displacement for lines 0.51 mm (0.020 in.) apart straddling the crack. 
For load increment from 2.67 kN (600 lb) to 3.78 kN (850 lb). 

groove displacements closely approximate the crack surface displacement 
profile. Although this procedure for determining the opening load differs 
from the load-displacement [5-8] or ultrasonic [9] methods, it provides a 
conservative measure of the opening load by determining the earliest 
opening of the crack on the specimen surface. This criterion, thus, 
represents an alternative to the other procedures used to measure the 
opening load. 

An experiment was performed to compare the opening load obtained by 
this method with that established by the resistance strain gage procedure 
discussed in Ref7. A 0.125 in. (3.18 mm) long by 0.086 in. (2.18 mm) foil 
strain gage was placed across the crack. The foil gage was placed with its 
centerline 3 mm (0.118 in.) from the crack tip on the opposite side of the 
specimen from the grooves. A 2.39 mm (0.094 in.) wide band of Teflon 
spray was applied over the crack area prior to gage application to prevent 
adhesion of the central portion of the gage. 

Figure 7c is a plot of the load-displacement curves from that experi- 
ment. The interferometrically determined curves were obtained at posi- 
tions 1, 3, and 5 mm from the tip by measuring the fringe displacements 
from photos taken at discrete loads. The foil gage displacement curve was 
recorded continuously on an X- Y recorder. Note that the foil gage, which 
averages the displacement over the region between 2 and 4 mm from the 
crack tip agrees reasonably well with the displacement measured inter- 
ferometrically at 3 ram. The foil gage experiences some resistance change 
due to strain under the portion of the grid attached to the specimen, so its 
indicated displacement should be slightly less. In addition, note the near 
agreement in the slopes of the linear portions of the foil gage and the 3 mm 
interferometry curves with the theoretical elastic load-displacement curve 
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FIG. 7c---Load-displacement curves obtained interferometrically and with a resistance 
strain gage. 

for two points separated by 51 mm (0.020 in.) at a location 3 mm behind 
the crack tip. 

The opening load determined by locating the point of tangency between 
the upper part of the load-displacement curve and a straight line is 2.45 kN 
(550 lb) +- 10 percent for the 1 mm curve, 2.24 kN (500 lb) • 10 percent for 
the curve 3 mm from the tip, 2.00 kN (450 lb) --- 10 percent for the foil gage 
curve, and 1.56 kN (350 lb) --- 10 percent for the curve 5 mm from the tip. 
Note that since the opening load determined from the load displacement 
curves depends on the distance from the crack tip, location of the strain 
gage would be important for this method. In viewing the interferometri- 
cally determined profiles in Fig. 7a, it is clear that the crack is open fully 
by the time the load has reached 1.33 kN (300 lb). Thus, the opening load 
established by this latter criterion is between 1.11 and 1.33 kN (250 and 
300 lb), significantly smaller than the opening load determined by the 
other method. 

Overload Experiments 

A set of overload/retardation experiments was conducted using the 
laser interferometry method to study the fatigue crack closure phenome- 
non. Fatigue cracks were grown under conditions of constant range in 
stress intensity factor (+-5 percent) by shedding load in predetermined 
amounts as the crack extended. Crack lengths were measured to the 
nearest 0.002 in. by means of a scale calibrated in 0.005-in. increments 
placed next to the crack. The baseline Kma x was  maintained at 5.5 
MPa- m 1/~ (5 ksi-in, lJ~), while R was kept at 0. I. Single peak loads with 
Qpeak values (Qpeak : Kpeak/Kmax) of  2.0, 2.25, 2.5, and 3.0 were applied to 
determine their effect on subsequent crack growth and on the opening 
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314 MECHANICS OF CRACK GROWTH 

level of stress intensity (gopen). In all cases, the initial crack growth was 
allowed to stabilize prior to application of the overloads. 

In order to minimize stress relaxation effects on the opening load 
measurements, efforts were made to standardize the time base associated 
with the overload cycle. After the initial crack growth at 40 Hz, the test 
was stopped and the crack length measured. Next, the overload was 
applied in predetermined increments to photograph the series of fringe 
patterns. After completing the overload cycle, the crack length was 
measured again and the 40 Hz baseline cycling continued. By following 
this procedure it was possible to complete the overload cycle in 
approximately 3 to 5 min. 

The influence of these tensile overloads on crack extension is shown in 
Fig. 8. Note that the Qpeak = 2.0 overload had little effect on subsequent 
crack growth, while Qpeak = 2.25 delayed extension for a significant 
number of cycles. When the baseline cycling was resumed after 
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FIG. 8---Influence of  overload on crack growth. 
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Qpeak ---- 2.5 and 3.0, the cracks did not grow in 400 000 cycles, at which 
time the tests were terminated. 

The influence of the peak loads on the force required to separate the 
crack faces and on corresponding crack growth is shown in Figs. 9a-d. 
Note here that cycles following the overload are plotted on a 
semilogarithmic scale to show both immediate and long-term effects of 
peak loading. The shaded bands in Figs. 9a-d represent the steady-state 
value of Kopen prior to the overload, while the vertical bars show the 
observed Kopen following the peak load. The uncertainty represented for 
Kop~. stems from the fact that fringe patterns were photographed at 
discrete load increments. This uncertainty could be, of course, reduced 
by recording more fringe patterns as the crack opens. The actual crack tip 
profiles at various points in the load spectrum are shown in Fig. 10 for the 
Qp~ak = 2.25 overload condition. Note that the profiles determined by the 
laser interferometry method provide a distinctive measure of the load 
required to separate completely the crack faces. 

Examining Fig. 9a, one notices that a significant tensile load (20 to 25 
percent gmax) is required to completely open the crack faces for steady- 
state cycling to Kmax --- 5.5 MPa.m lj2 (5 ksi.in.lJ2). Since the crack is 
closed partially at the minimum load (Km~, = 0.1 Kmax), the effective 
range in stress intensity is reduced from 90 percent to approximately 75 
percent of Kmax. When the Qp~ak = 2.0 overload was applied, Kopen was 
raised to 30 to 35 percent of Kmax but decayed to the original steady-state 
value. Since the reduction in effective AK caused by raising Kopen lasted 
less than 100 cycles, there was no observable pertubation in subsequent 
crack growth. 

For the higher overload, however, crack growth was retarded signifi- 
cantly. As shown in Fig. 9b, The Qpeak = 2.25 overload raised Kopen to 35 
to 40 percent of Kmax, and although Kopen again dropped after ten cycles, 
the steady-state value was not reached for 100 000 cycles. At this time 
measurable crack extension occurred, gradually returning to the baseline 
rate. The Qp~k = 2.5 and 3.0 overloads again caused an increase in Kopen 
followed by a slight drop after 10 cycles. In both cases, however, the 
opening load failed to return to the original value and subsequent crack 
growth was arrested for at least 400 000 cycles. In both instances, the 
effective AK was reduced by the change in Kooen. Since Kmax = 5.5 
MPa. m 1/2 (5.0 ksi. in. 1/2) is close to the threshold range in stress intensity 
factor for fatigue crack growth (see Fig. 5), this reduction in effective AK 
has particular significance. 

The results of these tests indicate that the peak loads caused an increase 
in Kop,n which was related to fatigue crack retardation as suggested by 
Elber. In all cases, Kope, was raised on the first cycle following the 
overload but dropped after ten cycles had elapsed. As the overload ratio 
was increased, Kopen was  also raised. 
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FIG. 9a--Qope. and crack growth versus cycles after overload for  Qpeak = 2.0. 

Concluding Remarks 

A laser interferometry technique has been described which is capable of 
resolving crack surface displacements to about 0.1 /zm. The technique 
possesses a significant advantage over other commonly employed crack 
displacement methods in that measurements are not restricted to the 
motion of two fixed points but enable one to obtain the entire free surface 

FIG. 9b--Qope. and crack growth versus cycles after overload for  Qpeak = 2.25. 
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FIG. 9c--Qope. and crack growth versus cycles after overload for  Q p ~  = 2.5. 

displacement profile. Since the method is not hampered by the rigid body 
motions which limit holographic techniques, the procedure is readily 
adaptable for laboratory measurements on standard testing machines. 

The laser interferometry procedure can be used to determine the 
opening loads required for studies of the closure mechanism for fatigue 
crack retardation. In this paper, the opening load was defined as the 

FIG. 9d--Qope. and crack growth versus cycles after overload for  Qp~ak = 3.0. 
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remote load required to produce measurable displacement along the entire 
crack length. Opening loads determined in this manner  for a fatigue crack 
grown under conditions of constant  range in stress intensity factor  were 
found to be significantly less than those obtained by the strain gage 
method. This discrepancy is most  likely due to the fact that the laser 
technique determines when the crack faces measurably separate on the 
specimen surface, whereas the strain gage method determines when the 
specimen behaves as if a fully open crack were present.  

Single peak tensile loads were found to perturb subsequent  crack 
growth under  constant  AK baseline conditions. The opening load was 
observed to increase on the first cycle after the overload and then to 
decrease under  additional cycling. This immediate increase in Kop~ differs 
from the gradual rise observed by Elber  [6], who used clip gages to obtain 
load-displacement curves.  

Changes in closure loads were correlated successfully with peak 
overloads and subsequent fatigue crack retardation as suggested by the 
closure model. The authors feel a precautionary note is needed,  however ,  
since all closure loads were based on observations of  the crack displace- 
ment profile at the free surface under  conditions of  plane stress. This 
same limitation is, of  course,  also inherent in the clip gage and strain gage 
methods. Recent  work in transparent polymers using optical interference 
procedures [10] and in aluminum with ultrasonic techniques [16] indicate 
that the closure effect may not  be as significant in the plane strain interior 
of the specimen. 

Finally, it should be noted that the laser interferometry method for 
measuring crack surfaces is not restricted to closure studies. Indeed, the 
technique may be used whenever  accurate measurements  of  the free 
surface crack profile are desired. 
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Effect of Stress .Ratio and Overload Ratio on 
Fatigue Crack Delay and Arrest Behavior 
Due to Single Peak Overloads 

REFERENCE: Himmelein, M. K. and Hillberry, B. M., "Effect of Stress Ratio and 
Overload Ratio on Fatigue Crack Delay and Arrest Behavior Due to Single Peak 
Overloads," Mechanics of Crack Growth, ASTM STP 590, American Society for 
Testing and Materials, 1976, pp. 321-330. 

ABSTRACT: In this investigation stress interaction effects on fatigue crack 
propagation following single peak overloads in 2024-T3 aluminum alloy were 
studied. The two parameters investigated were the overload stress ratio, 
ROL = Kmin/KoL. and the overload ratio, KoL]Kmax. Tests were run with quasi- 
constant stress intensity fatigue loading following the overload. The effect of 
overload on the crack growth rate through the overload plastic zone was observed. 
Additional tests were run to determine only whether or not crack arrest would 
occur. The delay effect due to single peak overloads was found to increase with 
overload stress ratio, RoL, and overload ratio, KoL/Kmax. The higher values of both 
ROL and KoL/Kma x produced nonpropagating fatigue cracks, and the delay/arrest 
boundary was defined. 

KEY WORDS: crack propagation, fatigue tests, aluminum alloys, stresses, residual 
stress, stress ratio, loads (forces) 
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AK Stress intensity range 
n Empirically determined constant 

N Number of stress cycles 
No Number of delay cycles 
Rs Ratio of minimum stress intensity to maximum stress intensity, 

Kmin/Kmax 
ROL Ratio of minimum stress intensity to overload stress intensity, 

Kmin/KoL 
ZOL Measured delay affected zone size 

One of the major problem areas associated with fatigue design, espe- 
cially when using fracture mechanics, is the ability to predict fatigue crack 
growth behavior. It has been recognized for some time that a change in 
the load level significantly influences the subsequent crack growth rate. 
However, the common crack growth or life prediction methods do not 
account for these load interaction effects. As a result the crack growth 
behavior under spectrum loading conditions remains difficult to predict. 

Schijve [1]~ and more recently Hudson and Raju [2], Jonas and Wei [3], 
Von Euw, Hertzberg, and Roberts [4], Trebules, Roberts, and 
Hertzberg [5], Probst and Hillberry [6], Corbly and Packman [7], Wei, 
Shih, and Fitzgerald [8], and Porter [9], examined the crack growth delay 
behavior resulting from single or multiple peak tensile overloads. The 
tensile overload frequently creates an initial accelerated crack growth 
followed by a slowing down of the growth to some value below the 
original growth rate and then an acceleration back to the original rate. The 
reduced growth rate is of primary interest since the overall effect of the 
overload is to cause a net delay in the crack growth. The region over 
which the crack growth is affected is believed to be related to the plastic 
zone created by the overload, although there is some question on this and 
also the correlation has been less than gratifying. The number of delay 
cycles, defined as the number of cycles following the overload until the 
crack growth rate returns to the steady-state value, is influenced signifi- 
cantly by many factors including the loading conditions, the environment- 
al conditions, and the material parameters. The load sequence conditions 
including the magnitude of the overload, the stress ratio and underload 
levels can significantly influence the delay behavior. However, the exact 
dependence is not fully understood. Probst and Hillberry [6] observed 
complete crack arrest when the overload stress intensity, KOL, was greater 
than or equal to 2.3 • Kmax(gmax is the maximum level of the subsequent 
fatigue cycling) for a fatigue stress ratio, Re, of 0.3. 

Hsu and Lassiter [10] studied the effect of compressive overloads and 
found that a tensile overload followed by a compressive underload 
resulted in less delay than when there was no compressive underload. 

The italic numbers in brackets refer to the list of references appended to this paper. 
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Gallagher [11 ] and others showed that when high overloads are present 
in spectrum type loadings a significant delay can result. Prediction 
methods which account for the delay effects are necessary. 

There are several hypotheses for explaining the delay phenomena. It 
has been suggested that under high loading the crack tip is blunt while 
under low loading it is much sharper [12]. Immediately following the 
overload the blunted crack causes a lower stress concentration effect on 
the crack tip which accounts for the delay. Another theory is that the 
overload creates a residual stress field at the crack tip due to the plastic 
strain that occurs within the plastic zone. The resulting compressive 
residual stress then decreases the local tensile stresses at the crack tip 
thereby delaying the crack growth. Gallagher [11] showed that the 
Willenborg [14] and Wheeler [15] models could be expressed in terms of a 
residual stress concept. 

Elber's crack closure model [13] has also been used to describe the 
delay effect [5]. Elber showed that the crack remained closed until a 
certain stress intensity level was reached and then it opened. Since crack 
growth can only occur when the crack is open, the overload raises the 
applied stress intensity level necessary to open the crack. This results in a 
lower net applied stress intensity range for propagating the crack. 

There have been several models proposed to account for the delay 
effects due to tensile overloads. These models, in general, are based on 
some reduced effective stress level resulting from the overload. The 
Wheeler model [14] modifies the constant amplitude growth rate equation 
by multiplying by a parameter which is a function of the overload and 
fatigue plastic zone sizes and an empirically determined exponent. The 
Willenborg, Engle, and Wood model [15] utilizes a reduced effective 
stress in the constant amplitude growth rate equation where this effective 
stress is related to the overload and fatigue plastic zone sizes. Gallagher 
and Stalnaker [11 ] modified the Willenborg model, while Gray [16] gives a 
modification of the Wheeler model. 

This study [18] was undertaken to determine the effect of the stress 
ratio on the delay behavior due to single overloads using 2024-T3 
aluminum alloy. Also, the growth rate through the plastic zone was 
determined by carefully measuring the crack growth following the over- 
load and numerically differentiating these data. From this, the minimum 
growth rate following the overload was determined. 

Experimental Procedure 

Test Program 

A test program was designed to ascertain the effects of overload stress 
ratio (RoL = Kmin/KoL) and overload ratio (KoL/Kmax) on crack propagation 
rates following single peak tensile overloads. Five values of overload ratio 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



324 MECHANICS OF CRACK GROWTH 

were selected ranging from 1.3 to 2.5; however, based on Probst's [6] 
results, crack arrest was expected for some of the tests. Six values of the 
stress ratios (RoL = Kmin/KoL) were selected between 0.01 (nearly zero) 
and 0.6. Since a range of crack propagation rates was desired, five values 
of crack propagation rate between 10 -7 and 10 -5 in./cycle were chosen and 
assigned randomly throughout the test matrix. Using these growth rates, 
particular values of AK were selected from the constant amplitude growth 
rate test results. The value of AK, corresponding to the expected growth 
rate, was then used as the constant amplitude fatigue loading for the test. 

Following the completion of the tests in the original test matrix, the 
tests in which complete crack arrest occurred indicated that additional 
tests were required to define the delay arrest boundary. These tests were 
run only to determine whether or not arrest would occur, and no a versus 
n data were recorded. Arrest in this investigation is defined as no 
observable crack growth (less than 0.01 mm) in 1.5 • 106 cycles. 

Test Specimen 

The material used throughout the investigation was 2024-T3 aluminum 
alloy. Center crack specimens (22 by 6 by 0.100 in. thick) identical to 
those used by Probst and HiUberry [6], were used for the fatigue testing. 
Fatigue loading was applied parallel to the direction of rolling of the 
material. Since the material was obtained with a mill finish, the surface in 
the area near the stress raiser was polished to a near mirror finish in order 
to facilitate optical observation of the fatigue crack. Tada's modification 
of Feddersen's formula was used to calculate the stress intensity factor 
for this geometry [17]. 

Test Equipment 

A closed-loop electrohydraulic, fatigue test system was used to load the 
specimens. The crack growth was measured optically with a X100 
microscope mounted on a horizontal measurement traverse. The resolu- 
tion of the traverse was 0.01 mm. A strobe light was used to illuminate the 
specimen which allowed viewing the crack in the open-most position 
without stopping the system. A digital printer, pushbutton actuated, 
provided a means for rapid data acquisition. Data were taken by incre- 
menting the microscope on crack length, usually 0.01 to 0.05 mm and 
recording the corresponding number of cycles, N,  when the crack reached 
that length. 

Test Procedure 

All tests were run in an environment of air desiccated with silica gel and 
at temperatures between 18 and 21~ (65 and 70~ Loading frequencies 
were between 15 and 20 Hz. The stress intensity was controlled within 3 
percent by load shedding, which provided quasi-constant K test condi- 
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tions. Pre-overload data provided a growth rate comparison with separate 
constant amplitude data and published data. 

Overloads were applied at a frequency of 0.02 Hz and recorded on an 
oscillograph. In all cases the preoverload loading was the same as the 
postoverload loading. Following an overload, the specimen was cycled 
continuously, until steady-state growth rate was again reached.  

For  further details on the experimental  methods,  see Ref  18. 

Results 

The constant amplitude growth rate test results along with the preover- 
load growth rate data were used to compare  with published data. The 
results were found to agree with the following equation [20] 

da/dN = 6.8 • 10-'~ + 0.698 Rs)AK] 358 

Tension tests of three specimens gave the following average values. 

yield strength = 56.9 ksi 
ultimate strength = 69.0 ksi 
elongation = 14.2 percent  

As mentioned in the experimental  procedure  section, all crack propaga- 
tion data were taken in the form of crack length, a,  versus the correspond- 
ing number of cycles, N.  Based on a second order least squares fit over  
overlapping intervals of  seven data points, the function a versus N and the 
derivative da/dN versus a were found. Figures 1 and 2 show typical 
results. Figure 1 also shows the method of defining the extent  o f  the 
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FIG. 1--Typical a versus N data (Test 9-A). 
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FIG. 2--Typical da/dN versus a results (Test 9-A). 

ovedoad affected plastic zone, ZOL, and the number of delay cycles, No.  
Table 1 gives the results of the tests. 

Since different crack propagation rates resulted from various tests and 
the overload affected zone size differed with each overload, normalized 
variables were chosen to compare the results. An average crack propaga- 
tion rate, d a / d N  = ZoL/No,  over the delay interval, was calculated and 
then normalized on the preoverload propagation rate to compare the 
relative reductions in the crack propagation rate. Figures 3 and 4 show 
these results plotted against the test parameters, ROL and KoL/gmax, 
respectively. Large ranges of growth rates were observed, and definite 
trends in the growth rate with respect to the test variables are evident. 

Probst found that for Rs = 0.3, large overloads (KoL/Kmax > 2.3) would 
produce complete crack arrest. Continuing this further, this investigation 
showed that an arrest/delay boundary exists as a function of the overload 
stress ratio, RoL. This boundary is shown in Fig. 5. Notice that as RoL 
increases, the overload ratio, Kot/Kmax necessary to produce complete 
crack arrest decreases. 

Applying the crack closure concept [13] to the overload cycle gives 

KOL - -  gop 
U - - 0.5 + 0.4RoL 

KoL - -  Kmin 
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FIG. 3- -Normal i zed  average crack propagation rate versus RoL. 

Assuming crack arrest occurs when Kop >- Kmax this equation can be 
solved for the arrest boundary. This is compared with the test results in 
Fig. 5. 

Table 1 gives the complete test results for each of the tests of the 
original test matrix. Included in the table are the values for N~, overload 
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FIG. 4---Normalized average crack propagation rate versus KoJKmax. 
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F I G .  5---Arrest~delay boundary (shaded symbols indicate supplemental tests). 

affected zone,  ZOL, as well as the preover load  growth rate,  pre-oL, 

average growth rate,  Zoo/No, and the minimum growth rate,  ,~in. 

Conclusion 

These test  results show that as the over load  stress ratio, ROL = Kmin/ 

KOL, increased, the value of Ko~JKmnx along the delay/arrest  boundary  
decreases.  Fur thermore ,  it was shown that the crack closure model  as 
applied to the over load cycle agrees reasonably  well with the experimen-  
tal arrest/delay boundary.  

A c k n o w l e d g m e n t s  

Partial support  for this s tudy was provided by the Air  Force  Flight 
Dynamics Labora tory ,  Wright-Pat terson Air Force  Base under  contract  
No. F33615-74-C-3056. The specimens were provided by the Aluminum 
Company of  America.  

This study was completed in partial fulfillment for the degree of Master  
of Science in Mechanical  Engineering,  Purdue Universi ty .  

References 
[1] Schijve, J., "Fatigue Crack Propagation in Light Alloy Sheet Material and Structures," 

Report NLR MP 195, National Aerospace Laboratory, 1962. 
[2] Hudson, G. M. and Raju, K. N., "Investigation of Fatigue Crack Growth Under Single 

Variable-Amplitude Loading," NASA TN D-5702, National Aeronautics and Space 
Administration, Washington, D.C., March 1970. 

[3] Jonas, O. and Wei, R. P., Report of Current Research, International Journal of 
Fracture Mechanics, Vol. 7, No. 1, March 1971, pp. 116-118. 

[4] von Euw, E. F. J., Hertzberg, R. W., and Roberts, R. in Stress Analysis and Growth of 
Cracks, Proceedings of the 1971 National Symposium on Fracture Mechanics, Part 1, 
ASTM STP 513, American Society for Testing and Materials, 1973, pp. 230-259. 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



330 MECHANICS OF CRACK GROWTH 

[5] Trebules, V. W., Jr., Roberts, R., and Hertzberg, R. W. in Progress in Flaw Growth 
and Fracture Toughness Testing, ASTM STP 536, American Society for Testing and 
Materials, 1973, pp. 115-146. 

[6] Probst, E. P. and Hillberry, B. M., Journal, American Institute of Aeronautics and 
Astronautics, Vol. 12, No. 3, March 1974, p. 330. 

[7] Corbly, D. M. and Packman, P. F., Engineering Fracture Mechanics, Vol. 5, 1973, 
pp. 479-497. 

[8] Wei, R. P., Shih, T. T., and Fitzgerald, J. H., "Load Interaction Effects on Fatigue 
Crack Growth in Ti-6AI-4V Alloy," NASA CR-2239, National Aeronautics and Space 
Administration, Washington, D.C., April 1973. 

[9] Porter, T. R., Engineering Fracture Mechanics, Vol. 4, 1972, pp. 717-736. 
[10] Hsu, T. M. and Lassiter, L. W., "Effects of Compressive Overloads on Fatigue Crack 

Growth," presented at AIAA/ASME/SAE 15th Structures, Structural Dynamics and 
Materials Conference, Las Vegas, Nev., April 1974. 

[11] Gallagher, J. P. and Stalnaker, H. D., "Methods for Analyzing Fatigue Crack Growth 
Rate Behavior Associated with Flight-by-Flight Loading," AIAA Paper No. 74-367, 
presented at AIAA/ASME/ASE 15th Structures, Sturctural Dynamics and Materials 
Conference, Las Vegas, Nev., April 1974. 

[12] McMillan, J. C. and Pelloux, R. M. N. in Fatigue Crack Propagation, ASTM STP 415, 
American Society for Testing and Materials, 1967, pp. 505-535. 

[13] Elber, W. in Damage Tolerance in Aircraft Structures, ASTM STP 486, American 
Society for Testing and Materials, 1971, pp. 230-242. 

[14] Wheeler, O. E., Journal of Basic Engineering, Transactions, American Society of 
Mechanical Engineers, Series D, Vol. 94, No. 1, March 1972, pp. 181-186. 

[15] Willenborg, J. D., Jr., Engl e, R. M., and Wood, H. A., "A  Crack Growth Retardation 
Model Using an Effective Stress Concept," AFFDL-TM-71-1-FBR, Air Force Flight 
Dynamics Laboratory, Jan. 1971. 

[16] Gray, T. D., "Fatigue Crack Retardation Following a Single Overload," AFFDL-TM- 
73-137-FBR, Air Force Flight Dynamics Laboratory, Oct. 1973. 

[17] Tada, H., Paris, P. C., and Irwin, G. R., Stress Analysis of Cracks Handbook, Del 
Research Corporation, Hellertown, Pa., 1973. 

[18] Himmelein, M. K., "The Effect of Stress Ratio and Overload Ratio on Fatigue Crack 
Delay and Arrest Behavior Due to Single Peak Overloads," M.S. thesis, Purdue 
University, West Lafayette, Ind., May 1974. 

[19] Gallagher, J. P., "A  Generalized Development of Yield Zone Models," AFFDL-TM- 
FBR-74-28, Air Force Dynamics Laboratory, Jan. 1974. 

[20] Gallagher, J. P., personal communication, Jan. 1974. 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



T. D.  Gray 1 and J. P. Gallagher I 

Predicting Fatigue Crack Retardation 
Following a Single Overload Using a 
fled Wheeler Model 

Modi- 

REFERENCE: Gray, T. D. and Gallagher, J. P., "Predicting Fatigue Crack 
Retardation Following a Single Overload Using a Modified Wheeler Model," 
Mechanics of Crack Growth, ASTM STP 590, American Society for Testing and 
Materials, 1976, pp. 331-344. 

ABSTRACT: A modification to the Wheeler fatigue crack retardation model is 
proposed. The modification allows the model to be used without reliance on data 
fitting and, therefore, without the subsequent limiting to a specific material or to a 
specific set of loading parameters. The new model is used to predict existing data 
for the number of delay cycles following a single overload in 2024-T3 aluminum, 
4340 steel, and Ti-6A1-4V titanium alloy. All predictions were within essentially a 
factor of two of the experimental data. 

KEY WORDS: crack propagation, retardation models, cyclic loads, stresses, 
residual stress, mechanical properties, fatigue (materials) 

N o m e n c l a t u r e  

a 

aoL 
Aa 

C,n,q,t 
C ,  

J~N sp 

K 
Kmax 
Kmin 

Crack length 

Crack length immedia t e ly  af ter  ove r load  
Cur ren t  c rack growth  i n c r e m e n t  s ince  over load  
Crack growth  rate cons t an t s  
Whee le r  c rack  growth  r educ t ion  fac tor  

Crack growth  rate u n d e r  s p e c t r u m  loading  

Crack growth rate u n d e r  s teady state load ing  

Stress In tens i ty  
M a x i m u m  stress in tens i ty  
M i n i m u m  stress in tens i ty  

1 Structures Division, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force 
Base, Dayton, Ohio, 45433. 
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Kmax ~ Overload stress intensity 
K'max 

AK 
AKeft 
AK~ 

m 
N* 

P 
R 
ru  

r*y 
S 
Z 

Z ,  
ZoL 
Z* 

O'y s 

Stress intensity required for no-load-interaction 
Stress intensity range ( g m a  x - Kmin)  

Effective stress intensity range 
Threshold stress intensity range 
Wheeler shaping exponent 
Observed delay cycles 
Load 
Stress intensity ratio (gmin/gmax) 
Plane stress plastic zone radius 
Plane strain plastic zone radius 
Overload shut-off ratio 
Load interaction zone 
Current load interaction zone 
Overload created load interaction zone 
Load interaction zone required for no-load-interaction 
Load interaction zone constant 
Yield stress 

The qualitative effect of an overload on a fatigue crack propagating at 
some lower, cyclic load is well known. A tensile overload will delay or 
retard subsequent fatigue crack growth below that expected for the steady 
state case (no overload). Any crack growth analysis that does not account 
for this high-to-low load interaction will predict an overly conservative 
crack growth life. 

Wheeler [1 ] 2 proposed that the linear cumulative damage fatigue crack 
growth predictive technique could be improved by introducing a factor to 
suppress the crack growth calculation following an overload. Although it 
is a substantial improvement over the linear cumulative damage rule, the 
original Wheeler retardation model is more of a data fitting technique than 
it is a predictive technique. In reducing the growth rate following an 
overload, the model utilizes an empirical shaping exponent, m, which is a 
constant for any particular case but varies according to type of material, 
specific load spectrum, and possibly other factors. Forcing the shaping 
exponent to be a constant may provide a good correlation between the 
model and a particular set of experimental data, but an important loss of 
generality is incurred in doing so. This paper proposes a modification to 
the Wheeler retardation model which (1) relates the exponent, m, to the 
primary factors that affect it and (2) allows the model to be used without 
reliance on data  fitting. 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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Model Development 
L o a d  Interact ion Z o n e  Concep t  

Any crack growth retardation model must provide for a proper charac- 
terization of the crack tip residual stress state created by prior spectrum 
loads. In general, the maximum extent of any load-generated residual 
stress state, can be defined using a parameter Z, called the load interac- 
tion zone (LIZ). 

A schematic showing the relationship between load and its correspond- 
ing LIZ is shown in Fig. 1. Load P1 applied at crack length al develops a 
zone Z1 which extends to some future crack length position a3. Load P2 
applied at crack length a2 develops an LIZ which spans the distance 
between az and some future crack length position a4. An assumption basic 
to the Wheeler model is that if the load P2 develops an LIZ which extends 
out to or past the furthest extent of a previously developed LIZ, that is, 
a2 + Z2 - a~ + Z1, the growth increment associated with the P2 loading 
is calculated using a steady-state (no retardation) growth rate equation. 
Conversely, a crack growth rate reduction is assumed if the load P2 
applied at crack length position az develops a toad interaction zone which 
is smaller than that required to reach the furthest extent of any previously 
developed LIZ boundary, that is, a~ + Z2 < a~ + Z1. 

Wheeler [1 ] assumed that the load interaction zone Z, was equal to the 
plastic zone (radius) size created under plane strain loading 

2 

Z -  47rX/~- = r* (1) Y 

CRACK POSITION 
AND LIZ 
AT LOAD PI 

CRACK POSITIOn 
AND LIZ 
AT LOAD P2 

P2 

Zj. 

CRACK LENDTH 

�9 LIZ FOR PI 
IN ADVADCE OF at 1 

Z 2, LIZ FDR P2 
IN ADVANCE Of ~2 

FIG. 1--Schematic illustrating the load interaction zone (LIZ) concept. 
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334 MECHANICS OF CRACK GROWTH 

while others [2] suggest that the plane stress plastic zone (radius) size 
might be a more appropriate approximation of Z, that is 

Z =  = ru (2) 

To generalize Eqs 1 and 2, one could assume that 

Z ~OL ~-~-ys~ 2 (3) 

where a would be a function of material and thickness. 

Stress Intensity Format 

The Wheeler model was not derived originally in a stress intensity 
format, but such a format could be easily developed. Wheeler proposed 
that the crack growth rate under spectrum loading was equal to a reducing 
factor times the steady-state growth rate, or 

" = C p •  
sp 8S 

(4) 

where 

C p -~- 

m 
Z[~_~_] , Zc < Z* (5) 

1 , Z ~  >- Z*  (6) 

In Eqs 4 and 5, the quantity Zc is the extent of the current LIZ or the LIZ 
caused by the current maximum applied cyclic stress intensity, Kma x. The 
quantity Z* is the difference between the LIZ due to a previous overload 
and the current crack growth increment since that overload, that is 

Z* = ZOL -- Aa (7) 

Figure 2 shows that Z* is also the LIZ that would be necessary in order to 
have no retardation, that is, after the crack has grown some increment, 
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- -  OL 
NO RETARDATION 

.. I ~̂ ,~ C~CK Lm~m ~.~ ~,L ~" ~176 

FIG. 2----Stress intensity (K'max) required for  coincident load interaction zone boundaries. 

Aa, away from the crack position immediately after the overload, aOL , the 
quantity Z* is the LIZ required to be coincident with the LIZ due to the 
overload. As the crack grows away from the overload position, aoL, 
that is, as Aa increases, Z* decreases. For the case of coincident LIZ 
boundaries (no retardation), there must be some stress intensity, K'max, 
which would be necessary to cause an LIZ of size Z* and which continu- 
ously decays as the crack grows away from the overload position. Assum- 
ing that the extent of an LIZ is related to stress intensity by Eq 3 and 
substituting this relation into Eq 7 yields 

rK*maxl 2 r~m~xO~ [ A a ]  
o~ =o~ x 1 

L o-ys _1 L (TYS -] ZOL 
(8) 

which can be rearranged in terms of K'max, Kmax ~ Aa, and ZOL to give 

Aa t 1/2 
K*rnax : Kmax OL X 1 ZOL (9) 

The locus of K'max values, defined by Eq 9, is illustrated graphically in 
Fig. 2. 

The Wheeler reducing factor, C p ,  may now be expressed in a stress 
intensity factor format by substituting the LIZ size relation (Eq 3) into 
Eqs 5 and 6, resulting in 

C p  = 

m ~ a x l Z m ,  Kmax </f 'max (10) 
*maxJ 

1 , Kmax - K'max (11) 

As seen in Eq 10 the Wheeler model considers the ratio of Kmax to K'max 
as the driving force for the amount of retardation applied to the low 
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amplitude load induced crack growth rates. Stating the Wheeler retarda- 
tion concept in a stress intensity factor format implies that ff 
Kmax < K'max, crack growth rates below steady-state levels can be 
expected for those cycles associated with Kmax-  If Kma x > K'max, no 
suppression in crack growth rates below steady-state levels is predicted. 

The steady-state crack growth rate in Eq 4 can be, in general, expressed 
a s  

do I ~ = C • [f(AK,R) ]" (12) 

where 
C = constant which varies according to the type of material and 

the specific steady-state equation being used. 
n -- constant which depends only on the material, and 

f (AK,R)  = controlling stress intensity function which drives the fatigue 
cracking process. 

Three familiar forms for the function f lAK ,R)  are given next. 

Paris [3] equation: f (AK,R)  = AK (13) 

Walker [4] equation: f (AK,R)  = AK(1 - R) t -1  (14) 

Elber [5] equation: f(AK,R) = AK(1 + qR) (15) 

Equations 10 through 12 can be substituted into Eq 4 to obtain 

dN sp 

IF Kmax C •  LK.m.,, j • (f(AK,R , Kma x < K * m a  x (16) 

, Kmax ~ K ' m a x  (17) 

which is the stress intensity format for the Wheeler model in conjunction 
with a general expression for steady-state crack growth. 

Equation 16 shows that Wheeler crack growth reduction factor may be 
applied directly to the stress intensity range function. With this fact in 
mind, Eqs 16 and 17 can be rearranged in terms of an effective stress 
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intensity range, AK~ee, to yield 

where 

1 
 Ko,, = LK*'a J 

f(•K,R) 

= C x [AKaf]" (18) 

• f(AK,R), Kmax < K'max (19) 

,Kmax -> K'max (20) 

Crack Arrest Condition 

Experiments involving single overloads in 2024-T3 aluminum [6] and 
Ti-6A1-4V [7] indicate that there is a particular value, S, of Kmax~ 
such that when Kmax~ >-S, crack arrest occurs. In particular, 
Probst and Hillberry [6] showed that the condition for crack arrest was 
independent of Kmax- In the absence of any additional definitive experi- 
mental work, it will be assumed that the overload shut-off ratio, S, is 
constant. For 2024-T3 aluminum, Probst and Hillberry [6] determined that 
S is approximately 2.3. Wei et al [7] provided data which indicate that S 
for Ti-6AI-4V is about 2.8. 

The limiting condition for crack arrest is Kmax~ = S. Im- 
mediately after an ovedoad, Aa = 0. Substituting these relations into Eqs 
9 and 19 yields 

I l  l , 2m AKen (at arrest) = ~ -  • f(AK,R) (21) 

For the limiting case of crack arrest, the residual stresses induced by 
the overload adjust the stress state such that the effective stress intensity 
range just equals the threshold stress intensity range (AKth), the point 
below which no measurable fatigue crack growth occurs. Thus 

AKeff (at arrest) = AKth (22) 

In research associated with AKtn, Grandt and Gallagher 18] showed that 
the threshold stress intensity range can be, in general, expressed as a 
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function of AKth at an R ratio equal to zero and the actual R ratio, as 
illustrated in the following equation 

AKIn = g (AKth R = 0 ' R )  (23) 

Using the concept of Eq 22 in conjunction with Eq 23 and the modified 
Wheeler formulation for Kefe (at arrest) (Eq 21) and solving for the 
exponent, m 

I E og g(AKt~- 

n R =  

m = ~- • log S 

(24) 

Thus, it is evident that the Wheeler exponent, m, is not a constant but 
depends on the specific material being used and the loading subsequent to 
the overload. 

Data Correlation 

To illustrate the accuracy of the modified Wheeler model, predictions 
made using the model were compared to existing experimental data 
[6,7,9,10,11,12] for the number of delay cycles  (N*, see Fig. 3) 
following a single overload. The data include three materials, 2024-T3 
[6,9,t0], 4340 steel [11], and Ti-6A1-4V [7,12], and a number of 
different values of loading parameters (see Table 1). A delay cycle is 
defined as any postoverload cycle of loading in which the growth rate is 
less than that expected for the case of no overload. In the 2024-T3 and 
4340 experiments, load shedding techniques were employed to obtain 
constant AK loading before and after an overload. Because of slightly 
different experimental techniques, the observed delay cycles in the 
Ti-6A1-4V experiments correspond only approximately to N* as defined 
in Fig. 3. 

To simplify the delay cycle calculations, it was assumed that AKth is a 
constant with no dependence on stress intensity ratio, R, and that the 
Paris equation (Eq 13) can describe adequately steady-state crack growth 
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for any particular R ratio. With these assumptions, Eq 24 becomes 

log 

n 
m = ~ - •  l~gS J (25) 

Equations 18, 19, and 25 were programmed in a computer routine to 
analyze the postoverload crack growth on a cycle by cycle basis. This 
routine applies one load cycle at a time and counts it while computing the 
growth increment da , updating the current growth increment since 

d"N' Sp 

overload (Aa), and checking the condition Kin,x< Kmax~ -- Z~oL.] 

AS soon as this condition is violated, the total number of cycles up to 
that point, that is, the delay cycles, is printed out. 

The overload shut-off ratios, S, for 2024-T3, 4340, and Ti-6A1-4V were 
taken to be 2.3, 2.3, and 2.8, respectively. Table 2 summarizes the Paris 
growth rate equation constants, C and n, that were used for the various 
materials and R ratios. These constants were determined by a least 
squares fit to d a M N  versus M(2 data presented in Refs 6,7,9,10,11,  and 
12, or, where applicable, the constants were taken directly from these 
references. Threshold stress intensity ranges for 2024-T3, 4340, and 
Ti-6AI-4V were assumed to be 2, 6, and 6 ksi ~ (2.2, 6.6, and 6.6 
MN/m 3/2, respectively. 

V'~STEADY STATE 

CYCLES 

N* 

STEADY STATE - ~  / 

f 

FIG. 3--Crack growth curve (for constant AK loading) depicting the number of  delay 
cycles, N*, following a single overload. 
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GRAY AND GALLAGHER ON FATIGUE CRACK RETARDATION 343 

For both 2024-T3 and 4340, the load interaction zone was assumed to be 
equal to the radius of the plane stress plastic zone as given by Eq 2. Wei et 
al [7] presented data indicating that the LIZ in Ti-6A1-4V is several times 
the value calculated using Eq 2. Accordingly, the predictions for Ti-6A1- 
4V were made assuming the LIZ, that is, the extent of the residual stress 
state's influence, to be approximately four times the plane stress plastic 
zone radius ((x -- 2/~-, see Eqs 2 and 3). 

Figure 4 shows the correlation between the predictions and the experi- 
mental data. Note that all predictions are within essentially a factor of two 
of the actual data, an excellent correlation considering the various types 
of materials and values of loading parameters included in the data. For all 
cases considered, the exponent, m, varied from 1.07 to 4.34 according to 
Eq 25. The exponent need be computed only once per overload case 
since, in these calculations, it is assumed that constant AK loading follows 
the overload. 

Before applying the modified Wheeler model to variable amplitude load 
spectra, it must be noted that changes in load level can induce changes in 
the Wheeler exponent rn (see Eq 25). The recalculation to determine m is 
conducted for load changes for which retardation modeling is applicable. 
The reader is cautioned that the model at present does not account for 
load interaction effects which may change the magnitude of the shut-off 
ratio S, that is, multiple overloads and underloads applied subsequent to 
overloads may influence S. However, variable amplitude crack growth 
analyses that include the modeling of first-order, load-interaction effects 
such as demonstrated herein provide substantial improvements in life 
prediction capability. 

d'= 

/.r / /  
/ ' ~  / / e  ~ e2024-T3 REF 6 

/ . ~ /  / �9 ~3tlO REF 11 . 

O' . . . . . . . .  II0' . . . . . . . .  II0~ . . . . . . . .  I0' 
OBSERVEO OELRY CYCLES 

FIG. 4----Predicted delay cycles versus observed delay cycles. 
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344 MECHANICS OF CRACK GROWTH 

Summary 

The  W h e e l e r  fa t igue  c r a c k  r e t a r d a t i o n  m o d e l  has  b e e n  m o d i f i e d  b y  
fo rmula t ing  the  m o d e l  in a s t r e ss  i n t ens i ty  f a c t o r  f o r m a t  and  a p p l y i n g  a 
c r a c k  a r r e s t  cond i t ion .  T h e  mod i f i c a t i on  r e l a t e s  the  e x p o n e n t ,  m ,  to  the  
p r i m a r y  f ac to r s  tha t  a f fec t  it  a n d  a l l ows  the  m o d e l  to  b e  u s e d  w i thou t  
re l i ance  on  d a t a  f i t t ing and  w i thou t  the  s u b s e q u e n t  l imi t ing  to  a spec i f i c  
ma te r i a l  and  a speci f ic  se t  o f  load ing  p a r a m e t e r s .  

A s  e v i d e n t  in Fig .  4, the  mod i f i ed  W h e e l e r  m o d e l  c a n  p r e d i c t  de l ay  
cyc l e s  fo l lowing  a s ingle  o v e r l o a d  in 2024-T3, 4340, and  T i - 6 A I - 4 V  wi th in  
e s sen t i a l ly  a f ac to r  of  t w o  o f  the  ac tua l  e x p e r i m e n t a l  da ta .  T h e  t rue  
m e a s u r e  o f  any  c r a c k  g r o w t h  ana lys i s  is i ts  a c c u r a c y  in p r e d i c t i n g  g r o w t h  
u n d e r  a gene ra l  load  s p e c t r u m .  N o n e t h e l e s s ,  this  m o d e l  a t  p r e s e n t  
a p p e a r s  to  h a v e  the b a s i c  e l e m e n t s  n e c e s s a r y  for  a g e n e r a l i z e d  ana lys i s ,  
and  its s u c c e s s  in p r e d i c t i n g  d e l a y  c y c l e s  fo l lowing  a s ingle  o v e r l o a d  is 

encourag ing .  
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Cyclic Crack Growth Analysis for Notched 
Structures at Elevated Temperatures 

REFERENCE: Gamble, R. M. and Paris, P. C., "Cyclic Crack Growth Analysis for 
Notched Structures at Elevated Temperatures," Mechanics o f  Crack Growth, AS TM 
STP 590, American Society for Testing and Materials, 1976, pp. 345-367. 

ABSTRACT: Linear elastic fracture mechanics analysis in conjunction with the 
appropriate experimental crack growth data were used to predict allowable thermal 
fatigue crack growth rates in gas turbine disks. The crack growth predictions made 
for the turbine disks compared favorably with subsequent service data. 

Further studies were undertaken to determine the effect of geometric stress 
concentration on crack initiation and crack propagation. A general method of 
analysis was developed to provide simple approximations of the crack growth rates 
for cracks initiating at notches. The crack growth rates predicted by this method 
are in good agreement with both experimental laboratory specimen data and field 
service turbine disk data. 

KEY WORDS: thermal stresses, fatigue (materials), gas turbine disk, crack 
initiation, crack propagation, elevated temperature, stress concentration 

Nomenclature 

ac 
N 

daMN 
KI 

n, Co 

f 
R 
T 

KI 
O" o 

Crack length 
Fatigue cycles 
Cyclic crack growth rate 
Tensile range in stress intensity factor 
Numerical constants 
Frequency 
Load ratio = Kmin/gmax = O ' m i n / O ' m a  x 

Temperature 
Crack tip stress intensity factor 
Nominal net section stress 
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346 MECHANICS OF CRACK GROWTH 

O" G 

ao 
aT 
b 

K ~  
F(a/b) 

Kt  
a co 

Nominal gross section stress 
Depth of geometric notch 
Effective total crack length = ac + ao 
Specimen half width 
Stress intensity factor for unnotched infinite plate 
Stress intensity modification function 
Elastic stress concentration factor 
Crack length corresponding to crack initiation 

Recently, there has been broad application of fracture mechanics to 
generator and steam turbine rotors [1-3], 3 pressure vessels [4-7], and 
aircraft structures [8-10]. One area which has apparently received less 
attention in the literature concerns the application of fracture mechanics 
to gas turbine design. As the effort to avoid peak power blackouts 
continues and the need increases for more efficient power generation, it is 
expected that gas turbines will find increased usage in peaking and 
combined cycle plants. Since past experience has indicated that gas 
turbine components often crack during service [11-13], fracture 
mechanics should become even more important in gas turbine design to 
help eliminate prolonged and disruptive power outages. 

This paper presents an example where fracture mechanics was used to 
predict allowable limits of thermal fatigue crack growth in gas turbine 
disks. The results of this study allowed safe, scheduled removal of 
cracked field units eliminating the possibility of premature return for 
many of these turbines. 

Since the application discussed herein represents an important, general 
class of problems dealing with crack initiation and subsequent crack 
growth from notches, a further study was conducted to develop a general 
method to approximate the crack growth rates for cracks initiating at 
notches. The cyclic crack growth rates predicted by this generalized 
method are discussed in relation to their application to laboratory 
specimen and field service data. 

Nature of the Problem 

Figure 1 shows the free turbine rotor assembly containing four gas 
turbine disks. The rotor is a double flow design powered by the radial flow 
from two jet engines. Turbines of this type came into prominence after the 
Northeastern Blackout in 1965 and are primarily used by electric utilities 
as peaking units where rapid start-stop operation is required. This mode 
of operation imposes severe cyclic compressive and tensile thermal 

3 The italic numbers in brackets refer to the list of references appended to this paper. 
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GAMBLE AND PARIS ON NOTCHED STRUCTURES 347 

FIG. l--Free turbine rotor assembly. 

stresses on the unit and has resulted in fatigue cracking in each of the four 
turbine disks. 

Figure 2 shows typical thermal fatigue cracks found in a first stage gas 
turbine disk. The cracks are located at the bottom of each blade slot in an 
area having a relatively severe geometric stress concentration and high 
nominal cyclic thermal stress. The cracking is multinucleated with crack 
initiation first occurring on the gas inlet face of the disk at the corner of 
the blade slot where the local transient thermal conditions are most 
severe. Various crack propagation stages are illustrated by the two 
fracture surfaces in Fig. 3. Figure 3a shows the fracture surface for a first 
stage turbine disk with 750 service cycles. The crack front is propagating 
in the radial direction but does not yet extend across the entire axial 
length of the blade slot. Figure 3b is the fracture surface for a different 
first stage turbine disk having 1535 cycles. Here one continuous crack 
front has been formed and is propagating in the radial direction. 

The fracture surfaces in Fig. 3 represent the two gas turbine units in 
which cracks were first found in turbine disks. The immediate problem 
was to predict the cyclic crack growth rates thought to be representative 
of all gas turbine disks operating under similar conditions and establish 
the number of operating cycles that could be safely tolerated by the 
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348 MECHANICS OF CRACK GROWTH 

FIG.  2--Therrnal fatigue cracks in blade slots of  first stage gas turbine disk. 

(a) N = 750 cyc les ,  ac = 0.12 in. 
(b) N = 1535 cyc les ,  a e  = 0.185 in.  

F IG.  3----Fracture surfaces for  two gas turbine disks. 
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TABLE l----Chemical composition ofA286 forgings (weight percent). 

c Mn Si P S Cr Ni Mo Ti B V A 1 

0.06 1.21 0.66 0.006 0.009 15.31 26.17 1.29 2.25 0.006 0.18 0.28 

remaining field units. A study was later undertaken to establish a repair 
procedure to refurbish the cracked turbine disks and extend their useful 
service life. 

Initial Cyclic  Crack G r o w t h  Predict ions for Turb ine  Disks  

As a first approximation, the turbine disk crack propagation rates were 
obtained by using the two data points indicated in Fig. 3 in conjunction 
with cyclic crack growth data generated from small laboratory specimens. 

Experimentation 

Material and Spec imens - -The  gas turbine disk material is an iron base, 
precipitation hardening, super alloy forging commonly designated as 
A286. Initially, it was planned to obtain the test material from the rim area 
of the cracked turbine disks; however, additional testing, to be discussed 
later, required very large specimens and precluded obtaining all test 
material from actual disk forgings. The test samples were finally obtained 
from a large rectangular bar specifically forged to provide material for all 
planned tests. Microstructural examination, short-time tension tests, and 
elevated temperature, strain controlled, low-cycle fatigue tests later 
indicated that the disk and test forgings were essentially the same. The 
chemical composition and the average short-time room and elevated 
temperature tensile properties representative of the disk and test forgings 
are presented in Tables 1 and 2, respectively. 

Experimental crack growth rate tests were conducted using both 
compact tension (CT) and single edge notch (SEN) specimens. The CT 
specimens were 0.25 in. thick with a 3-in. square planar dimension, while 
the SEN specimens were 0.38 in. thick by 2.0 in. wide by 6.0 in. long. 
Generally, the remaining details for specimen preparation were in accord- 

TABLE 2---Average mechanical properties of A286 forgings, solution treated 
1650~ h/oil quenched, aged 1325~ h/air cooled. 

0.2% Yield Ultimate Elastic Reduction 
Temperature, Strength, Strength, Modulus, in Area, 

OF ksi ksi ksi % 

70 l 11.0 158.0 28700 40.9 
900 98.5 132.0 23100 38.5 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



350 MECHANICS OF CRACK GROWTH 

ance with ASTM Test  for Plane-Strain Fracture  Toughness of Metallic 
Materials (E 399-72). 

Procedure--All tests were conducted under  load control in a closed 
loop, hydraulically activated, mechanical test machine. Cyclic crack 
growth was determined by visually monitoring the movement  of the crack 
as it passed reference grid lines photographically printed on the specimen 
surface. Data were obtained at load ratios of  R =  0 and R = - 1  using the 
SEN specimen, and at R = 0 using CT specimens.  Crack growth rate 
tests were conducted for both load ratios at room temperature  and 900~ 

Experimental Results and Discussion 

The results for  the crack growth rate tests are shown in Fig. 4, where 
the indicated cyclic stress intensity, at a given load ratio, was determined 
using only the tensile load component .  At cyclic tensile stress intensities 
up to 90 ksi ~X/q-ff7., the data for both load ratios and test temperatures can 
be expressed in the general form [14] 

da/dN = Co(K1)" (1) 

where 

da/dN = cyclic crack growth rate, 
K~ = tensile stress intensity range, and 

n, Co = material constants determined from experimental  results. 

Within the range of  cyclic tensile stress intensity from 20 to 90 ksi X/]-~.i 
the data in Fig. 4 indicate that n is independent  of the indicated test 
conditions, while Co is a function of  both temperature  and load ratio. 

The room temperature data indicate the load ratio has no effect on the 
crack growth rate. However ,  at 900~ the growth rate for the R = - 1  
data is approximately three times greater than that of the R = 0 data at a 
given cyclic tensile stress intensity. There appears to be no effect of 
specimen geometry on crack growth rate. 

Crack Growth Rate Analysis 

The crack growth rates in the gas turbine disks were determined using 
the service data in Fig. 3, the stress intensity formula for an edge crack in 
a semi-infinite plate [15] 

K = 1.13 ( roX/~c  (2) 
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FIG. 4---Laboratory crack growth rate data for A286 forgings. 

and the average crack growth rate versus tensi le  stress intensity relation- 
ship 

d a / d N  = 8.6 • 10 -1~ (K0 2"9 (3) 

determined from Fig. 4. The relationship in Eq 3 was  est imated from the 
data at 900~ for a load ratio R = - 1 . 2  and is representative of  the 
conditions in the turbine disk as determined by transient heat transfer and 
stress analyses.  

Equations 2 and 3 can be combined to express  the crack propagation 
rate in the form 

ac1-~ -~ = (29) (o-0) 2.9 (N2 - N1) 10 -1~ (4) 
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where 

acl 

ac2 
N1 
Nz 

= initial crack length, 
= subsequent crack length, 
= number of fatigue cycles corresponding to at1, 
= number of fatigue cycles corresponding to a e2, and 

tro = effective nominal stress. 

The effective nominal service stress propagating the crack in the turbine 
disk was estimated by substituting the crack lengths and associated 
fatigue cycles from the initial two service points in Fig. 3 into Eq 4. The 
resultant effective stress, O-o = 68 ksi, was placed back into Eq 4, and the 
crack growth rate curve for the first stage gas turbine disks was con- 
structed. 

Service Life Prediction and Discussion 

The predicted cyclic crack growth rate service curve for the first stage 
gas turbine disks is shown in Fig. 5. The extrapolated service curve 
indicates very high rates of crack growth at approximately 3500 cycles.  
Based on this estimate, it was decided to employ a factor of two on the 
maximum service life and recall the gas turbine disks from service at 1750 
cycles. 

The data designated by the open circles in Fig. 5 indicate first stage 
turbine disks subsequently returned from service. Represented are ap- 
proximately 15 percent of all field units operated at a number of various 
utilities. The data near 1750 cycles are indicative of units returned in 
accordance with the allowable life predictions. Those units at lower 
numbers of cycles were returned for reasons unrelated to the disk 
cracking, but do provide additional information for crack propagation 
rates in turbine disks. The data indicate that all turbine disks follow the 
same trend, with crack initiation occurring within 250 cycles, and the 
subsequent crack propagation rates in good agreement with the curve 
initially predicted from Eq 4 and the two service points in Fig. 3. It should 
be pointed up that the crack growth rates for small cracks in the vicinity of 
the notch cannot be predicted by Eq 4. The portions of the curve 
extending from crack initiation to a crack length of 0.12 in. were 
arbitrarily drawn to encompass the remaining service data. 

Turbine Disk Repair Procedure and Analysis 

Although the gas turbine disk life had been successfully predicted, the 
resultant 1750 cycles was an unacceptably short service life. In an effort 
to extend the service life beyond the original design, a repair procedure 
was established to refurbish the cracked turbine disks. The repair 
procedure, illustrated in Fig. 6, involved removing the cracked turbine 
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FIG. 5--Laboratory crack growth rate data applied to turbine disk service points. 

disks from service after 1750 cycles, machining the existing fatigue cracks 
from the blade slot and replacing the original notch configuration with one 
having larger radii. As a supplement to the crack removal and the 
implementation of the new notch design, it was planned to place heat 
shields over the blade slots in order to reduce the transient thermal 
stresses. 

An analytical and experimental study was then undertaken to predict 
and verify the safe and useful service life for repaired turbine disks prior 
to reinstallation. 

Stress Analysis (results) 

A transient thermal stress analysis was conducted to define the repair 
disk service life, explore various means to reduce the operating thermal 
stress, and obtain the required service life without fatigue cracking. 
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16-INCH RADIUS 

FIG. 6----Repair scheme to remove fatigue cracks from turbine disk blade slots. 

It was determined that adding heat shields to the turbine disk rim 
reduced the transient thermal stress range by 10 to 15 percent. Unfortu- 
nately, further significant thermal stress reduction could only be obtained 
by drastic alteration of the operating cycle. Since these alterations would 
preclude successful operation of the turbine as a peaking unit, they were 
not implemented, and the repair was restricted to the addition of heat 
shields and change in notch geometry. 

Experimentation 

Material and Specimens--The material for this portion of the investiga- 
tion was obtained from the same forging used for the initial crack growth 
rate tests. 

Crack initiation and propagation studies were conducted using the large 
notched specimens shown in Fig. 7. The specimens were designed to first 
obtain initiation and propagation data for the original notch, followed by 
fatigue crack removal to allow testing of the repair notch. Not shown in 
Fig. 7 are notches positioned on either side of the indicated test notch to 
simulate the general stress distribution adjacent to the bottom of the blade 
slot in the turbine disk. The notch radii shown for the test specimen are 
the same as those in the turbine disk. The remaining specimen dimensions 
were chosen to simulate both the geometric stress concentration, as 
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FIG. 7--Notched laboratory fatigue specimen. 

determined by laboratory strain gage measurements on the turbine disk, 
and the range of cyclic stress intensity indicated by the predicted service 
curve in Fig. 5. A specimen thickness of 1.5 in. was chosen to satisfy 
plane-strain requirements over the range of cyclic stress intensities 
studied in accordance with ASTM Test for Plane-Strain Fracture Tough- 
ness of Metallic Materials (E 399-72). 

To ensure that the fatigue data were not affected by the different notch 
depths, two further restrictions were placed on the specimen design. 
First, the two-notch depths shown in Fig. 7 were chosen so that the elastic 
stress concentration factor [16] at a given notch radius and nominal net 
stress remained constant. Similarly, the stress intensity associated with a 
given nominal net stress and crack length extending from the notch was 
approximately the same for both notch depths as determined by the stress 
intensity formula for a double edge notched specimen [15]. 

= a n  ~ f f -  + 0.1 sin (5) 

where 

ar = sum of notch depth and fatigue crack length, 
b = specimen half width, and 

o-a = gross stress. 
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Procedure--The fatigue test were conducted in a load controlled, 
hydraulically activated test  machine shown in Fig. 8. The load schedule 
used during the tests maintained a stress ratio R = - 1.2 and produced a 
ramp loading having a 10 to 15-s dwell period at the maximum tensile and 
compressive loads. All test loads were established based on the required 
nominal net stress range. 

To establish correlation with the turbine disks, specimens having the 
original notch configuration were tested at the nominal net stress level 
necessary to produce cracking within 200 to 300 cycles.  Specimens hav- 
ing the repair notch were then tested at the same nominal net stress to 
determine the effect of  notch geometry on crack initiation and subsequent 
crack propagation. Since analysis had indicated that heat shields would 
reduce the thermal stress, additional repair  notch specimens were tested 
at reduced loads to evaluate the change in cycles to initiation and crack 
propagation rate. 

All tests were conducted at a constant  900~ using a split resistance 
furnace controlled by a chromel-alumel thermocouple  spot welded in an 
unstressed area near the central test  notch.  

At a predetermined number of cycles the tests were stopped, the 
specimen was allowed to cool and inspection was made for crack 
initiation. Crack initiation was defined as the first definite f luorescent 
penetrant indication observed in the test slot. Maximum crack initiation 

FIG. 8---Setup for elevated temperature, notched fatigue tests. 
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sensitivity was obtained by applying the penetrant under full tension test 
load so that the open crack would absorb as much penetrant as possible. 
The load was then released so that maximum amount of penetrant was 
observed as it was forced from the crack. For fully developed cracks, the 
crack lengths were measured at full tension test load using a • power 
telescope mounted on a micrometer slide having a least reading of 0.0001 
in. 

Results and Discussion 

Crack Initiation---The crack initiation data for the large notched fatigue 
specimens are shown in Fig. 9. Since crack initiation in notches is related 
generally to the cyclic strain range when local plastic flow occurs [17], the 
cycles to initiation in Fig. 9 have been plotted as a function of the net nom- 
inal strain range. At the nominal net strain range simulating the original 
transient thermal conditions in the turbine disk, the change from the 
original notch to the repair notch increases the number of cycles to crack 
initiation by a factor of four. Within the range of load levels tested, a 25 
percent reduction in nominal net strain-range increased the cycles to 
initiation in the repair notch by a factor of approximately ten. 

Propagation-Crack propagation data designated by the open circles are 
shown in Fig. 10 for three typical fatigue specimens. The bottom data set 
represents a specimen having the original notch geometry and tested at a 
net cyclic stress range which produced crack initiation between 200 to 300 
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FIG. lO---Typical crack propagation data for notched laboratory fatigue specimens. 

cycles. The middle data set represents a specimen run at the same net 
cyclic stress range but having the repair notch geometry. Comparison of 
the two data groups indicate the crack propagation rate in the immediate 
vicinity of the notch is significantly less for the repair notch in comparison 
to the original notch design. For deeper cracks, the crack propagation 
rates for the original and repair notch specimens are the same. The upper 
data set represents a repair notch specimen tested at a stress level 20 
percent less than the other two specimens. As expected, the results show 
decreased crack propagation rates both in the vicinity of the notch and for 
deeper cracks. 

The solid lines drawn through the data in Fig. 10 were obtained by 
choosing one experimental data point at a crack length greater than 0.1 in. 
and predicting the crack growth rates for the large specimen using the 
stress intensity formula in Eq 5 and the crack growth data from Eq 3. 
Since the resulting curves coincided with the remaining experimental data 
from the large notched specimen tests, it appeared that the da/dN versus 
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Ki data in Fig. 4 were applicable for larger components of different 
geometry tested at different load levels and significantly reduced cyclic 
frequencies. 

Turbine Disk Repair Life Predictions 

It was apparent from the various laboratory results that crack initiation 
could be predicted for the repaired turbine disks and that subsequent 
crack propagation rates could adequately be described by Eq 3. 

Figure 11 shows the final predicted service life for gas turbine disks 
with both the original and repair notch geometry. The curve at the lower 
left represents the original design to be returned at 1750 service cycles for 
repair. At that time the predicted crack length is approximately 0.20 in. 
with 0.25 in. being removed during the repair machining operation. This 
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F I G .  1 l----Prediction of crack initiation and propagation for first stage turbine disks with 
original and repaired blade slots. 
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margin is used to eliminate the possibility of residual fatigue cracks 
remaining in the repaired turbine disks. The curve at the lower right 
represents a repair disk subjected to the same transient thermal stresses 
as the original design. The upper curve represents repaired disks having 
reduced transient thermal stresses due to the addition of heat shields. The 
reduced stress is reflected in the greater life to crack initiation and 
reduced crack propagation rates. These results indicate that the repair 
procedure increases the total gas turbine disk service life by a factor of 
three. 

Due to the absence of service data for repaired turbine disks, two 
conservative assumptions were used in constructing the crack propaga- 
tion portion of the service life curves for the repaired disks in Fig. 11. 
First, at a given stress level, the crack growth rate in the vicinity of the 
repair notch was taken to be the same as the original notch. Second, the 
crack growth rates for deep cracks were based on an effective crack 
length composed of the sum of actual fatigue crack length and the 0.25 in. 
of material removed to eliminate the original crack. The experimental data 
shown in Fig. 10 verify the conservatism of these assumptions. 

Cyclic Crack Growth from Notches---A General Method 

Since there is wide application for fatigue loaded notched structures, an 
attempt was made to develop a simple but general method to approximate 
cyclic crack growth following fatigue crack initiation at a notch. A 
technique was first devised to provide a general analytical expression for 
stress intensity that would account for the notch presence without 
complicated calculation techniques. Starting at an initial crack length and 
number of cycles corresponding to crack initiation, the stress intensity 
relationship, together with the appropriate data from Eq 1, were then used 
with an incremental crack growth scheme to predict the subsequent 
fatigue cycles necessary to produce a given crack length. 

The proposed cyclic crack growth analysis was verified by generating a 
number of analytical predictions for both the notched fatigue specimens 
and turbine disk and by comparing the results with the appropriate 
experimental and service data. 

Stress Intensity 

The stress intensity factor for a crack extending from a notch is often 
given in the form [18,19] 

K1 = K~F(a/b) (6) 

where K= is the stress intensity formula for a given unnotched geometry 
with the crack size small compared to other dimensions and F(a/b) is a 
function accounting for the notch presence and any necessary finite width 
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correction. In this analysis, the stress and crack length associated with the 
stress intensity in Eq 6 are the nominal net stress, o-o, and the actual 
fatigue crack length, a c. To be consistent with usual fracture mechanics 
assumptions, the nominal net stress is restricted to the elastic region. No 
restriction, however, is placed on local plastic flow in the notch. 

F Functions 

General Development---To determine the F function for a given 
geometry, the following three distinct regions, related to the distance 
the crack tip extends from the notch,  are considered:  very small 
cracks corresponding to initiation, deeper cracks still within the region of 
stress concentration, and deep cracks unaffected by the notch presence. 

At crack lengths approaching zero, the value of F was obtained from 
the stress intensity solution for a crack emanating from a hole in an 
infinite plate [18,19J by generalizing the observation that 

F = 1.12Kt at a~ = 0 (7) 

where 
Kt = elastic stress concentration factor. 

Equation 7 is assumed to apply for any notch configuration and the 
associated elastic stress concentration based on nominal net stress. 

At crack lengths greater than approximately 0.1 in., the results of this 
investigation and those of Ref20 indicate that the crack growth rates are 
independent of notch tip radius. For deep cracks then, F(a/b) is simply 
equal to either 1.0, or, depending on the relative structural dimensions, 
the appropriate finite width correction. 

Finally, for cracks within the notch influence (0 -< ac <- 0.1), F(a/b) is 
constructed so that a smooth curve, matching the previously determined 
values at ac = 0 and 0.1 in. produces increasing values of KI with 
increasing values of ac in Eq 6. 

Notched Fatigue Specimens--Plots of F(a/b) as a function of ac are 
shown in Fig. 12 for the fatigue specimens having both the original and 
repair notches. The values o f F  at a c = 0 were calculated from Eq 7 using 
the experimentally determined values of elastic stress concentration 
Kt = 4.0 and Kt = 2.1 for the original and repair notches, respectively. 
For deep cracks, F(a/b) is independent of notch geometry and was 
derived in terms of a~ from the finite width correction indicated for a 
double edge notch specimen by Eq 5. 

Turbine Disk--Although the F(a/b) function for the turbine disk is not 
shown, it is essentially identical to that derived for the original notch 
fatigue specimen; however, no finite width correction for deep cracks was 
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FIG. 12--F(a/b) functions for original and repair notch fatigue specimens. 

necessary since the crack lengths are small compared to the disk 
diameter. 

Application 
In addition to deriving the F function, successful application of the 

analysis for predicting crack growth from notches depends on defining K~ 
obtaining the appropriate crack growth rate relationship similar to Eq 1, 
and defining the initial crack length and corresponding number of fatigue 
cycles at crack initiation. 

For the turbine disk and notched fatigue specimens, K~ is given by 
Eq 2, while the experimental cyclic crack growth rate relationship at the 
appropriate temperature and load ratio is given by Eq 3. Thus, from 
Eq 6, the stress intensity for the disk and specimen geometries becomes 

K, = 1.13 O-oX/~ac F(a/b) (8) 

with 
da/dN = 8.6 • 10 -1~ (K0 2"9 

The number of fatigue cycles and the associated nominal net stress, o-0, 
producing crack initiation in the notched fatigue specimens were obtained 
from Fig. 9. Since the exact number of cycles to crack initiation in the 
turbine disk cannot be defined, two different values, consistent with the 
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service data in Fig. 5, were considered. Using the previously determined 
effective nominal service stress, O-o = 68 ksi, the number of cycles to 
crack initiation in the turbine disk was estimated from Fig. 9 as 200 cycles. 
Since the service data in Fig. 5 imply that crack initiation may also occur 
earlier than 200 cycles, a second crack initiation point was chosen at 100 
cycles. The nominal service stress corresponding to this initiation point 
was also estimated from Fig. 9 and is O-o = 85 ksi. 

All incremental crack growth predictions calculated from Eq 8 were 
begun at a crack length corresponding to crack initiation ofaco = 0.002 in. 
This initial value is consistent with the inspection sensitivity used to 
define crack initiation in Fig. 9 and is a good approximation for the onset 
of Stage II cracking where a relationship represented by Eq 1 could first 
be employed. 

Results and Discussion 

Notched Fatigue Specimens--Figure 13 shows the fatigue cycles ver- 
sus crack length curves predicted for the original and repair notches at 
various stress levels. Comparison with the experimental data indicate 
good agreement. The greatest difference is seen for the middle curve where 
the predicted life at a given crack length is 25 percent greater than that 
obtained experimentally. Figure 13 is plotted on a log-log scale to 
emphasize the predicted crack growth rates for small cracks in the notch 
vicinity where experimental data could not be obtained. The predicted 
curves indicate that the crack growth rates in the notch vicinity are 
significantly less for the repair notch in comparison to the original notch. 
In addition, for a given notch geometry, the predicted curves indicated 
that small cracks in the notch vicinity have lower growth rates in 
comparison to deep cracks which extend beyond the region of notch 
influence. These predictions are consistent with those implied by the plots 
for the experimental data in Fig. 10. 

Turbine Disk--The two curves predicted at the stress levels necessary 
to produce crack initiation in the turbine disk at 100 and 200 cycles are 
shown in Fig. 14 along with the individual service data points from Fig. 5. 
The results indicate that the top curve closely describes the service data 
for deep cracks while the propagation rates for small cracks are better 
described by the lower curve. 

A closer look at the stress condition in turbine disk will help to clarify 
this difference. First, it should be emphasized that the crack is assumed to 
grow from the notch due to an applied, uniform nominal stress. For fully 
developed deep cracks in the turbine disk, this condition is fairly well 
satisfied, and the upper curve adequately describes the propagation rate. 
However, a heat transfer analysis indicated that the local heat transfer 
coefficients at the corner of the blade slot on the inlet face are two to three 
times greater than those in adjacent areas. This implies that the local 
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FIG. 13--47omparison of predicted crack propagation rates with experimental data for 
notched laboratory fatigue specimens. 

thermal stress at the notch comer is significantly greater than the nominal 
value and is consistent with Fig. 3 where crack initiation and significant 
growth are first seen to occur at this location.Thus, for small cracks, the 
propagation rates are described properly by the lower curve indicative of 
the higher stress. From these considerations, a good approximation for 
crack growth can be obtained by combining the applicable regions for the 
two predicted curves as shown by the dashed line in Fig. 14. 

Further Discussion 

The available service data shown in Fig. 5 lie in a relatively narrow 
scatterband and are in good agreement with the service curve first 
predicted from the two original service points and the cyclic crack growth 
rate data generated from the CT and SEN specimens. However, due to 
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FIG. 14--Comparison of  predicted crack propagation rates with service data for first 
stage turbine disks. 

the large variation in fatigue life generally associated with service data, 
there was some concern that the allowable service life for the remaining 
85 percent of the gas turbine units might not be represented by the curve 
in Fig. 5. Subsequent thermal and stress analyses indicated that extreme 
variations in operating schedules were necessary to alter the transient 
thermal stresses by more than ---5 percent. Since the remaining turbine 
units would not experience these extreme operating conditions, the curve 
in Fig. 5 is considered a good representation for the crack growth rates in 
all similar service units. 

The major difficulty encountered in studying the crack growth rates in 
the immediate notch vicinity was the inability to observe accurately the 
propagation of small cracks following initiation. Normally, the cracks 
initiate at various locations along the notch surface and can be monitored 
as they grow and coalesce across the specimen width; however, neither 
the depth nor the shape of the crack front can be observed. As an 
approximation for predicting the crack depth as a function of fatigue 
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cycles, the preceding analysis tacitly assumes that beginning at crack 
initiation the cyclic crack growth rate along the notch is sufficient to 
maintain a constant flaw shape factor associated with a depth to width 
ratio approximately equal to zero. The results from this investigation and 
those from Ref 20 imply that this is a reasonable assumption for edge 
notches with constrained plastic flow, although it does not appear to be 
true for all notch types [21]. The use of a constan t depth to width ratio 
approximately equal to zero, however, does provide a convenient device 
to make qualitative, and, in general, conservative cyclic crack growth 
rate predictions for small cracks in the notch vicinity when the crack 
shape cannot be defined. 

Conclusions 

1. Experimental and analytical fracture mechanics methods can be 
used to predict the allowable number of service cycles for gas turbine 
disks subjected to cyclic thermal stresses. 

2. Fracture mechanics techniques can be used to describe the cyclic 
crack growth rates in the immediate vicinity of notches beginning with 
very small crack lengths corresponding to initiation. 

3. The elastic stress concentration factor provides an effective means 
to describe qualitatively the effect of notch severity on the cyclic crack 
growth rates and, as evidenced in this investigation, may provide accurate 
quantitative predictions as well. 
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ABSTRACT: The existence for a plane or axisymmetric cracked body of an 
influence or Green's function, depending on the geometry of the body, allows 
calculation by means of a simple integral of the stress intensity factor. In this way 
the respective influence of geometry and load in K calculation are separated. The 
relationship between this function and the compliance for a concentrated force 
applied on the crack is shown. 

Starting from complex mathematical considerations, Bueckner defined weight 
functions equivalent to the influence functions and of particular advantage for 
analytic as well as numerical purposes. Moreover he showed that weight functions 
behave like d-�89 at the distance d from the crack tip. In the sequel we shall refer to 
weight functions, since they are studied more deeply from a mathematical point of 
view and are known more widely than influence functions. 

A practical calculation method of weight functions by finite elements is shown. 
This method can be used for any bidimensional cracked body, plane or axisymmet- 
ric. Curves of nondimensional weight functions are given for cylindrical geometries 
currently used in engineering. 

It is pointed up that this method is more flexible than the use of handbooks 
which, in spite of their great interest, cannot foresee all the geometries and loads 
which are met in engineering problems. 

KEY WORDS: crack propagation, fracture properties, stress intensity, stresses, 
elastic theory, weight function, plane problems, axisymmetric problems 

Existence of an Influence Function 

Let  us consider a plane or axisymmetric  symmetrical  body (Fig. la  and 
b), with a straight crack of length [ on the axis Ox. Let  a force F be applied 

i Soci~t~ Creusot-Loire, Branche Mecanique et Entreprise, Paris, France. 
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FIG. l---(a) Plane, (b, c, d) axisymmetric. 

on both sides of  the crack at abscissa  x (0 -< x -< l) on a line of  action of 
length s(x) = t, thickness of  the plane body,  or  s(x) = 2~-(Ri + x) on the 
axisymmetr ic  body.  This force results in a stress intensity factor  K~r(x,l). 
An influence function can be defined as 

s(x) 
Gi(x,l) = - -  Ki~(x,l) (1) 

F 

and is equal to the K~ resulting f rom the unit force per  unit length of the 
line action s(x) applied at abscissa  x. 

G~(x,I) depends on all the geometr ic  pa ramete r s  of  the c racked  body 
and on this geomet ry  only. 

In fact, a finite force F ,  concentra ted on a line s(x) is a theoretical 
concept.  A pressure  p(x) applied on a surface s(x)dx and equal  to the 
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370 MECHANICS OF CRACK GROWTH 

stress which would exist on the crack line if there was no crack [1 ]2 must 
be considered. This results in an infinitesimal stress intensity factor  

dKl (x , l )  = Gi (x , l )p (x  )dx  

The K1 for the whole crack is 

KI(I) = fo' G~(x, l )p(x)dx  (2) 

G~(x,1) is in a restricted sense, the Green ' s  function for  this problem. 
Emery et al [2] published curves giving functions G~(x,l) for  strips of 
finite length calculating stress intensity factors resulting from thermal 
stresses, but  such functions were not published for other  plane or 
axisymmetric geometries which are common in engineering. 

Symmetry,  with respect  to the crack line, has been assumed. The same 
definition would be possible for  Modes II and III for  plane bodies and 
Mode II for axisymmetric bodies. We shall consider only Mode I, 
omitting the subscript I. Our reasoning can be extended to Modes II and 
III. 

Relationship Between the Influence Function and the Compliance 

A pressure p(x )  applied at abscissa x on the surface s ( x ) d x  results in an 
opening or double displacement,  at the same abscissa x 

dv(x , l )  = 2du(x , l )  = 2 C ( x , l ) p ( x ) s ( x ) d x  

The associated energy of  deformation is of the second order 

1 
dZP(x,l)  = _ _ 

2 
p ( x ) s ( x ) d x  d v ( x , l )  = - [p(x)s (x )dx]2C(x , l )  

The length of the crack tip line being s(/), the energy release rate in a 
virtual extension dl of the crack is 

1 o [p (x ) s ( x )dx]  ~ o C ( x , l )  
d2g - (d2p) = 

s(O Ol s(O 01 

The italic numbers in brackets refer to the list of references appended to this paper. 
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and in plane strain 

d K =  
Ed2g 

1 - -  V 2 

I E 1 OC(x,l) I ~ 
= p ( x ) s ( x ) d x  1 - v ~ s ( l )  a l  

s(x) [ E OC(x,I) 
dK - s(l) L1 - v ~ s(l) 3 ~  

�89 

p(x)dx 

By comparison with Eq 2 we find the relationship 

s(x) [ E s(I) OC(x,l) ]~ 
G(x,l) = ~ -  1 - v 2 0- -~  (3) 

For a plane problem s(x) = s(I) = t 

I E OC(x,l) I �89 
G(x,l) = 1 - v 2 t O ~  (4) 

For an axisymmetric problem 

s(x) = 27r(R, + x) s(I) = 27r(Ri + l) (5) 

G(x,l) R~ + x [ E _ _  27r(R~+l)--0C(x'l)] �89 
= R ~ + ~  1 -  v z Ol (6) 

Weight Function 

Bueckner [3,4] has introduced so called fundamental fields. Any such 
field has a singularity at the crack tip where the displacements are infinite; 
they are in the order of d-�89 at the distance d. The field is regular 
everywhere else; it has no boundary tractions. Its boundary displace- 
ments yield weight functions. In particular a normal displacement M(x,l) 
along the crack leads to 

K(l) = M(x,l)p(x)dx (7) 

for plane problems and to 

2 - f  z Ri + x 
K(I) = R~ + 1 M(x,l)p(x)dx (8) 

for axisymmetric ones. 
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372 MECHANICS OF CRACK GROWTH 

Comparison with Eq 3, for plane and axisymmetric problems yields 

L OC(x,I) ] ~ s(l) 7rE s(l) 
M(x,I) : 7 ~ G ( x , l )  = 4(1 - v 2) Ol (9) 

By considering the singular displacement field, Bueckner has shown 
that M(x,l) is singular at the crack tip and that 

M(x,I) = (l - x)-�89 + M*(x,l) 

with a bounded M*. 
Consequently, the influence function G(x,l) has a similar behavior. 
For numerical calculation, G(x,l) and M(x,l) are equivalent. Since we 

shall make use of basic properties of weight functions and related 
information in the open literature, we shall drop the reference to influence 
functions from here on. 

It is advantageous to use the nondimensional and nonsingular function 

m(x,l) = M(x,l)[l - x]�89 (10) 

with m(l,l) = 1. 
This dimensionless weight function is the same for homothetical bodies. 

It depends on the geometrical dimensionless parameters o~i defining the 
uncracked body, and fl~ defining the crack. M(x,I) depends also upon the 
characteristic length of the body. 

To compute p(x) the at must be known. Further, the /3j must be 
specified if p(x) depends on the position of the crack. Dimensionless 
coordinates x/I or x /W (Fig. 1) can be used. 

Bueckner has given the weight functions for an infinite strip 
(l/W <- 0.5) [4] 

m ( ~ - , ~ )  = 1 +m~ (-~-) ( 1 - ~ - ) +  m2 ( ~ - )  ( 1 - / ) ~  (11) 

where ml(l/W) and m2(I/W) are polynomials in l/W. 
Symmetry may be necessary insofar as the simple relationship previ- 

ously mentioned between dK and d2g is concerned. Weight functions are 
not so restricted but apply in a more general manner [3,4]. Some 
fundamental fields can be obtained by differentiation, with respect to a 
parameter, of an ordinary field. In this context Rice [5] has demonstrated 
that if a load Lx is applied on a plane or axisymmetric body resulting in a 
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stress intensity factor K(1)(I) and displacements u(1)(x,y,l) on a line F, the 
function 

E 1 Ou(1)(x,y,l) 
h(x,y,l) - (12) 

2(1 - v 2) K(1)(l) OI 

is a weight function for the calculation of K(2)(l) under any other load L2 
applied along F. 

For loads L2 = p(x) applied on the crack sides one finds 

1 1 ~(1) 
h(x,o,l)  = ~ M(x, l )  - 2 s(x) G(x,I) (13) 

The simple integral from zero to I is then replaced by a contour integral 
along both sides of the crack. 

Calculation of the Crack Opening Displacement in a Dugdale Model 

With this model in a plane problem, the plastic zone extends to a length 
1' such that 

f0 f 77" K(I') = t M(x,I)p(x)dx - trys M(x, l ' )dx = 0 

This equation can be numerically solved for I'. According to Rice [5] 
and Eqs 12 and 13, along a crack of length l 

Ou(x,o,I) @ 1 
OI - - ~  M(x,I)K(l) 

The crack opening displacement (COD) is the opening at x = I for the 
crack length I' 

8 = 2u(i ,o , r )  = ~ M(l,X)I,;(X)dx 

Calculation of Weight Functions by Finite Element 

The finite element Code TITUS [9] was found convenient to calculate 
the nondimensional weight function m(x,l) through the compliances, as 
explained previously. Calculations could be done at low cost for bidimen- 
sional, plane, and axisymmetric geometries, Fig. 2. 

Figure 3 gives a schematic representation of the finite element mesh 
along the crack, which extends the length Ip from zero to node p. For the 
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FIG. 2---Plane and cylindrical cracked bodies. 

longest crack, l., the force F~ is applied at nodej  along the length s(x,y). 
The equilibrium condition can be expressed through the compliance 
matrix C~ which links the opening of the crack v i (") at node i to the force F~ 

v {"~ = 2u, (")- = 2C~j<")F; (14) 

For crack length lp < l,, the equilibrium conditions can be obtained 
from the preceding one by closing the crack between In and lp. In the finite 
element analysis, this is obtained by imposing the n - p conditions 

/~/p = / / p + l  : �9 �9 �9 : / / n - - 1  : 0 

I q"5~l I I 
:v,',',',n~' I I I  I I  I 

l l l l l l | l |  I I I 1 I 
.11 ]S l q -~p  Fi, I I , 

c 

Itlllllll 
lL/d iiiiii,~ 
] I I I I |H I IH  I I 1 1 1 1  
I ] 1 1 1 1 1 1  

.1 
FIG. 3--Finite element mesh near a crack. 
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The compliance matrix C~S p) for  the crack length lp is obtained by using 
these conditions to transform the system of n - 1 linear equations (Eq 14) 
with n - 1 unknowns,  Fj  into a system of  p - 1 linear equations with 
p - 1 unknowns, eliminating the n - p unknowns,  Fp . . . . .  F ,_  

u~ (') = C#(~)F~ (15) 

Thus for any crack of length lp, this method allows us to calculate the 
nondimensional weight function m(x~,lp) as defined by Eqs 9 and 10. 

For  a plane body 

I IrE Ci~ (v+1) - C~{ v) ] ~ 
m(x~,lv) = 2(1 - u 2) t ( l p -  xO lp+~ ~ -.J (16) 

For  an axisymmetric body 

I_ 7rE C i i ( P + l )  - Cii 1 ~ 
m(x~'lv) = 2(1 - v 2) 27r(R~ + Iv)(I v - xi) lp+, - lp - (17) 

After the compliance matrix C~j <") has been calculated, the matrixes 
C~S" - I ) , . . .  , C~j (v+l), C ~ j ( P ) , . . .  can be easily obtained in successive 
steps, and the weight functions determined by Eqs 16 and 17. Thus,  the 
calculations of the nondimensional weight functions for the values of I 
allowed by the mesh requires the solving of  only one elastic problem. 

Checking the Method 

An accuracy of 5 percent  was considered sufficient for  current  en- 
gineering problems. The elements and ref inement  of the mesh were 
determined arriving at an agreement within 5 percent  with the known 
solutions for K given by Gross and Bowie [6] of  the problem of an infinite 
strip under a uniform tension. This was obtained by using isoparametric 
elements with 12 degrees of f reedom and 38 nodes in the section. 

The results for K were also checked for o ther  known problems: (a) a 
round bar with an external round crack (Bueckner  [8] (Fig. 4) and (b) a 
hollow cylinder with a long axial crack under  pressure (Bowie and 
Freese [7] (Fig. 5). For  both problems an agreement  bet ter  than 5 percent  
was found. 

Some difficulties were met for  very  shallow cracks. It was not neces- 
sary for the range of interest in this work to modify the mesh rather deeply 
since the values of K for such cracks are known.  But a finer mesh might 
be necessary for shallow cracks in thick cylinders (Fig. 5). 
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The check for the weight functions was done by comparing the results 
given by Bueckner [4] for an infinite strip. It was then found that a finer 
mesh was necessary near the faces of the wall (Fig. 3). After this 
modification an excellent agreement with Bueckner's results was found 
(Fig. 6). Because of the behavior of the weight function near the crack tip, 
m(i,l) = 1, difficult and inaccurate calculations in this region were avoided 
(Fig. 7). 

Weight Functions for Plane and Cylindrical Problems 

The values of the functions m(x/W,l/W) obtained for a few geometries, 
commonly used in engineering, are given by curves for (a) an infinite strip 
(Fig. 6); (b) a long cylinder R~/W = 5 with a long axial crack (Fig. 8) and 
a circumferential crack (Fig. 9); and (c) a long cylinder RJW = l0 with a 
long axial crack (Fig. 10) and a circumferential crack (Fig. 11). 

Since the result is rather sensitive to the length of the cylinder kept for 
the calculations, the length 5/[3 = 5[(R~ + W/2)W]II2/[3(1 - ~,2)]1/4 was 
necessary. 

On Fig. 12 the influence of the geometry on the weight functions 
appears clearly. The five curves give m(x/W) with I/W = 0.46 for an 
infinite strip, internal axial, and circular cracks, in a cylinder with 
RJW = 5 and R J W  = 10. They show that, for a given applied stress 
field, decreasing values of the weight function and consequently of K are 
found for a plate, a cylinder with a long axial crack, and a circumferen- 
tially cracked cylinder, with decreasing RJ  W. Approximating a cracked 

10 
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FIG. 6--Function m (x/W, l/W) for an infinite strip. 
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F I G .  8---Axially cracked long cylinder R1/W = 5. 
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FIG. l l----Circumferentially cracked long cyfinder RIAV = 10. 

cylinder by a cracked strip may be very pessimistic when R i / W  is not very 
large. 

Weight functions were calculated for internal cracks only, and the 
eventuality of a nonmonotonic variation for large R J W ,  as evidenced by 
Emery [11] for the stress intensity factor of externally cracked pres- 
surized cylinders, was not investigated. 

The singularity of the weight functions shows that the stresses near the 
crack tip have a much more important weight than the stresses far from it. 
When the crack enters the compressive zone of a thermal stress field, 
negative elements of the integral appear which may result in a decrease of 
K and the crack arrest. 

It would be easy to calculate weight functions for other plane or 
axisymmetric geometries. 

Comparison with Another Method 

Results for the calculation of the stress intensity factors for axial and 
circumferential cracks in infinite cylinders are presented by Buchalet and 
Bamford [10] at this meeting. Instead of the weight functions, polynomial 
influence factors F1, F2, F~, F4 are used, such that for the load 

tr(x) = Ao  + A l x  +A~x  2 + Aax  ~ (o < x <-- I) 
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FIG. 12----Function m(x/w)for L/W = 0.46. 

the stress intensity factor is 

2l l z 4P -I 
aoP, + ~r alF2 + -~-A~3 + ~-AzF4J K 

o r  f -  " 1  
K : ~ L ~ o  ~- ~Alfl de_ 12A2f2 + /3A3f3 j 

To allow a comparison between both methods, the weight functions of 
Figs. l0 and I l were used to calculate the fac tors f  or F.  

k/2 f01 m , 1 ; ( / ) 3 d ( / )  
f " -  ~r , , / 1  - x 

l 
resulting from the application on the crack sides of  the nondimensional 
pressures 

l,  T ,  

for axial and circumferential cracks in a cylinder with R J W  = 10 
(Figs. 13 and 14). The coincidence was found very good. The differences 
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FIG. 13---Polynomial influence functions axial crack Ri/W = 10. 
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FIG. 14---Polynomial influence functions circumferential crack RI/W = 10. 
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for deep axial cracks can be attributed to errors in the stiffness or the 
cracked ring which it is difficult to avoid. So deep cracks have no practical 
importance. 

Conclusion 

The use of the weight function is very efficient for calculating the stress 
intensity factor resulting from any load applied to any cracked body in a 
two dimensional problem, plane or axisymmetric. When the weight 
function is known, the calculation of K is reduced to a very simple integral 
and requires only the calculation of the stress along the crack line in the 
uncracked body, which is a nonsingular elasticity problem. In this way it 
is possible to avoid the rather difficult use of handbooks, which, in spite of 
their great interest, cannot foresee the variety of geometries and loads 
which are met in engineering problems. 

A rather simple method by finite elements for the numerical calculation 
of the weight functions has been presented. This method was applied to 
normal stresses on the crack surface. It can be extended to problems with 
shear stresses but not to mixed mode problems. 

Using weight functions makes it possible to avoid such approximations 
as replacing a cylinder by a plane, assuming that K is determined only by 
the stress at the location at the crack tip, which are allowable in certain 
cases but may be wrong in others, particularly when rapidly varying 
stresses are involved. 

The importance of the applied stress field near the crack tip is 
emphasized by the singularity of the weight function, and this explains 
how cracks may arrest in the compressive region of a thermal stress field. 
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Stress Intensity Factor Solutions for 
Continuous Surface Flaws in Reactor 
Pressure Vessels 

REFERENCE: Buchalet, C. B. and Bamford, W. H., "Stress Intensity Factor 
Solutions for Continuous Surface Flaws in Reactor Pressure Vessels," Mechanics of 
Crack Growth, ASTM STP 590, American Society for Testing and Materials, 1976, 
pp. 385-402. 

ABSTRACT: A two-dimensional finite element method is used to develop stress 
intensity factor solutions for continuous surface flaws in structures subjected to an 
arbitrary loading. The arbitrary loading produces a stress profile tr acting perpen- 
dicularly to a given section S of the structure. The stress profile is represented by a 
third degree polynomial 

o ' =  Ao + A~x + A~x ~ + Aax a 

Stress intensity factor solutions are developed for continuous surface flaws 
introduced in particular sections S in the structure considered. Solutions are 
developed for a surface flaw in a flat plate, for both circumferential and longitudinal 
flaws inside a cylindrical vessel, and for circumferential flaws at several locations 
inside a reactor vessel nozzle. 

The superposition principle is used, and the crack surface is subjected 
successively to uniform (o- = Ao), linear (~r = Alx), quadratic (~r = A~x z ), and 
cubic (o- = A3x 3) stress profiles. The corresponding stress intensity factors (K/~ 
K{ ' ,  KI ~2~, KI ~3~) are then derived for various crack depths using the calculated 
stress profile in the region of the crack tip. The total stress intensity factor 
corresponding to the cracked structure subjected to the arbitrary stress profile is 
expressed as the sum of the partial stress intensity factors for each type of loading. 

KI = KI  <~ + Kr 1~ + Kl  t2) + KI <~) = 

[ ] A,:F, + 2a A1F2 +--~-- A.zF~ +--~'-- A3F4 

1 Senior engineers, respectively, Westinghouse Nuclear Energy Systems, Pittsburgh, Pa. 
15320. 
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where, a is the crack depth and F~, F2, Fz, and F4 are the magnification factors 
relative to the geometry considered. The results are presented in terms of 
magnification factors versus fractional distance through the wall (a/t) and reveal the 
strong influence of the geometry of the structure and of the crack orientation. 

The stress intensity factor solutions obtained using this method are compared to 
solutions obtained using other methods, when available. In the case of the plate 
geometry, the solution obtained for the linear loading (or = Ao + A lx )  is shown to 
agree well with the boundary collocation solution reported by Brown and Srawley. 
The stress intensity factor solutions for the circumferential and longitudinal cracks 
in the cylindrical vessel compare well with solutions obtained by Labbens et al 
using the weight functions method proposed by Bueckner, and are also in good 
agreement with the solution for uniform loading (o- = A0) obtained using the line 
spring method proposed by Rice. 

KEY WORDS: crack propagation, nuclear reactors, pressure vessels, fracture 
properties, mechanical properties, stresses, deformation 

Reactor pressure vessels operate at high temperature (-550~ and, in 
general, brittle fracture is not a potential mode of failure of the reactor 
vessel. However, during postulated accidents such as the loss of coolant 
accident (LOCA), the temperature of the reactor coolant and, therefore, 
the temperature of the vessel may approach the transition temperature of 
the metal. A fracture mechanics evaluation of the component is thus 
necessary to demonstrate that its integrity would not be impaired under 
these postulated conditions. 

The two most critical locations in the reactor vessel are the cylindrical 
portion of the vessel directly adjacent to the nuclear core (beltline), 
because it is subjected to neutron bombardment which degrades the 
material toughness, and the nozzle region, which is a geometrical discon- 
tinuity resulting in stress concentrations. Fracture mechanics analyses of 
these two critical regions require the determination of stress intensity 
factor solutions relative to the particular geometry of these regions. 
Furthermore, the steep stress gradients developed in the vessel wall 
during the postulated transients require that the actual stress profile be 
used in the stress intensity factor expressions. The stress intensity factor 
solutions usually found in the literature are for simple geometries, such as 
plates or infinite bodies, or for uniform tension and bending or both [1-3].  2 

Finite element models were used in the present work to derive stress 
intensity factor solutions for continuous surface cracks 3 in a plate, for 
continuous inside surface cracks in the cylindrical region of the reactor 
vessel, and in the nozzle region of the reactor vessel, for arbitrary 
loadings. The finite element solutions compare well with solutions ob- 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
A continuous flaw is defined as an infinite or axisymmetric flaw. 
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tained using other methods and show the strong influence of the geometry 
on the magnification factors of the stress intensity factor expressions. 

Method 

The method used to determine the stress itensity factor solution 
consists of applying the superposition principle in the loading of the finite 
element model and in expressing the stress intensity factor in terms of the 
coefficients of a third degree polynominal representing the stress profile 
perpendicular to the section of the structure considered. 

Superposition Method  

Figure 1 illustrates the superposition principle. The stress intensity 
factor KI for the crack in a section S of the structure, subjected to a 
remote loading (F, M) represented by a force F and a moment M, is equal 
to the stress intensity factor K~ for the same crack in section S ef the 
structure, where the crack surface is subjected to a stress profile cr (x) 
identical to the stress profile developed perpendicularly to the uncracked 
section S by the remote loading (F, M). 

Stress Intensity Factor 

The stress profile o- (x) developed perpendicularly to section S of the 
reactor vessel wall during a transient, in the absence of flaw, can be fitted 
by a third degree polynomial 

tr = Ao + Alx  + A2x 2 + A3x  3 (1) 

A higher order polynomial could be used if necessary. 
If a continuous surface crack is now assumed to be present in section S 

during the transient considered, the stress intensity factor may be 

F F 

SECTI,ON ~ SECTION ~ SECTION s i- i 

F F 

K I K; + K~ 

0 

F I G .  1--Superposition principle. 
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conveniently expressed as follows 

KI = ~ [ AoF1 + 
a2 ] 2a 4 

AIFz + ~-A2F3 + ~-~-a3A3F4 (2) 

A0, Aa, A2, and A3 = coefficients of the polynomial expression Eq 1 
representing the stress profile o-(x) in the 
uncracked section S 

a = crack depth, and 
F~, F2, F3, and F4 = magnification factors corresponding to the 

geometry analysed. 

It is shown in the appendix that if F1, F2, F3, and F4 in Eq 2 are taken equal 
to the front surface magnification factor 1.12 [4] Eq 3 represents the stress 
intensity factor for a continuous surface flaw in a semi-infinite body 

KI = 1.12 ~ IAo + 4 1 a 2 

A, + 5-A= + ~ -  a3a3 (3) 

In Eq 2, the magnification factors F1, F2, F3, and F4 are functions of the 
cracked geometry and are independent from the type of loading. Thus, the 
magnification factors can be determined using any arbitrary stress profile 
applied to the crack surface. The magnification factors F1, F~, F3, and F4 
relative to a given crack depth a are determined by successively loading 
the crack surface with a uniform (o- = A0), linear (o- = A~x), quadratic 
(o- = A2xZ), and cubic (~ = A~x a) stress distribution. The procedure is 
then applied to other crack depths to determine the variation of the 
magnification factors F1, F2, F3, and F4 with the crack depth to thickness 
ratio (a/t). Figure 2 shows the various stress distributions applied to the 
surface of the crack and the equations used to determine in each case the 
corresponding magnification factor. Figure 3 shows how the stress 
intensity factor K (  ~ is determined from the finite element solution for 
uniform loading. The same method is used to determine the stress 
intensity factors K~ "~, KI ~2~, and KI ~3~ corresponding to the other stress 
distributions. 

For a value of r small enough compared to the crack depth a, it is 
known that the elastic stress distributions o-x and o-~, in front of the crack 
can be expressed as follows [5 ] 

KI 
~x = ~ + ~xo + 0(r v2) (4) 
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FIG. 2---Magnification factor determination. 

g l  
-4- 0 ( r  1/2) (5) 0 " .  - -  

From Eqs 4 and 5 

or x + 0% Kl  O'xo 
2 - ~ + 2 -  + 0(rX/2) (6) 

o r  

(Or x + O'.) O ' x o _ _ - -  
2 ~ -~ K~ + ~-~v/27rr (7) 

Equation 7 indicates that (o-~ + o-,)/2 ~ is a linear function of 
when r is small compared to crack depth a. Thus, as shown in Fig. 3, K1 (~ 
is obtained at the intercept of this linear function with the axis correspond- 
ing to r = 0. This method requires evaluation of the stresses in the 
immediate vicinity of the crack tip and, thus, a very refined grid in this 
region. The several elements immediately adjacent to the crack tip are 
never small enough to reflect the singularity accurately, but the method 
circumvents this problem in the linear extrapolation process. The stresses 
in the first several elements are discarded, but, for the model used, there 
are enough elements left within the singular region to allow accurate 
determination ofK~. This method was found to yield more accurate results 
than the method based on displacements, because it only requires linear 
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FIG. 3---Stress intensity factor determination. 

extrapolations. Some of the results obtained were compared to those 
obtained using the J-integral technique and agreed within about 1 percent. 

To calculate the stress intensity factor for a continuous surface crack in 
a particular section of the reactor vessel during a transient, the following 
steps must be followed: 

1. For the transient analyzed, calculate the stress profile developed 
perpendicularly to the section considered, without the crack. 

2. Fit the stress profile obtained by a third degree polynomial and 
obtain the coefficients A0, A1, A2, and A3. 

3. Select the K~ expression applicable to the section of the vessel and to 
the crack orientation considered (Eq 2) and replace the coefficients A0, 
A1, A2,  and A3 by their values. 

4. Calculate K~ for various crack depths a. 

Crack Tip Model 

Conventional constant strain elements were used in the model, and the 
finite element mesh is shown in Fig. 4, including the refined grid used in 
the crack tip region. In order to change easily the crack depth a, the 
square elements adjacent to the crack tip containing the extremely refined 
mesh can be removed from one location and placed at another location in 
the model. The renumbering of the nodes is not necessary due to the fact 
that the program used 4 utilizes the wave front method of solution. Figure 
4 shows how the crack depth a can be changed by moving the elements 
adjacent to the crack tip. 

Stress Intensity Factor Solutions 

Plate 

The finite element model of the plate is shown in Fig. 5. The plate 
thickness is t = 8.625 in., and the height of the plate is two times the 
thickness t (it was verified that changing the height of the model did not 
change the results). The boundary conditions are indicated in Fig. 5. 

4 A general finite element program. 
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F I G .  4----Crack tip element. 

For every crack depth a considered, the cracked surface is subjected to 
the loading sequence illustrated in Fig. 2 and described in the previous 
section. The stress intensity factor solution is shown in Fig. 6. The points 
in the figure represent the finite element solutions obtained for the seven 
crack depth value selected, 0.25, 0.5, 1, 2, 4, 6, and 7 in. The solid lines in 
the figure represent a best fit of the calculated points. The stress profile 
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F I G .  5---Plate model. 
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FIG. 6--Single edge cracked plate under arbitrary loading. 

shown in the figure acting perpendicularly to the crack surface is the 
stress profile exisiting in the section when the crack is not present. 

The results indicate that the principal factor F1 in the K~ expression 
corresponds to the uniform portion of the stress profile and that the higher 
the order of the terms in the polynomial stress distribution (Eq 1), the less 
influence these terms have on the KI values. 

The solution reported by Brown and Srawley [1] for the single edge 
cracked plate, under linear loading using a boundary collocation method, 
is also shown in Fig. 6 and agrees well with the finite element solution. 

Cylindrical Vessel - Circumferential Flaw 

The axisymetric model is shown in Fig. 7. The thickness of the cylinder 
is t = 8.625 in., and the inside radius is R = 86.5 in. The height of the 
model (h) is ten times the thickness t. This extension in model height is 
necessary to represent correctly the infinite cylinder. Figure 8 shows the 
relative deformations of the plate and of two models (h = 2t and h = 10t) 
of the cylinder when the cracked surface is subjected to a uniform loading 
of 100 ksi. It is seen that the cylindrical model with h = 2t does not 
represent correctly the stiffness of an infinitely long cylinder, which 
represents 5 the geometry of the beltline of a reactor vessel. The actual 

The representation of the reactor vessel by an infinitely long cylinder is in fact, 
conservative when a continuous crack is assumed, because the motion of the extremities of 
the actual vessel is prevented by the bottom and top heads of the reactor vessel, thereby 
reducing the magnitude of the magnification factors in the stress intensity factor expression. 
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FIG. 7--Cylinder model - c i r c u m f e r e n t i a l  c r a c k .  

boundary conditions used are indicated in Fig. 7. Here again, the cracked 
surface is subjected to the loading sequence illustrated in Fig. 2. 

The stress intensity factor solution for the circumferential crack under 
arbitrary loading is shown in Fig. 9. The solution corresponds to t/R equal 
to approximately 0.1 and was found independent of the absolute dimen- 

R 86 5" i lL~B.625" I 

~ ? PLATE 

CRACK SURFACE (c = I0(] KS I) 

CYLINDER (h = IOt) 

--CYLINDER (h ~ 21) 

FIG. 8--Relative deformations for plate and cylinders. 
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394 MECHANICS OF CRACK GROWTH 

sions of the cylinder. The points in the figure represent the finite element 
solution obtained for the various crack depths considered. The solid lines 
represent best fits of the calculated points, excluding those for small 
values of the crack depth, for which the finite element model does not 
reproduce accurately enough the actual stiffness of the geometry. Thus, 
the solid line corresponding to F1 is extrapolated to a value of 1.12 [4] for 
zero crack depth and the solid lines corresponding to Fz, F3, and F4 are 
extrapolated to a value of 1.0 for zero crack depth. The value of 1.0 is 
conservative since F2 is smaller than unity [I ] for a/t equal zero and F3 and 
F4 are always smaller than F2. 

Qualitatively, the results are similar to the results obtained for the 
single edge cracked plate (Fig. 6), but the magnitude of the magnification 
factors for deep cracks is much less in the case of the circumferential 
crack in the cylinder, thereby showing the strong effect of the stiffness of 
the cracked geometry on the stress intensity factor. 

The solution obtained by Labbens et al [6] for the same geometry, using 
Bueckner's weight functions [7] is shown in Fig. 10 and is in very good 
agreement with the finite element solution. The solution obtained using 
Rice's line spring method [8] is also shown in Fig. 9 for the case of uniform 
loading. This solution is in good agreement with the finite element 
solution. 

Cylindrical Vessel---Longitudinal Flaw 

The finite element model is shown in Figs. 1 I-I3. The dimensions of the 
cylinder are the same as for the circumferential flaw. The same loading 
sequence is again applied to the crack surface. The stress intensity factor 
solution is shown in Fig. 14. The same extrapolation is made to extend the 
best fit solid lines to zero crack depth. The maximum value obtained for 
F1 (-5) indicates that this geometry is stiffer than the plate geometry and 
less stiff than the geometry obtained with a circumferential flaw in the 
cylinder. 

The solution obtained using Rice's line spring model is shown in Fig. 14 
(for uniform loading) and agrees with the finite element solution. Again, 
the solution obtained by Labbens et al using Bueckner's weight functions 
agrees with the finite element solution, as shown in Fig. 15. 

Nozzle Geometry 

The main reactor coolant pipes are connected to the cylindrical shell by 
the reactor vessel nozzles. In the analysis, the three dimensional nozzle 
geometry is axisymmetric around the nozzle axis; the cylindrical vessel is 
approximated by a sphere having a radius equal to twice the radius of the 
cylinder.The stress intensity factor solution is obtained for cracks located 
at three different regions in the nozzle. Region I is close to the pipe 
juncture where high thermal stresses may develop due to the difference in 
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FIG. 9--Circumferential  crack in cylinder (t/R = 0.1). 
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FIG. 11--Finite element model of reactor vessel beltline containing a longitudial crack. 
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16--Reactor vessel nozzle model. 

the thermal expansion coefficients between stainless and carbon steels. 
Regon II is at the nozzle reinforcement where the highest stresses develop 
during the thermal shock produced in the case of a reactor coolant pipe 
break (LOCA) [9]. Region III is at the nozzle corner where a stress 
concentration exists when the vessel is under pressure. Figure 16 shows 
the finite element model of the nozzle, including the three regions of 
interest. Figures 17-19 show the stress intensity factor solutions for the 
three regions in the nozzle. 

Here again, for every crack depth considered, the same loading 
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F I G .  17---Stress intensity factor for a circumferential crack in Region I of inlet nozzle 
( t lR  = 0.18) .  
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sequence is applied to the cracked surface and results in the points shown 
in the figures. The KI expressions determined can be applied to a given 
loading situation by using the stress profile developed perpendicularly to 
the uncracked section of the nozzle selected, as described previously. The 
maximum values of the F1 factors show that Region I is less stiff than 
Regions II and III. Region III presents the particularity that the curvature 
of the F functions is reversed for values of crack depth up to about 5.5 in. 
This result implies that for a given stress profile, the K~ values for shallow 
cracks are larger in Region III of the nozzle than in any other sections 
analyzed. 

Conclusion 

Stress intensity factor solutions were obtained using two-dimensional 
finite element models for continuous surface cracks in a plate, cylinder, 
and nozzle under arbitrary loading. The following conclusions can be 
drawn. 

1. For the plate and the cylindrical vessel, the finite element solutions 
agree with other solutions, thereby giving confidence in the solutions 
obtained for the nozzle geometry. 

2. The amplitude of the magnification factors is a function of the 
stiffness of the cracked structure. The amplitude of the magnification 
factors decreases when the stiffness of the geometry increases. This is 
true when going from the plate to the cylinder and from the longitudinal to 
circumferential crack orientation. For a cylinder, moreover, the stiffness 
increases when the ratio of the thickness to radius (t/R) increases. Thus, 
the magnification coefficients of the stress intensity factor solutions for 
Regions II and III. Region III presents the particularity that the curvature 
tion coefficients for the solution relative to the circumferential crack in 
the reactor vessel. This effect becomes increasingly important for cracks 
depths larger than 20 percent of the wall thickness. 

APPENDIX 

Stress Intensity Factor for a Continuous Surface Crack in a Semi-Infinite Body 

Consider a through crack in an infinite body under a stress profile symmetric 
with respect to the middle of the crack, as shown in Fig. 20a. The stress intensity 
factor at Point A is as follows llOJ. 

Iq - V~a-  o-(-x) a--- x ax + o-(x~ ~ -  x a (8) 
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f ~ o . ( _ x ) (  a + x \ ' '  f "  / a  - x \ . ~  dx dx =Jo ~ a ~ x  ) ~ a - - x  
(9) 

thus 

K, = ~ f ,  o'(x) L\ a - x / 
a - xS} 1/2] d x -  
a T T  / .j 

2a fo a o-(x) ~ a  ax/UZ-- x ~ '~  0o) 

The stress profile or(x) is expressed as a third degree polynomial as in Eq 1 

o-(x) = Ao + Alx + A.zx 2 + Azx 3 

And Eq 10 becomes 

f " xdx 
Al ~/a2 _ x, 2 f 7  xZdx s xadx -~1 + A2 ~ + Az V ~  2 

_ _  + ( l l )  

Replacing the integrals in Eq 11 by their value, one obtains 

A 2 a a 2 4 al 
K, = N/Tra o + - - A ,  + u-a2+ - - a a A  (12) 

2 3~" 

The continuous surface crack in a semi-infinite body under an arbitrary stress 
profile r is shown in Fig. 20b. The stress intensity factor solution is obtained 
from Eq 12 corrected for free surface effect [41 

I 2a a2 4aa 1 Kr = 1.12N/~aa Ao + - - A 1  + 2A2 + - -  As (13) 
71" 311" ' 
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o- (-x) - - ~  o- Ix) 
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b. CONT(NUOUS SURFACE CRACK IN SE~I-INFINITE BODY 

FIG. 20--Continuous cracks under arbitrary loading. 

Note-In  reality, the free surface correct ion factor  strictly applies to the uniform 
component  Ao of the s tress  profile. In Eq 13, the free surface correct ion factor  is 
applied conserva t ive ly  to all the components  of the stress profile.  
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Residual Life Estimates for Structures with 
Partial Thickness Cracks 
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Society for Testing and Materials, 1976, pp. 403-419. 

ABSTRACT: This paper presents a practical approach for estimating residual 
fatigue life of structures with partial thickness cracks under arbitrary Mode I cyclic 
elastic stress fields. Residual life is defined herein as the number of cycles required 
to grow the crack from specified initial dimensions to some final configuration that 
results in static failure. A powerful influence function theory is modified for 
application to three-dimensional stress analysis of planar crack problems with 
arbitrary crack front shapes. The resulting procedure allows stress intensity factor 
solutions and residual fatigue life estimates for any Mode I stress field applied to 
the crack geometry. 

Exact stress intensity factor solutions are presented for the buried ellipse under 
arbitrary Mode I stress fields. A procedure is outlined to build useful, accurate 
stress intensity factor algorithms for complex surface crack geometries from a few 
three-dimensional numerical stress analyses. 

KEY WORDS: fatigue life, crack propagation, mechanical properties, stress 
gradients, structural analysis 

A problem frequently encountered in thick safe-life structures is the 
presence of fatigue-initiated buried or surface cracks emanating from 
notch or material defect stress concentrations as in Figs. 1 and 2. If the 
cracks are small and do not completely penetrate the thickness, that is, 
are partial thickness (PT) cracks, they usually pose no immediate danger 
of brittle static failure in moderate or high toughness materials. The 
fundamental problem the cracks create is to decrease a structure's fatigue 
performance to that number of cycles N required to grow the crack to 

a Analytical engineer, Failure Analysis Associates, Palo Alto, Calif. 94304. Formerly, 
senior analytical engineer, Pratt & Whitney Aircraft Division, United Aircraft Division, East 
Hartford, Conn. 06108. 
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404 MECHANICS OF CRACK GROWTH 

critical dimension. Reasonable accuracy in estimating the residual life N 
is often of paramount importance to those responsible for structural 
integrity. Residual life estimates may be the sole rational basis for 
choosing design stresses in fatigue-critical hardware or for solving field 
problems through properly spaced inspections or new life limits. 

Linear elastic fracture mechanics analysis forms the basis of predicting 
the residual fatigue life of a cracked structural element. The material is 
characterized in terms of its crack growth rate, daldN, versus the cyclic 
change in the crack tip stress intensity factor, AK; K is a parameter which 
embodies the effects of the stress field, the crack size and shape, and the 
local structural geometry. The primary difficulty in analyzing the growth 
of PT cracks is that no one value of K may be assigned to characterize the 
entire crack front; furthermore, the stress state near the crack is three- 
dimensional due to crack shape and the local structural geometry. 

In this paper, a new elastic fracture mechanics approach is given for 
predicting fatigue growth behavior of PT cracks under Mode I stress 
cycling. Mode I denotes symmetry of both loads and geometry with 
respect to the planar crack. Two extreme approaches theoretically may be 

A v 

x 

| 'l 

SECTION A-A 

FIG. l--Buried flaws (usually material defects). 
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FIG. 2---Partial thickness surface cracks at s tress  concentrations.  

employed to model this three-dimensional cracking problem. An engineer- 
ing approach might consist of replacing the surface crack by an "equiva- 
lent" two-dimensional, or line crack, created mathematically by combin- 
ing suitable analytical models with correction functions. Unfortunately, 
the correction functions contain unknown errors for a given problem and 
often can be selected only when the answer (life) is already known. The 
other extreme is to develop a special three-dimensional stress analysis 
model to reanalyze the crack geometry sequentially as it grows; this 
second approach requires a three-dimensional solution for the crack at 
each increment in its growth history and for each local stress distribution. 

The residual life analysis procedure reported in this paper seeks to 
achieve the accuracy of three-dimensional stress analysis together with 
the efficiency of using equivalent two-dimensional crack models. The 
necessary stress intensity factor computation algorithm for a class of PT 
cracks is formulated from a small number of three-dimensional stress 
analyses. The stress analyses may be exact, as used in this paper, to 
formulate exact K solutions for the buried elliptical crack under arbitrary 
Mode I loading. The stress analyses may also be numerical, as is the 
boundary-integral equation method employed elsewhere [1 ],2 to obtain K 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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solutions for the quarter-ellipse "corner"  crack under arbitrary Mode I 
loading. Stress intensity factors are computed and crack growth is 
simulated through the use of a weight function or influence function 
technique which uses the stresses in the uncracked structural detail. 
Thus, the details of both PT crack geometry and structural loading and 
shape are accounted for directly in the residual life prediction. 

The next section of this paper presents a simplified crack growth 
modeling and residual life prediction procedure designed to cope with the 
complications of three-dimensional cracking accurately and efficiently. 
Two alternative definitions for approximating the PT crack front K 
variation are discussed. Following this section is a section on an influence 
function theory used to compute the stress intensity factors required for 
the employed residual life prediction procedure. The theory is applied in a 
section following this one to obtain exact expressions for the stress 
intensity factors of the buried elliptical crack under arbitrary Mode I 
loading. This section also exercises the residual life prediction procedure 
to calculate lives for buried elliptical cracks under a uniform and a 
parabolic stress field. A summary of the paper and a discussion of the 
current research to extend the life prediction procedure presented herein 
to more general crack models (for example, surface cracks) with the aid of 
numerical stress analysis is then given. 

Residual Life Prediction Procedure 

Introduction 

Residual lifetime is defined herein as the number of constant load 
amplitude, nominally elastic stress cycles required to grow the crack from 
some defined initial configuration to a final size which will produce 
sudden failure, for example, catastrophic brittle fracture. Paris et al [2] 
and many later references document a currently accepted method for 
residual life prediction of two-dimensional cracking, that is, cracks with 
constant K(s) along the crack front periphery(s), using linear elastic 
fracture mechanics. Three-dimensional cracking has complications that 
are not explicitly treated by Paris et al. The complications are the crack 
front variation of K(s) and a tendency of crack shape, as well as size, to 
change during propagation. 

Two concepts are introduced in this section to treat the three- 
dimensional cracking complications. The first concept is a method to 
approximate the growing crack's geometry with a finite number of 
characteristic dimensions and to approximate K(s) with the same number 
of discrete stress intensity factors, each associated with one characteristic 
dimension. The second concept, which is illustrated for a buried elliptical 
crack model, is a particularly useful definition of the discrete stress 
intensity factors that facilitates the application of an influence function 
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theory presented in the next section. This theory is used to build an 
algorithm for stress intensity factor computation for general loading from 
crack opening displacements due to a single loading. The algorithm 
eliminates the need for a full three-dimensional stress analysis for each 
new loading or each new increment of crack growth. 

These two concepts are combined to form a procedure for residual 
lifetime prediction. The procedure is presented in general terms and is 
exercised for a specific model. 

Partial Thickness Crack Propagation Modeling 
The basis of reported life analyses is the notion of a finite number, n, of 

characteristic dimensions ((a g, i = 1 . . . . .  n) to describe crack geometry. 
Crack propagation is then described by keeping track of the a~ which are 
named degrees of freedom (DOF). The continuous stress intensity factor 
function K(s) is approximated similarly with a set of discrete stress intensity 
factors (K~, i = 1 . . . . .  n), each associated with an a~. The applied 
general empirical model of three-dimensional propagation is then ex- 
pressed by a set of n equations 

dai 
- F[K~, material, environment, history] (1) 

dN 

where 
N = residual lifetime, 
Kg = stress intensity factor associated with a~, and 
F = empirically determined function. 

Each equation in Eq 1 states that the local cyclic growth rate daJdN of 
freedom ai is given by the empirically determined function F. Further, Eq 
1 implies that all load and geometry information relevant to each dai/dN 
is contained in one and only one stress intensity factor Ki. The function F 
is itself independent of load and geometry and may be obtained in the 
traditional way [2] from simple planar laboratory specimens modeled with 
two-dimensional stress analysis. The stress intensity factors Ki each 
contain an alternating component AKi and mean value Kmeani associated 
with the alternating and mean components of the stress cycle. 

Residual life prediction is accomplished by formulation and solution of 
Eq 1. A four-step method is employed herein for life prediction. The steps 
are: 

I. Obtain F from simple specimens, F is often expressed in the form of 
piecewise power functions of K (for example, da/dN = CAK R) for given 
gmean , material, environment and history combinations. 

2. Determine the uncracked structural detail's geometry, loads, and to 
the extent required by Step 3, stress. 

3. Model the propagating crack. This task includes selection of a model 
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with an adequate number of DOF; specification of the initial and final 
crack configuration ali and aft; and definition of Ki. Further, an algorithm 
must be derived to compute all of the Ki as functions of stress and 
geometry, especially the changing crack geometry a~. 

4. Substitute K~ in Eq 1 and solve for the life N. 
Steps 1 and 2 are not influenced strongly by three-dimensional cracking 

complications. Step 4 involves routine numerical analysis. Therefore, 
only Step 3 is emphasized in the remainder of this paper. 

Buried Elliptical Crack in an Infinitely Large Solid: Model and Stress 
Intensity Factor Definitions 

A simple model is desired to expand the procedure just outlined and to 
aid the discussion of stress intensity factor definitions. Figure 3 illustrates 
the chosen example model of a growing buried crack located in the x-y 
plane, centered at the origin, and subjected to crack opening pressure 
p = ~rzz(x,y). The crack front is an ellipse with semi-axes (along the 
coordinate axes) ax and a ,  being the two selected DOF. Having only two 
DOF, the model sacrifices a portion of the details of crack front geometry 
and K(s) variation inherent in more complex models with n > 2. How- 
ever, the two DOF model is considered a worthwhile approximation of 
three dimensional cracking since it does permit some change of crack 
shape during propagation and promises relative ease of application. The 
choice of an elliptical model is an especially expedient example since 
published solutions serve as a starting point for derivation of stress 
intensity factor formulas discussed later. 

Having chosen a model, the stress intensity factors K~ (Kx and Ku) are 
to be defined and computed. The question of proper K definition for 
residual life computation may be debated, and two alternatives have been 
considered. The alternatives are illustrated in Fig. 3 as local (or end-point 
values) k~  and Ku, and "local average" values along specified portions of 
the crack front, K'~ and K~,. 

The two end-point values K~ and k ,  are likely choices to characterize 
K(s) but are not necessarily the most accurate or expedient choices. The 
end-point values K~ and Ku may best describe the initial propagation rate 
of the semi-axes ax and a,.  However,  the elliptical modeling constraint 

A A 

raises questions as to whether Kx and K ,  are the two quantities that best 
describe propagation of the entire crack front. Clearly, there is justifica- 
tion to consider other possible two DOF characterizations of K(s) than the 
two end-point values if some advantage can be gained therefrom. 

This paper investigates the two local averages ~x  and /7,u of K(s) 
M .  

depicted in Fig. 3 to define K~ for residual life computation. The Kt 
have two equivalent physical interpretations. Each K~ is related to the 
strain energy release rate obtained by creation of the corresponding sur- 
face area ~A~ (shaded in Fig. 3). The area is formed by the perturbation 
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_2 I f~F K2(S) dA 
Kx = ~ A x 

^ 

K x = K ( ta  x ,0 )  

~A x = ~ Oy ~o x 

_ 2  

Ky = ~ y  Ay 

^ 
Ky = K(O~-+Oy) 

~Ay= /r a x ~Oy 

K z (s) dA 

FIG. 3---A two D O F  buried elliptical crack. 

of the associated a~ while holding all other DOF constant. Equivalently, 
the K~ also represent the area root-mean-square (rms) value of K(s) in 
8A~. Clearly, the rms interpretation indicates that the/C~ and K~ defini- 
tions coincide for two special cases. The cases are constant K(s) and 
asymptotically large n. 

The advantages sought with K~, rather than/~i, definition are increases 
in the ease, generality, and accuracy of stress intensity factor computa- 
tions for partial thickness cracks. The basis for these advantages is that 
the Ki definition lends itself extremely well to an influence function theory 
of stress intensity factor computation. The next section presents the 

m 

influence function theory and provides mathematical definition of the K~ 
for a general planar partial thickness crack under Mode I loading. 
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w 

An Influence Function Theory for the Computation of Ki 

The analysis described in this section is an application of theoretical 
results due to Rice [3] and Key [4]. Reference 3 is the foundation and 
motivation for the weight or influence function theory presented herein, 
while Ref 4 proposes a quantity similar to the K definition for a static 
failure criterion. 

To develop the required formulation consider Fig. 4, a homogeneous 
elastic body with loads and geometry symmetric about the x-y crack plane 
which contains a crack of Area A. Assume the crack front, s, undergoes 
the i th prescribed smooth virtual perturbation ~l~(s) (in a direction locally 
normal to s) while under constant load. Then each point Pj will deflect 
elastically some amount ~q~/2 in the direction of load Q~. The work done 
on the solid due to ~li(s) is 

8 W  = Q~6q~ - ~ ~SA, (bars indicate no summation over i) (2) 

where the repeated indexj  implies summation and 

f OA 
8Ai = ~li(s)ds - 8ai (3) 

Oas - 

is the (upper) surface area exposed by perturbation ~l~ which has the form 

f~(s)  
81i(s) - f 8A~ = ~(s)Sai  (4) 

), f ~( s )ds 

where ~Sa~ is the variation of the associated scalar degree of freedom ai 
while holding any and all other degrees of freedom constant. A l s o , f d s )  is a 
prescribed dimensionless function that defines perturbation shape such 
that the perturbed crack front configuration is characterizable in terms of 
the same discrete scalar degrees of freedom as the original crack 
configuration. Thus, only those crack front perturbations proportional to 
and arising from variation of each specified degree of freedom are 
considered in this paper. It would be incorrect to apply the results derived 
next to other possible classes of perturbations such as the more general 
class discussed in the Appendix of Ref 3. Finally 

OW 
g i  = - -  (5)  

OA~ 

is the strain energy release rate caused by ~a~. 
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For Mode I loading, jC~ may be written 

L~&4, = _ f r K2(S) sl~(s)] H ds (6) 

where H is an appropriate elastic modulus. For an isotropic material in 
plane strain H = E/(1 - u2). 
Since K(s) is generally not constant, one further definition is required; let 

K-~ ~- x/-H-~, i = hoQ+ (7) 

where the h~ are elastic influence coefficients, associated with K'i and 
point P j, to be derived. 

Equations 4, 6, and 7 are combined to obtain 

f g~(s)Y,_(s)ds 
R'++ = (8)  

~ A(s)ds 

Clearly, K~ is an arc-length rms value of K(s) weighted by f~. In other 
words, K~ is the rms value of K in 6A+ as shown in Fig. 3. Equation 2 may 
now be rewritten as 

8W = Q~Sq~ 6A~ (9) 
H 

where Eq 9 is a total differential for the class of perturbations just 
described since 8A+ is due to and proportional to 6a+. 

Equation 9 is identical in form to expressions given by Rice which 
include the stress intensity factor K for a two-dimensional crack rather 
than K'~ for the three-dimensional problem in Fig. 4. It can be shown that 
the ~nfluence function derivation in Ref 3, pp. 752-753, applied to Eqs 7 
and 9 leads to 

OKi H Oq~* 
= = - ( 1 0 )  

hij 0Qj 2Ki* aAi 
- -  m 

where the superscripts* denote any single reference loading state. The h~ 
in Eq 10 may be regarded as influence coefficients since they measure the 
effects on K of the loads Qj. The h ~ are functions of position and the crack 
and structural geometry. However, as proven formally by Ref3,  the h~j 
are independent of loading. Therefore, any advantageous loading can be 
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FIG. 4--Schematic of prescribed normal perturbation 811(s) of crack front s. 

chosen to be the reference state in Eq 10 and used to compute h at all 
points in the analyzed geometry. 

A more useful form of Eq 10 may be derived by substitution of Eqs 2 
and 7 in Eq 10 to obtain 

= (_2a(Qm*qm*)~ -�89 aqff ( l l )  
hit \ HOAi_ J OAi 

where the repeated index m again denotes summation in Eq 11 which 
directly relates the h,~ to reference crack opening displacements. 

Consider the special case where all loads in the problem to be solved 
are on the crack face in terms of a bivariate normal pressure ~=(x,y). If 
normal loads are interpreted as 

dQ(x,y) = o'~(x,y)dA (12) 
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we can combine Eqs 7 ,  11, and 12 to obtain the final result for stress 
intensity factor computation. 

(2~ [f/A Crzz*q*dA] ) -; f/A O-zz OA ! dA (13) _ Oq* 
K~ = HOA~ 

Consider the principle of superposition illustrated in Fig. 5, as repro- 
duced from Ref2. This principle allows use in Eq 13 of the "uncracked" 
stress o-=(x,y) (that is, stress for the uncracked solid at the crack's locus) 
to yield correct K factors for arbitrary geometry and loading. 

Initial application of Eqs 1 and 13 for computation of the K~ and 

O" ]TIIT , 
F 

K 

F JlllIJ  

(a)  

K = 

=0 

K' + K" 

O" 

]]lllr  
T 
F f ~ l x )  

F 

Jill1" 

(b )  

+ 

K 

(c) 

FIG. 5--The reduction of a problem, (a), into two simpler problems, (b) and (c) for 
computations of stress intensity factor (from Ref 2). 
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414 MECHANICS OF CRACK GROWTH 

residual life N has revealed several major advantages of the influence 
function theory. Influence theory application requires only the charac- 
terization of crack opening displacements q* (x,y) as a function of the ai 
and significant structural dimensions for a single reference loading. The 
q* function, whether based on a known solution as in the next section or 
on numerical data as in Ref 1, is substituted into Eq 13. Since known q* 
solutions for three-dimensional crack problems are scarce, the solution of 
the ~'i for most partial thickness crack problems requires accurate numeri- 
cal crack opening displacements. Numerical solution for the necessary q* 
data is not difficult. For example, Ref 1 documents the numerical solution 
of a two DOF quarter-ellipse corner crack problem. Solution of the Ki for 
all corner crack sizes and shapes and all loading states required only 
twelve three-dimensional stress analysis computer runs for various a~ 
values. 

The uncracked stress o-~(x,y) in Eq 13, of course, may be computed or 
measured with standard methods which ignore the presence of the crack. 
Numerical integration of Eq 13 then computes K, for each crack growth 
increment without recourse to repeated three-dimensional stress 
analyses. Thus, influence function theory application is extremely inex- 
pensive and efficient as compared to repeated stress analysis procedures. 

In addition to generality and ease of application, the influence function 
method offers advantages in stress intensity factor computational accu- 
racy. The analyst is free to choose any convenient single loading that can 
be accurately solved by the applied numerical crack stress analysis 
program. This eliminates numerical errors caused by inclusion of actual, 
complex loading into computer stress analysis of cracks. 

The disadvantage of influence function theory from a user's standpoint 
is that it is possible to prescribe too few crack DOF to model complex 
geometry and loading effects. This particular modeling error would 
probably not occur when using repeated stress analyses for each small 
crack growth increment. 

To eliminate this disadvantage and ensure modeling accuracy, future 
research should ascertain the minimum number of DOF required for life 
prediction of various classes of problems. The calculated lives in the next 
section and the agreements noted between computed and observed 
residual lives in initial applications, such as reported in Re f l ,  indicate that 
two DOF can model adequately a reasonable number of problems. 

Stress Intensity Factor and Residual Lifetime Computations for the Two 
DOF Buried Ellipse 

This section presents stress intensity factor formulas and residual 
lifetime computations for the two DOF buried elliptical crack in Fig. 3 to 
illustrate application of the general life prediction procedure. Life compu- 
tations are also given using the end-point values Ki. This is done to 
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BESUNER ON RESIDUAL LIFE ESTIMATES 415 

investigate the dependence of calculated life on stress intensity factor 
definition for two stress states for which both K- a n d / (  could be easily 
computed. 

Stress Intensi ty  Factor  Derivat ion 

Crack opening displacements for the buried elliptical crack under 
uniform pressure are given by Green and Sneddon [5]. Substitution of the 
displacement function into Eq 13 gives stress intensity factors for arbi- 
trary uncracked stress as 

1 _ OE(k) 

fTAZ 
K z  = 

dE(k) 

ffA + -  

x2) 
+ a 11Zo'~z(x,y)dA 

E(k)Oax az3a 

oE(k) 
E(k)Oax 

) odl2O'zz(X,y)dA a ~3ot / 

1 

(14)  

05) 

where a = 1 -- (x/ax)  2 -- (y/au) 2 and E(k) if the complete elliptic integral 
of the second kind with modulus k 2 -- 1 - (ax/a~) 2 >- O. 

Equations 14 and 15 are theoretically valid for substitution into Eq 1 to 
compute life for any tensile stress field o-zz(x,y). However, it is suggested 
that Eqs 14 and 15 be used only with the requirement that ~rzz be 
symmetric about the crack axes. This requirement is physically consistent 
with the chosen two growth freedoms. A four or five DOF model which 
allows unsymmetric growth of the buried ellipse, easily derivable from the 
Ref 5 displacement solutions and Eq 13, is recommended for use with 
unsymmetric o-= (x,y) functions. 

Residual  Li fe t ime Computa t ions  

Given the stress intensity factor solution, Eqs 14 and 15, life computa- 
tion consists of the numerical solution of the system of Eq 1 for N. The 
initial values of the a~ (that is, the initial crack or crack-like defect) must 
be specified as with the two dimensional cracking problem [3]. Also, a 
final crack length criterion must be adopted. A fracture toughness 
criterion is adopted herein to represent a brittle static failure mode in an 
infinite solid. 

Tables 1 and 2 list calculated lives for several initial cracks under 
uniform and parabolic stress respectively. The lives N r  are obtained by 
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416 MECHANICS OF CRACK GROWTH 

s o l u t i o n  o f  

dai 

dN~ 
- -  1 0 - g A / ~ i  2"s, i = x,y (16) 

where the Ki are computed from Eqs 14 and 15, and failure is defined to 
occur at maximum (K0 = Kic. The lives Nk  are computed by solving 

da, - 10 -gA/~ i  2's, i = x,y  (17 )  
d N k  

T A B L E  1---Cyclic life prediction for embedded elliptical 
cracks in a uniform normal stress field. 

Width Length  Life (N_~) Life (N~) 
2a, 2b, Using K~, Using  K~, 
mils mils cycles  • 10 -3 cycles  • 10 -3 

2 2 65 65 
2 4 56 56 
2 10 45 45 
2 20 39 38 
2 80 31 28 
2 ~ 22 18 

5 5 44 44 
5 10 36 37 
5 25 29 29 
5 35 27 27 
5 50 25 24 
5 100 22 21 
5 200 19 17 

10 10 32 32 
10 20 26 27 
10 50 21 21 
10 70 19 19 
10 100 18 17 
10 200 15 14 
10 400 14 13 
10 1000 12 11 
10 ~ 10 8.2 

20 20 23 23 
20 40 19 19 
20 100 15 14 
20 200 12 12 

Assumpt ions :  1. 
2. 
3. 
4. 
5. 

Infinite solid; initial crack sizes above. 
Kmean = 0.5 AK. 
K~c = 85 ksi x/ in .  
trzz(x,y) = 100 ksi. 
Text  contains  model ing and material  
crack growth rate da ta  assumpt ions .  
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TABLE 2----Cyclic life prediction for embedded elliptical 
cracks in a parabolic normal stress field. 

Width Length Life (N~) Life (N~) 
2a, 2b, Using K~, Using Ks, 

mils mils cycles • 10 -3 cycles • 10 -3 

2 2 64 65 
2 4 55 55 
2 10 45 44 
2 20 39 38 
2 80 30 27 
2 ~ 22 20 
5 5 43 43 
5 10 37 36 
5 25 30 29 
5 35 27 26 
5 50 25 23 
5 100 22 20 
5 200 20 17 
5 ~ 14 13 

10 10 31 31 
10 20 27 26 
10 50 21 20 
10 70 19 18 
10 100 18 16 
10 200 15 14 
10 400 13 12 
10 1000 10 9.3 
10 ~ 9.9 8.4 
20 20 22 22 
20 40 19 18 
20 I00 15 14 
20 200 12 11 

Assumptions: 1. Infinite solid, initial crack sizes given 
above. 

2. K m e a n  = 0 . 5  A K .  

3. KI~ = 60 ksi x/in. 
4. ozz (x , y )=  100 (1 - 4 x  2) ksi for 

x_< 0.5. 
5. Text contains modeling and material 

crack growth rate data assumptions. 

A 
where  the K~ are  ob ta ined  f rom Shah  and K o b a y a s h i  [6], and fai lure is 

A 
def ined to occu r  at m a x i m u m  (K0 = Klc. The  fo rce ,  length ,  and t ime units 

in Eqs  16 and 17 are  k i lopounds ,  inches ,  and fat igue cyc les ,  r e spec t ive ly .  

The  cons tan t s  fit da ta  fo r  A M S  6304, a m o d e r a t e  s t rength  steel ,  at  

opera t ional  t e m p e r a t u r e s  for  a w ide  range  o f  AK va lues .  T h e  o the r  

assumpt ions  used  for  life c o m p u t a t i o n s  are  l is ted in the tables .  

N o t e  that  the life e s t ima tes  are  nea r ly  i n d e p e n d e n t  o f  the K~ def ini t ion,  

that  is, N~c-~Nk, for  the cases  ci ted.  S imi la r  s tudies  for  e x p o n e n t s  in Eqs  

16 and 17 ranging f r o m  2 to 5 also ob ta in  N R ~ N ~ : .  This  i n d e p e n d e n c e  is 
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not surprising because the rms property of the K'i guarantees that the two 
definitions will result in similar stress intensity factor and life computa- 
tions, given enough DOF. Apparently, two DOF are sufficient for the 
cases investigated herein. It is certain that additional DOF will be 
required for some problems with greater complexity. In any case, 
comparison with empirical results can only serve to reinforce or to 
discredit the above usage of both definitions of K, rather than favoring 
either. 

Once the reference displacements and actual uncracked stresses are 
obtained, the computation of the Ki in Eq 13 is a simple, inexpensive 
exercise in numerical integration. For example, a program has been 
written to evaluate accurately the Ki in Eqs 14 and 15 in less than 0.03 s 
central processing unit (CPU) time on the IBM 370-168 computer. Life 
prediction, through solution of the two simultaneous equations of Eq 16, 
takes less than 2 s with a typical numerical error of 1.5 percent. 

Summary and Conclusions 

An efficient, general procedure for predicting the residual lifetime of 
structures with partial thickness cracks has been reported. The procedure 
treats the three dimensional cracking complications of complex crack 
shape, crack shape change during growth, and stress intensity factor 
variation along the crack front. The actual crack is modeled with any 
prescribed mathematical shape with a finite number of key variable 
parameters or DOF. The cyclic growth rate of each DOF is assumed to be 
controlled by its associated stress intensity factor. Each factor is defined 
in terms of the strain energy release rate caused by perturbation of the 
single DOF, holding the other DOF constant. This definition, de- 
monstrated to be reasonable in its own right, is especially compatible with 
an advantageous influence function theory derived to compute stress 
intensity factors. The crack size and shape may then be computed as a 
function of load cycles by use of the usual linear elastic fracture 
mechanics modeling of crack growth. 

The influence function theory requires only the characterization of the 
crack opening displacements for various values of the DOF and structural 
dimensions, for a simple reference loading. These closed form or numeri- 
cal results are then applied to derive analytically all required values of 
stress intensity factors for an arbitrary stress state such as due to the 
presence of a local notch. The influence function theory uses only the 
stresses in the uncracked structural detail and thereby eliminates the need 
for full three dimensional stress analysis for each new increment of crack 
growth as well as for each considered stress state. 

The life prediction and stress intensity factor computation procedure is 
illustrated for a simple two DOF model of the buried elliptical crack. It is 
shown for several examples that calculated life is independent of the 
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choice of two considered stress intensity factor definitions. Further, it is 
indicated that the choice of a stress intensity factor definition becomes 
immaterial as the number of DOF is increased. Consequently, any 
empirical results would tend to reinforce or to disprove both equivalent 
elastic criteria rather than favoring either. 

As described, the extension of the life prediction procedure to more 
complex models is direct, requiring only specification of a model with 
appropriate number of DOF together with a minimum number of full 
three-dimensional analyses. For example, Ref I uses only twelve stress 
analysis computer runs to obtain a general, accurate stress intensity factor 
solution algorithm for a two DOF quarter-ellipse corner crack model. 
Additional current research is being devoted to the solution and experi- 
mental verification of various other partial thickness crack models such as 
a three DOF half-ellipse surface crack and the extension of the  buried 
ellipse model to four DOF. Thus, it is concluded that the majority of 
partial thickness crack problems are brought within the scope of an 
efficient residual fatigue life prediction procedure. 
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Application of Fracture Mechanics to the 
Calculation of Deflections in Stepped 
Structural Elements 

REFERENCE: Bluhm, J. I., "Application of Fracture Mechanics to the Calculation 
of Defleetlons in Stepped Structural Elements," Mechanics of Crack Growth, ASTM 
STP 590, American Society for Testing and Materials, 1976, pp. 420--428. 

ABSTRACT: Deflections of structural elements are determined frequently by using 
simple engineering strength of materials approaches. However, when geometric 
discontinuties are present, such approaches may lead to excessive errors in the 
predicted deflection. The present paper suggests a simple technique for refining 
these deflection predictions using available fracture mechanics data. Use of such 
techniques leads to predictions which do not differ significantly from "exact"  
solutions. 

KEY WORDS: crack propagation, mechanical properties, fracture properties, 
structural analysis, deflection, discontinuity (mathematics) 

The structural analyst is required frequently to predict and limit the 
elastic deflection or compliance of structures. Exact solutions, frequently 
entailing sophisticated elasticity analysis, are often not within the scope of 
the structural analyst's capabilities. Computer codes using finite element 
techniques are not always accessible to the engineer. As a convenient 
alternative the engineer uses traditional "strength of materials" approxi- 
mations such as, for example, the usual beam theory. For many applica- 
tions, such engineering strength of materials (ESM) approaches are 
adequate particularly if the structure has no geometric discontinuities; 
under such conditions more extensive analyses may not be justified. 

However consider now the stepped, simply supported beam illustrated 
in Fig. 1. Suppose it is required to determine the deflection under the 
central load P.  A usual ESM approach for this type of problem is to treat 
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i 
P 

P/2 T 2 

FIG. l---Actual beam. 

each region of the beam as one with constant cross section and then to 
apply ordinary beam theory to each region. Of course compatibility of 
deformations must be enforced at section changes. Alternatively the total 
strain energy in the beam Ur can be determined using traditional 
approaches and, then by Castigliano's theorem one can calculate the total 
deflection 6r, that is 

OUr 
6r - (la) 

OP 

It should be clear, however, that the value of the deflection thus 
computed, 6r, implies the full effectiveness of the entire cross sections in 
resisting the applied bending. It should also be intuitively evident that 
such calculations may seriously underestimate the deflection. The mate- 
rial near the discontinuity (that is, the shaded region of Fig. 1) does not 
contribute its due share of the moment resisting stresses. The effective 
contour of the beam might be, more realistically, visualized as that 
suggested in Fig. 2. If, in fact, this effective contour were known, then 
many of the traditional ESM approaches could be used, with results 
adequate for all but the most sophisticated or demanding needs. Unfortu- 
nately these effective contours are not determined easily, although one 
simple refinement suggested by a reviewer is to consider the effective 
contour in the notched region as a straight line at 45 deg. Applications of 
such a contour obviously reduces the errors associated with the sub- 
sequent ESM approach, particularly as the notch width becomes rela- 
tively large compared to the notch depth. However for relatively small 

I 
P/2 t 

~ P 

! I' r 
 %ino,fect vo2  P,2 

Haterial 

FIG. 2---Effective beam profile. 
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422 MECHANICS OF CRACK GROWTH 

notch widths, the arbitrary contour suggested still leads to sizeable errors; 
obviously, as just  implied, the unlikely but fortuitous guess as to the 
proper  contour  would lead to an exact deflection prediction; fortunately,  
as we shall see, an alternative approach is possible which does not depend 
on the subjective wisdom or experience of the engineer. 

For  the particular beam configuration sketched in Fig. 1, neglect of  the 
local effects at the discontinuity can lead to discrepancies in excess of 50 
percent  between " e x a c t "  solutions and ESM approaches.  

It is the purpose of the present paper to describe a concept  which 
combines such approximate ESM approach with catalogued precise crack 
solutions borrowed from the fracture mechanics  discipline. By marrying 
these approaches it will be shown that substantially exact  deflections of 
such discontinuous structures, as in Fig. 1, can be derived. 

Paris [1] 2 and subsequently Tada et al [2] suggested a technique for 
computing certain displacements in crack related problems. The method, 
illustrated in Ref  2 for crack opening displacements,  entailed use of the 
established relationship (for constant load) 

OUr 
G = - -  ( lb)  

Oil 

where G, Ur, and A are the elastic strain energy release rate, total strain 
energy, and crack area, respectively. Integration yields Ur and then by 
Eq la the desired deflection ~r is obtained readily. Of course 8r is 
determined at the point of application of the load P and in its direction. 

The form of G (or its equivalent K the stress intensity factor) has been 
catalogued in a number of sources for various crack and structural 
configurations [2]. Selected specimen configurations are detailed by 
Brown and Srawley [3 ]. 

Concept 
Consider the stepped beam of Fig. 3. As just  implied it is necessary to 

identify that stepped beam with a fracture mechanics crack problem. In 
the present  case the pert inent crack problem is sketched in Fig. 4. It is 
evident that, as the length 12 in Fig. 3 approaches zero,  the geometry of  
Fig. 4 is approximated?  This latter beam is identified as the degenerate 
beam. 

It is noted that the solution for the stress intensity factor  K for this 
degenerate beam (Fig. 4) derives from various elasticity approaches 
which treat the stress singularity at the crack tip. It is evident also that the 
resulting local perturbations of  the stresses are, at least qualitatively, the 
same as those which dominate the shaded areas of Fig. 1. We make the 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
a Except for the detailed nature of the singularity. 
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Reg• ~ ~p~ (~ ~ 

(W 1 - W 2 ) 

FIG. 3--Actual beam geometry. 

more demanding assumption, that for  all practical purposes the stress 
distribution in Region 1 of Fig. 4 is precisely the same as that of  Region 1 
of  Fig. 3 and consequently that the strain energies are the same, that is 

U 1 = U 3 = mid = U3D (2) 

where the subscript D refers to degenerate beam characteristics.  
The strain energy U1D relating to half the degenerate beam can be 

determined directly from its definition Eq la and in lieu of Eq 2 

G = = (3) 
BOa BOa 

where B is the beam thickness and a the crack depth. Integrating, this 
becomes 

f 0  t/ [U~o + U3o] = 2U~ D = B Gda + Uo(a = O) (4) 

where Uo(a = 0) represents the strain energy of  the degenerate beam with 
a = 0. It is further assumed that the strain energy of Region 2 (Fig. 3) U2 
is defined adequately by the usual ESM approaches so that the total strain 

Pj2 k . -  . 

FIG. 4--Degenerate beam geometry. 
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energy Ur in that beam configuration can be written 

U T  = 2U1 + U2 

or in lieu of Eq 2 
(5)' 

Ur= 2Ulo+ U2 

Substituting Eq 4 into the latter of these and using Eq la,  one obtains for 
the desired deflection 8T 

f/ 0 B Gda + Uo(a = O) + U2 (6) 8 r -  OP 

But note that Uo(a = 0) is the strain energy associated with the uncracked 
beam and therefore is computed easily by the usual engineering strength 
of materials beam approaches. Since also U2 is the corresponding strain 
energy of Region 2, this can also be treated by the ESM approaches. We 
see then that the last terms of Eq 6 relate to strain energies without regard 
to the discontinuity effects. We define, as ~0, the corresponding deflection 

8o = ~-~ [Uo(a = 0) + U2] (7) 
OF 

In view of Eq 7, Eq 6 can be written in consolidated form as follows 

where 

(~T : O0 "t" /,.10 

A~ = OP- Gda (8) 

Here we emphasize that A~ represents the increment in deflection at the 
load application point (Fig. 3) due to the stress perturbation associated 
with the section discontinuities. Thus the total deflection of a structure 
such as in Fig. 3 can be considered as that computed from ESM 

4 It is suggested that these two equations are equivalent to within an error E --+ 0 for 12 --+ 0 
and E ---> 0 as 12 gets large. Intuitively then one might expect the proposed equivalence to be 
reasonably good throughout the range of I~'s. 
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approaches ao plus a corrective deflection A6 derived from fracture 
mechanics concepts and which accounts for the local discontinuity 
effects. 

Illustration 

Consider the beam of Fig. 3. The pertinent degenerate beam is that 
shown in Fig. 4. For this latter beam we have Ref I 

1 - v 2 36(1 - -  V 2 ) / ~ / Z m a  x 
G - - -  K 2 = aY2 (9) 

E EB2W 4 

where Y is a given polynomial in (a/W). Inserting this into Eq 4 and 
nondimensionalizing we obtain 

2U1D -- 
9(1 - v 2) 

4EB 

f alW 
(S/W)2e 2 Yu(~/W) x (C/W) x d(~/W) 

+ Uo(a = O) (lO) 

Defining the integral asf(a/W) and inserting this into Eq 5 we obtain 

9(I - v ~) 
Ur= 2U1 o+ U 2 -  

4EB 
(S/W)2P2f(a/W) + Uo(a = O)+ U2 (11) 

l f s/2 
Note however that Uo = 2 2E-i~i Jo M12dxl 

P 
M1 = ~-xl  

2 

~ l f(12)/2 
U2= 2 L 2EI2 Jo 

M 2 = ~  +X 

M22dx21 
(12) 

But these are precisely the strain energies of the component spans of the 
beam neglecting the local discontinuity effects, that is, using ESM 
analysis. The corresponding deflection 80 is then calculated from Eqs 7 
and 12. The correction AS, accounting for these discontinuity effects, is 
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found from Eqs 8 and 9 to be 

where 

9 
A8 = 2EB (1 - v 2) (S/W)2f(a/W)P 

f a/W 
f ( a / W )  = Y~(Uw) • ( U w )  x d ( U W )  

4 

and Y(~/W) : ~_~ A.(~/W)" 
n=O 

(13) 

Here the coefficients A.  are given in Ref3.  
It is noted that the approach just described is applicable to such 

diversified configurations as suggested in Fig. 5. 
In particular we have examined the simple geometry sketched in Fig. 6 

and computed the deflection between Points A and B using both the ESM 
approach ~0 and the fracture mechanics correction A& These were then 
compared with a finite element solution estimated to be correct to ---2 
percent. The results in percentage error are shown in the Table 1. 

Total deflections of this specimen ~T were determined analytically using 
the following relation 

~ I2 n ] ~  
~ r -  E m + 1 - 2a/W + TA2a/W) (14) 

where the first term on the right represents the ESM contribution and the 
second term the fracture mechanics (or discontinuity) contribution. Note 
that though in this particular case the maximum error is 20 percent, errors 
in excess of 50 percent may arise in different geometries. Obviously, a 

T A B L E  1--Comparative errors in deflection o f  tension specimen per 
Fig. 6, 2(a /W)  = 0.5 

% E r r o r  a 

E S M  E S M  (45 deg)  ~ F r a c t u r e  M e c h a n i c s  

m = 1 n = 0.0 - 2 0 . 0  - 12.1 0 
m = 1 n = 0.1 - 1 7 . 4  - 9 . 9  +1 .5  
m = 1 n = 0.2 - 1 5 . 4  - 8 . 4  +2 .3  
m = 1 n = 1.0 - 9 . 2  - 4 . 7  + 2 . 2  
m = 1 n = 2.0 - 6 . 3  - 3 . 1  + 1 . 6  

a Based  u p o n  a finite e l e m e n t  so lu t ion  which  w a s  t a k e n  as an  ex ac t  solut ion.  
b Bas ica l ly  the s a m e  as the  E S M  ana lys i s  e x c e p t  tha t  the  s ides  o f  the  n o t ch es  w e r e  

inclined at  45 deg  to a p p r o x i m a t e  the  effect  of  the  i ne f f ec t ive  mate r ia l .  
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' I G .  5--Alternative configurations tractable to analysis by present concept. 

t 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



428 MECHANICS OF CRACK GROWTH 

mW 

• 

FIG. 6----Reference tension specimen for comparison of solutions. 

judicious guess as to an effective shape for the ineffective material should 
improve markedly such an ESM analysis. To judge one simple such guess 
an ESM analysis was carried out for essentially the same configuration 
except that the ineffective material was assumed to be bounded by 45 deg 
inclined notch sides. Table 1 shows that though significant improvement is 
obtained the use of the fracture mechanics correction essentially elimi- 
nates the error. 

Conclusion 

An approach has been suggested which permits precise deflection 
calculations in specific structural configurations involving discontinuities. 
The method utilizes conventional engineering strength of materials ap- 
proaches and combines these with simple results of more sophisticated 
fracture mechanics analysis to account for the local discontinuity effects. 
Carried out for a specific case it is illustrated that the deflection can be 
thus calculated to within an accuracy of approximately 2 percent. 
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Stress Intensity Factors for Through and 
Part-Through Cracks Originating at Fastener 
Holes 

REFERENCE: Shah, R. C., "Stress Intensity Factors for Through and Part- 
Through Cracks Originating at Fastener Holes," Mechanics of Crack Growth, 
ASTM STP 590, American Society for Testing and Materials, 1976, pp. 429-459. 

ABSTRACT: A procedure is formulated to derive approximate stress intensity 
factors for both part-through and through-the-thickness cracks originating at open 
holes and holes containing either loaded or unloaded close tolerance fasteners. The 
procedure is checked with known solutions for stress intensity factors of one or two 
through-the-thickness cracks emanating from an open hole in a plate subjected to 
uniaxial or biaxial loading. Stress intensity factors computed from this procedure 
for the above mentioned cases agree within seven percent of known results for the 
crack length to hole radius ratios, L/r, of 0.05 --- L/r < ~. The procedure is then 
used to derive stress intensity factors for through cracks at loaded close tolerance 
fasteners in a plate, and for semi-elliptical cracks at open holes and at loaded and 
unloaded close tolerance fastener filled holes in a thick plate. Stress intensity 
factors for these part-through cracks are presented in graphical forms as a function 
of position around the crack periphery, for various crack aspect ratios and crack 
length to hole radius ratios. Finally, these stress intensity solutions for semi- 
elliptical cracks at a fastener hole in a thick plate are used to estimate stress 
inten,;ity factors for quarter-elliptical cracks originating at a fastener hole in a finite 
thickness plate. 

KEY WORDS: crack propagation, fracture (materials), stress analysis, fastener 
holes 

A recent comprehensive study of failure origins in aircraft structures 
showed that the most prevalent failure origins are in order; flaws 
originating from fastener holes, flaws originating from corners, and 
surface flaws [1]. 2 Stress intensity factors (SIF's) for these flaw geome- 
tries are required to evaluate the critical flaw sizes that would result in 

1 Senior specialist engineer, Boeing Aerospace Company, Seattle, Wash. 98124. 
2 The italic numbers in brackets refer to the list of references appended to this paper. 
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430 MECHANICS OF CRACK GROWTH 

component failures and to compute the service life of the component 
during which the initial flaw could grow to a critical size. As evidenced by 
Ref2, considerable work has been done in obtaining SIF's for the surface 
flaws. Due to the complexity of the problem, very little work has been 
done to obtain SIF's for cracks originating at fastener holes. Most of the 
work is limited to derivations of approximate solutions to two- 
dimensional crack problems of through-the-thickness cracks originating at 
holes [3-6]. For two-dimensional crack problems, estimates of SIF's for 
through-cracks originating at loaded filled holes are available only for 
particular loading conditions and hole diameter [6]. Empirical expres- 
sions for SIF's based on experimental data have been developed for 
quarter-elliptical or quarter-circular part-through flaws (flaws which have 
penetrated part of a plate) subjected to uniform uniaxial tension in Refs 7 
and 8, respectively. However, these empirical solutions compute an 
effective SIF at an unknown location on the crack periphery and do not 
take into account the variation of the SIF along the crack periphery. 
Estimates of SIF's for semi-elliptical cracks at open holes in an infinite 
solid have been obtained for very short cracks with respect to hole radius, 
that is, for,a/R <- 0.3 where a and 2c are crack dimensions and R is hole 
radius [9]. 3 

Stress analysis of a loaded close tolerance fit fastener in a plate 
subjected to applied remote loading, even in the absence of a flaw, is a 
complex nonlinear problem involving variable contact between the fas- 
tener and the plate [10,11]. When a flaw originates from the fastener hole, 
analysis is complicated further, since the crack reduces the rigidity of the 
structure surrounding the hole and may change the contact condition. 
Flaws originating at fastener holes are often part-through flaws and are 
thus three-dimensional problems. At the present time, it is not possible to 
obtain exact or numerical solutions of the SIF's for these three- 
dimensional crack problems. SIF's for such three-dimensional crack 
problems have to be obtained using simplifying assumptions, approxima- 
tions, and judicious estimates. 

The objective of this paper is to derive approximate SIF's for cracks 
originating at fastener holes. A procedure is formulated to derive SIF's 
from the stress distribution at the location of the crack in the uncracked 
plate or solid. The procedure is verified with known solutions for SIF's 
for two-dimensional (through-the-thickness) cracks originating at a hole. 
The procedure is then used to derive SIF's for the flaw types and loading 
cases shown in Fig. 1. These are: (1) through cracks at holes containing 
loaded close tolerance fasteners, (2) semi-elliptical cracks at open holes, 
and (3) semi-elliptical cracks at both loaded and unloaded close tolerance 
fastener filled holes in a thick plate subjected to uniform tension. Finally, 

3 Work in Ref 9 was accomplished concurrently with the work described in this paper. 
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FLAW TYPES 

SINGLE OR DOUBLE SEMI- 
ELLIPTICAL EMBEDDED CRACKS 

(b) 

SINGLE OR DOUBLE QUARTER 
ELLIPTICAL CRACKS 

(c) 

LOADING CASES 

OPEN HOLE NEAT FILLED HOLE LOADED NEAT LOADED NEAT FILLED 
REMOTE LOADING REMOTE LOADING FILLED HOLE WITH REMOTE LOADING 

(d) (e) (0 (e) 

FIG. 1--Flaw types and loading cases considered. 

stress intensity factors for quarter-elliptical cracks originating at fastener 
holes in a thick plate are estimated. 

F o r m u l a t i o n  o f  P r o c e d u r e  

Consider a problem of two symmetric through (or semi-elliptical 
part-through) cracks, each of length L, emanating from a fastener hole of 
radius R in a plate (or a solid) subjected to a symmetric loading, as shown 
in Fig. 2a. This problem is considered to be approximately equivalent to 
the linear superposition of two problems as shown in Fig. 2b and c. The 
stress distribution o-~z(x,0) in an uncracked plate with the fastener hole is 
determined at the location of the cracks for the applied loading in 
question. The crack of length 2L, as shown in Fig. 2c, is pressurized with a 
symmetric pressure distribution of stress - -  ~ (X, 0).4 The SIF K~ for both 
through and part-through cracks pressurized by this stress distribution of 
- ~= (X,0) is then derived by using the proper Green's function solution 
for the crack, such as Eq 1 for two symmetric through cracks [12]. 

4 Origins of coordinate systems (x,y,z) and (X, Y,Z) are located at the center of the hole 
and at the periphery of the hole along x-axis, respectively, such that X = x - R for x >-- R 
a n d X = x + R f o r x < - - R ,  Y = y ,  a n d Z = z .  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  S a t  D e c   5  0 9 : 4 2 : 0 7  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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FIG. 2---Approximate procedure for determining stress intensity factors for two symmet- 
ric cracks emanating from a fastener hole. 

K I  - ~ L  '~ - X 

The SIF, thus derived, is applicable to two symmetric cracks originat- 
ing at a fastener hole as shown in Fig. 2a. 

The reasoning behind the foregoing superposition was as follows: It is 
known that for infinitely wide plates subjected to uniform tension, the SIF 
for a single edge crack of length L is 12 percent higher than that for a 
center crack of length 2L, due to the introduction of the infinitely long 
stress free surface in the edge-cracked plate. In the problem of two 
symmetrical through cracks at an open hole in a plate subjected to 
uniform tension, the hole periphery is a stress free surface; however, its 
effect should be offset by the curvature of the hole periphery. Also, the 
stress free surface for this problem is of finite length; hence, its effect will 
be very small for long cracks with respect to the hole radius. Symmetrical 
cracks originating at a hole should be equivalent to a central crack rather 
than an edge crack. This statement is further supported by Bowie's 
solution for two very long cracks at an open hole (L/R >> 1) where the SIF 
for cracks at a hole approaches that of a central crack of length 2L in an 
infinite plate [3]. 

Approximate SIF's for one crack of length L originating at a hole in a 
plate are obtained by multiplying SIF's for two symmetrical cracks of 
length L at a hole by the factor shown in Eq 2. 
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K~ / 2R + L KtW~ 
= V 2 R  + 2L 

(2) 

This approach resulted from the knowledge that, when the crack length 
is very large with respect to the hole diameter, the effect of the hole on the 
SIF is negligible, and SIF's can be calculated using equations for central 
through cracks of length 2R + 2L (two cracks) and 2R + L (one crack). 
Since SIF's, K, vary with the sqaure root of crack length, the relationship 
between K for two symmetrical long cracks at a hole and one unsymmet- 
rical long crack at a hole is given by Eq 2. Also, when crack length is very 
small with respect to the hole radius, SIF's for one and two cracks are 
approximately the same [3]. This is also shown by Eq 2. Equation 2 is 
used for all L/R values to compute SIF's for one crack originating at a 
fastener hole. This procedure is verified in the next section with the 
known solutions of one crack originating at a hole. 

Verification of Procedure 

Consider the case of a plate containing two through-the-thickness 
symmetrical cracks, each of length L, originating at an open circular hole 
of radius R, as shown in Fig. 3. The plate is subjected to uniform tension 
cr perpendicular to the plane of the crack and a uniform tension (or 
compression) Xo- parallel to the plane of the crack. The stress distribution 
o-z~(x,0) in the uncracked plate at the location of the cracks for the above 
loading is given by the following well-known equation [13]. 

cr I2 Rz R 4 ] 
o-~(x,0) = ~ -  + (1 + h) ~ + 3(1 - h) ~ -  (3) 

SIF's for two through cracks of length L are then obtained by 
pressurizing the central crack of length 2L in Fig. 2c by -Crzz (X,O) given 
by the following equation. 

O-zz(X,0) = ~- 2 + (1 + X) R + Ixl + 3(I - x) R + Ixl 

o ~ IXI~L (4) 

where [X[ = [x[ - R, and Z = z. SIF's K~ are obtained by integrating 
Eq 1 with Eq 4 and are given by Eq 5 [14,15]. 

{ ' 1 K~ = ~ 1 + - -  [(1 + h)R212+ 3(1 - X)R414] (5) 
7r  
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FIG. 3----Stress intensity factors for two through-the-thickness cracks emanating from a 
hole in a plate subjected to biaxial stress. 

where R212 and R414 a r e  given by Eqs 6a and b. 

1 
R212 - 1 - ,2 [ - '  + R l l ]  (6a) 

[ ' ( ' z - 1 6 )  (6 + 9,2) ] 1 - , +  
R 4 1 4 -  3(1 - ,2)  2(1 -,2)2 + 2(1 ~ RI~ 

for ,=/1 (6b) 

, and RI1 are given by the following equations. 

, = L /R  (7a) 

_ 2 4/1 - '  f o r , <  1 
r -  

RI1 X/1 - ,2 tan-1 ~/1  + ,  (7b) 

R l l  - 
N / ,  2 - 1 

l~ Ix/-~-+ 1--+~J-f~-- f ] x / ~ - +  1 

R l l =  1 / ,=  1 for ,  = 1 

for ,  > 1 (7c) 

(7d) 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



SHAH ON CRACKS AT FASTENER HOLES 435 

In the following, SIF's KI are calculated for various values of h for one 
or two cracks originating at an open hole and are compared with the 
known solutions given by Bowie using the approximate mapping 
technique [3], Newman using the boundary collocation technique [4] and 
Tweed [5] using Mellin transform and integral equation techniques to 
assess the accuracy and the validity of the proposed technique. 

1. Uniaxial Loading (h = O)--Two Cracks 

SIF's for two symmetrical through cracks of length L originating at an 
open hole of radius R in a plate subjected to uniform uniaxial tension 
o-(h = 0 in Fig. 3) are calculated with Eqs 5, 6, and 7 for various values 
of L. SIF's KI are represented in the nondimensional form, F2(L/R) ,  as 
follows. 

F2(L/R) = K~/(oX/--~-L) (8) 

Results of the foregoing approximate solution are compared to results 
of Bowie's numerical solution in Fig. 3. Newman's collocation solution 
for this problem agrees with Bowie's solution within 2 percent; hence, it is 
not shown in Fig. 3. The maximum discrepancy between the present 
solution and the Bowie's solution is less than 7 percent for 
0.05 --< L / R  < oo. 

2. Uniaxial Loading (h = O)---One Crack 

SIF's for one through crack of length L emanating from an open hole of 
radius R in a plate subjected to uniaxial tension o-(h = 0 in Fig. 4) are 
calculated with Eqs 2, 5, 6, and 7 for various values of L. SIF's K1 are 
represented in the nondimensional form, FI(L /R) ,  by Eq 9. 

F~(L/R) = Kff(o-~f-~-L) (9) 

The results, FI(L/R) ,  of the preceding solution are compared to those 
from Bowie's solution for the same problem, and the two solutions agree 
within less than 2 percent for 0.05 -< L / R  < ~. 

3. Biaxial Tension (h = 1)--Two Cracks 

Nondimensional SIF's, F2(L/R), computed from Eqs 5 through 8 for two 
symmetrical through cracks originating at an open hole in a plate 
subjected to uniform biaxial tension (h = 1 in Fig. 3) agree within 5 
percent with those from Bowie's solution for 0.05 --< L / R  < ~. 

4. Biaxial Tension (h = l)---One Crack 

Nondimensional SIF's, FI(L/R) ,  computed from Eqs 2, 5, 6, 7, and 9 
for one through crack emanating from a hole in a plate subjected to 
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FIG. 4---Stress intensity factors for one through-the-thickness crack emanating from a 
hole in a plate subjected to biaxial stress. 

uniform biaxial tension o-(h = 1 in Fig. 4) compare within 5 percent with 
those from Bowie's solution for L/R  values of 0.05 -< L/R  < o~. 

5. Biaxial Stresses (h = l)--Two Cracks 

Nondimensional SIF's,  Fz(L/R), computed from Eqs 6 through 8 for 
two through carcks at a hole in a plate subjected to uniform tension, o-, 
perpendicular to the crack plane and uniform compression, -o-, parallel 
to the crack plane (h = - 1 in Fig. 3) compare within 6 percent with those 
from Newman's solution [4] for L/R values of 0.1 -< L / R  < ~. 

6. Biaxial Stresses (h = 1)--One Crack 

Nondimensional SIF's,  FI(L/R), for one crack at a hole in a plate 
subjected to uniform tension, o-, perpendicular to the crack plane and 
uniform compression, -o-,  parallel to the crack plane are computed from 
Eqs 2, 5, 6, 7, and 9. Maximum discrepancy between FI(L/R) given by 
the present solution and Tweed's solution is 7 percent at L / R  = 0.1. For 
L/R ratios of 0.2 -< L/R  < 0% the maximum discrepancy between the two 
solutions is less than 5 percent. 

For all of the six cases, SIF's computed by the present solutions at 
L/R = 0 are underestimated by approximately 12 percent as the effect of 
the stress free surface of the hole is neglected in the present solutions. As 
observed from Figs. 3 and 4, effect of the stress free surface is felt only by 
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very small cracks, such as L/R <- 0.3. At L/R = 0.3, valuse of F(L/R) 
given by the present solutions are in the complete agreement with the 
known solutions for all of these cases except for the cases of one crack at 
a hole for the loadings of X = --+ 1, where the present solutions underesti- 
mate SIF's by 3 percent. Error due to the effect of the free surface on 
SIF's for small cracks can be compensated by multiplying F~(L/R) in Eq 8 
and FI(L/R) in Eq 9 by the quantity MHs given by Eq 10. 

10+ (03 

SIF's calculated with Eqs 8, 9, and 10 agree with the known solutions 
within 3 percent for L/R values of 0.0 -< L/R <- 0.3. Thus, the present 
solution can be used for L/R values of 0.0 - L/R < ~. 

In view of the very good agreement between the SIF's derived from the 
present procedure and the known solutions for three different loading and 
two different crack configurations, it is concluded that the foregoing 
approximate technique can be used to obtain SIF's for cracks originating 
at fastener holes. No SIF solutions are available for three-dimensional 
(such as part-through or semi-elliptical) crack problems to compare with 
the results obtained from this procedure. However, wherever possible 
and as shown subsequently, the approximate solutions of three- 
dimensional crack problems are reduced to those for two-dimensional 
crack problems and then compared with known two-dimensional crack 
solutions. Agreement between the two solutions is found to be very good. 
Hence, this approximate technique is used to derive SIF's for three- 
dimensional crack problems. 

Application of Procedure 

Using the procedure outlined in the previous section, approximate 
SIF's are derived for through cracks and embedded semi-elliptical cracks 
originating at fastener holes for several different loading and fastener 
conditions described next and shown in Fig. 1. 

Cracks from an Open Hole 

SIF's for Through Cracks--SIF's for two or one through cracks 
originating at an open hole in a plate subjected to different loadings, such 
as h = 0, -+ 1, are given in Figs. 3 and 4. Examination of Eq 5, as well as 
analytical results of Tweed [5], show that SIF's for a given L/R ratio for 
any value of h can be obtained by linearly interpolating or extrapolating 
the results of SIF's for h = -+ 1 and X = 0 for that value of L/R ratio. For 
convenience, Fig. 5 gives SIF's for one or two cracks at a hole in a plate 
subjected to a biaxial tension stress corresponding to h = 0.5. This case 

Copyright by ASTM Int'l (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



438 M E C H A N I C S  OF CRACK G R O W T H  

IS 

u .  

3.0 

2.5 

2.0 

1.5 

I~ 

0 

t t t 

0.50 ~ 0 

4 - - . - ~ - . ~  K =OVf~'~ F2(L,~) FORTWOCRACKS 

K = o V ~  F I (L/~,) FO~ ON~ CRACK 

- 

o.~ I I I I I I I I ~ o  
0.0 0.5 t.0 1.5 2.0 2.5 3.0 3.5 4.0 V 

F I G .  5- -S t ress  intensity fac tors  f o r  one or two through-the- thickness  cracks emanat ing 
f r o m  a hole in a plate subjected to biaxial tension. 

has some practical significance such as an axial crack in a pressurized 
cylindrical vessel at a hole where the radius of the vessel is very  large 
such that it can be considered as a plate. 

SIF's  for  Semi-Elliptical Cracks at a Hole in a Sol id--Consider  a 
problem of two semi-elliptical cracks emanating from a circular hole in a 
solid, as shown in Fig. 6. The solid is subjected to a uniaxial uniform 
tensile stress of  o- which is perpendicular to the plane of the crack. In 
Fig. 6, 2a is the crack dimension along the hole length in the Y-direction 
and c is the crack dimension perpendicular  to the hole length in the 
X-direction. Angle /~ is the parametric angle of ellipse defined by the 
following equation and is defined in Fig. 6. 

X = c sinfl and Y = a cos/3 (10b) 

In order to derive SIF 's  for  two semi-elliptical cracks at a hole, 
the previously described technique requires a solution for the SIF for an 
embedded elliptical crack in an infinite solid subjected to a pressure 
distribution prescribed by Eq 3 where h = 0. This, in turn, requires 
a Green 's  function for the SIF for  an embedded elliptical crack in an 
infinite solid, which is not available. The most  general solution available 
for the SIF of a pressurized elliptical crack is limited to the pressure 
distribution in the form of  a polynomial of X and Y defined as follows [16]. 
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3 3 

p(X,Y,O) = ~_, Z A"o X'Y~ i + j - - <  3 (11) 
i = 0  j=O 

A Green's function is available for circular (penny-shaped) cracks and 
is used in the following to derive SIF's for two semi-circular cracks at a hole 
in an infinite solid. As described in the appendix, the Ref 16 solution 
is used to extend nondimensionalized SIF's for two semi-circular cracks 
at a hole in a thick plate to those for two semi-elliptical cracks at a hole 
in a thick plate. 

A Green's function for the SIF for a circular crack embedded in an 
infinite solid is given by Smith et al [17]. However, the Green's function in 
Ref 17 contains an infinite series, and it is not suitable for use when the 
pressure distribution prescribed on the crack surfaces is complex since 
integration cannot be carried out in the closed form and numerical 
integration is required. Hence, the Green's function for the SIF is 
modified into a form given by Eq 12 which can be used for general loading 
and is suitable for numerical integration. For the sake of brevity, details of 

O 

t t t t  t t t  

f f  

" " - r  

~ r 14 SECTION A-A 

FIG. 6---Two semi-elliptical cracks aHginating at a hale in a thick plate. 
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the Green's function, that is, derivation and verification with the known 
solutions are not given here but are described in Ref 18. 5 

1 faf  rp(r,dp,O)(a2-r2)U2 
K1(tk) - rr(Tra)l/2 a s - 2ar cos (6 - 6 ) + r  2 d6dr  (12) 

In the preceding equation, a is the radius of the crack, p(r,6,0) is the 
prescribed arbitrary normal surface tractions applied to both the upper 
and the lower crack surfaces, r is the distance from the center of the crack 
in the crack plane, 4) is the angle measured with respect to the X-axis, and 
the origin of the coordinate axes (X, Y ,Z)  is located at the center of the 
crack. The SIF KI at any point on the crack periphery at the angle t~ from 
the X-axis is then given by Eq 12. 

According to the previously described technique, SIF 's  for two semi- 
circular cracks of radius a originating at a hole of radius R in a solid 
subjected to uniform uniaxial tension ~r is then given by Eq 12 where 
p(r,~b,O) at Z = 0 can be rewritten from Eq 4 as follows. 

p(r,qb.O) = ~rzz(X,Y,0) = ~-  2 + R + r I c~ 

+ 3 R + r~cos4~[ (13) 

It is not possible to integrate Eq 12 in the closed form for p(r,6,0) 
described by Eq 13. Straight forward numerical integration of Eq 12 using 
a variable step-size Simpson's rule procedure also poses a problem as the 
integrand defined by Eq 12 is singular at r = a and ~b = 0. As shown in 
Ref 18, commonly used methods for the numerical evaluation of an im- 
proper integral such as ignoring the singularity or proceeding to the 
limit [19] do not work for Eq 12. A special method was used to evaluate 
numerically this improper integral which is described here briefly. 
Equation 12 can be rewritten as follows. 

KI(t0) =Jo  L F(r'ch'O)ddpdr + Jo .!o F(r,qb,O)dqbdr + 

fof  f~ [o+o ,+ F(r,qb,O)dchdr + F(r,qb,O)dqbdr 
-r J 0-6 

(14a) 

5 Reference 18 is available on request from the author or the Boeing Library. 
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1 rp(r,qb,O)(a 2 -  r2) 1t2 
F(r ,6 ,0  ) - (14b) 

~-(wa) 1/2 a 2 -  2 a r c o s ( t o -  ~) + r 2 

In Eq 13, e and ~ are very small quantities with respec t  to a and 2~r. 
First, second, and third integrals do not contain any singularity and were 
integrated numerically with a high degree of accuracy.  (In actual  compu- 
tations, e and 8 were taken as 0.01a and 0.08727 radian, respect ively.)  
Fourth integral which is improper  was evaluated analytically assuming the 
function p(r,qb,O) to be constant  over  the region to - 8 to tO + ~ and a - E 
to a.  Due to space limitations, details of  this integration are given 
somewhere  else [18]. This method was used to evaluate numerical ly the 
integral in Eq 12 where p(r,~b,0) was taken as r 2 cos 2~b and r 3 cos 3~b for 
which exact  solutions for  S I F ' s  are available.  S IF ' s  computed  by the 
numerical quadrature compared  within 0.6 percent  with those f rom the 
exact solutions. 

Utilizing the quadrature technique jus t  outlined, S I F ' s  K~h for two 
semi-circular cracks of  radius a (or c) originating at a hole of  radius R in a 
solid subjected to the applied tension tr, as shown in Fig. 6, are computed  
from Eqs 12 and 13 for  various values of  angles tO f rom 0 to rr/2 and for 
various ratios of  a/R (or c/R).  The resultant S IF  Kth at any point on the 
crack periphery,  defined by angle/3 measured f rom the Y-axis as shown in 
Fig. 6, 6 is normalized with respect  to the SIF  Kie for  a penny-shaped 
crack of radius a (or c) in an infinite solid subjected to the applied uniaxial 
tension, o-. The nondimensionalized SIF  Foe(c/R,/3) is defined as follows. 

where 

Foe(c/R,f l )  = Km/  Kje 

a 2 

Kxe = or(Tra/Q) 112 (cos2fl + ~ sin2/3) TM 

(15a) 

if a / c  -< 1.0 (15b) 

C 2 

KIe = o'(Irc/Q) "2 (sin2/3 + ~ cos2/3) TM if a / c  > 1.0 (15c) 

For  convenience in discussion of semi-elliptical cracks  at a hole (Fig. 6) 
later, K~e in Eqs 15b and c is represented for a general case of  an elliptical 
crack of diameters  of  lengths 2a and 2c instead of a penny-shaped  crack. 

Angle/3 and angle qJ defined before are complimentary angles for a semi-circular crack, 
that is/3 + tO = ir/2 radians. 
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442 MECHANICS OF CRACK GROWTH 

For the case in discussion here, a = c. The shape parameter Q is defined 
by Eq 16 [20]. 

Q = [E(k)]V[1.0 - 0.212(o'/O'y~) 2] (lOa) 

where O-ys is the uniaxial tensile yield strength of the material and E(k) is 
the complete elliptical integral of the second kind corresponding to the 
modulus k where k is given by either Eq 16b or Eq 16c. 

k = [1 - a2/c2] 1/2 if a/c <- 1.0 (16/9) 

k = [1 - c2/a~] 1/2 i f a / c  > 1.0 (16c) 

Angle/3, as mentioned before, is defined in Fig. 6 as well as by Eq 10b. 
The nondimensionalized factors Foe(c/R,/3) are shown in Fig. 7 for two 

semi-circular cracks at a hole in a thick plate for various values of c/R 
from 0.0 to 10.0 and for various values of angle/3 from 0 to 90 deg. For 
a/c = 1.0, KIe is not dependent on angle/3 and is constant. Figure 7 shows 
that the SIF K~h is maximum at/3 = 0 deg (point on the crack periphery 
nearest the hole) and decreases monotonically to a minimum at/3 = 90 
deg (point on the crack periphery farthest away from the hole). 

As outlined in the Appendix, SIF's K~h for two semi-elliptical cracks at 
a hole in a thick plate (Fig. 6) are estimated using the solution in Ref 16 
and the previously outlined technique for a/c values ranging from 0.1 to 
1.0, c/R values ranging from 0.0 to 10.0, and/3 values ranging from 0 to 90 
deg. The analysis for estimating SIF's is outlined in detail in the 
Appendix. The resulting SIF's K1h are nondimensionalized with respect to 
the SIF gle for an elliptical crack in an infinite solid having the same 
values of a and c as those for the semi-elliptical cracks at a hole. The 
nondimensionalized factor Foe(c/R,/3) and K~e are defined by Eqs 15a and 
b (or c), respectively. Results (Fig. 16 of the Appendix) show that the 
nondimensionalized SIF's Foe are quite insensitive to the value of a/c for 
any given value of c/R and/3. Accordingly, it is concluded that Foe could 
be assumed to be independent of a/c. Thus, SIF's for two semi-elliptical 
cracks originating at an open hole in a thick plate subjected to the uniform 
uniaxial tension (Fig. 6) can be approximated from Eqs 15 and 16 and 
Fig. 7. 

There is no stress intensity factor solution avaiiable with which to 
compare the results of the foregoing approximate solution. However, the 
approximate solution can be reduced to a two-dimensional crack problem 
by letting a/c ~ ~. The problem then reduces to the two-dimensional 
problem of two symmetrical through-the-thickness cracks, each of length 
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FIG.  7--Nondimens ional i zed  stress intensity fac tors  f o r  two semi-elliptical cracks at a 
hole in a thick plate. 

0.30 

c, originating at a hole in a thick plate. The stress intensity factor KIe from 
Eq 15c is given by wX/-~c-at fl = 90 deg. Stress intensity factor Kxh is then 
given by the equation F o , ( C / R , 9 0 ) ~  Values of Foe(c/R,90) agree 
within four percent with F2(L/R) values (Fig. 3) from the corresponding 
Bowie's solution for the range of 0.1 -< c/R <- 10.0. Since the foregoing 
agreement was not a built-in condition to the approximate solution, such 
agreement gives confidence in the accuracy of the solution. 

An interesting observation can be made from the results of Fig. 7. The 
SIF Km is always maximum at fl = 0 deg (point on the crack periphery 
nearest to the hole) for a/c <- 1.0. However, K~h at /3 = 0 deg can be 
smaller than Kih at/3 = 90 deg (point on the crack periphery farthest 
from the hole) for a/c >> 1 since Kie at/3 = 0 deg is significantly smaller 
than K~e at/3 = 90 deg. 
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Cracks from an Unloaded Neat Filled Hole 

Many investigators [23-28] have obtained approximate or exact solu- 
tions for a neat (close tolerance fastener) filled hole, with a smooth elastic 
or rigid fastener, in a plate subjected to uniform uniaxial tension. Figure 8 
shows the distribution of  the normal stress (cr=/o-) across the minimum 
section of the plate (z = 0) for this problem for various values of Ep/Ee 
where E is modulus of elasticity and the subscripts p a n d f  pertain to the 
plate and the fastener, respectively. Figure 8 also shows the distribution 
of the normal stress at the same location for a plate with an open hole 
(Ep/Et = o~) subjected to uniform tension o-. As seen from Fig. 8, the 
effect of contact and fastener materials on the stress o-= along the x-axis is 
less than 3 percent for x/R greater than 1.3 for two extreme cases: (1) a 
plate containing a rigid fastener and (2) a plate containing highly flexible 

3.01 LEGEND," 
i 

2.~ OmEN HOLE, E~'Ef - ' r  
I - -  - ~EAT FILLED HOLE WITH 

RIGID FASTENER~ Ep/Ef " 0  (REF. 24,28) 
O SAME AS----ATS" 20 ~ (REF. 24,28) 

i �9 NEAT FILLED HOLE WITH 
2.41 ELASTIC FASTENER Ep/E F " 3 (REF, 24) 

2,0-,1 
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-,'1 2R I" - -  ( 
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1~ ~ 
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FIG. 8---Variation o f  normal stress O-zz/O- along x-axis for  a plate containing a neat filled 
hole. 
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fastener (open hole). For  1.1 -< x /R  <- 1.3, the difference in the stress o-.,z 
along z = 0 between the previously  considered two ext reme cases ranges 
from 3 to 10 percent .  For  x /R  = 1.0, the difference in the stress o-zz at 
0 = 0 deg (z = 0) between the two cases is 22 percent .  For  real structures,  
the effect of  plate-fastener  materials  on o-z~ along z = 0 for  a neat  filled 
hole in a plate is equal to or smaller than the preceding noted effects. 

It  is of  interest to note that the m a x i m u m  tensile stress on the 
hole-fastener per iphery generally occurs  at the point of  contac t  separa- 
tion, that is, 0 ~ 20 deg. Figure 9 shows the distribution of  circumferen- 
tial stress o00 around the hole periphery for  four  different combinat ions  of  
plate/fastener materials.  The difference be tween  max imum stresses for 
the hole filled with a rigid fas tener  and the open hole is less than 8 percent ,  
as shown in Fig. 9. In the case of  fatigue of  a filled hole with no cracks,  
crack initiation does not have  to occur  at 0 = 0 deg. In the absence  of the 
influence of other factors,  the crack would initiate at the point of 
maximum stress (0 ~ 20 deg) and grow toward  0 = 0 deg. 

S IF ' s  for through or semi-elliptical cracks originating f rom a neat filled 
hole in a plate or a solid subjected to uniaxial uniform tension can be 
derived with the technique described before and the stress distribution 
just  described. S IF ' s  thus obtained will depend on material propert ies  of 
both the fastener  and the plate. However ,  as shown before,  the difference 
between the stress distributions along z = 0 for  the two ex t reme cases,  
namely,  the open hole and the neat filled hole with rigid fastener ,  is very 
small for x /R >- 1.3((x/R - 1) is equivalent  to L/R for through cracks and 
c/R for semi-elliptical cracks).  Hence ,  the solution derived for S IF ' s  at 
cracks originating from an open hole can be used for the corresponding 
case of  a neat filled hole when L/R  or c /R > 0.3. S IF ' s  for  ext remely 
small cracks (L /R~ 0.1 or c / R ~  O. 1) at neat  filled holes containing very 
stiff fasteners (EJEs ~ 1) could be conceivably  overes t imated  by as 
much as 20 percent:  for 0.1 -< L/R  <- 0.3, the overes t imate  would be less 
than 10 percent;  for L/R  > 0.3 the overes t imate  would be negligibly 
small. In actual structures,  the overes t imate  in S I F ' s  for cracks f rom neat 
filled holes due to using the solution for S I F ' s  for  cracks f rom open holes 
would be smaller than those values just  quoted due to fas tener  flexibility. 
Hence ,  it is concluded that the solution der ived for S I F ' s  for  cracks 
originating f rom an open hole in a plate can also be used for  the 
corresponding case of  a neat  filled hole for  all crack size to hole radius 
ratios except  for L/R  < 0.1 or c/R ~ 0.1. 

Cracks from a Loaded Neat Filled Hole 

The problem of a loaded neat filled hole in a plate (Fig. I f  without 
crack) has been studied by many  investigators [27-33]. Only Refs 27 and 
28 consider the effect of  contact ,  and only Ref  28 explicitly gives the 

stress distribution near  the hole obtained f rom a finite e lement  analysis as- 

Copyright by ASTM Int 'l  (all rights reserved); Sat Dec  5 09:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



4 4 6  MECHANICS OF CRACK GROWTH 

LEGEND: 

Ep/Ef -0g (OPEN HOLE, REF.13) 
~ .  ~ Ep/Ef - 3 (STEEL PLATE, ALUMINUM FASTENER, REF. 24) 
. . . . . .  Ep/Ef '= 0 (RIGID FASTENER, REF. 24,.28) 

O EF/E f " |  (SAME MATERIAL, REF. 24) 
3.0 

l0 

Ep 
E--~" OO 

2.0 
~fP =3 
Vp m 0.29 
pf = 0.33 

1,5 

ooo/o 
i.O 

0.5 

~ X  

P 

0.0 

-0.5 

-! .0 

lO 20 30 40 5o ~X70 eo 90 
0 ,  DEGREES ~ ,,x 

~. "- 

F I G .  9----Variation o f  circumferential stress ~roo/O" around the hole periphery for  a plate 
containing a neat filled hole. 

suming the fas tener  (insert) as rigid. As shown in Ref  18, contact  condi- 
tion has a significant effect  on the stress distribution around the hole and 
on the stress distribution o-zz across  the minimum section of the plate 
(z = 0 in Fig. 10). Hence ,  the stress distribution o-z~ along z = 0 given by  
Ref  28 is used to derive S I F ' s  for  cracks at loaded neat  filled holes. 
The normal stress o-~z is normalized with the bearing stress crb and is ex- 
pressed within 3 percent  for  x -< 10R by the following equations.  

o'zz R ~ R 4 R 6 
- Ao + A z - g - x  ~ -Jr  A4--S-X " + A6 x- U- (17a) 

o r  b 

P 
o-b-  2Rt (17b) 

Ao = 0.04374, A2 = 0.71304, A 4  = -0 .66404,  and A6 = 0.91998 (17c) 
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where P ,  R,  and t are the applied concentra ted force,  radius of the hole, 
and thickness of the plate, respectively. 

Experimental studies have been conducted  to determine the stress 
concentration and distribution near a loaded neat filled hole [34,35]. The 
experimental stress concentrat ion factor  agrees within 2 percent  with that 
from theoretical analysis [28]. Experimental  results on aluminum plates 
show that a very  small increase (less than 4 percent)  in the maximum 
stress occurs when the neat fitting aluminum pin is replaced by a steel pin 
having the same fit [35]. A steel pin in an aluminum plate can be 
approximated as a rigid pin. Thus, the stress distribution for a loaded neat 
filled hole containing a rigid insert can be used to describe the stress 
distribution for a loaded neat filled hole containing an elastic fastener with 
little error. 

Shear stress ~x~ across z = 0 (x-axis) is very  small when compared to 
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F I G .  lO--Nondimensionalized stress intensity factors for  two cracks originating from a 
loaded neat filled hole. 
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448 MECHANICS OF CRACK GROWTH 

o'~z [28]. Hence, shear stresses are ignored and sliding mode SIF's KII are 
not derived for cracks originating at loaded neat filled holes. 

SIF's for Through Cracks--SIF's  for two through cracks, each of 
length L, originating at a loaded neat filled hole in a plate can now be 
derived from Eqs 1 and 17 (Eq 17a represented in terms of X instead of x). 
Integration in Eq 1 can be carried out in the closed form or numerically 
using a procedure similar to that described before or in Ref 18 for the 
double integration. A closed form expression for SIF Kl is given by the 
following equation. 

[2  ,] 
Ki = croN/-~ Ao + - - ( A ~ 2 1 2  + A4R4/4 + A6R616 

q? 
(18) 

where Ao, As, A4, and A6 are given by Eq 17c, R212 and R414 are given by 
Eqs 6 and 7, and R616 is given by Eq 19. 

R616 -- 

R~15 - 

R31a - 

5(1 - r ~ + 9Rff5 - 4Rff 

4(1 - ~z) ( + 7R414 - 3R31 

1 " - r  - r 

2(1 - CZ) 1 - ~:2 

2 + ~  :2 + - -  
1 - ~2 

(19a) 

~=~ 1 (19b) 

R#, 1 (19c) 

where, as mentioned before, ~ - L / R  and Rl l  is given by Eq 7. 
The SIF, Kx, for two through cracks, each of length L, originating at a 

neat filled hole loaded by a force P, is represented by the following 
equation. 

Ki = o'b~vT~-L F e2(L/R ) (20) 

where o-b, the bearing stress, is defined by Eq 17b, and Fez (L/R) is the 
nondimensional factor which is given as a function of the ratio of crack 
length to hole radius, L/R,  in Fig. 10. 

The SIF, KI, for one through crack of length L originating at a neat 
filled hole loaded by a force P is given by the following equation. 

K1 = ob~/-~L FpI(L/R) (21) 

where o-b is the bearing stress and Fm(L /R)  is a nondimensional factor 
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SHAH ON CRACKS AT  FASTENER HOLES 449 

which is given as a function of the ratio of  c rack  length to hole radius,  L/R, 
in Fig. I 1. FpI(L/R) is obtained f rom Fp2(L/R) and Eq 2. 

SIF's for Semi-Elliptical Cracks--The SIF,  K[h, for two semi-circular 
cracks of  radius a or c,  originating at a neat  filled hole of  radius R and 
loaded by a force P in a thick plate (Fig. 6) is derived f rom Eq 12 where 

p(r,qb,O) = Orzz(X,Y,O ) = Ao + A2 R § mr cos6l 

+ A4 R + Ir cos4~l + A6 R + mr cos(b[ (22) 
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FIG. 11--Nondimensional stress intensity factors for  one through crack originating from 
a loaded neatfil led hole, 
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450 MECHANICS OF CRACK GROWTH 

Equation 22 is the same as Eq 17a represented  in a form suitable for the 
Green 's  function for the SIF of a penny-shaped crack. Constants A 0, A 2, 
A4, and A6 are given by Eq 17c. R, r ,  and tb are defined previously.  
Utilizing the quadrature technique outlined previously,  SIF 's  Kih are 
evaluated from Eqs 12 and 22 for various values of angles q~ from 0 to ~r/2 
radians and for various ratios of a/R (or c/R). The resultant SIF, K~h, at 
any point on the crack periphery,  defined by angle/3 measured from the 
Y-axis as shown in Fig. 6, is normalized with respect  to the SIF K~cb for a 
penny-shaped crack of radius a (or c) in an infinite solid subjected to 
uniform uniaxial tension o-b. o-~ is the bearing stress defined by Eq 17b. 
The nondimensionalized SIF,  Fp~(c/R,~), is defined as follows. 

F~e(c/R,fl) = KIh/ Kleb (23a) 

where 

2( a2 ), 
Kleb = o'b(Tra/Q) cos2/3 + ~ sin2/3 if a/c <-- 1.0 (23b) 

112 /S C 2 2/3/ 1/4 
Ki~b = o'b(r,'c/Q) in2/3 + ~ cos if a/c > 1 (23c) 

K~eb is given for a general case of an elliptical crack of diameters of 
lengths 2a and 2c instead of a penny-shaped crack. For  the penny shaped 
crack, a = c in Eq 23. The parametric angle/3 and the shape parameter  Q 
are defined before by Eqs 10 and 16, respectively.  Fpe(c/R,/3) is plotted 
against angle/3 for various values ofc/R varying from 0 to 10.0 in Fig. 12. 

Nondimensionalized SIF 's ,  Fpe, for two semi-elliptical cracks at a 
loaded filled hole, obtained using the method outlined in the Appendix, do 
not vary at/3 = 0 deg more than 3 percent  for  any given value of c/R and 
for a/c ratios from 0.1 to 1.0. However ,  as/3 increases, Fee estimated for 
a/c = 0.1 differs significantly from Fpe estimated for a/c = 1.0. At 
/3 = 45 deg, Fpe estimated for a/c = 0.1 is as much as 10 percent  lower 
than Fpe estimated for a/c = 1.0 for the same value of c/R. At/3 = 90 
deg, Fpe estimated for a/c = 0.1 is as much as 30 percent  lower than Fpe 
at a/c = 1.0. For  any given value of /3  and c/R, the estimated Fpe for  
a/c >- 0.4 does not differ more than 10 percent  from the estimated Fee at 
a/c = 1.0. Thus,  Fpe in Eq 23 may be assumed constant  for  all values of 
a/c ratios for/3 - 45 deg, and for a/c >- 0.4 for/3 -> 45 deg. IfFpe is truly 
independent of a/c, then when the problem is reduced to a two- 
dimensional through crack problem, by letting a/c ~ ~, Fpe at /3  = 90 
deg given in Fig. 12 should agree with Fp2 given by Fig. 10 for all c/R 
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F I G .  12 Nondimensionalized stress intensity factors for  two semi-elliptical cracks 
originating from a loaded neat filled hole in a thick plate. 

(same as L/R in Fig. 10) values. Fpe for a/c = oo at c /R  = 0 complete ly  
agrees with Fv2 at L / R  = 0, and Fpe at c/R = 10 is 14 percent  lower  than 
Fp2 at L/R = 10. Fo r  values ofc/R less than 10, Fp~ is less than 14 percent  
lower than Fe~ for the same values ofL/R. Thus,  it is possible  that for very 
high values of  a/c (a/c ~> 1), S I F ' s  for  two semi-elliptical cracks  at a 
loaded neat filled hold may  be underes t imated as much as 14 percent  for 
large values of  c/R with the use of  Eqs 23. Er ror  est imates for  a/c < 1 
were just  discussed. 

Copyr ight  by  ASTM Int ' l  (a l l  r ights  reserved) ;  Sat  Dec  5  09:42:07 EST 2015
Downloaded/pr in ted  by
Univers i ty  of  Washington (Univers i ty  of  Washington)  pursuant  to  License  Agreement .  No fur ther  reproduct ions  author ized.



452 MECHANICS OF CRACK GROWTH 

Cracks from a Loaded Neat Filled Hole in a Plate Subjected to Tensile 
Loading 

The term--a loaded neat filled hole in a plate subjected to remote 
tensile loading--is described schematically in Fig. 13a. Consider the case 
of a plate containing a neat filled hole and subjected to a remote tensile 
load Q (Fig. 13b) and the case of a plate containing a loaded neat filled 
hole (Fig. 13c). Since the contact area changes between the load cases 
of Figs. 13a, b, and c, the exact stress distribution for the case of Fig. 13a 
cannot be obtained just by linearly superposing the stress distributions for 
load cases of Figs. 13b and c. To the author's knowledge, no general 
solution for the stress distribution is available for the loading case of 
Fig. 13a. Using finite element analysis, the problem of a loaded neat filled 
hole in a plate subjected to remote tensile loading for a particular loading 
relationship of Q = 3P in Fig. 13a is solved in Ref 28. The insert is 
assumed to be rigid and the plate width and the length are taken as ten 
times the hole diameter. Knowing that the contact problem is nonlinear 
and still applying the linear superposition principle to the problem of 
Fig. 13a, the stress distribution for the load case of Fig. 13a is given by 
the superposition of the stress distributions for loading cases of Figs. 13b 
and c. As shown in Ref l8 ,  the stress o-= at z = 0 obtained from the linear 
superposition agrees within 3 percent with that from the finite element 
solution for Ixl/R > 1.1. For Ixl/R = 1.0, the difference in stress o-= 
between the linear superposition solution and the finite element solution 
is 15 percent. Hence, it can be assumed that the stress distribution o-= 
along the x-axis for the loading case of Fig. 13a can be well represented 
by the superposition of o-~z along the x-axis for the loading cases shown in 
Figs. 13b and c. 

NEAT FILLED HOLE 

| 
NEAT FILLED HOLE 

6 
NEAT FILLED HOLE 

(*) (b) (c) 

FIG. t3--A loaded neat f i l led hole in a plate subjected to remote tensile loading. 
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Since SIF 's  for cracks lying along the x-axis depend only on the stress 
o-zz along the x-axis in an uncracked plate (infinite plate or solid), SIF 's ,  
Kin, for cracks emanating from a loaded neat filled hole in a plate 
subjected to remote loading (Fig. 13a) can be obtained by linearly 
superposing SIF 's  for cracks at a neat filled hole in a plate subjected to 
remote loading (Fig. 13b) and for cracks at a loaded neat filled hole 
(Fig. 13c). SIF 's  for the latter two cases were discussed before.  

Est imation o f  SIF's  for Quarter-Ell ipt ical  C racks  in a P l a t e  

SIF's  for one or two quarter-elliptical cracks originating at fastener 
holes (open, filled, loaded, or unloaded) in a finite thickness plate can be 
estimated from the previously derived solutions for SIF 's  for  two semi- 
elliptical cracks in a solid and the appropriate correct ion factors for the 
stress free surfaces as indicated in Fig. 14. SIF ' s ,  KI2H, for two quarter- 
elliptical cracks at a fastener hole in a semi-infinite solid (Fig. 14b) can be 
estimated by introducing a correction factor MF(a/c, [3) to account  for the 
stress free front surface. 

KI2H = M~,(a/c, fl)Km (24) 

F(a/c, c/R, f l  ) 

(o) 

+ 
y 

F(a/c,c/R,j~ ) MF(a/c,/~ ) 
(b) 

 -o-4 

F(a/c.c/R.j~)MF(a/c,J~) MB(a/c ,a/t, j~ ) 
(:) 

F(a/c, c/~ ,~)MF(a/c,~ ) MB(a/c, a/t, /~ ) 

�9 _ /  2R+ ~'ac/4t 
V2R + 2 ~'ac/4t 

(d) 

F I G .  14--Nondirnensionalized stress intensity factors for quarter elliptical cracks at 
fastener holes. 
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454 MECHANICS OF CRACK GROWTH 

where KIn is the SIF for two semi-elliptical cracks at a fastener hole in an 
infinite solid (for the same conditions of fastener fit and loading). 
Mv(a/c,/3) values are only available at the point of maximum depth 
(/3 = 0 deg) for a semi-elliptical surface flaw in a uniform tension stress 
field given by Eq 25 [36]. At/3 = 90 deg, the stress intensity solution for 
part-circular cracks shows that values of MF(a/c, 90 deg) vary from 1. l to 
1.23 [37]. At/3 = 90 deg, MR may then be assumed as 1.23. For estimating 
SIF K12H, M F values may be assumed to be independent of/3 for 0 
deg <_/3 < 90 deg, and to be given by Eq 25. 

MF(a/c, /3) = 1.0 + 0.12(1 -- a/2c) 2 (25) 

SIF's, Kl2p, for two quarter elliptical cracks at a fastener hole in a finite 
thickness plate (Fig. 14c) can be estimated by introducing a second 
correction factor MB(a/c, a/t,/3) to account for the effects of the stress 
free back surface. 

Ktzp = MF(a/c, /3) • Mn(a/c, a/t,/3) • Kih (26) 

Back surface correction factors MB are presently available only for an 
elliptical crack in a semi-infinite solid subjected to uniform tension 
[38,39], and these factors can be used to estimate K12p in the foregoing 
equation. MB values for various a/c ratios from 0.1 to 1.0, a/t ratios from 
0.0 to 0.9, and/3 values from 0 to 90 deg are given in Ref 38. 

SIF's, Knp, for one-quarter elliptical crack in a finite thickness plate 
(Fig. 14d), can be estimated from KI2p for two-quarter elliptical cracks in a 
finite plate by introducing a factor similar to that given by Eq 2. A quarter 
elliptical crack having a depth a and length c has an area equal to that of a 
through crack of length zrac/4t. Thus, the stress intensity factor for 
one-quarter elliptical crack, Knp, can be approximated by the following 
equation. 

/ 2 R  + 7rac/4t 
Knp = MF(a/c, /3) X Mn(a/c, a/t, fl) x ~ / 2 R  + 27rac/4t x Km (27) 

Discussion 

For quarter elliptical flaws of small a/c ratios (a/c less than or around 
1.0) originating at fastener holes, calculated SIF's are maximum at the 
edge of the hole (o~ =/3 = 0 deg in Fig. 14). It is not expected that fracture 
would initiate at the edge of the hole due to the release of constraint to 
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crack tip deformation resulting from the stress free hole surface. Rather, 
fracture is expected to initiate some distance away from the hole surface 
after the crack tip deformations build up to a level equivalent to plane 
strain conditions. Eighteen specimens of 4340 steel containing one or two 
nearly quarter circular cracks originating at open holes or loaded filled 
holes were loaded to fracture [40]. Solutions derived in this paper were 
used to estimate SIF's. Results of these fracture tests indicated that 
fractures in these tests originated at a point about ot = 25 deg (Fig. 14) 
away from the hole surface. SIF's derived in this paper were also used to 
predict fracture strengths and crack propagation lives for over 100 
specimens made from 4340 steel, 9Ni-4Co-0.2C steel, 2219-T851 
aluminum, and 6A1-4V (ELI) beta annealed titanium and containing 
through or quarter elliptical cracks originating at open holes and at loaded 
and unloaded filled holes [40]. Good agreement was obtained between 
experimental and calculated results. Experimental results [40] also con- 
firm the analysis results that SIF's obtained for quarter elliptical cracks 
originating from open holes in a plate subjected to remote tension 
represent SIF's for quarter elliptical cracks originating at a close tolerance 
fastener filled hole in a plate subjected to the same loading. 

Conclusions 

1. A simple procedure is formulated to derive approximate SIF's for 
both part-through and through-the-thickness cracks originating at open 
holes and holes containing either loaded or unloaded close tolerance fit 
fasteneners. The procedure checks out with known solutions for SIF's of 
one or two through-the-thickness cracks emanating from an open hole in a 
plate subjected to uniaxial or biaxial loading. 

2. SIF's for through cracks at loaded close tolerance fasteners in a 
plate, and for semi-elliptical cracks at open holes and at loaded and 
unloaded close tolerance fastener filled holes in a thick plate are then 
derived with this procedure. SIF's for part-through cracks are determined 
as a function of position around crack periphery, crack aspect ratio, and 
crack length to hole radius ratios. 

3. SIF's are estimated for quarter-elliptical cracks originating at open 
holes and at loaded and unloaded close tolerance fastener filled holes in a 
finite thickness plate. 
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APPENDIX 

Estimation of  Stress Intensity Factors for Two  Semi-Elliptical  Cracks at a Hole in a 
Solid 

Consider a problem of two semi-elliptical cracks originating at a circular hole of 
radius R in a solid subjected to uniform uniaxial tension or, as shown in Fig. 6. In 
order to derive SIF ' s  for two semi-elliptical cracks at a hole, a solution for the SIF 
for an elliptical crack in an infinite solid subjected to a pressure distribution 
prescribed by Eq 4 is required. The most general solution available for the SIF of 
a pressurized elliptical crack is limited to the pressure distribution in the form of a 
third degree polynomial of X and Y defined by Eq 11 [16]. The formulation and the 
symmetry of the problem requires the use of only even power terms of X. Also, 
the stress distribution near the hole along the X-axis given by Eq 4 is a function of 
X only. Hence,  the solution available for use here is limited to the pressure 
distribution given by the following equation. 

p(X,Y)  = Aoo + A20S 2 (28) 

It is not possible to fit exactly the stress distribution given by Eq 4 using Eq 28. 
For through-the-thickness cracks, however,  it was believed that as long as the 
area under the fitted stress curve versus X, As, is approximately the same as the 
area under the prescribed stress curve versus X,  Ap, and the trend of the fitted 
stress distribution is similar to the prescribed stress distribution, the S IF ' s  
calculated using the two different stress distributions would not differ greatly. 
This assumption is examined using the problem of two symmetrical through 
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FIG. 15----Stress intensity factors for two through-the-thickness symmetrical cracks 
originating at a hole in a plate subjected to tension. 
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cracks, each of length L,  originating at an open hole of radius R. The stresses 
prescribed by Eq 4 are least square fitted by Eq 28 for various values of L/R 
individually. The areas under the curves of the fitted stress and prescribed stress 
(Asand A~) compare remarkably well for all L/r ratios and values of Ae/Ap range 
from 1.01 to 1.09 as values of L/r range from 0.1 to 6.0. The S I F ' s  calculated using 
fitted stresses are plotted as open circles in Fig. 15 and agree within one percent 
with those computed from the prescribed stress of Eq 4 and using Eqs 5, 6, and 7. 
The maximum discrepancy between the SIF ' s  computed from the fitted stress and 
those from Bowie's solution is less than 8 percent for 0.1 -< L/R  < o~. In view of 
the good agreement, fitted stresses are used to estimate the nondimensionalized 
SIF ' s  for two semi-elliptical cracks at a hole in a solid, illustrated in Fig. 6, for 
various a/c ratios. 

Initial estimates of S IF ' s  for two semi-elliptical cracks at a hole in a thick plate 
are made by solving the equivalent problem of an embedded elliptical crack in a 
solid pressurized by the pressure distribution given by Eq 28. Similar to the 
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FIG. 16--Nondimensionalized stress intensity factors for two semi-elliptical cracks 
originating at a hole in a thick plate. 
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through-the-thickness crack problem, the constants A00 and A2o in Eq 28 are 
determined for every c/R ratio individually by least square fitting Eq 28 to Eq 4 for 
X/R equal to zero to the particular value o fc /R .  From Ref 16, the SIF K~h for the 
elliptical crack is then given by Eqs 17 and 21 of Ref 16. SIF 's  K~h, as anticipated, 
are dependent on the crack ratio a/c, crack length to hole radius ratio c/R, and the 
location of the crack periphery as designated by the angle/3. The SIF Klh at any 
point on the crack periphery defined by angle fl is normalized with respect to the 
SIF Kte for an elliptical crack of the same dimensions a and c in an infinite solid 
subjected to the applied tens ion tr. The nondimens iona l ized  factor 
Fo~(a/c,c/R,/3) and Kle are already defined by Eqs 15a and b or c. The 
nondimensionalized factors Foe(a/c, c /R ,  [3) for several a/c and three c/R values 
are shown in Fig. 16. In calculating Foe, ~ry~ is assumed to be zero in Eqs 15 and 
16. As seen from Fig. 16, values of  Foe are quite insensitive to the value ofa/c  for 
any given value ofc /R and/3. The maximum variation in Foe occurs at/3 = 90 deg 
and c / R  = 1.0 where the variation between Foe at a/c  = 0.1 and at a /c  = 1.0 is 
less than 13 percent. For other ratios ofc/R up to 10.0, the differences between Foe 
at any particular angle/3 for any two a/c ratios is approximately the same or less 
percentagewise. In view of this result, it is concluded that Foe(a/c, c /R, /3)  can be 
assumed to be independent of a/c for engineering estimates of SIF. 

In summary, it is emphasized that the results of this appendix are only used to 
show that the nondimensionalized SIF's  Foe(a/c, c /R , /3)  derived for the pre- 
scribed stresses with the Green's function approach for a/c  = 1.0 can be used to 
estimate SIF's for any a/c value. 
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ABSTRACT: A technique consisting of a marriage between stress freezing photo- 
elasticity and a numerical method was used to obtain stress intensity factors for 
natural cracks emanating from the corner at which a hole intersects a plate surface. 
Geometries studied were: crack depth to thickness ratios of approximately 0.2, 0.5, 
and 0.75; crack depth to crack length ratios of approximately 1.0 to 2.0; and crack 
length to hole radius ratios of about 0.5 to 2.0. All final crack geometries were 
grown under monotonic loading, and growth was not self similar, with most of the 
growth occurring through the thickness under remote extension. Stress intensity 
factors were determined at the intersection of the flaw border (1) with the plate 
surface (Ks) and (2) with the edge of the hole (Kn). Results showed that for the 
relatively shallow flaws K n  ~ 1.5 K s ,  for the moderately deep flaws K n  ~- K s  
and for the deep flaws K n  = 0.5 Ks ,  revealing a severe sensitivity of K to flaw 
geometry. Results were compared with the Bowie theory, and approximate criteria 
developed by Hall and Finger, and Hsu and Liu. These comparisons showed that 
these theories significantly overestimated the SIF for moderately deep flaws 
a/t ~- 0.5 at both the plate surface and the hole, but, for shallow flaws, the 
Hall-Finger theory underestimated the SIF at the hole, and the Bowie theory 
underestimated the SIF at the surface for deep flaws. 

KEY WORDS: crack propagation, stresses, residual stress, photoelasticity, stress 
analysis, stress intensity, fracture properties 

Nomenclature 

t r . . ,  o'zz, ~'.z Stress components  in plane normal to crack border  
(N/ram 2 ) 

Assistant professor and professor, respectively, Department of Engineering Science and 
Mechanics, Virginia Polytechnic Institute and State University, Blackburg, Va. 24061. 
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o-0 Normal stress in direction of crack extension near crack 
tip (N/mm 2) 
Remote stress (N/mm 2) 

K~ Mode I stress intensity factor (N/mm 3/2) 
r, 0 Polar coordinates (mm, rad) 

a Flaw depth (mm) 
c Flaw length (mm) 
~" Hole radius (mm) 
t Plate thickness (mm) 

N Fringe order 
f Material fringe value (N/mm/order) (favg = 0.256) 

Ks Mode I SIF at plate surface (N/mm 3/2) 
KH Mode I SIF at hole surface (N/mm 3/2) 

KEx Mode I SIF experimental (N/mm 3/2) 
KAp Mode I SIF apparent (N/mm 3/2) 

A common cracked body problem in the aerospace industry consists of 
a corner crack emanating from the intersection edge between a plate 
surface and a hole. No analytical solution exists for this problem even as a 
near field solution only. Yet the designer is forced to design against this 
type of crack using very approximate methods [1 ].2 Apparently, the first 
study undertaken of the problem was an experimental study by Hall and 
Finger [2]. They inserted artificial flaws by an electrical discharge 
machine (EDM) with depth/length less than unity and used fatigue loads 
to initiate cracks after which residual static strength tests were run. In 
evaluating their results, they assumed that a state of plane strain existed 
near the point of intersection of the flaw border and the boundary, but in 
their fracture criterion they had only one value for the stress intensity 
factor (SIF) and did not account for the variation of the SIF and constraint 
along the flaw border. As an alternate approach, they suggested modelling 
the corner flaw with an "equivalent" Bowie type [3] through crack. The 
latter approach was refined by Liu [4] for quarter circular cracks but still 
required the selection of an arbitrary equivalent crack length for the 
Bowie model. This approach has been recently expanded by Hsu and Liu 
[5], and, while this latter analysis contains some two dimensional approx- 
imations and takes no account of back surface effects, it constitutes the 
most recent effort at quantifying the problem. 

Because of the technological importance of the foregoing problem and 
the approximate nature of existing analytical approaches necessitated by 
the intractability of the mathematical model of the complete problem, one 
is led to consider experimental techniques as an alternate approach. 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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Stress freezing photoelasticity is a well known technique for evaluating 
three dimensional stress distributions in the vicinity of stress raisers. A 
method for extracting the stress intensity factor from photoelastic data for 
two dimensional problems was proposed by Irwin [6] in 1953, and the 
method has been modified and refined substantially since that time. 
Recent studies by Kobayashi and his associates [7-10] have applied the 
method to dynamic photoelasticity, and the senior author and his as- 
sociates [11-21] have refined the method for three dimensional problems. 

It was the purpose of the present study to determine stress intensity 
factors at the end points of flaws emanating from the corner formed by the 
intersection of a plate with a hole using stress freezing photoelasticity and 
to compare the results with the studies just noted. The authors used a 
numerical technique known as the Taylor Series Correction Method 
(TSCM) [20] in order to extract the SIF values from the photoelastic data. 
Before describing the experiments, a brief review of the analytical 
background appears to be desirable. 

Analytical Considerations 

Consider the Irwin two parameter near field equations for Mode I 
loading 

o-,, - (27rr)l/~cos ~- 1 - sin s i n - -  - o-0 

o - = -  (2~rr)~/-~cos 2- 1 + sin ~ s i n -  (1) 

K, . o / 0 3 o ~  
r.~ - (2zrr)l/~ sm 2- [kc~ ~ - c o s ~ - )  

where the notation, adapted to the problem at hand, is pictured in Fig. 
1. Here 0% is the part of the regular stress field which is independent ofr.  
Although Eqs 1 were originally proposed for two dimensional problems, 
the singular parts have been shown to be valid for stresses in planes 
perpendicular to elliptically shaped crack borders [22] and are generally 
applied to arbitrary shaped plane crack borders as well. By substituting 
Eqs 1 into Eq 2 

1 
Zm~x - 2 [(o-.. - o-==)2 + 4r.,2] 1/2 (2) 
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and evaluating rmax along 0 = zr/2, one obtains 

,l-ma X 
I KI Kio'o - ~ 1  1/2 . - - + ~ +  

8"n'r 4(Trr) 1/z 
(3) 

which may be combined with the stress optic law 

Nf 
"/'max---~ 2 t  (4) 

in order to obtain an expression of the form 

g i  = f (o r0 ,  Ni, r~) (5 )  

from which K~ may be evaluated from experimental data N~, r~ along 
0 = qr/2 (see Refs 16 and 17). The stresses are evaluated along 0 = 7r/2 
since the fringes spread out in approximately this direction and can be 
most accurately discriminated along this line. An alternate form of Eq 3 
may be written as 

At 
- - - -  + Bo' + Bl ' r  1/2 (6) Tmax rl/2 

where 

g i  
A' = ~ -  and B~' = B I ' ( A ' , B o '  ) 

When one accumulates photoelastic data along 0 = rr/2, if the 
foregoing theory is to hold, the stresses in the data zone must be 
dominated by the singular stresses as given in Eqs 1. Experience with 
three dimensional problems has revealed that the singular zone is often 
severely constricted, and a part of the data may lie outside that zone. In 
order to account for this effect adequately, the authors have used a Tay- 
lor series expansion of the regular part of the maximum in plane shearing 
stress in the form 

A 
- - - +  ~ B , r  .j~ (7) 

7"ma x --  rl/2 
n = o  

where A = K1/x/87r'as before. 
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464 MECHANICS OF CRACK GROWTH 

If we ignore the dependence between the coefficients A ', B0', B)' in Eq 
6 we see that Eq 7 reduces to Eq 6 for a two degree of freedom system of 
equations to within truncation error. Moreover, Eq 7 corresponds to an 
application of the Williams stress function along 0 = 7r/2 for two dimen- 
sional problems. 

In order to apply Eq 7, one determines the coefficients A, B,  from a 
least squares analysis of the experimental data using a truncated form of 
Eq 7. Normally the lowest order curve which best fits the experimental 
data is used. Details are described in Refs 17 and 21. 

Experiments 
Models 

A series of stress freezing photoelastic experiments were designed for 
the purpose of obtaining estimates of the SIF near points S and H along 
the flaw border (Fig. 1) The specimens were made from PLM-4B, a stress 
freezing material manufactured by Photolastic, Inc., Malvern, Pa. and 
Hysol 4290 made by Hysol Corp., Olean, N. Y. using the following 
precedure: 

1. Mill 0.762 mm from both surfaces of the plates. 
2. Drill and ream holes. 
3. Mount a razor blade in a special jig and tap in a quarter circular 

crack. 
4. Mount test specimen in a stress freezing oven in a dead loading rig 

(Fig. 2) and heat to critical temperature. 

z / T n z  

z . ~ 1 ~ ,  I ;- O'nn +~r'~n 

FIG. 1---Problem geometry and stress notation. 
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~ ~  NYLON LINE 
FISHING SWIVELS 

cl" L 

L 3w 
W >>3(2F+c) 

FIG. 2--Test setup. 

5. Load with enough load to slowly extend flaw to its desired depth. 
Remove the load. 

Test geometries studied are found in the upper part of Table 1. It was 
intended originally to attempt to duplicate the geometries of the Hall and 
Finger tests. However, since natural cracks were used, only one crack 
dimension could be controlled, and the other dimension grew to its 
"natural" companion value. This led to flaws for which a/c > 1.0 and self 
similar flaw extension did not occur. Instead, most of the growth occurred 
in the depth direction. In one test, (Test 9) a crack with a/c < 1.0 was 
produced by flexing the plate to enlarge the c dimension. 

Test Procedure 

After crack growth was completed, live loads below the threshold value 
to cause crack growth were applied above the critical temperature, and 
specimens were cooled under load, thus freezing in the fringes and 
deformations. Slices were then taken (a) parallel to the plate surface for 
use in determining the SIF at point S and (b) tangent to the hole for 
determining the SIF at point H. The latter slice was sanded on the hole 
surface to constant thickness. Slice locations are shown in Fig. 3. These 
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f -s 

SLICE H 

FIG. 3--Slice locations. 

467 

slices were placed in a tank of liquid of the same index of refraction as the 
model material and fringe patterns were obtained using partial mirror 
fringe multiplication and also by the Tardy method. A typical fringe 
pattern for the hole H is shown in Fig. 4. Slices were 0.51 to 1.78 mm 
thick. 

The analytical status of the state of affairs at points where flaw borders 
intersect free boundaries is currently somewhat unsettled [22-24]. In the 
present study, since the slice thicknesses analyzed were at least two 
orders of magnitude thicker than the crack root radius, the SIF values 
obtained should be viewed only as average engineering estimates near the 
free surfaces and do not reflect boundary layer effects. 

Results 

A typical set of data for regions S and H are shown in Fig. 5 together 
with the TSCM curves generated from the data. These curves may be 
regarded as typical of all of the tests analyzed. That is, for all tests, the 
surface slices revealed linear data which indicates a two degree of 
freedom system of equations while the slices along the hole revealed 
nonlinear data. For these cases, however, the Tardy method revealed that 
these data were also linear over a portion of the data zone nearer to the 
crack tip. Thus, instead of using a higher order curve to fit all of the data, 
the authors elected to use a two degree of freedom system on that portion 
of'the data in the linear range as shown for the H curve in Fig. 5. The 
authors interpret the linear part of the curve to represent the singular zone 
and believe that extrapolation of the linear curve results in much less error 
than would be the case for a higher order curve. In order to verify this 
technique, a test was run where the corner crack was allowed to grow 
through the thickness of the plate so as to form a Bowie type crack on one 
side of the hole. The hole radius was 4.83 mm and the crack length was 
29.21 mm. The resulting KEx was 2 percent higher than the result 
predicted by the Bowie analysis. The authors estimate, however, that 
experimental results generally can vary by 5 percent. 

It is well to note that, in applying this technique to problems in which 
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~a) unmul t t p l i ed  

(b) 5th multlple 

FIG. 4--Typical fringe patterns at H (a) unmultiplied and (b) fifth multiple (approximately 
xls). 
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FIG. 5--Typical data and results. 
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the uncracked body geometry produces strong stress gradients, care must 
be exercised to keep both the distance of data points from the crack tip (r) 
and the usable data range Ar small in comparison to the gross body 
geometrical dimensions. 

Even after Tardy analysis, the slopes of the curves of normalized Kap 
versus (r/a) ~t2 or (r/c) ~l~ were, in some cases, sufficiently large to cause the 
authors some concern as to the accuracy of the KuF~ values. In general, 
the authors estimate that the values of KsE~ identified as Experimental 
Values in Table 1, are accurate to within 5 percent but values of K/~E~ are, 
on the average, probably not better than about 15 percent. Thus, the 
authors feel that the results for KHEx should be interpreted as trends rather 
than as exact values. In this context, the experimental results tabulated in 
Table 1 may be summarized as follows: 

t aJ t=  0.2 I aJc 1.0 to 1.5 
For c/f 0.5 KHE x ~-- 1.5 KsFx 

2fit 0.5 to 0.9 

t a/t-~ 0.5 I a/c 1 .0 to l .5  
For c/f 0.5 to 2.0 KHEx 

2fit 0.5 to 0.9 

l a/t - 0.75 1 a/c 2.0 
For c/f 0.8 to 1.6 KnEx 

( 2~/t 0.5 to 0.9 

= KsEx (except Test 5) 

- 0.5 KsEx 

Moreover, except for the shallow flaws, for a/c > 1, KsEx > KHEx. These 
results show that KHEx drops off and Ks~x increases as the cracks grow 
deeper. This growth trend is believed to be due to a variation in constraint 
distribution and load. For the parametric ranges included in this study, 
a/t seems to be the dominant parameter but a/c is also seen to be 
important, especially for the larger values (that is, a/c --> 2.0). For this 
reason, the tests are grouped according to a/t values, and within each 
group are ordered according to increasing values of a/c. 

Analytical Comparisons 
In the middle of Table 1, values of the SIF are estimated for each case 

tested using the theories of Hall and Finger, Bowie, and Hsu and Liu (see 
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Appendix). These results are summarized in abbreviated normalized form 
in the Subtable at the bottom of Table 1 for purposes of comparison. 

In Group II (a/t = 0.5, a/c ~- 0.9 to 1.5) all of the theories substan- 
tially overestimate the SIF both at the surface and at the hole. Although 
the overestimates range from 10 to 220 percent, they seem to average 
about 30 percent above the experimental result. These same trends are 
observed in Group I (a/t = 0.2, a/c --- 1 to 1.5) at the surface and in 
Group III (a/t = 0.75, a/c = 2.0) at the hole. However, for Group I at 
the hole, the Hall-Finger solution underestimates the SIF by about 20 
percent. 

As noted earlier, there are many reasons why agreement should not be 
expected between the several theories and experiments. The Bowie 
solution is two dimensional and applies to a very different geometry than 
the cases studied here which are found to be highly geometry dependent. 
The Hall-Finger approach assumes that fracture initiates near the hole 
boundary under a state of plane strain constraint and obtains empirical 
functions from experimental data only for cases where a/c < 1.0. The 
Hsu-Liu theory provides a highly empirical modification of the Bowie 
solution for obtaining the SIF both at the surface and at the hole and 
neglects the back surface of the plate altogether. As noted earlier, the 
effect of increasing a/t was to decrease Kt~ and to increase Ks.  The 
decrease of Kn with increase in a/t was also observed by Hall and Finger 
as an "unexpected result." The authors conjecture that this result may be 
due to the fact that, when the crack is deep, a substantial part of the load 
is transferred to the side of the hole opposite the crack due to the 
greater stiffness of this part of the plate. The remaining ligament between 
the crack and the back surface of the plate thus carries a reduced load, 
and this effect is in evidence in the results shown here. Values of a/c are 
low enough in Tests 1, 3, and 4 that some correlation might be expected 
with the Hall-Finger criterion. However, differences between that crite- 
rion and experimental results run as high as ---20 percent, indicating that 
substantial three dimensional effects may be averaged out in the Hall- 
Finger approach. 

Problem Characterization and Conclusions 

It is clear from the results of the Subtable under Table 1 that none of the 
theories studied here are (in their published form) suitable for dealing with 
deep flaws where a/c = > 1.0. It is also clear that this problem is highly 
three dimensional and strongly geometry dependent. In order to assist the 
designer in converting these results into an interim design philosophy until 
further studies can be carried out, the following suggestions are made. 

In R e f l ,  the crack growth occurring in this type of problem through the 
thickness is estimated from the SIF for a quarter circular flaw emanating 
from the corner of a quarter infinite plate. It is clear from the value of 
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KHEx/Na 1/2 from the tests in Group I that such a solution should be 
corrected to account for the stress raiser effect due to the hole and that 
this correction should be of the order of 2.0 to 2.5. Although difficult to 
justify on purely analytical grounds, the correction obtained from the 
Bowie solution as c --> 0 by Hsu and Liu appears to be somewhat conserva- 
tive but not unsuitable here. For Groups II and III, failure to correct 
for the presence of the hole is apparently more than offset by the load 
transfer mechanism mentioned earlier. A 20 percent or so decrease in 
the value of C in the Hall-Finger criterion would yield fairly accurate K~ 
estimates for Kn. 

Once the crack has grown through the plate thickness, it forms a Bowie 
crack for which K, (or Ks) is predicted accurately by the Bowie theory. In 
fact, the use of the Bowie theory to predict Ks before the crack breaks 
through to the far side of the plate could be used (if KB is decreased by 
about 40 percent) for Groups I and II (except Test 5). For Group III (and 
also Test 5), the Hsu-Liu correction would again be necessary. 

The problem studied here is a complex, three dimensional problem, and 
the present study can only be expected to identify trends and point the 
way for future research. The trends and conclusions from the present 
study may be summarized as follows: 

1. Extension of a crack emanating from a corner of intersection of a 
hole with a plate under monotonically increasing load is not self-similar. 
(In this work, most of the growth was through the thickness3). As the 
flaw depth increases Ku decreases and Ks increases. 

2. Existing theories and design criteria significantly overestimate the 
SIF at both the hole and the surface except for shallow flaws at the hole 
and deep flaws at the surface. 

3. As an interim design criterion for Ks, the Bowie theory with a 
coefficient of about six tenths yields results to within 10 percent for 
Groups I and II, (except Test 5) and, for Group III, a coefficient of unity is 
recommended. For Kn estimates, a Hall-Finger approach with adjusted 
coefficients and relationships is suggested. 

The authors have extended the current study to other crack geometries 
[25] and are currently studying fastener effects. 

Acknowledgments 

The authors wish to acknowledge the studies of L. R. Hall, R. W. 
Finger, T. M. Hsu, A. F. Liu, and O. W. Bowie, upon whose work they 
have drawn. They are also indebted to J. C. Newman for his suggestions 
and to the staff and facilities of the Engineering Science and Mechanics 
Department of Virginia Polytechnic Institute and State University. This 

Test results on fatigue crack growth at U. S. Air Force Materials Laboratory show that, 
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A P P E N D I X  

Related Theoretical Solutions 

Two approximate theories have been proposed for the problem described in the 
foregoing, and the two dimensional theory of Bowie was also used. These theories 
will be briefly described here and their limitations noted. 

I. The Bowie Solution [3] 

Bowie utilized conformal mapping in order to obtain a solution to the two 
dimensional problem of a through crack emanating from a hole under remote 
extension. The mapping function was constructed by considering separately the 
transformation between two upper half planes which carries the real axis of one 
into the real axis interrupted by branch cuts of finite length of the other, and the 
transformation which maps each of these half planes into circles and their 
exteriors. The mapping function used was the product  transformation, and it was 
approximated by a polynomial. The resulting SIF for a single crack normal to a 
field of remote uniaxial tension may be expressed as 

K, = ~ F ~ (8) 

where 

= remote tension normal to the crack, 
L = crack length, 
~-= hole radius, and 

F (L_) = numerically evaluated. 
\ 1  / 

II. Hall and Finger [21 

These investigators prepared a series of test specimens in accordance with 
Table 2. Notches were inserted using an EDM, and specimens were fatigued to 
start the cracks, Residual static strength tests were then conducted. Hall and 
Finger then postulated that catastrophic fracture would originate near the inter- 
section of the flaw border  with the hole and that this region would be under a 
plane strain type of constraint. On the basis they proposed,  as a fracture criterion 

~X/'d-'j(a,c,-f,t) = Krr (9) 

Then, on the basis of parametric crossplots they refined Eq 9 into the form 

(el (:t C ~ / - d - F  ~ • G •  = K~ (10) 
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TABLE 2--Test program for flaws originating at holes [2]. 

Material 

Number of Tests for a/c = 
2r  a 

t -  T- 0.25 0.50 1.00 

2219-T87 
Aluminum 

1.0 0.2 2 2 2 

0.5 

1.0 

Ti-5A1-2.5Sn 0.5 

0.5 2 2 2 
0.8 2 2 2 
0.2 2 2 2 
0.5 2 2 2 
0.8 2 2 2 
0.2 2 2 2 
0.5 2 2 2 
0.8 2 2 2 
0.2 2 2 2 
0.5 2 2 2 
0.8 2 2 2 

NOTE--Test temperature -320~ 

where C = 1.1, H (r/t) = 2 r ~ ,  and F and G were obtained graphically from the 
test data. They obtained agreement with test data to within 10 percent. Two points 
however, should be noted: 

1. Since C, F, G, and H were obtained from the test data, Eq 10 is limited 
necessarily to the range of test data which includes no a / c  > 1.O. 

2. While the assumption that plane strain constraint exists near the point where 
the flaw intersects the boundary is certainly the safe, logical assumption to make 
for a design criterion, and seems to yield reasonable results in their work, the 
complex variation in K~ and the constraint along the flaw boundary is masked by 
this assumption so that one would not be surprised to see deviations from this 
criterion for other geometries. Nevertheless, this study should be useful in 
establishing trends due to variations in test geometry. 

III. Hsu and Liu [51 

These investigators modified the elliptic flaw solution to the form 

x B  x M l '  
KI = (11) 

Mz'  = Mz{(b /b l )  ~ sin2/3 + cos2t~} 114 where M1 is a front surface correction factor 
and/3 is measured from the minor axis to a point on the flaw border. 

:bl  ,1 
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where 
B = factor which corrects  crack solution for the p resence  of  the hole;  it con- 

sists ofF(L/r-) in I, 
bl = semi-major axis of  ellipse, and 
b = semi-minor axis of  ellipse. 

Unfor tunately ,  no a t tempt  was made  to accoun t  for the influence of  the back 
surface of the plate upon the stress intensi ty factors .  Moreove r ,  the analytical  
basis for the B factor is two dimensional ,  and its variat ion along the flaw border  is 
quite arbitrary and empirical.  

In addition to the foregoing theories ,  a theory  has been p roposed  by R. C. Shah 
and is presented e lsewhere  in this vo lume.  A comprehens ive  evaluat ion of  this 
theory against exper iments  is found in Re f  25. 
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Stress Intensity Factor of a Corner Crack 
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ABSTRACT: The alternating method for elliptical crack analysis, which is based on 
the combined use of a pressurized crack solution and a free surface solution, has 
been limited in its application due to convergence difficulties in the iteration 
process. By prescribing appropriate fictitious pressure on the elliptical crack 
surface, which protrudes into the free space, numerical convergence of the 
iteration was improved. As a result, the pressurized crack solution involving a 
third-order polynomial pressure distribution with limited use was extended to 
part-elliptical problems. The improved alternating procedure is then used to 
determine stress intensity factors in corner flaws with aspect ratios of a/b = 0.98, 
0.4, and 0.2 and subjected to uniform or linearly varying pressure distributions. 

KEY WORDS: crack propagation, stress analysis, mechanical properties, fracture 
properties 

Pub l i shed  e x a m p l e s  o f  ac tua l  fa i led  pa r t s  [1 ]2 s h o w  tha t  fa i lu re  of ten 
or ig ina tes  f rom sur face  f laws  wh ich  are  l o c a t e d  in r eg ions  o f  h igh-s t r e s s  
c o n c e n t r a t i o n s  which  can  be  m o d e l e d  b y  pa r t - e l l i p t i ca l  o r  p a r t - c i r c u l a r  
c r acks .  Thus  fo l lowing  the or ig ina l  p a p e r  b y  I r w i n  [2], subs t an t i a l  effor ts  
h a v e  been  m o u n t e d  in the  p a s t  to e s t ima te  the  s t r ess  i n t ens i ty  f ac to r  o f  
semi-e l l ip t ica l  c r a c k s  [3-7]. 

A s tep  change  in ava i l ab l e  ana ly t i ca l  p r o c e d u r e s  for  su r f ace  f law 
p r o b l e m s  was  m a d e  in 1965 b y  Smi th  [8] w h o  u s e d  the  a l t e rna t ing  
t echn ique  in t h r e e - d i m e n s i o n a l  e l a s t i c i ty  to d e t e r m i n e  the  s t r e s s  in tens i ty  
f ac to r  o f  a s emi - c i r cu l a r  c r a c k  in a semi- inf in i te  sol id .  This  p r o c e d u r e  was  
e f fec t ive ly  used  b y  Smi th  a n d  his co l l eagues  w h o  then  s o l v e d  va r ious  
e m b e d d e d  and su r face  f l aw p r o b l e m s  invo lv ing  c i r cu l a r  o r  p a r t - c i r c u l a r  

1 Professor and formerly graduate student, respectively, Department of Mechanical 
Engineering, University of Washington, Seattle, Wash. 98195. 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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478 MECHANICS OF CRACK GROWTH 

cracks [9-11]. Recently Hartranft and Sih introduced an improvement in 
this procedure by analyzing in detail the state of stress singularity in the 
region where the circular crack front penetrates the free surface [12]. 

Shah, on the other hand, considered the stress intensity factor of an 
elliptical crack which in some instances approximates better the geome- 
tries of actual cracks. A potential function of Segedin was used to 
represent a polynomial distribution of pressure on the elliptical crack 
surface and a series of problems involving embedded elliptical cracks 
were solved [13-17]. Mathematical complexity limited this polynomial 
distribution of pressure to third order terms which cannot readily repre- 
sent the rapidly varying residual surface tractions on the elliptical crack 
surface in the alternating method of three-dimensional crack analysis. As 
a result, the surface problem was not analyzed directly in any of these 
problems. The stress intensity factor at the deepest penetration of a 
semi-elliptical crack, however, was approximated [16] by a product of 
Shah's back surface magnification factor [14] with Kobayashi's empiric- 
al front surface magnification factor [4]. Kobayashi recently found a 
procedure [18] with which the residual surface traction in the iteration 
process could be reduced significantly and thus extended the usefulness 
of the alternating technique which is based on the elliptical crack solution 
with a third-order polynomial of pressure distribution on the crack 
surface. 

In addition to the semi-elliptical surface flaws just discussed, the 
problem of quarter-elliptical cracks has been of considerable interest to 
practitioners of fracture mechanics [1 ]. The first paper on this subject 
from the fracture mechanics viewpoint was presented in 1969 [19], and the 
increased interest since that time is evidenced by the two papers on 
corner flaws presented in this session [20,21]. 

In the following, a procedure which greatly accelerates the numerical 
convergence of the iteration procedure in the alternating method will be 
discussed. The procedure will then be used to determine the stress 
intensity factor in a corner flaw in a quarter-infinite solid. 

Method of Approach 

The iterative procedure in the alternating technique for solving three- 
dimensional problems in fracture mechanics has been well documented in 
the papers by Smith and Shah and will not be repeated here. The 
necessary elasticity solution for the totally embedded elliptical crack, 
originally suggested by Segedin [22], and the half-space solution by Love 
[23,24], have also been repeatedly described in these papers. Thus, Only 
the mathematical relations necessary for explaining the new procedure 
will be listed in the following. 
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o / Ty, 

X 

FIG. 1---Quarter elliptical crack in a quarter-infinite solid. 

E l l i p t i c a l  C r a c k  in  a n  I n f i n i t e  S o l i d  

Cons ider  an infinite elastic solid conta in ing  an elliptical c r ack  which is 
located in the plane z = 0 and is o p e n e d  by  applying an internal  pressure  
p ( x , y )  symmetr ica l ly  to bo th  surfaces  o f  the crack.  The  b o u n d a r y  condi-  
t ions for  this p rob lem are 3 (see Fig. 1) 

0) o'zz = - p ( x , y )  + ~ < 1, z = ( la)  

0) w = 0 + ~ >  l , z  = ( lb)  

rxz = T~z = 0 (z = 0) ( lc)  

O'xx = o ' , u  = o'zz = r x ~  = ruz  = r z x  = 0 at infinity ( ld)  

3 This problem is illustrated by quarter-infinite solid problem shown in Fig. 1. 
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For vanishing shear stresses on z = 0 plane and in the absence of body 
forces, Navier's equations of equilibrium are satisfied by the harmonic 
function qb. Displacement perpendicular to the crack plane in terms of �9 is 

O~P 0r 
w = z  2(1 - n ) - -  (2) 

3Z 2 OZ 

where "0 is the Poisson's ratio. Stress components necessary for solving 
the elliptical crack problem are given by 

oa ~ 02@ OzcP] 
= - - +  - - + 2 " 0  O'xx 2G z 3x20 z Ox 2 OY 2 j (3a) 

Iz O~I) O2dP O Ux2 ] 
= - - + - - + 2 " 0  cru~, 2G ay2O z OY 2 (3b) 

0zcp 
o'zz = 2 G  z Oz 3 (3c) 

a~I, 

rxu = 2G z OxOyOz - -  + (1 - 2n) OO-~-y ] (3a9 

0 3d) 
~'xz = 2G z - -  (3e) 

OxOz 2 

03q5 
%z = 2G z - -  (3./3 

OyOz 2 

where G is the shear modulus. 

From Eqs 1, 2, and 3, the boundary conditions in the crack plane are 
given by 

0~I~ p ( x , y )  

Oz 2 2 G  (4a) 
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on the elliptical crack surface, and 

- 0 ( 4 b )  
Oz 

on the z = 0 plane outside the elliptical crack surface. 

Since neither x nor y plane symmetry exists in the problem of a 
quarter-elliptical crack in a quarter space, all ten terms of the polynomial 
pressure distribution [13], p(x ,y) ,  must be used and thus 

3 

p(x ,y)  = ~  A,~x~ j 
i , j = O  

(5) 

w h e r e i + j - <  3. 

Generally, the ten-term polynomial pressure distribution in Eq 5 cannot 
adequately fit a rapidly varying crack pressure distribution on the crack 
surface. Nevertheless, in order to best fit the pressure distribution to the 
residual crack surface tractions generated through the alternating 
technique described in the previous section, a least square method is used 
to determine the coefficients of A~j in Eq 5. The large residues between the 
actual pressure and the fitted pressure distributions in 3-D crack problems 
involving part-elliptical crack were thus responsible for bad numerical 
convergence of the alternating technique. 

The harmonic function related to the pressure distribution of Eq 5 was 
derived from Segedin potential function [22] and is represented as 

3 

Op(x,y,z) = ~ @iJ (6a) 
i , j  = 0 

w h e r e i + j - < 3  

oi+i f f  [~ 
dPij : Co ~_~ Ox,Oy ~ QN/-Q~ 

i ,J  = 0 

ds (6b) 

Q(s) = [s(a '2 + s) (b z + s)] (6c) 
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where h is part  of an elliptical coordinate system h, /z ,  and v which are the 
roots of  the following cubic equation 

X2 y2 Z2 
~0(s) = 1 (7a) 

a s + s b s + s s 

and 

oo > h >__ 0 >__/x ~ - b Z > _ v  > _ - a s (7b) 

In the plane z = 0, the interior region of  the elliptical crack is then 
represented by h = 0 and the exterior  region is given b y / z  -- 0. 

The harmonic function @ contains ten undetermined coefficients, C~j, 
corresponding to each term, o f x ~  j. By substituting Eq 6 into Eq 4a and 
using Eq 5, the undetermined coefficients, C~, can be linearly related to 
the known coefficients Ao of pressure distribution. Details of this proce- 
dure as well as the matrix equation which relates C~j to A ~ are described in 
Ref  13. 

The stress intensity factor, which can be obtained through a procedure  
described by Irwin [25] or Kassir and Sih [26], is 

3 8G 7r ( c o s 0 ] i  ( s i ~ )  
K I =  ~ C~J~b-~b-(-1)~+JZ~+J(1 + i + j ) !  ~ a / 

i , j  = 0 

• [a s sin20 + b s cosS0]l/4 (8) 

where 0 is the angle in the parametric equations of ellipse. Thus,  once the 
constants, C~j, are known, the stress intensity factor  for a prescribed 
pressure distribution of  p ( x , y )  can be computed  by the use of  Eq 8. 

The surface tractions acting on the free bounding planes, such as x = 0 
plane and y = 0 planes in Fig 1, can also be computed by the use of  Eq 3. 
Actual numerical computation of the six stress components ,  that is, 
~rxxl x = 0, rxzl x = o, r~ l~  = 0, o'~ul ~ = 0, z,~l~ = 0, and T~zl, = 0, were ac- 
complished by numerically differentiating the analytical expressions of 
Osoo/Ox 2, 02ci,/OxOy, c~ sop/Oy s, and c~ sqb/0z 2 in order to obtain the third partial 
derivatives of qb with respect  to x, y,  and z. The purpose of 
such numerical differentiation is to reduce or eliminate the lengthy 
analytical derivations eventually as well as the complex computer  
programming of the higher order  derivatives involved in the el- 
liptical crack solution. Figure 2 shows a typical stress distribution 
computed by finite difference technique to evaluate the third derivatives 
of eO~s from two second derivatives of  ~iJ spaced 0.001 a distance apart. 
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FIG. 2---Stresses obtained by numerical  differentiation on y = 0 plane o f  a nearly circu- 
lar crack under uniform pressure.  

Also shown by X marks are previously computed stresses [13, 14] which 
agree with the numerical results within third significant figures. Attempts 
were made to extend the numerical differentiation to second order finite 
differences where the stresses would be computed from O~/Ox, a~/Oy, and 
a~/az. These numerically determined stresses agreed well with those from 
Refs 13 and 14 for an elliptical crack with uniform pressure. Stresses for 
elliptical cracks with nonuniform pressurization showed some deviations, 
and thus further numerical experimentation is necessary before the finite 
difference procedure can be extended to second order differentiation of 
O~lOx, O~lOy, and O~lOz. 

Surface Tractions on the Plane of a Half Space 

The second step in the alternating technique is to eliminate the residual 
surface traction on the bounding free surfaces computed by the finite 
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difference procedure described in the previous section. Love's solution 
[23,24] for a half space with a uniform surface traction prescribed on a 
rectangle in the bounding free surface is used by all investigators for this 
computation. The total number of necessary rectangles for adequately 
erasing the residual surface tractions has been a subject of discussion in 
the past [12,18,27] and will thus not be repeated here.The criterion for 
maximum rectangle size set forth in Ref 18 was used to determine sizes of 
the rectangles on the two free bounding surfaces of a quarter-infinite 
space for quarter-eUiptical cracks. 

Briefly the foregoing criterion is based on the differences in resultant 
stresses in a half space due to: (1) a linearly varying normal or tangential 
stress distribution over the rectangle on the bounding plane; and (2) a 
uniform normal or tangential stress distribution, which is in equilibrium 
with the linearly varying stress distribution, over the rectangle.The 
maximum ratio in the two stresses generated by these two prescribed 
normal or tangential stresses is two at the point of load of application and 
diminishes rapidly at points short distances away from the regions of load 
application. These and other comparisons of the above two 2-D solutions 
indicated that the size of the rectangles in the half-space solution can be as 
large as its closest distance to the crack plane or to the other bounding 
surface for the case of a finite thickness solid. The numbers of necessary 
rectangles on the bounding free surfaces were then reduced systemati- 
cally following this criterion. 

Figure 3 shows a typical rectangular mesh on the two free bounding 
surfaces of a quarter-elliptical crack with an aspect ratio of b/a = 0.4. 
The number of rectangles in the y = 0 plane has been reduced to 63 from 
the original 540 used by Smith in 1969 [8]. The numbers of rectangles in 
the x = 0 plane are 63, 35, and 31 for crack aspect ratios of 0.98, 0.4, and 
0.2, respectively. 

Fictitious Pressure Distribution on an Elliptical Crack 

As mentioned previously, the serious drawback in the elliptical crack 
solution lies in the third order polynomial in Eq 5 which cannot accurately 
match the rapidly varying residual tractions on the quarter-elliptical crack 
surface as well as in the uncertainty in continuing the pressure distribution 
in the other three quarters of the elliptical crack. A procedure of 
prescribing a pressure distribution on the fictitious elliptical crack surface 
which protrudes out of the bounded solid [18] led to a numerical 
experimentation to force the convergence of the alternating technique by 
a conveniently prescribed fictitious pressure distribution. 

First, the two-dimensional edge crack problem as shown in Fig. 4 was 
considered as a counterpart of three-dimensional quarter-elliptical crack 
problem, and the four following distributions were studied 
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FIG.  3---Rectangles on the two bounding surfaces.  

Constant pressure 

p(y) = Bo (9a) 

Linearly varying pressure 

~ =  ~1(,- ~-) 

Quadratically varying pressure 

Cubically varing pressure 

~ ,  = ~ (1-~-)~ 

(9b) 

(9c) 

(9d) 
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The fictitious pressure in a totally embedded  crack necessary  to yield the 
correct  edge-crack stress intensity factor  was determined by  the proce- 
dure described in Ref  1 8 ,  and these results are summar ized  in Fig. 4. 

In extending the above findings to a pressure  distribution which varies 
with both x and y,  in a quarter-elliptical crack shown in Fig. 5, the cross 
product  terms of x and y in Eq 6 were discarded temporar i ly ,  and the 
remaining seven terms were used to determine the following fictitious 
pressure at discrete locations on the second and fourth quadrants  of  the 
elliptical crack surface. Fictitious pressure on the second quadrant  of  the 
elliptical crack in Fig. 5 for  each y = constant  line was represented  as 

p ( x , } )  = Aoo + AloX + A~oX 2 + A a o x  a = o- Boo + B l o  1 - 

z 

(lO) 

where a '  is the half cord length at y = constant .  

ON FICTITIOUS THREE-QUARTER 
ELLIPTICAL CRACK 

p(x ,y )={ l - l .78(X+ b ~-) }o- 

FIG. 5---Prescribed pressure distribution on elliptical crack. 
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488 MECHANICS OF CRACK GROWTH 

Fictitious pressure on the fourth quadrant of the elliptical crack for each 
x = constant line was represented as 

p(x,Y) =Aoo+Ao~y +Ao2y2+AoaYZ= o'[Boo+Bm (1 -~7) 

+B02 ( l _ ~ T ) 2 + B 0 3  ( 1 _  y ) a ] b ,  (11) 

where b' is the half cord length at x = constant. 
Equations 10 and I 1 were then used to solve forB~ corresponding to the 

given x = constant or y = constant lines. Since each B~j from Fig. 4, re- 
lates to a linearly varying fictitious pressure distribution, a linear super- 
position of these pressures yields the resultant fictitious pressure for each 
x = constant or y = constant line. By mapping the quarter-elliptical 
crack surface by such regularly spaced x = constant or y = constant 
lines, a fictitious pressure distribution throughout the second and fourth 
quadrants of the elliptical crack surface which protrudes into empty space 
can be established. The general polynomial expression of pressure 
represented by Eq 5 is then fitted to the residual pressures on the first 
quadrant as well as the fictitious pressures on the second and fourth 
quadrant of the elliptical crack to complete the first step of an iteration 
process in the alternating method. 

The preceding procedure was not adhered to completely in prescribing 
the fictitious pressure in the first iteration process for a quarter-crack 
subjected to uniform pressure. Because of the steep gradients of the 
fictitious pressure distribution in regions where the crack front intersects 
the two free bounding planes, these regions were ignored in least square 
fitting Eq 5 to the prescribed and fictitious pressure distributions. 

Quarter-Elliptical Crack Within a Quarter-Infinite Solid 

Uniform Pressure on Crack Surface 
When the fictitious pressure shown in Fig. 5 for the first cycle of 

alternating method was used, the maximum residual surface traction on 
the quarter-elliptical crack at the end of the first iteration cycle, excluding 
the region where the crack front intersects the free surface, was less than 
0.2o-. This residual stress is less than one third of the maximum residual 
traction of an elliptical crack with prescribed constant pressure on all four 
quadrants of the crack surface [18]. The procedure of prescribing appro- 
priate fictitious pressure distribution had thus accelerated the conver- 
gence of the iteration process in the alternating method. 

Since the two bounding free surfaces interact with each other in this 
corner crack problem, running summations of the residual surface trac- 
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tions on each of the three surfaces, that is, the quarter-elliptical crack 
surface and the two free bounding surfaces, due to removal of residual 
surface tractions from any other two surfaces were maintained at all 
times. The current values of residual surface tractions were used at all 
times in the erasure process. The rectangle mesh spacing described 
previously together with 32 to 40 almost evenly spaced points on the 
embedded quarter-elliptical crack surface for least square fitting of p(x,y) 
were used in each iteration of the alternating technique. Three cycles of 
such iterations required central processing unit (CPU) time of 650, 703, 
and 783 s on the CDC 6400 computer for crack aspect ratios of 
b/a = 0.98, 0.4, and 0.2, respectively. The residual tractions on the crack 
surface after these three iterations are shown in Fig. 6. The average 
residual surface tractions on the elliptical surface, with the exception of 
regions in the vicinity where the crack front intersected with the two free 
surfaces, decreased to less than 0.575, 0.893, and 0.45 percent of the 

0 LOCATION ON FLAW SURFACE 

Y t -.060 ~- 
1.0 t--p.p----~ ~068 h 

~ - - : ~ ;  - - -  8",. 
o o o._ o__ :% ox,, 
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" .008 -~)O3 .052 .069 - - ' "  .061 \ 
-.004 .011 .057 .070 .053 
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o__ -.o_30 o .040 .o7o o \ 
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X 
Q 

F I G .  6---Total residual traction, Ozz, on elliptical f l aw  surface after three iterations. 
Corner f law  in a quarter infinite solid under uni form pressure,  O-zz = 1. 
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original uniform pressure for crack aspect ratios of 0.98, 0.4, and 0.2, 
respectively. 

The isolated high local residual tractions, which are as high as 0.4 in the 
region where the crack front penetrates the free boundary surfaces as 
shown in Fig. 6, were then reduced by using the known solution of a 
penny-shaped crack subjected to equal and opposite concentrated 
load [28]. Reference 21, which can also be found in this proceedings, 
discusses sophisticated uses of this particular solution. The result of the 
preceding incomplete erasure is a definite trend of the stress intensity 
factor to decrease rapidly, as predicted by Hartranft and Sih [12], when 
the crack front approaches the free-bounding surface. 

Similar erasure procedure was used in erasing the isolated high local 
residual tractions on the crack surface toward the midportion of the two 
free-bounding planes. As expected, these erasures contributed to less 
than 0.002 to the normalized stress intensity factors, and thus the effects 
of these residual tractions were ignored in subsequent computation. 

The resultant normalized stress intensity factors for three elliptical 
cracks with aspect ratios of b/a = 0.98, 0.4, and 0.2 are shown in Fig. 7. 
Also shown in Fig. 7 is the finite element results for b/a = 1.0 by 
Tracey [29]. The significant deviations between finite element results for 
b/a = 1.0 and the results obtained by the alternating technique for 
b/a = 0.98 could be attributed to the coarseness of the finite element 
breakdown. 

Linearly Varying Pressure on Crack Surface 

Similar analysis was conducted for a quarter-elliptical crack with a 
linearly decreasing pressure gradient in the direction of the minor axis of 
the ellipse or o-z~ = o-(1 - y / b ) .  The same procedure of prescribing 
fictitious pressure in the second and fourth quadrant of the elliptical crack 
was used to accelerate the convergence of the iteration procedure. Figure 
8 shows the residual surface tractions on the crack surface after three 
iterations. These residual surface tractions are considerably less than 
those in Fig. 6 indicating, in retrospect, that the more moderate fictitious 
pressure distribution shown in Fig. 5 was relatively ineffective in ac- 
celerating the numerical convergence and was thus the primary cause of 
isolated high residual tractions in Fig. 6. Although the maximum residual 
surface tractions in Fig. 8 were significantly smaller than those in Fig. 6, 
the average residual tractions in the two problems were approximately the 
same. For the linearly varying pressure problem, the average residual 
surface tractions were 1.00, 0.833, and 0.3296 percent of the maximum 
value of the linearly varying pressures for crack aspect ratios of 
b/a = 0.98, 0.4, and 0.2, respectively. 

Since the residual tractions in the regions where the crack front 
intersects the free bounding surfaces were small, the procedure used to 
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F I G .  7--Stress intensity factor for  a corner f law in a quarter infinite solid subjected to 
uniaxial tension, o-~ = o'. 

erase isolated higher values of  residual surface tractions did not show 
significant drop in the stress intensity factors as the crack front ap- 
proached the two free bounding surfaces. The normalized stress intensity 
factors for quarter-elliptical cracks with aspect  ratios of  b/a = 0.98, 0.4, 
and 0.2, shown in Fig. 9, do not show the rapid drops in stress intensity 
factors. 

Discussion 

As mentioned previously,  the convergence in the iteration process in 
the uniform pressure problems could have been enhanced should the 
original procedure of prescribing fictitious pressure have been used. 
Severe restriction in computing funds did ot allow the authors to rerun 
this set with the more appropriate fictitious pressure distribution. Since 
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FIG, 8--Tota l  residual traction ~rzz, on elliptical f l a w  surface after three iterations. 
Corner flaw in a quarter infinite solid under linear loading, ~r~ = 1 - y/b. 

the average residual surface tractions were at the most less than 0.9 per- 
cent of the applied uniform pressure, the results nevertheless are believed 
to be within 2 percent of the correct solutions. 

Since convergence of the iteration in the alternating method was finally 
achieved by appropriately prescribed fictitious pressure distribution, it is 
believed that further refinement in the computer program as well as 
increased iteration cycles would increase the accuracy in the results. 
Unfortunately, the lack of sufficient computer funds forced the termina- 
tion of these computations. 

For practicing engineers, the results of Figs. 7 and 9 can be used to 
estimate the stress intensity factors of corner flaws in locations of high 
stress gradients. Such regions of high stress gradients include corner flaw 
problems at a hole and pressure vessel nozzles. An estimate of the stress 
intensity factors of the former problem can also be made by the procedure 
described in Ref30. 

Figures 7 and 9 show little difference between the normalized stress 
intensity factors for elliptical crack aspect ratios of 0.98, 0.4, and 0.2. This 
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finding substantiates the assumption made by Shah in estimating the 
stress intensity factors for various part-elliptical cracks using the accu- 
rately determined normalized stress intensity factors of semi-circular 
cracks [21]. 
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