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Foreword 

The 1973 National Symposium on Fracture Mechanics was held at the 
University of Maryland Conference Center, College Park, Md., 27-29 
Aug. 1973. The symposium was sponsored by the American Society for 
Testing and Materials through Committee E-24 on Fracture Testing of 
Metals. Members of the Symposium Subcommittee of Committee E-24 
selected papers for the program. Organizational assistance from Don 
Wisdom and Jane Wheeler at ASTM Headquarters was most helpful. 
G. R. Irwin, Dept. of Mechanical Engineering, University of Maryland, 
served as general chairman. Those who served as session chairmen were 
H. T. Corten, Dept. of Theoretical and Applied Mechanics, University of 
Illinois; C. M. Carman, Frankford Arsenal; J. R. Rice, Div. of Engineering, 
Brown University; D. E. McCabe, Research Dept., ARMCO Steel; 
J. E. Srawley, Fracture Section, Lewis Research Center, NASA; E. T. 
Wessel, Research and Development Center, Westinghouse Electric Corp. ; 
and E. K. Walker, Lockheed-California Co. 

The Proceedings have been divided into two volumes: Part I--Fracture 
Toughness and Slow-Stable Cracking and Part II--Fracture Analysis. 
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Introduction 

The papers grouped in this volume include two which employ photo- 
elastic methods of stress analysis. Stress wave effects from a hole approached 
by a running crack are of interest in one paper and variations of K through 
the thickness of a compact tension specimen in the other. Several papers 
in which the experimental measurements appeared to be supplementary to 
analysis ideas were included in this volume as illustrated by papers dis- 
cussing the J-integral and combinations of Mode I and Mode II stress 
fields. Other topics of special interest are discussed including test specimen 
calibrations, comparison of J characterization to the "equivalent energy" 
method, use of characterization in terms of strain intensity factors for a 
mixed mode plastic zone, and treatment of the nuclear reactor vessel "loss 
of coolant" problem. 

This volume will prove of particular interest to the engineers and sci- 
entists concerned with the analysis of the fracture phenomenon as well as 
designers who must integrate the information available into their plans. 

All of the papers in this publication were presented at the 1973 National 
Symposium on Fracture Mechanics held at the University of Maryland 
(College Park) 27-29 Aug. 1973. 

G. R. Irwin 
Dept. of Mechanical Engineering, 
University of Maryland, 
College Park, Md, 

Copyright © 1974 by ASTM lntcrnational 

1 

www.astm.org 



M. A. Hussain, ~ S. L. Pu, ~ and J. Underwood ~ 

Strain Energy Release Rate for a 
Crack Under Combined Mode I and Mode II 

REFERENCE: Hussain, M. A., Pu, S. L., and Underwood, J., "S t ra in  Energy 
Release Rate for a Crack Under Combined Mode I and Mode II," Fracture Analy- 
sis, A S T M  STP 560, American Society for Testing and Materials, 1974, pp. 
2-28. 

ABSTRACT: In this paper we have computed the energy release rate for a crack 
subjected simultaneously to Mode I and Mode II conditions. The energy was 
computed by path-independent integrals, using the elastic solution of a deflected 
crack, having a main branch and a propagation branch. The elasticity solution 
was obtained from the functional integral equations by the process of iterations. 
This process leads to a point-wise exact solution in the limit as the propagation 
branch goes to zero. Interestingly enough, the results indicate that the solution 
at the tip in the limit as the propagation branch goes to zero is not the same as 
the solution at the tip with no branch. 

Using the Griffith-lrwin criterion, incipient paths of propagation of such a crack 
were obtained from the maximum value of the energy release rate. To check 
the validity of  the results, an experiment, which gives a pure Mode II condition 
at the tip of the crack, was devised. The results were in excellent agreement with 
the theory. The energy release rate, in parametric form, can he used for any crack 
subjected to Mode I and Mode II loading conditions. To the authors'  knowledge, 
such an expression for the energy release rate does not exist in the literature. 

KEY WORDS:  fatigue (materials), energy, crack propagation, stresses, fracture 
properties 

The concepts of  energy release rate, ~, and the stress intensity factors, 
K's, have been widely used in the field of  sharp fracture mechanics. Under 
normal loading conditions (Mode I crack), these concepts are equivalent. 
The onset of  unstable fracture is successfully predicted by the critical value 
of  either the energy release rate ~c or the stress intensity factor K~c. The 
mathematical relationship between ~ and K can easily be obtained using 
Westergaard's near field solution and lrwin's approach [I]~ 

1 1 -- v 2 
~i = ~ KI ~ (plane stress), ~i - E KI 2 (plane strain) (1) 

a Mechanical engineer, Applied Math and Mechanics Division; mathematician, Applied 
Math and Mechanics Division; and Metallurgist, Materials Engineering Division; respec- 
tively, Research Directorate, Benet Weapons Laboratory, Watervliet Arsenal, Watervliet, 
N. Y. 12189. 

The italic numbers in brackets refer to the list of  references appended to this paper. 
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HUSSAIN ET AL ON STRAIN ENERGY RELEASE RATE 3 

This relation may be obtained from the integral derived more rigorously 
by Bueckner [2] for the energy release rate and can also be shown by using 
path-independent integrals to be discussed later. 

In the derivation of Eq 1, the crack is assumed to move along its own 
plane which can be justified from experimental observations under Mode I 
conditions. Now computing the energy release rate for combined Mode I 
and Mode II we obtain 

1 
= - ~  (KI 2 + KII 2) (plane stress) (2) 

Equation 2 was obtained on the same assumption as before, that is, the 
crack under combined loading moves along its own initial plane. Unfor- 
tunately, the crack extension is not collinear for a crack subjected to 
either skew-symmetric loads or combined loads. Hence, Eq 2 has only an 
academic value unless interpreted properly. An equation which gives the 
energy release rate for an arbitrary direction of crack propagation is 
necessary in order to apply the Griffith-Irwin energy release rate criterion 
to cracks under combined loads. It was first believed that the missing 
information could be obtained by new path independent integrals found 
by Knowles and Sternberg [3]. But our initial hopes were not realized 
(this can be seen from the vanishing of the L and M integrals when the 
Westergaard near field solution is used). It will become clear that it is 
necessary first to obtain an elasticity solution for a crack having a main 
branch and a propagation branch at an arbitrary angle (shown in Fig. 1 
and it will be referred to as a deflected crack). Then we compute the energy 
release rate and obtain its limit as the propagation branch vanishes. The 
final result in a parametric form is 

4 (  1 ) ~ ( 1 _  ~/~'~*~/,~ 
9(3') = ~ 3 + cos 2 3' 1 + 3"/~,-1 [(1 + 3 cos 2 3") Kx 2 

+ 8 sin 3' cos 3"KtKII + (9 - 5 cos 2 3") KII 2] (3) 

It is the purpose of this paper to obtain Eq 3 by the process just indicated. 
The problem of fracture under combined Mode I and Mode II loading 

has been of interest to many investigators. Hitherto, in the absence of 
Eq 3, investigators have had to apply other criteria. The most notable one 
among them is "maximum normal stress," first proposed by Yoffe [5] for 
dynamic problems and by Erdogan and Sih [6] for static problems. A 
similar hypothesis exists in papers by Stroh [7]. Though some experimental 
results in Ref 6 were in good agreement with their criterion, the authors 
themselves have indicated certain shortcomings of such an approach: 
that is, the normal stress is singular at the tip of  a crack in all directions 
and, hence, the concepts of stress may not have a physical meaning. In 
addition, the criterion requires the crack to extend in a radial direction. 
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N2 ~ N1 

MAIN BRANCH 

N l N 2 

FIG. 1--A deflected crack under general plane loading. 

However, they conjectured that if the Griffith-Irwin criterion is valid, then, 
"The  crack will grow in the direction along which the elastic energy release 
per unit crack extension will be maximum and the crack will start to grow 
when this energy (release rate) reaches to a critical value." This "rate  of  
energy release being a controlling factor"  is also indicated by Williams [8]. 
If this indeed is the case then Eq 3 should give us the direction of incipient 
propagation as well as the energy release rate, and we may boldly extend 
the hypothesis in the form of the following corollary: " i f  KI~ is considered 
as a material property, KHo is related to Kxc. Hence, it is not necessary to 
define two independent material properties." This corollary is derived on a 
simplified assumption that the critical energy release rate under combined 
loading is the same as that of Mode I crack for that material. This assump- 
tion may not be valid for cracks with considerable plastic or nonlinear 
zones. 

Recently Sih [9] proposed a criterion based on strain energy density 
which is inversely proport ional  to the radial distance r measured from the 
crack tip and is also singular at the crack tip. There exist many such good 
criteria of fracture. Most of them complement each other in the case of  
Mode I conditions and deviate from each other for cracks under com- 
bined modes. More experimental programs for mixed mode cracks are 
needed to clarify some of  the uncertainties. 

To solve the elasticity problem of the deflected crack, Fig. 1, a mapping 
function which maps a star-shaped crack into a unit circle is used. In the 
next section, properties of  the mapping functions are discussed. In the 
third section we reduce the problem to a functional integral equation, 
and after checking its validity we set up an iteration scheme. The asymptotic 
solution of the first iteration as the propagation branch goes to zero 
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immediately leads to a recurrence relation for any order of iteration 
leading thereby to the point-wise exact solution. It  should be noted that 
the solution in the limit as the propagat ion branch goes to zero is not the 
same as the solution with zero branch. The energy rate is obtained in the 
fourth section via the use of  path independent integrals. The stress intensity 
factors at the tip of  the propagat ion branch are also derived. In the final 
section numerical results are compared  with some experimental data  and 
some new experiments are suggested. 

Mapping Function 

The deflected crack shown in Fig. 1 is a special case of  a star-shaped 
contour  consisting of  n discrete rays emanating f rom the origin in the 
z-plane, Fig. 2. The latter contour  can be mapped  onto a unit circle in the 
f-plane by the t ransform 

z = co(~') = A~'-*(~- -- e~"l)xa(~ " - ei ,Ox2. . . (~ - e~--) x- (4) 

where A, Xk, and ak are real constants and 

0 < ~t < ~2 < . . .  < a~ < . . .  < a. < 27r (5) 

This mapping function was first devised by Sir Darwin [10] and used by 
H. Andersson [11] in his a t tempt  to obtain an elasticity solution for a star- 
shaped crack. Unfortunately,  Ref  11 contains an error [12] which will be 
pointed out later. The mapping function has multiple branches with 
branch points at ~" = exp (i~k). To ensure that z = ~ maps into ~" = ~o, 
in a one to one fashion, it is required that  

Xk = 2 (6) 
k = l  

The image in z-plane of a unit circle, ~" = e ~, in ~'-plane is 

= 13 Is'nC  ~ z 4 A e x p  i ~ ~k~k :k: ( 2m-F  1)~- f i  T (7) 
k = l  k = l  

/ " ~ / ~ , , ~  r'l' ' 

z-FLARE 

C - PLANE 

FIG. 2~The mapping of  a star-shaped contour in the z-plane into a unit circle in the ~-plane. 
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We fix the b ranch  by selecting arg(z) = 0 for  0 = 0; 8 this gives f r o m  Eqs 7 
and 5 

1 
ak)`k :t: (2m + 1) ~r = 0 (8) 

2 k ~ l  

Tak ing  )`k > 0, m = 0 and the negat ive sign, Eq 8 becomes  

~ ak)`k = 27r (9) 
k=l  

F r o m  Eqs 9 and 7 the image o f  a po in t  ~- = e i~ a~-i < 0 < az where  l = 
2, 3 . . . .  , is given by 

z 4A exp iTr ~ )`k f i  (10) 
k ~ l  k ~ l  

F r o m  Eq l0 we see tha t  in the range (~-1 < 0 < az, z traces a ray  in the 
direct ion ()`1 q- ),2 q- �9 �9 �9 + h~_l)Tr, vanishes at 0 = al-1, and 0 = ~z, and 
has a m a x i m u m  in between.  Thus,  there  are n rays  o f  var ious  lengths at  
successive angles ~r)`l, ~rX2, . �9 . , v)`,, to one ano ther  as shown in Fig. 2. 
By suitable choice of  the )`k and ak, Eq  4 t r ans fo rms  any  s ta r - shaped  
con tour  on to  a unit  circle. The  points  "rz -- e ~ on the unit  circle in the 
~--plane at which z at tains its local m a x i m a  can be ob ta ined  f r o m  

) `~co t (  ak -- B ' )  = 0, l =  1 ,2  . . . .  n (11) 
k=l 2 

The lengths o f  the rays are given by 

]r,[ ~-4Afik=a s i n (  ( 3 ~ - a k ) 2  x~ (12) 

Once  the ak,/3k, )`k, and A are de te rmined  f rom Eqs 6, 9, 11, and  12, the 
con fo rma l  t r ans fo rma t ion  of  the exter ior  o f  the s ta r -shaped crack on to  
the exter ior  o f  the unit  circle is comple te ly  defined. 

Branches and Derivatives of w(~) 

As ment ioned ,  o~(i') has mult iple  branches ,  and we have  selected a par -  
t i tu la r  branch.  In  appl ica t ion  it is convenient  to locate  the b ranch  cut. 
There  are a n u m b e r  of  ways this can be accompl ished.  The  s implest  way 
is to locate  the b ranch  cut a long  the unit  circle as shown in Fig. 3. This  
permits  us to have  a c o m m o n  b ranch  for  funct ions  analyt ical ly cont inued  
f rom the outside to the inside o f  the uni t  circle, tha t  is, ~(1/~') = o~(~'). 

3 This corresponds to selecting the first ray to be on the positive x-axis. 
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FIG. 3--The  branch cut and plus and minus regions in the ~-plane. 

Let us divide the ~'-plane into D + and D -  as shown and use ~ to denote 
a boundary  point on the unit circle. I t  is clear that  

~+(a ) - -  ~-(a)  for 0 < 0  <c~1 or a , , < 0  < 2~r 

I 1--1 / 
~+(~) = w-(~)exp - - 2 r i ~  Xk for az_~ < 0 < a~ 

(13) 

where 

+ (14) ~(~) - ~ k~i ~ - -  eiak 

The right hand side of  Eq 14 is a proper fraction whose numerator  is a 
polynomial  of  order n in /-. The numerator  has n roots at ~- = exp (i3k), 
k = 1, 2 . . . . .  n, corresponding to the n crack tips. Hence, Eq 14 may be 
written in the form [11] 

~ , ( r ) / ~ ( ~ )  = [ ~ g ( ~ ) ] - i  

ri 
k~l eZak] 

(16) 

From Eqs 14 and 16 it is obvious g(0) = - 1  and ~(1/~') = -g(~') .  As 
expected, w'(~) has n zeroes of  order one at the tips of  the rays. The branches 
of  c0'(~') are fixed as soon as those of  w(~-) are fixed since g(~') is holomorphic.  

(15) 

Equation 13 is the consequence of the irrational function of  Eq 4 and 
leads to the difficulties in obtaining solutions which are discussed, for 
example, by Bowie [13]. 

For  the elasticity solution we need derivatives of  o~(~-) on the boundary.  
By logarithmic differentiation we have 
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In virtue of  Eq  13, it is obvious  for  ~ = e ~~ 

1 
w'+(~) = w ' - ( a ) -  w-(g), 0 < 0 < al  or  ~ .  < 0 < 2~r 

gg(g) (17) 

i ,-11 ~o '+(~) -  1 ~o+( ~ ) -  1 ~o-(~)exp - 2 ~ r i ~  X~ f o r c ~ _ l < O < a ~  
ag(~) ~g(~) ~=1 

Tak ing  the complex  conjugate  and using ~(l/~-) = -g(~ ' ) ,  ~(1/~') = w(~'), 
we have  

,~-(~) 

~ ' - ( ~ )  

1 g(g) for  0 < 0 < al, a .  < 0 < 21r 
(7 

I l--1 1 1 
g(a) exp 2 ~ r i ~  ?~k for  ~ z - ~ < O < a z  

ff k~l 

( 1 8 )  

It  was the lack of  the s tudy of  these branches  tha t  led to the f u n d a m e n t a l  
e r ror  in Re f  11. 

Case o f  Two  Branches  and  the A s y m p t o t i c  Scheme  

F o r  the deflected crack,  shown in Fig. 4 toge ther  with its image,  the 
m a p p i n g  funct ion and its der ivat ives are 

r = A~--I(~ " -- ei~l)l-~/~(~ - - e i~)  1+~/~, 0 < al  < a2 < 2~r (19) 

( ~ 2  - ~1)  
r = [~'g(~')]-'w(~'), r = r -- e ~"1) (3'2 -- e ~"~) (20) 

g(~) = (~ -- ei"l) (~ -- e~"~) e i~i (21) 
(~" - ~,1)(~- - ~ 2 )  ' -ri  = 

In Eq  21,/31 and/32 are de te rmined  f r o m  

2 ~1 = -Tr sin 2 (22) 

(~,  + ~2) - (~x + ~2) = ,~ 

l, 0=p,I 
rl 

a z  

FIG. 4---The deflected crack and its image. 
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The lengths of the main and propagation branches of the crack are given 
by Eq 12. In our final solution we shall need the limiting case when the 
propagation branch approaches zero, that is, al -~ 7r, a~ --~ ~r, for fixed % 
In this case it is convenient to choose ~ = as - a~, as a parameter for the 
asymptotic expansion as Ir21 --* 0. In terms of ~, the ~'s and ~'s can be 
expressed exactly using Eq 22: 

a~ = ~r-- (e /2)(1 + 7/7r), a~ = ~r q- (~/2)(1 -- 7/7r) 
(23) 

fla = ( m  --  ~)y /2~ ' ,  132 = ~r - -  ( m  q- e)7/27r 
where 

m = (2r /~)  sin -1 {(3,/7r) sin (~/2)} (24) 

when E --+ 0 the transform reduces to the classical case of  a crack of  length 
4A lying on the positive x-axis, (see Muskhelishvili [14]). The lengths of 
the main crack and the propagation crack, respectively, are 

,rl, 1 4)"" 4A -- ~ cos q -cos  ~ cos 4rr 4 cos ~ - r  q- 

 in(m  
4A - 41r 4 \ 4rr 

It is clear from Eq 25 that It21 ~ 0 and Irl I ~ 4A as e ~ 0. Boundary 
values of the derivatives obtained from Eq 18 reduce to 

/ ~  1 g(~), 0 < 0 < a l  or a 2 < 0 < 2 ~ r  
~-(~)  

(26) 

,.,'-(a) __1 g ( a ) e  -2 iv ,  ~ < 0 < u2 
O" 

Certain expansions containing only the first few terms of some pertinent 
quantities are given in the Appendix. 

Reduction of the Problem to Functional Integral Equations 

Relevant formulae of the plane problem of elasticity are given in 
Muskhelishvili [14]: 

z = ~(~) 

r if- ~ = 4 R e [ ~ ' ( ~ ) / c o ' ( ~ ) }  (27) 

r - -  ~ q- 2ir~u = 2{ [~(~')/~'(~')1 [~o'(~')/~o'(~')]' q- [~'(~')/~o'(~')]} 

~(r)  + [~(r) /~ ' (~)]  ~'(~) + ~(r)  = i f  (x. + iy.) as + const 
jA  B 

The complex stress functions ~(~-) and ~b(~-) are sectionally holomorphic in 
D-  (Figs. 3 and 4) and their asymptotic values as z = AG ~" -* ~ for 
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arbitrary uniform loads at infinity, shown in Fig. 1, are given by (assuming 
no traction on the crack) 

~(f) = r A f  + ~0(f) 
(28) 

~(f) = r ' A f  + r 

where ~0(f) and ~0(~') are holomorphic functions including infinity and 
F, F' in terms of stresses N1, N2 at infinity are 

r = (N1 + N 2 ) / 4  + i2tze~/(1 + K) 

r '  = - - (N1  -- N2)e-2~'~/2 

For our problem, taking ~0(~) = ~b0(co) = 0 Eqs 28 become 

~(f) = FAr, ~ ( f ) =  r ' A f  as f---§ co (29) 

This indicates a pole of order one for ~(f) and ~(f) at infinity. In terms of 
and 6 the traction free boundary condition over the unit circle p in the 

f-plane may be written in the form 

~-(~) 
~-(~) + - -  ~'-(~) + 6-(~) = constant, ~ on p (30) ~'-(~) 

The unknown functions ~(f) and ~b(f) can be determined to within an 
arbitrary constant from Eq 30. Furthermore, the constant on the right 
side of Eq 30 must have the same value for all z on p. To obtain ~ and 6, 
we get from Eq 30 

Wherever it is necessary, the integrals in Eq 31 should be understood as 
Cauchy principal values. Dividing p into L1 and L~ as shown in Fig. 4 and 
substituting Eq 26 into Eq 31, we obtain 

1 f,p-(~)d~r __1 fo / g ( ~ r ) ~ }  d~r 
2~'i a - -  f + 27ri  ~b-(a) a a - -  f 

(1 -- e -2~') f g(z)  ~ ' - (z)  dz = 0 + (32) 
2rci i n 2  a (Y - -  f 

In view of Eq 20, some of the integrals in Eq 32 have poles on p.4 As can 
be seen from Eq 30 that {~b-(a) - a-lg(a) ~'-(#)} 5 has removable poles on L1. 
Denoting L'2 as an indented contour, Fig. 5, using Cauchy's integral 

* Muskhelishvili [14] avoids these poles by solving the problem of an elliptical hole, 
that  is, m = 1. Then a straight crack is considered as the limiting case with m = 1. 

5 In fact, there is no pole at ~'2 as e --* 0 and the pole at ~,a is indeed removable. 
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~ f f  =e ;o 
L;'---#l l 

3k ] Li ~ L ,  

FIG. 5 ~ T h k  branch cut L2 and the indented contours L2' and L2". 
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formula and using properties of analytic function r ff(1/~-) in D + 
with their asymptotic values known from Eq 29, we have 

A 
r - rA~ - T (~'  + ~) 

1 fL 1 g(z)_~'-(a) . in D- + (1 - e -~ '~)  ~/./. 2' T ~ _ r a~ ,  (33) 

This is the functional integral equation for r Taking the complex 
conjugate of Eq 30 and following a similar procedure as just indicated, 
we get the equation for the determination of ~(~'): 

~//(~-) = _ F A ~ - - 1  .qL A~ ' (F '  "JI- r )  - ~-g(~-)~'(~-) 

(1 -- e 2'~) f ~g(~)~'-(a) da, ~" in D+ (34) 
2ri JL2" ~ - ~" 

The integral in Eq 34 is taken over the contour Lz" indented from outside, 
Fig. 5. 

Plemelj Formula for the Integrals 
To check the validity of Eqs 33 and 34, we need boundary values of the 

integrals appearing in Eqs 33 and 34. Denote 

1 fL I ~'-(t) dt (35) 
~21(~') = 2rt" 2' t g(t) t - 

1 fL tg(t) ~'-(t) dt (36) 
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We obtain from Eq 36, Eq 35 

~(1/~-) = - D o  + t21(~-), ~-in D + (37) 

Where Do is an unknown constant given by 

Do = 2~i ~' ~ g(t)  ~'-(t) dt = constant (38) 

On the boundary, Eq 37 gives 

f~2-(~) = - D o  + Ql+(ff) for ff on o = L1 -Jr- L2 (39) 

Now using Plemelj formula for t21(~'), we have 

/ 1  g(a) r for . on L~' 
~1+(~) QI--(O') i 

(40) 
0, for ~ on L~ 

It is obvious that 

D0 1 g(~) ,_ (~) ,  f o r ~ o n L '  
- -  - -  2 

~'~1--(0") - -  a2--(tY) = ff ( 4 1 )  

Do, for ~ on LI 

Equation 41 is the Plemelj formula for the integrals f~ and f~2. With Eqs 41, 
33, and 34, it is easily seen that Eq 30 is satisfied with the same constant on 
L1 and L2. 

The I teration Procedure 

The functional integral Eqs 33 and 34, in genera/, are not amenable to a 
closed form solution. We use the t ime-honored iteration procedure. The 
first iteration is carried out exactly. The asymptotic solution of the first 
iteration as e ~ 0 (that is, the propagation branch approaches zero) 
immediately indicates the procedure to obtain the solution for any higher 
order iteration. This gives us the recurrence relation for the derivatives of 
~o and ~ at a point. This recursion formula leads to the point-wise exact 
solution at the tip of the crack. 

Let 

~o(~) = r a t  - ~-lA(r' -~- r)  
then 

where 

~a(~-) = ~o0(~') + (1 -- e-~s)~2a,o(~ -) 

9.(~-) = ~Oo(~') + (1 -- e-2iv)f~l,._l(~ ") 

(42) 

(43) 

1 f z  1 ~o.'-(t) dt (44) 
QI,.(~') = ~ z' t -  g(t)  t - 
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Carrying out  the integrat ion for the first order  i terat ion,  we have 

~1(~*) = I~A~ " - -  ~ ' - I A ( P t  + ~ )  + A(1 - e - ~ , )  [ r I~ + ( r '  q- r)I4] 
2~ri 

where 

I3 = g(~-) log\~ . e ~  / -k - -  l o g  a -[- - -  

- -  - -  - -  A I ' Y 1  1 I4 = ( e  ~"2 e ~ 1 )  q-  ~ - g ( ~ ' ) l o g  e ~ i /  

- Az7~(1 

In Eq  44, the funct ion g is writ ten in the fo rm 

1 1 A~ 
~. g(~) ~. -t- ~. _ 7~ 

where 

(45) 

A2 

~" - -  72 

log b 

(46) 
\ 

-1 log a 
~ - - 7  1/ 

i" ] log b 
~" - -  72 / 

(47) 

(48) 

A, = lira (~- -- 7a) g(~')~--x = (~'~ - eial) ("[1 - -  e ia2) (49) 

A~ = lim (~" - 7~)g(~')~'-~ = ('r~ - e ~'~1) (72 -- e ~'~) (50) 

In Eqs 46 and 47 the constants  a and b are 

Similarly, 

7 1  - -  e i a l  7"}'2 - -  e i a l  
a - b - (51) 

7 1  - -  e i ' ~ z '  7 2  - -  e i a 2  

r = - V A ~  -1 + ( r '  + r)A~- - ~-g(D ~,o'(D (52) 

~b~(~-) = ~b0(~') - -  (1 - -  e -~v)~ 'g (~ ' )~21 ,o ' (g  ") - -  (1 - -  e2~V)~22,o(~ -)  ( 5 3 )  

~b.(~-) = ~bo(~') - -  (1 - -  e - 2 " r ) ~ g ( ~ ) ~ 2 1 , , ~ _ l ' ( ~ )  - -  (1  - -  e2~v)~22,._a(~ ") ( 5 4 )  

where 

The  first order  i terat ion o f  ~(~') is 

~,/-(t) tg(t) dt (55) 
t - - ~  

A 
~1(~) = ~0(D - ~g(D ({ - e - ~ )  ~ .  [~h ' (~)  + ( r '  + r )  I , ' ( r)]  

A~A_ ~, A 
+ (1 - e2 'v)~_ 72(722r + + p ) -  (1 -- e 2'v) 2r-~- 

• [ rh  + (?' + r) I31 

(56) 
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It  should be noted  f rom the zeroes of  g(~') and f rom Eq 51 tha t  the funct ion 
~1(~-) in Eq 45 has neither the logar i thmic singularities at e ~"~, e ~2 nor  the 
poles at ~,~, y2. On the other  hand,  there exist poles in ~b(~-) at -y~ and 72. 
It can also be seen f rom Eqs 45 to 53 that  in the limit as ~ --~ 0 (namely,  
OL2 ~ al) ,  ~'~1,0(~') "---> 0, ~'~2,0(g') + 0, and r --+ r I t  will become  clear 
in the sequel tha t  the derivatives o f  f~a,0, ~2~,1, etc. at the tip o f  the p ropaga-  
t ion branch  (~- --+ 3,2) does no t  vanish. It  is necessary now to s tudy the 
branches o f  the logari thmic terms that  appeared in Eqs 46 and 47. 

Branches  o f  a Funct ion with Logar i thmic  Singular i ty  on a Unit Circle 

Let 

e ~ l /  (57) 

f ( O  has b ranch  points at e ~ and e ~ on the unit  circle p = L1 -4- L2. Select 
a branch,  analytic in D -  such thatf(~-) ---+ 0 as ~" --+ r The b ranch  cut  can 
be chosen in m a n y  ways. One such cut is shown in Fig. 58 and we write 
Eq 57 in the form 

f ( O  = log ~" - e~2 " " r e~l  q- i a r g ( ~ - - -  e ~ 2 ) -  i a r g ( ~ - -  e ~1) (58) 

Let 

~" -- e i~2 = R2e i~ ~ - -  e i a *  = Rle  i~ (59) 

where O~ and 02 in terms of  0, a~ and a2 are 

( r r / 2 ) + ( 0 - + -  m ) / 2  for  ~-onL2 
O1 = (60) 

- ( ~ r / 2 ) + ( O + a O / 2  for  r  

02 = - - ( r / 2 )  q- (0 --~ a2 ) /2  for  ~" on L~ + L2 

Hence,  on  the bounda ry  a = e ~e, we have 

~ _ -  e ~ i 
- i t  + log ~ e~l + - ~ ( a ~ -  a0, aonL~ 

f - (~ )  = (61) 
cr -- ei'~ [ i 

i 

log e ~~ / + - 2  ( ~  - ~ 0 ,  ~ on L1 

In the limit as a~ ~ a~, Eq 61 reduces to 

{ O  iTr ~  
f - ( y 2 )  = (L2 degenerated to a point  3'2) (62) 

on L~ 

I t  is precisely this proper ty  o f  the logar i thmic funct ion which leads (as 

6 Such branches were studied by Gakhov [15l in connection with Schwartz problem. 
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will be seen later) to the result that the solution in the limit as e ~ 0 is not 
the same as the solution without the propagation branch. 

Simultaneous Expansion and the Point-Wise Exact Solution 

As will be seen in the next section, the computation of  the energy release 
rate requires the expansion of r and 1/(~') etc. around the crack tip 
~" = 3'3. Such computations were carried out for zero and first order 
iterations. It became clear that the only contribution to energy release 
rate came from the values of ~o'(3"2), ~'(3"2) in the limit as ~ ~ 3"3 and ~ ~ 0, 
simultaneously. In this section we present such limits and the process 
which will immediately lead to the point-wise exact solution. 

With the help of the Appendix, we have 

~-g(~-) - 2~r + (~ - 3'2) ~ + 2 + 0(~ -- 3"2) ~ + 0(~ 2) (63) 

Substituting Eq 63 and the similar expansion for ~1'(~') into Eq 44 and 
making use of Eq 62, we have 

1~2L013"2) -- 0 
lim (64) 
. 4 ~  ( ~ , , 0  (3"3) = _ 1  ~0'-(3"2)  l'~ 3'2 

The validity of  Eq 64 can be seen from the exact value of  ~1.0(~') which is 
implicitly given by Eq 45. After some manipulation, the second and higher 
order iterations were carried out and the following results are obtained: 

~1,1'(3"2) = - ~  r  ~ ' - ~, .  (3"3) = ~ . ' - ( 3 " ~ )  ( 6 5 )  

This leads to the recurrence relation 

~.'-(3"2) = r ~ { (1 - e -2i3") ,pn-1'(3"2) (66) 

for any order of  iteration. In the limit as n --+ co, r ~ ~'(3"2) where 
~0'(3"2) is the exact value. Hence 

~o'-(3"2) = r - �88 -- e -2'3") ~'-(3"~) (67) 

Taking the complex conjugate of Eq 67 and putting r into the right- 
hand side of Eq 67 we have 

'P'-(3"2) { 1 (1--e-2i3")(l-'-4e2i3")l=~P~ 4 (1 -- e-2i3") i~176 4 

Using Eq 42, this equation becomes (with F = F) 

(68) 

4A {(2F + F,) 1 -- e-2~3" I 
~'-(3'2) - 3 + cos2 3, 4 (2F + P') (69) 

Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
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This is the point-wise exact solution of ~', and it clearly shows that r 
at the crack tip is different from that of a straight crack (no propagation 
branch). By a similar procedure we have 

f~2,,'-(3'2) = - �88 ~,'-(~/2) (70) 

For  n ~ oo and I' = F, the following result is obtained with the help of 
Eq 63: 

r = A(ZF + F') -- �88 -t- e2~)~'-(v2) (71) 

where ~'-('Y2) is given by Eq 69. 

Computations of Energy Release Rate 

As was pointed out in the introduction, the propagation path of a crack 
subjected to combined loads is not collinear to its original plane. The 
integrals involved in Irwin's [1] and Bueckner's [2] approaches to obtain 
the energy release rate cannot be applied directly to the present case due 
to the discontinuity introduced by the deflected crack extension. However, 
the basic conservation laws, also known as path independent integrals, 
do not require such "virtual" motion of the crack. These conservation 
laws have achieved a place of prominence in the field of fracture mechanics, 
Rice [16], Budiansky and Rice [17], Knowles and Sternberg [3], Sanders 
[18], etc. There are basically four such integrals [17,3]. For two dimensions 
these are 

J, = Wdy -- } ' ~ x  dl = (Wnl  - -  ritli,1) dl (72) 

J~ = -- f~ ( W d x  + T-. d ~  = ~" (Wn~ - T~u~.2) dl (73) 

L = f~ ~3ii(Wx~ni d- ziuj -- TkUk,iX~)dl (74) 

M = f~ (Wxini  - rkUk.lXi) dl (75) 

Where C is a contour in x-y plane (xl = x, x~ = y) around a crack tip, 
W is the energy density, ~ is the traction vector on C having unit outward 
normal ~, t7 is the displacement vector, ~ is the rotation tensor. The path 
independence can easily be shown by the use of Green's formula and the 
equations of equilibrium [16]. 

It has been shown [17] that J1,J~ give the energy release rate per unit 
crack tip extension in the x- and y-directions, respectively, and L, M the 
energy release rate per unit crack rotation and expansion, respectively. 
In our case both L and M vanish in the limit as the propagation branch 
vanishes, and Ja, J2 give us the required energy release rate. For  application 

Copyright by ASTM Int ' l  (all  rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
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to our  p rob l em it is convenient  to use Ja, Je in te rms  of  complex  potent ia ls  
which have  been derived in Re f  17. 

J~ q- iJ~ = -- ~ -  i [~'(z)]~dz -- 2 ~ '(z)  ~ ' (z)  dz -- z 
A 

(76) 

By the m a p p i n g  t r ans fo rma t ion  z = r the Eq  76 in the ~'-plane can be 
wri t ten in the fo rm:  

2 { f ~ ' ~ ( ~  " ) J1 q- i J2 = -- - ~  i r - -  d~" - 2 f  ~ ~'(~-) q/(~') d~" 
J~ ~'(~) 

Where  I and u are points  in the ~'-plane cor responding  to A and B in the 
z-plane,  respectively. I t  is required  to compu te  the energy release rate  in an 
a rb i t ra ry  direct ion for  a c rack  tip located  near  the origin;  we need to know 
the expression of  J1 + i J2 under  the t rans la t ion  and ro ta t ion  of  the co- 
ord ina te  system. 

Us ing  the superscr ip t  (x) to refer to the new coord ina te  system, we 
have  for  t ranslat ion,  p. 135 [14] 

Z = 2 (1) -~- Zo 

�9 (~)(z (1>) = ~ ( z )  = ~ ( z  (~) + zo) (78) 

q,(~>(z (~>) = ,I,(z) + ~ ( ~ ) ' ( z  (~>) 

where ~(z) = r ~ ( z )  = ~b'(z). Writ ing A ~1> = A -- z0, B (1) = B -- z0, 
and subst i tut ing Eq  78 into Eq  76, we obta in  

�9 ]1 (1) -1- i J2 (1) = J1 q- i J2 (79) 

This shows tha t  J1 q- iJ~ is invar iant  for  the t rans la t ion of  coordinates .  
Similarly if the coord ina te  system rota tes  counter-c lockwise,  th rough  an 
angle X0 we have the fol lowing results 

Z ~- Z(1)e ix~ 

(~)(1)(z(1)) = (I)(z)  = ~(z(l)e ~x~ (80) 

,~(~)(z(~)) = e~,o  ,~(zC~)e~,o) 

Jl(1)  -[- iJ2(1) = e - i x o ( j  1 ~t_ i J2 )  ( 8 1 )  

Tak ing  X0 = ~r -- 3" in Eq  81, we get the energy release rate ~(3") in an 
arb i t ra ry  direction 3' (Fig. 1): 

~(3") = - - (cos  3")J1 + (sin 3")J2 (82) 

(77) 

Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
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1 8 FRACTURE ANALYSIS 

Integration Path in the f-Plane 

For  convenience,  we choose the path  as shown in Fig. 6. In the limit as 
R ~ 0 the path  of  integrat ion in the ~--plane corresponds  to the integrat ion 
a round  the crack tip in the z-plane. After  the integration is completed,  
we first take the limit as R --~ 0 and then let the p ropaga t ion  branch vanish 
( that  is, a~ - m = ~ --* 0). Expansions  of  per t inent  quantit ies a round  
~" = -r-o (where w'(3'~) = 0) are given by 

o~(~-) = ~0(~2) + �89 - w )  (3"2) + ~(~ - r-J ~-oj + . . .  (83) 

1 1 
~0'(~-) - ~o"(~, -o)( f  - "r2) 11 + Cz(~- - v_o) + C~(/" - .~-o)2 

+ Ca(~" -- 3"2)3 + . . . }  (84) 

( ~ ( ~ ) ) 2  = CO.~)~))= 1 {1 + 2Ci(r -- 3"2) + C-o'(~" -- 3,2) 2 

where 
+ c~'(f - ~,-o), + . . .  } (85) 

C 1 
1 ~ " ' ( ~ ' 2 )  

2 0o"(3"-o) ' 

1 ~iv(3"~) 1 (~"(3"2)  ~2 
C2 6 w"(3"2~ + 4 -r (3"-o) ] t t  

1 ~'v(3"2) 3 ( oJ"(w))-o 
C (  3 w"(3"2~ + 4 \ w"(3"-o-~ , etc. 

(86) 

( t -  3"2) ( r  ,,/~)2 - R 2 ~  (m + ,) 

( ~ . _  3'2) 3 - 0, dg" = - 2 i R e x p  - --2r (m + e) 

(87) 

Where  I = ( r / 2 )  - 3"(m + e) / (2r) ,  u -- (3~r/2) - 3"(m + e) / (2r) .  It is 
clear f rom Eq 84 that  a pole of  order  one at ~- = 3"2 corresponds  to  a 
singularity of  order  one hal f  in the z-plane. F r o m  the i terat ion procedure  
we see that  r does not  have any poles in the f-plane.  However ,  as long 
as e ~ 0 (the propaga t ion  branch is finite) ~'(~') involves a pole of  order  
two in view of  Eqs 48 and 53. But the singular term due to ff'(~') in the 
integrals, Eq 77, is annihi lated by the jump  term (the last term of  Eq 77). 
Carrying out  the integrat ion with the help of  Eqs 83 to 87 and 48 for the 
zero order  and the first order  iterations, we find the only cont r ibut ion  to 

Let  ~- - ~'2 = Re i~ and in view of  Eqs 23 and 48 through 50, the fol lowing 
integrals can be evaluated 
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z - PLANE 

1 

FIG. 6---Path of integration. 

the integrals in Eq  77, in the l imit  as R ~ 0 and then ~ ~ 0, is due to 
s imul taneous  expans ions  of  ~ '  and if' at  ~- = 3'2. The  details are too  lengthy 
to be included here;  the results read  

2 ' 
�9 ]1 + i J2 = ~ {r + \ ~ ] J  (88) 

Subst i tut ing into Eq  88 the a sympto t i c  expans ion  for  r given in the 
Appendix ,  r and ~b'(3,2) given by Eqs 69 and 71 with I '  = ~,  2I '  + P '  = 
ay ~ -- ir.u ~ 2P + F '  = au ~ + ir~ ~ we obta in  

rA ( 1 - - 3 " / r ~ ' " (  4 ) e 
& -  2E + V / r ]  \ 3  + c o s % '  {(5 cos 3 " -  cos a3")a~ ~= 

+ 6 sin a 3"a~%.y ~ + (7 cos a 3' - 3 cos 3') r .y  ~} (89) 

ira (11-  3"/rc~'/'( 4 )2 J2 = ~ -  + 3"/r] \ 3  + c o s % ,  {sin 3"(1 - cos ~ 3 " ) ~ =  

+ (2 cos 3" + 6 cos a 3") a ~ r ~ u  ~ + sin ~,(9 + 7 cos ~ 3") r~u~'l (90) 

In vir tue o f  Eq  82, the final result  is 

rA ( { - -  3"/r~'/'( 4 ) e 
~(V) = ~-~ q- y/~r] \ 3 + c o s 2 y  { ( l +  3 c o s  23,)a~ 

+ 8 sin 3' cos 3"a~r .u ~ + (9 - 5 cos ~ 3') r.~ ~'} (91) 

This  equa t ion  gives the energy release rate for  any angle 3" in the limit as the 
p r o p a g a t i o n  b ranch  goes to zero and the ma in  branch  is a s t ra ight  c rack  
of  length 4A. We may  extend Eq 91 into the fol lowing pa ramet r i c  fo rm 
with Ki = %~V'~-2A and Kn  = r ~ y ~ % v / ~  

(11 4 )3 ~(3") = 4 E  + 3"/r] \ 3  + cos23" {(1 § 3 cos 2 3")K~ 2 

4- 8 sin 3' cos 7K~KH q- (9 -- 5 cos ~ 3,)K~ ~ } (3) 

Copyright by ASTM Int 'l  (all rights reserved); Mon Dec  7 14:44:21 EST 2015
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The advantage of Eq 3 is that now it can be applied to any crack, provided 
that the values of K~, KH are known at the crack tip. 

Stress Intensity Factors 

The stress intensity factors for the tip of the propagation branch in the 
limit as the branch goes to zero can be computed from the formula given 
by Andersson [11] 

2x/7 
K = K~ -- iK~ - (92) 

[cite0"(3"2)] '/2 

where ~o'(v2) is given by Eq 69, r in the Appendix and ~ = r - 3' is 
the angle between the propagation branch and the main branch. The stress 
intensity factors thus obtained are different in meaning from those of  the 
conventional definition, where the crack extension is assumed to be in the 
plane of the original crack. Let us use K~ (2), KH (2) to denote the stress 
intensity factors obtained from the limiting process as the propagation 
branch goes to zero; we have from Eq 92 

( 4 ) ( 1 - 3 " / 7 r ~ / 2 " / '  ~o 3 ) 
Kx(2)(Y) = ~v/2~Td 3 + cos23" 1 + 3"/r] ~ ,  cos 3" + } rx, ~176 sin v 

(93) 

( 4 ) ( 1 - y / r r , ' / 2 " { o o  1 ) 
K I I ( 2 ) ( 3 " )  4- "V~ .4  3 + COS23" 1 + 3"/r] ~r~y COS 3" --} r ~~ sin 3" 

(94) 

In the beginning of the paper, we pointed out that Eq 2 is not valid for 
the combined Mode I and Mode II loading condition unless it is interpreted 
properly. Now inserting the newly defined KI(2)(3") and Kn(2)(3") into 
the Eq 2, we get 

l 
~(3") = - ~  [(KI(2)(3")) 2 q- (KII(2)(3")) 2] 

( 1  4 )2 
- 2E + 3"/~r] \ 3  q- cos2v {(1 q- 3 cos 2 3")r 

-k 8 sin v cos vay~176 ~ + (9 -- 5 cos 2 v)rxu ~=} (95) 

The prior expression, which is exactly the same as Eq 91, indicates that the 
simple Irwin's formula, Eq 2, for computing the energy release rate can be 
extended to cracks under combined loads if the stress intensity factors 
involved in Eq 2 are interpreted as the "angular" stress intensity factors, 
KI (2) and K~I (~. The relations between the "angular" and the "conventional" 
stress intensity factors can easily be obtained from Eqs 93 and 94. 

( 4 ) ( 1  -- V/~ry/2"[K, cos 3, q_ 3 } 
KI(=)(V) -- 3 q -  cos23" 1 + 3"/~r] 2-KiI sin 3' (96) 
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KII(2)(~') = 3 + cos2"r ]- ~- "r/Tr] [~H cos 7 - ~ Kt sin 7 (97) 

It should be noted from Eqs 95 to 97 that ~(7), KI (2) and KI~ (2) reduce to 
the classical values when "r is zero. 

Now we reiterate the energy release rate criterion given in the intro- 
duction: "The  crack subjected to combined loads will grow in the direction 
along which the strain energy release rate ~(~,) is maximum and the crack 
will start to grow when this maximum energy release rate reaches a critical 
value." 

Numerical and Experimental Results 

Consider an infinite plate having a crack of length 4A, and subjected to a 
load q at an angle ~ to the plane of the crack. The stress intensity factors are 

KI = ~ v / ~ q s i n  2a, KII = ~ q s i n a c o s a  (98) 

Upon substitution of Eq 98 into Eq 3, the energy release rate for this case is 

~(7) - 2E 3 + cos2"),/ \1- + 3 " / r ]  {(1 + 3 cos 2 7) sin4 a 

+ 8 sin-y cos -y sin 3 a c o s a + ( 9 -  5cos  27) sin 2 a c o s  ~a} (99) 

The values of "r for which ~('r) in Eq 99 attains its maximum are plotted in 
Fig. 7 for various values of a. In the same figure we also present results 

90"] , , i ' ' I ' 

! " " o ~  
3 o  ~ 

, I I I I I , , O" 30" 60" 

FIG. 7 - - T h e  fracture angle 3' J'or various values o f  a based on the maximum energy release 
rate. 
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obtained from the zero to third order iterations. The graph shows a fast 
convergence of the iteration procedure. If the Griffith-Irwin criterion, as 
formulated in the introduction, is valid then this graph should give us the 
direction of incipient propagation of the crack subjected to the mixed 
mode condition given by Eq 98. The theoretical results based on the 
maximum g(~,) and the maximum ~0 are plotted in Fig. 8. It can be seen 
that the angle predicted by maximum 9(7) is in general close to that pre- 
dicted by maximum stress criterion. In Fig. 9 we have plotted KI /KIc  
versus KH/K'~c based on these two theories. The maximum stress theory 
predicts that KH~ should be 0.89 KIo, while the maximum energy release 
rate criterion gives KHo = 0.63 KI~. We believe that an experiment to 
accurately obtain KI I~ /K~  ratios is crucial. Unfortunately, most experi- 
ments with pure Mode I1 loading are difficult to perform. However, we 
shall describe a method of obtaining a Mode lI condition in a simple way. 

The elasticity solution for a curvilinear crack in an infinite plate under 
uniform tension is given by Muskhelishvili [14]. The stress intensity factors, 
in terms of parameters shown in Fig. 10, can be found. The results [19] are 

v' -e 
KI - W/s~rt  cos (7/2){2 - cos2(n/2)} -t  

2 

X { - 3  cos 4 (7/2) + 10 cos 2 (7/2) -- 5} 

KH = W/~-P v ~ m n  sin (7/2){2 -- cos 2 (~/2)} -1 (100) 
2 

X {- -3cos  4 ( n / 2 ) +  8 co s  2 ( n / 2 ) -  11 

9 0 t l  ' I ' ' I ' ' 

MAX do'~ \ ~ 

30 ",\ ,\ 
0 30 60 90 

(X -- 

FIG. 8--The fracture angle 3" predicted by maximum 9(3") and maximum ~ro. 
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FIG. 9--The  failure loci predicted by maximum ~('r) and maximum cro. 

Equation 100 shows that Kx vanishes for n = 0, ~-, and 79.6 deg. The first 
two values are trivial. The last one, namely, n = 79.6 deg, is interesting to 
us. At n = 79.6 deg, K~ = 0 but KH ~ 0. Hence for a circular crack with 
2n = 159.2 deg, we obtain a pure shear mode if the pure tension is applied 
symmetrically to the bisector of the central angle 2n. 

Such an experiment was performed in our laboratory. Tests were per- 
formed on four 6-in.-wide by 16-in.-long panels of 0.002-in.-thick steel foil. 

1 

FIG. lO---Pure Mode 11 condition in a curvilinear crack under tension. 
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24 FRACTURE ANALYSIS 

A 1.3-in.-diameter curvilinear crack was cut in the center of each panel, 
with a nominal value of 79.6 deg and oriented as shown in Fig. 10. Tensile 
load was applied and photos were taken of the crack paths after a small 
amount of crack growth and after complete separation, see Fig. 11. The 
measured angle between the initial 0.05 in. of crack growth and the a = 
90 deg line (shown in the photos of Fig. 1 I) varied between 3 and 6 deg. 
The average value of this angle was 3'0 = 4.2 deg. We believe this value to 
be a good measure of the direction of crack growth in pure Mode II shear, 
because of the following considerations; (a) the loading is symmetric, thus 
effects of buckling or twisting on crack growth are less likely; (b) the thin 

FIG. l l - -Crack growth from a curvilinear notch on a steel foil; (a) after 0.12 in. crack 
growth and (b) after complete separation. 
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sheet essentially eliminates the possibility of thickness effects on the 
direction of crack growth; and (c) the crack is large enough to provide an 
adequate sized near field zone in which to observe the direction of crack 
growth. 

According to the maximum energy release rate, the angle 3'0, shown in 
Fig. 10, should be 4.4 deg. The same angle based on maximum stress theory 
should be 9.1 deg. The average value from these experiments, repeated 
from before, is 3"0 = 4.2 deg, in good agreement with the theoretical pre- 
diction 3'0 = 4.4 deg. Further tests concentrating on the measurement of 
critical K values and angles of crack growth in mixed mode loading are 
planned. 

In Fig. 12 we have plotted a critical load ratio, that is, the critical load for 
a crack of fixed length at various angles a normalized with respect to the 
critical load normal to the crack (a --- 90 deg). These critical loads cor- 
respond to the maximum values of ~, at which fracture is assumed to occur. 
It is interesting to note that the weakest crack is not the crack normal to 
the load but the crack inclined at about 60 deg to the load. This is quite 
an unexpected result. Experimental verifications, though difficult, must 

IO , , I ' ' I I I 

5 

I 

. 5 ~  ~ t I i I I I i 
0 .30  6 0  9 0  

O~ " "  

FIG. 12--The critical load ratio for various values o f  o~. 
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FIG. 13--The ratio o f  ~(.y)/~(O) versus c~. 

be carried outY In Fig. 13, the maximum S(3') normalized with respect to 
~(0) (namely, the energy release rate for Mode I) is plotted versus the angle 
a. We see the similar trend; the maximum occurs at about  a = 60 deg. 

In conclusion, we have presented an equation for energy release rate for 
cracks subjected to general in-plane loading. Once K~ and Krr are found, 
the path of crack extension and the energy release rate can easily be ob- 
tained. Some experimental results do indicate the utility of such an ex- 
pression. However, more experiments should be performed to verify the 
Griffith-Irwin energy release rate fracture criterion for this mixed mode 
loading. 

APPENDIX 

A partial list of asymptotic values as ~ 2  - ~ 1  = ~ - - ~  0 :  

"r2= --{ 1 i'r~ v2J } 
2,r~ + 0(~ ~) ; "ri = e ~ i , J  = 1, 2 

2 i ~  2C~  2 -r~ 2 = 1 + 0G 3) 
11" 71.2 

7 Recent experimental results in Ref 4 indicate such a trend. 
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Fracture Under Combined Modes 
in 4340 Steel 

REFERENCE: Shah, R. C., "Fracture Under Combined Modes in 4340 Steel," 
Fracture Analysis, ASTM STP 560, American Society for Testing and Materials, 
1974, pp. 2%52. 

ABSTRACT: An experimental investigation was conducted to study the inter- 
action of combined modes of loading on crack instability in the presence of the 
opening and sliding modes of stress intensity factors (/(i and Kn), the opening 
and tearing modes of stress intensity factors (KI and KIH), and all three modes of 
stress intensity factors (K~, Kn, and Kin). Through-cracked and surface-cracked 
fiat and round specimens, and round notched bar specimens fabricated from 
high strength 4340 steel were used for the investigation. The results are evaluated 
to determine fracture criteria under the combined modes of Kr and Km Kt and Kut 
and KI, Km and KIH for the 4340 steel_ These results are compared with the 
results of other investigators obtained for different materials. For the combined 
Mode I-II tests, it was found that the presence of K~ can have a significant effect 
on K~ at which fracture occurs and vice versa. For the combined Mode I-III 
tests, it was found that the application of Knl up to about 70 percent of Km~ has 
little effect on Kt at which fracture occurs. Similarly, the application of K~ up to 
about 70 percent of K~ has little effect o n / f r o  at which failure occurs. 

KEY WORDS: fracture properties, cracks, cracked specimens, combined mode 
loadings, mechanical properties, fracturing, fracture criterion, steels 

The majority of past experimental and theoretical fracture and crack 
growth studies have dealt with the opening mode of  deformatiorb Mode I, 
conditions. Many investigations have shown that under Mode I conditions, 
crack instability occurs when the stress intensity factor reaches some 
critical value. A limited number of theoretical and experimental investi- 
gations have been conducted to determine the effects of combined mode 
loadings on fracture starting from cracks [1-11] .  2 For a cracked component 
under combined mode loading, two theories of fracture have been ad- 
vanced; maximum stress criterion [1] and strain energy density factor 
theory [9,I0] .  In the maximum stress concept, it is assumed that the crack 
extension occurs in a plane perpendicular to the direction of the greatest 

1Senior specialist engineer, Research and Engineering Division, Boeing Aerospace 
Company, Seattle, Wash. 98124. 

2 The italic numbers in brackets refer to the list of  references appended to this paper. 
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30 FRACTURE A N A L Y S I S  

tension for a combined Mode I - I I  problem. The angle of crack extension 
with respect to the initial crack plane, 00, as shown in Fig. 1, is given as [1] 

KI sin 0o + K I I ( 3  COS 0o - -  1) = 0 (1) 

For this combined mode loading, Erdogan and Sih [1] proposed the follow- 
ing fracture criterion, inferred from the strain energy release considerations. 

anKi  2 + 2a12KIKII + a~2K~x 2 = constant (2) 

where the constants an,  a~,  and a2z are functions of material properties. 
In the conventional theory of fracture, it is currently not possible to 
calculate the strain energy release rate when the crack extension is not 
coplanar with the initial crack. Sih [9,10] proposed a theory of fracture 
based on the field strength of local strain energy density to deal with the 
combined mode crack extension problems. In this theory, it is assumed 
that the critical strain energy density factor, So, is an intrinsic material 
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F I G .  l--Fracture angle versus crack angle in a cracked plate under aniforrn tension. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



SHAH ON FRACTURE UNDER COMBINED MODES 31 

property independent of the loading conditions and crack configurations, 
and Sc governs the onset of crack propagation. 

Sc = anKi  2 q- 2aazKIKII q- a~=Kii ~ q- aaaKm 2 (3) 

a i j ( i , j  = 1, 2, 3) are known functions of shear modulus t~, Poisson's ratio v, 
and the polar angle 0 measured with the crack plane. For  the planar com- 
bined mode problem, the fracture angles 00 predicted by the prior two 
criteria with respect to inclined angle/~ is shown in Fig. 1. Figure 1 also 
shows the propagation of crack normal to the applied stress, that is, 
/3 q- 00 = 90 deg, labled as horizontal crack extension. Figure 1 shows that 
the fracture angle is not a sensitive parameter to verify the prior theories 
of fracture under the combined mode. 

Earlier experimental studies include the effects of Mode I-I1 interaction 
on plexiglass [1], balsa wood [2], fiberglass [2], and 2000 and 7000 series 
aluminum alloys [3-8] and Mode I-III interaction on 7000 series aluminum 
alloys [4,5] and K9 tool steel [5]. The present investigation was conducted 
to determine the effects of combined Modes I-II, I-III, and I-II-III on 
fractures initiating at cracks with specimens made from 4340 steel. 4340 
steel was chosen since it has a homogeneous microstructure and can be 
heat treated to a high strength level where it is relatively brittle and has low 
fracture toughness. 

Material and Procedures 

A 4340 steel plate 1.0 by 20.0 by 72.0 in. normalized and tempered to 
33 HRC maximum was purchased according to AMS 6359 specifications. 
Specimens were fabricated from this plate and starter slots with dimensions 
slightly less than the required crack dimensions were introduced using an 
electric discharge machine. The specimens then were subjected to heat 
treatment according to Boeing BAC 5617 specifications so that ultimate 
strength of the heat-treated 4340 steel is around 270 to 280 ksi at room 
temperature. Specifications are given in Table 1. The mechanical prop- 
erties at room temperature and - 2 0 0 ~  in the rolling (L) and the long 
transverse (T) directions are quite uniform and are given in Table 2. 

Tests at -- 200~ were conducted by exposing test specimens to a gaseous 
nitrogen environment in a closed cryostat. The - 2 0 0 ~  temperature was 
maintained in the cryostat by controlling the supply of gaseous nitrogen 
and liquid nitrogen in the cryostat. A thermocouple mounted on the speci- 

TABLE 1--Specifications for heat-treatment of  4340 steel. 

Austenitize 1550~ 
Oil quench 140~ max 
Double temper 400~ 

30 to 90 min depending on specimen thickness 

3 to 4 h depending on specimen thickness 
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3 2  FRACTURE ANAtYSIS 

TABLE 2--Mechanical properties o f  4340 steel. 

Test Temperature, Ultimate Tensile 0.2 % Yield Percent Elongation, 
~ Strength, ksi Strength, ksi 2.0-in. gage length 

Room temperature 275 214 10 
-- 200 294 225 3 

men near the flaw was used to determine the specimen temperature. 
Loading was commenced 10 to 15 rain after the specimen had reached a 
temperature of - 200~ 

Inclined center-cracked specimens used for Mode I-II  tests and inclined 
surface flawed specimens used for Mode I-II-III  tests are shown in Fig. 2. 
Figure 3a shows through-cracked tube specimens used to determine 
critical stress intensity factor, K~c. Figure 3b shows a round notched bar 
specimen used for Mode I-I l l  tests. Figure 3c shows a round specimen 
containing a surface flaw used for combined Mode I- I I - I I I  testing. All test 
specimens were precracked by growing fatigue cracks from starter slot 
under low stress tension fatigue. The maximum cyclic stress levels used 
were between 20 to 35 ksi. 
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FIG. 2--Specimen for (o degree surface flaw or center crack ,for combined Mode 1-II-1H 
attd 1-11 tests. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



SHAH ON FRACTURE UNDER COMBINED MODES 3 3  
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34 FRACTURE ANALYSIS 

In order to extend the fatigue crack in the plane of the EDM slot in the 
specimen of Fig. 2, the specimen was precracked by loading through 
0.75-in.-diameter holes whose centers were perpendicular to the EDM slot. 
In order to reduce the load required for precracking the EDM slot, two 
slotted holes, as shown in Fig. 2, were machined in the specimen along the 
axis of the EDM slot. After precracking the EDM slot to the required 
sized crack, the final specimen was cut such that the crack is oriented at 
the required angle with respect to the axis of loading. 

The round notched bar specimens (Fig. 3b) were precracked under low 
stress tension high cycle fatigue. Since the fatigue cracks developing from 
notches tended to become eccentric, the fatigue cracks were kept small. 
Fatigue cracks as measured from the notch periphery were from 0.005 to 
0.050 in. Most specimens had reasonably concentric cracks. Fatigue cracks, 
grown in other trial specimens of this material, under rotating bending 
fatigue were more eccentric than those grown under tension fatigue. 

Test Machine and Instrumentation 

Round notched bar specimens and round specimens with surface flaws 
were subjected to simultaneous tensile and torsional loading. They were 
loaded in a 150-kip capacity tension-compression machine which was 
modified to apply simultaneous tensile and torsional loading (Fig. 4 top). 
The specimen was loaded in tension by a vertical hydraulic cylinder and 
the torque was applied independently by a couple using two horizontal 
hydraulic cylinders (Fig. 4 top). At the lower end, the load cell was locked 
for any torsional motion. The hydraulic cylinders were actuated by servo 
valves responding to electrical signals to apply the programmed load. 
Directly in series with the specimen was the load cell providing a hulling 
feedback signal when the applied load reached the programmed value, thus 
forming a closed-loop control system. The load cell was made of a circular 
tube so that it could carry a relatively high axial load and be sensitive to 
torsional measurements. Axial load was measured and controlled by two 
independent, four-arm strain gage bridge circuits installed in the axial 
direction, and the torque was measured and controlled by two independent, 
four-arm strain gage bridge circuits installed at 45-deg angles with respect 
to the axial direction. The required ratio of the tension load with respect 
to the simultaneous torque was maintained by a drum programmer. 

The axial and angular displacements across the flawed cross-section were 
measured by electrical displacement indicators. Load versus displacement 
curves were generated independently for axial and for angular displacement 
by X-Y plotters. For round specimens containing surface flaws, crack 
opening displacement measurements in the axial direction were taken 
using Srawley type clip gages [12]. Holding-tabs with knife edges were 
micro-spot welded with one spot weld close to the flaw edge along the 
centerline of the flaw, and the other end of the tab held down by a slip-joint. 
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FIG. 4---Tension-torsiolt test machine and instrumentation. 
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36 FRACTURE ANALYSIS 

For round notched bar specimens, axial displacement measurements were 
taken by using two electrical displacement indicators of the horseshoe 
type attached to clamps 1-in. apart on the specimen, as shown in Fig. 4 
bottom. The average output of the two displacement indicators was used to 
generate the load-displacement curves. For  angular displacement measure- 
ments, two clamps, l-in. apart  along the specimen were attached to the 
specimen as shown in Fig. 4 bottom. Knife edges were machined at the end 
of arms extended from the clamps to hold clip gages for angular displace- 
ment measurements. For  convenience, the knife edges, where the clip 
gages were attached, were located 1-in. away from the vertical centerline 
of the specimen. 

Test Results and Discussion 

Fracture Toughness Tests 

The plane-strain fracture toughness of 4340 steel at room temperature 
was determined in LS and LT directions of crack propagation by testing 
fiat specimens containing a semi-elliptical surface crack or a central 
through-the-thickness crack, respectively. The fracture toughness at 
- 2 0 0 ~  under gaseous nitrogen environment was determined in LS and 
TS directions of crack propagation by testing surface flawed specimens 
and in LT direction by testing specimens containing a central through-the- 
thickness crack. The plane-strain fracture toughness values for the LS and 
LT directions at room temperature were 72.6 and 73.8 ksix/ in. ,  respectively. 
Raw data and detailed results of these tests and all the tests mentioned 
hereafter are presented in a NASA Contract  Report  [12]. The plane-strain 
fracture toughness values in LS, TS, and LT directions at - 2 0 0 ~  were 
40.1, 40.6, and 41.6 ksiw/in., respectively. All of these fracture toughness 
values mentioned were the average of two test results. The test results 
indicate that fracture toughness is essentially independent of the crack 
propagation directions in these planes. Hence in the tests mentioned 
hereafter of inclined through cracks and surface cracks in fiat plates, the 
crack propagation directions were not kept in one particular direction. 

Mode 1-11 Tests 

Eight fiat specimens containing central through-the-thickness cracks 
oriented at 4~ = 0, 25, 50, and 75 deg to the width direction (Fig. 2) were 
loaded to failure in pure tension to study the effects on fracture of opening 
mode K~ and the combined opening and sliding modes of crack extension 
K~ and KH. Tests were conducted at - 2 0 0 ~  in gaseous nitrogen. The ratio 
of crack length to specimen width for all specimens was approximately 
one ha l l  The specimens were not instrumented with crack opening dis- 
placement gages. Fracture surfaces (crack propagation) were oriented 
perpendicular to the applied tension, as seen from photograph in Fig. 5. 
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FIG. 5--Fraeture surfaces of inclined center-cracked specimens of 4340 steel subjected to 
combined Modes 1 and 11. 

Examination of fracture surfaces did not reveal any apparent slow crack 
growth. (The same thickness specimens containing semi-elliptical surface 
cracks perpendicular to applied tension and instrumented with crack 
opening displacement gages did not show any slow crack growth at all 
prior to fracture at -200~ Stress intensity factors, K~ and KH, for 
inclined cracks were calculated using the expressions given in Ref 4 for 
inclined through cracks obtained from the boundary collocation method. 
Data of the 4340 steel under the combined Mode I-II are shown by solid 
circles in Fig. 6. As explained in the subsequent paragraph, KIIe of 45.2 
ksi~v/in~, was used in computing K~I/KIIc in Fig. 6. Figure 6 also shows 
Mode I-II data obtained by: (1) Wilson for 0.45-in.-thick 7178-T651 
aluminum alloy from inclined center-cracked specimens loaded in tension 
[4]; (2) Pook for 0.4 ~-~ 0.5-in.-thick DTD 5050 aluminum alloy (5.5~o Zn, 
cry~ = 77 ksi, ~,~t = 84 ksi) from inclined center-cracked specimens loaded 
in tension [5]; (3) Liu for 0.3-in.-thick 7075-T7651 and 2024-T3 aluminum 
alloys from cracked panels loaded in shear [7] and; (4) Boeing for 0.3-in.- 
thick 7075-T651 aluminum alloy from inclined edge cracked specimens 
loaded in tension [8]. 
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FIG. 6---Kz/Kz,r versus K n  /Knc~ for a cracked plate under combined Mode 1-11 loading. 

For all data presented in Fig. 6 and in Refs 4, 5, 7, and 8, K~ and KI~ 
were calculated based on initial crack length and orientation and fracture 
load even though the tests conducted by Pook [5], Liu [7], and Boeing [8] 
did show that slow, stable, out-of-plane crack growth took place prior to 
fracture. A finite element solution [3] of the inclined through crack shows 
that as the crack turns out of  its plane, K~ increases significantly and KI~ 
decreases significantly. This indicates that the fracture data and criterion 
under combined mode loading should be evaluated using the crack con- 
figuration at the fracture load. The fracture criterion of combined mode 
F(KI,KI~), obtained disregarding the crack growth and rotation, could be 
significantly in error. 

The fracture criterion under combined Mode I-II for high strength 
4340 steel at - -200~ (Fig. 6) can be well described by K~ + K~I ~ K~ or 
K~/K~c + KH/KHc = 1. This fracture criterion is significantly different 
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from that defined by either Eq 2 [1] or 3 [9,10]. Thus, presence of Mode II 
stress intensity factor has significant effect on Mode I stress intensity 
factor at which fracture occurs, that is, K~ at fracture is significantly less 
than Kic in the presence of KII. Figure 6 suggests that the fracture criterion 
under combined Mode I-II crack surface deformations may be dependent 
on material, thickness, and test temperature combination. 

Two cylindrical tubes of 4340 steel containing through-the-thickness 
cracks (2a = 0.28 in.) and subjected to pure torsion (Fig. 3a) were tested 
to obtain pure Mode II critical stress intensity factors, K~o. These tests 
were carried out at room temperature. The stress intensity factor for the 
cracked tube in torsion is calculated by using the expressions given in 
Ref 13. The specimens were instrumented with slip gages to continuously 
measure angular deflection across the crack plane against the applied 
torque. As seen from the plot of angular deflection against applied torque 
for Specimen B in Fig. 7, the abrupt crack extension (pop-in) occurred at 
the applied torque of 9200 in. lb. The sliding mode stress intensity factor 
KH, based on the pop-in torque and initial crack length is 67.5 ksi N/in. 
Complete fracture of Specimen B occurred at the applied torque of 11 250 
in.lb. The applied gross shear stress at failure is 116 ksi which is slightly 
below the shear yield stress of 124 ksi. Visual observation as well as Fig. 7 
indicated that considerable crack growth had taken place prior to fracture. 
Fracture surfaces of the two tube specimens are shown in Fig. 8. Fracture 

12,000 

9,006 

6,00C 

3,00( 

FAILURE 

I I I I I I I 
0,01 0.02 0.03 0.04 0.05 0.06 0.07 

ANGULAR DEFLECTION ACROSS CRACK PLANE, RADIANS 

[ 
0,08 

FIG. 7--Torque-angular deflection record from cracked round tube specimen of 4340 steel 
subjected to pure torsion attd tested at room temperature. 
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40  FRACTURE ANALYSIS 

for these specimens initiated at a Point A shown in Fig. 8, and the fracture 
angles (angle between the crack extension and the initial crack) were 70 
and 75 deg for Specimens A and B, respectively. This compares very 
favorably with the fracture angles predicted by the maximum stress cri- 
terion. Critical stress intensity factors, Kiie, based on initial crack lengths 
and fracture torque were 78.5 and 82.4 ksi x/in.  for Specimens A and B, 
respectively. Thus, average Ki~c was 80.4 ksi ~ Assuming the ratio of 
KH~ at --200~ to KIIe at room temperature is the same as K~ at -200~ 

FIG. 8--Fracture surfaces o f  cracked tube specimens subjected to pure tension. 
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to KIo at room temperature, the calculated KIIe for -200~  is 45.2 ksi x,/in. 
A Kiic of 45.2 ksi %/in~. was used for 4340 steel at --200~ to calculate 
KII/Kn~ ratios in Fig. 6. If Kix~ was based on the pop-in torque and the 
initial crack length, it would have been 37.4 ksi ~r 

Some uncertainty exists in the determination of the exact value of critical 
plane strain sliding stress intensity factor, Kiic as (1) the thickness of the 
tube does not meet the plane-strain criterion for the minimum thickness 
for tension-loaded-specimen and (2) the applied shear stress is high with 
respect to the shear yield stress. It is possible that the value of K~ic is 
lower than 45.2 ksi ~v/i-m. This will change the shape of KI/KIc versus 
K~I/KH~ curve in Fig. 6 from a straight line to a slightly convex (elliptical 
shape) curve. However, as shown in Fig. 9, Kiic cannot be much lower 
than 35.0 ksi X/re. since it required an applied K~I of 35.0 ksi V /~ .  in the 
presence of the applied KI of 10.5 ksi x,/i-n~, to fracture the specimen. 

In order to eliminate the effect of uncertain value of Knc on fracture 
criterion, the data of 4340 steel specimens of Fig. 6 are plotted as K~ 
versus Kn in Fig. 9. The plot shows that the fracture criterion F(KI,Kn) 
for 4340 steel under combined Modes I-II is a straight line relationship 
between KI and KII, namely, K~ + KII ~ KI~. As mentioned before, the 
fracture criterion for 4340 steel is significantly different from that defined 
by Eqs 2 or 3, or that inferred from the data of Wilson [4] and Pook [5]. 
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FIG.  9 - - K t  versus KI1 at fracture for 4340 steel cracked plate under combined Mode 1-11 
loading. 
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42 FRACTURE ANALYSIS 

Mode I-IIITests 

Ten cylindrical specimens containing circumferential cracks (round 
notched bars), as shown in Fig. 3b, were loaded to failure at room tem- 
perature in pure tension, in combined tension and torsion, and in pure 
torsion to investigate the effects on fracture of K~, K~ and KHI, and Kxii. 
Since KI is dependent on the tensile load P only and KH~ is dependent on 
the torque T only, the ratio of Kx/K~H was controlled by the proper ratio 
of PIT. Two specimens were tested for each of these approximate ratios 
of Kt/Km: ~o, 2, 1, 0.5, 0. The stress intensity factors KI and K m  were 
calculated according to the following equations [4,14,15] based on the 
fracture load PF and the fracture torque TF 

) P r  (4) D -- 1.27 D 1"5 /s = 1.72 ~ -  

TF 
KIll = 0.41 (5) F2.5 

where D is the gross diameter of the bar and d and r are the diameter and 
the radius of the bar in the plane of the crack, respectively. The results of 
the combined mode fracture I and III are plotted in Fig. 10 as KI versus 
KIH. The results in Fig. 10 indicate that the failure criterion can be reason- 
ably described by a quadratic equation in K~ and KH~. The probable cri- 
terion under combined mode fracture is shown by the curve in Fig. 10. 
The results show that an applied tearing mode stress intensity factor (KHI) 
approximately equal to or less than 70 percent of Kmc has little effect on 
the opening mode stress intensity factor h i ,  at which the specimen fails. 
Similar results for the combined Modes I-III interaction have been reported 
for 7075-T651 [4], DTD 5050 and HE 15W aluminum alloys [5], and K9 
tool steel [5]. Similarly, applied K~ values approximately equal to or less 
than 70 percent of K~o have little effect on the tearing mode stress intensity 
factor K m  at which the specimen fails. 

Figure 11 shows the tensile load versus tensile axial displacement and 
torque versus angular displacement for various KI/Km ratios. Tensile 
load versus displacement curves do not exhibit any nonlinearity almost up 
to fracture for any K~/Km ratio. However, torque versus angular displace- 
ment plots exhibit significant nonlinear behavior for KI/Km ratios smaller 
than 1.16, indicating plastic flow took place. The specimen (3 RNB-10) 
tested under pure tension fractured at net stress (~ = 4PF/~rd 2) in the 
cracked section of 68 percent of tensile yield stress while the specimen 
(3 RNB-5) tested under pure torque failed at the net maximum shear stress 
(r -- 16 TF/~rd 3) of 169 percent of shear yield stress. This as well as torque- 
angular displacement records show that extensive plastic flow took place 
prior to fracture under pure torsion. 
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FIG. lO~Combined Mode 1-111 interaction curve ]'or 4340 steel (round notched bar) 
at room temperature. 

Figure 12 shows the fracture surfaces of the specimens subjected to 
various loading conditions of K z / K m .  The specimen subjected to pure 
tension (3 RNB-10) had a flat fracture. Specimens with K I / K I n  ratios of 
2.30 and 1.16 (3 RNB-1I and 3 RNB-12) did not have a flat fracture. 
However, the fracture surfaces had the same texture as that of the pure 
tension fracture. This, and the results in Fig. 10 indicate that Mode I (KI) 
played the predominant role in the fracture of these specimens. The texture 
of the fracture surface of the specimen subjected to a K I / K I n  ratio of 0.63 
(3 RNB-9) was similar to that of the fracture under pure torque indicating 
Mode III (Ku0 played the dominant role in the fracture. The fracture 
surface of the specimen subjected to pure torsion was flat with shear 
rubbing marks. 

Mode I - I I - I I I  Tests 

Ten flat specimens containing semi-elliptical surface flaws initially 
oriented at 4~ = 0, 22.5, 45, and 60 deg to the width direction were loaded 
to failure in pure tension in a gaseous nitrogen environment at -200~ 
(Fig. 2) to study the effects of opening Mode K~ and the combined opening, 
sliding and tearing modes of crack extension K~, KI~, and Km on fracture. 
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SHAH ON FRACTURE UNDER COMBINED MODES 4 5  

FIG.  12--Fracture surfaces of  round notched bars of  4340 steel subjected to combined 
Modes I and IlL 

In these specimens, inclined flaw peripheries are subjected to continuously 
varying values of KI, Kib and Kin. K~I does not exist at the maximum 
crack depth and KIH is negligible near the free surface. Crack depths for 
these specimens were about 50 to 60 percent of the specimen thickness, 
and the aspect ratios (a/2c) of the cracks were about 0.25. The stress 
intensity factors were calculated at the maximum depth and the length, 
Points A and B, respectively, in Fig. 13. Since the stress intensity factor for 
a surface flaw subjected to uniform shear stress is not available, the stress 
intensity factors KH and K~II for the specimens tested were calculated 
using a solution for an elliptical crack in a solid subjected to uniform 
shear stress [16]. The stress intensity factors Kx and K~I~ at the point of 
maximum depth were calculated by the following equations given in 
Refs 16 and 17. 

KI = MK~COS 24~ - ~  (6) 

g I I I  = M I I I  o c o s  q~ sin q~ V/Tra (7) 

where 

(1 - ~,) k ~ 
M I I I  = ( k  2 _ v) E(k) + k'~K(k) (8) 
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FIG. 13--Combined Modes  1-HI or 1-H interaction f o r  4340 steel specimens containing 
slanted surface f laws  and tested at - 200~ 

The stress intensity factors  at the surface (Point  B) were calculated by 
the fol lowing equations.  

KI = 1.11 cr cos 2 4' x / a / c  (9) 

KII = MII  ~ cos r sin r ~ (10) 

where 

k 2 ~/~c/c 
M H  = -- (k  ~ _ v) E(k )  + k'~K(k) ( l l )  

v is the Poisson 's  ratio,  k a = a2/c ~, k s + k '~ = 1, and K ( k )  and E(k)  are the 
complete  elliptic integrals of  the first and second kind, respectively. Figure 
14 shows fracture surfaces for  the specimens with ~ = 0, 22.5, 45, and 
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48 FRACTURE ANALYSIS 

60 deg. The fracture surfaces were completely flat for Mode I specimens 
with surface cracks inclined at 4~ = 0 deg. Fracture surfaces, for specimens 
with cracks inclined at 4~ = 22.5 and 45 deg had a stepped (ladder type) 
appearance near and around the flaw periphery. Fracture surfaces were 
flat and perpendicular to the applied loading starting from the end of the 
crack at the free surface (Point B), as shown in Fig. 14. For  specimens with 
cracks inclined at ~ = 0, 22.5, and 45 deg, fracture appeared to initiate 
around the point of the maximum crack depth where K~I is nearly zero 
and Kt and KIII are the highest. For  the specimens with cracks inclined 
at 4' = 60 deg, the fracture initiated near the point on the crack periphery 
at the free surface and transverse fracture, perpendicular to applied loading, 
occurred ignoring entirely the other portion of the flaw periphery. The 
combined mode data are evaluated in terms of K~-KHt at the point of 
maximum crack depth, A, and KI-K~ at the point near surface, B in Fig. 13. 
Figure 13 shows that applying KIH approximately up to 70 percent of 
Kmc has little effect on KI at which fracture occurs. 

Ten round specimens containing surface cracks (Fig. 3c) were loaded to 
failure at room temperature in pure tension, in combined tension and 
torsion, and in pure torsion. For  the cracked specimen under only torsional 
loading, KII does not exist at the maximum crack depth and K m  is negli- 
gible near the free surface. This is also shown by the results of three- 
dimensional frozen stress photoelastic experiments [12]. The flaw 
dimensions in all specimens were quite close except two specimens which 
had significantly large flaws. The range of flaw depths and lengths for the 
other eight specimens were 0.192 to 0.280 in. and 0.530 to 0.645 in., respec- 
tively. Results of these eight specimens are shown here. Since a good 
estimate for the stress intensity factor for this problem is not presently 
available, the results are shown in Fig. 15 in terms of the tensile stress at 
failure, ~F, and the shear stress at failure, rv. The actual failure stresses 
~v' (~F' = 4 PF/~-D2), and rF'(rr' = 16 TF/TrD "~) for the specimens with 
flaw depth a (0.192 < a 0.280) were converted to failure stresses av and re  
for the flaw depth of 0.240 in. by multiplying ~p' and rF' by the factor 
X/0.240/a. Failure stresses ~ and rv are plotted in Fig. 15. Once again, 
the results show that the tensile stress at failure is almost unaffected by the 
presence of shear stress up to 100 ksi which is approximately 70 percent of 
shear stress at failure under pure shear. Figure 16 shows a photograph of 
the fracture surfaces for these surface cracked cylindrical specimens for 
various ratios of ~F/rv. The specimen subjected to pure tension had a 
completely flat fracture. Most of the middle portion of the fracture surfaces 
of the specimens subjected to ~rv/ri, = 1.12 and 0.61 had textures similar 
to that of the pure tension specimens. Shear rubbing marks were observed 
on the periphery. The fractures appeared to be controlled by Mode I and 
to start at the maximum depth. The middle left portion of the fracture 
surface of the specimen subjected to ~ / r r  -- 0.27 had a texture similar to 
that of the pure tension specimen and the other portion of the fracture 
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FIG. 15--Fracture tests o f  4340 steel cylindrical specimens containing surface flaws 
(a = 0.24 in., 2c ~ 0.55 in.) subjected to simultaneous tension and torsion. 

resembled to that of the pure torsion specimen. The specimen subjected to 
pure torsion had a nearly flat fracture with shear rubbing marks over the 
fracture surface. F rom the examination of the fracture surfaces, it appears 
that fracture in all these specimens initiated near the maximum crack 
depth. Thus, it seems that for this specimen-loading configuration, the 
fracture originated under combined Mode I-III loading conditions. Since 
the constraint to crack tip deformation ratio is higher at the maximum 
crack depth than at the surface of the specimen, and since/<i and KIII are 
higher at the maximum crack depth [12], it is not surprising that the 
fracture did originate near the maximum crack depth. 

A composite plot for the combined Mode I-lII fracture is presented in 
Fig. 17 as Kl/gle versus K I I I / K I I I e  for round notched bar specimens, flat 
surface flawed specimens with inclined cracks and cylindrical surface 
flawed specimens. KIIIe at --200~ was not determined experimentally. 
Hence, the following linear relation was assumed for estimating gIIIe 
at -- 200~ 

Kiiic I = __KItIc 
KIc -200oF KIe room temperature 

Since all the surface flawed cylindrical specimens had nearly the same 
flaw sizes, and the failure stresses ~r and r r  are adjusted for a single flaw 
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FIG. 17--Kz/K~c versus K m / K n l ~  for  round notched bar specimens, inclined surface 
flawed flat specimens, and surface flawed round specimens. 

size, the ratios of K~/KIc  and KIII/KIIIc c a n  be calculated with little error 
by the following equations. 

K I / K I o  = a r  
or for the specimen subjected to pure tension 

K I I I / K I I I e  = rE 
rF for the specimen subjected to pure torsion 

Figure 17 shows that the nondimensionalized data, obtained from the 
room temperature testing of round notched bar specimens and surface 
flawed cylindrical specimens, and from --200~ testing of inclined surface 
flawed flat specimens, are in a general agreement. The results in the plot 
bear out the same conclusions as drawn previously for the interaction of 
K~ and Km  on failure. Figure 17 shows the probable fracture criterion and 
the lower bound of the fracture criterion for the combined Mode I-III 
loadings. The probable fracture criterion is represented by the empirical 
equation ( K I / K I e )  2 q- (KI I I /KI I I c )  4"75 = 1. The lower bound of the fracture 
criterion is represented by the quadratic equation (KI /KIc )  2 + 

(KIH/Ki I Io)  2 = 1. 

Conclusions 

The cracks subjected to the combined Mode 1-11 crack surface deforma- 
tions propagate in a plane that is rotated with respect to the original crack 
plane and the direction of crack propagation can be well predicted. The 
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empi r i ca l  r e l a t i o n s h i p / < i  + Kit  ~ Kic or  KI/KIc  + KEI/KIIc = 1 repre-  
sents the  f rac ture  c r i te r ion  adequa te ly  for  4340 steel specimens .  

F o r  the  cracks  subjec ted  to  c o m b i n e d  M o d e  I - I I I  and  I - I I - I I I  c rack  
surface  de fo rma t ions ,  it was found  tha t  the  app l i ca t i on  o f  K m  up to a b o u t  
70 percent  o f  KH~c has  l i t t le  effect on K~ at  which f rac ture  occurs .  S imi lar ly ,  

the  app l i ca t i on  o f  K~ up  to  a b o u t  70 percen t  of  Kic has  l i t t le  effect on  K i n  at  
which f rac ture  occurs.  The  lower  b o u n d  o f  the  f rac ture  c r i te r ion  F(K~,KIII) 

can  be adequa te ly  descr ibed  by  a q u a d r a t i c  equa t ion  of  K~ and  K u i  or  

I ( I /Kic  and  K u i / K m c .  
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Crack Approaching a Hole 
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ABSTRACT: Effects of region of stress concentration ahead of a running crack 
in Homalite-100 sheets with a centrally located hole were studied by dynamic 
photoelasticity. Mode I dynamic stress intensity factors and corresponding 
dynamic strain energy release rates and crack velocities as well as the correspond- 
ing Modes I and II static stress intensity factors, static strain energy release rates 
and strain energy density factors were determined. As the crack approached the 
hole, the static Mode II stress intensity factor rose to a peak value of approxi- 
mately 10 to 25 percent of the Mode I stress intensity factor. The curved crack 
path appeared to have followed a path of maximum static strain energy release 
rate or of minimum static strain energy density factor. Our past experiences in 
dynamic crack propagation problems indicate that, other than local perturbations 
due to dynamic effects, either of the aforementioned static propagation laws 
should be the governing factor for the crack path in fracture dynamics. 

KEY WORDS: crack propagation, fracture properties, mechanical properties, 
photoelasticity, stresses, strains 

W h e n  a r u n n i n g  crack in  brit t le mater ial  approaches  a region of high 

stress concent ra t ion ,  one would expect the crack to curve in to  such region 
of high strain energy available for the f rac tur ing  process. The authors  have, 

over a per iod of years, accumula ted  evidence that  a region of high stress 
concen t ra t ion  is no t  necessarily a s t rong a t t rac t ion  to bend  the path  of a 
r u n n i n g  crack f rom its in tended  straight path  of propagat ion .  Like m a n y  

other exper imental  invest igat ions,  these results were ob ta ined  inadver ten t ly  
while invest igat ing the crack arrest capabi l i ty  of a hole ahead of a r u n n i n g  
crack [1]. 4 In  the course of this and other invest igat ions,  cracks in six out  

of  eighteen tests missed the arrest ing hole which was located straight  
ahead on the in tended  crack path. In  two tests, the crack came as close as 
0.09 in. f rom the hole boundary ,  passing through a region which was in a 
state of compress ion  prior to the arrival  of  the crack tip. These near  misses, 

x Professor, Department of Mechanical Engineering, University of Washington, Seattle, 
Wash. 98195. 

Senior engineer, The Boeing Commercial Airplane Company, Seattle, Wash. 98124. 
Consultant, J, Ray McDermott and Company, New Orleans, La. 70150. 

4 The italic numbers in brackets refer to the list of references appended to this paper. 
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which apparent ly  could not  be explained solely by the presence of  a region 
o f  high stress concentra t ion,  provided an oppor tun i ty  to s tudy some pa-  
rameters which affect the path o f  a p ropaga t ing  crack. An  effort was thus 
under taken to evaluate these experimental  results which otherwise would  
have been considered failures in experiments.  

Since two-dimensional  e las todynamic  solutions o f  an accelerating or  a 
decelerating crack as well as that  o f  a constant  velocity crack approach ing  
a hole are no t  in sight, the authors  resorted to their proven method  o f  
approach  used in investigating other  phenomena  in dynamic  fracture. 
Briefly, the procedure  was to use appropr ia te  static finite element analysis 
which was then interpreted together  with the limited dynamic  photo-  
elasticity data  o f  this intriguing problem where the crack missed its intended 
arresting hole. This approach  was used with some success to analyze the 
complex problem of  crack branching in a recent paper  [2]. An  account  o f  
our  prel iminary findings on parameters  which govern the crack path is 
given in the following. 

Experimental Procedure and Results 

The modified Cranz-Schardin  16 spark-gap camera  and associated 
dynamic  polar iscope used in this investigation were described in previous 
papers [3,4]. The test specimens considered in these series of  tests con-  
sisted o f  ~ - i n .  and 1//~-in. thick Homali te-100 plates with I0 by 10-in. test 

TABLE 1--Summary of experimental results. 

Test Plate Thickness, Hole Size and E Top 
No. in. Location ~ Bottom Remarks 

1 0.382 0.500 in. dia, 7 in. from 0.00125 Crack arrested at hole 
top of plate on 0.000625 
centerline 

2 0.395 0.150 in. dia, centrally 0.001262 Crack ran 0.09 in. by 
located 0. 000841 the hole 

3 0.125 0. 500 in. dia, 7 in. from 0.00130 Crack ran 0.16 in. by 
top of plate and 0.5 0.00065 the hole 
in from centerline of 
plate 

4 0.383 0.250 in. dia, centrally 0.0024 Crack ran 0.01 in. by 
located 0. 0006 the hole, unstable 

crack initiated by 
impact 

Crack ran 0.10 in. by 
the hole 

Crack ran through the 
hole after being 
arrested (Ref 1) 

5 0. 376 0.150 in. dia, centrally 0.00109 
located 0.00109 

6 0. 393 0.150 in. dia, centrally 0. 00109 
located 0. 00109 

Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



KOBAYASHI ET AL ON CRACK APPROACHING A HOLE 55 

section loaded in a fixed grip configuration. The prescribed boundary 
conditions included both uniform and linearly decreasing displacements 
along the fixed gripped edges of the specimen. Crack propagation was 
initiated by either loading the precracked single, edge-notched plate to its 
fracture load or impacting the crack by a wedge in a subcritically loaded 
plate [5]. The hole ahead of the running crack was either 0.50 or 0.15 in. in 
diameter. Testing conditions and some results from six tests are summarized 
in Table 1. Figure 1 shows a running crack being pulled into the arresting 
hole in the region where the state of stress was nearly compressive prior 
to the arrival of the crack tip. This test differed from similar test results 
reported in Ref 1 in that the crack almost missed the hole. Figures 2 and 3 
show the running crack circumventing the hole with a gap as close as 
0.16 in. in Fig. 2. The paths of running cracks shown in Fig. 3 started out 

FIG. 1--Dynamie photoelastie patterns o f  a crack running into a 0.50-in.-diameter hole 
(Test 1). 
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FIG. 2--Dynamic photoelastic patterns o f  a crack running past a 0.50-in.-diameter hole 
(Test 3). 

inclined to the centerline of the plate due to misalignment of the starter 
crack. Such initial conditions apparently could not be offset by the localized 
region of static stress concentration at the hole despite the inner connected 
isochromatics shown in the intermediate frames of these figures. The 
crooked crack path in Fig. 3 shows evidences of intermittent arrests of the 
crack. The crack missed the hole in this test and continued through the 
plate despite such quasi-static running condition [5]. 

Most of the Homalite-100 sheets used in these experiments were cali- 
brated by Bradley [3] who reported an average dynamic modulus of 
elasticity, Poisson's ratio, stress-optic coefficient, and static fracture 
toughness of 675 ksi, 0.345, 155 psi.in./fringe, and 579 psi ~v/in~., respec- 
tively. Additional calibration data were obtained recently by Wade [6] on 
other batches of 3/~-in. thick sheets which yielded material and optical 
properties within 10 percent of those obtained by Bradley. 
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FIG. 3--Enlarged photograph o f  a running crack in a plate subjected to linearly increashtg 
displacements at its two edges (Test 4). Crack was started by impacting the starter crack by 
a projectile with a velocity o f  1300 inches pet" second. This frame was photographed 402 
microseconds after the crack started to run. 

Analytical Background 

Initially, Mode I dynamic stress intensity factors, KrD, were determined 
from dynamic isochromatics using Bradley's approximate procedure [4]. 
Curving of a running crack, however, cannot be explained by Mode I stress 
intensity factor alone. Unfortunately, Mode II dynamic stress intensity 
factor, KnD, could not be determined separately due to insensitivity of the 
dynamic photoelastic procedure used. The fact that Kim was small made 
it possible to estimate the dynamic strain energy release rate, ~D, from KID 
alone following the procedure used in Ref 7. Briefly, this procedure uses 
Sih's near field solution [8,9] for a crack propagating at a constant velocity 
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in an infinite plate. The dynamic isochromatic lobe for a constant velocity 
crack can then be represented as 

FK~F~(sl,s~)7~ 
= k 

where 

K ~ =  

S1 = 

$2 

] ~ ( s 3  + g~(s~) = 

f~(s) -- g2(sj) = 

s = 

Cl 

{[(1 + s~ 2) (1 + s l O f ( s l )  - 4 s l s~ f ( s~ ) ]  2 

+ 4s~(l + s~2)2[g(sl) -- g(s2)] ~} (1) 

the static Mode I stress intensity factor, 

1 

V/cos 20 + sj 2sin s0'  j = 1 ,2;  

1 
cos0 + sj 2 s i n 0 t a n 0 '  j = 1 ,2;  

the crack velocity; 

E(1 -- v) 
(1 + v)(1 -- 2v)' compressional wave velocity; 

E, G, and v = 

p 

Fl(S~,S~) = 

~ , shear wave velocity; 

the modulus of elasticity, shear modulus, and Poisson's 
ratio, respectively; 

the mass density; and 

the dynamic correction factor which varies with 
boundary and initial conditions. 

~D 

~s 
= (1 + ~)sl(1 - s22) [4sis2 - (1 + s22) 2] F~(sl,s2) (2) 

Using Eq I, the unknown function of Fl(sl,s2) and hence the dynamic 
stress intensity factor, which varies slightly with angular orientation 0, 
can be determined from the dynamic isochromatics. A more logical 
criterion for fracture dynamics, however, would be from the viewpoint of  
strain energy release rate which is independent of such angular orientation. 
Sih has derived the dynamic strain energy release rate for a constant 
velocity crack as [7,8]. 
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where 

v = the Poisson's ratio, 
~D = the dynamic strain energy release rate and is considered as the 

dynamic resistance to fracture, and 
~s = the elastic strain energy release rate determined from static 

analysis. 

dT 
~ D  - -  ~ S  "4- - -  0 (3) 

da 

where 

dT 
- -  = the kinetic energy release rate?  
da 

Recapitulating, the procedure for estimating a pseudodynamic strain 
energy release rate 6 is to determine first, by Eq 1, the dynamic correction 
factor, Fl(sx,s~), from the dynamic photoelastic pattern. The dynamic 
strain energy release rate is then calculated by using Eq 2. If necessary, the 
kinetic energy release rate can be computed by using Eq 3. 

Static stress intensity factors and static strain energy release rate necessary 
in the previous procedure were determined by the method of  finite element 
analysis. Unlike previous problems analyzed by the method of finite 
element analysis, problems considered in this investigation lacked sym- 
metry and thus the entire plate had to be gridded for finite element analysis. 
Figure 4 shows a typical finite element layout involving 764 elements and 
693 nodal points with crack tip element dimensions of 1.0 X 10 --~ in. The 
static stress intensity factors were obtained from the strain energy release 
rate which can be determined directly by comparing values of total strain 
energy of two cracked plates with slightly different crack lengths. Since 
the curved crack in the vicinity of  the hole was subjected to a combined 
Modes I and lI deformation, the two Modes of 1 and II stress intensity 
factors, KI and K~I, needed to be separated. An analytical relation between 
stress intensity factors and strain energy release rate is not available for a 
sharply bent crack but the well-known relation for a straight crack can be 
used for cracks with continuous curvature. The procedure used to separate 
Kx and KII was to first calculate crack opening displacements within the 
acceptable 10 percent crack tip distance of a small segment which could be 
considered straight. From these crack opening displacements, the ratios of 
KI and Kn were obtained and used to calculate more accurate stress in- 
tensity factors from the strain energy release rate. 

The prior procedure of separating the two modes of stress intensity 
factors of a curved crack is cumbersome, particularly for a sharply curved 

This term accounts for the difference between ~D and ~s [10]. 
6 The "pseudo" refers to a constant velocity crack which obviously is not the observed 

condition in our experiments. 
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FIG. 4---Typical finite element mesh in the vicinity of hole (Specimen 3). 

crack, but is not necessary if only the strain energy release rate due to 
crack extension around a sharp bend is sought for. Recent work by 
Palaniswamy and KnaUss [11] suggests that static crack extension follows 
the maximum strain energy release criterion instead of the maximum K~ 
criterion by Erdogan and Sih [12]. This preliminary finding would also be 
applicable to dynamic crack extension. 

The method of finite element analysis was thus used to estimate the 
directions of maximum static strain energy release rate and of minimum 
strain energy density factor in order to evaluate parameters which led to 
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the crack curving in or away from a hole. For  the former, the strain energy 
before and after crack extension were calculated for the actual crack 
extension as well as two hypothetical directions of crack extension in order 
to assess the relative magnitude of the strain energy release rates with 
directions. 

As for the strain energy density factor, S, Sih has shown that for the 
state of plane stress [13] 

1 
S -~ - -  [ a l l K i  2 q -  a l 2 K I K I I  Jr- a22Kii 2] (4) 

7r 

where 

1 I (  v ) 1 = - - -  cos0 (1 + cos0)  , all 1-6G 3 4 1 + v 

' I ( a12 = l ~ ( 2 s i n 0 )  c o s 0 - -  1 -- 2 v , 

a22 = 4 1 1 + (1 - c o s 0 ) +  (1 + cos 0) (3 cos 0 -- 1) . 

Equation 4 involves the two current stress intensity factors before crack 
extension. With Sih's postulated criterion of fracture, which states that 
the crack propagates in the direction of minimum strain energy density 
factor, the directon of the crack path was then predicted and compared 
with actual measured values. Obviously, Sih's postulate is more con- 
venient to use in comparison to the maximum strain energy criterion which 
requires a trial and error procedure to search for the direction of maximum 
strain energy release rate. 

Results 

Figure 5 shows a comparison between static and dynamic isochromatics 
in the vicinity of the hole for Specimen 1. Higher order dynamic and 
static isochromatic fringes are indicated on the left-hand side of the crack 
tip. By contrast, Frames 9 and 10 in Fig. 2 show an almost symmetric 
distribution of high stress regions on both sides of the crack tips accounting 
for the cracks running past the 0.50-in.-diameter hole. Regions of higher 
stress shown in Frames 11 and 12 of Fig. 2, on the other hand, were not 
influential enough to pull the crack into the 0.50-in.-diameter hole. 

Figure 6 shows the static and dynamic strain energy release rates, @s and 
~D, and crack velocities, C, of Test 1. These results are similar to those 
reported previously [7] except for the fluctuation in stress intensity factors 
in the vicinity of the hole. The sudden drop in dynamic strain energy 
release rate prior to the crack tip passing the 0.150-in.-diameter hole as 
shown in Fig. 6 is probably due to the interaction with reflected stress 
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N U M B E R S  REF 
ISOCHROMATIC 
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---EXPE RIMI: 
RESULTS 

FIG. 5--Static and dynamic isochromatic as the crack top approaches the hole (Frame 9 
in Fig. 1). 

waves. The static strain energy release rate, and the crack velocity on the 
other hand, does not decrease until the crack tip is about to pass the edge 
of the hole. 

Figures 7 and 8 show static strain energy release rate and strain energy 
density factors, ~s and S, and the static stress intensity factors, KI and Kn, 
along the crack paths in the vicinity, of the hole. Also shown are the pre- 
dicted crack angles using Sih's postulate. Remarkable agreement between 
the measured and predicted crack paths is noted. 

Discussion 

Relations between the static strain energy release rate, the dynamic 
strain energy release rate and crack velocities obtained in this investigation 
are similar to those reported in Ref 6. The reflecting stress waves at the 
hole and at the plate boundaries caused time dependent fluctuations in 
dynamic strain energy release rates shown in Fig. 6. The large dynamic 
strain energy release rate, which remained larger in absolute value than the 
static strain energy release rate in Fig. 6, is due to the tension field in the 
wake of a circular stress wave emanating from the 0.150-in.-diameter hole. 
This circular pattern of stress wave was generated by the compression 
wave, which emanated from the moving crack tip and impacted on the 
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FIG.  6----Static and dynamic strain energy release rates and crack velocity (Specimen 2). 

stress free hole boundary. The wave front of this circular stress wave can 
be identified in Frames 9 through 13 in Test 2. 

Returning to Fig. 5, the dynamic isochromatic lobes left of the crack are 
larger in size and are tilted forward with respect to the corresponding 
lobes right of the crack. This difference in dynamic isochromatic lobes 
can be studied by matching the isochromatics of a straight crack for 
which an analytical solution exists. The close similarity in the dynamic and 
the matched isochromatics were discussed in Ref 7. The matched iso- 
chromatics can be represented in terms of the local stress field near the 
tip of a straight crack as 

rm~x2 - 87rr KID sin ~04- 2a ~ - s i n 0 s i n ~ - - 4 -  

I ~ 2 r (  3O O2) 1 +KIDKHD 2sin20-4-6 ~ s i n ~  4- 3sin 

4- KIID 2 (1 4- 3 cos 2 0) / (5) 
) 
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F I G .  7--Static strain energy release rate, stress intensity factor, and crack orientation in 
the vicinity o f  hole (Specimen 1). 

where 

r and 0 = the familiar local coordinates at the crack tip, 
a = the length of  the straight crack in the edge-notched speci- 

men, and 
6 = a0=/~ = the remote stress factor discussed in Ref  5. 

Figure 9 shows shape changes in the local isochromatic lobes with varying 
KnD/KID ratios and remote stress factors. 

Using Fig. 9, the isochromatic pattern in Fig. 5 can be related to a local 
stress field with dynamic stress intensity factor ratio of  KIID/K~D = --0.1 
and 6 ~ 1 for an hypothetical  straight crack. The relatively large value of  
K~m indicates that the dynamic strain energy release rate determined by 
ignoring KIID in Eqs 1 and 2 could be in error, particularly in the near 
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FIG. 8--Static strain energy release rate, stress intensity Jactor, and crack orientation in 
the vicinity of hole (Specimen 2). 

vicinity of the hole. Unfortunately, the resolution limit of our present 
dynamic photoelasticity system is such that quantitative analysis of such a 
small region cannot be conducted; thus much must be inferred from the 
static finite element analyses. Inspection of Fig. 5 shows that as far as 
KIID/KID ratios are concerned, these ratios can be inferred from the 
corresponding static K~/K~ ratios derivable from the results shown in 
Figs. 7, 8, and 10. 

Figure 7 shows a Kn/K~ ratio of approximately 1~ prior to the crack 
curving back towards the hole. Undoubtedly, this large component of KII 
was instrumental in bending the crack path sharply at this point. In con- 
trast, Kh/KI ratios are less than 10 percent of the corresponding K1 in 
Fig. 8 where the crack bypassed the hole. The small static KII/K~ ratios 
also imply local symmetry and thus this part of our finding is in agreement 
with earlier findings by Cotterell [14]. The high K I I / K I  ratio of ~ in Fig. 7, 
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FIG. 9--Shape changes in isochromatics with KIt /KI ratio. 

on the other hand, showed that the crack curved to reduce such high 
KII/KI in order to run along the line of local symmetry. 

Referring to Fig. 10, remarkable agreement between measured crack 
angles and angles predicted by Sih's postulate adds further evidence that 
the overall crack path of a propagating crack is probably predetermined 
by the static field prior to crack propagation. Rapid fluctuations in dynamic 
strain energy release rates can only sway the crack path temporarily from 
its predetermined path as evidenced in Fig. 3. If this instantaneous local 
disturbance occurs when the crack tip is very close to the hole boundary, 
conceivably such dynamic effect could be the difference between crack 
arrest at the hole or crack bypassing the hole. Local depressions of ~s 
and S in the vicinity of the hole as shown in Fig. 8 are in qualitative agree- 
ment with similar results obtained for a static crack bisecting the distance 
between two colinear holes [15]. 

The results in Fig. 10 show that the static strain energy release rate is 
slightly more sensitive to crack tip orientation than the corresponding 
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F I G .  lO---Static strain energy release rate, stress &tensity factor, and crack orientation 
(Specimen l). See Fig. 7 for  location o f  Points A and B. 

static strain energy density factor. This small difference is more than com- 
pensated for by the closed form expression for predicting the direction of 
crack propagation by the S-theory. As mentioned earlier, the strain release 
rate criterion requires a trial and error procedure to establish the maximum 
direction. 

Finally, the isolated results in Fig. 9 indicate that the KII = 0 criterion 
for predicting crack path may not always be valid while the maximum ~s 
criterion and the minimum S criterion apparently remained valid in this 
case. 

Conclusions 

Preliminary results show that the static stress field ahead of the propa- 
gating crack tip governs the crack path with the exception of local dis- 
turbances caused by transient stress waves. The static maximum strain 
energy release rate criterion and the static minimum strain energy density 
factor criterion can both be used to predict the crack path of a propagating 
crack. The seemingly mysterious phenomenon of a crack bypassing the 
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high stress concen t ra t ion  area of a hole can be readily explained on the 
basis of such static calculat ions.  
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sional Effects on the Stress Intensity Factors of Compact Tension Specimens," 
Fracture Analysis, ASTM STP 560, American Society for Testing and Materials, 
pp. 69-80. 

ABSTRACT: The stress freezing technique of photoelasticity was utilized to 
study the stress intensity variation between full thickness and center slices of 
compact tension specimens for various crack lengths. Specimen geometries 
covered an a/w range of 0.3 to 0.7 for values of w/B of 2 and 3.5. 

Normalized stress intensity factor results for geometries within ASTM Test 
for Plane-Strain Fracture Toughness of Metallic Materials (E 399-72) specifica- 
tions (that is, w/B = 2.0, a/w = 0.50) agreed with the ASTM solution to within 
experimental error. However, for a/w values outside the ASTM range (0.45 to 
0.55), experimental results were measurably higher than the ASTM results for 
w/B = 2.0 and averaged 13 percent higher for all a/w studied at w/B = 3.5. 
The center slice SIF was found to be 5 to 10 percent higher than the through the 
thickness average on all tests. 

KEY WORDS: fatigue (materials), photoelasticity, cracking (fracturing), stresses, 
fracture properties 

Nomencla ture  

¢ij In -p lane  stress componen t s  
K~ Mode  I stress intensi ty factor ( Ibs/ in .  3n) 

r, 0 Polar  coordinates  (in., radians)  
a Crack length (in.) (see Fig. 2) 

w, B Specimen width (in.) (see Fig. 2), specimen thickness (in.) 
r . . . . .  rm M a x i m u m  shearing stress in plane perpendicular  to crack 

border  (psi) 
K~p Appa ren t  stress intensi ty factor ( lb / in? /2)  

KTSCM Approx imate  stress intensi ty factor ( lb/ in2/2)  

1 Graduate research assistant and professor, respectively, Department of Engineering 
Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, 
Va. 24061. 
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70  FRACTURE ANALYSIS 

n Fringe order 
f Material fringe value (lb/in.) 
t Thickness (in.) 

A substantial effort, both from the point of view of analysis as well as 
fracture toughness testing, has been carried out in recent years towards 
the development of a universal compact plane-strain fracture toughness 
test specimen. The analyses have taken the form of boundary collocation 
[1-5] 2 and finite element solutions [4,5,6]. The correlation of the published 
results of fracture toughness testing programs is found in Refs 3 and 7 
together with tentative test specifications and procedures. In a discussion 
in Ref 3, the importance of studying the three-dimensional effects photo- 
elastically was noted. More specifically, the variation in the three-dimen- 
sional effect upon the stress intensity factor (SIF) with thickness and 
crack length was found to be virtually unknown. Although photoelastic 
stress analysis has been carried out on geometries similar to the current 
compact tension specimen [8], and the SIF has been estimated for the 
center slice [9], apparently no study has been directed towards measuring 
the three-dimensional effect upon the SIF directly for varying thickness 
and crack length. Moreover, except for the analysis of a highly idealized 
model [lO], analytical studies have been essentially two dimensional. The 
present investigation was undertaken to study this effect photoelastically 
for a range of compact tension specimen crack lengths and thicknesses of 
interest to the American Society for Testing and Materials and agencies 
utilizing the compact tension test in order to determine the feasibility of 
extending the specimen geometrical ranges prescribed by ASTM Test for 
Plane-Strain Fractures Toughness of Metallic Materials (E 399-72). 

Analytical Considerations 

Photoelastic studies of crack tip stress fields have been carried out by a 
number of investigators [11-20]. One of the major difficulties in such 
studies has been the problem of extracting valid SIF values from the 
photoelastic data. This problem has received considerable attention recently 
by Marloff and his associates [9], Kobayashi and his associates [21-24], 
and more recently by the author and his associates [25-29]. The author 
and his associates have developed two methods for extracting the SIF 
which have been used in a wide variety of problems. One of these methods, 
called the Taylor Series Correction Method (TSCM) will be employed in 
the present study. The philosophy and use of the method are described 
in the sequel. 

2 The  italic number s  in brackets  refer to the  list o f  references appended  to this paper.  
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It  is well known that  the elastic stresses near a crack tip in a plane 
normal  to the crack border take a familiar singular form which may be 
written as 

KI 
a i j -  f i j(O) i , j  = x , y  (1) 

r l / 2  

where KI is the stress intensity factor and r,O are measured f rom the crack 
tip as shown in Fig. 1. Since zij involve singular terms, then the maximum 
in plane shearing stress 

1 
r . . . .  = ~ [(%u - a~ )  2 § 4r~y2] 1/2 (2) 

will also involve singular stresses. The authors have shown [25] that  the 
blunted zone created by stress freezing photoelasticity near a crack tip 
creates a nonlinear zone very near the crack tip, but this zone is very local 
and light reflections f rom the crack tip ordinarily preclude measurements 
this close to the crack tip. On the other hand, there is no way to determine 
precisely how far away from the crack tip one can be before nonsingular 
terms in the stress description begin to contribute appreciably to the 
photoelastically measured T . . . .  Since fringe loops around a crack tip tend 
to spread furthest along a line approximately in a direction normal  to the 
crack surfaces and passing through the crack tip, data are always taken 
along this line, reducing rmax to the form 

Tmax = Tm.~(r) (3) 

In order to account for boundaries other than crack surfaces themselves, 
TSCM expresses rr~.x in the form 

A M 
- - - -  4 -  ~ _ ,  B N r  N (4) Tmax El/2 

N=0  

A computer  program has been written to receive input data  in the form of 
r ..... r f rom the photoelastic data  and to compute A, BN from the data 
using a least squares procedure beginning with only the first term (namely, 

r' 

F I G .  1--Local coordinates. 
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7 2  FRACTURE ANALYSIS 

A) then A, B0, then A, B0, B~, etc. recomputing A each time until the Mth 
term contributes an amount  to rm~x less than the estimated experimental 
error. In this region, Eq 4 is truncated and A = K~/(8rr) ~/~ is determined. 
There is no specific truncation criterion and some judgement on the part 
of the investigator is required here. The convergence of the program is 
verified in Ref 27. 

For two-dimensional problems, the method corresponds to the applica- 
tion of the Williams Stress Function along 0 = 7r/2. Details of the program 
are found in Ref 27. 

The Experiments 

A set of photoelastic experiments was designed to study the influence of 
crack length upon the stress intensity factor for two thicknesses and the 
three-dimensional effects thereof. The basic geometry of the test specimens 
is given in Fig. 2 and the dimensions are found in Table 1. The use of the 
30 deg notch to simulate the crack tip stress field was suggested by the 
results of investigations in Ref 30 and was verified by comparing pilot test 
results with Wilson's boundary collocation solution. Pilot tests revealed 
that, due to the very low threshold value of K~e for the model material 
above critical temperature, live loads were restricted to very small values 
and a counterweight was necessary in order to maintain Mode I loading on 
the crack tip. The force system consisting of the dead weight of the lower 
half of the specimen, the counterweight, and the added pin reaction served 
to intensify K~. Moreover, the use of full-size pins above critical tempera- 
ture produced erratic results due to variations in the contact surface and 
frictional effects as the soft material deformed around the pins. In order to 
alleviate the several difficulties just described, the authors used pins which 
were approximately one-half the hole size for the stress freezing tests and 

----'1 j 

�9 
/t ..\ 

W 

w, 2,o00,-r-- _ oo2 
~'30 ~ (app.) 

FIG. 2--Specimen configurations. 
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TABLE 1--Dimensions of the test specimens. 

Test 

Geometry 

Room Temperature Stress 
Values Freezing 

Values 
K~,~p '~ BX/w Kthr b BX/'~ - -  

a (in.) w (in.) B (in.) a/w w/B P" P Kcs~/KTT d 

A-1 
A-2 
A-3 
A-4 
B-1 
B-2 
B-3 
B-4 
B-5 
B-6 

0.525 3.50 1.750 0.30 2.00 6.0 5.9 1.08 
0.875 1.75 0.875 0.50 2.00 9.7I 9.6 1.10 
1.05 1.75 0.875 0.60 2.00 15.V 13.5 1.10 
1.23 1.75 0.875 0.70 2.00 22.3I 21.4 1.10~ 
1.40 3.50 1.00 0.40 3.50 8.4 7.3 1.05g 
1.58 3.50 1.00 0.45 3.50 9.2g 8.3 1.06 
1.75 3.50 1.00 0.50 3.50 10.5 9.6 1.07 
1.93 3.50 1.00 0.55 3.50 12.3o 11.3 1.08g 
2.10 3.50 t .00 0.60 3.50 15.6 t3.5 1.09 
2.45 3.50 1.00 0.70 3.50 24.5 21.4 1.10 

Kcxp = experimental SIF averaged through thickness at room temperature. 
b Ktheo = theoretical SIF ASTM E 399-72. 

Kcs = experimental SIF center slice--stress frozen, 
g KTT = experimental SIF through thickness. 
* P = applied load. 
I Average of two tests. 
g Estimated or extrapolated from tests on similar or identical geometry. 

were able  to ob t a in  cons is ten t  results.  F u r t h e r m o r e ,  the  value  of  KI was 
es tab l i shed  f rom t h r o u g h  the th ickness  r o o m  t e m p e r a t u r e  fr inge pa t t e rns  
for  each test  (us ing full-size pins and much  larger  loads  than  those  at 
stress f reezing t empera tu res )  and  the th ickness  effect was ob t a ined  by  
stress f reezing in a subsequent  test  on the  same specimen.  This  a p p r o a c h  
impl ies  tha t  the auxi l ia ry  load ing  sys tem cons is t ing  o f  the  weight  of  the  
lower  ha l f  o f  the  spec imen,  the  counte rweigh t ,  and  a dd i t i ona l  pin  forces  
have  no influence upon  the va r ia t ion  in K~ t h r o u g h  the spec imen  thickness .  
Pi lo t  tests using only the auxi l ia ry  l oad  system with the A-3 geomet ry  
s u p p o r t  this  a s sumpt ion .  

Model  Manufac ture - -A l l  mode l s  were m a d e  f rom P L M - 4 B  or Hyso l  
4290 stress f reezing pho toe la s t i c  mate r ia l s  by  mil l ing off 50 mils  f rom all  
surfaces and  ma in t a in ing  A S T M  to le rances  t h roughou t .  Al l  c racks  were 
made  with c i rcular  saws. 

Test Procedure--Af ter  inspect ion  in the  po la r i scope  to ensure stress- 
free specimens,  the spec imens  were l oaded  at  r o o m  t e m p e r a t u r e  t h rough  
full-size pins  in a dead  weight  system and t h rough  the th ickness  f r inge 
p h o t o g r a p h s  were ob ta ined .  Specimens  were then coun te rweigh ted ,  hung  
in the  oven,  and hea ted  s lowly to  cr i t ical  t e m p e r a t u r e  (275 or  300~ 
Af te r  a t he rma l  soak  o f  a b o u t  10 h, the  live load  was app l i ed  as a dead  
weight  t h rough  the lower  pin  and coo l ing  at  a ra te  o f  a b o u t  2 ~  was 
car r ied  out  under  full load.  U p o n  cool ing,  the spec imen was placed in a 
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74 FRACTURE ANALYSIS 

tank of oil of the same index of refraction as the model material, and full 
scale and local fringe photographs were made. A full-scale fringe photo 
through the thickness is shown in Fig. 3. Next, a center slice about 0.10-in. 
thick was removed perpendicular to the crack border, and the fringe pho- 
tography was repeated utilizing a partial mirror fringe multiplication 
system. All local fringe shots were made through a telescopic lens pro- 
ducing working prints of about N15 to )<20. A typical slice photo is 
shown in Fig. 4. 

Results 

A typical set of raw fringe data from the stress freezing tests are shown 
in Fig. 5 together with the curves fitted by TSCM. Data scatter is small 
and the curves fitted by TSCM fit the data well. In order to obtain a more 
sensitive assessment of data scatter and to illustrate how TSCM is used to 
obtain the SIF by extrapolation, the data of Fig. 5 are replotted in Fig. 6. 

FIG. 3--Fr#tge pattern of full specimen. 
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SCHROEDL AND SMITH ON THREE-DIMENSIONAL EFFECTS 7 5  

FIG. 4 Local multiplied fringe pattern. 

Here the ordinate is the apparent  SIF normalized with respect to the 
through the thickness value at the stress freezing temperature.  In this 
case, the center slice SIF exceeded the through the thickness value by about  
7 percent. As can be seen from Table 1, for the Type A specimens with 
w/B = 2.0, this figure was 10 percent for all crack lengths between a/w = 
0.5 and 0.7. However,  for the Type B specimens with w/B = 3.5, the excess 
of  the center slice SIF over the through the thickness value varied f rom 
5 percent for a/w = 0.5 to 10 percent for a/w = 0.7. Since experimental 
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FIG. 5--Typical set o f  raw data with curve f i t ted  by T S C M .  

error, on occasion,  can accrue to as much as 5 percent, the authors do not 
feel that the crack length effect as noted here is particularly significant. 

A comparison of  the r o o m  temperature test results with the ASTM 
E 399-72 equation is found in Fig. 7. Because of  the high sensitivity of  the 
Type A tests to the load alignment, two test specimens were tested inde- 
pendently at each value of  a/w in order to ensure more reliable SIF values 
and each point on the w/B = 2.0 curve represents the average of  two tests. 
For w/B = 3.5, pilot studies showed that one test was sufficient. 

Results of  the study may be summarized as fol lows: 

(1) For w/B = 2.0 and a/w = 0.50, experimentally determined nor- 
malized SIF values were only 2 percent higher than the ASTM E 399-72 
values. In view of  a possible 5 percent experimental error, this difference 
is judged to be negligible. 

(2) Normal ized  SIF values over the a/w range of  0.3 to 0.7 for w/B = 2.0 
averaged 5 percent higher than the ASTM E 399-72 result and, for w/B = 
3.5, averaged 13 percent higher than the ASTM E 399-72 result. 
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(3) Center slice normalized SIF values were 5 to 10 percent higher than 
through the thickness average values for both w/B = 2.0 and w/B = 3.5 
(see Table 1). 

Discussion 

The existing ASTM E 399-72 solution is supported by a very accurate 
boundary collocation solution of an idealized compact  tension specimen 
geometry which has been verified by compliance measurements by Wilson 
and his associates [5], by K calibration studies by Srawley and Brown and 
their associates (unpublished), and by a recent finite element solution by 
Wilson and his associates [31] where he used linear strain elements in 
conjunction with a J-integral SIF determination. Quite recently, using a 
different approach,  Newman [32] has used a boundary collocation solution 
to study effects of the pin holes for various a/w which generally agrees 
with the other two-dimensional results. 

The results cited in this study indicate that the ASTM E 399-72 result 
is quite accurate for w/B = 2.0 and a/w = 0.50. However,  when the crack 
lengths are varied outside the ASTM allowable range of a/w = 0.45 to 
0.55, higher values of  normalized SIF result for w/B = 2.0 and still higher 
results for w/B = 3.5. This suggests that  if ASTM specimen geometry 
restrictions are to be relaxed, then additional analyses including three- 
dimensional effects may be necessary to account for results observed here. 

The prior discussion is based solely upon linear elastic fracture me- 
chanics since plasticity effects were not present in either the analytical or 
experimental models discussed here. In fracture toughness tests, however, 
plasticity is present and may exert a significant influence upon the tests 
results if the models are not thick enough. Moreover,  there is the question 
of the variation of constraint through the thickness in the thinner models 
and, in fact, whether or not plane-strain predominates.  Due to these com- 
plicating factors, the authors do not recommend prediction of fracture 
toughness results f rom their tests 

Summary 

A set of  photoelastic experiments were conducted in order to study the 
influence of crack length and thickness upon the SIF for compact  tension 
specimens within a crack length range a/w of 0.3 to 0.7 and for two thick- 
nesses ~v/B = 2.0 and w/B = 3.5. 

The experiments confirmed the validity of the ASTM E 399-72 solution 
within its limits (that is, w/B = 2, a/w = 0.45 to 0.55) but showed measur- 
able increases in the normalized SIF for larger values of a/w and w/B. A 
variation in the SIF through the specimen thickness was also identified. 

The authors estimate their results to be accurate to within about  5 per- 
cent for linear elastic fracture mechanics comparison. Moreover,  the 
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differences in the  S I F  values  for  the  two values  o f  w / B  was on ly  a b o u t  
8 percent .  Even t h o u g h  the la t te r  difference was es tab l i shed  f rom average  
values  o f  some  dozen  o r  more  tests in each series,  the  au tho r s  r e c o m m e n d  
tha t  fu r ther  tests be conduc t ed ,  pa r t i cu la r ly  at  values o f  w / B  of  1.0 and  
6.0 in o rde r  to  de te rmine  if the  t rends  obse rved  here extend into those  
ranges  as well as to  fur ther  subs tan t i a te  the  present  results.  
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K Calibration for C-Shaped Specimens 
of Various Geometries 

REFERENCE: Underwood, J. H., Scanlon, R. D., and Kendall, D. P., " K  Cali- 
bration for C-Shaped Specimens of Various Geometries," Fracture Analysis, 
A S T M  STP 560, American Society for Testing and Materials, 1974, pp. 81-91. 

ABSTRACT: Prior collocation results are combined with new collocation data 
and analyzed using two parameter data approximation methods and fracture 
mechanics methods. A general K calibration is obtained for C-shaped specimens 
which have outer to inner radius ratios, W = r~/r,, between 1.4 and 2.5. 

The K calibration for C-shaped specimens is found to depend on the load 
eccentricity to specimen thickness ratio, x/t ,  as well as the usual crack depth to 
specimen thickness ratio, a/t. The K results are presented as tabular and plotted 
values from a cubic spline surface used to approximate the collocation data and 
as a polynomial approximation of the collocation data over a more limited 
range of x/t .  

KEY WORDS: fracture properties, cylinders, crack propagation, strains, thick- 
ness, mechanical properties 

Nomenclature  

a Crack depth 
B Specimen thickness 
h Loading  hole diameter  

K Open ing  mode  stress intensi ty  factor 
P Appl ied load 
rl Inne r  radius 

r~ Outer  radius  
t Wall  thickness,  r2 - rl 

W Wall  ratio,  r2/rl 

x Eccentrici ty of load 
)~ Arbi t ra ry  smooth ing  parameter  

Kenda l l  and  Hussa in  [1] 2 have described the deve lopment  of a new 
C-shaped fracture toughness  specimen par t icular ly  well suited to measur ing  
the plane-s t ra in  fracture toughness  of samples f rom thick-walled cylinders.  

All, Benet Weapons Laboratory, Watervliet, N. Y. 12189. 
2 The italic numbers in brackets refer to the list of references appended to this paper, 
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Collocation Results 

They presented C-shaped K calibrations obtained from several inde- 
pendent methods: a compliance test, an approximate superposition of 
available solutions, fatigue crack propagation tests, and a finite element 
method. 

Subsequent to the development work in Ref 1, a boundary value colloca- 
tion method has been applied to the problem [2]. The collocation method 
has been modified from the classical method, for instance, Gross, Srawley, 
and Brown [3], to facilitate the numerical computations for C-shaped 
geometries where the boundary conditions are satisfied in the least-squares 
sense. Collocation results have been obtained for five different C-shaped 
geometries [2,4] as part of various fracture analysis programs. 

Our purpose here is to use these available collocation results as the 
basis for a general K calibration for a wide range of C-shaped specimen 
geometries. By using a two parameter data approximation and interpre- 
tation method and standard fracture mechanics analysis, we can obtain a 
K calibration which is more useful than the original series of collocation 
results. 

P 
f 

B 

The C-shaped specimen geometry is shown in Fig. 1, a sketch corre- 
sponding to the largest wall ratio, W = rz/rl, investigated. The dimensions 
of the specimens modeled by collocation are listed in Table l. The colloca- 
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FIG. 1--C-shaped specimen geometry. 
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UNDERWOOD ET At ON K CALtBRATION 8 3  

TABLE 1--C-shaped geometries modeled by collocation. 

Dimensions, in. 

Specimen Reference rl r2 x t 

Relative 
Wal l  Eccentricity 
Ratio, of Load, 

W x/t 

T-2 [4] 2.05 5.11 1 . 0 5 0  3.060 2.49 0.343 
T-3 [41 2.53 5.26 ].530 2.730 2.08 0.560 
K-1 [2] 4.00 8.00 2.850 4.000 2.00 0.712 
T-1 [4] 2.50 4.28 1. 750 1. 780 1.71 0. 983 
U-1 3.00 4.50 2.400 1.500 1.50 1.600 
S-1 "[21-" 2.38 3.30 1. 875 0. 926 1.39 2.025 

tion results and the crack length values for which they apply are listed in 
Table 2. In addition to the five collocation results from previous work, we 
obtained results from an additional geometry, Specimen U-l ,  using the 
same collocation procedure described in Ref [2]. 

The collocation results are plotted as a/t  versus K B x / t / P  in Fig. 2 and 
are represented by one-dimensional cubic spline functions as described in 
Ref 5. The crack depth, a, is normalized by t, the specimen dimension in 
the direction of crack extension. This is the usual and appropriate pro- 
cedure for finite geometries. The inclusion of x/t- in the K parameter is 
also the appropriate way to include the square root size factor characteristic 
of all K analyses. In addition, the V/ t  factor makes the K parameter 
dimensionless. 

When the collocation results are normalized and plotted as in Fig. 2, 
the K parameter (at a given value of a/t)  increases as x / t  increases or as W 

50 

4O 
tl 

30  

m v 
20 

I0 

S-I U-L 

o COLLOCATION RESULTS / /  

I I I I l 1 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

/ *  

FIG. 2--Collocation K data ]br C-shaped specimens. 
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decreases. Thus, it appears that either x / t ,  a measure of the load eccen- 
tricity, or W, the wail ratio, is a third parameter which must be considered 
in describing the general K analysis of C-shaped specimens. 

In the descriptions of the data analysis and results which follow, it 
becomes clear that x / t  is the third parameter required for the C specimen 
K calibration. This dependence on x / t  is also apparent upon consideration 
of Kendall and Hussain's [1] approximation of the C specimen K calibra- 
tion obtained by superposing known tension and bending solutions: 

K B V / t / P  = ~v/S~/t [YT  + 6 Y ~ ( x / t  + ~)1 (1) 

The quantities Y~. and YB are from single edge notch tension and bending 
solutions, respectively [6], and are functions of a / t  only. Thus, the K pa- 
rameter in this approximate solution is a function of a / t  and x / t  only. 

Data Analysis Procedures 

Since only a limited number of collocation results were available (and 
these at arbitrary points), an approximating surface supported by these 
points was constructed so that additional values might be calculated as 
desired for graphs and tables. 

Let 

u : a//l 

V : X / I  

~(u,v) = K B ~ - / P  

Zi  = ~b(ui,vi) + ei; i = I, . . . , N 

where the Zi are the available computed points, ~I, is the true function 
(considered to be reasonably smooth in the region of interest), and the ei 
represent a lumping together of all the discretizations, truncations, and 
round-offs of the original computations. It would be idle to assume that 
the el were random numbers with a Gaussian distribution, thus we merely 
hypothesized that le/~]  <0.01 and that the departures were more or 
less randomly plus and minus. 

As one approach, �9 was approximated by a doubly cubic spline, ~, over 
a rectangular region divided into subrectangles by the lines 

u, = 0.15, ub = 0.45, uc = 0.75, 

v,1 = 0.3, vb = 0.9, vc = 2.2. 

The spline surface was constructed by minimizing the norm 

fA /fl(X) ~b~, ~" q- f2(h) qS,,,, ~ q- f~(h) q~?l dA -k- ~ -  w,214~(u~,vO -- Z~} ~ 
i = 1  
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over the spline parameter  space where 

Z1 
W i - -  

Zi 

since relative rather than absolute departures are of interest and 

(Au) 3 
fl(X) - XAv 

AuAv 
A(x)  - 

X 

(Av) 3 
f3(X) - XAu 

A b /  : U e  - -  b/a  

~ r  ~-~ r c  - -  Va 

X > O  

By numerical experimentation, X = 10 ~ was found to reasonably balance 
the requirement for smoothness against the desire to respect the integrity 
of  the data as indicated by a patternless distribution of the relative de- 
partures of  the data points above and below the fitted surface. Further 
information on this method of approximation can be found in Refs 5 and 7. 

Alternatively, 4, was approximated by 

4 4 

r = v Z b~u~ + ~ a,u~ 
i = O  i = 0  

since it appeared that in a restricted region �9 (k,v) could be reasonably 
approximated by a straight line. In this case, nothing is said about  the 
smoothness of 4~ but 

N 

w ~ { ~ ( u ~ , v d -  z~} 2 
i = 1  

is minimized with w~ = Z1/Z~ as before. The coefficients were evaluated in 
the usual way by constructing and solving the matrix of  normal  equations. 

K Calibration Results 

The data in Figs. 3 and 4 and in Table 3 are from the spline surface 
which was constructed as described before to represent the original colloca- 
tion data. The surface was found to deviate f rom the original data points 
by a maximum of 2.5 percent. The missing data from Figs. 3 and 4 and 
Table 3 are for values of  a/t and x/t  which we believe are significantly 
outside the range of the original collocation data, so that  the KB%/t/P 
values f rom the surface should not be used. 
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SPLINE SURFACE RESULTS 
EQUATION 2 

50 - + C O M P L ~  =I / . /  

4 0 -  

O./,t ~. : I  t" ~ - -  

~ 0 . 7  ~ 

,o iii 
0 I I I I [ I ] I I 

0.4 0.8 1.2 1.6 2.0 

X/~t 

F I G .  3--Comparison of K results for C-shaped spectmens. 

a. 30 

m 2 0  

In Fig. 3 each of the solid curves on the plot describes the intersection 
of a plane of constant a/ t  with the approximating spline surface. It is 
clear that, for constant a/t,  the K parameter is nearly a linear function of 
x / t .  This led to an attempt to represent the collocation data in the much 
simpler form: 

KB~/7 /P  = [bo + bx(a/t) + b~(a/t) 2 + b3(a/t) 3 + b4(a/t) 4] x / t  

+ [do + dl(a/t) + d2(a/t) ~ + d3(a/t) 3 + d4(a/t) 4] (2) 

for 0.3 < x / t  < 1.6, 0.2 < a/ t  < 0.6 
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UNDERWOOD ET AL ON K CALIBRATION 89 

The first bracketed term specifies the slopes of a set of straight lines; the 
second bracketed term specifies the intercept values, namely, the positions 
of  the lines. 

We found that Eq 2 with the following constants is a good approxima-  
tion of the collocation data: 

b0 = 1.4ll ,  bl = 33.68, b~ = -104 .9 ,  b3 = 221.8, b4 = - 1 2 5 . 4  

d0 = 6.447, di = --48.17, d2 = 277.8, d3 = -575 .0 ,  d4 --- 469.3 

Equation 2 with these constants deviates f rom the original collocation 
data points by a max imum of 1.7 percent for the range of x/t and a/t 
indicated, that is, for 0.3 < x/t < 1.6 and 0.2 < a/t - 0.6. We have 
compared straight lines from Eq 2 with the spline surface results in Fig. 3 
to indicate that  for high x/t the surface results deviate more noticeably 
f rom linearity. This deviation led us to limit Eq 2 to x/t < 1.6. 

Also shown in Fig. 3 are Kendall  and Hussain's  compliance K calibration 
results for a C shape specimen calculated f rom their Eq 7 as follows. 

KB/P = "V/~..54a-t- 1.206a ~ (3) 

The compliance specimen dimensions required for the dimensionless 
parameters  used here are t = 4.04 in., x -- 2.85 in. We take this oppor-  
tunity to point out that Eq 7 in Ref 1 is in error due to the omission of the 
square root  sign. The form of the equation which appears here is correct 
as verified with the authors of Ref I.  The deviation of the compliance 
results f rom the collocation data surface is not disconcerting since end- 
point compliance data often result in inaccurate K values due to less accu- 
rate end-point differentiation. 

Table 3 lists KBN/-{/P values f rom the collocation data surface. Con- 
sidering again the near linear plots in Fig. 3, it is a simple matter  to obtain 
KBv"t/P values for any given x/t by linear interpolation. 

Figure 4 is a plot f rom the collocation data surface in the more common 
form of a K parameter  versus a crack length parameter.  A comparison of 
Fig. 4 with Table 2 is a good summary  of this work. Starting with colloca- 
tion K data from six C-shaped specimen geometries we arrived at a general 
K calibration which applies over a significant range of relative crack 
depth and relative load eccentricity. 

Discussion 

We can estimate how close these results are to the " t rue"  K calibration 
for C specimens by considering (1) the estimated accuracy of the original 
collocation results, (2) the strengths and weaknesses of a two parameter  
approximation,  and (3) the comparison with the compliance results of  
Ref 1. We believe that both Eq 2 and the surface results in Fig. 3 and 4 
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90 FRACTURE ANALYSIS 

and Table 3 represent the " true" K calibration for C-shaped specimens 
within 4 percent over the whole range of a/t and x / t  indicated. Further- 
more, since the deviation of our results from the original collocation data 
becomes significantly smaller at lower values of a/t  and x/t ,  we believe 
that the equation and surface results represent the true K calibration within 
2 percent for a/t  up to 0.6 and x/ t  up to 1.0. 

Another indication of the accuracy of our results would be measurement 
of critical K values using C-shaped specimens from material with a known 
K~c value. As of this writing tests of this sort are underway [8]. 

The following considerations relate to the K results and to some extent 
limit their use. 

(a) The collocation procedure [2] simulates the applied load by replacing 
the loading hole arrangement with a shear stress applied over the vertical 
end surfaces of the specimen, where the location of the end surfaces is 
the same distance, x, from the inner radius as the loading hole (see Fig. 1). 
This simulation becomes less accurate for large values of wall ratio. For  
wall ratios at least up to 2.5, we believe it to be a good simulation. 

(b) The eccentricity of the applied load, x, relative to the inner radius, 
rl, may affect K, even though x / t  is clearly the critical parameter. The x/r~ 
values for the six collocation geometries vary between 0.5 and 0.8. Since 
there was no apparent effect of x/r~ on K for these geometries, we believe 
that the K calibration can be used for any x/rl in this range. This means 
that the inner and outer radii of C specimens can vary significantly and 
not affect the K calibration as long as x and t do not vary. 

(c) The relative loading hole size, h/t, used in C specimens could also 
have a small effect on K. The only guidance we can offer is that in fracture 
testing of C specimens [8] with hit  values up to 0.5, we have seen no 
evidence of an effect on K. 
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A Class of Interface Crack Problems 

REFERENCE: Sendeckyj, G. P., "A  Class of Interface Crack Problems," Frac- 
ture Analysis, A S T M  STP 560, American Society for Testing and Materials, 
1974, pp. 92-104. 

ABSTRACT: The problem of an arc crack lying within the interface between a 
rigid curvilinear inclusion and an unbounded matrix is considered under the 
assumption of plane deformation, and a general solution method is presented. 
The particular examples of a single arc crack debonding one end of a rigid elliptic, 
a square with rounded corners, and a circular inclusion under uniaxial and equal 
biaxial loading at infinity are considered in detail. It is shown that there is an 
oscillating square root stress singularity at the crack tips unless the crack tips 
happen to lie at a geometrical discontinuity of the inclusion boundary. In that  
case, the singularity is different. In particular, the singularity is three-quarter 
power for a crack tip at an inclusion cusp. 

KEY WORDS:  fracture properties, crack propagation, inclusions, cracking 
(fracturing), deformation, mechanical properties 

The strength of heterogeneous materials, such as fiber reinforced com- 
posites and polycrystalline metals, depends strongly on the failure modes 
operative under given loading conditions. A commonly observed failure 
mode is the debonding under an applied load of an inclusion (modeling a 
fiber in a composite, a grain in a polycrystal, or a precipitate particle in a 
precipitate hardening alloy) by an interface crack. 

Historically, the earliest investigation of a crack lying within the inter- 
face between a finite inclusion and the surrounding matrix can be attributed 
to Mintsberg [1 ] /who  solved the problem of a circular cavity, reinforced 
rigidly over an arc, in an infinite plate. The problem can be reinterpreted 
as the debonding of a rigid circular inclusion by an interface crack. Mints- 
berg's approach was adopted by Cherepanov [2] in his investigation of the 
interface crack between an elastic inclusion and the matrix around it. 
This problem was later investigated independently by England [3]. 

An unsuccessful attempt to analyze the interface crack problem for a 
rigid elliptic inclusion was made by Wilson [4]. This particular problem 

x Aerospace engineer, Advanced Composites Branch, Structures Division, Air Force 
Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio 45433. 

The italic numbers in brackets refer to the list of references appended to this paper. 
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SENDECKYJ ON A CLASS OF INTERFACE CRACK PROBLEMS 9 3  

was recently solved by Sendeckyj [5]. As a limiting case applicable to 
fiber reinforced composites, Sendeckyj discussed the debonding of a rigid 
line inclusion. This case was also recently considered by Brussat [6], who 
used a different approach. 

The present work is a continuation of Ref 5. Herein, the conformal 
mapping method used for the case of the rigid elliptic inclusion is extended 
to the case of a general rigid inclusion being debonded by an interface 
crack. 

Basic Equations 

Let z and ~- be two complex variables related by the transformation 

z =  w(~')= c I ~ ' +  ~ ) ' "~ -n l ' c r ea ln= l  (1) 

Equation 1 maps the unit circle 1~-1 = 1, or p = 1 where ~" = pe  i~ in the 
~'-plane into a closed curvilinear contour 2; in the z-plane. Points exterior 
to the circle I~'] -- 1 are mapped uniquely into points exterior to 1~ if and 
only if the coefficients X, are restricted appropriately. It will be assumed 
in what follows that the transformation (Eq l) is properly restricted. 

Variables p and 0 can be thought of as forming a curvilinear coordinate 
system for the z-plane, with p = 1 corresponding to the curvilinear con- 
tour 1~. In terms of p and 0, the displacements and stresses in the z-plane 
can be written as 

2#(u + i v )  = Kch(~) - -  co(f)  ~ ( ~ )  - -  ~b(~) 

r + c~00 = 2[~(~') + ~(~-)] (2) 

,top - -  icpo = ,I)( f)  + o~(~) - -  e 2io [c0(~-)q?t(~ -) Jr- ~'(~-)]/wt(~ -) 

where 

�9 (~) = ~'(~)/~o'(~), (3) 

3 - 4v for plane strain, and 
K = (4) 

(3 -- u)/(1 + u) for generalized plane stress: 

u and v are the shear modulus and Poisson's ratio, respectively [7]. A prime 
on a function denotes differentiation with respect to its argument. A bar 
over a function symbol and its argument denotes the complex conjugate, 
while a bar over a function symbol only is used to denote the conjugate 
of the function with z being treated as though it were a real quantity. Thus 

F ( z )  = - - i - +  ~, F ( z )  = - - i  + z (5) 

when F ( z )  = i + z .  
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94 FRACTURE ANALYSIS 

General Interface Crack Problem 

Consider an elastic matrix containing a partially bonded rigid curvilinear 
inclusion. Let the bond imperfection consist of an arc crack, placed as 
shown in Fig. la. When mapped into the ~--plane, the region outside the 
curvilinear inclusion is transformed into the region Ig-I >-- 1, shown in 
Fig. lb. In the g--plane, the crack tips are located at the points g-~ = e ~, 
g-2 = e -~ .  The corresponding points in the z-plane are given by z~ = w(e~e), 
z2 = co(e-~) The boundary conditions to be satisfied at the inclusion- 
matrix interface are 

u q- iv = 0 for /~ < 0 < 2~- - ~ (6) 

crpp-  i~rpo = 0 for - ~  < 0 < r (7) 

on p = 1. The formulation of the problem is completed by specifying 
conditions on the other boundaries of the matrix region. It should be 
noted that the boundary condition (Eq 6) holds to within rigid body dis- 
placements and rotation. This condition must be supplemented by requiring 
that the net force and moment acting on the inclusion is zero. 

As for many problems in elasticity, the solution of the interface crack 
problem is normally sought by attempting to satisfy all the boundary 
conditions simultaneously. In the present work, a somewhat different 
approach is adopted. First, a sequence of complex potentials satisfying 
only boundary conditions of Eqs 6 and 7 is obtained. Guidance in con- 
structing the desired sequence of potentials is provided by the known 
limiting cases. Then, particular combinations of members of this sequence 
are selected to satisfy the remaining boundary conditions. 

Z-PLANE ~-PLANE 

(a) (b) 

FIG. l--Interface crack at rigid inclusion in z-plane and ~-plane. 
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SENDECKYJ ON A CLASS OF INTERFACE CRACK PROBLEMS 9 5  

In the problem being considered here, the desired sequence of complex 
potentials is given by 

~(~) = A(~) + (l/K) h.(1/r)  (8) 

~(r) = h.(r) + Kf.(1/r) - ,(r af h.(1/r)  + f.'(r) (9) 

where 

a(r)  = ~(1/r), 

f ,~( f )  = Anf '~( f  --  e'•)'/2+i,(r - -  e - i ' ~ )  1 / 2 - i v ,  and 

h,(~') -- B,~"(~" -- ei~)ln-~'(~" -- e-i")l/2+i~; 

where 

v = (1/21r) In K 

(10) 

(11) 

(12) 

and A,, B , ( n  = 0, 1, 2 . . . .  ) are complex constants which have to be de- 
termined from the conditions imposed on the other boundaries. It should 
be noted that: 

(1) For arbitraryf(~') and h(~-), complex potentials, Eqs 8 and 9, are the 
potentials for the case of a rigid inclusion in an unbounded matrix in the 
absence of the interface crack [8]. The influence of the crack enters 
through the proper choice off(~') and h(f), namely, that given by Eqs 11 
and 12. Thus, the present general results reduce to the correct limit for a 
crack of zero length. 

(2) Complex potentials, Eqs 8 and 9, with f,(~-) and h,(~') defined by 
Eqs 11 and 12 satisfy the boundary condition of zero traction acting over 
the crack length ( - a  < 0 < r p = 1). Under given loading conditions, it 
is possible that the displacement field will be such that the crack surface 
will move into the region occupied by the rigid inclusion. This is physically 
inadmissible with the exception of the small region around the crack tips, 
where due to the crack idealization the solution exhibits an oscillating 
phenomenon. Thus, the displacements given by any solution obtained by 
using the present method must be checked. If  contact occurs between the 
crack surface and the rigid inclusion, the results must be supplemented by 
functions having a different structure. Finally, it should be noted that this 
displacement check is not performed in the examples discussed later. 
Hence, the reader must show a certain amount of caution when using 
the results. 

(3) If the crack surface is loaded, potentials, Eqs 8 and 9, must include 
simple polynomial terms. This will be illustrated in the following. 

Examples 
Consider an interface crack between a rigid hypotrochoidal inclusion 

and an unbounded matrix. The mapping function transforming the exterior 
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96 FRACTURE ANALYSIS 

of  the unit circle in the ~--plane into the exterior of  a hypotrochoid is given by 

z = o~(~) = ~ q- 2~-, ,  - 1 / n  < ~ < 1/n (14) 

Herein, the scaling constant c in Eq 1 has been set equal to unity. Equation 
14 gives an elliptic boundary in the z-plane for n = 1. For  n = 3, Eq 14 
maps the exterior of  the unit circle in the ~--plane into the exterior of  a 
curvilinear square with rounded corners in the z-plane. The diagonals 
(sides) of  the square are parallel to the coordinate axes for X > 0 (<0) .  
The inclusion has cusps for I~,l = 1/3. Segments of  the boundary of the 
curvilinear square with rounded corners are shown in Fig. 2 for discrete 
positive values of  ~,. In the first quadrant,  ?~ = 1/3; X = 2/9 in the second 
quadrant;  ~, = l / 9  in the third quadrant;  and ~ = 0 in the fourth quadrant.  

For  the sake of simplicity, assume that the interface crack is symmetrical  
with respect to the x-axis; that is, a = r Let the boundary conditions at 
infinity be given by 

r  = p ,  ~y~ = q, Cx~ = 0 (15) 

which is equivalent to requiring that 

~(~) = (p + q)~/4 q- o(~), ~b(~) = (q - p)~/2 q- o(~-) (16) 

The boundary conditions at the interface are given by Eqs 6 and 7. 

- 2/9  -1/3 

I I I 

0 

FIG. 2--Boundary of curvilinear square with rounded corners for discrete values of the 
shape parameter ),. 
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Rigid Elliptic Inclusion [5] 

As the first example of the applicat ion of  the complex potentials,  con- 
sider the case of  a rigid elliptic inclusion (n = 1 in Eq 14) for  which 

~2(~)/~'(~-) = ~'(1 + ~,~-2)/(~-.2 _ ~,) = ),~- + (1 + X2)~'/(i-2 - ~,), as t~l ~ co. 

(17) 

Since q~(~') and ~(~-) must  behave like ~- as ~- tends to infinity by the bounda ry  
condi t ions  o f  Eq 16, the obvious choice of  the complex potentials is given 
by Eqs 8 and 9 withf,~(~-) and h.(~') given by Eqs l I and 12 with 

A~ = B~ = 0 ( n  = 1 ,2  . . . .  ), A 0 a n d B 0 r e a l  (17) 

Expanding  the resulting potentials about  the point  at infinity gives 

~(~) = A0~ + o(r ~b(~-) = (B0 -- ~A0)~ + o(~-) (18) 

Upon  compar ing  Eqs 16 and 18, it follows that  

Ao = ( p + q ) / 4 ,  B0 = [(2 + ~ ) q -  (2 - ),)p]/4 (19) 

which completes the solution of  the problem. 

Rigid Square Inclusion with Rounded Corners 

As the second example,  consider the case of  a rigid square inclusion 
with rounded  corners (n = 3 in Eq 14) for  which 

~(~-)/~'(~-) = X~ -3 + (1 + 3X2)~V(~ -' - 3X) (20) 

Since ~2(~-)/~'(~-) ~ ~-3 for large ~-, it follows that  the choice of  the complex 
potentials  is not  as simple as in the case of  the rigid elliptic inclusion. 
U p o n  a little contemplat ion,  it becomes obvious that  the solut ion will be 
given by Eqs 8 and 9 with 

f(~-) = f0(~-) (21) 

h(~') = h2(~-) + hl(~-) + h0(~') (22) 

wheref0(~-) and hi(~') are given by Eqs 11 and 12. Expanding  the resulting 
complex potentials about  the point  at infinity gives 

q~(~') = A0~" + o(~') (23a) 

~(~-) = (B~ -- ~,A0)~ -3 + [(Ba -- B2 cos r + 2A0 ~" sin ~]~'~ 

q- {[B0 -- B1 cos/3 -- B~(1 -- cos ~/3)/2] -- B~XeZO'~/~ 

+ B0(cos ~3 -- 27 s i n / 3 ) e ~ / ~  

+ A0(0.5 + 0.5 cos 2 ~ + 2-~ sin ~ cos 3)}~" + o(~'), as I~l -~ co. 

(23b) 
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U p o n  c o m p a r i n g  Eqs 16 and 23, it follows tha t  

Ao = (p  + q ) /4 ,  B~ --- X ( p q - q ) / 4  

B1 = X(cos/3 - 2V sin ~) (p  -k- q ) / 4  

B0 = [2(q --  p )  + (p  + q)Ve2~* (cos ¢~ -- 2V sin B)/K] 

X [1 -}- Xe 2~ (cos ~ -- 2v sin 13)/~]-~/4 

which comple tes  the solut ion of the problem.  

(24) 

Rig id  Circular  Inclusion 

As the final group of  examples ,  consider  the case of  a rigid circular  
inclusion (X = 0 in Eq  14). In this case 

a(~-)/~o'(~-) : ~--~ = z -1 (25) 

and  the desired solut ion  follows f rom the results for the rigid elliptic 
or  square inclusion as a l imiting case. In part icular ,  the solut ion reduces 
to the s imple  fo rm 

P 
dp(Z) ---- ~2-(Z  -- eitJ)l/2+iv(z --  e- 'a)  t/2-i~ (26) 

1 PK 
¢'(z) : -- z th'(z) -- ~ e - m v z  ' (z  --  e#~)l/~-'v(z -- e-i~) '/z+'v 

for  the case of  equal  biaxial  extension at infinity, which agrees with the 
solut ion due to England  [3]. Herein,  P is the magn i tude  of  the appl ied 
biaxial  stress. 

T o  get the solut ion for  a pressurized crack with no stress at infinity, one  
mus t  subt rac t  the solut ion for  an u n b o u n d e d  matr ix ,  loaded by an equal 
biaxial  stress, containing a rigid inclusion. Doing  this gives 

P 
~(Z) = ~ {(Z --  e i~ ) l / 2+i~ ' ( z  - -  e-{O) ~/2-~ - z} (27a) 

1 PK 
¢ ( z )  - ~ ' ( z )  - - -  

z 2z 

P K  

2 
- -  - - e - 2 t ~ ' ~ z - l ( z  - -  e{ t3 ) l /2 - i 'Y ( z  - -  e - m )  l I e+iv  (27b) 

where now P is the pressure acting on the crack.  

Nature of Crack Tip Singularity 

A number  of  examples  were solved in the previous  section. In all of  
these, q~(~) has a c o m m o n  structure.  In fact after some e lementary  man ipu -  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  M o n  D e c   7  1 4 : 4 4 : 2 1  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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lations, q~(~-) can be writ ten as 

~(~-) = [ A 0  - -  e2~(B2~ -~ + B~-~ + B o ) / ( 4 - ) I  

X ( ~  - -  e iO) l / 2+ iY (~  - -  e-ie) 1/2-~' (28) 

where B2 = B1 = 0 and Ao, B0 are given by  Eq 19 for  the case of  the rigid 
elliptic inclusion;  A0, B~ (i = 0, 1, 2) are given by Eq 24 for  the case of  the 
rigid square  inclusion with rounded  corners ;  and 

Ao = (p W q) /4 ,  Bo = ( q - - p ) ~ 2  (29) 

for  the rigid circular  inclusion. 
In  order  to establish the na ture  of  the crack  tip stress singulari ty,  q~(~') 

mus t  be expressed in te rms  of  z instead of  ~-. In general,  this is difficult to do. 
For tuna te ly ,  it is sufficient to establish the leading te rms  of  the expans ion  
of  r162 = r abou t  the crack tip. With  this in mind,  let n = z - r 
Expand ing  n in a series abou t  the crack tip gives 

7 = w'(eia)[~ " -- e io] + 0.5r " -- eia] 2 + . - -  (30) 

which is t e rm-by- t e rm invertable  [9]. I f  J ( e  "~e) ~ 0, Eq 30 can be locally 
inverted to give 

~" = e/t~ + 7/od(e i~) (31) 

U p o n  using this result, Eq  28 can be writ ten as 

4'(7) = [A0 -- e2~'~(B2e -3i~ + Ble -2~  + Boe-ie)/K] 

>( (2i sin/3)ln-iv[7/r + 0(7) (32) 

f rom which it follows tha t  there is an oscillating square roo t  stress singu- 
lari ty at  the crack tips. In  arr iving at this result, it was assumed tha t  
co'(e ~) ~ 0. This  condi t ion holds  in all cases with one except ion,  namely ,  
the crack  tip is at a geometr ical  discont inui ty  of  the inclusion. 

I f  r ~) = 0, Eq  30 can be locally inverted to give 

= e iO + [271/r  a12 (33) 

U p o n  using this result, Eq  28 can be writ ten as 

r = [A0 -- e2a~(B2e - ~  + B~e -~a  + Boe-i~)/~] 

X (2i sin fl)~/~-~'~[27/~o"(e~)] ~/4+~/~ + . . . (34) 

f rom which it follows tha t  there is an oscillating three-quar ter  power  stress 
singulari ty at the crack tip whenever  r ~) = 0 and sin ~ ~ 0. This  occurs  
for  

(a) a rigid line inclusion with one side debonded  (n = 1, X = - 1 ,  
r = r / 2 ) ;  and 
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(b) a rigid square inclusion with cusps (IXl = ~ ,  n = 3) when one side 
of the cusp is debonded (X = 1~, ~ = ~-/2, 3r/2 and X = - ~ ,  

= (1 + 2m) ~-/4 where m = O, 1, 2, 3). 

Crack Tip Stress Intensity Factors 

The crack tip stress intensity factors kl and k2, defined as the coefficients 
of the (oscillating) square root  stress singularity present at the crack tips, 
play an important role in discussions of fracture behavior. They are 
normally computed by evaluating the stresses in a local coordinate system 
with origin at the crack tip. Since computation of the stresses is tedious in 
the present case, kl and ks will be calculated directly from the complex 
potentials. Equation 32 is the expression for q~(n) in the z-plane in a local 
coordinate system with origin at the crack tip. As can be seen from Fig. 3, 
the complex variable 77 is not the natural one for studying the local behavior 
in the vicinity of the crack tip. It is most convenient to rotate the local 
coordinates to ( so that the crack lies along the (1-axis. Upon doing this, 
one gets 

4~(~) = [A0 -- e2~(B2e - ~  + Ble -2~ + Boe-i~)/K] 

>( [2K(sin /3)/Iw'(e ~) I]'/2e - 'v 

X e iEttl2-v lnlJ(ei~)l--7 in(2 sin ~)l }1i2+r (35) 

Since q~(~) is sufficient for defining the crack tip stress intensity factors, 
r need not be computed. 

Now let us define the crack tip stress intensity factors kl and k2 as the 
coefficient of ~1/2+~ in Eq 35; that is, let 

4~(}) = (~),/2 (k~ -k- ik2)~ '/2+~v (36) 

Ib- 

FIG. 3 - - L o c a l  coordinate  axes  at  crack  tip. 
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Comparing Eqs 35 and 36 gives 

kl = 2[~ J~o'(ei~)1-1 sin/311/2{Aoe-~'~ cos ~ - (e~'/K)[B2 COS (3/3 -- ~) 

q- Bl COS (2/3 -- a) + B 0 c o s ( / 3 - -  a)]} (37a) 

k2 = 2[K lod(e'i~)]--1 sin/311/2{Aoe-O~ sin a -- (e~"/,O[B~ sin (3/3 -- a) 

+ Bl sin (2/3 -- c 0 +  B0s in ( /3 - -  a)]} (37b) 
where 

oL = ~/2 -- 3' In Ico'(eg~) [ - ~, In (2 sin/3) (38) 

It  should be noted that  the present definition of ks and k2 differs at most  
by a multiplicative constant from those adopted by other authors [10,11]. 
Moreover,  it should be realized that the apparent  nondimensionality of  
Eq 37 for the crack tip stress intensity factors is a direct consequence of the 
particular choice of mapping function, Eq 14, that was used in the deri- 
vations. 

Since the behavior of  the crack tip stress intensity factors for the case of a 
rigid elliptic inclusion was discussed in detail in Ref 5, only the results 
for the rigid curvilinear square inclusion with rounded corners will be 
discussed in the following. 

Rigid Curvilinear Square Inclusion--Incompressible Matrix 

I f  the matrix is incompressible and in a state of  plane strain, K = 1 and 
the expressions for kl and k2 simplify considerably. In this case, 3' = 0 and 

kl = 2[(1 + 9X 2 -- 6h cos 4/3) -1/2 sin/311/2[A0 cos/3/2 

-- ~,A0 cos (5/3/2) -- ~A0 cos/3 cos (3/3/2) -- B0 cos/3/2] (39) 

k2 = 2[(1 + 9~, 2 - 6X cos 4/3) -1/2 sin/311/2[A0 sin/3/2 

+ ~A0 sin (5/3/2) + ~,A0 cos/3 sin (3/3/2) + B0 sin/3/2] (40) 

where 

B0 = [(q -- p)/2 q- Ao~ 2 cos/3] [1 q- ), cos/3]-1 (41) 

and A0 is given by Eq 24. 
The variation of the crack tip stress intensity factors as a function of the 

crack half angle/3 for discrete values of the shape parameter  ~, is shown in 
Figs. 4 and 5 for the case of equal biaxial tension of unit magnitude at 
infinity (p = q = 1). As can be seen f rom these figures, the behavior of  ki is 
rather complex with the main features being: 

1. For  positive X (square inclusion with diagonals on the coordinate 
axes), the crack tip stress intensity factors increase at/3 = ~-/2 as ~, increases. 
Since/3 = 7r/2 corresponds to the curvilinear corners of  the inclusion, this 
implies that  an interface crack (constrained to propagate  along the inter- 
face) once set in motion would propagate  to the corners of the inclusion. 
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# 

FIG. 4--Variation o fk l  as a function o f  crack half angle ~ for  discrete values o f  the shape 
parameter ~ and equal biaxial tension at infinity o f  unit magnitude. 

After turning the corners, the crack would tend to arrest. Moreover,  the 
crack would propagate  in a mixed mode. 

2. For  ?, = ~ (square inclusion with cusps on the coordinate axes), the 
k~ become unbounded at /3 = ~-/2. This is a direct consequence of the 
change in the nature of the singularity as a crack debonds one side of a 
rigid cusp. Moreover,  kl remains finite when/3 goes to zero (absence of the 
crack). This is due to the presence of a square root  singularity at a perfectly 
bonded rigid cusp. Finally, k2 remains finite as /3 approaches ~r (crack 
completely debonding the rigid inclusion) implying that the final stage of 
debonding is in Mode 2. 

3. For  negative X (square inclusion with sides parallel to the coordinate 
axes), the crack tip stress intensity factors increase at ~ -- ~-/4 and/3 = 3~-/4 
as IX[ increases, becoming unbounded for X = - 1 ~ .  Since/3 = 7r/4 and 

= 37r/4 correspond to the corners of the curvilinear inclusion, this 
implies that an interface crack once set in motion would propagate  until 
the corners of  the inclusion are debonded. After turning the corners, the 
crack would tend to arrest. Moreover,  crack propagat ion would be in 
mixed mode. 

4. For  X = -a /~ (square inclusion with cusps and sides parallel to the 
coordinate axes), the ki become unbounded at /3 = 7r/4 and /3 = 37r/4. 
This is a direct consequence of the change in the nature of the singularity 
as the crack debonds one side of  a rigid cusp. The situation is somewhat  
more complicated for the more general case of loading p ~ q. 
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20  tl 
1/ ~7 X--1/3 
II 

o ~  ~ / ,  , , , , , , , , , , ,~  

_05L ~1 O 
FIG. 5--Variation of k~ as a function of crack half angle ~ for discrete values of  the shape 

parameter X and equal biaxial tension of  unit magnitude applied at infinity. 

Rigid Curvilinear Square Inclusion--Compressible Matrix 

Analysis of the crack tip stress intensity factors for the case of a com- 
pressible matrix (K ~ 1) is much more complicated. Since the trends are 
similar to those for an incompressible matrix and Eq 37 are rather easy to 
evaluate for various combinations of fl, ~,, and K, no graphical results will 
be given here. 

Conclusion 

The method used to discuss the interface crack problem for the cases of 
circular, elliptic, and square with rounded corners rigid inclusions may be 
used to solve other examples, some of which are of considerable interest. 
Some of these will be discussed in subsequent works. 

The use of the present analysis method is not restricted to an unbounded 
matrix. If the matrix is finite, Eqs 8 and 9 with f(~-) and h(~) defined by 
Eqs 11 and 12 may be used to generate a sequence of stress functions 
satisfying the boundary conditions at the matrix-inclusion interface. The 
conditions at the other boundaries may then be satisfied by a point match- 
ing, boundary collocation, or some other method for satisfying boundary 
conditions approximately. Thus, the results just presented may be used in 
principle to get solutions for finite solids containing partially bonded 
rigid inclusions. 
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Stress Analysis of the Compact Specimen 
Including the Effects of Pin Loading 

REFERENCE: Newman, J. C., Jr., "Stress Analysis of the Compact Specimen 
Including the Effects of Pin Loading," Fracture Analysis, ASTM STP 560, Ameri- 
can Society for Testing and Materials, 1974, pp. 105-121. 

ABSTRACT: An improved method of boundary collocation was applied to the 
two-dimensional stress analysis of the compact specimen. The effects of the pin- 
loaded holes on stress-intensity factors and crack-opening displacements were 
investigated for various crack-length-to-specimen-width ratios, hole locations, 
and internal loadings. 

The stress-intensity factors for the "standard" compact specimen under plane- 
stress or plane-strain conditions were found to be within I percent of the stress- 
intensity factors reported in the ASTM Test for Plane-Strain Fracture Toughness 
ef Metallic Materials (E 399-72) over a range of crack-length-to-specimen-width 
ratios of 0.4 to 0.7. However, for crack-length-to-specimen-width ratios less than 
0.4, the pin-loaded holes (which were not previously accounted for) had a sig- 
nificant effect on stress intensity and crack-opening displacements. 

KEY WORDS: strains, mechanical properties, stress analysis, crack initiation, 
pin-loaded holes, fatigue (materials) 

Nomenclature  

As, B,, C,,  

a 

c 

d 

E 
F~,F~ 

Coefficients in the series stress funct ions  
Dis tance f rom center line of applied load to crack tip 

Crack length measured  f rom the edge of the plate 
Distance f rom the plane of the crack to the center of the 
circular hole 
Young ' s  modu lus  
Resul tant  force per un i t  thickness acting in the x and y 

directions,  respectively 
Resul tan t  forces or displacements  
One-ha l f  height of the compact  specimen 

f , g  
H 

i =  .V/ ~ I 
j ,  n Indices 

K Stress-intensity factor 

1 Research engineer, NASA Langley Research Center, Hampton, Va. 23665. 
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W~ 
Z 

Zh~ ff.h 

zo, 20 

N Number of coefficients in the stress functions 
Nr  Total number of coefficients used in collocation analysis 

P Concentrated force per unit thickness acting in the y direction 
p Uniformly distributed line load per unit length acting in the 

y direction 
R Radius of the circular holes 
s One-half length of the distributed load segment 

u, v Displacements in the x and y direction, respectively 
W Width of the compact specimen measured from center line of 

applied load 
Total width of the compact specimen 
Complex variable, z = x + i y  

Locations of the centers of the circular holes, zh  = x h  + iyh 

Location of centers of distributed line loads, zo = Xo + iyo 

Angle measured between the x axis and the outward normal 
to a boundary 

~- Coordinate along the contour of a boundary 
00 Angle over which a radial stress acts on the hole boundary 
K Material constant, K = 3 - 4v for plane strain and K = 

(3 - v)/(l  + v) for generalized plane stress 
Lam6's constant (shear modulus) 

v Poisson's ratio 
Coordinate measured from edge of plate along the crack line 

a,  Normal stress at a boundary 
r , t  Shear stress at a boundary 

if, ~b Complex stress functions 
Bars denote complex conjugates 
Primes denote differentiation with respect to z. 

The currently used stress-intensity solution for the standard ASTM 
compact specimen, according to ASTM Test for Plane-Strain Fracture 
Toughness of Metallic Materials (E 399-72), was obtained by boundary 
collocation analysis of a configuration and loading quite different from 
those of the standard specimen [1-3] .  2 The configuration did not include 
the pin-loaded holes and was subjected to only externally applied loads. 
Finite-element models [4] have included the pin-loaded holes but have had 
difficulty in accounting for the crack-tip singularity. 

In order to represent the configuration, loading, and the crack-tip 
behavior more accurately, an improved method of  boundary collocation 
[5,6] was herein applied to the two-dimensional stress analysis of the 
compact specimen (see Fig. 1). The improved method requires that the 
resultant forces on the boundaries be specified (in a least-squares sense) in 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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F I G .  1--Compact specimen subjected to pin loading. 

contrast to previous collocation methods in which the boundary stresses 
were specified. The improved method was shown in Ref 6 to converge to a 
solution more rapidly than previously used collocation methods. The 
solution, presented in terms of stress intensity, was based on the complex 
variable method of Muskhelishvili [7]. The complex-series stress functions 
for the compact specimen were constructed so that the boundary conditions 
on the crack surfaces were satisfied exactly, while the conditions on the 
external boundary and the circular-hole boundaries were satisfied approxi- 
mately. 

Stress-intensity factors and crack-opening displacements were calculated 
for the compact specimen configuration (a rectangular plate with an edge 
crack) with and without circular holes. These configurations were subjected 
to either internally or externally applied loads. 

Analysis of the Compact Specimen 

An improved collocation method [6] was used to analyze the compact 
specimen (see Fig. 1) and other similar configurations. The configurations 
investigated were grouped into two categories: an edge crack in a rec- 
tangular plate, and an edge crack in a wectangular plate containing circular 
holes. Each configuration was subjected to various boundary conditions 
and internal loading. 

For the compact specimen configuration, consider a semi-infinite crack 
located along the x axis in an infinite plate subjected to a uniformly dis- 
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FIG. 2--Semi-infinite crack in an infinite plate subjected to a uniformly distributed internal 
line load. 

tributed line load, p, as shown in Fig. 2. The dashed lines L1 and L2 define 
the boundaries of the compact specimen. The boundaries L1 and L2 may 
have any simple shape and may be subjected to any boundary conditions 
which are symmetric about the x axis. The stress functions for this con- 
figuration are taken in the forms 

+(z) = ~0(z) + ~l(z) + ,I,2(z) 

r = r + r + q,2(z) 
(1) 

The subscripts denote functions which are needed to satisfy conditions for 
the uniformly distributed line load ('I'0, ~b0) and to approximately satisfy 
conditions on boundaries L1 and L2, respectively. 

The stress functions for a semi-infinite crack in an infinite plate sub- 
jected to a uniformly distributed line load, symmetric about the x axis, 
were derived from equations given in Ref 8. They are 

~ o t ( X )  = I o ( Z , Z 2 )  - -  I0(Z,Z1) 

r  = J o ( Z , Z 2 )  - -  J o ( Z , Z l )  
(2) 
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where zl : z0 - s and z2 = z0 + s. The functions 10 and J0 are given by 

Io( z,z 3 ] 
Jo(z,zhl 

= iP4r 2 - - 2  + l n  ~zz--w/~j]--In ~-~-- %/~jlj 

2 r ( K +  1) L z - -  zi ' ~  z z - 2 ]  

-4- -4~r K + - I  In \ z  - Zi l  

PYs I 1  + 1 ; - -  
4 - 2 ~ ( ~ +  1) z - z ~  z 7; 

where j = 1, 2. The primes and bars denote differentiation and complex 
conjugates, respectively. The functions I0 and J0 are identical except for the 
last two terms which differ by signs. In the limit as s approaches zero while 
2ps approaches P, these stress functions reduce to those for a pair of con- 
centrated forces in an infinite plate containing a semi-infinite crack. 

The stress functions used to approximately satisfy boundary conditions 
on the external boundary L1 are 

N N 
�9 ,(z) _: ,,/~ Z A. z"-I ~: E ~.zo 
1/r n= l  n = l  

(3) 

where the coefficients A. and B. are real. These stress functions will, of  
course, produce stresses on the internal boundary L> 

The stress functions used to approximately satisfy boundary conditions 
on boundary L2 are 

~(z)J , ,_~ ( z  - z , 3  ~' 

1 

(z ~h) '~] 

+ w/z D.  [z - zh) ' ~  + (z ~) ' :  

.=, (z zh)" ( z -  ~,~)" 

(4) 
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where Ca, C,, D,, and b ,  are real. In these stress functions, the poles zh 
and G were located at the centers of  the two holes (see Fig. 2). The stress 
functions in Eqs 2, 3, and 4 automatically satisfy the conditions of stress- 
free crack surfaces and the single-valuedness of displacement condition 
for multiply connected regions. The conditions on boundaries L1 and L2 
were approximately satisfied by the series solution using the method 
described in Ref 6. 

The resultant forces and displacements on the boundaries are expressed 
in terms of the complex stress functions as 

f l~(z)  4- ~b(-2) -k (z  --  2 ) ~ ' ( z )  = f ( x , y )  + ig (x , y )  (5) 

For resultant forces (fl = 1) acting over the arc ~" - ~'0 on the boundary 

ig(x ,y)]  ~ Fy --  iF~ = --  [ f ( x , y )  + (6) 
to 

For displacements (fl = - K) at a point ~- on the boundary 

2•(u q- iv) = - [ f ( x , y )  q- ig(x,y)]z=r (7) 

The complex equation for the stress components on the boundary is 

~,~ --  ir,~t = ~ ' ( z )  Jr '~'(z) -- [(2 -- z ) ~ " ( z )  --  ~ ' ( z )  + ~'(z)l e2~" (8) 

The crack-tip stress-intensity factor, as defined in Ref 8, is given by 

K = 2~v/~ lim w/z  ~'(z) (9) 
Z ~  0 

The stress-intensity factor calculated from Eq 9 using Eqs 1 to 4 is 

E K = Ko + V / ~  AI  + 2~_ ,  ( - 1 ) n C n r ~  - ~ s i n ( n O ~ )  

-'1 

+ 2 Z ( -  cos (lO) 
.A 

where rh 2 = xh 2 + yh ~, Oh = tan -~ (yh/Xh) ,  and K0 is the stress-intensity 
factor for the uniformly distributed line load. The stress-intensity factor 
K0 is given by 

Ko = I(z2) - -  I(z~) (11) 
where 

l ( z 3  - 
1 

~v/~  ~ sin 0j cos - sin 

Results and Discussion 

Edge C r a c k  in a Rec tangu lar  P la te  

In the following section the stress-intensity factors for two cases of an 
edge crack in a rectangular plate are presented. The edge-cracked plate was 
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subjected to either a uniformly distributed internal line load or surface 
tractions on the external boundary. 

Uniformly Distributed Internal Line Load--For the edge-cracked plate 
subjected to a uniformly distributed internal line load, pl (see Fig. 3), the 
stress functions are given by Eqs 2 and 3. The coefficients in Eq 3 were 
evaluated by approximately satisfying the conditions of zero tractions on 
the external boundary, as described in Ref 6. 

Because boundary collocation is a numerical method, convergence of the 
solution must be investigated. Example problems with a/w = 0.2 and 0.8 
were solved using several values of N. The configuration with a/w = 0.8 
was selected because the close proximity of the crack tip to the external 
boundary was expected to pose convergence difficulties. In Fig. 4, the stress- 
intensity factors are plotted as functions of N~.(= 2N), the total number of  
coefficients. For  ease of comparison, the stress-intensity factors are normal- 
ized with respect to their values for Nr  = 80. As the number of terms in 
the series increases, the differences between the specified boundary condi- 
tions and those obtained from the series solution become smaller and the 
stress-intensity ratio converges to unity. The convergence, although 
considerably faster for the smaller value of a/w, was quite sufficient at 
NT = 70, even for a/w = 0.8, the largest ratio considered. Thus, for all 
other a/w ratios investigated for this configuration, 70 coefficients were used. 

The stress-intensity factors for the case of internal loading, and crack- 
opening displacements for both internal and external loading are functions 
of Poisson's ratio and the plane-stress or plane-strain assumptions. The 
effects on stress intensity of both Poisson's ratio and plane-stress or plane- 

P3 

• 
2s 

Yo 

ttttt p2 

~ 2 ~  

.[ 

- - W  

W O . �9 

l 
2H 

1 
FIG.  3--Edge-cracked plate subjected to internal and external loading. 
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FIG.  4---Convergence curve for edge-cracked plate. 

strain assumptions can be unified by considering variations in ~ only. 
A number  of  edge-cracked plates were analyzed for several values of  K and 
several internal loading locations. The results indicated that variations in 
(hence, plane-stress or plane-strain assumptions) had an extremely small 
effect on stress intensity. For  example, for an a/w ratio of  0.2 and yo/H 
ratios between 0 and 1, the stress-intensity factor varied by less than 0.5 
percent for K between 1 and 3. The effects of K on stress intensity were even 
smaller for larger values of a/w. 

The stress-intensity factors for the edge-cracked plate (H/w = 0.6) 
subjected to a uniformly distributed internal line load are given in Table 1 
for various a/w and yo/H ratios. The results are presented in terms of the 
coefficient form K~c/W/P, where P = 2p:s is the force per unit thickness. 
For a given value of a/w, the stress intensity increased as the point of  load 

TABLE 1--Dimensionless coefficient K ~ / W  /P for an edge-cracked plate with 
H / W  = 0.6 and 2 s /W = 0.125 as a function o f  yo/H and a /W.  

a/W 
Type of  y0 
Loading H 0.2 0.3 0.4 0.5 0 .6  0.7 0.8 

0 4.97 5.92 7.36 9.65 13.64 21.58 41.18 
Normal 0.33 4.85 5.88 7.35 9.63 13.62 21.56 41.15 

(W~ = 1 .25W)  0.67 4.64 5.80 7.32 9.63 13.62 21.56 41.15 
1.0 4.62 5.78 7.32 9.63 13.62 21.56 41.15 

Shear 0.67 4.52 5.79 7.35 9.66 13.65 21.60 41.18 
(Wo = W) 
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application approached the crack surfaces. This increase was as much as 
7.5 percent for an a/w ratio of 0.2. 

External Boundary Tractions--For edge-cracked plates subjected to 
tractions, p2 or P3, as shown in Fig. 3, stress functions are given by Eq 3. 
Again, the coefficients were determined by approximately satisfying the 
stress-free and uniform stress conditions on the appropriate segments of 
the boundary. Two loadings were considered separately: (1) a uniform 
normal stress, p2, and (2) a uniform shear stress, p3, applied to the external 
boundary. The loading in the latter case was similar to the loading used in 
Refs 1, 2, 3, and 9 for the standard compact specimen analysis. The stress- 
intensity factors obtained by the present method for the uniform shear 
stress applied to the boundary (W0 = W) were within 1.5 percent of the 
previously obtained values for similar loading. The tabulated stress- 
intensity factors for the cases of uniform normal stress (P = 2p2s) and 
uniform shear stress (P = 2p3s) are given in Table 1. 

Edge Crack in a Rectangular Plate Containing Circular Holes 

In this section the stress-intensity factors for an edge-cracked plate con- 
taining circular holes are presented. The configuration was subjected to 
either a uniformly distributed internal line load, as shown in Fig. 5, or a 
uniform radial stress applied to the edge of holes, as shown in Fig. 6. 
The uniformly distributed line load was used to show the influence of the 
holes on stress intensity and crack-opening displacements. This loading 
was identical to the internal loading applied in the edge-cracked plate 

I -  a -I 

W 

-- W 
O 

2H 

I 

F I G .  5--Compact specimen subjected to the un([ormly distributed internal line load. 
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FIG. 6---Simulated pin loading for compact specimen. 

without holes. The uniform radial stress applied on the edge of the holes 
was used to simulate the pin loading which was applied in the actual com- 
pact specimen. In the actual specimen, the bearing stresses caused by the 
pin loading are concentrated over a small arc (00 probably less than 45 deg) 
on the boundary of the holes due to the undersized pin requirements 
(see ASTM E 399-72). 

Uniformly Distributed Internal Line Load--For an edge-cracked plate con- 
taining circular holes and subjected to the uniformly distributed line load 
(see Fig. 5), the stress functions are given by Eqs 2, 3, and 4. The distributed 
line load was applied tangent to the edge of the holes with s = 0.5 R. The 
coefficients in Eqs 3 and 4 were determined by approximately satisfying 
the stress-free conditions on the internal and external boundaries. Again, 
numerical convergence was investigated because of the creation of internal 
boundaries. Example problems with a/w = 0.2 and 0.8 were solved for 
several values of Np and the results are shown in Fig. 7. The results are 

K 
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1.02 
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�9 i I I 
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FIG. 7--Convergence curve for the compact specimen. 
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presented as a ratio of  the stress-intensity factor for a given value of  N r  to 
that  for NT = 160 as a function of the total  number  of  coefficients. The 
convergence was again faster for smaller values of  a/w. For  this configura- 
tion, 144 coefficients were used in subsequent analyses. The number  of  
coefficients was equally divided among the internal and external boundaries. 

The stress-intensity factors for the case of  internal loading are a function 
of Poisson's ratio and the plane-stress or plane-strain assumptions,  as 
previously mentioned. However,  because the previous results indicated 
that K had an extremely small effect on stress intensity, the following 
analysis was performed using a value of K = 1.8. 

The stress-intensity factors for the edge-cracked plate with circular 
holes (H/W = 0.6 and 2R/W = 0.25), and subjected to a uniformly 
distributed internal line load which was tangent to the edges of  the holes, 
are given in Table 2 for several values of  d/H (hole location). These results 
are shown in Fig. 8 as a ratio of  stress-intensity factors for the configuration 
with and without the circular holes. For  a/w ratios greater than 0.4, the 
effects of  the circular holes were less than 1.5 percent. However,  for a/W 
ratios less than 0.4, the holes had a significant effect on stress intensity. 
In the standard compact  specimen (d/H = 0.458) and for an a/W ratio of  
0.2, the holes reduced the stress-intensity factor approximately 8 percent. 
When the holes were placed closer together (smaller d/H) a further reduc- 
tion in stress intensity occurred. However, for d/H = 0 (the crack-line loaded 
specimen) and small values of  a/W, the stress concentration due to the 
hole caused an increase in stress intensity over that for other values of  d/H. 

1.05 I 

1.00 . . . . . . . . .  i i 

.95 
H_ = 0.6 

KNO HOLE w 

.90 ,4 
2R 
--= 0.25 
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EDGE , 0.3 
or I 
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I I I I | 
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a 

W 

FIG. 8--hTftuence of the pin-loaded holes on stress intensity. 
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TABLE 2--Dimensionless coefficient K V/WN /P for the compact specimen with H/W = 0.6, 
2R /W = 0.25, and 2s /W = O. 125 as a function of d/H and a/W. 

a/W 
d 

H 0.2 0,3 0,4 0.5 0.6 0.7 0.8 

0 4.75 5.87 7.34 9.62 13.61 21.54 41.05 
0.3 4.01 5.61 7.28 9.62 13.61 21.53 41.03 
0 .4  4.20 5.62 7.27 9.63 13.63 21.57 41.09 
0.458 a 4.29 5.63 7.27 9.63 13.64 21.57 41.13 
0 .6  4.47 5.68 7.26 9.61 13.61 21.54 41.05 

b 4.46 5.76 7.33 9.64 13.64 21.56 41.07 
c . . .  5.85 7.32 9.60 13.54 21.43 . . .  

a Standard compact specimen. 
b Reference 9. 
c Reference 1 and ASTM E 399-72. 

Of course, as the crack length approaches zero, so does the stress-intensity 
factor. 

The stress-intensity factors for the standard compact  specimen for 
various a~ W ratios are also compared in Table 2 with results f rom ASTM 
E 399-72 and Refs 1 and 9, which neglected the pin-loaded holes. For  a~ W 

ratios greater than 0.4, the present stress-intensity factors were within 
1 percent of the previously obtained values. However,  the present stress- 
intensity factors were approximately 4 percent lower than the values 
given in R e f l  for a / W  = 0.3 and in R e f 9  for a / W  = 0.2. 

The effects of  the circular holes on crack-opening displacements are 
shown in Fig. 9, where the nondimensional crack-surface displacement, 
Ev/P ,  is plotted as a function of location on the crack surface. These 
results were for the standard compact  specimen with and without circular 
holes for a / W  = 0.5. The state of  deformation was assumed to be plane 
strain with K = 1.8 (or v = 0.3). The stress-intensity factors for the speci- 
mens with and without the holes agreed to within 0.1 percent. However,  
the crack-opening displacements calculated at the Ioad line (hole center 
line) and the outer edge of the plate (W0 = 1.25 W) for the specimen with 
holes were 2.5 and 8.5 percent larger, respectively, than for the specimen 
without holes subjected to the same loading. The crack-opening displace- 
ments at the load line and the outer edge of plate for the specimen with 
holes are given in Table 3 for three values of K (plane-strain condition) and 
several values of  a / W .  Also given in Table 3 are the crack-opening dis- 
placements at the load line f rom Ref  10 for an edge-cracked plate without 
holes under plane-stress (or plane-strain) condition with K = 3. 

The displacements under plane-stress conditions can be obtained f rom 
the plane-strain displacements for a given value of K by multiplying the 
plane-strain displacements by 16/[(1 § ~) (7 -- ~)]. It should be noted 
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FIG.  9--Crack-opening displacements for  the compact specimen with and without the 
pin-loaded holes. 

that the admissible range of K for plane stress is 5,;/3 < K < 3, whereas for 
plane strain the range is 1 < ~ < 3. 

In Table 4, the crack-opening displacements, Ev/P, at the outer edge of 
the standard compact specimen from the present analysis are compared 
with experimental results (NASA-Lewis unpublished data, Bubsey and 
Jones) for specimens with loose- and tight-fit pins. The experimental 
displacements for the case with loose-fit pins are in good agreement with 

TABLE 3--Dimensionless crack-opening displacement, Ev [P,for standard compact specimen 
as a function o f  r and a / W  for plane-strain conditions. 

Point of  
Calculation 

(x) 

a/W 

K 0.2 0.3 0.4 0.5 0 .6  0.7 0.8 

1 3.19 5.31 8.53 13.83 23.72 47.05 115.7 
Load line 1.8 3.90 6.49 10.39 16.82 28.81 57.12 140.4 

(x = - a )  3 4.33 7.16 11.45 18.52 31.69 62.80 154.4 
3 ~ . . .  7.13 11.48 18.51 31.66 6 t .02  . . .  

Edge of  plate 1 6.36 9.06 13.30 20.26 33.12 62.61 150.1 
1.8 7.99 11.27 16.40 24.86 40.45 76.23 182.4 

(x = --c) 3 9.00 12.61 18.25 27.54 44.67 83.99 200.9 

Reference 10. 
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TABLE 4--Comparison of theoretical and experimental crack-opening displacements, 
Ev/P, at the outer edge of the standard compact specimen (x = -c) .  

a/W 

Reference 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Present results with holes 7.99 11.27 16.40 24.86 40.45 76.23 182.4 
(Plane strain u = 0.3) 

Present results with holes 8.84 12.45 18.09 27.38 44.51 82.74 198.7 
(Plane stress v = 0.3) 

Bubsey and Jones, loose-fit 8.6 12.1 17.7 26.9 44.4 80.5 190 
pins a (measured) 

Bubsey and Jones, tight-fit 6.3 10.1 16.0 25.1 41.8 78.6 189 
pins a (measured) 

Present results with no holes 6.27 10.10 15.87 25.21 42.34 80.53 196.5 
(Plane stress u = 0.3) 

Present results with no holes 5.71 9.19 14.44 22.94 38.53 73.28 178.8 
(Plane strain u = 0.3) 

NASA-Lewis unpublished data. 

the present  resul ts  for  spec imens  with holes  under  p lane-s t ress  cond i t ions  
(v --- 0.3). In  the case wi th  t ight-f i t  pins (push fit), the  rad ius  of  the  holes  
was a p p r o x i m a t e l y  one ha l f  of  the  size specified for  the  s t a n d a r d  specimen.  
These resul ts  are  also c o m p a r e d  in Tab le  4 with the present  resul ts  for  a 
spec imen wi thou t  holes,  but  subjec ted  to  the un i fo rmly  d i s t r ibu ted  in te rna l  
l ine load  (see Fig.  3, y o / H  = 0.67 and  s / R  = 0.5). Aga in ,  the  ag reemen t  
be tween the exper imen ta l  and  theore t ica l  d i sp lacement s  is cons ide red  good .  
F o r  all a~ W ra t ios  cons idered ,  the  measu red  d i sp lacemen t s  were b o u n d e d  
by the ca lcu la t ed  d i sp lacemen t s  for  p lane stress and  p lane  s train.  

Uniform Radial S tress- -For  an edge -c racked  p la te  con t a in ing  c i rcular  
holes  and subjec ted  to the un i fo rm rad ia l  stress on the edge o f  the  holes,  as 
shown in Fig.  6, the  stress func t ions  are,  again ,  given by  Eqs 2, 3, and  4. 
However ,  for  l oad ing  in the  hole  the  loca t ions  o f  zl and  z2 in Eq  2 mus t  lie 
inside the ho le  b o u n d a r y .  They  were p laced  at zl = z0 - s and  z2 = z0 § s, 
where  Zo = - a  § id and  s = 0.5R. The to ta l  r esu l tan t  force  ac t ing  on 
the b o u n d a r y  of  each hole  was P.  The  pa r t i cu l a r  stress d i s t r ibu t ion ,  ~n, on 
the hole  b o u n d a r y  was specified and was a p p r o x i m a t e l y  satisfied by the 

series so lu t ion .  
The  s t ress- intensi ty  fac tors  for  the  s t a n d a r d  c o m p a c t  spec imen,  for  

va r ious  a / W  ra t ios ,  are shown in Fig.  10 as a func t ion  of  00, the  angle  over  
which the un i fo rm rad ia l  stress acts on the  hole  b o u n d a r y .  The  resul ts  are  
shown as the  r a t io  of  the  s t ress- in tensi ty  fac tor  for  a pa r t i cu l a r  va lue  of  
00 to tha t  for  00 = 20 deg. F o r  values  of  00 much  less than  20 deg, the  r ad i a l  
stress d i s t r ibu t ion  a p p r o a c h e s  a concen t r a t ed  force and the  series so lu t ion  
becomes  inefficient. However ,  the s t ress- intensi ty  fac tors  for  smal ler  values  
o f  00 are no t  expected  to differ s ignif icant ly f rom those  for  00 = 20 deg. 
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Stress-intensity factors for values of 00 less than approximately 90 deg were 
within 1 percent of the values given in Table 2 for the standard compact 
specimen. Therefore, it appears that the undersized pins in the standard 
compact specimen (ASTM E 399-72) do not significantly affect the stress- 
intensity factors for a/W < 0.2. However, assuming that the solution for 
00 = 180 deg roughly approximates the solution for tightly fitting pins, it 
appears that tightly fitting pins can reduce the stress intensity for a /W < 0.3. 

Comparison with Other Stress-Intensity Solutions 

The results presented in this paper indicated that the pin-loaded holes 
had a significant effect on stress-intensity factors for a /W ratios less than 
0.4. Therefore, when the compact specimen is used at crack-length-to- 
specimen-width ratios less than 0.4 the effects of the holes should be in- 
cluded. Figure 11 shows a comparison between the nondimensional stress- 
intensity factors from the equation given in ASTM E 399-72 and Ref 1 
(dashed line), Ref 9 (open symbols), and the present results (solid sym- 
bols). The equation in ASTM E 399-72 was restricted (in Ref 1) to 0.3 
a/W < 0.7. The results from Refs 1 and 9 and ASTM E 399-72 did not 
include the effects of the pin-loaded holes. An improved equation for 
stress intensity which accounts for the influence of the pin-loaded holes 
and applies over a wider range of a~ W. 

K - ~v/W F (12) 
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where 

: 4 . 5 5 - 4 0 . 3 2 ( @ ) + 4 1 4 . 7 ( ~ )  2 -  1 6 9 8 ( ~ )  3 

~--3781 ( ~ )  4 - 4287 ( ; - - )5  -~-- 2017 (~--)  6 

for 0.2 _< a/W <_ 0.8. 

Equation 12, which is a least-squares fit to the present results, agrees to 
within 0.5 percent with the results given in Table 2 for the standard com- 
pact specimen. 

Concluding Remarks 

An improved method of boundary collocation was employed in the 
two-dimensional stress analysis of the compact specimen. The effects of 
the pin-loaded holes on stress-intensity factors and crack-opening dis- 
placements were investigated for various crack-length-to-specimen-width 
ratios, hole locations, and internal loadings. 

The pin-loaded holes were found to reduce stress-intensity factors for 
a~ W ratios less than 0.4. They also increased crack-opening displacements 
at the load line and at the outer edge of the plate, for all a/W ratios con- 
sidered, over those obtained from the configuration without holes. The 
effects of Poisson's ratio and the plane-stress or plane-strain assumptions 
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on stress in tens i ty  were f o u n d  to be less than  0.5 pe rcen t  for  all  a / W  ra t ios  
cons idered .  A n  i m p r o v e d  equa t ion  for  stress in tens i ty  was p resen ted  which  
accounts  for  the  p i n - l o a d e d  holes  and  appl ies  over  a wider  range  o f  a~ W. 
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ABSTRACT: The purpose of this paper is to show the effects of experimental 
imprecision on the stress intensity factors calculated for various practical specimen 
types. A general form equation for the stress intensity factor is presented, and a 
general error equation is derived. The expected error in the stress intensity factor 
is given in terms of the precision levels of the basic experimental measurements 
and derivatives of the stress intensity calibration factor. Nine common fracture 
specimen types are considered, and the sensitivity of the various types to experi- 
mental error is illustrated. Some implications for fracture toughness testing 
and crack growth rate testing are discussed, and methods of analysis are proposed 
to compensate for the effects of experimental error. 

KEY WORDS: fracture properties, errors, error analysis, experimentation, 
mechanical properties, crack initiation 

Scientific experiments, even when carefully controlled, will always 
contain experimental errors. Prior knowledge of the effects of these errors 
will allow the proper design of an experiment before it is run. The purpose 
of this paper is to show the effects of precision errors on the stress intensity 
factors computed for nine common specimen types. 

In most experiments the quantity of interest cannot be measured directly. 
Rather, other quantities must be measured (often simultaneously) and 
then combined through some mathematical process. If the process involves 
only simple functions of the measurements, it is not difficult to compute 
the expected error in the quantity of interest from the precision levels of 
the individual measurements. But if the process involves more complicated 
functions, then the computation is not as simple and the effect of impre- 
cision in any one measurement may be hard to visualize. 

In this paper a general form equation for the stress intensity factor is 
presented and a general error equation is derived. The expected error in the 
stress intensity factor is given in terms of the expected errors (precision 
levels) of the measurable constituents and a derivative of the stress intensity 
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ORANGE ON EFFECTS OF EXPERIMENTAL ERROR 123 

calibration factor. Calibration factor expressions for nine common fracture 
specimen types are collected, tabulated, and differentiated. The sensitivity 
of the different specimen types to experimental error is illustrated. Some 
implications for fracture toughness testing and crack growth rate testing 
are discussed. 

Analysis 

An expression for the stress intensity factor can be written in a general 
form as 

K = Ya%/a + r (1) 
where 

K = stress intensity factor, 
Y = calibration factor, 

= nominal applied stress, 
a = characteristic crack dimension, and 
r = plastic zone correction factor. 

If  Irwin's [1] 2 form is taken for the plastic zone correction factor, then 

r = (K/ays)2/mr (2) 

where n is 2 for plane stress or 4%/2 for plane strain, and ~ys is the material 
yield strength. 

The expected error in the computed value of the stress intensity factor is 

bK E, q- bK b~a a 
EK = b-~-~ I ~ Eys ~- Ea (3) 

where E~ and Ea are the expected errors (precision levels) in the measured 
values of nominal stress and crack length, and Eys is the expected variation 
of the material yield strength. After substituting Eq 2 into Eq l, performing 
the required differentiations, and rearranging terms, Eq 3 becomes 

EKK - ( l - q - a r ) E ~  + ( ~ )  Ey~ + a  ays ~-q-(1 + ~ ) a  b Y I E ~ Y  ba --a (4) 

But a fundamental tenet of applied linear elastic fracture mechanics is that 
r << a. Thus, the presence of a small plastic zone will have little effect on 
the precision of a K-calculation (although it may affect the accuracy) and 
we can write Eq 4 as 

EK/K = E,/a -k ae~/a (5) 

where 
a bY 

e~= + Y  ba 

and ~ may be considered a crack length sensitivity factor. 

2 The italic numbers in brackets refer to the list of  references appended to this paper. 
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1 2 4  FRACTURE ANALYSIS 

It remains to differentiate the calibration factor appropriate to the speci- 
men geometry in question. Calibration factors [2-7] for the nine specimen 
geometries considered (Fig. 1) are compiled in Table I. They and their 
claimed ranges of applicability are expressed in terms of X, the relative 
crack length (see Fig. 1). Where necessary, the original expressions were 
rewritten in the form prescribed by Eq 1. Calculated values of the crack 
length sensitivity factor a are plotted in Fig. 2 for six specimen configura- 
tions. On this scale, curves for the SENB4 and SENB8 specimens would be 
almost indistinguishable from that for the SENB specimen. 

For the PTC specimen two crack dimensions must be considered, the 
depth (a) and the half-length (c) of the semiellipse. Thus, the terms 

(r)  c b g Ec 
bK E~ and 1 q- Y bc c 

p P 

; ; ..B = 

~. -s  =4w ~ ~ I-----s =sw ~1 

SENB4 SENB8 SENB 
o = 3PSI2Bw 2 o = 3PSI2BW 2 o = 6NIIBW 2 
;~ = a l W  ,~ : a/W ;', = a/W 

P 

~ ' ~ Z .  25 W - ~ , / B  

= ; T 
f ~ q J ] l . 2  W a 

P 

SEN[ CT NR 
o : P/BW o = P/BW o = 4PloD 2 
~, : a/W ), : alW ), = 1 - diD 

2a 
a 

CC DEN 
o : P/BW o : P/BW 

= 2a/W ;', = 2a/W 

' 

PTC 
o = P/BW 
X - a/B 

FIG. 1--Specimens and nomenclature. 
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?C- 

E - -  
8 

CRACK 4 
LENGTH 

SENSITIVITY 
FACTOR, 2 

(i 

1 
.8 
.6 

.4 
0 

SENB4 3-POINT BEND, 
SPAN = 4 x width a 

SENB8 3-POINT BEND, 
SPAN = 8 x width a 

SENT SINGLE EDGE NOTCH, 
REMOTE TENSION 

NR NOTCHED ROUND BAR, 
TENSION 

SENB SINGLE EDGE NOTCH, 
PURE BENDING 

/ / ~  CT COMPACT TENSION 
(ASTM E~O-/2) 

SENT ~,, CC CENTER RACK, 
NR~.. " . . j / / "  / TENSION 

DEN DOUBLE EDGE NOTCH, 
TENSION 

"--CT aUSE CURVE FOR SENB; SEE 
"-. ' --  CC TEXT. 

I I i~DENI I 
.2 .4 .6 .8 1.O 

RELATIVE CRACK LENGTH, k 

FIG. 2--Crack length sensitivity factor. 

must be added to the right sides of  Eq 3 and Eq 4, respectively. It  is reason- 
able to assume that the error in crack half-length measurement (Ec) will 
be the same as the error in crack depth measurement (Eo). Then for the 
PTC specimen the term a in Eq 5 can be replaced by 

1 a ~)Y a c ~ Y  

fl = 2 +  Y /)a + ~ -  Y ~c 

To simplify differentiation, the approximation [8] 

q~2 .~ 1 + 4 .59 (a /2c )  165 

was used here. Calculated values of the crack dimension sensitivity factor 
for the PTC specimen are presented in Fig. 3. 
In cyclic crack propagat ion testing, a parameter  of  interest is the stress 

intensity factor range, 

AK = Kmax -- Kmin ~ (q ... .  -- O'min) Y~v/a (6) 

I f  we assume that the maximmn and minimum cyclic stresses will both 
have the same absolute error E., then corresponding to Eq 5 we have 

E~K 2 E~ E .  
- + a - -  ( 7 )  

AK I -- R O'm~x a 

where 

R ~ O'min/O'max 

Note that the first term on the right side of Eq 7 becomes large as R ap- 
proaches unity. In other words, in a test where the alternating load is 
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CRACK DIMENSION 
SENSITIVITY 
FACTOR, 
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.8 
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2c a ~ 0  1 
- ~ - i  JOE / /  �9 
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a/2c 
2-- 0 ---, 

�9 2 - - ] / /  
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.2 .4 .6 .8 1.O 
RELATIVE CRACK DEPTH, X 

FIG. 3--Crack dimension sensitivity factor for PTC specimen. 

small compared with the mean load, AK is extremely sensitive to errors in 
load control and measurement. 

D i s c u s s i o n  

General Comments 

After examining Fig. 2 we can make the following general conclusions 
regarding the sensitivity of various specimen types to errors in crack 
length measurement. Sensitivity generally increases with increasing relative 
crack length. The single-tip-crack specimens (SENT, SENB, SENB4, 
SENBS, CT) are more sensitive than the double-tip-crack specimens 
(DEN, CC). Specifically, the SENT specimen is the most sensitive speci- 
men of all. The remaining single-tip-crack specimens and the NR specimen 
are less sensitive, and all have very nearly the same sensitivity for ~ > 0.4. 
The DEN specimen is less sensitive than the CC specimen and is the least 
sensitive of the types so far considered�9 

The reader should be cautioned that some values of a may not be very 
accurate at the lowest applicable values of ~. The calibration factor ex- 
pressions were originally obtained by fitting polynomials to sets of bound- 
ary collocation data points�9 Differentiation of a fitted polynomial often 
gives highly unsatisfactory slopes, especially near either end of the fitting 
range�9 This seems to be especially true for the CT specimen below about 
3~ = 0.4. At the higher ends of the polynomials'  ranges, a slight amount  of 
fairing was used in Fig. 2 to blend the curves derived from polynomials 
into those derived from extrapolation equations [3,4]. 

Equation 5 and Fig. 2 can prove useful in any of the following applica- 
tions. For  given measurement precision levels (E~/a and Ea/a), the ex- 
pected error Er/K can be determined for any specimen. This will be done 

Copyright  by ASTM Int ' l  (a l l  r ights  reserved) ;  Mon Dec  7  14:44:21 EST 2015
Downloaded/pr inted by
Univers i ty  of  Washington (Univers i ty  of  Washington)  pursuant  to  License Agreement .  No fur ther  reproduct ions  author ized.



128 FRACTURE ANALYSIS 

later for the specimens described in the ASTM Test for Plane-Strain 
Toughness of Metallic Materials (E 399-72). Or, for any given specimen 
the effect of changes in the measurement precision levels can be determined. 
This in turn could help determine, for example, whether available funds 
would be better spent on new load cells or on a new optical micrometer. 

In the discussion so far it has been tacitly assumed that the expected 
error in the applied load is unrelated to specimen type and crack length. 
This is true if the load in question is an independently-defined occurrence 
such as the maximum load. But in some tests (for example, ASTM E 399-72) 
the load in question is the load corresponding to a given percent crack 
extension. That  load is usually determined by the intersection of the load- 
COD (crack opening displacement) trace and a secant offset line. The 
secant offset corresponding to a fixed percent crack extension varies with 
specimen type and relative crack length. This is discussed in more detail in 
Ref 2. In general, the secant offset is larger for the single-tip-crack speci- 
mens than for the double-tip-crack specimens and increases with the relative 
crack length. In most practical applications, if the required secant offset 
becomes too small it may become difficult to achieve the desired load 
precision level with existing instrumentation. 

The PTC Specimen 

Discussion of the PTC specimen must be prefaced with a consideration 
of the calibration factor. At present there is no exact solution for the 
problem of a semieIliptical surface crack in a finite plate. The expression 
used [7] is a polynomial approximation to curves presented by Kobayashi 
and Moss [9], which in turn are based on analogy to an earlier approximate 
solution [10]. Although lacking in rigor, the Kobayashi-Moss estimation is 
probably adequate for illustrative purposes. The polynomial approxima- 
tion is a fairly good fit, it is mathematically tractable, and its derivatives 
appear reasonable for, say, X < 0.9. 

The sensitivity factor 3 for the PTC specimen is shown in Fig. 3. Sensi- 
tivity to dimensional measurement error appears to be relatively low and 
independent of X for shallow surface cracks, but increases markedly above 
about X = 0.7. Although the analysis is only approximate, the PTC speci- 
men would appear to be inherently more precise than the specimens of 
Fig. 2. However, there are many difficulties involved in the application of 
the PTC specimen, some of which are discussed in Refs 2 and 11. 

ASTM Test Method E 399-72 

This test method is thorough in that it specifies precision levels for every 
possible measurement, but it does not give the expected error in fracture 
toughness associated with these precision levels. The error can be calcu- 
lated using Eq 5, Fig. 1, and Fig. 2, with one precaution. 
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ORANGE ON EFFECTS OF EXPERIMENTAL ERROR 129 

The test method allows some misalignment of load, crack, and supports 
for the bend specimen. If the load and the crack are not in line, an in-plane 
shear (Mode II) loading will be present. This shear load will alter both the 
crack-tip stress field and the crack mouth displacement. At present there 
seems to be no adequate analysis for the misaligned bend specimen. But 
unpublished crack mouth displacement measurements by M. H. Jones and 
R. T. Bubsey of NASA-Lewis imply that the effect of the allowable mis- 
alignment will be quite small. For lack of a proper analysis (but having 
some experimental justification), errors due to bend specimen misalignment 
will be neglected. 

Based on the precision levels specified in the test method for specimens 
thicker than 1.0 in. (25 mm), Eq 5 becomes 

EK/K = 0.018 + 0.005~ for the bend specimen 

EK/K = 0.012 + 0.005a for the compact specimen 

and these are plotted in Fig. 4. For the dimensions B or W less than 1.0 in. 
(25 ram), the test method specifies an absolute rather than a percentage 
precision level. In this case the error in applied stress (E,/~r) will increase 
with decreasing width or thickness and the curves of Fig. 4 will translate 
upwards. For thick specimens, the maximum error in fracture toughness 
due only to imprecision of physical measurements will be about 2 ~  percent 
for the bend specimen and about 2 percent for the compact specimen. 
Although there may be other reasons for selecting one specimen over the 
other, the compact specimen appears to be inherently more precise than 
the bend specimen, and this was found in Ref 12 to be the case. In two 
series of round robin tests involving about 400 bend and compact specimens 
of four materials, the reported standard deviations of K~o ranged from 
4.2 to 5.85 percent for bend specimens and from 2.6 to 3.75 percent for 

. 0 4 -  

EXPECTED ERROR IN 
FRACTURE TOUGHNESS, 

EKIK 

.03 

. 0 ~ -  

.01 
.3 

j /  

BEND SPeCIMENs, / / / 
/ /  

_ _ - - - - ~  LIMITS OF / / ~  

. . . . . . . .  '-COMPACT SPECIMEN 

I I I I 
.4 .5 .6 .7 
RELATIVE CRACK LENGTH, 

FIG. 4--Expected error in fracture toughness due to test imprecision (ASTM E 399-72: 
specimens thicker than 1 in., misalignment of  bend specimen neglected). 
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130 FRACTURE ANALYSIS 

compact specimens. The maximum error due to imprecision of physical 
measurements is not insignificant when compared with these measures of 
experimental data scatter. 

The test method itself does not consider the question of replicate tests. 
In a smooth tensile test, for example, all replicate data will normally have 
the same precision, and a simple average is an appropriate characterization. 
But it is not reasonable to expect that replicate fatigue-cracked fracture 
specimens will all have exactly the same crack length. If the crack lengths 
vary, even over the narrow range permitted by the test method, the repli- 
cates will not all have the same precision. In this case we want to place the 
greatest emphasis on the test which is expected to be the most precise, and 
so a weighted average is called for. A weighted average should give a better 
estimate of the true population mean (namely, KIo) by accounting for the 
precision of the individual observations. It is customary [13] to weight 
each observation inversely proportional to the square of its expected error. 
If  this is done for the fracture specimens, a specimen having ?, -- 0.45 will 
carry about 40 percent (compact specimen) or 26 percent (bend specimen) 
more weight than a specimen with X = 0.55. Or, a compact specimen will 
have about  78 percent more weight than a bend specimen of the same 
relative crack length. 

Cyclic Crack Propagation Testing 

The treatment of experimental error is even more important  in analysis 
of cyclic crack growth data than in fracture toughness testing, and may 
even be of critical importance. It is more important for two reasons. First, 
the errors in the basic measurements are generally larger, since load control  
and measurement and crack length measurement are more difficult in 
cyclic testing. Some of the factors affecting the precision levels of the basic 
experimental measurements are discussed by Wei [14]. Secondly, the 
reduction and analysis of the basic data is a three- or four-step process. 
Experimental errors enter into each step in a different way, and errors in 
any one step will be carried into subsequent steps. 

When the crack length is obtained indirectly, as in the compliance and 
electric potential methods [2], the basic measurement represents some 
function (usually nonlinear) of the crack length. The expected error in the 
inferred crack length can be calculated in terms of the precision level of the 
basic measurement and a derivative of the functional relationship, and will 
probably be nonlinear. Now having the crack lengths a~ at cycle numbers 
N~, we must obtain the growth rate da/dN, preferably by mathematical 
means. Several methods of numerical differentiation are evaluated by 
Frank and Fisher [15]. If  we know the expected error in crack length and 
have a closed-form expression for the derivative, we can compute the 
expected error in growth rate, which again will probably be nonlinear. 
The stress intensity range, AK, is then computed (Eq 6) at each value of 
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crack length. The errors that may occur in this step have been discussed 
earlier in this paper, and they are overlooked by most  investigators. I f  the 
cyclic loads are fixed, the error in 2xK will change as the crack grows; a 
short-crack high-load specimen and a long-crack low-load specimen may 
have the same 2xK but different error expectations; tests having the same 
2xK but different load ratios will have different expected errors (see Eq 7). 
The presence and variability of  these errors severely complicate the final 
step, wherein an at tempt is made to correlate the crack growth rate with 
the stress intensity range using one or more analytical models. The most  
popular  model is that of  Paris [16], 

da 
- C(AK) n 

dN 

where C and n are empirical constants. This exponential equation can be 
linearized by taking the logarithm of both sides. One is then tempted to fit 
a straight line using the method of least squares. However,  to do so in this 
case would be to violate one of the basic assumptions of the method. 

The classical method of least squares assumes that errors E u in the de- 
pendent variable y are normally distributed and that the independent 
variable x is known without error (or at least that  E~ << Eu). But here 
we have error in the independent variable (log 2xK) which is not always 
insignificant. The very complicated problem of linear regresssion with 
error in both variables is often cited in the literature [17,18], and there are 
solutions for special cases, but there appears to be no generalized solution 
applicable to the crack growth rate problem. In the absence of a rigorous 
method, a good engineering approximation might be to use a weighted 
least-squares fit with the weighting factor being the inverse square root  of  
the sum of the squares of the expected errors in log (da/dN) and log (AK). 
Such an approach would be relatively simple mathematically and would 
tend to place greatest emphasis on the points expected to be the most  
precise. 

The errors involved in cyclic crack growth testing can be quite large 
even when the tests are carefully controlled. Frank and Fisher [15] used a 
test f rom the literature as an illustrative example. In this test, the crack 
half-length increased f rom 2 to 55 mm in a CC specimen 160-mm wide of 
2024-T3 aluminum alloy 2-ram thick as the stress was cycled between 6.5 
and 11.5 k g / m m  2. Assume that the errors in the cyclic stresses were 0.115 
k g / m m  2 and the error in crack half-length measurement  (Ea) was 0.25 m m  
(0.010 in.). Then at the beginning of the test the error in growth rate 
(secant method, [15]) is 50 percent and the error in /xK (Eq 7) is about  
11 percent; at the end of the test the error in growth rate has decreased to 
10 percent and the error in 2xK to about  5 percent. In the opinion of this 
author, such errors are much too large to be ignored. 
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Summary and Conclusions 

For  the specimen types considered here, the sensitivity of  the computed 
stress intensity factors to errors in crack length measurement  increases with 
the relative crack length, and is greater for single-tip-crack specimens than 
for double-tip-crack specimens. Sensitivity is greatest for the remote-load 
single edge notch tension specimen and least for the double edge notch 
tension specimen. Based on an approximate  stress intensity analysis, the 
part- through-crack specimen is relatively insensitive for crack depths less 
than about  70 percent of the plate thickness. 

Based on the precision levels specified in ASTM E 399-72, the max imum 
expected error in K~c due to test imprecision is about  2 percent for the 
compact  specimen and about  2 ~  percent for the bend specimen (only for 
specimens thicker than 1 in.). It is suggested that replicate tests be weighted 
inversely proport ional  to the square of  their expected error. If  this is done, 
a specimen with a relative crack length of  0.45 will have 40 percent (com- 
pact specimen) or 26 percent (bend specimen) more weight than one with a 
relative crack length of 0.55; or, a compact  specimen will have 78 percent 
more weight than a bend specimen with the same relative crack length. 

The treatment of experimental error is even more important  in analysis 
of  cyclic crack growth data than in fracture toughness testing, and may 
even be of critical importance. Even in carefully controlled tests the errors 
can become quite large due to accumulation and compounding.  
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ABSTRACT: Using A533, Grade B, Class 1 low-alloy steel (HSST plate 04), a 
number of standard tests were performed in the laboratory, all at 50°F. Material 
characterization was established in terms of tension tests on specimens taken from 
the longitudinal and tranverse directions, and the stress-strain curves were virtually 
identical. Fracture toughness data were obtained from 36 compact tension speci- 
mens of  the standard ASTM configuration, ranging in thickness from 0.4 to 4 in. 
J-integral and equivalent energy approaches were used to interpret fracture tough- 
ness from the test data. In spite of the wide range of specimen size, and even 
though no specimen met ASTM validity requirements, the toughness data were 
highly consistent. 

The tension data were used as the basis for a series of elastic-plastic finite 
element analyses of a center-cracked plate, under conditions of plane stress and 
plane strain. In addition to the usual stress and deformation field results, the 
analyses provided information which include load-deflection curves for a specific 
gage length, values of the J-integral, and total energy in the specimen. Three 
center-cracked plate specimens were fabricated from the same block of material 
as that used in the characterization texts, and were tested in the laboratory 
(at 50°F) under conditions simulated by the analyses. 

Using the fracture toughness data from the compact tension tests in conjunction 
with the analytical values of  J and total energy, preliminary fracture predictions 
were made for the center-cracked plates. Predictions based on the J-integral and 
equivalent energy approaches were consistent, but actual specimen performance 
was considerably tougher. Apparent reasons for the difference between predicted 
and actual behavior include incompleteness of the analytical model, inability to 
observe onset of slow crack growth, and less than fully plane strain constraint in 
the test specimens. 

KEY WORDS: mechanical properties, elastic-plastic analysis, fracture tests, 
fracture properties, steels, strains, stresses 
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event of fracture in the presence of considerable plastic flow (on the macro 
scale). To this end, many studies focus primarily on experimental char- 
acterization of specific configurations viewed as typifying practical circum- 
stances, or on analytical description of particular situations. The results 
thus generated are interesting and useful in that they provide performance 
data, or sometimes, insights which lead to more generalized study. 

It is somewhat unusual, however, for experiment and analysis to be 
pursued simultaneously. Exclusivity of method is symptomatic of the gulf 
between the capabilities of the two approaches. That  is, the kinds of things 
one may do in the laboratory and on paper (or on the computer) are at 
present quite distinct; and the kinds of information obtainable are, some- 
times frustratingly, incompatible. It is nonetheless valuable to attempt 
combined effort if for no other reason than to articulate the problems 
involved. In this paper, we report  such a study and seek to indicate areas 
of success and failure. 

More information is in hand than is appropriate to report,  and some 
findings are listed without full resolution. Yet such results contribute to 
the emerging theme that analysis can replicate physical behavior to a fair 
degree, so long as inquiry is limited to overall performance parameters. 
Moreover, while the design of experiments to be coordinated with analysis 
is more exacting than might be expected, there is real potential for narrow- 
ing the gulf between the two approaches. 

Laboratory Experiments 

To characterize the material properties of the steel used in the experi- 
mental portion of this study (A533 Grade B Class 1 low-alloy steel-- 
HSST Plate 04), a number of standard laboratory tests were performed, 
including uniaxial tension tests and compact tension fracture toughness 
tests. The test temperature was chosen at +50~  in order to obtain frac- 
tures in the transition range between linear elastic (frangible) behavior 
and limit load (fully ductile) behavior. All testing was carried out at this 
temperature. Three center-cracked plate specimens were then tested for 
comparison with analysis. 

A total of five standard 0.505-in. diameter tension specimens were 
machined from the HSST plate as shown in Fig. 1. Specimens were taken 
in both the longitudinal (RW) and transverse (WR) directions with respect 
to rolling of the material in order to determine the degree of anisotropy. 
The specimens were also taken at various depths through the thickness of 
the plate (after removing 2 in. of surface material from the top and bottom 
of the plate) to determine thickness variations of the tensile properties. 
The resulting true stress versus true strain data are shown in Fig. 2. Note 
that the tensile properties are essentially homogeneous and isotropic, and 
that all of the specimens exhibited a yield point instability at about 70 000 
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FIG. 1--Specimen sawing sketch for experirnental fracture study. 

psi and a subsequent post yield plateau on which no strain hardening occurs 
up to a strain level of approximately 1.5 percent. 

The standard fracture toughness tests consisted of 36 compact tension 
specimens which were machined as shown in Figs. 1 and 3. The specimens 
were taken at various depths through the thickness after removal of 

FIG. 2--Stress versus strain data from uniaxial tension tests. 
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FIG.  3--Additional fracture toughness specimens .~or experimental fracture study. 

surface material; however all of the specimens were machined in the 
longitudinal (RW) direction since this was the direction of interest for 
fracture toughness. Specimen sizes ranged from relatively large (4-in.-thick 
compact tension specimens) to quite small (0.394-in.-thick compact tension 
specimens). As noted below, however, none of the specimen sizes was large 
enough to satisfy the size requirements of the American Society for Testing 
and Materials (ASTM) Test for Plane-Strain Fracture Toughness of 
Metallic Materials (E 399-72). For this reason, fracture toughness data 
were interpreted from the experiments using the two proposed elastic- 
plastic fracture theories (the J-integral and equivalent energy approaches) 
[1,2]. 8 

Lower bound fracture toughness data can be obtained from nonlinear 
load-displacement traces such as that shown in Fig. 4 using Witt's equiva- 
lent energy theory [2]. Basically, two quantities are required from the 
load-displacement curve, the area under the curve to maximum load (A1) 
and the area under the curve to any point (PQ) on the linear portion of the 
curve (A2). The lower bound fracture toughness is then given by 

PQ'V/ A~A2 f(a/W) 
K,o = B ~ (1) 

3 The  italic number s  in brackets refer to the  list of  references appended to this paper. 
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o _  
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FIG. 4--Typical nonlinear load-displacement curve for a compact tension specimen illus- 
trating data required for elastic-plastic fracture toughness interpretations. 

where the geometric quantities a, W, and B refer to specimen crack depth, 
width, and thickness as shown in Fig. 4, and where f ( a / W )  is a geometric 
shape factor which is commonly available in the literature (ASTM E 399-72 
and Ref 3). Values of Kxc were determined in this manner and the data 
from the 36 compact tension specimens are shown as a plot of fracture 
toughness versus specimen size in Fig. 5. The average toughness value for 
the 36 specimens was 117 000 psi~/ '~,  with a standard deviation (~) of 
13 200 psi ~/i-~. This average value is shown as a solid horizonal line in 
Fig. 5 and a •  scatter band is shown by dashed lines. The size require- 
ment for a valid test according to ASTM E 399-72 is shown along with an 
approximate scatter band from ASTM valid tests which were performed on 
a similar heat of material (HSST plate 02) at the same temperature [4]. 
The proposed size requirements for valid J-integral testing are also shown 
on this figure, and all of the present tests satisfied these limits. In spite of 
the wide range of specimen size, and even though none of the present 
specimens met ASTM validity requirements, the toughness data reproduce 
the valid data quite well. These data illustrate that an order of magnitude 
reduction in specimen size (and thus cost) can be achieved through use of 
elastic-plastic interpretations. It should also be noted that the standard 
deviation drops to 10 200 psi~/]~, if the one point outside the dotted lines 
in Fig. 5 is not taken into consideration. 

A second method for evaluating fracture toughness data from nonlinear 
load-displacement curves can be formulated from the J-integral approach 
of Rice, Begley, and Landes [1,5]. Rice has shown [6] that for relatively 
deep cracked bend bar and compact tension geometries, the J-integral at 
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F I G .  5--Fracture toughness data from experimental fracture study (equivalent energy 

interpretation). 

any point on the load-displacement curve is proportional to the area under 
the curve to that point (A) 

2A 
Ji - (2) 

B ( W -  a) 

where the geometric quantities B, W, and a are defined as in Fig. 4. Thus, 
the area under the curve to the point of initiation of crack growth should 
be proportional to the critical value of Ji, denoted Jic. For  the present 
study it has been assumed that the point of initiation of crack growth 
corresponds to the maximum load point on the load displacement curve, 
and thus 

2A1 
J~c - ( 3 )  B ( W -  a) 

It should be pointed out that there is no theoretical basis for this assump- 
tion, and that although there is considerable experimental evidence that 
crack growth does not occur prior to maximum load for this particular 
steel and specimen type [7], it will be seen later that the assumption should 
not be generalized to other materials and specimen types. Finally, fracture 
toughness can be computed from J~o values determined according to Eq 3 
using the standard conversion 

K I e  = ~ v / E J I e / ( I  - -  v ~ ) (4) 

where E a n d .  are Young's modulus and Poisson's ratio, respectively. 
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Substituting load-displacement data from the 36 compact tension 
specimens into Eqs 3 and 4 yields the fracture toughness data shown in 
Fig. 6. Fracture toughness values from each specimen are again shown as a 
function of specimen size. The average toughness value in this case was 
119 000 psix/in,  with a standard deviation of 13 900 psi-v/i~. The stand- 
ard deviation drops to 10 700 p s ix /~ ,  if the one point outside the present 
3~ band is not considered. The average toughness, 4-3~ band, ASTM and 
J-integral size requirements, and valid data from HSST plate 02 [4] are 
illustrated as before, and the data are virtually identical to that of Fig. 5. 
Thus, the two elastic-plastic fracture theories are very similar from the 
standpoint of measuring fracture toughness from small compact tension 
specimens, and both reproduce valid toughness data obtained on much 
larger specimens quite well. 

One difference between the two approaches which was encountered 
involves the point at which displacement is measured. When using the 
J-integral approach, the area used in Eq 3 must represent the total work 
input to the specimen. Thus, care must be taken to measure the displace- 
ment of the load point. On the other hand with the equivalent energy 
approach, the areas used in Eq 1 need only be proportional to work input, 
and thus almost any displacement measurement can be used. Furthermore, 
the equivalent energy approach is not sensitive to calibration of the dis- 
placement gage. (In fact, no calibration at all is required.) These features 
of the equivalent energy approach may become quite convenient if the 
test method is adopted as a standard material qualification test. 
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F I G .  6----Fracture toughness data from experimental fracture study (J-integral interpre- 
tation). 
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The final set of laboratory experiments was the center-cracked specimen 
tests which were run for purposes of comparison with analysis. Three 
center-cracked specimens were fabricated with the in-plane dimensions 
given in Fig. 7, and with thicknesses of 1.0, 2.0, and 4.0 in. (see Fig. 1). 
The center slot was produced using an electric arc discharge machining 
(EDM) process, and then fatigue sharpened as shown in Fig. 7. The 
specimens were loaded monotonically to fracture, at +50~ and values of 
load versus displacement were recorded continuously during the test. 
Two displacement gages were used and were located at the specimen 
centerline on the front and back face, with a gage length of  3.5 in. which 
was preselected on the basis of preliminary analysis. An acoustic emission 
monitoring scheme was used on the final (4.OT) specimen when it became 
apparent from the first two tests (1.OT and 2.OT) that considerable 
amounts of subcritical crack growth were occurring prior to ultimate 
fracture of the specimens. The results of these tests are discussed in the 
analytical-experimental comparison section. 
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FIG. 7--Center-cracked specimen for comparison with analysis. 
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Analyses 

A series of  finite element analyses was performed as an integral part of  
this work. All such studies used linear-displacement triangular elements, 
and all were performed in core on a CDC-7600 computer. 

Complexities of the pin-loaded, center-cracked specimen precluded 
detailed analysis of the full configuration, so a subsized model was de- 
veloped. To establish the appropriate dimensions, an elastic analysis of the 
full geometry was performed using a relatively crude element array (334 
degrees of freedom) as shown in Fig. 8. Along several lines parallel to the 
crack, axial displacements were determined, the overall deformation 
pattern being as shown in Fig. 9 for one quadrant of the specimen. It is 
evident that a region of uniform displacement occurs at a vertical distance 
of 1.75 in. from the crack, or an effective gage length of 3.5 in. Therefore, 
the full specimen was modeled by one 3.0-in. wide by 3.5-in. high, and con- 

FIG. 8--Elastic model o[ center-cracked specimen used to determine gage length. 
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FIG. 9--Deflection results of  elastic analysis of  center-cracked specimen. 

taining a 1.0-in. center crack; the model is loaded by uniform longitudinal 
displacements imposed along its upper and lower edges. A more refined 
element array was devised (474 degrees of freedom in the quadrant), as 
shown in Figs. 10 and 11, the smallest elements at the crack tip having a 
characteristic length of approximately 0.0005 in. 

Two elasto-plastic ~..nalyses were performed using the refined map, one 
in plane strain, the other in plane stress. The computational procedures 
follow those described in Ref 8 and, except for the matter of adapting the 
measured stress-strain curve of Fig. 2 for use in the analyses, the approach 
was straightforward. As is clear from Fig. 2, the measured curves all 
exhibited a yield point instability which the analysis is incapable of repre- 
senting [8]. The physical curves were therefore replaced by the one shape 
shown by the dashed curve in Fig. 2, which was the result of a simple 
smoothing operation. A total of 140 displacement increments was imposed 
in each of the elasto-plastic analyses, ranging from a gage length deflection 
of 0.00016 in. in plane strain and 0.00014 in. in plane stress to values of 
0.00663 and 0.00588 in., respectively. In both cases, increments were sized 
as 5 percent of the currently accumulated excitation. Machine time require- 
ments for each problem were 5.4 min per problem, or 2.32 s per increment. 

Among the various results provided by the analysis, several are germane 
to the present investigation, including the load-deflection response of the 
specimen, as modeled; energy in the specimen, elastic and plastic; and 
values of the J-integral evaluated along several paths surrounding the 
crack tip. 
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FIG. lO--Elastic-plastic model of center-cracked specimen. 

FIG. llmElastic-plastic model of center-cracked specimen (enlargement of cracktip 
region). 
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The computed load-deflection curves of the specimen appear in Fig. 12, 
along with experimental results for the three center-cracked specimens 
tested. It is obvious that, at a given value of the imposed deflection, the 
computed loads are too large, especially for the case of plane strain which 
is more constrained and therefore stiffer than any physical specimen of 
finite thickness can be. The plane stress curve is also high in that, over 
parts of the load range, two of the experimental curves fall below the 
computed curve. To an extent, the reason for this excess in load is the 
method of analysis itself; finite element results tend to overestimate 
structural stiffness as compared to continuum response. More significant, 
however, is the fact that the analyses did not include slow crack growth 
whereas there is evidence to believe that such extension occurred in testing. 
Further comment on this point appears in the following. 

Energy in the specimen model is shown in Fig. 13 as a function of 
applied, or gage-point displacement. Both total energy and the elastic 
component  are shown, and it is clear that the latter changes relatively 
little once a significant amount of yield has occurred. Beyond this point, 
the elastic energy increases by less than a factor of two while the plastic 
energy grows by more than an order of magnitude. 

The procedure for computing the J-integral over a specified path follows 
that described by Hayes [9]. Actually, 13 paths were traversed at each load 
step, but the innermost three were erratic even in the elastic range owing 
largely to the minuteness of the elements immediately adjacent to the 
crack tip. Results along these paths were discarded. The growth of an 
averaged value of J (taken over the outer 10 paths) with applied displace- 
ment is shown in Fig. 14. Initially parabolic, J varies almost linearly with 
displacement at high levels of excitation but is never completely so. This 
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FIG. 13--Computed energy in center-cracked specimen. 

0.080 

feature is consistant with the analysis in that considerable work-hardening 
is present and no limit load can be realized due to geometric effects. 

Variation of J over the various paths of integration is shown in Fig. 15. 
In this figure J itself is not plotted, but Kj_~N T = % / [ J E / ( 1  - -  ,2)] normal- 
ized on an elastic value of K calculated in the standard way [3] 

p a l l  2 
K = Y . - -  (5) 

B W  

where a, B, and W are the specimen half-crack length, thickness, and 
width (Fig. 7), respectively, Y is a geometric correction factor, and P is 
the applied load on the specimen. It is seen that the path independence of 
the J computation deteriorates as excitation increases, owing largely to the 
magnitude of stress in near-tip elements. This evident departure from 
path independence is thought to result from having performed an incre- 
mental analysis for which the requirements of path independence are 
violated. Further from the tip, however, consistent results are obtained 
with some variation in the discrete values. The average of such values 
may be taken to represent the magnitude of J. 
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The normalization procedure used for the path independence study 
leads to another interesting observation concerning J which is illustrated 
in Figs. 16 and 17. Figure 16 shows values of Kj_~x T from the clasto-plastic 
J-integral computation plotted as a function of applied load. Calculating 
K elastically on the basis of applied load using Eq 5 leads to the elastic 
line shown in this figure. Figure 17 shows the same values of KJ-~NT only 
plotted against gage displacement rather than load. In this figure, the 
elastic line was computed using a pseudo-elastic load for each gage dis- 
placement rather than the applied load in Eq 5. Referring to Fig. 12, an 
approximate yield point of 150 000 lb and 0.007-in. gage displacement can 
be identified on the analytical (plane strain) curve. This yield point has 
been transcribed onto Figs. 16 and 17 as a reference point. Note that for 
the load based comparison (Fig. 16), the elastic line deviates severely 
from the J-integral based curve as soon as the yield point is exceeded. On 
the other hand, the displacement based comparison (Fig. 17) shows reason- 
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F I G .  16--Comparison of elasto-ptastic J-integral computation with load based elastic 
calculation. 
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able agreement to displacements up to three times the yield point and the 
deviation thereafter is not as severe. Furthermore, the nature of the devia- 
tion in these comparisons is such that load based elastic calculations give 
unconservative J-integral estimates while displacement based elastic calcu- 
lations are conservative. This observation strongly suggests that one 
should use displacement based methods when attempting to extend linear 
elastic fracture mechanics techniques into the elasto-plastic range. It also 
implies that displacement based elastic methods will work quite well for 
many practical elasto-plastic problems. 

No attempt was made to examine other data produced during the 
analysis, beyond ascertaining that the computer program had executed 
properly. The reason, of course, is that without extensive instrumentation, 
none of the detailed data normally computed admit to direct comparison 
with experiment. 
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Analytical-Experimental Comparison 

Obviously, an attempt was made to design the center-cracked specimens 
and the companion analysis in a manner that admits to a reasonable 
comparison and, as evidenced by Fig. 12, some success has been achieved. 
On the other hand, the physical and computational models do not replicate 
one another completely, in terms both of formal modelling and of per- 
formance. It is useful, therefore, to examine the differences briefly. 

For  the most part, the material was modelled accurately in that the 
stress-strain curve was largely a representation of data actually obtained in 
tests. As just noted, the yield point instability cannot be handled; however, 
since this feature does not appear on the center-cracked specimen load- 
deflection curves, it is not viewed to be a serious matter for the present 
analysis. The material is assumed to harden isotropically according to a 
Mises criterion [8]. Since the stress-strain curves in two directions are 
indistinguishable, and since the Mises criterion is usually held to be reason- 
able, this aspect of material representation is probably of  reasonable 
acceptance. Other instances of comparison between analysis and experi- 
ment [10] have indicated such an approach to be appropriate. 

Geometric representation is somewhat more problematic. While the 
method used to determine the gage section of the specimen is satisfactory 
for elastic response, or elastic plus limited plastic behavior, the same may 
not be true for the load range used in analysis. In fact, it was observed that 
with uniform displacements imposed along the upper edge of the specimen 
model, the load distribution changed as yield progressed into advanced 
stages. To assess this matter, an additional run was performed in which 
excitation was specified in terms of load, so that displacement might be 
tracked. While in the region of load application there were differences 
between the two problems, the types of data we reported here are virtually 
the same for the two cases. In particular, load, J values, and energy when 
plotted against average deflection were not affected to a significant degree. 
Thus, it is concluded that use of the elastically developed gage section of  
the original specimen geometry is acceptable practice. 

Geometric representation also involved a fixed crack length, whereas it 
is evident in Fig. 18 that subcritical crack growth prior to fracture did in 
fact occur in all three specimens. It should be evident that crack growth at 
any one excitation level will lead to reduced stiffness (increased compliance) 
for additional loading. Thus at a given gage displacement, the experimental 
load will be less than the computed level to the extent that the crack has 
grown. Qualitative evidence exists that the crack did in fact grow through- 
out the loading: acoustic emission traces such as the one shown in Fig. 19, 
although uncalibrated, strongly suggest this point. 

With this information in hand, Fig. 12 can be examined in closer detail. 
Looking, for example, at the curves for the 2.OT specimen and the plane 
stress analysis, we observe very closely the same elastic behavior, and 
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FIG. 18--Fracture surfaces from center-cracked specimens. 

nearly parallel response beyond the knee of the two curves, out to a gage 
deflection of about 0.040 in. At that point the experimental curve flattens 
while the analytical curve continues with slope virtually unchanged. Analo- 
gous commentary obtains for the plane stress curve compared to any of 
the test records, or for the plane strain curve similarly compared. As far 
as can be discerned, therefore, this divergence is due to subcriticaL crack 
growth in the specimens which was not included in the model. 
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FIG. 19--Acoustic emission trace for 4-in.-thick center-cracked specimen. 

As a result of slow crack growth, the traces in Figs. 13 and 14 are greater 
than what is experienced by the specimen, too. Crack growth has the 
effect of lowering the energy in the specimen at a given gage displacment, 
thus the analysis tends to over-predict this quantity. The same is true of J~ 
although the reasoning is necessarily more complex. For  an increase in 
crack length, J~ tends to become larger. Since a process is involved, the 
load drops with crack growth (relative to its value for fixed crack length), 
and the J computation is such that its value for the specimen experiencing 
crack growth would be less than is computed from analysis. 

For the prior reasons, fracture predictions based on equivalent energy 
J-integral approaches which utilize the analytical data of Figs. 13 and 14 
are conservatively low. For instance, the 4-3~ fracture toughness band 
from Fig. 5, when translated into terms of energy to fracture [2] leads to 
fracture predictions on the order of 0.007 to 0.018 in. as shown in Fig. 13. 
Likewise, the -+-3~ fracture toughness band from Fig. 6, when converted 
into a Jic band leads to fracture displacements of 0.007 to 0.017 in. as 
shown in Fig. I4. While the two fracture predictions are self-consistent, 
the experimental fracture points from Fig. 12 are much higher (0.060 in. for 
the 4T specimen). However, the fracture predictions may be viewed as a 
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prediction of the point of initiation of subcritical crack growth for all 
three specimens. Unfortunately, the occurrence of slow crack growth was 
not foreseen, and no measures were taken to quantitatively assess the point 
of initiation. Acoustic emissions were monitored during the 4-in.-thick 
specimen test (Fig. 19), and showed significant increase in activity in the 
160 000 lb/!n, load range, which corresponds to approximately 0.015-in. 
displacement. However, the acoustic technique used has not been calibrated 
with respect to crack growth, and quantitative estimates of slow crack 
growth based on this data are highly speculative to say the least. 

Recommendations 

In order to further pursue the analytical-experimental efforts described 
herein, one is faced with certain choices. One might continue with the 
present approach, arguing that it is straightforward, economical, and 
conservative when viewed in the context of service configurations. That  is, 
the type of analysis is well within the capability of many practitioners and, 
to the extent that an elastic-plastic analysis may be performed for a given 
geometric and load configuration, conservative results will obtain. 

Alternatively, one might choose to model the growth process. While the 
computation is certainly feasible, the difficulty is that there is no basis for 
postulating the point and extent of growth and, without such information, 
the attempt to create a more meaningful model is not clearly founded. 
Furthermore,  the theoretical basis of the J-integral as a fracture criteria 
does not admit specimen unloading due to crack growth. 

A third option is to limit study to specimen configurations for which 
experience indicates that little or no slow crack growth occurs. The diffi- 
culty is not resolved, but it is bypassed. In so doing, one is able to demon- 
strate more conclusively the fidelity of analysis, thereby providing a test 
bed for alternate fracture criteria. 

Regardless of which option is chosen, there is an obvious need for a 
reliable experimental method for detecting the presence of subcritical 
crack growth. Some success has been achieved recently by testing specimens 
to prespecified load levels, heat tinting, and sectioning [11], however this 
method is characteristically inefficient since it requires multiple specimen 
testing per datum point. The acoustic emission approach used on the 4T 
center-cracked specimen test is promising, and work should be pursued to 
calibrate this method with respect to crack growth. 

Even should additional effort, using the third alternative, be successful 
in the sense of providing more accurate records of load, energy, and J for 
specified or gage displacement, the slow crack growth problem remains. 
Because the event has been bypassed for purposes of study does not mean 
that such growth will not occur in a service situation, lndeed, if cracks in 
some specimens grow but others do not, a point of  interest is the condition(s) 
distinguishing the two cases. 
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Conclusions 

On the basis of the data reported herein, several conclusions can be 
drawn which are germane to the general problem of fracture characteriza- 
tion in the elasto-plastic range. 

1. The J-Integral and equivalent energy approaches to elasto-plastic 
fracture represent considerable advances in the important engineering 
task of characterizing plane strain fracture toughness of  materials using 
small inexpensive fracture specimens. 

2. Meaningful application of  these theories to elasto-plastic service 
situations requires, in the general case, a full elasto-plastic analysis. Such 
analyses can be conducted with a reasonable degree of success using 
present analytical tools. 

3. In many service situations, a simple elastic J-Integral approach will 
suffice well into the plastic range provided that a displacement based 
rather than load based excitation parameter is used. 

4. Slow or subcritical crack growth prior to fracture causes serious 
uncertainties in characterization of elasto-plastic fracture behavior, and a 
great deal of further effort is required in this area, both analytically and 
experimentally, before the phenomenon is fully understood. At present, 
however, these difficulties can be circumvented by choosing specimens for 
fracture toughness characterization which do not exhibit slow crack 
growth, and by assuming in fracture evaluations that the initiation of 
slow crack growth in a structure corresponds to overall fracture. 
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ABSTRACT: A technique is developed for estimating the J-integral for the case 
of a crack imbedded in a uniform strain field. Use of this technique provides a 
possible simple engineering method for applying the J-integral fracture criterion 
to small cracks imbedded in a plastic zone. Reliability of structural components 
could be evaluated without the need for sophisticated elastic-plastic stress 
analysis. 

The application of this model to the case of a small crack emanating from a 
stress concentration illustrates how an attempt to extend linear elastic fracture 
concepts may lead to erroneous results. 

KEY WORDS: stress analysis, fracture properties, crack initiation, mechanical 
properties, strains 

The  engineer ing  app l i ca t ion  o f  the J ~  f rac ture  c r i te r ion  requires  ca lcu-  
la t ion  o f  the J - in tegra l  for  the  c rack  sizes, c o m p o n e n t  geometr ies ,  and  
load ings  o f  interest .  In  the general  case,  this  requi res  versat i le  e las t ic-  
p las t ic  c o m p u t e r  p rog rams .  F o r  s imple  geometr ies  a p rocedu re  has  been 
deve loped  for  e s t ima t ing  J based  on l inear  e las t ic  f rac ture  mechanics  and  
r ig id  p las t ic  l imi t  l oad  theory  [1]. 2 This  t echn ique  is a first s tep in deve lop ing  
the engineer ing  usefulness  o f  the  Ji~ a p p r o a c h  to f racture .  However ,  one 
o f  the l imi ta t ions  o f  the  pr ior  e s t ima t ion  m e t h o d  is tha t  gross sect ion,  as 
o p p o s e d  to  net  sect ion,  y ie ld ing  canno t  be h a nd l e d  easily.  F o r  this  r eason  
it is ins t ruct ive  to s tudy  an ex t reme  case where  gross  sect ion y ie ld ing  
domina te s ,  tha t  is, a s i tua t ion  where a c rack  has a negl igible  effect on the  
m a c r o s c o p i c  flow field. 

The  specific p r o b l e m  to be discussed is tha t  o f  an infinite sheet  un i fo rmly  
s t ressed at  infinite con ta in ing  a finite crack.  The  so lu t ion  to  this  p r o b l e m  
is very useful in the engineer ing use o f  l inear  e las t ic  f rac ture  mechanics  

1Senior engineers, Mechanics Department, Westinghouse Research Laboratories, 
Pittsburgh, Pa. 15235. 

2 The italic numbers in brackets refer to the list of references appended to this paper. 
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and an estimated solution in the plastic range should be of utility in elastic- 
plastic and fully plastic fracture mechanics. 

The estimated solution for the fully plastic case is used to approximate  
solutions to the problem of a crack emanating f rom a stress riser where 
the crack is surrounded by a plastic zone. A limiting case solution is 
obtained by a simple analysis technique. A more accurate solution is also 
obtained from an elastic-plastic finite element solution to the stress riser 
problem. These solutions are used to evaluate linear elastic fracture 
mechanics (LEFM) methods which at tempt an extrapolated solution to 
this problem. 

The Infinite Plate Problem 

Linear Elastic Case 

One of the classic problems of linear elastic fracture mechanics is a 
crack in an infinite sheet shown in Fig. 1. The uniform stress at infinity 
is a, and the total crack length is 2a. The expression for the stress intensity 
[2] K is 

K = ~ v ~  (1) 

This solution permits estimation of stress intensities for a range of addi- 
tional problems. For  example, with a finite width sheet, one would suspect 
Eq 1 to be negligibly in error if the sheet width was an order of  magnitude 
greater than the crack length. In fact numerical results [3] show Eq 1 to 
underestimate K by only 10 percent when the sheet width is only three 
times the total crack length. 

I f  we cut Fig. 1 in half through the middle of  the crack, we have a semi- 
infinite sheet with an edge crack. Equation 1 seems a reasonable estimate 
of  the stress intensity for this case also. Accurate results for the edge 
cracked problem show Eq l to underestimate K by 12 percent [2]. Some 
care must now be taken in estimating K for a finite plate with an edge 
crack. As the crack becomes comparable  to the plate width, bending 
stresses become large. However,  if the width is greater than ten times the 
crack length, Eq 1 with the 12 percent free edge correction should still be a 
reasonable guess. Boundary collocation computer  results [3] show this 
to be true. The estimated K is low by less than 10 percent. 

With the semi-finite sheet edge crack solution 

K = 1.12~r (2) 

one can tackle a significant engineering problem of a crack emanating 
f rom a stress raiser. Consider, for example, a large sheet with a central 
hole with a crack as illustrated in Fig. 2. In the uncracked state the stress 
adjacent to the hole is three times the stress at infinity. This stress diminishes 
with distance f rom the hole. I f  the crack is small compared to the hole 
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radius it may be considered as an edge crack imbedded in a uniform stress 
field of 3r The estimated K is then 

K = 3.36 ~ x , / ~  (3) 

The general solution to this problem by Bowie [2,4] shows Eq 3 to be a 
reasonable approach for crack length to hole radius ratios, a/R, up to 0.10. 
At this point Eq 3 overestimates the actual stress intensity by 20 percent. 
For smaller air  ratios the agreement becomes better. 

The foregoing is intended to illustrate that in the linear elastic case a 
solution to a simple problem can be used to estimate stress intensities for a 
range of other problems including problems of general engineering interest. 
The next section presents an estimate of the J-integral for a finite crack in 
an infinite sheet subjected to general yielding. Hopefully, this procedure 
will yield useful estimates of J for problems of engineering interest where 
the extent of plasticity rules out linear elastic fracture mechanics. 

Fully Plastic Case 

Consider the cracked geometry shown in Fig. 1. Let us now assume the 
stress increases beyond the yield point. Plastic deformation spreads through- 
out the whole body. Since the crack is finite, its effect on the general flow 
field is negligible. One can speak of the problem as a crack imbedded in a 
uniform strain field. 

The only characteristic parameters of the problem are the crack size 
and value of the strain, ~, at infinity. The stress may be related to the strain 
by an appropriate flow rule. The value of J must be expressed in terms of 
the crack size and strain value, the only characteristic parameters of the 
problem. 
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In the linear elastic realm of behavior J can be computed from the 
following 

K 2 o-2~a 
J = G -  - (4) 

E E 

and cr = eE where E is Young's modulus. Thus, 

J = ~2ETra (5) 

This expression is valid up to the onset of significant plastic deformation. 
To estimate the functional dependence of J on e in the plastic range, it 

is instructive to consider a problem solved by Rice [5]. Figure 3 shows 
an infinite plate of height, h. It is clamped at the edges and contains a 
semi-infinite crack. The solution for J is 

J = W ~ h  (6) 

where W~ is the strain energy density at infinity 

/0 W = ~de (7) 

If one assumes a power hardening flow rule 

= C 0 c  ~ ( 8 )  

W becomes 

Thus, 

Co 
W - ~,+1 (9) 

n + l  

C0 
j - ~,+1 h (10) 

n + l  

Since, for most metals, n is in the range 0.05 to 0.2, J for this case is nearly 
a linear function of strain in the plastic range. In the linear elastic range J 
would be proportional to the strain squared. The assumption is now made 
that J for the fully plastic center cracked panel is a linear function of strain. 
This seems reasonable from the previous example and the fact that rigid 
plastic analyses of finite net section yielding problems give J as a linear 
function of displacement [1]. 

/ / / / / / / / / / / / / / / / / / / / / /  

I T 
~ h 

I \ , \ \ \ . ~ , \ \ \ \ \ \ \ \ \ , \ \ ~ \ \ \ \  

FIG. 3--Crack infinite strip w in  clamped edges. 
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With this assumption we can construct a plot of J versus uniform strain 
level. In the linear range 

J = ~2Erra (11) 

Beyond the yield strain, ~u, J is a linear function of strain. Since J should 
be a continuous, well-behaved function of strain, the slope of J versus 
strain in the plastic range should be nearly equal to the elastic results at a 
strain equal to the yield strain. Thus, for a strain greater than the yield 
strain 

J = ~u2E~ra + (~ - ~y)2%Elra (12) 

This reduces to 

J = E~ra%(2~-  ~ )  (13) 

Naturally, for a strain level less than ~u, J is given by Eq 11. 
Equations 11 and 13 can be combined to give a graph of J versus strain. 

As shown in Fig. 4, the curve is a parabola in the linear elastic range. 
At the yield strain, a straight line is drawn tangent to the elastic curve. 

As in the linear elastic case, the approximate fully plastic solution 
(Eq 13) to the infinite center cracked panel problem should be applicable 
to other problems. The requirement is made that the problem can be 
reasonably reduced to that of a crack in a uniform strain field. 

Crack in a Plastic Zone 

A Limiting Case Solution 

Consider the case of a crack emanating from a stress riser such that the 
crack is small compared with the radius, R, of the stress riser and the 

/ 1 i 

= . j IlL YE = Yl'eld Strain 

Uniform Strain, E = 

FIG. 4--Generalized plot o f  J versus strain for infinite center cracked panel. 
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~ ' _  

FIG. 5--Schematic  o f  stress concentrator with plastic zone surrounding the crack. 

stresses are high enough to cause the crack to be surrounded by a plastic 
zone, Fig. 5. Since this example is beyond the range of LEFM, it is appro- 
priate to apply the J-integral. An accurate calculation of J for this problem 
would require a numerical solution to an elastic-plastic analysis. Applying 
the approximate fully plastic method to this problem leads to a limiting 
case solution. 

To apply the method, a uniform strain field is required. Since the strain 
field may have a high gradient ahead of the stress riser this will be difficult 
to approximate. However, if a uniform strain field equal to the surface 
strain is assumed, the approximated value of J should always be an over- 
estimate. In the limit as ratio of crack length to radius approaches zero, 
the approximate solution for J should approach one computed from an 
accurate stress-strain analysis. 

To compute a value for surface strain, an elastic-plastic analysis is 
again needed. However, surface strain can also be estimated using the 
Neuber relation [6] 

K T  ~ = K ~ K ,  (14) 

All that is required to estimate surface strain is the elastic stress concentra- 
tion factor for the particular stress riser, KT, and a stress-strain curve for 
the material, Fig. 6. From these an estimate of the plastic stress concentra- 
tion factor, K,, and plastic strain concentration factor, K,, can be obtained 
and surface strain can be calculated. Using the Neuber relation should 
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FIG.  6--Schematic of  Neuber relation used to calculate sur]ace strain. 

introduce an additional conservatism because it tends to overestimate 
the plastic strain concentration, K~, for the case of plane strain. 

Applying an additional constant of 1.12 to the elastic stress intensity 
factor for edge cracks, the expression for J from Eq 13 becomes 

J = (1.12)2ETra%(2~ - %) 

where e is the surface strain given by 

(15) 

= K . ~ o m  (16)  

Comparison with LEFM Extrapolations 

This limiting case example can be compared with some techniques used 
to extrapolate LEFM to obtain estimates for the same problem of a crack 
in a plastic zone ahead of a stress riser. Two techniques from LEFM will 
be discussed. 

One technique used to estimate K for this case is to assume that the 
stress in the plastic zone ahead of the stress riser is at yield point, ~y. This 
stress can be used in the stress intensity expression to calculate a K value 
such that 

K = Ku = 1.12av%/Tra (17) 

This can be converted to an energy value G by 

Ku ~ 
Gv = - -  (18) 

E 
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A second technique used is to assume that the stress field is approxi- 
mately the psuedo-elastic surface stress, ~ ,  given by the elastic stress 
concentration factor K~, Fig. 6. The stress intensity factor becomes 

K = K~ = 1.12~re%/~ 

= 1.12Kwanomg/rca (19) 

Again, this can be converted to G for comparison with J, 

Ke 2 
G ~  = - -  ( 2 0 )  

E 

The question of whether these values will be conservative can be ex- 
plored schematically from Fig. 7 by comparing the estimated G values 
with J. Notice that the first technique of  using Ky or G~ will never be 
conservative when surface stress or strain is above the yield point. It must 
be concluded that this method for estimating K values can be dangerously 
unconservative. 

The second technique of using KE or GE is not so obviously unconserva- 
tive, however, Fig. 7 shows that it may be unconservative. In the case 
illustrated the actual surface strain is assumed to be about twice the 
pseudo-elastic strain e~ = KTe . . . .  For  this case the estimated J value is 
higher than the value of Gz. 

This can be explored further by assuming a simple stress-strain relation- 
ship as given by the power hardening law to compute J values by the 
approximate fully plastic method. 

O'y 

26 o 

i i ~ , i , G/Gy S J y  
~Jp 

/ " -~  i 
] 2 ~s 3 4 5E 6 

~y 

FIG. 7--Schematic of  J and LEFM estimations. 
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where n is the strain hardening exponent. For  this stress-strain law the 
Neuber relation gives 

0"8 2 O'y 
- ~r~ = ~ , , + l  ( 2 2 )  

E ~yn 

Comparing the elastic value of G~ with the plastic estimate of  J by taking 
a ratio gives 

GE 
J 

Ke2/E 

J 

(1.12)2(~rE2/E)rca 

(1.12)2ETra%(2~- ~.,,) 

[2( , / ,~ , ) -  11 

(23) 

This result is plotted on Fig. 8 for various values of  n. In alL cases GE/J 
starts f rom a value of 1 for elastic surface strain and becomes less than 1 
as the surface strain becomes plastic. This would indicate that the L E F M  
estimate used is unconservative. Notice that as the strain hardening ex- 
ponent  decreases this becomes more unconservative reaching a limit at 
G~/J ~ 0.5 for n = 0 and ~ /~  ~ co. 

Since the assumptions used for estimating J in this example give an 
overestimate of J, the unconservatism is probably not so bad as it appears 
in Fig. 8. The Neuber relation tends to overestimate strain, hence J, for 

n=0.2 

n = 0 . 1  

1 2 3 4 5 6 7 

r&y 

FIG. 8--Ratio of  GE/J versus surface strain. 
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the case of plane strain. For small ratios of  crack length to radius of the 
stress riser the elastically calculated value of G~ and J calculated from 
surface strain may be close if the strain hardening exponent,  n, is fairly 
high. For  smaller values of n, calculated values of  GE may be significantly 
smaller than J values. For larger ratios of  crack length to radius, calcula- 
tion made with surface stress or strain may be too conservative since 
some average of the stress or strain gradient over the crack length may be 
more appropriate  for the calculations. In this case the overconservatism 
may be great enough to actually penalize the application. In the following 
section results from a numerical elastic-plastic stress-strain analysis will 
be used to more accurately evaluate this example. 

More Exact  Elast ic-Plast ic  Solution for Case of a Hole  in a Plate 

A very accurate and practical way of determining the strain distribution 
at a stress concentration as a function of applied load is by means of the 
finite element method [7]. By this numerical method,  the strain history 
at a stress concentration can be found even in the nonlinear elastic-plastic 
regime. Existing finite element computer  programs,  applicable to an 
extremely wide variety of  geometries and loading conditions, are generally 
available. By simply inputting the material properties, a finite element 
mesh to represent the structural geometry, and the loading conditions an 
elastic-plastic solution of acceptable accuracy can usually be obtained. 

Once the max imum strain at the stress concentration is calculated as a 
function of load by means of a finite element computer  program, then the 
critical size crack at any load level of concern can be calculated in the 
manner  just described. To demonstrate  this procedure a simple example 
is analyzed. A plate (Fig. 9) of finite width, 2W, containing a centrally 
located circular hole of  radius R = W / 7  and subject to a uniaxial tensile 
load ~0 is considered here. The stress-strain curve of the plate material 

R~ = 117 

~ ~ ~, ~ ~ ~,Oo 

FIG. 9--Rectangular  plate containing central circular hole and subject to a uniaxial 
tensile stress. 
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F I G .  lO--Stress-strain curve for plate containing circular hole. 

and some of the other material properties are shown in Fig. 10. While the 
material does not harden according to a power law relation, Eq 21, in the 
strain range of concern it has an effective hardening exponent of about 
n = 0.15. 

The plane-strain elastic-plastic analysis of the plate was carried out 
using the finite element computer program developed by Visser, Gabrielse, 
and VanBuren [8]. The incremental plasticity program is based upon a 
linear strain triangular element. The finite element representation of one 
quarter of the plate is shown in Fig. 11. The quadrilateral elements each 
represent four triangular elements. The elastic-plastic numerical solution 
was obtained in incremental load steps up to a nominal stress to yield 
stress ratio of ~ ..... /ays  ~ 1.32 where 

if0 
Cnom = - (24) 

[1  - (R/W)] 
The stress concentration factor 

O-ma X 
K. - (25) 

O-n om 

and the strain concentration factor 

K , -  e .... (26) 

where 

~llont 

( 1  - v 2)  
~nom - -  O'n (27) 

E 
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X AXIS 
HOLE IN PLATE 

FIG. 11--The finite element representation of one quarter of the plate. 

are shown in Fig. 12 as a function of applied load level. The elastic stress 
concentration factor, Kt = 2.62, calculated with this mesh differs from 
the value given by Peterson [9] for this case by 0.5 percent. 

Also shown on Fig. 12 are the concentration factors which were calcu- 
lated by means of Neuber ' s  product  rule (Eq 14) and the stress-strain 
curve of Fig. 10. Neuber ' s  rule as used here is actualty applicable to a 
plane stress condition. This is the reason for initial yield at a lower load 
level than that  predicted by the finite element analysis and also one of the 
reasons for the higher strain than that  calculated f rom the finite element 
method at equal load levels. Neuber ' s  relation is also not capable of  
sensing gross section yielding and accounting for it. The Neuber  strain 
concentration curve shows no sign of a rapid increase in magnitude as 
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FIG. 12--Stress and strain concentration factors for plate containing circular hole 
( R / W  = 1/7). 

gross section yielding is reached, but the finite element curve does show the 
expected increase at a load level of approximately a.om/Crys = 1.0. 

Once the elastic-plastic strain distributions have been determined then 
critical crack size can be estimated using the procedure described in the 
previous section. In the elastic-plastic regime the equation for critical 
crack size emanating from the hole at the point of maximum strain can 
be obtained from Eq 15. 

(1  - "~)JI~ 1 

act(p) = (1.12)2rE~vs 2 [2 (~ /~ys ) -  1] (28) 

where e is the maximum strain, which can be obtained from Fig. 12, and 
eys is the yield strain under plane-strain conditions. An LEFM calculation 
of critical crack size can also be made 

( 1 -  ~,2)Jic ( ~ s )  2 
act(e) = (~..l~27rE~ys2 (29) 

where the elastic relation between J and ~ has been used and the strain ~ is 
calculated elastically at the load of interest. In Fig. 13 the ratio of acr(p)/aor(e) 

is shown as a function of load level, a,/~vs. As found in previous examples, 
the elastically calculated, critical crack size is larger than that calculated 
by means of elastic-plastic relations. For ~,/~Ys < 1.0, the difference is 
less than 6 percent with the elastic calculations being unconservative. 
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FIG. 13--Comparison of critical crack sizes calculated by linear elastic relations, act<+), 
with those calculated by means of  an elastic-plastic analysis, ac~(v). 

As ~,/~YS increases beyond a value o f  1.0 the elastic calculations become 
increasingly unconservative.  

In  the prior  analysis, it was assumed that  the critical crack size is small 
compared  to the radius o f  the hole. Only  the max imum strain was con- 
sidered and the influence of  the strain gradient was not  considered. The 
effect of  the strain gradient can be accounted for in an approximate  manner  
by using some effective value of  strain in Eq 28. 

C o n c l u s i o n s  

1. The simple method  proposed for calculating the J-integral in a plastic 
field could be used to estimate J in componen t s  where a uni form strain 
field is approximated.  

2. At tempts  to extrapolate L E F M  to account  for plasticity effects may  
lead to unconservat ive estimates of  fracture values. 
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Test Results from J-Integral Studies: An 
Attempt to Establish a Testing Procedure 

REFERENCE: Landes, J. D. and Begley, J. A., "Test Results from J-Integral 
Studies: An Attempt to Establish a J~  Testing Procedure," Fracture Analysis, 
A S T M  STP 560, American Society for Testing and Materials, 1974, pp. 170-186. 

ABSTRACT: Test results from J ~  studies are analyzed by a resistance curve 
technique. J values from bend type specimens containing a deep precrack are 
plotted as a function of crack extension measured from the speoimen fracture 
surface. Using these plots a technique is suggested for establishing a J~c measure- 
ment point. 

Data from an A2I 6 steel are presented for describing this method of Jrc analysis. 
In addition, J~o versus temperature data are presented to compare Jr,  with previous 
K~ results. Finally, a step-by-step procedure for measuring Jic is outlined. 

KEY WORDS: fractures (materials), mechanical properties, tests, elastic-plastic 
cracking (fracturing), fracture tests, fracture properties 

The J-integral proposed by Rice [1] 2 as an analytical tool for elastic- 
plastic crack tip field analysis has been successfully used by Begley and 
Landes [2,3] as an elastic-plastic fracture criterion. The J-integral was 
first measured from experimental load versus load point displacement 
curves using a compliance technique where several specimens of varying 
crack lengths were needed [2,3]. Methods were later developed for measur- 
ing J from single specimen tests [4,5]. The method developed by Rice [5] 
for measuring J on deeply notched, bend type specimens offered the simplest 
single specimen technique for measuring J. For this technique a bend type 
specimen, bend bar, or compact tension specimen with a deep crack 
(a /W > 0.6) is loaded to the displacement of interest and J is determined 
as a function of displacement from the expression 

2A 
j _ ( l )  

Bb 

where A is the area under the load-displacement curve taken at the dis- 
placement of interest, B is the thickness, and b is the uncracked ligament. 

a Senior engineers, Mechanics Department, Westinghouse Research Laboratories, 
Pittsburgh, Pa. 15235. 

z The italic numbers in brackets refer to the list of references appended to this paper. 
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Critical values of J were labeled Jxc and taken when crack extension was 
first encountered. This method for determining a critical J value was 
patterned after the K~c measurement technique where 2 percent crack 
growth was set as the measurement point (see Ref 6 and ASTM Test for 
Plane-Strain Fracture Toughness of  Metallic Materials (E 399-72)). The 
measurement point for Jxc has never been precisely defined. The question 
of whether this measurement point should be relative to specimen size as 
in the case of  K~c, or be absolute depending on the capability of  instru- 
mentat ion was left to the discretion of the individual investigator. I f  a J~, 
test is to be used as a measurement of  material fracture toughness, a stand- 
ard procedure must be established. The most difficult problem in establish- 
ing a standard procedure appears to be the question of where to take the 
measurement point for Ji~. 

A possible aid in solving the problem of picking a measurement  point 
may come from presenting the J data in the form of a resistance (R) curve. 
Linear elastic fracture data can be presented in this form where G, energy 
per unit area available for crack extension, or K is plotted against crack 
length or crack extension [7]. The K~ value is then simply one point on 
the R-curve. A similar R-curve plot for elastic-plastic data, plotting J 
versus crack extension, may be of help in determining a measurement  
point for J~c. 

In this paper, test data from an A216 steel are presented. Extensive tests 
were conducted on this material in the hope of answering several questions 
about  the J ~  fracture criterion. The most  important  question is that of  the 
measurement  point for J~c. The data was collected and analyzed in a 
manner  that a J resistance curve could be constructed. From this curve, 
a method for establishing a J ~  measurement point is discussed. Using this 
method for measuring J~ ,  a tentative test procedure is presented. 

Other questions which have been studied in this work are those of  speci- 
men size requirements for J~c testing and the equivalence of Jx~ and K~c 
values. To study the effect of specimen size on J~c values, specimens ranging 
from ~- in . - square  bend bars to 4T-CT compact  tension specimens were 
tested. To study the equivalence of J ~  and K~ values, tests were conducted 
over a range of temperatures.  These temperatures started well below FATT 
where fracture occurred completely by cleavage and increased through the 
fracture mode transition range until fracture occurred completely by 
dimpled rupture. Results from Ktr tests in part of this temperature range 
were then compared with the J~r results. 

Test Program 

Material and Specimens 

The material tested was an ASTM A216 WCC Grade cast steel, Heat  
4394, which is a relatively low strength, high toughness material. Material 
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TABLE 1--Material properties for A216 WCC grade cast steel--heat 4394 [8]. 

Chemistry 

C Mn Si P S Ni Cr Mo AI Cu 

0.24 1.18 0.45 0.008 0.011 0.28 0.16 0.03 0.044 0.09 

Foundry Anneal 
Burn Stress 
Normalize 
Temper 

Heat Treatment 

1600~ h, furnace cool to 600~ 
1125~ h, furnace cool to 600~ 
1750~ h, decrease to 1650~ water quench 
1200~ h, air cool 

Meehanical Properties (75~ unless noted) 

Yield, Ultimate, Elongation, Reduction of Kxc (0~ 
ksi ksi ~o Area, ~o ksi -v/in. FATT 

44 74 16 34 77 100~ 

chemistry, heat treatment,  and mechanical properties are presented in 
Table 1 [8]. 

All of  the specimens tested were of  the bend type, 3-point bend bars, 
and compact  tension specimens. A range of sizes were included. The 3-point 
bend bars included ~ by a/~ in. and 1 by 2 in., the 1-in. dimension being 
the specimen thickness. Note  that a 1 by 2-in. bend bar is the same dimen- 
sion as a 1T compact  tension specimen. The compact  tension specimens 
included IT, 2T, 3T, and 4T sizes. For  the IT-CT,  a modification was 
made so that displacement could be measured on the specimen loadline. 
This is shown in Fig. 1. For  the larger compact  tension specimens, dis- 
placement was measured across the loading clevises. 

All specimens were prepared with deep notches, a / W  -~ 0.6, and were 
precracked prior to testing. Precracking loads were less than half the 
specimen limit load or K .. . .  was less than 36 ksi ~v/in. 

Experimental Procedure 

Specimens were tested in a universal testing machine where loading dis- 
placement was controlled. Load versus load point displacement was 
measured and monitored on an X-Y recorder. For  the compact  tension 
specimens load versus load line displacement was monitored.  Specimens of 
identical crack length were loaded to the desired displacement and then 
unloaded. An at tempt  was made to unload one specimen before crack 
extension began and unload several others after various amounts of crack 
extension. This is shown schematically in Fig. 2. (Displacement values for 
unloading were generally chosen by selecting a value of J for unloading 
before the test. Loading rates were kept sufficiently slow so that  J could be 
instantaneously estimated f rom Eq 1 during the test.) 
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FIG.  l - - I T  compact Jx, specimen .tbr measuring load line displacement. 

After unloading, crack extension was marked by heat tinting the crack. 
Heat tinting was done by heating the specimen to 600~ and holding it at 
temperature for 10 rain. (Note: In cases where heat tinting is impractical, 
the crack could be marked by an alternate technique, for example, fatigue 
marking.) Specimens were subsequently broken open so that the fracture 
surface could be examined. 

t ~ t , a  1 Stretch 
Aa I Stretch ~ 1  Zone Plus 

Zone Only L ~  Crack Growth 

"~ ~ .~/ .~ .~" 

/ ~ ~ , '  ~ 4 /  
/ ~.a,' ~ /  .e /  ~ /  

/ .~/ ~ i  ~/ ~"/ 
r i -/ 

/ / / / 
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Displacement 

FIG.  2--Load-displacement schematic showing unloading points for various specimens. 
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Measurement of crack extension was made on the fracture surface. 
Crack extension was taken to be the maximum distance from the pre- 
fatigue mark to the end of the heat tint mark. Maximum extension generally 
occurred about mid-thickness. The heat tinting technique displayed the 
crack extension very clearly, Fig. 3a. Crack extension seemed to have a dual 
character which made the analysis somewhat difficult. The first part of the 
crack extension had the appearance of a stretch zone. This part of the 
extension was assumed to be associated with "crack opening stretch" 
(COS) and was primarily a crack front geometry change rather than actual 
material separation. The second part of the crack extension appeared to 
be actual material separation associated with an advancing crack front. 
The two types of crack extension could be distinguished by looking at a 
side profile of the crack, Fig. 3b. The stretch zone region appeared to be 

FIG. 3--Fracture appearance of  A216 steel Jlc specimens. (a) Fracture surface, and 
(b) fracture profile. 
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FIG. 4--Fracture appearance of Jz, specimen. (a) Fracture suJface, and (b)fracture profile. 

at an angle of approximately 45 deg whereas the actual material separation 
appeared to be nearly fiat. This is shown schematically in Figs. 4a and b. 
The crack profile then appeared to have two flat regions which were on 
different planes, the prefatigue region being flat and on one plane while 
the crack growth region was fiat and on a separate plane. The two planes 
were connected by an angled region, the stretch zone, Fig. 4b. The difficulty 
in analysis was caused by the fact that the transition between the stretch 
zone and the material separation region were not always clearly defined. 
This caused some problem in deciding where to take the measurement 
point. The crack extension was, therefore, taken to be the total of the 
two regions measured horizontally from the prefatigue line. The method of 
analysis used for dealing with this problem is discussed in the next section. 

The test temperature was controlled to within q-2~ 

Analysis Techniques 

The data was analyzed by plotting the value of J as a function of crack 
extension. The J value calculated by Eq 1 does not  give an exact J value 
for the case of an advancing crack. J should always be overestimated as a 
result of the area under the load displacement curve being overestimated. 
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FIG. 5--Schematic showing error ht measuring J caused by slow crack growth. (a) Non- 
linear curve due only to crack growth, and (b) nonlinear curve due to both crack growth and 
plasticity. 

This is shown schematically in Fig. 5. Consider the case where the non- 
linear part of the load displacement curve is caused only by crack extension 
(no plastic deformation), Fig. 5a. The nonlinear curve has an original 
crack length of al. On loading to the point shown, assume that the crack 
extends to length a2. The actual J value corresponding to the displacement 
shown at crack length a2 should be a function of the area under the linear 
curve in Eq 1. The calculated value of J will correspond to the area under 
the nonlinear curve. The area between these two curves is a measure of the 
overestimate in J. Figure 5b shows the same problem for the case where 
nonlinearity is caused by crack growth and plasticity. The curve on the 
left has the advancing crack and is originally steeper with more non- 
linearity at higher load. The curve at the right shows what the curve should 
be with no crack extension. Hence, the area under this curve corresponds 
to the actual J value, and the area between the curves corresponds to the 
overestimate in J. Notice that this overestimate should increase with 
increasing crack extension. 

In addition, the problem of unloading associated with slow-stable 
crack extension causes problems with the calculation of an exact J. The 
analytical definition of the J-integral was for deformation theory of plas- 
ticity and did allow for unloading [1]. However, the problems associated 
with calculating J during slow-crack advance are not important to the 
technique present here for calculating JIG. As will be shown later, these 
inexact values of J are used only for extrapolation purposes. 

The data can be plotted in the form of an R-curve by plotting J versus 
measured crack extension. An estimate of how this should look is shown 
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FIG. 6---Schematic o f  J resistance curve. 

schematically in Fig. 6. Before any actual crack extension due to material  
separation occurs, there should be an apparent  crack extension caused by 
the stretch zone formation.  Assuming that  the stretch zone is approxi- 
mately half of the COS and that  COS ~ J/ayp, where ~yo is the yield stress, 
the curve should follow a straight line J = (2ayp)(~a) where Aa is the 
crack extension. As crack extension occurs due to material separation, 
the actual R-curve should probably  have a shallow slope with a slight 
concave downward appearance. However, since J is increasingly over- 
estimated with increasing crack extension, the actual plotted curve may 
be less shallow with a slight concave upward appearance. 

The plot of  J versus crack extension is shown in Fig. 7 for the 2T, 3T, 
and 4T compact  tension specimens. For  the specimens tested at low J 
values, the points fall along the stretch zone line. At higher values of J,  the 
points appear to fall along a curve that is concave upward;  however the 
scatter in the data is large enough so that  this cannot  be exactly determined. 
Data  plotted in a similar manner  f rom the 1T compact  tension specimens 
and the bend bars is shown in Fig. 8. 

Jz ~ Measurement  Point  

Plotting the data in the form of an R-curve gives more information than 
a single J~c value. In many cases this may be sufficient for material evalua- 
tion. However, there are other cases where a J~c value may be desired. 
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FIG. 7--J versus crack extension for larger specimens of.4216 steel. 
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Such would be the case where a structural reliability analysis is being 
performed or where K~ is being estimated from a subsize specimen test. 
The following proposal for establishing a measurement point is given 
only as a suggestion and may be altered in the future. 

To establish a Jic measurement point it is desirable to pick a point where 
crack extension has taken place by actual material separation rather than 
by crack front geometry change. Many points could be considered. One 
question is whether to take a relative amount of crack extension as in the 
Kze test or an absolute amount of crack extension. From Figs. 7 and 8 it 
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FIG.  8 - - J  versus crack extension for smaller specimens o fA216  steel. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



LANDES AND BEGLEu ON J, AN'TEGRA~. STUDIES ~ 79 

can be seen that a measurement  point taken relative to specimen size 
would give an artificial size effect on Jic values. It  is therefore concluded 
that an absolute measure of crack extension is more desirable. Picking an 
absolute value of crack extension for all materials can cause problems. 
A value chosen conveniently for a low toughness material may be hard to 
distinguish f rom the stretch zone in a high toughness material. Therefore, 
a value of crack extension which is relative to material toughness but 
absolute in terms of specimen size would be most  desirable. An obvious 
point would be where the curve f rom crack extension intersects the stretch 
zone line (J = 2~yp2Xa). This point has several drawbacks. At this point no 
actual crack extension due to material separation has occurred. Also the 
stretch zone may not develop strictly as a function of J/2ayp.  Estimates 
of COS have been written in the form 

COS = C1G/cry v = C~J/ayp (2) 

where the constant C1 has been estimated to range from ~-/4 to greater than 
two. However,  recent work has shown experimentally that C~ is very nearly 
one [9]. Despite these objections, this point appears  to be the best choice 
for a Jic measurement point in the A216 results, Figs. 7 and 8. For this 
case the stretch zone line was taken to be J = 2 a n o w A a  where ano,, was a 
stress taken half way between yield stress and ultimate stress. This help 
accounts for cases where there is a high strain hardening exponent. The 
J~o measurement  point was taken where a best fit line to the crack exten- 
sion points intersected the line J = 2~o~,Aa. Using this technique J ~  
values were calculated for each specimen size and are given in Table 2. 

TABLE 2--Jxc at 250~ for different specimen 
sizes, A216 steel. 

Specimen Jir (in.. lb/inY) 

1/2 by 1/2 in. bend bars 2150 
i by 2 in. bend bars 2000 
1T CT 1800 
2T CT 1600 
3T CT 1750 
4T CT 1650 

Discuss ion 

The values of J~c measured f rom six different specimen sizes show a fair 
degree of  consistency, Table 2. The measurement point described may be 
subject to future reevaluation and certainly cannot  be accurately set by 
the study of one material. However,  for the A216 steel this measurement  
point appears to be the best possible choice. Crack extension due to 
material  separation is about  to occur or has already taken place to some 
small degree at this point. A measurement point taken earlier would 
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FIG. 9--J versus crack extension showing various methods for taking a measurement point. 

measure J~c for  a crack f ront  geometry  change only. A measurement  point  
taken later would in t roduce specimen size effects artificially. 

The result o f  choos ing  a different measurement  point  is shown in Fig. 9. 
The  fitted lines f rom all the data  are shown here and various measurement  
points  are considered. Results f rom these are shown in Table 3. The meas- 
urement  point  used in KIo testing is 2 percent  crack growth.  These points  
are marked  in Fig. 9. I t  is obvious  that  this me thod  would in t roduce a 
large specimen size effect. This criterion may be responsible for  some of  
the size effect encountered in Kic testing. Another  method  considered was 
to take twice the stretch zone value for  crack extension. This is given by 
the intersection of  the line J = Cf~o,,2xa and the fitted curves. Tak ing  this 
a m o u n t  o f  crack extension again introduces  a specimen size effect. Another  
possibility would be to an absolute measure of  crack extension. Two values 
are considered,  0.020 in. and 0.040 in. The 0.02-in. cri terion gives a fairly 
consistent Jic value whereas the 0.040-in. criterion give a size effect scatter�9 

TABLE 3--J values obtained from various measurement points/t216 steel 
at 250~ J (in..lb/in.~). 

2~o Crack J = af]owAa 0.020 in. 0.040 in. 
Specimen Growth Intersection Growth Growth 

1/z by 1/z in. bend bar 700 3500 2250 2750 
1 by 2 in. bend bar 2150 2150 3000 
IT (ST 1950 281~ 1950 2550 
2T CF 1900 1800 1700 1950 
3T CT 2250 2000 1850 2150 
4T CT 3000 2100 1800 2200 
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Establishing an absolute measurement  point such as this for all materials 
would indeed be difficult at this time. 

The method used there for measuring J~o may have some drawbacks. 
To construct a resistance type curve for calculating a single J~~ value 
takes more specimens and more test steps than a Kic test. It may appear  
easier to instrument the specimen in some way so that crack initiation can 
be determined and J ~  measured from a single specimen. Several methods 
of instrumentation were attempted with this hope. They included ultra- 
sonics, acoustic emission, an electrical potential system, and multiple 
displacement gages on the specimen. In all cases it was concluded that 
whenever large-scale plasticity occurs in the specimen the effects of  ma- 
terial deformation are often indistinguishable f rom first crack advance. 
Thus, the success of  using a single instrumented specimen to determine Jio 
could depend on the skill of  the investigator in interpreting instrument 
signals and also on the way a particular material responds to a given 
transducer. 

The method described in this paper  for measuring Jic does not require 
any complicated analysis or sophisticated instrumentation. The equip- 
ment needed is virtually the same as that needed for a Kic test. The actual 
testing will take longer since there are more specimens and more steps per 
specimen than in a KI~ test. However,  all of the steps are relatively simple 
and do not require judgment  on the part  of  the investigator. The method 
described here is only a first at tempt at establishing a uniform test method. 
Individual steps may be altered or more precisely defined in the future 
as more tests are conducted by this method. 

Size Effect 

The effect of specimen size on  J ie  does not appear to be very great for 
the A216 steel. Although there is a definite size effect on the J versus crack 
extension curves in Figs. 7 and 8, this could be due mainly to the over- 
estimation effect shown in Figs. 5 and 6. This overestimation would 
certainly be specimen size dependent. Taking a Jio measurement  point as 
described appears to eliminate this type of size effect. The real concern is 
that the specimen may be so small that J no longer characterizes the 
crack-tip field. From Table 2 it can be seen that the smaller specimens do 
give a slightly higher Jir value. However,  this difference is small enough 
that any size effect cannot  be distinguished from normal variations due to 
material difference or testing technique. 

Previously, a specimen size requirement had been recommended as 
follows 

a, B, b 2 aJ~c/Crnow (3) 

where ~ was assumed to be between 25 and 50. Taking J ~  to be 2000 
in . . lb/ in .  2 from these test results and o~ to be 25 would give a specimen 

Copyright  by ASTM Int ' l  (al l  r ights reserved);  Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
Universi ty of  Washington (Universi ty of  Washington) pursuant to License Agreement.  No further reproductions authorized.



182 FRACTURE ANALYSIS 

size requirement of 0.85 in. (1.70 in. for a = 50). For  the specimens used 
here the 1T CT and 1 by 2-in. bend bars would be the smallest specimens to 
meet the size requirement. The Ji~ value from the smaller specimen may 
then show a slight increase due to a size effect. Certainly, results for dif- 
ferent materials are needed to do a more thorough evaluation of specimen 
size effect on J~c. It is realistic, however, to assume that there will be a 
specimen effect as the critical dimensions become smaller. To be safe a 
limit should be temporarily established. To date, all J~  results appeared 
to be consistent whenever a was 25 or greater. Therefore, a value of a = 25 
will be used in setting a specimen dimension size requirement. 

Fracture Toughness Versus Temperature 

The well-known temperature dependence of the plane-strain fracture 
toughness of low to intermediate strength steels leads to practical diffi- 
culties in characterizing this toughness by means of linear elastic K~o tests. 
Beyond the lower shelf temperature range very large sections must be 
tested. These tests are expensive and very often test material is unavailable 
in the required size. J~c tests permit the characterization of fracture tough- 
ness over any desired temperature range with relatively small inexpensive 
specimens. The rationale of the J~  fracture criterion results in a direct 
correspondence between J~o and K~c [2,3]. 

1 - -  p2 
J~c-- G ~ c -  Kic 2 (4) 

E 

To illustrate Eq 4, plane-strain J~c fracture toughness tests were per- 
formed from --150~ to +250~ using ASTM Grade A216-C steel. 
Jic values were determined from one inch thick compact tension speci- 
mens, The Jio values were converted to K~ numbers using Eq 4. These 
converted values are plotted in Fig. 10 along with valid K~o test results from 
another investigation [8]. Specimens up to 12-in. thick were used for the 
K~c tests. 

The agreement between the results of the J~  tests and valid K~c values 
is considered to be very good. However, there are several points which 
must be discussed. For  Jic tests below room temperature, results are 
plotted for specimens which failed by 100 percent cleavage. In this case 
there is no ambiguity regarding the J I e  measurement point. At room tem- 
perature and 250~ Jic values were determined by the method proposed 
earlier in the paper. 

The most important point regarding the comparison of valid Kic values 
and those derived from J1c tests is the scatter and high values in the J~o 
data. This occurrence is logical considering the property variability of 
the casting steel and the relative sampling size of J~c and K~o test specimens. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



LANDES AND BEGLEY ON J-INTEGRAL STUDIES 183 

280 

240 

.E 
200 

160 

~ 120 

~ 80 

40 

I ' I i I 

ASTM A 216 Steel-Heal 4394 

' I i I 

Legend 

o �9 �9 �9 Valid K 
�9 �9 IC 
�9 IT, 2T, 4I, ST, 121"CT 

o 4TCT Linear Break 
o 8TCT Linear Break 
�9 JIc ITCT 

I a I i I J I , I , 
-200 -I00 0 I00 200 300 

Test Temperature ~ 

FIG. lO--Fracture toughness versus test temperature. 

For example, the Kic values at 0 and 25~ were determined with 12-in.- 
thick specimens. The crack tip leading edge thus sampled 12 times the 
property controlling near tip volume of the 1-in.-thick J~c specimens. Since 
a weakest-link analogy is appropriate for cleavage fracture the 12-in.-thick 
Kic sample would be expected to fail close to the lowest value of 12 J~c 
tests. In general, the smaller test specimens will be more likely to be entirely 
composed of tough material while larger specimens will be more likely to 
contain a low toughness region and thus exhibit a relatively low Kic or 
J~c value. As shown by the data, occasionally a small sample will contain 
a low toughness region giving a low test value. Clearly, as the specimen 
size decreases, more tests must be performed to determine lower bound 
properties. The tendency for Jic values to lie somewhat above the Kic 
curve is interpreted as a Weibull type phenomena. 

T e n t a t i v e  J i e  T e s t  M e t h o d  

The following is a recommended procedure for a tentative J~c uniform 
test method. As mentioned before this is merely a first attempt at a pro- 
cedure and represents only the current state of the art. The test method is 
presented in outline form so that individual steps can be easily identified. 
Figure I1 provides a schematic of test and analysis steps. 
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FIG. 11--Procedure for Jzc measurement. (a) Load specimens to various displacements, 
(b) measure crack extension, (c) calculate J for each specimen and plot versus • and (d) con- 
struct two curves for Jlc measurement. 

Specimens 

1. A bend type specimen is needed. This includes 3- or 4-point bend 
bars, compact tension specimens, or WOL specimens. 

2. The specimen should be deeply notched with a / W  > 0.6. 
3. All specimens should be precracked in fatigue with maximum loads 

less than half of the expected specimen limit load and Km~x/E < 0.002 in. 1/2. 
4. Four to six specimens with identical crack lengths should be prepared. 

Testing Equipment 

1. Testing machine with a load monitor. 
2. A load point displacement monitor. 
3. An X-Y recorder for plotting load versus load point displacement. 
4. A crack tip marking facility. 
5. A crack extension measurement facility. (This can often be as simple 

as a scale and a magnifying glass.) 

Testing Procedure 

1. Load each specimen to different displacement values using displace- 
ment control if possible, Fig. 1 la. (It is desirable to load one specimen to a 
point where no actual crack extension has occurred and the others to 
different amounts of crack extension. It may be difficult to determine this 
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prior to testing; however if specimens are loaded individually and each 
fracture surface examined before the next specimen is loaded, this can 
easily be done.) 

2. Unload each specimen and mark  the crack. (Heat  tinting is an easy 
way to mark  the crack for steel. For  other materials a dye penetrant or a 
fatigue mark  could be used.) 

3. Pull the specimen apar t  and measure crack extension. The crack 
extension should be measured at its maximum point and taken to include 
all crack extension f rom the fatigue precrack to the end of the mark,  
Fig. 1 lb. 

Data Analysis 

1. Calculate J values f rom the load versus load point displacement 
record using J = 2A/bB, where A is the area under the curve up to the 
point of unloading (Fig. 1 la), b is the uncracked ligament measured f rom 
the end of the fatigue crack, and B is specimen thickness. (Note:  In meas- 
uring area under the curve do not subtract out the area due to elastic 
unloading. The right-hand side of the area measured should be a vertical 
line at the unloading displacement.) 

2. Plot J versus crack extension, Fig. 1 lc. 
3. Construct the line J = 2o-f~o~Aa (Fig. 1 ld). (o-f~ow can be taken halfway 

between yield and ultimate stresses.) 
4. Draw best fit line to the J versus crack extension points, Fig. 1 ld. 

lnelude only the points where actual crack extension has occurred. Where 
crack extension appears only as a stretch zone the point should fall along 
the line J = 2o-flowAa. 

5. Mark  Jic at the intersection of the lines constructed in Steps 3 and 4, 
Fig. l ld .  

Specimen Size Analysis 

1. Calculate ,]/~ 
2. Compare  specimen dimensions, a, B, b with J/o-fto~. (~ = dimension/  

if0" flow. 
3. a should be greater than 25 for a valid specimen size. 

This procedure is recommended to anyone interested in doing J~c testing. 
It is likely that individual steps will have to be altered, expended or clarified. 
This can only be done as more test results are acquired. It  is suggested 
that  questions which arise over the use of this procedure be promptly  
addressed to the authors. 

Conclusions 

1. By evaluating J-integral test results in the form of a resistance curve 
a simple method for determining a J~c measurement point is defined. 
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Jxc is t aken  as the in tersec t ion  between a stretch zone line (J  = 2r and  
a f i t ted curve to  the J versus c rack  extens ion  points .  

2. A tenta t ive  test  p rocedu re  is presented .  
3. Resul ts  of  J~c versus t e m p e r a t u r e  are c o m p a r e d  with prev ious  Kie 

d a t a  and  show good  agreement .  

Acknowledgment  

The  au thors  gra tefu l ly  acknowledge  the con t r i bu t i ons  of  A. R. Pe t rush  
o f  the  Mechan ic s  D e p a r t m e n t  and  R. B. Stouffer  o f  the Ma te r i a l s  Tes t ing  
and  Eva lua t ion  L a b o r a t o r y  to var ious  phases  o f  the expe r imen ta l  p r o g r a m .  

References 

[1] Rice, J. R., Journal of Applied Mechanics, Transactions, American Society of Mechanical 
Engineers, Vol. 35, June 1968, pp. 379-386. 

[2] Begley, J. A. and Landes, J. D. in Fracture Toughness, ASTM STP 514, American 
Society for Testing and Materials, 1972, pp. 1-20. 

[3] Landes, J. D. and Begley, J. A. in Fracture Toughness, ASTM STP 514, American 
Society for Testing and Materials, 1972, pp. 24-39. 

[4] Bucci, R. J., Paris, P. C., Landes, J. D., and Rice, J. D. in Fracture Toughness, ASTM 
STP 514, American Society for Testing and Materials, 1972, pp. 40-09. 

[5] Rice, J. R., Paris, P. C., and Merkle, J. G. in Progress in Flow Growth and Fracture 
Toughness Testing, ASTM STP 536, American Society for Testing and Materials, 
1973, pp. 231-245. 

[6] Brown, W. F., Jr. and Srawley, J. E., Platte Strain Crack Toughness Testing of High 
Strength Metallic Materials, ASTM STP 410, American Society for Testing and Ma- 
terials, 1966. 

[7] Fracture Toughness Evaluation by R-Curve Methods, ASTM STP 527, American Society 
for Testing and Materials, 1973. 

[8] Shabbits, W. O., Pryle, W. H., and Wessel, E. T., unpublished data. 
[9] Robinson, J. N. and Tetelman, A. S. in Part 1 of this symposium. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



C. F. Shih 1 

Small-Scale Yielding Analysis of 
Mixed Mode Plane-Strain Crack Problems 

REFERENCE: Shih, C. F., "Small-Scale Yielding Analysis of Mixed Mode 
Plane-Strain Crack Problems," Fracture Analysis, ASTM STP 560, American 
Society for Testing and Materials, 1974, pp. 187-210. 

ABSTRACT: The small-scale yielding analysis of an elastic-plastic body with a 
line crack under plane-strain conditions subject to combinations of Mode I and I1 
loadings is examined. The analysis of the near-tip field follows the works of 
Hutchinson and Rice and Rosengren. Dominant singularity solutions governing 
the asymptotic behavior of the stresses and strains at the crack tip are obtained 
for the complete range of loadings between Mode I and II. The results of an 
accurate finite element technique, which imbeds the dominant singularity solu- 
tions, directly relates the near-tip behavior to the elastic stress intensity factors 
KI and KH. Implications of this study to mixed mode fracture mechanics is also 
discussed, particularly with respect to the direction of crack initiation and the 
relation of fracture toughness under mixed modes to that in Mode i. Details of 
the mixed mode plastic zone sizes and shapes are also given. 

KEY WORDS: yield strength, mechanical properties, fracture properties, crack 
initiation, plastic properties 

S t ra in  ha rden ing  plas t ic i ty  so lu t ions  for  smal l -sca le  y ie ld ing  c rack  
p r o b l e m s  in p lane  s t ra in ,  which br ing  out  the behav io r  at  the  c rack  t ip  in 
the  p las t ic  zone,  have been presented  by  Hu tch inson  [1,2] 2 and  Rice and  
Rosengren  [3]. They  res t r ic ted  a t t en t ion  to p r o b l e m s  in which the stress 
d i s t r i bu t ion  was ei ther  symmet r i c  ( M o d e  I)  or  an t i symmet r i c  ( M o d e  I I )  
with respect  to  the c rack  t ip.  In  this  p a p e r  the  pure  m o d e  analyses  have 
been  ex tended  to inc lude  c o m b i n a t i o n s  of  M o d e  I and  II  loadings .  C o m -  
prehens ive  surveys of  p lane-s t ra in  f rac ture  mechanics  are  found  in Refs  
4, 5, and  6. 

In  smal l -sca le  y ie ld ing  the  p las t ic  zone is smal l  c o m p a r e d  to the  c r ack  
length.  The  region  in the  immed ia t e  vic ini ty  o f  the  c rack  t ip  in the p las t ic  
zone  is referred to as the near-f ield.  A t  d is tances  large c o m p a r e d  to the  
p las t ic  zone  bu t  stil l  smal l  c o m p a r e d  to the  c rack  length,  the elast ic  s ingu-  

1 Research Fellow in Applied Mechanics, Division of Engineering and Applied Physics, 
Harvard University, Cambridge, Mass. 02138. 

2 The italic numbers in brackets refer to the list of references appended to this paper. 

187 

Copyright © 1974 by ASTM lntcrnational www.astm.org 
Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



188 FRACTURE ANALYSIS 

larity dominates the stress and strain distribution. The far-field of the 
small scale yielding problem is described by 

c~,i = (27rr)- l /2[Kiei j~(O) + KIICrijlI(O)] (1) 

where r and 0 are polar coordinates centered at the crack tip as shown in 
Fig. 1. The symbols /<i and KII denote the Mode I and I1 elastic stress 
intensity factors, and o i /  and a~j ~I are well-known dimensionless functions 
associated with the elastic singularity which depend only on the orientation 
angle 0. 

One measure of the strength of the singularity is Rice's [7] path-inde- 
pendent J-integral. For small scale yielding J is related to the elastic stress 
intensity factors by 

1 - -  b ' 2  

J - (hi  2 + K~ 2) (2) 
E 

where u is Poisson's Ratio, and E is Young's Modulus. Thus, the J-integral 
may be thought of as a measure of the square of the resultant amplitude of 
the elastic singularity. At this point we introduce a single parameter, 
denoted by M' ,  which characterizes the relative strengths of K1 and KI~ 
in the far-field. A convenient definition is 

2 ~0o(0 = 0)  
M r = - -  tan -1 limit ~r0(0 o) 71" T---* ~ 

2 IK,[ 
_ t a n - ~  ~ ,  

7r gtI  Ij 
(3) 

['4 
r2 

FIG. 1--Polar  coordinate system centered at crack tip and integration paths. 
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With this definition M e, hereby referred to as the far-field mixity parameter,  
ranges f r o m 0 t o  l, with M ~ = 0 f o r p u r e  Mode II and M e = 1 for pure 
Mode I conditions at the far-field. (Note:  For the case in which a crack 
in an infinite plate makes an angle B (in radians) to a far pure tension 
field, one finds f rom the elastic solution that M e = (2/~-)r 

As in Refs 1, 2, and 3, J2 deformation theory of plasticity is used in the 
near-field analysis. For  the dominant  singularity of the near-field the 
elastic strains are negligible compared to the plastic strains and only the 
plastic part  of the stress-strain relation enters in the dominant  singularity 
analysis. In simple tension a power hardening relation between the plastic 
strain and stress is assumed so that  for " large" plastic strains 

~P ~ ~ E (4)  

where c% is the yield stress in simple tension, a may be regarded as a ma- 
terial constant, and n is the strain hardening coefficient. Application of the 
J-integral to the mixed mode small-scale yielding problem reveals that  
the dominant  singularity governing the asymptotic behavior of the stresses, 
strains, and displacement at the crack tip has the form [1,2 ,3]  

(rij = ~0KM p r -1/('~+1) ~,v(0,Mv), ~e = (roK~" r -1/("+1) ~ ( O , M O  
(5)  

OLO" 0 OLO" o 
~ij v = ~ -  (KM~')" r -'~/(~+~) ~ iv (O,M~) ,  u, = ~ (KM')" r 1/('+') a i (O ,M")  

The dimensionless functions a~j, a~, ~jv, a~ depend only on 0 and the near- 
field mixity parameter  Mv defined below. The amplitude of the dominant  
singularity is KM p and this is given definite meaning by setting the maximum 
value of the 0-variation of the effective stress, a~ = [(3/2) ~j~j]~/~, to unity 
where ~ j  = ~ j  - (a~/3)a~j. The superscript " emphasizes that  K~.~ v is the 
plastic stress intensity factor and the subscript M emphasizes that it applies 
to mixtures of Mode I and II. The near-field mixity parameter  M ~ is 
introduced in Eq 5 to identify each possible set of  0-variations of  stresses 
and strains. One convenient way of identification is the relative composit ion 
of Mode I and I I  conditions directly ahead of the tip. Thus My is defined, 
in the same way as M" in Eq 3, in terms of the tensile and shear stresses 
ahead of the crack tip by 

2 limit aoo(r, 0 = O) Mv = - -  tan - t  
r ~-,o a~o( r , 0 O) 

2 tan -~ e00(0 = 0, M 0  
= ~ ~,o(0 0, M") (6) 

where M~ also ranges from 0 to 1, with M~ = 0 for pure Mode II  and 
Mp = 1 for pure Mode I conditions in the near-field. 
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In elastic crack problems the mixed mode singularity can be expressed as 
a linear combination of the pure Mode I and II singularities as in Eq 1. 
However in the plastic range, the equations are nonlinear and hence super- 
position is not possible. Nevertheless, the angular distribution of stresses 
and strains depend on the single parameter Mp and we find from our 
numerical solutions to be discussed later that for each particular value of 
Mp there corresponds a unique angular variation of stresses and strains 
ranging from pure Mode I to pure Mode II. Thus, the two parameters KM p 

and Mp completely identify the near-field for a given value of the power 
hardening coefficient n (whether or not small-scale yielding applies). 

In pure Mode I (or pure Mode II), the plastic stress intensity factor can 
be expressed directly in terms of the corresponding elastic stress intensity 
factor KI (or Ki~) using the path-independent J-integral. In mixed mode 
small-scale yielding, KM p can also be expressed in terms of the J-integral 
but the expression depends implicitly on the additional parameter Mp. 
That  is, 

1 - -  /,2 OLO-0 2 
J - (KI 2 + KI~ 2) = I , (Mp) (KMP)  "+1 (7) 

E E 

where / ,(Mp) is a numerical constant determined from the singularity 
analysis, to be given later, which depends on the strain hardening co- 
efficient n and the near-field mixity Mp. A complete specification of the 
near-field in terms of KI and KII (or, equivalently, J and M r) requires 
that the relationship between M" and Mp be known. 

Budiansky and Rice [8] examined several path-independent integrals 
recently discovered by Knowles and Sternberg [9] but, contrary to their 
initial hopes, these integrals did not provide this additional relationship. 
We also were unable to find any method to directly connect the near-field to 
the far-field which by-passes an analysis of the intermediate field. However, 
an accurate finite element approach, similar to the one used by Hilton and 
Hutchinson [10] was developed which has enabled us to calculate the 
relationship between M e and Mp. Thus KM p and M p are now known in 
terms of the elastic intensity factors KI and KII; and the near-field can be 
regarded as completely determined for small-scale yielding. 

In the next section the near-field will be dealt with in some detail. Solu- 
tions to the dominant singularity have been obtained for n ranging from 
1 to 99. The slip line field and stress distribution for a perfectly plastic 
material, valid at the immediate vicinity of the tip, is given in the section 
on perfect plasticity solutions at near-field. In the section on the small- 
scale yielding problem, the relationship between M e and Mp is obtained for 
essentially the complete range of the strain hardening coefficient n. Details 
of the mixed mode plastic zone sizes and shapes are also given. Finally, we 
conclude the paper with a discussion of some of the implications of this 
study to mixed mode fracture mechanics. 
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Dominant Singularity Analysis 

The equations governing the dominant singularity are taken directly 
from Ref 1 and the reader may refer there for details. The generalized 
power hardening relation between the plastic strains e~j, and the stresses 
a~- which holds asymptotically at the crack tip (which reduces to Eq 4 in 
simple tension) is 

3 (O'~O)n--lsi j 
~J" = 2 ~ E (8) 

where 

and 

O'kk 
Si j  = crij - -  - y  ~ii 

3 
(Te 2 ~ ~ Si jSi j  

All the other quantities have been defined earlier. Under plane-strain 
conditions when the elastic strains are negligible, oz. = (~rr -[- ~00)/2 and 
the effective stress is related to the stress components by 

3 
~2 = ~ (err - 300) 2 + 3ere 2 

while the plastic strains consistent with Eq 5 are given by 

3 
~r~' = - ~ ~  = 4 ~ - ~  ( ~  - ~ o )  

3 
~rO p ~ 2 0"e n-1 ~rO 

An outline of the solution procedure used follows. An Airy stress func- 
tion is introduced and a partial differential equation governing the stress 
function is derived from the compatibility equation. A separated solution, 
Eq 5 can be obtained thereby reducing the problem to a fourth order, 
nonlinear differential equation. In the beginning phase of the investiga- 
tion, the equations were solved by shooting methods as in Refs 1, 3 which 
were adequate for the pure mode analyses. However, the shooting method 
and its variants were inadequate for the mixed mode analyses. A more 
sophisticated method employing finite difference procedure with quasi- 
linearization [11,12] was then tried and highly accurate solutions with 
very rapid convergence were obtained. 

The 0-variation of the stresses, strains, and the effective stress associated 
with the dominant singularity are shown in Figs. 2 and 3 for n = 3 and 13, 
respectively. Included in each figure are the extreme cases of Mode I and II 
plus two intermediate states. The four cases in Figs. 2 and 3 are arranged 
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FIG. 2--O-variations o f  stresses and strains at the tip o f  a crack for  plane strain with 
n=3. 
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in order of  increasing asymmetry with values of M~ chosen such that the 
corresponding values of M e for small-scale yielding are approximately 
M e = 1,0.7, 0.3, 0, respectively, as will be seen in the section on the small- 
scale yielding problem. 

As mentioned at the beginning of the paper two parameters  KM p and M p 
are required to completely specify the stress and strain distribution in the 
vicinity of the crack tip, and that the J-integral does not provide enough 
information for the determination of both. Budiansky and Rice [8] ex- 
amined some new path independent integrals recently discovered by 
Knowles and Sternberg [9] but, as already mentioned, these new integrals 
did not supply the additional information that would completely relate 
KM p and M R to KI and KI~. However,  their investigation did provide an 
unexpected result which will explain a peculiar feature of  the dominant  
singularity solutions as well as of  the perfect plasticity solutions to be 
developed in the next section. 

What  has come to be referred to as the J-integral is actually the first 
component  of  the vector [8] 

~- [ (Wnk  -- aijn~u,.~)ds Jk 
J F1 

where W is the strain energy density, I'1 is a curve in the xl ,x2 plane, and 
nk is the unit normal  to I'1. For  small-scale yielding, J1 is given by Eq 2 and 
J2 is related to KI and K~I by 

(9) 

The closed contour 1  ̀ = 1`1 - 1`2 + 1'3 -q- 1'4 in Fig. 1 encloses no singu- 
larities, hence the integral vanishes when evaluated along 1'. The contri- 
butions due to 1"1 and 1'~ are bounded, and hence the contributions due 
to 1"3 and 1"4 must also be bounded. As discussed in Ref  8 this requires 
that the strain energy density associated with the dominant  singularity 
Eq 5 be equal at opposite points on the faces of  the crack (that is, for 0 = 
~ r ) .  Since W depends only on (aTr) 2 along the crack face, this requirement 
is equivalent to 

~r,(o = ~)  = + ~ ( o  = - ~ )  ( t o )  

for all values of  MR. Since #,~(~r) = ~rr(-~r) for Mode I and ~ ( T r ) =  
-~ ,~( -Tr)  for Mode II,  Eq 10 implies that  at some value of M R there must  
be an abrupt  transition f rom one sign to the other2 The numerical results 
strongly indicate that for any deviation f rom Mode I, the minus sign 
holds in Eq 10, that is, 

~T~(0 = 70 = - ~ ( 0  = - r r )  for 0 < M y  < 1 (11) 

3 The possibility that the transition occurs with ~(Tr) = #~( - r) = 0 at some Mp was 
not observed, except for the case of n = 1 at MP = 1. 
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The perfect plasticity solution of  the next section also cor robora tes  Eq 1 1. 
The transit ion zones in Figs. 2 and 3 are connected with Eq  1 1 and become 
more  severe as M p approaches  unity. The numerical  technique used here 
was capable  of  handl ing the zones in which there was a rapid variat ion 
o f  the stresses. 

The J-integral  evaluated along 1"~ using the dominan t  singularity gives 

J = aao~ (KMP),+a I,(Mv) (12) 
E 

where 

oe "+~ cos 0 - [sin 0(orT(O0 - u~') - Or0(~r + Oe')) 

+ ~ (e.~r + ere~0) COS Ol dO (13)' 

As already ment ioned,  for small-scale yielding the parameters  o f  near-  
field and far-field are related by 

OLO'02 1 - -  /22 
J = - ~  (KMV) '~+~ I ,(Mv) - E (KI~ + KHe) (14) 

Values o f  I ,(Mv) for n ranging f rom 1 to ~o and Mv ranging f rom 0 to 1 are 
shown in Fig. 4. (The n = co curve is obta ined by extrapolat ion.)  The 
values of  I ,  for pure M o d e  II  (Mp -- 0) given previously in Ref  2 are 
in error. 

The tensile stress ~00 will be examined in some detail since it figures 
prominent ly  in many  fracture initiation studies. Let 0* be the angular  
posi t ion at which the tensile stress ~00 attains its max imum at a fixed 
radius r in the near-field for any given value of  M ;  and the hardening 
exponent  n; the tensile stress at 0* is denoted by ~00". In Fig. 5a, 0* is shown 
as a funct ion of  Mp. F r o m  Eq 5 

o'00" = o ' o K M  p ?.-I/(,,,+1) eoo(O,,M v) 

for any Mp. Similarly let (a00*)i be the tensile stress and KIp its associated 
plastic intensity factor  for M ~ = 1. Then  the rat io of  the max imum tensile 
stress in mixed mode  to that  in M o d e  I at the same value o f  r and n is 

~rO0* = KM p Ooo(O*,Mv) (15) 
(ooo *)r KI p ~oo(0,1 ) 

To obtain a meaningful  ratio, we take J to have the same value in mixed 
mode  as in M o d e  I so that  Eq 12 gives 

(KMP) ',+t ln(M p) = (/(iv) n+l L ( M  v = 1) 

4 ( )" denotes differentiation with respect to 0. 
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FIG. 4---Values of ln as defined by Eq 13. 

Thus, Eq 15 may be rewritten as 

(roe* FI , (M" = 1)11/<"+1)~oo(O*,MP) (16) 

This ratio is plotted as a function of M,' in Fig. 5b. 
We end this section with the note that the dominant singularity solutions 

including the use of plastic intensity factors and J 's  are in no way restricted 
by the size of the plastic zone. However, only in small-scale yielding can 
the J 's  be related to the elastic stress intensity factors by Eqs 9 and 14. 

Perfect Plasticity Solutions at Near-Field 

The Mises yield criterion for perfect plasticity and plane strain, assuming 
negligible elastic strains (or incompressibility) is 

(r2 = z/~(~,, _ o0o)2 + 3(rr02 = (r02 (17) 

The Prandtl slip line field and stress distribution of Mode I at the tip of 
a crack is well-known [2,7]. Our attempt to find a continuous stress field 
and its associated characteristics, centered at the crack tip, which satisfies 
the traction-free boundary conditions on 0 = : t :r  and the yield condition 
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given by Eq 17 on the interval -Tr < 0 _< ~r and which is only slightly 
perturbed from the pure Mode I solution has not been successful (see 
Appendix). In fact, the dominant  singularity solutions for low hardening 
materials shown in Fig. 3 point to the possibility of  a discontinuity in r 
in the non-hardening limit for deviations f rom pure Mode I. Stress dis- 
continuities in perfect plasticity in a plane-stress crack problem have been 
discussed in Ref 2 and further references on this subject may be found there. 

Let OG be the radial line of  discontinuity in Fig. 6a and let 0oo = 7r - a. 
Continuity of  traction across a radial line originating from the tip requires 
that ~00 and r be continuous functions of 0. Requiring the yield condition 
Eq 17 to be satisfied on both sides of  OG, the jump in r is 

~rr + -- ~r-- = 4 ~02 (18) 

where ~,.,.+ and r are the two roots of  Eq 17. The asymmetric slip line 
fields and the stress distributions may be related to the single parameter  a. 
Two additional angles which arise in the analyses (see Fig. 6a) are 3' and 
which are related to a by 

3, = -2~ 

cos 2a = - a +  
2 

for 0 _< a _< 7r/4. 

(19) 

As a approaches ~r/4 the magnitude of the jump in ~rr given by Eq 18 
decreases and finally vanishes when c~ equals 7r/4. For  this value of a, v 
equals -~ - /2  and ~ equals - ~ - / 4  - 1~, and the two fan zones BOC and 
E O D  have angular spans of  r / 4  - 1/~ and ~-/4 + ~ ,  respectively. For  
even greater asymmetry the slip line field is completely continuous and 
any further shift towards the Mode I1 distribution causes a fan zone to 
develop at 0 = 37r/4 as shown in Fig. 6b. Denote the forward boundary  
of the fan zone by OF and let 0or = 7r - aF. Then F O C D E  rotates as a 
rigid block until it is completely symmetrical about  0 = 0 which corresponds 
exactly to Mode II  (see Fig. 7). 

The relationships between aF, 5, and 3' are given by 

7r 

~ ~ -- - -  -- O~ F 

4 

1 

2 

(20) 

for ~r/4 < a r  _< 3 r /8  -- 1/4. The stresses may be expressed analytically 
throughout  the transition f rom Mode I to II, and the details are given in 
the Appendix. Similar to the dominant  singularity solutions for hardening 
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B 

(a)  

FAN ZONE DEVELOPS HERE 

(b) 

FIG. 6---Two mixed mode slip-line fields and definitions used in the analysis. 
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materials, the stress distribution and its associated slip line field is uniquely 
characterized by Mv defined as in Eq 6. It is found that Mp may be ex- 
pressed parametrically in terms of the angle 6 as 

2 {(1 + 2rr + 26) + cos 26 / 
Mv = --~r tan-1 _7 -sin 2~ 

71" 

0 > 6 >  
- -  - -  4 

2 / = - - t a n  -1 1 + - ~ + 4 6  (21) 
7r 

7r 37r 1 
- - - - > 6 >  

4 8 4 

The stress distribution and slip line field for four values of Mp are given 
in Fig. 7. The Mode II limit was given in Ref 2. 

The maximum tensile stress occurs at 0 = 6 and at this value 

O'0 
,too* = %/J (2 + lr + 26) 

0"0 

O'rO* -~- 0 

(22) 

for the entire range of 6, 0 >__ 6 >__ -(3~r/8)  - 1/4. From Eq 22 

~00" 26 

and appears to be the non-hardening limit of Eq 16. The position of maxi- 
mum stress 0* and the ratio ~oo*/(~oo*), as a function of Mp is identified 
by the n = co curve in Figs. 5a and b. 

The stress distribution for a low-hardening material closely approxi- 
mates that given by the perfect plasticity solution as can be seen from a 
comparison of the n = 13 solution given in Fig. 3 with that of the perfect 
plasticity solution given in Fig. 7. This close agreement strongly suggests 
that the non-hardening limit of the stresses of the dominant singularity 
solution is the perfect plasticity solution. The strains at the tip of the 
crack in perfect plasticity cannot be obtained by any elementary analysis. 
However, it may be noted that the 1/r singularity in strains can occur only 
in the fan zone where the only non-zero component  is ~rO'. These features 
are reflected in the low strain hardening solution of Fig. 3. 
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The Smal l -Scale  Yielding Problem 

In this section the parameters characterizing the near-field in the plastic 
zone will be directly related to the elastic stress intensity factors using an 
accurate finite element procedure similar to the one used in Ref 10. 

In the numerical calculations, an elastic-plastic material with the follow- 
ing uniaxial stress-strain relation is used 

o" 
- - - - '  o" ~ o'0 
E '  

= (23) 

The J2 deformation theory is invoked, and plastic deformation is assumed 
to be independent of the hydrostatic component of stress, ~kk, and com- 
pletely determined by the stress deviator, su, and its invariant ce. 

The generalized stress-strain relation can be written as 

vE E 

(1 + v)(l - 2v) (1 + v) 
Cu = (24) 

vE E Eeq 2 a~ 
- -  - -  e i j ;  ( l + , ) d - 2 , ) ~ k ~ ' + ( l + ~ )  *~ (1+~) +3  e~ 

ee l ~(r "-1 1 l 
~e - E L \ r  -- 5(1 -- 2u) 

where 

O'e ~ 0"0 

~kk 
e l y  -= ely - -  - y  ~i i  

2 
e e  2 = ~ e f j e i j  

3 

with the other quantities as defined earlier. 
A brief description of the numerical method follows; a more complete 

account of a similar method is treated in Ref 10. The finite element method 
imbeds the dominant singularity solution by the use of a singular tip 
element centered at the crack tip as shown in Fig. 8, whose behavior is 
completely described by Eq 5. The near-tip behavior, for which the domi- 
nant singularity solution (Eq 5) is asymptotically correct, can be accurately 
represented by the singular element if it is sufficientiy small. In addition, 
the displacements at the nodes on the common boundary I'2, of the tip 
element and of the elements that encircle it, are also given by Eq 5. Two 
rigid body constants are included to complete the description of these 
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TRACTION ON Ft IS GIVE I - N  / ""q~ "'""~""~ "/FI 
BY ELASTIC STRESS FIELD / 

BY EQUATION (1) / / A / ~ / N / / ~  ~ . N T E R I O R ~  NODE 

rl ~ 1OOre 

DISPLACEMENTS ON F2 
IS PRESCRIBED BY 
EQUATION ( 5 ) 1_, 2 . 

GULAR TIP ELEMENT 
FIG. 8--The finite element mesh showing the singular tip element encircled by quadrilateral 

elements and the far-field traction boundary. 

nodal displacements. Thus, the singular tip element and the nodes on s 
contribute two unknown parameters,  namely KM p and M~ and two rigid 
body motion constants to the potential energy functional. At the outer 
boundary P1, traction corresponding to the elastic solution (Eq 1) is 
prescribed. The region between F1 and F2 is represented by conventional 
elements. 5 The outer boundary F1 is taken at a radius of  approximately 
100 r2. The maximum extent of  the plastic zone never exceeds 15 r2 for 
all the cases considered, and by numerical experimentation this was found 
to be sufficient to guarantee the accuracy stated later. The potential energy 
functional is minimized with respect to KM% MP, rigid body constants, and 
the displacements at all the nodes between r i  and I'2. The resulting non- 
linear system of equations was solved by Newton 's  method. Such an 
approach permits an accurate description of the stresses and strains 
throughout  the entire domain and is particularly attractive since KM p and 
M~ are computed directly. 

The numerical results are in good agreement with the analytical pre- 
dictions where such comparisons are possible. The stress and strain in- 
tensity factors for either pure Mode I or II  may be directly calculated 
using Eq 14. This can be done with great accuracy since In can be corn- 

s The quadrilateral element is subdivided into four triangular constant strain elements; 
however the middle node is removed by static condensation and therefore does not enter 
into the final stiffness matrix. 
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FIG. 9--Near-fieM mixity Mp versus far-field mixity M e for small-scale yielding in plane 
strain. 

puted very accurately as has been done in the pure mode analyses of  Refs 
1, 2, and 3. The stress intensity factor obtained directly in the finite element 
procedure 6 differed from the former by an average of 1 percent over the 
range of n considered. Alternatively, the value of J for the singular tip 
element can be obtained by substituting the latter value of the stress intensity 
factor into Eq 12. This differed from the "prescribed" value of J given by 
Eq 2 by no more than 3 percent for all the cases considered. For  the case 
of n = 1, that is, linear elasticity, where a direct comparison in mixed 
mode is possible, the computed stress intensity factors were within 1 
percent of the known value for all mixtures of Mode I and II. 

The relationship between M '  and Mp, the central relationship of this 
entire paper, is shown in Fig. 9. The n -- ~o curve is obtained by extrapo- 
lation3 

The finite element analysis was repeated at selected values of  M ~ and n 
for two additional stress-strain relationships slightly different in character 
from Eq 23. One of these was the Ramberg-Osgood tensile relation given by 

(r I 3 ( ~ / " - ' ~ A  (25) 
= 1 + 7 \ r  

6 The typical finite element mesh has 13 rings and 25 radial lines at angular intervals of 
15 deg for a total of 312 quadrilateral dements. 

7 Unless otherwise indicated all the results presented are for the stress-strain relationship 
as given by Eq 24 with v set at 0.3. 
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FIG. lO--Elastic-plastic boundaries for small-scale yielding in plane strain. 

The  second was a tensile re la t ion  which had  a distinct yield stress bu t  no  

d iscont inu i ty  in the slope of the stress-strain re la t ion as does Eq 23. I t  was 
given by 

(7" 
-~-; for ~ _< ~o 

e = (26) 

- -  ; for r > r 
- r  + r  

The computed  values of M ,  for a given M" differed only slightly f rom the 
results in Fig. 9 for the same value of n. 8 I t  is concluded that  the re la t ion 
of Mp to M e depends pr imar i ly  on the strain ha rden ing  exponent /7 .  9 

The plastic zones based on Eq 23 cor responding  to four values of M e 

are plot ted in Fig. 10, note  tha t  three different scales on the axes are used. 
The plots clearly show that  while the plastic zone undergoes  relatively 

s The variation in Mp is less than 1/2 percent. 
9 Results obtained for u ranging from 0.1 to 0.45 for stress-strain relations given by 

Eqs 23 and 25 differed by 11/2 percent at most from the M c -- Mp relationship associated 
with u = 0.3. 
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minor changes with increasing n in Mode I, it makes significant advances 
ahead of the crack in Mode II. The plastic zones for low hardening ma- 
terials are strikingly similar to the plastic zone for a perfectly plastic ma- 
terial in Mode I obtained by Levy et al [13] using a conceptually similar 
finite element technique which employed a J2 flow theory. 

C o n c l u s i o n s  

The maximum tensile stress has been used with some success [14,15] in 
fracture initiation studies in mixed mode for brittle materials. In particular, 
the fracture initiation angle measured from combined mode experiments 
is fairly close to the direction at which the tensile stress, computed from 
the elastic result (Eq 1), attains its maximum. 

In Fig. 5a, the angular position of maximum tensile stress (at a fixed 
radius) 0* is plotted against M' .  Using the M e versus Mp curves of Fig. 9, 
0* can be translated into a function of M e for small-scale yielding as shown 
in Fig. 11. The angles of initial crack growth experimentally obtained by 
Liu [16] and Pook [17] are also included in the same figure. Most of the 
experimental results fall between the n = 1 and the n = ~ curves. Sih [18] 
has discussed variations in fracture initiation angle based on local strain 
energy density considerations. 

The experiments of Refs 16, 17, and 19 indicate an increase in fracture 
toughness, as measured by the critical value of J, for example, for devia- 
tions from pure Mode I conditions; and most experiments reveal a higher 
fracture toughness in Mode II than in Mode I. From Fig. 5b it is clear that 
a departure from Mode I conditions (that is, Mp less than unity) gives rise 

9 0  I I I I I [ [ I [ 
, n = l  

8o~.. I ,sls o POOK [,6] 
i o , ,u  E, 1 

7 0  g 

_8,~ 6 0  - -  

5C 

4 0  

3 0  

,o 

I I _1  I I I I I I "~ 
0 .1 .2  .3 .4 .5  ,6 .7 .8 ,9  1.0 

M e 

FIG. 11--0" (in degrees) as a Junction o f  M e. Experimental  results o f  Liu [16] and Pook  [17] 
are included. 
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to  a reduct ion in the peak value o f  the ampli tude o f  the tensile stress com-  
ponen t  a00 associated with the dominan t  singularity in the plastic zone as 
long as the strain hardening exponent  is greater than abou t  3. The reduct ion  
is greater with higher values o f  n. Thus,  these predictions concur  in the 
possibility of  increases in measured fracture toughness  for deviat ion f rom 
pure M o d e  I. The elastic result (the n = 1 curve) indicates quite the opposite.  
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APPENDIX 

Details of Perfect Plasticity Solutions 

The Mises yield condition near the crack tip where elastic strains may be neglected 
is 

3 
~2 = ~ (~r -- ~'oe) 2 q- 3~r92 = ~0 ~ (27) 

As mentioned in the section on perfect plasticity solutions at near-field, the slip 
line field for Mode I is well-known (see Fig. 7). Let us examine the means of intro- 
ducing slight asymmetry to the problem with the requirement that the resulting 
field remains close to the symmetric field. One procedure is to preserve the number 
of  constant stress and fan regions but to change their shapes slightly. The angular 
span of tan zones BOC and DOE may be perturbed, but the constant stress zones 
must maintain their shapes. This, we shall later show, leads to an inadmissible 
stress field. Alternatively, additional uniform stress or fan zones or both may be 
introduced, but this is impossible without immediate substantial deviation from 
the Mode I slip line field. A discussion of the properties of uniform stress regions 
and fan zones is given in Prager and Hodge [20]. 

We proceed to discuss in detail the first procedure. Following the convention of 
Hill [21] 

p d- 2k~ = C1 along the s-characteristics (28) 

p -- 2kr = C2 along the ~-characteristics (29) 

wherep = - (~rr q- aO0)/2, k = ~0/X/3, and ~ is the anti-clockwise angular rotation 
of  the a-line from the x-axis. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



208 FRACTURE ANALYSIS 

A little asymmetry is introduced by rotating the constant stress zone COD by 
an amount *; this is equivalent to perturbing the angular spans of the fan regions 
BOC and DOE. In region AOB 

Thus from Eq 28 

Cr 0 7r 

P V'3 and 4, = - - 4 -  

The ~ characteristics cross the fan zone BOC and extend right into the constant 
stress region COD. Therefore the pressure, p, in COD, is given by 

p =  1 +  - 2 x / ~ 4 ,  

However, 4, = ~/4 -I- ~ throughout COD, hence 

*0 ( l + , ~ + 2 a )  
P =  - x / 3  

and from Eq 29 

~ 0 (  3~ ) 
C2 ~ 1 + ~ -  + 4 ~  

in COD. The 5 characteristics originating in COD passes through the fan zone 
DOE into the uniform stress region EOH. The pressure p throughout EOH, accord- 
ing to the 5 characteristics from COD, is 

o- 0 
p ~ (1 + 46) 

since 4, = 3~/4 everywhere in EOH. However, the traction-free conditions at OH 
and the requirement that Eq 27 be satisfied in EOH requires p to be -- ~0/x/3 in 
EOH. Thus, the proposed slip-line field is inadmissible. 

To overcome this impasse, we introduce a discontinuity in the slip-line field. 
It is obvious that the discontinuity must originate at one of the traction-free bounda- 
ries and then move inwards. A discontinuity that originates elsewhere will require 
finite changes in strain energy for any slight departure from Mode I. 

The slip-line field is similar to the one just discussed, except that a discontinuity 
represented by the radial line OG at an angle ~ from the traction-free boundary is 
included as shown in Fig. 6a. In region AOB the constant stress state is given by 

2o-0 
- and r  = ~ = 0 

o r  

0"0 o'0 fro 
~rT = - a / ) ( l + c ~ 1 7 6  ~00 = x / 3 ( 1  - c o s 2 0 ) ;  ~ r o -  ~ / ~ s i n 2 0  

In the fan zone BOC 

~ o (  3rr ) ~0 
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The  stress s ta te  in C O D  is un i fo rm and  is represented by 

)] ~ = x / 3  (1 + ~ + 2 ~ ) -  sin + 2 ~ - 2 0  

(2 )] r̀oo = ~ (1 + ~ + 2 a )  q- sin + 2 ~ -  20 

) r̀~o = ~ cos + 2a -- 20 

where  a is the  ro t a t i on  of  C O D  a b o u t  0. In D O E  the  stresses are 

r̀o ( 3~- ) ,,o 
`r~ =,roe = - ~  1 - k ~ -  q- 2 0 - - 4 ~  ; ` r , o -  V '3  

In EOG 
`ro 

`rrr = ~ [1 + 4~ -- 2"/ + COS(2"/ -- 20)] 

`r0 
`re8 = ~ [1 + 4~ -- 2"/ -- cos(2"/ - 20)] 

O" 0 
o>o = ~ sin(2"/ -- 20) 

where  " / represen ts  the  angula r  shif t  of OE. Final ly,  in the  region H O G  b e h i n d  the  
d iscont inui ty  OG,  the  stresses are 

`r0 
(~rr ~ (1 + COS 20) 

O'0 

r̀00 = -- X / 3 ( 1  -- cos20)  

<7 0 
r̀T8 = - ~  sin 20 

The  pa ramete r s  ~ and  " / m a y  be  related to  ~ by requir ing tha t  `r00 and  `r~0 be  con- 
t inuous  across OG.  This  gives 

v = --2c, 
(30) 

1 cos 2,~ 

~ ~ +  2 -  

As O G  moves  inwards  the  j u m p  in r̀T~ d iminishes  a n d  finally at  ,~ = r~/4, the  
slip-line field is completely cont inuous .  A t  this  poin t  

1 ,~ 7r 
"/ = - - -  and  

2 2 4 

Fu r the r  shift  to  M o d e  II causes a fan  zone F O G  to develop at 0 = 3rr/4 with 
stresses given by oo( ) 

`r~, =`roo - ~,/~ 1 + T + 20 

`rO 

`r,o = v '~  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  M o n  D e c   7  1 4 : 4 4 : 2 1  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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Let ~F denote the position of OF  the forward radial boundary  of the developing 
fan, then 

7r 

(31) 
1 
2 

References 

[l] Hutchinson, J. W., Journal of the Mechanics and Physics of Solids, Vol. 16, No. 1, 
Jan. 1968, pp. 13-31. 

[2] Hutchinson, J. W., Journal of the Mechanic's and Physics of  Sofids, Vol. 16, No. 5, 
Sept. 1968, pp. 337-347. 

[3] Rice, J. R. and Rosengren, G. F., Journal of the Mechanics and Physics of  Solids, 
Vol. 16, No. 1, Jan. 1968, pp. 1-12. 

[4] Rice, J. R. in Fracture, Vol. II, H. Liebowitz, Ed., Academic Press, New York, 1968, 
pp. 191-311. 

[5] Irwin, G. R. and Paris, P. C. in Fracture, Vol. Ill, H. Liebowitz, Ed., Academic 
Press, New York, 1971, pp. 2-48. 

[6] McClintock, F. A. in l:racture, Vol. Ill, H. Leibowitz, Ed., Academic Press, New 
York, 1971, pp. 48-227. 

[7] Rice, J. R., Journal of Applied Mechanics, Transactions, American Society of Mechani- 
cal Engineers, Vol. 35, 1968, pp. 379-386. 

[8] Budiansky, B. and Rice, J. R., Journal of Applied Mechanics, Transactions, American 
Society of Mechanical Engineers, Vol. 40E, No. l, March 1973, pp. 201-203. 

[9] Knowles, J. K. and Sternberg, E., Archive for Rational Mechanics and Analysis, 
Vol. 44, No. 3, Jan. 1972, pp. 187-211. 

[10] Hilton, P. D. and Hutchinson, J. W., Engineering Fracture Mechanics, Vol. 3, No. 4, 
1971, pp. 435-451. 

[11] Roberts, S. M. and Shipman, J. S., Two-Point Boundary Value Problems: Shooting 
Methods, American Elsevier, New York, 1972. 

[12] Keller, H. B., Numerical Methods for Two-Point Boundary Value Problems, Blaisdell 
Publishing Company, Waltham, Mass., 1968. 

[13] Levy, N., Marcal, P. V., Ostergren, W. J., and Rice, J. R., International Journal of  
Fracture Mechanics, Vol. 7, No. 2, June 1971, pp. 143-156. 

[14] Erdogan, F. and Sih, G. C., Journal of  Basic Engineering, Transactions, American 
Society of Mechanical Engineers, Vol. 85D, 1963, pp. 519-525. 

[15] Williams, J. G. and Ewing, P. D., International Journal of  Fracture Mechanics, Vol. 8, 
No. 4, Dec. 1972, pp. 441-446. 

[16] Liu, A. F., "Crack Growth and Failure of Aluminum Plate Under In-Plane Shear," 
presented at AIAA 1 lth Aerospace Sciences Meeting, Washington, D. C., Jan. 1973. 

[17] Pook, L. P., Engineering Fracture Mechanics, Vol. 3, No. 3, Oct. 1971, pp. 205-218. 
[18] Sih, G. C. in Mechanics of  Fracture, G. C. Sih, Ed., Noordhoff International Publishing 

Leyden, The Netherlands, 1973. 
[19] Wilson, W. K., "On Combined Mode Fracture," Westinghouse Research Report 

69-1E7-FMECH-R1, Westinghouse Research Laboratories, Pittsburgh, Pa., June 
1969. 

[20] Prager, W. and Hodge, P. G., Theory of Perfectly Plastic Solids, Wiley, New York, 
1951. 

[21] Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, London, 1950. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



Prasad  Nair  I and K. L.  Reifsnider ~ 

Unimod: An Applications Oriented 
Element Scheme for the Analysis 
of Fracture Mechanics Problems 

Finite 

REFERENCE: Nair, Prasad and Reifsnider, K. L., "Unimod: An Applications 
Oriented Finite Element Scheme for the Analysis of Fracture Mechanics Problems," 
Fracture Analysis, A S T M  STP 560, American Society for Testing and Materials, 
1974, pp. 211-225. 

ABSTRACT: A new concept in elastic-plastic analysis using finite element tech- 
niques is analyzed. The resulting procedural scheme, called Unimod, is found to 
be an effective method of performing stress analysis of complex elastic-plastic 
defect problems which cannot be handled by classical elastic fraoture mechanics. 
Advantages of the Unimod scheme include extreme versatility, universal applica- 
bility to existing programs and conceptual as well as operational simplicity. 

KEY WORDS: fracture properties, stresses, strains, stress analysis, finite element 
methods, fatigue (materials) 

Most engineering materials develop zones of plastic deformation at the 
tip of  a crack under load. For small-scale yielding, the elastic singular 
solutions are usually adequate representations of the stress and strain 
distributions at distances of one or two diameters of  the plastic zone 
away from the crack tip, and beyond. However, if the remote stress reaches 
a value which is at least as great as one half of  the net section yield stress 
in ductile or semi-brittle materials, it is quite likely that the elastic singular 
solution is not a good approximation to any part  of  the stress distribution. 
More generally, there is a rather large class of problems in which the nature 
of  the stress (or strain) singularity at the crack tip depends on the level of  
applied load so that  any elastic singularity having a fixed functional form 
is inadequate. An obvious example of the latter is the situation where local 
material properties vary as a function of position as would be the case in 
composite materials. 

A variety of discrete element techniques has been developed to handle 
problems which are beyond the scope of linear elastic fracture mechanics 
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[1-512 These techniques are generally highly sophisticated, however, and 
application to a particular problem (crack size, specimen geometry, ma- 
terial response characteristics, and prescribed type of loading) usually 
requires a fair amount of specialized effort. Also, even the simplest subse- 
quent specimen geometry change or change of crack length requires that a 
new discrete element grid be established requiring considerable additional 
work. The choice of a grid to analyze a crack problem (or any problem 
involving a singularity) is, in itself, a tedious procedure and has been the 
subject of much study. (See, for example, Ref 6.) In many instances, the 
present analysis scheme, Unimod, can be used to solve these elastic-plastic 
problems with comparable (in some cases superior) accuracy. At the same 
time, changes of specimen geometry, crack size, and local material response 
characteristics can be handled with almost negligible effort, especially in 
comparison to many other numerical methods. 

Unimod--The Technique 

The concept of Unimod can be extracted from an intuitive argument. A 
crack or defect is commonly analyzed by using a finite element grid with a 
very fine grid size (small elements) in the vicinity of the expected singularity, 
or by using special singularity elements to surround the tip. However, one 
is limited in the fineness of the grid by truncation error and, in other cases, 
by the size of the resulting system of equations that must be solved in view 
of available computer facilities. In any case, since the elements at the crack 
tip always have finite size, or employ a truncated series representation, 
they are unable to represent a deformation singularity with complete 
accuracy. For the case of the common method of analysis based on the 
variational principal of minimum potential energy, the finite elements 
near a crack tip will always be too stiff. In a sense, the local stiffness of the 
material will always be overestimated, especially in the presence of plas- 
ticity. In such a situation, the singularity occurs in strain at the tip of the 
crack, while the stress distribution becomes relatively flat (although still 
singular if the material strain hardens). Strain hardening will control the 
actual value of stress near the tip, but the effective stiffness of the near-tip 
material is greatly reduced in the real material during plastic deformation 
near the strain singularity as large plastic strains develop. Since finite 
elements at the crack tip represent an average value of strain throughout 
their individual regions, that value, and the corresponding stiffness assigned 
to the element, will always be unrepresentative of the singular strain region. 
In particular, those elements will be too stiff compared to reality, and the 
predicted strains will be too small. The present scheme advances a simple 
solution to that problem, brought about by reducing the stiffness of a 

The italic numbers in brackets refer to the list of references appended to this paper. 
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crack tip element or elements to a negligible value by definition, thereby 
forcefully creating a strain amplification which is constrained only by the 
surrounding "normal"  elements. For  convenience, a value of 1 psi is found 
to be an adequate approximation to a zero modulus value, without causing 
computational problems, hence the name Unimod. It so happens that a 
value which is two orders of magnitude (or more) less than the elastic 
modulus produces essentially identical results. Actually, that fact makes 
Unimod an analysis scheme rather than a numerical manipulation. This 
process allows strain to develop at the crack tip more nearly as it does in 
real materials for elastic-plastic situations. 

A conceptual similarity exists between Irwin's correction factor for 
small-scale yielding and the Unimod scheme. The former argument states, 
among other things, that the linear elastic stress field description is reason- 
ably accurate for the case of small-scale yielding if the crack is assumed to 
be larger than reality by the amount  

ry = 2r  (1) 

where K is the field stress amplitude (stress intensity factor) and g~ is the 
material yield strength [7]. In other words, a certain volume (or strip) of 
material ahead of the crack tip is assumed to have negligible stiffness in 
order to determine the correct stress distribution with an elastic analysis 
for a mildly elastic-plastic case. Unimod can be thought of as a carry-over 
of that concept to finite element analysis. In fact, we will see in the dis- 
cussion section that r~ as determined by elastic parameters, is, in many 
cases, an excellent estimate of the distance ahead of the crack which should 
be reduced to unit modulus if good agreement with experimental results 
is to be obtained. Hence, Eq 1 can frequently be used to determine how 
many elements ahead of the crack should be relaxed to unit stiffness for 
any grid to be used for such an investigation. 

The results in the present report  were obtained using the grid system 
shown in Fig. 1 where Nodes 1 to 33 define the crack axis which is an axis 
of symmetry for Mode I loading. The crack was effected by releasing 
Nodes 1 to 8 and 1 to 10 to model a single-edge-notched plate. For  the 
experimental results used for comparison, the elements near the crack 
represented material elements 30 mils by 30 mils. As will be shown in the 
section on results, the results were extremely insensitive to any value of an 
element modulus below about 104 psi when that element (or several such 
elements) was embedded at the singularity in a matrix of normal elements. 
Fortunately, then, one need not attempt to determine a specific value for 
the stiffness of the singularity element. There is no loss of generality by 
reducing it to unity. 
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Results Using Unimod 

The technique of relaxing the modulus of elasticity has been carried out 
using E. L. Wilson's "Axisymmetric Solids Finite Element Program" [8]. 
Plane stress conditions were assumed. Two strain hardening materials were 
considered, namely, 6061-T6 AL with a strain hardening ratio, Ep~,~tlc/ 
E~l~tio = 0.04 and 90-10 Brass with Eplastie/Eelastie = 0.16. A case of 
E p l a s t i o  " ~  0.0 for AL was also examined to study the effect of change in 
grid size on stored strain energy. 

In the various figures described below, plots of stress and strain are 
made against distance along the crack axis, normalized by the crack length 
measured from the crack tip. Unimod I(8) is understood to mean that 
the elastic modulus of Element Number 8 (a crack tip element) has been 
reduced to the extent indicated. Unimod I(9), Unimod I(10) and Unimod 
I(11) have similar meanings. Unimod 1I(8 and 9) and Unimod II(10 and 11) 
have two elements, 8 and 9 and 10 and 11, respectively, with reduced modu- 
lus. The amount  to which the modulus is reduced is indicated in the figures 
as E = 10, E = 105, or E = 103. The number of iterations carried out by 
the finite element analysis is denoted by "5 iterations," etc. All data will 

Copyright by ASTM Int'l (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



NAIR AND REIFSNIDER ON THE UNIMOD TECHNIQUE 2 l  5 

be compared with previous established results as reported by Underwood 
et al, hereafter referred to as "the WVT report"  [9,10]. The constitutive 
bilinear idealizations used in the present analysis are compared to the 
actual stress-strain curves of the materials used in the WVT report  in 
Fig. 2. 

In Fig. 3, the remote applied stress is 15.13 ksi. Figure 3 shows the plastic 
strain distribution and clearly illustrates the manner in which the Unimod 
technique develops a more accurate high strain region close to the crack 
tip. Our normal program (with no modulus reduction) is seen to be un- 
satisfactory near the crack tip as it fails to rise quickly enough to pick up 
the singular strains. Calculated values from the WVT report  are somewhat 
better than our normal program. However, the WVT reports'  calculated 
values also rise much too slowly very near the crack tip. The WVT reports'  
measured plastic strains are very close to the Unimod data. Unimod I(8), 
Unimod I(9), and Unimod II(8 and 9) appear to be more representative 
of true plastic strains than both the WVT calculated values and our normal 
program. The lack of experimental measurements of plastic strains right 
up to the crack tip prevents complete comparisons. Corresponding stress 
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FIG. 2--Approximations of material stress-strain response used for finite element method 
(FEM). 
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FIG. 3--Plastic strain distributions versus distance ahead of  crack tip for 6061-T6 AL-3. 
~y = 15.13 ksi. 

distributions were found to be marginally different; the Unimod analyses 
indicated higher stresses close to the crack tip. It should be emphasized 
that the "normal  program" data and that produced by Unimod II(8 and 9) 
were produced by the same computer program. The only change that was 
made was that Elements 8 and 9 near the crack tip were required to have 
an elastic modulus of unity in the second case. The grid used was rectangu- 
lar, with characteristic dimensions of about 0.03 in. near the crack tip 
(see Fig. 1). 

With increasing remote load, the inadequacy of the normal program 
becomes more apparent, as shown in Fig. 4. Here the remote stress is 20 
ksi, that is, about half the yield stress. There is also a marked underestima- 
tion of the plastic strains by the WVT (calculated) data. An interesting 

Copyright by ASTM Int'l  (all rights reserved); Mon Dec  7 14:44:21 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



. 0 4  

. 0 3  

N A I R  A N D  REIFSNIDER O N  T H E  U N I M O D  T E C H N I Q U E  217 

I I 1 I l I I I I 

AL-3  ~'y = 20.Ok 

. . . . .  UNIMOD rT (8 & 9 )  ey (totoI) 
- -  UNIMOD f l  (8 I~ 9)  Ey (plostic) 
- - - -  NORMAL PROGRAM 

19 .6k [~  •V ' [  69:55 CALCULATED ~'y 
L " ' WVT 69:53 MEASURED 

.02 

W ~ r 

'\ \ 
\ 

\ 

\ \\ 
\ 
\ 
\ 
\ 

"\ 

\ \\.. 
\ \ - - . .  

'\ \ 
\ \ 

0.125 0 . 3 7 5  0 .625  0 . 8 7 5  LI25 1.375 1.625 

NORMALIZED DIST. FROM CRACK TIP (d) 

FIG. 4--Plast ic  strain distributions versus distance ahead o f  crack tip for  6061-T6 AL-3. 
~y = 20.0 ksi. 

feature of Fig. 4 is the nature of the good fit between Unimod II(8 and 9) 
for total strains and the WVT (measured) unloaded strains. In cases of high 
remote loading ( ~  ~ ~yi,~d/2), the plastic zone apparently prevents some 
relaxation of the elastic singular stresses near the elastic-plastic boundary. 
Plastic strains calculated by the Unimod II(8 and 9) scheme, and the 
measured strains match well nearer the crack tip. Again, the stress distri- 
butions were found to be comparable to each other. 

In Figs. 5 through 7, a different strain-hardening material, 90-10 Brass, 
is analyzed. For a remote stress of ~y = 7.5 ksi, Fig. 5 clearly differentiates 
the high strain region developed by Unimod II and the normal program. 
Here the yield stress is much lower than that of aluminum; consequently, 
~u = 7.5 ksi is greater than half the yield stress. As expected, the Unimod 

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  M o n  D e c   7  1 4 : 4 4 : 2 1  E S T  2 0 1 5
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FIG.  5--Plast ic  strain distributions versus distance ahead o f  crack tip f o r  90-10 Brass. 
~y = 7.5 ksi. 

11(8 and 9) analysis comes closer to the available measured data. As noted 
previously, the total strains calculated by the Unimod II  analysis more  
accurately match the elastic singular region of the measured values. Strain 
distributions for an increased loading (~y = 8.5 ksi) are shown in Fig. 6. 
In this case, the Unimod II  results appear  to overestimate the strains. 
The effect of changing the value of the local elastic modulus was also 
studied in this figure. It  was found that  there was no apparent  change in 
the strain (or stress) distributions when the elastic modulus of  the Unimod 
elements was varied by three orders of  magnitude, namely, E = 10, 10 2, 
and 10 ~ psi. In other words, it did not matter  how small the elastic modulus 
at the crack tip was chosen to be as long as it was several orders of  magni-  
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F I G .  6---Plastic strain distributions versus distance ahead of crack tip for  90-10 Brass. 
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tude less than the normal elastic modulus. This fact adds greatly to the 
versatility and generality of the Unimod technique. 

Figure 7 is a normalized stress representation for 90-I0 Brass for ~u = 
8.5 ksi. Unimod analysis stresses are somewhat higher than the normal 
program stresses near the crack tip. Both the stress (and strain) distribu- 
tions converge away from the crack tip. This fact is also demonstrated 
by Fig. 3. 

In general, it was found that, with increasing remote load, Unimod II 
produced the best results for strain distributions at a singularity in the 
present case; at the same time, the corresponding stresses appeared to be 
reasonable. At lower remote loads either Unimod I(8) or Unimod I(9) was 
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FIG. 7- -Normal i zed  stress distributions versus distance ahead o f  crack tip f o r  90-10 Brass. 
~y = 8.5 ksi. 

satisfactory. It is necessary, however, to establish a method of optimizing 
the choice of elements to be assigned reduced stiffness for problems when 
no experimental data is available to support a post-analysis evaluation. 
Two such methods, described in the following, are suggested by the authors. 

A fairly widely accepted criterion for the choice of an optimum finite 
element grid, in general, is the uniformity of the strain energy values for 
each element throughout  the grid system [11-13]. For singularity cases, 
this idea can be extended so that an optimum grid is one in which the 
average energy of  the elements in the singular region is as near as possible 
to that of elements remote from the singularity in the uniform stress region. 
This technique is illustrated by Fig. 8 and can be used as a quantitative 
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method for the determination of the optimum number of relaxed elements. 
Figure 8 shows that the Unimod II analysis should be optimum for this 
case of high remote (apptied) stress which is borne out by comparison with 
experimental data. (See Fig. 4, for example.) It so happens that the average 
energy per element for the Unimod II scheme is nearly identical to the 
remote average in this case. This criterion is a sensitive one as can be 
determined by the large differences between mean energies for Unimod 12, 
Unimod 2, and the normal program. 

A more direct optimization scheme is afforded by analogy to the 2rwin 
correction factor for small-scale yielding, as discussed in the beginning of 
this paper. If that analogy holds, ru should predict the distance ahead of 
the crack that should be assigned negligible stiffness. For our edge crack 
specimen ~ r ,  = ~_ C O-o~ (2) 
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FIG,.  8--Strain energy per element as a function of  a distance from the crack tip along the 
crack axis, with corresponding average values in the singular and remote regions. 
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where C is a function of the ratio of crack length (a) to specimen width (w), 
and a~ is the applied remote stress. For the present case of  aluminum 
with ~ = 20.0 ksi, ~ = 39.8 ksi, C = 1.29 for a / w  = 0.3, and a = 0.3 in. 
for unit width, r~ = 0.063 in. For the present grid, two elements would have 
a width of 0.0625 in. so that this technique would predict that Unimod II 
results would be very good for this case. Figure 4 shows that this is, in 
fact, so. For the present case of  aluminum with r = 15.13 ksi, cy = 39.8 
ksi, C = 1.29 for a /w  = 0.3 for unit width, r u = 0.036 in. The method 
then predicts that Unimod I should be used with the present grid for most 
accurate results. Figure 3 verifies this prediction with experimental evi- 
dence. Similar results are obtained for the brass analyzed. This simple and 
direct method worked very well, in general, for our present analysis. How- 
ever, results obtained using ru are most satisfactory for nearly-perfect 
plastic materials and small-scale yielding. 
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Comparisons with change in grid size are studied in Figs. 9 and 10. 
7076 AL was modeled with Epta,ti~/Eo~,ttc ~ 0.0 and a remote load of 
30.0 ksi was applied. Figure 9 is a stress plot, and shows that the various 
curves tend to converge away from the crack tip. In the top of the figure 
is inset the stored strain energy values for the various types of analyses. 
The coarser the mesh, the lesser the stored potential energy. The changes 
in grid size are analogous to the various Unimod analyses. This aspect of 
the relationship can be verified by the respective stored potential energies 
in each case. Figure 10 shows a smaller plastic zone for the coarser grid 
size. As before, the high strain region is well developed by the Unimod 
analyses for this material with no strain hardening. 
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FIG. IO--Plastic strain distributions versus distance ahead qJ" crack tip for  7076 AL. 
6y = 30.0 ksi. 
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Discussion and Conclusions 

The data just reported (as well as a larger body of data in Ref 14) indicate 
that a simple singularity element can be obtained by reducing the elastic- 
plastic modulus of the element to unity. Some advantages of the method 
are the following. 

1. It is completely general, that is, it can be used for any finite element 
program. 

2. It is simple. It does not require major additions to a standard finite 
element program in order to develop a useful analysis of a crack or other 
singular defect. 

3. It is extremely versatile. The most obvious point in support of this 
fact is made by noting that no special grid or specimen geometry is asso- 
ciated with the method. A crack, for example, can be inserted, removed, 
lengthened, or moved about from place to place using the same (reasonably 
fine) grid, a significant advantage to the fracture analyst or engineer. 
Moreover, changes of geometry do not affect it. 

4. It is a flexible method. As shown by the present data, the method can 
be used for materials with widely varying strain-hardening characteristics. 
No special adaptation would be necessary to apply the technique to 
nonuniform materials. 

The limitations of the Unimod technique should also be noted. To the 
extend that the choice of the number of elements near the crack tip to be 
relaxed to unit stiffness is discretionary, that decision represents a limitation 
on the accuracy of the method. However, this matter has been addressed 
from the standpoint of element strain energy values and relaxed length 
determinations based on the Irwin correction factor quite successfully in 
the present case. The degree to which this limitation can be overcome can 
be determined only by the success or failure of future applications. It should 
be noted that choosing the number of elements to be relaxed is an optimi- 
zation process exactly analogous to choosing a specific discrete element 
grid. Changing the number of relaxed elements, however, is far simpler 
than changing the element grid. 

A second limitation is created by the relaxation process itself in that the 
data generated by the relaxed elements themselves are not necessarily 
representative, at least so far as we are able to interpret it at this time. 
This is an important limitation since crack tip information needed for some 
fracture criteria is lost. However, since the other data in the neighboroood 
of the tip is improved, criteria such as the J-integral could be used with 
improved accuracy. 

Finally, it should be emphasized that Unimod does not, in general, 
produce data with the same accuracy as many of the highly sophisticated 
specialized singularity programs in use today. However, the authors have 
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f o u n d  it to  be a very useful  a l te rna t ive  to  such me thods  which we use in 
more  d e m a n d i n g  c i rcumstances .  I t  is a lso bel ieved tha t  there  is an urgent  
need  for  re la t ive ly  s imple ,  genera l  me thods  of  analysis  which can be used 
by  engineers  to  solve p rac t i ca l  f rac ture  mechanics  p r o b l e m s  which are  
b e y o n d  the scope o f  l inear  elast ic  f rac ture  mechanics .  U n i m o d  is a s tep in 
tha t  d i rect ion.  
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ABSTRACT: Experimental evidence seems to suggest that, for two elastic-plastic 
bodies which are geometrically similar to each other but with the same thickness 
and subjected to similar loadings, the ratio of their total energy inputs until the 
time of crack initiation is approximately equal to the ratio of their linear dimen- 
sions, independent of the amount of work hardening to be associated with the 
material. This result, as well as a set of other similarity conditions, is examined 
analytically in the present work from the J-integral criterion. It is shown that the 
similarity result in energy is exactly correct for rigidly plastic material as a conse- 
quence of Ilyushin's principle in plasticity. For the elastic-plastic material, if the 
two similar specimens are not extremely different in size, it can be justified for 
regions both close to and far from the crack tip. Under this condition, the ratio 
of their total energy inputs until the time of crack initiation will not be significantly 
influenced by the contributions from their transition regions and this similarity re- 
lation in energy may be a close approximation. 

KEY WORDS: fracture properties, plastic deformation, plastic properties, 
Ilyushin's principle, elastic-plastic deformation, crack initiation 

It is often desirable to predict  the fracture condi t ion  for a larger specimen 
f rom the test ing result  of  a smaller  bu t  geometrical ly similar  specimen sub-  

jected to similar  loading.  For  two l inear and  brit t le elastic bodies which 
are geometrical ly similar to each other except of the same thickness,  it is 
easy to show that  for p lane-s t ra in  condi t ions ,  the rat io of their energy 
inputs  unt i l  the t ime of  fracture is p ropor t iona l  to the rat io of  their l inear  
d imensions .  The thickness of the two specimens has to be chosen ade- 
quately  so that  bo th  of them satisfy the condi t ion  of p lane-s t ra in  fracture.  
Exper imenta l  evidence [1,2] 3 seems to suggest that  this similari ty condi t ion  
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of  energies just described for the linear elastic case may still be a good 
approximation for specimens tested in their elastic-plastic range under the 
condition of plane-strain fracture. It is interesting since this result is 
independent of the amount  of work hardening to be associated with the 
material. If  this result can be reasonably justified, it may offer a con- 
venient and simple rule in fracture tests involving elastic-plastic behavior. 

Recently, the J-integral [3] has been proposed by Begley and Landes [4,5] 
as a fracture criterion for elastic-plastic materials in which large-scale 
plasticity may be involved. To calculate the energy input up to the time of 
failure, and consequently the critical J value, the point of failure is 
defined to be that where the crack initiates. It is to be noted that for elastic- 
plastic fracture the computation of energy as required by the computation 
of the critical J value is fairly sensitive to how the point of  fracture is 
defined. In some cases of elastic-plastic fracture, crack initiation does not 
generally coincide with maximum load or unstable growth. This question 
is even more important  if the two specimens are different in size. It appears 
to be influenced by the geometry and size of the specimen as well as the 
material behavior of the body. This question seems to remain unresolved 
and is under investigation [6]. 

From the J-integral criterion, the similarity condition in energy as just 
described is shown to be a direct consequence from the condition that 
along each pair of the contours of integration for the J-integrals the ratio 
of  the respective stress components can be assumed as a constant value. 
This assumption is then examined for different cases. It is obviously valid 
for linear elastic case. It is shown to be true as a result of Ilyushin's principle 
[7] for rigidly plastic materials which can be described by pure power law. 
Furthermore,  the pure power law material is shown to be the only rigidly 
plastic material for which our assumption is correct at any point within 
the body. For  the case of elastic-plastic fracture, the solutions for stress 
fields in an elastic-plastic body are influenced substantially by the size of 
the plastic zone. At fracture, the relative sizes of the plastic zones for 
geometrically similar specimens are generally not equal. It is not likely 
that our assumption can be correct exactly everywhere for the elastic- 
plastic case. However, by confining our analysis to speeific regions within 
the elastic-plastic body, the assumption is justified for regions close to 
the crack tip from the singular solution of Rice and Rosengren [8] and of 
Hutchinson [9,10]. If  the two specimens are not extremely different in 
size and both are elastic-plastic, there exists some evidence, such as the 
antiplane problem treated by Rice [11], that this assumption is approxi- 
mately correct for a region either close to the crack tip or near the bound- 
ary. Under this condition, the ratio of their total energy inputs until the 
time of crack initiation may not be significantly influenced by the transition 
region, and this similarity relation in energy may be a close approximation. 
It is understood that we do not attempt to argue the extreme cases such as 
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to compare a fully plastic body with a geometrically similar but much 
larger specimen which behaves in a fully elastic manner. An interesting 
investigation along this line was also made recently by Merkle [12]. 

S o m e  P r e l i m i n a r y  R e l a t i o n s  

In the analysis we assume that the material is nonlinear elastic so that 
the strain energy function exists and is a well-defined quantity. We are 
interested in deriving the fracture initiation conditions between two 
geometrically similar specimens but with the same thickness under similar 
loading conditions by the method of the J-integral [3]. At present we limit 
our analysis to the two-dimensional plane-strain condition and to the case 
of  fiat fracture. The J-integral in its two-dimensional form is 

f r 6u~ ds (1) J = W d x 2 - -  Ti Ox~ 

where W denotes the strain energy density, Ti is the traction vector, and u~ 
is the displacement vector. In Eq 1 the crack is assumed to be parallel to 
the xl-direction and r is any contour of integration enclosing the crack tip 
and terminating on the straight edges of the crack. 

We shall restrict ourselves by assuming the material to be the Ramberg- 
Osgood type whose stress-strain relation is the well-known form 

1 - -  2u 3 1 
= - -  - -  ~e n-1 sij (2) E~ij (1 + v) s~j + 3 ~k~-6i~ + ~ ~ a~"- 1 

By choosing this particular type of material, we shall treat the elastic- 
plastic solid as nonlinear elastic under the assumption of the deformation 
theory of plasticity as was done by Rice and Rosengren [8] and Hutchinson 
[9]. We have to, of course, assume that at any point within the contour of  
integration the material does not exhibit unloading. 

In Eq 2 s~ is the stress deviator 

1 
s~j = ~ i j  - ~ ~kk~,i (3 )  

au is the yield stress, and ~, is the effective stress defined by 

3 
~r~ 2 = ~ s.zjsij (4) 

For ~ = cru the Mises yield condition is recovered. E, v, n, and ~ in Eq 2 
are Young's modulus, Poisson's ratio, the work hardening coefficient, and 
a material constant, respectively. It is convenient to separate Eq 2 into 
two parts: the first two terms of Eq 2 being denoted as the elastic strain 
Eegj' and the last term as the plastic strain Ee~p. 
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The strain energy function based on Eq 2 is defined to be 

w= f ~,ja,~=~,~,,~- f ,,~a~,, 
which can be calculated as 

(5) 

l /7 ot 
w = 2E [(1 -t- u)o-~ja~ + ~ak~2]-t- ar "+1 (6) n --}- 1 E~r~ "-1 

The first term denotes the elastic work we and the second denotes the 
plastic work w,. 

The Similarity Conditions 

In this section, we shall analyze the fracture conditions for two-dimen- 
sional geometrically similar specimens subjected to similar loadings. That  
is, two geometrically similar bodies are of identical material behavior but 
with the same thickness. Hereafter, the thickness of the specimen is assumed 
to be chosen appropriately so that the plane-strain condition is satisfied. 
The analysis is based on the J-integral criterion. To evaluate the J-integral, 
we shall choose the contours of the integration to be located at the same 
relative positions within the two specimens. Suppose that the ratio of the 
linear dimensions of the two specimens is denoted by a constant, k0. The 
ratio of the total lengths of the contours is obviously the same constant. 
The material behavior is not specified at the present moment. 

We shall make an assumption that at any corresponding points along 
any pair of contours the ratio of their stress components is a constant 
value 

k ~ -  ~J (7) 
f f  i j  ! 

where a prime is used to denote the quantities for the second specimen. 
The validity of this assumption depends on the constitutive behavior of 
the material, the geometry of the specimen, and the boundary loading of 
the body. By using the condition that at the moment of crack initiation 
the J values for both specimens assume the same material constant, we 
shall derive a set of similarity conditions from the assumption made in 
Eq 7 and the property of the material. 

The validity of the similarity conditions depends on whether the assump- 
tion (Eq 7) can be justified for the specific material and for the geometry 
of the problem. In the following sections, we shall discuss how the assump- 
tion shown in Eq 7 can be justified. For  the linear elastic case, the ratio k~ 
is easily shown to be a constant value within the entire specimen. It is 
interesting to see in the next section that Eq 7 is true exactly for the rigidly 
plastic material with the property of work hardening. It is unlikely that 
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Eq 7 can be valid exactly for the case of elastic-plastic behavior. In this 
case the influence of plastic zone has to be taken into account. As we shall 
discuss later, if the two specimens are not quite different in size and both 
of them are elastic-plastic, Eq 7 tends to be a good approximation in 
regions both close to the boundary and close to the crack tip. Equation 7 
is not to be applied as an approximation to the cases that the two specimens 
are extremely different in sizes so that their plastic zone sizes are severely 
out of proportion. 

In the following analysis, both of the bodies are assumed to be elastic- 
plastic. On the application of  the J-integral criterion, one observation may 
be made about the experimental measurement of the critical J, which is 
denoted by J~  for plane strain case. J~r value was determined by Begley 
and Landes from the measurement of crack initiation, which in their cases 
coincides with the maximum load. In some cases of elastic-plastic fracture 
the crack initiation and the unstable growth do not always coincide to 
each other. It appears to be influenced by the geometry and size of  the 
specimen as well as the material behavior of the body. The question seems 
to be unresolved. An investigation was made recently by Corten [6]. 

Consider the case in which the J-integral is evaluated within the plastic 
region, so that the effect due to the elastic strain is negligible as compared 
with that due to the plastic strain. The first term of the strain energy 
function in Eq 6 is negligible and, consequently, the J-integral in Eq 1 
should assume a form with the effect of plastic strain only. The ratio k~ as 
expressed in terms of the strain components is 

k~ - ~ j  - ( ~-~-~.Y/~ 

Substituting Eqs 6 and 8 into Eq I, we obtain 

f r (  OU~ds)  =k/~+lkf l '  (9) J =  w dx2 - T~ 6xl 

Since the two specimens are made of identical material, we have 

Jic = Jir = k/ '+lkJtc ' (10) 

which leads to a simple relation 

ks = \ ~ - g ]  0 1 )  

Consequently, the ratio of the critical energies per unit area is 

W 
k ~ -  - kg -1 (12) 

W t 
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and the ratio of the critical strains is 

~ij ( 1 ' ~  1-1/('+t~ 
k , -  ,~, - \~ -01  (13) 

A set of similarity relations is therefore obtained. 
Since n is the work hardening coefficient of the material, the material 

will tend to become perfectly plastic for increasing n. If we assume that the 
second specimen is smaller, ko > 1, then the fracture stress for this speci- 
men will be larger, k, < 1, as it should be. However, with fixed kg but 
increasing n, k, will approach the limit, 1. Obviously, it indicates that for 
perfectly plastic material the fracture stresses for both specimens remain 
the same. For  critical fracture strain, Eq 13 shows that, for increasing n, 
ke tends to kg-1; this provides a measure on the critical condition which is 
more sensitive than their fracture stresses, which are almost equal. 

Consider the case that the contour of integration is located completely 
within the elastic region. The result should be a set of relations which 
correspond to that for the linear elastic case. In Eq 6, the second term due 
to the plastic strain is negligible and 

k ~ -  aij _ ~ / ~  (14) 
f f  i j  t 6 i3 t 

After substituting Eqs 6 and 14 into the J-integral, we obtain a set of 
linear elastic conditions 

1 
k~ - (15) 

1 
k~,, - (16) 

ko 
and 

1 
k~ = (17) 

which correspond to the ratios for the fracture stresses, the fracture energies, 
and the fracture strains. 

The more interesting part, however, seems to be the result of the energy 
ratio shown both in Eq 12 and in Eq 16. It is invariably proport ional  to 
1/ko, irrespective of the work hardening parameter n. For  some time this 
result has appeared repeatedly from experimental results where plane- 
strain condition exists as discussed by Witt [1,2]. The equivalent energy 
concept originated from these results .  

Ilyushin's Principle for Rigidly Plastic Material 

Ilyushin's principle [7] states that for rigidly plastic material which 
follows the pure power law in shear, if the boundary traction is increased 
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by the factor q, the stress field within the solid body will be increased by 
the same factor and the strain will be increased by the factor qn, where n is 
the work hardening coefficient of the material in shear. From this principle, 
our assumption stated by Eq 7 is easily shown to be satisfied throughout 
the solid body and, therefore, the similarity relations just derived are 
exactly correct for rigidly plastic material. Furthermore, for a rigidly plastic 
solid, the pure power law material is the only material which has the prop- 
erty of increase of the stress field in exact proportion to increase of the 
boundary traction. Consequently, for elastic-plastic material it is not 
likely that we can use the assumption (Eq 7) to derive exactly the similarity 
relation of the fracture energies. We may obtain the approximate similarity 
relations by checking the appropriateness of the assumption in different 
regions of the specimen. This will be illustrated in the following sections. 

If  the material is incompressible and its behavior in shear follows a pure 
power law relation 

e ~  = A , ~ : - ~ s ~ j  (18) 

where e~j and s~: are the deviatorial strain and stress, respectively, and 
A is a material constant, then, for a constant q, q"~j and qa~i will satisfy 
the same constitutive equations as well as the condition of incompressi- 
bility. Suppose ~i~ is the solution of a problem with its strain components 
~:. Since q ' ~ :  and qcr~j will satisfy the equations of equilibrium, they are 
also the solution of a problem of the same geometry. However, in this 
problem the boundary traction is equal to the previous boundary traction 
multiplied by the factor q. 

Equation 18 implies the relation between the effective stress ~e and the 
effective strain ~, 

~ = A a :  (19) 

We shall see in the following that for Ilyushin's principle to be true Eq 19 
is the only possible relation between the effective stress ~e and the effective 
strain ~e for an incompressible material. Let ~j* be the solution of the 
problem with e~j* as its corresponding strain components. For any constant 
q of the new set of stress components 

c~ij = qo-~5* (20) 

will satisfy the equations of equilibrium. Similarly, 

~i~ = p e i ~ *  (21) 

where p is another constant, will satisfy the equations of compatibility. 
Since ~j* is the solution of the problem it must satisfy constitutive equations 
of the form 

eij* ~(o~*) = - -  s i t *  (22) 
O-e ~ 
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and the condition of incompressibility. Equation 22 implies 

~* = r162 (23) 

If a~j is also a solution, then it must have 

,~ = ~I'(O'e) (24)  

Combining Eqs 20, 21, 23, and 24, we obtain a condition for the function 
cI, a s  

p(q) ~(ae*) = qS(q~*) (25) 

In this equation, q and c~e* can be viewed as two independent variables. 
The functional form of a5 can be determined by the following procedure. 
By differentiating Eq 25 by q and ~e* and dividing the two resulting equa- 
tions, we obtain 

p'(q) oh(o-e*) ~ *  
- (26) 

p(q) ~b'(cr~*) q 
o r  

p'(q) r 
q - r - n (27) 

p(q) ~'(ae*) 

Equation 27 must be equal to a constant n because both q and ~ *  can be 
varied independently. Integration of Eq 27 yields 

r = A~e ~' (28) 

and 
p(q) = Bq" (29) 

where B = 1 in view of Eq 25. Hence, the only relation between the effective 
stress and the effective strain is a pure power law and p = q" is the necessary 
relation between the stress and the strain. Thus, it is easy to conclude that 
the increase of the stress within the body will be in exact proportion of the 
boundary traction only if the material follows the pure power law in shear. 
In particular, material which has a linear range in shear followed by a 
nonlinear property and the elastic-plastic material are excluded from this 
class. 

Singular Solution Near  the Crack Tip 

The similarity results obtained in the preceding section depend mainly 
on our assumption in Eq 7 that k~ is a constant value along the correspond- 
ing contours, since, otherwise, we shall not be able to factor out the ratio 
k0 from the integral sign. This assumption, unfortunately, is not easily 
shown for nonlinear materials. At present, we are able to show that it is 
approximately correct for the region close to the crack tip where the singu- 
lar solution of Rice and Rosengren [8] and Hutchinson [9] applies. 
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In fact, this singular solution near the crack tip is a general result for the 
specimen of Ramberg-Osgood material. The solution is not restricted to 
the case of small-scale yielding and is equally valid for the case when the 
yielding zone is of considerable size. For  small-scale yielding, the nonlinear 
stress intensity factor can be determined easily from the linear elastic 
solution. The physical meaning of the stress intensity factor, K, is shown in 
the stress components near the crack tip as expressed by Eqs 33, 34, and 35. 
In addition, for the large-scale yielding the nonlinear stress intensity 
factor can be determined as follows. Similar to Hutchinson's result for the 
two-dimensional plane stress case, the stress intensity factor for this case is 

K~(1)l/(n+l)(J) l[(n+l) (30) 

where J is the J value of the material in nondimensionalized form, and I is a 
constant which depends only on the work hardening coefficient n. With this 
value of K, the stress components near the crack tip can be expressed in 
terms of the stress function 

= K r ~ ( O )  (31) 

where both r and (~0) are nondimensional quantities, not affected by the 
size of the specimen. In Eq 31 

2 n +  1 
s = - -  (32) 

n + l  

The stress components are 
d2 ~ 

err = K r  ~-2 s~  ~- d ~ ]  au (33) 

cro = K r  s-2 s ( s  - -  1) ~au (34) 

d~ 
~ro = Krs-2(1  - -  s) d O  ~ (35) 

where gy is the yielding stress. Obviously, the assumption made in Eq 7 
is satisfied by the set of stress components just listed. 

Elastic-Plastic Problems 

In this section we shall discuss the applicability of Eq 7 to an elastic- 
plastic body. This question is related to but more stringent than the question 
of proportional  loading. It can be seen that if the condition of proportional 
loading is satisfied at some point within the body, then the different stress 
components at this point will be related to each other by fixed ratios which 
are not influenced by the increasing boundary loading. In this case, there 
can be only one proportionality constant ks, which was defined by Eq 7, 
for all stress components at this particular point. For  Eq 7, not only 
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should there be proport ional  loading so that there is a single ks for each 
point but also the constant should be independent of the position along 
the path of integration for the J-integral. 

In many cases [13] the condition of proportional loading has been 
shown to be a very close approximation. Frequently, appreciable deviation 
comes from the region near the moving elastic-plastic boundary owing to 
the increase of the boundary loading. Hence the possible deviation of 
assumption (Eq 7) comes from this region at least. 

An interesting result was obtained in one problem [13]; the condition of 
proportional  loading was satisfied exactly in a region of the body as soon 
as the elastic-plastic boundary had passed through the region. In general 
this condition cannot be satisfied. Thus there may not be a single constant 
ks there. As shown before the region close to the crack tip, the Eq 7 is 
approximately correct. This implies that the condition of porportional 
loading is also satisfied there. We shall show by an example in this section 
that Eq 7 is also satisfied for regions far from the crack tip. 

A general strain-plane method for the problem of elastic-plastic bodies 
subjected to longitudinal shear on their boundary was devised by Rice [11]. 
In particular, a crack problem of this kind was solved by this method. 
From this example we are able to demonstrate that our Eq 7 is valid both 
far from and close to the crack tip. Consequently, our similarity relations 
are valid in both of these areas, in this particular problem. If  the two 
specimens are not extremely different in size such that the plastic zones 
are not severely out of proportion, Eq 7 is anticipated to be a close approxi- 
mation in these two regions with sufficient areas. The total energy of 
fracture may not be significantly influenced by the contribution from the 
area near the elastic-plastic boundary. The ratio of the total fracture 
energies for the two geometrically similar specimens each with unit thick- 
ness may be approximately proportional to the ratio of their linear dimen- 
sions. The solution of  Rice is generally for an elastic-plastic body under 
large-scale yieldings but the boundary traction is restricted to longitudinal 
shear. It should be noted that in the previous sections our assumption is 
actually proved for those cases, but in the present section we can only 
demonstrate that it is consistent with this example. 

To solve the elastic-plastic problems under longitudinal shear, Rice 
converts the only nonvanishing shear strains ~ and ~2 independent variables, 
whereas the physical coordinates xl and x2 become dependent variables. 
The far field solution is transformed to the region close to the origin in the 
strain plane. An advantage of this method is to reduce the nonlinear 
problem into a linear one, so that the method of separation of the variables 
can be employed. The solution is represented by a series form which is 
used to match the elastic solution across the elastic-plastic boundary. A 
drawback of this method in solid mechanics is that it has to be limited to 
the longitudinal shear problem or to other problems with a high degree of 
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symmetry, since, otherwise, the number of strain components exceeds the 
number which can be handled conveniently. 

For  an arbitrary stress-strain relation, which relates the principal stress 
and the principal strain 

(r = f(E) (36) 

the equation of equilibrium can be expressed as 

bx, bx2 
- -  + - 0 ( 3 7 )  
b~t bo.2 

if ~t and o.2 are used as the independent variables. Similarly, the equation 
of compatibility can be expressed as 

bx, bx2 
- o (38) 

be, be2 

where E, and ~2 are the independent variables. In Eq 37 o.a and o.2 are their 
corresponding strain components. Now Eq 38 is satisfied if we introduce a 
function ~ by 

b~ 
Xl - -  (39) 

be2 

be 
x2 - (40) 

bea 

Substituting 

bx, be1 bx, bE2 bx, 
- -  -+- ( 4 1 )  

bo., b~t bet b~, be2 

bxz be, bxz bez bx2 
- + (42) 

b~2 bo.2 bet b(r~ b~2 

into Eq 37, we obtain the governing equation of r as 

bet b2r ( b e t  b E2~ bhp + 
be12 + \ + b lbE  

which is linear in ~b. 
If Eq 43 is expressed in polar coordinates by 

ee ir = ez - -  iel 

o.e ir = o-2 -- io.t 

where i is the unit imaginary number, then we obtain 

o.(E) b2~b 1 be  1 b2r 
+ - - - - +  - 0  

E~'(E) be 2 ~ be ~2 br 

bE~ b2~ 

bO2 be2 2 
- 0 ( 4 3 )  

(44) 

(45) 

(46) 
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In the elastic region, Eq 46 reduces to the Laplace equation. Let 

15 62 - -  iE1 
~- = - - e  i r  (47) 

~0 G0 

where ~0 is the yielding strain at the elastic-plastic boundary.  In the elastic 
region, I~'1 < 1, which is close to the boundary,  

O'w ~cn 
~" --~ s - (48) 

0"0 60 

where ~o is the longitudinal shear applied at the boundary and e~o is the 
corresponding strain. I t  is interesting to see that the far field solution is 
t ransformed to a region which is close to the origin in the strain plane. The 
boundary  of the specimen is t ransformed to a "c rack"  in the strain plane. 
In this region the solution is elastic. Near  the "crack t ip" of  the trans- 
formed specimen, a singular solution is obtained as 

- x l  4- ix2 s 
a - ~V~Zs_s 2 ( f ( s ) -  1) (49) 

where a is the crack length. Obviously f is close to s if ( -  x l  4- i x2) /a  tends 
to a large value. For  two geometrically similar specimens we easily see 
that for some relative position 

(~'I/S1) 2 - - 1  I f ( s , )  -- 1112 
(~'2/s2) 2 -  1 - Lf(s.~ (50) 

which can be reduced to a more convenient form 

\ s~ / \ ~ - 2 / J  Lkf(s2) 

Since 1 - (s~/f2) 2 is a small number,  we conclude that assumption (Eq 7) 
is approximately true with a deviation which is indicated by the second 
term on the right-hand side of Eq 51. Furthermore,  if the two specimens 
are not extremely different in size and s is appreciably smaller than one, 
then a rough estimate, according to Rice's result, shows for X = l that  
1 -- f ( s )  --~ l 4- (~-/4) B o Q s  2. For  1/n  = 0.3, BoC1 --~ 0.54. Hence, the 
number  in the first square bracket  of  Eq 51 is smaller than one and is able 
to contribute to the approximation shown in Eq 7. This helps to extend 
the region of validity of Eq 7 from the boundary of the specimen. As 
mentioned by Rice,f(s)  = 0 for a completely elastic specimen. For  this case 

~ ' ~ _  s, (52) 
~'2 $2 

which is independent of  s2/~.., as expected. 
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For either small-scale or large-scale yielding, the function ~b as defined 
by Eqs 39 and 40 near the crack tip assumes a form 

( ~ ~-~/" 
= D~ - -  sin so (53) 

\ e 0 /  

where D1 is a constant and n is the work hardening coefficient of the 
elastic-plastic material. Thus 

xl = - - D 1 - -  - -  cos 2 s o - - s i n  2so (54) 
e \ e 0 /  // 

1 ( : )  
x2 = D ~ - -  - -  + 1 sinsocosso (55) 

e \ c o /  

The constant DI is linearly dependent on the linear dimension of the 
specimen. Therefore at the same relative position of two geometrically 
similar specimens, the preceding equations show that our Eq 7 is satisfied. 
It is seen that if the region is not very small, then Eq 53 for ~b will contain 
different powers of e. 

Discussion 

It is interesting to see that from llyushin's principle the similarity rela- 
tions are rigorously valid for a rigidly plastic material with the property 
of  work hardening. Hence, the ratio of total fracture energies for two 
geometrically similar specimens each with unit thickness is proportional to 
the ratio of their linear dimensions. This is the basis of the equivalent 
energy method provided that the plane-strain assumption is satisfied. 

From the singular solution of Rice and Rosengren and of Hutchinson, 
we have shown the validity of the similarity relation in fracture energy for 
regions close to the crack tip. In fact the independence of this similarity 
relation on the work hardening coefficient is not surprising, as can be seen 
from their result that the structure of the energy density is invariably 
proportional to l/r where r is the distance from the point to the crack tip, 
irrespective of the nonlinearity of the material. This similarity relation 
can also be regarded as an immediate consequence from Neuber's result 
[14] that for any nonlinear material the product  of the stress concentration 
factor and the strain concentration fact is invariably proportional  to the 
square of the product of their Hookian counterparts. 

Our similarity relation on the total fracture energy depends heavily on 
whether the contribution due to the region near the elastic-plastic boundary 
will significantly influence the assumption made in Eq 7. It will be interest- 
ing to investigate the question quantitatively. We shall make some calcu- 
lation for this purpose later. 

On the demonstration of our result by Rice's solution, it is understood 
that his method is limited to the antiplane problems. Consequently, our 
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result is also dictated by the same limitation. We shall investigate later 
any possible generalization to the inplane case similar to the case discussed 
by Gowda and Topper [18]. It may also be interesting to investigate the 
effect of large deformation [16]. 
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Fracture Mechanics Evaluation 
of the Integrity of an Inlet Nozzle 
of a Pressurized Water Reactor Vessel 
Following a Postulated Loss of Coolant 

R E F E R E N C E :  Buchalet, C. B., "Fracture Mechanics  Evaluation of the Integrity 
on an Inlet Nozz l e  of  a Pressurized Water Reactor Vessel  Following a Postulated 
Loss of  Coolant,',' Fracture Analysis, A S T M  STP 560, American Society for 
Testing and Materials, 1974, pp. 240-255. 

A B S T R A C T :  A fracture mechanics analysis was performed to evaluate the 
effects of a postulated loss of coolant on an inlet nozzle of a pressurized water 
reactor vessel. 

Following rupture of  one of  the reactor main coolant pipes, ambient tempera- 
ture water is introduced in the reactor vessel, through the primary inlet nozzles by 
the safety injection system (in the analysis, the temperature of the water was 
conservatively assumed to be equal to 32°F). Prior to the transient, the vessel is at 
high temperature (550°F) and the cold water injection produces a thermal shock 
resulting in high thermal stresses in the vessel's wall. A continuous circumferential 
surface crack is assumed to be present at the inside surface of one of the primary 
inlet nozzles at the time the transient occurs. The postulated crack is subjected 
to thermal stresses calculated using a finile element technique. 

The stress intensity factor relative to the continuous crack under the actual stress 
profile normal to the section of the crack was calculated at discrete time intervals 
during the transient, and compared to the fracture toughness of the material, for 
different values of the crack depth. The critical crack depths are obtained when 
the stress intensity factor equals the fracture toughness. 

Various locations of  the nozzle were evaluated. The critical region is at the 
nozzle reinforcement where a 2-in.-deep crack would become unstable 200 s after 
the beginning of the transient. However, such a crack is readily detectable by 
current preservice and inservice inspection techniques, and thus the analysis 
demonstrates that  the integrity of the reactor vessel nozzles would be maintained 
following a postulated loss of coolant acodent.  

KEY W O R D S :  fracture properties, nuclear reactors, thermal shock, structural 
design, stress analysis, cracks, fatigue (materials) 

O n e  o f  t h e  m a j o r  a r e a s  r e c e i v i n g  a t t e n t i o n  in  t h e  n u c l e a r  i n d u s t r y  t o d a y  

is e m e r g e n c y  c o r e  c o o l i n g .  T h e  p o s t u l a t e d  r u p t u r e  o f  o n e  o f  t h e  r e a c t o r  

1 Senior Engineer, Westinghouse Electric Corporation, Nuclear Energy Systems, Pitts- 
burgh, Pa. 15230. 
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main coolant pipes would result in a rapid drop of the system's pressure 
due to the loss of the coolant. In order to maintain the core submerged by 
cooling fluid, a safety injection system (SIS) is initiated. At the instant the 
pipe ruptures, the SIS introduces water into the reactor vessel, at a tem- 
perature which could be as low as 32~ Prior to the transient, the reactor 
is at its normal operating conditions and at high temperature (~550~ 
Thus, the cold water rapidly injected into the reactor vessel will result in 
high thermal stresses in the vessel's wall. 

The present analysis is directed toward predicting the crack stability 
limits in a pressurized water reactor vessel during cold water injection 
through the emergency core cooling system (ECCS), following a postulated 
loss of coolant accident (LOCA). 

Although not subjected to neutron bombardment,  regions other than 
the reactor beltline are of concern during the cold water injection, due to 
stress concentrations associated with geometrical discontinuities. One of 
these regions is the reactor vessel inlet nozzle (primary inlet nozzle), 
through which the cold water is injected. 

A fracture mechanics analysis of the reactor vessel primary inlet nozzle 
during cold water injection is presented in this paper for the case of  a 
typical three loop Westinghouse plant. 

Method of Analysis 

The overall basis for applying fracture mechanics technology is inter- 
disciplinary and requires information and data in three areas: (1) ma- 
terial properties, (2) stresses existing in the structure, and (3) defects in 
the structure. First, attention is given to the defects in the structure and 
the stress intensity factor expressions related to these defects. 

Flaw Shape and Stress Intensity Factor Expression 

The basic assumption employed in linear elastic fracture mechanics 
(LEFM) is that a crack or crack-like defect exists in the structure. The 
essence of the approach is to relate the stress field developed in the vicinity 
of the crack tip to the applied stress on the structure, the material prop- 
erties, and the size of defect necessary to cause failure (critical crack size). 

Surface defects were considered in the analysis because they are more 
severe than embedded defects of the same size. It is generally agreed that 
cracks or crack-like surface defects that may be present in reactor vessels 
are more likely to have a semi-elliptical shape than to be continuous. 
However, at present, stress intensity factor solutions for semi-elliptical 
flaws can only consider uniform tension and bending stresses. In the 
present analysis, during the early states of the transient, the stress profiles 
through the walI exhibit a very steep gradient near the inside surface and 
an almost uniform compressive stress through the major part of the wall 
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FIG. I - -Pr imary  inlet nozzle stress profiles in Section 1-I during a postulated loss ,9]" 
coolant accident. 

(see Fig. 1). In this particular case, the approximation of the actual stress 
profile by a linear stress profile would be too conservative. For this reason, 
the actua| stress profile and a continuous crack (circumferential) were 
considered in the analysis. 

For shallow surface cracks, the conservatism introduced by considering 
a continuous flaw instead of a semi-elliptical flaw is small when the ratio of 
the depth-to-length of the flaw becomes less than 0.1. For this value of the 
ratio, there is less than 10 percent difference between the results for a 
semi-elliptical flaw and a continuous flaw. 

The fracture toughness of the material varies through the wall due to the 
temperature gradient developed through the thickness during the transient. 
Thus, for a shallow semi-elliptical flaw, the critical location (where insta- 
bility occurs) is not necessarily at the maximum depth of the crack, but 
could be somewhere closer to the inside surface of the wall because of the 
lower toughness of that region. Therefore, an initial semi-elliptical flaw 
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FIG. 2--Inlet nozzle model. 

with a given depth-to-length ratio may grow in length prior to propagating 
through the thickness, thereby approaching a continuous flaw. For  these 
reasons the conservative model of a continuous surface flaw was used in 
the present analysis. 

The reason for considering a circumferential crack rather than a longi- 
tudinal crack (corner crack) is that the analysis of a longitudinal crack 
would require a three-dimensional analysis. However, comparison of 
stress intensity factor solutions for circumferential and longitudinal flaws 
in a cylinder indicates that, under the same nominal stress profile, there is 
almost no difference between the two solutions for crack depths up to 20 
percent of the wall thickness. In the nozzle, the hoop and axial stresses 
produced by the thermal shock are almost equal and the wall thickness 
in Section 1-1 of the nozzle (see Fig. 2) is equal to 13 in. Thus, for crack 
depths up to about 2.5 in., the solution relative to the circumferential 
crack represents correctly the longitudinal flaw solution. 

The stress intensity factor for a continuous surface crack in a plate can 
be obtained from the stress intensity factor solution relative to a through 
crack in an infinite body. The stress intensity factor for a continuous, 
through-the-thickness crack in an infinite body subjected to an arbitrary 
nominal stress field o(x) is given by Eq 1 [1]. 2 

The italic numbers in brackets refer to the list of references appended to this paper. 
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where a is half the crack length. The applied stress, ~, can be written in a 
polynomial form 

~(x) =- Ao + Alx  + A2x 2 + A~x 3 (2) 

Correcting for free surface and finite thickness, [2] Eq 1 becomes after 
integration 

KI = 1.9851 Aoatl2Fa 4- 1.2638 Ala3/2F2 4- 0.9926 A2aSnF.~ -}- 0.8425 AaaTr2F4 

(3) 

where a is the crack depth. Fi, F2, F3, and F4 are the finite thickness cor- 
rection factors relative to ~ = 1, a = x, a = x 2, and ~ = x 3, respectively. 
These factors are presented in Fig. 3. 

Equation 3 is valid for a flat plate where the movement  of  the back wall 
is totally prevented. I f  the plate is free of  any constraint,  Eq 3 cannot  be 
applied for crack depths greater than 20 percent of  the wall thickness, 
because the bending effect due to introducing the crack becomes important .  
In the nozzle geometry, the bowing of the back wall is not totally prevented 
and Eq 3 is not appropriate.  For this reason, the solution relative to circum- 
ferential cracks in the nozzle is approximated by a solution derived for a 
circumferential crack located at the inside surface of a large hollow cylinder 
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F I G .  3--Fini te  thickness correction factors for  a plate. 
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and subjected to a stress profile as defined in Eq 2. This solution was 
obtained by using Eq 3 for crack depths up to 20 percent of the wall 
thickness and finite element results [2] for crack depths greater than 20 
percent of the wall thickness. This approximation is conservative because 
the inside radius of the nozzle is smaller ( ~  17 in.) than the radius of the 
cylinder (78 in.) for which the stress intensity expression was derived and 
therefore, the actual stress intensity factor is smaller than the stress intensity 
factor for the cylinder. The stress intensity factor used is as follows 

KI = 1.9851al/~AoFz ~c) + 1.2638a3/2AzF~ ~c) + 0.9926a~/2A2F3 ~c> 

q- 0.8425aT/2A~F4 (c~ (4) 

where a is the crack depth. F1 (c~, F2 ~e~, F~ ~e), and F4 (c~ are the cylinder 
back wall magnification factors relative to cr = 1, a = x, a = x 2, and 
a = x ~, respectively. These factors are plotted in Fig. 4. 

In the present analysis, the stress intensity factor, Kz, was calculated 
by the computer code TSHOCK [3] using Eq 4. 

Stress Analysis 

Because of the complex geometry of the nozzle, a finite element tech- 
nique was required to calculate the temperatures and stresses resulting 
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from the postulated LOCA. The computer codes TFEATS [4] and ANSYS 
[5] were used for this analysis. In order to avoid the analysis of a three- 
dimensional problem, the nozzle region was transformed into an axisym- 
metric geometry, approximating the reactor vessel cylinder by a sphere 
having a mean radius two times greater than the mean radius of the cyl- 
inder. The stiffness of the actual geometry, thus, is well represented. 

The two-dimensional region being examined is divided into elements, 
either triangles or quadrilaterals, connected at a finite number of points. 
The connection points are called nodal points. If the force-displacement 
relationship for each of these discrete structural elements is known (the 
element "stiffness" matrix), then, the force displacement relationship for 
the entire structure can be assembled using standard matrix methods [6]. 

The general form of the stiffness matrix for each element is 

[k] {u} = {f} (5) 
where 

[k] = element stiffness matrix, 
{u} = vector of the element nodal displacements, and 
{f} = vector of the element nodal forces. 

For the total structure 
[K] {U} = {F} (6) 

where 

[K] = ~ [k] = total structure stiffness matrix, 
i=1 

{ U} = vector of all the nodal displacements in the structure, and 

{F} = vector of all the corresponding nodal forces, thermal forces, and 
pressure forces. 

If  sufficient boundary conditions are specified on { U} to guarantee a unique 
solution, Eq 6 can be solved to obtain the nodal point displacements at 
each node in the structure. From these displacements, the force and stress 
within each structural element can be calculated. 

The boundary conditions are the applied forces and pressure, the reactor 
coolant temperature, and the heat transfer coefficients. It is assumed that 
during the first few seconds, nucleate boiling occurs at the interface between 
the coolant and the vessel wall. For  the few seconds (10) that it was assumed 
nucleate boiling occurs, a high heat transfer coefficient of 10 000 Btu/  
h . f t  2.~ was used in the calculations. Following this initial phase of the 
transient, the heat in the component  wall was assumed to be removed by 
forced convection. The forced convection heat transfer coefficients were 
calculated using the Dittus-Boelter equation 

k 
H = 0 . 0 2 3 f ~ -  Re~ ~ (7) 
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where 

f = safety coefficient = 1.3, 

k = thermal conductivity of  the fluid (Btu /h .  ft. ~ 

D = hydraulic diameter (ft), 

oVD 
Re - - -  - Reynolds number,  

/z 

0 = density of the fluid (lb/ft~), 

V = fluid velocity f i t /h) ,  

= fluid viscosity ( lb /h .  ft), 

Cp u 
Pr - - Prandtl number,  and 

k 

Cp = specific heat (Btu/ lb .~ 

Table 1 presents the physical and mechanical properties of  the A508 
Class 2 forging steel used in the stress analysis. 

TABLE 1--1nlet nozzle material properties (A508 Class 2). 

Specific Con- Thermal 
Tempera- Heat ductivity Young's Expansion 

ture Density (Btu / (Btu ] Modulus Poisson's Coefficient 
(~ (lb/in. 3) lb- ~ hr. in.. ~ (psi) Ratio (in./in.. ~ 

+30  0.284 0.111 2.232 29.2 • 10 ~ 0.297 6.0 X 10 -~ 
+600 0.278 0.146 1.944 25.6 • llY 0.313 7.2 )< 10 -6 

Fracture Toughness 

The fracture mechanics material parameter  of  specific interest for this 
analysis is the inherent fracture toughness, KIo, of the material. Generally, 
the reactor vessel pr imary inlet nozzle is fabricated f rom ASME SA508 
Class 2 forging steel. The 508 Class 2 forging material has approximately 
the same toughness as A533-B plate steel for which a large amount  of Kic 
data is available [7]. Westinghouse has constructed a reference curve K~c 
versus temperature.  This curve is a lower bound of experimental data  
obtained on A533-B Class 1 material  in both  longitudinal and transverse 
directions and on A508 Class 2 material. The reference curve, presented 
in Fig. 5, is indexed to an RTNDT 3 equal to 10~ All the RTNDT values 
obtained on A508 Class 2 forging material were less than 10~ The upper  
shelf value (250 ksiN/in~.) in the curve of Fig. 5 is based upon data obtained 

a RTNDT is defined according to the ASME Code, Section III, Para. NB-2300. 
At RTNDT + 60~ the Charpy V Notch energy is equal to 50 ft. lb and the lateral expansion 
equals 35 mils. 
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FIG. 5--Fracture toughness reference curve. 

on A533-B specimens oriented in the transverse direction utilizing the 
equivalent energy method proposed by Witt [8]. 

Analysis and Results 

The temperature and pressure transients resulting from a postulated 
LOCA are shown in Fig. 6. During the first phase of the transient, the 
actuation of the accumulators results in a rapid drop of the coolant tem- 
perature, from 555 to 70~ (assumed minimum temperature for the water 
in the accumulators). The second phase of the transient begins when the 
accumulators are empty. The safety injection water is then pumped from 
the refueling water storage tank (RWST). The assumed minimum tem- 
perature for the water in the RWST is 32~ 

Using the transients given in Fig. 6, temperature and stresses in the 
reactor vessel inlet nozzle were calculated using the TFEATS computer 
code. Figure 2 shows the geometry and finite element model used in the 
analysis. The elements are narrower near the inside surface where the 
temperature and stress gradients are steep. The values of the heat transfer 
coefficients used in the analysis are given in Fig. 7. 

Figure 2 shows the various sections that have been analyzed. As an 
example, the stress profiles through Section 1-1, as a function of time 
during the transient, are plotted in Fig. 1. High peak stresses develop near 
the inside surface of the wall. The stress profiles do not differ very much 
from one section to the other during the first 100 s following the beginning 
of the transient. During this period of time, the geometry and the value 
of the heat transfer coefficient have little influence on the stresses building 
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FIG. 6--Pressure and temperature transients for  the primary inlet nozzle during a postulated 
loss o f  coolant accident. 

up in the wall. In fact, the peak stress in the wall approaches the theoretical 
value of thermal stress under complete restraint 

EaAT 
o-~,~:,, = - -  ( 8 )  

| - -  u 

where 

E = Young 's  modulus of  the material,  
o~ = thermal expansion coefficient, 

AT = temperature step, and 
v = Poisson's ratio. 

Table 2 shows a comparison of the peak elastically calculated stresses 
for the inside element in the various sections as calculated by Eq 8 and by 
the finite element model. After the first 100 s, geometry and heat transfer 
coefficients have a significant influence on the stress profiles. 

TABLE 2--Comparison o f  peak stresses calculated by 
Eq 8 and by finite element method. 

1-1 110 000 103 000 
2-2 116 000 111 000 
3-3 147 000 131 000 
4-4 114 000 114 000 

Finite Element 
EaAT /(1 -- v) Calculation 

Section (psi) (psi) 
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F I G .  7--Heat transfer coefficients for the primary inlet nozzle during a postulated loss of  
coolant accident. 
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F I G .  8--Stress intensity factor and fracture toughness in Section 1-1 as a function of 
time during a postulated loss of  coolant accident. 
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Using the stress profiles at several discrete time intervals, the stress 
intensity factor (KI) profiles were calculated at the various nozzle sections, 
as a function of crack depth with the computer code TSHOCK.  

The application of linear elastic fracture mechanics theory requires that, 
in the calculation of the stress intensity factor K~, the stress used be the 
nominal stress existing in the section of the crack, without the presence of 
the crack. Thus, as long as the introduction of the mechanical discontinuity 
representing the crack has no influence on the nominal stress field, the 
stress profiles can be calculated without introducing the crack in the 
structure. In the present situation, the crack is parallel to the thermal flux 
and therefore does not disturb it. In this case, the stress profiles used in the 
calculation of the stress intensity factor can be determined in the structure 
without the presence of the crack. 

Figure 8 presents the stress intensity factor K~ in Section 1-1, as a func- 
tion of time during the postulated LOCA. Also plotted in Fig. 8 is the 
fracture toughness KI,. In Fig. 8, the critical crack depths are obtained at 
the intersections between the stress intensity factor curves and the fracture 
toughness curves corresponding to the same time during the transient. 

The critical crack depths at the various locations in the nozzle are plotted 
as a function of time in Fig. 9. The minimum critical crack depth is in 
Section 4.4 and reaches 2 in. 200 s after the beginning of the transient. A 

N4  

~ 3  

SECTI( 

J ~SECTION 3-3 

SECIION 4-4 

ol I J 
0 I000 2000 

TIME (SECONOSI 

FIG. 9--Critical crack depths as a function o f  time during a postulated loss o f  coolant 
accident at four locations o f  the primary inlet nozzle. 
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crack having a depth equal to or larger than 2 in. is readily detectable by 
current  preservice inspection techniques. 

Conclusions 

A fracture mechanics  analysis was performed to evaluate the effects o f  
the thermal  shock undergone  by a pressurized water reactor  vessel inlet 
nozzle during a postulated loss of  coolant  accident. The temperature  and 
stress profiles in the nozzle wall were calculated and used to determine the 
stress intensity factor  and fracture toughness profiles at discrete time 
intervals during the transient. Critical crack depths were then obta ined at 
various locat ions of  the nozzle when the stress intensity factor  equals the 
fracture toughness  of  the material.  

Cont inuous  inside surface cracks would  be critical during a postulated 
loss o f  coolant  accident if their depths equal or exceed 2 in. Such cracks 
are readily detectable by current  nondestruct ive inspection techniques.  
Thus,  the integrity o f  the reactor  vessel pr imary  inlet nozzles would be 
maintained in the event of  a loss of  coolant  accident.  
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J. H. Underwood 1 (written discussion)--The author should be comple- 
mented for considering the bending constraint of a finite specimen as a 
separate and important effect on the KI calibration. Often the back surface 
of finite specimens is considered to affect KI in the same basic manner as 
does the front surface. However, whereas the presence of the front surface 
produces no basic change in loading conditions and causes in the order 
of a 10 percent change in KI, the presence of the back surface involves a 
change from a semi-infinite to a finite geometry. The accompanying change 
from infinite to finite resistance to gross specimen bending often becomes 
the dominant factor in determining K~ for edge-notched finite geometries. 

Two aspects of Buchalet's work can be compared with some recent work 
in the literature and discussed in relation to bending constraint effects. 
They are (1) his K~ expressions for an internal, circumferencial notch in 
hollow cylinders under axial tension; and (2) his representation of a long, 
shallow surface flaw by using a continuous flaw. 

Swedlow and Ritter 2 have considered circumferentially notched cylinders 
from a different point of view, that is, crack front curvature effects. Their 
results can nevertheless be compared with those under discussion. The 
form of Buchalet's KI expressions (Eqs 3 and 4) is a good basis of 
comparison. 

Kr = 1.12 g/~r ¢ v / a - F  (9) 

His KI expressions reduce to the form of Eq 9 for the situation of a uniform 
axial stress, a, applied to a cylinder with an internal, circumferential notch 
of depth, a. His correction factor, F, is a function of the notch-depth to 
wall-thickness ratio, a/t. Buchalet presents correction factors for two 
loading conditions (see Figs. 3 and 4): a flat plate where the movement of 
the back wall is "totally prevented," which can also apply to a cylinder 
with a large amount of bending constraint; and a large cylinder with a 
small amount  of bending constraint due to a large radius to wall-thickness 
ratio, r/t. These correction factors are listed in Table 3 along with factors 
of the same form from Swedlow and Ritter's work and from the Gross 
et al a analysis of a single-edge-notched plate. 

Metallurgist, Materials Engineering Division, Benet Weapons Laboratories, Watervliet, 
N. Y. 12189. 

2 Swedlow, J. L. and Ritter, M. H. in Stress Analysis and Growth o f  Cracks, Part 1, 
A S T M  STP 513, American Society for Testing and Materials, 1972, pp. 79-89. 

a Gross, B., Srawley, J. E., and Brown, W. F., "Stress Intensity Factors for a Single- 
Edge-Notch Tension Specimen by Boundary Collocation of a Stress Function," Technical 
Note D-2395, NASA, Aug. 1964. 
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TABLE 3--Comparison of notched cylinder stress intensity factors 
F = K/I .12 r x/Ua. 

Buchalet Swedlow and Ritter Gross et al 

Constrained Large Small Large SEN 
Pla te  C y l i n d e r  C y l i n d e r  Cylinder Plate 

Reference 
Geometry F, Ft (c) F2, r / t = 2 Fs, r /t = 8 FG 

a/t = 0 1.00 1.00 1.00 1.00 1.00 
0.1 1.02 1.03 1.01 1.04 1.06 
0.2 1.05 1.14 1.02 1.16 1.22 
0.3 1.09 1.33 1.06 1.32 1.48 
0.4 1.15 1.56 1.11 1.58 1.88 
0.5 1.22 1.82 1.20 1.88 2.51 

Swedlow and Ritter's small cylinder results for r / t  = 2 agree well with 
Buehalet's constrained plate data: Swedlow and Ritter's large cylinder 
results for r / t  = 8 agree well with Buchalet's large cylinder data. In both 
cases this good agreement is more than an accident. The agreement between 
F1 and F2 tends to confirm Buchalet's suggestion that the K~ of a constrained 
plate can be used to approximate the K~ of a cylinder with significant 
bending constraint. The constraint on the cylinder can be attributed to the 
low value of r / t ,  but it produces about the same KI as in a plate with 
external constraint. The second area of agreement just mentioned, be- 
tween F1 (e) and Fs, indicates that for large values of r / t ,  that is, r / t  > 8, 

cylinders behave as thin-walled cylinders and display a uniformly small 
amount of bending constraint. Finally, a comparison of the large (namely, 
thin-walled) cylinder results with the SEN plate results shows a further 
decrease in bending constraint as evidenced by the higher K~ for a SEN 
plate. This further decrease in constraint may be associated with the 
change from the doubly connected nature of the cylinder to the simply 
loaded plate. 

Regarding Buchalet's assumption that a continuous flaw is a reasonable 
and less than 10 percent conservative representation of a shallow, semi- 
elliptical surface flaw, the comparison in Table 4 may be of interest (also 
includes findings of Rice and Levy 4 and Shah and KobayashiS). The table 
lists the same parameter, F, described in Eq 8 for continuous and surface 
flaws in finite thickness plates. Note that a less than 10 percent difference 
between continuous flaws and a / 2 c  = 0.1 surface flaws is indicated for 
values o f a / t  near zero. However, for flaw depths of only 0.2t, the difference 
is up to 30 percent. Although both surface flaw analyses are approximate, 

4 Rice, J. R. and Levy, N., Journal of Applied Mechanics, Transactions, American Society 
of Mechanical Engineers, Vol. 39, March 1972, pp. 185-194. 

5 Shah, R. C. and Kobayashi, A. S. in The Surface Crack: Physical Problems and Com- 
putational Solutions, American Society of Mechanical Engineers, 1972, pp. 79-124. 
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TABLE 4---Comparison o f  shallow flaw stress intensity factors 
in plates F = K / I . 12  ~ ~r 

255 

Gross et al Rice and Levy Shah and Kcbayashi 
Reference Continuous F law Surface Flaw Surface Flaw 
Geometry a/2c = 0 a/2c = 0.1 a/2c = 0.1 

a/ t  = 0 1.00 0.93 
0.1 1.06 019i 0.93 
0.2 1.22 0.94 0.94 
0.3 1.48 1.01 0.94 

the fact that both indicate a significantly lower K~ for quite shallow flaws 
should not be ignored. This lower K~ for surface flaws could be explained 
by the bending constraint supplied by the uncracked material beyond the 
2c extent of the surface flaw as opposed to the lack of such bending con- 
straint in the case of the continuous flaw. 

In defense of Buchalet's assumption, the significant difference between 
continuous and surface flaws in plates just mentioned might not be present 
in hollow cylinders due to their doubly connected nature. 
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