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Introduction

The content of this book continues to present the state of the art in
“Fracture Mechanics Applications and Research’ as exemplified by
earlier symposium volumes, that is, ASTM Special Technical Publications
513 and 514 (1972), 536 (1973), and 559 and 560 (1974). The themes of
fracture mechanics analysis which continue to be dominant interests in
this book are applications to elastic-plastic fracture through J-integral
methods, instability and material property analysis through R-curve
methods, fatigue crack growth phenomena and life estimation, creep
cracking analysis, and applications of fracture mechanics to particular
engineering problems in fracture control.

The success of the Eighth National Symposium, as evidenced by the
papers in this volume, is largely due, not only to the authors, but also to
the many people associated with ASTM Committee E-24 who contribute
enormously of their efforts toward assisting the symposium each year.
Moreover, the effective assistance of Jane Wheeler and (the late) Donald
Wisdom of the ASTM staff, as well as the crucial on-site coordination and
assistance of John McLaughry, Director of Special Programs at Brown
University, are especially cited as having been essential to the final result
of producing this book.

J. R. Rice, professor

P. C. Paris, visiting professor
Brown University, Providence, R.I.
02912; symposium co-chairmen.
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C. F. Shih!

J-Integral Estimates for Strain Hardening
Materials in Antiplane Shear Using Fully
Plastic Solution

REFERENCE: Shih, C. F., ‘‘J-Integral Estimates for Strain Hardening Materials
in Antiplane Shear Using Fully Plastic Solution,”” Mechanics of Crack Growth,
ASTM STP 590, American Society for Testing and Materials, 1976, pp. 3-26.

ABSTRACT: General procedures are proposed which utilize the elastic and the
fully plastic solutions to interpolate behavior from the small-scale yielding range
to the fully plastic range. The relations between the J-integral, load point
displacement, crack opening displacement, and the applied load thus developed,
are applicable to test configurations and cracked bodies in general. To assess the
accuracy of the estimated relationships, a detailed numerical investigation,
which employs an accurate finite element approach, is carried out for a particular
configuration under antiplane shear. The results obtained from the full numerical
calculations, for values of the applied load well into the fully plastic range, are in
excellent agreement with the estimated results.

KEY WORDS: crack propagation, elastic properties, plastic properties, plastic
deformation, stresses, strains, shear properties

In recent experiments, Begley and Landes [/]? have demonstrated the
potential of the J-integral as a fracture initiation criterion in the large-scale
yielding range. In this paper some relatively simple approximate formulas
are proposed for estimating the relations between the path-independent
integral, J, the applied stress, the load point displacement, and the crack
opening displacement for cracked bodies of strain hardening elastic-
plastic materials. The formulas make use of results from the elastic
solutions and the fully plastic solutions to interpolate from the small-scale
yielding range to the fully plastic range. The approximate interpolation

1 Research fellow in applied mechanics, Division of Engineering and Applied Physics,
Harvard University, Cambridge, Mass. 02138. Presently with Corporate Research and
Development, General Electric Company, Schnectady, N. Y. 12345.

2 The italic numbers in brackets refer to the list of references appended to this paper.
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4  MECHANICS OF CRACK GROWTH

procedure is similar in a number of respects to that suggested by Bucci et
al [2] for elastic-perfect plastic materials. The formulas apply to the
fracture analysis of cracked bodies as well as the analysis of test
specimens which sustain large-scale plasticity prior to fracture.

In the first part of the paper, the fully plastic solution to the problem of
an edge crack in a finite width slab under antiplane shear is presented.
Then the general estimation procedure to predict the relationships be-
tween J, the load point displacement, the applied stress, etc., in the
large-scale yielding range is introduced. Finally a detailed assessment of
the accuracy of the method is made. A particular configuration under
antiplane shear is chosen for this assessment. Estimated predictions are
compared to the full numerical calculations for materials characterized by
two different stress-strain relations, the Ramberg-Osgood relation, and
the piecewise power hardening relation.

Fully Plastic Problem for Antiplane Shear

A discussion of fully plastic crack problems of the type considered here
has been given by Goldman and Hutchinson [3]. In this paper attention is
restricted to a small strain formulation of plasticity in antiplane shear. In
simple shear the pure power hardening law is

Y/ve = alr/79)" )

where « is a dimensionless constant and vy, and 7, are reference values of
the strain and stress. The generalization of Eq 1 based on the J,
deformation theory of plasticity gives

Yo/ Yo = alre/T0)" " '7e/To (B = 1, 2) @

where

Y8 = Va3»
Tg = Tgzs a_nd,
Tez = 712 + ng.

The plane of the crack is taken to lie in the x, = 0 plane with its edge along
the x; axis as shown in the insert in Fig. 1. The crack has length a and the
width of the slab is 4. The body is subjected to a remotely applied shear
stress 7, = 7™ (at & = ) and the edges x; = —a and x; = b — a are trac-
tion free. By symmetry this problem is equivalent to the center-cracked
slab with crack length 24 and width 2b subjected to the same loading.
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FIG. 1—Curves of Y and & normalized with respect to the applied load P. Dotted lines are
extrapolations. The results corresponding to alb = 0 are taken from Ref 7.

Within the context of a deformation theory of plasticity, the path-
independent integral, J, is defined by [4,5]

J=f(de2+Tx2£ds) 3)
A F)

X1

where
W = strain energy density,
I" = any contour in the x,, x, plane which encircles the crack tip,
T = traction acting on I', and
u = displacment vector.

|

Another quantity which will be examined in detail is the crack opening
displacement at the edge of the slab denoted by &. This is defined as

§=wk; = —a,x=0% - wx, = —a, x,=0) )

where w(x,, x;) is the displacement in the x; direction.

As discussed in Ref 3, the solution to a traction boundary value
problem based on Eq 2 has the simple functional form

78/7T0 = (7°/T0)Ts(x1/a, x2/a, a/b, n)
’YB/’Yo a(r®/7o)"Ps(x1/a, xq/a, a/b, n) 3)
w/(yoa) = a(r®/79)"W(x,/a, xi/a, a/b, n)
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Furthermore, for the J-integral and the crack opening displacement, §

J = argyealts/T0)" Ja/b, n) (6a)
8 = ayea(r=/70"(a/b, n) (6b)

where the quantities topped by (%) are dimensionless functions. It may
be noted that the functional form of Eq 6b also applies to other
displacement-like quantities, notably the residual load-point displacement
which will be defined later. The character of the solution to the field
quantities, as expressed by Eq 5, demonstrates that this solution is valid
for both J, deformation and J, flow theory as long as the applied stress is
increased monotonically.

Define P to be the total shear load per unit thickness carried by the slab,
that is

P =17 )

and denote by Py;; the limit load for a perfectly plastic slab (n = ), that
is

Piimit = 7old — a) ®

A convenient normalization of J for tabulation purposes based on Eq 6a is
in Ref 3

J/(zgy0a) _
«(ta) (P y = fia/b, n) )
b \ Plimit
Similarly, a suitable normalization of § is
)] a
2/ _ b, my (10)

(o)
Primit

Values of f, and f, were calculated using an accurate finite element
method which is discussed briefly in the Appendix. These values are
given in Table 1 and are presented graphically in Fig. 1in the form of plots
of f, and f, as a function of 1/n for several values of a/b.?

3 The specimen configuration with /b = 3 was used in all the finite element calculations.
For purposes of numerical crack analyses, this configuration may be regarded as a slab of
finite width and infinite height.
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TABLE 1—Values of £, to {5.*

n
a/\ 1 1.5 2 3 5 7 10 15 20

fi 1.5708 1.9389 2.2709 2.8638 3.8654 ... 57878 ... 8.5240
f. 2.0000 2.3338 2.6444 32090 4.1748 ... 6.0445 ... 8.7267

a_ o fs 03927 04722 05281 0.6050 0.6957 ... 07999 ... 0.8765

b f. 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0
f. 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0

fi 13899 1.6206 1.7916 2.0232 2.2301 2.2855 2.2214

| fo 17465 1.9221 2.0544 2.2266 2.3544 2.3442 2.2404

4 _ 2 f, 03987 0.4772 0.5324 0.6088 0.6984 0.7553 0.8036
b 8 fy 0.1717 0.2489 0.3289 0.4895 0.7843 1.0216 1.2665
fs 0.0983 0.1295 0.1601 0.2198 0.3331 0.4358 0.5653

fi 1.2423  1.3744 1.4467 1.5065 1.4795 1.3892 1.2670
f: 1.5268 1.5820 1.6017 1.5813 1.4532 1.3113 1.2163
a_1 fa 03997 0.4799 0.5353 0.6133 0.7086 0.7644 0.8211
b 4 f, 03002 0.4076 0.5060 0.6706 0.8779 0.9658 1.0541
fs 0.1966 0.2577 0.3159 0.4241 0.6041 0.7365 0.8666

fi 1.0006 1.0044 0.9836 0.9250 0.8148 0.7316 0.6350 0.5310 0.4668
f. 1.1116 1.0176 0.9281 0.7798 0.5899 0.4824 0.3893 0.3042 0.2598
_ = fa 0.4049 0.4878 0.5501 0.6444 0.7675 0.8416 0.8963 0.9448 0.9609
0.4381 0.5128 0.5561 0.5830 0.5373 0.4687 0.3875 0.3042 0.2598
fs 0.3942  0.5040 0.5992 0.7477 0.9109 0.9716 0.9954 0.9998 1.0000
fi 0.8046 0.7502 0.7035 0.6329 0.5414 0.4803 0.4121
f. 0.6818 0.5258 0.4220 0.3020 0.2026 0.1606 0.1272
_3 fa 0.4327 0.5475 0.6415 0.7808 0.9194 0.9707 0.9956
4 f, 0.4049 0.3843 03501 0.2836 0.2014 0.1607 0.1272
fs 05939 0.7310 0.8295 0.9389 0.9942 1.0000 1.0000

SHEN
[ 5]
=

SR

2 The results corresponding to a/b = 0 are taken from Ref 7.

For the linear elastic case (n = 1) the solution is known exactly for all
a/b [61, for the finite crack in an infinitely wide slab (@/b = 0) analytical
solutions have been obtained for the complete range of n by Amazigo [7].
The curves corresponding to a/b = 0 have been taken from this reference.
In the present numerical calculations, f; and f, have been obtained for
values of the strain hardening exponent up to n = 10 (n = 20 for case of
a/b = 1/2). The sections of the curves indicated by dashed lines are
extrapolations.

The relation between J and the crack opening displacement, 8, can be
obtained by eliminating P/Py,;; from Eqs 9 and 10 with the result

J/(rqysa)
a—lm(ﬁ/,yoa)(rw Din

= fsa/b, n) an

where f5 involves f; and f, and is also given in Table 1. This relationship,
Eq 11, is shown in Fig. 2. It may be noted that in the limit of perfect
plasticity (n — «)J = 746 for all a/b.
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n+l
n

8/700)

J/(ToYo0)

T
a n{
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1
(a) o (b)

FIG. 2——Curves of Y normalized with respect to 3. In Fig. 2a the curve for alb = 1/8 is not
shown since it practically coincides with the curve for a/b = 0.

We will later want to estimate the load point displacement of a slab of
finite height. For this purpose let A be the load point displacement of a
slab of height 22 where the stress is applied at x, = =h according to
72 = 7%, as shown in the insert in Fig. 1, that is

AW =3 f " Do, B~ wixr, ~h)ldx, 12)

For finite values of n, A — o as 1 — « with all other quantities remaining
constant. For an uncracked slab of height 24, A is given by 2iy” where
Y*lyvo = a(r®/74)" Define a residual load point displacement for the
cracked body according to the well defined limit

A, =M rAG) — 2y (13)
h— o«

For purposes of fracture analyses of cracked bodies, the load point
displacement for a slab of finite height, 24, is approximated very accu-
rately by

A(h) = A+ 2hy™ (14)

as long as h/b is greater than about 2. Values of f, are tabulated in Table 1
where f, is defined by

Ac/(‘)'oa)

(P Pum)® 4@/ b5 1) (15)
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Using Eqgs 10 and 15, it can be seen that
A./8 = fi(a/b, n) (16)

where f5 = f,/f.is given in Table 1 and is plotted in Fig. 3. Note that in the
limit of perfect plasticity (n — «), A, = A = § for all a/b.

Estimation Procedures for Two Strain-Hardening Laws

In this section simple procedures to estimate large-scale yielding
behavior utilizing only the linear elastic and the fully plastic solutions are
proposed. These procedures are valid for cracked bodies subjected to in
plane or out of plane loadings. However, in this paper they will be
illustrated in the context of the antiplane shear problém. The accuracy of
these procedures will be assessed in the next section.

First we introduce the estimation procedure for a material governed by
the stress-strain law due to Ramberg and Osgood which for pure shear
takes the form

Y/Yo = 7/70 + alr/7o)" a7

To motivate our proposal, consider an infinitely wide slab of height 2k
with a semi-infinite slit as shown in Fig. 4a. The clamped boundaries are
given constant shearing displacements, that is, w(x,, #) = w, and
w(x,, —h) = —w,. For this problem J can be calculated exactly [4]. Let
the shear stress, 7,, far ahead of the crack be denoted by 7%, thenJ is given
by

3@y = e+ ok (18)

n
n+1

f
a/b+)

a/b=3/4

a/b=1/2

aF
a/b=1/4
2r
a/b=V/8
a/b=0
{ L L ] 1 1 1 1 1 J
[o] 2 4 6 10 o] 2 4 £ 8 10
(a) (b) a/b

FIG. 3—Ratio of the residual load point displacement to the crack opening displacement.
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FIG. 4—(a) Infinitely wide slab with semi-infinite slit, (b) stress-strain curves for pure

shear.

Note also that the solution to the fully plastic problem for the configura-
tion of Fig. 4a is (using the notation of Eq 6a) of the form

J = 2hargyot™/10)" fi(n) (19)
where for this problem fi(n) = n/(n + 1). Furthermore, in the case of
antiplane shear, Eq 19 holds without modification for the value of J

corresponding to linear elasticity (n = 1).* Thus, in terms of the dimen-

sionless number f;(n), the solution, Eq 18, for the infinitely wide slab may
be rewritten as

J/Q@hreye) = @=/10%in = 1)+ a(z™/19)" " Fi(n) (20)

Guided by Eq 20, an obvious candidate for approximating the relation
between J and P for the slab of width b and crack length a is

L Y
Tovoal(b — a)/b] Primit vare, 1=

P n+1
T <Plimit> fl(a/b’ n) (2 1)

4 In plane strain problems, fi(n = 1) is a function of Poisson’s ratio.
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where fi(a/b, n) was defined in Eq 9 and recall P =7"b and
Pimit = Tolb — a). Note that for sufficiently small values of P/Py,, Eq 21
reduces to the well-known linear elastic solution while for large P/Ppypy
Eq 21 approaches the fully plastic prediction, as it should.

To obtain a more refined approximate relationship, we follow Bucci et
al 2] and modify the linear elastic contribution using Irwin’s idea of a
plastically adjusted crack length. For example, for an elastic-perfect
plastic material (n = ) the second term in Eq 21 makes no contribution
for P/Pymi: < 1. But it is known that the linear elastic prediction starts to
noticeably underestimate the actual value of J when P exceeds 0.5 Pyj;.
To account for this discrepancy in an approximate manner, we replace Eq
21 by

J _< P \? , .
Toyoa[(b — a)/b] - Plim“> xfil@ex/b, n = 1)

+a< P )"H fla/b, n) @2y

Plimit
where
Aeg = a + 1y (23a)
and
_ (G (_b—a (23b)
X_( a )( b—aeﬂ>
The adjustment to the crack length for strain hardening material is given
by
_i<”_1> (K111>2 24
"v = e \n + 1 To 24)

where Ky is the elastic stress intensity factor, and the introduction of
(n — 1)/(n + 1) takes into account strain hardening in a manner consistent
with the small-scale yielding antiplane shear solutions [5]. In Irwin’s
original proposal, the value of Ky in Eq 24 is a function of a., thus, Eq 24
gives an implicit relation for r,. To simplify the approximation procedure,
we follow Bucci et al [2] and calculate K;; based on the original crack
length a. For the present crack problem, K; can be related to fy(a/b, 1)
but it may be more conveniently expressed by the exact formula

2b __ ma

P _
Ky= +— Nma\/— tan 7 25
m b v ma 2b @5)
5 In the original report, Harvard University Report DEAP S-10, the factor x should appear
in the Eqs 22, 26, 27, 31, 32, and 33, as indicated in this paper. The calculations in that report
were performed with this additional factor.
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From Eqs 23, 24, and 25 we have the simplest explicit adjustment to the
elastic solution. The differences in the adjusted elastic solution due to the
two slightly different definitions for a.yz are rather small, at least in this
particular application. In the application of Eq 22, a. is calculated
according to Eqs 23a, 24, and 25 for P =< Pjjuy. For P > Py, de is taken
to be the value associated with P = Py;;. Note that Py, is calculated
from Eq 8 based on the actual crack length.

Following the same line of reasoning, formulas for estimating the crack
opening displacement and the residual load point displacement for the
Ramberg-Osgood material are

P

p Hmit

o = (f%n‘llt> Xfe(@esi/b,n = 1) + a ( )an(a/b’ n) (26)

(yoa)

and

A,
(yoa)

- (I%m)xﬁl(aeﬂ/b, n=1)+a <I%m)nf4(a/b, n @D

where a is calculated according to the same prescription just given.
Next, consider the piecewise power hardening law which in pure shear
is given by

'y/'yo = ’T/’T() for TS’TO
(28)
V/ve = (t/10)® for 7>7,

According to Eq 28, the exact result for J, for the infinitely wide slab of
Fig. 4a, is given in terms of the stress far ahead of the crack, v*, by

(7°/70)%/2 for =7,
29)
1/2 + [n/(n + D] [(+°/7)"" — 1] for 7%>1,

J/@2h7gy,)

The right hand side of Eq 29 is just the shaded area under the stress-strain
curve in Fig. 4b. In terms of the elastic and fully plastic solutions (see Eqs
19 and 20), Eq 29 may be rewritten as

J/Qhrgye) = (/1)1 (n = 1) for =7,

= filn = 1) + [(*/mx™** = 1] fi(n) for °>7,
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where again fi(n) = n/(n + 1). The straightforward generalization,
suggested by Eq 30, to the finite width slab is

J P \2
Toyoal(b — a)/b] B (anit> xfiaes/b, n = 1)

for P = Piimit (Bla)

- xfaafbn =1+ [ (5 )" 1] s, n

Plimit

for P > Pymy (31b)

where a. in Eq 31a is given by Eq 23 and where a.; in Eq 315 is taken as
the value associated with P = Pyny. Similarly, we propose the following
formulas for estimating the crack opening displacement and the residual
load point displacement for the piecewise power hardening material

y% = ( meit) xfol@es/b, n = 1) for P < Pymir  (32a)
= xflae/b,n=1) + [( Pf mit)"— 1] fla/b, n) for P> Pymy  (32b)
and

;\0; = < meit>x.f4(aeff/b; n=1) for P < Pymy  (33a)
= Xfuau/b, n = 1) + [( )- 1] fda/b, n) for P> Pym;  (33b)

A quantity frequently measured in fracture toughness tests is the load
point displacement. As mentioned earlier, this displacement may be
estimated by using the simple formula

Alh) = A, + 2hy” (14)

where 24 is the distance between the load points. For a Ramberg-Osgood
material, y* and A, in Eq 14 are given by Eqs 17 and 27; for piecewise
power hardening, they are given by Eqs 28 and 33. Aslongas /b = 2, Eq
14 should be an excellent approximation to the load point displacement.

Thus far, expressions for J, 8, A., and A have been given in terms of the
load parameter P. The relationships between J and § and J and A may be
obtained by simply eliminating (numerically) P from the earlier expres-
sions. Of particular interest is the relation of J to A. Bucci et al [2]
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proposed a procedure to approximate this relationship for an elastic-
perfect plastic material. Adopting an approach similar to Ref 2, Rice et
al [8] obtained analytical expressions for J in terms of A and P based on
elastic-plastic material behavior for several deeply notched configura-
tions. In the nonhardening limit, the two procedures proposed in this
section are equivalent to the procedure presented elsewhere [8].¢

An Assessment of the Proposed Estimation Procedures

For this assessment we have chosen the edge crack configuration
with a/b = 1/2 and h/b = 2 subject to a uniform out of plane shear 7* (see
insert in Fig. 1). Boundary value problems associated with this configura-
tion, for material behavior governed by the stress-strain characterizations,
Eqgs 17 and 28, considered previously and generalized using J, deforma-
tion theory, were solved by the finite element method. A brief description
of the numerical calculations is given in the Appendix.

First we consider the boundary value problem associated with the
Ramberg-Osgood characterization. Accurate numerical solutions corre-
sponding to high (n = 3) and (rn = 10) strain hardening were obtained
for values of the applied load, P, well into the large-scale yielding range.
In the stress-strain curve Eq 17, « is taken to be 3/7, which is the same
choice made by Ramberg and Osgood for their tensile stress-strain
relation. At each load level, the quantities J, 8, and A are computed.
These are tabulated in Table 2 for values of P ranging from 0.6Py;,; to
2Pjimit- The corresponding estimated values due to the proposed formulas
for the Ramberg-Osgood material are given in Table 3. A comparison of
the calculated and estimated values, for both cases of high- and low-strain
hardening, reveals that they are in excellent agreement. The relationships
between J and P, A and P, and J and A are plotted in Figs. 5 to 7. The
latter relationship is obtained by numerically eliminating P from the first
two relationships.

In these figures, the linear elastic solution (without plasticity adjust-
ment) and the fully plastic solution are given by Curves 1 and 2,
respectively. The rigid-perfect plastic curve is included to illustrate the
influence of strain hardening. Curve 3 (dotted line) represents the
estimated results due to the proposed Eqgs 22, 27, and 14. The results from
the full numerical calculations are given by Curve 4.7

These same relationships for the piecewise power hardening material,

¢ In Ref 2, the perfect plastic portion of the J — A relationship parallels the rigid-perfect
plastic solution and is tangent to the plastically adjusted elastic solution. In the procedure of
Rice et al and in ours, the perfect plastic portion also parallels the rigid-perfect plastic solution,
but it intersects the plastically adjusted elastic solution at values of J and A associated with
the attainment of limit load.

7 When Curves 3 and 4 are too close to be identified separately in the figures, they are
shown by a single curve.
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TABLE 2—Results from full numerical calculations for Ramberg-Osgood material.

n P/Pmi J/(royea) 8/(yoa) A/(yo)
0.60 0.2095 0.7507 2.80
0.80 0.4120 1.087 3.913
n=3 1.00 0.720 1.490 5.143
1.20 1.166 1.974 6.535
1.40 1794 2.554 8.124
.= 1.60 2652 3247 9.941
7 1.80 3.800 4.068 12.02
2.00 5.294 5.033 14.39
0.60 0.1965 0.7135 2.6969
0.80 0.3830 1.0210 3.6510
n =10 1.00 0.7310 1.4680 47379
1.10 1.100 18681 5.4616
1.20 1.845 2.5967 6.5226
R 1.25 2.490 3.1814 72787
7 1.30 3.410 3.9917 8.2653
1.35 4751 4.1108 9.5668
1.40 6.652 6.6469 112933

Eq 28, are plotted in Figs. 8 to 10. An examination of the plots of J as a
function of P and the A as a function of P shows that in the immediate
vicinity of P equal to Py, the estimated values of J and of A may differ
from the calculated values by as much as 15 percent. At higher load
levels, these discrepancies diminish. Despite these differences, the esti-
mated and calculated curves of J as a function of A are in good agreement
over the entire range of loading considered, for both cases of high- and
low-strain hardening. This is particularly significant since it is from this

TABLE 3—Estimated results using Eqs 22, 26, and 27 for Ramberg-Osgood material.

n P/Pymy J/(reyoa) 8/(yo) A/(yoa)
0.60 0211 0.770 2.829

0.80 0.417 1.128 3.943

n=3 1.00 0.738 1.573 5.205
1.20 1.188 2.064 6.604

; 1.40 1819 2651 8.198
. 1.60 2,681 3.350 10.021
7 1.80 3.830 4178 12.104
2.00 5331 5.151 14.480

0.60 0.189 0715 2.695

0.80 0358 1.013 3.642

n =10 1.00 0.702 1.484 47755
1.10 1.075 1.881 5.484

1.20 1.832 2613 6.552

.o 1.25 2.479 3.200 7310
7 1.30 3.411 4012 8.297

1.35 4750 5.132 9.597

1.40 6.658 6.669 11.321
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(1) Linear elastic solution.

(2) Fully plastic solution for pure power hardening material.

(3) Predictions based on plastically adjusted elastic and fully plastic solutions.
(4) Results from the full numerical solution for a Ramberg-Osgood material.

FIG. 5—Curves of J as a function of P for (a) high-strain hardening (n = 3), (b) low-strai
hardening (n = 10).
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(1) Linear elastic solution.

(2) Fully plastic solution for pure power hardening material.

(3) Predictions based on plastically adjusted elastic and fully plastic solutions.
(4) Results from the full numerical solution for a Ramberg-Osgood material.

FIG. 6—Curves of A as a function of P for (a) high-strain hardening (n= 3), (b) low-strain
hardening (n = 10).
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(1) Linear elastic solution.

(2) Fully plastic solution for pure power hardening material.

(3) Predictions based on plastically adjusted elastic and fully plastic solution.
(4) Results from the full numerical solution for a Ramberg-Osgood material.

FIG. 7—Curves of J as a function of A for (a) high-strain hardening (n = 3), (b) low-strain
hardening (n = 10).

relationship that the critical value of J is obtained usually in fracture
toughness tests. The calculated and estimated values of J, 6, and A for
values of P ranging from 0.6 Py;,;; to 2 Pym; are tabulated in Tables 4 and
S, respectively.

The relationship between J and § is also of some interest [9]. Again this
relationship is constructed easily since bothJ and & are known in terms of
the applied load P. The estimated relationships between J and & for the
two material characterizations (Ramberg-Osgood and piecewise power
hardening relations) are in excellent agreement with the results obtained
from the detailed finite element calculations as can be verified from the
tables.

Conclusion

The results that have been presented thus far demonstrate that reason-
ably accurate approximate relationships amongJ, 8, A, and P, which take
into account strain hardening, may be constructed from the adjusted
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(1) Linear elastic solution.

(2) Fully plastic solution for pure power hardening material.

(3) Predictions based on plastically adjusted elastic and fully plastic solutions.

(4) Results from the full numerical solution for a piecewise power hardening material.

FIG. 8—Curves of J as a function of P for (a) high-strain hardening (n = 3), (b) low-strain
hardening (n = 10).
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(1) Linear elastic solution.

(2) Fully plastic solution for pure power hardening material.

(3) Predictions based on plastically adjusted elastic and fully plastic solutions.

(4) Results from the full numerical solution for a piecewise power hardening material.

FIG. 9—Curves of A as a function of P for () high-strain hardening (n = 3), (b) low-
strain hardening (n = 10).
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(1) Linear elastic solution.

(2) Fully plastic solution for pure power hardening material.

(3) Predictions based on plastically adjusted elastic and fully plastic solutions.

(4) Results from the full numerical solution for a piecewise power hardening material.

FIG. 10—Curves of J as a function of A for (a) high-strain hardening (n = 3), (b) low-
strain hardening (n = 10).

elastic and fully plastic solutions. They also reveal that these relationships
can be quite sensitive to the degree of strain hardening.

To illustrate the last statement, relationships between J and A, obtained
from the full numerical calculations, are plotted in Fig. 11a for the
Ramberg-Osgood characterization and in Fig. 115 for the piecewise
power hardening characterization. In these figures Curve 1 represents
the linear elastic solution, Curves 2 and 3 are the relationships obtained
from the finite element calculations corresponding to high- (» = 3) and
low- (n = 10) strain hardening materials, respectively. The rigid-perfect
plastic solution (from limit analysis) is given by the straight line through
the origin. The relation of J to A for an elastic-perfect plastic material is
given by Curve 4. This curve parallels the rigid-perfect plastic solution for
P > Pymi: and intersects the adjusted elastic curve at the point corre-
sponding to the attainment of the limit load, according to the estimation
procedure [8]. As mentioned earlier, this curve is also the limit of our
estimated solution for n — .
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TABLE 4—Results from full numerical calculations for piecewise power
hardening material.

n P/Pymy J/(royoa) 8/(yea) A/(yea) .
0.60 0.190 0.6928 2.561
0.80 0.350 0.9541 3.598
n=3 1.00 0.581 1.250 4.541
1.20 0.936 1.623 5.555
1.40 1.680 2.272 6.854
a =1 1.60 2.905 3.226 8.473
1.80 4.720 4.520 10.460
2.00 7.280 6.197 12.924
0.60 0.196 0.7107 2.6945
0.80 0.375 1.0045 3.6355
n =10 1.00 0.669 1.3850 4.6493
1.10 1.000 1.7573 5.3330
1.20 2.270 3.0146 6.9064
a =1 1.25 3.600 4.1710 8.2231
1.30 5.550 5.8593 10.074
1.35 8.480 8.2662 12.6436
1.40 12.707 11.6477 16.1903

For both stress-strain characterizations, Figs. 11a and b clearly show
that at the same value of the load point displacement, the value of J for a
low-hardening material (» = 10), may differ from the elastic-perfect
plastic estimate by as much as 20 percent. Furthermore, a comparison
between Figs. 11a and b shows that the curve for n = 3 for a Ramberg-
Osgood characterization differs considerably from the curve for n = 3 for

TABLE 5—Estimated results using Eqs 31, 32, and 33 for piecewise power
hardening material.

n P[Py J/(rayoa) 8/(yea) A/(yea)
0.60 0.185 0.698 2.682

0.80 0.336 0.957 3.595

n=3 1.00 0.540 1.239 4.526
1.20 1.036 1.806 5.751

1.40 1.854 2.598 7.143

a =1 1.60 3.108 3.653 8.731
1.80 4.932 5.006 10.543

2.00 7.477 6.697 12.607

0.60 0.188 0.714 2.694

0.80 0.347 0.995 3.624

n =10 1.00 0.565 1.317 4.586
1.10 1.158 1.937 5.603

1.20 2.622 3.338 7.398

a =1 1.25 3.969 4.553 8.807
1.30 5.977 6.294 10.740

1.35 8.926 8.755 13.389

1.40 13.197 12.188 17.007
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FIG. 11—Curves of J as a function of A for (a) Ramberg-Osgood characterization
(b) piecewise power hardening characterization.

the piecewise power hardening relation. Nevertheless, the curves for
n = 10 for the two material characterizations are reasonably close to each
other.

Finally, note that in the estimation schemes presented, we have made
use of Irwin’s plasticity corrections to adjust the elastic contribution to
the estimated solution in the range between the small-scale yielding and
the fully plastic state. If more accurate plasticity corrections are available
for this intermediate range, the relationships amongJ, §, A, and P may be
estimated to greater accuracy, particularly in the case of the piecewise
power hardening characterization. Despite the simplicity of the estimation
schemes discussed in this paper, the investigation has shown that
large-scale yielding behavior in antiplane shear as measured by the
parameters J, 8, A, and P may be predicted fairly accurately for a broad
range of elastic-plastic materials.

The procedures just proposed can be applied without essential modifi-
cations to inplane problems. Of course this will entail use of the analogous
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elastic and fully plastic solutions for the plane problem in question. At the
writing of this paper, only solutions for the fully plastic center cracked
strip under plane strain are yet available [3]. It can be hoped that the
accuracy achieved by the simple estimation procedure in the antiplane
shear problem discussed here will continue to hold for plane problems,
although this remains an open question. This question, as well as the
solution to additional fully plastic plane problems, will be left for future
work.
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APPENDIX

Descriptions of an accurate finite element method, which embeds the dominant
singularity solution of the near-tip through the use of a singular tip element, have
been given elsewhere [3,10,11]. Typically the singular element has a radius of
0.02a. The region between the tip element and the boundary is represented by
conventional elements. For this analysis we have chosen to work with quadrilat-
eral “‘elements’’ that are formed from four constant strain triangular elements.
The common node of the four triangular elements (or the midnode of the
quadrilateral) is removed by static condensation. This results in considerable
savings in computer storage and in the total number of matrix operations
associated with the solution of the system of algebraic equations. We will restrict
our attention, in this appendix, to several computational details pertinent to this
investigation.

For fully plastic crack problems of the type described by Eq 28 the material is
fully nonlinear and incompressible. In plane strain situations, enforcement of the
incompressibility constraint complicates the numerical procedure. In antiplane
shear this difficulty does not arise; nevertheless, the problem is still fully nonlinear.
To avoid the comparatively large stiffness terms that may arise from elements that
are virtually stress free, the pure power hardening law is slightly modified to allow
a linear relationship between the stress and strain, for stresses less than 7, where
7./7o is much less than unity.

The finite element discretization of the nonlinear boundary value problem
results in a system of nonlinear equations. We briefly discuss Newton’s method
for solving the nonlinear system of equations.

Aww = b (34
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At the /'t iterate, Newton’s method gives

dA(w -
i = Ao+ 28004 ] "o~ A 69
where

Wisr = w; + Aw;

The second term of the Jacobian involves the derivatives of A. It is precisely this
term that is responsible for the second order convergence attainable with
Newton’s method. If this term is absent, the resuiting iterative process is only first
order convergent.

For the pure power hardening law, Eq 2, and the Ramberg-Osgood relation Eq
17, the derivatives dA /8w are continuous for all values of w. In this case, the
iterative process as given by Eq 35 is second order convergent. Assuming that
matrix, A, is fairly well conditioned and a good initial estimate of the solution is
available, the initial solution will converge very rapidly to the actual solution. The
initial solution may be obtained by the process of parameter tracking. Thus, the
solution to the n = 1 case can be used as the initial estimate to the n = 3 case, the
n = 3 solution as the initial estimate to the n = 5 case and so on.

The derivatives dA/ow = (0A/dy/Ow), associated with the piecewise power
hardening relation is given by Eq 28, are discontinuous at 7, = 7, (Or v, = 7).
Then the iterative process described by Eq 35 is numerically unstable for this
class of problems. In this case, linear iteration will work; however, the conver-
ence is only of first order. To ‘‘smooth’’ the abrupt change in dA/6w at y, = v,
0A/dw = 0 for y, < v,) every dA/0w term generated during the formation of the
element stiffness matrix is multiplied by the factor

)T () e
Yo Yo

It may be noted that f approaches unity for y, >> v,, and f — 0 as y,— v,. In the
present calculations m was taken to be 4. With the preceding modification, the
rate of convergence is not quite second order but definitely better than the
convergence rate associated with linear iterations.

The quantity of primary interest in this paper is the J-integral. As discussed
elsewhere [3,10,11], J may be obtained from the formula

J = aryyo KK 1, = aTl)’)’oKs)(n“)/”In (36)

where K, and K, are the plastic stress and strain intensity factors and [, is
a numerical constant. The finite element approach which embeds the dominant
singularity solution allows K, and K, to be computed directly. Thus J associated
with a particular crack problem may be obtained rather easily from Eq 36.
Alternatively, J may be obtained by computing the integral given by Eq 3 along
a contour, I', which encircles the crack tip. An accurate technique for this
purpose is discussed in Ref //. Briefly, the contour, I', passes through selected
midnodes of the quadrilateral ‘‘elements’’; the quantities (stresses and displace-
ment gradients) associated with a particular midnode are obtained by averaging
the quantities associated with the four triangular elements that comprise the
quadrilateral. The values of the J-integral, so computed for different contours
throughout the body are in excellent agreement. Specifically, the values of J
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computed on various contours differed by less than 1 percent for the pure power
hardening and Ramberg-Osgood characterizations. For the piecewise power
hardening relation, where there is a distinct yield stress (also note that at yield
stress, the slope of the stress-strain curve is discontinuous), J's computed for
contours away from the elastic-plastic boundary differed by less than 3 percent.
For contours close to or intersecting the elastic-plastic boundary the differences
may reach 10 percent for low-strain hardening materials (n = 10); this is consistent
with the averaging technique used in the computations [/]].

A comparison of the values of J, obtained from Eq 36 and from the latter tech-
nique, reveals that they are in good agreement for high-strain hardening materials.
For low-strain hardening materials ( = 10), they may differ by as much as 15
percent for levels of applied stress well into the fully plastic range. Since at low-
strain hardening, the values of J computed by the latter technique for different
contours throughout the cracked configuration are within 1 percent of the average
value, we conclude thatJ obtained from Eq 36 is inaccurate at high levels of applied
stress for low-strain hardening materials.
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ABSTRACT: A J, test procedure using a single deeply cracked specimen is
proposed. The crack extension is measured by partially unloading the specimen to
determine the elastic compliance. Jy. tests were made using ASTM A469 steel.
Compact specimens from 1/2T to 5T were tested. No size effect was found.
Results from two independent laboratories are presented and are in agreement.
The errors due to simple formulation of J, calculation, periodic partial unloading,
and simplified analysis for the extension of deep cracks in compact specimens
are explored. The measurement point of crack extension for establishing J, is
discussed. The results indicate that a practical and effective single specimen test
procedure has been developed.

KEY WORDS: crack propagation, fracture tests, fracture properties, tests,
steels, plastic properties, elastic properties, elastic deformation, fracture
strength

The elastic-plastic stress-strain response of cracked structures has been
characterized by Rice [1,2]* and Hutchinson [3], and the crack tip region
response described in terms of a path independent integral termed Ji.
Begley and Landes noted that J, is a field quantity similar to the stress
intensity factor, K; [4]. Accordingly they formulated a fracture criterion
around J; in a fashion similar to that normally done with K;. They used
Rice’s [2] definition that the J-integral (referred to as J; in the remainder of
the report) is related to the rate of change in area under the load versus
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load-point-deflection curve with respect to change in crack length.
Fracture toughness as defined through J; was termed J;. for plane strain
crack tip constraint.

Since J; is analyzed based on the deformation theory of plasticity,
significant unloading cannot be permitted without serious questions.
Because of this, Begley and Landes [5] chose to use a J;. test procedure
involving the use of multiple specimens. They suggested measuring the
crack extension in each of the several identical specimens after marking
the crack depth at various values of load-point displacement, and break-
ing open each specimen to measure the marked crack length. The marking
may be made, for example, by heat tinting the crack surface after
unloading the specimen. This procedure normally has required four to six
specimens to obtain a single value of Jy.

To overcome the use of multiple specimens, aJ,, test procedure using a
single deeply cracked compact specimen is proposed. The crack exten-
sion is measured during repeated partial unloading of the specimen using
linear elastic compliance calculations. Justification will be given as to why
this unloading does not seriously affect the results considering the
previously mentioned limitation in deformation theory of plasticity.

A number of tests to determine J;. were made using ASTM A469 steel.
The extent of crack growth selected as a measurement point criterion for
Jy is discussed. Various criteria are compared.

Compact specimens of sizes ranging from 1/2 to § in. thick were tested
and the results compared. The 5-in.-thick specimens were tested accord-
ing to ASTM Test for Plane Strain Fracture Toughness of Metallic
Materials (E 399) at —10, 5, 32, and 75°F. J,. test temperatures ranged
from 5 to 250°F. Results were obtained from two independent
laboratories.

Theoretical Considerations

Accuracy of I; Calculation
Rice et al [6] showed that a simple formula for J, is

2A

= Bow — )

)

where bending loading is applied to a specimen deeply cracked compared to
the width w; A is the area under the load versus load-point-displacement
curve; B is the specimen thickness; and a is the crack depth.

The applicability of Eq 1 to the compact specimen can be dem-
onstrated. To do this, it is noted that for essentially elastic loading

Ji =Gy 2
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where G, is the elastic strain energy release rate. Equation 2 is a necessary
condition for the formula to be used. Available elastic analyses will be
used to show that this condition is satisfied and, therefore, demonstrate
the applicability of Eq 1.

Srawley and Gross [7] gave the results of a boundary collocation
K-calibration for the compact specimen. They gave a table of fla/w) in
which

K.B(w — 3/2
fla/w) = % @)

where P is the load. The tabulation of fla/w) will be used to compare with
values in the same form as Eq 3 resulting when Eq 1 is employed. The
latter values will be termed fla/w). Assuming Eq 2 holds and using
P x8&=2A, Eq 1 becomes

P x5

=B(w - a) @

I

where & is the load line displacement and (w — a) is the remaining
ligament. G, is related to K; for plane strain deformation through

G.E

Kf=—"—
(-

(&)

where E is young’s modulus and v is Poisson’s ratio. Substitution of Eq 4
into Eq 5 and in turn into Eq 3 yields the following expression for fla/w)

_ cEB | (w-a
falw) =t g5 | *@w=+a ©®

In this expression, ¢ is the compliance defined at the load line

)

é
¢ ==
P

The elastic compliance at the load line has been given by Tada et al [8]
as
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TABLE 1—The functions f(a/w) and flarw), Egs 3 and 9 comparing
the accuracy of Eq 1 to elastic collocation results.

ajw fla/w) fla/w) f1f
0.4 1.419 1.21 0.85
0.5 1.364 1.23 0.90
0.6 1.326 1.24 0.94
0.7 1.312 1.23 0.94
0.8 1.311 1.24 0.945
09 1.311 1.26 0.965
L0 1.311 1.32 1.008

Substituting Eq 8 into Eq 6 gives the desired expression for fla/w)

w—a

fla/w) = Vila/w)'® x W a

9

A comparison of fla/w) with fla/w) is given in Table 1. Note that in the
range of (a/w) from 0.6 to 0.8, the ratio of fla/w) to fla/w) is constant, and
that f (and thus K, calculated from Egs 1 and 5) is about 6 percent low.
This is considered an acceptable error and hence, Eq 1 is considered
verified for the compact specimen loaded in the essentially elastic range.
The error in the plastic range is also expected to be small.

Calculation of Crack Extension

A simple formula can be obtained relating the crack extension to the
change in elastic compliance of the compact specimen. For the deeply
crack specimen, the applied load may be considered to be a moment M
applied to the remaining ligament of length (w — a). The angular rotation
of the applied moment

16 M "
O=ExB ™ w=ar (10)
The compliance then is
6 _ _16 1 an
M~ ¢ TEB" w-ap
The derivative
-32 dw — a)
de = X (12)

EB (w— a)?
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Dividing Eq 12 by Eq 11 gives

dc  2da
¢ (w—-a)
or rearranging®
w—a) dc
da =#X—C— (13)

An alternate derivation for the foregoing result may be obtained from
analysis of the compact specimen using the compliance relation of Tada et
al [8].

That result is

w — a

2

dc
da = X - X gla/w) (14)
The values for g(a/w) are given in Table 2, and they indicate that Eq 13

will over estimate the crack extension by about 10 percent for
0.6 = (a/w) = 0.8.

Experimental Errors Due to Unloading

As mentioned earlier, the theoretical concept of J; does not permit
“significant’’ unloading. The experimental expedient of unloading to
measure the elastic compliance must be, therefore, shown to not mate-
rially affect the experimental fracture toughness results. For that reason
tests were performed with and without unloading and results compared.
This can also be demonstrated further through physical reasoning by
showing that the unloading crack tip plastic zone side remains small
compared to the process zone size [9], Z,, existing at the time unloading is
initiated

Zy=di/oy (15)

TABLE 2—Factors g(a/w) for the crack extension Eq 15.

a/w gla/w)

0.808
0.872
0.891
0.906
0.934
1.000

—ooo2e
comaaia

5 An analogous equation can be derived for load changes at limit load.
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where o, is the yield stress. Also the unloading plastic size, r,, is

approximately
2
1 K;
v -a<—“za,,> (16)

where K; is calculated for the unloading only.
The criterion then for limiting unloading will be established as

M <q an
Zy

where « is to be a number much less than 1.0

A suitable value for @ may be selected at about 0.01. For 10 percent
unloading in our tests of 1T compact specimens a typical value for « is
0.002. Further assurance that unloading will not affect results may be
obtained by realizing that the extent of unloading was not as large as the
loading prescribed for precracking specimens by ASTM Method E 399.
We were assured then that 10 percent unloading would not materially
affect the results.

Material

The material tested was a steel similar to that specified by ASTM A469.
The mill analysis is shown in Table 3. This steel was procured as a
22-in.~-diameter round forging in a quenched and tempered (1100°F)
condition. The mechanical properties of this material at various tempera-
tures are shown in Table 4. The temperatures span the range used for J;,
testing. The Charpy impact properties taken from a depth of 41/2 to 5 in.
below the quenched surface are shown in Table 5.

AllJ,. specimens were of the compact design. The size of the specimens
tested range from 1/2T to 5T. The compact specimens were all taken from
the forged cylinder with the crack propagation planes either radial or up to
45 deg to the radial plane. All the crack tips were located at 4 to 9 in. from
the axis of the forging.

Test Procedures

The linear elastic fracture toughness (K.) of this material was deter-
mined using ST specimens according to ASTM Method E 399 at — 10°F
and +5°F.

TABLE 3—Chemical analysis of test material.

Element C Mn P S Si Ni Cr \' Mo

% 0.22 0.31 0.011 0.012 0.23 3.63 0.07 0.11 0.27




CLARKE ET AL ON SINGLE SPECIMEN TESTS 33

TABLE 4—Mechanical properties of specimens (0.505-in. round tension specimens).

Temperature +5°F 75°F 175°F
0.2% vyield strength, psi 93 000 88 800 85 000
Tensile strength, psi 109 000 103 000 101 000
Elevation in 2 in., % 24.0 22.5 23.0
Reduction of area, % 58.3 60.6 59.8
Fracture stress; psi 194 200 195 200 184 100

For the test temperatures 32 and 75°F, values of fracture toughness are
estimated based on K, values (both occurred at abrupt failure points).The
fracture toughness values are shown in Table 6.

For the J-integral testing, the compact specimens were modified to
permit measurement of load-line displacements. Specimens of 12T, 1T,
and 2T sizes (Fig. 1) were used in this test program.

Fatigue precracking was accomplished at peak loads less than 1/2 the
expected limit load [/0]). The crack lengths were extended by fatigue
precracking to obtain crack lengths to-specimen-width ratios (a/w) from
0.70 to 0.80.

The specimens were loaded under ram position control in a closed loop
electrohydraulic test machine. The heating of the specimens was ac-
complished by wrapping resistance heating tapes around the specimen
and insulating with glass wool insulation. Cooling was accomplished by
allowing liquid nitrogen vapor to pass through a chamber surrounding the
specimen. The temperature was controlled to within +5°F.

All load and displacement signals were recorded on an x-y plotter and
were normally stored in digital form in the core memory of a PDP-8
computer. The testing procedures fell in two categories, (1) no-unloading
and (2) unloading. For those specimens in (1) the load displacement points
were stored in digital form so that curves could be easily reproduced and
the J; value quickly calculated. For those tests with unloading (2), a linear
signal was subtracted from the displacement signal; the result was plotted
versus load. The subtracted signal was proportional to the load and the

TABLE 5—Charpy V-notch impact properties of specimens.®

Absorbed
Energy, Fibrous
Temperature, °F ft-1b Appearance, %
25 32.5 40
50 40.0 48
75 49 60
125 72.5 87
175 87 100

@ 50 percent fracture appearance transition temperature (FATT) = 50°F.
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TABLE 6—ASTM fracture toughness tests ASTM Designation E 399 5T compact

specimens.
Test Average Load Deflection Ko,
Temperature, °F Py, b Crack Length, in. Curve Types psi- (in.)2
-10 188 000 4.668 I 103 000
5 187 000 4.675 ITI 103 000
32 262 000 4.595 111 142 000
75 325 000 4.662 I 180 000

constant of proportionality was equal to the initial elastic compliance of
the specimen. A typical load displacement curve is shown in Fig. 2. A plot
with the elastic compliance signal subtracted is shown in Fig. 3.

The test procedure for category (2) tests called for unloading 10 to 20
times. The unloading lines remained vertical until crack propagation took
place at which time the lines changed slope proportionally to the change in
compliance of the specimen. This measurement technique is capable of
detecting crack length changes of less than 0.001 in.

The unloading was accomplished with a ramp command signal which
allowed loading and unloading at equal rates. The load was never reduced
by more than 10 percent of the calculated limit load.

The foregoing testing system was duplicated in all of its essential
features in a second laboratory. A limited number of tests were performed
on the second system. These results are included and identified as being
from a second laboratory.

The calculated value of J; at various points is given by Eq 1 and the
change in crack length by Eq 13. Values of the compliance changes were
taken from the load-inelastic displacement record just described.

Results

The results of calculating the J;, values from the crack extension data,
using the various criteria described next, are shown in Table 7. The codes
for the various columns are as follows: In column 1 the first digit of each
row is the specimen size (that is, 1/2 means 1/2T specimen size), whereas
the second and third digits are the location number and the serial number,
respectively. Results of tests from the second laboratory are those
designated as ‘‘1-3-X’’ in Table 7. In column 2 the test temperature is
given in °F. In column 3 the procedure category is identified as described
in the Test Procedures. In columns 4 through 7 the subscripts on the
critical stress intensity factor, K, are as follows

FL.D = first load drop,
J/20, = intersection point of the Aa = J/20, line with the J, versus Aa
curve,
FG = first measurable crack extension, and
SF = specimen failure (fast fracture or separation).
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FIG. 1—Specimen design.
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FIG. 2.—Typical load deflection curve.
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FIG. 3—Typical load versus inelastic displacement diagram.
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In columns 8 and 9 the values under # and P, are the remaining ligament
(w — a) and the maximum load in each test.

All fracture results in Table 7 are expressed in terms of K; (ksi - (in.)'?)
which is related to J; in the elastic range by Eqs 2 and 5.

Curves and their scatterbands of K, versus temperature are shown in
Fig. 4 for the various J,, criteria.

Crack growth resistance data, J, versus Aa, are shown for some
specimens tested with unloading at 175°F in Fig. 5.

The fracture toughness values obtained with 5T specimens are plotted
versus test temperature in Fig. 6.

Discussion

Once Begley and Landes [4,5] showed that the J-integral has promise as
a failure criterion, a great deal of interest was generated in J,. testing
because of the obvious advantages of reduced specimen size and reduced
specimen cost. It soon became apparent that standards were necessary to
define the point at which the value of J; was considered critical, that is,
Jic. As these standards are not yet defined, a number of options are still
open to discussion. Following are just a few of the criteria commonly used
in defining a point on the J; versus Aa curve considered J.

Criterion 1

Using the crack extension equivalent to J;/(25-,) or the crack opening
stretch (COS) [6].

Criterion 2

Using the first load drop found in the load-displacement record and
calculating the value of J; corresponding to this point.

Criterion 3

Using the value of J; calculated at the point of first measurable crack
extension.

Criterion 4

Using the value of J; calculated at the specimen failure point (fast
fracture or specimen separation).

In recent J,, testing by Begley and Landes [5], they have shown a good
correspondence between J,, values obtained through Criterion 1 and
valid K, values. The procedure used by Begley and Landes requires four
to six specimens to measure Jy.

The object of our test program was to develop a procedure for the
determination of J,. from a single specimen test. A method of determining
unloading slopes was used to calculate the crack extension at any load
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pont. By noting the slope change, as seen in Fig. 3, and calculating the
change in compliance from this new slope, the crack extension, Aa, can
be calculated from Eq 13. J; values may be calculated from Eq 1
corresponding to the load necessary for a crack extension, Aa. A typical
plot of J; versus Aa is shown in Fig. 5.

Now let us refer to Fig. 4 and compare the various criteria for
determining Ji.. It was necessary to raise the temperature of the speci-
mens so that slow crack extension could be detected before the onset of

3000+
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5 a 1727 SPECIMEN
o 172 THICKNESS
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0 .( 1 L 1 ] 1 1 1 1 1 1 J
0 0.02 0.04 0.06 008 0.0 0l
Aa,IN.

FIG. 5—Crack growth resistance curves for tests at 175°F.
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FIG. 6—ASTM fracture toughness, A469 Steel, 5T compact specimens.

rapid crack growth. At temperatures below 100°F, rapid fracture occurred
before any sign of slow crack growth. It appears, therefore, that all the
criteria are applicable below this temperature. The J. values measured,
using all of the foregoing criteria, are essentially the same for tempera-
tures below 100°F.

By heating the specimens to temperatures of 100°F and above, all four
of the criteria can be applied to the J| versus Ag curve to determine Jj..
The values obtained using each of the criteria will be different, however.
The scatterbands of the results K| versus temperature for the various
fracture criteria, in Fig. 4, shows at higher temperatures, the divergence
in results. The divergence is greatest for the criterion which depends on
final failure or separation of the specimen.

The final separation or failure of the specimen criterion shows an ever
increasing K value for higher temperatures, whereas all the other criteria
show a leveling off trend of the K values at higher temperatures. This
difference between the results of Criterion 4 and the other criteria is due
to the slow crack extensions that occur; we would expect higher K| values
due to the force necessary to drive the crack and also due to the
breakdown of the relationship, Eq 1, used to calculate J,.

Specimen size effects only appear at large crack extension values as
seen in Fig. 5. To eliminate the effect of specimen size, a short crack
extension criterion should be used such as (a) first measurable crack exten-
sion or (b) intersection of the J; versus Aa curve with the Aa = J,/20, line.

There are two findings worth noting in Fig. 5 which differ somewhat
with the findings of Begley and Landes.

1. The initial slopes of the J, versus Aa curves are vertical rather than
on the line Aa = J,/20,,.
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2. The crack extension curves are linear beyond the intersection of the
J; versus Aa and the Aa = J,/20, line.

Work is continuing on both the testing of compact specimens and on
testing three- and four-point bend bars.

Conclusions

1. Jy testing using a single specimen to determine aJ; versus Aa curve
has been successfully executed and duplicated in two independent
laboratories. Good agreement in results was achieved.

2. The practice of measuring compliance changes to determine crack
extension in a J;. test has been shown to be sensitive and practical in both
laboratories.

3. The simple formulations for relating J; to the area under load-
deflection curve, Eq 1 and for relating crack extension to compliance
change, Eq 13 have been shown to be sufficiently accurate for testing
purposes for deeply cracked compact specimens.

4. Effects on results due to unloading are negligible when unloading is
limited to less than 10 percent of the limit load.

5. The measurement point for determining J;, should be limited to short
crack extensions. A suggested value is Aa = J;/20,,

6. No effects of specimen size and geometry on J;, were found for the
range of specimens tested providing the Ji, criterion is limited to short
crack extension.

7. The results indicate that a practical and effective single specimen
test procedure has been developed.
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ABSTRACT: Good agreement was found between elastic plastic (/i) and
previously developed conventional linear elastic (K,.) critical fracture toughness
values for five materials. The materials investigated included four rotor forging
steels (ASTM A471 Ni-Cr-Mo-V, ASTM A469 Ni-Mo-V, ASTM A470 Cr-Mo-V,
and AISI 403 modified 12Cr) plus an ASTM A217 21/4Cr-1Mo cast steel. A
resistance curve test technique recently developed by Landes and Begley was
employed to obtain the Jy, fracture toughness values. Elastic plastic fracture
toughness tests were performed with 1-in.-thick compact tension specimens at a
minimum of three temperatures per material, the highest temperature being that
where upper shelf fracture toughness behavior was first expected. The fine agree-
ment between the elastic plastic and linear elastic critical fracture toughness
values for this class of steels further supports the realization that the elastic plastic
J, fracture criterion, based largely on the path independent J-integral proposed by
Rice, extends the concepts of linear elastic fracture mechanics into the elastic
plastic fracture regime. Thus, it is now possible to obtain critical fracture
toughness values with small specimens over a wide range of temperatures for
tough materials.
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Problems are often encountered in applying linear elastic fracture
mechanics to the lower-strength, higher-toughness materials commonly
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used for many structural applications. In order to meet the requirement
of essential elastic behavior, structures of interest must be very large.
Linear elastic fracture toughness specimens become massive (even though
the maximum temperatures for valid test results based on the ASTM
Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399-72)
are often as much as 400 to 500°F below service operating temperatures),
and critical crack sizes at elastic stress levels are large enough to be of
little practical concern. More often the practical problem concerns
relatively small defects adjacent to stress concentration sites where the
extent of plasticity rules out the use of linear elastic fracture mechanics.
Consequently, Begley and Landes developed an elastic plastic J,. fracture
criterion to provide a direct extension of fracture mechanics into the
elastic plastic fracture regime [/,2].2

The purpose of this investigation was to determine experimentally
elastic plastic J,, fracture toughness results and compare them with
conventional linear elastic K. fracture toughness results obtained previ-
ously according to ASTM Method E 399-72. Four rotor forging steels
(ASTM A471 Ni-Cr-Mo-V, ASTM A469 Ni-Mo-V, ASTM A470 Cr-Mo-
V, and AISI 403 modified 12Cr) plus an ASTM A217 21/4Cr-1Mo cast
steel were the materials investigated.

A resistance curve test technique developed by Landes and Begley was
employed to obtain the J,. fracture toughness values [4]. Flastic plastic
fracture toughness tests were conducted at a minimum of three tempera-
tures per material with the highest temperature being that where upper
shelf fracture toughness behavior was first expected. One inch thick
compact tension specimens were utilized for all the elastic plastic fracture
toughness tests.

Keep in mind, linear elastic fracture mechanics technology provides a
one parameter fracture criterion for a limited class of problems; those of
cracked bodies with small-scale yielding where the crack tip plastic region
is at least an order of magnitude smaller than the physical dimensions of
the component. Clearly, it would be very desirable to have a fracture
criterion which, by direct extension of the concepts of linear elastic
fracture mechanics technology, could enable us to predict fracture in
structures in cases of both large- as well as small-scale plasticity. The
elastic plastic J; fracture criterion, based largely on the path independent
energy line integral J developed by Rice [3], has been proposed to satisfy
the foregoing objectives.

As advanced by Begley and Landes [/], the physical significance of J
for elastic plastic materials is that it is a measure of the characteristic
crack tip elastic plastic field. As such J can be viewed as a single
parameter characterization of the crack tip elastic plastic field, obviously

2 The italic numbers in brackets refer to the list of references appended to this paper.
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very similar to the role of K relative to linear elastic fracture mechanics.
This is possible from the description of the strain hardening plastic crack
tip singularity given by Hutchinson [5] and Rice plus Rosengren [6]. In
fact, McClintock has shown that by combining J with the Hutchinson,
Rice, and Rosengren crack tip model the near tip values of stress and
strain can be expressed as a function of J [7]. This is directly analogous to
the stress field equations of linear elastic fracture mechanics. In addition,
for linear elastic behavior the J-integral is identical to G, the energy
release rate per unit crack extension [/,8]. Therefore, the J,. fracture
criterion for the linear elastic case is identical to the K, fracture criterion.
Consequently, the similarities between the J,. and K. fracture criterion
become apparent. Hopefully, the fine agreement found between the linear
elastic and elastic plastic critical fracture toughness values for the class of
steels investigated will further support the J,. elastic plastic fracture
criterion as a direct extension of linear elastic fracture mechanics technol-
ogy which can enable us to predict fracture in structures in cases of both
large- as well as small-scale plasticity.

Materials and Specimens

The materials tested include four rotor forging steels (ASTM A471
Ni-Cr-Mo-V, ASTM A469 Ni-Mo-V, ASTM A470 Cr-Mo-V, and AISI 403
modified 12Cr) plus an ASTM A217 21/4Cr-1Mo cast steel [9-13]. The
chemical compositions and room temperature (except where noted)
mechanical properties of these five materials are presented in Tables 1
and 2, respectively. The room temperature yield strengths of these steels
ranged from 60.7 ksi for the ASTM A217 21/4Cr-1Mo cast steel to 135.0
ksi for the ASTM A471 Ni-Cr-Mo-V rotor forging steel. Therefore, all
these materials could be considered medium strength steels.

One inch thick compact tension specimens were used to generate the
fracture toughness data. In all cases, the elastic plastic fracture toughness
specimens were removed from the corresponding fractured large-scale
linear elastic fracture toughness specimens. Concerning the four rotor

TABLE 1—Chemical compositions of four rotor steels (ASTM A471 Ni-Cr-Mo-V, ASTM
A469 Ni-Mo-V, ASTM A470 Cr-Mo-V, and AISI 403 modified 12Cr) plus an ASTM
A217 21 4Cr-1Mo cast steel.

Chemical Compositions, weight percent

Material C Mn P S Si Ni Cr Mo V Sn Sb

Ni-Cr-Mo-V 028 0.29 0.010 0.008 0.20 3.80 1.76 0.49 0.14 0.019 0.001

Ni-Mo-V 0.25 0.66 0.008 0.012 0.23 292 0.25 043 0.09 ... ..
Cr-Mo-V 0.30 0.82 0.006 0.010 032 0.15 1.02 1.12 0.25
12Cr 0.13 0.57 0.009 0.006 033 1.60 1232 0.55 ...

21/4Cr-1Mo 0.15 0.53 0.016 0.015 0.25 ... 233 098
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TABLE 2—Mechanical properties (75°F except where noted) of four rotor steels (ASTM
A471 Ni-Cr-Mo-V, ASTM A469 Ni-Mo-V, ASTM A470 Cr-Mo-V and AISI 403 modified
12Cr) plus an ASTM A217 214Cr-1Mo cast steel.

Mechanical Properties

0.2% Yield Ultimate Reduction Energy
Strength, Strength, in Area, Elongation, Level, FATT,?
Material ksi ksi % % ft-1b °F
Ni-Cr-Mo-V 135.0 148.3 56.7 16.6 25 110
Ni-Mo-V 85.5 104.5 62.5 21.8 19 145
Cr-Mo-V 90.8 113.7 46.9 17.1 6 215
12Cr 98.9 119.1 48.5 16.8 42 68
21/4Cr-1Mo 60.7 83.1 42.8 17.6 82 12

e FATT = fracture appearance transition temperature.

forging steels, test specimen orientation within the various rotor forgings
(for both the J,, and K,, fracture toughness specimens) placed the
specimen notch directions as near radial as possible.

Figure 1 illustrates the compact tension specimen geometry. Note that
these specimens were modified so displacements could be measured at
the specimen centerline of loading. Prior to conducting fracture tough-
ness tests, the compact tension specimen starter notches were extended
to fatigue crack severity. In order to avoid introducing any bias to the test
results, the amount of crack tip plasticity created during fatigue precrack-
ing was limited to amounts significantly less than those anticipated in the
subsequent fracture toughness tests. For all compact tension specimens
involved in this program, a fatigue stress intensity (K, of 25 ksiVin.
accomplished precrack initiation, while fatigue stress intensities of 20 and
15 ksiV/in. generated the initial and final crack extensions, respectively.
Precrack lengths were controlled to produce a ‘‘deep notch’’ specimen,
a/w = 0.6, where a is the crack length measured from the specimen
centerline of loading and w is the specimen width (2.0 in. for a 1-in.-thick
compact tension specimen, see Fig. 1).

Experimental Procedure

Fracture toughness tests were conducted at a minimum of three tempera-
tures per material. The first series of tests was performed normally at a
temperature 50 to 75°F above the maximum temperature of valid fracture
toughness results per the ASTM Method E 399-72 generated with 1-in.-
thick compact tension specimens. A second series of tests was conducted
at the temperature where zero percent brittle fracture first occurred in the
Charpy V-notch impact test results. Upper shelf fracture toughness
values are generally observed first at this temperature. The final test
temperature was taken approximately midway between the above two
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FIG. 1—J,. type toughness specimen (1 in. thick).

test temperatures. This temperature was often nearly equivalent to the
particular material’s fracture appearance transition temperature (FATT).
The FATT as employed here is defined as the temperature at which the
Charpy V-notch fracture surface is 50 percent brittle (granular) and 50
percent ductile (fibrous).

A thorough description of the resistance curve test technique is given in
Ref 4. Briefly, the testing procedure is to: (a) load each specimen to
different displacement values, () unioad each specimen and mark the
crack (hint tinting was used in this case), and (c) pull the specimen apart
and measure crack extension. A resistance curve was then constructed by
plotting J for each specimen versus its corresponding crack extension.
The formula developed by Rice et al for calculating J from single
specimen tests [/4]

24
Bb



48 MECHANICS OF CRACK GROWTH

where
A = area under the load-displacement curve taken at the displacement
of interest,
B = specimen thickness, and
b = remaining uncracked ligament

was utilized to obtain J values. The critical value of J(J;.) was obtained by
extrapolating the resistance curve backward to the point of zero crack
extension due to actual material separation. Note that critical elastic
plastic fracture toughness values (J;.) are based on crack initiation, not on
an absolute value of crack extension as is the case for linear elastic
fracture toughness values (Ky). Finally, corresponding K;. values were
calculated from the relationship between elastic plastic and linear elastic
fracture mechanics parameters [/,8]

Jie = Gie =

where
v = Poisson’s ratio and
E = Young’s modulus.

As an alternative to the resistance curve test technique, if the test
temperature is low enough that the fracture toughness specimens experi-
ence a 100 percent cleavage fracture upon failure, the testing procedure is
modified to: (a) test one specimen to failure by 100 percent cleavage;
(b) load a second specimen to a centerline of loading displacement one or
two mils less than that experienced by the failed specimen, unload the
second specimen and mark the crack; and (c) if, as expected, the second
specimen experiences no crack growth, the J value obtained from the first
specimen is termed J,, and a full resistance curve is not necessary. This
procedure was utilized to obtain J;, values at a minimum of one test
temperature relative to each of the five materials investigated.

Finally, Landes and Begley have proposed a size requirement which
must be met by an elastic plastic fracture toughness test specimen to
assure valid fracture toughness results [4]. This size requirement is stated
analytically as

a,B,b, =259
g

and has been adhered to in the present work.



LOGSDON ON FRACTURE TOUGHNESS VALUES 49

Results and Discussion

J resistance curves relative to ASTM A471 Ni-Cr-Mo-V, ASTM A469
Ni-Mo-V, ASTM A470 Cr-Mo-V, and AISI 403 modified 12Cr rotor
forging steels plus ASTM A217 21/4Cr-1Mo cast steel are presented in
Figs. 2 through 6, respectively. Those temperatures where the fracture
toughness test specimens experienced a 100 percent cleavage fracture upon
failure (full resistance curve was not necessary) are revealed in Table 3.
To provide a visual illustration, the specimens which comprise the 300°F
resistance curve relative to AISI 403 modified 12Cr rotor steel (Fig. 5) are
arranged in order of decreasing crack extension in Fig. 7. Note how the
heat tinting procedure for marking the cracks makes the crack extension
experienced by each of the specimens easily visible.

The fracture toughness (both K,. and J,.) versus temperature results
relative to Ni-Cr-Mo-V, Ni-Mo-V, Cr-Mo-V, and modified 12Cr rotor
forging steels plus 21/4Cr-1Mo cast steel are illustrated in Figs. 8 through
12. In all cases, the solid lines through the linear elastic fracture toughness
test results were drawn before the elastic plastic test results were added to
these figures. Good agreement was obtained between the linear elastic
(Kc) and elastic plastic (/) fracture toughness results for all five materials
at all test temperatures. In a few cases, this may not be obvious. Apparent
inconsistencies between linear elastic and elastic plastic fracture tough-
ness results occurred in three instances; ASTM A471 Ni-Cr-Mo-V rotor
forging steel at 150 and 250°F plus ASTM A217 21/4Cr-1Mo cast steel at
—150°F. To help explain the first two apparent inconsistencies an
‘‘equivalent fracture toughness’’ (defined subsequently) was added to two
of the fracture toughness temperature relationships (note Figs. 8 and 11).

Concerning the ASTM A471 Ni-Cr-Mo-V rotor forging steel (Fig. 8),
the elastic plastic fracture toughness values at 150 and 250°F are consider-
ably lower than the linear elastic fracture toughness results. Note that
unlike the other four materials, this is the only material where valid linear
elastic fracture toughness values are available at upper shelf tempera-
tures. In fact, upper shelf linear elastic K. behavior for low to inter-
mediate strength steels was first observed on this rotor steel [9]. Recall
that linear elastic fracture toughness values are based on 2 percent
effective crack growth (that is, including the effect of plastic zone
formation). Therefore, at 150°F, where 6-in.-thick compact tension
specimens produced the valid fracture toughness results per ASTM
Method E 399-72, fracture toughness was based on approximately 0.120
in. crack growth. Recall, the corresponding elastic plastic fracture tough-
ness value was based on crack initiation (zero crack growth due to actual
material separation). Observing the 150°F Ni-Cr-Mo-V resistance curve
(Fig. 2), note for 0.120 in. crack growth J equals 990 lb/in. The corre-
sponding value of linear elastic fracture toughness (termed the equivalent



50 MECHANICS OF CRACK GROWTH

T T L T f 1
1250 |
1000 |- =
=
E 750 + e
Material:
500 §- ASTMAAT] E
NiCrMoV Rotor Steel
Temperature = 150°F
] o ]
0 i i i 1 1 i

0 .02 ,040 .060 .08 .10 A2 .14
Crack Growth, inch

J, Iblin

Material:
ASTM MT71
500 Ni CrMoV Rotor Steel b

Temperature = 250°F

1 i - 1 1 1 1
0 .00 .040 .060 .080 .10 12 .14
Crack Growth, inch
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150 and 250°F.
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FIG. 3—J resistance curve for an ASTM A469 Ni-Mo-V rotor steel at a temperature of
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fracture toughness, EFT) equals 180 ksi\/in., which checks with the
linear elastic fracture toughness value predicted in Fig. 8.

It should be pointed up that the equivalent fracture toughness (EFT)
was utilized only as a means to relate the linear elastic and elastic plastic
fracture toughness values and to demonstrate that the resistance curve
test method for predicting elastic plastic fracture toughness provides in
effect a *‘lower limit’’ fracture toughness value at elevated (approaching a
material’s upper shelf) temperatures. The EFT was not employed to
substantiate linear elastic versus elastic plastic critical fracture toughness
values or vice versa. As has been documented [4], the EFT can vary
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FIG. 4] resistance curve for an ASTM A470 Cr-Mo-V rotor steel at a temperature of
300°F.
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TABLE 3—Temperatures where the specimens experienced
100 percent cleavage fractures and a full resistance curve
was not necessary.

Material Test Temperature, °F
Ni-Cr-Mo-V 75
Ni-Mo-V 75, 150
Cr-Mo-V 75, 200
12Cr 0
21/4Cr-1Mo —150

0484-35-9

FIG. 7—Fracture surfaces of AISI 403 modified 12Cr rotor steel specimens tested at
300°F arranged in order of decreasing crack extension.
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enormously depending on the arbitrary selection of specimen geometry
used to determine a resistance curve (especially for materials which
produce steeply rising resistance curves with increasing crack growth)
and is, therefore, not a single valued function of crack growth. It is the
author’s opinion, however, that the EFT provides the only effective
means of relating linear elastic and elastic plastic fracture toughness
values which would otherwise be unrelatable due to the different crack
extension values which define their critical measurement points.
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Observing the fracture toughness values for ASTM A471 Ni-Cr-Mo-V
rotor forging steel at 250°F, although 8-in.-thick compact tension speci-
mens were utilized at this temperature, 7-in.-thick specimens would be
adequate to obtain valid fracture toughness results per ASTM Method
E 399-72. Therefore, valid fracture toughness values at 250°F would be
based on 0.140 in. crack growth. The 250°F Ni-Cr-Mo-V resistance curve
(Fig. 2) extrapolated to 0.140 in. crack growth yields a J value of 1500
Ib/in. The corresponding EFT equals 221.3 ksiv/in., which is moderately
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FIG. 11—Temperature dependence of yield strength and fracture toughness for an AISI
403 modified 12Cr stainless rotor steel.
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FIG. 12—Temperature dependence of yield strength and fracture toughness for an ASTM
A217 2vaCr-1Mo cast steel.

higher than the value of linear elastic fracture toughness predicted in
Fig. 8.

An additional instance where the equivalent fracture toughness was
utilized to clarify an elastic plastic fracture toughness result occurs for
AISI 403 modified 12Cr stainless rotor steel at 75°F. For this 12Cr stainless
rotor steel, where linear elastic fracture toughness data, although invalid
per ASTM Method E 399-72, was available at 75°F, the EFT was based on
0.050 in. crack growth. Since J;. is based on crack initiation, the author’s
feeling is that reasonable estimates of J are best calculated out to a
maximum of 5 percent crack growth (based on 1-in.-thick elastic plastic
fracture toughness specimens), when no valid linear elastic fracture
toughness data are available for comparison purposes.

Regarding the ASTM A217 21/4Cr-1Mo cast steel (Fig. 12), the elastic
plastic fracture toughness value at —150°F is higher than the correspond-
ing valid linear elastic fracture toughness results. Recall that this material
experienced a 100 percent cleavage fracture at this temperature and a full
resistance curve was not necessary. This higher fracture toughness value
is logical considering the property variability of the cast steel and the
relative sampling size of Ji. and K. specimens. Where a l-in.-thick
specimen was employed for the elastic plastic test, 2- and 4-in.-thick
specimens were utilized for the linear elastic fracture toughness tests. The
crack tip leading edge thus sampled two or four times the property
controlling near tip volume of the 1-in.-thick elastic plastic specimens. In
general, smaller specimens will more likely be entirely composed of tough
material while larger specimens will more likely contain a low toughness
region and thus exhibit a relatively low K, or J,. value. As shown by the
data for 21/4Cr-1Mo cast steel at —150°F, the larger the specimen the
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lower the fracture toughness. The tendency for Jy. values to lie somewhat
above the K, curve at low temperatures (where 100 percent cleavage
fractures occur and a full resistance curve is not necessary) is interpreted
as a Weibull type phenomenon rather than an intrinsic effect of specimen
size on toughness.

Therefore, with each of the three apparent inconsistencies explained,
the fine agreement between elastic plastic (i) and linear elastic (Ky.)
critical fracture toughness values for all five materials at all test tempera-
tures becomes clear.

Conclusions

The development and success of an elastic plastic fracture criterion
which directly extends the concepts of linear elastic fracture mechanics
into the elastic plastic fracture regime will result in both immediate and far
reaching consequences.

Naturally, foremost is the ability to predict failures in cases of large-
scale yielding. Providing the critical elastic plastic fracture toughness (J;)
of a particular material is known and an elastic plastic analysis (which
describes J as a function of the loading parameter and crack size) is
available for a specific structure of interest manufactured from this same
material, it is now possible to prevent failures by observing appropriate
precautions which will ensure that the applied level of J in the structure
never exceeds Jy.

Several less obvious benefits also originate from the development and
success of an elastic plastic fracture criterion. First is the tremendous
savings in both material and machining costs relative to the compact
tension specimen sizes required for J,. as opposed to K;. fracture
toughness tests. For the five materials investigated, 1-in.-thick compact
tension specimens adequately produced valid upper shelf elastic plastic Jy,
fracture toughness values. At the identical temperatures, compact tension
specimens up to 8-in.-thick were required to obtain valid linear elastic K,
fracture toughness test results. Thus, it is now possible to obtain critical
fracture toughness values with small specimens over a wide range of
temperatures for tough materials.

Secondly, the maximum temperature for valid linear elastic K, fracture
toughness results for this class of steels (even with massive specimens) is
normally less than 300°F. Naturally, the actual service operating temper-
atures experienced by many structural components are often several
hundred Fahrenheit degrees higher. When performing a fracture
mechanics analysis, some of the procedures presently employed to obtain
the operating temperature fracture toughness values are to: (a) extrapo-
late the fracture toughness temperature curve to the operating tempera-
tures of interest, (b) estimate the fracture toughness by utilizing one of the
correlations developed between fracture toughness and Charpy V-notch
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impact properties [/15], or (c) simply use the maximum valid fracture
toughness value available. With the development and success of the
elastic plastic fracture criterion, however, it is now possible to obtain
actual fracture toughness values at specific service operating temperatures
with small compact tension specimens. Thus, increased confidence can be
placed in the fracture mechanics analysis techniques utilized to predict
the critical flaw sizes required to cause failure of specific structural
components.

A final important and far reaching outcome of the elastic plastic fracture
criterion and the small-scale specimens now required to obtain valid
fracture toughness results concerns the future possibility that lower limits
of fracture toughness relative to specific temperatures (possibly the actual
intended service operating temperature) be included in material specifica-
tions and acceptance standards. This is presently the case for tensile and
Charpy impact properties. With the small specimens now required for
fracture toughness tests, ample material is generally available to manufac-
ture the necessary fracture toughness specimens from core bars, etc.
Therefore, at least for this class of steels, a giant step forward toward
increased product integrity and structural reliability may now be possible
by requiring that specific minimum fracture toughness standards be
satisfied as an integral part of the material specifications and acceptance
standards.

Acknowledgments

This work is based in full on an M. S. thesis submitted by the author in
partial fulfillment of the requirements for the degree of Master of Science
in Mechanical Engineering at the University of Pittsburgh. The author
gratefully acknowledges Doctors T. C. Woo, M. J. Doyle, and J. G.
Wagner at the University of Pittsburgh for their advice and review of the
work.

The author is also particularly indebted to Doctors J. A. Begley and
J. D. Landes of the Westinghouse Research Laboratories for their helpful
suggestions and review of the work and to W. H. Pryle and A. R. Petrush,
also of the Westinghouse Research Laboratories, for their contributions
to the experimental phases of the program. The material, specimens, and
test equipment were provided by the Westinghouse Research
Laboratories through the Fracture Mechanics Section, under the direc-
tion of E. T. Wessel.

References

(1 Begley, J. A. and Landes, J. D. in Fracture Toughness, Proceedings of the 1971
National Symposium on Fracture Mechanics, Part II, ASTM STP 514, American
Society for Testing and Materials, 1972, pp. 1-20.

{21 Landes, J. D. and Begley, J. A. in Fracture Toughness, Proceedings of the 1971
National Symposium on Fracture Mechanics, Part II, ASTM STP 514, American
Society for Testing and Materials, 1972, pp. 24-39.



60 MECHANICS OF CRACK GROWTH

[31Rice, J. R., Journal of Applied Mechanics, Transactions, American Society of
Mechanical Engineers, Vol. 35, Series E, June 1968, pp. 379-386.

[4] Landes, J. D. and Begley, J. A. in Fracture Analysis, Proceedings of the 1973 National
Symposium on Fracture Mechanics, Part 11, ASTM STP 560, American Society for
Testing and Materials, 1974, pp. 170-186.

[5] Hutchinson, J. W., Journal of the Mechanics and Physics of Solids, Vol. 16, 1968,
pp. 13-31.

(6] Rice, J. R. and Rosengren, G. F., Journal of the Mechanics and Physics of Solids, Vol.
16, 1968, pp. 1-12.

[7]1 McClintock, F. A. in Fracture; An Advanced Treatise, Vol. 3, H. Liebowitz, Ed.,
Academic Press, New York, 1971, Chapter 2.

[8] Begley, J. A., Landes, J. D. and Wessel, E. T., ‘‘Fracture Mechanics, A Practical Tool
for Preventing Failures,” presented at the Third International Conference on Fracture,
Munich, Germany, April 1973.

{91 Begley, J. A. and Toolin, P. R., “‘Fracture Toughness and Fatigue Crack Growth Rate
Properties of a NiCrMoV Steel Sensitive to Temper Embrittlement,”” presented at the
Fourth National Symposium on Fracture Mechanics, Carnegie-Mellon University,
Pittsburgh, Pa., Aug. 1970.

[10] Greenberg, H. D., Wessel, E. T., Clark, W. G., Jr. and Pryle, W. H., “‘Critical Flaw
Sizes for Brittle Fracture of Large Turbine Generator Rotor Forgings,”” presented at the
Fifth International Forgemaster Meeting, Turni, Italy, May 1970.

[11] Madeyski, A., Logsdon, W. A., and Brenneman, C. B., Jr., ‘‘Correlation of Ultrasonic
Tests, Material Evaluation and Spin Test Results for a CrMoV Turbine Rotor
Forging,”’ presented at the International Forging Conference, Paris, France, 20-25
April 1975.

[12] Logsdon, W. A., Engineering Fracture Mechanics, Vol. 7, No. 1, March 1975.

[13]) Logsdon, W. A. and Pryle, W. H., ‘‘Fracture Toughness and Fatigue Crack Growth

* Rate Properties of ASTM A217 GR WC-9 21/4Cr-1Mo Cast Steel,”” unpublished
Westinghouse Research data, 1972.

[I4]Rice, J. R., Paris, P. C. and Merkle, J. G. in Progress in Flaw Growth and Fracture
Toughness Testing, ASTM STP 536, American Society for Testing and Materials, 1973,
pp. 231-245.

[15] Begley, J. A. and Logsdon, W. A., ‘“Correlation of Fracture Toughness and Charpy
Properties for Rotor Steels,”” unpublished Westinghouse Research data, 1971.



G. R. Yoder! and C. A. Griffis!

Application of the J-Integral to the Initiation
of Crack Extension in a Titanium 6A1-4V
Alloy

REFERENCE: Yoder, G. R. and Griffis, C. A., ‘“‘Application of the J-Integral to the
Initiation of Crack Extension in a Titanium 6A1-4V Alloy,”” Mechanics of Crack
Growth, ASTM STP 590, American Society for Testing and Materials, 1976,
pp. 61-81.

ABSTRACT: Tests were conducted to determine J;. from resistance curves of J
versus crack extension, obtained from fatigue-precracked specimens of a titanium
6A1-4V alloy. Specimens of various geometries were employed, all in three-point
bending. Crack extensions were delineated by heat tinting.

Results obtained with J computed from the equation, J = 24 /Bb, are compared
to those obtained with the compliance technique, using the plane-stress solutions of
Bucci et al. Jy, results are compared with a valid K. value for this material.

The range of ratios of crack length to specimen width (a/W) is explored over
which the equation J = 24/Bb applies. The decrease in crack extension at
experimental limit Joad (Adpmax — Aac) is examined as the ratio of specimen
thickness to uncracked ligament (B/b) is increased. Variation in J,, from specimens
cut from different positions through the plate thickness is also examined.

KEY WORDS: crack propagation, fractures (materials), elastic-plastic fracture,
mechanical properties, crack extension, titanium alloys, compliance calibration,
fracture initiation

A growing body of experimental evidence [I-5]% supports the critical
value of Rice’s J-integral [6,7], Jy., as a criterion for the initiation of crack
extension in elastic-plastic fracture. Recent J-integral studies demonstrate
success with an unload/heat-tint, resistance-curve technique to determine
Jic in steel [3], titanium [4], and aluminum {5] alloys. The purpose of this
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2 The italic numbers in brackets refer to the list of references appended to this paper.
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paper is to present in the open literature the first J-integral studies of a
titanium alloy.

In this work, eight different types of fatigue-precracked, three-point
bend specimens have been tested. For several of these, resistance curves
of J versus crack extension (Ag) have been obtained by heat tinting
multiple specimens of a given type which have been unloaded from
different points on the respective diagram of load (P) versus load point
displacement (8). For purposes of comparison, evaluation of the J-integral
has been made by two methods: (1) the Begley and Landes compliance
calibration technique [/,2], using the plane-stress plastic-zone-size cor-
rected solutions of Bucci et al [8] which simulate well the experimental P
versus 8§ traces obtained from the precracked specimens, and (2) the
approximation equation proposed independently by Rice et al [9] and
Srawley [10]

_2A

T =50 )

where
A = area under the P versus § curve at the point of interest,
B = specimen thickness, and
b = uncracked ligament.

To define the point of initiation of crack extension, Aa., and hence J, it
iS necessary to select a criterion, perhaps somewhat arbitrarily at this
point. The one used in this work was proposed recently by Paris [/1],
namely, that Aa. be defined by the largest amount of actual crack
extension (1 percent) permitted in the smallest allowable K. specimen

EJ,

Aac = O‘OZSW (2)

where
E = Young’s modulus,
o,s = uniaxial yield strength, and
v = Poisson’s ratio.

Values of Jy, obtained in this study are compared to a valid K, value for
this alloy via

KA1 — v?)
Jie = Gy = ICT 3)

where material constants G,, and K, are critical values of the crack
extension force and stress-intensity factor, respectively.
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The specimen type of least thickness is used to examine for possible
variation in Ji, as a function of position through the plate thickness. In
another series of tests, the range of ratios of crack length to specimen
width (a/W) is explored over which Eq 1 holds.

Experimentation

Material and Specimens

All specimens were cut from a 1-in.-thick plate of mill-annealed
Ti-6A1-4V alloy with the chemical composition and mechanical properties
given in Table 1. Light photomicrographs in Fig. la reveal a microstruc-
ture consisting of elongated primary « grains dispersed in an a—§
Widmanstitten (basketweave) matrix. Extensive crossrolling is evident
from these micrographs and seems to be reflected in the tensile proper-
ties, determined with standard 0.505-in.-diameter specimens. The yield
strength in both the longitudinal (L) and transverse (T) directions is 124
ksi; Young’s modulus is 18.55 x 10% ksi in the T direction. The mode of

TABLE 1—Alloy composition and mechanical properties.
Chemical Composition, (weight percent)

Al V Fe C N H 0 Ti

60 4.1 005 0023 0.008 0.005 0.06 balance

Tensile Properties

0.2% Offset Tensile Young’s Modulus
Yield Strength Strength -
Reduction of

ksi MPa ksi MPa Area, % Elongation, % x 10% ksi GPa

Transverse Direction (T)

1244  868.3 133.8 9339 39.5 13.5 (in 2 in.) 18.55 129.5
Longitudinal Direction (L)
124.1 866.2 130.5  910.9 39.5 16.5 (in 1,4 in.) 18.56 129.5

Stress Intensity Factor Data

2.5
Ko/ay)*
Specimen Type Prax/Po K, ksiv/in. <B,a,W-a Ko =K
A (@) 1.12 no
») 1.09 59.7 yes yes
(©) 1.11 no

C () 1.23 no




64  MECHANICS OF CRACK GROWTH

L

(a) Light photomicrographs of microstructure; etched with Kroll’s reagent.

FIG. 1—Definition of alioy microstructure and mode of crack extension.

crack extension in this alloy is microvoid coalescence, as illustrated by
the replica electron micrograph of Fig. 1.

Cross sectional geometries of the eight types of three-point bend
specimens used, Types A through H, are presented in Fig. 2 with a list of
dimensions. Thicknesses (B) range from 0.250 to 1.000 in., widths from
0.658 to 1.500 in., ao/ W ratios from 0.313 to 0.745 and B/b ratios from 0.61
t02.99. All specimen types, with one exception, were machined from the
plate midthickness, that is, with equal amounts of metal removed from the
plate surfaces relative to the B dimension. In the case of Type E,
subscripts are used to designate position of the specimen relative to plate
thickness, that is, E. from the center or plate midthickness versus E, cut
from as near the plate surface as possible. All specimens were fatigue
precracked at levels of stress-intensity factor permitted by ASTM Test for
Plane-Strain Fracture Toughness of Metallic Materials (E 399-72), with
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7

;\\“‘

(b) Replica electron fractograph of dimpled rupture.
FIG. 1—Continued).

crack orientations all in the TL direction. These specimen types exhibited,
to varying degrees, loading behavior characteristic of the lower end of the
elastic-plastic regime. That is, all exhibited limit loads which were
substantially less than those expected for the fully plastic state, which may
be approximated for three-point bending by [8,12]

B
PL = 1.456 O'tSTST (W - a)z (4)

where
o = uniaxial tensile strength and
S = span length.
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—1.000in—

W, 05,0

SPECIMEN DIMENSIONS

SPEC 8 W 8g /W
TYPE n cm in cm
A 1000 2540 1500 3810 0457
8 1000 2540 1500 3810 0573
| ¢ 0500 1270 1500 3810 0457
D 0500 1270 1500 3810 0590
E 0.250 0.635 1500 3810 0457
F 05001270 0658 1671 0.313
G 0500 1270 0658 1671 0.598
H 0500 1270 0.658 1671 0.745

B

/

FIG. 2~Cross-sectional views of specimen types and list of dimensions. Shaded portion
of cross section indicates ligament b x B.

Moreover, behavior of the specimen type with the most highly con-
strained crack (Type A) appeared to be only marginally “‘invalid’’ with
respect to ASTM Method E 399-72, as only one specimen of three of this
type examined for K , provided a valid K, value of 59.7 ksiv/in., as noted
in the stress-intensity factor data of Table 1.

Test Procedure

All specimen types were tested in the fixture shown in Fig. 3a. A clip
gage was used to measure 8 as illustrated; a supplementary gage can be
seen to span the crack mouth opening in accord with ASTM Method
E 399-72. The span between rollers was § = 5.975 in. All tests were
conducted in room-temperature air.

To determine the point on a P versus 8 diagram at which crack extension
initiated, multiple specimens of a given type were loaded to various points
on the respective P versus & diagram (anywhere from the incidence of
nonlinearity to maximum load), followed by complete unloading, as illus-
trated in Fig. 3b for specimens of Type C. Specimens were then heat
tinted in a circulating-air furnace at 600°F (589 K) for 2 h and broken open
for examination. Crack extensions corresponding to the points of
unloading in Fig. 3b are shown in the photograph of Fig. 3c. Initial
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fatigue-precrack length was measured according to ASTM Method
E 399-72, as was the crack extension delineated by heat tinting, that is,
the amount of crack extension was taken as an average of that measured
at the quarterpoints of specimen thickness. Inasmuch as the initiation of
crack extension is a heterogeneous nucleation process, this is admittedly
an arbitrary measure of crack extension and, therefore, should be kept in
mind as a potential source of scatter in results. Uncertainty in individual
measurements is = = 0.001 in.

In one of the ways used to evaluate the J-integral, the Begley and
Landes technique was used to obtain a compliance calibration from P
versus & diagrams generated for several a/W ratios from plane stress
plastic zone size corrected solutions of Bucci et al. These P versus §
traces were integrated graphically using the trapezoidal rule, with incre-
ments of 0.005-in. displacement. These solutions simulate well the
experimental P versus § traces obtained from the precracked specimens,
as illustrated in Fig. 4 for specimen Types A through D; notable
deviations at some of the greatest displacements are attributabie to crack
extension in the precracked specimens. In using Eq 1 to evaluate the
J-integral, it is appropriate to note that A has been taken to be area under
the actual experimental P versus 8 trace, minus the component owing to
the test fixture, in accord with the Srawley formulation.

Results and Discussion

Comparison of Resistance-Curve Data

Resistance-curve data of J versus Aa for specimen Types A through D
are presented in Figs. 54 and b, for which J was evaluated from the
compliance calibration technique and Eq 1, respectively. Curves
sketched for each specimen type in Fig. 5a are shown as solid lines in
Fig. 5c for comparison with the respective dashed curves from Fig. 5b. At
lower values of Aa, the scatter in data defined by the solid lines overlaps
quite well that from the dashed lines, although near Aa = 0 there is a
tendency toward slightly lower J values as calculated from Eq 1. On the
other hand, at the higher values of Aa, the dashed curves indicate notably
greater J values, as maximum load (Ppay) is approached, than do the
respective solid lines, particularly for specimen Types C and D. This
may be a reflection of Landes and Begley’s prediction that J values
computed by Eq 1 would be overestimated, particularly at greater Aa,
owing to the influence of crack growth effects on A [3]. By comparison,
the compliance technique would not be expected to so overestimate J.

To infer levels of J,, from Figs. 5a and b, Aa. can be estimated from Eq
2 to be approximately 6 X 1073 in., by using the mean extrapolated value
of J for Aa = 0 in Fig 5, or from the value of K. noted earlier. From Fig.
5a, it follows that J;, = 188 to 235 in-Ib/in.? or 211 + 24 in-Ib/in.?; this
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APPLIED LOAD, P

FIG. 3—Test procedure: multiple specimens of each type were loaded in three-point bend
test fixture shown in (a) to various points on respective P versus 8 diagram as shown in (b);
then they were unloaded and heat tinted to reveal crack extensions as shown in (c). Case
illustrated is for specimen Type C, with individual specimen numbers identified in (b) and

(©).
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FIG. 4—Comparison of P versus & diagrams obtained from precracked specimens (solid
curves) fo those generated from plane-stress plastic-zone-size corrected solutions of Bucci
et al {8] (dashed curves).
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compares with J,. = 158 to 209 in-1b/in.? or 184 *+ 26 in-1b/in.? inferred
from Fig. 5b. This amounts to a variation in J;. of < # 12 percent from
Fig. 5a and < =+ 15 percent from Fig. 5b. These correspond to variations
in K, of < + 6 percent and < = 7 percent, respectively. This is substan-
tially less variation than might well be found in K. testing of mill-annealed
titanium alloy plates [/13]. The question as to which of the two mean
values,J;, = 184 or 211 in-1b/in.2, is the more accurate is a moot point. The
value of K. cited in Table 1 translates to Ji. = 170 or 192 in-Ib/in.?,
depending on whether the factor (1 — v?) should be included or not in Eq
3 [14,15]. Moreover it can be argued that the quoted K, value may be in
fact lower than the average value for the plate material, inasmuch as two
out of three K, tests failed to provide a valid K. determination.

Specimen-Size Analysis

It has been estimated that ‘‘legal’’ J,, determinations can be obtained
with specimens of limiting dimensions [3,16]

J
a,B,b> ol 5)
Tslow
a mm
0 0.508 1016 1524 2032 2.540 3048 3.556 4064
600 T T T T T T T 1064
Ti-6Al-4V Fnax
Sook NRL ALLOY Ri4A -|887
o 400~ . —1709
c
5 9
‘Ta_ Pmcl
£ x NE
Z 300F A\l 532 3
& H hd R =
! o
e Pk ~
b4
= (1 [}
= i
200:04:/3’/ {355
:
[
: o, SPECIMEN
: Jjc*188-235in.Ib/in TYPE
100+ | x A 77
H A B
tAe, e C
i oD
Al 1 i 1 1 1 1 1
o] 20 a0 60 80 100 120 140 160

CRACK EXTENSION (Aa), 10°3in

(a) Data for J evaluated by compliance calibration technique.

FIG. S—Resistance curves of Yversus Aa for specimen Types A through D, from which J,
is defined ar Aa,.
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(b) Data for J evaluated from J = 2A/Bb.
FIG. 5—Continued).

with @ = 50 and oq, taken as the mean of oy and o. For a level of
Jie = 195 in-1b/in.2, this means for the present alloy that a, B, and 4 must
exceed about 0.08 in. This value is exceeded by the respective dimensions
of all specimens, Types A through H.

Variation of Ji with Position Through the Plate Thickness

Specimens E . and E, were unloaded at displacements near the initiation
point and heat tinted. Results are plotted in Fig. 6a relative to the data
scatterband obtained near initiation in Fig. 5a, for specimen Types A
through D with J evaluated by the compliance method. A substantial
difference in J values is evident between the two specimens: for Aa = 12
and 13 mils, respectively, specimen E. exhibits a level of J = 256
in-Ib/in.?, whereas J = 159 in-Ib/in.2 for specimen E.

As might be expected, replica electron fractographs of actual heat-
tinted crack extension reveal significantly larger dimples in the region of
greater toughness, namely, the plate midthickness, Fig. 6b, than appear in
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FIG. 5~ Continued).

the region near the plate surface, Fig. 6¢c. (Note that heat tinting has done
little to obscure fractographic features in this alloy). Though the micro-
structure of this alloy is relatively uniform for a mill-annealed plate of
Ti-6A1-4V, the primary a-phase was somewhat greater in percentage and
more elongated in shape at the plate midthickness; the grain size of the
oa—B Widmanstitten matrix was also somewhat finer there than near the
surface. On the other hand, Rockwell C hardness measurements (HRC)
made through the plate thickness showed little variation. On the face
normal to the L direction, HRC varied from ~31 at the center to ~32 at
the surface; however, on the face normal to the T-direction, HRC was
higher in the center (~33.5) than near the surface (~32.0).

Effect of a/lW and B/b Ratios on J;. Determination

Specimen Types F, G, and H were tested to explore the range of a/W
ratios for which J may be calculated via Eq 1; Srawley [/0] has suggested
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(a) J-integral data evaluated by compliance calibration technique and plotted
relative to data for specimen Types A through D near initiation.

(b) Replica electron fractograph of crack extension at plate midthickness after heat
tinting.

(c) Replica electron fractograph of crack extension near plate surface after heat
tinting.

FIG. 6—Differential in toughness between plate midthickness region and region near
plate surface, as revealed from specimens E. and E;, respectively. Dimple size is notably
larger in region corresponding to position of E, than that of Es, shown in (b) and (c)
respectively.
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that the range should extend from 0.2 to 0.95. Specimens of these three
types were unloaded near the initiation point and heat tinted. Results are
plotted in Fig. 7 relative to the data scatterband obtained near initiation in
Fig. 5b for specimen Types A through D. For specimen Type F
(a/W = 0.313), the J value calculated from Eq 1 is obviously too high,
namely, 306 in-Ib/in.2 at Aa = 3 mils. Though for specimen Type G
(a/W = 0.598) the J value appears reasonable, that for specimen Type H
is obviously too low with J = 148 in-1b/in.2 at Aa = 13 mils.

In view of the derivation of Eq 1 by Rice et al, the result for
specimen Type F might not be unexpected; however, for a deeply cracked
specimen such as Type H, it is. From Table 2, which summarizes J,, data
obtained via Eq 1 for the different specimen types, it is evident that
specimen Type H has the smallest dimension b (0.167 in.). Though this
dimension is about twice the limiting value of 0.08 in. suggested by & = 50
in Eq 5, perhaps this limiting value is too low for the present case; that is,
maybe o = 100 or greater. It is pertinent to note that for the case of bend
bars of a rotor steel, Landes and Begley [2] noted a decrease in apparent
Jy for a specimen with b < 50 Ji./oqew- Similarly for the case of specimen
Type F, it is possible that specimen size limitation could be a factor in the
result, since Type F has the smallest dimension a of all types examined,
namely, 0.206 in.

In the interest of developing a single specimen test for Jy., as opposed to
the multiple specimens required by the unload/heat-tint, resistance-curve
technique, Corten has proposed [17] that J,. can be obtained from a single
specimen if B/b = 2 and if P,,,/P; = 0.85; that is, under these condi-
tions, it is proposed that Aapp,, — Aa.. For each specimen type listed in
Table 2, the B/b ratio is given as well as the experimentally observed
Pax, the ratio Pp,,,/P;, and the value of J corresponding to P,,,, namely
J pmax- Also included are values of crack extension found at P,,,x, Adpmax,
for comparison with Aa near the initiation point, Aa.. In Fig. 8, Aa, J pmax
and Pp,/P, are plotted versus B/b. It is evident that none of the
specimen types exhibit P,,./P. = 0.85, as they range from a low of 0.40
for Type A to a high of 0.56 for Type H. However, it is readily apparent
that Adpyay is an inverse function of B/b, with Aa ppax ranging from a high
of 0.149 in. at the lowest B/b = 0.61, to a low of Aag = 0.013 in. at the
highest B/b = 2.99. Values of J pp,x vary similarly with B/b. Though these
trends support Corten’s basic idea, unfortunately it may be difficult to
design ‘“‘legal” Ji, specimens of this alloy to attain Pp,./P; = 0.85.
Comparison of Types D and G, specimens of equal B and a/W =~ (.6,
shows that reduction of W from 1.5 to 0.66 in. led to an increase of
Pax/ P from 0.45 to only 0.55; however, W could not be so reduced much
further if the size limitation on a and b is indeed =0.2 in. for this alloy
(that is, if « = 100 in Eq 5).
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FIG. 7—Data of ] versus Aa for specimen Types F through H, with J computed from
J = 2A/Bb and plotted relative to data for specimen Types A through D near initiation.



MECHANICS OF CRACK GROWTH

78

8yl 66°C L91°0 95°0 LST €1 €1 8yl SHL0 H
yLT> 681 §9Z°0 $S°0 €79 Sr> 6 6l 8650 D
wy i 4340 Ly0 8pS1 18 € 90€ €10 d
(429 1870 S19°0 Sl 06L2 szl 9 9027 065°0 a
1L 19°0 SI18°0 950 SLeY 6v1 9 061 LSO o)
IS¢ 9¢°1 0p9°0 0 8¢S ¥8 9 8T €LS°0 q
1¥€ €Tl S18°0 0y°0 0098 8 9 981 LSY0 v
Zuyqr-ut qq ‘uy Td/*d qr ‘ul e 01 ‘U0 2 ulqr-ut (reurwou) adAL
xewd o ‘q xew g “xewd g ‘(oyewixoadde) ‘(arewixoxdde) M/ uawiadg
baq Q—N—

QE/VT = [ wo4f pa1onpaa ¢ ym ‘sadL) uswiidads Snolpa ayi 10f vivp Di3a1ut-f fo Livwung—z A1dV.L



YODER AND GRIFFIS ON CRACK EXTENSION 79

i-BAI-4V(RI4A
Ti-6AI-4V(RI44) loso
A ///A a”
-4 150k < 4050 5
s g
= £
e Ho.40
3.5 1251 :
5o
X -2 100 700
w7y
e £ 1800
zd 75% {500 &
8o H400 £
2 g Ji (3
50 Jp &
£ 3 ma {300
[
s 25L a -200 Q_E
5 =} 031« <0.75 lioo ]
< 0.17in.<b<0,82in.
o 0 S I S| 1 1L __ g
(¢ 1.0 2.0 30

THICKNESS/LIGAMENT, B/b

FIG. 8—Influence of thickness to ligament ratio (B/b) on crack extension at experimental
limit load  (Aapmaz), Ypmaz and P o d Py,

Summary

Tests were conducted to determine J,, from resistance curves of J
versus crack extension obtained from fatigue-precracked specimens of a
titanium 6A1-4V alloy. Three-point bend specimens of eight geometries
were employed, with crack extensions delineated by heat tinting. Find-
ings from this work include:

1. Over the range a/W = 0.4510 0.60, the determination of J;. obtained
with J computed from the equation J = 2A/Bb agrees quite well with that
obtained by evaluating J via the compliance calibration technique;
moreover, these determinations of J . are in good agreement with a valid K,
value for this alloy.

2. At the greater crack extensions, as experimental limit load is
approached, resistance curves obtained with.JJ computed asJ = 2A/Bb are
notably higher than those obtained with J evaluated by the compliance
method.

3. Inexploring the range of a/W over which the equation J = 2A/Bb is
applicable, erratic results were obtained at ratios of 0.31 and 0.75. Though
the former might be interpreted to be outside the range of applicability,
the latter may imply that the specimen size limitation defined by a, B,
b > alli/onew) Was violated at a surprisingly high level of o« = 100.
Further work is suggested to determine whether o might indeed be this
high for titanium alloys in general.

4. Significant variation inJ;, was found from specimens machined from
different positions through the plate thickness. This finding has serious
implications regarding any future standard method for J;. testing: If J,,
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results obtained from relatively small, thin specimens are to be used to
estimate toughness of a thick plate from which they are cut, such
specimens should be made at multiple positions through the plate thick-
ness. If the variance of J,. with position exceeds some specified percent-
age, the estimate for the thick plate should not be legal, at least until
some rational averaging procedure is adopted.

5. Crack extension at maximum load was found to vary inversely with
B/b. For B/b ratios ranging from 0.61 to 2.99, Aapna., decreased from
0.149 to 0.013 in. Values of J py,,, similarly decreased with increasing B/b
ratio.
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Fatigue Crack Growth During Gross
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ABSTRACT: An attempt is made to apply the J-integral concept as an elastic-
plastic criterion for fatigue crack growth. Compact tension fracture specimens of
A533B steel are subjected to gross cyclic plastic deformations, and fatigue crack
growth rates up to 0.01 in./cycle are obtained. The results show correlation with
J-integral values estimated from load versus deflection hysteresis loops. Also,
agreement is obtained with the extrapolation of linear elastic fatigue crack growth
rate data.

KEY WORDS: fatigue (materials), cracking (fracturing), crack propagation, plastic
deformation, cyclic loads

Fatigue crack growth rates during gross plasticity are experimentally
investigated, and the test results are interpreted in terms of the J-integral
concept. The possibility of predicting fatigue crack growth rates under
elastic-plastic conditions in a manner analogous to the linear elastic
fracture mechanics approach to fatigue is considered. It is hoped that the
results of this preliminary study will stimulate expanded discussion and
research on elastic-plastic fatigue cracking behavior.

Preliminary

In this section, the limitations of linear elastic fracture mechanics and
the need for more general criteria are first considered. Next, the
J-integral concept as employed in static fracture toughness testing is
discussed. Finally, some comments are made concerning the relationship
between fracture mechanics criteria and fatigue crack growth rate.

! Senior engineers, Mechanics Department, Westinghouse Research Laboratories,
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Limitations of Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics is based on the analytical result that
the elastic stresses surrounding a crack tip are distributed in a manner that
is independent of applied load or geometry [/,2].2 The intensity of the
stress field surrounding a crack tip may thus be uniquely described in
terms of the applied load and member geometry. Hence, stress intensity
factors, which are functions of applied load, component dimensions, and
crack length, are employed [/,2]. The resistance of metals to both static
fracture [3] and fatigue cracking [4] are commonly expressed in terms of
stress intensity factors.

As the mathematical equations used to define stress intensity factors
are based on linear elastic behavior, important limitations on the use of
linear elastic fracture mechanics arise when materials capable of plastic
deformation, such as engineering metals, are considered. With reference
to Fig. la, linear elastic fracture mechanics is not valid unless the region
of plasticity surrounding the crack tip, r,, is small compared to both the
crack length, a, and the remaining ligament of uncracked material, b. If
the plastic zone is not small, plasticity effects are significant, and stress
intensities determined by the methods of linear elastic fracture mechanics
have no meaning. In such cases, more general criteria capable of handling
plasticity effects are needed.

For a small crack in a region of plasticity associated with a notch, as in
Fig. 1b, linear elastic fracture mechanics is also invalid. Consider a crack
length, a, which is of the same order of size or smaller than the notch root
radius, p. The local stress concentrating effect of the notch is significant,
but this effect cannot be evaluated by linear elastic analysis due to the fact
that the plastic zone, r,, is not small compared to other significant
dimensions, p and a. Linear elastic fracture mechanics is valid for
configurations similar to Fig. 1b after the crack grows to a length that is

\(

Plastic Zone

Piastic
Zone

(a} Plastic zone small compared (b} Fatigue crack in a region
to beth crack tength and ligament of plasticity associated with a
notch

FIG. 1—Relative dimensions governing the applicability of linear elastic fracture
mechanics.

2 The italic numbers in brackets refer to the list of references appended to this paper.
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large compared to the root radius of the notch, and then only if the crack tip
plastic zone is small compared to both the remaining ligament, b, and the
effective crack length, a’, which includes the notch length.

The behavior of small cracks near notches, as in Fig. 1b, is of major
practical importance. It is not generally feasible to design engineering
structures or machines so that localized plasticity does not occur at
regions of stress concentration. Fatigue crack initiation usually occurs at
such locations and can be predicted based on the local elastic-plastic
notch strains [5-8]. However, the available fracture mechanics proce-
dures cannot predict growth rates for such cracks until they have grown
out of the region of plasticity associated with the notch. Thus, a
significant portion of the fatigue life for many practical problems cannot
be predicted with currently available technology. The problem of small
cracks near plastically deformed notches is difficult due to its geometric
complexity. Some approximations may be made [9], but additional ana-
lytical and experimental work will be necessary before fatigue problems of
this nature can be handled effectively. Fatigue test results for plastically
loaded cracked members of simpler geometry, such as standard fracture
mechanics specimens, will contribute to an understanding of this problem
and, in the future, can be expected to aid in its solution.

J-Integral Concept

The mathematical basis of the J-integral concept in terms of nonlinear
elasticity is described in Ref 10. Values of J may be determined from load
versus deflection curves as indicated in Fig. 2a. At a given deflection, §,,

e
[~ a —t—b —

Thickness 8

() Rice et. al, approximation

FIG. 2—Determination of ] from load versus deflection curves.
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the potential energy change, dU, caused by a small increase in the crack
length, da, is related to J as follows

1= 5 ta) 2

where B is the specimen thickness. Deflections, 8, are measured coinci-
dent with the applied load vector.

Load versus deflection curves for several different crack lengths may
be used with Eq 1 to determine empirical relations between J and
deflection at various values of crack length [//,12]). The procedure
employed is similar to the compliance method [/3] of determining the
linear elastic strain energy release rate, G. In fact, if the specimen
behaves in a linear elastic manner, that is, if the load deflection lines in
Fig. 2a are straight, then J reduces [10] to G, which is in turn simply
related [2] to the stress intensity, K.

J=G=—+ @y

For elastic-plastic materials, the quantity U in Eq 1 cannot be inter-
preted as the potential energy, rather it is the elastic-plastic work
necessary to deflect the specimen. In this case, J loses its physical
interpretation in terms of the potential energy available for crack exten-
sion, but it retains physical significance as a measure of the intensity of the
characteristic crack tip strain field (/7). Note that this latter interpretation
of J is similar in philosophy to the stress intensity concept, K, which
gives the intensity of the linear elastic stress field surrounding the crack
tip. This crack tip strain field interpretation of J accounts for its success as
a geometry independent static fracture toughness criterion for engineering
metals under elastic-plastic conditions [/1,12,14].

The mathematical developments leading to the J-integral concept
imply, for elastic-plastic materials, that the concept is valid where
deformation theory of plasticity is valid [/0]. As deformation theory of
plasticity cannot directly account for the plasticity effects observed on
unloading, there is some question concerning the applicability of the
J-integral concept to cyclic loading. The most relevant unanswered
question is the following: Does the J-integral concept have meaning

3 If the specimen thickness is sufficient to cause a condition of plane strain, the elastic
modulus, E, employed in Eq 2 should be replaced by E/(1 — »?), where v is Poisson’s ratio
[2]. As this correction causes a change of only about 10 percent, it is not of great importance.
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relative to the changes that occur in the crack tip stress and strain fields
during the loading half of one fatigue cycle?

As the limitations of the J-integral concept are not definitely known, the
concept may have more general applicability than can be mathematically
verified at this time. Thus, laboratory experiments which probe the limi-
tations of the J-integral concept are appropriate. It is in this spirit that
an attempt will be made in this investigation to appy J to cyclic loading.

It is somewhat inconvenient to apply Eq 1 to elastic-plastic materials as
test results from several specimens are needed in the compliance proce-
dure employed [/7,12]. Fortunately, an approximation is available which
allows J values to be determined from a single load versus deflection
curve [15]. This approximation, which is valid only for deeply notched
compact tension and bend bar specimens, is illustrated in Fig. 2b. The
approximate J value at a given deflection is simply related to the area
under the load versus deflection curve

2 3o
J=— Pds 3
Bb 0 ®)

Compact tension specimens are employed in this investigation and cyclic
J values are determined in a manner related to Eq 3.

Criteria for Fatigue Crack Growth

The relationship between stress intensity and fatigue crack growth rate
obtained from linear elastic fracture mechanics is shown schematically in
Fig. 3. Atintermediate values of stress intensity range, AK, a straight line
is usually obtained on a log-log plot of AK versus cyclic crack growth rate,
daldN. The following relatinoship [4,16] results

da/dN = C(AK)" )]

where C and n are constants for a given material and stress ratio
(Kmin/ Kmax)-* At low values of AK, crack growth rates fall off rapidly, and
there appears to be, for a given material and stress ratio, a threshold value
of AK below which fatigue cracks will not grow [17,18].

It is significant that fatigue crack growth rates of magnitudes corre-
sponding to the linear and threshold regions of the da/dN versus AK curve
occur for small cracks where plasticity precludes the use of linear elastic
fracture mechanics. This is the case for surface cracks in a uniform cyclic
plastic strain field, as during low-cycle fatigue tests after crack initiation,

* The constants C and n are also affected by temperature and chemical environment, and
these latter factors result in frequency effects. Environmental factors are beyond the scope
of this paper.
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FIG. 3—Relationship between fatigue crack gfowth rate and stress intensity.

and is also the case for small cracks growing in regions of cyclic plasticity
associated with notches. Criteria for fatigue crack growth which account
for plasticity effects, and which could be used in place of AK where it does
not apply, are needed.

As indicated in Fig. 3, unstable behavior occurs at high AK values and
results in a rapid increase in the crack growth rate just prior to complete
failure of the specimen, There are two possible causes of this behavior.
First, the increasing crack length during constant load testing causes the
peak stress intensity to reach the fracture toughness of the material, and
the unstable behavior is related to the early stages of brittle frac-
ture [19,20]. And second, the growing crack reduces the uncracked area
of the specimen sufficiently for the peak load to cause fully plastic limit
load behavior. The first possibility is operative for high-strength, low-
toughness metals [19,20], where the specimen sizes normally used for
fatigue crack growth rate testing behave in a linear elastic manner at K
levels equal to the fracture toughness. The second possibility, plastic limit
load behavior, is probably common for ductile metals, particularly if the
fracture toughness is high.

Where plastic limit load behavior causes unstable crack growth, AK
values have no meaning as the limitations of linear elastic fracture
mechanics have been exceeded. In other words, the apparent effect is not
real but is related to the fact that the AK values determined are not
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appropriate criteria for fatigue crack growth due to plasticity effects. The
interesting possibility is raised that straight line da/dN versus AK be-
havior for ductile metals can be observed at higher AK levels by testing
larger specimens. Conversely, unstable behavior is expected at lower AK
values for smaller specimens. This is due to the fact that the extent of
plastic deformation depends, to a first approximation, on only the stress
intensity level and the flow strength of the material® and, therefore,
becomes smaller relative to the specimen size if the specimen size is
increased [2]]. Note that this is the same size effect that necessitates the
minimum specimen size requirement in K, testing. (See ASTM Test for
Plane-Strain Fracture Toughness of Metallic Materials, E 399-73.)

In this investigation, fracture mechanics specimens are subjected to
gross plastic deformations, and fatigue crack growth rates are measured.
The test results are interpreted in terms of the J-integral concept. There
has been limited previous work by others [22-24] on fatigue crack growth
during plastic deformation. However, no criterion having general applica-
bility has been developed, nor has any attempt been previously made to
apply the J-integral concept to fatigue crack growth.

The remainder of this paper is first concerned with describing the
laboratory techniques and data reduction procedures employed. Next, the
test results are presented. Following discussion of the test resuits,
conclusions are drawn and recommendations for related future work are
made.

Experimental Techniques

Material, Specimens, and Laboratory Tests

The material tested was A533B pressure vessel steel having a yield
strength of 70 ksi and a Charpy fracture appearance transition tempera-
ture (FATT) of 95°F. Specimens having the dimensions shown in Fig. 4
were machined from this material. These specimens were identical to the
ASTM standard compact tension specimen (ASTM Method E 399-73)
except that modifications were made to accommodate clip gages. Specifi-
cally, the machined slot was widened at the front of the specimen, and
knife edges were machined under the centers of the loading pin holes. An
ASTM standard double cantilever clip gage (ASTM Method E 399-73)
was attached to these knife edges and was used for measuring deflections
along the loading line. Also, four pairs of shallow threaded holes were
machined in one side of the specimens. These were used to attach knife
edges for a second clip gage that was employed to measure displacements
across the crack tip. This second clip gage was moved as the crack grew
so that it was always attached at the pair of holes closest to the crack tip.

5 For small-scale plasticity, the plastic zone size is estimated [21] to ber, = (K/o,)?*/27.
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FIG. 4—Dimensions in inches of compact tension specimens used for fatigue crack growth
during gross plasticity.
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All tests were conducted on a closed loop electrohydraulic testing
system, and crack lengths were monitored visnally with a low-power
travelling microscope. The clevis and other loading fixtures were mod-
ified so that compressive loads could be applied during cycling.

Simple control conditions are unsuitable for crack growth studies
during gross plasticity, this difficulty being illustrated in Fig. 5. Under

8 N
{a) Controlled load

{b) Controlled deflection

FIG. 5—Behavior during cycling under simple control conditions for gross plasticity.
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load control, plastic limit load behavior in the uncracked ligament of the
specimen causes the mean deflection to increase in an unstable manner.
This behavior is related to the cycle dependent creep, or ratcheting,
phenomenon observed in uncracked axially loaded specimens [25,26].
Unstable deformation behavior under load control causes the crack
growth rate to increase rapidly, and little data can be obtained before
failure of the specimen. Under deflection control, the mean load re-
laxes [27] toward zero and the crack growth rate decreases. As it cannot
be assured that crack growth delay effects [28] caused by the decreasing
severity of the loading do not affect the data, simple deflection control is
also disadvantageous.

The difficulties with simple load or deflection control were avoided by
controlling the deflection to a sloping line on a load versus deflection plot
as indicated in Fig. 6. In other words, as the load dropped due to the
increasing crack length, the deflection limit was increased. Intercept
values for the sloping line used in each test, such as S and D in Fig. 6,
were chosen so that the crack growth rate gradually increased with
elapsed cycles. Typical crack length versus cycles data are shown in Figs.
7 and 8. The specific choices of § and D used were based on experience
obtained during preliminary tests.

Deflection control to a sloping line as in Fig. 6 was achieved automati-
cally by means of an analog control circuit. The control circuit employed
is described in detail in Ref 29, and general discussion on limit control
using an analog computer with closed loop mechanical testing equipment
is given in Ref 30.

A limited number of tests were also conducted under load control to a

P, Load

8§, Deflection

AS33B
Spec. no, 16

FIG. 6—Load versus deflection hysteresis loops during deflection control to a sloping line.
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FIG. 7—Variation with cycles of crack length and J for Specimen 15.

sloping line as illustrated in Fig. 9. Again, it was possible to obtain
gradually increasing crack growth rates. All sloping line control tests
conducted are described in Tables 1 and 2. During these tests, load versus
deflection hysteresis loops as in Figs. 6 and 9 were periodically recorded
on an X-Y recorder. In addition to the sloping line control tests, two
ordinary linear elastic, constant load, fatigue crack growth rate tests were
conducted and are described in Table 3.

Data Reduction

Cyclic crack growth rates were determined from a versus N data, as in
Figs. 7 and 8, by an incremental polynomial procedure. A second order
polynomial was fitted through the first seven a versus N data points using
least squares regression techniques. The first derivative of this polyno-
mial was then evaluated at the central data point to obtain a crack growth
rate, da/dN . The same procedure was then applied to the second through
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FIG. 8—Variation with cycles of crack length and J for Specimen 16.



92 MECHANICS OF CRACK GROWTH

$= 14.0 kip

A533B

3 Spec. no. 14

2.5ki

0.02in
1254

1511 Cycles

P, Load

&, Deflection D=0.48in—

FIG. 9—Load versus deflection hysteresis loops during load control to a sloping line.

eighth, third through ninth, etc., data points so as to obtain crack growth
rates at various numbers of cycles during each test.

Values of cyclic J were determined from areas under load versus
deflection lines during rising load as indicated in Fig. 10. Note that the
operational definition of AJ employed is related to the Rice et al
approximation [/5], discussed previously relative to Fig. 2b and Eq 3. As
macroscopic crack closure behavior occurred, it was necessary to esti-
mate the point at which the crack opened and to calculate AJ from the
area above this point as indicated in Fig. 10. Others have detected crack
closure by means of strain gages near the crack tip [37] or by changes in
an electric potential applied to the specimen [32]. Unfortunately, neither
of these methods could be used in this case due to difficulties associated
with large plastic deformations. The best method available was, therefore,
to measure displacements across the crack tip using a clip gage attached
to the side of the specimen.

Deflection from the side clip gage was plotted versus deflection from
the clip gage at the loading pin holes. Changes in slope on such plots were
observed and were interpreted as approximately corresponding to open-
ing and closing of the crack. Crack opening deflections estimated from

TABLE 1—Tests under deflection control to a sloping line.

Specimen Test Frequency, Deflection Intercept Load Intercept
No. Hz D, in. S, kip
2,a< 125 1.0 0.0591 10.45
2,a>1.25 0.5 0.0750 9.18
5,a<1.15 0.5 0.1000 13.33
5,a>1.15 0.05 0.1133 13.33
15 0.2 0.0770 14.82
16 0.1 0.0963 18.44
18 0.04 0.1250 21.00
19 0.02 0.1722 18.83
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TABLE 2—Tests under load control to a sloping line.

Specimen Test Frequency, Deflection Intercept Load Intercept
No. Hz D, in. S, kip
14 0.1 0.480 14.0
17, a < 1.03 0.1 0.160 14.0
17, a > 1.03 0.1 0.320 14.0

side clip gage measurements and from stiffness changes in load versus
deflection hysteresis loops, as in Figs. 6 and 10, were compared. The
values obtained never differed by an amount that was significant com-
pared to the maximum deflection, typical data being shown in Fig. 11.
Therefore, it was possible to estimate the crack opening point from load
versus deflection hysteresis loops, which was found to be more conve-
nient than the direct use of side clip gage data. Asillustrated in Fig. 10, the
specific procedure used involved the easily identifiable point where the
curvature of the P-8 line changed prior to the peak compressive load being
reached. This convention constitutes only a first order correction for the
effect of crack closure, and no significance is attached to its details.

For calculating AJ values, one might consider using the area above zero
load, area CDEC in Fig. 10. However, significant reversed plasticity
occurred during compressive loading, and even low-power visual obser-
vation indicated that crack closure often did not occur until considerable
compressive load had been applied. The total area under the loading
curve, area ADGA in Fig. 10, is also a possibility for estimating AJ.
However, it was not thought reasonable to assign any importance to that
portion of a cycle during which the crack was closed. Also, AJ values
estimated from the total area under the loading line were observed to
increase as the crack growth rate decreased during preliminary tests
under simple deflection control.

Thus, AJ values were estimated from load versus deflection hysteresis
loops in a manner related to the Rice et al approximation [/5], and an
attempt was made to account for the effect of crack closure. Values of AJ
determined in this manner are shown in Figs. 7 and 8 along with the
corresponding a versus N plots.

For the tests under load control to a sloping line, as in Fig. 9, there were

TABLE 3—Linear elastic fatigue crack growth rate tests.

Test Frequency, Minimum Load, Load Range,
Specimen No. Hz kip kip
9 1.0 0.40 3.60
13 1.0 0.60 5.40
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FIG. 10—Operational definition of cyclic J.

no indications of crack closure from side clip gage measurements. Values
of AJ were estimated as previously described except that zero load was
taken as the crack opening point. As shown in Fig. 9, the cyclic plasticity
during these tests was small. Hence, the AJ values obtained were
approximately equal to (AK)¥E, AK being simply related to load and
crack length by the methods of linear elastic fracture mechanics.

Test Results

For two of the tests under deflection control to a sloping line, values of
AJ at various numbers of cycles are plotted in Figs. 7 and 8. Note that AJ
increases with fatigue crack growth rate, da/dN, for the first part of each
test, and then becomes approximately constant. Later, in most tests, both
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FIG. 11—Estimated crack opening deflections for Specimen 16.
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da/dN and AJ began to decrease. The data during decreasing da/dN were
rejected due to the possible influence of delay effects.

A plot of da/dN versus AJ is shown in Fig. 12 for all of the tests under
deflection control to a sloping line. Also shown is a least squares line fit
through these data which has the following equation

da B
N = 2.13 X 107%AJ)"587 5)

Data are shown in Fig. 13 for the two tests under load control to a sloping
line, and these data are compared to Eq 5. In Fig. 14, the deflection
control AJ data of Fig. 12 are compared to linear elastic fracture
mechanics data for the same material. Results for-the two linear elastic
tests conducted in this investigation are shown, as are extensive test
results from Paris et al [/8] on a different heat of the same material,
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FIG. 12—Fatigue crack growth rate as a function of J for deflection control to a sloping
line.
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Fig. 13—Fatigue crack growth rate as a function of J for load control to a sloping line.

A533B with 70 ksi yield. Note that AJ values for the linear elastic data in
Fig. 14 are obtained from AK using Eq 2.

The deformation behavior during deflection control to a sloping line
was characterized by large cyclic plastic deformations, hysteresis loops as
shown in Fig. 6 being typical. In the latter part of each test, gross stiffness
changes due to closing of the crack at high compressive loads were
observed.

Where load, rather than deflection, was controlled to a sloping line, the
cyclic plastic deformations were small, but large plastic deformations in
the tensile direction accumulated during the tests. This incremental
plastic deformation behavior is evident in Fig. 9, where the zero load
deflection is observed to increase significantly with number of applied
cycles. Figure 15 is a photograph taken near the end of the same test
illustrated in Fig. 9, the increase in zero load deflection being also evident
in this photograph.

Several fracture surfaces resulting from fatigue crack growth during
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FIG. 14—Comparison of fatigue crack growth rates during gross plasticity with linear
elastic data.

gross plasticity are shown in Fig. 16. The specimens farther to the right in
Fig. 16 had higher growth rates. Note that fracture surface roughness and
shear lip size increase with growth rate. Shear lips occupied only a small
fraction of specimen width, and the crack front curvature was small,
except for growth rates near 10~2in./cycle. The specimen on the extreme
left in Fig. 16 is from one of the linear elastic tests, and all of the others are
from tests under deflection control to a sloping line. The reader may refer
to Tables 1 to 3 for the test conditions employed and to Fig., 12 for the
crack growth rates involved.

Discussion

In Fig. 12, it can be seen that excellent correlation is obtained between
cyclic J and fatigue crack growth rates for the tests under deflection
control to a sloping line. The test data from all six specimens fall near a
single straight line in Fig. 12. Wherever data points from more than one
test fall together along this line, the combination of da/dN and AJ obtained
occurred at different crack lengths. For any given crack length between
1.0 and 1.4 in., test results were obtained over approximately two orders
of magnitude in crack growth rate. Thus, over a range of crack lengths in
the single specimen geometry tested, the cyclic J criterion employed is
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FIG. 15—Specimen 14 after testing.

independent of crack length. Note that the following interrelated quan-
tities are involved in the convention used for computing AJ: load range,
elastic-plastic deflection range, crack opening deflection, and crack
length. The success of the correlation between da/dN and AJ implies that
all of these factors, at least in an approximate manner, are taken correctly
into account.

As indicated in Fig. 14, the linear elastic data from this investigation are
in reasonable agreement with the more extensive similar data from Ref /8,
which are for a different heat of the same steel. In Fig. 14, the results of
the gross plasticity J tests conducted under deflection control to a sloping
line are shown as solid circles. Excellent agreement with the linear elastic
test results is obtained in the limited region where both are available.
Furthermore, all of the data in Fig. 14 for crack growth rates above 1077
in./cycle fall along a single straight line. Thus, the gross plasticity da/dN
versus AJ data are in agreement with the straight line extrapolation on a
log-log plot of the linear elastic fracture mechanics data.

The reader may question the necessity of employing a complex AJ
criterion which involves both load and deflection, and may ask if it is not
sufficient to specify only the load and crack length as in linear elastic
fracture mechanics. To illustrate that gross plastic deformation invali-
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dates linear elastic fracture mechanics, stress intensity ranges were
determined (ASTM Method E 399-73) from the crack length and effective
load range, AP,, defined in Fig.10. These effective stress intensity ranges,
AK ., were plotted against the measured crack growth rates. The correla-
tion was much inferior to the correlation between da/dN and AJ in Fig. 12.
There were separate trends for each specimen, and the crack growth rates
tended to become independent of AK,. The failure of AK, to correlate with
the crack growth data is due to the fact that this parameter does not
account for the cyclic plasticity effects which are important in these tests.

The data for tests under load control to a sloping line, which are shown
in Fig. 13, exhibit significant deviation from the straight line behavior
observed in other tests. Above a certain AJ value, crack growth rates
increase without further increase in AJ. This behavior is related to the
unstable increase in crack growth rate observed at the end of linear elastic
crack growth tests on ductile materials. The only significant difference is
that in this case the maximum load is gradually decreased as the mean
deflection increases, as illustrated in Fig. 9. This control condition causes
the behavior to be more stable in that the increase with cycles of the crack
growth rate and mean deflection is gradual, rather than very rapid as
under simple load control.

Thus, it appears that incremental plastic deflection has an important
effect on the crack growth rate that is not accounted for by either linear
elastic fracture mechanics or by the definition of AJ employed. Note that
AJ values determined as described earlier differ significantly from
(AK)?/E only if there is significant cyclic plasticity. As the cyclic plasticity
was small during the tests under load control to a sloping line (see Fig. 9),
the AJ criterion is not expected to be any more successful than linear
elastic fracture mechanics in explaining the behavior. The effect of
incremental plasticity should be viewed as an effect of mean J, analogous
to the effect of mean K in linear elastic fracture mechanics. The crack
growth behavior shown in Fig. 13, therefore, is interpreted as being
caused by an increasing mean J, while AJ remains approximately con-
stant. It is not surprising that, just as in linear elastic fracture mechanics,
the range and the mean value of the controlling parameter must be known
to predict the fatigue crack growth rate.

It may be desirable in the future to investigate incremental plasticity
(mean J) effects in detail. An important variable will probably be the crack
closure level. Because of the increased mean deflection during a test
similar to Figs. 9 and 15, considerable compressive load would have to be
applied to cause the crack to close. Thus, one might postulate that the
crack tip radius at zero load is significant and that more crack growth will
occur during each cycle than if the crack were closed, that is, had a small
tip radius, at zero load.

It is important to note that geometric independence of cyclic J has not
been demonstrated. The highest priority for future experimental work is,
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therefore, to conduct similar tests on another specimen geometry, such as
a center cracked panel. Also, it should be shown that da/dN versus AK
data for large linear elastic specimens correlate with da/dN versus AJ data
from smaller specimen gross plasticity tests. Growth rates for small
surface cracks in plastically deformed regions, both in uniform strain
fields and near notches, should also be investigated. Hopefully, it will be
eventually possible to develop a general criterion so that fatigue crack
growth rate data for various geometries, specimen sizes, and conditions of
plasticity will all fall along a single line on a plot similar to Fig. 14.
Appropriate analytical work will of course also be necessary if significant
advances are to be made toward developing a general elastic-plastic
criterion for fatigue crack growth.

Conclusions

The results of this preliminary experimental study indicate that the
J-integral concept may be applicable to fatigue problems where cyclic
plasticity precludes the use of linear elastic fracture mechanics. If the
trends observed for 1-in.-thick compact tension specimens of A533B steel
are confirmed for other geometries, specimen sizes, and materials, it will
become possible to handle practical elastic-plastic fatigue problems in a
manner analogous to the linear elastic fracture mechanics approach to
fatigue. Regardless of the future success or failure of the J-integral as a
criterion for fatigue crack growth, the need will remain for a general
elastic-plastic criterion which characterizes the crack tip strain field for
cyclic loading.

Some conclusions related to the specific test results obtained for
compact tension specimens of AS533B steel subjected to gross cyclic
plasticity are as follows:

1. Crack growth rates between 4 X 1075 and 1072 in./cycle show
excellent correlation with values of AJ determined using the Rice et al
approximation for bending type fracture specimens.

2. The high crack growth rate da/dN versus AJ data are in agreement
with the straight line extrapolation on a log-log plot of the linear elastic
fracture mechanics data.

3. Macroscopic crack closure during gross plasticity is an important
effect and significantly influences the fatigue crack growth rate.

4. Growth rates during incremental plastic deflection cannot be pre-
dicted by a AJ criterion alone; a more general criterion that includes the
effect of the mean J level is needed.

Recommendations

The encouraging test results obtained indicate that experimental work
on the application of the J-integral concept to fatigue under elastic-plastic
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conditions should definitely continue. Test results for other specimen
geometries, specimen sizes, and materials are needed. An important goal
of further research should be to develop methods for handling the difficult
problem of small surface cracks growing in regions of plasticity associated
with notches.

The experimental work should be accompanied by, and should interact
with, additional analytical work. Convenient methods of estimating J
values for various geometries are needed, as are analytical results relating
specifically to cyclic loading. In the event that future analytical or
experimental results show that J is not a valid criterion for elastic-plastic
fatigue crack growth, work of this general nature should nevertheless
continue, and a more suitable criterion should be sought.

References

{11 Irwin, G. R., Journal of Applied Mechanics, Sept. 1957, pp. 361-364.

{2] Paris, P. C. and Sih, G. C. in Fracture Toughness Testing and Its Applications, ASTM
STP 381, American Society for Testing and Materials, 1965, pp. 30-83.

[3] Brown, W. F., Jr., and Srawley, J. E., Plane Strain Crack Toughness Testing of High
Strength Metallic Materials, ASTM STP 410, American Society for Testing and
Materials, 1966.

4] Paris, P. C. in Fatigue—An Interdisciplinary Approach, Syracuse University Press,
Syracuse, N.Y., 1964, pp. 107-127.

[5] Wetzel, R. M., ‘A Method of Fatigue Damage Analysis,”” Ph.D. thesis, Department of
Civil Engineering, University of Waterloo, Ontario, Canada, 1971. See also Technical
Report No. SR 71-107, Scientific Research Staff, Ford Motor Co., Dearborn, Mich.
Aug. 1971.

[6] Stadnick, S. J. and Morrow, J. in Testing for Prediction of Material Performance in
Structures and Components, ASTM STP 515, American Society for Testing and
Materials, 1972, pp. 229-252.

{71 Mowbray, D. F. and McConnelee, J. E. in Cyclic Stress-Strain Behavior—Analysis,
Experimentation, and Failure Prediction, ASTM STP 519, American Society for
Testing and Materials, 1973, pp. 151-169.

[8] Landgraf, R. W. and LaPointe, N. R., “Cyclic Stress-Strain Concepts Applied to
Component Fatigue Life Prediction,”” Paper No. 740280, Society of Automotive
Engineers, Automotive Engineering Congress, Detroit, Mich., Feb. 1974,

[9] Begley, J. A., Landes, J. D., and Wilson, W. K. in Fracture Analysis, Proceedings of
the 1973 National Symposium of Fracture Mechanics, Part II, ASTM STP 560,
American Society for Testing and Materials, 1974.

[10] Rice, J. R. in Fracture—An Advanced Treatise, Vol. II, Mathematical Fundamentals
Academic Press, New York, 1968, pp. 191-311.

[11] Begley, J. A. and Landes, J. D. in Fracture Toughness, Proceedings of the 1971
National Symposium on Fracture Mechanics, Part II, ASTM STP 514, American
Society for Testing and Materials, 1972, pp. 1-20.

[12] Landes, J. D. and Begley, J. A. in Fracture Toughness, Proceedings of the 1971
National Symposium on Fracture Mechanics, Part II, ASTM STP 514, American
Society for Testing and Materials, 1972, pp. 24-39

[13] Irwin, G. R. and Kies, J. A., Welding Journal, American Welding Society, Vol. 33, No.
4, April 1954, pp. 193s-198s.

[14] Landes, J. D. and Begley, J. A. in Fracture Analysis, Proceedings of the 1973 National
Symposium on Fracture Mechanics, Part II, ASTM STP 560, American Society for
Testing and Materials, 1974.

[15] Rice, J. R., Paris, P. C., and Merkle, J. G. in Progress in Flaw Growth and Fracture
Toughness Testing, ASTM STP 536, American Society for Testing and Materials, 1973,
pp. 231-245.



DOWLING AND BEGLEY ON FATIGUE CRACK GROWTH 103

[16] Barsom, J. M., Journal of Engineering for Industry, American Society of Mechanical
Engineers, Nov. 1971, pp. 1190-1196.

[17]Buccti, R. J. et al in Stress Analysis and Growth of Cracks, Proceedings of the 1971
National Symposium on Fracture Mechanics, Part I, ASTM STP 513, American
Society for Testing and Materials, 1972, pp. 125-140.

[18] Paris, P. C. et al in Stress Analysis and Growth of Cracks, Proceedings of the 1971
National Symposium on Fracture Mechanics, Part I, ASTM STP 513, American
Society for Testing and Materials, 1972, pp. 141-176.

[19] Carmen, C. M. and Katlin, J. M., Journal of Basic Engineering, American Society of
Mechanical Engineers, 1966, pp. 792-800.

[20] Imhof, E. J. and Barsom, J. M. in Progress in Flaw Growth and Fracture Toughness
Testing, ASTM STP 536, American Society for Testing and Materials, 1973, pp. 182-
205.

[21] Irwin, G. R. in Mechanical and Metallurgical Behavior of Sheet Metals, Proceedings of
the 7th Sagamore Ordnance Materials Research Conference, Part 4, 1960, pp. 63-71.

[22] McEvily, A. J. in Proceedings of the Air Force Conference on Fatigue and Fracture of
Aircraft Structures and Materials, Miami, 15-18 Dec. 1969, pp. 451-458.

[23] Solomon, H. D., Journal of Materials, American Society for Testing and Materials,
Vol. 7, No. 3, Sept. 1972, pp. 299-306.

[24] Gowda, C. V. B. and Topper, T. H. in Cyclic Stress-Strain Behavior—Analysis,
Experimentation, and Failure Prediction, ASTM STP 519, American Society for
Testing and Materials, 1973, pp. 170-184.

[25] Bell, W. J. and Benham, P. P. in Symposium on Fatigue Tests of Aircraft Structures:
Low-Cycle, Full-Scale, and Helicopters, ASTM STP 338, American Society for Testing
and Materials, 1962, pp. 25-46.

[26] Coffin, L. F., Jr., Journal of Basic Engineering, American Society of Mechanical
Engineers, Dec. 1964, pp. 673-680.

[27] Morrow, J. and Sinclair, G. M. in Symposium on Basic Mechanisms of Fatigue, ASTM
STP 237, American Society for Testing and Materials, 1958, pp. 83-103.

[28] Hudson, C. M. and Hardrath, H. F., ‘‘Effects of Changing Stress Amplitude on the
Rate of Fatigue Crack Propagation in Two Aluminum Alloys,”” NASA TN D-960,
National Aeronautics and Space Administration, Washington, D.C., Sept. 1961.

[29]1 Dowling, N. E. and Begley, J. A., ‘‘Fatigue Crack Growth During Gross Plasticity and
the J-Integral,”’ Scientific Paper 74-1E7-CREEP-P1, Westinghouse Research
Laboratories, Pittsburgh, Pa., Aug. 1974.

[30] Richards, F. D. and Wetzel, R. M., ‘“Mechanical Testing of Materials Using an Analog
Computer,”” Technical Report No. SR 70-126, Scientific Research Staff, Ford Motor
Co., Dearborn, Mich., Sept. 1970. See also Materials Research and Standards,
American Society for Testing and Materials, Vol. 11, No. 2, Feb. 1971, p. 19.

[31] Schmidt, R. A. and Paris, P. C. in Progress in Flaw Growth and Fracture Toughness
Testing, ASTM STP 536, American Society for Testing and Materials, 1973, pp. 79-94.

[32] Shih, T. T. and Wei, R. P., ‘A Study of Crack Closure in Fatigue,”” Report No. IFSM
72-25, Institute of Fracture and Solid Mechanics, Lehigh University, Bethlehem, Pa.,
Nov. 1972.



H. L. Oh!

A Simple Method for Measuring Tearing
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ABSTRACT: A convenient test configuration for measuring critical tearing energy
of rubber is to pull thin nicked strips of the rubber in extension. In the past,
methods of measurements employed for this configuration are based on concepts
which obtain ‘‘tearing energy’’ through differentiation with respect to the crack
length. As a consequence, measurements have to be made on several identical
specimens having different crack lengths. This paper describes a simple method
based on the J-integral which requires no differentiation and calculates the tearing
energy from measurements made on one specimen only. This allows an efficient
use of test material and reduces the complexity of critical tearing energy measure-
ment.

Implementation of the J-integral method is illustrated on the uniaxial stretching
of a nicked rubber strip. The accuracy of results obtained is found to be comparable
to that obtained by existing methods.

KEY WORDS: crack propagation, tear strength, fractures (materials), elastomers,
mechanical properties, deformation

This paper describes a simple method for measuring the so-called ‘‘tear-
ing energy’’ of nicked rubber strips in extension. As defined by Rivlin and
Thomas [/],? the ‘‘tearing energy’’ T is the rate of decrease of elastically
stored energy in a cracked body per unit virtual increment of the crack
surface area. When T exceeds a critical value characteristic of the
rubber, crack growth occurs. This critical tearing energy concept was first
proposed by Rivlin and Thomas, and it has since been verified in a
number of experiments involving fracture and fatigue of rubber
specimens [2,3]. To implement this concept in structural design, one has
to measure first the critical tearing energy of the material. A convenient

! Associate senior research engineer, Mathematics Department, Research Laboratories,
General Motors Technical Center, General Motors Corporation, Warren, Mich. 48090.
2 The italic numbers in brackets refer to the list of references appended to this paper.
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test configuration for such measurement is to pull thin nicked strips of
rubber in extension. Presently there are two methods for measuring the
tearing energy associated with this test configuration. This paper de-
scribes a third method based on the J-integral. It will be seen that the
J-integral method is the simplest of the three. Using the proposed method,
we measure T for the specimen shown in Fig. 1 and compare the results
with those obtained by the other two methods.

Existing Methods for Measuring Tearing Energy

For a rubber strip of unit thickness containing a crack, the tearing
energy is defined elsewhere [/] by

T <avc) M
de /¢
where
¢ = length of the crack measured in the undeformed geometry,
V. = elastically stored energy at crack length ¢, and
¢ = vertical advance 9, of the crack which occurs while external

boundaries are held fixed.
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FIG. 1—Simple extension specimen with a cut in one edge. Dotted line shows the
integration path chosen to evaluate the J-integral.
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One method of measuring 7, known as the total energy drop method,
implements directly the definition of the tearing energy, Eq 1. It consists
of first obtaining the load-displacement curves for a number of identical
specimens having different crack length, Fig. 24. This is known as
compliance calibration. Next, at a given displacement ¢, areas under the
load-displacement curves are obtained which give the stored strain energy
Vo= f,fF “dx. These values of (V)¢ are then plotted against corre-
sponding crack length ¢ and curve fitted to arrive at a (V)¢ versus ¢
curve, Fig. 2 b. The negative of the slope of tangent to the curve is by
Eq 1 the tearing energy at the given displacement¢ and crack length c.
The tearing energy at other displacements may be similarly obtained.
Since it is a direct implementation of the definition, the total energy drop
method is applicable in general to any test configuration employed to
measure the tearing energy of a cracked body. Its shortcomings are the
need to compliance calibrate a large number of specimens and the
inherent inaccuracy involved in cure fitting and in performing graphical
differentiation of the fitted curve.

For the simple extension of a strip with an edge cut as shown in Fig. 1,
compliance calibration may be avoided by postulating through dimen-
sional arguments that the total energy drop in the specimen (V, — V),
due to the presence of the crack is

I

(Vo — Vo) = k(\)c2Wh, ¢/b < 0.20 2)

@)

e

Vo),

(c)

(b) c ‘

FIG. 2—(a) Load-displacement curves of cracked specimens having various crack
lengths, (b) stored strain energy versus crack length for a given displacement |, and (c)
notation used in Figs. 2 aand b.
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where
h and b = undeformed thickness and width of the specimen,
W = stored strain energy density in the specimen far removed
from the crack,
V,and V. = total energy in the specimen with and without the crack,
and
k(\) = proportionality factor varying mainly with the stretch
ratio A but otherwise independent of the material and the
crack length.

Differentiating Eq 2 with respect to the crack length ¢ gives the tearing
energy

V.
T= - ( Py > . 2k(N)c Wh, ¢/b < 0.20 €))

As ¢, h, and W are measured easily, T may be determined from Eq 3 once
k() is evaluated. This is accomplished by measuring the total energy drop
(V, — V) and using Eq 2 to evaluate k(\). Following this line of argument
suggested by Rivlin and Thomas, Greensmith [4] devised an ingenious
experiment to measure the total energy drop. A long strip of rubber is
stretched with a force Fto a stretch ratio A. The strain energy density in
the specimen in this case is W = fl"(F,,/bh)d)\. The specimen is then
clamped at its midsection to make two similar specimens in series. Upon
introducing a crack in one of the two specimens, Greensmith measured
the additional force (F, — F.) necessary to return the clamp the distance [
to its original central position and obtained the total energy drop
(Vo — Vo) =ff, (F, — F.}dx. His results obtained for four natural
rubber vulcanizates of widely varying mechanical properties confirm the
independence of the total energy drop on W according to Eq 2 and indi-
cate that k(A) is indeed independent of crack length and vulcanizate used.
Figure 3 shows the variation of the factor k(A) with the stretch ratio A as
determined by Greensmith. This figure, in conjunction with Eq 3, has
since been used to evaluate the tearing energy associated with the simple
extension specimen, Fig. 1, which has been employed extensively in
studies of crack-growth behavior of rubber. Greensmith’s approach is
essentially a total energy drop approach except that by assuming the
total energy drop to take the form of Eq 2, the need for compliance
calibration and graphical differentiation are avoided.

The second method is the crack-surface-displacement method de-
veloped by Lake [5] and Lindley [6]. It focuses attention on deforma-
tions occurring near the vicinity of the crack tip and evaluates the energy
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FIG. 3—Values of the proportionality factor k(\) plotted against stretch ratio \ as
determined by various methods.

required to close the crack. By equating this energy with the total energy
drop due to the opening of the crack, tearing energy may be estimated.
Thus, let dx! be the undeformed differential length along the crack plane,
o(x!) the stress normal to the plane before the crack is made, and 8(x!) the
separation of the mating surfaces of the crack after it opens. Assuming a
linear relationship between force and deformation, the energy per unit
thickness required to close the crack is 1/ Zf(f Sodx!. Equating this energy
with that lost due to the opening of the crack, we have

(Vo — Vo = 1/2f, adx*

Differentiating the preceding equation with respect to the crack length ¢
gives the tearing energy

T=- (aa‘;c>€= 1/2%0 (fZaadx,> @)

Experimental implementation consists of first measuring along x! the
strain (to compute stress o) before the crack is made and the separation &
after the crack opens. The value of the integral P/Zf oc Sodx! is then ob-
tained by graphical integration. This is taken to be the total energy
drop (V,— V. for a given crack length c¢. Other values of
(V, — V,) are obtained for identical specimens with different crack
length and a (V,— V. versus ¢ curve is drawn. Graphical differ-
entiation of the fitted curve then gives, by Eq 4, the tearing energy.
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Lindley used this method to measure the tearing energy associated with
the simple extension specimen. His results, presented in the form of Eq 3
for comparison purposes, are shown in Fig. 3. They are in agreement with
Greensmith’s results.

Because the tearing process is highly dependent on the deformations
occurring in the vicinity of the crack tip, the crack-surface-displacement
method is perhaps more sensitive than the total energy drop approach
which measures 7 from far field deformations. However, it probably
entails a larger experimental error because of the inaccuracy involved in
measuring deformations occurring in a small region. The J-integral
method to be described in the next section retains the sensitivity to near
tip strain field but computes T based on far field deformations. But more
importantly, the J-integral method involves only one specimen. Whereas
in the two existing methods measurements have to be made on at least
two identical specimens with two crack lengths (Ac apart) so that tearing
energy T can be obtained by graphical differentiation, in the J-integral
method the only measurements needed are made with a single specimen.

J-Integral Method for Measuring Tearing Energy

Theoretical Basis

Consider, for unit thickness of material, the line integral

du
= 2 _
J fr [de I ds.] G)
where

I' = curve defined in the undeformed geometry which surrounds the
crack tip as shown in Fig. 4,
W = strain energy density,
t = nominal traction vector on I',
u = displacement vector, and
s = arc length along I'.

FIG. &—Notation used in defining the J-integral.
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Rice [7] showed that this integral assumes the same value for any choice
of curve I, that is, it is path independent, and that it may be interpreted as
the potential energy drop in the body per unit virtual extension of the
crack. Where the crack extends at fixed external boundaries, J is exactly
T as defined in Eq 1. Consequently, J may be used to measure 7.
Although Rice’s proofs were given in the context of infinitesimal deforma-
tions with nonlinear stress-strain relation, the same conclusions hold true
for finite deformations [8-10]. 3 We need only consider an integration path
close to the crack tip to realize that J, hence the method based on J, is
intimately related to deformations there. However, the property of path
independence allows us to choose any convenient path far from the crack
tip to evaluate J.

To implement Eq 5, deformations are first measured along the chosen
path. One technique is to print a circular grid onto the specimen as shown
in Fig. 5. As the specimen is loaded, circles of diameter d deform into
ellipses of diameter d ,,, and d ,;,. By measuring these diameters, princi-
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FIG. 5—Circular grid printed on a nickel rubber strip.

3 References 9 and 10 were brought to author’s attention by the reviewers.
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pal stretch ratios in the plane of the specimen may be computed:
A1 = ([dmar)ld and Ay, = (din)/d.

This technique is suitable for rubber since large deformations are
involved so that accurate measurements of the diameters can be obtained.
Once deformations are known, the strain energy density W and compo-
nents of the traction vector 7 along the chosen path are calculated from a
known dependence of W on the stretch ratios. J is then evaluated
according to Eq 5. Although in principle any path may be used, it is
convenient to choose one which minimizes measurements and calcula-
tions. For example, taking a path parallel to the x* axis renders the first
term in the right hand side of Eq 5 zero, while choosing one along a stress
free boundary (¢ = 0) or along a clamped boundary parallel to the x!
axis (ou/ox' = 0) renders the second term zero. These properties are
made use of in the example illustrated in the next section.

Experimental Implementation on the Simple Extension Specimen

Since the tearing energy of the simple extension specimen has been
measured already by the other two methods, Fig. 3, we choose to
illustrate the experimental implemtation of the J-integral method on this
same specimen so that comparison between methods can be made.

Two specimens of width = 2.54 cm and length = 15.24 cm are cut from
one larger rubber sheet of thickness = 2.03 mm. The material is as
received natural rubber catalogue number DR-21-61 vulcanizing recipe
and curing of which is available from Detroit Rubber Company, Detroit,
Michigan. Circular grids of density 62 circles/cm? are then printed onto
the specimens. One specimen is used to obtain the stress-stretch ratio
measurements in simple tension. From these measurements, the depen-
dence of strain energy density W on the stretch ratio is calculated. The
other specimen serves as the test specimen. A slit of length = 0.50 cm is
cut with a wetted razor blade at one edge of the specimen and at its
midsection.

Loading of both specimens consists of clamping the two edges of the
specimen with grips and pulling these grips in an Instron universal testing
machine at a constant rate of separation of 1.0 cm/min. Stretching force
is recorded and a photograph taken of the circular grid before pulling the
grips apart and at various predetermined grips separations. Photographic
negatives of the circular grid are then projected on a large screen and
diameters of the ellipses (circles in the undeformed state) measured off the
screen. From these measurements, principal stretch ratios are calculated
using formulae given earlier. For the simple tension test, stress o is taken
to be the stretching force divided by the undeformed cross-sectional area
of the specimen.

Figure 6 shows the stress o versus stretch ratio A in simple tension.
Here A is the ratio in which the specimen is stretched in the direction of the
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FIG. 6—Variation with stretch ratio \ of tensile stress o and strain energy density W in
simple tension.

tensile force. Assuming the material to be elastic, the strain energy
density is simply W(\) = f f od\. Thus, from the o versus A curve, W as a
function of A may be obtained by evaluating the area under the curve from
unity to a given stretch ratio . The W versus A curve so obtained is shown
also in Fig. 6. This curve will be useful in subsequent data reduction.

To evaluate J, we choose the path shown in Fig. 1 where by symmetry
only half the specimen need be considered. The contributions to the
J-integral are those coming from edges AB and CD

J=2 [fABdez + /CDdez] =2 [[ABdez - /chdxz] ()]

Note that along the two edges, the rubber is under simple tension so that
only edge strain need be calculated. Typical strain distributions measured
along the two edges are shown in Fig. 7. It is evident that along edge AB
deformation is one of uniform extension, while along edge DC strain is
zero at the crack plane but within a short distance rises to a level identical
to that in edge AB. Figure 8 shows the strain distributions measured along
edge DC at eight levels of stretching. With the edge strain distribution
known, the corresponding strain energy density distribution may be
obtained using the W versus A curve shown in Fig. 6. For example, Fig. 9
shows the strain energy density distributions corresponding to strain
distributions shown in Fig. 7. Implementing Eq 6, the value of the
J-integral, hence the tearing energy, is twice the shaded area shown.

The J-integral values of the specimen at eight levels of stretching have
been obtained. The results presented in the form of Eq 3 are shown in Fig.
3. They are in agreement with results obtained by other methods.
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FIG. 7—Strain distribution along the two edges of a nicked rubber strip extended to a
stretch ratio of 1.52.

Concluding Remarks

A method is proposed for measuring tearing energy in nicked rubber
strips based on the Rice J-integral. When implemented on the simple ex-
tension specimen, results indicate that the method can measure tearing
energy in rubber with an accuracy comparable to that obtained by other
methods. It is by far the simplest known method and eliminates the
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FIG. 8—Strain distribution along the nicked edge of a nicked rubber strip at eight levels
of stretching.
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FIG. 9—Strain energy density distribution along the two edges of a nicked rubber strip
extended to a stretch ratio of 1.52.

complexity of compliance calibration and graphical differentiation asso-
ciated with existing methods. Moreover, it requires only one specimen.

In principle, the J-integral method may be used to measure tearing
energy of cracked rubber components undergoing two dimensional de-
formations.
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ABSTRACT: Three independent methods for measuring plane stress fracture
resistance in the large-scale plastic yielding regime were tested and were found to
give equivalent results. The three methods were the J-integral technique, a method
based on the increase in compliance that accompanies the development of a plastic
zone, and a method based on the direct measurement of the plastic work that must
be done to cause fracture.
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Nomenclature

J
J crit
g
g crit
g
F
A

v
U

J-integral value or pseudo strain energy release rate, J-m—2
Value of J at fracture

Strain energy release rate, J-m~2

Value of G at fracture

Remotely applied gross area stress, MPa

Applied force, N

Displacement measured remote from crack plane along the line of
loading, mm

Displacement measured at crack mouth, mm

Pseudo potential energy or work done in loading a specimen to a
given displacement, J
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a Crack length, mm; or half crack length of center cracked specimen
h Specimen thickness, mm
W Specimen width, mm
E Modulus of elasticity, MPa
oys Uniaxial tensile yield strength, MPa
& Displacement of crack surfaces, mm
8, Displacement of crack surfaces at crack tip
8 Value of §, at fracture
o(8) Flow strength of the metal within the plastic zone as a function
of the separation of imaginary crack surfaces extending through
the zone, Mpa
Y Same as o(8), but assumed independent of §
r, Irwin estimate of plastic zone size, mm
p Plastic zone length from Dugdale model, mm

In their original development of the J-integral approach to fracture
testing, Begley and Landes [/]® experimentally verified the significance of
critical J by showing that it was equal, within limits imposed by variation
in materials, to a critical ¢ found from large linear elastic specimens of
the same material. Such comparisons are not always possible, either
because of the absence of linear-elastic data or because extremely large
specimens would be required to develop the linear-elastic data. In the
case of very tough materials that fail in plane stress, for example, the
specimen size required for macroscopic linear-elastic behavior can be
immense, and such specimens are all but impossible to acquire or test. It
was considered desirable, therefore, to examine other independent ap-
proaches to nonlinear analysis of plane stress fracture so that the veracity
of critical J results might be tested experimentally in the absence of
linear-elastic data. The two new approaches to nonlinear fracture analysis
reported in the present paper are compliance technique and a plastic work
method. The results from these are described, and they are compared to
the results from critical J tests.

Experimental Details

Material

Thin, cross-rolled-ingot sheet beryllium was chosen for the present
study because this material can exhibit large nonlinear deflections in the
absence of stable crack growth. Thus, the complexities that attend the
presence of stable crack growth were avoided. A rather thin sheet (0.80
mm thick) was chosen for the study because it was believed that fracture

3 The italic numbers in brackets refer to the list of references appended to this paper.
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would occur in plane stress in this thin section. The beryllium sheet was
annealed at 780°C for 1 h after warm cross rolling. This resulted in a fully
recrystallized microstructure and an intercept grain size of 49 um. The
material was found to have a high degree of in-plane isotropy as indicated
by the basal plane pole figure given in the Appendix. The chemical
composition of the sheet is also recorded in the Appendix.

The uniaxial, engineering tensile properties were determined; the
averaged results from two specimens were 151 MPa yield strength, 302
MPa ultimate stress, and 7.8 percent elongation.

Fracture Resistance Test Procedures

Specimen Types—Single edge notched (SEN) specimens of two differ-
ent sizes were used in the present study. The SEN specimens were 31.75
and 95.25 mm wide. Other dimensions were in accord with suggested
geometry [2]. Machined edge slots in the specimens were extended, using
electrical discharge machining (EDM), by a minimum of 1.3 mm to
produce a relatively small slot root diameter (~0.12 mm). Fatigue cracks
were extended from the EDM slots using procedures described next. Four
small SEN specimens were prepared with edge slots of different lengths
(11.43,12.70, 13.97, and 15.87 mm-—measured to the end of the EDM slot)
to facilitate J-integral testing. The edge notch length to the end of the
EDM slot in the large SEN specimen was 34.29 mm.

Two double-edge notched (DEN) specimens were also tested. These
were prepared by using EDM to introduce a slot opposite the edge notch
in the small SEN-type specimen just described. The lengths of the two
edge slots were adjusted so that a net ligament, 4.57 mm wide, remained
centered on the specimen axis. The reasons for this particular specimen
design are discussed later in the section on ‘‘Results and Discussion.”

Fatigue Precracking—All fracture specimens were fatigue precracked
using a 200-kN capacity electro-hydraulic machine in tension-tension
cycling to develop a sharp crack front. In the case of the SEN specimens
cycling was carried out at a calculated stress intensity range of 2 to 15
MPa-m'2. The relation between stress intensity and specimen geometry
given by the calibration equation on page 12 in Ref 3 was used for the
calculation. The fatigue cycling caused between 0.13 and 0.25 mm of
fatigue crack growth in fewer than 10° cycles. The unusual design of the
DEN specimens, however, made it necessary to fatigue precrack above
the general yield stress. Reasons for this are discussed further in the
“‘Results and Discussion’’ section.

Crack Mouth Displacement—In all cases except the J-integral tests, the
displacement in the fracture test was measured at the crack mouth. The
crack mouth displacement gage that was used is described in Ref 3 on
pages 35-37. Briefly, the displacement is measured by following the
output of a foil resistance strain gage bridge mounted on the arms of the
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displacement gage. The output of the gage is calibrated in a fixture
incorporating a barrel micrometer. The sensitivity of the method is
somewhat better than 0.0025 mm.

Load Point Displacement—In the case of the J-integral tests, it was
necessary to measure the displacement along the line of loading in order
to obtain a well-defined energy input to the specimen. To accomplish this
the beam gage method illustrated in Fig. 1 was used. Figure 1 shows the
gage sprung between two stops cemented onto the specimen. The gage
parameters were designed to maximize linearity and sensitivity over the
range of 0.25 mm displacement. The displacement is measured by
following the output of foil resistance strain gages bonded to the midsec-
tion of the beam gage. The length over which the displacements were
measured was chosen equal to twice the specimen width (63.5 mm)
because the work by Srawley et al [¢] indicated that the rate of change of
compliance with crack length is independent of gage length for gage
lengths of 2x width and greater (for fully elastic SEN specimens). Two
foil resistance gages were mounted on each side of the gage to form a full
bridge. The outputs of two such gages on each side of the specimen were
averaged to obtain the load point displacement. The sensitivity of the
method is better than 0.002 mm.

FIG. |—Photographs of the load point displacement gages in place on the small SEN
specimen.
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Fracture Test Procedures—All of the fracture tests were carried out at
a constant cross-head velocity of 2 X 107® m-s~'. The J-integral tests
were carried out on a screw driven, 600-kN-capacity machine, and the
other tests were carried out on a 200-kN electrohydraulic machine. Force
and displacement were recorded over the course of the test.

In preliminary studies it was established that no detectable stable
growth occurred prior to fast fracture in the present ingot sheet in the
780°C condition of heat treatment. This was concluded following micros-
copic examination of the crack tip during the course of the test. The
absence of stable growth was confirmed by a later test in which the output
of a strain gage mounted at the tip of the precrack indicated a gradual
increase in strain as force increased with no indication of cracking prior to
unstable fracture. It was not necessary, therefore, to develop a sophisti-
cated technique to monitor stable crack extension. Visual observation
was used during each test, however, to verify that no observable stable
growth had occurred.

Results and Discussion

Nonlinear Methods of Fracture Analysis

J-Integral Method—The approach to the J-integral tests taken in the
present study followed that first described by Begley and Landes [/]. The
force-displacement behavior for four small SEN specimens, each contain-
ing a different crack length, is given in Fig. 2. The J-integral values
corresponding to the three shortest crack lengths were determined for a
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FIG. 2—Force-versus-load point displacement results for the J-integral specimens.
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number of different displacements. To do this, the area between adjacent
curves was measured with a planimeter to obtain a value for the pseudo
energy release, dU, for various displacements. This energy value was
then divided by the difference in crack length, da, and thickness to obtain
a value for J (a pseudo energy release rate) at each displacement. The
resulting J-versus-displacement relationships for three different crack
lengths are given in Fig. 3. The critical J value is obtained at the point of
fracture, and the values corresponding to three crack lengths are indicated
in Fig. 3 (6160, 5510, and 5420 J-m™~%). These values are considered to be
within normally expected material variation.

Begley and Landes found that the value of J.; for the steel they
investigated was the same within material variation as a linear elastic
value of G . determined for the same steel by a different investigator
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FIG. 3—J-versus-load point displacement for the small SEN specimens.
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using larger specimens. Begley and Landes thus concluded that the J
approach to nonlinear analysis yielded a result equivalent to a linear-
elastic test. The mathematical basis for the J test was fully discussed by
Begley and Landes and is not repeated here. Suffice it to say that J
describes the elastic-plastic stress field in the same way that G describes
the elastic field in a linear-elastic situation. The values of J;; and G .y, are
measures of the plastic work done at the crack tip up to the point of
fracture.

Begley and Landes pointed up that minimum specimen dimensions
(including remaining ligament an crack length) required for a valid J result
are determined by the dimensions over which the J parameter describes
the crack tip stress field, It is necessary, therefore, to verify the validity of
the J result by independent methods until sufficient experience or
theoretical understanding or both acquired to allow minimum specimen
size requirements to be defined. In the present instance, two other
independent, nonlinear methods were investigated for comparison with
the J o, results.

Compliance Method—Using the expression [5] that gives an approxi-
mate dimension of the plane-stress plastic zone,

_ EQ) ,
v = 27 \ oyl )

and assuming that Gy = Jeit, @ Zone of 11 mm is obtained at fracture for
the present material. Since this is a very large multiple of the thickness of
the present sheet (0.80 mm thick), it is reasonable to conclude that
fracture occurs in plane stress. This makes it possible to test a second
method of nonlinear analysis based in part on the Dugdale plane-stress
model.

Records of force versus crack-mouth displacement for both the large
and small SEN specimens are given in Fig. 4. A method of analyzing these
records is obtained if it is assumed that all of the deviation from linearity is
due to the development of a plastic zone ahead of the crack tip. This is
reasonable, since no stable crack growth was observed. If it is assumed
that the development of a plastic zone ahead of the crack tip has the same
effect on compliance as an amount of crack extension of equal length,
then the plastic zone length can be deduced from the apparent compliance
at the point of fracture and a prior correlation between compliance and
a/W. As noted in Fig. 4, the apparent compliance is deduced from the
reciprocal slope of the line drawn through the fracture point and the
origin. A value of compliance compensated for modulus (taken as
290 x 10° Nm~2for beryllium) and thickness (0.80 mm) is then computed
to give a value for Evh/F. A value for (a + pay,)W (Where p,,, is the
apparent length of the plastic zone) is found from the correlation between
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FIG. 4—Force-versus-crack mouth displacement behavior for SEN specimens of two sizes.

Evh/F and a/W given in Ref 3 on page 37. The apparent plastic zone
lengths at fracture found using this method are 10.7 mm for the large SEN
and 6.08 mm for the small SEN.

It is now possible to compute the fracture resistance if it is assumed that
the plastic zone lengths found above represent the critical zone lengths for
fracture independent of specimen configuration. This is done by first
computing the remote applied stress required to develop these same
plastic zone lengths in infinite center cracked (CC) specimens. The
Dugdale [6] elastic-plasctic model for plane stress is used for this purpose.
This model, originally developed by Dugdale, subsequently extended by
Goodier and Field [7], and used by Hahn and Rosenfield [8] to account
for the magnitude of plane stress fracture toughness, has proven very
useful in the interpretation of the origin of fracture resistance. The basis
for and the principle results of this model are described thoroughly in the
previous reference and are not repeated here. The appropriate equation
for calculation of the remote stress is, from the Dugdale model
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sec Y- 4 + 2
It is necessary to choose a value for the cohesive stress or the strength
of the plastic metal (Y) within the zone for this calculation. A value for Y
was taken as an average of the yield and ultimate strengths in uniaxial
tension (¥ = 230 MPa). The values of the remote stress so computed are
102 MPa (p = 10.07 mm, a = 34.7 mm), and 127 MPa (p = 6.08 mm,
a = 11.7 mm).Values for the fracture resistance can be found from these
stresses using the relationship between g, o, and a that is appropriate for
the infinite CC specimen in plane stress loading [9]

aglra
g= E (3)

Since p is a large fraction of a in both cases, a plastically corrected
value of @G is calculated using Eq 3, but with a replaced by a + p,
following a suggestion by McClintock and Irwin [5]. This results in
fracture resistance of 5050 J-m~2 for the 10.07-mm plastic zone and 3100
J-m~2 for the 6.08-mm plastic zone.

The plastic zone found from the test of the small SEN specimen is
significantly shorter than that found from the test of the larger SEN
specimen. It is this difference in plastic zone length which results in the
large difference in the computed values of fracture resistance. The
difference results from the assumption that the plastic zone has the same
effect on compliance as an equivalent amount of crack extension.
Actually, because a cohesive force acts on the elastic-plastic boundary,
the specimen will be less compliant than one with the plastic zone
replaced by an equivalent amount of crack extension. Thus, the actual
plastic zone length will be greater than that found using the method just
described. This effect is expected to be greater for smaller specimens in
which the zone will occupy a greater fraction of the net ligament width.
The fracture resistance computed using the plastic zone length deducted
from the compliance test of the large SEN is similar to the magnitude of
the J,,;; results given in the previous section. This suggests that the plastic
zone length deducted from the compliance data for the large SEN is about
right. A more exact deduction of the plastic zone length from the
compliance data would be possible by taking into acount the effects of the
cohesive stress on compliance. It was not within the scope of the present
work to investigate this refinement.

Plastic Work Method—The third method of fracture analysis is based
on Rice’s [10] proof that

Gem = / " o(5) db @)
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This proof applies strictly only to the Dugdale model, in which the plastic
zone is a constant height strip that extends directly ahead of the crack
tip [/0]. Assuming the fracture of the present sheet can be reasonably
approximated by such a strip model, it is apparent that the value of G . can
be obtained by measuring the area under the cohesive stress-crack opening
displacement directly at the crack mouth if the specimen could be made
small enough so that the elastic contribution to crack mouth displacement
was small compared to te contribution from crack tip plasticity. To
accomplish this it was appropriate to choose a specimen with a net ligament
smaller than the plastic zone size at fracture so that the zone would span the
entire ligament width. On this basis the net ligament width chosen was 4.57
mm, considerably smaller than the plastic zone length estimated previously
(11 mm). A double edge notched specimen was chosen so that 5(8) could be
simply obtained from the applied force and net section area. The principle
of the technique is illustrated in Fig. 5. It is evident that the crack tip
displacement, §,, indicated in Fig. 5 will be the same as the displacement of
the upper and lower boundaries of the plastic zone and that this
displacement, except for a small elastic contribution will be equal to the
displacement measured at the crack mouth. This is most easily visualized if
the plastic zone is imagined to be a hole in the specimen.

It was necessary to fatigue the two DEN specimens above the general
yield stress in order to develop a reasonable amount of fatigue crack
growth in a reasonable time. This results because very low stress
intensities are developed with this specimen design, even at net section
stresses approaching the ultimate tensile stress. The areas under the
curves in Fig. 6 were measured with a planimeter to obtain values of G .
for the two specimens. As indicated in Fig. 6, the values obtained were
5260 and 4660 J-m~2,

Crack mouth
displacement gage

Plastic 2one

Force‘

FIG. 5—Principle of plastic work method for measuring fracture resistance.
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FIG. 6—Net section stress-versus-displacement for double-edge notched specimens used
to determine fracture resistance by plastic work method.

Conclusions

The results from each of the methods of analysis are summarized in
Table 1. It is evident that all three methods of nonlinear analysis resulted
in values that can, in view of normally expected material variation, be
considered the same. This correspondence is taken as evidence that the
methods used resulted in correct values for the fracture resistance. It
might be expected that similar values would result from linear-elastic tests
of very large specimens of the same thickness. The demonstration of this
was, however, beyond the scope of the present program.
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TABLE |—Summary of fracture resistance values found
using three independent methods of nonlinear fracture

analysis.
Jcrit or gcrit-]m i

J-integral method 6160, 5510, 5420
Compliance method,

large SEN 5050
Compliance method,

small SEN 3100
Plastic work method 5260, 4660

@ This low result probably results from the assumption that
the plastic zone has the same effect on compliance as an
equivalentamount of crack extension as discussed in the text.

R indicates random
pole density

FIG. 7—Basal plane pole figure and chemical composition of beryllium.



TARDIFF ET AL ON PLANE STRESS FRACTURE 127

Philosophy in Metallurgical Engineering at the Michigan Technological
University, Houghton, Michigan.

APPENDIX

Basal Plane Pole Figure and the Chemical Composition of the Beryllium Sheet

The extent of in-plane isotropy of the annealed beryllium sheet is shown by the
basal plane pole in Fig. 7. The chemical content is:

C 0.069 Co <0.001
Fe 0.138 Cu 0.007
Al 0.072 Pb <0.001
Mg <0.001 Mn 0.013
Si 0.061 MO 0.003
Ca  <0.003 Ni 0.015

CR 0.012 BeO  <0.01
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ABSTRACT: A fracture mechanics approach was used to study high-temperature
creep crack propagation. Crack growth rates were correlated with the C*-
parameter which is an energy rate line integral. For materials conforming to a
nonlipear stress and strain rate relationship in the steady-state creep range,
specifically, those which can be properly idealized as purely viscous (negligible
elastic and transient creep effects), C* characterizes the crack tip stress and strain
rate fields.

Crack growth rate tests were conducted in the creep range on a discaloy
superalloy at 1200°F (920 K). Two specimen geometries were tested, a center
cracked panel and a compact geometry, to establish the geometry independence of
this approach. The results showed that crack growth rate correlated with the
C*-integral, while other parameters (K and nominal stress) failed to adequately
characterize crack growth rate.

KEY WORDS: crack propagation, stress analysis, mechanical properties, fracture
properties, crack initiation, creep rate

High-temperature creep behavior has been the subject of extensive
research. Much of the work has been focused on studying bulk material
behavior. Typical tests usually involve uniaxial tension specimens where
time to rupture or strain rate is measured as a function of stress under an
applied constant load. In some cases, the response of a structure to
multiaxially applied loading has been investigated. In this work on bulk
material behavior, the effect of macroscopic defects has been largely
ignored.

Under a uniform stress field in the creep range, defects often develop as
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voids and microcracks are formed in the material. These defects are
frequently fairly uniformly dispersed. An analysis which considers an
average strain response to an average applied stress is usually adequate to
describe this creep behavior. However, there is some creep behavior
where failure occurs by the initiation and propagation of a single macro-
scopic crack. In these cases, the material behavior might better be
characterized by an analysis which accounts for this single defect.

A fracture mechanics approach provides a technique where material
behavior is analyzed with the assumption of pre-existing cracklike de-
fects. Analysis of material fracture frequently considers the initiation and
propagation of cracks and the final failure as three individual steps. Each
step can be analyzed separately. In the case of linear elastic behavior, the
crack tip stress intensity factor, K, is a single parameter which can be
used to analyze each of these separate steps of fracture behavior. K is a
parameter which uniquely characterizes the crack tip stress and strain
field.

A fracture mechanics approach to creep cracking behavior must
identify a parameter which successfully characterizes the crack tip
behavior. A first approach to this analysis might be one to identify a
parameter which can correlate creep crack propagation rates. A study by
Siverns and Price on a 21/4Cr-1Mo steel has attempted to correlate creep
crack growth rate with K [7].2 The results shown in Fig. 1 demonstrate the

Stress Intensity Factor, K, ksi Vin
10 20 40 60 80

[T T T
107! /

10°F /
/
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FIG. 1—Crack growth rate versus stress intensity factor [1].

3 The italic numbers in brackets refer to the list of references appended to this paper.
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moderate success of this approach. Crack growth rates have been
measured over five orders of magnitude. However, the growth rate at a
given value of K exhibits a scatterband of about a factor of 30. The data
were collected on a single specimen geometry, a single edge cracked
tension specimen. To demonstrate that K is a successful correlating
parameter, data should be collected on different specimen geometries
where the crack tip parameter can be analyzed separately from the other
stress field parameters.

It could be postulated that high-temperature creep behavior is not a
typical linear elastic phenomena. Therefore, the linear elastic parameter,
K, may not be the appropriate parameter to correlate creep crack growth
rate behavior. A different parameter, C*, is proposed in this work as a
parameter which better describes the crack tip region. C* is an energy rate
line integral which uniquely characterizes the crack tip stress and strain
rate field for materials following a nonlinear steady-state creep law. C*
appears to be a more appropriate parameter to use for correlating creep
crack growth rates.

Crack growth rate studies were performed on a discaloy superalloy at
1200°F (920 K) to test the applicability of the C*-parameter to correlate
growth rates. Two different specimen geometries were used, a center
cracked panel (CCP) and a wedge opening loading specimen, 1T-CT. The
success of the C*-parameter in correlating creep crack growth rates was
compared with attempts to use linear elastic parameters, K, and nominal
stress, to correlate growth rate.

C*-Parameter

Definition of C*

The C*-parameter is an energy rate line integral. It is defined for the
two-dimensional case by

ci= fowidy-T (a"‘”)d 1
= Jr y i ox s (1)

where

W* = /()Emn Tij dé“ (2)

As illustrated in Fig. 2, T is the line contour taken from the lower crack
surface in a counterclockwise direction to the upper crack surface. W* is
the strain energy rate density associated with the point stress o;; and
strain rate é;. T, is the traction vector defined by the outward normal n;
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FIG. 2—Crack tip coordinate system and arbitrary line integral contour.

along I', T; = oun;. u; is the displacement vector and s is the arc length
along I'. C* was originally suggested by Rice [2] as a path independent
energy rate line integral. It is simply a modification of the J-integral
where strain and displacement, é; and #;, are replaced by their rates,
€;and u;.

Goldman and Hutchinson [3] discussed how this parameter could be
applied to secondary or steady-state creep. A creep law in the form

) ®

where €, @, oo, and n are constants, describes a nonlinear viscous
behavior in materials. This law can be generalized to multiaxial stress
state by

éij_ 3 Te " S_“
€& Za[‘TO] To @

where o, is an effective stress

U'ez': _z_susu (5)

and s, is the stress deviator. For a steady-state creep behavior conforming
to this law Goldman and Hutchinson [3] described how C* is a single
parameter characterizing the near-tip stress and strain-rate fields.

1

1
oy = 00 [C*la aq €01,] Ly (— m)&ij (©) ©

"

T, (07 o) @)

B

€ii= a €, [C*la o €l ]
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I, is a numerical constant determined by n and mode of crack opening. It
is tabulated for a given range of n elsewhere [4]. &; (©) and ¢;;(O) are
dimensionless functions which characterize the distribution of stress and
strain rate.

For linear elastic behavior, the parameter K uniquely characterizes the
near-tip stress and strain field. For crack propagation behavior under
linear elastic conditions,K correlates growth rate behavior. It is reason-
able to assume that for materials following a steady-state creep law (Eq. 4),
C* will correlate the growth rate behavior.

It is important to note that the application of the C*-parameter to
correlate creep crack growth rates assumes that the material is following a
steady-state creep law as expressed by Eq 4. This assumes that all
transient effects as well as elastic and short time plasticity effects can be
ignored. Since the C*-parameter is expressed as a path independent line
integral, this assumption must apply not only to the crack tip area but to
each point in the structure being analyzed.

The use of C* to characterize creep crack growth is limited to a specific
range of cracking behavior. However, this approach is not intended to be
universal in its application. Rather it is intended as a first step in an
approach to a complex problem.

Power Rate Interpretation

The relationship between the J-integral and the C*-parameter suggests a
method for measuring it experimentally. . is an energy integral, and C* is
an energy rate or power integral. An energy rate interpretation of J has
been discussed by Rice [5] and Begley and Landes (6]. J can be inter-
preted as the energy difference between two identically loaded bodies
having incrementally differing crack lengths.

J = v 8
T Tar ®)

where
U = potential energy and
¢ = crack length.

C* can be calculated in a similar manner using a power rate interpretation.
Using this approach C* is the power difference between two identically
loaded bodies having incrementally differing crack lengths.

Cc* = o 9)
o (
where U* is the power or energy rate defined for a load P and
displacement & by
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U* = fo Pdi (10)

This method for determining J is a pseudo-compliance measure of Jj6].
It is shown schematically in Fig. 3. The similar method for measuring C*
is shown in Fig. 4 for multiple specimens tested at differing displacement
rates. The data are collected as load and crack length versus time for a
constant displacement rate, Step 1. These data are then used to determine
load as a function of displacement rate for various crack lengths, Step 2,
and crack growth rate versus crack length, Step 5. The power or energy
rate input, U*, is measured as the area under the curves in Step 2. U* is
plotted versus crack length in Step 3. The slope of the curves in Step 3 is
then C* as defined in Eq 9. C* can be plotted as a function of displace-
ment rate, Step 4. Combining the curves from Steps 4 and 5 gives the
desired result of crack growth rate versus C*, Step 6.

This method for analyzing the data is not simple. However, C* appears
to be an appropriate parameter for correlating crack growth rate data.
This data reduction method can be used to demonstrate the feasibility of
using the C*-parameter. In future work, an easier method for measuring
C* can be studied.

Experimental Technique

The material used in this study was a Fe-Ni-Cr superalloy (Heat No.
4574-7) generically labeled discaloy. The details of the material chemistry
and mechanical properties are given in Table 1.

Two specimen types were tested, a center cracked panel, CCP, 0.50 in.

Load

Load

Load

Energy

¥

FIG. 3—Energy rate determination of J.
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FIG. 4—Schematic showing six steps involved in C* data reduction.

(13 mm) thick, Figs. 5a, and a 1T-CT compact specimen 1 in. (25 mm)
thick, Fig. 5b.

Attempts were first made to conduct the testing under constant loading
conditions to conform with common practice in creep testing. However,
under these conditions, the significant portion of the crack growth
occusred during a small percent of the total test time. Adequate crack
growth data could not be gathered with this test technique. Therefore,
tests were conducted using a constant displacement rate. The tests were
conducted on a closed loop electrohydraulic test machine where any
desired transducer could be used to control loading. For the CCP
specimens, the controlling transducer was a linear variable differential
transducer (LVDT) placed across a 5 in. gage length on the specimen,
Fig. 6. For the 1T-CT specimens, the controlling transducer was an
LVDT placed in the load line. Controlling displacement rate meant that
one of the important variables in the data reduction scheme could be held
constant. The variables monitored during the test were load and crack
length. Crack length was monitored using an electrical potential system,
Fig. 6. This could monitor crack length to within an accuracy of +0.010
in. (0.25 mm). The input current for this system was 10 A producing a
voltage drop in the range of 300 to 600 V. This signal was then amplified
and continuously recorded.

The test temperature was 1200°F (920 K) for all specimens. This is
about 100 K above half the absolute melting temperature for the discaloy
material putting the tests well into the creep range. The temperature
control was good for the CCP specimens =2°F. However, for the 1T-CT
specimens, temperature control was not as good. Average temperatures
for these specimens were estimated to be 10 to 15°F above 1200°F.
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FIG. 5a—CCP specimen.
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FIG. 6—Schematic showing displacement controlied loading and electrical potential
crack monitoring system on a CCP specimen.

The initial tests were all conducted at a single displacement rate on a
given specimen for the entire test. Displacement rates ranged from
0.00013 in./h (0.0033 mm/h) to 0.0153 in./h (0.39 mm/h) for the CCP
specimens and from 0.0010 in./h (0.025 mm/h) to 0.0080 (0.20 mm/h) in./h
for the 1T-CT specimens. Later tests were conducted using a rate cycling
technique where three separate displacement rates were used in sequence
on a single test. An example of this is shown in Fig. 7, where rates of
0.001, 0.002, and 0.004 in./h (0.025, 0.050, 0.10 mm/h) were used on a
single CCP specimen. The rate cycling technique was used to try to get

IS
T
|

-
I

~

Displacement Rate, mils/hr

—

nin |

Time

=3

FIG. 7—Schematic of displacement rate cycling sequence.
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enough data from a single specimen to complete the entire data reduction
scheme.

Results

Data Reduction Scheme

Since the data reduction technique used for these tests was somewhat
complex, an example of each step will be demonstrated for some of the
data gathered on the CCP specimens. The schematic of the data reduc-
tion, Fig. 4, shows six different steps. These are illustrated by the actual
data.

Step 1in Fig. 4 shows load and crack length measured as a function of
time. Step 1 represents the actual data collected during the test. Since the
tests were conducted at a constant displacement rate, time and displace-
ment are interchangeable independent variables. Load and crack length
are the dependent variables. Two examples of the data collected are
shown in Figs. 8 and 9. These data represent over an order of magnitude
difference in displacement rate. Figure 8 shows data collected for a rate of
0.0010 in./h (0.025 mm/h), and Fig. 9 shows data for a rate of 0.0153 in./h
(0.39 mm/h). These results show a pattern which was consistent for all
CCP tests. The load increased initially with displacement and reached a
maximum early in the test. Crack growth occurred just prior to the point
of maximum load. Shortly after crack growth began, the curve of crack
length versus time shows an almost constant rate of crack growth. This
constant rate of crack growth is accompanied with a nearly constant rate
of load decrease. Since the results considered in these tests were
concerned with a secondary or steady-state creep phenomena, these

Crack
Growth Rate=
0.34 mils/min 130

CCP Specimen
Discaloy 1200°F
1.0 mils/hr

Load, kips

e Load
© Crack length —20

Crack Length, 2a, in
=
|

Time, min

FIG. 8~Load and crack length versus time for discaloy at 1200°F (displacement
rate = 1.0 mils/h).
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FIG. 9—Load and crack length versus time for discaloy at 1200°F (displacement
rate = 15.3 mils/h).

constant rates were taken to imply a steady-state region of creep crack
growth. Data were analyzed only after maximum load; all transient effects
were ignored.

From the basic Step 1 data as represented in Figs. 8 and 9, two separate
directions are taken in the data reduction scheme. They are the evaluation
of C*, Steps 2 through 4 in Fig. 4, and the calculation of crack growth
rate, Step 5 in Fig. 4. As illustrated, the crack growth rate is constant for
each CCP test and can be easily calculated and tabulated for each
specimen. This, however, was not the case for the 1T-CT tests; crack
growth rate had to be evaluated as a function of crack length as shown in
Step 5.

The method for evaluating C* is not as easy and is demonstrated using
the type of data shown in Figs. 8 and 9. An intermediate plot was used in
going from Steps 1 to 2. This was a plot of load versus crack length for
each displacement rate, that is, each individual test, Fig. 10. This
intermediate step was an aid in constructing the Step 2 plot of load versus
displacement rate for differing crack lengths (crack length = 2a for the
CCP specimens), Fig. 11. The load versus displacement rate plot was
used for determining the energy rate or power input, U*. U* was
measured graphically by taking the area under the curve in Step 2,
Fig. 11. U* was then plotted versus crack length, Fig. 12; this is Step 3 in
the data reduction scheme. The slope of the curves in Fig. 12 is then a
measure of C* per unit thickness. Taking the slopes of these curves and
dividing by specimen thickness gives the final evaluation of C*. This is
shown in Fig. 13, Step 4, where C* is plotted as a function of displace-
ment rate. In the general case, C* is a function of both displacement rate
and crack length. However, for the CCP specimen tests conducted at
constant displacement rates, C* was independent of crack length as was
crack growth rate.
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FIG. 10—Load versus crack length for various displacement rates (discaloy at 1200°F).

The final step leading to the desired result is the combination of Steps 4
and 5 to produce a plot of crack growth rate versus C* Step 6.

Crack Growth Rate Correlation

Crack growth rate versus C* is plotted on log-log scales for all of the
CCP specimens where each specimen was tested at a single displacement
rate, Fig. 14. This plot shows a nearly straight line correlation except for
the test run at the slowest rate of 0.00013 in./h (0.0033 mm/h). Although
the data reduction is somewhat complex, the final result illustrates a good
correlation. In Fig. 14, each point represents a single specimen.

In an attempt to simplify the data collection, single specimens were run
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FIG. 11—Load versus displacement rate for various crack lengths.
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FIG. 12—Energy rate versus crack length for various displacement rates.

at multiple sequenced displacement rates, Fig. 7. A single test then
provides enough data to complete the data reduction scheme for C*. An
example of the plot of load versus crack length (intermediate to Steps 1
and 2) is shown in Fig. 15. In this test, load and crack length were
evaluated after steady-state conditions had been achieved following a
displacement rate change. Following the data reduction scheme shown in
Fig. 4, crack growth rate versus C* could be evaluated for a single
specimen. The values obtained by these tests are shown superimposed on
the values obtained from single displacement rate tests, Fig. 16. These
results show good agreement with the tests run at a single displacement
rate.
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FIG. 13—C* versus displacement rate for discaloy at 1200°F.



142 MECHANICS OF CRACK GROWTH

¢+, Mimhr
0.001 0.005 0.010 0.050 0.100
wlirT L — (—

Ihr

Discaloy
1200°F
CCP Specimens

0

Crack Growth Rate, da/dt,
-
Crack Growth Rate, da/dt, m/hr

5 10 50 100 500 1000
C*, in-1f in2 - fr

FIG. 14—Crack growth rate versus C* for CCP specimens tested at constant displace-
ment rates.

Tests were conducted on the 1T-CT specimen to demonstrate the effect
of a radically different specimen geometry. The data reduction scheme
was identical to that illustrated for the CCP specimens; however, crack
growth rate and C* were not constant for a single test conducted at a
constant displacement rate. The results from the 1T-CT specimens are
shown in Fig. 17. A compilation of all data collected for both specimen
types is shown in Fig. 18.
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FIG. 15—Load versus crack length for a single CCP specimen tested at multiple
displacement rates.
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FIG. 16—Crack growth rate versus C* for all CCP specimens.

To illustrate the success of C* as a parameter in correlating creep crack
growth rate other correlating parameters were considered. They are the
stress intensity factor, K, and nominal stress.

Crack growth rate versus K is plotted in Fig. 19. K was evaluated from
crack length and load using the calibration given elsewhere [7]. Crack
growth rate versus nominal stress is plotted in Fig. 20. The nominal stress
values, o,, used here were the net section stress on the uncracked
ligament for the CCP specimen,

= il an
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FIG. 17—Crack growth rate versus C* for IT-CT specimens at a constant displacement
rate.
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FIG. 18—Crack growth rate versus C* for CCP and 1T-CT specimens.

where
B = specimen thickness,
W = specimen width, and,
2a = crack length.

For the 1T-CT specimen the nominal stress is a crack tip stress
calculated from the combined tension and bending stresses
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FIG. 19—Crack growth rate versus stress intensity factor.
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where a is the crack length.

Discussion

The results demonstrate the success with which the C*-parameter can
be used to correlate creep crack growth rate. Considering each specimen
type separately, the scatter in growth rate for a given C* is less than a
factor of two. This is illustrated for the CCP specimen in Figs. 14 and 16
and for the 1T-CT specimen in Fig. 17. Combining the results from both
specimens, Fig. 18 gives a scatter in growth rate of slightly greater than
five for a given C*.

Attempts to correlate growth rate using linear elastic parameters such
as stress intensity factor, K, and nominal stress show results very similar
to those of Siverns and Price [/]. For a consistent specimen type the
scatterband on growth rate correlated with K is about a factor of 30,
Fig. 19. However, comparing two radically different specimen types such
as the CCP and 1T-CT geometries shows virtually no correlation of the
growth rates. The range of K which produces a given growth rate on the
CCP specimens is completely different from the range of K needed to
produce the same order of magnitude growth rate on the I T-CT specimen.
The results from correlating growth rate with nominal stress show the
same trend, Fig. 20. Given a consistent specimen type the correlation is
fair; however, changing the specimen types gives virtually no consistent
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correlation. Results from individual tests indicated this lack of correlation
using K and nominal stress. For the CCP specimens growth rate was
constant for the entire test, while K decreased with increasing crack
length. For the 1T-CT specimens crack growth rate decreased with
increasing crack length, while nominal stress increased. In contrast to this
the evaluation of C* showed a consistent trend. In the CCP specimens
both C* and growth rate were constant throughout the entire test for tests
conducted at a single displacement rate. For the 1T-CT specimens C* and
growth rate both decreased with increasing crack length.

An important technigue in a fracture mechanics approach is illustrated
by these results. That is, in separating parameters which characterize the
crack tip region from parameters which do not, radically different
specimen types must be tested. The CCP specimen is loaded purely in
tension, whereas the 1T-CT specimen is primarily a bend type specimen.
While the growth rate correlation with C* is extremely good for all of the
CCP tests and is only fair for K and nominal stress, these tests alone
would not establish C* as a crack tip parameter. Using a CCP specimen
geometry, growth rate could be correlated reasonably well with any
parameter which increases as the loading on the crack increases. Gather-
ing growth rate data on a specimen type which nearly modeled the
application geometry might be successful with many parameters. How-
ever, if the geometry of the application were to differ slightly from the
specimen geometry used, attempts to apply data in terms of the noncrack
tip parameter might be seriously in error. Therefore, the establishment of
a crack tip parameter such as C* can be extremely valuable for application
to structural components. Testing can be performed on conveniently
designed specimens, and the resuliting data can be applied to a multitude
of structural geometries.

The data gathered by Siverns and Price |/] cover five orders of
magnitude in growth rate and are very impressive from this standpoint.
Results reported here cover only slightly more than two orders of
magnitude. These tests were conducted so that the correlation could be
studied in a reasonable amount of time; the longest test time was in the
order of one month. However, for structural application, the slower
growth rates would be of most interest. The data shown in Fig. 14 show
almost a straight line correlation with the exception of the slowest test
which lies significantly below the line through the other test resuits. This
raises an important question of how the C* correlation will extrapolate to
the slower growth rates. Although the results from one test are not
conclusive, it appears that there may be a radical change in the slope of
the correlation line for slower rates. This is similar to the results of fatigue
crack growth rate correlated with AK where the radical change in slope
for slower growth rates leads to a threshold value of AK below which
cracks do not propagate in fatigue [8]. If a similar trend is followed by
creep crack growth, perhaps a similar threshold C* could be postulated.
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The establishment of such a threshold parameter would be extremely
valuable for applications. Future testing will concentrate in this area;
however, the establishment of a C* threshold may possibly require testing
times in the order of several years.

An important criticism of the study of macroscopic creep crack growth
is that creep damage does not often occur by the propagation of a single
macroscopic crack. Rather creep damage occurs as voids, and micro-
cracks develop somewhat homogeneously throughout the specimen.
Some materials such as discaloy are known to develop single cracks;
however, such materials seem to be in a minority. Most of these
observations have resulted from tests on uniform specimens loaded in
uniaxial tension. Some other observations have shown that nearly any
material can develop a predominant macroscopicly propagating crack
_under special geometry and stress conditions. (9]. Such conditions are
either a region of high stress concentration or a predominantly bend type
of loading where the highest stresses are concentrated in a small area.
Under these conditions, cracking is localized, and the result is a single
predominant macroscopic crack. In structural applications, it is often
these regions of high-stress concentration that are of most concern rather
than regions of uniform stress. Therefore, the study of creep behavior in
terms of single propagating crack is important.

An important part of the study of material behavior is the anticipated
subsequent application to structural components. An approach that
cannot be applied to structures may be of some value in material
evaluation and selection; however, this approach will ultimately be
abandoned in favor of an approach which has a direct application. In
concept C*-parameter is a very good prospect for application to struc-
tures. Since it represents a parameter which characterizes the crack tip
region, results from a single specimen geometry can be applied to a
multitude of structural geometries. The problem of calculating C* for a
crack in a structure is in practice somewhat complicated. If the material
can be characterized in terms of Eq 4, where strain rate is measured as a
nonlinear function of stress, C* could be calculated using the line integral
definition given in Eq 1. This calculation would require a numerical
analysis such as the finite element approach. A similar approach has been
used to calculate the J-integral for the nonlinear stress-strain behavior
encountered in plasticity considerations [10]. If the material properties
represented in Eq 4 were known, this same approach could be used to
calculate the C* for a crack in a structure.

Conclusions

1. A fracture mechanics approach is used to correlate creep crack
growth behavior. The C*-parameter which is an energy rate line integral is
shown to characterize the crack tip stress and strain rate field.
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2. The C*-parameter can successfully correlate creep crack growth
rates for a discaloy superalloy tested at 1200°F (920 K).

3. The stress intensity factor, K, and nominal stress do not adequately
characterize crack growth rates. This is demonstrated by considering two
radically different specimen geometries, the center cracked panel and the
compact specimen. C* correlates creep crack growth rates for these
geometries, while K and nominal stress show no correlation.

4. C* can be used as a parameter to predict crack growth rate for
structural applications.
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ABSTRACT: The susceptibility of 2219 to time-dependent (creep) crack growth
under sustained load has been evaluated, and, while no crack growth was observed
at room temperature, it was observed at elevated temperatures at stress intensities
(Kwe) well below K. It appears that creep cracking will take place at stress
intensities down to a threshold, designated K., about 40 percent of K. at 360°F,
and preliminary check tests suggest that similar behavior would be in evidence at
212 and 350°F in both the L-T and T-L orientations, though much work remains to
be done in defining the extent of the temperature dependence. The rate of crack
growth is controlled primarily by the instantaneous stress intensity factor and can
be described by the following relationship: log da/dr = 0.085K — 4.14.

KEY WORDS: crack propagation, mechanical properties, deformation, creep tests,
fracture strength, stress analysis

In 1968, Kaufman and Holt [/]* reported on their findings of time-
dependent crack growth in 2219-T851 plate at elevated temperatures. In
that work, the notch-stress rupture strength decreased significantly below
the smooth-specimen stress rupture strength with increase in rupture time
at temperatures in the range from 300 to 500°F, as illustrated by the
representative data in Fig. 1. Examination of the fractured specimens
revealed that the reduction in stress rupture life was associated with a
concentration of intergranular crack growth from the root of the notch;
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FIG. 1-—Fffects of notches on stress-rupture strengths of 2219-T851 (1-in.) at 300 °F.

the same cracking was found to be well distributed in smooth specimens.
As a result of those findings, a program was begun to investigate the
significance of this phenomenon on the service ability of this alloy
utilizing fracture-mechanics concepts.

In the intervening years, starting with the work of Lindborg on an
austentic steel {2], time-dependent creep crack growth has been reported
by others {2-9]. In 1970, Siverns and Price [5] noted that crack growth
rates (da/dr) could be expressed simply in terms of stress intensity factor
(K) in the form

da/dt = constant K" ¢))]

and data developed by some other investigators have supported this
general trend [2,7]. Landes and Wei [6,9] developed a model for creep
crack growth rate based on their work on 4340; the steady-state crack
growth rate was related to the steady-state creep rate in smooth speci-
mens, both being controlled by the time-dependent deformation process
occurring at the crack tip. They also noted the presence of the three stages
of creep in both types of behavior. In the first reported work on
aluminum, Kenyon et al [7] showed the rate process dependency of creep
crack growth in aluminum alloy RR58, equivalent to 2618, and proposed
the relationship

da/dt = A K" e~%/RT Q)
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In the present work we have evaluated the resistance of 2219-T851 to
creep growth to establish the relationship between the notch stress
rupture behavior observed previously and the creep crack growth proper-
ties of this material, and evaluated this behavior in light of the relationship
shown in Eq 1.

Object

The object of this investigation was to determine the rate at which
cracks in 2219-T851 plate grow during exposure to sustained loads at
elevated temperatures in the range from 212 to 350°F.

Material

A single lot of 3-in.-thick 2219-T851 plate was used for this investiga-
tion. The chemical composition is shown in Table 1 along with the tensile
properties at room temperature and at temperatures as high as 350°F, after
1/2 and 100-h holding periods at these elevated temperatures. These
strengths are in good agreement with the typical tensile and yield
strengths for 2219-T851 plate which are presented in Fig. 2. It is apparent
from the curves of Fig. 2 that, in the temperature range up to 300°F, where
most tests were made in this investigation, there is little effect of time at
temperature on tensile strength and yield strength.

The plane-strain fracture toughness, K. of this material, determined in
accordance with ASTM Test for Plane-Strain Fracture Toughness of Metal-
lic Materials (E 399-72) 2-in.-thick specimens of the type shown in Fig. 3,
under the time-temperature exposures contemplated for the sustained-
load tests, are plotted as a function of temperature in Fig. 4. It is evident
that the plane-strain fracture toughness of this material is also essentially
independent of time and temperature over most of the range studied. For
longer times at 350°F there is some indication that K. is increasing with
exposure time, as would be anticipated because of the increased ductility
associated with substantial overaging.

Procedure

Plane-strain fracture toughness specimens of the type shown in Fig. 3
were exposed to sustained loads in Satec Model D creep machines. The
specimens were enclosed in a quartz lamp oven built especially for this
purpose; the temperature of each specimen was monitored continuously
with a fully embedded themocouple near the center of the thickness of
each specimen just below the region of the crack. A strain-transfer device
was attached to the faces of the compact tension specimen above and
below the notch slot; differential transformers outside the furance on the
opposite end of the strain-transfer device were used to continuously
record crack opening displacement as a function of time. Crack opening
displacements (COD) were converted to crack lengths with calibration
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FIG. 2—Effect of time at temperature on tensile strength and yield strength of 2219-1851
plate.

curves, determined at each test temperature for the specimen and the
strain-transfer system by gradually applying various loads to a calibration
specimen in which various crack lengths had been simulated using a fine
saw cut.

Prior to sustained loading of the specimens, each was precracked by
fatigue loading as required for plane-strain fracture toughness testing in
ASTM Method E 399-72. This was done in Krouse axial-stress fatigue
machines, and the final stages of crack growth were carried out at a stress
intensity of about 12 ksiv/in. (38 percent of K.).

In initiating each test, the specimen was heated to the desired tempera-
ture, allowed to stabilize for 1/2 h, and the desired load was applied.

Tests were made at a variety of stress intensity levels at 300°F using
T-L (long-transverse) specimens and a single test was made at 300°F with
an L-T (longitudinal) specimen to check the influence of specimen
orientation. Tests were also made at room temperature, 212 and 350°F to
compare the general behavior at these temperatures.

Once the COD data had been obtained and converted to crack length as
a function of elapsed time, the data were computer analyzed to calculate
and plot (a) rate of crack growth, da/dt, as a function of elapsed time; (b)
change in stress intensity as a function of elapsed time; and (c) rate of
crack growth, da/dt, as a function of the instantaneous stress intensity
level. In all calculations the relationship for plane-strain stress intensity
factor given in ASTM Method E 399-72 was used.

Results

Applied K versus time to fracture in all tests in presented in Fig. 5; the
corresponding values of K, at fracture are plotted in Fig. 6. The COD
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data from the tests at 300°F are presented in Fig. 7, and the derived curves
showing crack length as a function of elapsed time are presented in Fig. 8.
Computer printouts of da /dt and the instantaneous stress intensity factor
as a function of time are shown in Figs. 9 and 10, respectively, and the
computer printout of da /dt as a function of instantaneous stress intensity
factor is shown in Fig. 11. Macro- and micrographs of fracture surfaces
are shown in Figs. 12 through 19.

Discussion of Results

The data in Figs. 5 through 11 illustrate that at elevated temperatures a
substantial amount of crack growth takes place in 2219-T851 plate at
stress intensities considerably below Kj.. At a stress intensity of 74
percent complete fracture occurs in 27 h. Even at 49 percent K., only
about 190 h are required for complete fracture.

The times to fracture for T-L specimens at 300°F (Fig. 5) are nearly
linear on a semilog plot to about 200 h. A single test at about 12 ksiv/in. or
40 percent K;, was carried far enough (about 1200 h) to indicate that the
linear trend does not continue and there is an indication of a threshold for
crack growth (designated (K.) in the vicinity of about 12 ksiv/in. While
the apparent *‘threshold’’ corresponds approximately to the stress inten-
sity level at which the specimens were precracked, it is not believed that
the two are related, though it is recognized that there is a need for
experimental verification of this point.

The relationship between applied stress intensity and time to fracture
seems to be essentially independent of specimen orientation (L-T versus
T-L) at 300°F, and nearly identical at 300 and 350°F for T-L specimens. At
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FIG. 7—Displacement data from tests (T-L crack orientation) of 2219-T851 plate
(3-in-thick) at 300°F.
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212°F, indicating that the behavior is temperature dependent. A need for
further study of this temperature dependence is indicated.

Fracture stress intensities (Fig. 6), seem nearly independent of test
conditions and generally decrease with time to fracture. They are well
above K, illustrating that plane-strain conditions are not retained
throughout the test.

It should be noted at this stage that no significant time-dependent crack
growth has been observed in 2219-T851 at room temperature, even in
severely corrosive environments [/]. A check test was made at room
temperature as part of this investigation, and, in ambient air conditions,
no appreciable crack growth was obtained in 1000 h at about 95 percent
K. It is clear that the phenomena described herein are associated with
moderately high temperatures; it is assumed to be related primarily to
creep deformations because of the absense of enviroments that result in
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FIG. 11—da/dt versus K for 2219-T851 plate (3-in-thick) at 300°F.

stress corrosim cracks of 2219-T851, but additional verification is also
needed on this point.

With the use of the calibration relationships, the crack growth data in
Fig. 8 were derived from the COD data in Fig. 7. These crack length
versus time curves serve as a basis for development of the curves of Figs.
9, 10, and 11.

From the data in Figs. 8 and 9, it is clear that the general trend is for the
rate of crack growth to increase with time during the test. However in
most tests, and particularly those at the lower K| level, there was an
apparent decrease in crack growth rate during the early part of the tests.
This initial decrease is believed to be associated with the decreasing creep
rate during the primary stage of creep in smooth specimens, that is, the
re-initiation of crack growth in the material in the crack-tip plastic zone
upon loading. Thus, it is possible that little or no crack extension occurred
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FIG. 12—Fracture surface of Ky fracture in 2219-1851 plate at 300°F.



161

KAUFMAN ET AL ON CREEP CRACKING

FIG. 13—Fracture surface of K. fracture in 2219-1851 plate at 300°F.
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FIG. 16—Initial K, fracture in 2219-T851 plate at 300°F.

during this part of the test; the increase in COD measurements might
reflect only local creep strain. As the test progresses, however, the creep
cracking phenomenon clearly prevails.

The curves of Fig. 10 indicate that the instantaneous stress intensity
factor continues to increase during the test, and fracture takes place at
stress intensities well above the plane-strain fracture toughness of the
material, as noted earlier. This observation is consistent with the presence
of the large shear lips as shown in Fig. 12, and it is clear that final fracture
is of a mixed mode, not in place strain. The rate at which crack growth
takes place appears directly related to the instantaneous stress intensity
factor (Fig. 11) with two notable deviations: (1) spikes at low stress
intensity levels, believed to be associated with the primary-creep-type
behavior just described, and (2) divergence of data at the upper (tertiary
stage) end of the range, when the stress intensity factor increases above
the plane-strain fracture toughness (around 32 ksiv/in.), a range as-
sociated with mixed mode crack growth and fracture.

The steady-state crack growth rate da/dt in Fig. 11 can be expressed in
terms of K rather well by the expression

log da/dt = 0.85K — 4.14
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FIG. 17—K . fracture in 2219-T851 plate at 300°F.

This differs in form from that presented by Siverns and Price, but the data
are better represented thus than as a linear log-log relationship. Additional
work with other sizes and types of specimens is required to establish with
certainty the generality of the stress intensity dependence, and whether or
not it is superior to the suggested dependence on the net section stress, as
proposed by Harrison and Sandor [/1], or the J-integral, as suggested by
Landes and Begley.?

The fracture face of Fig. 12 shows the continuous growth of shear lips
all the way along the fracture, not unlike that in the K. specimen in Fig.
13. However, it is evident in the K. fracture that there is a time-
dependent region of crack growth which shows up somewhat lighter than
the rest; this is taken to be the extent of creep crack growth during
the life of the specimen. Crack profiles are shown in Figs. 14 and 15
and suggest that the fracture is neither wholly transgranular or inter-
granular; there is a suggestion, yet to be verified by a significant number

3See pp. 128-148.
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FIG. 18—Low ductility facet of a K. fracture in 2219-T851 plate at 300°F.

of observations, that the cracking is following lined-up constituent.
There is no evidence of stress-corrosion cracking, as typified by the
branching type of cracking seen in those alloys, orientations, and en-
vironments, where stress corrosion cracking is observed in aluminum
alloys. Scanning electron microscope photographs in Figs. 16 and 17
demonstrate that the K. type of fracture has fewer small dimples than the
K fracture and a number of flat facets which do not show up in the K|,
fracture. One of these is shown at progressively higher magnifications in
Figs. 18 and 19. Intermetallic particles appear on the surface of these flat
facets, again presumably associated with the regions of lined-up constitu-
tents. While this would suggest that higher purity alloys would be less
susceptible to creep cracking, preliminary work on such alloys does not
support this expectation.

Summary

The susceptibility of 2219 to time-dependent crack growth under
sustained load has been evaluated, and, while no crack growth was
observed at room temperature, it was observed at elevated temperatures
at stress intensities (Kj..) well below K;.. The crack growth was substan-
tially different in nature from stress-corrosion crack growth observed for
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FIG. 19—Detail of low ductility facet of a K. fracture in 2219-T851 plate at 300°F.

some alloys in certain environments (2219-T851 is resistant to stress-
corrosion cracking in all known environments) and is believed to be
essentially a creep phenomenon,; it is recognized that tests in a vacuum or
inert gas will be required to prove this beyond any doubt. It appears that
crack growth will take place at stress intensities down to a threshold,
designated K., of about 40 percent of K, at 300°F, and preliminary tests
suggest that similar behavior would be in evidence at 212 and 350°F in
both the L-T and T-L orientations, though much work remains to be done
in defining the extent of the temperature dependence. The rate of crack
growth is controlled primarily by the instantaneous stress intensity factor
and can be described by the following relationship

log da/dt = 0.85K — 4.14
3)

This behavior has significance in service applications at elevated
temperatures, as shown in Fig. 20, where the combinations of gross-
section stress and crack size which would be expected to cause problems
in 2219-T851 at 300°F are shown. The normal level for anticipation of
problems with a material which is not susceptible to stress-corrosion
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FIG. 20—Critical crack sizes for 2219-T851 plate at 300°F.

cracking and not subject to fatigue loading would be that associated with
the K. level. However, the tests described herein show that crack growth
will initiate at stress intensities anywhere above about 12 ksi\/in., so that
the K. curve, not the K. curve, is the design curve of concern. In any
application in which 2219 is exposed to stress intensities above 12 ksiv/in.
at moderate to high elevated temperatures, one should consider the
possibility of subcritical crack growth.

A number of questions remain to be answered about this behavior
including (a) degree to which this behavior is independent of stress state,
specimen size, and displacement measurement technique, (b) degree to
which other alloys are subject to creep cracking, for example, 2124, 2419,
and 2618, which show widely different resistance to creep rupture with
sharply notched specimens, and (¢) whether or not a true threshold for
this behavior does exist.
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ABSTRACT: This paper provides a comparison of the crack-line-wedge-loaded
(CLWL) and center-cracked-tension (CCT) test methods for determining R-curves
on a number of high-strength aluminum sheet alloys. In general, R-curves were
reasonably close, differing only by amounts which could be explained by differ-
ences in testing procedure and in crack driving force curve. Gross stress, K, and
crack length at instability were predicted satisfactorily for CCT panels from CLWL
R-curves. The test results for CCT specimens show that consistent K, values are
obtainable from specimens of various widths provided that the net-section stress at
failure is below general yielding.

KEY WORDS: crack propagation, residual stress, fracture strength, plastic proper-
ties, elastic properties, stresses, aluminum alloys

The principles involved in crack growth resistance or R-curve have
been known for over a decade, but very little has been done to dem-
onstrate the predictive capability inherent in this technology. The
purpose of this work, therefore, was to present experimental evidence
demonstrating the application of these principles by using R-curves
developed with crack-line-wedge-loaded (CLWL) specimens to predict
the results obtained in center-cracked-tension tests (CCT). The property
of R-curves upon which such predictive capability is predicated is that
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they are a function of slow-stable crack extension only, independent of
starting crack length in the specimen. Instability K, can be predicted for
an untested configuration by determining the appropriate stress level for a
tangency condition between the crack driving force curve and the R-curve
for the material. This instability prediction principle has been discussed in
a number of reports [/-3]° but has seldom been applied.

In some present analyses, the residual strength of a structure is calcu-
lated using a failure criterion based on a known initial crack length, and
crack length at instability is not measured. If the slow-stable crack growth
is appreciable as has been observed in tests on some very tough materials,
the error may be quite appreciable. The R-curve, on the other hand,
provides the complete material fracture characterization, and can be used
to calculate the residual strength more accurately.

One very important aspect on the nature of R-curves which has been
challenged by some investigators and to be tested in this investigation is
an assumption that R-curves are independent of the specimen type [4].
Certainly, overall elastic stress distributions and hence crack driving
force characteristics vary appreciably from one specimen type to another,
and it has been suggested that the R-curve is affected by these differences.
On the other hand, if crack growth resistance development is controlled
by the crack and Mode I opening conditions, specimen type should be
immaterial. The center-cracked-tension panel and the crack-line-loaded
specimens of the present investigation provide a suitable contrast by
which the foregoing consideration can be tested. The literature contains
only a few examples where CLWL and CCT specimen R-curves have
been compared [5,6]. These results have indicated that some small
differences in R-curves exist, favoring slightly higher K ; and K . values for
CCT tests. Generally the differences were so small as to be within
expected experimental variability.

Validity of Plane Stress Fracture Toughness, K.

No standard test procedure has been established for the determination
of plane stress fracture toughness K., mainly because of the lack in
consistency of K. data. The major problem has been the variation of K,
values obtained from various test specimen widths and crack lengths. For
many very tough materials, lower K values are obtained from specimens
having insufficient width such that net-section yielding develops prior to
fracture. Secondary effects, such as lack of crack buckling restraint and
inability to measure critical crack length accurately, have also caused
variation in K, and are well known.

3The italic numbers in brackets refer to the list of references appended to this paper.



WANG AND MCCABE ON R-CURVE 171

On 28 August 1972, D. Y. Wang presented a report at the Sixth National
Symposium on Fracture Mechanics, giving the results of a number of
wide panel tests made on a variety of aluminum alloys [7] showing a
consistent pattern of K, values. In addition to the determination of K,
R-curves were shown for the slow-stable crack growth portion of the test
records. The data tended to confirm some fundamentals of R-curve,
namely, the independence of R-curve on specimen size and starting crack
length. This, therefore, presented an excellent opportunity to make
comparisons to CLWL developed R-curves and to make failure condition
predictions from such tests. Specimen blanks were taken from broken
halves of 48-in.-wide panel specimens. The materials and CCT specimens
used are fully documented in Ref 7. To verify the consistent K . value and the
full range of the R-curve as an intrinsic material property, additional narrow
width CCT specimens were added for the present study. The 18 and 24-in.-
wide CCT specimens were made from the broken halves of the 36 and 48-
in.-wide panels. In these narrow panels containing various initial crack
lengths, a few panels were expected to fail in net-section yielding, but
most specimens provided valid elastic K, data.

This program also afforded an opportunity to check some of the
recently proposed specimen size requirements for R-curve evaluation as
stipulated in the new proposed recommended standard [8] which is
presently available in Part 10 of the ASTM Annual Book of Standards
under related material. In the proposed standard, it is optional to plot
R-curves either in terms of physical or effective crack extension. Since
the CCT panel R-curves had been reported in terms of physical crack
extension, the CLWL developed R-curves will be presented here on the
same basis using a procedure to be described in a later section.

Program and Procedure

The CCT program consisted of testing panels varying in width from 18
to 120 in. Starting crack length to width ratios (aspect ratios, 2a/W)
varied from 0.10 to 0.32. Crack extension was followed optically using
two closed circuit TV cameras focused at each crack tip and also by direct
visual recording as in Fig. 1. The composite pictures together with load
were recorded on a video tape deck. In the tests of the 18 and 24-in.-wide
specimens and some wider panels, an MTS clip gage was also used to
measure the center crack opening displacement (COD) for compliance
indicated crack lengths. A confirmation was obtained between the mea-
sured displacement and that calculated by an elastic-plastic analysis, the
discussion of which is beyond the scope of this paper. The critical crack
lengths at instability were determined both from the TV video recording
and the computed crack length from the critical COD data. The instability
usually occurred at an abrupt drop in the load versus displacement curve
for the panels which failed at stress levels below net-section yielding.
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FIG. 1—Overall view of the test setup for a 48-in.-wide panel.

All panels contained a 1-in. initial saw cut crack starter, and fatigue
crack growth rate information was obtained during cracking to the desired
starting crack length. In all cases, the highest final AK was less than 45 ki
V/in., which was about 80 percent of K at the start of slow-stable crack
growth in the R-curves of 2024-T3 and 7475-T761. Despite this, no
significant adverse effect was noted on the resulting R-curves.

In the wide panel tests, calculations for K and Aa were made in terms
of physical crack dimensions, neglecting plastic zone contribution to
crack length. This is usually not allowed in K, determinations, but, since
overall crack lengths were large with respect to plastic zone contribution,
the corresponding error in K, calculation was relatively minor. In CLWL
tests, the cracks are somewhat shorter, and in some cases plastic zone
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correction to the physical crack length could not be ignored without
significant error in K.

The CLWL specimens were oriented so the crack propagated in the
same direction, T-L, as in the CCT tests. Two sizes of specimens were
selected, 4C and 7C shown in Fig. 2. The testing procedure is available as
a proposed standard and has been reported elsewhere [9]. All information
necessary for determination of an R-curve is obtained from a double
compliance test record, an example of which is shown in Fig. 3.
Displacement at locations V1 and V2, indicated in Fig. 2, are plotted on an
x-y recorder using the output from two special clip gages shown in Fig. 4.
The ratio of V1 to V2 at any selected point along the test record can be
related to the effective crack length (physical crack plus plastic zone
correction) using a double compliance calibration curve. If the specimen
is periodically partially unloaded, the return slopes are related to the
physical crack lengths at those stopping points. The test record shows
several locations of partial unloading.

Results and Discussion

In order to produce CLWL R-curves in terms of physical crack growth,
Aa,, it was necessary to determine the compliance indicated plastic zone
sizes. This is achieved by subtracting the compliance indicated physical
crack length from the effective crack length at certain points. Compliance

I
i v SPECIMEN A W
: 4C 30" 8.25"
T
. 7¢ 5.2" 14.0°
e a

FIG. 2—Compact wedge-loaded specimen H/W = 0.6.
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FIG. 3—Test record for 2024-T3 CLWL 7C specimen.

methods inherently reflect experimental variability on individual physical
crack and effective crack length determinations, so the errors were
diminished through the use of plots of compliance indicated plastic zones
like those shown in Figs. 5 and 6. The CLWL R-curve plotting points were
then adjusted on the abscissa by subtracting the median r, values from Aa
effective at selected K values. An interesting feature in Figs. 5 and 6 is
the comparison between compliance indicated plastic zone size and that
calculated using the well known Irwin expression: r, = 1/27Kg? /oy?. It
appears that the Irwin expression works best on materials of high yield
strength and low toughness.

Figures 7 through 11 compare CLWL and CCT developed R-curves on
the five materials tested. Some small discrepancy in the initial crack
growth portion of the CCT panel R-curves was anticipated because crack
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FI1G.4—Photograph showing instrumentation for double compliance measurements.

extension less than 0.05 in. was ignored. Otherwise, it may be concluded
that CLWL and CCT developed R-curves compare well, and no consis-
tent pattern of difference was developed.

The obvious difference between the R-curves derived from the tests of
CLWL and CCT specimens is the amount of crack extension prior to
termination. The crack extension can be greater in CLWL specimens than
in CCT specimens due to the dissimilar shape of crack driving force curves,
which in turn is related to the relative stiffness of the loading systems.
In general, cracks tend to remain stable in crack-line-loaded specimens
having rigid loading devices such as the wedge and split pin arrangement
used here. The theoretical background on crack stability has been well
documented in the work of Clausing [/0] and of Gurney [I11].

Prediction of CCT Panel Instability

One principal objective of this investigation was to determine if K, and
gross stress at fracture could be predicted for the wide panel tests using
R-curves developed with CLWL specimens. For this purpose, plots of K
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versus Aa effective were used to match to the CCT crack driving force

relationship.

where

The following CCT relationship was used

K =0 (masecwa/w)?

o = gross applied stress,

a = half

crack length (a effective), and

W = panel width.

()
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FIG. 9—7475-T61 R-curve.
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The CLWL R-curve was described in terms of a least squares fit of a
second order polynomial to the portion of the R-curve where tangency

with the crack driving force curve was expected.

Kp = Co+ Cy(dap) + Cs (Dae)’

Solve for Aa. and K,

Given
K, = K at tangent
Kp 0K
d(Aa,) dae)
where
K = CCT crack driving force,

a.,=a, + Aa,, and
initial half crack length.

Q
<
I

@

©))

@
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FIG. 11--7079-T6 R-curve.

Solution
—1/2
0K — 12 ( 77a9> 9
ba. / oma.sec —
( wa, m2a, ma, ma,
T sec sec tan
w w w
from Eq 3
1/2
ma
Kr=K-=c¢ <77ae Sec———)
therefore
oK _ 1 (1 T wae>
da, B2 \g, w w
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from Eq 4
oKy Ko 1 (1 T ¢ ma.,
a(day) | Br= 2\ g Ty e w)
C. + 2C, (Aay) 1 1 N T . w(a, + Aae)]
Co+ Cy(bay) + Cy (Bay)? 2 [(a,, + Aa) w0 w

Solve for Aa, by iteration

Co + Ci(Aa,) + Cy(Aa,)?
w(a, + Aae)] 4
w

g =

[w(a,, + Aa,) sec

In order to compare the preceding predicted K . values to those reported in
the CCT experiment, it was necessary to convert Aa effective to Aa
physical and then recalculate K, using a physical in Eq 1.

Predicted and experimental results in terms of critical crack length,
gross fracture stress, and K values are given in Table 1 and graphically
compared in Figs. 12 through 14. Perhps the best correlation is given in
Fig. 12; where gross stress at fracture is reasonably predicted
over a wide range of material toughnesses and with specimens varying in
width from 24 to 120 in. and starting crack lengths, 2a,, from 3.6 to 30 in.
This correlation perhaps best demonstrates the usefulness of R-curve
analysis.

Figure 13 shows the comparison of K, values. The greatest variation
shown is at the highest K. values from 120-in.-wide panel tests where
instability crack length is most difficult to determine.

Figure 14 compares predicted slow-stable crack growth prior to instabil-
ity to experimental. This is the most sensitive part of estimation proce-
dures, affected strongly by the way that the R-curve is fared through the
data points. Therefore, these predictions gave the poorest comparison.

General Observations

R-curves are developed generally by selecting specific locations along
the crack growth history to determine K ; and Aa, and individual datum is
plotted. A smooth curve is then faired through the plotted points to
represent the R-curve. The double compliance method of measurement is
a continuum record of K , development, and it is oftentimes demonstrated
that true crack extension history can be noncontinuous. In Figs. 8 and 9,
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FIG. 12—Failure stress of center cracked panels predicted by CLWL R-curves.

smooth plots of K versus Aa physical are used to represent the R-curves
of 7475. A more precise representation is given in Figs. 15 and 16. The
sporadic nature of these R-curves is evidence of sudden short bursts of
crack extension. This same behavior was detected using visual methods
of measuring crack growth in the CCT wide panels.

Specimen Size Limitations

It was of interest to test the specimen size requirements according to
Section 6 in the Proposed R-Curve Standard using the present results. For
the CLWL specimen, the method stipulates that the uncracked ligament,
(W — a), should be greater than 4/7 (Kyax/0ys)? at the termination of
the test, where Ky, is the upper plateau K. Table 2 compares
specified (W — a), requirements to those developed in the present investi-
gation. The preceding limit was set to ensure fully elastic behavior
through plateau Ky, but when some of the specimens of 2024-T3 and
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FIG. 13—K_ of center cracked panels predicted by CLWL R-curves.

7475-T761 went plastic as indicated by strain gage on the back edge, the
K values reported are at this event. The table shows that the 4C size
CLWL specimen is too small to test 7475-T761 and 2024-T3 up to plateau
K values. The 7C size was just marginal for the 7475-T761 but too small
to test 2020-T3 to upper plateau. Since the plateau of about 160 ksi
\/in. in 2024-T3 was not achieved, the size requirements of the method,
therefore, are supported by these resulits.

For CCT tests, Figs. 17 through 19 compare experimentally determined
K. values for panels of varied sizes and aspect ratios (2a/W) to curves
calculated for limiting K. based on net-section yielding. In all three
materials, the specimens that failed at stress below net-section yielding
exhibited quite consistent K. values which appear to be independent of
panel width and aspect ratio. The maximum valid K, data points are
represented by horizontal dashed lines. In Fig. 17, the 2024-T3 specimens
of widths up to 48 in. were failed through net-section yielding in which the
apparent K. increases with panel width and aspect ratio. The invalid K,
data points fell according to the analytical K-curves at net-section



WANG AND MCCABE ON R-CURVE 185

w0}
2024
120"
o}

— 3.0 2024 ©
o
g
2 120"
-
a.
o
<
- 20 |
@
5
g o 2024
= 36" 2024-T3 24" < W< 120"

7475-T761 18" <a, < 15"

1.0} @) 7075-Té
o © o 7079-T6
2024
24"
1 [l L L
0 1.0 2.0 3.0 4.0

Predicted Aa Physical

FIG. 14—Crack growth to instability of center cracked panels predicted by CLWL
R-curves.

yielding. The slight scatter probably resulted from the variation in yield
strength of the specimens from different sheets. For 7475-T61, only
specimens with an aspect ratio of 0.10 developed net-section yielding in
Fig. 18. Two 7475-T761 specimens developed yielding at an aspect ratio of
0.10, as is shown in Fig. 19.

Table 3 compares the experimentally indicated minimum width require-
ment at 2 a/W = 0.3 to those stipulated in the ‘‘Proposed Recommended
Standard for R-Curve Determination.”” Since the minimum specimen width
requirements appear to be satisfied, and they are within the boundary of a
net-section yielding criterion, the experimental data support a net-section
yielding limitation for valid K.

Conclusions

1. R-curves developed independently using CLWL and CCT speci-
mens compare favorably when tested within the range of validity as
stipulated in the ‘“‘Proposed Recommended Standard for R-Curve Test-

[}

ing.
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FIG. 16—7475-T61 R-curve versus Aa effective.

2. Consistent, K. data and R-curves which were independent of panel
width and initial crack length, were established from the test results of the
18, 24, 36, 48, and 120-in.-wide CCT specimens in two alloys. The
specimens which failed by net-section yielding produced the invalid K,
values.

3. Instability stress, crack lengths, and K . values were predicted for the
CCT panel tests from the CLWL developed R-curves. Although there was
some scatter in predicting crack growth prior to instability, K . values and
gross section stresses at failure were reasonably comparable to experi-
mental results.

4. Plastic zone estimates using the Irwin correction equation compare
well with compliance indicated plastic zones only on materials with
relatively high yield strength.

5. The minimum specimen size requirements of the ‘‘Proposed Rec-
ommended Standard for R-Curve Determination’” were tested and
appear to be satisfactory and conservative according to the results ob-
tained in the present investigation.
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TABLE 2—Comparison of specified specimen size requirements to experimental
W-a @ Kpax or K at back edge yielding.

CLWL tests [(w — a) required = f‘_ K2pax ]

T Oy
Required Experimental
Speci-  Width, Kpat W — afor W — a at Termi-
Material men in. Termination  Plateau Kp nation, in.
7475-T761  71C 14 145.3 5.6 5.14°
7C 14 155.4 5.6 5.53%
4C 8.25 138.1 5.6 4.40°
4C 8.25 109.4 5.6 4.10°
2024-T3 7C 14 135.6 17.6 6.4 °
7C 14 140.6 17.6 6.0 °
4C 8.25 108.2 17.6 440
4C 8.25 107.3 17.6 4.25°
7079-T6 7C 14 79.5¢ 1.7 5.85
4C 8.25 80.6% 1.7 3.65
7075-T6 7C 14 60.0° 1.1 8.2
4C 8.25 65.07 1.1 4.25

“Upper plateau Kp, all other tests were stopped at strain gage indications of back edge
yielding.
At back edge yield as indicated by strain gage.
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Ductility, Fracture Resistance, and R-Curves
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ABSTRACT: A method for analytical predictions of the thickness effect on fracture
toughness, and of R-curves is presented. It is based on the recent observation that
the fracture resistance K is proportional to the local fracture strain ez, where
o = 03/0y, and 8 = o3/0; characterize the local stress state. As this stress state
varies from the surface, where it is plane stress (a = 0,8 = 0.61), to the center,
where it approaches plane strain (a = 0.81, g8 = 0.61) for sufficiently thick speci-
mens, the local fracture resistance varies correspondingly. The model proposed
here assumes that the measured fracture resistance represents the average of the
local Gy values along the crack front. The calculated thickness effect is in excellent
agreement with experimental results. From the same model an analytical expres-
sion for R-curves is suggested with the additional consideration of the relation
between the plastic zone size as a function of crack growth. The preliminary
results of the predicted R-curves are in reasonable agreement with the experi-
mental curves.

KEY WORDS: crack propagation, ductility, fracture strength, stress analysis,
plastic deformation, aluminum, stainless steels

Effective utilization of fracture mechanics for engineering design and
failure analysis requires that the fracture resistance of a material be
known in the entire size range of its application. For thick sections
fracture toughness characterization by K. is now well established as the
applicable design criterion. For thin sections the fracture resistance curve
concept, R-curve, has been proposed by Irwin {/-2}%> and is finding
increasing interest. For a review of R-curve testing and analysis the
reader is referred to the paper by Brown and Srawley [3] or to the recent
papers by Heyer and McCabe [4-5].

! Professor and research assistant, respectively, Department of Materials Science,
Syracuse University, Syracuse, N.Y. 13210.
2 The italic numbers in brackets refer to the list of references appended to this paper.
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Figure 1 is a schematic representation of a typical R-curve where the
fracture resistance R is plotted as a function of the crack length a. Crack
propagation occurs under rising load until the point of tangency G,
between the R-curve and the crack driving force G-curve is reached. For a
Griffith crack (infinite plate) this curve would be a straight line going
through the origin, since G = o?ma. At G. the propagation becomes
unstable. R-curves can be determined experimentally. However, it would
also be highly desirable to develop an analytical model which can predict
R-curves for various thicknesses from a limited number of tests. Such an
analytical model is presented in the following. The same model can also
be used to predict thickness effect on fracture toughness.

Foundations of the Model

The model postulates that the fracture resistance of a material, as
determined experimentally, is the average of the local resistance values of
all the elements along the crack front and that the resistance of each
clement is related directly to the local stress state through its relation to
material ductility. These relationships have been discussed recently [6-7].
Accordingly, the fracture resistance Ky can be expressed as

KR = E\/ Sp*épﬂg (1)

where
E = elastic modulus,
S = shape factor of the plastic zone (=1),
p* = Neuber’s micro support effect constant (p* = 0.001 in.), and
érqp = local fracture ductility.

]

I

The subscripts « = g,/0; and 8 = o3/a, denote the local stress state.
Plane strain is characterized by a = 0.81 and 8 = 0.61. At the surface,
plane stress, « = 0 and 8 = 0.61. As the local ductility decreases with
increasing stress biaxiality, so does the fracture resistance K. Thus, a
decrease in thickness or an increase in crack length influences the
deformation mode such that the ‘‘plane stress character’” of the crack
front is increased. Increased plane stress results in an increased fracture
ductility [6], and, since the local fracture resistance K (in units of stress
intensity factor) is proportional to the local multiaxial fracture ductility [7]
a decrease in thickness or an increase in crack length will increase the
average fracture resistance. This is illustrated in Fig. 2.

Stress Distribution at the Crack Front

To determine the local fracture toughness along the crack front with the
help of Eq 1 it is necessary to know the stress state, a(z) and 8(z), along
the crack front as a function of distance from the surface, z. Unfortu-
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nately, experimental data on the values of a(z) and B(z), except for the
limiting conditions of plane stress and of plane strain, are not available.
For the present purposes a closed form solution which is believed to
represent a fair approximation was developed, as indicated next.

Atthe surface, thatis, atz = 0and z=1, where¢ is the plate or sheet thick-
ness, @ = op/o-; = 0. The value of 8 is not known; however, Allen’s [8] study
of the stress distribution in the plastic zone suggests a value of 3 at the
surface to be between 0.55 and 0.65 and its variation with thickness to be
rather small. At any location at the crack front, where the plane strain
condition is reached, @ = 0.81 and 8 = 0.61, as determined from slip-line
field theory [9]. It was assumed that o changes from 0 at the surface to
0.81 under plane strain and that 8 remains constant at 0.61. for « the form

081 z ,
“T0 [{1+(Z/Q)“}”“] @

is suggested. For low z/Q values, « increases linearly, turns around at
z=( and asymptotically approaches 0.81 for z — «. The sharpness of the
transition is determined by the choice of the exponent . Q is a measure of
the transition zone, the region from the surface to where plane strain is
reached, and will be related to the plastic zone size r,. Figure 3 shows « as
a function of z/Q for u = 4. As illustrated, a plane strain condition is
nearly reached at z = Q.

Relationship Between Stress State and Ductility

For the effect of stress state on fracture ductility Weiss [6] proposed a
volume strain fracture criterion. Accordingly

L (W ®

TF

where €y, is the effective fracture strain for the stress state (a, B); & is
the fracture ductility in tension, that is, « = 0, 8 = 0; n is the strain
hardening coefficient in the exponential stress strain relation & = ke”,

1
1+ a+p’

M= {(1+a+ B =3+ B+ ap)p®

W =

Using the balanced biaxial or bulge ductility &, -,,5 ¢ as a reference, the
foregoing relationship becomes

Erap = QWM)"ep o ~1.5-0 @
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FIG. 3—Distribution of stress ratio « as a function of the location (z/Q) below the
specimen surface as predicted by Eq 2.

Variation of Local Fracture Ductility and Fracture Resistance Through
the Thickness Along the Leading Edge of the Crack

Combining Eqs 2 and 4 one obtains the local effective fracture strain
distribution along the crack front. The distribution of the ratio (€7,.5/ €r,q =1.
g <o) as afunction of z/Q, the distance from the surface, has been calculated
on the computer and is shown in Fig. 4 for n = 1.2 The fracture strain hasits
maximum at the surface and decreases with distance from the surface until
it reaches the plane strain value. The local fracture resistance K g, in terms
of stress intensity units, can be related to the multiaxial fracture ductility
through Eq 1, and its variation with the distance from the surface along the
leading edge of the crack will be similar to the ductility distribution shown
in Fig. 4. The low fracture resistance in the interior explains the crack
tunnelling effect frequently observed during experiments.

8 It should be noted that the » value as used here is not the conventional # value obtained
from logarithmic plastic strain versus stress plots. Rather it is that value of n which best
characterizes the effective stress strain curve & = Ké&*, where € is the total strain, from zero
load to the onset of fracture. Experimental K, versus ez o, 5~ relationships obtained from
Eq 1 correlate well with the assumption of n = 1 [10]. Ductility relationships are in good
agreement with 0.45 < n = 1[11]. For the sake of simplicity the following development assumes
n = 1; however, a correction for other values of n can be incorporated.
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FIG. 4—Variation of local fracture ductility as a function of the distance (z/Q), below the
specimen surface as predicted by Eq 4, with n = 1.

Average Fracture Resistance

The average fracture resistance value for a specimen of a given
thickness is obtained from the local G(z) or R(z)* values as

1 t2
R = 72/; R(z)dz &)
From Eq 1, the local fracture resistance, R(z) is written as
R(z) = ESp*(€x)%(z2) ©6)

Rewriting Eq 5, one obtains from Eqs 4 and 6

t12
- 2
R = ESP*(gp,u=1,ﬂ=o)27/; (QWM)3d: )]

n=1

* Note that the average is taken over the local G (energy release rate rgsistance) apd not
K, (stress intensity) values, following the practice by Bluhm [/2] for similar calculations.
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When the plate thickness is such that the plane strain condition prevails
over a substantial portion of the crack front, €,(z) is essentially the same
as & (plane strain) and the corresponding WM value (for « = 0.81 and
B = 0.61) is 0.1395. Since the average fracture resistance under this
condition is the plane strain crack extension force G,., one obtains

GIc = ESP*(0279)2(€F)2901 =1,8=0 (8)

Eliminating the ductility term from Eq 7 by using Eq 8

Gie 2

R=———
(0.279)* ¢

/2
ﬁ (2WM)2dz )

Since «,8 can be expressed as a functionz (Eq 2), W(z)M(z) is known, and
R can be obtained as a function of thickness for any given material.
Because of the form of Eq 2, R is determined completely by R, (plane
stress fracture resistance) or R, (plane strain fracture resistance) and the
ratio (Q/t). Since Q is assumed to be a multiple of the plastic zone size r,,
(Q/t)is also proportional to (r,/t) or to (G/t). Figure 5 shows the results of a
computer calculation of R versus (Q/t) for 7075-T6 aluminum.

Thickness Effect

In order to utilize the above concept to predict the effect of thickness on
fracture resistance, the R versus (Q/t) relationship has to be translated to
R versus (G/t) relationship. According to the model, Q is proportional to
r,, that is

Q =Dr,=FG (10)

where F = DE/2no,2 is a material constant. For precise conversion of Q
to G, it is necessary to know the value of D. Previous studies [/3] indicate
that D = 4 represents a reasonable estimate. With 7075-T6 aluminum
(o, = 66 ksi and E = 10 x 103 ksi), F = 1.5 (ksi)~'. From Fig. 5 and
from the condition R = G for crack advance, we obtain the desired R
versus thickness relationship as shown in Fig. 6. Figure 7 shows the
predicted fracture resistance in terms of stress intensity units, K,; as a
function of thickness for three chosen values of G;.. The experimental
values of K. for various thickness for 7075-T6 and T651 aluminum along
with the range of K, values reported by Kaufman (/4] are also identified
in the same plot. Comparison of the experimental values with those
predicted by the model shows good agreement with G, = 61.5 in-Ib/in.2
corresponding to K. = 26 ksiVin.
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FIG. 5—Average fracture resistance, R versus (Q/t) or (r,/t) curve for aluminum alloy
7075-T6, calculated from Eq 9.
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FIG. 6—Average fracture resistance R versus thickness calculated for aluminum alloy
7075-T6.
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FIG. 7—Experimental and theoretical fracture toughness values for aluminum alloy
7075-T6 and T651 as a function of thickness.

R-Curves

It should be possible to extend these considerations to obtain an
expression for R-curves, that is, to obtain a relationship R = fla, + Aa).
A schematic illustration of the model is given in Fig. 2. From this and
from Fig. 5 it is clear that increasing the plastic zone size increases the
average crack extension resistance R. The problem is to obtain an
expression between Q or r,, and the instantaneous crack length a. No such
relation is readily available. It might, however, be possible to obtain one
as follows. The plastic zone size at crack crack advance, R = Gis known
to be a linear function of R, that is

r, = AR = AG = Acg(a/w) an
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where
A = proportionality constant,
g(ai) = function of the specimen geometry and type of loading according
to ASTM Test for Plane-Strain Fracture Toughness of Metallic
Materials (E 399-73),
a = crack length, and
w = specimen width.

From Eq 11 we obtain

dGy —const = Gd Ing(a/w) 12)
and since G = R
dR G\ dR
it = ___) - (13)
dG, = const R Rln g(a/w)

Equation 13 can be integrated and yields for the R-curve

gla/w)

R¥=Rg +aln ————
o & glao/w)

(14)

Figure 8 shows a family of curves according to Eq 14 with R, ;= 0 and
a=1,2,3,and 4.

The proposed model was tested on R-curves obtained from D. E.
McCabe?® on 7079-T6 aluminum, 7475-T761 aluminum, and PH 14-8Mo
stainless steel. The K curves for these materials are shown in Fig. 9.
From the points of tangency of R-curve and G-curve, the value of G (or
K ) at instability is obtained. Using these values in Eq 14, K is calculated
as a function of Aa. The predicted K, curves, a = 4, for 7079-T6
aluminum, 7475-T651 aluminum, and PH 14-8Mo stainless steel are also
shown in Fig. 9. The approach presented here needs further experimental
verification, especially with respect of the applicability of Eq 13. Fur-
thermore, a more accurate solution would require a numerical treatment
based on Eq 9 which can be readily carried out on a computer.

Acknowledgment

‘The work presented here was sponsored by the United States Navy Air
Systems Command, Contract No. N-62269-73-C-0261. The authors grate-
fully acknowledge this support as well as the special interest and
encouragement of R. Schmidt, S. Goldberg, and M. Valentine. The au-

5 Private communications, 18 Jan. 1974; D. E. McCabe, senior research metallurgist,
Armco Steel Corporation, Middletown, Ohio 45042.



WEISS AND SENGUPTA ON DUCTILITY 205

oL=2
*x=3
x=4
15— A=\
R 1LO}—
%
0.5—
o 1 [
0] ] 2 3 4 5
Aa
I+ a,
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What R-Curves Can Tell Us About Specimen
Size Effects in the K. Test

REFERENCE: Lake, R. L., ““What R-Curves Can Tell Us About Specimen Size
Effects in the K;. Test,”” Mechanics of Crack Growth, ASTM STP 590, American
Society for Testing and Materials, 1976, pp. 208-218.

ABSTRACT: Size effects in the K|, test were investigated by testing duplicate
compact specimens in ten different combinations of five thicknesses and five
widths. Curves of crack resistance as a function of crack extension were calculated
in terms of strain energy release rate, G, rather than stress intensity factor, K. It
was found that the entire set of data could be represented by a single linear equation
of the form, R = R, + pAa. The coefficient, p, was found to be an inverse function
of specimen thickness.

When this family of R-curves is compared with the driving force, G, curves for
the various specimen sizes, it can be seen that the ratio of maximum load to the
measuring point load (Pnax/P) in the record of a plane strain toughness test,
depends primarily on the width/thickness ratio of the specimen. This ratio appears
to bear no relation to the contribution of crack tip plasticity to the apparent crack
extension at the measuring point. Accordingly, inclusion of a maximum value of
this ratio in the validity requirements of ASTM Method E 399 for the purpose of
restricting such a contribution is questioned.

KEY WORDS: crack propagation, fracture tests, crack initiation, aluminum alloys,
toughness, plastic analysis, strains, stresses

To obtain greater assurance of linear elastic behavior in the K| test,
material specifications for the B-1 bomber required the use of specimens
having in-plane dimensions substantially greater than those required by
ASTM Test for Plane-Strain Fracture of Metallic Materials (E 399). This
requirement had two effects. First, because the measuring point in ASTM
Method E 399 is a function of relative, rather than absolute, crack
extension, the larger specimens tend to give slightly higher values of K.

1Staff research engineer, Engineering Properties Section, Kaiser Aluminum and Chemical
Corporation, Pleasanton, Calif. 94566.
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Second, because the specimen thickness requirement of ASTM Method E
399 was unchanged, the use of specimens with W > 2B,2 called the
‘“‘alternate specimen’” in ASTM Method E 399, was encouraged. The full
consequences of the latter effect were not immediately apparent.

The author’s company had made measurements to determine K, values
on a considerable number of lots of 2000 and 7000 series aluminum alloy
plate to establish a data base for statistical characterization of toughness
resulting from normal production practices. The standard, W = 2B,
specimen had been used for this work, and the larger specimen would
certainly produce an upward shift in the data base. A preliminary
investigation of specimen size effects was undertaken in an effort to
assess the nature and extent of this shift without retesting all of this
material.

Material

A lot of 2 1/2-in.-thick 2124-T851 alloy plate was chosen, more or less at
random, from among those available. The chemical analysis of this plate
is shown in Table 1, together with the composition limits published by the
Aluminum Association for this alloy. The composition was typical for the
alloy as it was then being produced.

All of the toughness tests to be reported here were in the L—T
orientation; hence, only the longitudinal tensile properties are of interest.
They are: ultimate tensile strength — 71.6 ksi; yield strength (0.2 percent
offset) — 67.3 ksi; and elongation in 4 diameters 6.8 percent. The yield
strength was somewhat above the typical value published by the
Aluminum Association but not unusually so.

Duplicate measurements of toughness by ASTM Method E 399 using
compact specimens (B = | in., W = 2 in.) centered at quarter thickness,
gave valid K. values of 25.4 and 25.0 ksiv/in. The minimum thickness for
a plane strain test was, therefore, a bit less than 3/8 in.

Procedure

All tests were in strict compliance with ASTM Method E 399 with the
exception of some specimen dimensions.

Since a more accurate compliance curve was not immediately available,
R-curves were calculated with the help of a curve “‘eyeballed’’ through
pairs of values of a/W and EBv/P obtained from the measured specimen
dimensions and initial slopes of the load displacement records, respec-
tively, of some 125 K|, tests. The a/W values ranged from 0.423 to 0.650.
This curve has since been compared with values of EBv /P calculated from
Table 2, ASTM Proposed Recommended Practice for R-Curve Determi-

*Throughout this paper any notation pertaining to specimen dimensions is that of ASTM
Method E 399.
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TABLE 2—Comparison of empirical compliance calibration with one based on Table 2 of
Proposed Recommended Practice for R-curve Determination.

EBv/P EBv/P, Table 2
a/w Empirical of Recommended Practice Difference, %
0.425 40.06 40.99 —-2.32
0.450 44.48 45.21 —-1.64
0.475 49.68 50.05 -0.74
0.500 55.64 55.61 +0.05
0.525 62.22 62.08 +0.22
0.550 69.36 69.66 —0.43
0.575 77.47 76.67 +1.03
0.600 87.66 89.50 -2.10

nation.? Calculation was made by linear extrapolation from values of
EBy /P at the load line and 0.1576 W outside the load line to the specimen
face, 0.25 W from the load line. Results are shown in Table 2.

Initial slope versus a/W data seem to be characterized by considerable
scatter. At least this was found to be the case in setting up the compliance
curve and in constructing the R-curves. This scatter was treated as though
it resulted from variations in E. All slopes from a particular test were
multipled by the factor necessary to make the initial slope equal to that
which, according to the compliance curve, corresponded to the measured
value of a,/W for that specimen.

Results and Discussion

The work was carried out in two phases with somewhat different
objectives. During the first, which was frankly exploratory, interest was
primarily in obtaining a feel for the test—seeing if there were any
experimental difficulties with the relatively thinner specimen and making
a rough estimate of the size effect. Duplicate specimens were tested in
three sizes: B =1in.; W =4and 6in.;and B = 2in., W =4 in.

Results of these tests compared about as expected with the results from
the earlier B = 1-in., W = 2-in. specimens. There was a size effect. K|,
values for the 1-in.-thick specimens increased from 1 to 1 1/2 ksiv/in. with
each 2 in. increase in W, and the 2-in.-thick specimens gave slightly lower
values than 1-in.-thick specimens of the same width. One aspect of the
results was very disturbing, however. Both sets of ‘‘standard’” specimens
gave completely valid results. Both sets of ‘‘alternate’” specimens, in
which W > 2B, failed to meet the P,./P, <1.10 requirement of ASTM

31974 Annual Book of ASTM Standards, American Society for Testing and Materials, pp.
669-683.
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Method E 399. Visual examination showed that the standard specimens
simply did not provide enough crack extension to allow the shear lips to
reach their equilibrium size. At this point, R-curves were constructed for
all eight specimens to see if they could shed further light on the reasons
for the invalidity of the alternate specimens. They only added to the
confusion since the curves for all six of the I-in.-thick specimens fell
within a narrow band whose limits were set by the two specimens with
W = 4 in. The band was no wider than would be expected from the same
number of ‘‘identical’’ specimens, and the data from the two larger sizes
should have been just as valid as that from the smaller.

The purpose of the Pp../P 4 requirement is stated in footnote 4 where it
says, with respect to a proposal to establish a limit on this ratio,

The rationale behind this suggestion was to provide a restriction on the
contribution of crack tip plasticity to the displacement at the measurement
point P,. The inherent assumption is that as the plasticity contribution to P,
increases, it will be reflected in the increasing amounts of stable crack
extension under rising load, and consequently in a progressively higher ratio
of Prax/Pqg - . -

It is difficult to see how this reasoning applies in the present case.
Plasticity at the crack tip should result from one or the other of two
causes, acting alone or together. If the crack length were too short, linear
elasticity could be violated, or, if the specimen were not thick enough,
through-the-thickness yielding could occur. The in-plane dimensions
could hardly be at fault here, for it was the data from the longer crack
lengths which were being rejected. Nor could the thickness be too small to
provide plane strain restraint, since standard specimens of the same
thickness gave valid results. Indeed, a specimen less than half as thick
would have met the plane strain requirements of ASTM Method E 399.
Evidently there was something special about the proportions of the
standard specimen, and more testing with several different specimen sizes
would be necessary to find out what it was.

For the second phase of the investigation, duplicate specimens in six
more sizes were machined from the broken halves of those already tested.
The new sizes were B = 1/4in., W = lin.,and W = 2 in.; B = 1/2in.,
W=1lin,and W =2in.;and B =3/4in., W=11/2in.,and W = 2in.
Some idea of the range of specimen sizes may be gained from Fig. 1.
Again, all of the standard specimens gave valid K. values, and all of the
alternate specimens, save one of the 3/4 by 2 in. size which squeaked by
with a ratio of 1.09, failed to meet the P,./P, requirement.

4Brown, W. F., Revision of E 399-70 T, Memorandum to Members of E 399-70 T Revision
Task Group, and E-24 Executive Committee, 23 Sept. 1971.
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FIG.1—Range of compact specimen sizes. The smallest was 1 /4 in. thick; the largest was 2
in. thick.

Following the publication of the R-curve approach contained in the
J-integral guidelines,® it was decided to plot our resistance curves in terms
of G rather than K. The picture which resulted from this approach was
surprisingly consistent. The curves were essentially straight lines sharing
a common intercept on the G axis and having slopes which decreased
regularly with specimen thickness. Using least square methods, we fitted
an equation of the form

R =R, + pAa

to each of the sets of crack resistance data. The number of points per set
ranged from 8 to 18, averaging just over 14. In every case, the data points
extended beyond the maximum of the load displacement curve. The
values of R, and p obtained from the fitting process are listed in Table 2.
The values of the slope parameter, p, appeared to be such a regular
function of thickness that a least square fit was attempted here also. The
quantity 8. = (Ki./oy)%/B was chosen as the thickness variable. A value
of Ky, = 23.7 ksiV/in., obtained by the usual relation, K = \/GE, from a

5 ASTM Task Group E24.01.09 Guidelines for Jyc Tests, distributed with the minutes of the
10 Oct. 1973 meeting of the Task Group.
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value of G which was the average of the 20 values of R, listed in Table 3
was used to calculate B.. (Ki/oy)? turned out to be 0.124 in. Again, a
linear relationship was found. All of the data, over 280 points on 20
curves, can be represented by the single equation

R = 53 + (2787Bi — 51)Aa

where the units of R are inch-pounds per square inch.

The fit of the equation to the data points may be judged from Figs. 2 and
3 showing the curves for the 1/4 and 2-in.-thick specimens, respectively.
In each figure the lines are derived from the foregoing equation. (All lines
in each figure represent the same calculated R-curve, displaced as
necessary to avoid confusion among the plotted points.) The points
associated with each line are the actual data points for a different
specimen of the same thickness. The first curve in Fig. 2 should probably
have been omitted. The fatigue crack in this specimen was too short on
one side and too long on the other. If the lines in Fig. 3 seem too low with
respect to the points, remember that they were drawn through an average
value of G, obtained from 20 curves.

An explanation of the P.,./P, problem is fairly apparent in Fig. 4
where the family of R-curves represented by the single equation given
earlier (dashed lines) are superimposed on the family of curves showing

TABLE 3—Equations for R-curves.

Specimen W, in. B, in. R, in. Ib/in.?
1 1 1/4 42,7 + 1207 Aa
2 1 1/4 49.0 + 1421 Aa
3 2 1/4 58.8 + 1378 Aa
4 2 1/4 49.0 + 1430 Aa
5 1 12 52.4 + 606 Aa
6 1 172 56.9 + 741 Aa
7 2 172 51.3 + 634 Aa
8 2 172 48.2 + 556 Aa
9 1172 3/4 50.5 + 360 Aa
10 1172 3/4 53.6 + 419 Aa
11 2 3/4 48.5 + 394 Aa
12 2 3/4 53.3 + 361 Aa
13 2 1 55.8 + 297 Aa
14 2 1 50.9 + 335 Aa
15 4 1 54.8 + 289 Aa
16 4 1 533 + 321 Aa
17 6 1 55.2 + 289 Aa
18 6 1 59.0 + 279 Aa
19 4 2 57.6 + 117 Aa
20 4 2 59.9 + 114 Aa
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the change in G with a at constant load (solid lines) for each of the
specimen sizes tested. The G-curves are all drawn on the assumption that
the initial value of a/W was 0.45.

The standard specimen does possess special properties, at least for
materials with the general level of crack initiation toughness shown here.
The initial slope of the G-curve for a particular specimen size is just
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FIG. 3—Further comparison of experimental and fitted R-curves. The points were derived
Jrom the test records of the 2-in.-thick specimens.
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FIG. 4—Comparison of crack resistance curves (dashed lines) with crack driving force
curves (solid lines).

slightly less than the slope of the R-curve for the corresponding thickness.
Only a modest increase in load is required to bring the two curves into
tangency. When a thinner alternate specimen is used, a much greater
increase is necessary to elevate and rotate the G-curve by the required
amount.

If a material of greater initiation toughness were being considered, the
R-curves would be moved up in the diagram. We can oniy speculate as to
how their slopes might change. There is qualitative evidence that initia-
tion and propagation toughness of aluminum alloys do not respond in the
same way to changes in microstructure. It is known, however, that the
G-curves will rotate to the left as they move up, and it is quite possible
that the relatively thinner specimens might meet the P, /P requirement
under such circumstances.

It is clear that the P,,./P, requirement rejected data from specimens
showing excess plasticity but which nevertheless passed all of the validity
checks of ASTM Method E 399-70 T. However, we believe the bad data
were rejected for the wrong reason. At least some of the objectionable
data cited in footnote 4 as having been rejected by the P, /P, test were
obtained from specimens in which B < W /4 — outside the range of sizes
permitted by ASTM Method E 399. The reference does not list the
proportions of the specimens from which the rest of the rejected data were
obtained, but it does indicate that they were less than 0.2 in. thick. It
seems reasonable that all of these small specimens would have employed
the same W dimension to minimize the cost of test fixtures. Judging from
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the thickness and proportions of the thinnest specimens listed, W was
probably either 5/8 or 3/4 in. Even if it were as small as half an inch, the
specimens could not have been of standard proportions.®

Before leaving Fig. 4, another interesting feature of these curves should
be noted. The relative positions of the W = 1; B = I; and the W = 2,
B = 2 curves indicate that square specimens of this type should exhibit a
classic ‘‘brittle’’ load-deflection curve with no slow crack growth. Is it
coincidence that the J-integral guidelines recommend such a specimen
with thickness equal to twice the unbroken ligament length to obtain crack
initiation at maximum load?

Parenthetically, it should be noted that truly unstable crack propagation
probably did not coincide with attainment of maximum load in any of
these specimens. Certainly it did not in any of the standard specimens.
Observation of the progress of the test and the very considerable crack
extension which occurred under slightly decreasing load in such speci-
mens indicate that complete fracture of the specimen could have been
easily prevented by stopping cross-head motion after reaching maximum
load.

To those familiar with the R-curve method which has been proposed for
the determination of J, these results should not be surprising. Both
approaches construct a portion of the curve of crack resistance versus
crack extension and extrapolate it back to zero crack extension to find the
strain energy release rate at crack initiation. (There are minor differences,
which can be easily reconciled, in the way in which the contribution of the
crack tip plastic zone to effective crack extension has been handled.) Both
approaches find the index of crack initiation toughness to be independent
of thickness throughout most of the range. Both agree that the index is
nearly equivalent to the K. value determined by ASTM Method E 399.
The two approaches appear to be identical in principle. The main
difference seems to be that one specimen is sufficient to provide the entire
R-curve when we work in the range of small-scale yielding.

Such a unified picture of fracture under both large- and small-
scale yielding seems to indicate a need to rethink and clarify the
meaning of the terms **plane strain’’ and ‘‘plane stress fracture’” and the
material thickness range associated with each term. Certainly, it is no
longer meaningful to classify a thickness as belonging to one regime or the
other without specifying whether crack initiation or crack propagation is
under consideration. In the case of crack initiation, the value, K., which
we are accustomed to think of as plain strain seems to apply at any
thickness above the maximum at which full slant fracture can occur. If by

81t has since been learned, through private communication, that the W dimension of these
specimens was, indeed, half an inch. Thus, they were within the requirements of ASTM
Method E 399. They were ““alternate’” rather than ‘‘standard’’ specimens, and the conclusion
is unchanged.
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plane strain crack propagation we imply, as I think most of us do,
propagation against a near constant crack resistance, then attention must
be confined to material many times thicker than that normally associated
with this term. A plate 4 to 5 in. thick would be required to obtain a
substantially horizontal R-curve in the 2124-T851 used in this work. We
wonder if it is useful to continue to apply these terms, implying contrast-
ing behavior to what is becoming increasingly apparent as a continuous
spectrum?

Conclusions

We have found a pattern of fracture behavior for one aluminum alloy
which distinguishes between crack initiation and crack propagation
toughness. The former is independent of thickness, the latter strongly
dependent on it. The pattern explains many of the size effects which have
been observed in the K|, test. Inasmuch as many of these effects have
been observed in alloys of different base metals, there is reason to believe
that other materials will follow a somewhat similar pattern.
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ABSTRACT: This paper describes the effect of specimen size on slow crack growth
and fracture toughness of the titanium alloy Ti-6A1-4V. The load versus crack
opening displacement curve rises steeply after reaching the end of the linear part.
Stable crack extension starts within the linear part of the P-v-curve. The crack
growth resistance curve is independent of thickness B until Kq in the range
2 < B < 20 mm, leading to the conclusion that slow crack growth can occur in
plane strain.

The secant method, leading to K4 at 2 percent crack extension, yields a specimen
geometry dependent fracture toughness. K4 increases with width, W and is only
slightly dependent on thickness, B.

The consequences of this behavior for fracture toughness determination in
connection with the ASTM recommendation are discussed.

KEY WORDS: fracture properties, crack propagation, toughness, titanium alloys,
tests

After the application of the Griffith concept on metallic materials by
Irwin, the effect of the thickness of the material on the characteristic
values of fracture toughness received research emphasis. During the first
investigations the stress intensity factor at the onset of unstable crack
propagation K. was measured. It was established that K, approaches a
threshold with increasing thickness and that K . increases with decreasing
thickness and after reaching a maximum decreases again [/].2 Later, it
was found that the threshold value, the fracture toughness K., could also
be measured with thinner specimens, provided that in the center of the
specimen there is small unstable crack propagation. This propagation

! DFVLR, Institut fiir Werkstoff-Forschung, Linder Héhe, Germany.
2 The italic numbers in brackets refer to the list of references appended to this paper.
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mode is characterized by a discontinuity (pop-in) of the load-crack
opening displacement curve [2]. After the observation that the crack
propagation can also occur continuously and that the crack opening
displacement curve changes continuously from the linear to the nonlinear
part, the secant method was introduced (3], leading to K4, corresponding
to a crack growth of 2 percent (neglecting plasticity effects). Different
investigations showed an increase of K, below a critical specimen
thickness [3-5]. Therefore, for the determination of K., it was proposed
that specimens be chosen with a thickness larger than a minimum value of
B, = 2.5 (Kic/o,)*.

In ASTM STP 463 results concerning the increase of K, with increasing
thickness have been reported for the first time. May [6] observed this
effect on a titanium alloy, whereas Jones and Brown [7] observed it on a
4340 steel for a small specimen width, whereas a decrease of K, was
observed for larger specimen width. Brown and Srawley [7] traced the
thickness effect to a thickness dependent crack growth resistance curve.
Jones and Brown however, had not measured K-Aa curves, but deter-
mined Aa from the P-v diagram.

Finally Kaufman et al [9,10] have established an increase of K, with
increasing specimen thickness for different aluminum alloys. By varying
thickness B and width W it was found that K 4 is not a direct function of B,
but of the crack length a,. Crack growth resistance curves were not
determined by Kaufman et al.

This paper presents results of experiments with the titanium alloy
Ti-6Al-4V. K, and the crack growth resistance curve have been measured
for different specimen geometries.

Characteristic Values of Fracture Mechanics

In order to characterize the material behavior, some parameters must
be calculated from the experimental results. In the following these
parameters are summarized.

Crack Growth Resistance Curves

The behavior of a material with sharp cracks under increasing load can
be described by the crack growth resistance curve (R-Aa or R-a curve,
Fig. 1), indicating the energy necessary for crack propagation. Crack
growth begins at a critical value R,. With increasing crack growth R
increases, reaching a maximum value R,,. Unstable crack growth occurs
in a load controlled test if the G-a curve touches the R-a curve. Between
R, and R stable crack growth occurs.

The R-a curves are dependent on the stress state at the crack tip. It is
possible that very thick specimens, where the plane strain state in the
specimen center predominates, show no stable crack growth but unstable
crack growth starts at R..
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CRACK GROWTH RESISTANCE R
CRACK EXTENSION FORCE G

ol—m—————_——— 2

< CRACK LENGTH a
Aa

FIG. 1—Crack growth resistance—crack extension-curve.

The stress intensity factors corresponding to the R values are:

K. At the onset of stable crack growth.

K .. At the onset of unstable crack growth.

Ki.: At the onset of unstable crack growth at plane strain state, for
example, in very thick specimens.

For very thick specimens the threshold K|, of K, should be equal to K.
This point will be considered further.

According to common fracture mechanics concepts, the crack growth
starts in the center of a specimen of medium size if K = K, = K. With
increasing K the crack front bows outwards until at K. unstable crack
growth occurs. Below a critical thickness B,. the minimum thickness for
K. determination, there is also no plane strain state in the specimen
center and therefore K is increasing with decreasing thickness (Fig. 2).
K. reaches the thickness independent value K. at a thickness B ’larger
than B,.

Load Versus Crack Opening Displacement Curves

The evaluation of a load-crack opening displacement-curve yields the
following K values:

K4 From pop-in load or from load, determined according to the
secant method.
Kies: Ko, determined with the secant method, if all requirements of
the ASTM recommendation are fulfilled.
Kmax: From maximum load and a = a, (neglecting the stable crack
growth).
K. From load at the onset of unstable crack extension (in a load
controlled experiment the maximum load) and the real crack
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FIG. 2—Effect of specimen thickness on K, and K.

length including the stable crack extension. Due to the curved
crack front at the onset of unstable crack extension, the correct
value of K . is difficult to determine. The calculation is therefore
done, assuming a straight through crack front.

K ,: From load at the first deviation from the linear part of the
P-v diagram.

It is necessary to examine for a given material whether K g or K5 is in
agreement with K. according to the preceding definition.

Effect of Thickness on Ky

Different Components of Crack Opening Displacement

The crack opening displacement, measured in a fracture mechanics
test, can be separated into three components:

(a) Elastic Deformation—During elastic deformation the relation be-
tween the crack opening displacement v ., (measured with a clip gage) and
the load is as follows

(3

(b) Plastic Deformation at the Crack Tip—Plastic deformation at the
crack tip yields to an additional crack opening displacement v . The
relation between v, and load P or stress intensity factor K can only be
approximately calculated. Brown and Srawley [8] have published results
of finite element calculations, obtained by Swedlow and Roberts.Some-
what different results were obtained by’ Markstrém [11]. According to
Markstrém [1] a relation exists for each material between the nondimen-
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sional qualities K/o,VB and v,/v. for specimens with a fixed ratio
crack length a,: specimen width W: specimen thickness B. Given the
validity of this relation, it becomes possible to modify the relations of
Swedlow and Roberts for other specimen sizes.

(c) Crack Extension-During a crack extension Aa, the function f(a/W)
in Eq 1 is altered, corresponding to an increase of the crack opening
displacement at a fixed load by v... The relation between v, and Aa is

given by
fa
o 17 (0)
e 2 WA @)

T

If fracture toughness is to be determined with the secant method, then at
K5 the ratio (v, + v )V is equal to 0.05.

V1 <€ Vgr

If the plastic component of the crack opening displacement v, can be
neglected, the crack extension at K, can be calculated from Eq2
with ao/W = 0.5, v,ve = 0.05, f/f' = 0.2.

Aa = 0.02 X g, = 0.01W 3)

It follows that the crack extension at K, increases with increasing
specimen width W. If K-Aa curves are independent of thickness B
(Fig. 3a) K, increases with increasing B; this holds for specimens with
fixed ratio a,:W:B. It can be expected that the K-Aa curves are dependent
on thickness below a minimum thickness, in such a way that for thinner
specimens the crack growth resistance curve is shifted upwards (Fig. 35).

K
B, < 82
Kaz
Ka)
Bl( Ba¢B3
Aq, Aa, Aa Aa
a b

(a) K-Aa curves independent of B.
(6) K-Aa curves depend on B.

FIG. 3—Influence of K-Aa curves on K.
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Subsequently X, decreases with increasing thickness for specimens with
a, = W/2 = constant (1 - 2 — 3 in Fig. 3b). For specimens with fixed
ratio a:W:B the crack extension Aa at K, decreases with decreasing B.
Dependent on the K-Aa curves for different thickness, K, can decrease or
increase with increasing thickness (5 — 4 — 3 in Fig. 3b).

Vp1 2 Ver

If v, can be neglected with respect to v,,; at K o, the plastic behavior at
the crack tip will determine the value of K 4. The plastic component of the
crack opening displacement can be attributed to a crack extension Aa..
In Fig. 4 K-Aa curves are plotted, calculated from the nondimensional
curves of the paper of Markstrom [//] for a low-strain hardening material
and a yield strength of 910 MN/m?2. It can be seen that in any case Kg
decreases with decreasing thickness B, even if the stress state at the crack
tip does not change (1 — 3). The decrease of K ¢ is greater, if the reduction
in thickness is connected with a transition from plane strain to plane stress
(1—4).

vy and vg Comparable

If at K ; the components of crack opening displacement v, and v, are of
the same order of magnitude, the curves of Figs. 3 and 4 must be
superposed. K 4 increases with increasing W and, for specimens with fixed
B/W ratio, also with increasing B, given that the K-Aa curves are
independent of B. Only if the K-Aa curves are shifted higher up with
decreasing thickness, is it possible that K, decreases with increasing
thickness.

[\
o
o

2 "/J
l

B=40mm, plane strain
B=40mm, plane stress
B= I0mm, plane strain
B= I0mm, plane stress

|

02 0.4 06 08 1.0 12
APPARENT CRACK EXTENSION Adew.mm

aooa

STRESS-INTENSITY FACTOR K, MN/m*?
o
S

FIG. 4—Stress intensity factor as a function of apparent crack extension (after
Markstrom [11]).
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Procedure

Material
Two plates of the alloy Ti-6Al-4V were investigated.

A. A forged and annealed plate of Contimet GmbH with a size of 44 by
880 by 880 mm. The results of tension tests in L-direction were:
oy = 910 MN/m? ¢, = 1017 MN/m?2.

B. A rolled and annealed plate of Friedr. Krupp GmbH? with a size of
82 by 285 by 800 mm. The results of tension tests in L-direction
were o, = 937 MN/m? o, = 974 MN/m?,

Both plates had a Widmanstidtten microstructure, Plate B having
unusual large grains of about 1 mm. Due to the large influence of
microstructure on fracture toughness [12-15], both plates were investi-
gated metallographically at different positions. It was found that Plate B
had a region of deviating microstructure, and the segment was discarded
subsequently. Otherwise the homogenity of the plates were satisfactory.
Part of the scatter of the results nevertheless may be due to a varying
microstructure.

Specimens

Single edge notched specimens were made with the fracture plane in
LS-orientation. Specimen dimensions are shown in Table 1. Besides
ASTM standard specimens with W/B = 2, square specimens and speci-
mens with W/B > 2 were used. Specimens of one geometry were
taken at random from the plates. The smaller specimens were machined
from the fractured halves of the larger specimens. Fatigue cracks were
produced in two load steps in 3-point bending. Final crack lengths were in
the range 0.4 < a/W < 0.06.

Test Procedure

Nearly all fracture mechanics tests were done in 3-point bending with a
Zwick testing machine. Only the thinner specimens (2 by 12, 6 by 6,
6 by 12, 12 by 12 of Plate A and 2 by 10, 2 by 20, 2 by 40 of Plate B) were
loaded in 4-point bending. The loading rate was 1 mm/min in 3-point
bending and 0.5 mm/min in 4-point bending, leading to K between 0.8
MN m™—32s~'and 2.5 MN m~32 s, In this range of K, fracture toughness
is nearly independent of the loading rate [/6].

In order to evaluate the crack growth resistance curve, different
specimens of the same geometry were loaded to different K values,
unloaded, and refatigued. By looking on the fracture surface with a light

3 This plate was placed at our disposal by VFW-Fokker GmbH.
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TABLE 1—Results of fracture toughness tests (mean values).

KAa5 KQa5 Kmax“v Kmax KQ AV().BP
B,mm W,mm WB MNm* MNm3 MNm? K, K, —AV—PQ-“-
Plate A
42 84 2 59.8 (6) 92.7 (5) 95.5 (5) 1.03 1.66 0.15
38 38 1 55.2 (8) 82.5 (8) 89.3 (8) 1.09 1.50 0.20
19 38 2 54.9 (8) 77.2 (8) 88.7 (4) 1.11 1.41 0.17
19 19 1 51.5(9) 72.5(9) 80.6 (8) 1.12 1.43 0.16
10 40 4 50.8 (3) 73.9 (3) 85.9 (2) 1.20 1.43 0.24
10 20 2 46.8 (15) 72.2 (15) 83.4 (15) 1.16 1.45 0.17
12 12 1 54.6 (7) 70.6 (6) 79.4 (6) 1.12 1.29 0.11
6 20 3.3 52.4 (3) 73.8 (3) 90.5 (3) 1.22 1.41 0.29
6 12 2 48.9 (15) 67.0 (15) 80.4 (14) 1.20 1.58 0.18
6 6 1 49.9 (4) 61.0 (4) 71.6 (4) 1.18 1.19 0.0
2 12 6 48.1 (5) 58.0 (5) 72.5 (5) 1.25 1.21 0.10
Plate B
78 78 1 38.8 (2) 79.3 (2) e . 2.04 0.34
39 78 2 40.93) 83.5 (3) e . 2.15 0.29
39 39 1 46.6 (2) 72.1 (2) 78.5 (5) 1.12 1.57 0.22
20 78 3.9 38.1 (4) 79.3 (4) e . 2.08 0.32
20 38.4 1.92 33.7 (4) 67.6 (4) Ce . e 2.00 0.38
20 20 1 33.0(5) 63.1(5) 76.1 (3) 1.14 1.93 0.30
10 78 7.8 54.5 (3) 78.2(3) . e 1.51 0.11
10 40 4 359 @4) 68.4 (4) A 1.94 0.32
10 20 2 33.3(2) 58.2 (8) 78.6 (2) 1.27 1.76 0.36
10 10 1 32.9 (3) 48.9 (3) 56.9 (1) 1.18 1.49 0.26
5 40 8 39.7 (2) 68.3 (2) e . 1.72 0.28
5 20 4 24.8 (2) 45.0 (2) 1.81 0.42
5 10 2 26.4 (2) 45.0 (2) 1.71 0.39
2 40 20 32.7 (1) 61.3 (1) 1.88 0.31
2 20 10, 31.4 (4) 58.2 (4) 1.89 0.40
2 10 5 25.0 (5) 43.5(5) 1.75 0.85

2 Number of tests are in brackets.

microscope or a scanning microscope it was possible to measure the crack
extension which occurred during the unidirectional loading.

For determination of the onset of crack extension the potential method
was used for Plate A in addition to the fracture surface observation. For
titanium alloys the potential method is very sensitive [{2].

Results

P-v curves

The P-v curves have a continuous transition from the linear to the
nonlinear part. Characteristic for all P-v diagrams is the heavy rise of the
curve after reaching P4, the load at the deviation from the linear part.
Therefore, the ratio K /K 4 is very high (see Table 1) varying between 1.19
and 1.66 for Plate A, and between 1.49 and 2.15 for Plate B. The



MUNZ ET AL ON EFFECT ON SPECIMEN SIZE 227

determination of K, is dependent strongly on the accuracy of the
determination of the slope of the linear part of the P-v curve. For both
plates and for nearly all specimens; however, the slope-determination
presented no problem. Nevertheless small changes in the slope yield
considerable changes in K.

For Plate B the criterion of the ASTM recommendation
Avygp Q/Av » < 0.25 is not fulfilled for nearly all specimen geometries (see
Table 1). Some specimens of Plate A also showed values greater than
0.25, the mean values for each geometry are, however, mostly smaller.

The criterion Py, /Pq < 1.1 will be discussed later on.

Effect of Specimen Geometry on Kq

The mean values of K 4 are included in Table 1. In Fig. 5 K, is plotted
against specimen thickness B and in Fig. 6 against width W. There is a
general trend of K, increasing with W. Apart from a few exceptions
(2 by 40, 5 by 20 for Plate B, 2 by 12, 10 by 40 for Plate A) through all
values of K, a common curve can be drawn. Figure 5 shows clearly the
independence of K, from B for W = 20 mm (Plate A) and W = 78 mm,
W = 40 mm, W = 20 mm with exception B = 5§ mm (Plate B). For
W =12 mm, W = 40 mm (Plate A) and W = 10 mm (Plate B) K, in-
creases with increasing B.

K-Aa Curves

Figure 7 shows the scatterband of the K-Aa curves for Plate A. For any
geometry the measurements were performed in a range a little beyond K ,.
Therefore, the larger crack extension could only be measured with
specimens with larger W. The values for different specimen geometries
were distributed randomly on the whole scatterband. No thickness
dependence of the K-Aa curves could be found. Figure 7 shows clearly the
strong increase of K, especially at small crack extensions. In order to
obtain a crack extension from 10 zm to 0.1 mm, K must be increased from
48 MN m—%% to 66 MN m™32.

Onset of Crack Extension

It is convenient to define the onset of crack extension at K for
Aa = 10 um, because the dimple size of the fracture surface is about 10
wm. Extrapolation of the K-Aa curves to 10 wm yields in K;, = 48.8 + 8
MN m~32for Plate A. With the potential method a mean value of K = 42
MN m~32 was determined for the onset of crack extension for all
specimen geometries.

A comparison of K, with K, (see Table 1) demonstrates the known
result [/2] that the onset of crack extension occurs in the ‘‘linear’’ part of
the P-v diagram.
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FIG. 7—Scatterband of crack growth resistance curve and K plotted at Aa = 0.02 a,and
Aa = 0.02 a, — Aay(filled points).

Discussion

Effect of Thickness and Width on Kg

From the observation of the independency of K, and of the K-Aa curves
of the specimen thickness it can be concluded that the crack extension to
the point K, is governed by the plane strain state in the specimen center
for all investigated specimens. The radius of the plastic zone at K;, = 48
MN m™%” for Plate A is given by

2
1 (K.
rp,=—6;< ') = 148um ()

]

For specimens with W = 84 mm the radius increases at K4 to 550 um.
The ratio B/r, at K| is equal to 14 for the thinnest specimens with
B = 2 mm. For ASTM standard specimens (B:W = 1:2) B/r,, = 76 for
B = 42 mm and B/r,; = 21 for B = 6 mm at K. For all these cases the
plastic zone sizes are obviously small enough to determine the crack
propagation by the plane strain state. According to this viewpoint the
ASTM recommendation concerning the minimum specimen size
(B/r, > 50) is suficient. Nevertheless this recommendation cannot avoid
thickness dependent K, values.

Because of the independence of the crack growth resistance curves
from B, K, should increase with W according to the slope of the K-Aa
curve, and should be independent of B for constant W, but only if at K,
the crack opening displacement v,,; can be neglected in comparison with
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v In a first approach K, is independent of W. The slight increase of K,
with increasing B for constant W, which occurs in some cases is not in
agreement with the considerations mentioned previously. A quantitative
comparison between K, and K at Aa = 0.02 q,(Ky%) is given in Fig. 7. In
addition to the scatterband of the K-Aa curves, the different K-Ag values
are plotted at Aa = 0.02a, = 0.01W. All K, values, with the excep-
tion of the specimens with cross section 2 by 12 and 10 by 40, are
within the scatterband of the K-Aq values. Specimens with 42 by 48 cross
section could not be compared, because the K-Aa curve was only
measured up to the point Aa = 0.4 mm. The good agreement between K,
and K at Aa = 0.024, supports the conclusion that v,,; at K , is negligible.
If v, is. considered a smaller crack extension than 2 percent at K 4 a shift
of K, in Fig. 7 to the left results. The amount of the shifting can only be
estimated from the calculations by Markstrom [//] or Roberts and
Swedlow [8]. For this reason, the crack opening displacement v,,, at K,
of specimens with W/B = 2, was determined from the diagram of
Markstrém for a low-strain hardening material and converted into an
apparent crack extension Aa.; according to Eq 2. In Fig. 7 K 4 is shifted to
the left by Aa. (filled symbols). It can be seen that for the specimens with
cross section 6 by 12 the corrected values are outside the scatterband.
Obviously the plastic component of the crack opening displacement is
smaller than calculated according to Markstrém.

Consequences for Fracture Toughness Determination

From the experimental results some conclusions can be drawn concern-
ing the determination of fracture toughness Ki.. From the thickness
independence of the K-Aa curves, between B = 2 mm and B = 20 mm, it
can be concluded that stable crack growth occurs also in the case of a pure
plane strain state. Therefore in a plane strain state the crack propagation
behavior cannot be characterized by only K, but by the whole K-Aa curve.
Characteristic values are K, at the onset of crack extension and the
maximum value of K (K, corresponding to R, in Fig. 1). Each K value
between K. and K, is arbitrary . K .5, determined with the secant method, is
also arbitrary, because K| is a specimen width dependent point on the
K-Aa curve. Ky, is a real material constant, which is not only important as
the stress intensity factor at the onset of crack extension but also in stress
corrosion tests. Reference 17 showed that K, and Kgcc are nearly
identical. K at the onset of unstable crack extension, which should be
indicated as K, according to the definition mentioned previously, is,
contrary to Ky, dependent on machine stiffness, loading rate, and
specimen geometry.

K. determinations require much time and many specimens. Therefore,
another way should be found to determine a material constant which is
independent of specimen geometry. One possibility is to specify a fixed
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specimen geometry for each material or for a group of materials for Ky,
determination. It is also possible to use a width dependent slope of the
secant in such a way that for all specimen geometries K. is measured at
the same point of the K-Aa curve.

The additional recommendation of ASTM that K ,,,/K ¢ should be less
than 1.1 leads to specimen sizes for which K, = K is in the upper range
of the K-Aa curves. In Fig. 8 K..,./K, is plotted against thickness B
for Plate A. This figure shows that B should be larger than 20 mm. This
arbitrary restriction of valid tests leads to K. values close to the
maximum value K,. Nevertheless, this restriction also cannot avoid
geometry dependent fracture toughness.

It was shown that Av at 0.8 P, is in some cases larger than 0.25Av at P,
The motivation behind the restriction of tests with too large Av at 0.8 P,
was to eliminate all specimens with too large v, at K4. Even if the plastic
deformation at the crack tip is so small that v,; at K4 can be neglected,
there can be considerable departure from the linear part of the P-v
diagram at 0.8 P 4. The amount of the departure can be calculated from the
K-Aa curve. From the K-Aa curve of Fig. 7 one can calculate that for
specimens with W = 40 mm AVO_gPQ/Av Py = 0.23 and for specimens with
W= 10 mm AvO,SPQ/Ava = (.22. It is not possible to make a statement
about the amount of plastic deformation at the crack tip from the amount
of the deviation from the linear part at 0.8 P,. Therefore, the question
arises, whether the restriction Avo,spQ/Av P < 0.25 is significant for
titanium alloys.

Conclusions

The investigation of the effect of thickness on fracture toughness of
Ti-6Al-4V yield the following results and conclusions:

1. The load-crack opening displacement-curves rise steeply after reach-
ing P,, the load at the end of the linear region. Therefore, fracture
toughness K5, determined according to the secant method, is dependent
strongly on the accuracy of the determination of the slope of the linear
part of the P-v diagram.

2. In a first approximation K, increases with specimen width indepen-
dent of thickness. This general tendency is partly superposed by a slight
increase of K, with thickness.

3. The crack growth resistance curve is independent of thickness until
K, in the investigated range 2 < B < 20 mm.

4. The effect of specimen dimensions on K, can be traced back to the
crack length dependent crack extension at K.

S. The restrictions of the ASTM recommendations for valid tests
(Knax’Kq < 1.1, Av 0.8po/Avp, < 0.25) cannot exclude the thickness effect.

6. Characterization of crack propagation behavior in the plane strain
state can only be done with the K-Aa curve. It should be considered in
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which way a characteristic point on this curve can be simply determined
such that the material behavior is characterized by one material constant.
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ABSTRACT: The R-curve behavior of A572 Grade 50 steel was established over
the temperature range —40 to +72°F by using state-of-the-art procedures. Both
linear-elastic-fracture-mechanics (LEFM) and crack-opening-stretch (COS) analyt-
ical techniques were used in assessing experimental results obtained under
load-control and displacement-control testing conditions. This study represents a
pioneer effort in that it is the first known attempt to evaluate the R-curve behavior
of a low-strength structural steél in some depth.

Results showed a steep K transition behavior for 1.5-in.-thick (38 mm) plate,
with minimum K. values of 57, 155, and 318 ksi V/in. (63, 171, and 350 MNm~%2)
obtained at —40, +40, and +72°F (—40, +4.5, and +22°C), respectively. A similar
behavior was observed for 0.5-in.-thick (12.7 mm) plate, with minimum K, values
of 150, 273, and >380 ksi v/in. (165, 300, and >418 MNm~*?) obtained at the
corresponding test temperatures. The results are discussed in relation to the
influence of material and testing method, as well as in relation to earlier K. results
obtained at cryogenic temperatures.

The minimum K. values measured demonstrate extensive crack tolerance for
AS572 Grade 50 steel under all combinations of the test conditions studied. With one
exception, these minimum behaviors can be translated into total critical flaw
lengths that are at least seven times the plate thickness (2a.. = 7B) for cracks
embedded in large planar structures and subjected to tensile-stress levels equal to
three fourths the yield strength. The applicability of a., calculations obtained from
R-curve measurements generally, and on the A572 Grade 50 steel specifically, is
discussed in relation to typical structural members such as H-beams.

KEY WORDS: crack propagation, fracture (materials}, mechanical properties,
stresses, strains

* This paper is a summary of the complete paper published as ASTM STP 591.
! Senior research engineer, Heavy Products Division, Research Laboratory, United
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Summary

Results of an extensive study concerning the R-curve behavior of
ASTM A572 Grade 50 steel are presented. The study was conducted using
fatigue precracked specimens to characterize the basic fracture behavior
of this steel under conditions normally encountered in most structural
applications. Under these conditions K;, measurements cannot be made;
therefore, R-curve techniques were used to determine the (plane-stress)
fracture behavior. Specifically, the study was conducted over the temper-
ature (7) range from —40 to +-72°F, under so-called *‘static’’ loading rates
(¢ = 1073 s ) and on plate thicknesses (B) of 1/2 and 1 1/2 in. Under such
conditions the state-of-stress at fracture corresponds to plane stress (K )
rather than plane strain (K,.), and the most efficient method of fracture
characterization is that of an R-curve (plot of crack driving force, Kpg,
versus crack extension, Aa).

State-of-the-art experimental and analytical procedures were used
throughout the study. This included the use of both linear-elastic-
fracture-mechanics (LEFM) and crack-opening-stretch (COS) analytical
techniques. Experimental techniques included the use of both load-
control and displacement-control testing conditions. Results were ob-
tained on various size compact-tension (CT) specimens using the double-
compliance (two clip gage) procedures for monitoring crack extension
(Aa) developed earlier by McCabe and Heyer.

Specific R-curve results were obtained on two different heats of ASTM
AS72 Grade 50 steel using a total of 24 CT specimens. Of this total, 14
specimens had in-plane dimensions corresponding to 2T and 4T speci-
mens and were tested under load-control conditions; the remaining 10
specimens had in-plane dimensions corresponding to 4C and 7C speci-
mens and were tested under displacement-control conditions. Twenty-
two of the specimens tested were of a 50-ksi (345 MN/m?) yield-strength
AS572 Grade 50 steel, and the two remaining specimens were of a 62-ksi
(427 MN/m?) yield-strength AS572 Grade 50 steel. Both 1.5 and 0.5-in.-
thick (38 and 12.7 mm) specimens were evaluated from the 50-ksi steel;
the two specimens of the 62-ksi steel were both 1.5 in. thick.

The current study represents the first known attempt to evaluate the
R-curve behavior of a medium-strength structural steel in detail—
including the influence of temperature (7)), plate thickness (B), yield
strength (o), and testing procedure (load-control versus displacement
control). In addition, the present R-curve and K. results from —40 to
+72°F are compared with K. results obtained earlier on the same two
steels at lower (cryogenic) temperatures. Because of the unique character
of this work and also because some of the results are contrary to prior
expectations, the results of the investigation are reported in detail under a
separate publication, ASTM STP 591, in order to preserve the documenta-
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tion of the study. Such results are expected to be of value in the future for
assessing studies of a similar nature conducted on constructional steels.

The results, in general, demonstrate extensive crack tolerance at
fracture for A572 Grade 50 steel under the conditions studied—with most
fractures occurring under elastic-plastic conditions and requiring analysis
by COS. The results show further that care must also be exercised in the
application of plane-stress fracture data (R-curve and K,) to structural
components in order to ensure proper predictions of behavior in service.
The specific results obtained from this study can be summarized as
follows:

1. A steep transition was observed in the plane-stress fracture behavior
for the B = 1.5-in. specimens of the 50-ksi steel, with minimum K . values
of 57, 155, and 318 ksi V/in. (63, 171, and 350 MNm™?) occurring at
temperatures of —40, +40, and +72°F (—40, +4.5, and +22°C), respec-
tively.

2. No significant differences were observed in the K . behavior of the 50
and 62-ksi A572 Grade 50 steels.

3. Greater overall resistance to fracture was observed for the B = 0.5-
in. specimens than for the B = 1.5-in. specimens of the 50-ksi steel, with
minimum K, values of 150, 273, and >380 ksi \/in. (165, 300, and >418
MNm~3?%) occurring at temperatures of —40, +40, and +72°F, respective-
ly. However, this difference in the minimum resistance to fracture for the
0.5 and 1.5-in.-thick specimens is partially the result of differences due to
testing method (see conclusions 6 and 7).

4. With the exception of three specimens, the fracture instability for all
specimens was catastrophic in nature. The excepted specimens, all tested
at +72°F, included a 7C specimen with B = 1.5 in. that exceeded
testing-machine capacity at K = 477 ksi V/in. (525 MNm~%?) and
Aa = 0.86 in. (22 mm), and duplicate 4T specimens that exhibited slow,
stable crack extension corresponding to Az, = 3.50 in. (= 90 mm) at K,
values of >380 and >503 ksi V/in. (418 and 550 MNm~372),

5. The repeatability of results for three of four sets of duplicate
specimens was within # 15 percent of the average K. value measured. The
repeatability of results for the fourth set of specimens was within +30
percent of the average K, value measured.

6. The choice of testing procedure (load-control versus displacement-
control) was found to influence the results. The K, values for the 4T
specimens tested under load-control conditions were 40 to 80 percent
higher than the values for the corresponding 4C specimens tested under
displacement-control conditions in direct comparison tests at three differ-
ent temperatures. This influence of testing procedure was consistent and
appears real, but could not be fully verified using statistical analysis
procedures.
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7. The effects of specimen thickness (B = 1.5 in. versus B = (0.5 in.) on
K. behavior evaluated in direct-comparison tests using only the load-
control testing procedure were inconclusive. Results from 2T specimens
tested at three different temperatures indicated a consistent influence,
while results from 4T specimens tested at similar temperatures were
consistent in indicating no influence. Local variations in fracture tough-
ness were apparently large enough to mask the true effects of specimen
thickness on K, behavior.

8. In relation to effects of specimen size, normal plane-stress fracture
behavior (increasing K. values corresponding to increasing values of a,)
was generally obtained with both the load-control and the displacement-
control testing methods at all temperatures. However, an inversion in this
behavior occurred with each test method at —40°F. These departures
from expected behavior may be related to inherent variations in the local
fracture toughness.

9. The K, results of the present study were shown to be consistent with
earlier K, results obtained from tests on the same steel at cryogenic
temperatures. The central concept in resolving obvious differences in the
corresponding K. and K;, transition temperatures was the apparent
existence of an intermediate K, shelf, a behavior supported by the results
of each of three different and entirely independent methods of analysis
(J-integral, K;-suppression effect, and CVN specimen results).

10. For normal stress levels used in design (op = 3/4 ay,), critical flaw
sizes (a.;) for the B = 1.5-in. plate of the 50-ksi A572 Grade 50 steel were
shown to be a. = 1.80, 5.2, and 23.0 in. (46, 132, and 585 mm) for
minimum representative behavior at —40, +40, and +72°F, respectively.

11. For normal stress levels used in design, the critical flaw sizes for
the B = 0.5-in. plate of the 50-ksi A572 Grade 50 steel were shown to be
a., = 4.0, 16.0, and >32.0 in. (100, 400, and >800 mm) for minimum
representative behavior at —40, +40, and +72°F, respectively.

12. With two exceptions, the total critical flaw size (2a.,) for cracks
centrally located in a large plate subjected to uniform tension stress were
shown to be in excess of seven times the plate thickness, (2a., =7B) for
all the eight different combinations of plate thickness and temperature
investigated for the A572 Grade 50 steels.

13. Values of a,, calculated from measurements of plane-stress fracture
resistance (R-curve and K, measurements) can be applied validly only
when the state of stress in the structural application is plane stress, and
then only under the assigned material and test conditions (7, ¢, and B).
Accordingly, such values would be directly applicable to structures with
larger planar dimensions (direction of crack propagation), including the
web location for large H-beams. Such a., values would not be directly
applicable in confined structural regions, such as in the tension-flange
region of H-beams (complete inapplicability) and the web region of
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H-beams with small web dimensions (indirect applicability of a., values
for assessing the confidence level of structural integrity).

Many of the results above were obtained by using the COS analysis
method under state-of-the-art conditions. Because this method of analysis
is still undergoing development, the limitations of this technique are not
defined precisely. Furthermore, many questions still remain concerning
plane-stress fracture generally, even for results obtained under LEFM
conditions. Nevertheless, the present studies have been an encouraging
first step in the understanding of the plane-stress fracture behavior of
AS572 Grade 50 steel, and similar medium-strength constructional steels,
and of the general applicability of plane-stress-fracture data (R-curve and
K . measurements) to structural components.

In summary, a complete manuscript describing the results of the entire
study in detail has been published by the photo offset method and is
available under identical title as ASTM STP 591. Figures 1 through 5,
taken from the complete manuscript, illustrate the nature of the experi-
mental technique employed, typical R-curve results obtained under three
of the test conditions investigated, and a summary comparison of part of
the resulting K. and earlier K;, behaviors measured as a function of
temperature.
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ABSTRACT: A model is developed for steady state propagation of a ductile crack
in an initially pressurized line pipe. The analysis is directed toward the high
toughness range of material behavior, for which extensive yielding occurs in the
pipeline walls, and the material is represented as rigid-ideal plastic. Further, to
obtain a tractable model, kinematical assumptions are made so that the deformation
of the shell is expressed in terms of a single unknown function of position along the
shell axis, which is determined in accordance with a variational statement of the
equations of motion. Separation of material is represented by a Dugdale zone of
localized yielding, in which a critical opening displacement is attained for fracture.
With these approximations, the required decay length of the pressure distribution
necessary to drive the crack, for a given exit plane pressure and decay shape, and
the profile of the opened fracture, are estimated. Inertial effects due to the shell
walls and backfill and crack arrest by branching are discussed, although it is
pointed up that a complete analysis must await further progress on the fluid
dynamics of gas escape through the fracture opening.

KEY WORDS: crack propagation, pipe lines, fracture properties, stresses, strains,
plastic deformation

Service experience has shown that ductile shear fractures can propa-
gate long distances at very high rates in a large diameter pressurized line
pipe, such as that used in gas transmission pipelines. With a view toward
developing an understanding of this phenomenon, the American Iron and
Steel Institute has sponsored a series of full-scale tests of large diameter
pipes to determine the propagation and arrest characteristics of running
ductile fractures. In each of these tests the pipe was instrumented with
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crack detectors, strain gages, and pressure transducers, and the electroni-
cally recorded data which were obtained are summarized elsewhere [1].3
The present analytical investigation was undertaken in an effort to resolve
various discrepancies which arose between observations and the basic
assumptions of previous analytical models of the process.

The mathematical model which has been proposed to represent the
ductile fracture of line pipe by Hahn et al [2,3] and Duffy et al [4] has two
main features. First, the crack is considered to be small in length
compared to the pipe diameter, and, in the case of a long running fracture,
a small ‘‘effective’” crack length is employed. The driving force for this
crack is taken to be a modified or reduced hoop stress derived from a
measure of internal pressure at the crack tip. The second main feature is a
fracture criterion which is a modified form of a critical crack tip opening
displacement condition. In the analysis summarized by Maxey et al [5],
the hoop stress acting at the crack tip was first reduced from the hoop
stress corresponding to the nominal line pressure by taking into account
the escape of gas through the crack opening. The crack driving force was
then taken to be this reduced hoop stress, amplified by a factor which
accounted for outward bulging associated with an axial crack in a
cylindrical pressure vessel. The amplification factor was determined
from Folias’ analysis [6], wherein it is assumed that the crack length is
small compared to the cylindrical shell radius and that the material
remains elastic everywhere. This driving force was then substituted into
the fracture criterion. By equating the fracture toughness to the product of
critical crack opening displacement (COD) and apparent yield stress, the
fracture condition was reduced to a relationship between the modified
hoop stress and the fracture toughness, the latter being considered
determinable from Charpy tests.

The continued development of this work by Hahn et al [3] has included
other features to make the model more realistic, such as decompression of
the gas due to radial expansion of the pipe walls, strain rate sensitivity of
the flow stress of the material, and further consideration of the ductile
cracking process. Poynton and Fearnehough [7] recently summarized this
work, and they concluded that two main factors contribute to mainte-
nance of a running crack, these being related to the radial velocity of the
pipe walls and the COD.

The results from the instrumented full-scale tests, as reported by Ives et
al [1], indicate that the appropriate model of a running ductile fracture in a
line pipe is not one in which the crack driving force is derived from the
nominal hoop stress acting just ahead of the fracture. It appears instead
that the crack is driven by the residual pressure acting on the flaps formed
by the separated pipe walls behind the crack tip. The main results from

3 The italic numbers in brackets refer to the list of references appended to this paper.
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the measurements, which support this conclusion, are that at about two
pipe diameters ahead of the crack the circumferential strain distribution
indicates ovalization of the pipe, the crack line being at one end of the
minor axis of the oval. The longitudinal strains are much larger than the
circumferential strains at this point, and they indicate deformation well
into the plastic region. As the crack tip approaches the measuring station,
the circumferential strain changes from a bending to a stretching mode.
The inward motion and accompanying bending ahead of the crack is
attributed [/] to the radial outward flaring of the shell walls under the
action of the residual pressure. As the crack opens, the pipe walls
experience significant circumferential displacement near the crack line,
and this is associated with the large extensional strains in both the axial
and circumferential directions near the crack tip.

Deformation Field

The work reported upon here was motivated by the desire to provide
an analytical description of a running ductile fracture in a pressurized pipe
which included the salient results of the full-scale tests as reported
elsewhere [/]. In particular, relationships among the main parameters of
the system were sought which had to be satisfied in order to sustain the
running fracture. The complexity of the problem is well known, and, in
order to obtain results in a reasonably short time, several major assump-
tions were made. First of all, the ratio of pipe wall thickness to mean pipe
radius is generally small compared to unity, and the theory of thin
shells (8,9] is thus assumed to apply. While the subsequent method of
analysis does not preclude the use of strain-displacement gradient rela-
tions appropriate to large deflections, this complicating aspect is ne-
glected for the time being, and the small deflection formulation for thin
shells is adopted.

In the actual tests, crack extension is clearly a transient process. The
data indicate, however, that after the crack tip has moved from the
initiator a distance of about four pipe diameters, a deformation field is
achieved around the crack tip which is maintained essentially as the crack
continues to grow. This implies that the fracture process is insensitive to
the length of the crack, and, for the purposes of analysis, the crack is
taken to be semi-infinite in length. In those tests in which the crack did
indeed propagate from the initiator without arrest, it frequently did so ata
constant rate in each uniform test section. Therefore, it is assumed that
the tip of the semi-infinite crack moves at a constant speed along a
generator of the cylindrical pipe, and that the deformation field as viewed
by an observer moving with the crack tip is time independent.

On the basis of these assumptions, the problem is still not in a form
which can be analyzed without resorting to extensive numerical calcula-
tions. Therefore, it is assumed that the entire deformation field of the shell



246  MECHANICS OF CRACK GROWTH

is determined by a single function of the axial coordinate, that is, all
displacement and strain components are known once this single function
of distance along the axis of the cylindrical shell is known. An important
observation in making assumptions concerning the deformation is that
generally thin shells tend to deform predominantly by bending, with
minimal stretching of the middle surface. For a cylindrical shell, the only
deformations satisfying strict inextensibility are those for which all
generators of the cylinder remain straight during deformation. In the case
of an axial fracture in a cylindrical shell, the generator ahead of the crack
tip which forms the prospective fracture path is split by the crack into the
two fracture surfaces. Behind the crack tip the shell walls flare outward,
and the crack surfaces separate. This deformation is clearly incompatible
with each generator remaining straight. Some middle surface stretching
must accompany the flaring out of the shell walls at the tip of the
advancing crack. Study of the shell strain-displacement relations suggests
that the observed flaring of the walls is accompanied by stretching of the
middle surface in the axial direction, which was reported in Ref /. Thus, it
is assumed in proposing a deformation field that the in-plane strain of the
middle surface of the shell consists only of extension in the axial
direction. The in-plane shear strain and the extension in the circumferen-
tial direction are taken to be zero, except for the latter within a line
Dugdale zone of plastic separation.

Spatial coordinates on the shell surface are defined in Fig. 1. The mean
radius of the undeformed shell is a, the shell thickness is 4, the
circumferential coordinate is 6, and the axial coordinate is &, the origin
£ = 0 being fixed at the moving crack tip. If x is a spatially fixed axial
coordinate and V is the speed of the crack tip, then ¢ = V¢ + x. Because
of the assumption of a quasi-stationary condition, all field variables
depend on x and 7 only through ¢£. The crack faces coincide with the lines
0<é<w,0==xq on the shell. Following the fairly standard
notation [8,91, the axial, circumferential and radial components of the
displacement vector of a point initially at (£, 9) are denoted by u, v, w.
The assumed displacement field is expressed in terms of a single unknown

-
—

FIG. 1—Geometry of steady-state crack propagation in a pressurized pipeline.
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function of &, namely, ¥i(£¢), by

w = (é) (D
v == 60y(¢) @
1
u= —-ap'(£)6* + g(¢) &)

This displacement field was constructed by assuming that each circular
cross section deforms into a concentric circle, and then by requiring that
the circumferential and shear strains of the middle surface vanish. The

function g(¢) is arbitrary at this point. The corresponding strains are given
by

— au 1 n 2 !
€ = E=7a¢(§)9 + g'(é) @)
62

Ke= = S = V@ ©)

1 atw 1 v 1
AR az  96? * a> 90 a Ve ©

1 8%w 1 v 1 ,
Keo = = " oEag +;é‘g=—;9¢l(§) @)

where
€; = axial strain,
ke and k, = changes in axial and circumferential curvature of the mid-
dle surface, and
Kz = change in torsion of the middle surface.

According to the usual theory of thin shells, the force variables conjugate
to these strains are N, the axial force per unit length along the middle
surface in the circumferential direction, M, and M,, the bending moments
per unit length in the circumferential and axial directions, and M,, M,
the twisting moments per unit length in the coordinate directions. The
assumed constitutive relations for the force and deformation variables are
stated in a later section.

The deformation field (Eqgs 1to 3) results in zero circumferential strain,
while the measurements indicate the occurrence of significant circumfe-
rential strains near the crack line ahead of the crack tip. This is accounted
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for in the model by including a one-dimensional plastic zone of the
Dugdale type [10] ahead of the advancing crack tip. In effect, this
concentrates all of the circumferential strain in this one-dimensional
plastic zone. The plastic zone occupies the interval 0 > ¢ > — R, as
shown in Fig. 1, implying that = 0 for £ < — R. Of course, R is
ultimately to be determined as part of the analysis. Within the plastic
zone, relative motion of the crack faces is resisted by a cohesive stress
which is defined in terms of T(¢), the cohesive force per unit length of
middle surface. No bending moment is transmitted across the cohesive
zone. The amount of crack opening 8(¢) is given by

8(é) = — 2v(¢, m) = 2mp(¢) @®

and the crack tip opening displacement is defined as §, = 27y(0). The
definition of T(¢) is extended so that T(¢) = 0 for ¢ > 0.

Distribution of Applied Pressure

The applied loading in this problem is the internal pressure, and,
because ¢y = 0 for ¢ < — R, this must be specified in the range
— R < ¢ < . The experimental data suggest that the angular variation in
pressure acting on the pipe wall is small, for any fixed value of ¢.
Consequently, it is assumed that the pressure distribution acting on the pipe
wall is a function of axial coordinate, say p(¢), and is independent of the
angular coordinate ¢. The data also indicate that the pressure is reasona-
bly uniform a diameter or so ahead of the crack, and hence in the cohesive
zone interval — R < £ < 0, and the magnitude there is equal to the
velocity dependent pressure at the crack tip employed in the analysis
elsewhere [3] and [5]. Denoting this magnitude by po(V), it can be shown

that
2y
PoV) _ 2 N (y - 1Hv vt 9
L v+ 1 (y + l)c, ©)

where p, and ¢, are line pressure and sonic speed of the gas at { - — o,
and v is the ratio of specific heat at constant pressure to specific heat at
constant volume for the gas. For air y = 7/5. The relation (Eq 9) is
determined by analyzing a certain transient, one-dimensional flow in a
semi-infinite pipe. Initially, the pressure and density of the gas within the
pipe are spatially uniform and constant in time. At a certain instant the gas
is allowed to escape through the end of the pipe, and, simultaneously, the
pipe begins to ‘‘shorten’ at a rate identified with the speed of crack
propagation in the fracture model. If the boundary condition imposed at
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the open end of the pipe is that the local particle velocity of the gas,
relative to the moving end of the pipe, is the local sound speed, then it can
be shown by the method of characteristics that the pressure at the exit is
given by Eq 9. While the profile of the expansion wave propagating down
the pipe from the open end is time dependent, the exit plane pressure itself
does not depend on time explicitly. Behind the moving crack tip the
pressure is assumed to decay continuously from p at the tip to zero at
some distance, say A, behind the crack tip. Thus, to complete the
definition

P —-R<¢E=s0
p(&) = { pé) 0<é=A (10)
0 A< E<

Equation of Motion for the Pipe Wall

The fundamental physical principle governing the deformaion of the
shell is taken to be the principle of virtual work. For any deformable body
the principle can be stated in terms of any equilibrium distribution of
internal stresses or generalized stresses which balance the applied loads
(including, by D’ Alembert’s principle, inertial forces) and any unrelated
distribution of compatible strains and associated displacements. For the
problem at hand, the internal generalized stresses are N,, M,, M,, M,
M, and the conjugate strains are (written in the more conventional form
as variations in strain) e, 8«;, 8y, Sk 50 that the internal virtual work is

1
8Wint = fEVgSEg + M§8K§ + M98K0 + 2‘ (M§0 + Mgg)SKgg] ds (11)
8

where § represents the entire middle surface of the shell. For application
of the principle of virtual work to dynamical problems, the inertial
resistance to motion is viewed as an external body force. Thus, the
external virtual work has three contributions, namely, the virtual work
due to the internal pressure p(¢), the cohesive stress in the plastic zone
T(¢), and the inertial force per vnit surface area which has components
—~ pdu/ar?, — pd®/ar®, — pd*w/at® where p is the mass density per unit
area of the middle surface. Because the problem is quasi-stationary, the
operation of time differentiation can be replaced by Va/a¢. The virtual dis-
placements through which the external forces work are dw(¢, 9), dv(¢, )
and the vector with components du(¢, 0), dv(¢, 0), dw(&, 8), respectively.
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The external virtual work is then

_ . %u % a*w
O Wext —/; pdw — pV ESu + 5§—280 + Yz 8w> ds
(12)

+ f 2Tdvd¢
—R

The principle of virtual work then requires that §W;,,; = 8W,y,, and this is
fully equivalent to the Cauchy equations of stress equilibrium or of
motion, if satisfied for every possible virtual deformation field. The
approximation made here consists of requiring validity of the principle
only for all virtual deformations generated by our kinematic assumptions,
Eq 1 through 7. It remains to specify the behavior of the material of the
shell walls. Because of the very extensive plastic deformation of the pipe
which was observed in the tests, it is assumed as a first approximation
that the walls of the shell behave in a rigid-perfect plastic manner. Even
for this relatively simple type of material behavior, an analysis which
takes into account all of the terms appearing in the virtual work equation
would be prohibitively complicated. A preliminary analysis in which the
shell walls were taken to be elastic showed that the effects of terms in the
final differential equation arising from axial bending and torsion of the
middle surface were negligible compared to those arising from circumfer-
ential bending and axial extension, the latter being by far the dominant
effect. With this as guidance, it is assumed that the shell offers negligible
resistance to axial bending or torsion, thatis, M, = 0 and M, = M, = 0.
Furthermore, inertial effects in the radial and circumferential directions
appeared to be much greater than in the axial direction; -therefore, the
latter is neglected. Incorporating these assumptions and the deformation
described in Eqgs 1 to 3, the principle of virtual work implies that

-] mw 1
f 3 f [[%aezanp"@) " ag'<§>] NG 0) ~ =5 SHEME o)

—o0 -

= pEdP(E) + pV2(1 + 02)41"(§)541(§)] adg  (13)

+ 2T()mdp(é) + d&é =0

where N, = N and M, = M. Finally, consistent with the idealized
rigid-plastic description of material behavior to be described shortly and
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with the kinematic assumptions, M(¢, ) can be viewed as being indepen-
dent of ¢ and the magnitude of N is constant on any cross section, its sign
being the same as that of ¢,. As can be seen from Eq 4, the resultant axial
force on any cross section of the shell will be zero if g(¢) =
— 1/2ay'(¢)7?/4, and this choice is made. The integration with respect to 6
can then be carried out in Eq 13. An integration by parts in the remaining
integral yields

f [§ a*m*N"(€) — " M(¢) — ap(é) + T(¢)

+ pVa <1 + 7;—) ll/"(é‘)] dY(&)dé = 0

where it has been assumed that N’ and ¢ vanish as | & | —> oo, and that ¢"
and N" are piecewise continuous. The principle of virtual work applies for
any arbitrary variation 8. The coefficient of 8 in Eq 14 must vanish
identically, which yields the field equation governing the deformation,
that is

] 1 :
& aFINE) = - M(©) = ap(e) — T(@) — pV'a <1 + %)w"(f) (s)

Rigid-Perfect Plastic Model

The yield surface for the shell, phrased in terms of the retained shell
generalized stresses N and M of Eq 15, was formulated assuming a Tresca
condition. Because the axial normal traction N and circumferential
bending moment M act on orthogonal planes of an element of the shell, it
is perhaps obvious that the yield surface for these generalized stresses is
precisely the same as that obtained when the generalized stresses used are
the circumferential normal traction and the axial bending moment,
respectively, since these act on corresponding faces. The derivation of
this yield surface is given in Ref /1, and one quadrant of the yield surface
obtained is shown in Fig. 2.

The solid curve is the exact yield surface. The problem is further
simplified by employing the approximate rectangular yield surface shown
by dashed lines, and crossing the axial force axis at the 0.75 point. The
axes are normalized with respect to N,and M, the yield resultants in pure
extension and pure bending, respectively, which are given by

No = ooh, My = ooh?/4 (16)

where o, is the uniaxial tensile yield stress and % is the shell thickness.
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FIG. 2—One quadrant of exact and approximate yield surfaces for the generalized
stresses N and M.

Before proceeding with the solution, it is worthwhile to note that the
deformation field ¢ is intimately coupled with the stress fields N and M for
this rigid-plastic model. From Eq 4 and the choice made for g(¢), the axial
stretching rate €, is proportional to "’ (¢), and from Eq 6 the circumfer-
ential bending curvature rate i, is proportional to —' (¢). But these
work-conjugate generalized strain rates, which are the components of the
normal to the yield surface, apply only when the stress state is at yield.
From Eq 8, the crack face opening 8(¢) is proportional to ¢. Thus, for
example, the bending moment M must be equal to —M, at all points
where the crack face opening profile has nonzero slope, including the
Dugdale plastic zone. Because the crack faces are postulated to be sepa-
rating in the deforming region, the moment stress may be taken as
M(¢) = —M, in Eq 15.

In order to simplify Eq 15 further, the inertial terms, which were
assumed to be small, were dropped, in essence by letting the mass density
tend to zero. A perturbation technique, to be discussed later, dem-
onstrates the validity of the assumption.
 This effectively removes the deformation field from the governing field
equation to give

61277'2

8

N"(§) = ap(§) — T(¢) — My/a an

However, an associated deformation field consistent with the plastic
potential relations in terms of the (to be determined) stress field is also
obtained.



FREUND ET AL ON DUCTILE FRACTURE 253

Since deformation begins at the tip of the Dugdale zone, and
Y(—R) = 0, we must have a discontinuity in the crack face curvature
across £ = —R of some unknown magnitude ",. We assume the curva-
ture change to be positive; hence, N(—R) = 0.75N,. Because there are no
concentrated forces at the tip of the Dugdale zone, N(—R) = 0.

Although no particular magnitude or distribution of the cohesive force
in the Dugdale zone has been assumed, it will be at least of size o, since
the material is yielding. In any event, its magnitude will exceed that of
ap,, for otherwise the entire uncracked portion of the shell would be at
yield. For the analysis performed here, the usual Dugdale assumption is
made, and T(£) is taken to be a constant, T, in the plastic zone. Thus the
sign of N"(£) is negative in —R < £ < 0, and so N(¢) decreases from its
yield value at ¢ = —R. Hence, the curvature of the crack face opening
remains constant in this region, so that the crack tip opening displacement
8, is given by

8, = m7Rxy", (18)

At the crack tip, the right hand side of Eq 17 increases discontinuously
by an amount T, to the positive value ap, — My/a. The axial force
resultant N continues to decrease in the region 0 < & < A; < A with
positive second derivative. The distance A, is specified by the require-
ments that the axial force reach reversed yielding with zero slope, so as
not to violate the yield condition, that is

Ny = —0.75N,, N'(A)) =0 (19)

At this point, the curvature of the crack face opening, which has remained
at the constant value ", changes sign to the negative value ", which is
admissible since the axial force is at yield in compression. The right hand
side of Eq 17 is still positive at ¢ = Ay, so that N starts to increase away
from yield. Hence, the crack face curvature remains at the constant value
USS

At some point a small distance to the left of ¢ = A, the right hand side of
Eq 17 changes sign continuously to a negative value, and, for
A = & <X, is given by the constant value —M,/a. That this is a
small distance to the left of the point £ = X is seen by noting that ap, is
typically of order T, while My/a is of order T4h/a). The distance A, is
given, in a similar manner to A,, by the conditions that the axial force
reach tensile yield with zero slope

N()\g) = 0.75N0, Nl()\g) =0 (20)
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Here, the curvature of the crack face which has been the constant ", in
A1 < € < \;increases discontinuously to zero. It is also assumed that the
slope of the crack profile is zero at ¢ = \,, and that no further deformation
takes place for £ > A,. Thus, the entire crack profile consists of two
parabolas, which have matching values and slopes at A;, and which have
zero slopes at —R and \,, respectively. The shape of the crack face is
shown schematically in Fig. 3. Because this is essentially a quasi-static
plastic limit analysis, there is no characteristic displacement amplitude
associated with the field ¢s. Hence, this amplitude is determined by the
critical crack tip opening &;, which is meant to characterize the fracture
toughness of the material.

Another displacement parameter, to be discussed later, is the terminal
crack face separation 8., for ¢ > A,, also shown in Fig. 3, which is given
by

Sterm = 841 + Ai/R)(1 + Ao/R) 2D

A simple graphical technique can be used to determine if an arbitrary
pressure distribution p(¢), characterized by a magnitude p,, a decay length
A and a particular shape, is sufficient to drive the crack. If pressure shape
and decay length are given, then the pressure amplitude must be at least a
specified value. Alternatively, if the pressure magnitude and shape are
given, a necessary decay length is determined. This is the approach used
here.

Because the decay length A must be determined in terms of the material,
structural, and other loading parameters, the axial coordinate ¢ is
nondimensionalized by dividing by A. Hence defining

r=R/N\ = A/N L= A/ (22)

the right-hand side of Eq 17 can be drawn as a function of the dimension-

erm

FIG. 3—Schematic representation of the crack face opening profile.
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less coordinate p = £¢/\, as shown in Fig. 4. Since there is no change in
the first derivative of N between —r and /., there must be no net area
under the curve of Fig. 4 between —r and [,. Further, there is no change in
the value of N evaluated at— rand l,. Hence, because there is no net area
under the curve, an elementary application of the moment area theorem
furnishes a second requirement on the load distribution, namely, the total
moment of the curve between —r and /, about any point be zero.

Letg = Ty + My/a — apoand m = M,/a. Further, let the total area of
the pressure part of the loading in 0 = % = 1 be a(ap,), with0 < a =1
(for nonincreasing p(¢)), and the moment of this portion of the pressure
about the point = 0 be given by B(aap,), with 0 < 8 = 1/2. Thus, the
two conditions become

rg + mls = aap, (23)

1 1
5 qr? —3 ml%;, = Baap, 24)

which readily furnish the dimensionless plastic zone size and the point of
terminal deformation behind the crack in terms of the load magnitude, p,

as
_oeapy f (m . Bm o mA\"
r_(q—m){l <q+2aapo [1 q]) } @)

_ aapo_fa /m o Bm oo mANT
lz_(q—m){m<q+2aapo [1 q]> 1} 26)

The nondimensional distance from the crack tip to the change of crack
face curvature, /,, is obtained implicitly from the fact that there is no

w2a®N"(n)
8
AREA: = a(apy)
MOMENT ABOUT 7=0: = B(aapg)
01: E r My/a =m
Y '

>l

T o 1

)
9=To* 3 ~ap,

| 1

FIG. &—Graphical solution of field equation for prescribed pressure amplitude.
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change in the first derivative of N, evaluated at— rand /;, that is

i
rq = [ [ap(n) - m] dn 7

Finally, the absolute size of the loading decay distance A can be
obtained by noting that the absolute value of the change in N from — rtol,
is 1.5N,. Applying the moment-area theorem again

2,2

%

1 h
0

It may be observed that a pressure level and the loading distances
which are then obtained from Eqs 23 to 28 are sufficient to continue crack
propagation regardless of material toughness as measured by &, a
consequence simply of the rigid-perfect plastic constitutive model. This is
represented by the vertical line of Fig. S. In reality, the true elastic-plastic
value of §,, as would be calculated to correspond to fracturing under a
given pressure magnitude at fixed shape and loading distance, is an
increasing function of that magnitude and would have the form shown by
the curved line of Fig. 5. This curve consists of the typical quadratic
increase with load magnitude associated with small-scale yielding, fol-

54

TRUE,
ELASTIC-PLASTIC
BEHAVIOR

RIGID,
PERFECTLY-PLASTIC
MODEL

Po
PRESSURE AMPLITUDE, p

FIG. 5—Crack opening displacement as function of pressure amplitude for fixed shape
and loading distance. .
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lowed by a steep rise in the vicinity of the particular ‘‘limit pressure”
chosen, perhaps existing even for pressure magnitudes in excess of this
limit pressure, due to strain hardening. Thus the significance of the limit
pressure and associated load decay lengths of the rigid-perfect plastic
idealization becomes clear: it is a measure of the driving force necessary
to sustain crack propagation for high toughness (high §,) materials and will
vary only slightly from the true magnitude of driving force required,
regardless of toughness, provided only that the toughness is sufficiently
high.

Linear Pressure Decay

The analysis of the preceding sections was applied to the case of a linear
pressure decay, from p, to 0, over the decay length A. That is,

Po ,—RSfSO
P(§)={Po(1 —&/N),0=¢=A 29
0 , A< €

Thus, for this particular distribution, « = 1/2 and 8 = 1/3. The constant
T,was chosen to be equal to o¢/i. The shell parameter a/h was set equal to
56.

The various loading distances were computed and are shown in Fig. 6,
after making each dimensionless by dividing by the mean shell radius a, as
a function of exit pressure magnitude p,. For typical line pressurizations
and observed ductile crack velocities, most running fractures appear to
have exit pressures in the range 0.3 < (apo/T,) < 0.6, if Tis based on the
static yield strength. Thus, as we read from the figure, the required decay
length A for propagation of the fracture under pressures in this range is
predicted to lie between approximately 3.5 and 6.5 radii, the higher figure
corresponding to the lower pressure and vice versa. The observed
pressure decays [/] do not, of course, strictly comply with a linear
variation; however, decay lengths in the range of 2 to 4 radii appear
typical. The somewhat greater A predicted may be a result of the many
approximations that have been made but may also reflect the fact
illustrated in Fig. S that our calculations apply to the high toughness limit.
The Dugdale plastic zone size R is predicted to lie between one and two
radii.

The first transition point ),, at which the curvature of the outward
flaring of the wall reverses, is seen to lie at approximately 70 percent of A,
whereas the second transition point A, beyond which motion has come to
a stop occurs much further downstream at a distance of approximately 32
radii over the entire pressure range of interest. The terminal opening can
be computed from Eq 21 for a given crack tip opening displacement by
using the results of Fig. 6 as shown in Fig. 7 in the form §,.,/a, where again
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FIG. 6—Loading distances as a function of pressure magnitude for linear pressure decay.

we have chosen a/h = 56 and where the crack tip opening displacement
for fracture has been set equal to the wall thickness. Hence, terminal
openings between a half and two radii are predicted, with the greatest
opening at the lower driving pressure but longer decay length. These
estimates seem to be of the correct general size, although terminal
openings in this range can be accurately predicted only within an analysis
which adopts the strain-displacement gradient relations appropriate to
large gradients.

175 1 TERMINAL PIPE OPENING
Vs,
150 | MAXIMUM PRESSURE AMPLITUDE
FOR LINEAR PRESSURE DECAY
1.25 To =oyh
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E’ .00 |- 81 =h
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FIG. 7—Terminal crack separation 8., as a function of pressure magnitude for fixed
toughness and linear pressure decay.
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Effects of Wall Inertia

The last two sections have neglected inertia of the pipe wall by setting
p = 0 in Eq 15. Actual effects of wall inertia are assessed here in two
ways. Somewhat surprisingly, both lead to the conclusion that wall inertia
is a small effect over the crack speed range of interest, although there may
be significant inertial effects due to backfill. A first estimate may be made
by adopting the deformation function s as computed quasi-statically in the
last section, and computing the pressure magnitude p; that would be the
equivalent of the inertia term in Eq 15, namely

pi=—pV* <1 + %>¢"(§> (30)

For steel the density p per unit wall surface area is 15.5 1b s2/ft* times k.
Also, from Fig. 3, Eq 8, and the discussion following Eq 19

1 63/7TR2,—R<§<)\1
W = 58" = { 31)
4 —(B/mTRY(R + \)/(Ay — Ay, Ay < & <Ay

Thus, for the two ranges, the pressure in psi is

R, \

155 LAVSERVEAVEAVEIY AR

”"—1447r<1+3>(vﬂ)<a><h><R>§1’ "_2_"_1}(32)
a a

Taking a/h = 56, 8, = h, the ratios of R, A\, and A\, to @ as in Fig. 6 for
apo/T, = 0.45, and V = 600 ft/s leads to equivalent pressures

p; = — 6.6 psi, 1.0 psi (33)

These are so small by comparison to pressure levels of order 1000 psi at
the crack tip that wall inertia seems to be a minor factor.

Wall inertia was further examined through solving Eq 15 for the
rigid-plastic pipeline by a linear perturbation in mass density from the
quasi-static solution with p = 0. Thus p, and the shape of the pressure
decay, as well as §,, are assumed to be given, p is perturbed from 0 to Ap
(where Ap is the actual areal mass density of the shell), and the required
change A\ in the pressure decay length, as well as the associated
quantities AR, AX,, A\,, Ay”,, and Ay”, are calculated through equations
that are linearized in the A quantities. These equations are solved in a
similar manner to the graphical solution of a previous section. The
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resulting formulae are cumbersome and are omitted here for brevity.
However, we find that except at very high crack speeds, the changes A in
all computed quantities due to inertia are typically two orders of mag-
nitude less than their initial values. The most striking result of the
perturbation scheme, however, is that to first order in Ap, the change Ax
in the required pressure decay distance is precisely zero.

While we have not attempted detailed calculations, it would seem by
comparison of the masses involved that the inertia of any soil backfill
would be of far greater importance than the inertia of the pipe wall. Since
soil has typically one fourth the density of steel, a 11/2 in. thickness of soil
around the pipeline is the inertial equivalent of a 3/8-in. steel wall. Many
such thicknesses could be fit into a representative backcover depth, and
the resulting inertia together with the small shear strength of the soil might
make for effective negative pressure in Eq 17 of a magnitude sufficient to
substantially affect the fracture propagation.

Concluding Discussion

The present analysis is incomplete in that we have considered only the
structural portion of the problem. Specifically, for a given exit plane
pressure p,, shape of pressure decay, and crack tip opening 8, for
fracturing, we compute the required pressure decay length A (Fig. 6, for
example) and the distribution 6(¢) of crack opening (Figs. 3, 6, and 7). In
fact, apart from all the approximations involved, we compute these only
in the high toughness regime, as illustrated in Fig. 5.

However, for a given p,, 6(£), and velocity of propagation, the actual
shape and length of the pressure decay is determined by the fluid
dynamics of the gas escape. The solution of the latter problem is
necessary to fully close the analysis and establish conditions involving
material properties, geometric dimensions, and initial pressure levels for
which the postulated long-running fracture can occur. This will require
further work. However, the analysis done in conjunction with Fig. 4
shows how the opening gap 8(¢) can be found through moderately
straightforward calculations for an arbitrary pressure decay shape, and, if
the fluid dynamics problem can be solved approximately in equally simple
and general terms, it may be possible to couple the structural and fluid
solutions effectively for a full analysis. We examined a simple formulation
of the fluids problem as quasi-one dimensional flow along the pipeline
axis, with mass loss by sonic exit through the crack opening. The local
outflow rate at a point along the pipeline was taken as that appropriate to a
slit opening of uniform gap size, equal to 8(¢) at that point, in a large tank
at an average pressure equal to the local pressure in the one-dimensional
flow model at that point. However, opening gaps & of the general size
observed in the pressure decay lengths that it predicted were much in
excess of the two to four radii observed.
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The tacit assumption in the foregoing remarks is that arrest will occur
whenever conditions for a long running fracture cannot be met. This is
sufficient but may not be necessary for arrest. In particular, the possibility
arises [/] that crack arrest may occur as a bifurcation in which strains in
the axial direction, induced by the flaring out of the shell walls, cause the
easiest directions for fracture to lie at angles to the crack line rather than
straight ahead. Thus even if conditions for a long-running straight
fracture, of the kind modelled here, can be met in principle, it is possible
that the crack will branch to a helical path and rapidly arrest.

To study this possibility, we may estimate the nominal axial strain e,
near the crack tip by setting # = +7 in Eq 4, taking g’ as indicated after
Eq 13, and setting " = §,/wR?from, Eq 32. Hence

37 aﬁt

S G4

€ =

While this ignores local strain amplification by the crack tip itself, it does
indicate that the tendency for crack branching, as measured by ., will
increase inversely with R for a given §,. From Fig. 6 the tendency for
branching will thus be greatest during steady-state propagation under
conditions of low exit plane pressures but correspondingly long decay
lengths. For a given initial line pressure, these lower exit plane pressures,
which favor branching, result at the lower propagation velocities. Further,
as we move through what seems to be the representative exit plane
pressure range, 0.3 < apo/T, < 0.6, the amount of nominal axial strain at
the crack tip changes by a factor of four. The nominal strain magnitude
itself, for 8, = h and a/h = 56, varies from approximately 2 to 0.5 percent
at the limits of this range. Axial strains of approximately 1 percent were
observed just ahead of the crack in the full-scale tests [/].

Finally, we have taken no account of rate sensitive material behavior, it
being understood instead that parameters such as T, N, and M, are to be
chosen in accord with the strain rates involved. For example, the time
taken for the end zone to traverse a material point within it is R/V.
Further, if the deformation consists of localized necking throughout the
entire zone, the plastic strains are of the order 8/h, and hence an
approximate strain rate in accord with which T, should be chosen, is
8,V/hR. For 8, = h =3/8 in., a = 20 in., and R/a as in Fig. 6 for
apo/T, = 0.45, this strain rate is approximately 2 X 10%/s when V = 600
ft/s, although the rate would be appreciably greater if localized necking
does not set in at a material point until it is very near the crack tip.
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ABSTRACT: The mixed-mode fracture behavior of shear panels is analyzed in this
study to provide suitable fracture criteria for the prediction of the residual strength
of crack panels under a combined tension and shear loading condition.- Finite
element models which incorporate a special crack tip element are utilized in the
analysis to compute the values of K; and Kj; and the detailed stress distribution in
the crack tip regions. For comparison purposes, analyses are made using the initial
crack configurations of the shear panels and a number of selected configurations
after a small increment of slow stable crack growth. Failure analysis is made using
these results together with test results obtained in a previous experimental study by
Ltu. It is found that a simple failure criterion of K / (K)er + Ky / Kier = 118
applicable to materials that are not extremely ductile. However, the maximum
tensile stress theory should be used to complement this criterion for the purpose of
predicting the crack growth direction. The mixed-mode criteria of the strain energy
density function and the ‘‘angular’ stress intensity factor are also examined. In
addition, it is shown that a predominantly Mode I condition is produced by oblique
crack growth even after a relatively small crack growth increment. Hence, a pure
Mode I fracture criterion can be used to predict the slow stable crack growth and
subsequent failure of damage structures subjected to combined loads if a practical
method can be found to estimate K; during the crack growth period. It should be
noted that the present study is restricted to a monotonically increasing loading
condition.

KEY WORDS: crack propagation, fracture properties, stresses, strains, damage,
models, residual stress, shear panels

For a damaged two-dimensional structural member under combined
inplane loads, both the Mode I and Mode II singularities exist. Hence the
failure behavior of such a damaged structure is, consequently, of a mixed
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FIG. 1—Cracked shear panel configuration.

mode nature. The problem of mixed-mode?® fracture was first discussed
in detail in 1963 by Erdogan and Sih [1].? However, it is only recently
that this problem came under close scrutiny [2-5].

To simulate mixed-mode fracture behavior, center-cracked tension
specimens with a slanted crack were used [2-4]. This type of specimen is
inherently deficient in providing a complete range of mixed-mode fracture
conditions. Furthermore, the width of these center-cracked specimens
were inadequate in some instances, and gross plastic yielding of the net
section occurred at the fracture load. Fracture specimens used in Ref 5,
however, were of the shear panel type (see Fig. 1). With this type of
specimen the complete range of mixed-mode conditions can be obtained
by varying the crack orientation. The dimensions of these specimens were
also large enough to eliminate the possibility of gross plastic yielding.

In the past, various mixed-mode fracture criteria have been proposed
either based on theoretical considerations or test results. Erdogan and Sih
[1] proposed the maximum tensile stress theory and the critical strain
energy density function criterion based on the Griffith-Irwin fracture
theory [6]. The functional form of the strain energy density function, S,
was derived recently [7]. Another proposed mixed-mode fracture criter-
ion utilizes the concept of the ‘‘angular’’ stress intensity factor [8] which
takes into account the directionality of the impending crack growth. The
criterion of the additive strain energy release rate is then used to define
the critical state. Lastly, it was shown [4-5] that the normalized quantities
K,/ (K)er and K, / (Ky)er Obtained empirically can be approximated by a

3 The term ‘‘mixed-mode fracture’’ is used herein to refer to the mixed Mode I and Mode

1I fracture.
4 The italic numbers in brackets refer to the list of references appended to this paper.
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straight line on the normalized K; — K plane. This experimental observa-
tion provided yet another possible mixed-mode fracture criterion. In view
of the numerous failure criteria proposed, a review of these criteria clearly
is needed.

To conduct such a review on mixed-mode fracture criteria, an accurate
stress analysis method is needed. Of the various analysis methods used in
fracture analysis, the finite element method has proved to be applicable.
However, the extremely detailed finite element modelling required in the
crack tip region results in high computer and analysis costs. Furthermore,
in spite of the extremely detailed finite element modelling, the accuracy of
the resultant stress intensity factor usually is limited.

In 1970 a special singular finite element [9] was introduced which was
designed specially for the analysis of crack problems. Since then several
researchers [10-13] have presented various special finite elements suitable
for fracture analysis applications. All the special elements developed were
found to be more accurate and efficient as compared to the conventional
finite elements.

The three requirements of adequate test data, a suitable stress analysis
technique, and applicable fracture criteria are indispensable for a
thorough examination of the phenomenon of mixed-mode fracture. These
requirements are all available independently as discussed in the preceding
paragraphs. It is the intention of this study to utilize the approach of the
special cracked finite element to analyze test data generated from the
shear panel tests. The emphasis is placed on a critical review of the three
mixed-mode fracture criteria: (1) the empirical mixed-mode criterion,
K1/ (KD +Kn/ (Kwe = 1, (2) the strain energy density function criterion,
and (3) the angular stress intensity factor concept. The maximum tensile
stress theory is considered only in its applicability to the prediction of the
crack growth direction. The additive strain energy release rate criterion
is considered only in conjunction with the angular stress intensity factor
concept.

Shear Panel Finite Element Model

The shear panel finite element models are constructed using a combina-
tion of the singular cracked finite element and other conventional finite
elements. The singular cracked finite element used in this study was
developed based on the assumed stress function approach and con-
sequently has the correct stress singularity of the crack problem. The
initial development work of this singular element was done by Dr.
Matthew Creager® in 1970. With subsequent improvements, the accuracy

5 Dr. Creager is presently with the Del-West Associates, Inc., Woodland Hills, California.
The development work on the cracked finite element was conducted under a company
sponsored independent research program at the Lockheed-California Company, Burbank,
California.
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FIG. 2—The singular cracked finite element.

of this particular cracked finite element has been demonstrated by
correlation with existing solutions. Both the theoretical background and
the numerical procedure involved are discussed in detail, with example
problems, in Chapter 11 of Ref I4. The cracked finite element developed
is square in shape and has a total of eleven nodal points as shown in Fig. 2.
There are a total of eleven independent stress variables in the two
complex stress functions of the element. The model solution is obtained
using the NASA structural analysis (NASTRAN) system. The numerous
built-in features of the NASTRAN system provide flexibility in the model
setup and the solution precedure. The average central processing unit
(CPU) time for a model with 450 nodes is approximately 200 s.

The finite element model for a typical shear panel in its initial
configuration is shown in Fig. 3a. The dimensions of the shear panels are
the same as those tested in the experimental study [5]. The crack
orientations of the shear panel models are 8 = 45, 60, 75, and 90 deg. Two
cracked finite elements are used in each model, one for each end of the
crack. Conventional triangular elements and quadrilateral elements, each
consisting of four constant strain triangular elements, are used for the rest
of the model. Bar elements are also used along the panel boundaries to
simulate the actual pin-jointed loading frame.

In addition to the four shear panel models analyzed, models of two
shear panels after a small increment of crack growth are also studied.
These two shear panels have the original crack orientations of 8 = 60 and
75 deg. The additional small crack increment has a length of 0.25 in. and is
oriented in the new crack growth direction. At each crack tip, one singular
cracked finite element is used to cover the entire crack increment, as
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shown in Fig. 3b. A detailed discussion on the crack growth direction is
presented later in the results and discussion section. It should be noted
that the crack growth direction for the 8 = 60 deg panel is § = —60 deg.
This angle is an average value based on various theoretical predictions
and the test result. For the 8 = 75 deg case, however, two crack growth
directions, § = —40 and —30 deg, are chosen. The first angle value is
based on the test result.

Besides the element stress distributions for the conventional elements
and the nodal displacements, the finite element model analysis also
provides the values of the independent stress variables for the singular
cracked finite elements. From these values, one can obtain the values of
K, Ky, and the local stress distribution within the singular elements. The
K, and K|, values, in turn, can be used to calculate the values of strain
energy release rate, G, and the strain energy density function, S.

Mixed-Mode Fracture Criteria

In summarizing the various mixed-mode fracture criteria, one must
begin with the additive strain energy release rate which was developed
with the assumption that the crack will grow in its initial direction [/].
However, it was also pointed out in Ref / that the strain energy release
rate for crack extension under general two-dimensional loading conditions
may have a homogeneous quadratic form in terms of the Mode I and the
Mode 1T stress intensity factors and can be written as

AU
Tor G = a, K+ 2 a KKy + anKy? e))

The crack growth direction is the one that gives a maximum strain
energy release rate calculated using Eq 1. This hypothesis, however, was
not developed completely until recently [7] when the strain energy density
function, §, was introduced as the critical parameter

S = auK? + 2 ap KKy + aKy? + asKy® 2

The coefficients a,y, a3, a22, and a4, are functions of the material elastic
constants and the angle 8, where 0 is an angle measured counterclockwise
from the crack line. One of the advantages of the strain energy density
function over the concept of the additive strain energy release rate is its
ability to estimate the crack growth direction. To provide this capability
for the additive strain energy release rate criterion, the concept of the
angular stress intensity factor was introduced recently [8] based on a
limiting process as the propagating branched crack approaches zero
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length. The additive strain energy release rate theory can then be
redefined as

g = [1212(0) + IZHZ(O)] JE for plane stress 3)

where K; () and Ky (9) are the newly defined angular stress intensity
factor for Mode I and Mode II, respectively. Crack growth will occur in
the direction of maximum & (6) when this maximum reaches a critical
value.

Besides the three mixed-mode fracture criteria just discussed, it was
observed experimentally [4-5] that the critical state for mixed-mode
fracture of certain materials can be approximated by a straight line on the
KJ/(K)e — Kii/(Kyp)er plane. However, this fracture criterion cannot pre-
dict the direction of crack growth; therefore, an additional criterion is
needed to provide this information.

The maximum tensile stress theory [/] originally stated that crack
growth will occur when the local maximum tensile stress in the crack tip
region reaches a critical value and the crack growth direction is deter-
mined by the orientation of the maximum tensile stress. However, it is
difficult to justify the validity of a critical maximum tensile stress value
within the framework of elasticity theory. Nonetheless, the loci of the
maximum tangential stress in a region adjacent to the crack tip can be
used to estimate the direction of impending crack growth.

Results and Discussion

The values of the Mode I and Mode II stress intensity factors and the
distributions of the tangential stress are the primary analysis results used
in this study. These results are presented here together with relevant
discussions. The presentation is divided roughly into two groups, with
one group consisting of results obtained using the initial crack configura-
tions and the other group consisting of results obtained using configura-
tions after a small increment of crack growth. Furthermore, the discus-
sions of the critical state and the crack growth direction for the various
criteria are presented as two separate subjects.

The stress distributions of two finite element models (8 = 45 and 90,
deg), representing the initial crack configurations, are first examined to
determine whether a pure shear condition exists in locations adjacent to
the simulated loading frame. As shown in Fig. 4, the stress fields along the
edges of the finite element models for the two cases of 8 = 45 and 95 deg.
are fairly close to a pure shear condition. This is particularly evident in the
B = 90 deg case where the crack tips are furthest away from the model
boundary among all cases studied.

The values of the Mode I and Mode I1 stress intensity factors are shown
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FIG. 4—Shear stress distributions at two crack orientations.

in Fig. 5 and tabulated in Table 1. It is interesting to note that the values
obtained based on the initial crack configurations are quite close to the
estimates [5]. The correlation of Ky values is particularly good, while
differences in K; are more appreciable. Note that the deviation in K;
increases when the condition of pure Mode II is approached. The
existence of K; in the pure shear case of 8 = 45 deg implies that the ex-
pected pure Mode II condition was not attained. However, the ratio of
K /K is small, and it is evident that a predominantly Mode II condition
was reached.

To avoid undue complexities, it is prudent and practical to seek a
mixed-mode fracture criterion which is defined in terms of the initial crack
configuration. In Fig. 5 it is seen that the values of the critical K; and Ky
derived using the initial crack configurations and fracture loads do not
form a straight line on a K,—Kj plot as predicted by the empirical
criterion. However, after the slow stable crack growth for the g = 90
deg case is taken into consideration, an excellent correlation to a straight
line can be established. From Table 1, it can be seen that the amount of
slow stable crack growth in the 8 = 90 deg case is substantially larger
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than in any of the other three cases and, consequently, cannot be neglect-
ed. With this justification, it can be concluded that straight line can be
used to represent the critical state of mixed-mode fracture. However,
since the slow stable crack growth is neglected except in the 8 = 90 deg
case, this criterion can only be applied to materials that do not exhibit a
substantial amount of slow stable crack growth under combined loads.

A linear least square fit, as shown in Fig. 5, provides the two critical
values of (K)er = 85.6 ksi V/in., and (Ky)er = 98 ksi V/in.. The normalized
K; and K; values obtained based on these critical values are presented in
Fig. 6. The mixed-mode fracture criterion of K;/(Kj)¢ + Ky/(Kp)er = 1
is then established readily. In view of the approximate nature of this
criterion, estimates of the stress intensity factors obtained by Liu in Ref 5
can be utilized to further simplify the prediction procedure. However, it
should be noted that an assumption of (Ky), = (K|)e Was used.

To evaluate the strain energy density function criterion, values of S
were calculated using the K; and Kj values in Table 1. The results
are shown in Fig. 7. It can be seen that an excellent agreement is ob-
tained between the two cases of 8 = 45 and 90 deg is the slow stable
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FIG. 7—Values of stain energy density function, S.
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crack growth for the latter case is taken into account. The same
excelient agreement is obtained between the two cases of 8 = 60 and 75
deg. However, no correlation can be obtained between these two groups.
It is unfortunate that the number of presently available shear panel
test results is not sufficient to render a definite conclusion or
explanation to this discrepancy.

To evaluate the concept of the angular stress intensity factor, the
critical energy release rates are obtained using Eqs 95 through 97 in Ref
8.

1
GO = ¢ [K0) + K9 ] )

where K, and K;; are the angular stress intensity factors, and they can in
turn be expressed in terms of the conventional stress intensity factors.

2(0) = 4 1‘0/”>WIZ 6+ S Rosind ) 5
KI(O) - (3 + COSZG 1 i 0/71_ [COS “2— HSln ( )

R.(0) = 4 L= 6/m %K 0 Lksing) 6
II()— 3 + cos0 1+9/7T ucos 2 1S1n ()

The estimated K; and K;; values are used as well as those obtained from
finite element analysis. Both the initial crack configurations and the
configurations after crack growth are used in the calculation. The
computed values of the maximum energy release rate, however, do not
support the hypothesis of a constant critical value. Itis clear then that the
critical state cannot be determined based on the initial crack configuration
and the angular stress intensity factor concept.

Although the maximum tensile stress theory was discounted in the
preceding section as a possible mixed-mode fracture criterion, an interest-
ing observation can be made if the distributions of the tangential stress are
examined. The distributions are shown in Fig. 8 in the normalized
quantity of o,/o,, where ois the applied shear stress. It can be seen that
the influence of the higher order stress terms have a negligible effect on
the location and the values of (0/a¢)max in the two cases of 8 = 45 and
90 deg. However, their effects are more prominent for the two other cases
of 8 = 60 and 75 deg. Furthermore, it can be shown that, if the slow stable
crack growth is taken into account, a fairly good correlation of the
(0e/Ts)max Values can be obtained among all cases studied (values of o,
are computed at a constant radial distance of » = 0.02 in. from the crack

tip.)
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Based on the initial configurations of the shear panels, the predicted
crack growth directions using various criteria are summarized in Table 2.
The direction of crack growth based on the maximum tensile stress theory
and the strain energy density function theory are determined from the
distributions of the tangential stress shown in Fig. 8 and the distributions
of the strain energy density function shown in Fig. 7, respectively. The
predicted directions based on the angular stress intensity factor concept is
obtained from the distributions of the strain energy release rate. As shown
in Table 2, the maximum tensile stress theory and the strain energy
density function criterion offer a comparable accuracy in predicting the
crack growth direction.

The angular stress intensity factor concept, however, cannot offer a
similar accuracy. This is particularly evident if the predicted values are
based on values of K; and K;; obtained in this study. It should be pointed
out that the predicted crack growth directions using the maximum tensile
theory provide a slightly better correlation with the test results than those
obtained using the strain energy density function theory, particularly in
the 8 = 75 deg case. In view of this advantage on the part of the
maximum tensile stress theory, it is suggested that this theory be used in
the prediction of the crack growth direction. It should be of particular
interest that the best prediction is obtained when the higher order stress
terms are included as shown in Fig. 8.

Discussion up to this point has been confined mostly to analysis based
on the initial crack configurations. Finite element results were also

TABLE 2—Crack growth direction for shear panels with
various initial crack orientations.

B=45deg B =60deg B=75deg B =90deg

Test Results =72/-75  —60/—60 -27/-32 0

Strain energy density -80 -60 —40 0
function using estimated
K, and K; values

Strain energy density -73.5 -57.5 -37.5 0
function using finite
element results

Maximum tensile stress -70.5 —60 —43.2 0
theory using estimated
K, and Ky values

Maximum tensile stress —69 —55 -32 0
theory using finite (—69)¢ (—59)° (—39)° 0)~
element results

‘*‘Angular’’ stress intensity -75.2 —64.7 —46.5 0

factor concept using
estimated K| and K;; values

@ Singular terms only.
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obtained for two cases (8= 60 and 75 deg) based on the configurations
after a small increment of oblique crack growth was implemented as
shown in Fig. 3b. The B = 45 deg case was not included due to its
insignificantly small amount of crack growth prior to instability. From
Table 2, it can be seen that the experimental crack growth direction for
the B8 = 60 deg case was approximately —60 deg which agrees well with
all the theoretical predictions. Hence the angle of —60 deg was chosen as
the crack growth direction. For the 8 = 75 deg case, however, the situa-
tion was more complex. The predicted crack growth angle based on
various criteria, with one exception, was approximately —40 deg. The
one exception was the predicted angle based on the maximum tensile
stress theory using the values of K, and K; obtained in this study with the
higher order terms included. The predicted angle in this case was —32
deg / —27 deg shown in Table 2. Hence two crack growth angles of —40
and —30 deg were used for the 8 = 75 deg case.

Values of the Mode I and Mode 11 stress intensity factors after the small
increment of crack growth indicate that a predominantly Mode I condition
exists after crack growth, as shown previously for a slanted crack [/5].
The respective values of K and K; are included in Table 1 and Figs. 5 and
6. These values show an almost complete elimination of the Mode 11
condition. It is of interest to note that the two shear panels analyzed have
relatively high initial K;; values. The almost complete transition from a
mixed-mode condition to a pure Mode I condition indicates that, for
materials capable of significant crack extension before fracture under
monotonically increasing load, only the K; value needs to be considered.
An analysis based on the R-curve concept would be more appropriate for
these materials. However, there remains to be resolved the difficulties
involved in finding a K; value for a crack configuration which includes a
curved crack growth increment.

As intended a comparison of the two models with different crack
growth directions for the 8 = 75 deg case can be made based on the re-
sulting values of K; and K;. From Table 1, it can be seen that a higher K;
value is obtained for a crack growth angle of —30 deg as compared to K,
for a crack growth angle of —40 deg. The K| values are negligible in
both cases. This higher K| value further substantiates the selection of the
maximum tensile stress theory for use in the prediction of the crack
growth direction.

The strain energy density function theory and the angular stress
intensity factor concept can again be examined using values of K; and K
after the crack growth increment. However, as in the previous case, no
correlation can be found for the calculated critical values using either
criterion.

As for the prediction of subsequent crack growth direction after this
increment of crack growth, all criteria predict essentially the same
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direction of approximately 0 deg. The zero angle of crack growth is ex-
pected because a pure Mode I condition exists after the crack increment.
The formation of the curved crack growth path as observed in Ref 5 is
possibly the result of directional instability.

Conclusions

1. The singular cracked finite element is useful for the application of
the finite element method to fracture analysis.

2. The simple mixed-mode criterion of K{/(K})¢r + Kii/(Ki)er = 1 can be
used to predict failure for materials which are not extremely ductile. The
maximum tensile stress theory can be used to predict the crack growth
direction.

3. The higher order stress terms should be included in the analysis of
branched crack subjected to combined loads.

4. A transition from a mixed-mode condition to an essentially Mode I
condition occurs after a small increment of crack growth. Hence, a Mode
I fracture criterion such as the R-curve concept should be used to predict
mixed-mode failure for materials capable of exhibiting significant slow
stable crack growth before fracture under monotonically increasing load
provided that a practical means can be found to calculate the K, value
during this period.
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A Finite-Element Analysis of Fatigue Crack
Closure
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ABSTRACT: Experiments have shown that fatigue cracks close at positive loads
during constant-amplitude load cycling. The crack-closure phenomenon is caused
by residual plastic deformations remaining in the wake-of an advancing crack tip.
The present paper is concerned with the application of a two-dimensional, non-
linear, finite-element analysis using an incremental theory of plasticity to predict
crack-closure and crack-opening stresses during the crack-growth process under
cyclic loading.

A two-dimensional finite-element computer program, which accounts for both
elastic-plastic material behavior and changing boundary conditions associated with
crack extension and intermittent contact of the crack surfaces under cyclic loading,
has been developed. An efficient technique to account for changing boundary
conditions under cyclic loading was also incorporated into the nonlinear analysis
program. This program was used subsequently to study crack extension and crack
closure behavior in a center-cracked panel under constant-amplitude and two-level
block loading. The calculated crack-opening stresses were found to be quantita-
tively consistent with experimental measurements.

KEY WORDS: crack propagation, plastic deformation, cyclic loads, stresses,
residual stress, fatigue (materials), mechanical properties, plasticity tests

Nomenclature

{0} “‘Effective’’ plastic load vector, N
R Stress ratio (ratio of minimum to maximum applied stress)
S Applied gross stress, N/m?
Smax Maximum gross stress, N/m?
Smin  Minimum gross stress, N/m?
S, Crack-opening stress, N/m?
{U} Generalized nodal displacement vector, m
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u, v Displacements in x- and y-direction, respectively, m
W Total plate width, m
x, y Cartesian coordinates
Aa Incremental crack growth, m
AK.: Effective stress-intensity factor range, N/m??
AN Incremental number of cycles
o, Normal stress acting in y-direction, N/m?
o, Tensile yield stress, N/m?
a Half length of crack, m
[B] Matrix relating total strains to nodal displacements, m™!
C, n Material crack-growth constants
{dP} Incremental applied load vector, N
{dQ} Incremental plastic load vector, N
dVv,, Differential volume of triangular element, m?
{de} Incremental total strain vector
{do,} Incremental elastic stress vector, N/m?
{do°} Incremental ‘‘initial’’ stress vector, N/m?
[D.] Elasticity matrix relating stress to total strain, N/m?
g Relaxation parameter
ko.ks, Spring stiffness in x- and y-direction, respectively, N/m
[K.] Elastic stiffness matrix, N/m
[K,] Diagonal matrix containing spring stiffnesses, N/m
K; Elastic-stress concentration (ratio of o, in the highest
stressed element to the applied stress, S)
{P} Applied load vector, N

Until recently, fatigue cracked propagation was assumed to be related
directly to the linear elastic stress-intensity factor (/] 2 during cyclic
loading. Implicit in this concept were the assumptions that only the tensile
portion of the load cycle was effective in growing the crack, and that
cracks close precisely at zero load. Elber [2-4] has shown experimentally
that fatigue cracks close at positive loads during zero-tension constant-
amplitude load cycling. He has indicated that fatigue-crack closure may
be a significant factor in causing the stress-interaction effects on crack
growth (retardation or acceleration) under general cyclic loading. He has
also postulated that the crack-closure phenomenon was caused by re-
sidual plastic deformations remaining in the wake of the advancing crack
tip.

Kobayashi et al [5], and Anderson [6] using the finite-element method
analyzed the steadily growing crack under a single monotonically increas-
ing load. Since these investigations did not consider cyclic loading,
crack-closure effects were not accounted for in the analysis.

Newman and Armen [7], also using the finite-element method, have

2 The italic numbers in brackets refer to the list of references appended to this paper.
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analyzed an extending crack under cyclic loading which included the
effects of crack closure. Their study was an initial attempt to analytically
determine crack-closure effects and employed an element-mesh size
which had elastic-stress concentration of about seven. In their analysis,
the ratio of the smallest element size to the crack half length was about
0.025. Their analysis demonstrated that the phenomenon of fatigue-crack
closure could be modeled qualitatively by use of the finite-element
method.

In the present paper, a more efficient two-dimensional, nonlinear,
finite-element analysis [8] was used to investigate crack extension and
crack closure in a center-crack panel under cyclic loading. (The more
efficient computer program required about one half of the central proces-
sing unit (CPU) time and about one half of the storage requirements as the
program used in Ref 7 for the same element mesh.) The present paper also
demonstrates how the element-mesh size in the crack-tip region influ-
ences the calculated crack-closure and crack-opening stresses.
Element-mesh sizes nearly an order of magnitude smaller than that used
in Ref 7 were investigated. The finer mesh size also allows for simulated
crack-growth increments per cycle (as small as 0.08 mm) to be consistent
with experimental observations for some of the applied stress levels
studied.

The panel material was assumed to be elastic-perfect plastic. The cyclic
loads applied to the finite-element models of the panel were either
constant-amplitude or two-level block loading. The crack-closure stresses,
crack-opening stresses, crack-surface displacements, and residual
stresses in the crack-tip region were determined as functions as applied
stress.

Finite-Element Analysis

The elastic-plastic analysis of the center-cracked panel (Fig. 1)
.employed the finite-element method and the initial-stress concept [9]. The
finite-element model, Fig. 2, was composed of two-dimensional
constant-strain triangular elements (unit thickness). Three different mesh
sizes were used to model the crack-tip region, Fig. 3. In the initial-stress
approach, the load-displacement relations for a discretized structure are
written to include the effects of initial stresses, which are required in
order to satisfy the yield criterion (von Mises) for an elastic-plastic
material. These initial stresses produce effective plastic-load vectors
which are applied to all elements which have become plastic and which
maintain the permanent plastic deformation on those elements while the
external loads are applied. The governing matrix equations for a dis-
cretized structure are reviewed only briefly here to demonstrate how the
material nonlinearity is accounted for and what is required to treat crack
extension and intermittent contact or separation of the crack surfaces.
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P

FIG. 1—Center-crack panel subjected to uniform stress.

Solution Procedure for Elastic-Plastic Structures

The application of the finite-element method to problems involving
linearly elastic materials is straightforward because the material proper-
ties are constant and only one solution is required to obtain displacements
for the elastic structure. However, for elastic-plastic structures the
coefficients in the stiffness matrix are functions of loading. Thus, the
displacements usually are obtained by applying small load increments to
the structure and either updating the coefficients of the stiffness matrix or
applying an “‘effective’’ plastic-load vector after each load increment. The
latter technique was used here.

In general, the matrix equation which governs the response of a
discretized structure under loads which cause plastic deformation is

(K J{UY = {P}Y +{Q}i~1 M

where
[K.] = elastic stiffness matrix,
{U} = generalized nodal displacement vector,
{P} = applied load vector, and
{Q} = effective plastic-load vector which accounts for elements in a
plastic state.

In the initial-stress method, the solution to an elastic-plastic problem is
obtained by applying a series of small load increments to the structure
until the desired load is reached, {P}' = {P}~' = {dP} .({dP} was chosen
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to be 5 percent of the load required to yield the first element.) The
superscript i in Eq 1 denotes the current load increment, and i — 1
denotes the preceding increment. After each load increment an iterative
process is required to stabilize the plastic-load vector. The subscript / in
Eq 1 denotes the current iteration, and / — 1 denotes the preceding
iteration. During the i** increment a purely elastic problem is solved, and
the increments in total strain {de} and corresponding elastic stress {do}
are computed from the displacements for every element. Because of the

¥V

ABCDEF
N 3y =

FIG. 2—Finite-element idealization of the center-crack panel.
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Mesh 1 Mesh II Mesh 111
# -
o -~ ]
0.64 mm 0.16 mm 0.08 mm

FIG. 3—Typical crack-tip region element sizes for Meshes I, 11, and I11.

material nonlinearity the stress increments are not, in general, correct. If
the correct stress increment for the corresponding strain increment is
{do}, then a set of body forces or plastic-load vectors {dQ} caused by the
“initial’’ stress {do°} ( = {do.} — {do})is required to maintain the stress
components on the yield surface. The correct stress increment {do} is
computed from the equations given in Ref 9. The plastic-load increments
are computed from

{ag} =3 [ 181" {ao } av, o

where
M = total number of elements,
[B] = strain-displacement relationship, and
T = matrix transpose.

The integration is taken over the volume of each element, and the
summation is over all elements in the structure. For elements which are in
an elastic state or unloading from a plastic state, {dQ} = 0. The total
plastic-load vector is then computed as

{O ={Q} -1 + {40} €)

At the second state of computation the new force system {Q},'is added to
the applied load vector, and a new set of displacements is obtained.
Again, some of the stresses are likely to exceed the yield criterion, and a
new set of plastic-load increments is computed. The iteration process is
repeated until the change in the plastic-load vector (Eq 2) is sufficiently
small (0.1 percent of the final values was chosen here). Usually, 5 to 15
iterations are required to stabilize the plastic-load vector. However, for
configurations which have large strain gradients, more iterations are
required. For the cracked plate considered here and the particular
element mesh used, 10 to 30 iterations were required. In order to reduce
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the number of iterations, a relaxation technique was incorporated into the
nonlinear analysis program by using the equation

Q' ={Q} =1 + g {dO} “)

Where g is the relaxation parameter. Because the displacements from the
preceding increment or iteration are used to compute the plastic-load
increment, the plastic-load vector is underestimated. Thus, the relaxation
parameter is used to increase the plastic-load vector and, consequently,
increase the rate of convergence. For the finite-element mesh used here,
the displacements were found to converge roughly twice as fast using
g = 2 than using g = 1 (usual value for the initial-stress method).

Solution Procedure for Changing Boundary Conditions

As previously mentioned, the finite-element analysis of an extending
crack under cyclic loading must be able to account for changing boundary
conditions during a specified load history. Usually, boundary conditions
(free or fixed) in the finite-element method are satisfied by adding
equations to, or deleting equations from, the overall system of equations.
But the approach selected here was to connect two springs to each
boundary node, as shown in Fig. 4. One spring was used to satisfy
boundary conditions in the x-direction, and the other to satisfy conditions
in the y-direction. Therefore, all nodes in the system had two degrees of
freedom. For free nodes, the spring stiffness, k, or k,,, was set equal to
zero. For fixed nodes, the spring stiffness was assigned an extremely large
value (107 times the modulus of elasticity of the plate material). The spring
stiffness was added to the diagonal coefficient in the conventional elastic
stiffness matrix. The use of springs to satisfy boundary conditions was

yﬂk

Finite-element
mesh

Boundary

k

sX
k sy

(Typical)

X

FIG. 4—Springs connected to boundary nodes of a finite-element mesh.
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selected because an efficient technique to modify coefficients of the
elastic stiffness matrix was incorporated into the nonlinear analysis
program. This technique involved modifying the coefficients of the
Cholesky decomposition [/0] of the elastic stiffness matrix. The number
of computer operations required to compute the modified Cholesky
factors was of the order of n% (n was the total number of degrees of
freedom). In contrast, the number of operations required to obtain the
original Cholesky factors was of the order of n3. A detailed discussion of
the coefficient-modification technique may be found in Refs 8 or 10.
The coefficients of the elastic stiffness matrix are obtained from

[Ke] = z [B]T [De] [B]de + [Ks] (&)

m=1

where [D,.] is the elasticity matrix and the diagonal matrix [K,] contains
the elastic stiffness of the springs connected to the boundary nodes.

The procedure for treating the nonlinear material behavior in the
presence of changing boundary conditions remains unchanged from that
previously presented for an elastic-plastic structure, except that all nodal
displacements along the crack line were monitored to determine whether
the nodes are to be released (crack extends), to open (crack opening), or
to close (crack closure).

To extend the crack, the crack-tip node was chosen arbitrarily to be
released at maximum load (the stiffness of the boundary spring was set
equal to zero and the stiffness matrix was updated) and the crack tip
advanced to the next node. During crack extension, the nodal force
carried by the crack-tip node was released automatically due to the
change in the spring stiffness. To ensure that the stresses and total strain
increments in the adjacent elements satisfied the yield condition and the
Prandtl-Reuss flow rule, the iterative procedure, previously discussed,
was used to redistribute the force previously carried by the broken node,
and to stabilize the plastic-load vector.

During each load increment (loading or unloading), the nodal displace-
ments along the crack line were monitored to determine whether the crack
surfaces had opened or closed. If the crack surfaces had opened (positive
displacement of the spring), the stiffness of the boundary spring was set
equal to zero, and the stiffness matrix was updated. If the crack surfaces
had closed (negative displacement of the spring), the spring stiffness was
set to the extremely large value, and the stiffness matrix was updated.

Application of the Finite-Element Analysis to Cyclic Crack Extension

Elber [4], on the basis of fatigue crack-closure experiments with
constant-amplitude loading, proposed the following equation for fatigue-
crack-propagation rates
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Aa
W =C (AKeff)n 6)
where C and n are material constants and AK; is the effective stress-

intensity factor range. He proposed that the effective stress-intensity
factor range be calculated by

AKeff = Aseff vVia & (7)

where
a = half length of the crack,
« = boundary-correction factor, and
AS.x = effective stress range,

given by
ASeff = Smax - So for So = Smin (8)
where
Smax = Maximum stress,
Smin = Minimum stress, and

S, = crack-opening stress.

Thus, the crack is assumed to propagate only during that portion of the
load cycle in which the crack tip is open. Equations 6 to 8 suggest, then,
that the crack-opening stress can significantly influence crack growth
under both constant- and variable-amplitude loading.

The following sections give the results of applying the finite-element
analysis to an extending crack under cyclic loading. The center-cracked
panel. Fig. 1, was subjected to either constant-amplitude or two-level
block loading.

The panel material was assumed to be elastic-perfect plastic with a
tensile (and compressive) yield stress, oy, of 350 MN/m? and a modulus of
elasticity of 70000 MN/m2. These properties are representative of an
aluminum alloy material. The cyclic stress-strain curve assumed for this
material is shown in Fig. 5. The cyclic stress-strain curve was also taken
to be the stabilized curve, that is, the stress-strain behavior was assumed
to be unaffected by further cycling. (Crews [//] has shown that in some
materials the local stress-strain behavior at a notch root stabilizes in
approximately 10 cycles.) The solid line in Fig. 5 shows the behavior
under tensile loading. The dashed line indicates the typical behavior
during unloading. The dash-dot line shows the behavior during reloading
from a compressive plastic state.

In this study, no attempt was made to establish a failure criterion for
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FIG. 5—Cyclic stress-strain curve for an elastic-perfectly plastic material.

crack growth. For any cyclic loading, the crack-tip node (for example,
Nodes A, B, . . ., or F in Fig. 2) was chosen arbitrarily to be released at
the maximum applied stress regardless of the magnitude of the applied
stress and of any prior stress history. Thus, the model provides no direct
information on the amount of crack growth per cycle; this information
must be obtained from Eq 6. Instead, the analysis provides only the
crack-opening stress, S,, to be used in Eq 8. Of course, the accuracy of
the calculated crack-opening stresses would be affected by the mesh size
chosen to model the crack-tip region. A finer element-mesh size would give
more accurate results. Therefore, three different element-mesh sizes
with progressively smaller elements, Fig. 3, were used to model the
crack-tip region. Table 1 shows the elastic-stress concentration, the
smallest element size, and the total number of elements and nodes used
for the three different meshes.

TABLE 1—Comparison of stress concentration, smallest
element size, and the number of elements and nodes for
Meshes I, II, and II1.

Aa, ¢
Mesh Kr mm Elements Nodes
1 7.2 0.64 398 226
11 14.4 0.16 533 300
111 20.9 0.08 639 358

¢ W =460 mmand a = 28 mm.
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Crack Extension Under Constant-Amplitude Loading Using Mesh 1

The following sections give the results of applying a constant-amplitude
loading (R = 0) to Mesh 1. These results are shown to demonstrate how
the crack was allowed to propagate under cyclic loading and how the resi-
dual plastic deformations remaining in the wake of the advancing crack
cause the crack surfaces to close during unloading. Crack-surface dis-
placements and residual stress distributions during the crack-growth pro-
cess are also presented.

The finite-element idealization and the coordinate system used for the
center-crack panel are shown in Fig. 2 for Mesh . The initial crack tip was
located at Node A (see Fig. 2), so that the initial crack half length, a;, was
27.3 mm. The total panel width was 460 mm.

The constant-amplitude loading applied to the center-crack panel is
shown in Fig. 6. The maximum gross stress was 0.4 o, As the cyclic
stresses were applied, the crack initially opened at a infinitesimal stress
due to the assumption of no prior plastic deformation. The symbol x
indicates the point at which the most highly stressed crack-tip element
initially yielded. The plastic-zone size along the x-axis at maximum stress
was about 4.6 mm. At the maximum applied stress, Node A was allowed
to displace (crack extension), and the crack tip advanced to Node B.
(Note that the crack extension increment, Node A to Node B, is solely a
consequence of the element-mesh size used and does not imply a
crack-growth law.) The crack-growth increment (0.64 mm) was about 14
percent of the plastic-zone size. During unloading, Node A was found to

05 o = 350 MN/m° x Initial yield
o o Closure stress
o  Opening stress
——— Stabilized opening stress

Time

FIG. 6—Constant-amplitude crack extension with Sye, = 0.4 0, and R = 0 using Mesh 1.
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close at a positive stress (solid symbol) and was constrained against
further motion. At zero applied stress, the contact (closure) stresses near
Node A were large enough to cause the material along the crack surfces to
yield in compression. When the panel was reloaded, Node A opened
(open symbol) at a considerably lower stress than at which it had
previously closed. Again, upon reaching the maximum stress, the next
node (B) was also allowed to displace and the crack tip extended to Node
C. During unloading, Node B closed at a slightly higher stress than that at
which Node A had closed on the previous cycle. Further cycling and
sequential release of the nodes indicated that the closure stress rapidly
stabilized to approximately 43 percent of the maximum applied stress.
The opening stress increased after each cycle until it converged to the
previously established closure stress.

Because the crack-closure and crack-opening stresses are a function of
the crack-surface displacements, the variation of surface displacements
with crack extension was investigated. The crack surface displacements
for constant-amplitude crack extension with S, = 0.4 o, are shown in
Fig. 7. The displacement, v, in the y-direction was plotted as a function of
the coordinate location, x. The lowest curve shows the displacements at
maximum stress with the crack tip located at Node A (before crack
extension). The other curves represent the crack-opening displacements
at the maximum applied stress after each increment of crack extension.
The sharp knee (slightly to the left of Node A) in the displacement curves
is an indication of the extent of plastic deformation.

To gain a qualitative understanding of the relationship between the

0.20 - 1 2 3 4
s
L 4
0.15 3
1{ Time
0.10 f
v, mm
0.05}
0 ABCDE
I—/\ﬁ 27.3 —| |~ 0.64 (Typical

X, mm

FIG. 7—Crack-surface displacements under constant-amplitude crack extension with
Sz = 0.4 c,and R = 0 using Mesh 1.
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..l_/\/___ 973 -

FIG. 8—Crack-surface displacements during unloading after constant-amplitude crack
extension (Syar = 0.4 o,) with crack tip at Node E.

residual plastic deformations near the crack tip and the crack-closure
stresses, crack-surface displacements were computed for two similar
configurations. The first configuration was a crack, with the tip initially at
Node E, being opened for the first time by the maximum applied stress
(Smax = 0.4 o). The second configuration was a crack which was grown
incrementally from Node A to Node E by cyclic loading (also with
Smax = 0.4 ). The results are shown in Fig. 8. The dash-dot curve is the
surface displacements for the first configuration under the maximum
stress. The solid curve is for the second configuration under the same
maximum stress. The fully dashed curves show the displacements for the
second configuration under a sequence of lower stresses for which the
crack has closed successively from Node E to Node A.

The difference between the maximum surface displacements for the
two configurations, as identified by the shaded region in Fig. 8, is a
measure of the residual plastic deformations which are left in the wake of
the advancing crack tip, and which Elber has postulated as the major
cause of crack closure during unloading.

The displacement curves for lower stress levels further illustrate the
crack-closure phencmenon. For example, a drop to 0.17 o, in applied
stress caused the crack to close back to Node D. Upon complete removal
of the applied stress, the crack closed back to Node A but remained open
to the left of Node A.

The stress distributions near the crack tip associated with these stages
of unloading are shown in Fig. 9. At the maximum applied stress, the
near-tip stress o, (solid curve), reaches at plateau in front of the crack tip
(characteristic of an elastic-perfect plastic material). Because the local
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FIG. 9—Local crack-tip stress distributions during unloading after constant-amplitude
crack extension (S,,q; = 0.4 o) with crack tip at Node E.

stresses are computed at the centroid of the elements (= 0.3 mm from the
crack surface), the stresses do not drop to zero immediately behind the
crack tip. During unloading, the crack surfaces contact initially at Node
D and the crack surfaces between Nodes A and E begin to support
compressive stresses, as illustrated by Curves 3 to 5 of Fig. 9.

Crack Extension Under Constant-Amplitude Loading Using Mesh II or
I

The following sections give the results of applying various constant-
ampitude loading to Meshes II or III. These results are also compared
with previous results obtained from Ref 8§ using Mesh I. A comparison
between the element sizes in the crack-tip region for Meshes I, I1, and I11I
are shown in Fig. 3. The smallest element size for Mesh III was nearly an
order of magnitude smaller than that for Mesh I. The elastic-stress
concentration for Meshes II and III was about 14 and 21, respectively.

Stress Level-The constant-amplitude loading (R = 0) applied to Mesh
Il is shown in Fig. 10. The maximum gross stress was 0.4 o, identical to
that applied to Mesh I, Fig. 6. The crack half length, a;, was 25.4 mm and
was located initially in a mesh size identical to Mesh I. After eight cycles
and eight growth increments, the crack tip was located in the finest mesh.
The open symbols indicate the stresses at which the crack tip opens
during loading, and the solid symbols indicate the stresses at which the
crack tip closes during unloading. After the eighth cycle, the closure
stress stabilized at about 75 percent of the maximum stress. The step in
the closure stress between the seventh and eighth cycle was caused by the
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FIG. 10—Constant-amplitude crack extension with S,,, = 0.4 o,and R = 0 using Mesh
111

change in mesh size. The closure stress seems to be governed by the
maximum strain reached on the crack-tip element prior to crack exten-
sion. However, the crack-opening stress was found to stabilize, after five
cycles, at about 50 percent of the maximum applied stress. This value of
crack-opening stress is in good agreement with the experimental value
(also 50 percent of S,,,) obtained by Elber [4].

The plastic-zone size at maximum stress (0.4 o,) and a crack half length
of 28 mm was again about 4.6 mm. Thus, the crack-growth increments per
cycle (0.08 mm) were about 2 percent of the plasic-zone size. At this
stress level and crack length, the actual crack-growth increment per cycle
for a 2024-T3 aluminum alloy material was about 0.1 mm [/2]. Therefore,
the simulated crack-growth rates and the actual crack-growth rates were
in good agreement. In fact, the same stress history applied to Mesh II
gave the same crack-opening stress as Mesh III, even though the growth
increment per cycle was twice as large as that for Mesh III.

Figure 11 shows the stabilized crack-opening stress normalized to the
maximum applied stress as a function of mesh size for various applied
stress levels.The stress ratio (R) for all cases was zero. For stress levels
greater than 0.2 o, and less than 0.5 o,, Meshes II and III gave
crack-opening stresses within 10 percent of 0.5 S,,.. For stress levels less
than 0.2 o, a finer mesh size than Mesh I1I should be used. At an applied
stress level of 0.5 o,, Meshes I, II, and III gave almost the same
crack-opening stress. Stress levels greater than 0.5 o, were attempted,
but the crack-opening stresses did not stabilize before the crack grew out
of the fine mesh region. For stress levels greater than 0.5 o,, the
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FIG. 11—Stablized crack-opening stresses as a function of mesh size under constant-
amplitude loading (R = 0).

crack-opening stresses are expected to be considerably lower than 0.5
Smax Decause yielding would occur over a substantial portion of the net
section.

Stress Ratio—To study the effects of stress ratio on crack closure,
calculations were made for R values between 0.5 and —1 using Mesh I11.
Figure 12 shows a cyclic stress history with R = 0.5 and S, = 0.4 o,

0.5 @ Closure stress
® Qpening stress
——— Stabilized opening stress
0.4
0.3
s b Pl o\ i 1Pt 1D l® Y\ Y{\D {——
% ¢
0.2
0.1
0

Time

FIG. 12—Constant-amplitude crack extension with S, = 0.4 o,and R = 0.5 using Mesh
1.
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FIG. 13—Constant-amplitude crack extension with Sy, = 0.3 o,and R = -1 using Mesh
1.

Again, the crack-tip nodes were released at succeeding occurrences of
maximum stress. But in this case, the crack surfaces did not close until
the fourth cycle. The opening stress stabilized at about 68 percent of the
maximum stress. This value of opening stress was about 5 percent
higher than that measured by Elber [4] on an aluminum alloy.

Figure 13 shows the crack-closure and crack-opening stresses for
R = -1 and Sy = 0.3 o, During the compressive loading, all nodes
along the crack surfaces closed. The crack-opening stress for all cycles
was lower than the corresponding opening stress obtained for the R = 0
case (Spax = 0.3 o,). This implies that the applied compressive stress
caused the mateial along the contacting crack surfaces to yield further in
compression than the R = 0 case. The crack-opening stress stabilized at
50 percent of the maximum stress. Therefore, according to Eq 6 the
fatigue-crack-growth rates for R = —1 should be approximately two times
faster than the rates for R = 0 (n = 4in Eq 6). This inference is consistent
with the results obtained by Hudson |/2]|, who found about the same
difference between the crack-growth rates for a 2024-T3 aluminum alloy
sheet materialat R = 0and R = —1.

To summarize the effects of stress ratio on crack-opening stresses, Fig.
14 shows the stabilized crack-opening stresses normalized to the maximum
applied stress as a function of stress ratio using Mesh III. The solid
symbols denote the results at S, = 0.3 o, and the open symbols at
Smax = 0.4 o,. The dashed curve shows the experimental results ob-
tained by Elber |4] for R values between —0.1 and 0.7. The agreement
between the calculated and experimental results at R = 0 and 0.5 are
considered good. The results at negative R values show that the crack
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FIG. 14—Comparison of calculated (stabilized) and experimental crack-opening stress as
a function of stress ratio (R).

opening stresses were influenced strongly by the magnitude of the
compressive stress. The applied compressive stresses cause the crack
surfaces near the crack tip to yield in compression, thereby lowering the
subsequent crack-opening stress. Further studies on measuring crack-
opening stresses during fatigue-crack-growth rate tests at negative R
values should be made to investigate this stress level effect.

Crack Extension Under Two-Level Block Loading Using Mesh 111

High-to-Low Loading-The high-to-low block loading applied to Mesh
II1 is shown in Fig. 15. The maximum stress S .. (first level) was 0.4 o,
and Spaye (second level) was 0.3 ¢,. The crack closure and opening
stresses for the eight cycles of S, were identical to those previously
shown in Fig. 10. On the first cycle of Smax2, the crack-tip node was al-
lowed to displace (crack extends). During unloading, the crack tip closed
at a stress which was considerably lower than the previous closure stress
for Smaxi- When the panel was reloaded, the crack tip opened at a
slightly higher stress than the stabilized opening stress for $p.x
(dashed line). During further cycling, the crack-opening stress increased
after each cycle and reached a peak at the ninth cycle of Sy,,x. If more
than eleven cycles of S, Were to be applied, the closure and opening
stresses would be expected to converge to the dash-dot line (the stabilized
opening stress for Spax2) as the crack grows out of the material yielded by
Smaxi1- The last two cycles of Sp..; show crack-opening stresses less than
the peak value.
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s o

FIG. 15—High-to-low block loading crack exiension with S,q, = 0.4 o, and
Sparz = 0.3 o, using Mesh 111.

The closure and opening stresses are governed usually by the node
adjacent to the crack tip along the crack surface, but, under the high-to-
low loading during the sixth to 11th cycle of S axe, the closure and opening
stresses were governed by nodes not adjacent to the crack-tip node. This
behavior is illustrated in the sketch on Fig. 15. The sketch shows the
crack-surface displacements along the crack line.Crack closure during
unloading or crack opening during loading occurs at a node several
element sizes to the left of the crack tip. This behavior shows the
existence of a ‘“‘hump’” in the crack surfaces which was caused by the high
loading.

Because the crack-opening stresses for S,,,; are considerably higher
than the stabilized opening stress for Sp.«: the crack-growth rates
(computed from Eq 6 are expected to be considerably lower than if the
eight cycles of Sy had not been applied. This behavior has been
observed and is referred to as crack-growth retardation or delay (see, for
example, [/3]).

Low-to-High-Loading—Figure 16 shows the low-to-high block loading
applied to Mesh III, for which S, = 0.3 0, and Spax = 0.4 o,. The
crack closure and opening stresses for Spa.; has stabilized at the eighth
cycle. On the first cycle of S0, the crack-tip node was released again.
During unloading, the crack tip closed at approximately 75 percent of the
maximum applied stress. At zero applied stress, the material along the
crack surface near the crack tip yielded in compression, and the sub-
sequent opening stress was considerably lower than the stabilized opening
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FIG. 16—Low-to-high block loading crack extension with Syaq = 0.3 o, and
Sumazz = 04 o, using Mesh II1.

stress for Spax;. During further cycling, the closure stress remained
constant, while the opening stress increased after each cycle. The opening
stress had not converged to the stabilized opening stress for Spaxe
(dash-dot line) after eleven cycles. If more cycles had been applied the
opening stress should be expected to converge to the dash-dot line.
Because the opening stresses for Sy, are considerably lower than the
stabilized opening stress, the crack-growth rates (computed from Eq 6)
are expected to be higher than the crack-growth rates computed using the
stabilized opening stress for Sp,..z. This behavior in crack-growth rates
has also been observed experimentally and is referred to as crack-growth
acceleration [/4].

Concluding Remarks

A two-dimensional (plane stress) finite-element analysis which ac-
counts for both nonlinear material behavior and changing boundary
conditions under cyclic loading has been presented and used to study
crack extension and crack closure in a center-cracked panel. The finite-
element models of the panel were assumed to be composed of an
elastic-perfect plastic material and was subjected to either constant-
amplitude or two-level block loading.

Although the failure criterion used in growing the crack was arbitrary,
the calculated crack-opening stresses under constant-amplitude loading
were quantitatively consistent with experimental measurements. The
calculated crack-opening stresses under two-level block loading, when
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used with Elber’s crack-growth equation, gave crack-growth-rate trends
(retardation or acceleration) consistent with experimental observations.
Therefore, the finite-element analysis performed here gives further insight
into the mechanism of fatigue-crack growth during cyclic loading.
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ABSTRACT: A laser interferometry technique is described which is capable of
resolving crack surface displacements to about 0.2 um. The method provides
continuous measurements of the free surface crack profile in metal specimens
without being limited by rigid body displacements. Using the laser interferometry
procedure to determine fatigue crack profiles in 2024-T851 aluminum specimens, it
was possible to measure the load at which the crack faces completely separate.
These opening loads were correlated with peak tensile overloads and subsequent
crack retardation. These results are discussed in terms of the Elber concept of
fatigue crack closure.

KEY WORDS: crack propagation, lasers, interferometry, fatigue (materials),
measurement, cyclic loads, retarding, stresses, deformation

Nomenclature

a Crack length
o, ap Angles between incident laser beam and fringe pattern

d Distance between reference grooves

8d Relative displacement of grooves

da/dN Fatigue crack growth rate

K Stress intensity factor

K,. Fracture toughness

AK Cyclic range in stress intensity factor = Kp,x t0 Kpin
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K, .x Maximum stress intensity in baseline load cycle
K i Minimum stress intensity in baseline load cycle
Ken Stress intensity factor to separate crack faces
K,ax Peak value of stress intensity during overload
A Wavelength of light
m, dm Fringe order and change in fringe order
N Number of cycles
Q Load ratio = K/Kpax
Qopen Load ratio = Kopen/ Kmax
Opeax  Overload ratio = Kpeax/Kmax
R Stress ratio = Kpin/Knax

Accurate determination of crack surface displacements is often re-
quired for fundamental investigations of crack behavior. As suggested by
the following examples, displacement measurements may serve a variety
of research purposes. Interferometric measurements of crack displace-
ment in glass specimens, for example, were used by Sommer [/]® and by
Crosley et al [2] for stress intensity factor calibrations. The crack opening
displacement (COD) occurring at fracture has been suggested as a
possible failure criteria for ductile materials [3]. Attempts to quantify the
sensitivity of nondestructive methods of flaw inspection [4] have shown
crack surface displacement to be an important variable (for example,
flaws held shut by compressive stresses are more difficult to detect than
those loaded in tension). Finally, determining the separation of fatigue:
crack surfaces as a function of applied load has received considerable
interest during recent studies of crack closure as a possible mechanism for
fatigue crack retardation {5-10].

A new method for measuring crack surface displacements applicable to
these types of problems has been recently developed [/1]. The technique,
which employs laser interferometry, is quite sensitive (about 0.1 wum
resolution), is readily adaptable to laboratory measurements and has the
capability of obtaining the entire crack displacement profile. The purpose
of this paper is to use this new technique for some fundamental observa-
tions of fatigue crack surface displacements under tensile peak overload
conditions.

Elber [5,6] explained fatigue crack retardation by the residual strains in
the plastically deformed wake of the propagating crack. Since the residual
compression must be overcome before the crack surfaces separate to
allow propagation, the effective cyclic range in stress intensity factor is
reduced. Elber suggests that peak loads change the local plastic deforma-
tion, alter the closure stresses, and thus perturb subsequent crack growth.

Elber originally observed closure with a clip gage which bridged the
fatigue crack. Changes in linearity of load-displacement records indicated

3 The italic numbers in brackets refer to the list of references appended to this paper.
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a significant tensile load was required to overcome the residual compres-
sion. Similar measurements were made by Roberts et al [7] with foil strain
gages instead of clip gages, and by Adams {8] who employed microscopic
observations of reference points to obtain the load-displacement curve. It
is important to note in all of these experiments that the opening load was
determined from changes in the slope of the load-displacement record of
two fixed points astride the crack.

Buck et al (9] used ultrasonics to measure average crack depth in
surface flawed specimens. Changes in apparent crack length determined
the opening load. Although this ultrasonic technique was useful for
part-through crack geometries, the closure load was inferred from a
change in average crack size rather than by direct observation of the crack
profile. Pitoniak et al [/0] used interferometric techniques to study fatigue
crack closure in polymethylmethacrylate specimens. Examination of the
interference fringes provide a quantitative mapping of the entire three-
dimensional crack profile as a function of load, but measurements were
restricted to transparent materials.

The technique described here has the significant advantage of providing
continuous displacement measurements along the entire crack length in
metal specimens with a sensitivity capable of determining when the crack
physically separates at the specimen surface. This simple displacement
measurement technique is described in the next section, followed by some
observations of crack displacement profiles and a preliminary study of
fatigue crack closure and retardation.

Experimental Procedure

The opening of a crack at a free surface can be obtained by laser
interferometric measurement of the displacement of two grooves ruled on
either side of the crack. This is illustrated schematically in Fig. 1. The
grooves are V-shaped, causing the light rays to be reflected (diffracted) at
angles +a from the laser beam incident perpendicular to the specimen
surface. Since the laser radiation is monochromatic and coherent, optical
interference patterns are formed in space. This phenomenon is similar to
Bragg X-ray diffraction. The equation locating the bright interference
fringes is

dsina=m\ m==1,2,3, ... €8]

where \ is the wavelength of light and d is the spacing between grooves.
In order to measure the displacement, 8d, it is convenient to fix the
observation angle at «, and observe the change in fringe order 8m. The
governing equation is then

A
3d = = Sm 3]
Sin (7}
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FIG. 1—Schematic of the laser interferometric displacement technique. d is typically
0.51 mm (0.020 in.), and a is typically 65 deg.

The fringe shift, 8m, is obtained by comparing fringe pattern photo-
graphs before and after the crack has opened (or partially opened). The
distance on the film that a fringe has moved is converted to a fringe shift
value, 8m, by dividing it by the original spacing between fringes. One can
thus measure the displacement along the crack by measuring the shift of
any one of the fringes at various positions along its length. In effect, the
fringe motion is a magnified picture of the crack displacement at the
specimen surface. Comparison of the fringe photographs requires an
indexing procedure; a suitable reference is the pattern of fringes emanat-
ing from the undeformed region in front of the crack. This concept of
having the reference marks attached to the specimen removes the
problem of relative motion between the optical system and testing
machine and also permits before-and-after-test displacement measure-
ments.

The quantity A/sin ain Eq 2 is the calibration factor for this technique
and is approximately 0.7 um using A = 0.6328 um and «, = 67 deg. Note
that establishment of «y is all that is needed to calibrate the system. The
resolution of the measurement is easily 0.1 wn which turns out to be quite
adequate for our purposes. It has been demonstrated |/2] that this laser
interferometric technique can be used to measure strains as small as 2
microstrain (5 X 10~* wm displacement).

Although specimen preparation is not difficult, a fairly smooth and flat
surface is required. Current practice is to lap one side of the specimen and
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then polish it using standard metallographic techniques. The lapping is not
required; it is just more expedient. The grooves are applied by pressing a
wedge-shaped diamond (110 deg wedge, 2.5 mm (0.1 in.) long) into the
surface. This diamond is mounted in a holder adjacent to a toolmaker’s
microscope. A set of grooves is produced by pressing a row of indenta-
tions below and parallel to the crack, and then shifting the diamond across
the crack and repeating the process. The procedure is to polish the
surface, initiate a fatigue crack, apply the grooves, and then test. Figure 2
is a photomicrograph of a set of grooves with a spacing of 0.25 mm (0.010
in.) straddling a fatigue crack. Grooves with a spacing of 0.51 mm (0.020
in.) were used in the series of experiments discussed in this paper.

The equipment needed for measurement is a small laser and two single-
lens-reflex cameras without lenses. A 5 mW helium-neon laser was used,
but a 1 mW laser would be adequate. The laser and cameras are mounted,
as schematically illustrated in Fig. 1, on a stand adjacent to the testing
machine. Panatomic X film is used and typically requires 1/30 s exposure.

Figure 3 is a montage of fringe photos. The straight fringes on the left
are in front of the crack tip and hence undistorted. The fringes emanating
from grooves straddling the crack are distorted somewhat because of the
distortion of the reflecting surfaces as the crack grows between them.
However, one still makes valid displacement measurements as the crack
opens; the zero fringe is simply no longer straight. Larger displacements
than those in Fig. 3c are difficult because the fringes become too dense to
resolve. The distortion of the fringes is affected by how straight the
fatigue crack is and whether it wanders over toward one groove. In our
experiments we had no problems with the crack wandering out of the
0.51 mm (0.020 in.) groove spacing.

Reduction of the data is effected by projecting the 35-mm film onto a
ground glass screen and tracing a series of fringes obtained for various
loads on the same piece of paper. A small computer with a digitizer is used
to measure the fringe displacement from the zero load fringe and plot the
curves. Data from both the upper and lower camera are plotted and then
averaged. This averaging helps eliminate any local groove rotation and in
effect smooths the displacement curves. Figure 4 is a typical plot; note
that the crack is not fully open until Q = K/Ky.x = 0.25.

The foregoing description is brief; however, the procedure is straight
forward. More information on the optical aspects may be found in Refs /1
and /3.

Crack Displacement Profiles and Opening Load Determination

Fatigue crack surface displacements were studied in ASTM standard
compact specimens machined from a single sheet of 2024-T851 aluminum
(thickness = 2.54 cm = 1.0 in.). All specimens were oriented so that the
crack grew perpendicular to the rolling direction of the plate. Tensile
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FIG. 4—Typical crack surface displacements for various load conditions, Q = K/K 45
The 2024-T851 compact specimen was cycled between K0, = 5.5 MPa-m'? (S ksi-in.'"?)
and Kpin = 0.55 MPa-m'? (0.5 ksiin.'?).

properties of the test material are a 0.2 percent yield strength of 448 MPa
(65 ksi) and an ultimate stress of 483 MPa (70 ksi). Two instrumented
specimens tested to ASTM Test for Plane-Strain Fracture Toughness of
Metallic Materials (E 399) gave K. values of 23.0 and 23.3 MPa-m'(20.9
and 21.2 ksi-in.'?). Baseline fatigue crack growth rate data obtained at
constant cyclic load (R = Kyin/Knax = 0.1) are shown in Fig. 5. All
fatigue tests were conducted at 40 Hz on a closed loop electrohydraulic
fatigue machine at laboratory temperature and environment.

Figure 6 shows the displacement curves for a crack grown at
Kipax = 5.5 MPa - m"2 (5.0 ksi - in."?) with R = 0.1 as it opens (solid line)
and as it closes (dashed line). As load is applied to the specimen, the crack
as observed on the surface is completely open by Q0 = 0.25. As the load is
decreased to complete the cycle, the crack remains open at ¢ = 0.20 and
is closed at the tip for Q = 0.10. The small amount of hysteresis in the
load-displacement cycle indicated by the crack tip closing at a smaller
load than it opens has been reported previously [/4].

Figure 7a is a plot of the displacement profiles resulting from various
loads applied to a cracked compact specimen. The crack length was
8.4 mm (0.33 in.) from the 1.27 cm (0.5 in.) notch as measured on both
sides of the specimen. A load of 4.27 kN (960 lb) corresponds to
Koo = 5.5 MPa-m'2 (5.0 ksi-in'?). As load is applied to the specimen,
the displacements become large enough to measure. However, measur-
able displacement to the crack tip is not observed here until a load of 1.33
kN (300 Ib) is applied. Then, very small displacements are measured
across the tip until a load of 2.45 kN (550 1b) is applied. Higher loads lead
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FIG. 5—Baseline da/dN versus AK data for 2024-T851 aluminum.

to larger displacements across the tip, and the resolvable displacement
profile moves ahead of the tip. Note that these profiles represent the
displacement between grooves located 0.25 mm (0.010 in.) above and
below the crack.

At higher loads, the response of the specimen should be given by the

... Q=040
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-~ CRACK
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4 3 2. | 0
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FIG. 6—Crack displacement profiles as the crack opens and closes.
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FIG. 7a—Displacement profiles used to determine the opening load.

elastic crack tip displacement equations (see, for example, Ref 15). Figure
7b is a plot of the displacement profile measured as the load is
incremented from 2.67 kN (600 1b) to 3.78 kN (850 1b) and compared with
the theoretical elastic displacement for a 1.12 kN (250 Ib) increment.
After the crack is fully open, the agreement is excellent near the tip.
One way to determine when a crack is open all the way to its tip is to
observe the crack on the surface with a microscope. This is, of course,
rather difficult and insensitive. The laser measurement used here in effect
magnifies the crack surface displacement to permit better resolution. The
crack tip location is known a priori because it is measured relative to the
groove placement. The opening load is defined as the load required to
measurably displace the grooves along the entire crack length (for
example, the 1.33 kN (300 Ib) profile in Fig. 7a). At a position 0.1 mm
behind the tip, the theoretical elastic displacement on the crack face is
only 8 percent less than that of a line 0.25 mm (0.010 in.) above it. Since
this difference becomes smaller as one moves away from the tip, the
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For load increment from 2.67 kN (600 1b) 10 3.78 kN (850 Ib).

groove displacements closely approximate the crack surface displacement
profile. Although this procedure for determining the opening load differs
from the load-displacement [5-8] or ultrasonic [9] methods, it provides a
conservative measure of the opening load by determining the earliest
opening of the crack on the specimen surface. This criterion, thus,
represents an alternative to the other procedures used to measure the
opening load.

An experiment was performed to compare the opening load obtained by
this method with that established by the resistance strain gage procedure
discussed in Ref 7. A 0.125 in. (3.18 mm) long by 0.086 in. (2.18 mm) foil
strain gage was placed across the crack. The foil gage was placed with its
centerline 3 mm (0.118 in.) from the crack tip on the opposite side of the
specimen from the grooves. A 2.39 mm (0.094 in.) wide band of Teflon
spray was applied over the crack area prior to gage application to prevent
adhesion of the central portion of the gage.

Figure 7c is a plot of the load-displacement curves from that experi-
ment. The interferometrically determined curves were obtained at posi-
tions 1, 3, and 5 mm from the tip by measuring the fringe displacements
from photos taken at discrete loads. The foil gage displacement curve was
recorded continuously on an X-Y recorder. Note that the foil gage, which
averages the displacement over the region between 2 and 4 mm from the
crack tip agrees reasonably well with the displacement measured inter-
ferometrically at 3 mm. The foil gage experiences some resistance change
due to strain under the portion of the grid attached to the specimen, so its
indicated displacement should be slightly less. In addition, note the near
agreement in the slopes of the linear portions of the foil gage and the 3 mm
interferometry curves with the theoretical elastic load-displacement curve
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FIG. 7c—Load-displacement curves obtained interferometrically and with a resistance
strain gage.

for two points separated by 51 mm (0.020 in.) at a location 3 mm behind
the crack tip.

The opening load determined by locating the point of tangency between
the upper part of the load-displacement curve and a straight line is 2.45 kN
(550 1b) =10 percent for the 1 mm curve, 2.24 kN (500 1b) =10 percent for
the curve 3 mm from the tip, 2.00 kN (450 1b) =10 percent for the foil gage
curve, and 1.56 kN (350 1b) =10 percent for the curve 5 mm from the tip.
Note that since the opening load determined from the load displacement
curves depends on the distance from the crack tip, location of the strain
gage would be important for this method. In viewing the interferometri-
cally determined profiles in Fig. 7a, it is clear that the crack is open fully
by the time the load has reached 1.33 kN (300 Ib). Thus, the opening load
established by this latter criterion is between 1.11 and 1.33 kN (250 and
300 Ib), significantly smaller than the opening load determined by the
other method.

Overload Experiments

A set of overload/retardation experiments was conducted using the
laser interferometry method to study the fatigue crack closure phenome-
non. Fatigue cracks were grown under conditions of constant range in
stress intensity factor (+5 percent) by shedding load in predetermined
amounts as the crack extended. Crack lengths were measured to the
nearest 0.002 in. by means of a scale calibrated in 0.005-in. increments
placed next to the crack. The baseline K,,, was maintained at 5.5
MPa-m*? (5 ksi-in.'?), while R was kept at 0.1. Single peak loads with
Qpeax Values (Qpeax = Kpear/Kmax) of 2.0, 2.25, 2.5, and 3.0 were applied to
determine their effect on subsequent crack growth and on the opening
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level of stress intensity (K,.n). In all cases, the initial crack growth was
allowed to stabilize prior to application of the overloads.

In order to minimize stress relaxation effects on the opening load
measurements, efforts were made to standardize the time base associated
with the overload cycle. After the initial crack growth at 40 Hz, the test
was stopped and the crack length measured. Next, the overload was
applied in predetermined increments to photograph the series of fringe
patterns. After completing the overload cycle, the crack length was
measured again and the 40 Hz baseline cycling continued. By following
this procedure it was possible to complete the overload cycle in
approximately 3 to 5 min.

The influence of these tensile overloads on crack extension is shown in
Fig. 8. Note that the Qp..x = 2.0 overload had little effect on subsequent
crack growth, while Qp..x = 2.25 delayed extension for a significant
number of cycles. When the baseline cycling was resumed after
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Qpear = 2.5 and 3.0, the cracks did not grow in 400 000 cycles, at which
time the tests were terminated.

The influence of the peak loads on the force required to separate the
crack faces and on corresponding crack growth is shown in Figs. 9a-d.
Note here that cycles following the overload are plotted on a
semilogarithmic scale to show both immediate and long-term effects of
peak loading. The shaded bands in Figs. 9a-d represent the steady-state
value of K., prior to the overload, while the vertical bars show the
observed K ., following the peak load. The uncertainty represented for
Kpen stems from the fact that fringe patterns were photographed at
discrete load increments. This uncertainty could be, of course, reduced
by recording more fringe patterns as the crack opens. The actual crack tip
profiles at various points in the load spectrum are shown in Fig. 10 for the
Qpeax = 2.25 overload condition. Note that the profiles determined by the
laser interferometry method provide a distinctive measure of the load
required to separate completely the crack faces.

Examining Fig. 9a, one notices that a significant tensile load (20 to 25
percent K ,,,,) is required to completely open the crack faces for steady-
state cycling to K.y = 5.5 MPa-m'? (5§ ksi-in.'?). Since the crack is
closed partially at the minimum load (Kyn = 0.1 Knay), the effective
range in stress intensity is reduced from 90 percent to approximately 75
percent of K,.x. When the Q.. = 2.0 overload was applied, K., Was
raised to 30 to 35 percent of K, but decayed to the original steady-state
value. Since the reduction in effective AK caused by raising K ., lasted
less than 100 cycles, there was no observable pertubation in subsequent
crack growth.

For the higher overload, however, crack growth was retarded signifi-
cantly. As shown in Fig. 95, The Qe = 2.25 overload raised K ,pen to 35
to 40 percent of K., and although K., again dropped after ten cycles,
the steady-state value was not reached for 100 000 cycles. At this time
measurable crack extension occurred, gradually returning to the baseline
rate. The Qpeax = 2.5 and 3.0 overloads again caused an increase in K e,
followed by a slight drop after 10 cycles. In both cases, however, the
opening load failed to return to the original value and subsequent crack
growth was arrested for at least 400 000 cycles. In both instances, the
effective AK was reduced by the change in K., Since Ky, = 5.5
MPa-m' (5.0 ksi-in.*?) is close to the threshold range in stress intensity
factor for fatigue crack growth (see Fig. 5), this reduction in effective AK
has particular significance.

The results of these tests indicate that the peak loads caused an increase
in K,,en Which was related to fatigue crack retardation as suggested by
Elber. In all cases, K., was raised on the first cycle following the
overload but dropped after ten cycles had elapsed. As the overload ratio
was increased, K., was also raised.
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Concluding Remarks
A laser interferometry technique has been described which is capable of

resolving crack surface displacements to about 0.1 um. The technique
possesses a significant advantage over other commonly employed crack
displacement methods in that measurements are not restricted to the
motion of two fixed points but enable one to obtain the entire free surface
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displacement profile. Since the method is not hampered by the rigid body
motions which limit holographic techniques, the procedure is readily
adaptable for laboratory measurements on standard testing machines.
The laser interferometry procedure can be used to determine the
opening loads required for studies of the closure mechanism for fatigue
crack retardation. In this paper, the opening load was defined as the
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remote load required to produce measurable displacement along the entire
crack length. Opening loads determined in this manner for a fatigue crack
grown under conditions of constant range in stress intensity factor were
found to be significantly less than those obtained by the strain gage
method. This discrepancy is most likely due to the fact that the laser
technique determines when the crack faces measurably separate on the
specimen surface, whereas the strain gage method determines when the
specimen behaves as if a fully open crack were present.

Single peak tensile loads were found to perturb subsequent crack
growth under constant AK baseline conditions. The opening load was
observed to increase on the first cycle after the overload and then to
decrease under additional cycling. This immediate increase in K., differs
from the gradual rise observed by Elber [6], who used clip gages to obtain
load-displacement curves.

Changes in closure loads were correlated successfully with peak
overloads and subsequent fatigue crack retardation as suggested by the
closure model. The authors feel a precautionary note is needed, however,
since all closure loads were based on observations of the crack displace-
ment profile at the free surface under conditions of plane stress. This
same limitation is, of course, also inherent in the clip gage and strain gage
methods. Recent work in transparent polymers using optical interference
procedures [/0] and in aluminum with ultrasonic techniques [/6] indicate
that the closure effect may not be as significant in the plane strain interior
of the specimen.

Finally, it should be noted that the laser interferometry method for
measuring crack surfaces is not restricted to closure studies. Indeed, the
technique may be used whenever accurate measurements of the free
surface crack profile are desired.
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ABSTRACT: In this investigation stress interaction effects on fatigue crack
propagation following single peak overloads in 2024-T3 aluminum alloy were
studied. The two parameters investigated were the overload stress ratio,
Ry, = Knin/Kor, and the overload ratio, Koi/K,.x- Tests were run with quasi-
constant stress intensity fatigue loading following the overload. The effect of
overload on the crack growth rate through the overload plastic zone was observed.
Additional tests were run to determine only whether or not crack arrest would
occur. The delay effect due to single peak overloads was found to increase with
overload stress ratio, R, and overload ratio, K¢, /K ... The higher values of both
Ry, and K¢ /Knax produced nonpropagating fatigue cracks, and the delay/arrest
boundary was defined.
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AK Stress intensity range
n Empirically determined constant
N Number of stress cycles
Np Number of delay cycles
R; Ratio of minimum stress intensity to maximum stress intensity,
Kmin/Kmax
R, Ratio of minimum stress intensity to overload stress intensity,
Kmin/KOL
Zo. Measured delay affected zone size

One of the major problem areas associated with fatigue design, espe-
cially when using fracture mechanics, is the ability to predict fatigue crack
growth behavior. It has been recognized for some time that a change in
the load level significantly influences the subsequent crack growth rate.
However, the common crack growth or life prediction methods do not
account for these load interaction effects. As a result the crack growth
behavior under spectrum loading conditions remains difficult to predict.

Schijve [1]® and more recently Hudson and Raju [2], Jonas and Wei [3],
Von Euw, Hertzberg, and Roberts [4], Trebules, Roberts, and
Hertzberg |5], Probst and Hillberry {6], Corbly and Packman {7], Weli,
Shih, and Fitzgerald [8], and Porter |9], examined the crack growth delay
behavior resulting from single or multiple peak tensile overloads. The
tensile overload frequently creates an initial accelerated crack growth
followed by a slowing down of the growth to some value below the
original growth rate and then an acceleration back to the original rate. The
reduced growth rate is of primary interest since the overall effect of the
overload is to cause a net delay in the crack growth. The region over
which the crack growth is affected is believed to be related to the plastic
zone created by the overload, although there is some question on this and
also the correlation has been less than gratifying. The number of delay
cycles, defined as the number of cycles following the overload until the
crack growth rate returns to the steady-state value, is influenced signifi-
cantly by many factors including the loading conditions, the environment-
al conditions, and the material parameters. The load sequence conditions
including the magnitude of the overload, the stress ratio and underload
levels can significantly influence the delay behavior. However, the exact
dependence is not fully understood. Probst and Hillberry |6] observed
complete crack arrest when the overload stress intensity, K, was greater
than or equal to 2.3 X K, (Knax is the maximum level of the subsequent
fatigue cycling) for a fatigue stress ratio, R, of 0.3.

Hsu and Lassiter {/0] studied the effect of compressive overloads and
found that a tensile overload followed by a compressive underload
resulted in less delay than when there was no compressive underload.

3 The italic numbers in brackets refer to the list of references appended to this paper.
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Gallagher [//] and others showed that when high overloads are present
in spectrum type loadings a significant delay can result. Prediction
methods which account for the delay effects are necessary.

There are several hypotheses for explaining the delay phenomena. It
has been suggested that under high loading the crack tip is blunt while
under low loading it is much sharper {/2]). Immediately following the
overload the blunted crack causes a lower stress concentration effect on
the crack tip which accounts for the delay. Another theory is that the
overload creates a residual stress field at the crack tip due to the plastic
strain that occurs within the plastic zone. The resulting compressive
residual stress then decreases the local tensile stresses at the crack tip
thereby delaying the crack growth. Gallagher [//] showed that the
Willenborg [/4] and Wheeler [15] models could be expressed in terms of a
residual stress concept.

Elber’s crack closure model [/3] has also been used to describe the
delay effect [5]. Elber showed that the crack remained closed until a
certain stress intensity level was reached and then it opened. Since crack
growth can only occur when the crack is open, the overload raises the
applied stress intensity level necessary to open the crack. This results in a
lower net applied stress intensity range for propagating the crack.

There have been several models proposed to account for the delay
effects due to tensile overloads. These models, in general, are based on
some reduced effective stress level resulting from the overload. The
Wheeler model {/4] modifies the constant amplitude growth rate equation
by multiplying by a parameter which is a function of the overload and
fatigue plastic zone sizes and an empirically determined exponent. The
Willenborg, Engle, and Wood model [I5] utilizes a reduced effective
stress in the constant amplitude growth rate equation where this effective
stress is related to the overload and fatigue plastic zone sizes. Gallagher
and Stalnaker |/] ] modified the Willenborg model, while Gray [/6] gives a
modification of the Wheeler model.

This study [/8] was undertaken to determine the effect of the stress
ratio on the delay behavior due to single overloads using 2024-T3
aluminum alloy. Also, the growth rate through the plastic zone was
determined by carefully measuring the crack growth following the over-
load and numerically differentiating these data. From this, the minimum
growth rate following the overload was determined.

Experimental Procedure

Test Program

A test program was designed to ascertain the effects of overload stress
ratio (Rq;, = Knin/Kov) and overload ratio (K /K max) ON crack propagation
rates following single peak tensile overloads. Five values of overload ratio
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were selected ranging from 1.3 to 2.5; however, based on Probst’s (6]
results, crack arrest was expected for some of the tests. Six values of the
stress ratios (Ro, = Kpin/Kor) were selected between 0.01 (nearly zero)
and 0.6. Since a range of crack propagation rates was desired, five values
of crack propagation rate between 10~7and 10~%in./cycle were chosen and
assigned randomly throughout the test matrix. Using these growth rates,
particular values of AK were selected from the constant amplitude growth
rate test results. The value of AK, corresponding to the expected growth
rate, was then used as the constant amplitude fatigue loading for the test.
Following the completion of the tests in the original test matrix, the
tests in which complete crack arrest occurred indicated that additional
tests were required to define the delay arrest boundary. These tests were
run only to determine whether or not arrest would occur, and no ¢ versus
n data were recorded. Arrest in this investigation is defined as no
observable crack growth (less than 0.01 mm) in 1.5 x 10% cycles.

Test Specimen

The material used throughout the investigation was 2024-T3 aluminum
alloy. Center crack specimens (22 by 6 by 0.100 in. thick) identical to
those used by Probst and Hillberry [6], were used for the fatigue testing.
Fatigue loading was applied parallel to the direction of rolling of the
material. Since the material was obtained with a mill finish, the surface in
the area near the stress raiser was polished to a near mirror finish in order
to facilitate optical observation of the fatigue crack. Tada’s modification
of Feddersen’s formula was used to calculate the stress intensity factor
for this geometry [/7].

Test Equipment

A closed-loop electrohydraulic, fatigue test system was used to load the
specimens. The crack growth was measured optically with a X100
microscope mounted on a horizontal measurement traverse. The resolu-
tion of the traverse was 0.01 mm. A strobe light was used to illuminate the
specimen which allowed viewing the crack in the open-most position
without stopping the system. A digital printer, pushbutton actuated,
provided a means for rapid data acquisition. Data were taken by incre-
menting the microscope on crack length, usually 0.01 to 0.05 mm and
recording the corresponding number of cycles, N, when the crack reached
that length.

Test Procedure

All tests were run in an environment of air desiccated with silica gel and
at temperatures between 18 and 21°C (65 and 70°F). Loading frequencies
were between 15 and 20 Hz. The stress intensity was controlled within 3
percent by load shedding, which provided quasi-constant K test condi-
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tions. Pre-overload data provided a growth rate comparison with separate
constant amplitude data and published data.

Overloads were applied at a frequency of 0.02 Hz and recorded on an
oscillograph. In all cases the preoverload loading was the same as the
postoverload loading. Following an overload, the specimen was cycled
continuously, until steady-state growth rate was again reached.

For further details on the experimental methods, see Ref /8.

Results
The constant amplitude growth rate test results along with the preover-
load growth rate data were used to compare with published data. The
results were found to agree with the following equation [20]
da/dN = 6.8 x 107°[(1 + 0.698 R)AK]*38

Tension tests of three specimens gave the following average values.

yield strength = 56.9 ksi
ultimate strength = 69.0 ksi
elongation = 14.2 percent

As mentioned in the experimental procedure section, all crack propaga-
tion data were taken in the form of crack length, a, versus the correspond-
ing number of cycles, N. Based on a second order least squares fit over
overlapping intervals of seven data points, the function a versus N and the
derivative da/dN versus a were found. Figures 1 and 2 show typical
results. Figure 1 also shows the method of defining the extent of the

os8r
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FIG. 1—Typical a versus N data (Test 9-A).
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FIG. 2—Typical da/dN versus a results (Test 9-A).

overload affected plastic zone, Z;,, and the number of delay cycles, N,
Table 1 gives the results of the tests.

Since different crack propagation rates resulted from various tests and
the overload affected zone size differed with each overload, normalized
variables were chosen to compare the results. An average crack propaga-
tion rate, da/dN = Zy/Np, over the delay interval, was calculated and
then normalized on the preoverload propagation rate to compare the
relative reductions in the crack propagation rate. Figures 3 and 4 show
these results plotted against the test parameters, Roy and Koy/Kyax,
respectively. Large ranges of growth rates were observed, and definite
trends in the growth rate with respect to the test variables are evident.

Probst found that for R, = 0.3, large overloads (K ;/Knax = 2.3) would
produce complete crack arrest. Continuing this further, this investigation
showed that an arrest/delay boundary exists as a function of the overload
stress ratio, Ro;. This boundary is shown in Fig. 5. Notice that as Ry,
increases, the overload ratio, Ko /Knax necessary to produce complete
crack arrest decreases.

Applying the crack closure concept [/3] to the overload cycle gives

Ko, - Kop
U=————=05+04R
KOL - Kmin o
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Kou
KMAX

o 13
1.6
1.9
2.2

FIG. 3—Normalized average crack propagation rate versus Ry;.

Assuming crack arrest occurs when Kgp = K., this equation can be
solved for the arrest boundary. This is compared with the test results in
Fig. 5.

Table 1 gives the complete test results for each of the tests of the
original test matrix. Included in the table are the values for N, overload

Pre-OL

da /da
dN/ dN
>

FIG. 4—Normalized average crack propagation rate versus Ko /K gz
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FIG. 5—Arrestidelay boundary (shaded symbols indicate supplemental tests).

da
affected zone, Z,,, as well as the preoverload growth rate,dT\fl pre-OLs
da
average growth rate, Z,/N,, and the minimum growth rate, d-N—lmi,,.

Conclusion

These test results show that as the overload stress ratio, Ro, = K/
K., increased, the value of K¢ /K.« along the delay/arrest boundary
decreases. Furthermore, it was shown that the crack closure model as
applied to the overload cycle agrees reasonably well with the experimen-
tal arrest/delay boundary.
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Predicting Fatigue Crack Retardation
Following a Single Overload Using a Modi-
fied Wheeler Model

REFERENCE: Gray, T. D. and Gallagher, J. P., ‘“Predicting Fatigne Crack
Retardation Following a Single Overload Using a Modified Wheeler Model,”
Mechanics of Crack Growth, ASTM STP 590, American Society for Testing and
Materials, 1976, pp. 331-344.

ABSTRACT: A modification to the Wheeler fatigue crack retardation model is
proposed. The modification allows the model to be used without reliance on data
fitting and, therefore, without the subsequent limiting to a specific material or to a
specific set of loading parameters. The new model is used to predict existing data
for the number of delay cycles following a single overload in 2024-T3 aluminum,
4340 steel, and Ti-6A1-4V titanium alloy. All predictions were within essentially a
factor of two of the experimental data.

KEY WORDS: crack propagation, retardation models, cyclic loads, stresses,
residual stress, mechanical properties, fatigue (materials)

Nomenclature

a Crack length
ao. Crack length immediately after overload
Aa Current crack growth increment since overload
C,n,q,t Crack growth rate constants
C, Wheeler crack growth reduction factor

da .
dNls» Crack growth rate under spectrum loading
-‘—;1]{"— « Crack growth rate under steady state loading

K Stress Intensity
K.x Maximum stress intensity
Knin Minimum stress intensity

1 Structures Division, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force
Base, Dayton, Ohio, 45433.
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Knax® Overload stress intensity
K*max Stress intensity required for no-load-interaction
AK Stress intensity range (Kmax — Kmin)
AK.s Effective stress intensity range
AKy,  Threshold stress intensity range
m Wheeler shaping exponent
N* Observed delay cycles
P Load
R Stress intensity ratio (K nin/Kmax)
r, Plane stress plastic zone radius
r*, Plane strain plastic zone radius
S Overload shut-off ratio
Z Load interaction zone
Z. Current load interaction zone
Zo Overload created load interaction zone
Z* Load interaction zone required for no-load-interaction
a Load interaction zone constant
oy Yield stress

The qualitative effect of an overload on a fatigue crack propagating at
some lower, cyclic load is well known. A tensile overload will delay or
retard subsequent fatigue crack growth below that expected for the steady
state case (no overload). Any crack growth analysis that does not account
for this high-to-low load interaction will predict an overly conservative
crack growth life.

Wheeler [/] 2 proposed that the linear cumulative damage fatigue crack
growth predictive technique could be improved by introducing a factor to
suppress the crack growth calculation following an overload. Although it
is a substantial improvement over the linear cumulative damage rule, the
original Wheeler retardation model is more of a data fitting technique than
it is a predictive technique. In reducing the growth rate following an
overload, the model utilizes an empirical shaping exponent, m, which is a
constant for any particular case but varies according to type of material,
specific load spectrum, and possibly other factors. Forcing the shaping
exponent to be a constant may provide a good correlation between the
model and a particular set of experimental data, but an important loss of
generality is incurred in doing so. This paper proposes a modification to
the Wheeler retardation model which (1) relates the exponent, m, to the
primary factors that affect it and (2) allows the model to be used without
reliance on-data fitting.

2 The italic numbers in brackets refer to the list of references appended to this paper.
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Model Development
Load Interaction Zone Concept

Any crack growth retardation model must provide for a proper charac-
terization of the crack tip residual stress state created by prior spectrum
loads. In general, the maximum extent of any load-generated residual
stress state, can be defined using a parameter Z, called the load interac-
tion zone (LIZ).

A schematic showing the relationship between load and its correspond-
ing LIZ is shown in Fig. 1. Load P, applied at crack length a, develops a
zone Z, which extends to some future crack length position a;. Load P,
applied at crack length a, develops an LIZ which spans the distance
between a, and some future crack length position a,. An assumption basic
to the Wheeler model is that if the load P, develops an LIZ which extends
out to or past the furthest extent of a previously developed LIZ, that is,
as + Z, = a, + Z,, the growth increment associated with the P, loading
is calculated using a steady-state (no retardation) growth rate equation.
Conversely, a crack growth rate reduction is assumed if the load P,
applied at crack length position a, develops a load interaction zone which
is smaller than that required to reach the furthest extent of any previously
developed LIZ boundary, thatis,a, + Z, <a, + Z,.

Wheeler [1] assumed that the load interaction zone Z, was equal to the
plastic zone (radius) size created under plane strain loading

1 [k
- — ¥
Z= || =r (1)
v
4mV2 | oy
,
2P
TN |
I 3 3, 3, CRACK LENGTH
CRACK POSITION
AND LIZ =
AT LOAD Py 4 7, . LIZ FOR Py
IN ADVAKCE OF &
CRACK POSITION -
AND LiZ
AT LOAD P, 7 2. LIZFR Py
IN ADVANCE OF 32
)
4
3 % 3

FIG. |—Schematic illustrating the load interaction zone (LIZ) concept.
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while others [2] suggest that the plane stress plastic zone (radius) size
might be a more appropriate approximation of Z, that is

1 [k
szﬂ'_ Tys =T @)

To generalize Egs 1 and 2, one could assume that

Z =« 3)
Oys

where a would be a function of material and thickness.

Stress Intensity Format

The Wheeler model was not derived originally in a stress intensity
format, but such a format could be easily developed. Wheeler proposed
that the crack growth rate under spectrum loading was equal to a reducing
factor times the steady-state growth rate, or

da —Cu X da @
dNl, 77 dN|g
where
Z, N 5
C,= 7 Lo < Z )
1 L. =Z* 6)

In Eqgs 4 and 5, the quantity Z. is the extent of the current LIZ or the LIZ
caused by the current maximum applied cyclic stress intensity, K .. The
quantity Z* is the difference between the LIZ due to a previous overload
and the current crack growth increment since that overload, that is

Z* = ZOL — Aa (7)

Figure 2 shows that Z* is also the LIZ that would be necessary in order to
have no retardation, that is, after the crack has grown some increment,
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FIG. 2—Stress intensity (K*nay) required for coincident load interaction zone boundaries.

Aa, away from the crack position immediately after the overload, ao,, the
quantity Z* is the LIZ required to be coincident with the LIZ due to the
overload. As the crack grows away from the overload position, ag,
that is, as Aa increases, Z* decreases. For the case of coincident LIZ
boundaries (no retardation), there must be some stress intensity, K*ax,
which would be necessary to cause an LIZ of size Z* and which continu-
ously decays as the crack grows away from the overload position. Assum-
ing that the extent of an LIZ is related to stress intensity by Eq 3 and
substituting this relation into Eq 7 yields

K* nax ’ I<max0L : Aa
a |——— = q xt1 - ®)
Tys Tys Zoo

which can be rearranged in terms of K * .y, Kmax’ls Aa, and Zg,, to give

1/2
Aa
K*pax = I<max0L X [1 - ] )]
ZoL

The locus of K*n,« values, defined by Eq 9, is illustrated graphically in
Fig. 2.

The Wheeler reducing factor, Cp, may now be expressed in a stress
intensity factor format by substituting the LIZ size relation (Eq 3) into
Eqs S and 6, resulting in

Kmax am A 10
K* s Kmax <K max ( )

CP = max
1 » Kmax = K¥max an

As seen in Eq 10 the Wheeler model considers the ratio of K,y t0 K*pnax
as the driving force for the amount of retardation applied to the low
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amplitude load induced crack growth rates. Stating the Wheeler retarda-
tion concept in a stress intensity factor format implies that if
Kinax < K*max, crack growth rates below steady-state levels can be
expected for those cycles associated with K ... If K., = K* .., NO
suppression in crack growth rates below steady-state levels is predicted.

The steady-state crack growth rate in Eq 4 can be, in general, expressed
as

4l X [AK.R) ] 12
sts_ [ﬂ ’)] ()

where

C = constant which varies according to the type of material and
the specific steady-state equation being used.
constant which depends only on the material, and
controlling stress intensity function which drives the fatigue
cracking process.

n
AAK,R)

il

Three familiar forms for the function f{lAK,R) are given next.

Paris [3] equation: RAK,R) = AK (13)
Walker [4] equation: fIAK,R) = AK(1 — R)! ! (14)
Elber [5] equation: f(AK,R) = AK(1 + gR) (15)

Equations 10 through 12 can be substituted into Eq 4 to obtain

2m n

Knax |™ \
Cx | || X(MOKR) | Knax <K*mex  (16)

da
dNj &

C x ( ﬂAK,R))" s Knax = K* e (17)

which is the stress intensity format for the Wheeler model in conjunction
with a general expression for steady-state crack growth.

Equation 16 shows that Wheeler crack growth reduction factor may be
applied directly to the stress intensity range function. With this fact in
mind, Eqs 16 and 17 can be rearranged in terms of an effective stress



GRAY AND GALLAGHER ON FATIGUE CRACK RETARDATION 337
intensity range, AK.4, to yield

da

—1 =C X [AKex]"
dN|,, [AKet] (18)
where

2m

K max "
[K* ] X flAK,R), Kmax < K*nax 19

AK.y = max

ﬂAK’R) ’Kmax 2 K*max (20)

Crack Arrest Condition

Experiments involving single overloads in 2024-T3 aluminum (6] and
Ti-6A1-4V [7] indicate that there is a particular value, S, of K ,2,°%/ Kmax
such that when K,2,°%/Knax = S, crack arrest occurs. In particular,
Probst and Hillberry [6] showed that the condition for crack arrest was
independent of K,,... In the absence of any additional definitive experi-
mental work, it will be assumed that the overload shut-off ratio, §, is
constant. For 2024-T3 aluminum, Probst and Hillberry [6] determined that
S is approximately 2.3. Wei et al |7] provided data which indicate that §
for Ti-6A1-4V is about 2.8.

The limiting condition for crack arrest is K ,.x°%/Kmpax = S. Im-
mediately after an overload, Aa = 0. Substituting these relations into Eqs
9 and 19 yields

2m
AK . (at arrest) = [Sﬁ:, " X flIAK,R) 2D

For the limiting case of crack arrest, the residual stresses induced by
the overload adjust the stress state such that the effective stress intensity
range just equals the threshold stress intensity range (AKy,), the point
below which no measurable fatigue crack growth occurs. Thus

AK. (at arrest) = AKy, (22)

In research associated with AKy,, Grandt and Gallagher |8] showed that
the threshold stress intensity range can be, in general, expressed as a
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function of AKy, at an R ratio equal to zero and the actual R ratio, as
illustrated in the following equation

AKth = g <AK¢h

R (23)
R=0

Using the concept of Eq 22 in conjunction with Eq 23 and the modified
Wheeler formulation for K. (at arrest) (Eq 21) and solving for the
exponent, m

fIAK,R)
log
g(AKy, R)
n R=0 (24)
m= — X
2 log S

Thus, it is evident that the Wheeler exponent, m, is not a constant but
depends on the specific material being used and the loading subsequent to
the overload.

Data Correlation

To illustrate the accuracy of the modified Wheeler model, predictions
made using the model were compared to existing experimental data
16,7,9,10,11,12] for the number of delay cycles (N*, see Fig. 3)
following a single overload. The data include three materials, 2024-T3
16,9,10], 4340 steel 111], and Ti-6A1-4V [7,12], and a number of
different values of loading parameters (see Table 1). A delay cycle is
defined as any postoverload cycle of loading in which the growth rate is
less than that expected for the case of no overload. In the 2024-T3 and
4340 experiments, load shedding techniques were employed to obtain
constant AK loading before and after an overioad. Because of slightly
different experimental techniques, the observed delay cycles in the
Ti-6A1-4V experiments correspond only approximately to N* as defined
in Fig. 3.

To simplify the delay cycle calculations, it was assumed that AKy, is a
constant with no dependence on stress intensity ratio, R, and that the
Paris equation (Eq 13) can describe adequately steady-state crack growth
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for any particular R ratio. With these assumptions, Eq 24 becomes

| AK
8\ Ko

n
m=5- X log S

@25)

Equations 18, 19, and 25 were programmed in a computer routine to
analyze the postoverload crack growth on a cycle by cycle basis. This
routine applies one load cycle at a time and counts it while computing the
growth increment da |, updating the current growth increment since

dN lsp
'Aa 1/2
overload (Aa), and checking the condition Kmax<Kmax°L><[1 - Z—OL]
As soon as this condition is violated, the total number of cycles up to
that point, that is, the delay cycles, is printed out.

The overload shut-off ratios, S, for 2024-T3, 4340, and Ti-6A1-4V were
taken to be 2.3, 2.3, and 2.8, respectively. Table 2 summarizes the Paris
growth rate equation constants, C and », that were used for the various
materials and R ratios. These constants were determined by a least
squares fit to da/dN versus AK data presented in Refs 6,7,9,10,11, and
12, or, where applicable, the constants were taken directly from these
references. Threshold stress intensity ranges for 2024-T3, 4340, and
Ti-6A1-4V were assumed to be 2, 6, and 6 ksi V/in. (2.2, 6.6, and 6.6
MN/m?3?2, respectively.

STEADY STATE

OVERLOAD APPLIED

| "
I 1
STEADY STATE

CRACK LENGTH

CYCLES

FIG. 3—Crack growth curve (for constant AK loading) depicting the number of delay
cycles, N*, following a single overload.
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For both 2024-T3 and 4340, the load interaction zone was assumed to be
equal to the radius of the plane stress plastic zone as given by Eq 2. Wel et
al [7] presented data indicating that the LIZ in Ti-6A1-4V is several times
the value calculated using Eq 2. Accordingly, the predictions for Ti-6A1-
4V were made assuming the LIZ, that is, the extent of the residual stress
state’s influence, to be approximately four times the plane stress plastic
zone radius (o = 2/7, see Eqgs 2 and 3).

Figure 4 shows the correlation between the predictions and the experi-
mental data. Note that all predictions are within essentially a factor of two
of the actual data, an excellent correlation considering the various types
of materials and values of loading parameters included in the data. For all
cases considered, the exponent, m, varied from 1.07 to 4.34 according to
Eq 25. The exponent need be computed only once per overload case
since, in these calculations, it is assumed that constant AK loading follows
the overload.

Before applying the modified Wheeler model to variable amplitude load
spectra, it must be noted that changes in load level can induce changes in
the Wheeler exponent m (see Eq 25). The recalculation to determine m is
conducted for load changes for which retardation modeling is applicable.
The reader is cautioned that the model at present does not account for
load interaction effects which may change the magnitude of the shut-off
ratio S, that is, multiple overloads and underloads applied subsequent to
overloads may influence §. However, variable amplitude crack growth
analyses that include the modeling of first-order, load-interaction effects
such as demonstrated herein provide substantial improvements in life
prediction capability.
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FIG. 4—Predicted delay cycles versus observed delay cycles.
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Summary

The Wheeler fatigue crack retardation model has been modified by
formulating the model in a stress intensity factor format and applying a
crack arrest condition. The modification relates the exponent, m, to the
primary factors that affect it and allows the model to be used without
reliance on data fitting and without the subsequent limiting to a specific
material and a specific set of loading parameters.

As evident in Fig. 4, the modified Wheeler model can predict delay
cycles following a single overload in 2024-T3, 4340, and Ti-6A1-4V within
essentially a factor of two of the actual experimental data. The true
measure of any crack growth analysis is its accuracy in predicting growth
under a general load spectrum. Nonetheless, this model at present
appears to have the basic elements necessary for a generalized analysis,
and its success in predicting delay cycles following a single overload is
encouraging.
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ABSTRACT: Linear elastic fracture mechanics analysis in conjunction with the
appropriate experimental crack growth data were used to predict allowable thermal
fatigue crack growth rates in gas turbine disks. The crack growth predictions made
for the turbine disks compared favorably with subsequent service data.

Further studies were undertaken to determine the effect of geometric stress
concentration on crack initiation and crack propagation. A general method of
analysis was developed to provide simple approximations of the crack growth rates
for cracks initiating at notches. The crack growth rates predicted by this method
are in good agreement with both experimental laboratory specimen data and field
service turbine disk data.

KEY WORDS: thermal stresses, fatigue (materials), gas turbine disk, crack
initiation, crack propagation, elevated temperature, stress concentration

Nomenclature

a. Crack length
N Fatigue cycles
da/dN Cyclic crack growth rate
K, Tensile range in stress intensity factor
n, C, Numerical constants

f Frequency

R Load ratio = Kyin/Kmax = Omin/Omax
T Temperature

K, Crack tip stress intensity factor

o, Nominal net section stress

1 Analytical engineer, Steam Turbine Division, Turbodyne Corporation, Wellsville, N.Y.
14895.

2 President, Del Research Corporation, Hellertown, Pa. 18055, also professor, Division of
Engineering, Brown University, Providence, R. 1. 02915.
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a¢ Nominal gross section stress
a, Depth of geometric notch
arp Effective total crack length = a, + a,
b Specimen half width
K, Stress intensity factor for unnotched infinite plate
F(a/b) Stress intensity modification function
K, Elastic stress concentration factor
ac Crack length corresponding to crack initiation

Recently, there has been broad application of fracture mechanics to
generator and steam turbine rotors [/-3],® pressure vessels [¢-7], and
aircraft structures [8-/0]. One area which has apparently received less
attention in the literature concerns the application of fracture mechanics
to gas turbine design. As the effort to avoid peak power blackouts
continues and the need increases for more efficient power generation, it is
expected that gas turbines will find increased usage in peaking and
combined cycle plants. Since past experience has indicated that gas
turbine components often crack during service [/I-13], fracture
mechanics should become even more important in gas turbine design to
help eliminate prolonged and disruptive power outages.

This paper presents an example where fracture mechanics was used to
predict allowable limits of thermal fatigue crack growth in gas turbine
disks. The results of this study allowed safe, scheduled removal of
cracked field units eliminating the possibility of premature return for
many of these turbines.

Since the application discussed herein represents an important, general
class of problems dealing with crack initiation and subsequent crack
growth from notches, a further study was conducted to develop a general
method to approximate the crack growth rates for cracks initiating at
notches. The cyclic crack growth rates predicted by this generalized
method are discussed in relation to their application to laboratory
specimen and field service data.

Nature of the Problem

Figure 1 shows the free turbine rotor assembly containing four gas
turbine disks. The rotor is a double flow design powered by the radial flow
from two jet engines. Turbines of this type came into prominence after the
Northeastern Blackout in 1965 and are primarily used by electric utilities
as peaking units where rapid start-stop operation is required. This mode
of operation imposes severe cyclic compressive and tensile thermal

3 The italic numbers in brackets refer to the list of references appended to this paper.



GAMBLE AND PARIS ON NOTCHED STRUCTURES 347

FIG. 1—Free turbine rotor assembly.

stresses on the unit and has resulted in fatigue cracking in each of the four
turbine disks.

Figure 2 shows typical thermal fatigue cracks found in a first stage gas
turbine disk. The cracks are located at the bottom of each blade slot in an
area having a relatively severe geometric stress concentration and high
nominal cyclic thermal stress. The cracking is multinucleated with crack
initiation first occurring on the gas inlet face of the disk at the corner of
the blade slot where the local transient thermal conditions are most
severe. Various crack propagation stages are illustrated by the two
fracture surfaces in Fig. 3. Figure 3a shows the fracture surface for a first
stage turbine disk with 750 service cycles. The crack front is propagating
in the radial direction but does not yet extend across the entire axial
length of the blade slot. Figure 3b is the fracture surface for a different
first stage turbine disk having 1535 cycles. Here one continuous crack
front has been formed and is propagating in the radial direction.

The fracture surfaces in Fig. 3 represent the two gas turbine units in
which cracks were first found in turbine disks. The immediate problem
was to predict the cyclic crack growth rates thought to be representative
of all gas turbine disks operating under similar conditions and establish
the number of operating cycles that could be safely tolerated by the
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FIG. 2—Thermal fatigue cracks in blade slots of first stage gas turbine disk.

INLET AXIAL
FACE {

(a) N = 750 cycles, a. = 0.12 in.
(b) N = 1535 cycles, a. = 0.185 in.

FIG. 3—Fracture surfaces for two gas turbine disks.
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TABLE |1—Chemical composition of A286 forgings (weight percent).

C Mn Si P S Cr Ni Mo Ti B A% Al

006 121 0.66 0006 0.009 1531 26.17 1.29 225 0.006 0.18 0.28

remaining field units. A study was later undertaken to establish a repair
procedure to refurbish the cracked turbine disks and extend their useful
service life.

Initial Cyclic Crack Growth Predictions for Turbine Disks

As a first approximation, the turbine disk crack propagation rates were
obtained by using the two data points indicated in Fig. 3 in conjunction
with cyclic crack growth data generated from small laboratory specimens.

Experimentation

Material and Specimens—The gas turbine disk material is an iron base,
precipitation hardening, super alloy forging commonly designated as
A286. Initially, it was planned to obtain the test material from the rim area
of the cracked turbine disks; however, additional testing, to be discussed
later, required very large specimens and precluded obtaining all test
material from actual disk forgings. The test samples were finally obtained
from a large rectangular bar specifically forged to provide material for all
planned tests. Microstructural examination, short-time tension tests, and
elevated temperature, strain controlied, low-cycle fatigue tests later
indicated that the disk and test forgings were essentially the same. The
chemical composition and the average short-time room and elevated
temperature tensile properties representative of the disk and test forgings
are presented in Tables 1 and 2, respectively.

Experimental crack growth rate tests were conducted using both
compact tension (CT) and single edge notch (SEN) specimens. The CT
specimens were 0.25 in. thick with a 3-in. square planar dimension, while
the SEN specimens were 0.38 in. thick by 2.0 in. wide by 6.0 in. long.
Generally, the remaining details for specimen preparation were in accord-

TABLE 2—Average mechanical properties of A286 forgings, solution treated
1650°F /2 hloil quenched, aged 1325°F/16 hlair cooled.

0.2% Yield Ultimate Elastic Reduction
Temperature, Strength, Strength, Modulus, in Area,
‘F Kksi Kksi ksi %
70 111.0 158.0 28700 40.9

900 98.5 132.0 23100 38.5
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ance with ASTM Test for Plane-Strain Fracture Toughness of Metallic
Materials (E 399-72).

Procedure—All tests were conducted under load control in a closed
loop, hydraulically activated, mechanical test machine. Cyclic crack
growth was determined by visually monitoring the movement of the crack
as it passed reference grid lines photographically printed on the specimen
surface. Data were obtained at load ratios of R= 0 and R = —1 using the
SEN specimen, and at R = 0 using CT specimens. Crack growth rate
tests were conducted for both load ratios at room temperature and 900°F.

Experimental Results and Discussion

The results for the crack growth rate tests are shown in Fig. 4, where
the indicated cyclic stress intensity, at a given load ratio, was determined
using only the tensile load component. At cyclic tensile stress intensities
up to 90 ksi V/in., the data for both load ratios and test temperatures can
be expressed in the general form [/4]

da/dN = C,(Ky" 0))

where

da/dN = cyclic crack growth rate,
K, = tensile stress intensity range, and
n, C, = material constants determined from experimental results.

Within the range of cyclic tensile stress intensity from 20 to 90 ksi Vin.,
the data in Fig. 4 indicate that n is independent of the indicated test
conditions, while C, is a function of both temperature and load ratio.

The room temperature data indicate the load ratio has no effect on the
crack growth rate. However, at 900°F, the growth rate for the R = —1
data is approximately three times greater than that of the R = (0 data ata
given cyclic tensile stress intensity. There appears to be no effect of
specimen geometry on crack growth rate.

Crack Growth Rate Analysis

The crack growth rates in the gas turbine disks were determined using
the service data in Fig. 3, the stress intensity formula for an edge crack in
a semi-infinite plate [15]

K = 1.13 o,V 7a, V3]
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FIG. 4—Laboratory crack growth rate data for A286 forgings.

and the average crack growth rate versus tensile stress intensity relation-
ship

da/dN = 8.6 X 1071 (K;)** 3)

determined from Fig. 4. The relationship in Eq 3 was estimated from the
data at 900°F for a load ratio R = —1.2 and is representative of the
conditions in the turbine disk as determined by transient heat transfer and
stress analyses.

Equations 2 and 3 can be combined to express the crack propagation
rate in the form

G ™% =as™% = (29) (0 (N = N 107 @
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where
a., = initial crack length,
a., = subsequent crack length,
N, = number of fatigue cycles corresponding to a.,,
N, = number of fatigue cycles corresponding to a.,, and
o, = effective nominal stress.

The effective nominal service stress propagating the crack in the turbine
disk was estimated by substituting the crack lengths and associated
fatigue cycles from the initial two service points in Fig. 3 into Eq 4. The
resultant effective stress, o, = 68 ksi, was placed back into Eq 4, and the
crack growth rate curve for the first stage gas turbine disks was con-
structed.

Service Life Prediction and Discussion

The predicted cyclic crack growth rate service curve for the first stage
gas turbine disks is shown in Fig. 5. The extrapolated service curve
indicates very high rates of crack growth at approximately 3500 cycles.
Based on this estimate, it was decided to employ a factor of two on the
maximum service life and recall the gas turbine disks from service at 1750
cycles.

The data designated by the open circles in Fig. 5 indicate first stage
turbine disks subsequently returned from service. Represented are ap-
proximately 15 percent of all field units operated at a number of various
utilities. The data near 1750 cycles are indicative of units returned in
accordance with the allowable life predictions. Those units at lower
numbers of cycles were returned for reasons unrelated to the disk
cracking, but do provide additional information for crack propagation
rates in turbine disks. The data indicate that all turbine disks follow the
same trend, with crack initiation occurring within 250 cycles, and the
subsequent crack propagation rates in good agreement with the curve
initially predicted from Eq 4 and the two service points in Fig. 3. It should
be pointed up that the crack growth rates for small cracks in the vicinity of
the notch cannot be predicted by Eq 4. The portions of the curve
extending from crack initiation to a crack length of 0.12 in. were
arbitrarily drawn to encompass the remaining service data.

Turbine Disk Repair Procedure and Analysis

Although the gas turbine disk life had been successfully predicted, the
resultant 1750 cycles was an unacceptably short service life. In an effort
to extend the service life beyond the original design, a repair procedure
was established to refurbish the cracked turbine disks. The repair
procedure, illustrated in Fig. 6, involved removing the cracked turbine
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FIG. 5—Laboratory crack growth rate data applied to turbine disk service points.

disks from service after 1750 cycles, machining the existing fatigue cracks
from the blade slot and replacing the original notch configuration with one
having larger radii. As a supplement to the crack removal and the
implementation of the new notch design, it was planned to place heat
shields over the blade slots in order to reduce the transient thermal
stresses.

An analytical and experimental study was then undertaken to predict
and verify the safe and useful service life for repaired turbine disks prior
to reinstallation.

Stress Analysis (results)

A transient thermal stress analysis was conducted to define the repair
disk service life, explore various means to reduce the operating thermal
stress, and obtain the required service life without fatigue cracking.
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REPAIR 5LOT
FATIGUE CRACK

ORIGINAL 5LOT 16-INCH RADIUS

FIG. 6—Repair scheme to remove fatigue cracks from turbine disk biade slots.

It was determined that adding heat shields to the turbine disk rim
reduced the transient thermal stress range by 10 to 15 percent. Unfortu-
nately, further significant thermal stress reduction could only be obtained
by drastic alteration of the operating cycle. Since these alterations would
preclude successful operation of the turbine as a peaking unit, they were
not implemented, and the repair was restricted to the addition of heat
shields and change in notch geometry.

Experimentation

Material and Specimens—The material for this portion of the investiga-
tion was obtained from the same forging used for the initial crack growth
rate tests.

Crack initiation and propagation studies were conducted using the large
notched specimens shown in Fig. 7. The specimens were designed to first
obtain initiation and propagation data for the original notch, followed by
fatigue crack removal to allow testing of the repair notch. Not shown in
Fig. 7 are notches positioned on either side of the indicated test notch to
simulate the general stress distribution adjacent to the bottom of the blade
slot in the turbine disk. The notch radii shown for the test specimen are
the same as those in the turbine disk. The remaining specimen dimensions
were chosen to simulate both the geometric stress concentration, as
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2b=3.1

0.575r

0.230r \

FIG. 7—Notched laboratory fatigue specimen.

determined by laboratory strain gage measurements on the turbine disk,
and the range of cyclic stress intensity indicated by the predicted service
curve in Fig. 5. A specimen thickness of 1.5 in. was chosen to satisfy
plane-strain requirements over the range of cyclic stress intensities
studied in accordance with ASTM Test for Plane-Strain Fracture Tough-
ness of Metallic Materials (E 399-72).

To ensure that the fatigue data were not affected by the different notch
depths, two further restrictions were placed on the specimen design.
First, the two-notch depths shown in Fig. 7 were chosen so that the elastic
stress concentration factor [/6] at a given notch radius and nominal net
stress remained constant. Similarly, the stress intensity associated with a
given nominal net stress and crack length extending from the notch was
approximately the same for both notch depths as determined by the stress
intensity formula for a double edge notched specimen [/5].

2b mar . Tmar 172
K =oNmar [w—aT <tan 7 + 0.1 sin T)] &)
where
ar = sum of notch depth and fatigue crack length,

b = specimen half width, and
o = gross stress.
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Procedure—The fatigue test were conducted in a load controlled,
hydraulically activated test machine shown in Fig. 8. The load schedule
used during the tests maintained a stress ratio R = —1.2 and produced a
ramp loading having a 10 to 15-s dwell period at the maximum tensile and
compressive loads. All test loads were established based on the required
nominal net stress range.

To establish correlation with the turbine disks, specimens having the
original notch configuration were tested at the nominal net stress level
necessary to produce cracking within 200 to 300 cycles. Specimens hav-
ing the repair notch were then tested at the same nominal net stress to
determine the effect of notch geometry on crack initiation and subsequent
crack propagation. Since analysis had indicated that heat shields would
reduce the thermal stress, additional repair notch specimens were tested
at reduced loads to evaluate the change in cycles to initiation and crack
propagation rate.

All tests were conducted at a constant 900°F using a split resistance
furnace controlled by a chromel-alumel thermocouple spot welded in an
unstressed area near the central test notch.

At a predetermined number of cycles the tests were stopped, the
specimen was allowed to cool and inspection was made for crack
initiation. Crack initiation was defined as the first definite fluorescent
penetrant indication observed in the test slot. Maximum crack initiation

FIG. 8—Setup for elevated temperature, notched fatigue tests.
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sensitivity was obtained by applying the penetrant under full tension test
load so that the open crack would absorb as much penetrant as possible.
The load was then released so that maximum amount of penetrant was
observed as it was forced from the crack. For fully developed cracks, the
crack lengths were measured at full tension test load using a <20 power
telescope mounted on a micrometer slide having a least reading of 0.0001
in.

Results and Discussion

Crack Initiation—The crack initiation data for the large notched fatigue
specimens are shown in Fig. 9. Since crack initiation in notches is related
generally to the cyclic strain range when local plastic flow occurs [/7], the
cycles to initiation in Fig. 9 have been plotted as a function of the net nom-
inal strain range. At the nominal net strain range simulating the original
transient thermal conditions in the turbine disk, the change from the
original notch to the repair notch increases the number of cycles to crack
initiation by a factor of four. Within the range of load levels tested, a 25
percent reduction in nominal net strain-range increased the cycles to
initiation in the repair notch by a factor of approximately ten.

Propagation-Crack propagation data designated by the open circles are
shown in Fig. 10 for three typical fatigue specimens. The bottom data set
represents a specimen having the original notch geometry and tested at a
net cyclic stress range which produced crack initiation between 200 to 300

10 T T T T T TN T T T 7T T T T T TTTY

TEST TEMPERATURE: T =900° F
LOAD RATIO: R=-1.2
TEST FREQUENCY: f =2-3 CPM
/A ORIGINAL NOTCH
© REPAIR NOTCH

T rrerrr
FE .

-2

KA o9

It L 11l

Qv ? O

T T 1T TFTT

L)
1

NOMINAL NET STRAIN RANGE - IN/IN

1073 L1 1t N R T I S W N e
10 10° 10t 10
CYCLES TO CRACK INITIATION

FIG. 9—Crack initiation data for notched laboratory fatigue specimens.
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FIG. 10—Typical crack propagation data for notched laboratory fatigue specimens.

cycles. The middle data set represents a specimen run at the same net
cyclic stress range but having the repair notch geometry. Comparison of
the two data groups indicate the crack propagation rate in the immediate
vicinity of the notch is significantly less for the repair notch in comparison
to the original notch design. For deeper cracks, the crack propagation
rates for the original and repair notch specimens are the same. The upper
data set represents a repair notch specimen tested at a stress level 20
percent less than the other two specimens. As expected, the results show
decreased crack propagation rates both in the vicinity of the notch and for
deeper cracks.

The solid lines drawn through the data in Fig. 10 were obtained by
choosing one experimental data point at a crack length greater than 0.1 in.
and predicting the crack growth rates for the large specimen using the
stress intensity formula in Eq 5 and the crack growth data from Eq 3.
Since the resulting curves coincided with the remaining experimental data
from the large notched specimen tests, it appeared that the da/dN versus
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K; data in Fig. 4 were applicable for larger components of different
geometry tested at different load levels and significantly reduced cyclic
frequencies.

Turbine Disk Repair Life Predictions

It was apparent from the various laboratory results that crack initiation
could be predicted for the repaired turbine disks and that subsequent
crack propagation rates could adequately be described by Eq 3.

Figure 11 shows the final predicted service life for gas turbine disks
with both the original and repair notch geometry. The curve at the lower
left represents the original design to be returned at 1750 service cycles for
repair. At that time the predicted crack length is approximately 0.20 in.
with 0.25 in. being removed during the repair machining operation. This
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FIG. 11—Prediction of crack initiation and propagation for first stage turbine disks with
original and repaired blade slots.
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margin is used to eliminate the possibility of residual fatigue cracks
remaining in the repaired turbine disks. The curve at the lower right
represents a repair disk subjected to the same transient thermal stresses
as the original design. The upper curve represents repaired disks having
reduced transient thermal stresses due to the addition of heat shields. The
reduced stress is reflected in the greater life to crack initiation and
reduced crack propagation rates. These results indicate that the repair
procedure increases the total gas turbine disk service life by a factor of
three.

Due to the absence of service data for repaired turbine disks, two
conservative assumptions were used in constructing the crack propaga-
tion portion of the service life curves for the repaired disks in Fig. 11.
First, at a given stress level, the crack growth rate in the vicinity of the
repair notch was taken to be the same as the original notch. Second, the
crack growth rates for deep cracks were based on an effective crack
length composed of the sum of actual fatigue crack length and the 0.25 in.
of material removed to eliminate the original crack. The experimental data
shown in Fig. 10 verify the conservatism of these assumptions.

Cyclic Crack Growth from Notches—A General Method

Since there is wide application for fatigue loaded notched structures, an
attempt was made to develop a simple but general method to approximate
cyclic crack growth following fatigue crack initiation at a notch. A
technique was first devised to provide a general analytical expression for
stress intensity that would account for the notch presence without
complicated calculation techniques. Starting at an initial crack length and
number of cycles corresponding to crack initiation, the stress intensity
relationship, together with the appropriate data from Eq 1, were then used
with an incremental crack growth scheme to predict the subsequent
fatigue cycles necessary to produce a given crack length.

The proposed cyclic crack growth analysis was verified by generating a
number of analytical predictions for both the notched fatigue specimens
and turbine disk and by comparing the results with the appropriate
experimental and service data.

Stress Intensity

The stress intensity factor for a crack extending from a notch is often
given in the form (/8,/9]

K, =K, F(@/b) ©)
where K, is the stress intensity formula for a given unnotched geometry

with the crack size small compared to other dimensions and F(a/b) is a
function accounting for the notch presence and any necessary finite width
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correction. In this analysis, the stress and crack length associated with the
stress intensity in Eq 6 are the nominal net stress, o,, and the actual
fatigue crack length, a.. To be consistent with usual fracture mechanics
assumptions, the nominal net stress is restricted to the elastic region. No
restriction, however, is placed on local plastic flow in the notch.

F Functions

General Development—To determine the F function for a given
geometry, the following three distinct regions, related to the distance
the crack tip extends from the notch, are considered: very small
cracks corresponding to initiation, deeper cracks still within the region of
stress concentration, and deep cracks unaffected by the notch presence.

At crack lengths approaching zero, the value of F was obtained from
the stress intensity solution for a crack emanating from a hole in an
infinite plate |/8,19) by generalizing the observation that

F = 1.12K, ata. =0 )

where
K, = elastic stress concentration factor.

Equation 7 is assumed to apply for any notch configuration and the
associated elastic stress concentration based on nominal net stress.

At crack lengths greater than approximately 0.1 in., the resuits of this
investigation and those of Ref 20 indicate that the crack growth rates are
independent of notch tip radius. For deep cracks then, F(a/b) is simply
equal to either 1.0, or, depending on the relative structural dimensions,
the appropriate finite width correction.

Finally, for cracks within the notch influence (0 < a,. = 0.1), F(a/b) is
constructed so that a smooth curve, matching the previously determined
values at a, =0 and 0.1 in. produces increasing values of K; with
increasing values of a. in Eq 6.

Notched Fatigue Specimens—Plots of F(a/b) as a function of a. are
shown in Fig. 12 for the fatigue specimens having both the original and
repair notches. The values of F ata, = 0 were calculated from Eq 7 using
the experimentally determined values of elastic stress concentration
K, = 4.0 and K, = 2.1 for the original and repair notches, respectively.
For deep cracks, F(a/b) is independent of notch geometry and was
derived in terms of a. from the finite width correction indicated for a
double edge notch specimen by Eq 5.

Turbine Disk—Although the F(a/b) function for the turbine disk is not
shown, it is essentially identical to that derived for the original notch
fatigue specimen; however, no finite width correction for deep cracks was
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FIG. 12—F(a/b) functions for original and repair notch fatigue specimens.

necessary since the crack lengths are small compared to the disk
diameter.

Application

In addition to deriving the F function, successful application of the
analysis for predicting crack growth from notches depends on defining K ..
obtaining the appropriate crack growth rate relationship similar to Eq 1,
and defining the initial crack length and corresponding number of fatigue
cycles at crack initiation.

For the turbine disk and notched fatigue specimens, K., is given by
Eq 2, while the experimental cyclic crack growth rate relationship at the
appropriate temperature and load ratio is given by Eq 3. Thus, from
Eq 6, the stress intensity for the disk and specimen geometries becomes

K, = 1.13 o,\/ma. F(a/b) ®)

with
da/dN = 8.6 x 10710 (K;)>*

The number of fatigue cycles and the associated nominal net stress, o,
producing crack initiation in the notched fatigue specimens were obtained
from Fig. 9. Since the exact number of cycles to crack initiation in the
turbine disk cannot be defined, two different values, consistent with the
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service data in Fig. 5, were considered. Using the previously determined
effective nominal service stress, o, = 68 ksi, the number of cycles to
crack initiation in the turbine disk was estimated from Fig. 9 as 200 cycles.
Since the service data in Fig. 5 imply that crack initiation may also occur
earlier than 200 cycles, a second crack initiation point was chosen at 100
cycles. The nominal service stress corresponding to this initiation point
was also estimated from Fig. 9 and is o, = 85 Kksi.

All incremental crack growth predictions calculated from Eq 8 were
begun at a crack length corresponding to crack initiation of a., = 0.002 in.
This initial value is consistent with the inspection sensitivity used to
define crack initiation in Fig. 9 and is a good approximation for the onset
of Stage II cracking where a relationship represented by Eq 1 could first
be employed.

Results and Discussion

Notched Fatigue Specimens—Figure 13 shows the fatigue cycles ver-
sus crack length curves predicted for the original and repair notches at
various stress levels. Comparison with the experimental data indicate
good agreement. The greatest difference is seen for the middle curve where
the predicted life at a given crack length is 25 percent greater than that
obtained experimentally. Figure 13 is plotted on a log-log scale to
emphasize the predicted crack growth rates for small cracks in the notch
vicinity where experimental data could not be obtained. The predicted
curves indicate that the crack growth rates in the notch vicinity are
significantly less for the repair notch in comparison to the original notch.
In addition, for a given notch geometry, the predicted curves indicated
that small cracks in the notch vicinity have lower growth rates in
comparison to deep cracks which extend beyond the region of notch
influence. These predictions are consistent with those implied by the plots
for the experimental data in Fig. 10.

Turbine Disk—The two curves predicted at the stress levels necessary
to produce crack initiation in the turbine disk at 100 and 200 cycles are
shown in Fig. 14 along with the individual service data points from Fig. 5.
The results indicate that the top curve closely describes the service data
for deep cracks while the propagation rates for small cracks are better
described by the lower curve.

A closer look at ihe stress condition in turbine disk will help to clarify
this difference. First, it should be emphasized that the crack is assumed to
grow from the notch due to an applied, uniform nominal stress. For fully
developed deep cracks in the turbine disk, this condition is fairly well
satisfied, and the upper curve adequately describes the propagation rate.
However, a heat transfer analysis indicated that the local heat transfer
coefficients at the corner of the blade slot on the inlet face are two to three
times greater than those in adjacent areas. This implies that the local
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FIG. 13—Comparison of predicted crack propagation rates with experimental data for
notched laboratory fatigue specimens.

thermal stress at the notch corner is significantly greater than the nominal
value and is consistent with Fig. 3 where crack initiation and significant
growth are first seen to occur at this location.Thus, for small cracks, the
propagation rates are described properly by the lower curve indicative of
the higher stress. From these considerations, a good approximation for
crack growth can be obtained by combining the applicable regions for the
two predicted curves as shown by the dashed line in Fig. 14.

Further Discussion

The available service data shown in Fig. 5 lie in a relatively narrow
scatterband and are in good agreement with the service curve first
predicted from the two original service points and the cyclic crack growth
rate data generated from the CT and SEN specimens. However, due to
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FIG. 14—Comparison of predicted crack propagation rates with service data for first
stage turbine disks.

the large variation in fatigue life generally associated with service data,
there was some concern that the allowable service life for the remaining
85 percent of the gas turbine units might not be represented by the curve
in Fig. 5. Subsequent thermal and stress analyses indicated that extreme
variations in operating schedules were necessary to alter the transient
thermal stresses by more than =5 percent. Since the remaining turbine
units would not experience these extreme operating conditions, the curve
in Fig. 5 is considered a good representation for the crack growth rates in
all similar service units.

The major difficulty encountered in studying the crack growth rates in
the immediate notch vicinity was the inability to observe accurately the
propagation of small cracks following initiation. Normally, the cracks
initiate at various locations along the notch surface and can be monitored
as they grow and coalesce across the specimen width; however, neither
the depth nor the shape of the crack front can be observed. As an
approximation for predicting the crack depth as a function of fatigue
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cycles, the preceding analysis tacitly assumes that beginning at crack
initiation the cyclic crack growth rate along the notch is sufficient to
maintain a constant flaw shape factor associated with a depth to width
ratio approximately equal to zero. The results from this investigation and
those from Ref 20 imply that this is a reasonable assumption for edge
notches with constrained plastic flow, although it does not appear to be
true for all notch types [21]. The use of a constant depth to width ratio
approximately equal to zero, however, does provide a convenient device
to make qualitative, and, in general, conservative cyclic crack growth
rate predictions for small cracks in the notch vicinity when the crack
shape cannot be defined.

Conclusions

1. Experimental and analytical fracture mechanics methods can be
used to predict the allowable number of service cycles for gas turbine
disks subjected to cyclic thermal stresses.

2. Fracture mechanics techniques can be used to describe the cyclic
crack growth rates in the immediate vicinity of notches beginning with
very small crack lengths corresponding to initiation.

3. The elastic stress concentration factor provides an effective means
to describe qualitatively the effect of notch severity on the cyclic crack
growth rates and, as evidenced in this investigation, may provide accurate
quantitative predictions as well.
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ABSTRACT: The existence for a plane or axisymmetric cracked body of an
influence or Green’s function, depending on the geometry of the body, allows
calculation by means of a simple integral of the stress intensity factor. In this way
the respective influence of geometry and load in K calculation are separated. The
relationship between this function and the compliance for a concentrated force
applied on the crack is shown.

Starting from complex mathematical considerations, Bueckner defined weight
functions equivalent to the influence functions and of particular advantage for
analytic as well as numerical purposes. Moreover he showed that weight functions
behave like d~t at the distance d from the crack tip. In the sequel we shall refer to
weight functions, since they are studied more deeply from a mathematical point of
view and are known more widely than influence functions.

A practical calculation method of weight functions by finite elements is shown.
This method can be used for any bidimensional cracked body, plane or axisymmet-
ric. Curves of nondimensional weight functions are given for cylindrical geometries
currently used in engineering.

It is pointed up that this method is more flexible than the use of handbooks
which, in spite of their great interest, cannot foresee all the geometries and loads
which are met in engineering problems.

KEY WORDS: crack propagation, fracture properties, stress intensity, stresses,
elastic theory, weight function, plane problems, axisymmetric problems

Existence of an Influence Function

Let us consider a plane or axisymmetric symmetrical body (Fig. 1a and
b), with a straight crack of length / on the axis Ox. Let a force F be applied
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4

c d

FIG. 1—(a) Plane, (b, c, d) axisymmetric.

on both sides of the crack at abscissa x (0 = x = /) on a line of action of
length s(x) = ¢, thickness of the plane body, or s(x) = 2#(R; + x) on the
axisymmetric body. This force results in a stress intensity factor Kp(x,l).
An influence function can be defined as

Gi(x.l) = —s(;—) Kp(x.) )

and is equal to the K, resulting from the unit force per unit length of the
line action s(x) applied at abscissa x.

G,(x,l) depends on all the geometric parameters of the cracked body
and on this geometry only.

In fact, a finite force F, concentrated on a line s(x) is a theoretical
concept. A pressure p(x) applied on a surface s(x)dx and equal to the
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stress which would exist on the crack line if there was no crack [/]? must
be considered. This results in an infinitesimal stress intensity factor

dK(x,1) = Gilx,p(x)dx

The K, for the whole crack is
1
KO = [, Goedpeds @

Gi(x,D) is in a restricted sense, the Green’s function for this problem.
Emery et al {2] published curves giving functions G;(x,/) for strips of
finite length calculating stress intensity factors resulting from thermal
stresses, but such functions were not published for other plane or
axisymmetric geometries which-are common in engineering.

Symmetry, with respect to the crack line, has been assumed. The same
definition would be possible for Modes II and III for plane bodies and
Mode II for axisymmetric bodies. We shall consider only Mode I,
omitting the subscript I. Our reasoning can be extended to Modes II and
II1.

Relationship Between the Influence Function and the Compliance

A pressure p(x) applied at abscissa x on the surface s(x)dx results in an
opening or double displacement, at the same abscissa x

dv(x,l) = 2du(x,l) = 2C(x,Dp(x)s (x)dx

The associated energy of deformation is of the second order

i

d’P(x,l) = — > p)s()dx dvix,l) = — [p(x)s(x)dx]*C(x,l)

The length of the crack tip line being s(l), the energy release rate in a
virtual extension dl of the crack is

L [p()sydx]? 9CG 1)
&g = s(D) al(dp)‘ () al

2 The italic numbers in brackets refer to the list of references appended to this paper.
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and in plane strain

IK = Edg |t 4 E 1 aCkx,h) |¢
S T | TRWsWde | s T T

K - s(x) [ E o0 aC(x,l)] D)

sth L1 —? al

By comparison with Eq 2 we find the relationship

Gled) = s(x) E " aC(x,l) |* 3
=17 Y )
For a plane problem s(x) = s(l) = ¢
Goep - | E_scud t @
b = 1 -2 ol
For an axisymmetric problem
s(x) = 2a(R; + x) s(h =2m(R; + ) o)
Gl _Ri+x E 2R + | aC(x,0) ¥ ©)
e e R
Weight Function

Bueckner [3,4] has introduced so called fundamental fields. Any such
field has a singularity at the crack tip where the displacements are infinite;
they are in the order of 4% at the distance d. The field is regular
everywhere else; it has no boundary tractions. Its boundary displace-
ments yield weight functions. In particular a normal displacement M(x,!)
along the crack leads to

2 l
K = \/; ﬁ M(x,Dp(x)dx )]

for plane problems and to

2 [!R,
K() =\£ / R:’l‘ Mx,Dp (x)dx ®)

for axisymmetric ones.
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Comparison with Eq 3, for plane and axisymmetric problems yields

o ms0 7E acry) 1t
M(x,D) —\/: sy G = [ = 0 ] ©)

By considering the singular displacement field, Bueckner has shown
that M(x,/) is singular at the crack tip and that

M,y = (I — x)"t + M*(x,))

with a bounded M*.

Consequently, the influence function G(x,/) has a similar behavior.

For numerical calculation, G(x,l) and M(x,l) are equivalent. Since we
shall make use of basic properties of weight functions and related
information in the open literature, we shall drop the reference to influence
functions from here on.

It is advantageous to use the nondimensional and nonsingular function

m(x,) = M(x,hll — x]} (10)

with m(l]) = 1.

This dimensionless weight function is the same for homothetical bodies.
It depends on the geometrical dimensionless parameters «; defining the
uncracked body, and B; defining the crack. M(x,/) depends also upon the
characteristic length of the body.

To compute p(x) the o; must be known. Further, the 8; must be
specified if p(x) depends on the position of the crack. Dimensionless
coordinates x/I or x/W (Fig. 1) can be used.

Bueckner has given the weight functions for an infinite strip
(/W = 0.5) [4]

) - rml) G2me) ()

where m;,(I/W) and my(l/W) are polynomials in I/W.

Symmetry may be necessary insofar as the simple relationship previ-
ously mentioned between dK and d% is concerned. Weight functions are
not so restricted but apply in a more general manner [3,4]. Some
fundamental fields can be obtained by differentiation, with respect to a
parameter, of an ordinary field. In this context Rice [5] has demonstrated
that if a load L, is applied on a plane or axisymmetric body resulting in a
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stress intensity factor K‘(/) and displacements uV(x,y,l) on a line T, the
function

E 1 au(l)(x’ysl)
2(1 — vy K% al

h(x,y,l) = 12)

is a weight function for the calculation of K®(l) under any other load L,
applied along T".
For loads L, = p(x) applied on the crack sides one finds

Mix, ) = L EQ G(x,0) (13)

hix.0.0) = \/ 27 2 s(x)

The simple integral from zero to ! is then replaced by a contour integral
along both sides of the crack.
Calculation of the Crack Opening Displacement in a Dugdale Model

With this model in a plane problem, the plastic zone extends to a length
[’ such that

5 K= [ st o [ s -

This equation can be numerically solved for /'. According to Rice [5]
and Eqs 12 and 13, along a crack of length /

du(x,0,l) _ 1_1_ MG DK

The crack opening displacement (COD) is the opening at x = / for the

crack length I’

Calculation of Weight Functions by Finite Element

The finite element Code TITUS [9] was found convenient to calculate
the nondimensional weight function m(x,l) through the compliances, as
explained previously. Calculations could be done at low cost for bidimen-
sional, plane, and axisymmetric geometries, Fig. 2.

Figure 3 gives a schematic representation of the finite element mesh
along the crack, which extends the length [, from zero to node p. For the
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FIG. 2—Plane and cylindrical cracked bodies.

longest crack, /,,, the force F; is applied at node j along the length s(x,y).
The equilibrium condition can be expressed through the compliance
matrix C; which links the opening of the crack v, at node i to the force F;

v = 2u™ = 2Cij(n)Fj (14)

For crack length [, < [,, the equilibrium conditions can be obtained
from the preceding one by closing the crack between/, and/,. In the finite
element analysis, this is obtained by imposing the n — p conditions

up=Mp+1=...=un_1=0

()
Vi T Fj

| HH
I

1 H
1

ln

FIG. 3—Finite element mesh near a crack.
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The compliance matrix C;/* for the crack length /, is obtained by using
these conditions to transform the system of n — 1 linear equations (Eq 14)
with » — 1 unknowns, F; into a system of p — 1 linear equations with
p — 1 unknowns, eliminating the » — p unknowns, F,, . . . , F,_,

ui(p) = Cﬁ(p)Fj (15)

Thus for any crack of length /,, this method allows us to calculate the
nondimensional weight function m(x;,l,, as défined by Eqs 9 and 10.

For a plane body

wE Cﬁ_(p+1) _ Cii(p) E
wlp) = | =———tly—x) ———————— 16
m(xislp) 20 =) t(lp = x9) o= 1 (16)

For an axisymmetric body

wE Cﬁ(p+1) _ Cii i
Jy=— 4+ - x) - 1
m(xnlp) 21 — V2) 2m(R; lp)(lp xl) lp+1 — lp amn

After the compliance matrix C;™ has been calculated, the matrixes
Cit™ Y, ..., C;®, C;®, .. .can be easily obtained in successive
steps, and the weight functions determined by Eqs 16 and 17. Thus, the
calculations of the nondimensional weight functions for the values of /
allowed by the mesh requires the solving of only one elastic problem.

Checking the Method

An accuracy of 5 percent was considered sufficient for current en-
gineering problems. The elements and refinement of the mesh were
determined arriving at an agreement within 5 percent with the known
solutions for K given by Gross and Bowie [6] of the problem of an infinite
strip under a uniform tension. This was obtained by using isoparametric
elements with 12 degrees of freedom and 38 nodes in the section.

The results for K were also checked for other known problems: (¢) a
round bar with an external round crack (Bueckner [8] (Fig. 4) and (b) a
hollow cylinder with a long axial crack under pressure (Bowie and
Freese [7] (Fig. 5). For both problems an agreement better than 5 percent
was found.

Some difficulties were met for very shallow cracks. It was not neces-
sary for the range of interest in this work to modify the mesh rather deeply
since the values of K for such cracks are known. But a finer mesh might
be necessary for shallow cracks in thick cylinders (Fig. 5).
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The check for the weight functions was done by comparing the results
given by Bueckner [4] for an infinite strip. It was then found that a finer
mesh was necessary near the faces of the wall (Fig. 3). After this
modification an excellent agreement with Bueckner’s results was found
(Fig. 6). Because of the behavior of the weight function near the crack tip,
m(l,l) = 1, difficult and inaccurate calculations in this region were avoided
Fig. 7).

Weight Functions for Plane and Cylindrical Problems

The values of the functions m(x/ W ,l/W) obtained for a few geometries,
commonly used in engineering, are given by curves for (a) an infinite strip
(Fig. 6); (b) a long cylinder R;/W = 5 with a long axial crack (Fig. 8) and
a circumferential crack (Fig. 9); and (c) a long cylinder R/W = 10 with a
long axial crack (Fig. 10) and a circumferential crack (Fig. 11).

Since the result is rather sensitive to the length of the cylinder kept for
the calculations, the length 5/8 = 5[(R; + W/R2)WIV3[3(1 — v?]'* was
necessary.

On Fig. 12 the influence of the geometry on the weight functions
appears clearly. The five curves give m(x/W) with /W = 0.46 for an
infinite strip, internal axial, and circular cracks, in a cylinder with
Ry/W =5 and R;/W = 10. They show that, for a given applied stress
field, decreasing values of the weight function and consequently of K are
found for a plate, a cylinder with a long axial crack, and a circumferen-
tially cracked cylinder, with decreasing R;/W. Approximating a cracked

£
£

1 — CALCULATED
1 +++ BUECKNER'S RESULTS (Réf4)

187
L -0.06
PEvals
1 - N X
0 04 02 03 04 05 w

FIG. 6—Function m (x/W, YW) for an infinite strip.
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cylinder by a cracked strip may be very pessimistic when R;/ W is not very
large.

Weight functions were calculated for internal cracks only, and the
eventuality of a nonmonotonic variation for large R;/W, as evidenced by
Emery [11] for the stress intensity factor of externally cracked pres-
surized cylinders, was not investigated.

The singularity of the weight functions shows that the stresses near the
crack tip have a much more important weight than the stresses far from it.
When the crack enters the compressive zone of a thermal stress field,
negative elements of the integral appear which may result in a decrease of
K and the crack arrest.

It would be easy to calculate weight functions for other plane or
axisymmetric geometries.

Comparison with Another Method

Results for the calculation of the stress intensity factors for axial and
circumferential cracks in infinite cylinders are presented by Buchalet and
Bamford [/0] at this meeting. Instead of the weight functions, polynomial
influence factors F,, F,, F,, F, are used, such that for the load

o(x) = Ap+ Apx +Ax2% + Anx® o=x=)
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the stress intensity factor is

21 2 413
K =/nl [AOFI + —AF + A+ —AF,
T 2 37
or

K = \/1}'1[4,f0 + A fi + PASf + l3A3f3]

To allow a comparison between both methods, the weight functions of
Figs. 10 and 11 were used to calculate the factors f or F.

\/2 1m<x7’1; ];/l> X 3 X
e = (7)(7)

resulting from the application on the crack sides of the nondimensional
pressures

v () (7)

for axial and circumferential cracks in a cylinder with R;/W = 10
{(Figs. 13 and 14). The coincidence was found very good. The differences

3
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for deep axial cracks can be attributed to errors in the stiffness or the
cracked ring which it is difficult to avoid. So deep cracks have no practical
importance.

Conclusion

The use of the weight function is very efficient for calculating the stress
intensity factor resulting from any load applied to any cracked body in a
two dimensional problem, plane or axisymmetric. When the weight
function is known, the calculation of K is reduced to a very simple integral
and requires only the calculation of the stress along the crack line in the
uncracked body, which is a nonsingular elasticity problem. In this way it
is possible to avoid the rather difficult use of handbooks, which, in spite of
their great interest, cannot foresee the variety of geometries and loads
which are met in engineering problems.

A rather simple method by finite elements for the numerical calculation
of the weight functions has been presented. This method was applied to
normal stresses on the crack surface. It can be extended to problems with
shear stresses but not to mixed mode problems.

Using weight functions makes it possible to avoid such approximations
as replacing a cylinder by a plane, assuming that XK is determined only by
the stress at the location at the crack tip, which are allowable in certain
cases but may be wrong in others, particularly when rapidly varying
stresses are involved.

The importance of the applied stress field near the crack tip is
emphasized by the singularity of the weight function, and this explains
how cracks may arrest in the compressive region of a thermal stress field.
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ABSTRACT: A two-dimensional finite element method is used to develop stress
intensity factor solutions for continuous surface flaws in structures subjected to an
arbitrary loading. The arbitrary loading produces a stress profile o acting perpen-
dicularly to a given section § of the structure. The stress profile is represented by a
third degree polynomial

o= Ag+ Ax + Apx? + Ay

Stress intensity factor solutions are developed for continuous surface flaws
introduced in particular sections S in the structure considered. Solutions are
developed for a surface flaw in a flat plate, for both circumferential and longitudinal
flaws inside a cylindrical vessel, and for circumferential flaws at several locations
inside a reactor vessel nozzle.

The superposition principle is used, and the crack surface is subjected
successively to uniform (o = Ay, linear (¢ = Ax), quadratic (¢ = Ayx?), and
cubic (¢ = Agx®) stress profiles. The corresponding stress intensity factors (K,
K™, K\®, K{®) are then derived for various crack depths using the calculated
stress profile in the region of the crack tip. The total stress intensity factor
corresponding to the cracked structure subjected to the arbitrary stress profile is
expressed as the sum of the partial stress intensity factors for each type of loading.

Ky =K@ + K@ + K@ + K® =

2a 2 4a®
\/1:;(1— [A(,F] +TA1F2 +aT AyF, +? Aqu]
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where, a is the crack depth and F,, F,, F3, and F, are the magnification factors
relative to the geometry considered. The results are presented in terms of
magnification factors versus fractional distance through the wall (a/f) and reveal the
strong influence of the geometry of the structure and of the crack orientation.

The stress intensity factor solutions obtained using this method are compared to
solutions obtained using other methods, when available. In the case of the plate
geometry, the solution obtained for the linear loading (o0 = A, + A.x) is shown to
agree well with the boundary collocation solution reported by Brown and Srawley.
The stress intensity factor solutions for the circumferential and longitudinal cracks
in the cylindrical vessel compare well with solutions obtained by Labbens et al
using the weight functions method proposed by Bueckner, and are also in good
agreement with the solution for uniform loading (o0 = A,) obtained using the line
spring method proposed by Rice.

KEY WORDS: crack propagation, nuclear reactors, pressure vessels, fracture
properties, mechanical properties, stresses, deformation

Reactor pressure vessels operate at high temperature (~550°F), and, in
general, brittle fracture is not a potential mode of failure of the reactor
vessel. However, during postulated accidents such as the loss of coolant
accident (LOCA), the temperature of the reactor coolant and, therefore,
the temperature of the vessel may approach the transition temperature of
the metal. A fracture mechanics evaluation of the component is thus
necessary to demonstrate that its integrity would not be impaired under
these postulated conditions.

The two most critical locations in the reactor vessel are the cylindrical
portion of the vessel directly adjacent to the nuclear core (beltline),
because it is subjected to neutron bombardment which degrades the
material toughness, and the nozzle region, which is a geometrical discon-
tinuity resulting in stress concentrations. Fracture mechanics analyses of
these two critical regions require the determination of stress intensity
factor solutions relative to the particular geometry of these regions.
Furthermore, the steep stress gradients developed in the vessel wall
during the postulated transients require that the actual stress profile be
used in the stress intensity factor expressions. The stress intensity factor
solutions usually found in the literature are for simple geometries, such as
plates or infinite bodies, or for uniform tension and bending or both [/-3].2

Finite element models were used in the present work to derive stress
intensity factor solutions for continuous surface cracks® in a plate, for
continuous inside surface cracks in the cylindrical region of the reactor
vessel, and in the nozzle region of the reactor vessel, for arbitrary
loadings. The finite element solutions compare well with solutions ob-

2 The italic numbers in brackets refer to the list of references appended to this paper.
3 A continuous flaw is defined as an infinite or axisymmetric flaw.
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tained using other methods and show the strong influence of the geometry
on the magnification factors of the stress intensity factor expressions.

Method

The method used to determine the stress itensity factor solution
consists of applying the superposition principle in the loading of the finite
element model and in expressing the stress intensity factor in terms of the
coefficients of a third degree polynominal representing the stress profile
perpendicular to the section of the structure considered.

Superposition Method

Figure 1 illustrates the superposition principle. The stress intensity
factor K; for the crack in a section § of the structure, subjected to a
remote loading (F, M) represented by a force F and a moment M, is equal
to the stress intensity factor K; for the same crack in section S cof the
structure, where the crack surface is subjected to a stress profile o (x)
identical to the stress profile developed perpendicularly to the uncracked
section S by the remote loading (F, M).

Stress Intensity Factor

The stress profile o (x) developed perpendicularly to section S of the
reactor vessel wall during a transient, in the absence of flaw, can be fitted
by a third degree polynomial

o=Ag+ Ax + Ax? + A’ )

A higher order polynomial could be used if necessary.
If a continuous surface crack is now assumed to be present in section S
during the transient considered, the stress intensity factor may be

SECTION SECTION SECTION
g ugn g oix)

N N i N i

FIG. 1-—Superposition principle.
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conveniently expressed as follows

2a a? 4
KI =\Vvwa AOFI + _;T__AIFZ + 7A2F3 + ?7;03A3F4 (2)

Ay, Ay, As, and A, = coefficients of the polynomial expression Eq 1
representing the stress profile o(x) in the
uncracked section S

a = crack depth, and
F,, F,, F,, and F, = magnification factors corresponding to the

geometry analysed.

I

Itis shown in the appendix that if F,, F,, F;, and F,in Eq 2 are taken equal
to the front surface magnification factor 1.12 [4] Eq 3 represents the stress
intensity factor for a continuous surface flaw in a semi-infinite body

2a a? 4
Ki=112Vma } Ay + ?Al + 71‘12 + -37031‘13 3)

In Eq 2, the magnification factors F,, F,, F;, and F, are functions of the
cracked geometry and are independent from the type of loading. Thus, the
magnification factors can be determined using any arbitrary stress profile
applied to the crack surface. The magnification factors F,, F,, F;, and F,
relative to a given crack depth a are determined by successively loading
the crack surface with a uniform (o = Ay), linear (o = A.x), quadratic
(o0 = Axx?, and cubic (o = Azx?) stress distribution. The procedure is
then applied to other crack depths to determine the variation of the
magnification factors F,, F;, F;, and F, with the crack depth to thickness
ratio (a/t). Figure 2 shows the various stress distributions applied to the
surface of the crack and the equations used to determine in each case the
corresponding magnification factor. Figure 3 shows how the stress
intensity factor K, is determined from the finite element solution for
uniform loading. The same method is used to determine the stress
intensity factors K,¥, K,?, and K,*® corresponding to the other stress
distributions.

For a value of r small enough compared to the crack depth a, it is
known that the elastic stress distributions o, and o, in front of the crack
can be expressed as follows [5]

K;
= + + 1/2
Ge= = + oo+ 01 @
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FIG. 2—Magnification factor determination.

K;
— + 1/2
Ty \/5777 0(r*?) )]
From Eqs 4 and 5
Getow K 0w g ©)
2 N 2mr 2
or
P : x —_—
(‘TZJ\/zm = K+ 5w @)

Equation 7 indicates that (¢, + ¢,)/2V27r is a linear function of \/27r
when r is small compared to crack depth a. Thus, as shown in Fig. 3, K ¥
is obtained at the intercept of this linear function with the axis correspond-
ing to r = 0. This method requires evaluation of the stresses in the
immediate vicinity of the crack tip and, thus, a very refined grid in this
region. The several elements immediately adjacent to the crack tip are
never small enough to reflect the singularity accurately, but the method
circumvents this problem in the linear extrapolation process. The stresses
in the first several elements are discarded, but, for the model used, there
are enough elements left within the singular region to allow accurate
determination of K,. This method was found to yield more accurate results
than the method based on displacements, because it only requires linear
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FIG. 3—Stress intensity factor determination.

extrapolations. Some of the results obtained were compared to those
obtained using the J-integral technique and agreed within about 1 percent.

To calculate the stress intensity factor for a continuous surface crack in
a particular section of the reactor vessel during a transient, the following
steps must be followed:

1. For the transient analyzed, calculate the stress profile developed
perpendicularly to the section considered, without the crack.

2. Fit the stress profile obtained by a third degree polynomial and
obtain the coefficients Ay, A, A, and A;.

3. Select the K| expression applicable to the section of the vessel and to
the crack orientation considered (Eq 2) and replace the coefficients A,,
A4, A,, and A, by their values.

4. Calculate K| for various crack depths a.

Crack Tip Model

Conventional constant strain elements were used in the model, and the
finite element mesh is shown in Fig. 4, including the refined grid used in
the crack tip region. In order to change easily the crack depth a, the
square elements adjacent to the crack tip containing the extremely refined
mesh can be removed from one location and placed at another location in
the model. The renumbering of the nodes is not necessary due to the fact
that the program used* utilizes the wave front method of solution. Figure
4 shows how the crack depth a can be changed by moving the elements
adjacent to the crack tip.

Stress Intensity Factor Solutions
Plate

The finite element model of the plate is shown in Fig. 5. The plate
thickness is t = 8.625 in., and the height of the plate is two times the

thickness ¢ (it was verified that changing the height of the model did not
change the results). The boundary conditions are indicated in Fig. 5.

* A general finite element program.
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FIG. 4—Crack tip element.

For every crack depth ¢ considered, the cracked surface is subjected to
the loading sequence illustrated in Fig. 2 and described in the previous
section. The stress intensity factor solution is shown in Fig. 6. The points
in the figure represent the finite element solutions obtained for the seven
crack depth value selected, 0.25, 0.5, 1, 2, 4, 6, and 7 in. The solid lines in
the figure represent a best fit of the calculated points. The stress profile
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FIG. 6—Single edge cracked plate under arbitrary loading.

shown in the figure acting perpendicularly to the crack surface is the
stress profile exisiting in the section when the crack is not present.

The results indicate that the principal factor F, in the K; expression
corresponds to the uniform portion of the stress profile and that the higher
the order of the terms in the polynomial stress distribution (Eq 1), the less
influence these terms have on the K values.

The solution reported by Brown and Srawley [/] for the single edge
cracked plate, under linear loading using a boundary collocation method,
is also shown in Fig. 6 and agrees well with the finite element solution.

Cylindrical Vessel — Circumferential Flaw

The axisymetric model is shown in Fig. 7. The thickness of the cylinder
is £ = 8.625 in., and the inside radius is R = 86.5 in. The height of the
model (%) is ten times the thickness ¢. This extension in model height is
necessary to represent correctly the infinite cylinder. Figure 8 shows the
relative deformations of the plate and of two models (4 = 2z and & = 10¢)
of the cylinder when the cracked surface is subjected to a uniform loading
of 100 ksi. It is seen that the cylindrical model with 4 = 2¢ does not
represent correctly the stiffness of an infinitely long cylinder, which
represents® the geometry of the beltline of a reactor vessel. The actual

5 The representation of the reactor vessel by an infinitely long cylinder is in fact,
conservative when a continuous crack is assumed, because the motion of the extremities of
the actual vessel is prevented by the bottom and top heads of the reactor vessel, thereby
reducing the magnitude of the magnification factors in the stress intensity factor expression.
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boundary conditions used are indicated in Fig. 7. Here again, the cracked
surface is subjected to the loading sequence illustrated in Fig. 2.

The stress intensity factor solution for the circumferential crack under
arbitrary loading is shown in Fig. 9. The solution corresponds to ¢/R equal
to approximately 0.1 and was found independent of the absolute dimen-

R-86.5" 1| t=8,625"

re— CYI
/~CYL

LINDER (h = 10t)
INDER th = 2t

PLATE

0 CRACK SURFACE (o = 100 KSi}

FIG. 8—Relative deformations for plate and cylinders.
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sions of the cylinder. The points in the figure represent the finite element
solution obtained for the various crack depths considered. The solid lines
represent best fits of the calculated points, excluding those for small
values of the crack depth, for which the finite element model does not
reproduce accurately enough the actual stiffness of the geometry. Thus,
the solid line corresponding to F, is extrapolated to a value of 1.12 [4] for
zero crack depth and the solid lines corresponding to F,, F;, and F, are
extrapolated to a value of 1.0 for zero crack depth. The value of 1.0 is
conservative since F, is smaller than unity [/ ] for a/t equal zero and F3 and
F, are always smaller than Fj,.

Qualitatively, the results are similar to the results obtained for the
single edge cracked plate (Fig. 6), but the magnitude of the magnification
factors for deep cracks is much less in the case of the circumferential
crack in the cylinder, thereby showing the strong effect of the stiffness of
the cracked geometry on the stress intensity factor.

The solution obtained by Labbens et al (6] for the same geometry, using
Bueckner’s weight functions [7] is shown in Fig. 10 and is in very good
agreement with the finite element solution. The solution obtained using
Rice’s line spring method {8] is also shown in Fig. 9 for the case of uniform
loading. This solution is in good agreement with the finite element
solution.

Cylindrical Vessel—Longitudinal Flaw

The finite element model is shown in Figs. 11-13. The dimensions of the
cylinder are the same as for the circumferential flaw. The same loading
sequence is again applied to the crack surface. The stress intensity factor
solution is shown in Fig. 14. The same extrapolation is made to extend the
best fit solid lines to zero crack depth. The maximum value obtained for
F, (~5) indicates that this geometry is stiffer than the plate geometry and
less stiff than the geometry obtained with a circumferential flaw in the
cylinder.

The solution obtained using Rice’s line spring model is shown in Fig. 14
(for uniform loading) and agrees with the finite element solution. Again,
the solution obtained by Labbens et al using Bueckner’s weight functions
agrees with the finite element solution, as shown in Fig. 15.

Nozzle Geometry

The main reactor coolant pipes are connected to the cylindrical shell by
the reactor vessel nozzles. In the analysis, the three dimensional nozzle
geometry is axisymmetric around the nozzle axis; the cylindrical vessel is
approximated by a sphere having a radius equal to twice the radius of the
cylinder.The stress intensity factor solution is obtained for cracks located
at three different regions in the nozzle. Region I is close to the pipe
juncture where high thermal stresses may develop due to the difference in
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MAGNIFICATION FACTORS

FIG. 14—Longitudinal crack in cylinder (/R = 0.1).
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FIG. 16—Reactor vessel nozzle model.

the thermal expansion coefficients between stainless and carbon steels.
Regon Il is at the nozzle reinforcement where the highest stresses develop
during the thermal shock produced in the case of a reactor coolant pipe
break (LOCA) [9]. Region III is at the nozzle corner where a stress
concentration exists when the vessel is under pressure. Figure 16 shows
the finite element model of the nozzle, including the three regions of
interest. Figures 17-19 show the stress intensity factor solutions for the
three regions in the nozzle.

Here again, for every crack depth considered, the same loading
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FIG. 17—Stress intensity factor for a circumferential crack in Region I of inlet nozzle
(/R = 0.18).
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FIG. 18—Stress intensity factor for a circumferential crack in Region II of inlet nozzle
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sequence is applied to the cracked surface and results in the points shown
in the figures. The K| expressions determined can be applied to a given
loading situation by using the stress profile developed perpendicularly to
the uncracked section of the nozzle selected, as described previously. The
maximum values of the F, factors show that Region I is less stiff than
Regions IT and IT1. Region 111 presents the particularity that the curvature
of the F functions is reversed for values of crack depth up to about 5.5 in.
This result implies that for a given stress profile, the K, values for shallow
cracks are larger in Region III of the nozzle than in any other sections
analyzed.

Conclusion

Stress intensity factor solutions were obtained using two-dimensional
finite element models for continuous surface cracks in a plate, cylinder,
and nozzle under arbitrary loading. The following conclusions can be
drawn.

1. For the plate and the cylindrical vessel, the finite element solutions
agree with other solutions, thereby giving confidence in the solutions
obtained for the nozzle geometry.

2. The amplitude of the magnification factors is a function of the
stiffness of the cracked structure. The amplitude of the magnification
factors decreases when the stiffness of the geometry increases. This is
true when going from the plate to the cylinder and from the longitudinal to
circumferential crack orientation. For a cylinder, moreover, the stiffness
increases when the ratio of the thickness to radius (¢/R) increases. Thus,
the magnification coefficients of the stress intensity factor solutions for
Regions IT and III. Region III presents the particularity that the curvature
tion coefficients for the solution relative to the circumferential crack in
the reactor vessel. This effect becomes increasingly important for cracks
depths larger than 20 percent of the wall thickness.

APPENDIX

Stress Intensity Factor for a Continuous Surface Crack in a Semi-Infinite Body

Consider a through crack in an infinite body under a stress profile symmetric
with respect to the middle of the crack, as shown in Fig. 20e. The stress intensity
factor at Point A is as follows {/(}].

| o a+x\" § a+ x\'?
\Vma —a a-—-x 0 a-—x
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where

o a+ x \2 a— x
/_ o(—x) pa— dx —/ O‘(X)( ) dx &)

thus

K 1 j" a+ x \'? a — x \”? 4 2a a dx (10
= — + -
! Vma HU(X) a-—x a+x T \/— \/— x (10)

The stress profile o(x) is expressed as a third degree polynomial as in Eq 1

o(x) = A, + A + g + Ay’

And Eq 10 becomes

X 2a f”A"+A,x+A2x2+A;yr3d J "
= +
' ma ), Va? - x? o N an
4 f” xdx s a "a’x J x3dx
T LA o
e Vai- 22 “J ==

Replacing the integrals in Eq 11 by their value, one obtains

J— 2a a? 4
=Vma |Ao+ —A,+ —A,+ — oA, 2
T 2 37

The continuous surface crack in a semi-infinite body under an arbitrary stress
profile o(x) is shown in Fig. 20b. The stress intensity factor solution is obtained
from Eq 12 corrected for free surface effect |4]

- 2a a? 4a3
=1.I2Vma A, + —A + —A,+ — A; (13)
T 2 37
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a, THROUGH CRACK IN INFINITE BODY

@

b. CONTINUOUS SURFACE CRACK IN SEM!-INFINITE BODY

FIG. 20—Continuous cracks under arbitrary loading.

Note-In reality, the free surface correction factor strictly applies to the uniform
component A, of the stress profile. In Eq 13, the free surface correction factor is
applied conservatively to all the components of the stress profile.
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ABSTRACT: This paper presents a practical approach for estimating residual
fatigue life of structures with partial thickness cracks under arbitrary Mode I cyclic
elastic stress fields. Residual life is defined herein as the number of cycles required
to grow the crack from specified initial dimensions to some final configuration that
results in static failure. A powerful influence function theory is modified for
application to three-dimensional stress analysis of planar crack problems with
arbitrary crack front shapes. The resulting procedure allows stress intensity factor
solutions and residual fatigue life estimates for any Mode I stress field applied to
the crack geometry.

Exact stress intensity factor solutions are presented for the buried ellipse under
arbitrary Mode I stress fields. A procedure is outlined to build useful, accurate
stress intensity factor algorithms for complex surface crack geometries from a few
three-dimensional numerical stress analyses.

KEY WORDS: fatigue life, crack propagation, mechanical properties, stress
gradients, structural analysis

A problem frequently encountered in thick safe-life structures is the
presence of fatigue-initiated buried or surface cracks emanating from
notch or material defect stress concentrations as in Figs. 1 and 2. If the
cracks are small and do not completely penetrate the thickness, that is,
are partial thickness (PT) cracks, they usually pose no immediate danger
of brittle static failure in moderate or high toughness materials. The
fundamental problem the cracks create is to decrease a structure’s fatigue
performance to that number of cycles N required to grow the crack to
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critical dimension. Reasonable accuracy in estimating the residual life N
is often of paramount importance to those responsible for structural
integrity. Residual life estimates may be the sole rational basis for
choosing design stresses in fatigue-critical hardware or for solving field
problems through properly spaced inspections or new life limits.

Linear elastic fracture mechanics analysis forms the basis of predicting
the residual fatigue life of a cracked structural element. The material is
characterized in terms of its crack growth rate, da/dN, versus the cyclic
change in the crack tip stress intensity factor, AK; K is a parameter which
embodies the effects of the stress field, the crack size and shape, and the
local structural geometry. The primary difficulty in analyzing the growth
of PT cracks is that no one value of K may be assigned to characterize the
entire crack front; furthermore, the stress state near the crack is three-
dimensional due to crack shape and the local structural geometry.

In this paper, a new elastic fracture mechanics approach is given for
predicting fatigue growth behavior of PT cracks under Mode 1 stress
cycling. Mode 1 denotes symmetry of both loads and geometry with
respect to the planar crack. Two extreme approaches theoretically may be

YL—’X

SECTION A-A

FIG. 1—Buried flaws (usually material defects).
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FIG. 2—Partial thickness surface cracks at stress concentrations.

employed to model this three-dimensional cracking problem. An engineer-
ing approach might consist of replacing the surface crack by an ‘‘equiva-
lent”’ two-dimensional, or line crack, created mathematically by combin-
ing suitable analytical models with correction functions. Unfortunately,
the correction functions contain unknown errors for a given problem and
often can be selected only when the answer (life) is already known. The
other extreme is to develop a special three-dimensional stress analysis
model to reanalyze the crack geometry sequentially as it grows; this
second approach requires a three-dimensional solution for the crack at
each increment in its growth history and for each local stress distribution.
The residual life analysis procedure reported in this paper seeks to
achieve the accuracy of three-dimensional stress analysis together with
the efficiency of using equivalent two-dimensional crack models. The
necessary stress intensity factor computation algorithm for a class of PT
cracks is formulated from a small number of three-dimensional stress
analyses. The stress analyses may be exact, as used in this paper, to
formulate exact K solutions for the buried elliptical crack under arbitrary
Mode I loading. The stress analyses may also be numerical, as is the
boundary-integral equation method employed elsewhere [/],2 to obtain K

2 The italic numbers in brackets refer to the list of references appended to this paper.
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solutions for the quarter-ellipse ‘‘corner’’ crack under arbitrary Mode 1
loading. Stress intensity factors are computed and crack growth is
simulated through the use of a weight function or influence function
technique which uses the stresses in the uncracked structural detail.
Thus, the details of both PT crack geometry and structural loading and
shape are accounted for directly in the residual life prediction.

The next section of this paper presents a simplified crack growth
modeling and residual life prediction procedure designed to cope with the
complications of three-dimensional cracking accurately and efficiently.
Two alternative definitions for approximating the PT crack front K
variation are discussed. Following this section is a section on an influence
function theory used to compute the stress intensity factors required for
the employed residual life prediction procedure. The theory is applied in a
section following this one to obtain exact expressions for the stress
intensity factors of the buried elliptical crack under arbitrary Mode 1
loading. This section also exercises the residual life prediction procedure
to calculate lives for buried elliptical cracks under a uniform and a
parabolic stress field. A summary of the paper and a discussion of the
current research to extend the life prediction procedure presented herein
to more general crack models (for example, surface cracks) with the aid of
numerical stress analysis is then given.

Residual Life Prediction Procedure

Introduction

Residual lifetime is defined herein as the number of constant load
amplitude, nominally elastic stress cycles required to grow the crack from
some defined initial configuration to a final size which will produce
sudden failure, for example, catastrophic brittle fracture. Paris et al [2]
and many later references document a currently accepted method for
residual life prediction of two-dimensional cracking, that is, cracks with
constant K(s) along the crack front periphery(s), using linear elastic
fracture mechanics. Three-dimensional cracking has complications that
are not explicitly treated by Paris et al. The complications are the crack
front variation of K(s) and a tendency of crack shape, as well as size, to
change during propagation.

Two concepts are introduced in this section to treat the three-
dimensional cracking complications. The first concept is a method to
approximate the growing crack’s geometry with a finite number of
characteristic dimensions and to approximate K(s) with the same number
of discrete stress intensity factors, each associated with one characteristic
dimension. The second concept, which is illustrated for a buried elliptical
crack model, is a particularly useful definition of the discrete stress
intensity factors that facilitates the application of an influence function
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theory presented in the next section. This theory is used to build an
algorithm for stress intensity factor computation for general loading from
crack opening displacements due to a single loading. The algorithm
eliminates the need for a full three-dimensional stress analysis for each
new loading or each new increment of crack growth.

These two concepts are combined to form a procedure for residual
lifetime prediction. The procedure is presented in general terms and is
exercised for a specific model.

Partial Thickness Crack Propagation Modeling

The basis of reported life analyses is the notion of a finite number, n, of
characteristic dimensions ((@;,,i =1, . . . , n) to describe crack geometry.
Crack propagation is then described by keeping track of the a; which are
named degrees of freedom (DOF). The continuous stress intensity factor
function K (s) is approximated similarly with a set of discrete stress intensity
factors (K;, i = 1, . . . , n), each associated with an a;. The applied
general empirical model of three-dimensional propagation is then ex-
pressed by a set of n equations

dai
dN

= F[K;, material, environment, history] €))

where
N = residual lifetime,
K, = stress intensity factor associated with a;, and
F = empirically determined function.

Each equation in Eq 1 states that the local cyclic growth rate da/dN of
freedom a; is given by the empirically determined function F. Further, Eq
I implies that all load and geometry information relevant to each da;/dN
is contained in one and only one stress intensity factor K ;. The function F
is itself independent of load and geometry and may be obtained in the
traditional way [2] from simple planar laboratory specimens modeled with
two-dimensional stress analysis. The stress intensity factors K; each
contain an alternating component AK; and mean value K ., ; associated
with the alternating and mean components of the stress cycle.

Residual life prediction is accomplished by formulation and solution of
Eq 1. A four-step method is employed herein for life prediction. The steps
are:

1. Obtain F from simple specimens, F is often expressed in the form of
piecewise power functions of K (for example, da/dN = CAK?E) for given
K nean, material, environment and history combinations.

2. Determine the uncracked structural detail’s geometry, loads, and to
the extent required by Step 3, stress.

3. Model the propagating crack. This task includes selection of a model
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with an adequate number of DOF; specification of the initial and final
crack configuration a ;; and a;; and definition of K ;. Further, an algorithm
must be derived to compute all of the K; as functions of stress and
geometry, especially the changing crack geometry a,.

4. Substitute K; in Eq 1 and solve for the life N.

Steps 1 and 2 are not influenced strongly by three-dimensional cracking
complications. Step 4 involves routine numerical analysis. Therefore,
only Step 3 is emphasized in the remainder of this paper.

Buried Elliptical Crack in an Infinitely Large Solid: Model and Stress
Intensity Factor Definitions

A simple model is desired to expand the procedure just outlined and to
aid the discussion of stress intensity factor definitions. Figure 3 illustrates
the chosen example model of a growing buried crack located in the x-y
plane, centered at the origin, and subjected to crack opening pressure
p = o..(x,y). The crack front is an ellipse with semi-axes (along the
coordinate axes) a, and a,, being the two selected DOF. Having only two
DOF, the model sacrifices a portion of the details of crack front geometry
and K(s) variation inherent in more complex models with n# > 2. How-
ever, the two DOF model is considered a worthwhile approximation of
three dimensional cracking since it does permit some change of crack
shape during propagation and promises relative ease of application. The
choice of an elliptical model is an especially expedient example since
published solutions serve as a starting point for derivation of stress
intensity factor formulas discussed later.

Having chosen a model, the stress intensity factors K, (K, and K ) are
to be defined and computed. The question of proper K definition for
residual life computation may be debated, and two alternatives have been
considered. The alternatives are illustrated in Fig. 3 as local (or end-point
values)K and K w and ‘‘local average’’ values along specified portions of
the crack front, K, and K.

The two end-point values K, and k are likely choices to characterize
K(s) but are not necessarlly the most accurate or expedient choices. The
end-point values K , and K may best describe the initial propagation rate
of the semi-axes a, and a,. However, the elliptical modeling constraint
raises questions as to whether K, and 12 » are the two quantities that best
describe propagation of the entire crack front. Clearly, there is justifica-
tion to consider other possible two DOF characterizations of K(s) than the
two end-point values if some advantage can be gained therefrom.

This paper investigates the two local averages K, and K, of K(s)
depicted in Fig. 3 to define K; for residual life computation. The K,
have two equivalent physical interpretations. Each K is related to the
strain energy release rate obtained by creation of the corresponding sur-
face area 8A; (shaded in Fig. 3). The area is formed by the perturbation
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FIG. 3—A two DOF buried elliptical crack.

of the associated a; while holding all other DOF constant. Equivalently,
the K, also represent the area root-mean-square (rms) value of K(s) in
8A;. Clearly, the rms interpretation indicates that the K, and K; defini-
tions coincide for two special cases. The cases are constant K(s) and
asymptotically large n.

The advantages sought with K, rather than K ;» definition are increases
in the ease, generality, and accuracy of stress intensity factor computa-
tions for partial thickness cracks. The basis for these advantages is that
the K; definition lends itself extremely well to an influence function theory
of stress intensity factor computation. The next section presents the
influence function theory and provides mathematical definition of the K;
for a general planar partial thickness crack under Mode I loading.
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An Influence Function Theory for the Computation of K;

The analysis described in this section is an application of theoretical
results due to Rice [3] and Key [4]. Reference 3 is the foundation and
motivation for the weight or influence function theory presented herein,
while Ref 4 proposes a quantity similar to the K definition for a static
failure criterion.

To develop the required formulation consider Fig. 4, a homogeneous
elastic body with loads and geometry symmetric about the x-y crack plane
which contains a crack of Area A. Assume the crack front, s, undergoes
the /™ prescribed smooth virtual perturbation &/,(s) (in a direction locally
normal to s5) while under constant load. Then each point P; will deflect
elastically some amount 8¢g;/2 in the direction of load Q;. The work done
on the solid due to 8/,(s) is

8W = 05q; — G SA, (bars indicate no summation over i) )

where the repeated index j implies summation and

8A,; = / 8li(s)ds = sa; 3)

3

is the (upper) surface area exposed by perturbation 8/; which has the form

LSA{ = fi(s)da; 4
/ filsyds 7

where 8a; is the variation of the associated scalar degree of freedom a;
while holding any and all other degrees of freedom constant. Also, fi(s) is a
prescribed dimensionless function that defines perturbation shape such
that the perturbed crack front configuration is characterizable in terms of
the same discrete scalar degrees of freedom as the original crack
configuration. Thus, only those crack front perturbations proportional to
and arising from variation of each specified degree of freedom are
considered in this paper. It would be incorrect to apply the results derived
next to other possible classes of perturbations such as the more general
class discussed in the Appendix of Ref 3. Finally

dli(s) =

ow
G, =
G=—a ®)

is the strain energy release rate caused by 8a;.



BESUNER ON RESIDUAL LIFE ESTIMATES 411

For Mode 1 loading, &; may be written

SA, = LSONY 6
GPA; = fs q (s)| ds ©)

where H is an appropriate elastic modulus. For an isotropic material in
plane strain H = E/(1 — »?).
Since K(s) is generally not constant, one further definition is required; let

K, = \/.1—1—51 = hi;Q; Q)

where the & are elastic influence coefficients, associated with K; and
point P;, to be derived.
Equations 4, 6, and 7 are combined to obtain

f K¥s)f(s)ds

K2

= ®
f fis)ds

Clearly, K; is an arc-length rms value of K(s) weighted by f;. In other
words, K; is the rms value of K in 84; as shown in Fig. 3. Equation 2 may
now be rewritten as

SW = Qpg; — — -84, ©)
H

where Eq 9 is a total differential for the class of perturbations just
described since 8A; is due to and proportional to §a;.

Equation 9 is identical in form to expressions given by Rice which
include the stress intensity factor K for a two-dimensional crack rather
than K for the three-dimensional problem in Fig. 4. It can be shown that
the influence function derivation in Ref 3, pp. 752-753, applied to Eqs 7
and 9 leads to

3Q; 2K/ A,

hy = (10)

where the superscripts* denote any single reference loading state. The & ;
in Eq 10 may be regarded as influence coefficients since they measure the
effects on K of the loads Q. The h; are functions of position and the crack
and structural geometry. However, as proven formally by Ref 3, the & ;
are independent of loading. Therefore, any advantageous loading can be
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FIG. 4—Schematic of prescribed normal perturbation 8(s) of crack front s.

chosen to be the reference state in Eq 10 and used to compute 4 at all
points in the analyzed geometry.

A more useful form of Eq 10 may be derived by substitution of Eqs 2
and 7 in Eq 10 to obtain

an

o = 20(Qm*qm™) \: aq;*
N HAA; dA;

where the repeated index m again denotes summation in Eq 11 which
directly relates the A ;; to reference crack opening displacements.

Consider the special case where all loads in the problem to be solved
are on the crack face in terms of a bivariate normal pressure o.(x,y). If
normal loads are interpreted as

dQ(x,y) = o..(x,y)dA (12)
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we can combine Eqs 7, 11, and 12 to obtain the final result for stress
intensity factor computation.

.. <26 [ffA Uzz*q*dA] )‘é 1, . o

Ed
HoA, 34,

dA (13)

Consider the principle of superposition illustrated in Fig. 5, as repro-
duced from Ref 2. This principle allows use in Eq 13 of the ‘‘uncracked”
stress o,.{x,y) (that is, stress for the uncracked solid at the crack’s locus)
to yield correct K factors for arbitrary geometry and loading.

Initial application of Eqs 1 and 13 for computation of the K, and

7 l“][h

|
(@)
x
N\

i
T
K=K'+/K"=o
v T“J]IH
6'_/’7\\'(. ’ év—
|
o [TTTTT

FIG. 5—The reduction of a problem, (a), into two simpler problems, (b) and (c) for
computations of stress intensity factor (from Ref 2).
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residual life N has revealed several major advantages of the influence
function theory. Influence theory application requires only the charac-
terization of crack opening displacements g* (x,y) as a function of the a;
and significant structural dimensions for a single reference loading. The
g* function, whether based on a known solution as in the next section or
on numerical data as in Ref /, is substituted into Eq 13. Since known g*
solutions for three-dimensional crack problems are scarce, the solution of
the K, for most partial thickness crack problems requires accurate numeri-
cal crack opening displacements. Numerical solution for the necessary g*
data is not difficult. For example, Ref / documents the numerical solution
of a two DOF quarter-ellipse corner crack problem. Solution of the K, for
all corner crack sizes and shapes and all loading states required only
twelve three-dimensional stress analysis computer runs for various a;
values.

The uncracked stress o,(x,y) in Eq 13, of course, may be computed or
measured with standard methods which ignore the presence of the crack.
Numerical integration of Eq 13 then computes K; for each crack growth
increment without recourse to repeated three-dimensional stress
analyses. Thus, influence function theory application is extremely inex-
pensive and efficient as compared to repeated stress analysis procedures.

In addition to generality and ease of application, the influence function
method offers advantages in stress intensity factor computational accu-
racy. The analyst is free to choose any convenient single loading that can
be accurately solved by the applied numerical crack stress analysis
program. This eliminates numerical errors caused by inclusion of actual,
complex loading into computer stress analysis of cracks.

The disadvantage of influence function theory from a user’s standpoint
is that it is possible to prescribe too few crack DOF to model complex
geometry and loading effects. This particular modeling error would
probably not occur when using repeated stress analyses for each small
crack growth increment.

To eliminate this disadvantage and ensure modeling accuracy, future
research should ascertain the minimum number of DOF required for life
prediction of various classes of problems. The calculated lives in the next
section and the agreements noted between computed and observed
residual lives in initial applications, such as reported in Ref /, indicate that
two DOF can model adequately a reasonable number of problems.

Stress Intensity Factor and Residual Lifetime Computations for the Two
DOF Buried Ellipse

This section presents stress intensity factor formulas and residual
lifetime computations for the two DOF buried elliptical crack in Fig. 3 to
illustrate application of the general life prediction procedure. Life compu-
tations are also given using the end-point values K;. This is done to
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investigate the dependence of calculated life on stress intensity factor
definition for two stress states for which both K and K could be easily
computed.

Stress Intensity Factor Derivation

Crack opening displacements for the buried elliptical crack under
uniform pressure are given by Green and Sneddon [5]. Substitution of the
displacement function into Eq 13 gives stress intensity factors for arbi-
trary uncracked stress as

<1 _ OEk) x2> e x 30
— ,UA a, Ek)da, a o @Oy

* EW (2 IEK) H
T T3\ g, E(k)aaw>

oE(k) y?

— + 1/2 22X, dA
K, = J[a ( E(kyoa, = aja > o)
v

aza,Ek) (1 dE(k) \|* (15)
3 a, E(k)oa,

where o = 1 — (x/a,)? — (v/a,)? and E(k) if the complete elliptic integral
of the second kind with modulus k2 = 1 — (a,/a,)? = 0.

Equations 14 and 15 are theoretically valid for substitution into Eq 1 to
compute life for any tensile stress field o ,.(x,y). However, it is suggested
that Eqs 14 and 15 be used only with the requirement that o, be
symmetric about the crack axes. This requirement is physically consistent
with the chosen two growth freedoms. A four or five DOF model which
allows unsymmetric growth of the buried ellipse, easily derivable from the
Ref 5 displacement solutions and Eq 13, is recommended for use with
unsymmetric o, (x,y) functions.

(14)

Residual Lifetime Computations

Given the stress intensity factor solution, Egs 14 and 135, life computa-
tion consists of the numerical solution of the system of Eq 1 for N. The
initial values of the a; (that is, the initial crack or crack-like defect) must
be specified as with the two dimensional cracking problem [3]. Also, a
final crack length criterion must be adopted. A fracture toughness
criterion is adopted herein to represent a brittle static failure mode in an
infinite solid.

Tables 1 and 2 list calculated lives for several initial cracks under
uniform and parabolic stress respectively. The lives Nk are obtained by
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solution of

dai
dNx

= 107°AK 2%, i = x,y (16)

where the K; are computed from Eqs 14 and 15, and failure is defined to
occur at maximum (K;) = Kj.. The lives N are computed by solving

dai

= 107°AK 2%, i = x,
ANg 5= Xy 17)

TABLE 1—Cyclic life prediction for embedded elliptical
cracks in a uniform normal stress field.

Width Length Life (Np) Life (N
2a, 2b, Using K ;, Using K ;,
mils mils cycles x 102 cycles x 1073

2 2 65 65
2 4 56 56
2 10 45 45
2 20 39 38
2 80 31 28
2 © 22 18
5 5 44 44
5 10 36 37
5 25 29 29
5 35 27 27
5 50 25 24
5 100 22 21
5 200 19 17
10 10 32 32
10 20 26 27
10 50 21 21
10 70 19 19
10 100 18 17
10 200 15 14
10 400 14 13
10 1000 12 11
10 © 10 8.2
20 20 23 23
20 40 19 19
20 100 15 14
20 200 12 12
Assumptions: 1. Infinite solid; initial crack sizes above.

1

2. Kpean = 0.5 AK.

3. K. = 85 ksi Vin.

4. o,(x,y) = 100 ksi.

5. Text contains modeling and material
crack growth rate data assumptions.
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TABLE 2—Cyclic life prediction for embedded elliptical
cracks in a parabolic normal stress field.

Width Length Life (Ng) Life (N@)
2a, 2b, Using K, Using K;,
mils mils cycles x 1073 cycles x 1073
2 2 64 65
2 4 55 55
2 10 45 44
2 20 39 38
2 80 30 27
2 % 22 20
5 5 43 43
5 10 37 36
5 25 30 29
S 35 27 26
5 50 25 23
5 100 22 20
5 200 20 17
5 o 14 13
10 10 31 31
10 20 27 26
10 50 21 20
10 70 19 18
10 100 18 16
10 200 15 14
10 400 13 12
10 1000 10 9.3
10 %o 9.9 8.4
20 20 22 22
20 40 19 18
20 100 15 14
20 200 12 11

Assumptions: 1. Infinite solid, initial crack sizes given

above.

2. Kpean = 0.5 AK.

3. K = 60 ksi V/in.

4. o,.(x,y) = 100 (1 — 4x?) ksi for
x = 0.5.

5. Text contains modeling and material
crack growth rate data assumptions.

where the K ; are obtained from Shah and Kobayashi (6], and failure is
defined to occur at maximum (12,-) = K. The force, length, and time units
in Eqs 16 and 17 are kilopounds, inches, and fatigue cycles, respectively.
The constants fit data for AMS 6304, a moderate strength steel, at
operational temperatures for a wide range of AK values. The other
assumptions used for life computations are listed in the tables.

Note that the life estimates are nearly independent of the K; definition,
that is, Nz=Nj}, for the cases cited. Similar studies for exponents in Eqs
16 and 17 ranging from 2 to 5 also obtain Nz=Nj. This independence is
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not surprising because the rms property of the K; guarantees that the two
definitions will result in similar stress intensity factor and life computa-
tions, given enough DOF. Apparently, two DOF are sufficient for the
cases investigated herein. It is certain that additional DOF will be
required for some problems with greater complexity. In any case,
comparison with empirical results can only serve to reinforce or to
discredit the above usage of both definitions of X, rather than favoring
either.

Once the reference displacements and actual uncracked stresses are
obtained, the computation of the K; in Eq 13 is a simple, inexpensive
exercise in numerical integration. For example, a program has been
written to evaluate accurately the K; in Eqs 14 and 15 in less than 0.03 s
central processing unit (CPU) time on the IBM 370-168 computer. Life
prediction, through solution of the two simultaneous equations of Eq 16,
takes less than 2 s with a typical numerical error of 1.5 percent.

Summary and Conclusions

An efficient, general procedure for predicting the residual lifetime of
structures with partial thickness cracks has been reported. The procedure
treats the three dimensional cracking complications of complex crack
shape, crack shape change during growth, and stress intensity factor
variation along the crack front. The actual crack is modeled with any
prescribed mathematical shape with a finite number of key variable
parameters or DOF. The cyclic growth rate of each DOF is assumed to be
controlled by its associated stress intensity factor. Each factor is defined
in terms of the strain energy release rate caused by perturbation of the
single DOF, holding the other DOF constant. This definition, de-
monstrated to be reasonable in its own right, is especially compatible with
an advantageous influence function theory derived to compute stress
intensity factors. The crack size and shape may then be computed as a
function of load cycles by use of the usual linear elastic fracture
mechanics modeling of crack growth.

The influence function theory requires only the characterization of the
crack opening displacements for various values of the DOF and structural
dimensions, for a simple reference loading. These closed form or numeri-
cal results are then applied to derive analytically all required values of
stress intensity factors for an arbitrary stress state such as due to the
presence of a local notch. The influence function theory uses only the
stresses in the uncracked structural detail and thereby eliminates the need
for full three dimensional stress analysis for each new increment of crack
growth as well as for each considered stress state.

The life prediction and stress intensity factor computation procedure is
illustrated for a simple two DOF model of the buried elliptical crack. It is
shown for several examples that calculated life is independent of the
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choice of two considered stress intensity factor definitions. Further, it is
indicated that the choice of a stress intensity factor definition becomes
immaterial as the number of DOF is increased. Consequently, any
empirical results would tend to reinforce or to disprove both equivalent
elastic criteria rather than favoring either.

As described, the extension of the life prediction procedure to more
complex models is direct, requiring only specification of a model with
appropriate number of DOF together with a minimum number of full
three-dimensional analyses. For example, Ref I uses only twelve stress
analysis computer runs to obtain a general, accurate stress intensity factor
solution algorithm for a two DOF quarter-ellipse corner crack model.
Additional current research is being devoted to the solution and experi-
mental verification of various other partial thickness crack models such as
a three DOF half-ellipse surface crack and the extension of the buried
ellipse model to four DOF. Thus, it is concluded that the majority of
partial thickness crack problems are brought within the scope of an
efficient residual fatigue life prediction procedure.
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REFERENCE: Bluhm, J. 1., ‘Application of Fracture Mechanics to the Calculation
of Deflections in Stepped Structural Elements,’’ Mechanics of Crack Growth, ASTM
STP 590, American Society for Testing and Materials, 1976, pp. 420-428.

ABSTRACT: Deflections of structural elements are determined frequently by using
simple engineering strength of materials approaches. However, when geometric
discontinuties are present, such approaches may lead to excessive errors in the
predicted deflection. The present paper suggests a simple technique for refining
these deflection predictions using available fracture mechanics data. Use of such
techniques leads to predictions which do not differ significantly from ‘‘exact”
solutions.

KEY WORDS: crack propagation, mechanical properties, fracture properties,
structural analysis, deflection, discontinuity (mathematics)

The structural analyst is required frequently to predict and limit the
elastic deflection or compliance of structures. Exact solutions, frequently
entailing sophisticated elasticity analysis, are often not within the scope of
the structural analyst’s capabilities. Computer codes using finite element
techniques are not always accessible to the engineer. As a convenient
alternative the engineer uses traditional ‘‘strength of materials’’ approxi-
mations such as, for example, the usual beam theory. For many applica-
tions, such engineering strength of materials (ESM) approaches are
adequate particularly if the structure has no geometric discontinuities;
under such conditions more extensive analyses may not be justified.

However consider now the stepped, simply supported beam illustrated
in Fig. 1. Suppose it is required to determine the deflection under the
central load P. A usual ESM approach for this type of problem is to treat

! Chief, Mechanics Research Laboratory, Army Materials and Mechanics Research
Center, Watertown, Mass. 02172.
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FIG. 1—Actual beam.

each region of the beam as one with constant cross section and then to
apply ordinary beam theory to each region. Of course compatibility of
deformations must be enforced at section changes. Alternatively the total
strain energy in the beam U, can be determined using traditional
approaches and, then by Castigliano’s theorem one can calculate the total
deflection &, that is

_aUp
Y 2

(1a)

It should be clear, however, that the value of the deflection thus
computed, 8, implies the full effectiveness of the entire cross sections in
resisting the applied bending. It should also be intuitively evident that
such calculations may seriously underestimate the deflection. The mate-
rial near the discontinuity (that is, the shaded region of Fig. 1) does not
contribute its due share of the moment resisting stresses. The effective
contour of the beam might be, more realistically, visualized as that
suggested in Fig. 2. If, in fact, this effective contour were known, then
many of the traditional ESM approaches could be used, with results
adequate for all but the most sophisticated or demanding needs. Unfortu-
nately these effective contours are not determined easily, although one
simple refinement suggested by a reviewer is to consider the effective
contour in the notched region as a straight line at 45 deg. Applications of
such a contour obviously reduces the errors associated with the sub-
sequent ESM approach, particularly as the notch width becomes rela-
tively large compared to the notch depth. However for relatively small

r—f ' ﬁ\
P/2 y KIneffective ) P/2

Material

P

FIG. 2—Effective beam profile.
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notch widths, the arbitrary contour suggested still leads to sizeable errors;
obviously, as just implied, the unlikely but fortuitous guess as to the
proper contour would lead to an exact deflection prediction; fortunately,
as we shall see, an alternative approach is possible which does not depend
on the subjective wisdom or experience of the engineer.

For the particular beam configuration sketched in Fig. I, neglect of the
local effects at the discontinuity can lead to discrepancies in excess of 50
percent between ‘‘exact’” solutions and ESM approaches.

It is the purpose of the present paper to describe a concept which
combines such approximate ESM approach with catalogued precise crack
solutions borrowed from the fracture mechanics discipline. By marrying
these approaches it will be shown that substantially exact deflections of
such discontinuous structures, as in Fig. 1, can be derived.

Paris [/]?> and subsequently Tada et al [2] suggested a technique for
computing certain displacements in crack related problems. The method,
illustrated in Ref 2 for crack opening displacements, entailed use of the
established relationship (for constant load)

Uz

¢ A

(1b)

where G, Ur, and A are the elastic strain energy release rate, total strain
energy, and crack area, respectively. Integration yields U and then by
Eq la the desired deflection 8; is obtained readily. Of course 87 is
determined at the point of application of the load P and in its direction.

The form of G (or its equivalent K the stress intensity factor) has been
catalogued in a number of sources for various crack and structural
configurations [2]. Selected specimen configurations are detailed by
Brown and Srawley [3].

Concept

Consider the stepped beam of Fig. 3. As just implied it is necessary to
identify that stepped beam with a fracture mechanics crack problem. In
the present case the pertinent crack problem is sketched in Fig. 4. It is
evident that, as the length [, in Fig. 3 approaches zero, the geometry of
Fig. 4 is approximated.® This latter beam is identified as the degenerate
beam.

It is noted that the solution for the stress intensity factor K for this
degenerate beam (Fig. 4) derives from various elasticity approaches
which treat the stress singularity at the crack tip. It is evident also that the
resulting local perturbations of the stresses are, at least qualitatively, the
same as those which dominate the shaded areas of Fig. 1. We make the

2 The italic numbers in brackets refer to the list of references appended to this paper.
3 Except for the detailed nature of the singularity.
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FIG. 3—Actual beam geometry.

more demanding assumption, that for all practical purposes the stress
distribution in Region 1 of Fig. 4 is precisely the same as that of Region 1
of Fig. 3 and consequently that the strain energies are the same, that is

U =U;= UID = Usn @

where the subscript D refers to degenerate beam characteristics.
The strain energy U, relating to half the degenerate beam can be
determined directly from its definition Eq la and in lieu of Eq 2

aUr _a[UID + U3n]
Boa Bda

G:

3

where B is the beam thickness and a the crack depth. Integrating, this
becomes

(Ui, + Us,) = 2U;, = B / Gda + Uya = 0) )
0

where U a = 0) represents the strain energy of the degenerate beam with
a = 0. Itis further assumed that the strain energy of Region 2 (Fig. 3) U,
is defined adequately by the usual ESM approaches so that the total strain

S
4

1 - — — —

J a= (W, -W,)

p/2 S/Z—'H—S/Z_" f l‘" B —=]

P/ 2

FIG. 4—Degenerate beam geometry.
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energy Urin that beam configuration can be written
Up=2U,+ U,
or in lieu of Eq 2
)
UT = 2UID + Ug

Substituting Eq 4 into the latter of these and using Eq la, one obtains for
the desired deflection §;

a a
&= — B /Gda + Uga=0)+ U, {6)
oP 0

But note that U y(a = 0) is the strain energy associated with the uncracked
beam and therefore is computed easily by the usual engineering strength
of materials beam approaches. Since also U, is the corresponding strain
energy of Region 2, this can also be treated by the ESM approaches. We
see then that the last terms of Eq 6 relate to strain energies without regard
to the discontinuity effects. We define, as 8, the corresponding deflection

d
8o = E[Uo(a =0) + Us] ¥

In view of Eq 7, Eq 6 can be written in consolidated form as follows
Or = 09 + L0

where

d a
As = E)—[B ﬁ Gda] ®)

Here we emphasize that Ad represents the increment in deflection at the
load application point (Fig. 3) due to the stress perturbation associated
with the section discontinuities. Thus the total deflection of a structure
such as in Fig. 3 can be considered as that computed from ESM

4 Ttis suggested that these two equations are equivalent to within an error e — 0forl, — 0
and € — 0 as /, gets large. Intuitively then one might expect the proposed equivalence to be
reasonably good throughout the range of /,’s.
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approaches 8, plus a corrective deflection A8 derived from fracture
mechanics concepts and which accounts for the local discontinuity
effects.

INustration

Consider the beam of Fig. 3. The pertinent degenerate beam is that
shown in Fig. 4. For this latter beam we have Ref /

1 — 2 36(1 — vHM?%.x
G=—F K =——Fm = ay? ©)

where Y is a given polynomial in (a/W). Inserting this into Eq 4 and
nondimensionalizing we obtain

9(1 — v?¥

2Uy, = ~ g

alWw
(S/W)*P? ﬁ YE/W) X (E/W) X d(¢/W)
+ Ugla = 0) (10)

Defining the integral as f(a/W) and inserting this into Eq 5 we obtain

91 ~ vy

UT = 2U1D + Uz = 4EB

(S/W)PHla/W) + Uga = 0) + U, (11)

1 $/2
Note however that [/, = 2 / M3
o= 2%, ), Midn

P
Ml = ?xl

U, = 2 1 (U302 M2
2 2El, ), 2°dXg

P /S
M2=? ?"‘Xg

But these are precisely the strain energies of the component spans of the
beam neglecting the local discontinuity effects, that is, using ESM
analysis. The corresponding deflection §, is then calculated from Eqs 7
and 12. The correction Ad, accounting for these discontinuity effects, is

f (12)
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found from Eqs 8 and 9 to be

_ 9 s |
A = EE(I - v?) (§/W)*fla/W)P
aiw
where fla/W) = f YHE/W) X (/W) X dg/W) [ (3)
and YE/W) = 3 AE/W)"

Here the coefficients A, are given in Ref 3.

It is noted that the approach just described is applicable to such
diversified configurations as suggested in Fig. 5.

In particular we have examined the simple geometry sketched in Fig. 6
and computed the deflection between Points A and B using both the ESM
approach 8, and the fracture mechanics correction A8. These were then
compared with a finite element solution estimated to be correct to +2
percent. The results in percentage error are shown in the Table 1.

Total deflections of this specimen &, were determined analytically using
the following relation

O'QW
81' = E

[2 " ]+U°W2 W 14
" 20w g /W) 14

where the first term on the right represents the ESM contribution and the
second term the fracture mechanics (or discontinuity) contribution. Note
that though in this particular case the maximum error is 20 percent, errors
in excess of 50 percent may arise in different geometries. Obviously, a

TABLE 1—Comparative errors in deflection of tension specimen per
Fig. 6, 2(a/W) = 0.5

% Error®
ESM ESM (45 deg)® Fracture Mechanics
m=1 n=20.0 -20.0 -12.1 0
m=1 n=0.1 —-17.4 -9.9 +1.5
m=1 n=0.2 —-154 -8.4 +2.3
m=1 n=10 —-9.2 —-4.7 +2.2
m=1 n=20 —-6.3 ~3.1 +1.6

¢ Based upon a finite element solution which was taken as an exact solution.
% Basically the same as the ESM analysis except that the sides of the notches were
inclined at 45 deg to approximate the effect of the ineffective material.
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FIG. 6—Reference tension specimen for comparison of solutions.

judicious guess as to an effective shape for the ineffective material should
improve markedly such an ESM analysis. To judge one simple such guess
an ESM analysis was carried out for essentially the same configuration
except that the ineffective material was assumed to be bounded by 45 deg
inclined notch sides. Table 1 shows that though significant improvement is
obtained the use of the fracture mechanics correction essentially elimi-
nates the error.

Conclusion

An approach has been suggested which permits precise deflection
calculations in specific structural configurations involving discontinuities.
The method utilizes conventional engineering strength of materials ap-
proaches and combines these with simple results of more sophisticated
fracture mechanics analysis to account for the local discontinuity effects.
Carried out for a specific case it is illustrated that the deflection can be
thus calculated to within an accuracy of approximately 2 percent.
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ABSTRACT: A procedure is formulated to derive approximate stress intensity
factors for both part-through and through-the-thickness cracks originating at open
holes and holes containing either loaded or unloaded close tolerance fasteners. The
procedure is checked with known solutions for stress intensity factors of one or two
through-the-thickness cracks emanating from an open hole in a plate subjected to
uniaxial or biaxial loading. Stress intensity factors computed from this procedure
for the above mentioned cases agree within seven percent of known results for the
crack length to hole radius ratios, L/r, of 0.05 < L/r < . The procedure is then
used to derive stress intensity factors for through cracks at loaded close tolerance
fasteners in a plate, and for semi-elliptical cracks at open holes and at loaded and
unloaded close tolerance fastener filled holes in a thick plate. Stress intensity
factors for these part-through cracks are presented in graphical forms as a function
of position around the crack periphery, for various crack aspect ratios and crack
length to hole radius ratios. Finally, these stress intensity solutions for semi-
elliptical cracks at a fastener hole in a thick plate are used to estimate stress
intensity factors for quarter-elliptical cracks originating at a fastener hole in a finite
thickness plate.

KEY WORDS: crack propagation, fracture (materials), stress analysis, fastener
holes

A recent comprehensive study of failure origins in aircraft structures
showed that the most prevalent failure origins are in order; flaws
originating from fastener holes, flaws originating from corners, and
surface flaws [/].2 Stress intensity factors (SIF’s) for these flaw geome-
tries are required to evaluate the critical flaw sizes that would result in

1 Senior specialist engineer, Boeing Aerospace Company, Seattle, Wash. 98124,
2 The italic numbers in brackets refer to the list of references appended to this paper.
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component failures and to compute the service life of the component
during which the initial flaw could grow to a critical size. As evidenced by
Ref 2, considerable work has been done in obtaining SIF’s for the surface
flaws. Due to the complexity of the problem, very little work has been
done to obtain SIF’s for cracks originating at fastener holes. Most of the
work is limited to derivations of approximate solutions to two-
dimensional crack problems of through-the-thickness cracks originating at
holes [3-6] . For two-dimensional crack problems, estimates of SIF’s for
through-cracks originating at loaded filled holes are available only for
particular loading conditions and hole diameter [6]. Empirical expres-
sions for SIF’s based on experimental data have been developed for
quarter-elliptical or quarter-circular part-through flaws (flaws which have
penetrated part of a plate) subjected to uniform uniaxial tension in Refs 7
and 8, respectively. However, these empirical solutions compute an
effective SIF at an unknown location on the crack periphery and do not
take into account the variation of the SIF along the crack periphery.
Estimates of SIF’s for semi-elliptical cracks at open holes in an infinite
solid have been obtained for very short cracks with respect to hole radius,
that is, for«a/R = 0.3 where a and 2¢ are crack dimensions and R is hole
radius [9].3

Stress analysis of a loaded close tolerance fit fastener in a plate
subjected to applied remote loading, even in the absence of a flaw, is a
complex nonlinear problem involving variable contact between the fas-
tener and the plate [/0,11]. When a flaw originates from the fastener hole,
analysis is complicated further, since the crack reduces the rigidity of the
structure surrounding the hole and may change the contact condition.
Flaws originating at fastener holes are often part-through flaws and are
thus three-dimensional problems. At the present time, it is not possible to
obtain exact or numerical solutions of the SIF’s for these three-
dimensional crack problems.- SIF’s for such three-dimensional crack
problems have to be obtained using simplifying assumptions, approxima-
tions, and judicious estimates.

The objective of this paper is to derive approximate SIF’s for cracks
originating at fastener holes. A procedure is formulated to derive SIF’s
from the stress distribution at the location of the crack in the uncracked
plate or solid. The procedure is verified with known solutions for SIF’s
for two-dimensional (through-the-thickness) cracks originating at a hole.
The procedure is then used to derive SIF’s for the flaw types and loading
cases shown in Fig. 1. These are: (1) through cracks at holes containing
loaded close tolerance fasteners, (2) semi-elliptical cracks at open holes,
and (3) semi-elliptical cracks at both loaded and unloaded close tolerance
fastener filled holes in a thick plate subjected to uniform tension. Finally,

3 Work in Ref 9 was accomplished concurrently with the work described in this paper.
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FIG. 1—Flaw types and loading cases considered.

stress intensity factors for quarter-elliptical cracks originating at fastener
holes in a thick plate are estimated.

Formulation of Procedure

Consider a problem of two symmetric through (or semi-elliptical
part-through) cracks, each of length L, emanating from a fastener hole of
radius R in a plate (or a solid) subjected to a symmetric loading, as shown
in Fig. 2a. This problem is considered to be approximately equivalent to
the linear superposition of two problems as shown in Fig. 26 and c. The
stress distribution o..(x,0) in an uncracked plate with the fastener hole is
determined at the location of the cracks for the applied loading in
question. The crack of length 2L, as shown in Fig. 2c, is pressurized with a
symmetric pressure distribution of stress — o,. (X,0).* The SIF K for both
through and part-through cracks pressurized by this stress distribution of
— g, (X,0) is then derived by using the proper Green’s function solution
for the crack, such as Eq 1 for two symmetric through cracks [12].

4 Origins of coordinate systems (x,y,z) and (X,Y,Z) are located at the center of the hole
and at the periphery of the hole along x-axis, respectively, such that X = x — Rforx = R
andX=x+ Rforx<—-R,Y=y,and Z = z.
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FIG. 2—Approximate procedure for determining stress intensity factors for two symmet-
ric cracks emanating from a fastener hole.

K= L " o (X.0) Lt X x )
‘ \/W—L/_LGZZ P\ L-x

The SIF, thus derived, is applicable to two symmetric cracks originat-
ing at a fastener hole as shown in Fig. 2a.

The reasoning behind the foregoing superposition was as follows: It is
known that for infinitely wide plates subjected to uniform tension, the SIF
for a single edge crack of length L is 12 percent higher than that for a
center crack of length 2L, due to the introduction of the infinitely long
stress free surface in the edge-cracked plate. In the problem of two
symmetrical through cracks at an open hole in a plate subjected to
uniform tension, the hole periphery is a stress free surface; however, its
effect should be offset by the curvature of the hole periphery. Also, the
stress free surface for this problem is of finite length; hence, its effect will
be very small for long cracks with respect to the hole radius. Symmetrical
cracks originating at a hole should be equivalent to a central crack rather
than an edge crack. This statement is further supported by Bowie’s
solution for two very long cracks at an open hole (L/R > 1) where the SIF
for cracks at a hole approaches that of a central crack of length 2L in an
infinite plate [3].

Approximate SIF’s for one crack of length L originating at a hole in a
plate are obtained by multiplying SIF’s for two symmetrical cracks of
length L at a hole by the factor shown in Eq 2.
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B 2R+ L X
raci 2R + 2L

This approach resulted from the knowledge that, when the crack length
is very large with respect to the hole diameter, the effect of the hole on the
SIF is negligible, and SIF’s can be calculated using equations for central
through cracks of length 2R + 2L (two cracks) and 2R + L (one crack).
Since SIF’s, K, vary with the sqaure root of crack length, the relationship
between K for two symmetrical long cracks at a hole and one unsymmet-
rical long crack at a hole is given by Eq 2. Also, when crack length is very
small with respect to the hole radius, SIF’s for one and two cracks are
approximately the same [3]. This is also shown by Eq 2. Equation 2 is
used for all L/R values to compute SIF’s for one crack originating at a
fastener hole. This procedure is verified in the next section with the
known solutions of one crack originating at a hole.

K two @)

cracks

Verification of Procedure

Consider the case of a plate containing two through-the-thickness
symmetrical cracks, each of length L, originating at an open circular hole
of radius R, as shown in Fig. 3. The plate is subjected to uniform tension
o perpendicular to the plane of the crack and a uniform tension (or
compression) Ag parallel to the plane of the crack. The stress distribution
o..(x,0) in the uncracked plate at the location of the cracks for the above
loading is given by the following well-known equation [/3].

2 4

a R
T,.{x,0) = ? [2 + ({1 + N *‘x*z‘“ + 3(1 — A) XT] 3)

SIF’s for two through cracks of length L are then obtained by
pressurizing the central crack of length 2L in Fig. 2c by —o,; (X,0) given
by the following equation.

0,4X,0) = % [2 + 1 +N (R f|X| )2 30 =N <R+L|XI)4]
0=|X|<L @)

where |X| = |x| — R, and Z = z. SIF’s K, are obtained by integrating
Eq 1 with Eq 4 and are given by Eq 5 [/4,15].

K, = o7 { 1+ ;]; [(1 + MR, + 3(1 — A)R“L,]} (5)
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——— PRESENT SOLUTION
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Fa (LR)

D NEWMAN, ) =-1.0 (Ref. 4)
O BOWIE, X = 0,0 (Ref. 3)
O  BOWIE, X\ =1,0 (Ref. 3)
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FIG. 3—Stress intensity factors for two through-the-thickness cracks emanating from a

hole in a plate subjected to biaxial stress.

where R, and R, are given by Eqs 6a and b.

R212 =

1
e+ R
1 CRIBNCEL B
Ri,=—— [— .
si-e UfT20-ar Tan-er §

for ¢ =1
& and RI, are given by the following equations.
&£ =LIR
RI=#tan‘1 — ¢ for ¢ <1
Vi e 1+¢
1 VE+T+VeE-1
RlI, = ——— log ¢ ¢ for & > 1
e -1 VE+ T -VE-T

RI,=1/¢=1 forg=1

(6a)

(6b)

(7a)

(7b)

(7c)

(7d)
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In the following, SIF’s K are calculated for various values of A for one
or two cracks originating at an open hole and are compared with the
known solutions given by Bowie using the approximate mapping
technique [3], Newman using the boundary collocation technique [4] and
Tweed [5] using Mellin transform and integral equation techniques to
assess the accuracy and the validity of the proposed technique.

1. Uniaxial Loading (A = 0)—Two Cracks

SIF’s for two symmetrical through cracks of length L originating at an
open hole of radius R in a plate subjected to uniform uniaxial tension
o(A = 0in Fig. 3) are calculated with Egs 5, 6, and 7 for various values
of L. SIF’s K| are represented in the nondimensional form, Fy(L/R), as
follows.

FyL/R) = Ki/(o/wL) @®

Results of the foregoing approximate solution are compared to results
of Bowie’s numerical solution in Fig. 3. Newman’s collocation solution
for this problem agrees with Bowie’s solution within 2 percent; hence, itis
not shown in Fig. 3. The maximum discrepancy between the present
solution and the Bowie’s solution is less than 7 percent for
0.05 < L/R < o0,

2. Uniaxial Loading (A = 0)—One Crack

SIF’s for one through crack of length L emanating from an open hole of
radius R in a plate subjected to uniaxial tension o(A = 0 in Fig. 4) are
calculated with Eqs 2, 5, 6, and 7 for various values of L. SIF’s K| are
represented in the nondimensional form, F,(L/R), by Eq 9.

Fy(L/R) = K,/(eV/7L) &)

The results, F,(L/R), of the preceding solution are compared to those
from Bowie’s solution for the same problem, and the two solutions agree
within less than 2 percent for 0.05 = L/R < «,

3. Biaxial Tension (. = 1)—Two Cracks

Nondimensional SIF’s, F,(L/R), computed from Egs 5 through 8 for two
symmetrical through cracks originating at an open hole in a plate
subjected to uniform biaxial tension (A = 1 in Fig. 3) agree within 5
percent with those from Bowie’s solution for 0.05 < L/R < ¢,

4. Biaxial Tension (A = 1)—One Crack

Nondimensional SIF’s, F,(L/R), computed from Eqs 2, 5, 6, 7, and 9
for one through crack emanating from a hole in a plate subjected to
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——— PRESENT SOLUTION
O TWEED, \ = =1.0 (Ref. 12)
O BOWIE,\= O(Ref. 3)
O BOWIE, A= 1.0{Ref, 3)
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FIG. 4—Stress intensity factors for one through-the-thickness crack emanating from a
hole in a plate subjected to biaxial stress.

uniform biaxial tension (A = 1 in Fig. 4) compare within 5 percent with
those from Bowie’s solution for L/R values of 0.05 = L/R < «,

5. Biaxial Stresses (A = 1)—Two Cracks

Nondimensional SIF’s, F,(L/R), computed from Eqs 6 through § for
two through carcks at a hole in a plate subjected to uniform tension, o,
perpendicular to the crack plane and uniform compression, —¢, parallel
to the crack plane (A = —1 in Fig. 3) compare within 6 percent with those
from Newman’s solution [4] for L/R values of 0.1 = L/R < .

6. Biaxial Stresses (A = 1)—One Crack

Nondimensional SIF’s, F,(L/R), for one crack at a hole in a plate
subjected to uniform tension, ¢, perpendicular to the crack plane and
uniform compression, — o, parallel to the crack plane are computed from
Egs 2, 5, 6, 7, and 9. Maximum discrepancy between F,(L/R) given by
the present solution and Tweed’s solution is 7 percent at L/R = 0.1. For
L/R ratios of 0.2 = L/R < o, the maximum discrepancy between the two
solutions is less than 5 percent.

For all of the six cases, SIF’s computed by the present solutions at
L/R = 0 are underestimated by approximately 12 percent as the effect of
the stress free surface of the hole is neglected in the present solutions. As
observed from Figs. 3 and 4, effect of the stress free surface is felt only by
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very small cracks, such as L/R = 0.3. At L/R = 0.3, valuse of F(L/R)
given by the present solutions are in the complete agreement with the
known solutions for all of these cases except for the cases of one crack at
a hole for the loadings of A = =1, where the present solutions underesti-
mate SIF’s by 3 percent. Error due to the effect of the free surface on
SIF’s for small cracks can be compensated by multiplying Fo(L/R)in Eq 8
and F,(L/R) in Eq 9 by the quantity M, given by Eq 10.
0.3 - L/R

“—5) (10a)

Muys= 10+0. (
HS 0+ 0.12 03

SIF’s calculated with Eqgs 8, 9, and 10 agree with the known solutions
within 3 percent for L/R values of 0.0 = L/R < 0.3. Thus, the present
solution can be used for L/R values of 0.0 = L/R < .

In view of the very good agreement between the SIF’s derived from the
present procedure and the known solutions for three different loading and
two different crack configurations, it is concluded that the foregoing
approximate technique can be used to obtain SIF’s for cracks originating
at fastener holes. No SIF solutions are available for three-dimensional
(such as part-through or semi-elliptical) crack problems to compare with
the results obtained from this procedure. However, wherever possible
and as shown subsequently, the approximate solutions of three-
dimensional crack problems are reduced to those for two-dimensional
crack problems and then compared with known two-dimensional crack
solutions. Agreement between the two solutions is found to be very good.
Hence, this approximate technique is used to derive SIF’s for three-
dimensional crack problems.

Application of Procedure

Using the procedure outlined in the previous section, approximate
SIF’s are derived for through cracks and embedded semi-elliptical cracks
originating at fastener holes for several different loading and fastener
conditions described next and shown in Fig. 1.

Cracks from an Open Hole

SIF’s for Through Cracks—SIF’s for two or one through cracks
originating at an open hole in a plate subjected to different loadings, such
as A = 0, = 1, are given in Figs. 3 and 4. Examination of Eq 5, as well as
analytical results of Tweed [5], show that SIF’s for a given L/R ratio for
any value of A can be obtained by linearly interpolating or extrapolating
the results of SIF’s for A = 1 and A = 0 for that value of L/R ratio. For
convenience, Fig. 5 gives SIF’s for one or two cracks at a hole in a plate
subjected to a biaxial tension stress corresponding to A = 0.5. This case
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FIG. 5—Stress intensity factors for one or two through-the-thickness cracks emanating
from a hole in a plate subjected to biaxial tension.

has some practical significance such as an axial crack in a pressurized
cylindrical vessel at a hole where the radius of the vessel is very large
such that it can be considered as a plate.

SIF’s for Semi-Elliptical Cracks at a Hole in a Solid—Consider a
problem of two semi-elliptical cracks emanating from a circular hole in a
solid, as shown in Fig. 6. The solid is subjected to a uniaxial uniform
tensile stress of o which is perpendicular to the plane of the crack. In
Fig. 6, 2a is the crack dimension along the hole length in the Y-direction
and c¢ is the crack dimension perpendicular to the hole length in the
X-direction. Angle 8 is the parametric angle of ellipse defined by the
following equation and is defined in Fig. 6.

X =csinB and Y = a cosf (106)

In order to derive SIF’s for two semi-elliptical cracks at a hole,
the previously described technique requires a solution for the SIF for an
embedded elliptical crack in an infinite solid subjected to a pressure
distribution prescribed by Eq 3 where A = 0. This, in turn, requires
a Green’s function for the SIF for an embedded elliptical crack in an
infinite solid, which is not available. The most general solution available
for the SIF of a pressurized elliptical crack is limited to the pressure
distribution in the form of a polynomial of X and Y defined as follows [/6].
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3

3
pX.Y,0) = > AXiY: i+j=3 (1
j=0

i=0

A Green’s function is available for circular (penny-shaped) cracks and
is used in the following to derive SIF’s for two semi-circular cracks at a hole
in an infinite solid. As described in the appendix, the Ref 16 solution
is used to extend nondimensionalized SIF’s for two semi-circular cracks
at a hole in a thick plate to those for two semi-elliptical cracks at a hole
in a thick plate.

A Green’s function for the SIF for a circular crack embedded in an
infinite solid is given by Smith et al [/7]. However, the Green’s function in
Ref 17 contains an infinite series, and it is not suitable for use when the
pressure distribution prescribed on the crack surfaces is complex since
integration cannot be carried out in the closed form and numerical
integration is required. Hence, the Green’s function for the SIF is
modified into a form given by Eq 12 which can be used for general loading
and is suitable for numerical integration. For the sake of brevity, details of

SECTION A-A

FIG. 6—Two semi-elliptical cracks originating at a hole in a thick plate.
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the Green’s function, that is, derivation and verification with the known
solutions are not given here but are described in Ref /8.°

B 1 a (= rp(r,g,0)(a? — rH1?
KW = (mwa)V? [ ,/.: a® — 2ar cos (Y — ¢)+r? dedr (12)

In the preceding equation, a is the radius of the crack, p(r,$,0) is the
prescribed arbitrary normal surface tractions applied to both the upper
and the lower crack surfaces, r is the distance from the center of the crack
in the crack plane, ¢ is the angle measured with respect to the X-axis, and
the origin of the coordinate axes (X,Y,Z) is located at the center of the
crack. The SIF K, at any point on the crack periphery at the angle ¢ from
the X-axis is then given by Eq 12.

According to the previously described technique, SIF’s for two semi-
circular cracks of radius a originating at a hole of radius R in a solid
subjected to uniform uniaxial tension o is then given by Eq 12 where
p(r,$,0) at Z = 0 can be rewritten from Eq 4 as follows.

ol R *
p(r,$.0) = 02(X,Y,0) = £ [2 + (m)

3 R \ 4
* <R +r| cos¢|) (13)

It is not possible to integrate Eq 12 in the closed form for p(r,¢,0)
described by Eq 13. Straight forward numerical integration of Eq 12 using
a variable step-size Simpson’s rule procedure also poses a problem as the
integrand defined by Eq 12 is singular at r = @ and ¢ = . As shown in
Ref 18, commonly used methods for the numerical evaluation of an im-
proper integral such as ignoring the singularity or proceeding to the
limit [/9] do not work for Eq 12. A special method was used to evaluate
numerically this improper integral which is described here briefly.
Equation 12 can be rewritten as follows.

a -3 a—e {fy+d
Ki(p) =[A F(r,$,0)dpdr +/) A F(r,d,0)dddr +

afow a w+s
,/0/w+aF(r’¢’0)d¢dr +L—e ,/w—s F(r,$,0)dpdr  (14a)

5 Reference I8 is available on request from the author or the Boeing Library.
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1 rp(r.,0)(@* — rH'
_ 14b
Fir.9,0) m(ma)"? a® — 2ar cos ( — @) + r2 "

In Eq 13, € and & are very small quantities with respect to a and 2.
First, second, and third integrals do not contain any singularity and were
integrated numerically with a high degree of accuracy. (In actual compu-
tations, € and & were taken as 0.01a and 0.08727 radian, respectively.)
Fourth integral which is improper was evaluated analytically assuming the
function p(r,¢,0) to be constant over the regiony — toy + Sanda — ¢
to a. Due to space limitations, details of this integration are given
somewhere else {/8]. This method was used to evaluate numerically the
integral in Eq 12 where p(r,¢,0) was taken as r% cos 2¢ and 3 cos 3¢ for
which exact solutions for SIF’s are available. SIF’s computed by the
numerical quadrature compared within 0.6 percent with those from the
exact solutions.

Utilizing the quadrature technique just outlined, SIF’s K for two
semi-circular cracks of radius a (or ¢) originating at a hole of radius R in a
solid subjected to the applied tension o, as shown in Fig. 6, are computed
from Eqs 12 and 13 for various values of angles ¢ from 0 to 7/2 and for
various ratios of a/R (or ¢/R). The resultant SIF K;;, at any point on the
crack periphery, defined by angle 8 measured from the Y-axis as shown in
Fig. 6,% is normalized with respect to the SIF K|, for a penny-shaped
crack of radius a (or ¢) in an infinite solid subjected to the applied uniaxial
tension, o. The nondimensionalized SIF F.(c/R.B) is defined as follows.

Foelc/R,B) = Kiy/Kie (15a)
where
2

Ko = o(ma/ Q)" (cos?B + 2‘—2 sin?8)'  ifajc<1.0 (15h)

2

Ky = olme/Q)" (sin2B + (% cos’B)'  ifajc>1.0 (I50)

For convenience in discussion of semi-elliptical cracks at a hole (Fig. 6)
later, K. in Eqs 156 and c is represented for a general case of an elliptical
crack of diameters of lengths 2a and 2¢ instead of a penny-shaped crack.

8 Angle 8 and angle s defined before are complimentary angles for a semi-circular crack,
that is 8 + = 7/2 radians.
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For the case in discussion here, a = ¢. The shape parameter Q is defined
by Eq 16 [20].

0 = [E()]*/[1.0 = 0.212(a/0)] (16a)

where o is the uniaxial tensile yield strength of the material and E(k) is
the complete elliptical integral of the second kind corresponding to the
modulus k£ where £ is given by either Eq 16b or Eq 16¢.

k=[1-a¥c® ifajc <10 (16b)
k=1[1— c*a?]"* ifa/c>1.0 (16¢)

Angle 8, as mentioned before, is defined in Fig. 6 as well as by Eq 106.

The nondimensionalized factors F,.(c/R,8) are shown in Fig. 7 for two
semi-circular cracks at a hole in a thick plate for various values of ¢/R
from 0.0 to 10.0 and for various values of angle 8 from 0 to 90 deg. For
a/c = 1.0, K is not dependent on angle 8 and is constant. Figure 7 shows
that the SIF Ky, is maximum at 8 = 0 deg (point on the crack periphery
nearest the hole) and decreases monotonically to a minimum at 8 = 90
deg (point on the crack periphery farthest away from the hole).

As outlined in the Appendix, SIF’s Ky, for two semi-elliptical cracks at
a hole in a thick plate (Fig. 6) are estimated using the solution in Ref /6
and the previously outlined technique for a/c values ranging from 0.1 to
1.0, ¢/R values ranging from 0.0 to 10.0, and 8 values ranging from 0 to 90
deg. The analysis for estimating SIF’s is outlined in detail in the
Appendix. The resulting SIF’s K};, are nondimensionalized with respect to
the SIF K. for an elliptical crack in an infinite solid having the same
values of a and ¢ as those for the semi-elliptical cracks at a hole. The
nondimensionalized factor F ,(c/R,8) and K. are defined by Eqs 15a and
b (or c), respectively. Results (Fig. 16 of the Appendix) show that the
nondimensionalized SIF’s F, are quite insensitive to the value of a/c for
any given value of ¢/R and 8. Accordingly, it is concluded that F .. could
be assumed to be independent of a/c. Thus, SIF’s for two semi-elliptical
cracks originating at an open hole in a thick plate subjected to the uniform
uniaxial tension (Fig. 6) can be approximated from Eqgs 15 and 16 and
Fig. 7.

There is no stress intensity factor solution avaiiable with which to
compare the results of the foregoing approximate solution. However, the
approximate solution can be reduced to a two-dimensional crack problem
by letting a/c — «. The problem then reduces to the two-dimensional
problem of two symmetrical through-the-thickness cracks, each of length
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Foel M B) = Ky /Ky,
bl 2 1/4
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FIG. 7—Nondimensionalized stress intensity factors for two semi-elliptical cracks at a
hole in a thick plate.

¢, originating at a hole in a thick plate. The stress intensity factor K, from
Eq 15¢ is given by o\/mrc at 8 = 90 deg. Stress intensity factor Ky, is then
given by the equation F,.c/R,90)c\/mc. Values of F,.(c/R,90) agree
within four percent with F,(L/R) values (Fig. 3) from the corresponding
Bowie’s solution for the range of 0.1 < ¢/R = 10.0. Since the foregoing
agreement was not a built-in condition to the approximate solution, such
agreement gives confidence in the accuracy of the solution.

An interesting observation can be made from the results of Fig. 7. The
SIF Ky, is always maximum at 8 = 0 deg (point on the crack periphery
nearest to the hole) for a/c < 1.0. However, K, at 8 = 0 deg can be
smaller than Ky, at 8 = 90 deg (point on the crack periphery farthest
from the hole) for a/c > 1 since K, at 8 = 0 deg is significantly smaller
than K, at 8 = 90 deg.
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Cracks from an Unloaded Neat Filled Hole

Many investigators [23-28] have obtained approximate or exact solu-
tions for a neat (close tolerance fastener) filled hole, with a smooth elastic
or rigid fastener, in a plate subjected to uniform uniaxial tension. Figure 8
shows the distribution of the normal stress (o../o) across the minimum
section of the plate (z = 0) for this problem for various values of E,/E;
where E is modulus of elasticity and the subscripts p and f pertain to the
plate and the fastener, respectively. Figure 8 also shows the distribution
of the normal stress at the same location for a plate with an open hole
(E,/E; = =) subjected to uniform tension o. As seen from Fig. 8, the
effect of contact and fastener materials on the stress o, along the x-axis is
less than 3 percent for x/R greater than 1.3 for two extreme cases: (1) a
plate containing a rigid fastener and (2) a plate containing highly flexible

3.0 LEGEND?

OPEN HOLE, E',/Ef = o0 (REF.13)

2.8
- == — NEAT FILLED HOLE WITH
RIGID FASTENER, Ep/E¢ = O (REF. 24,28}
@ SAME AS—— AT = 20° (REF ., 24,28)
2.6 A NEATFILLED HOLE WiTH
ELASTIC FASTENER Ep/E; =1 (REF 23,24)
@ NEATFILLED HOLE WITH
2.4 ELASTIC FASTENER Ep/Eg = 3 (REF, 24)

0,/0

FIG. 8—Variation of normal stress o4;/o along x-axis for a plate containing a neat filled
hole.
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fastener (open hole). For 1.1 = x/R = 1.3, the difference in the stress o,
along z = 0 between the previously considered two extreme cases ranges
from 3 to 10 percent. For x/R = 1.0, the difference in the stress o, at
0 = 0deg(z = 0) between the two cases is 22 percent. For real structures,
the effect of plate-fastener materials on o, along z = 0 for a neat filled
hole in a plate is equal to or smaller than the preceding noted effects.

It is of interest to note that the maximum tensile stress on the
hole-fastener periphery generally occurs at the point of contact separa-
tion, that is, 6 =~ 20 deg. Figure 9 shows the distribution of circumferen-
tial stress oy around the hole periphery for four different combinations of
plate/fastener materials. The difference between maximum stresses for
the hole filled with a rigid fastener and the open hole is less than 8 percent,
as shown in Fig. 9. In the case of fatigue of a filled hole with no cracks,
crack initiation does not have to occur at § = 0 deg. In the absence of the
influence of other factors, the crack would initiate at the point of
maximum stress (¢ = 20 deg) and grow toward ¢ = 0 deg.

SIF’s for through or semi-elliptical cracks originating from a neat filled
hole in a plate or a solid subjected to uniaxial uniform tension can be
derived with the technique described before and the stress distribution
just described. SIF’s thus obtained will depend on material properties of
both the fastener and the plate. However, as shown before, the difference
between the stress distributions along z = 0 for the two extreme cases,
namely, the open hole and the neat filled hole with rigid fastener, is very
small for x/R = 1.3((x/R — 1) is equivalent to L/R for through cracks and
¢/R for semi-elliptical cracks). Hence, the solution derived for SIF’s at
cracks originating from an open hole can be used for the corresponding
case of a neat filled hole when L/R or ¢/R > 0.3. SIF’s for extremely
small cracks (L/R<€ 0.1 or ¢/R< 0.1) at neat filled holes containing very
stiff fasteners (E,/E; < 1) could be conceivably overestimated by as
much as 20 percent: for 0.1 = L/R =< 0.3, the overestimate would be less
than 10 percent; for L/R > 0.3 the overestimate would be negligibly
small. In actual structures, the overestimate in SIF’s for cracks from neat
filled holes due to using the solution for SIF’s for cracks from open holes
would be smaller than those values just quoted due to fastener flexibility.
Hence, it is concluded that the solution derived for SIF’s for cracks
originating from an open hole in a plate can also be used for the
corresponding case of a neat filled hole for all crack size to hole radius
ratios except for L/R < 0.1 or ¢/R < 0.1.

Cracks from a Loaded Neat Filled Hole

The problem of a loaded neat filled hole in a plate (Fig. 1f without
crack) has been studied by many investigators [27-33]. Only Refs 27 and
28 consider the effect of contact, and only Ref 28 explicitly gives the
stress distribution near the hole obtained from a finite element analysis as-
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FIG. 9—Variation of circumferential stress oq/o around the hole periphery for a plate
containing a neat filled hole.

suming the fastener (insert) as rigid. As shown in Ref /8, contact condi-
tion has a significant effect on the stress distribution around the hole and
on the stress distribution o, across the minimum section of the plate
(z = 0in Fig. 10). Hence, the stress distribution o, along z = 0 given by
Ref 28 is used to derive SIF’s for cracks at loaded neat filled holes.
The normal stress o ., is normalized with the bearing stress o, and is ex-
pressed within 3 percent for x = 10R by the following equations.

o R? R RS
oy x x x
_ P
o, = 3Rt (17b)

Ay = 0.04374, A, = 0.71304, A, = —0.66404, and A; = 0.91998 (17¢)
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where P, R, and ¢ are the applied concentrated force, radius of the hole,
and thickness of the plate, respectively.

Experimental studies have been conducted to determine the stress
concentration and distribution near a loaded neat filled hole [34,35]. The
experimental stress concentration factor agrees within 2 percent with that
from theoretical analysis [28]. Experimental results on aluminum plates
show that a very small increase (less than 4 percent) in the maximum
stress occurs when the neat fitting aluminum pin is replaced by a steel pin
having the same fit [35]. A steel pin in an aluminum plate can be
approximated as a rigid pin. Thus, the stress distribution for a loaded neat
filled hole containing a rigid insert can be used to describe the stress
distribution for a loaded neat filled hole containing an elastic fastener with
little error.

Shear stress 7., across z = 0 (x-axis) is very small when compared to

1.0}
oL
0.8}l
0.7
5
&
¢ 0.6
> LOADED NEAT FILLED HOLE
r o.sp
& P
S Op= BEARING STRESS = -
[N
[T
0.4 -
0.3
0.2
o}
0.0 1 1 1 1 Y Y I |
0 1.0 2.0 3.0 1.0 5.0 7 AT 0.0

FIG. 10—Nondimensionalized stress intensity factors for two cracks originating from a
loaded neat filled hole.
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0 .. [28]. Hence, shear stresses are ignored and sliding mode SIF’s K; are
not derived for cracks originating at loaded neat filled holes.

SIF’s for Through Cracks—SIF’s for two through cracks, each of
length L, originating at a loaded neat filled hole in a plate can now be
derived from Eqs 1 and 17 (Eq 174 represented in terms of X instead of x).
Integration in Eq 1 can be carried out in the closed form or numericaily
using a procedure similar to that described before or in Ref I8 for the
double integration. A closed form expression for SIF K| is given by the
following equation.

2
K, = op7L [Ao + (AR + AR, + AGR“IS):, (18)

where Aq, A,, Ay, and Ag are given by Eq 17¢, R4, and R%, are given by
Egs 6 and 7, and RS/, is given by Eq 19.

1 5 4
RSIS = W [—f + 9R 15 — 4R ]4] (19“)
1
Rl = g [—g + TR, - 3R3I3] L g1 (19b)
1 [-ea-ey 2+g
Rl = 50— ¢y [ - 1-g RI‘L (%)

where, as mentioned before, ¢ = L/R and RI, is given by Eq 7.

The SIF, K, for two through cracks, each of length L, originating at a
neat filled hole loaded by a force P, is represented by the following
equation.

where o, the bearing stress, is defined by Eq 17b, and Fp, (L/R) is the
nondimensional factor which is given as a function of the ratio of crack
length to hole radius, L/R, in Fig. 10.

The SIF, K, for one through crack of length L originating at a neat
filled hole loaded by a force P is given by the following equation.

K = oyl Fp(L/R) 21

where o, is the bearing stress and Fp(L/R) is a nondimensional factor
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which is given as a function of the ratio of crack length to hole radius, L/R,
in Fig. 11. Fp(L/R) is obtained from F,,(L/R) and Eq 2.

SIF’s for Semi-Elliptical Cracks—The SIF, K;,, for two semi-circular
cracks of radius a or ¢, originating at a neat filled hole of radius R and
loaded by a force P in a thick plate (Fig. 6) is derived from Eq 12 where

R 2
$.0) = 0 X.Y.0) = A, + A —)
prd,0) = 04X, Y.0) = Ay + A, (R+ cosd

R 4 R 8
+A (—) + 4 <—>
“\R + |r cose| *\R + |rcosg| (22)
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FIG. 11—Nondimensional stress intensity factors for one through crack originating from
a loaded neat filled hole.
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Equation 22 is the same as Eq 17a represented in a form suitable for the
Green’s function for the SIF of a penny-shaped crack. Constants A, A,,
A, and A4 are given by Eq 17c. R, r, and ¢ are defined previously.
Utilizing the quadrature technique outlined previously, SIF’s Ky, are
evaluated from Eqs 12 and 22 for various values of angles ¢ from 0 to 7r/2
radians and for various ratios of a/R (or ¢/R). The resultant SIF, K}, at
any point on the crack periphery, defined by angle 8 measured from the
Y-axis as shown in Fig. 6, is normalized with respect to the SIF K, for a
penny-shaped crack of radius a (or ¢) in an infinite solid subjected to
uniform uniaxial tension o,. o, is the bearing stress defined by Eq 17b.
The nondimensionalized SIF, Fp.(c/R,B), is defined as follows.

FPe(C/R’B) = KIh/KIeb (2361)
where
1/2 a2 1/4
K, = op(ma/Q) <coszﬁ + = sin2[3> ifa/c = 1.0 (23b)
1/2 C2 1/4
Ky = oyl(me/Q) sin?3 + o3 cos?B ifalc > 1 (23c)

Ko is given for a general case of an elliptical crack of diameters of
lengths 2a and 2c¢ instead of a penny-shaped crack. For the penny shaped
crack, a = cin Eq 23. The parametric angle 8 and the shape parameter Q
are defined before by Egs 10 and 16, respectively. Fp.(c/R,8) is plotted
against angle 8 for various values of ¢/R varying from 0 to 10.0 in Fig. 12.

Nondimensionalized SIF’s, Fp., for two semi-elliptical cracks at a
loaded filled hole, obtained using the method outlined in the Appendix, do
not vary at 8 = 0 deg more than 3 percent for any given value of ¢/R and
for a/c ratios from 0.1 to 1.0. However, as 8 increases, Fp, estimated for
a/c = 0.1 differs significantly from Fp, estimated for a/c = 1.0. At
B = 45 deg, Fp, estimated for a/c = 0.1 is as much as 10 percent lower
than Fp, estimated for a/c = 1.0 for the same value of ¢/R. At 8 = 90
deg, F p, estimated for a/c = 0.1 is as much as 30 percent lower than Fp,
at a/c = 1.0. For any given value of 8 and ¢/R, the estimated Fp, for
a/c = 0.4 does not differ more than 10 percent from the estimated Fp, at
a/c = 1.0. Thus, Fp,in Eq 23 may be assumed constant for all values of
a/c ratios for 8 = 45 deg, and for a/c = 0.4 for 8 = 45 deg. If Fp, is truly
independent of a/c, then when the problem is reduced to a two-
dimensional through crack problem, by letting a/c — ©, Fp, at 8 = 90
deg given in Fig. 12 should agree with Fp, given by Fig. 10 for all ¢/R
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Foel/ReB) =Ky /Ky i
z 2 2
</R =0.00 | Kb _ob\/-)g_u [ cos’B +%§ sinﬁ] o/c= 1,0

= 2 P
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FIG. 12—Nondimensionalized stress intensity factors for two semi-elliptical cracks
originating from a loaded neat filled hole in a thick plate.

(same as L/R in Fig. 10) values. Fp, for a/c = « at ¢/R = 0 completely
agrees with Fp, at L/R = 0, and Fp.at ¢/R = 10 is 14 percent lower than
Fpsat L/R = 10. For values of ¢/R less than 10, F . is less than 14 percent
lower than F p, for the same values of L/R. Thus, it is possible that for very
high values of a/c (a/c > 1), SIF’s for two semi-elliptical cracks at a
loaded neat filled hold may be underestimated as much as 14 percent for
large values of ¢/R with the use of Eqs 23. Error estimates for a/c < 1

were just discussed.
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Cracks from a Loaded Neat Filled Hole in a Plate Subjected to Tensile
Loading

The term—a loaded neat filled hole in a plate subjected to remote
tensile loading—is described schematically in Fig. 13a. Consider the case
of a plate containing a neat filled hole and subjected to a remote tensile
load Q (Fig. 13b) and the case of a plate containing a loaded neat filled
hole (Fig. 13¢). Since the contact area changes between the load cases
of Figs. 13a, b, and c, the exact stress distribution for the case of Fig. 13a
cannot be obtained just by linearly superposing the stress distributions for
load cases of Figs. 136 and c¢. To the author’s knowledge, no general
solution for the stress distribution is available for the loading case of
Fig. 13a. Using finite element analysis, the problem of a loaded neat filled
hole in a plate subjected to remote tensile loading for a particular loading
relationship of O = 3P in Fig. 13a is solved in Ref 28. The insert is
assumed to be rigid and the plate width and the length are taken as ten
times the hole diameter. Knowing that the contact problem is nonlinear
and still applying the linear superposition principle to the problem of
Fig. 13a, the stress distribution for the load case of Fig. 13a is given by
the superposition of the stress distributions for loading cases of Figs. 136
and c. As shown in Ref /8, the stress o, at z = 0 obtained from the linear
superposition agrees within 3 percent with that from the finite element
solution for |x|/R > 1.1. For |x|/R = 1.0, the difference in stress o,
between the linear superposition solution and the finite element solution
is 15 percent. Hence, it can be assumed that the stress distribution o,
along the x-axis for the loading case of Fig. 13a can be well represented
by the superposition of o, along the x-axis for the loading cases shown in
Figs. 13b and c.

NEAT FILLED HOLE NEAT FILLED HOLE NEAT FILLED HOLE

Q P
(a) (b (0

FIG. 13—A loaded neat filled hole in a plate subjected to remote tensile loading.
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Since SIF’s for cracks lying along the x-axis depend only on the stress
o .. along the x-axis in an uncracked plate (infinite plate or solid), SIF’s,
Ky, for cracks emanating from a loaded neat filled hole in a plate
subjected to remote loading (Fig. 13a) can be obtained by linearly
superposing SIF’s for cracks at a neat filled hole in a plate subjected to
remote loading (Fig. 13b) and for cracks at a loaded neat filled hole
(Fig. 13¢). SIF’s for the latter two cases were discussed before.

Estimation of SIF’s for Quarter-Elliptical Cracks in a Plate

SIF’s for one or two quarter-elliptical cracks originating at fastener
holes (open, filled, loaded, or unloaded) in a finite thickness plate can be
estimated from the previously derived solutions for SIF’s for two semi-
elliptical cracks in a solid and the appropriate correction factors for the
stress free surfaces as indicated in Fig. 14. SIF’s, K,y4, for two quarter-
elliptical cracks at a fastener hole in a semi-infinite solid (Fig. 14b) can be
estimated by introducing a correction factor M z(a/c, B8) to account for the
stress free front surface.

Kion = Myla/c, ,B)Kxh 24

Fla/e, c/R, B ) Fls/c,c/R, 8 } Mgla/c,B)
(a) {b)
2R = — R |~
_L c L.—Tc
i B o e
Flalc, ok, B ME(a/c,8) Mglale, i, B ) Fla/e. o/R .B) Mp(ale, B ) Mglalc.ait, )

(c) . [ZR¥ mac/at
2R + 2 mac/at

(d)

FIG. 14—Nondimensionalized stress intensity factors for quarter elliptical cracks at
fastener holes.
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where Ky, is the SIF for two semi-elliptical cracks at a fastener hole in an
infinite solid (for the same conditions of fastener fit and loading).
Mg(a/c, B) values are only available at the point of maximum depth
(8 = 0 deg) for a semi-elliptical surface flaw in a uniform tension stress
field given by Eq 25 [36]. At 8 = 90 deg, the stress intensity solution for
part-circular cracks shows that values of M (a/c, 90 deg) vary from 1.1 to
1.23[37]. At B8 = 90 deg, M , may then be assumed as 1.23. For estimating
SIF K o4, My values may be assumed to be independent of 8 for 0
deg = B < 90 deg, and to be given by Eq 25.

Mga/c, B) = 1.0 + 0.12(1 — a/2c)? (25)

SIF’s, Kpp, for two quarter elliptical cracks at a fastener hole in a finite
thickness plate (Fig. 14c) can be estimated by introducing a second
correction factor Mg(a/c, a/t, B) to account for the effects of the stress
free back surface.

KI2P = MF(a/C’ B) X MB(a/C’ a/t’ B) X KIh (26)

Back surface correction factors M are presently available only for an
elliptical crack in a semi-infinite solid subjected to uniform tension
[38,39], and these factors can be used to estimate K ,,p in the foregoing
equation. M values for various a/c ratios from 0.1 to 1.0, a/t ratios from
0.0 to 0.9, and B values from 0 to 90 deg are given in Ref 38.

SIF’s, K1p, for one-quarter elliptical crack in a finite thickness plate
(Fig. 14d), can be estimated from K 5p for two-quarter elliptical cracks in a
finite plate by introducing a factor similar to that given by Eq 2. A quarter
elliptical crack having a depth a and length ¢ has an area equal to that of a
through crack of length mac/4t. Thus, the stress intensity factor for
one-quarter elliptical crack, K, can be approximated by the following
equation.

Kip =M ) x Myajc. ajt, B) x4 [ 2R mac/4t (27)‘
up = F(a/C9B gla/c, a/t, B 2R+27‘rac/4t Th

Discussion

For quarter elliptical flaws of small a/c ratios (a/c less than or around
1.0) originating at fastener holes, calculated SIF’s are maximum at the
edge of the hole (¢« = 8 = 0 deginFig. 14). Itis not expected that fracture
would initiate at the edge of the hole due to the release of constraint to
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crack tip deformation resulting from the stress free hole surface. Rather,
fracture is expected to initiate some distance away from the hole surface
after the crack tip deformations build up to a level equivalent to plane
strain conditions. Eighteen specimens of 4340 steel containing one or two
nearly quarter circular cracks originating at open holes or loaded filled
holes were loaded to fracture [40]. Solutions derived in this paper were
used to estimate SIF’s. Results of these fracture tests indicated that
fractures in these tests originated at a point about o = 25 deg (Fig. 14)
away from the hole surface. SIF’s derived in this paper were also used to
predict fracture strengths and crack propagation lives for over 100
specimens made from 4340 steel, 9Ni-4Co0-0.2C steel, 2219-T851
aluminum, and 6A1-4V (ELI) beta annealed titanium and containing
through or quarter elliptical cracks originating at open holes and at loaded
and unloaded filled holes [40]. Good agreement was obtained between
experimental and calculated results. Experimental results [40] also con-
firm the analysis results that SIF’s obtained for quarter elliptical cracks
originating from open holes in a plate subjected to remote tension
represent SIF’s for quarter elliptical cracks originating at a close tolerance
fastener filled hole in a plate subjected to the same loading.

Conclusions

1. A simple procedure is formulated to derive approximate SIF’s for
both part-through and through-the-thickness cracks originating at open
holes and holes containing either loaded or unloaded close tolerance fit
fasteneners. The procedure checks out with known solutions for SIF’s of
one or two through-the-thickness cracks emanating from an open hole in a
plate subjected to uniaxial or biaxial loading.

2. SIF’s for through cracks at loaded close tolerance fasteners in a
plate, and for semi-elliptical cracks at open holes and at loaded and
unloaded close tolerance fastener filled holes in a thick plate are then
derived with this procedure. SIF’s for part-through cracks are determined
as a function of position around crack periphery, crack aspect ratio, and
crack length to hole radius ratios.

3. SIF’s are estimated for quarter-elliptical cracks originating at open
holes and at loaded and unloaded close tolerance fastener filied holes in a
finite thickness plate.
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APPENDIX

Estimation of Stress Intensity Factors for Two Semi-Elliptical Cracks at a Hole in a
Solid

Consider a problem of two semi-elliptical cracks originating at a circular hole of
radius R in a solid subjected to uniform uniaxial tension o, as shown in Fig. 6. In
order to derive SIF’s for two semi-elliptical cracks at a hole, a solution for the SIF
for an elliptical crack in an infinite solid subjected to a pressure distribution
prescribed by Eq 4 is required. The most general solution available for the SIF of
a pressurized elliptical crack is limited to the pressure distribution in the form of a
third degree polynomial of X and Y defined by Eq 11 [/6]. The formulation and the
symmetry of the problem requires the use of only even power terms of X. Also,
the stress distribution near the hole along the X-axis given by Eq 4 is a function of
X only. Hence, the solution available for use here is limited to the pressure
distribution given by the following equation.

PX.Y) = Agp + AzX” (28)

It is not possible to fit exactly the stress distribution given by Eq 4 using Eq 28.
For through-the-thickness cracks, however, it was believed that as long as the
area under the fitted stress curve versus X, A, is approximately the same as the
area under the prescribed stress curve versus X, A, and the trend of the fitted
stress distribution is similar to the prescribed stress distribution, the SIF’s
calculated using the two different stress distributions would not differ greatly.
This assumption is examined using the problem of two symmetrical through
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FIG. 15—Stress intensity factors for two through-the-thickness symmetrical cracks
originating at a hole in a plate subjected to tension.
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cracks, each of length L, originating at an open hole of radius R. The stresses
prescribed by Eq 4 are least square fitted by Eq 28 for various values of L/R
individually. The areas under the curves of the fitted stress and prescribed stress
(Asand A,) compare remarkably well for all L/r ratios and values of A//A, range
from 1.01 to 1.09 as values of L/r range from 0.1 to 6.0. The SIF’s calculated using
fitted stresses are plotted as open circles in Fig. 15 and agree within one percent
with those computed from the prescribed stress of Eq 4 and using Eqs 3, 6, and 7.
The maximum discrepancy between the SIF’s computed from the fitted stress and
those from Bowie’s solution is less than 8 percent for 0.1 = L/R < «, In view of
the good agreement, fitted stresses are used to estimate the nondimensionalized
SIF’s for two semi-elliptical cracks at a hole in a solid, illustrated in Fig. 6, for
various a/c ratios.

Initial estimates of SIF’s for two semi-elliptical cracks at a hole in a thick plate
are made by solving the equivalent problem of an embedded elliptical crack in a
solid pressurized by the pressure distribution given by Eq 28. Similar to the
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through-the-thickness crack problem, the constants A,, and A,, in Eq 28 are
determined for every c/R ratio individually by least square fitting Eq 28 to Eq 4 for
X/R equal to zero to the particular value of ¢/R. From Ref /6, the SIF K, for the
elliptical crack is then given by Egs 17 and 21 of Ref /6. SIF’s K};,, as anticipated,
are dependent on the crack ratio a/c, crack length to hole radius ratio ¢/R, and the
location of the crack periphery as designated by the angle 8. The SIF Ky, at any
point on the crack periphery defined by angle 8 is normalized with respect to the
SIF K, for an elliptical crack of the same dimensions ¢ and ¢ in an infinite solid
subjected to the applied tension o. The nondimensionalized factor
Fola/c,c/R,B) and K, are already defined by Egs 15 and b or c¢. The
nondimensionalized factors Fe(a/c, ¢/R, B) for several a/c and three c/R values
are shown in Fig. 16. In calculating F,, o, is assumed to be zero in Eqs 15 and
16. As seen from Fig. 16, values of F,, are quite insensitive to the value of a/c for
any given value of ¢/R and 8. The maximum variation in F . occurs at 8 = 90 deg
and c¢/R = 1.0 where the variation between F, at a/c = 0.1 and at a/c = 1.0 is
less than 13 percent. For other ratios of ¢/R up to 10.0, the differences between F .
at any particular angle 8 for any two a/c ratios is approximately the same or less
percentagewise. In view of this result, it is concluded that Fy(a/c, ¢/R, B) can be
assumed to be independent of a/c for engineering estimates of SIF.

In summary, it is emphasized that the results of this appendix are only used to
show that the nondimensionalized SIF’s F.(a/c, ¢/R, B) derived for the pre-
scribed stresses with the Green’s function approach for a/¢ = 1.0 can be used to
estimate SIF’s for any a/c value.
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ABSTRACT: A technique consisting of a marriage between stress freezing photo-
elasticity and a numerical method was used to obtain stress intensity factors for
natural cracks emanating from the corner at which a hole intersects a plate surface.
Geometries studied were: crack depth to thickness ratios of approximately 0.2, 0.5,
and 0.75; crack depth to crack length ratios of approximately 1.0 to 2.0; and crack
length to hole radius ratios of about 0.5 to 2.0. All final crack geometries were
grown under monotonic loading, and growth was not self similar, with most of the
growth occurring through the thickness under remote extension. Stress intensity
factors were determined at the intersection of the flaw border (1) with the plate
surface (Kg) and (2) with the edge of the hole (K ). Results showed that for the
relatively shallow flaws K5 = 1.5 K, for the moderately deep flaws K, =~ K
and for the deep flaws K, = 0.5 K5, revealing a severe sensitivity of K to flaw
geometry. Results were compared with the Bowie theory, and approximate criteria
developed by Hall and Finger, and Hsu and Liu. These comparisons showed that
these theories significantly overestimated the SIF for moderately deep flaws
alt = 0.5 at both the plate surface and the hole, but, for shallow flaws, the
Hall-Finger theory underestimated the SIF at the hole, and the Bowie theory
underestimated the SIF at the surface for deep flaws.

KEY WORDS: crack propagation, stresses, residual stress, photoelasticity, stress

analysis, stress intensity, fracture properties
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Normal stress in direction of crack extension near crack
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A common cracked body problem in the aerospace industry consists of
a corner crack emanating from the intersection edge between a plate
surface and a hole. No analytical solution exists for this problem even as a
near field solution only. Yet the designer is forced to design against this
type of crack using very approximate methods [/].2 Apparently, the first
study undertaken of the problem was an experimental study by Hall and
Finger [2]. They inserted artificial flaws by an electrical discharge
machine (EDM) with depth/length less than unity and used fatigue loads
to initiate cracks after which residual static strength tests were run. In
evaluating their results, they assumed that a state of plane strain existed
near the point of intersection of the flaw border and the boundary, but in
their fracture criterion they had only one value for the stress intensity
factor (SIF) and did not account for the variation of the SIF and constraint
along the flaw border. As an alternate approach, they suggested modelling
the corner flaw with an ‘‘equivalent’’ Bowie type [3] through crack. The
latter approach was refined by Liu 4] for quarter circular cracks but still
required the selection of an arbitrary equivalent crack length for the
Bowie model. This approach has been recently expanded by Hsu and Liu
[51], and, while this latter analysis contains some two dimensional approx-
imations and takes no account of back surface effects, it constitutes the
most recent effort at quantifying the problem.

Because of the technological importance of the foregoing problem and
the approximate nature of existing analytical approaches necessitated by
the intractability of the mathematical model of the complete problem, one
is led to consider experimental techniques as an alternate approach.

2 The italic numbers in brackets refer to the list of references appended to this paper.
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Stress freezing photoelasticity is a well known technique for evaluating
three dimensional stress distributions in the vicinity of stress raisers. A
method for extracting the stress intensity factor from photoelastic data for
two dimensional problems was proposed by Irwin [6] in 1953, and the
method has been modified and refined substantially since that time.
Recent studies by Kobayashi and his associates [7-10] have applied the
method to dynamic photoelasticity, and the senior author and his as-
sociates [1/-21] have refined the method for three dimensional problems.

It was the purpose of the present study to determine stress intensity
factors at the end points of flaws emanating from the corner formed by the
intersection of a plate with a hole using stress freezing photoelasticity and
to compare the results with the studies just noted. The authors used a
numerical technique known as the Taylor Series Correction Method
(TSCM) [20] in order to extract the SIF values from the photoelastic data.
Before describing the experiments, a brief review of the analytical
background appears to be desirable.

Analytical Considerations

Consider the Irwin two parameter near field equations for Mode 1
loading

K, 0 .6 . 36
Tpn = WCOS ? 1 - Slﬂ?SIHT — Oy

_ K 6 .6 . 36
Tyy = WCOS ? 1 + sin ?Slﬂ—z“ (1)

Ki .6 6 30
Tne = WSIH 7 Cos 7008—2‘

where the notation, adapted to the problem at hand, is pictured in Fig.
1. Here a,is the part of the regular stress field which is independent of r.
Although Eqs 1 were originally proposed for two dimensional problems,
the singular parts have been shown to be valid for stresses in planes
perpendicular to elliptically shaped crack borders [22] and are generally
applied to arbitrary shaped plane crack borders as well. By substituting
Egs 1 into Eq 2

1
Tmax — T [(0'nn - 0.22)2 + 471:22]”2 )
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and evaluating ryax along 8 = /2, one obtains

K12 KI(T() 0'02] 1z (3)

= —— t — + —
Tmax [ 877'_ 4(77’,) 1/2 4
which may be combined with the stress optic law

Nf
Tmax = _27 (4)

in order to obtain an expression of the form
K; = floo, Nis 1) (%)

from which K; may be evaluated from experimental data N;, r; along
6 = /2 (see Refs 16 and 17). The stresses are evaluated along 6 = /2
since the fringes spread out in approximately this direction and can be
most accurately discriminated along this line. An alternate form of Eq 3
may be written as

’

Tmax = ;le_ + B, + Bl’r”z 6)

where

K
A = \/TI7 and B,' = B,'(A", By )

When one accumulates photoelastic data along 6 = /2, if the
foregoing theory is to hold, the stresses in the data zone must be
dominated by the singular stresses as given in Eqs 1. Experience with
three dimensional problems has revealed that the singular zone is often
severely constricted, and a part of the data may lie outside that zone. In
order to account for this effect adequately, the authors have used a Tay-
lor series expansion of the regular part of the maximum in plane shearing
stress in the form

A m
Tmax = FE + Z Br"? )
n=20

where A = K,/\/ 8 as before.
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If we ignore the dependence between the coefficients A', B,y', B,' in Eq
6 we see that Eq 7 reduces to Eq 6 for a two degree of freedom system of
equations to within truncation error. Moreover, Eq 7 corresponds to an
application of the Williams stress function along 6 = #/2 for two dimen-
sional problems.

In order to apply Eq 7, one determines the coefficients A, B, from a
least squares analysis of the experimental data using a truncated form of
Eq 7. Normally the lowest order curve which best fits the experimental
data is used. Details are described in Refs 17 and 21.

Experiments
Models

A series of stress freezing photoelastic experiments were designed for
the purpose of obtaining estimates of the SIF near points S and H along
the flaw border (Fig. 1) The specimens were made from PLM-4B, a stress
freezing material manufactured by Photolastic, Inc., Malvern, Pa. and
Hysol 4290 made by Hysol Corp., Olean, N. Y. using the following
precedure:

1. Mill 0.762 mm from both surfaces of the plates.

2. Drill and ream holes.

3. Mount a razor blade in a special jig and tap in a quarter circular
crack,

4. Mount test specimen in a stress freezing oven in a dead loading rig
(Fig. 2) and heat to critical temperature.

L

FIG. 1—Problem geometry and stress notation.
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FIG. 2—Test setup.

5. Load with enough load to slowly extend flaw to its desired depth.
Remove the load.

Test geometries studied are found in the upper part of Table 1. It was
intended originally to attempt to duplicate the geometries of the Hall and
Finger tests. However, since natural cracks were used, only one crack
dimension could be controlled, and the other dimension grew to its
“‘natural’’ companion value. This led to flaws for which a/c > 1.0 and self
similar flaw extension did not occur. Instead, most of the growth occurred
in the depth direction. In one test, (Test 9) a crack with a/c < 1.0 was
produced by flexing the plate to enlarge the ¢ dimension.

Test Procedure

After crack growth was completed, live loads below the threshold value
to cause crack growth were applied above the critical temperature, and
specimens were cooled under load, thus freezing in the fringes and
deformations. Slices were then taken (a) parallel to the plate surface for
use in determining the SIF at point S and (b) tangent to the hole for
determining the SIF at point H. The latter slice was sanded on the hole
surface to constant thickness. Slice locations are shown in Fig. 3. These
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FIG. 3—Stice locations.

slices were placed in a tank of liquid of the same index of refraction as the
model material and fringe patterns were obtained using partial mirror
fringe multiplication and also by the Tardy method. A typical fringe
pattern for the hole H is shown in Fig. 4. Slices were 0.51 to 1.78 mm
thick.

The analytical status of the state of affairs at points where flaw borders
intersect free boundaries is currently somewhat unsettled [22-24]. In the
present study, since the slice thicknesses analyzed were at least two
orders of magnitude thicker than the crack root radius, the SIF values
obtained should be viewed only as average engineering estimates near the
free surfaces and do not reflect boundary layer effects.

Results

A typical set of data for regions S and H are shown in Fig. 5 together
with the TSCM curves generated from the data. These curves may be
regarded as typical of all of the tests analyzed. That is, for all tests, the
surface slices revealed linear data which indicates a two degree of
freedom system of equations while the slices along the hole revealed
nonlinear data. For these cases, however, the Tardy method revealed that
these data were also linear over a portion of the data zone nearer to the
crack tip. Thus, instead of using a higher order curve to fit all of the data,
the authors elected to use a two degree of freedom system on that portion
of the data in the linear range as shown for the H curve in Fig. 5. The
authors interpret the linear part of the curve to represent the singular zone
and believe that extrapolation of the linear curve results in much less error
than would be the case for a higher order curve. In order to verify this
technique, a test was run where the corner crack was allowed to grow
through the thickness of the plate so as to form a Bowie type crack on one
side of the hole. The hole radius was 4.83 mm and the crack length was
29.21 mm. The resulting K, was 2 percent higher than the result
predicted by the Bowie analysis. The authors estimate, however, that
experimental results generally can vary by 5 percent.

It is well to note that, in applying this technique to problems in which
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(a) unmultiplied

(b) 5th multiple

FIG. 4—Typical fringe patterns at H (a) unmultiplied and (b) fifth multiple (approximately
XI5).
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the uncracked body geometry produces strong stress gradients, care must
be exercised to keep both the distance of data points from the crack tip (r)
and the usable data range Ar small in comparison to the gross body
geometrical dimensions.

Even after Tardy analysis, the slopes of the curves of normalized K 4,
versus (r/a)'? or (r/c)'/? were, in some cases, sufficiently large to cause the
authors some concern as to the accuracy of the K 5, values. In general,
the authors estimate that the values of K, identified as Experimental
Values in Table 1, are accurate to within 5 percent but values of K ;. are,
on the average, probably not better than about 15 percent. Thus, the
authors feel that the results for K 5, should be interpreted as trends rather
than as exact values. In this context, the experimental results tabulated in
Table 1 may be summarized as follows:

a/t = 0.2

alc=1.0to 1.5
For {c/r=0.5 Kupr = 1.5 Kgg
27/t = 0.5 t0 0.9

a/t = 0.5
alc =1.0to 1.5
For { ¢/f =0.5t02.0 }Kyp, = Kgg, (except Test 5)

2flt = 0.5t00.9

a/t = 0.75
alc = 2.0

For { c/i=081t01.6 }Kyg, = 0.5 Kegs
2/t = 0.5t0 0.9

Moreover, except for the shallow flaws, for a/c > 1, K¢z, > Kpyg,. These
results show that Kz, drops off and K iz, increases as the cracks grow
deeper. This growth trend is believed to be due to a variation in constraint
distribution and load. For the parametric ranges included in this study,
a/lt seems to be the dominant parameter but a/c is also seen to be
important, especially for the larger values (that is, a/c — 2.0). For this
reason, the tests are grouped according to a/t values, and within each
group are ordered according to increasing values of a/c.

Analytical Comparisons

In the middle of Table 1, values of the SIF are estimated for each case
tested using the theories of Hall and Finger, Bowie, and Hsu and Liu (see
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Appendix). These results are summarized in abbreviated normalized form
in the Subtable at the bottom of Table 1 for purposes of comparison.

In Group II (@a/t = 0.5, a/c = 0.9 to 1.5) all of the theories substan-
tially overestimate the SIF both at the surface and at the hole. Although
the overestimates range from 10 to 220 percent, they seem to average
about 30 percent above the experimental result. These same trends are
observed in Group I (a/t = 0.2, a/lc = 1 to 1.5) at the surface and in
Group III (a/t = 0.75, a/c = 2.0) at the hole. However, for Group I at
the hole, the Hall-Finger solution underestimates the SIF by about 20
percent.

As noted earlier, there are many reasons why agreement should not be
expected between the several theories and experiments. The Bowie
solution is two dimensional and applies to a very different geometry than
the cases studied here which are found to be highly geometry dependent.
The Hall-Finger approach assumes that fracture initiates near the hole
boundary under a state of plane strain constraint and obtains empirical
functions from experimental data only for cases where a/c < 1.0. The
Hsu-Liu theory provides a highly empirical modification of the Bowie
solution for obtaining the SIF both at the surface and at the hole and
neglects the back surface of the plate altogether. As noted earlier, the
effect of increasing a/t was to decrease K, and to increase K The
decrease of K with increase in a/t was also observed by Hall and Finger
as an ‘‘unexpected result.”” The authors conjecture that this result may be
due to the fact that, when the crack is deep, a substantial part of the load
is transferred to the side of the hole opposite the crack due to the
greater stiffness of this part of the plate. The remaining ligament between
the crack and the back surface of the plate thus carries a reduced load,
and this effect is in evidence in the results shown here. Values of a/c are
low enough in Tests 1, 3, and 4 that some correlation might be expected
with the Hall-Finger criterion. However, differences between that crite-
rion and experimental results run as high as =20 percent, indicating that
substantial three dimensional effects may be averaged out in the Hall-
Finger approach.

Problem Characterization and Conclusions

It is clear from the results of the Subtable under Table 1 that none of the
theories studied here are (in their published form) suitable for dealing with
deep flaws where a/c => 1.0. It is also clear that this problem is highly
three dimensional and strongly geometry dependent. In order to assist the
designer in converting these results into an interim design philosophy until
further studies can be carried out, the following suggestions are made.

In Ref 7, the crack growth occurring in this type of problem through the
thickness is estimated from the SIF for a quarter circular flaw emanating
from the corner of a quarter infinite plate. It is clear from the value of
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Kyp/&a'? from the tests in Group I that such a solution should be
corrected to account for the stress raiser effect due to the hole and that
this correction should be of the order of 2.0 to 2.5. Although difficult to
justify on purely analytical grounds, the correction obtained from the
Bowie solution as ¢ — 0 by Hsu and Liu appears to be somewhat conserva-
tive but not unsuitable here. For Groups II and III, failure to correct
for the presence of the hole is apparently more than offset by the load
transfer mechanism mentioned earlier. A 20 percent or so decrease in
the value of C in the Hall-Finger criterion would yield fairly accurate K,
estimates for K.

Once the crack has grown through the plate thickness, it forms a Bowie
crack for which K (or K ) is predicted accurately by the Bowie theory. In
fact, the use of the Bowie theory to predict K¢ before the crack breaks
through to the far side of the plate could be used (if K is decreased by
about 40 percent) for Groups I and 11 (except Test 5). For Group 111 (and
also Test 5), the Hsu-Liu correction would again be necessary.

The problem studied here is a complex, three dimensional problem, and
the present study can only be expected to identify trends and point the
way for future research. The trends and conclusions from the present
study may be summarized as follows:

1. Extension of a crack emanating from a corner of intersection of a
hole with a plate under monotonically increasing load is not self-similar.
(In this work, most of the growth was through the thickness?®). As the
flaw depth increases K decreases and K g increases.

2. Existing theories and design criteria significantly overestimate the
SIF at both the hole and the surface except for shallow flaws at the hole
and deep flaws at the surface.

3. As an interim design criterion for Kg, the Bowie theory with a
coefficient of about six tenths yields results to within 10 percent for
Groups I and II, (except Test 5) and, for Group 111, a coefficient of unity is
recommended. For K4 estimates, a Hall-Finger approach with adjusted
coefficients and relationships is suggested.

The authors have extended the current study to other crack geometries
{251 and are currently studying fastener effects.
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APPENDIX

Related Theoretical Solutions

Two approximate theories have been proposed for the problem described in the
foregoing, and the two dimensional theory of Bowie was also used. These theories
will be briefly described here and their limitations noted.

1. The Bowie Solution |3]

Bowie utilized conformal mapping in order to obtain a solution to the two
dimensional problem of a through crack emanating from a hole under remote
extension. The mapping function was constructed by considering separately the
transformation between two upper half planes which carries the real axis of one
into the real axis interrupted by branch cuts of finite length of the other, and the
transformation which maps each of these half planes into circles and their
exteriors. The mapping function used was the product transformation, and it was
approximated by a polynomial. The resulting SIF for a single crack normal to a
field of remote uniaxial tension may be expressed as

L
K, = oVl F<F> @

where

emote tension normal to the crack,
crack length,
hole radius, and

-

L
F (=> = numerically evaluated.

II. Hall and Finger |2|

These investigators prepared a series of test specimens in accordance with
Table 2. Notches were inserted using an EDM, and specimens were fatigued to
start the cracks. Residual static strength tests were then conducted. Hall and
Finger then postulated that catastrophic fracture would originate near the inter-
section of the flaw border with the hole and that this region would be under a
plane strain type of constraint. On the basis they proposed, as a fracture criterion

Va fla.cFt) = K &)

Then, on the basis of parametric crossplots they refined Eq 9 into the form

CoNa F (2‘7) x G (j—) x H <;> = Ky (10)
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TABLE 2—Test program for flaws originating at holes {2].

Number of Tests for a/c =

2F a
Material T T 0.25 0.50 1.00
2219-T87 1.0 0.2 2 2 2
Aluminum
0.5 2 2 2
0.8 2 2 2
0.5 0.2 2 2 2
0.5 2 2 2
0.8 2 2 2
1.0 0.2 2 2 2
0.5 2 2 2
0.8 2 2 2
Ti-5A1-2.5Sn 0.5 0.2 2 2 2
0.5 2 2 2
0.8 2 2 2

NOTE~—Test temperature -320°F.

where C = 1.1, H (t/r) = 2Vrlt, and F and G were obtained graphically from the
test data. They obtained agreement with test data to within 10 percent. Two points
however, should be noted:

I. Since C, F, G, and H were obtained from the test data, Eq 10 is limited
necessarily to the range of test data which includes no a/c¢ > 1.0.

2. While the assumption that plane strain constraint exists near the point where
the flaw intersects the boundary is certainly the safe, logical assumption to make
for a design criterion, and seems to yield reasonable results in their work, the
complex variation in K and the constraint along the flaw boundary is masked by
this assumption so that one would not be surprised to see deviations from this
criterion for other geometries. Nevertheless, this study should be useful in
establishing trends due to variations in test geometry.

N11. Hsu and Liu |5)

These investigators modified the elliptic flaw solution to the form

N 7h x B x M/’
K = R (an

M, = M, {(b/b)?sin?B + cos?B}!"* where M, is a front surface correction factor
and B is measured from the minor axis to a point on the flaw border.

w2 b12 — b2 1/2
N



MCGOWAN AND SMITH ON DEEP CRACKS 475

where
B = factor which corrects crack solution for the presence of the hole; it con-
sists of F(L/F) in 1,
b, = semi-major axis of ellipse, and
b = semi-minor axis of ellipse.

Unfortunately, no attempt was made to account for the influence of the back
surface of the plate upon the stress intensity factors. Moreover, the analytical
basis for the B factor is two dimensional, and its variation along the flaw border is
quite arbitrary and empirical.

In addition to the foregoing theories, a theory has been proposed by R. C. Shah
and is presented elsewhere in this volume. A comprehensive evaluation of this
theory against experiments is found in Ref 25.
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ABSTRACT: The alternating method for elliptical crack analysis, which is based on
the combined use of a pressurized crack solution and a free surface solution, has
been limited in its application due to convergence difficulties in the iteration
process. By prescribing appropriate fictitious pressure on the elliptical crack
surface, which protrudes into the free space, numerical convergence of the
iteration was improved. As a result, the pressurized crack solution involving a
third-order polynomial pressure distribution with limited use was extended to
part-elliptical problems. The improved alternating procedure is then used to
determine stress intensity factors in corner flaws with aspect ratios of a/b = 0.98,
0.4, and 0.2 and subjected to uniform or linearly varying pressure distributions.
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Published examples of actual failed parts [/]*> show that failure often
originates from surface flaws which are located in regions of high-stress
concentrations which can be modeled by part-elliptical or part-circular
cracks. Thus following the original paper by Irwin [2], substantial efforts
have been mounted in the past to estimate the stress intensity factor of
semi-elliptical cracks [3-7].

A step change in available analytical procedures for surface flaw
problems was made in 1965 by Smith [8] who used the alternating
technique in three-dimensional elasticity to determine the stress intensity
factor of a semi-circular crack in a semi-infinite solid. This procedure was
effectively used by Smith and his colleagues who then solved various
embedded and surface flaw problems involving circular or part-circular
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cracks {9-11]. Recently Hartranft and Sih introduced an improvement in
this procedure by analyzing in detail the state of stress singularity in the
region where the circular crack front penetrates the free surface [12].

Shah, on the other hand, considered the stress intensity factor of an
elliptical crack which in some instances approximates better the geome-
tries of actual cracks. A potential function of Segedin was used to
represent a polynomial distribution of pressure on the elliptical crack
surface and a series of problems involving embedded elliptical cracks
were solved [/3-17]. Mathematical complexity limited this polynomial
distribution of pressure to third order terms which cannot readily repre-
sent the rapidly varying residual surface tractions on the elliptical crack
surface in the alternating method of three-dimensional crack analysis. As
a result, the surface problem was not analyzed directly in any of these
problems. The stress intensity factor at the deepest penetration of a
semi-elliptical crack, however, was approximated (/6] by a product of
Shah’s back surface magnification factor {/4] with Kobayashi’s empiric-
al front surface magnification factor |4]. Kobayashi recently found a
procedure [/8) with which the residual surface traction in the iteration
process could be reduced significantly and thus extended the usefulness
of the alternating technique which is based on the elliptical crack solution
with a third-order polynomial of pressure distribution on the crack
surface.

In addition to the semi-elliptical surface flaws just discussed, the
problem of quarter-elliptical cracks has been of considerable interest to
practitioners of fracture mechanics [/]. The first paper on this subject
from the fracture mechanics viewpoint was presented in 1969 [/9], and the
increased interest since that time is evidenced by the two papers on
corner flaws presented in this session [20,21].

In the following, a procedure which greatly accelerates the numerical
convergence of the iteration procedure in the alternating method will be
discussed. The procedure will then be used to determine the stress
intensity factor in a corner flaw in a quarter-infinite solid.

Method of Approach

The iterative procedure in the alternating technique for solving three-
dimensional problems in fracture mechanics has been well documented in
the papers by Smith and Shah and will not be repeated here. The
necessary elasticity solution for the totally embedded elliptical crack,
originally suggested by Segedin [22], and the half-space solution by Love
[23,24], have also been repeatedly described in these papers. Thus, only
the mathematical relations necessary for explaining the new procedure
will be listed in the following.
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X

FIG. 1—Quarter elliptical crack in a quarter-infinite solid.

Elliptical Crack in an Infinite Solid

Consider an infinite elastic solid containing an elliptical crack which is
located in the plane z = 0 and is opened by applying an internal pressure
p(x,y) symmetrically to both surfaces of the crack. The boundary condi-
tions for this problem are 2 (see Fig. 1)

X2y
Oz = _p(x,y) (’a’{ + ﬁ <l,z= 0> (ia)
X2 y?
w=290 <a—2+b—2>1,2=0 (1b)
Tae = Typ = 0 (z=0) (Ic)
Opz = Oyy = Oz = Tgy = Ty» = T,y = 0 at infinity (1d)

3 This problem is illustrated by quarter-infinite solid problem shown in Fig. 1.
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For vanishing shear stresses on z = 0 plane and in the absence of body
forces, Navier’s equations of equilibrium are satisfied by the harmonic
function ®. Displacement perpendicular to the crack plane in terms of ® is

od
w =z — 20 -m) o~ @

9z2

where 7 is the Poisson’s ratio. Stress components necessary for solving
the elliptical crack problem are given by

_ 26 R ) + R 5 b 3
Ter TS Faxter T ax T gy Ga)
=2G [, o + o + 2 o% (3b
Tw = _z ay2az ay? T ox? )
Py RRO) RO 3
Tz = Z 923 922 ( C)
=2G o + (1 - 2n) 0% 3
Tav = z 0x0yoz K 0x0y (3d)
= 2G o 3
ez = Y 2 ot (3e)
REO)
Ty = 2G z a—sz? (3H

where G is the shear modulus.

From Egs 1, 2, and 3, the boundary conditions in the crack plane are
given by

PP p(x.y)

4
9z? 2G (4a)
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on the elliptical crack surface, and

od B
0z

0 (4b)

on the z = 0 plane outside the elliptical crack surface.

Since neither x nor y plane symmetry exists in the problem of a
quarter-elliptical crack in a quarter space, all ten terms of the polynomial
pressure distribution [/3], p(x,y), must be used and thus

3

pery) =2 Ay’ ©)

iLi=0
where i + j = 3.

Generally, the ten-term polynomial pressure distribution in Eq 5 cannot
adequately fit a rapidly varying crack pressure distribution on the crack
surface. Nevertheless, in order to best fit the pressure distribution to the
residual crack surface tractions generated through the alternating
technique described in the previous section, a least square method is used
to determine the coefficients of A ;;in Eq 5. The large residues between the
actual pressure and the fitted pressure distributions in 3-D crack problems
involving part-elliptical crack were thus responsible for bad numerical
convergence of the alternating technique.

The harmonic function related to the pressure distribution of Eq 5 was
derived from Segedin potential function [22] and is represented as

3
D(x.y.z) = ) Dy (6a)
=0
where i +j =3
3 'ai+i = [aw(s)]k+itt
= C. _ d 6b
®0=Co 2 ey ﬁ Vo) 7 €

O(s) = [s(a@® + s) (b* + 5)] (6¢)
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where \ is part of an elliptical coordinate system A, u, and » which are the
roots of the following cubic equation

—1 x2 y2 22 7
wls) = a*+s bi+s s (7a)
and

o>\AN=0z=pu=—-bizyp=— g2 (7b)

In the plane z = 0, the interior region of the elliptical crack is then
represented by A = 0 and the exterior region is given by u = 0.

The harmonic function @ contains ten undetermined coefficients, C;,
corresponding to each term, of x%’. By substituting Eq 6 into Eq 4a and
using Eq 5, the undetermined coefficients, C;, can be linearly related to
the known coefficients A ;; of pressure distribution. Details of this proce-
dure as well as the matrix equation which relates C;; to A ;; are described in
Ref 13.

The stress intensity factor, which can be obtained through a procedure
described by Irwin (25] or Kassir and Sih [26], is

: 8G m e .. fcos@\i fsin¢
k=3 Cug gy o asien (30) ()
Li=0

X [a® sin%@ + b*® cos?H]V* ®)

where 6 is the angle in the parametric equations of ellipse. Thus, once the
constants, C;;, are known, the stress intensity factor for a prescribed
pressure distribution of p(x,y) can be computed by the use of Eq 8.

The surface tractions acting on the free bounding planes, suchas x = 0
plane and y = 0 planes in Fig 1, can also be computed by the use of Eq 3.
Actual numerical computation of the six stress components, that is,
O'.z'.z'l.z' = 0 T.z'zl.z' =05 T.z'yl.z' =05 O'yyly = 05 Ty.rly = o, and Tyzly = ¢, Were ac-
complished by numerically differentiating the analytical expressions of
%P /ox2, 92D loxdy, 2 d/oy?, and 92P/az2 in order to obtain the third partial
derivatives of & with respect to x, y, and z. The purpose of
such numerical differentiation is to reduce or eliminate the lengthy
analytical derivations eventually as well as the complex computer
programming of the higher order derivatives involved in the el
liptical crack solution. Figure 2 shows a typical stress distribution
computed by finite difference technique to evaluate the third derivatives
of ®; from two second derivatives of ®;; spaced 0.001 a distance apart.
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FIG. 2—Stresses obtained by numerical differentiation on 'y = 0 plane of a nearly circu-
lar crack under uniform pressure.

Also shown by X marks are previously computed stresses [13, 14] which
agree with the numerical results within third significant figures. Attempts
were made to extend the numerical differentiation to second order finite
differences where the stresses would be computed from a®/ax, d/dy, and
a®/az. These numerically determined stresses agreed well with those from
Refs 13 and 14 for an elliptical crack with uniform pressure. Stresses for
elliptical cracks with nonuniform pressurization showed some deviations,
and thus further numerical experimentation is necessary before the finite
difference procedure can be extended to second order differentiation of
ad/ax, 8d/sy, and 9d/oz.

Surface Tractions on the Plane of a Half Space

The second step in the alternating technique is to eliminate the residual
surface traction on the bounding free surfaces computed by the finite
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difference procedure described in the previous section. Love’s solution
[23,24] for a half space with a uniform surface traction prescribed on a
rectangle in the bounding free surface is used by all investigators for this
computation. The total number of necessary rectangles for adequately
erasing the residual surface tractions has been a subject of discussion in
the past [/2,18,27] and will thus not be repeated here.The criterion for
maximum rectangle size set forth in Ref /8 was used to determine sizes of
the rectangles on the two free bounding surfaces of a quarter-infinite
space for quarter-elliptical cracks.

Briefly the foregoing criterion is based on the differences in resultant
stresses in a half space due to: (1) a linearly varying normal or tangential
stress distribution over the rectangle on the bounding plane; and (2) a
uniform normal or tangential stress distribution, which is in equilibrium
with the linearly varying stress distribution, over the rectangle.The
maximum ratio in the two stresses generated by these two prescribed
normal or tangential stresses is two at the point of load of application and
diminishes rapidly at points short distances away from the regions of load
application. These and other comparisons of the above two 2-D solutions
indicated that the size of the rectangles in the half-space solution can be as
large as its closest distance to the crack plane or to the other bounding
surface for the case of a finite thickness solid. The numbers of necessary
rectangles on the bounding free surfaces were then reduced systemati-
cally following this criterion.

Figure 3 shows a typical rectangular mesh on the two free bounding
surfaces of a quarter-elliptical crack with an aspect ratio of b/a = 0.4.
The number of rectangles in the y = 0 plane has been reduced to 63 from
the original 540 used by Smith in 1969 [8]. The numbers of rectangles in
the x = 0 plane are 63, 35, and 31 for crack aspect ratios of 0.98, 0.4, and
0.2, respectively.

Fictitious Pressure Distribution on an Elliptical Crack

As mentioned previously, the serious drawback in the elliptical crack
solution lies in the third order polynomial in Eq 5 which cannot accurately
match the rapidly varying residual tractions on the quarter-elliptical crack
surface as well as in the uncertainty in continuing the pressure distribution
in the other three quarters of the elliptical crack. A procedure of
prescribing a pressure distribution on the fictitious elliptical crack surface
which protrudes out of the bounded solid [/8] led to a numerical
experimentation to force the convergence of the alternating technique by
a conveniently prescribed fictitious pressure distribution.

First, the two-dimensional edge crack problem as shown in Fig. 4 was
considered as a counterpart of three-dimensional quarter-elliptical crack
problem, and the four following distributions were studied
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The fictitious pressure in a totally embedded crack necessary to yield the
correct edge-crack stress intensity factor was determined by the proce-
dure described in Ref 18, and these results are summarized in Fig. 4.

In extending the above findings to a pressure distribution which varies
with both x and y, in a quarter-elliptical crack shown in Fig. 5, the cross
product terms of x and y in Eq 6 were discarded temporarily, and the
remaining seven terms were used to determine the following fictitious
pressure at discrete locations on the second and fourth quadrants of the
elliptical crack surface. Fictitious pressure on the second quadrant of the
elliptical crack in Fig. 5 for each y = constant line was represented as

X
plx,y) = Ago + Ajpx + Aspx® + Agpx® = o [Boo + By (1 - a—'>

+ Bao (l —ai> + B (1 - Z’)] (10)

where a’ is the half cord length at y = constant.
y
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FIG. 5—Prescribed pressure distribution on elliptical crack.
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Fictitious pressure on the fourth quadrant of the elliptical crack for each
x = constant line was represented as

y
P(x,y) = Agp + Apy + Apy? + Aew® = o [Boo + By, (1 - ;,‘>

+B(,2<1—1%> +B03<1— Z—)] (11

where b’ is the half cord length at x = constant.

Equations 10 and 11 were then used to solve for B;; corresponding to the
given x = constant or y = constant lines. Since each B;; from Fig. 4, re-
lates to a linearly varying fictitious pressure distribution, a linear super-
position of these pressures yields the resultant fictitious pressure for each
x = constant or y = constant line. By mapping the quarter-elliptical
crack surface by such regularly spaced x = constant or y = constant
lines, a fictitious pressure distribution throughout the second and fourth
quadrants of the elliptical crack surface which protrudes into empty space
can be established. The general polynomial expression of pressure
represented by Eq 5 is then fitted to the residual pressures on the first
quadrant as well as the fictitious pressures on the second and fourth
quadrant of the elliptical crack to complete the first step of an iteration
process in the alternating method.

The preceding procedure was not adhered to completely in prescribing
the fictitious pressure in the first iteration process for a quarter-crack
subjected to uniform pressure. Because of the steep gradients of the
fictitious pressure distribution in regions where the crack front intersects
the two free bounding planes, these regions were ignored in least square
fitting Eq 5 to the prescribed and fictitious pressure distributions.

Quarter-Elliptical Crack Within a Quarter-Infinite Solid

Uniform Pressure on Crack Surface

When the fictitious pressure shown in Fig. 5 for the first cycle of
alternating method was used, the maximum residual surface traction on
the quarter-elliptical crack at the end of the first iteration cycle, excluding
the region where the crack front intersects the free surface, was less than
0.2¢. This residual stress is less than one third of the maximum residual
traction of an elliptical crack with prescribed constant pressure on all four
quadrants of the crack surface {/8]. The procedure of prescribing appro-
priate fictitious pressure distribution had thus accelerated the conver-
gence of the iteration process in the alternating method.

Since the two bounding free surfaces interact with each other in this
corner crack problem, running summations of the residual surface trac-
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tions on each of the three surfaces, that is, the quarter-elliptical crack
surface and the two free bounding surfaces, due to removal of residual
surface tractions from any other two surfaces were maintained at all
times. The current values of residual surface tractions were used at all
times in the erasure process. The rectangle mesh spacing described
previously together with 32 to 40 almost evenly spaced points on the
embedded quarter-elliptical crack surface for least square fitting of p(x,y)
were used in each iteration of the alternating technique. Three cycles of
such iterations required central processing unit (CPU) time of 650, 703,
and 783 s on the CDC 6400 computer for crack aspect ratios of
b/a = 0.98, 0.4, and 0.2, respectively. The residual tractions on the crack
surface after these three iterations are shown in Fig. 6. The average
residual surface tractions on the elliptical surface, with the exception of
regions in the vicinity where the crack front intersected with the two free
surfaces, decreased to less than 0.575, 0.893, and 0.45 percent of the
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FIG. 6—Total residual traction, o, on elliptical flaw surface after three iterations.
Corner flaw in a quarter infinite solid under uniform pressure, o, = 1.
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original uniform pressure for crack aspect ratios of 0.98, 0.4, and 0.2,
respectively.

The isolated high local residual tractions, which are as high as 0.4 in the
region where the crack front penetrates the free boundary surfaces as
shown in Fig. 6, were then reduced by using the known solution of a
penny-shaped crack subjected to equal and opposite concentrated
load [28]. Reference 21, which can also be found in this proceedings,
discusses sophisticated uses of this particular solution. The result of the
preceding incomplete erasure is a definite trend of the stress intensity
factor to decrease rapidly, as predicted by Hartranft and Sih [/2], when
the crack front approaches the free-bounding surface.

Similar erasure procedure was used in erasing the isolated high local
residual tractions on the crack surface toward the midportion of the two
free-bounding planes. As expected, these erasures contributed to less
than 0.002 to the normalized stress intensity factors, and thus the effects
of these residual tractions were ignored in subsequent computation.

The resultant normalized stress intensity factors for three elliptical
cracks with aspect ratios of 6/a = 0.98, 0.4, and 0.2 are shown in Fig. 7.
Also shown in Fig. 7 is the finite element results for b/a = 1.0 by
Tracey [29]. The significant deviations between finite element results for
b/a = 1.0 and the results obtained by the alternating technique for
b/a = 0.98 could be attributed to the coarseness of the finite element
breakdown.

Linearly Varying Pressure on Crack Surface

Similar analysis was conducted for a quarter-elliptical crack with a
linearly decreasing pressure gradient in the direction of the minor axis of
the ellipse or o,., = o(l1 — y/b). The same procedure of prescribing
fictitious pressure in the second and fourth quadrant of the elliptical crack
was used to accelerate the convergence of the iteration procedure. Figure
8 shows the residual surface tractions on the crack surface after three
iterations. These residual surface tractions are considerably less than
those in Fig. 6 indicating, in retrospect, that the more moderate fictitious
pressure distribution shown in Fig. 5 was relatively ineffective in ac-
celerating the numerical convergence and was thus the primary cause of
isolated high residual tractions in Fig. 6. Although the maximum residual
surface tractions in Fig. 8 were significantly smaller than those in Fig. 6,
the average residual tractions in the two problems were approximately the
same. For the linearly varying pressure problem, the average residual
surface tractions were 1.00, 0.833, and 0.3296 percent of the maximum
value of the linearly varying pressures for crack aspect ratios of
b/a = 0.98, 0.4, and 0.2, respectively.

Since the residual tractions in the regions where the crack front
intersects the free bounding surfaces were small, the procedure used to
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FIG. 7—Stress intensity factor for a corner flaw in a quarter infinite solid subjected to
uniaxial tension, o,, = o.

erase isolated higher values of residual surface tractions did not show
significant drop in the stress intensity factors as the crack front ap-
proached the two free bounding surfaces. The normalized stress intensity
factors for quarter-elliptical cracks with aspect ratios of b/a = 0.98, 0.4,
and 0.2, shown in Fig. 9, do not show the rapid drops in stress intensity
factors.

Discussion

As mentioned previously, the convergence in the iteration process in
the uniform pressure problems could have been enhanced should the
original procedure of prescribing fictitious pressure have been used.
Severe restriction in computing funds did ot allow the authors to rerun
this set with the more appropriate fictitious pressure distribution. Since
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FIG. 8—Total residual traction a.,, on elliptical flaw surface after three iterations.
Corner flaw in a quarter infinite solid under linear loading, a,, = 1 — y/b.

the average residual surface tractions were at the most less than 0.9 per-
cent of the applied uniform pressure, the results nevertheless are believed
to be within 2 percent of the correct solutions.

Since convergence of the iteration in the alternating method was finally
achieved by appropriately prescribed fictitious pressure distribution, it is
believed that further refinement in the computer program as well as
increased iteration cycles would increase the accuracy in the results.
Unfortunately, the lack of sufficient computer funds forced the termina-
tion of these computations.

For practicing engineers, the results of Figs. 7 and 9 can be used to
estimate the stress intensity factors of corner flaws in locations of high
stress gradients. Such regions of high stress gradients include corner flaw
problems at a hole and pressure vessel nozzles. An estimate of the stress
intensity factors of the former problem can also be made by the procedure
described in Ref 30.

Figures 7 and 9 show little difference between the normalized stress
intensity factors for elliptical crack aspect ratios of 0.98, 0.4, and 0.2. This
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FIG. 9—Stress intensity factor for a corner flaw in a quarter infinite solid subjected to
linear loading, o,, = (1 — v/b)o.

finding substantiates the assumption made by Shah in estimating the
stress intensity factors for various part-elliptical cracks using the accu-
rately determined normalized stress intensity factors of semi-circular
cracks [21].
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