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Foreword 

The Symposium on Probabilistic Aspects of Fatigue was presented at the 
Seventy-fourth Annual Meeting of ASTM held in Atlantic City, N. J., 27 June-2 
July 1971. The sponsor of this symposium was ASTM Committee E-9 on 
Fatigue. Robert A. Heller, Virginia Polytechnic Institute, presided as symposium 
chairman. 
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STP511-EB/JUI. 1972 

Introduction 

The analysis and design of engineering structures and systems are, in most 
cases, carried out with the assumption that loads, environmental factors, and 
material properties are deterministic quantities, though it is generally recog­
nized that most design parameters have statistical variations. 

Early experiments have already revealed a much wider scatter in fatigue test 
results than in most static tests and hence researchers have been concerned with 
the statistical interpretation of data. 

Because extrapolation and interpolation based on limited experimental 
evidence have been the aim of most tests, attention was initially focused on 
various suitable methods of data plotting, curve fitting, and determination of 
distribution functions for fatigue life. Today regression analysis and mathe­
matical techniques of curve fitting, aided by electronic computers, have replaced 
curve fitting by eye. 

The use of the normal and logarithmic normal distributions has been 
supplemented with the extremal distributions of Weibull and Gumbel and 
various other transformations which either fit the data better or are based on an 
underlying physical process. To date proponents of various theories are not in 
complete agreement on the most suitable distribution functions for the 
description of the statistical variations of fatigue life. 

Response curves and confidence bands for fatigue strength and their 
relationship to Ufe distributions have also received considerable attention in the 
past. Methods are still being sought to determine a statistically justifiable fatigue 
limit based on a minimum number of test results. 

The recognition of the effects of variable loads on fatigue life has led to the 
extensive study of random processes and their application to the description of 
fatigue loads produced by gusts and aircraft maneuvers, road-surface roughness, 
and ocean waves. Testing machines have been developed to apply such random 
loads to specimens, components, and complete structures and cumulative 
damage concepts, based on deterministic considerations, have been updated with 
the inclusion of probabilistic techniques concerning both loads and material 
response. 

While in the past safety factors or scatter factors were used to take care of the 
variability of both strength and loads, in recent years the mathematics of 
rehability analysis have been adapted to fatigue design for a quantitative 
determination of levels of safety and reliability. These methods have given rise to 
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2 PROBABILISTIC ASPECTS OF FATIGUE 

the examination of the need for redundancy, estabUshment of realistic 
inspection periods, maintenance schedules, and retirement policies. 

Computer simulation of the fatigue process and of crack propagation based 
on probabilistic considerations is a recently developed tool that has been found 
useful in explaining experimental results. 

Though statistical design of experiments and decision theory are well known 
to statisticians, the use of these techniques in the planning and interpretation of 
fatigue tests has received wide recognition only during the last few years. These 
methods point the way towards the most efficient utilization of available 
specimens. 

The probabilistic aspects of fatigue include also the establishment of realistic 
statistical procedures for small samples, the use of early failures in the estimation 
of population parameters, and the adaptation of available techniques to new 
materials and environments. 

The 1971 Symposium on Probabilistic Aspects of Fatigue examined the most 
recent work in several of these areas with the aid of authors whose reputations 
are international. 

The symposium chairman wishes to thank those authors for their valuable 
contributions. The work of the session chairmen and chairwomen, W. J. Trapp, 
M. N. Torrey, R. S. Swanson, and A. S. Heller, is also greatly appreciated. 

Robert A. Heller 

Professor of Engineering Mechanics 
Virginia Polytechnic Institute 
Blacksburg, Va. 
symposium general chairman 
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F. A. Bastenaire^ 

New Method for the Statistical Evaluation 
of Constant Stress Amplitude Fatigue-Test 
Results 

REFERENCE: Bastenaire, F. A., "New Method for the Statistical Evaluation 
of Constant Stress Amplitude Fatigue-Test Results," Probabilistic Aspects of 
Fatigue, ASTM STP 511, American Society for Testing and Materials, 1972, 
pp. 3-28. 

ABSTRACT: Using the experimental and theoretical results of previous 
research work, the author presents a probabilistic description of constant 
stress ampUtude fatigue-test results. This description includes the S-N curves 
(or equiprobability of fracture curves), PS curves (or stress-response curves), 
P-N curves (cumulative distribution functions of fatigue endurances), and 
accounts for the occurrence of runouts. 

A method of estimation of the model coefficients which uses the 
information provided by all the specimens tested (broken or unbroken) is also 
presented. The application of this method is demonstrated through five 
examples for each of which several hundred test results are available. 

KEY WORDS: fatigue(materials), probability theory, stress analysis, statistical 
analysis, mathematical model, distribution theory, 5'-A'̂  diagrams, fatigue tests 

A number of theories have been proposed to explain and describe the scatter 
of fatigue-test results using the concept of probability distribution. 

The consistency and applicability of most of these theories has been 
examined in Ref 1, and it has been shown in the same study that a model using 
the familiar concept of a normal distribution gave an adequate representation of 
all the test data subjected to analysis. 

The model was checked using the available data at the time of publication of 
Ref 1. In view of the remarkable adequacy of the model to these test results, an 
extensive program of tests was set up to confirm the conclusions of this research 
work. 

' Head, Statistical Applications Department, IRSID, Saint Germain-en-Laye, France. 
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4 PROBABILISTIC ASPECTS OF FATIGUE 

This program has now been completed, and the purpose of the present paper 
is to demonstrate the application of a new statistical method of evaluation based 
on the same underlying mathematical model to the experimental data collected 
throughout this program. 

General Expression for the Probability of Fatigue Failure 

It has long been known that the scatter of fatigue lives in constant stress 
amplitude tests could be represented using a set of equiprobability curves in a 
P-S-N diagram [2]. The P-S-N diagram is a simple method of representing the 
following relationship between the probability of fracture P, the stress amphtude 
iS, and the number of load cycles N: 

P = F(S,N) (1) 

The two quantities S and N are assumed to be independent variables to which 
the experimenter can assign any values since he is at liberty to carry out a test 
that may last up to N cycles under stress S and examine whether or not the 
specimen sustains this number of cycles without fracturing. From this 
standpoint, P is the probability of fracture regarded as one of two alternatives. 

However, F(S,iV) is also the cumulative distribution function (CDF) of the 
number of cycles to fracture (NCF) regarded as a random variate. In fact, a CDF 
is defined as the probabiUty, for a given random variate such as the NCF of being 
less than or equal to some preassigned value, say N. It follows from this 
definition that F(S,N) is the CDF of the NCF at any stress level S. 

The experimenter can also carry out tests in whichA'̂  (maximum test duration) 
will be maintained at one and the same value, while S will be set equal to one 
out of K different values Si, S^, • • •, Sx-lfa group of specimens is allocated to 
each stress level, it is possible to estimate the probability of fracture F(Si,N) 
from the proportion of specimens broken in the rth group before A'̂  cycles are 
completed. A curve can be drawn which shows the variation of F{S,N) as a 
function of S for constant A'̂ . Such curves known as "stress-response curves" are 
schematically represented in Fig. 1. 

For any given value of 5, the value of Â  which is such that F(S,Np) =Pis the 
Pth quantile of the distribution of the NCF which can be denoted by Np. 

Sunilarly, Sp may designate the value of 5 which verifies the condition 

F{Sp,N)=P (2) 

If it is assumed that P increases when either SorN increases then 

f > O a n d ^ > 0 (3) 
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BASTENAIRE ON CONSTANT AMPLITUDE FATIGUE TESTS 5 

N, <N^ <N. < o= 

Stress amplitude S 

FIG. 1 -Probability of fracture versus values ofN. 

Differentiating Eq 1, we obtain 

=̂̂̂^̂î  (4) 

This equation allows the calculation of the derivative dS/dN along an 
equiprobability curve which represents the relationship between S and N when P 
is kept constant. 

In this case, dP = 0 and, therefore. 

dSp ^_dF /dF 
dN M/ dS 

(5) 

Using the above inequalities, we find that dSp/dN<0. For constant/*, Sp is, 
therefore, a decreasing function of Â , as shown by the schematic equiprobability 
curves of Fig. 2. 

This decrease of Sp for increasing Â  has its counterpart in Fig. 1 in which 
points plotted on the stress-response curves at a constant ordinate value (for 
example, Pi or Pj) move from right to left with increasing values of A'̂  

It can further be noted that, since the probability of fracture increases withN 
under constant stress amplitude, a parallel to the P-axis in Fig. 1 intersects the 
stress response curves in the ascending order of their parameter TV. It follows that 
the curves of this family never intersect. 

The above remarks are useful for the determination of the limit to the 
stress-response curves when N tends to infinity. 

First, one must remember that 5 is a stress amplitude and, therefore, cannot 
be negative. Second, a zero stress amplitude can be assumed to produce no 
fatigue effects in a material. Sp being a bounded decreasing function of Â , a 
limit Ep>0 to Sp always exists (except, perhaps for p = 1, for which Sp may 
not be defined). It can be concluded that a limiting stress-response curve 
certainly exists, though it may possess two different shapes. If the limits to the 
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PROBABILISTIC ASPECTS OF FATIGUE 

^= 
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^ F_(S^)=p^ 

^ F(S,N) = p 

^ • - _ _ ! : ! £ . N) = Pt, 

N Number of cycles N 
P 

FIG. 2-Schematic diagram of equiprobability of fracture curves. 

Sp values are different, the limiting curve will be as shown in Fig. 1 for Â  = 0° 
but, if the limits are equal, the limiting stress-response curve will be as shown in 
Fig. 3. 

These two different cases correspond to two different patterns of the 
equiprobability curves: when the Sp's have different limits, the equiprobability 
curves tend to different asymptotes, whereas when the limit to the Sp's is 
unique, all these curves have only one asymptote. 

Important differences in the distributions of the NCF's can also be noted 
according to the limiting shape of the stress-response curves. If Sis held constant 
and N increases, this is represented in Fig. 1 by a point moving upwards along a 
vertical straight line and it can be seen that, within a certain range of stress 
values, the probability of fracture will never reach unity however large N may 

p=a 
Striss ampOtude 

FIG. 3-Limiting form of the probability of fracture versus stress curve when all the 
equiprobability curves have the same asymptote. 
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BASTENAIRE ON CONSTANT AMPLITUDE FATIGUE TESTS 7 

become (this occurs all over the range of stress values covered by the limiting 
curve). In contrast with this, the probability of fracture is either zero (if 5 < £ ) 
or tends to unity when A'-> °°(S>F) in the case illustrated by Fig. 3. 

As noted at the beginning of this section, stress response curves can be drawn 
from experimental data. Experience shows that it is advantageous to plot the 
proportions of specimens failing before N load cycles have been completed on a 
normal or logistic probability scale. Normal probabiUty paper has been used in 
the cases illustrated in Figs. 4 and 5. It can be seen from these figures that the 
experimental points lie near straight lines. A possible explanation of this result is 
to assume that a threshold stress value causing fracture of the specimen in N load 
cycles at the most is attached to each specimen. With this assumption, each 
stress-response curve is the observed or empirical CDF of such threshold values. 
If a straight line is obtained on probability paper, it can be concluded that the 
threshold stresses are normally distributed with a standard deviation shown by 
the slope of the straight line. We are then entirely justified in using the words 
"scatter in stress" to express the spread of the equiprobability curves along the 
•S-axis. 

For the last point in this section, however, the stress-response curves do not 
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FIG. A-Stress-response curves for 35 CD 4 (80 kiflmrrt^) steel. (Normal probability 
scale for frequencies.) 
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8 PROBABILISTIC ASPECTS OF FATIGUE 

8S 
Slim S (fcg/tnm^) 

FIG. 5-Stress-response curves for 35 CD 4 (150 kgflmm'^) steel. (Normal probability 
scale for frequencies.) 

have to be normal. One only needs to assume that two parameters—a position 
parameter /Lt and a scatter parameter a—are sufficient to represent these curves 
which may equally well derive from the normal, logistic, extreme value or some 
other distribution. 

The important point is that, for any given value of N, the probability of 
fracture can be expressed using the same function of a reduced variate (5 - ii)la. 
It is obvious that // and a depend on A'̂  and should really be regarded as two 
functions ii{N) and o{N). Denoting the cumulative distribution function of the 
reduced variate by F, the probability of fracture can be expressed by the 
following equation 

(6) 

Representation of the Equiprobability Curves Using a Transformed Variate 

Equation 6 shows that P = constant if (5 - /n(7V))/a(7V) is constant. In 
particular, if 5 - n(N) = 0 then P = F(0). The equation of the F(0) equiprobabil­
ity curve is, therefore. 

5 F ( 0 ) = H(N) (7) 
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BASTENAIRE ON CONSTANT AMPLITUDE FATIGUE TESTS 9 

In the preceding section, it has been shown that Sp tends to a Umit Ep>0 
when # -> °o. If 

£' = M(°°) (8) 

and a new function 

,p(AO = M(AO-M(°°) (9) 

is introduced, one can express IJ.(N) as 

M(AO = ̂ A O + f W°°) = 0) (10) 

ip(N) is a decreasing function of TV tending to zero as TV -> °°. 
Using Eqs 10 and 6, 

This equation can be used to account for the main features of the NCF 
distributions. 

To begin with, it is assumed that a{N) does not depend on N. Equation 11 
shows that the CDF of the random variate - ip(SCF) is the same as the 
stress-response function. (However, if a(N) does depend on TV, its variation is 
rarely important, and the distributions of — i/)(NCF) and S are, in practice, 
similar.) 

Using the inverse function ^p'^, the distributions of the NCF's can be 
generated from that of 5 (in this transformation, TV = î "' is infinite for ip = 0). 

Since ifiiN) decreases with increasing TV and tends to zero, 

S^<KJ^~E S-E 
a(TV) ^a(oo) ^' -* 

Therefore, in Eq 11, the argument of F can never exceed (S~E}/o(°°), 
showing that the proportion of fractured specimens is limited atF((S-E)/a(°°)). 
This will escape the experimenter's attention if (S--E)/a(°°) is either very large or 
very small because in the first case it is almost certain that all the specimens 
tested will fail, whereas it is the reverse in the second case. Between these two 
extremes there will be real "runouts." 

It is of interest to represent the properties of <^NCF) in a diagram. Replacing 
the usual SJV system of coordinates by S, ip, the equiprobabiHty curves can be 
represented in a new diagram. 
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10 PROBABILISTIC ASPECTS OF FATIGUE 

The equation of the F(0) equiprobability curve is Eq 7. Using Eq 10, 

5 F ( 0 ) = ¥ < ^ + £ ' (13) 

is obtained. 
This equation shows that by plotting (̂  instead of A'̂  as an abscissa, the F(0) 

equiprobability curve is represented by a straight line. 
More generally, assuming that F is the CDF of a continuous random variate, F 

is monotonia, and P will be constant in Eq 11 if, and only if, the argument oiF 
is constant, say 

a{N) ^ ' 

(u = constant) 

This is the general equation of the equiprobability curves which can be 
written as 

Sp = ip(N)+E + uaiN) (15) 

Again, if a does not depend on N, Eq 15 is that of a straight line in the S,ifi 
system of coordinates. This line is parallel to the F(0) equiprobability line 
represented by Eq 13. 

The S,N and S,î  systems of coordinates are superimposed in Fig. 6 to show 
how they are related. 

Putting A^= °° in Eq 15, one finds the ordinate of the asymptote to the S-N 
curve: ip(°°) + E + ua{°°) which reduces to E + ua(^ since {fi(°°) = 0. Now, 
E + ua(°°) is also the intercept of the S, ^ equiprobabihty curve. 

When a is a constant and the equiprobability curves are straight parallel lines 
in the S, ip coordinates, it is apparent that the distributions of iS and 1/3 are of the 
same type. This statement still holds approximately if a is a function of N 
because one is not concerned in practice with the full range of variation of a but 
only with that range between the minimum and maximum values of TV in a finite 
sample of observations. 

Figure 6 also shows how the distributions of 5 and ip do differ. For any given 
value of N, there is no practical limit to the stress amplitude which can be 
appUed to specimens and the stress-response curve can be explored up to stresses 
at which the probability of fracture is nearly unity. In contrast with this, an 
increase in the number of cycles for a given stress value produces a decrease in 
ip(N) which is bounded at zero and the proportion of failures tends to a limit. 
This can be expressed in Fig. 6 by the fact that a point representing a test 
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duration and moving from right to left parallel to the (̂ -axis (ip decreases when Â  
increases) will cross a succession of equiprobability lines corresponding to 
increasing values of P until it reaches the 5-axis and thereby the last 
equiprobability line it can cross whose intercept is obviously equal to the chosen 
stress value. Figure 6, therefore, illustrates the truncated nature of the 
distributions of ^N). This figure also shows that the distributions of ^N) at 
different stress levels differ mainly in location and in the proportion of 
observations cut off at (̂  = 0 but can be expected to be very similar in shape. 
This is in contrast to the distributions of fatigue lives which (even though 
plotted on a logarithmic scale) change markedly in shape when the stress changes 
(Fig. 7 illustrates this fact which has been repeatedly observed—see Refs 1 and 
S). Experience shows that the logarithm of the NCF is distributed normally only 
at intermediate stress levels. When the stress decreases, the scatter and skewness 
of these distributions increases to a considerable degree, and the proportion of 
broken specimens tends to a limit as the number of appHed load cycles increases. 

Simple Example of the Use of Transformed Fatigue Lives 

Using a large variety of fatigue data, it has been shown in Ref i that, for large 
N, ifi(N) takes the asymptotic form ip(N) = A/N where /I is a constant. 

The range over which this formula is, in practice, applicable depends on the 
material used and on testing conditions. In some cases, it is a good 
approximation over quite a large part of the S, N diagram. 

Figure 8 is a graph of the NCF reciprocal (multipUed by 10' to avoid using 
very small figures) versus stress. The values plotted as ordinates are mean values. 
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ê 

^̂ •> 

-— 

> 

\̂ 

^ X - ™ 

c 

'--

) C 

o 

% 
a 

..._. 

s 

»%J 

c 

w.°'>-

»*> 

\ 

c 

• 

• 
• 

^ -

'V̂  A 
o 

W^ f^Si 

'V 

^v 

-%fl 

k 
• 
•• 

< ^ - i 

"^0 

n. 

•% 

0 

• M , 

"^"°o 

I 
I c > r-

1 

k 

1 

• » 

— • . , 

>o 

'•. 

>o 

°o 

1 

<• 

) 

1 

> 

0 

1 

) 

• 

> 

» 

0 

° 

) J 

' 

, 

1 

» 

0 

0 

» 

1 

"5 

•« c 

H 

"o-

3 

I 
c -

i 

12 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 11:08:31 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



BASTENAIRE ON CONSTANT AMPLITUDE FATIGUE TESTS 13 

95 per cent confidence intervals 

S kg/m m " 

FIG. %-Estimated mean of censored distribution of l/N versus stress (35 CD 4 - 150 
kgf/mm'). 

However, it must be noted that, at most test stresses, a number of specimens 
remained unbroken. In statistical terminology, a sample is said to be censored 
when this occurs. Up to the present paragraph, the term "truncated" has been 
used which can be understood without further comment. At the time the 
observations are drawn, however, two possibiUties may arise: the statistician may 
ignore both the values and the number of observations falling outside the limit 
or he may ignore their values but be informed of their number. In the first case, 
the sample is really truncated, whereas in the second case it is censored. 
Therefore, it is clear that in fatigue testing one is concerned with censored 
samples of observations. 

The data of Fig. 8 are censored at a number of stress levels. At 62 kgf/mm^, 
95 out of the 100 specimens tested were unbroken at 5 million cycles. At 64 
kgf/mm^, 84 out of 100 specimens were also unbroken. In contrast with this, 87 
out of 100 specimens were broken at 72 kgf/mm^ and the proportion rises to 
100 percent at the higher levels. 

In order to follow the lines of the previous analysis, one must use the means 
of the complete parent distributions out of which the various samples have been 
drawn if a simple relationship between these means and the stresses is to be 
found. 

It is sufficient to indicate that the mean of a parent distribution can be 
estimated from a censored sample using a statistical estimation method (for 
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14 PROBABILISTIC ASPECTS OF FATIGUE 

example, Ref J). It is intuitive, however, that the precision of the estimate 
breaks down when the number of observed values (that is, the number of broken 
specimens) is very small. This explains why the confidence intervals and the 
deviations of the experimental points from the straight line in Fig, 8 are quite 
large at 64 and 62 kgf/mm^. At the upper stress levels, the mean values fall quite 
nicely on the fitted line. 

It is of interest to see the effect of the same transformation on the 
distributions of fatigue lives. This is shown in Fig. 9, in which only every second 
cumulative frequency curve of 2 X 10*/(NCF), starting from the 62 kgf/mm^ 
level, is plotted for better clarity. It can be seen that these distributions are 
normal, censored at zero. The same transformation applied to the NCF's 
therefore produces simultaneously two different effects: 

1. The transformed NCF's are normal censored (Fig. 9). 
2. A straight-line relationship holds between their mean and the applied stress 

(Fig. 8). 
As a fmal remark in this section, it should be noted that the straight-line 

relationship in Fig. 8 also holds for negative values of the parent population 
mean. This may seem strange and needs explanation. Equation 11 shows that the 
value of (̂  for which P = F(0) i% ^p=S - E. When a value of S less than E is 
chosen as a test stress, this value is negative though the observed values of (/? 
are all positive. This is so because the central value of a censored distribution can 
be outside the range of the observed values. 

More General Transfonnation of the Number of Cycles to Fracture 

The method in the section on Simple Example of the Use of Transformed 
Fatigue Lives has been used in a number of instances [ i ] , but, unfortunately, 
Sp(^o-) = (A/N)+E is not always a convenient equation for the median 
equiprobability curve. This is unfortunate, not only because A/N is a simple 
function, but also because, if A/N is distributed normally, so is l/N. Similarly, if 
a linear relationship holds between A/N and S, it also holds between l/N and S. 
No prior knowledge of coefficient A is, therefore, necessary to check the validity 
of this relationship, and A can be estimated later by means of a linear regression 
method. 

It has been shown in Ref I for a number of materials and testing conditions, 
that the median equiprobability curve can be represented by the following 
equation: 

Aexp[-c(S^E)] 
^= ^-TE)— (16) 

in which A, c, and E are coefficients. 
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16 PROBABILISTIC ASPECTS OF FATIGUE 

Making c = 0, one gets the equation implicitly used in the previous section 
(S = A/N + E) asa particular case of Eq 16. 

A slightly more general formula has been used in Ref 5: 

Aexp[-ciS~E)] 

(S-E) ^ ^ 

where B is an additional coefficient. 
The difficulty with Eqs 16 and 17 is that they do not give S exphcitly as a 

function of TV, which is needed to express ip^N). 
If it is assumed that Eq 17 can be used to represent the F(0) equiprobability 

curve, one may write 

"""^ (5.^(0)-£) ^^'^ 

The right-hand side of Eq 18 being a monotonically decreasing function of 
(-5^(0) " ^> this equation defines a one-to-one correspondence between TV and 
(SF(0) - E)- Since TV-* °° when Sp^Q)-^ E, the converse is also true, and E has 
the same meaning in Eq 18 as in Eqs 8 to 13. Now, according to Eq 13, 

^N) = Sp^o)-E (19) 

Comparing Eqs 18 and 19, ̂ N) must therefore satisfy the following condition 

/lexp \— cw\ 
———=N + B (20) 

Equation 20 defines ip{N) in implicit form for a given set of coefficients A, B, 
andc. 

It is not difficult to solve this equation for ip with an electronic computer. It 
is, therefore, possible to plot the cumulative frequency curves of (^(NCF) and 
also the 5, <p diagram in much the same way as has been done with A/N in the 
preceding section, provided that A, B, and c are known. The purpose of the next 
section is to show how these coefficients can be estimated. 

Statistical Estimation of the Model Coefficients 

It has already been noted in the section on Representation of the 
Equiprobability Curves Using a Transformed Variate that the distributions of 
i^NCF) at the various stress levels are similar, since they are defined by the same 
cumulative distribution function F. In contrast to this, it has been shown that 
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the distribution of the NCF's changes in shape and is highly skewed at low stress 
levels. In fact, it has been proved under simple assumptions in an earlier 
paper [d] that, at any stress level where the proportion of fractured specimens 
does not tend to unity when the number of applied load cycles increases 
indefinitely (that is, in the stress range covered by the limit curve in Fig. 1) then, 
even the lower-order moments of the distribution of the NCF (and among them, 
the mean and variance) are not defined. (It is shown in Ref 6 that the integrals 
which define these moments are not convergent.) 

Therefore, if the data collected at low stress levels are to be included in a 
statistical analysis, simple statistics such as the mean and standard deviation of 
the NCF itself will not be appropriate. 

As suggested in the section on Simple Example of the Use of Transformed 
Fatigue Lives where the NCF reciprocal was used instead of the NCF itself, it 
will be shovm in the next section, using a number of examples, that (^(NCF) is 
distributed normally or almost normally. The difficulties involved in the use of 
the NCF when estimating the distribution characteristics will therefore disappear if 
V5(NCF) is used in place of the NCF. 

In order to calculate ip(NCF), however. A, B, and c must be known, as 
explained at the end of the preceding section. Therefore, one needs to know the 
coefficients to be estimated! 

This situation is not quite as serious as it may seem at first sight. If, to start 
with, approximate values of A, B, and c are first used to compute transformed 
values of the NCF's, these will not be distributed exactly as they would, had the 
true values of A, B, and c been used instead, but it is only necessary that the 
distributions of (/>(NCF) be close enough to normal for the statistical estimation 
process to work properly with the data. 

When this is done, the estimation process will produce new values for A, B, 
and c which, in turn, will be used to compute a second set of transformed NCF's 
and so on. This iterative process will be repeated until convergence is obtained. 

The method of estimation is a weighted least squares method applied to the 
estimated means of the (p(NCF) distributions. 

At all stress levels where all the NCF's are known, these are the arithmetic 
means of the (p(NCF)'s. At those levels where some of the specimens are 
unbroken, the estimated mean is that of the censored distribution of (^(NCF). 
These estimated means are obviously weighted according to the reciprocals of 
their respectives variances. 

A computer program has been written in FORTRAN language and carries out 
all computations. The data may enter into four different branches of the 
program depending on the nature of the function (f>(N). Experience has shown 
that Eq 17 may take three degenerate forms: 

l.B = 0;c = 0 
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18 PROBABILISTIC ASPECTS OF FATIGUE 

Then Eq 17 can be written 

1/7V=(1M)(5-F) (21) 

In this case, there is no necessity to use an iterative process and a linear 
regression method is applied to ( 1 / ^ regarded as the dependent variate and S as 
the independent variate. 

Equation 17 can be written: 

(N + B)(S~Er)=A 

This case is dealt with separately because it involves less computational work 
than cases 3 and 4. 

3.B = 0 ; c # 0 

Equation 17 reduces to Eq 16, and only two parameters have to be estimated. 

4.B^0;c^0 

This is the general form for which three parameters must be estimated. 
In all four cases, E and the standard deviation a of i/?(NCF) are also estimated 

in addition to the above-mentioned parameters. 
The standard deviation is estimated separately at each stress level, but these 

different estimates can be pooled into a single estimate if no significant 
differences exist. 

Application of the Proposed Method to Five Grades of Steel 

A large number of test series have already been analysed in Ref 1. In all, 
several thousand test results were considered, but, in many instances, the 
number of test results per stress level was too small to draw valid conclusions 
regarding the distribution of the NCF or the type of stress-response curve (for 
example Ravilly's results formerly analyzed by various authors [7]). 

Therefore, it was decided at IRSID to carry out an extensive program of 
fatigue tests aimed at checking the conclusions of Ref 1 with regard to 
stress-response curves, equiprobability curves, and fatigue-life distributions. 

Four grades of steel were used in this investigation, one of them with two 
different heat treatments (Tables 1 and 2). 

All tests were performed under constant moment rotating bending on 
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TABLE I-Chemical composition of the steels used in the investigation. 

AFNOR" 
Steel 

Designation 

XCIO 
XC60 
XCIOO 
35 CD 4 

C 

0.08 
0.58 
1.17 
0.34 

Cr 

0.17 
1.16 

Qiemical Composition 

Mo 

0.013 
0.23 

Si 

0.14 
0.37 
0.25 
0.32 

Mn 

0.40 
0.46 
0.39 
0.64 

Ni 

0.14 
0.20 

" Association Frangaise de Normalisation. 

MERL-IRSID^ type machines at 6000 rpm. For each material, Table 3 indicates 
the number of specimens tested and the number of load cycles at which the tests 
were interrupted. 

Many tests were carried out below the median endurance limit in order to 
gather information about fatigue life distributions at low stress levels. At high 
stresses, testing was limited by specimen heating. 

A detailed account of the results of this test program is given in Ref 5. These 
data will be used here oidy to illustrate the described method by examples. 

The first step in this method is to put the program into the computer 
memory either from punched cards or from a magnetic disk. After being 
punched on cards, the data are fed into the computer and processed according to 
the program. The data are first printed in order to check the values previously 
punched on cards. The following results are then printed as the program 
proceeds: 

1. For each stress level, the mean value of i^(NCF) either in the form of the 
arithmetic mean or in the form of the estimated mean of a censored distribution. 

TABLE 2—Mechanical properties of the steels investigated. 

Steel Grade 

XCIO 
XC60 
XCIOO 
35 CD 4 (80) 
35 CD 4 (150) 

Yield Point" 

30.4 
34.6 
86.6 
58.6 

143.2 

Max Tensile Strength" 

40.1 
68.2 

109.2 
76.7 

163.6 

Elongation, 
% 

40.6 
26 
13.3 
22.7 

9.3 

Yield Point 

Max Tensile 
Strength 

0.76 
0.51 
0.79 
0.76 
0.88 

" All stress values are given in kilograms per square millimeter, a legally accepted unit of 
the metric system at the time the investigation began. Use of this unit is maintained 
throughout to avoid putting more decimals to original figures (1 kg/mm^ = 1422.3 Ib/in^). 

^ MERL: Mechanical Engineering Research Laboratory, Glasgow, Great Britain. IRSID: 
Institut de Recherches de la Siderurgie Francaise, Saint-Germain-en-Laye, France. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 11:08:31 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



20 PROBABILISTIC ASPECTS OF FATIGUE 

TABLE 'i-Specimen and load cycle data. 

Number of Fatigue Test 
Steel Grade Specimens Interrupted At 

XC10 740 100 million cycles 
XC 60 850 100 million cycles 
35 CD 4 (80) 580 8 million cycles 
XC 100 940 100 milUon cycles 
35 CD 4 (150) 850 30 milUon cycles 

2. The Standard deviation at each stress level. 
3. The new estimates of ̂ , B, and c. 

This process is resumed until convergence of A, B, and c to limit values is 
obtained. 

The final values of the means and standard deviations of (p(NCF) are then 
printed together with their confidence intervals. 

The schematic diagram of Fig. 6 can now be used to plot real values. This is 
done in Fig. 10 in which the results for all five materials are plotted together. 

The estimated means of (p(NCF) are plotted in abscissas and the stresses in 
ordinates. The important differences in fatigue strength among the five grades of 
steel result in widely separated straight Unes in the diagram. 

The main purpose of this diagram is not to plot each S-N curve in the form of 
a straight line: indeed, nearly any relationship can be represented by a straight 
line using suitable coordinates. This diagram is used here because it suits the 
purpose of showing the deviations of the plotted means from the theoretical 
Une. With this in view it must be noted that, for a given function ip(AO (that is, in 
general, for a given material), any two points having equal abscissas in the S-N 
diagram also have equal abscissas in the 5 - 1 ^ diagram while their respective 
ordinates are unchanged. The vertical deviations of the test points from the 
straight line in the S - (̂  diagram are, therefore, the same as from a fitted curve 
represented by Eq 17 in an S-N or 5-log Â  diagram. 

As already indicated, the experimental points in Fig. 10 represent estimated 
mean values. An indication of the scatter which can be expected to arise from 
sampling fluctuation is given by the 0.95 confidence intervals of these estimates. 

Plotting hundreds of individual test results for each material was not feasible 
on the S - <p diagram. A better image of their distributions is given by the 
cumulative frequency curves shown in Figs. 11-15. These curves have been 
drawn by a plotter connected to a computer, and, for simplicity of use, the 
probability scale is graduated in normal deviates rather than proportions. This 
makes no difference at all for the test points, which fall exactly where they 
would, had probabiHty paper been used, since the underlying principle of normal 
probability paper is really to plot the normal deviate for the proportion. 

The reader should bear in mind that, in Figs. 11 through 15, ^piN) decreases 
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-S 0 5 10 ISflNI 

FIG. lO-Experimental S-ip diagram for the five different grades of steel. 

for increasing N, that is, when the proportion of fractured specimens increases. 
This remark accounts for the negative slope of the cumulative frequency curves 
since the probability of fracture increases monotonically with the normal 
deviate. Morever, we know that i()(N)-*-0 when 7V-><» so that those curves 
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which end near the vertical axis (Fig. 11) or tend to approach it (Fig. 12) 
indicate that the proportion of specimens fractured at the corresponding stress 
level tends to a limit when A^^oo. In other words, the distributions of (^(NCF) 
are censored at zero (in fact, these distributions are censored at ip(N max), 
N max designating the number of cycles where the tests have been interrupted). 
As expected, this occurs at the lowest stress levels in each test series (stress 
values in kg/mm^ are shown at the left of or below the mean point of each 
curve). The estimates of A, B, and c given by execution of the computer 
program are given in each figure and a correspondence between ip and the NCF 
(measured in hecto- or kilocycles) is also given in abscissas. 

Discussion 

The reader will judge for himself the normality of the cumulative frequency 
curves (whether the distribution is censored or not) in Figs. 11-15. 

In Fig. 14, the distribution of (p(NCF) is definitely skewed at the highest 
stress level (64 kg/mm^). 

A similar remark applies to Fig. 13 where the next curve (for the 51 kg/mm^ 
stress level) is also skewed at its bottom end. These discrepancies from normality 
should not be attributed to a change in the stress-response curve shape in the 
corresponding region of the S-N diagram but rather to the inadequacy of Eq 17 
in this region. In this respect, the introduction of parameter B in the left-hand 
side of Eq 17 is not the best step towards improving Eq 16. It can be seen from 
Eq 20 that there is an upper bound to its root, if, when N-^ 0. In fact, since ^p 
increases when N decreases, this upper bound is the solution to 

In these conditions, the largest values of (̂  are, in some way, "squeezed" 
against (^j. 

This results in a steep fall at the lower end of the cumulative frequency curve. 
At low stress levels, variations in the value of oiN) may also cause departure 

from normality for the (^(NCF) distributions even if the stress response curves 
remain sigmoid normal. 

In Figs. 14 and 15 there is strong indication that the scatter a{N) increases 
with N (the slope of the cumulative frequency curves decreases when the stress 
decreases). Equation 11 then shows that (5 - (̂ (AO — E)la{N) being smaller if 
oiN) increases with TV, the probability of fracture is also smaller than it would be 
if a(N) was constant. This produces a downward curvature of the cumulative 
frequency curves. 
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Conclusions 

A relationship is shown to exist between the distributions of the numbers of 
cycles to fracture and the stress-response function through the S-N (stress-
number of cycles) relationship. On this basis, a mathematical model of the P-S-N 
(probability-stress-number of cycles) curves is proposed together with a new 
method of estimation of its coefficients. This method has been programmed in 
FORTRAN for electronic computers. It has proved successful in the analysis of 
statistical data obtained in fatigue tests on five grades of steel. 
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Estimating the Median Fatigue Limit for 
Very Small Up-and-Down Quantal 
Response Tests and for S-H Data with 
Runouts 
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ABSTRACT: Much basic fatigue data may be categorized for analytical 
purposes as small sample quantal response data. For example, both small 
sample up-and-down test outcomes and most S-N data fall into this category. 
But reliable median fatigue-limit estimates for small samples are not directly 
available using large sample statistical formulas. Rather, small sample estimates 
must be examined carefully regarding both their variability under repeated 
sampling and their "sensitivity" relative to various analytical methods and 
assumptions. The variabiUty of small sample response estimates has been 
studied by Dixon and others. This paper considers the sensitivity of these 
estimates to such key assumption alternatives as, for example, minimum chi 
square analysis versus maximum likelihood analysis, and an underlying 
extreme value (smallest) response distribution versus a normal response 
distribution. Engineering assessment of the "accuracy" of the estimated 
median fatigue limit requires careful consideration of both its statistical 
variability and its analytical sensitivity as established herein. 

KEY WORDS: fatigue(materials), probability theory, statistical analysis, Wei-
bull density functions, analysis of variance, chi square test, fatigue tests, 
fatigue limit, S-N diagrams, sampling 

Nomenclature 

d Uniform spacing of successive stimulus levels 
K Number of stimulus levels used in testing 
L Likelihood 

Ni Number of specimens tested at the /th stimulus level; subscript / is 
suppressed in Eqs 1 through 4 

1 Professor, University of Michigan, Dearborn, Mich. 48128. 
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O Specimen did not react (did not fail) 
Pj Trae probability of reacting (failure) at the /th stimulus level 
Rj Number of specimens reacting (failed) at the /th stimulus level 
5/ Stimulus level, for example, stress or strain amplitudes, or rms values 
X Specimen reacted (failed) 
Y Linearized response Y = a + |3S = f"' (P), refer to Table 4 
a Intercept of linearized response cune: a = — n/a 
|3 Slope of the linearized response curve: j3 = 1/a 
A Tabulated factor in the median strength expression iSs o = 5o + Ad 
11 Probability density function location parameter 
a Probability density function scale parameter 

Chi square (statistic) ,/2 

Subscripts 

0 Initial stimulus level used in testing 
50 Estimate evaluated at 50 percent probability level 

Superscripts 

*' Estimated value 

The up-and-down test method for estimating the true 50 percent response 
level of quantal data was originally devised to study the impact sensitivity of 
explosive mktures[i ] . In this sensitivity test the common procedure is to drop a 
weight from various heights on specimens of the same explosive mixture. If the 
weight is dropped from a very large height, the specimen will explode. On the 
other hand, if the weight is dropped from only a very small height, the specimen 
will not explode. For intermediate heights, some specimens explode, whereas 
others do not. It is supposed in sensitivity testing that each individual specimen 
has an associated critical height such that the given specimen will explode when 
the weight is dropped from a greater height, but it will not explode when the 
weight is dropped from a lesser height. The universe of all explosive specimens of 
the same mixture is thus characterized by a continuous random variable—the 
critical height. But this random variable cannot be observed directly. Rather, the 
test outcomes only estabUsh whether, for each given specimen, the drop height 
was less than or greater than its critical height. When a number of such response 
tests are conducted at the same intermediate drop height //,-, the resulting 
quantal response data take the form: Nf tested at Hi, Rt reacted (and TV,- - Rf did 
not react). 

This quantal response situation arises in a number of materials research and 
development situations, from the testing of armor-piercing projectiles and 
impact-resistant plastic bottles, to determining the relative resistances of 
diffusion coatings to corrosion. In quantitative application, quantal response 
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TABLE 1 - Wohler's original S-N data for wrought Phonix iron. 

Stress 
centners/zolP 

320 
300 
280 
260 
240 
220 
200 
180 
160 

Cycles to Failure 

56 430 
99 000 

183 140 
479 490 
909 810 

3 632 590 
4 917 990 

19 186 790 
132 250 000 runout 

Number 
Tested 

1 
1 
1 
1 
1 
1 
1 
1 
1 

Number 
Failed 

1 
1 
1 
1 
1 
1 
1 
1 
0 

data may be used to calculate A îscc based on appropriate stress-corrosion tests 
on pre-cracked specimens, to calculate the nil ductility transition temperature 
for keyhole Charpy impact tests [2], or of special interest in this paper, to 
calculate the median fatigue limit based on either S-N data or the outcomes of 
very small up-and-down tests. In over-all perspective, the quantal response 
situation arises whenever the test performance may be objectively classified into 
two mutually exclusive categories such as "acceptable" or "not acceptable." 

Tables 1 and 2 summarize the fatigue-response data to be analyzed herein. 
Although the test methods are apparently quite different, the two right-hand 
columns show clearly the basic similarity of these two methods. Note also that 
Wohler's data may be summarized in up-and-down context as XXXXXXXXO. 

Theoretical Background (Normal Distribution) 

Shortly after World War II Dixon and Mood [7] published curves and 
formulas for a simpHfied maximum likelihood analysis of normally distributed 
quantal response data accumulated following the now well-known up-and-down 
test strategy. Table 2. The effective sample size in their simplified analysis was 
about one half the actual sample size. Consequently Dixon and Mood cautioned 
that their asymptotic (large sample) variance expressions "may well be very 
misleading if the [actual] sample size is less than forty to fifty." In 1953, 

TABLE 2-Typical outcome of a short up-and-down fatigue response test." 

Stress, Number Number 
ksi 1 2 3 4 5 6 Tested Failed 

65 
60 X 1 1 
55 X O 2 1 
50 O O 2 0 
45 O 1 0 

" X = specimen failed, O = specimen did not fail. 
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Brownlee et al[5] investigated the small sample behavior of up-and-down tests 
and concluded that the Dixon-Mood sample-size restriction was unnecessary, 
namely, they concluded that "the Dixon-Mood formula for the asymptotic 
variance [of the median normal response estimate] is reasonably reliable even in 
samples as small as five to ten." Brownlee and his associates also presented a 
revised expression for the median normal response estimate, which generated a 
smaller mean square error than the Dixon-Mood estimate when the initial test 
was conducted at a stimulus level (stress amplitude) some distance from the true 
median response (refer to Fig. 4, Ref 4). Then, in 1965, Dixon[4] published the 
results of a digital computer numerical solution to the maximum likelihood 
equations and presented tabulated quantities which, by easy calculation, provide 
a median normal response estimate with an even smaller mean square error than 
the improved estimate suggested in Ref 3. Thus, in certain cases reasonably 
precise median normal response estimates may now be easily computed for 
up-and-down tests with sample sizes as small as four or five. These estimates 
appear in Table 3. 

Reliable estimation of the standard deviation a of the underlying normal 
response distribution is quite a different matter however. The up-and-down 
strategy is quite inefficient in this regard. Consequently its a estimates should be 
used only in the absence of more reliable prior information. 

Dixon [4] took advantage of the lack of precision of the standard deviation 

TABLE 3 - Values of A for maximum likelihood analyses based on an under­
lying normal distribution with Ajo = 1. S5 „ equals SQ + Ad, 

in which SQ is the stress amplitude used in starting the 
up-and-down test program. 

Second 
Part of 
Series 

X 

xo 
XX 

xxo 
xox 
xxo 
XXX 

xoco 
xoox 
xoxo 
xoxx 
xxoo 
xxox 
xxxo 
xxxx 

A for Test Series Whose 

0 

0.50 
0.84 

-0 .18 

1.30 
0.50 
0.00 

-0 .81 

1.84 
1.12 
0.70 
0.08 
0.31 

-0 .31 
-0 .71 
-1 .44 

GO 

1.61 
1.89 
1.00 

2.31 
1.56 
1.12 
0.45 

2.85 
2.14 
1.74 
1.17 
1.37 
0.83 
0.50 

-0 .10 

First Part Is 

0 0 0 

2.62 
2.89 
2.03 

3.32 
2.57 
2.14 
1.50 

3.85 
3.14 
2.74 
2.18 
2.38 
1.86 
1.54 
0.99 

Standard 

ErrorofSsoI^l 

0.88 a 

0.76CT 

0.67 (T 

0.61 a 
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estimate in up-and-down testing to reduce the maximum likelihood equation to 
a function of only one variable, the median response S'so-by assuming that 
dia = 1, where d is the uniform spacing between successive stimulus levels (stress 
amplitudes). This assumption not only circumvents the problem that certain 
small sample responses are such that the maximum likelihood equations do not 
yield unique estimates of both a and ^so, it also is consistent with Dixon's 
major objective of comparing responses of two or more treatments in analysis of 
variance based on planned experiments. However, when the primary (and 
perhaps sole) objective is to estimate the median response, then it is clearly 
necessary to examine carefully the influence of the assumption that d/a = 1 on 
the magnitude of the resulting estimate oi S^o. 

Scope 

This paper considers the influence on the magnitude of the resulting 
median-response estimate of alternative assumptions at three key stages of the 
analysis: (1) minimum chi square analysis versus maximum hkelihood analysis; 
(2) logistic and extreme value (smallest) response distributions versus the normal 
response distribution; and (3) stress-amplitude spacing of dfa = 2/3 and 
dIa = ^ill versus dja = 1. These solution alternatives generated 2 X 3 X 2 = 1 2 
different estimates of the median response for each set of possible outcomes 
listed in Table 3. Then, by examining these twelve sets of estimates it is a fairly 
simple matter to establish the "sensitivity" of the median-response estimate to 
each of the three key assumptions enumerated above. Moreover, a study of the 
dispersion and range of the twelve individual estimates for each data set permits 
an engineering assessment of both the median response stress amplitude and its 
"accuracy." 

Theory 

Whatever the response distribution assumed, it plots as a straight line on the 
appropriate probabiUty paper. These straight lines are written either as 
F = a + /3S or as Y =\o% a + /3 log S, Table 4. But as equal spacing for a 
logarithmic scale depends on the actual values of 5 involved, the tabulated values 
resulting from the following analyses pertain primarily to linear abscissae, that is, 
these tabulated values may be used for the log-normal, log-logistic, and Weibull 
distributions only if the independent variable log S is (approximately) equally 
spaced.^ 

2 The overwhelming difficulty associated with nonuniform spacing of stress amplitudes 
lies in trying to find a way to tabulate the desired A values. Otherwise, nonuniform spacings 
present no special estimation problems. Refer to Appendix. 
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Maximum Likelihood Analysis 

In maximum likelihood estimation the objective is to find those estimates a 
and p which maximize the hkelihood expression 

^ = n.^!fr^^"(i-^>"-" ^̂> 

in which the subscript / referring to the K equally spaced stress amplitudes has 
been suppressed for notational simplicity. In this expression, Â ,- is the number of 
specimens tested at stress amplitude Si, /?/ is the number that fail, and Pj is the 
true probabiUty of failure at St. Note that a and j3 enter Eq 1 through P,- = F(Yi), 
Table 4, where r,- = a +13 5,-. 

Likelihood Eq 1 takes on its maximum value when (simultaneously) 

3a 

and 

9[ log^]_n- ^jR-m dP 
" - . 2 - , / ^ 1 _ P ) aa ^̂ >̂ 

a [ l o g ^ ] - n - ^jR-NP) bP 
3/3 " L.^ p(i -P) 9,3 ^'^'^f 

These two nonUnear equations were solved numerically by expanding the 
right-hand side of the above differential equations in a Taylor's series, and then 
ignoring higher order terms to compute successive corrections 6a and 6/3 in an 
iterative procedure until the value of the smallest correction term was less than 
10"* [5]. Only a few of the small sample responses considered herein yield 
unique numerical estimates for both a and /?. These responses and estimates are 
given in Table 5, where for the normal distribution, Sso - - «//3 and o = 1/|3. For 
the remaining responses, a unique numerical solution for 5s o is possible only if a 
is specified as some multiple of the spacing d of the stress amplitudes Sj. Table 6 
lists A values based on maximum likelihood analyses with underlying normal 
response distributions whose standard deviations are respectively 3/2 d and 2/3 
d, that is, d/a = 2/3 and d/a = 3/2. Recall that Table 3 lists A values for d/a=l. 

Corresponding tables for A based on logistic and extreme value (smallest) 
distributions with identical variances contribute little to this paper and thus have 
not been presented herein. These tables, however, were used to prepare the 
over-all summary values of A found in Table 7. 
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0.33 
0.63 

3.86 
0.45 

0.50 
0.88 

1.50 
0.88 

4.70 
0.50 

1.55 
0.99 

0.67 
0.31 
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TABLE S-Values of A (above) and 1/a (below) for maximum 
likelihood analyses based on an underlying normal distribution. 

Only the responses indicated provide unique estimates 
for both parameter estimates Ss „ and a. 

Second A for Test Series Whose First Part Is 
Part of 
Series O 0 0 0 0 0 

XXX 

XOGO 3.73 
0.29 

XXXO -0.81 
0.71 

XXXX 

Minimum Chi Square Analysis 

Minimum chi square analysis is well accepted as a reasonable large sample 
alternative to maximum likelihood analysis. This estimation method also 
provides estimates which agree closely with the maximum likelihood estimates 
for small samples, Table 8. These estimates were calculated by finding those 
values of a and ^ which minimize the expression 

^. A {R~NPf 
^ LJNP{\-P) ^' 

i = 1 

Such values correspond to the situation where (simultaneously) 

i x ! - n = V JR-NP) JNP-lPR + R} dP 
da ~ ^ P{\-P^\NP{\-P) I 9a ^ ' 

and 

^^(^^S- (R-m iNP-2PR+R\ dP 
ai3 .4- Pii-p)\ NP(i-P) /aj3 ^^ 

These equations were also solved numerically such that the maximum error 
associated with either estimate was less than 10"*. The same small sample 
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TABLE 6-Values of i^ for maximum likelihood analyses based on underlying 
normal response distributions whose standard deviations a are respectively equal 

to 3/2 d (above) and 2/3 d (below). In certain cases 
the magnitude of A is relatively sensitive to minor changes in d/a. 

Second 
Part of 
Series 

A for Test Series Whose First Part Is 

O oo ooo 
X 

xo 

XX 

xoo 

xox 

xxo 

XXX 

xooo 

xoox 

xoxo 

xoxx 

xxoo 

xxox 

xxxo 

xxxx 

0.50 
0.50 

1.05 
0.70 

-0.37 
-0.06 

1.61 
1.11 

0.50 
0.50 

0.00 
0.00 

-1.10 
-0.64 

2.20 
1.65 

1.24 
1.05 

0.82 
0.62 

-0.03 
0.14 

0.42 
0.23 

-0.42 
-0.23 

-0.83 
-0.62 

-1.78 
-1.25 

1.79 
1.52 

2.19 
1.71 

1.00 
1.00 

2.67 
2.11 

1.67 
1.51 

1.24 
1.05 

0.35 
0.49 

3.23 
2.65 

2.31 
2.05 

1.93 
1.62 

1.17 
1.17 

1.57 
1.25 

0.83 
0.83 

0.50 
0.50 

-0.26 
-0.03 

2.86 
2.52 

3.23 
2.71 

2.11 
2.00 

3.69 
3.11 

2.71 
2.51 

2.31 
2.05 

1.50 
1.50 

4.23 
3.65 

3.33 
3.05 

2.96 
2.62 

2.23 
2.17 

2.61 
2.25 

1.92 
1.83 

1.62 
1.51 

0.93 
1.00 

responses which yield unique estimates of a. and |3 (^5 0 and a) for maximum 
likelihood estimation also yield unique estimates for minimum chi square 
estimation. The remaining small sample responses, as for maximum likelihood 
estimation, yield unique estimates of 5s 0 only if a is given in terms of the 
stress-amplitude spacing. The resulting A values for the normal distribution 
whose standard deviation is such that d/a = 1 are given in Table 8 adjacent to the 
corresponding maximum likelihood values for ease in comparison. 
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TABLE 1-Smallest and largest of the twelve A values generated by the twelve 
alternative analyses enumerated in the Scope paragraph. In many practical 

situations these values may differ negligibly relative to the 
accuracy actually required in analysis and evaluation. 

Second A for Test Series Whose First Part Is 
Part of 
Series O GO GOG 

X 

xo 

XX 

XGG 

XGX 

XXG 

XXX 

XGOG 

XGGX 

XGXO 

XOXX 

XXGO 

XXOX 

XXXO 

XXXX 

0.35 
0.50 

0.60 
1.05 

-0.37 
-0.01 

1.04 
1.61 

0.35 
0.50 

-0.07 
+0.03 

-1.10 
-0.35 

1.63 
2.37 

1.02 
1.24 

0.53 
0.82 

-0.05 
0.21 

0.22 
0.43 

-0.43 
-0.20 

-0.83 
-0.35 

-1.89 
-0.58 

1.46 
1.79 

1.61 
2.19 

0.93 
1.03 

2.04 
2.67 

1.45 
1.67 

1.02 
1.24 

0.35 
0.70 

2.63 
3.42 

2.02 
2.31 

1.54 
1.93 

1.08 
1.23 

1.23 
1.57 

0.73 
0.84 

0.50 
0.71 

0.27 
0.48 

2.47 
2.86 

2.61 
3.23 

2.00 
2.11 

3.04 
3.69 

2.45 
2.71 

2.02 
2.31 

1.50 
1.71 

3.63 
4.43 

3.02 
3.33 

2.54 
2.96 

2.13 
2.26 

2.23 
2.61 

1.77 
1.92 

1.50 
1.71 

0.93 
1.48 

Tabulations of minimum chi square A values for the normal distribution with 
dfa = 2/3 and d/a = 3/2 are omitted herein. These tables, as well as the 
corresponding A tables for the logistic and extreme value (smallest) distributions 
with identical variances were considered in preparing the summary of results 
which follows. 
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Second 
Part of 
Series 

TABLE 8 - Values of A for maximum likelihood analyses (above) and 
minimum chi square analyses (below) based on an underlying normal 

distribution with d/o = 1. For most responses considered 
herein these two estimates differ negligibly. 

A for Test Series Whose First Part Is 

O 0 0 0 0 0 

X 

xo 

XX 

XOO 

XOX 

XXO 

XXX 

XOOO 

XOOX 

XOXO 

XOXX 

XXOO 

XXOX 

XXXO 

XXXX 

0.50 
0.50 

0.84 
0.73 

-0.18 
-0.11 

1.30 
1.19 

0.50 
0.50 

0.00 
0.00 

-0.81 
-0.73 

1.84 
1.74 

1.12 
1.08 

0.70 
0.63 

0.08 
0.18 

0.31 
0.33 

-0.31 
-0.33 

-0.71 
-0.71 

-1.44 
-1.21 

1.61 
1.56 

1.89 
1.76 

1.00 
1.00 

2.31 
2.20 

1.56 
1.53 

1.12 
1.08 

0.45 
0.48 

2.85 
2.74 

2.14 
2.09 

1.74 
1.65 

1.17 
1.22 

1.37 
1.37 

0.83 
0.78 

0.50 
0.50 

0.10 
0.16 

2.62 
2.57 

2.89 
2.76 

2.03 
2.02 

3.32 
3.20 

2.57 
2.53 

2.14 
2.09 

1.50 
1.50 

3.85 
3.74 

3.14 
3.09 

2.74 
2.66 

2.18 
2.23 

2.38 
2.37 

1.86 
1.79 

1.54 
1.52 

0.99 
1.00 

Results 

Table 3 lists the results of maximum likelihood analysis based on the normal 
distribution with d/a = 1. The right-hand column of this table also lists Dixon's 
value for the standard error of the estimate Ss o (which is the square root of the 
error mean square given in Ref 4). Thus, assuming that 2 / 3 d < a < S/ld,Table 3 
suffices not only to estimate Ss o, but, in addition, to compute a crude interval 
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which is likely to trap this true median fatigue strength. However, without 
additional information regarding the magnitude of a, this estimation process 
may not be adequate for the given research and development. 

One way to introduce additional information regarding the location of Ss o is 
to consider the influence of alternative assumptions on the magnitude of the 
resulting Sso- If the effect of various alternatives is to change Ss o negligibly 
relative to the accuracy required in its practical appUcation, then there is no 
special estimation problem. If, on the other hand, the effect of various 
assumptions on S^o is to cause large changes in its value, then this "sensitivity" 
must be considered carefully in establishing the engineering estimate of the true 
median response. Table 7 Usts the smallest and the largest of the twelve A values 
generated by the twelve alternative solutions enumerated above (see section on 
Scope). The range established by these two values provides a simple straight­
forward index to the sensitivity of the median response estimate to the 
assumptions underlying its computation. It appears that in certain apphcations 
the two values given will be identical for practical purposes, in which case either 
the average of the two entries in Tables 7 or 8 may be used to estimate 5$ o, or 
the normal maximum likelihood estimate for d/a = 1 in Table 3 may be used. On 
the other hand, if the values Usted in Table 7 differ markedly relative to the 
accuracy required for the given appUcation, then a reliable estimate of the 
median response has not yet been obtained, and this problem should be duly 
noted in the appropriate report. 

The formats of Tables 3, 6, 7, and 8 may easily be extended to cover test 
series whose first parts are either 0 0 0 0 , 0 0 0 0 0 , 0 0 0 0 0 0 , etc., or XXXX, 
XXXXX, XXXXXX, etc. In each case the entry given in the right-hand column is 
merely increased to account for the increased number of leading O's or X's. For 
example, if the entry for a test series whose first part is 0 0 0 equals 2.62, then 
the correct A value for a test series whose first part is 0 0 0 0 equals 3.62. 
Moreover, 00000=* 4.62, 000000=> 5.62, 0 0 0 0 0 0 0 ^ 6.62, 
0 0 0 0 0 0 0 0 ^ 7.62, etc. 

For test series that start with X's, the corresponding A values are obtained 
from the given tables by (a) interchanging the X's and O's before entering the 
appropriate table, and then (b) setting the sign of A to minus its tabulated value. 

Example 

Estimate the fatigue limit for Wohler's S-N data. Solution: from Table 3, 
interchanging X's and O's and changing the sign of A as tabulated, A = —7.62 for 
Wohler's response of XXXXXXXXO. Thus, Sp = 320 -7.62 X 20 = 167.6 
centners/zoll^. Or, from Table 7, A^ax = - 7.47 and A^jn = - 7.86. Thus,5f ̂  
max = 170.6 and5^ min = 162.8 centners/zolP .̂  

3 On the basis of published large sample response data it appears that a for Wohler's tests 
is between 0.5 and 2.0 centners/zolP. Hence, Wohler's d/a is probably somewhere in the 
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Conclusions 

The following conclusions may be drawn from the above analyses of small 
sample fatigue-limit response data: S50 values are not markedly influenced by 
the method of analysis, that is, by maximum likelihood analyses versus 
minimum chi square analyses. ^50 values based on the symmetric normal and 
logistic response distributions differ negligibly for both maximum likelihood and 
minimum chi square analyses. However, the corresponding S50 values based on 
the skewed extreme value (smallest) response distribution may differ somewhat 
from the values pertaining to the symmetric normal and logistic response 
distributions. Sso values for all distribution functions and both methods of 
analysis may differ somewhat as d/a changes from 2/3 to 3/2. These differences 
in magnitude are on the same order as those mentioned above. No dis­
tribution function, method of analysis, or d/a ratio consistently yields 
either the largest or the smallest estimate of Ss 0 for the small sample responses 
considered herein. 

APPENDIX 
Nonuniform Spacing 

Tables 6 through 8 pertain only to uniform spacing of stimulus levels. For 
nonuniform spacing, iterative solutions must be used for all maximum likelihood 
analyses, as well as for the minimum chi square analyses pertaining to the normal 
and extreme value distributions. Only the minimum chi square analysis for the 
logistic function provides an explicit estimate of JSJO, namely, 

s/3d 
27T 

lOgg 

^NiP, 

^Ntq, 

2 ""Si 

2 '"Si 

in which 

and 

Pi = observed proportion failed at S,- =Ri/Ni 

qi=\ 

Evaluating this expression for o^in = S^n/lOO and for a„ ^Sult/30 
should suffice for steels to provide a reasonable range for the estimate Sso-

range of 10 to 40. As plots of A versus d/o are approximately horizontal for d/a > 3/2, 
more accurate estimates of Amax ^^'^ ^min could be taken as respectively -7.47 
(maximum likelihood, extreme value, d/a = 3/2) and -7.52 (maximum likelihood, normal, 
and maximum likelihood, logistic, each with d/o = 3/2). However, d/a in this example is so 
large that it is clear that all relevant solutions approach the limiting estimate A^^x ~ 
^min ~ -7.50. Hence, Sp for Wohler's S-N data should be estimated as 170 centners/zoll̂ . 
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ABSTRACT: Regression models, based on linear elastic fracture mechanics, 
are used to interpret the effect of stress ratio on fatigue crack growth rate in 
7075-T6 aluminum alloy. It is shown that fatigue crack growth rate can be 
related to range and maximum values of stress-intensity factor. Statistical 
techniques are used to examine the error which may accumulate when 
regression equations are used to predict crack growth versus cycles curves. 

KEY WORDS: fatigue(materials), crack propagation, probability theory, 
regression analysis, stresses, stress analysis, statistical analysis, analysis of 
variance, tension tests, fracture(materials), stress concentration 

Nomenclature 

a Half crack length 
A, q Coefficients of the Paris equation 

b Constant 
B, i Coefficients of Forman equation 

C Threshold stress intensity 
AK Range of stress intensity factor 

^max Maximum stress intensity factor 
^mean Mean stress intensity factor 

^ c Fracture toughness 
m Correction factor 
n Number of combinations of {dajdN, AK, Kj„ j ^ ) 
N Number of cycles 
p Number of coefficients in regression equation 
r Multiple correlation coefficient 

1 Postdoctoral fellow and professor of mechanical engineering, University of Waterloo, 
Ont., Canada. 
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R 
s 

SSR 
SSW 

V 
W 

' 'max 

"mean 

02,03 

"min/ '^max ^'^ "^min/"^max 
Standard error 
Residual sum of squares 
Residual sum of squares under a given hypothesis 
Variable 
Specimen width 
Maximum gross stress 
Mean gross stress 
Coefficients of regression equations 00,01 

There have been numerous publications supporting the argument of Paris and 
Erdogan[i] that fatigue crack growth rate in an elastic structure is primarily a 
function of the range of the crack-tip stress intensity factor, AK. The Paris 
equation 

% = ̂ (^' (1) 

and linear elastic stress analysis provide a straightforward procedure for 
estimating the influence of crack geometry and stress amplitude on crack growth 
rate. 

It has been argued that Eq 1 is incomplete in that it does not allow for the 
effect of load ratio, R, and the instability which occurs when the maximum 
stress intensity factor, A^max, approaches the fracture toughness, KQ, of the 
material. To allow for these effects Forman et al[2] modified the Paris equation 
to 

da ^ B{AK)i n\ 
dN (l-R)Kc-AK 

and reported excellent correlation with growth rate data for7075-T6 and 2024 
aluminum alloys. Hudson and Scardina[i] also found good correlation between 
Eq 2 and their very comprehensive growth rate data for 7075-T6 alloy. 

However, neither of the aforementioned papers examined the error which 
may accumulate when Eq 2 is used to predict the crack growth versus cycles 
curve for a particular specimen. To obtain a measure of this error for Eq 2, it 
was necessary to reanalyze Hudson and Scardina's data. A set of experiments, 
chosen with a table of random numbers, is excluded from the regression analysis 
used to find the coefficients B and /. This set of experiments is then used to test 
the accuracy of Eq 2 as a predictor. A similar approach is used to assess other 
equations proposed for predicting the effects of stress ratio on fatigue crack 
growth. 
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Fatigue Crack Growth Data 

Hudson and Scardina's specimens, 35 in. long by 12 in. wide, were cut from 
sheet with a nominal thickness of 0.09 in. Tension-compression loading was 
applied normal to a central, through-thickness notch, initially 0.1 in. long by 
0.01 in. wide. The specimens were clamped between lubricated guides to prevent 
buckling and out-of-plane vibration. Crack growth was measured with a 
microscope and grids, photographically printed on the specimen. 

Tests were conducted at 13 load (stress) ratios, ranging from —1.0 to 0.8. 
Several stress levels were investigated for each stress ratio. The mean and 
alternating loads (gross stress) were kept constant throughout each test. Each 
test was duplicated and an average crack growth curve derived. All of the data 
analyzed in this paper were obtained from these average curves. 

To avoid any ambiguity arising from measurements taken in the early stages 
of crack propagation, this paper only considers crack growth measurements 
taken after the crack had grown to a 0.2-in. length. The slope of the straight line, 
connecting two consecutive points on the crack length versus cycles curve, was 
taken as the average crack growth rate at the middle point. The range (AK), 
mean (/i^mean)) r̂id maximum (A^max) values of stress intensity factor quoted 
herein correspond to this middle point. 

There was a transition from normal to shear mode cracking within the range 
of crack growth rate, da/dN, of 8.8 X 10"* and 2.9 X lO'^ in./cycle. Of 290 
combinations of (AK,Kt„ax' R, da/dN) used in this analysis, 30 have da/dN 
values within or below this transition range. This has been ignored since there 
was no discontinuity in the slopes of the log (da/dN) versus log (A^) curves at 
the fracture mode transition. Similar observations on fracture mode transition 
have been reported by Schijve [4] and Hertzberg[5]. 

Table 1 lists the 46 combinations of mean and semirange of gross stress 
investigated by Hudson and Scardina. Combinations 21 and 26 have not been 
considered because of the paucity of crack growth data and the high maximum 
stress relative to yield stress. Nine other combinations (see Table 1) were chosen 
using a table of random numbers. The data from these combinations were 
excluded from the regression analyses so that they could be used to test the 
regression equations. 

Regression Equations for Fatigue Crack Growth Rate 

When Hudson and Scardina used the method of least squares to fit Eq 2 to 
their data they assumed that "the compression portion of a loading cycle did not 
significantly affect fatigue crack growth." If the same approach is used to 
analyze only 35 of their 46 sets of data, Eq 2 can be written as 

^ _ 10-14.36 ^ ^ ^ 3 . 5 3 

dN il-R)Kc-AK (^) 
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TABLE 1 -Summary of test program and life calculations. 

Specimen 
Number 

1 
2 
3 
46 
5 
6 
7 
8 
96 

10 
11 
12 
13 
14* 
15 
16 
17 
18 
19* 
20 
21'^ 
22 
23 
24* 
25 
26̂ ^ 
27* 
28 
29 
30 
31 
32* 
33 
34 
35 
36 
37 
38* 
39 
40 
41 
42 
43 
44 
45 
46* 

Mean 
Stress" 

0 
0 
0 
0 
0 
0 
2.5 
2.5 
5 
2.5 
2.5 
5 
2.5 
5 

10 
5 
2.5 

20 
10 
15 
25 
20 
15 
10 

5 
30 
25 
20 
15 
30 
25 
20 
15 
10 
30 
25 
20 
15 
10 
30 
25 
20 
15 
10 
30 
25 

Semirange 
of Stress 

30 
25 
20 
15 
10 

5 
20 
17.5 
25 
15 
12.5 
20 
10 
15 
20 
10 

5 
30 
15 
20 
25 
20 
15 
10 

5 
20 
16.7 
13.3 
10 
15 
12.5 
10 

7.5 
5 

10 
8.3 
6.7 
5 
3 
5 
4.4 
3 
3 
1.7 
3 
2.8 

R 

- 1 . 0 
- 1 . 0 
- 1 . 0 
- 1 . 0 
- 1 . 0 
- 1 . 0 
-0 .8 
- 0 . 8 
-0 .7 
-0 .7 
-0 .7 
-0 .6 
-0 .6 
-0 .5 
-0 .33 
-0 .33 
-0 .33 
- 0 . 2 
- 0 . 2 
-0 .14 

0.0 
0.0 
0.0 
0.0 
0.0 
0.2 
0.2 
0.2 
0.2 
0.33 
0.33 
0.33 
0.33 
0.33 
0.5 
0.5 
0.5 
0.5 
0.5 
0.7 
0.7 
0.7 
0.7 
0.7 
0.8 
0.8 

Cycles to 
Final Crack Length 

900 
2 140 
5 430 

15 300 
56 000 

646 000 
2 940 
6 720 
1 285 
8 460 

16 300 
2 630 

27 000 
6 900 
1083 

17 900 
136 000 

98 
3 280 

630 

410 
1380 
7 100 

62 000 

420 
1440 
4 620 

360 
1 180 
2 900 
5 450 

28 400 
1 760 
3 400 
5 900 

24 000 
112 500 

8 700 
16 700 
75 000 
80 000 

1155 000 
42 500 
55 000 

Predicted Cycles 
to Final Crack 

Length Based on 
95% ProbabiUty 

Limit 

300 
800 

1600 
5 500 

26 000 
380 000 

1 200 
2 000 

500 
3 400 
7 000 
1000 

15 000 
2 600 

600 
8 500 

135 000 
80 

1 800 
380 

250 
850 

5 000 
68 000 

300 
800 

3 000 
260 
700 

1 800 
3 700 

27 000 
900 

1900 
3 600 

15 000 
72 000 
4 000 
8 000 

26 000 
44 000 

300 000 
11000 
17 000 

Actual 
Predicted 

3 
2.7 
3.4 
2.8 
2.1 
1.7 
2.5 
3.3 
2.6 
2.5 
2.3 
2.6 
1.8 
2.7 
1.8 
2.1 
1.0 
1.2 
1.8 
1.7 

1.6 
1.6 
1.4 
0.9 

1.4 
1.8 
1.5 
1.4 
1.7 
1.6 
1.5 
1.1 
2.0 
1.8 
1.6 
1.6 
1.5 
2.2 
2.1 
2.9 
1.8 
3.9 
3.9 
3.9 

" All stresses in ksi. 
' Tests excluded fro 
' Test not included in analysis. 
Tests excluded from regression analysis. 
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where: 

da/dN = in.l cycle, 
K = o^/miW/na tan -najWf^ psi VET, and 

A:C = 40,000 >A psi VST. 

I t should be noted that Hudson and Scardina defined K as 
o\/a(W/-na tan -najW)^ so the coefficients in their equation differ from those in 
Eq 3. The ratio oi da/dN predicted by Eq 3 to that predicted by Hudson and 
Scardina lies within the range 1.01 to 0.89 for AK, (o\/m), between 2000 and 
40,000 psi Vin. 

However, an examination of the raw experimental data casts doubt on the 
assumption that the compression portion of a loading cycle can be ignored. For 
example. Fig. 1 shows four of the average crack growth curves. The maximum 
stress in each case was 30 ksi. There is a systematic increase in the number of 
cycles required to propagate a crack to a given length, as the minimum load 
increases from —30 ksi to zero. In view of this, the 35 sets of data were 

mbol 
o 

X 

A 

• 

"max. 
30 ksi 

30 

30 
30 

"mm. 
- 3 0 ksi 

- 2 0 

- 1 0 
0 

CYCLES (Thousands) 
FIG. I-Effect of compression loading on crack growth. 
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reanalyzed considering tension and compression loads. In this case Eq 2 becomes 

(4) 
da __ 10-''-^(Ar>^''^ 
dN il-R)Kc-J^ 

A more general form of Eq 2 is 

da 
0o(A/Q^'(^O^' 

where 

V = (l-R)Kc -AK 

(5) 

(6) 

Regression analysis considering tension and compression loads and Eqs 5 and 6 
then gives 

da _10-'»-"(AAD^-^« 
dN [(l-R)Kc-AKy-^^ (7) 

Table 2 lists the total, regression, and residual sums of squares for Eqs 3, 4, 
and 7. These and the degrees of freedom (df) have been used to calculate r^, the 
square of the multiple correlation coefficient, and s, the standard error. 
Although Table 2 shows that Eqs 3, 4, and 7 are good fits to the experimental 
data it does not guarantee that a suitable model equation has been found [6]. 
Also there is no evidence that it is essential to include KQ directly in the crack 
growth equations. Forman included KQ in his equation to allow for the 
instability that occurs when K^ ax approaches ^ c • An alternative approach is to 
put an "external" limit on K^^^. An advantage of this approach is that it does 
not require a very accurate value of KQ • It is usually obvious from the shape of 
the crack length versus cycles curve that instability is very near. 

TABLE 2—Analysis of variance table. 

Equation 
Number 

3 
4 
7 
8 

10 

Total Sum 
of 

Squares 
(corrected) 

238.92 
238.92 
238.92 
238.92 
238.92 

df 

289 
289 
289 
289 
289 

Regression 
Sum 

of Squares 

220.41 
223.97 
228.65 
226.23 
226.27 

df 

1 
1 
2 
2 
3 

Residual 
Sum 

of Squares 

18.51 
14.95 
10.27 
12.69 
12.65 

df. 
V 

288 
288 
287 
287 
286 

Proportion of 
Variation 
Explained 

by Regression 
Equation, r'' 

0.9220 
0.9360 
0.9570 
0.9469 
0.9470 

Standard 
Error, 

s 

0.2535 
0.2278 
0.1891 
0.2103 
0.2103 
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Since AK and A^mean or AK and Â max fully define the loading state and 
crack geometry, it is logical to ask whether ^mean or ^max can be used instead 
of[il-R)Kc ~AK] inEqS. 

If V = K„iea„, data for K„,ean ^ 0 cannot be considered. This is a serious 
limitation, so only V = K^a.^[7,8] will be considered in this paper. Regression 
analysis then gives 

| ^ = 1 0 - ^ i " ( A / 0 ^ " ( / ^ „ 3 x ) ^ " (8) 

Table 2 shows that Eq 8 gives as good a fit to the data as Forman's equation. 
To use any of these regression equations as a predictor it is necessary to make 

certain assumptions about the residuals. In particular, the residuals are 
independent, follow a normal distribution, have zero mean, and a constant 
variance[6]. If the regression equation/model is reasonable, the residuals should 
exhibit tendencies that confirm these assumptions. 

Figure 2 shows residual log da/dN plotted against observed log (da/dN) for Eq 
8. The residuals are distributed randomly around zero over the full range of log 
da/dN. Figure 2a shows the residuals plotted as a histogram; they follow a 
normal distribution with zero mean. Therefore, Eq 8 will be used to estimate 
theoretical crack growth curves and associated probability limits for the nine sets 
of experimental data not included in the aforementioned regression analyses. 

If (da/dN)j is fatigue crack growth rate calculated using Eq 8 and particular 
values {AKj, A^max •) then (1 — a) percent probability limits on {da/dN)i are 

~^.±t{v,l-^M)[s^+m]y-

where t(y, 1 — V2oi) is obtained from a t distribution table for v degrees of 
freedom on the residual sum of square (see Table 2);x is the standard error and 
m is the variance of (da/dN)^. 

To calculate a crack length versus cycles curve, it is assumed that {da/dN)f 
applies for a small increment of cycles AÂ . This gives a new value for crack 
length 2{a + Aa) and new values for AK and A^ax- This iteration is repeated 
until the required life has been exceeded or an unstable crack length has been 
reached. The values of AN used were related to the frequency of experimental 
measurements in each test. It can be shown that small changes in AN do not 
significantly influence the predicted curves discussed below. 

Figures 3 through 11 show, for Eq 8, predicted mean crack growth curves and 
curves based on 75, 85, and 95 percent probability limits on log da/dN. All nine 
experimental curves lie within these predicted limits. If the 95 percent limit had 
been used as the design limit for these nine specimens, the ratio of actual to 
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FIG. 11 -Experimental and predicted crack growth curves. 

predicted life would have varied between 1.4 and 3.9. If the mean line had been 
used as the design limit, the ratio of actual to predicted life would have varied 
between 0.7 and 1.5. 

If the 95 percent probability Hmit and Eq 8 are used to predict the lives of 
the 35 specimens used in the derivation of Eq 8, the ratio of actual to predicted 
life varies between 0.9 and 3.9 (see Table 1). In only one test would this ratio 
have been less than 1.0. 

Since the variance was uniform (see Fig. 2), these ratios of actual to predicted 
Ufe show that it would have been necessary to design with hnes at least two 
standard deviations below the mean log da/dN versus log AA!' lines. This of 
course is a well-known design procedure [9]. However, the inability of this 
equation to account for interaction effects, which are known to affect life 
significantly during variable-amplitude loading [4], leaves one in some doubt as 
to what factor of safety to use in the more general situation. 

It can be shown that the residual log dajdN for Eq 4 are also distributed 
randomly around zero and follow a normal distribution with zero mean. Figures 
3 through 11 also show the predicted mean crack growth curves for Eq 4; for 
convenience of illustration, probability hmits are not shown for Eq 4. Since the 
standard error is of the same magnitude for Eqs 4 and 8 (see Table 2), Figs. 3 
through 11 suggest that Eq 4 has little or no advantage over Eq 8 as a predictor. 
To generaUze this conclusion it will, of course, be necessary to examine other 
materials and geometries. 
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In view of the large differences between experimental and predicted mean 
crack growth curves on the figures, it is instructive to examine the lack of fit 
between experimental and mean log daJdN predicted using Eqs 4 and 8. Figure 
12 makes this comparison for a sample of the nine specimens excluded from the 
regression analyses. Figure 12 shows that the agreement between experiment and 
predicted mean log da/dN is reasonably good. A comparison of Figs. 12 and 3 
through 11 emphasizes that large cumulative errors can occur when Eqs 4 and 8 
are used in iterative calculations, which transform from logarithm to linear 
scale. 

Both Eqs 4 and 8 predict that da/dN is zero when isTmax is zero. It can be 
argued that da/dN may tend to zero when /^max is greater than zero. This 
concept of a "threshold" stress intensity, which must be exceeded for fatigue 
crack growth, can be examined by letting V = Kmax - C in Eq 5. Regression 
analyses were made for values of C, ranging from —60 to 4 ksi Vhi. and the 

8 

m 

-2 
EON (8) 

EQN (4) 

Log (AK), Ksi (in) 

A K , Kmox 
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06 0-8 10 12 1-4 1-6 1-8 20 
FIG. \2-Experimental and predicted mean crack growth rate curves. 
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residual sum of squares plotted against C, Fig. 13. Although the best fit is 
obtained when C is -30 , any value of C between about —40 and -10 is 
acceptable. It must be emphasized that C is a mathematical parameter and that 
the physical "threshold" stress intensity can only be found by experiment. If 
this physical "threshold" stress intensity is known it can be used as an 
"external" limit on Eq 5, where V = Kmny^ -C. 

A somewhat different approach to the analysis of these fatigue data is to 
consider (Aa, a^ax'^i) or (Aa, Ojj^e^n, a) as the principal variables, that is, 
assume 

^=0o(Aa)*.(a^3x)*^«*^ (9) 

Regression analysis then gives 

§^=lO-''''iAay'\o^,J'''iar'' (10) 

It can be shown that the residual log (da/dN)'s for this equation are distributed 
randomly about zero, have a constant variance, and follow a normal distribution 
with zero mean. 

In deriving Eq 10 no reference has been made to Unear elastic fracture 

-70 '60 -50 -40 -30 j_ -20 -10 0 10 
C ksi in.* — ^ 

FIG. 13-Estimation of "apparent" threshold stress-intensity factor. 
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mechanics. If a linear elastic fracture mechanics approach is valid, there should 
be a Unear relationship between the coefficients in Eq 10, namely 

0 3 - 2— *• *̂  

It can be shown (Table 2), for basic data, that the hypothesis 
01 = 02 = 03 = 0 is rejected[6]. Therefore, hypothesis testing[6] can be used to 
assess whether the relationship of Eq 11 holds for Eq 10. There are four 
coefficients (p), that is, 0o>0i.02, and 03, 290 (H) combinations of 
[da/dN, Aa, Omax.'̂ ]> and the residual sum of squares (SSR) is 12.6457. This 
sum of squares has (K - p), that is, 286, degrees of freedom. 

The hypothesis to be tested is 

_ 01 + 02 .,-s 
03 r — (12) 

This provides one independent equation relating the coefficients if 6 is a known 
number. Substituting Eq 12 into Eq 9 gives 

^=0o [Aaa ' / i> ]0 , [ a„^^a» /6 ]0 , (13) 

Regression analyses can be made for various values of b, each value of b giving 
a set of values for 0o,0i , and 02. The residual sum of squares for these 
regressions (SSW) has (n -p+ 1) degrees of freedom. Since the errors are 
normally distributed and independent, the differences (SSW - SSR)are the sum 
of squares due to hypothesis, Eq 12, and have 287—286 degrees of freedom. To 
test the hypothesis, the ratio 

-. /SSW - SSR \ / S S R .,^-
^ = V 2 8 7 - 2 8 6 j / o r ^ (14> 

is compared with a value taken from a table of the F distribution. For a 95 
percent level of significance, the F value with one degree of freedom for the 
numerator, and 286 degrees of freedom for the denominator is 
^1,286; 0.95 =3.84. When b = 2, SSW=12.8099, and F=3.73. Since 
-^<-^i,286;o.9s the hypothesis 03 =(0, + 02)/2 is not rejected and, this analysis 
gives 

da 
^=10-^ ' '««(Aov^) ' -««(a„axV«)^-^V/ ' -^ '^^-^«^ (15) 

where m = 1. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 11:08:31 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



MUKHERJEE AND BURNS ON REGRESSION MODELS 59 

It can be shown that hypothesis (Eq 12) is not rejected for values of b 
between 1.8 and 2.0. When fc = 1.8, the regression analysis gives 

This equation can be rewritten as 

da 
^ = 1 0 - ' ^ « ' ( A a > ^ ) ' - ' ' ( a „ 3 x N ^ ) ^ " ( ' ^ / ' - = ' * ' " ^ (16) 

where m = a _ -0 .0 5 5 

The terms m = 1 and m = « " • " " in Eqs 15 and 16 are analogous to the finite 
width correction factor {Wf-na tan •najWf^^ used previously when examining Eqs 
2-8. Figure 14 shows these quantities plotted against crack length, a. Since the 
finite width correction factor lies close to the envelope defined by w = 1 and 
^ _^o.oss j ^ seems reasonable to conclude that Eqs 8 and 10 are related by Eq 
11 and the finite width correction factor. If this were not the case, it would be 
difficult to justify using Eq 8 in preference to Eq 10 without a much more 
detailed comparison of their value as predictors. 

Conclusions 

The regression equation da/dN=do(AK)^i(Kmax)^^ can be used to inter­
pret fatigue crack growth data for 7075-T6 aluminum alloy sheet. The 
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predictions of this equation compare favorably with that of the equation 
proposed by Forman et al, that is, dajdN = [B{M)i] / [(1 - R)Kc - AK]. Since 
the first equation does not require a very precise knowledge of fracture 
toughness, A'c, it may be more useful to the designer. 

Large cumulative errors can occur when these or other regression equations 
are used to predict crack growth versus cycles curves, that is, transformation 
from logarithm to linear scale and integration. If the residuals do not violate 
certain assumptions, these cumulative errors can be allowed for by using upper 
probability limits on fatigue crack growth rate. 
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ABSTRACT: The paper deals with the scatter under program and random 
loading. For the explanation of the results, constant amplitude tests and tests 
with biharmonic loading are also included in the study. The basis of the 
comparison of the data is the logarithmic normal distribution and its 
parameters. It was found that scatter under program, random, and biharmonic 
loading is identical and is similar to the scatter derived in constant ampUtude 
tests in the life range of about 10' load cycles. This is true for life as well as 
for crack propagation. Miner's rule overestimates the scatter, which occurs in 
tests simulating irregularly varying service loads. An important influence on 
scatter is due to the testing machine. 

KEY WORDS: fatigue(materials), probability theory, probability distribution 
functions, crack propagation, crack initiation, reliability, loading, scattering, 
fatigue life, constant life fatigue diagrams, statistical analysis, fatigue tests, 
loads(forces) 

A cumulative damage analysis is the foremost problem in estimating the 
fatigue life of structures, which encounter irregularly varying service loads. Such 
an analysis may include the following possible damage parameters: life, crack 
initiation time, crack propagation rate, residual strength, and failure location in 
complicated structures with several degrees of freedom for fracture. All these 
data are of a statistical nature, and their scatter must be included in fatigue life 
or reliabiUty analysis. 

An essential question is whether a distribution function such as a logarithmic 
normal or a WeibuU distribution can be related to fatigue data. If a known 
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62 PROBABILISTIC ASPECTS OF FATIGUE 

distribution function applies to the data, the statistical treatment is very 
appropriate. This is, however, not just a question of curve fitting and 
extrapolation; a specific model of failure may belong to a certain distribution 
function. Such a model can be based, to a certain extent, on the behavior of real 
materials and may be described by the growth of a crack or the multiplication of 
the number of cracks by advancing slip lines, increasing weakness of grain 
boundaries, etc. So far, distribution functions and their validity describing 
fatigue behavior were checked mainly for constant amplitude loading. It is 
known, however, from cumulative damage studies, that many materials show 
pronounced interaction effects, with respect to the load sequence. For this 
reason, load sequence has to be included in a discussion concerning scatter of 
fatigue data. 

In the present paper scatter under conventional 8-step program loading and 
digital random loading is dealt with. This treatment is based on a study of scatter 
and several influencing factors under constant amplitude loading for several 
damage parameters. 

As an intermediate step between program loading and random loading on one 
side and constant amplitude loading on the other, biharmonic loading is also in­
cluded. Biharmonic loading offers the possibility of studying cumulative damage 
effects in a clear and systematic manner. 

Distribution Functions 

There are several distribution functions that have been applied to fatigue 
data. However, the logarithmic normal and the Weibull distributions have been 
used most frequently. Both were found to be applicable to a wide range of 
materials and testing conditions. Moreover, within certain Umits, there is no real 
difference between these distribution functions although they are based on 
different failure models[i,2]. Both models seem to be reasonable from a 
physical point of view for describing the fatigue process as it is known today. 
The Weibull distribution is more adjustable, because it has three free parameters, 
which are N^, the minimum hfe parameter,7Va^ the characteristic life parameter 
(up to Na 63.2 percent of the population have failed) and b, the Weibull shape 
parameter. Runouts, which may occur near the fatigue limit, can also be 
included. The Weibull distribution is often preferred, because it leads to a 
realistic reUability analysis [5]. The logarithmic normal distribution is described 
fully by two parameters, which are very distinctive and enable an easy 
comparison of data from different test series. Besides that, a minimum life,iVo, 
can also be incorporated into the logarithmic normal distribution. In this case 
the log (Ni — No) values are normally distributed. Figure la and 1^ show data 
from two groups of 77 constant amplitude fatigue tests, each fitted by a 
logarithmic normal and by a Weibull distribution. From the figure it can be 
concluded, that there is no reason to favor one of the distribution functions for 
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the representation of the data. Hence, because of the mentioned simplicity, the 
logarithmic normal distribution is used throughout this paper, to represent 
fatigue data. The fatigue behavior will be described by the sample arithmetic 
mean of the log-transformed life data 

x = i x : logÂ , 
I = 1 

and the sample standard deviation of the log-transformed life data 

^ = ,/n-^E/>°^^-')^ 

which are sample estimates for the respective data of the population. 
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Factors Influencing Scatter 

As can be seen from many studies, the scatter under constant amplitude 
loading is influenced by many factors. These are: type of material and its 
condition; type of loading; size and shape of a specimen or structure; and the 
environment. The damage parameter considered probably influences the 
resulting scatter also. It should be noted, that the scatter is also a function of 
mean stress and amplitude (see for instance Ref 4). Figure 2 shows S-N curves 
and the respective scatterband for a certain life range. This life range has been 
chosen because a correlation may exist between the scatter from constant 
ampUtude and program loading [4-6\. 

Figure 2 shows that the scatter below about 10^ load cycles to failure is 
nearly constant and independent of stress. Therefore, it can be concluded that 
the Hfe is the dominant factor on scatter and not stress, although both are 
correlated. The data, shown in Fig. 2, were also evaluated for crack propagation. 
Considered were the numbers of load cycles Nf required to grow a crack from a 
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length of / = 0.5 mm to the critical crack length If at final failure. Nf may be 
defined as the macrocrack propagation stage of the whole fatigue process. The 
scatter data for the crack propagation stage are compiled in Table 1. Also shown 
are the scatter values for the total fatigue life as derived from Fig. 2 and other 
constant amplitude tests. A comparison leads to the conclusion that scatter in 
both cases is very similar for fatigue lives < 10^ load cycles. It has to be 
considered, however, that the confidence in crack propagation stage data is 
somewhat limited because of some experimental difficulties involved in 
measuring the TV/ = o.s mm values. The similarity between the scatter of life and 
crack propagation data is documented in the Uterature also [7-9]. There an 
increasing scatter was often found with decreasing stress. In the present study 
the scatter for the crack propagation stage was found to be independent of 
stress, because it is formed by the scatter for life until a crack length of 
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TABLE 1 -Parameters of the distributions of total fatigue life and crack 
propagation stage as derived from Fig. 2 and other constant amplitude tests (centrally 

notched Alclad 2024-specimens, Kj =3.1). 
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/=0.5mm is reached. If these data change in the same manner, the crack 
propagation stage must not be influenced. The physical explanation for this 
effect may be that the behavior of a crack of / = 0.5-mm length is already 
governed by stress and strain considerations on a macroscopic scale. The 
stress-strain field around the crack tip is responsible for crack propagation as 
well as for the residual strength and is relatively independent of the 
microstructural details in a material. The crack initiation stage, which here is 
arbitrarily defined by the number of load cycles till a crack of / = 1 ;u has 
formed, would probably show a much higher scatter. This statement, however, 
has not been proved up to now because of experimental difficulties. 

Biharmonic Loading 

A biharmonic load-time function is generated by the superposition of two 
sine waves with different frequencies, phase angles, and amplitudes. For studying 
fatigue damage accumulation, biharmonic load-time functions with frequency 
ratios of the two sine waves of 2:1 and-phase angles of — 7r/4 or + 7r/4 are very 
appropriate. They enable the explicit study of the influence of sequence effects 
as caused by two consecutive load cycles with different amplitudes and mean 
stresses. A biharmonic load generation system and the definitions for biharmonic 
load traces are described elsewhere [10,11]. 

As can be seen, the scatter occurring in biharmonic tests does not differ much 
from the scatter in constant amplitude tests with the same load range 
I'̂ max - 'S'min 1̂  and the same mean load. At first glance this is astonishing, since 
the scatter in constant amphtude tests with the amplitude and mean load of the 
smaller load cycles within the biharmonic load cycles is higher (see Fig. 2 and 
Table 1). 

The described results of tests with biharmonic loading lead in a straight­
forward manner to the conclusion that the scatter in fatigue tests with varying 
amplitudes is determined mainly by the highest load range and mean load within 
the load-time function. An explanation for this fact may proceed from the idea 
that, to a certain extent, high loads eliminate differences in local stress 
concentrations. The given explanation could be verified in low cycle fatigue 
tests, where the stress-strain behavior was measured with a special pick-up at the 
notch root. Figure 3 shows typical examples of hysteresis loops as derived from 
a biharmonic and a constant amplitude test. It is seen that there is no difference 
in the overall appearance, which means that the plastic deformation behavior 
must be identical. 

In Table 2 data are Usted for the scatter within the crack propagation stage as 
already defined. The scatter seems to be somewhat higher than for the total Ufe 
data, but this may be due to the already mentioned uncertainties in measuring 
^1= 0.5 m m -

3 See Table 2. 
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TABLE 2-Parameters of the distributions of total fatigue life and crack propagation 
stage as derived from tests with biharmonic loading (centrally notched Alclad 2024-

specimens, K̂  =3.1). 
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Cumulative Damage Hypotheses 

An essential question in estimating cumulative damage effects, and particu­
larly fatigue life, is the applicability of a cumulative damage hypothesis. Most 
studies deaUng with this problem included scatter by summing up the damage 
ratios derived for a constant probability of survival. This method, however, leads 
to an overestimation of scatter, because the latter, as already described, is 
determined by the highest load amplitudes. An example to support this 
statement is shown in Fig. 4. The lives from biharmonic tests with an amplitude 
ratio of S^o/Sag - 0.5 and a calculated Ufe distribution for the same loading 
condition using the Palmgren-Miner hypothesis are plotted. The higher scatter of 
the calculated distribution is due to the high scatter of the fatigue life data in 
constant amplitude tests with the same load range and mean load as the smaller 
load cycle within the biharmonic load cycle (see Fig. 2 and Table 1). 

Scatter Under Program and Random Loading 

Cumulative damage fatigue hfe analysis (or the analysis of any other damage 
parameter) is often performed in program tests or by the application of a 
cumulative damage hypothesis. As a more recent method random testing, which 
simulates real service conditions more closely, has to be considered also. There 
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Centrally Notched 2024-Specimens' 
(K, = 3.1) 
Biharmonic LocXiing 
R=0; Sag s 7kp/mm' 
Sao/S„=Q5 

(Sao. Sag.see Table2} 

iOxlO^ 

Fatigue Life, N 
FIG. 4-Fatigue-life distributions as derived from tests with biharmonic loading and as 

calculated by the Palmgren-Miner hypothesis. 

are, however, still several reasons which favor the application of program tests or 
of a cumulative damage hypothesis [ i2] . Because of these reasons, several studies 
were performed to check the accuracy of the different methods and to compare 
the results. There are many influencing factors, which can lead to different 
cumulative damage analyses[i2-i4]. The main factor, however, seems to be the 
type of load spectrum. So far, nearly all studies performed dealt with fatigue life 
and crack propagation, and the sample means were compared. But nearly 
nothing is known about the scatter under program and random loading or by 
using a cumulative damage hypothesis, respectively. 

In Figure 5 the results of program and random tests are shown. The data stem 
from tests with digital random and conventional 8-step program loading. The 
basis for these tests is described elsewhere [ i2- i5] . Figure 5 shows that though 
there is a pronounced difference in life, which can be attributed to interaction 
effects, there is nearly no difference in scatter. This fact supports the statement 
already made, that scatter depends mainly on the highest load range occurring in 
a load-time function. In the present study the influence of the stress level on 
scatter under program or random loading was not considered. According to 
several other studies, however, the scatter under program lc5ading is nearly 
constant for a large range of stress levels and lives. This is in contrast to the 
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behavior of scatter along an S-N curve for constant amplitude loading and higher 
fatigue lives (above 10' load cycles). The present study also confirms many 
results mentioned in the literature that scatter under constant amplitude loading 
in a life range below about 10' load cycles is about the same as the scatter under 
program or random loading (see for instance [4-6]). The Ufe distribution as 
calculated by the Palmgren-Miner hypothesis is also shown in Fig. 5. The scatter 
of this distribution is higher than the scatter as derived from program or random 
tests. This is again a result of the increasing scatter along an S-N curve. A similar 
result was also mentioned in Ref /6. 

Influence of Testing Machine 

In all the considerations so far the scatter caused by the testing machine or 
installation has been neglected. This, however, may be an important in­
fluence [i 7-79] . The scatter caused by the testing machine can be attributed to 
many factors, for instance to misalignment of specimens due to careless 
clamping, to errors in the load-measuring system, to deviations in the control 
circuit, to faulty cycle counters, or simply to the various skills of different 
persons handling a machine. In Fig. 6 data are shown from program tests with a 
servohydraulic testing machine. For the tests an 8-step program has been used, 
which exhibits a variation in load ampUtudes of 1:10 (see for instance Ref 12 
and a frequency range of 1:50 Hz. In one case the data exhibit a high scatter, in 
the other the scatter is much less. In the case with the higher scatter, the 

6 9 10 

Fatigue Life, N 
FIG. 6-Scatter in program tests as influenced by the setting of the control circuit of a 

closed loop servohydraulic testing machine. 
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machine-control circuit has always been optimized in step 4 of the 8-step 
program. For this step the combined error (control and measuring) was less than 
1 percent. In all other steps the error could be higher. This method of 
optimization is often used in program testing. 

In the second series of program tests, which show a much lower scatter, the 
machine was optimized carefully for all steps during the tests. This led to an 
error of less than 1 percent in all steps. This optimization may be performed by 
means of a computer in a more effective manner. 

Conclusions 

For a comparison of fatigue data derived under different testing conditions, it 
is convenient to apply the logarithmic normal distribution with its main 
parameters: arithmetic mean and standard deviation of the log-transformed cycle 
lives. This is valid for a finite life range only. 

The scatter is influenced by many factors such as material, material 
processing, geometric shape, type of loading, environment, and the damage 
parameter under consideration. Especially important are mean stress and 
amplitude and the life range. 

For constant amplitude tests the scatter in life and crack propagation rate is 
similar. This holds also for biharmonic loading. 

Biharmonic loading is an appropriate method for studjdng the accumulation 
of damage under consecutive load cycles with varying amplitudes and mean 
stresses. The scatter under biharmonic loading is nearly identical with the scatter 
in constant ampUtude tests, if the constant amplitude tests are run with the same 
total load range as the total load range of the biharmonic loading. That means 
that the scatter under variable amplitude loading is determined mainly by the 
highest load level. 

The scatter under program and random loading was found to be nearly 
identical with the scatter in constant ampUtude tests in the life range of about 
10' load cycles. 

The results mentioned in the preceding two paragraphs lead to the 
conclusion, that the scatter in variable load tests of any kind is determined by 
the highest loads. 

The application of the Palmgren-Miner hypothesis overestimates scatter. 
In all studies on scatter, the influence of the testing installation has to be 

considered. 
For the performance of a reUabiUty analysis for structures subjected to 

irregularly varying service loads, the standard deviation of the log-transformed 
cycle Uves of the population should be known. Instead, an estimated standard 
deviation has to be used, which can be derived from program or random 
tests [ 7,20]. From the present test results it is seen that an estimate for the 
standard deviation can be derived from program as well as from random tests. 
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ABSTRACT: In the reliability analysis for a fail-safe structure, statistical 
information regarding service time until fatigue crack initiation as well as 
subsequent reduction in residual strength is indispensable. Safety during the 
service life requires that critical cracks be detected at inspections before the 
probability of the damaged structure meeting a load exceeding its residual 
strength has reached an unacceptable level. About 20 sheet panels of 2024-T3 
aluminum have been fatigue tested until cracks of various lengths appeared, 
using a flight-by-flight load program. The fatigue panels had four rows, with 
four small strips of the same sheet material in each row. The strips were 
attached to the sheet by two rivets, forming 32 stress concentrations in each 
panel. After fatigue cycling, the strips were replaced by continuous stringers 
and the residual tensile strength of the panels was determined. The mean of 
the logarithm of the number of flights to crack initiation amounted to 4.43, 
that is, 27,000 flights, while the standard deviation was 0.17. The relationship 
between the residual strength of the stiffened panel and the critical crack 
length shows rather little stochastic variation. When the residual strength is 
plotted versus the crack propagation time, however, the scatter does not seem 
to be negligible. 

KEY WORDS: fatigue(materials), reliability, probability theory, statistical 
analysis, distribution theory, WeibuU density function, crack propagation, 
crack initiation, stress analysis, fatigue limit, tensile properties, fatigue tests 

Nomenclature 

/ Frequency in cycles per second 
G{t) Probability of failure of structure containing a crack, during 

time t after crack initiation 

1 Structures Department, The Aeronautical Research Institute of Sweden, Stockholm, 
Sweden. 

75 

Copyright 1972 by ASTM International www.astm.org Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 11:08:31 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



76 PROBABILISTIC ASPECTS OF FATIGUE 

H Expected number of times per hour a load amplitude $„ is 
exceeded 

HQ Load spectrum parameter , / fo ~ 0-2 used in numerical example 
h Load spectrum parameter, h =20 used in numerical example 
/ Crack length, /^ is length of critical crack in static test 

M Order number of fatigue life of test specimen 
m Number of equally fatigue-sensitive elements in a test panel 
N Total number of test specimens 
n Number of inspection intervals during service life 

P, /*„ ProbabiUty of complete failure during service life, during interval 
i> 

Pf., Pc 1 Probability of crack initiation, first crack initiation 
P„ Probability of ultimate static failure of undamaged structure 
Pc Frequency function of crack initiation 
R Parameter of residual static margin function, 7? = 10,000 used in 

numerical example 
S Stress or load 

Sa Load or stress amplitude 
Sm Mean load or stress 
So Original static margin 
Sc Ultimate residual strength of panel containing crack 
Su Ultimate static strength of undamaged structure 
Sa Normalized load amplitude, s^ = SJSQ 

Sf Normalized static margin at time t after crack initiation, Sf = Sf/So 
T Service time in hours, or number of flights 

Tci Service time until crack initiation, index / = 1 , 2 , . . . indicating 
crack No. 1 , 2 , . . . 

Tj^ Limit service Hfe 
To Parameter of WeibuU distribution 
r„ Parameter of Weibull distribution, indicating lower limit of service 

time until crack initiation 
T^ Service time until end of interval No. v 

t Service time from crack initiation 
?,• Length of inspection interval 
a Parameter of Weibull distribution 

He Mean value of logarithm of time to crack initiation 
V Order number of inspection and inspection interval 

Of. Standard deviation for logarithm of time to crack initiation 

Fatigue has been a problem for a very long time in the design of certain 
structures, especially in mechanical engineering with moving parts such as wheel 
axles, propeller shafts, turbine blades, and so forth. In the aeronautical field it 
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was commonly agreed around 1950 that fatigue was to be a serious problem in 
the primary structure of an aircraft, also. The building industry seems to have 
only recently become aware of the problems that fatigue cracks may cause in 
modern structures. It is true that railway bridges and high towers have been built 
with regard to fatigue for several decades. In the near future, however, it will be 
necessary to take fatigue into account in a large percentage of main structures in 
buildings and bridges, at least where steel and other metals are involved. 
Wherever comphcated built-up structures of high strength materials will be 
utilized, technicians in all specialities are likely to meet with the fatigue 
problem. 

Fatigue damage is revealed in a structural component by the initiation of a 
visible crack which propagates until it has reached such a length that complete 
failure occurs due to a peak load. Several stochastic variables are involved: time 
to crack initiation, crack propagation rate, and residual strength corresponding 
to a certain crack length in the component. The magnitudes of the load 
amplitude may in many cases also be considered to vary randomly, although 
official regulations and human behavior will often influence this variation. It has 
not proved feasible to cover the safety problem concerning fatigue in general by 
applying a limited number of safety factors on the load or the life time. A 
statistical treatment is the only way of obtaining an adequate safety level. In a 
specific case, safety factors may be used when the basic reliability analysis has 
first been carried out. 

The original attitude towards fatigue, as expressed in the "safe-life" 
philosophy [i ,2 ] , was that cracks should not be allowed to occur during the 
service life of a structure. This is a natural policy concerning a vital, simple 
structural part with no static redundancy. In a comphcated structural system 
built up from a large number of members, it may be extremely difficult to 
realize even a comparatively short crack-free hfe. 

The aircraft manufacturers, in this predicament, invented the "fail-safe" 
principle and the "damage-tolerant" structure. The idea is that the component 
will still be able to carry a considerable load for a long time after crack 
initiation. The crack will be easy to discover at inspections which are performed 
at regular, predetermined intervals, when other necessary repairs are also made. 
It may be argued that inspection of fatigue-sensitive structures has been 
performed for a long time, not only in the aeronautical field, but also, for 
example, on railway bridges[5]. But a regular reliability approach based on 
controlled crack propagation and inspections has, so far, to the knowledge of the 
author, only been applied for aircraft [4,5]. It seems likely that it will be utilized 
in the near future in many other fields. 

Several theoretical studies of the reliabihty of fail-safe structures have been 
presented[6-iO]. Experimental results are available only to a limited 
extent [i 0-72], which is quite natural since it is extremely expensive to build 
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and test a large number of full-scale structural components. It is necessary, 
however, to obtain a better knowledge of the scatter in the various phases of a 
fatigue failure and to understand the causes of this scatter. 

The present investigation involves the fatigue testing of approximately 20 
identical panels which are rather simple and cheap to manufacture but are 
thought to be fairly representative of the tension skin of a riveted box-beam 
wing aluminum-alloy structure. After fatigue cycling until various crack lengths 
were obtained, the residual strength of panels with longitudinal stiffeners has 
been determined. 

In some of the panels the test was continued until two or more cracks were 
detected at the 32 rivet holes which constituted the stress concentrations. From 
the results of the first crack initiation, the parent distribution of crack initiation 
in one single stress concentration has been evaluated and estimates made of the 
service time until second crack initiation. 

Reliability Analysis for Fail-Safe Structure 

The reliability of a fail-safe airframe component such as a wing panel has been 
studied, mainly theoretically, at the Aeronautical Research Institute of Sweden 
(FFA) with the intention of determining the length of inspection intervals so 
that a reasonably low risk of fatigue failure is not exceeded during the service 
life of the aircraft [10,13,14]. Since the present investigation is meant to provide 
experimental data to be included in the calculations and also to form a basis for 
judging the validity of the assumptions and approximations introduced, a brief 
description of the procedure developed at FFA is included. 

The risk of complete fatigue failure during an interval between two 
inspections is obtained by combining the probability of crack initiation and the 
probability that the structure is subjected to a load which is heavy enough to 
cause total failure in the fatigue-damaged structure. The probability, P^, of crack 
initiation during a given flight time, T, is a function increasing with T. In the 
analysis, a log-normal distribution with a standard deviation a^ = 0.2 has been 
assumed. A logarithmic mean life of 50,000 h has usually been chosen for the 
numerical calculations. 

The frequency of high loads on a component depends very much on which 
part of the aircraft is considered and also on the operational use of the aircraft. 
Iri the general study which has been performed, it was considered satisfactory to 
adopt a simple exponential distribution function. The expected number of times 
H per hour that a load amplitude, s^, will be exceeded has thus been expressed as 

H = Hoe-''^a (1) 

where the two parameters HQ and h have been given values which apply to a 
wing of a civil transport aircraft operating on medium ranges. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 11:08:31 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



EGGWERTZ ON FATIGUE LIFE OF WING PANEL 79 

The moment when the crack is normally detected is called the crack 
initiation. It has been assumed that the residual strength of the structure 
decreases linearly with the service time from the crack initiation until the static 
margin, that is, the difference between the ultimate strength and the mean load, 
is zero, which will happen after a constant time, R. Usually the value 
R = 10,000 h has been employed in the calculations. No stochastic variation of 
the residual strength function has been taken into account. The normalized 
static margin, Sf, t hours after crack initiation is written as 

St = i-t/R (2) 

Complete fatigue failure occurs when the load amplitude exceeds the static 
margin 

Sa>St (3) 

Combining the load-distribution function, Eq 1, and the strength-reduction 
formula, Eq 2, gives the following expected number of times the residual 
strength is exceeded in a cracked structure 

Ht^Hoe-"^'-"^^ (4) 

The probability of failure during a time increment. At, may be written as 

GiAt)=[l--G(t)]HAt (5) 

Dividing by At and taking the limit as A? ^ 0 

^-^^H,G(t)=H, (6) 

The general solution of this differential equation is 

G ( / ) = l - e [ ^ ( o ) - F ( 0 ] (7) 

where 

F{t)=SHtdt (8) 

Introducing Eq 4 into Eq 8 and integrating gives, after entering into Eq 7, 

Git) = 1 - exp p f s 1 (^ exp^^exp(- /j)J (9) 
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The function G(t) is presented in Fig. 1 for a structure already having a crack at 
the beginning of the service life, T = 0. The residual strength parameter has been 
given the value R = 10,000 h, while the load parameters are Ho = 0.2 and h = 20. 
The latter two values are appUcable to a civil transport aircraft on ranges of 
medium length, assuming an ultimate design load factor of 3J5[10]. In an 
undamaged structure the probability of ultimate failure may be determined as 

Pu(t)=l-e -H„t (10) 

where //„ is obtained from Eq 1, entering ŝ  = 1. 
approximated by 

S ince / /„?<< 1, Eq 10 is 

Pu(t)=Hj=Hote- (11) 
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aî SES, PuiiL 

2000 4000 6000 8000 

SERVICE TIME T HOURS 

10000 

FIG. \—Probability of failure due to a gust load in damaged and undamaged structure 
during service life, T. 
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This function has also been included in Fig. 1. It grows linearly with time. In 
the damaged structure the increase is much more rapid. After 2000 h, the ratio 
between the two functions has exceeded the value of 10. 

A time schedule is shown in Fig. 2 for the inspections of a structural 
component from the delivery of the aircraft until retirement from service. The 
total number of inspection intervals is n, and a given interval number v is 
considered, beginning at the time T=T^ _ i and ending at J = T^. The 
probability P^ of complete failure during the interval v is determined as the 
time integral of the product of the function G{t) for the cracked structure with 
decreasing residual strength and the probability of crack initiation Pc^T during a 
time increment AT. 

P, =j " G,{T, - T)p,{T)dT (12) 
^v - 1 

Numerical calculations have been carried out for a large number of ages, 
r„ _ ] , at the begiiming of the interval, and also a large number of lengths of 
inspections intervals, ?,„ = Ty - Ty _ j . In Fig. 3 is plotted the computed 
probability of failure versus the inspection interval with the age T^ _ i as a 
parameter. This diagram covers inspection intervals up to 10,000 h, while Fig. 4 
gives the failure risks for longer intervals up to 20,000 h. 

It is obvious that the diagrams of Figs. 3 and 4 can be used for determining 
the probabilities of failure for all inspection intervals during the service life, one 
after the other. As long as the probabilities are small, which should be the case, 
the probability of failure during the whole life is obtained as the sum of the 
probabilities for the intervals. 

L Pv (13) 
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FIG. 2~Time schedule for inspections of component of major aircraft structure. 
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FIG. 'i-Probability of fatigue failure during an inspection interval, tj^, for different ages 

of aircraft, T^ _ j , a/ the beginning of the interval. Part 1. 

The simplest case is periodic inspection, which means that all inspection 
intervals are equally long. Figure 5 gives the probability of failure during a 
service life which is divided into a number of intervals of constant length from 
1000 to 10,000 h. The risk of failure has also been computed for « = 1, that is, 
no intermediate inspections. Furthermore, the probability P^ of crack initiation 
has been included for comparison. If the risk of failure is limited io P= 10"' 
during a service hfe of 30,000 h, the diagram suggests an inspection interval 
?,<4OO0h, implying eight inspection intervals during the life time. A closer 
study of Figs. 3 and 4 indicates that the total number of inspections would be 
reduced, particularly if the first interval is made much longer than the following 
ones. It must be pointed out that this conclusion is valid only under the 
assumption that the fatigue quality of the structure is known in advance, before 
the inspection intervals are planned. During the initial period of the service life, 
unexpected cracks may occur, which make it necessary to apply rather short 
intervals between the inspections. 
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INSPECTION INTERVAL tjv HOURS 
FIG. ̂ -Probability of fatigue failure during an inspection interval, tjy, for different ages 

of the aircraft, Ty _ i,at the beginning of the interval. Part 2. 

Test Specimens 

Many fatigue tests on wing panels have included a riveted joint [75-20] .This 
is natural since on many aircraft in service the wing-skin joints are among the 
most fatigue-critical points in the airframe. The following reasons were stated, 
however, for not including a joint in the present investigation: 

(1) Various types of skin joints occur in aircraft wings with quite different 
fatigue qualities depending on the detail design of the joint. Any selection of a 
special type of joint would make the investigation specialized, whereas the aim 
has been to produce test results with an applicability as general as possible. 

(2) At the present state of knowledge it is possible to attain for a joint the 
fatigue life required by a rather moderate sacrifice of weight. By locally 
increasing the skin thickness the stress may be reduced to a level which is 
acceptable with regard to the stress concentration of the joint. This implies that 
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1 

10 20 30 40 50 ^lO' 

FLIGHT TIME T HOURS 
FIG. 5—Probability of fatigue failure during service life, 1, assuming periodic inspection 

with interval, tj. Curve denoted n = 7 gives risk of failure when no inspection is carried out, 
and P(, indicates risk of crack initiation. 

joints will probably not be the most critical details in a new airframe design, and 
also that the stress level in joints will vary considerably from one structure to 
another. 

(3) The stress in the base structure can be affected only at the expense of 
large weight increase. The base panel sets an upper limit for the fatigue quaUty 
that can be attained with a given sheet material and a given type of connection 
(riveted, bolted, or glued joint) between sheet and stringer. Results from tests on 
base panels may yield information concerning fatigue life, which is generally 
valid for a commonly used material and method of connection. 

In an actual wing panel a certain load transfer takes place between sheet and 
stringer which is of importance from the point of view of fatigue [75]. This is 
not the case if the panel is subjected to pure axial load. A load transfer can be 
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achieved, however, by cutting the stringers between every second rivet. Since the 
stringer is not normally fatigue critical, it may be replaced by a sheet strip of 
rectangualar cross section. The load transfer can be adapted to a suitable 
magnitude by varying the dimensions of the sheet strip. By experiments on small 
sheet specimens with a cross section of 120 X 2.5 mm, it was found that a strip 
with a width of 20 mm and a thickness of 2.5 mm fixed by two rivets, 0 5 mm, 
center to center 20 mm, would be adequate for the purpose. The load transfer to 
the strip was determined by the aid of two strain gages on the edges of the strip. 
After fatigue testing of the small specimens, the rivets were removed and the 
relation between strain-gage reading and loading on the rivet holes was 
determined in a special calibration jig. The load transfer, which varied 
considerably during the fatigue cycling, amounted to around 3 percent of the 
total tensile load on the sheet specimen, a magnitude considered realistic for a 
normal wing panel. 

The large sheet panel for fatigue testing was manufactured according to Fig. 
6. Within the test length it consists of a 2.5-mm sheet of 2024-T3 aluminum, 
clad and anodized (SAAB specification 3526-68), with a width of 480 mm. The 
sheet was provided with four parallel rows of small strips of the same material, 
four in each row. Each strip, 38 by 20 by 2.5 mm, was fastened to the panel by 
two 5-mm rivets of 2024 material, hand-driven and countersunk on the free side 
of the sheet. In all, the panel has 2 X 4 X 4 = 32 rivet holes. In order to 
minimize bending, the two outer rows of strips were attached to one side and 
the inner rows to the other side of the panel. The design of the test panels meets 
the very important requirement that the manufacturing cost per specimen 
should be low in order to allow 22 panels to be produced at a reasonable total 
cost. The panels were cut from four 3600 by 1000-mm sheets of the same 
delivery. 

After fatigue testing, the damaged panels, and some panels without cracks, 
were loaded statically in tension to determine their residual strength. Since 
the intention was to obtain experimental information for a realistic 
stringer-stiffened wing panel, the strips were removed from the sheets before this 
test and replaced by stringers, continuous along the whole length of the panel, as 
shown in Fig. 6. The stringers were made of channel-section bars, 41 by 36 by 
2.7 mm, of extruded 2024-T4 aluminum (SAAB specification 3526-4). The total 
stringer area, 4 X 300 = 1200 mm^, is equal to the cross-sectional area of the 
main sheet. 

Fatigue Tests 

The investigation was divided into two parts. Twelve panels were tested in the 
first part and ten panels in the second. One of the panels was intended for a 
static test only. 

The fatigue cycling was carried out in a servo-hydraulically controlled testing 
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10 10 

FIG. 6-Test panel. Upper half shows fatigue specimen and lower half modified version 
for static testing. Dimensions in mm. 
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machine with a maximum loading capacity of ±0.20 MN. In the first part the 
original controlling and programming units of the machine were utilized, which 
automatically provided a repeated load program including eight different steps. 
Since these units did not work well in the long run without much supervision 
and maintenance, they were replaced in the second part by a punched-tape-
operated program and a home-built control unit. The only nominal difference in 
the loading was that the latter system had to be run at a lower speed, 
approximatively 70 percent of the speed of the original system. 

Published results from program or random-loading fatigue tests have revealed 
that the ground-air-ground cycle and its position in the load sequence has a 
pronounced influence on the fatigue Me[l6,21,22]. A realistic fatigue test 
should thus be run "flight by flight." Each program block, corresponding to one 
flight, should preferably include a large number of different load ampUtudes in a 
randomized sequence but with an amplitude distribution according to measured 
applicable load spectra. 

The programming unit of the fatigue machine could only provide a very 
limited number of different loads, and all cycles of the same magnitude had to 
be run consecutively. On the basis of experimental experience, it was judged that 
such a simplified flight-simulation loading would yield results of practical 
significance. Probably the most serious objection is that the program does not 
include higher loads than those normally occurring in every flight. Loads 
occurring seldomly could not be achieved automatically, since all flights had to 
be identical, and it would have been too time-consuming to introduce them 
manually. It is known that, occasional very high loads usually have a beneficial 
effect on fatigue life and should, therefore, be omitted. It has not yet been 
established where the truncation of the load spectrum should be made, but it is 
likely that the minimum fatigue life would be obtained at a slightly higher limit 
than was used in the present investigation [2J,2'^]. 

The simplified flight-simulation program is shown in Fig. 7. It has been 
obtained from a normal load spectrum for a jet transport, assuming a flight 
duration of 1 h. This spectrum is not strictly exponential, while the reliability 
analysis, Eq 1 assumes an exponential distribution function for the high loads. 
This involves no contradiction, however, since the common loads occurring in 
every flight, which produce the dominant part of the fatigue damage, must not 
necessarily have the same distribution as the heavy loads causing ultimate failure. 

The load program starts with a ground condition with compression stress, 
Smin =—25 MN/m^, all taxiing loads being omitted. The mean stress is then 
changed to tensile stress corresponding to flight condition, 5 ^ = 88 MN/m^, and 
seven steps with amplitudes varying from 10.3 to 30 MN/m^ are cycled around 
this mean stress. The program includes 89 load cycles and was completed in 
4.35 s in the first part of the investigation. The tape-operated flight in the 
second part took 6.0 s. Each test was completed in 40 to 50 h running time in 
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the machine. The stress levels quoted have been used in all fatigue tests but one, 
where both mean stress and stress amplitudes were lowered by 14 percent after 
the first 20,000 flights. This was done by mistake, but the results have been 
included to show the effect of a stress reduction. 

The steel clamping jaws and the device used to prevent buckling caused by 
compression loads, are shown in Fig. 8. The stiffeners were provided with a 
teflon nose to reduce friction. The stress distribution over the width of the panel 
was checked by a number of strain gages. The longitudinal strain in the small 
sheet strips was also measured on two panels. 

The cracks were detected with the aid of a crack wire, which was glued in a 
loop around the rivet holes, on the free side of the sheet. When the wire was 

FIG. 8-Clamping and stiffening of fatigue panel to prevent buckling. 
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broken the testing machine stopped automatically. The crack detection occurred 
at varying crack lengths. Usually the crack, located on one side or both sides of 
the hole, had a length of about 10 mm measured from the center of the rivet 
hole. This means that the crack had propagated some 5 mm from the edge of the 
countersunk rivet head. 

In panel 1, fatigue testing was continued until complete failure. The first 
crack was arrested, after it had propagated during some 3000 flights, by pressing 
a steel ball against the sheet surface just in front of the crack tip. This crack did 
not grow afterwards, but crack 3 developed into failure of the whole sheet. Panel 
18 was also cycled to failure, since the crack wire did not function when the 
crack occurred during a night. Unfortunately, only the total number of flights 
could thus be recorded for this specimen. Panel 3 buckled when a high 
compressive load was induced accidentally by the servo control unit. Panel 4 was 
subjected to 47,000 simulated flights without any visible crack. Since the gluing 
between the sheet and the stiffening plates at the ends had started to yield, the 
fatigue test was discontinued at this stage. The other 17 fatigue panels were 
cycled until they developed cracks of lengths varying between 10 and 91 mm. 
The propagation of the crack was followed with a magnifier and recorded at 
short intervals. 

Ultimate Static Tests 

After the fatigue panels had been modified as described above, the clamping 
jaws which had been used in the fatigue machine were installed in a 5.0-MN 
uniaxial testing machine. In this machine, 18 panels fatigue tested without 
complete failure and one panel which had not been fatigue cycled were 
subjected to increasing tension until ultimate failure. 

The stress distribution was carefully studied during the whole test on two 
panels with the aid of ten strain gages on the sheet and twelve on the stringers. 
On the other panels the stress distribution was only checked with three pairs of 
gages. When the critical crack started to propagate, its length was recorded by an 
automatic camera at a rate of about one picture per second. The critical crack 
was always the longest crack, which turned out to develop into total failure. 

Test Results 

The results of the fatigue tests and the static tests have been compiled in 
Table 1. Specimen 3 has been omitted for reasons stated above. 

The second column gives the number of flights, T^i, until detection of the 
first crack. It varies from 13,000 to 55,000 for the panels with the ordinary 
stress level, whereas it was increased to 74,000 when the stress was decreased by 
14 percent after 20,000 flights. The next columns refer to the second and 
subsequent cracks. It should be noted that after the fatigue tests had been 
completed, a closer study revealed further small cracks in several panels which 
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have not been included in the table. Many fatigue-crack nuclei could be detected 
in the fracture surface at the rivet holes, especially after the static failure. The 
first crack started from one of the inner rivet rows in 13 panels, while the origin 
was the outer rows in the 6 other panels where cracks occurred. 

The distribution curve for log T^i has been plotted on Gaussian probabiUty 
paper in Fig. 9, using the 17 test results which were available at the same stress 
level. A straight line has been drawn through the computed logarithmic mean 
value Mci = (log T^i) = 4.432 with a slope corresponding to the computed 
standard deviation of log T^i, Oc\-0.112. The logarithmic mean thus 
corresponds to 27,000 flights. 
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of second crack initiation with m = 32. 
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Columns 8 and 9 of Table 1 present the total number of flights, T/,, when the 
fatigue tests were stopped, and the number of flights that the critical crack had 
endured from detection, T^ - T^. The next column gives the length of the 
longest crack, which was always critical in the ultimate static test. The first crack 
was critical in all panels but 1 and 10. In panel 8 the fatigue cycling was 
discontinued immediately after the crack wire had been broken. The one-sided 
crack then had a length of 8 mm from the center of the rivet hole. The table 
gives the value as /̂  = 8 + 2.5 = 10.5, that is, the crack is measured from the 
other edge of the hole. The critical cracks of all other panels have branches in 
two directions, the length being measured between the crack tips. The crack in 
panel 21 did not pass through a rivet hole. It was situated about one hole 
diameter from the edge of the nearest hole. 

The detection of the critical cracks was made at crack lengths varying from 
7.5 to 23 mm, measured from the center of the rivet hole, or from the other 
crack tip. The collection of all crack-propagation curves in Fig. 10, where the 
abscissa represents the number of flights since the crack was detected, reveals a 
large scatter. This is not unexpected, since a longer crack usually grows faster 
than a shorter one, and the cracks have been discovered at various lengths. The 
one-sided cracks have been given in the diagram as measured from the opposite 
edge of the rivet hole. The connection between the last point where only one 
branch of a crack had been found and the first observation point for the 
double-sided crack has been drawn as a dotted line. 

In Fig. 11 it has been assumed that all cracks were detected at a length of 
15 mm, from tip to tip. Those cracks which were found at later stages have been 
extrapolated backwards using a mean-propagation curve from the test results 
available. They have thus been moved to the right in the diagram, which should 
give a more adequate picture of the scatter in crack propagation. 

The ultimate residual strengths, S^., of all panels which did not fail during the 
fatigue testing have been compiled in the next to the last column of Table 1. The 
variation of residual strength with the length of the critical fatigue crack is 
shown in Fig. 12. The residual strength has been normalized with respect to the 
ultimate strength of an undamaged panel, 5„ = 0.92 MN. The eight test points 
show surprisingly little scatter around a fitted curve, considering that the errors 
in the measured values of 5^ are of 1 to 2 percent magnitude. Test results from 
panels with the critical crack in an inner row have been represented by triangles, 
while those corresponding to the more scarce outer-row cracks are denoted by 
circles. The latter type of crack seems to result in a slightly lower residual 
strength. The only triangle that deviates perceptibly from the curve belongs to 
panel 13, which was fatigue tested at a lower stress level than the other 
specimens. 

During the ultimate static tests the load was raised in steps as long as the 
length of the crack was stable. When the crack started to grow at constant load, 
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NUMBER OF FLIGHTS AFTER CRACK DETECTFON 

FIG. 10-Crack propagation curves for 15 fatigue panels. 

or when plastic deformation occurred, the loading was increased continuously 
and the crack was photographed at short intervals. The exposures were marked 
automatically on the load-time recorder. The crack propagation could thus be 
followed all the time until rapid failure, which occurred at a certain combination 
of crack length and load. 

For small critical fatigue cracks the slow crack-propagation period was very 
short. In panel 8 the maximum load was attained almost at the same moment as 
the crack started to grow, and the ultimate failure came a few seconds later. One 
of the most successful recordings of slow crack propagation was obtained for 
panel 10, as shown in Fig. 13. The length of the initial fatigue crack was 66 mm. 
The crack started to grow at a load of 0.56 MN. At 0.69 MN, with a crack length 
of 90 mm, the continuous load increase was started (time zero). 
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FIG. 11-Crack propagation curves brought to coincide at a total crack length of 15 mm. 

Discussion 

In statistical evaluations of data from fatigue tests it has often been assumed 
that the number of cycles, or simulated flights, until crack initiation has a 
log-normal distribution. The main reasons seem to be that this distribution is 
convenient to handle and that comparisons have shown that other distributions 
do not generally give better agreement with test results [25,26]. The present 
investigation contains too few test specimens to allow any significant statement 
regarding the probability distributions of wing panels. The aim has been, in the 
first place, to obtain information on the magnitude of the scatter. Since each 
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FIG. 12-R esidual strength of damaged panel plotted versus crack length. 
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tested panel includes 32 similar stress concentrations where fatigue cracks may 
be expected, the total number of fatigue-sensitive spots involved in the 
investigation is considerable. By regarding the test results as service times until 
first failure, and by studying also the following crack initiations, where these 
were discovered, it may be possible to obtain more basic information, as 
advocated by Freudenthal[27]. 

The straight line drawn on Gaussian probability paper in Fig. 9 corresponds 
to the computed parameters, the mean value, and the standard deviation, 
Mci ~ 4.432 and a^i = 0.172. This line does not seem to be very well adapted to 
the test points in the outer parts. It would be possible to get a slightly better fit 
by decreasing the slope. The discrepancy has to do with the method of 
computing the mean plotting position for the test results 

^ ,1=^ / (^^+1) (14) 

where M is the order number of the test point and N is the total number of 
results. The latter number is obviously too small to justify the use of the simple 
Eq 14. A chi-square test with six classes gave x^ =1.91, to be compared to 
X^o.9o ~ 9.24. The test results thus do not deviate from the log-normal 
distribution on a 90 percent significance level. 

If Pc is the probability of crack initiation in a single rivet hole, called the 
"parent" distribution, the probability P^i of the first crack among m identical 
holes is obtained using the BernouUi theorem [2 7,25]. 

P e l = l - ( l - i ' c ) ' " (15) 

The total number of rivet holes in a test panel is 32. There is a variation in 
tensile stress over the panel width, implying higher stress for the inner rows of 
rivet holes. On the other hand, the bending stresses in the panel seem to be 
somewhat higher in the outer rows. The first crack has occurred more often in 
the inner rows. It is interesting, therefore, to derive the parent distribution for 
both m=32 and m = 16. Such distributions have been drawn in Fig. 9, using Eq 
15 with P^i-values determined in the tests. They are slightly curved, implying 
that they are not log-normal, and have less slope than the experimentally 
determined curve for the first crack. It may be concluded that test results for 
single rivet holes would show a median value of around 150,000 flights, and a 
standard deviation of about 0.4. 

The probability of the second crack initiation may also be simply expressed 
in terms of the probability of the parent population [28]. 

Pc2 = \ - (1 -Po)"" - mP,{\ -P,)"' ' 1 (16) 
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The distribution function of the second crack has been computed from the 
parent distributions. It is almost a straight line, as shown in Fig. 9 for w = 32. 
The distribution corresponding to m = 16 is very close to the curve presented, as 
might be anticipated. The median value of the second crack initiation is about 
39,000 flights, implying an expected number of 12,000 flights between the first 
and the second cracks. A second crack has only been observed in six panels 
(Table 1); in three of these, the second cracks were observed at the same time 
the first cracks were detected, and in the other three, the interval between the 
first and the second cracks varied from 2000 to 4400 flights. No panel with the 
normal stress level was fatigue cycled more than 5850 flights after the detection 
of the first crack. It is not possible, therefore, to compare the test results with 
the computed distribution curve. It should be noted that the theoretical curve 
presupposes that the 32 fatigue-sensitive spots are identical and independent, 
which is probably not an acceptable approximation when the first crack has 
reached a considerable length. 

It has been stated that the log-normal distribution does not fit the physical 
model regarding fatigue crack initiation [29]. From this point of view the 
extreme value distribution has definite advantages. The test results from 
initiation of the first fatigue crack have also been plotted in Fig. 14 on an 
extreme value probability paper, where the probability is expressed as 

i>^j=l_e-(T^i / r„)« (17) 

A straight line has been fitted by eye, in the first place to the central test 
points, with the following values of the two parameters 

To = 31,900 flights, a = 2.60 

The value of a indicates that the log-normal distribution cannot be considered 
a good approximation for the extreme value distribution, but that the two 
functions have a similar course [28,30]. The deviation from the test points at the 
lower end of the straight line seems to suggest that the introduction of a lower 
limit, as a third parameter of the distribution function, Eq 17, would result in a 
better agreement [31 ] . 

The Weibull distribution 

Pci=l - exp M-i (18) 

with its three parameters, T^, T^, and a, is usually more adaptable to a given set 
of test results than the two-parameter functions used above. On the other hand. 
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FIG. 14—Distribution curve for number of flights to initiation of first crack, obtained by 
plotting test results on extreme value probability paper. Distribution curves for parent 
populations, assuming m~16 and 32, and distribution of second crack initiation with 
m=32. 

the proper assessment of the parameters is no longer a simple transaction. A 
method of statistical moments given by Weibull[52] has been employed, 
together with a number of other procedures. It was found, however, that in this 
case a simple method of least squares, carried out by searching the minimum on 
an electronic computer, gave the most satisfactory result. 

r „ = 11,100 flights. To = 20,400 flights, a = 1.52 

The logarithm of the difference (Jd - r„ ) has been plotted in Fig. 15 versus 
the same double-logarithmic extreme value ordinate as used in Fig. 14. The 
straight line corresponding to the computed parameters fits the test results 
rather well, the lowest values excepted. A chi-square test with ten classes gives 
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FIG. 15-Weibull distribution for number of flights to initiation of first crack, obtained 
by plotting test results on extreme value probability paper. Distribution curves for parent 
populations assuming m • 
m=32. 

16 and 32, and distribution of second crack initiation with 

X^ =7.41, implying no significant deviation of the test results on a 90 percent 
level. 

One main advantage with the extreme value distributions is that the parent 
distributions will also be represented in the diagram of Figs. 14 and 15 as 
straight lines, parallel with the distribution of the first crack initiation. A 
comparison with the parent curves obtained in Fig. 9 indicates that somewhat 
shorter fatigue lives, about 100,000 flights, corresponding to P^ = 50 percent, 
will be predicted for the single stress concentration, using the extreme value 
distributions, compared to 150,000 flights when the log-normal distribution was 
adopted. The expected number of flights between the first and the second cracks 
on the 50 percent level is rather similar in all three diagrams. While the second 
crack distribution is almost parallel to the log-normal first crack distribution in 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 11:08:31 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



EGGWERTZ ON FATIGUE LIFE OF WING PANEL 101 

Fig. 9, the lower parts become much steeper using the extremal first-crack 
distributions in Figs. 14 and 15. 

The scatter of the residual strength for a panel with a fatigue crack of a given 
length is quite small, as shown in Fig. 12. The length of a crack at a given 
number of flights after detection is subjected to large stochastic variations, as 
clearly illustrated by Fig. 10. In panel 17 a crack length of 30 mm was reached 
in less than 1000 flights, while in the nominally identical panel 11 it took about 
5500 flights to obtain the same crack length. The crack-propagation diagram in 
Fig. 11 which was derived by letting all cracks start at a length of 15 mm, 
indicates that the main part of the scatter is to be attributed to.crack detection. 
In the panel tests, crack detection was dependent on the crack wire. It is possible 
that continuous surveying by an experienced fatigue-test staff might have given 
earlier crack detection in some cases. The situation for an aircraft on a service 
inspection is probably not more favorable than in the present investigation. 

In Fig. 16 the residual strength is plotted versus the number of cycles to 
which the panels had been subjected after crack detection. The point within 
parentheses represents panel 1, which was fatigue cycled until complete failure. 
The residual strength of the 2.5-mm sheet is thus known as the maximum load 
of the flight-simulation program, which must have caused the failure. To this 
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FIG. 16—Residual strength of panel in static test plotted versus number of flights after 
detection of critical fatigue crack. 
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strength has been added the computed ultimate load taken by the stringers. The 
straight line, with R = 10,000 flights or hours, which has been used in the 
reliability calculations, is also shown in the diagram. The line seems to represent 
a rather conservative approximation. 

An alternative presentation of the residual strength versus crack propagation 
time has been tried in Fig. 17. The total number of flights, Tj^, to which the 
panel was subjected, has been normalized with respect to the number of flights, 
Tci, until crack detection. The scatter is somewhat less than in Fig. 16, which 
seems to indicate a relationship between slow crack propagation and long time 
to crack initiation. The point-dotted curve which has been obtained by assuming 
R = 10,000 flights and T^ = lO'̂ '̂ * =27,000 flights, seems to form a rather 
good approximation of the test results for short cracks in the upper part. Longer 
cracks give a higher residual strength than indicated by the curve, except the 
very long crack in panel 1 that caused ultimate failure in the fatigue test. It must 
be remembered, however, that the residual panel strength has been computed in 
this case, and that the panel further contained two long cracks. 
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FIG. n-Residual strength of damaged panel plotted versus ratio between total number 
of flights and number of flights to crack detection. 
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It seems rather obvious from Fig. 16 that the assumption made in the 
reliability analysis presented above-namely, that the relationship between the 
residual strength and the number of flights after crack initiation is a unique 
function—is not in good agreement with the real conditions. At least the scatter 
in length of cracks at detection must be included. 

Conclusions 

The logarithmic mean of the number of flights, or hours of flight, to first 
crack initiation in a basic wing panel with 32 rivet holes was determined from 17 
fatigue tests at a normal stress level to be about 30,000, with a log standard 
deviation of 0.17. Using log-normal and extreme value distributions, the crack 
initiation time for a single rivet hole was computed to be 100,000-150,000 
flights at 50 percent probability. The median time between the first and the 
second cracks was estimated at slightly over 10,000 flights, which is probably an 
exaggerated value. 

The relationship between the residual strength of a damaged panel and the 
crack length was obtained from 19 static tests without much scatter. When the 
residual strength was plotted as a function of the number of flights after crack 
initiation, it was not possible to establish a unique relationship, which was due 
less to the scatter in crack propagation than to the large variation of the length 
of the cracks at detection. It was concluded, therefore, that this scatter in 
detectable length must be considered in a reliability analysis of a fail-safe 
structure. 
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A Reliability Approach to the Fatigue 
of Structures 

REFERENCE: Payne, A. O., "A Reliability Approach to the Fatigue of 
Structures," Probabilistic Aspects of Fatigue, ASTM STP 511, American 
Society for Testing and Materials, 1972, pp. 106-155. 

ABSTRACT: In recent years, due to the progressive development of higher 
performance aircraft, the fatigue strength of aircraft structures has become an 
increasingly important problem. 

In the present paper, a method of assessing structural safety in fatigue is 
proposed in which a statistical model for the fatigue process is used to carry 
out a reliability analysis, enabling the probability of failure to be estimated at 
any stage of the life. The statistical variability in crack-propagation rate and 
residual strength of the cracked structure is included together with the effect 
of any prescribed inspection procedure. 

The method is applied to a structure of high strength steel typifying a 
"safe-life" structure and to a redundant aluminum alloy structure representa­
tive of the "fail-safe" construction. 

It is concluded that the reliability analysis can be applied to both fail-safe 
and safe-life structures and provides a quantitative basis for ensuring their safe 
operation, including the planning of an inspection procedure if feasible. In this 
regard the method represents an advance on the existing procedures but 
inherent in the quantitative approach it employs is the adoption of an 
acceptable safety level. The most appropriate way of defining safety level is 
discussed and a suitable measure is proposed. An extensive amount of data is 
required in applying the procedure but it is suggested that in the case of 
aircraft structures this difficulty can be overcome by using results from the 
comprehensive structural testing program normally carried out, together with 
relevant data from similar structures. 

KEY WORDS: fatigue(materials), reliability, statistical analysis, probabiUty 
theory, distribution theory, failure, quality control, design criteria, structures, 
structural design 

Nomenclature 
a Crack length 

Op Crack length for complete collapse under the 
mean load 
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Supply, Melbourne, Australia. 
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P(N) 
F = Average probability of failure per mile travelled 

in life N. 
Ffiti)+ Probability of a variate t exceeding some partic­

ular value ti 

I Relative crack length— 

ID The minimum crack length detectable by inspec­
tion 

IN' 'n Median values of the distributions of / at life N 
and relative life n 

L{n) ProbabiUty of survival to the life n (also called 
the Survivorship Function) 

Lpin), Lgin), Survivorship Functions at relative life n, corre-
L]{n), Lj*(n), spending to the risk functions, rp(n), rs{n), 

Lpjin), Lsdn) rj{n), ri*in), rpjin), rgLin) 

N Life of a structure expressed as a number of 
load applications 

Â ,- Life to first formation of a fatigue crack (also 
^ called life to initial failure) 
Ni Median of the distribution of Â ,-

N 
n Relative life — 

Ni 
rii Relative life to crack length / for any structure 

Hi^z Life of a structure which has a life Z times the 
median Ufe at the same crack length / 

np Relative life to complete collapse of a structure 
under the mean load 

nj) Relative life to produce a crack of length l^ 

Hi, Tip, Tifjj Medians of the distributions of «/, np, and «£> 
«5 Relative life corresponding to a particular 

service life Ng 
HsL Relative safe life calculated by the conventiorial 

safe-life philosophy 
^i(\)' "/(2). «/(m) Relative lives to first, second, and m**" inspec­

tions carried out to detect fatigue cracks 
PR (R.'iJiR ) ProbabiUty-density function of residual strength 

R with a mean value jjtj^ 
Pxi^i)^ Probability-density function of a variate ^ at a 

particular value Xj 
T Where no confusion can arise, the subscript for the variate may be omitted. 
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Pxi^i )^ Probability distribution of a variate X at a partic­
ular value Xi • PxiXi) = /V | z < Xi} 

P{N) Probability of failure up to the life N 
R([) Strength of a structure containing a fatigue 

crack of relative length / 
r{N) Probability of failure in the remaining fleet 

at the N^^ load application, or the risk of 
failure at life N 

r(n) Risk of failure at the relative life n 
rs(n) Risk of static fracture due to fatigue at life 

«—defined as failure at life « at a fatigue crack 
in a structure which is still able to sustain an 
applied service load exceeding the mean load 

rpin) Risk of fatigue fracture at life H—defined as 
failure at hfe n due to a fatigue crack reaching 
such an extent that the structure is unable to 
sustain the mean load 

rprin) The total risk of fatigue failure at the life n 
irs(n) + rpin)) 

^SL{^) Risk of failure at the life n as calculated by the 
conventional "safe-hfe" procedure 

rj(n,lD, rij) Risk of fatigue failure at life « in a population of 
structures which have all been previously in­
spected at the life K/, with an inspection proce­
dure which detects crack lengths greater than Ip 

ri*{n,l£), rij) Risk of fatigue failure at life n when cracks of 

greater length than Ip are detected by inspection 
at«/ and are then repaired and the structures 
returned to service 

rj(n,li), ri) Risk of fatigue failure at the life n when all 
structures are continuously inspected to detect 
crack lengths greater than l^ 

rj(n; Ip, /•„, ax) Risk of fatigue failure at Ufe n with an inspection 
procedure detecting crack lengths greater than Ip 
at inspection intervals designed to Umit the risk 
below some specified value /•„, ^^ 

''D*{'^i(m)''^D' '^i(m - 1)) Probability of detecting cracks by inspection at 
life «/(^) in structures previously inspected at 
"/(m - 1) according to a procedure by which 
cracks of length greater than IQ are detected 
and are then repaired and the structures returned 
to service 
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r(N) The average failure rate up to life TV, r(N) = 
rN 

I 0 r{n)'dn 

Ro 
s 

'S'ult 
^m 

U 
V 

w 
Y 

2 + 

Â  
Ultimate strength of an uncracked structure 
An applied service load 
Ultimate design load 
Mean load on the structure 
Gust velocity 
Aircraft ground speed 
Aircraft all-up weight 

Relative service load-^— 
•Jult 

General symbols for mean and variance of a 
population used with a suffix to denote the 
variate 

;uo Mean strength (failing load) of uncracked 
structures 

IIR{1) Mean strength of structures containing cracks 
^ of length / 
/„ = g(ni) Median crack-propagation curve for the popula­

tion of structures 

^ . = 0(/) Mean residual strength expressed nondimen-

Ni n, 

sionally as a function of crack length / 
R(r\ 

^(^) ~ .. (t\ Relative strength of any structure containing a 
crack length / 

Z = -=A-̂  Z Comparative life, or life factor of a structure 
with a life to crack length / of Z times the 
median life to the same crack length 

Fatigue has been a major cause of failure in structures and structural 
components since the early days of fatigue failures in railway rolling stock and 
wrought iron bridges. However, in recent years, fatigue of airframes has become 
progressively more important with the continuing trend towards high per­
formance aircraft. This paper is concerned primarily with the fatigue of aircraft 
structures, but the procedure developed here can be readily applied to structures 
in general. 

In the early days of the aircraft fatigue problem the fatigue life of the 
structure was estimated and then divided by a scatter factor to give a safe 
operating Ufe. The scatter factor was used primarily to make allowance for the 
variability in fatigue life of the fleet and to ensure that the probabiUty of failure 
was acceptably low. 
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The disadvantage of this procedure was that a very large percentage of the 
population (all but the very few structures weak in fatigue) were retired from 
service long before their useful fatigue life had been reached. This led to the 
development of the fail-safe philosophy which essentially relied on leaving 
structures in service until fatigue cracks were detected by a planned inspection 
procedure before they reached a dangerous extent. 

Problems arise with this method, however, in that the structure should have 
sufficient residual strength to provide safety until cracks are detected and 
furthermore an inspection procedure is needed to minimize the comprehensive 
and costly inspections that are carried out. The current airworthiness require­
ments for operation on the fail-safe principle specify a minimum residual 
strength for the structure with a detectable crack present. This is a practicable 
requirement but it takes no account of the progressively increasing risk of static 
failure due to a growing fatigue crack. 

Various efforts have been made to estabUsh the risk of failure as a function of 
hfe, but this is a very complex problem requiring extensive data on the static and 
fatigue strength characteristics of the structure. 

One of the early papers on this subject was written by Shaw in 1954[i]. An 
expression for the risk of failure in an inspection interval is derived based on the 
probability of a structure developing a detectable crack combined with the 
probability of occurrence of a service load exceeding the corresponding residual 
strength. The variability in fatigue life and applied service loads are therefore 
taken into account, but there is no consideration of residual strength or 
crack-propagation characteristics. 

In 1959 Ferrari et al[2] developed a procedure for estimating the risk of 
failure and showed that the current airworthiness requirement of a limit-load 
residual strength for civil aircraft may be inadequate. Their approach considers 
the variability in fatigue life to initial cracking and assumes a linear reduction in 
static strength throughout the succeeding life. The probability of failure under 
an exponential gust-load spectrum is then derived. This was an advance over 
Shaw's method, in that a progressive reduction in static strength is postulated 
but no account is taken of variability in crack-propagation rate or residual 
strength. A similar approach was developed by Eggwertz [3] and was appUed to 
investigate the effect of inspection at constant intervals. 

These methods provide a quantitative approach, but they all involve major 
simplifying assumptions despite the considerable amount of basic data required. 

In 1963 Eggwertz and Lindsjo proposed a method in which the structure is 
replaced by several simple parallel elements[^]. As parallel elements fail by 
fatigue, the load is assumed to be redistributed over the remainder in accordance 
with the conditions of static equilibrium. From experimental results for a single 
element, the influence of the load level on time to crack initiation and on the 
consequent decrease of static strength can be determined. The probability of 
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failure for a gust-load spectrum has been calculated on this basis, assuming a 
linear decrease in static strength of an element with time but ignoring the 
statistical variability in the static strength property. 

This approach was considerably extended by Heller and Heller [5]. They 
assume uniform load distribution among all of the parallel members and as 
members fail, the load on the remainder is increased proportionately. The 
fatigue hfe to failure in the various elements is predicted from basic data on a 
single element, using a reliabihty analysis which includes the variabiUty in static 
strength of the elements. 

The idealization of the structure as a system of simple parallel elements 
enables the static and fatigue-strength characteristics to be synthesized from the 
extensive data that can be readily obtained from tests on a number of single 
elements. However, the representation of a complex structure by such a system 
is open to some question. 

The failure of a highly redundant aircraft structure under either ultimate load 
or fatigue-loading conditions usually follows a well defined sequence of events 
involving a complex load and stress redistribution throughout the structure as 
failure proceeds. 

In the present paper a fully probabihstic approach to the problem is 
presented which calculates the risk of failure under any prescribed load 
spectrum, taking account of the variability in static and fatigue strength and the 
variability in crack-propagation rate. A model of the fatigue process is developed 
to derive the crack-propagation and residual strength characteristics of the 
structure from the results of a full-scale fatigue test in conjunction with other 
representative data. 

The Fatigue Process in a Complex Structure 

Considering a structure in service subjected to repeatedly applied loads from 
the service-load spectrum, there will be a period during which the fatigue process 
leads to the formation of a macroscopic crack. This is called the life to initial 
failure. The fatigue crack then extends progressively as the life continues with a 
progressive reduction in the residual strength of the structure as shown in Fig. 1. 

During this period there is an increasing probability, at each successive 
application of a service load, that the structure will fail statically. Failure of a 
structure in this way is termed here "static fracture by fatigue." However, if the 
structure continues to survive this risk, the crack will eventually reach some 
length Up, at which failure will occur under the steady mean load. (In practice, 
the crack-propagation curve becomes so steep that it is almost vertical, at which 
stage the residual strength falls to the mean load and failure occurs.) This is 
termed "fatigue fracture" to distinguish it from "static fracture by fatigue" 
which is dependent on the chance occurrence of a service load exceeding the 
static strength. 
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STRUCTURE 
FAILS 
HERE 

FIG. 1-The risk of Structural failure by fatigue. 

Although fatigue fracture could also be regarded as static failure of the 
structure under the mean load, it is essentially a failure due to the fatigue 
process itself. It is instructive to identify these two risks and consider them 
separately since they give some physical insight into the problem especially as 
regards the significance of the fail-safe and safe-life philosophies and the 
influence of an inspection procedure. 

Consider a structure cracked to some crack length a which may be expressed 
nondimensionally as a relative crack length / = ajop. If the residual strength of 
the structure is R(J) the probability of static fracture by fatigue under a load 

from the service-load spectrum Fs{S) is given by Fg | R{f) [, where Fs{S) is the 

probability of exceeding a service load S. 
If we now look at all members of the population at any particular service life 

Ng, we will find a variation in their residual strength due to the following causes: 
(1) variability in fatigue performance resulting in structures being cracked to a 
varying extent and; (2) variability in the static strength of structures all cracked 
to the same extent. 

The evaluation of the risk of static failure by fatigue must therefore take into 
account the variability in the residual strength of a structure due to these two 
causes. As discussed in the Appendix these two sources of variation may be 
assumed to be statistically independent. 
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Variability in Fatigue Performance 

Considering the complete population of structures, there is a complete series 
of crack propagation curves as shown in Fig. 2 ranging from structures very weak 
in fatigue to those very strong in fatigue. At any particular service life there is 
therefore a probability distribution of crack length or, correspondingly, at a 
given crack length there is a probability distribution of fatigue life. 

As discussed in the Appendix a survey of data on fatigue crack propagation 
supports the assumption of a log-normal distribution of fatigue life Ni at a 
constant crack length /, having a characteristic variance which is independent of 
the crack length. That is. 

log Ni ~ 7V(log N,, aiogAfi) (1) 

where Ni is the median fatigue hfe to a crack length of / and Oî g ;v^ is the 
variance of log TV and is the same for all values of/. 

It is also shown in the Appendix that it follows from the above assumption 
that the fatigue life Â ; z of ^^V particular structure in the population bears a 
constant ratio to the median fatigue life Ni at the same crack length as illustrated 
in Fig. 2. 

That is to say, if we consider the median crack-propagation curve / -(f) 
LFE TO FATK3UE FAILURE 

S RELATIVE 

FIG. 2-Model of the fatigue process. 
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relating the crack length / to the median Ufe iV,, then the life of any particular 
structure in the population will bear a constant ratio to the median life, N^, at 
the same crack length for all points on the crack-propagation curve. 

This ratio is called here the life factor Z and if the life of the structure is 
denoted by iV̂  z it follows that for all values of/, 

Ni,z^Z-N, (2) 

As stated in the Appendix, this model of the crack propagation behavior is 
supported by test data on both steel and aluminum alloy specimens. 

Variability in the Static Strength Property 

The mean of the residual strength iiRif) is a decreasing function of the crack 
length and it is assumed in this analysis that at any crack length / the residual 
strength R(J) has a characteristic distribution about the mean value M/j(0- I" 

R(D 
other words, it is assumed that the relative residual strength X = —^4- has the 
same distribution function at all values of crack length /. This infers that the 
variability in residual strength is mainly due to the variability in material 
properties and the variations in manufacture. There is experimental evidence to 
show that this is a realistic assumption as discussed in the Appendix. 

Application to Reliability Analysis 

With the model of the fatigue process developed above, it is possible to derive 
the risk of static fracture by fatigue and the risk of fatigue fracture, together 
with the corresponding survivorship functions. This is done by a rehability 
analysis in the following section. 

Derivation of the Risk and Survivorship Functions 

The model of the fatigue process developed above is assumed to apply, 
together with the assumptions discussed in the Appendix. 

Static Fracture due to Fatigue 

To derive the risk of static fracture due to fatigue, at any Hfe N consider first 
those members of the population which are all cracked to some specific crack 
length /. The residual strength /?(/) of these structures will have a probability 
distribution with a mean value ^i? (0 and the probability of failure at the Â*** 
load from a load spectrum FgiS) may be derived using the classical reliability 
approach. 
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Pr { Failure at the N load in structures with mean strength MJ?(0 } 
= Pr { i? < S in all structures with crack length / at life A^} 

-r{Nl^^ir))= p^iR: .^yFsiRydR (3) 
Jo 

where riN/^.ji(l)) is the risk of failure at life TV in those structures which have a 
mean residual strength/i^(0 and pjj(/?:/i^) is the probability-density function 
of residual strength R with a mean value ju^. 

It is now convenient to express quantities nondimensionally;/? is transformed 
to the dimensionless variate X = R/HR which is the relative residual strength and 
is assumed here to have the same probability-density function at all crack 
lengths; the service life or number of ser\ace-load applications N is expressed in 
terms of the median life to initial failure TV,- to give the relative life n =N/Ni; the 
crack length, a, has already been expressed as the relative crack length l = a/ap 
where ap is the crack length at which the structure will coUapse under the mean 
load. 

With this nomenclature and taking p(R)'dR =p{X)'dX, we can rewrite Eq 3 
for the risk of failure of structures with crack length / at a particular service life 
«5, as 

{«s/Mij(0}= rPxVO-FsiX'HRydX (4) 
JQ 

It is assumed that PxVO applies for all values of/ (see Appendix), but the mean 
residual strength /ii?(0 must be a known function of the relative crack length /. 

Mi?(0 = Mo-'̂ (0 (5) 

where MO is the mean strength in the uncracked condition of all structures in the 
population. 

Substituting in Eq 4 gives -

r {nslyiRit)} = l°°PxW-Fs [Xno '0(0]dX 

To derive the total risk of failure at ng, it is necessary to integrate over all 
relative crack lengths between 0 and 1. 

Then 

' ' { % } = f rPx(.^'Ps[X-(J^o-m]'Pif)-dl-dX (6) 
Jo •'o 
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We now transpose the variate of crack length / to one of fatigue Hfe for which 
the probability density function is known. By reference to Fig. 2 it can be seen 
by considering the shaded element representing crack lengths between I and 
(/ + dl) that the structures which have crack lengths between / and (I + dt) at life 
ng are those which have fatigue life to initial failure between n,- and (n,- + d«,) 
(neglecting any effect on the probability density function of n,- due to the very 
few structures that have failed between their initial life and the life ng). That is, 

p{t)-dl = -p{n,)-dni = -p(^yd(^\ 

= -piZ)-dZ 

Hence, instead of the crack length / at life rig we consider the corresponding Ufe 
to initial failure, taking 

and 

rif ='^ at Z =— = 1 for the lower limit of integrationtt 
np ^F 

0 ., 
Wj = «5 at Z = — = 0 for the upper limit of integration.T T 

UJ7 

Now using the equation for the median crack-propagation curve 

/=g(^)=^(f-) (7) 

we can transform the variate from / to K,- in Eq 6. 

rsins)= 0 j " Px{r)-Fs h-Ho-<P \s(~j\} Pz{ZydX-dZ {8) 

"F 

where rg is used with the subscript S to denote the risk of static fracture due to 
fatigue. 

The corresponding probability of survival for static fracture due to fatigue 
can then be calculated from the basic relationship [6]. 

t tA change of sign is introduced because increasing values of / correspond to structures 
with decreasing values of life to initial failure, rij. 
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Hence 

Lsins) - exp [ - £ 7 ^ I J 1 ^ ^s { ^Mo0 [i ( f ) ] } 

piX) -piZ) •dX-dZ-dri\(9) "f 

Fatigue Fracture 

Reference to Fig. 3 shows that at the service hfe rig those structures with Uves 
to initial failure «,• less than nsjhp would have cracked to the extent of / = 1 
corresponding to failure under the mean load. Therefore, if we again neglect the 
effect on the probability density function of «,• of structures that fail by static 
fracture due to fatigue, the probability of survival for fatigue fracture at rig is 
given by 

r"sl"F 
0 

- 1 - p - - pizydz 
Jo 

Jo 

r"s/"F 

i^. jC^) 

I 

z 
bJ 
- I 

K 
U 

bi 

> 
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UJ 
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Ty ^ Jl» 
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FIG, T>-Integration of risk function for various inspection procedures. 
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since Z = Nn INi = rif or 

Lpins) = 

and the risk of fatigue fracture, 

rpins) •-

r 

J 

,~ p{zydz 

r~ ^ Pz(Z)-dZ 
^slnp 

(10) 

(11) 

Tbfa/ i?/s/: of Fatigue Failure 

In the model proposed here a structure can fail either by static fracture due 
to fatigue or, if it survives this risk, it will fail by fatigue fracture. Static fracture 
due to fatigue and fatigue fracture are therefore regarded as two separate events 
and the total risk of fatigue failure is given by the sum of the two separate risks. 

rFiins)=rs{ns)-^rp{ns) (12) 

The corresponding probability of survival can be similarly calculated. 

LFTins)^Ls{ns)-Lpins^ (13) 

The Effect of Inspection 

The effect on the risk of failure of various inspection procedures in service 
can be investigated by using the expressions for the risks derived above. 

Continuous Inspection 

Consider the case where every structure is continuously inspected by an 
inspection technique which detects cracks exceeding a certain detectable length 
Ij) corresponding to a Ufe «i) on the median crack-propagation curve. 

As soon as cracks reach the detectable length ID the structure is taken out of 
service and therefore fatigue fracture is prevented so the risk of fatigue fracture 
is zero. 

The only risk of fatigue failure is therefore the risk of static fracture due to 
fatigue at crack lengths between 0 and l^ (Fig. 3). In practice, when cracks are 
detected they are usually repaired and the structures are restored to service. In 
this event there is no depletion of the fleet by the inspection process and the risk 
of static fracture by fatigue can be obtained directly from Eq 6 by integrating 
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between limits / = 0 to / = / / j . By reference to Fig. 3 it can be seen that this 
corresponds to integrating from Z = ngfriQ to Z = rig in Eq 8 and hence 

p{X)piZ)dX-dZ (14) 

where rj*(ns',lD> f^s) denotes the risk of failure, with repair, of detectable 
cracks. (In this nomenclature rj{ns,lD, rij) is the risk of failure at rig, following 
an inspection to detect cracks of length /jj at the life «/.) The probability of 
detecting cracks at the life ng is given by 

ro *(«s; ' D . fis) = Pz (~-j (15) 

Where cracked structures are not repaired but are retired from service the 
probability distribution of fatigue life to initial failure suffers a significant 
truncation at ns/nu as can be seen by reference to Fig. 3. 

Since the risk of failure at ng is the probabiUty of failure in the population 
remaining at rig it can be obtained for this case from Eq 14 by dividing by the 
normalizing factor 

" p(ZydZ 

to allow for the truncation of the distribution. 

, , ^ n*ins;lD,ns) 
riins; ID, ns) = —;:^ 

Ls p(^>'^^ 
"D 

r"s f°° 

, „ (16) 

Lpizydz 
"D 
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The probability of detecting cracks at the life ng is now given by 

roinsJo, ns)= ^Xno) (17) 

/ . pizydz 
s 

Periodic Inspection ^ 

In practice it is usually not feasible to inspect structures continually but 
inspections are carried out at a series of lives «/(i), «/(2)- • • • Until the first 
inspection at «/(i), the conditions in the fleet are the same as for no inspection. 
Cracks initiate and grow undetected and the risks of static fracture by fatigue, 
and fatigue fracture, are given by Eqs 8 and 11, respectively. 

When an inspection is made at «/(i), however, all structures with cracks 
exceeding a length of IQ axe eliminated and at this stage the conditions in the 
population are the same as for continuous inspection. 

Therefore, taking the practical case where structures are repaired and 
returned to service, the risk of static fracture by fatigue at the time of the first 
inspection at «/(i) is obtained from Eq 14. 

"D p{X)p{Z)dXdZ (18) 

However, as the service life proceeds beyond nin-^, cracks grow unchecked 
and at some later life ng as shown in Fig. 3 the risk of static fracture is obtained 
by integrating over the cracked structures which have lives to initial failure 
ranging from «/(i )/«o tong. 

Hence 

p(X)-piZ)-dXdZ (19) 

However, it will be seen by reference to Fig. 3 that if the service life rts 
continues to ( « ; ( I ) / « D ) ' " F . the structures with hfe to initial failure of W/(2)/«o 
have developed cracks to the full length / = 1. At this stage the risks of failure in 
the fleet have become the same as if no inspections had been made. 

Therefore, with periodic inspections the risk of static fracture by fatigue 
rs(n) and the risk of fatigue fracture rp(n) increase as for no inspection until the 
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first inspection is made at n/(i). The risk of static fracture by fatigue is reduced 
at the first inspection to the same value as for continuous inspection. As the Ufa 
continues beyond this, however, cracks will extend past the detectable length Ijj 
and the risk of static fracture will rise again and if another inspection is not 
carried out it will become equal to the value of the risk for no inspection at a life 

( « / ( 1 ) / « D ) - « F -

The risk of fatigue fracture remains zero after the first inspection until the 
life («/(!)/«£))•'JF is reached when it rises to the value corresponding to the no 
inspection case. This behavior is illustrated in Fig. 3. 

It can be seen therefore that although the probability of survival is improved 
by periodic inspection, the risk of failure can fluctuate between the risk for 
continuous inspection and the risk for no inspection. In general it is necessary to 
limit the risk of failure since exposure to a high risk even for a short time is to be 
avoided. 

The maximum inspection interval that will ensure some reduction in risk at 
all times is that corresponding to the situation where cracks with length just 
short of ID at the first inspection at n^ j) have just reached the full length / = 1 
at the next inspection at 'J/(2)-

It follows from the above that 

«/(2) =«/( ! ) • ^ (20) 

Therefore for this condition the inspection times form a geometric progression 
with progression ratio npfriD-

Inspection for Limited Risk 

For safety reasons it may be necessary to maintain the risk or failure rate 
below a certain acceptable value at all times. This provides a basis for planning 
the inspection intervals which must now be chosen so that the risk of failure 
fluctuates between the risk for continual inspection and a specified maximum 
value. Provided the specified value of risk exceeds the risk under continuous 
inspection, the procedure is always possible, although it may require frequent 
inspections. (An example will be discussed in the section on Application to 
Fail-Safe and Safe-Life Structures and is shown there in Fig. 13.) 

Probability of Structures Being Eliminated by Periodic Inspection 

It is of interest to consider the probabiUty of cracks being detected at each 
inspection since this gives the fraction of the fleet that can be expected to 
require repair and modification before continuing in service. 

Reference to Fig. 3 shows that at the first inspection all structures with crack 
lengths between l = lo and / = 1 are eliminated by the inspection. This 
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corresponds to structures being eliminated with initial lives between nj^^i^fnjj 
andn/(i)/«^. 

Hence the fraction of the population in which cracks are detected at the first 
inspection is given by 

np 
rD*(ni(iyJD'"1(0)) = \ piZydZ (21) 

f"/(i) 
"D 

Similarly for the m^^ inspection, provided that the inspection intervals are 
short enough to limit at all times the risk of failure below the risk of failure for 
no inspection, the probability of elmination of structures is given by 

"/(m) 

rD*i"Hm)'lD.ni(m- 1)) = j " piZydZ (22) 
J"/(m-l) 

Calculation of the Probability of Survival 

With the data and assumptions referred to above, the risks of static fracture 
due to fatigue and fatigue fracture can be evaluated as functions of life from Eqs 
8 and 11. The total risk of fatigue failure and the corresponding probabihty of 
survival are then evaluated according to Eqs 12 and 13. 

If an inspection procedure is applied, the risk of failure is given by the risk 
of static fracture. For continuous inspection the risk of failure is given by Eq 14 
or Eq 16 according to whether or not there is repair and replacement of 
structures in which cracks are detected. With periodic inspection at specified 
times M/(OT), the risk of failure is given by rj*(ns,lD,nj^m)) in the case of 
replacement (by substituting «/(m) for n/(i) in Eq 19). 

The corresponding probabiUties of survival can be calculated as before from 
the appropriate risk function. 

The probability of cracks being detected at the wth inspection at Ufe «/(^) 
follows from Eq 22 and is given by 

« ^ ) 

/ "D 

i-D*(Pi(myJD, n^m - 1)) = / pizydz 
J"I{Ta-l) 

"D 

assuming that the number of structures that fail is small compared to the 
number in which cracks are safely detected. 
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The main difficulties in evaluating the risk functions are to obtain the basic 
data required and to evaluate the difficult integrals involved. With the modern 
digital computer the second difficulty can be largely overcome and a procedure 
has been developed which enables these double integrals to be evaluated quite 
efficiently [7]. 

The data required for a complex structure are usually difficult to obtain and 
the method proposed here is to use representative data from other structures in 
conjunction with test data obtained on the actual structure in the course of the 
initial design proving tests. 

Input Data 

The following input data are required in evaluating the risk and survivorship 
functions. 

(1) The load spectrum Fs{S) defining the probability of exceeding the service 
load, S. 

(2) The average ultimate strength, /XQ . 
(3) The average residual strength, jUi?(0-
(4) The probabiUty distribution Px{X) of the relative strength X = RIIXR 

which is assumed to apply at any crack length. 
(5) The median crack-propagation curve for the population of structures 

(6) The probabiUty distribution Pz{Z) of the comparative hfe or life factor 
Z = ni_ zf^i-, which is assumed to apply at any crack length /. 

(7) The limits of integration for the risk function. These are determined by 
the end points of the crack-propagation curve and by the inspection procedure 
appUed. 

Calculation for Typical Aircraft Structures 

Because of the requirement for minimum weight and the extensive prototype 
testing now undertaken in the design of aircraft, it offers considerable scope for 
the appUcation of reliability analysis. The foregoing procedure will now be 
applied to the estimation of safe operating conditions for typical cases in the 
aeronautical field. 

Two different types of aircraft structures are considered—a high tensile steel 
monolithic structure typical of a safe-life design on the one hand and a 
redundant aluminum alloy structure typical of the fail-safe construction on the 
other. For each type of structure two quite different service conditions are 
considered, ranging from the military fighter aircraft role to civil air carrier 
operation. 

Typical Structures—Details of the two types of structure considered are as 
follows: 

Structure Ais n high-strength steel, nonredundant structure with an average 
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FIG. 4 -Fatigue characteristics of high strength steel structure (type A). 

critical crack length, ap, to failure under the mean load of approximately Ig. A 
typical crack-propagation curve obtained from a full-scale fatigue test on such a 
structure is shown in Fig. 4 and this has been used to obtain the residual strength 
curve shown, using the relationship 

ap 

VMO 

based on fracture-mechanics theory. .4 is a constant dependent on the fracture 
toughness of the material, and can be estimated from the failing load of the 
structure tested to destruction in the fatigue test. Data on the variability in 
residual strength were obtained from a large sample of results from ultimate 
tensile strength tests on a high strength structural steel [5]. 

These data expressed in terms of the dimensionless variate /?//X/; have been 
fitted by the three parameter Weibull distribution: 

^ ^ ^ ^ ^ ^ - ^ ^ P - i 1 . 017 -0 .824 / 

The distribution of fatigue hfe to final failure is assumed to be logarithmic 
normal with a variance of ajog ĵv = 0.02 and in accordance with the model of 
the fatigue process proposed above it is assumed to apply at any given crack 
length /. 
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The residual strength relationship 

MR 

Mo 
= <P\g(n,)] <m 

was obtained directly from Fig. 4 and put into the digital computer as a set of 

ordered pairs ( — , T̂; ) . If the structure were operated on the safe-Ufe 
\Mo / 

principle, inspection would not be relied on; but to enable the reliability analysis 
to be carried out including an investigation of the effect of inspection, a 
detectable crack length of Ij) = 0.40 was adopted. This corresponds to the 
critical crack length for limit load on the structure and gives a crack length of 
0.40 in. and a crack depth of 0.20 in. for a semicircular crack. These crack 
dimensions would be near the lower limit of positive detection by normal 
in-service inspections using current techniques. 

Structure 5 is a redundant aluminum alloy structure typical of the fail-safe 
construction, for which representative data have been taken from extensive 
fatigue investigations on aluminum alloy wings conducted at the Aeronautical 
Research Laboratories (ARL)[9]. A functional relationship was derived for the 
crack-propagation curve as shown in Fig. 5. The ARL results were pooled with 
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FIG. S-Fatigue characteristics of aluminum alloy structure (type Bj. 
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residual strength data from similar structures to obtain a characteristic 
relationship for residual strength in terms of crack length. 

MO 
Mo -(-i) 

A normal distribution has been assumed for the residual strength expressed as 
^ (0 /MJ? (0 ~ ̂ > with a standard deviation ox = 0.04, by reference to the results 
of an analysis of representative data in Ref 10. A log-normal distribution of 
fatigue life has been assumed with a standard deviation Oî g ̂ y = 0.20 and as 
before this is assumed to apply to the fatigue hfe for any given crack length/. In 
this case the mathematical expressions for crack length / = g(rii) and average 
residual strength MJ?/MO - 0(0 ^ ê incorporated in the computer program for the 
evaluation of the risk function. 

A detectable crack length of l^ =0.021 has been adopted corresponding to a 
crack 3 in. long in a wing structure having a 12-ft effective chord. 

Typical Loading Conditions-Details of the two service-load spectra are as 
follows: 

Spectrum I is derived from load-frequency data on American jet fighter 
operations presented by Mayer and Hamer [ i i ] in the form of a relative 
frequency distribution of Aw/An^, where An is the incremental acceleration due 
to a service load S, and An/, is the incremental acceleration for limit load. 

These data have been expressed in terms of a relative service load Y = S/S^JH. 
The apphed service load 5 = (1 + An)W, where W is the all-up weight. 
The ultimate design load ^uit = 1.5(1 + Ani^)W, where 1.5 is the ultimate 

design load factor. 
Hence 

1 + An 
(1 + Ani)1.5 

and the corresponding service load spectrum is shown in Fig. 6 as a relative 
frequency distribution of Y. 

Mayer and Hamer [ i i ] also give typical values of load counts per hour for 
various aircraft types from which an average figure of ten positive load peaks per 
hour has been taken. ^ 

Since the nondimensional life n = TV/TV,- is used in this analysis,^ the number 
of load counts in the median life to initial failure Ni is required when using the 
load spectrum in Fig. 5 since this gives the relative frequency of occurrence of 

2 The various risk functions have been expressed in tenns of the dimensionless variate^Z 
but they are compared on a common basis in the figures using the relative hfe n = N/Nj. 
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each load. A life of 2000 h is assumed typical of this type of aircraft, giving a 
total of 20,000 load counts in the median Ufe to initial failure. 

Spectrum II has been based on results from the National Advisory Committee 
for Aeronautics investigations on gust frequencies in thunderstorms [72] where 
the probabiUty of exceeding a given gust velocity U is expressed by 

Ft;([/) = e - ° - ' " ^ 

Adopting the normally specified 99 fps gust as the ultimate design-load 
condition, it follows that 

U S-S^ 
99 -Suit — Sm 

where S^ is the mean load, Suit the ultimate design load for the structure, and 
S is the service load corresponding to an up-gust U. 

Assuming that a mean load of 20 percent of the ultimate is representative of a 
civil transport, 

[7=124 
V Suit ) 

= 124 ( y - 0 . 2 ) 

transposing to the relative service load Y = SlSuit- This leads to 
FyiY) = g-^^-^cy- 0.2) 35 jjjown in Fig. 6. 

Tolefson[i2] lists the total frequency of occurrence of gusts for the 
thunderstorm gust spectrum as a function of altitude. From these data an 
average frequency of two thunderstorm gusts (including both up-gusts and 
down-gusts) per hour has been taken, corresponding to operation at an altitude 
between 20,000 and 40,000 ft at 400 to 500 mph. Since upward loads are those 
causing static fracture by fatigue, this corresponds to one load per hour. 
Assuming TV,- = 20,000 h as a reahstic figure for this type of aircraft operation, 
there would be a total of 20,000 loads in the median life to initial failure. 

Calculation of Risk and Survivorship Functions 

The computer program developed by Mallinson[7] enables the risk functions 
to be evaluated for static fracture due to fatigue and for fatigue fracture as given 
in Eqs 8 and 11, respectively. This has been done for each type of structure (A 
and B) and each type of load spectrum (I and II), giving four cases, A-I, A-II, B-I, 
B-II, and the results are shown in Figs. 7 to 10. The corresponding probabiUties 
of survival are compared in Fig. 11. 
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0-4 0-6 0-S 1-00 1-20 
RELATIVE LOAD Y»4 

FIG. 6 -Load spectra. 

These four cases have been selected to test various aspects of the method. A 
wide range of service load spectra and crack propagation characteristics is 
represented and the range of life considered is, for the no-inspection condition, 
well beyond the limits that would apply, for the safety levels acceptable in 
service. 

The risk function rj for the optimum condition of continuous inspection has 
been evaluated in each case together with the probabiUty of crack detection r^ 
and these results are also plotted for comparison with the risk functions for no 
inspection. It can be seen from these comparisons that the increase in safety 
level achieved by inspection is much greater for the highly redundant type B 
structure than for the type A structure. The effect of inspection for this case is 
studied further in Figs. 12 and 13. In Fig. 12 the effect on the risk function of 
inspection with repair and replacement is shown for case B-I by plotting rj* 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 11:08:31 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



PAYNE ON RELIABILITY APPROACH TO STRUCTURES 129 
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FIG. 1 -Risk function, case A-I. 
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FIG. S-Risk function, case A-II. 
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FIG. 9-Risk function, case B-I. 
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calculated from Eq 14. The comparison of rj and rj* shows that there is little 
effect on the risk functions from the reduction of the population due to the 
elimination of cracked structures by inspection over the range of service life 
which is of practical interest. 
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FIG. 11-Survivorship functions, no inspection. 
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The usual application of in-service inspection procedures to redundant 
structures of civil aircraft is represented by case B-II. For this case the risk and 
survivorship functions for limited risk have been calculated. Inspections were 
performed at relative lives itjf^r) of 0.68, 1.23,1.67, and 1.97 to limit the risk of 
failure below a specified value (0.001 in this case). This is a particular case of 

0-2 0-4 0-6 0-6 1-0 1-2 V4 1-6 

FIG. 12~Effect of inspection on risk function, case B-I. 
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FIG. I'i-Risk of fatigue failure, case B-II. Various inspection procedures. 

periodic inspection in which inspections are carried out on the whole fleet at a 
series of prescribed intervals. The risk and survivorship functions for no 
inspection, continuous inspection, and inspection for limited risk are compared 
for case B-II in Figs. 13 and 14. 

It will be seen by reference to Fig. 13 that the risk function for periodic 
inspection returns to the continuous inspection curve at each inspection and 
subsequently rises until it is checked by the next inspection. The continuous 
inspection curve therefore has a basic significance since it indicates the 
maximum extent to which the risk of failure can be controlled by inspection. It 
has therefore been investigated here, although it is a procedure which is not 
normally used. 

Results have been presented only up to values of « for which the losses in the 
population due to fatigue failures are relatively small. In practice, service lives 
are adopted which give a probability of failure of approximately 0.001 [15] and 
a value as high as 0.01 would be quite unacceptable. At higher values of n the 
increasing proportion of structural failures may produce a significant distortion 
of the probability distributions of fatigue strength and static strength. This 
question is discussed further under "Basic Data and Assumptions." 

Application to Fail-Safe and Safe-Life Structures 

There are two procedures currently used for assessing the safety in fatigue of 
aircraft structures. These are the safe-Ufe and fail-safe philosophies referred to 
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FIG. IA-Probability of survival, case B-II. Various inspection procedures. Legend for 
survivorship functions: 

L^^-safe life 
L/?7'-total risk, no inspection 
Lj(n, 0.021 in., 0.001)-limited risk = 0.001 

L/(«, 0.021 in., n)-continuous inspection with Lp = 0.021 in. 

earlier and their performance will now be investigated using the foregoing 
method of reliability analysis. 

Safe-Life Philosophy 

For a nonredundant structure in which the crack propagation time to failure 
is short, the safe-life approach estimates a mean life to failure from a fatigue-test 
result on the actual structure or from other representative data. To allow for 
scatter, this mean life is then divided by a factor (scatter factor) to give a safe 
operating Ufe. The risk of static fracture by fatigue is neglected and the risk of 
failure is assumed to be the risk of fatigue fracture. This is based on the 
assumption that the crack propagation time is negligible and the life to produce 
a detectable crack is virtually the same as the Ufe to fatigue fracture. In practice 
there is usually a significant crack-propagation time and the "safe Ufe" will 
therefore vary according to the crack length (or failing load) at which the failure 
is defined. 

This is illustrated by the risk functions in Figs. 7 to 10 which show that even 
for a type A structure which is typical of safe-life structures, the risk of static 
failure due to the growing fatigue crack (that is, the risk of "static fracture due to 
fatigue") is by no means negUgible. 

A direct comparison has been made between the probability of survival 
calculated by the reliabiUty analysis and the probability of survival predicted by 
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the safe-life approach for the four cases, A-I, A-II, B-I, and B-II. To apply the 
safe-life approach, a mean hfe has been taken for each of the four cases 
corresponding to failure at limit load in a fatigue test on the structure. Based on 
this criterion of failure, a safe life has been calculated to give a probabiUty of 
survival of 0.999 assuming a log-normal distribution of life with appropriate 
variance as given for Structures A and B above. These safe lives designated n^L 
are tabulated for the four cases in Table 1. 

Reference to Table 1 indicates that the probability of survival as calculated 
by the reliabiUty analysis procedure is substantially lower than that derived by 
the safe-life method which does not take full account of the effect of static 
fracture due to fatigue. 

This difference is more marked for Structure B but it is quite significant for 
Structure A which is nonredundant and typical of the safe-life construction. 

It is concluded that in practice there is always some departure from the 
idealized safe-Ufe structure, in that there is a significant period of crack 
propagation with reducing static strength—the risk of failure of a structure 
during this period of its life being the risk of "static fracture due to fatigue" as 
defined earlier. This risk is not taken into full account in the current safe-life 
approach, which adopts a mean life corresponding to failure at a particular crack 
length, as determined in a fatigue test relating to the structure. 

As a result, the estimate of safe life based on this mean may be in error and, 
depending on the conditions, this error can be in the nonconservative direction. 

TABLE 1 -Safety achieved by safe-life and fail-safe procedures as calculated by 
reliability analysis. 

(1) 

Type of 
Aircraft 

A-I 
A-II 
B-I 
B-II 

Safe-Life Criterion 

(2) 

Safe-Life Estimate 

Relative 
Life, nsL 

1.625 
1.625 
1.31 
1.31 

Life, h, NsL 

3 250 
3 250 

26 200 
26 200 

(3) 

Pr of Survival 
at Safe Life 
LFT(NSL) 

0.987 
0.993 
0.962 
0.953 

Fail-Safe Criterion 

(4) 

Life at which 
Residual Strength 

= Limit Load 

4.4 
4.4 
5.2 
5.2 

(5) 
Life at which Pr 
Survival Z,7<n) = 

0.999 

Relative 
Life Life, h 

0.98 1960 
1.36 2 720 
0.77 15 400 
0.87 17 400 

Col. (1)-I = fighter-load spectrum; II = gust-load spectrum; A = safe-life structure; B = fail-safe 
structure 

Col. (2)-nsi^, NsL = safe life for Py {survival J = 0.999; estimated by safe life procedure using 
average life to failure under limit load 

Col. (i)-Lpj't„„. \ = Probability of survival at ngt calculated by the reliability analysis 
Col. (4)-Life at which fail-safe criterion applies: median residual strength = limit load 
Col. (5)-Life at which Pr\ survival}- = 0.999 as calculated by the reliability analysis 
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Fail-Safe Philosophy 

In highly redundant structures there is usually an extensive period of crack 
propagation during a large part of which there is no very marked loss in strength 
due to a detectable crack. Such structures may be operated on the fail-safe 
philosophy: a life is calculated in the same way as in the safe-life procedure, 
except that the mean life may be based on the life to some observed crack length 
in the fatigue test, and instead of retiring the structure from service when the 
calculated safe life has been reached, an inspection is carried out. 

A risk is incurred that structures containing undetected cracks may fail under 
an applied service load and this is the risk of static fracture due to fatigue as 
defined in this paper. To meet this situation, the current civil airworthiness 
requirements for fail-safe structures specify a minimum strength to be 
demonstrated for the structure with clearly detectable failures present.^ 

The reliability analysis developed in this paper provides a more quantitative 
approach by calculating the risk of static fracture due to fatigue. This is shown 
by Figs. 7 to 10 where the risk of static fracture due to fatigue for the four cases 
taken are presented as functions of life. It is clear that the risk of static fracture 
due to fatigue is quite significant in all cases and depends on the type of 
structure and the loading spectrum. 

To investigate the suitability of the airworthiness requirement the life at 
which the mean strength of cracked structures has fallen to limit load is shown 
for the four cases in Table 1 and it can be seen by reference to the survivorship 
functions in Fig. 11 that operation up to this stage in service would lead to an 
unacceptably high probability of failure in all four cases. A similar finding is 
reported by Ferrari et al[2]. 

This indicates that the present airworthiness requirement for fail-safe 
structures is not entirely adequate. It is suggested that successful operation of 
the fail-safe philosophy has largely depended on early detection of cracks in 
those aircraft of the fleet which are first to show fatigue cracking. This is then 
followed by modifications to aircraft in the rest of the fleet to eUminate the 
fatigue weaknesses before extensive cracks develop. 

In those cases where each aircraft in the fleet has been operated until fatigue 
cracks have been detected before undertaking modifications, it is most likely 
that the residual strength with detectable cracks present is considerably higher 
than limit load. 

A more rehable method of maintaining safety is proposed in which an 
inspection procedure based on reliability analysis is carried out to limit the 
probabihty of failure to a specified value. 

3 The Air Registration Board (United Kingdom) specifies 66 Vs percent of the ultimate 
load. The Federal Aviation Agency (United States) requirements correspond to 55 percent 
of ultimate load with a factor of 1.15 to be applied unless the test load is maintained on the 
structure while the members are being cut. 
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Safety by Planned Inspection 

As stated earlier, continuous inspection gives the maximum improvement in 
the probability of survival and although it is not normally a very practicable 
procedure, it provides a measure of the potential value of inspection in any 
particular case. 

In Figs. 7 to 10 the risk function for continuous inspection is compared with 
the risk for no inspection. It is apparent from these results that the advantages of 
inspection are greater in the case of the redundant type B structure than for the 
type A structure because of the much shorter relative crack length that is 
detectable. Inspection is also more effective under the gust-load spectrum than 
under the maneuver load spectrum because with the latter there is a much 
greater probability of occurrence of high loads that will cause failure of 
structures containing the small cracks that can escape detection. This indicates 
that the operation of redundant structures on the fail-safe principle offers a 
considerable advantage in civil aircraft operation. 

With continuous inspection the risk of fatigue fracture rp(n) is zero since no 
cracks are allowed to grow beyond the detectable length IQ and there is, instead, 
the probability of elimination by inspection /•£>(«) given by Eq 15 or Eq 17. In 
Figs. 7 to 10, r£)(«) is plotted for each of the four cases and it will be seen that it 
is much greater than the risk of static fracture by fatigue rs{n) which is now very 
much reduced due to the elimination of cracked structures by the inspection 
process. 

Since the risk of fatigue fracture is zero, the risk of static fracture by fatigue 
becomes the risk of fatigue failure and as stated earlier there are two cases to be 
considered. 

If structures in which cracks are detected are retired from service, the risk of 
fatigue failure with inspection rj{n') is given by Eq 16, while if the cracked 
structures are repaired and replaced in service the risk of fatigue failure with 
inspection and replacement is ri*{n) presented in Eq 14. 

These two risks are compared for Case B-I in Fig. 12 and it will be seen that 
the difference between them is small for values of service life considered here. 
However, since repair and replacement of structures in service is the usual 
procedure, ?•/*(«) has been used in the following consideration of inspection 
procedures. 

In practice, some form of periodic inspection is required and an inspection 
procedure which limits the maximum value of the risk is proposed here. An 
example of this is shown in Fig. 13 for Case B-II where the computer program 
has been arranged to apply the inspection condition automatically when the risk 
reaches a predetermined value of 0.001. The risk functions for no inspection and 
continuous inspection with replacement are plotted for comparison and the 
corresponding survivorship functions are shown in Fig. 14. 

Also shown is the survivorship function for a safe-life structure with a median 
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life to failure of 5.2 7V,-, corresponding to failure of the structure at limit load, 
and with a log-normal distribution of fatigue life having variance a^ = 0.04 as 
used in the reliability analysis. 

Reference to Fig. 13 shows that the inspection^ procedure for a risk limit of 
0.001 involves four inspections at 0.68 TV,-, 1.22 TV,-, 1.67 TV,-, and 1.97 TV,-. This 
situation corresponds, for the conditions of B-II, to a risk limit of 5 X 10"* 
failures per hour with four inspections at 13,600,24,400, 33,400, and 39,400 h. 

By reference to Fig. 14 it can be seen that for a probability £f survival of 
0.999, the limited-risk procedure provides an operating life of 2̂ .3 A'̂ ,- (46,000 h) 
as compared to 0.9 iV,- (18,000 h) for no inspection and 2.6 iV,- (52,000 h) for 
continuous inspection. 

This procedure can be compared with the conventional fail-safe approach. 
Reference to the survivorship function Lsj^in) in Fig. 14 shows that planning 
inspection periods by the fail-safe philosophy would be quite unsatisfactory if 
the criterion for inspection were taken as a probability of 0.001 of cracks being 
present that will cause failure under limit load. This would indicate that the first 
inspection should be carried out at a hfe of 1.32 7V,-, but at this stage the 
probability of failure in the fleet would be unacceptably high. 

A more satisfactory criterion is to inspect when there is a probabiUty of 
0.001 that detectable cracks are present. In the present case the detectable crack 
length is given as IQ = 0.021 corresponding to a life of 3.0iV,-. With a standard 
deviation of a = 0.2 and a mean Ufe of 3.0 TV,- a probability of 0.001 corresponds 
to a life of 0.72 TV,-. 

This gives a probability of 0.001 that there are detectable cracks present and 
it compares reasonably well with the life of 0.68 7V,- for first inspection 
calculated by the reliability analysis. However, the method does not provide an 
estimate of the number and frequency of subsequent inspections based on an 
acceptable safety level. 

Discussion 

The application of the foregoing procedure to structural safety in fatigue will 
now be considered. While the method has the advantage that it provides a 
quantitative estimate of the risk of failure as a function of the life, it involves a 
number of assumptions and requires a considerable body of basic data. 

Basic Data and Assumptions 

The method reUes largely on using representative data in conjunction with a 
number of important physical assumptions as discussed below. 

Basic Assumptions-{\) The service load S is assumed to be independent of 
the structural resistance R. The assumption infers that any increase in flexibility 
of the structure as a fatigue crack extends does not affect its response to the 
apphed loads. This is a quite vahd assumption for structures in which there is a 
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relatively short crack length to failure, as in the type A structure used in the 
foregoing examples. For highly redundant structures there will be a local 
increase in flexibility, which could increase the elastic response, but it is 
considered that in such an event it would be very Ukely that the effect on the 
trim of the aircraft would result in detection of the failure (see Appendix). 

(2) It is assumed that there is no correlation between the residual strength of 
a cracked structure and its fatigue strength. The evidence in support of this 
assumption is presented in the Appendix. 

(3) The relative residual strength X = R(f)lnji{f) of structures cracked to some 
crack length / has a characteristic probability distribution which applies for any 
value of /. There is experimental evidence to support this assumption as 
discussed in the Appendix. 

(4) At all points on the crack-propagation curve of any structure the fatigue 
life Ni z bears a constant ratio to the median life TV/ at the same crack length 

Since Af; z is distributed about the median value Ni it follows from this 
assumption that Z has a median value of 1 and has the same distribution for all 
crack lengths. 

The experimental evidence to support this assumption is discussed in the 
Appendix. 

(5) As the life increases and structures fail and are thus eliminated from the 
population, it is assumed that there is no change in shape of the probability 
distributions of static and fatigue strength. In general some distortion of the 
probability distributions of fatigue life and residual static strength will arise since 
the weaker than average structures will tend to fail first. In practice, however, 
this effect should not be very significant since, over the operating range of 
service Ufe, the proportion of failures in the population is necessarily very small. 

Basic Data-{\) The service-load spectrum Fs{S) must be known. This can be 
estimated from representative data initially and then subsequently obtained 
from actual service records. However, for the high loads of rare occurrence some 
extrapolation of the data may be necessary. 

(2) The mean value of the ultimate failing load JLIQ of the structure is required. 
This is used to express the mean residual strength M/?(0 nondimensionally as 
M«(0/MO = 0(0-

(3) The probability distribution of the relative strength Z = /?(0/Mfl(0 is 
required. As stated in the Assumptions the same distribution is taken to apply at 
all values of crack length /. 

(4) The median crack-propagation curve for the structure must be known. It 
is proposed to rely on the crack-propagation curve obtained in fatigue testing a 
prototype specimen of the structure in the design stage. However, the shape of 
the curve may be indicated by basic considerations such as by the application of 
fracture mechanics theory in the case of the monolithic type A structure in the 
foregoing examples. 
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(5) The mean residual strength IJ.R(1) must be known as a function of crack 
length and expressed nondimensionally asju^(/)//Jo = 0(0- This function may be 
estimated by calculation or from representative data, in conjunction with the 
results from static failure of the structure tested to destruction in a fatigue test. 

(6) The distribution of the fatigue life Niz to a given crack length is required. 
As stated in the Assumptions, the comparative life TV; z/^i =Z is taken to have 
a characteristic distribution which is the same at all crack lengths. 

Applications to Airworthiness 

The procedure developed here considers two separate risks of fatigue failure: 
(1) fatigue fracture defined as failure foUovidng growth of the fatigue crack to the 
stage where collapse occurs under the steady mean load, and (2) static fracture by 
fatigue defined as failure of the structure under a service load during the crack 
propagation stage. 

By separating these two risks it is possible to make a quantitative estimate of 
the total risk of failure due to fatigue, taking account of the variability in 
structural resistance and crack propagation rate together with the probability 
distribution of service loads. This is not done in the safe-hfe and fail-safe 
procedures, neither of which takes full account of the risk of static failure in the 
structure, progressively weakened by the growing fatigue crack. The present 
airworthiness philosophies are at a notable disadvantage in this regard and as 
shown by the foregoing examples they can be significantly in error in the 
unconservative direction. 

Reliability in Fatigue-It is therefore suggested that the safety of both types 
of construction should be estabUshed by a probabilistic procedure such as the 
one presented in this paper. The approach considers reliability in fatigue and 
embraces both the safe-hfe and fail-safe philosophies. In many safe-life structures 
the hfe to failure includes a considerable crack-propagation period and there is 
no essential difference from the fail-safe structures—both have similar character­
istics only in varying degree. In safe-Ufe structures in which crack propagation is 
very rapid, the risk of failure during the growth of the fatigue crack is negligible 
and the risk of failure is then the same as the risk of fatigue fracture. 

In both cases the risk of fatigue failure for the safe-hfe structure is given by 
the rehability analysis which includes both the risk of fatigue fracture and the 
risk of static fracture by fatigue. 

As illustrated by the above examples, the reliability analysis provides a 
rational assessment of fatigue performance, including the calculation of 
inspection intervals, and it also enables the effect of structural parameters to be 
investigated. Its application in the four cases discussed has shown that inspection 
has a great potential advantage and in view of the increasing size, complexity, 
and cost of modern aircraft there is likely to be an increasing trend to rely on 
safe detection of cracks in service. A probabiUstic approach to planned 
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inspection procedures in conjunction with modern nondestructive inspection 
techniques could make an important contribution in this regard. 

Specification of the Safety £eveZ-Specification of a required probability of 
survival is essential to the reliability approach. For all engineering structures 
some risk of failure exists, however remote, and there is a general trend to more 
efficient and rational design procedures based on a probabilistic ap-
proach[75,i4]. It is therefore suggested that the airworthiness authorities 
should consider specifying a required safety level. A required probability of 
survival is already contained indirectly in some airworthiness requirements[i5] 
which specify safe lives at three standard deviations below the mean life. 

The required safety level may be specified in a number of ways the most 
important of which are: 

(l)The probability P of any aircraft suffering a fatigue failure within its 
operating life TV. This definition is very useful when considering a fleet of 
aircraft, since P then defines the fraction of the total that would be expected to 
suffer fatigue failure. However, it has the disadvantage that it takes no account 
of the operating life and hence of the time of exposure to risk. Various 
authorities[i5,i6] quote safe lives, three standard deviations below the mean in 
relation to a normal distribution of log Ufe, corresponding to /* = 0.0013. 
Experience has indicated [i 7] that for civil aircraft an approximate value of 
P = 0.001 is achieved. 

(2) The risk of failure r{N), in the fleet at any Ufe N, or the failure rate per 
hour. 

dP 
dN 

l-P(N)-

This is the risk function derived in the reliability analysis. It gives the probabiUty 
of a failure in the fleet at any stage of the Ufe N, but it gives no average of 
performance throughout the Ufe. 

(3) The average failure rate 7(N) in the fleet for life N. 

f: 
•N 

m-~ ^ 

dP 

^^^ \-P{n)^ dn 
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Since P(n) is necessarily small in the operational life N. 
Therefore, we may take: 

This gives the average failure rate over the life for the fleet, or for a number of 
(similar) fleets, and is therefore a useful measure of safety for Civil 
Airworthiness Authorities. Assuming an average operating life Â  of 20,000 h, the 
value of r(N) corresponding to P = 0.001 in (1) is: 

•<-)=?&•"-• 

In a survey of accident statistics for United Kingdom and United States civil 
aircraft, Freudenthal and Payne [70] found an average structural failure rate of 
3 X 10"'' for ultimate load failure and 2 X 10"'' for fatigue failure. 

Pugsley [i5] reports a structural accident rate of 10"'' per hour in the United 
Kingdom for military aircraft in the 1930's. Black [i 9] states that in the 1970's 
the target level of reliability should be 10 'h , including fatal accidents for all 
systems failures, with any individual cases not exceeding 1 to 10 percent of the 
total. This indicates an accident rate for structural failure of about 10"* per 
hour. Lundberg[20] also suggests 10"* per hour as an average failure rate for 
structural fatigue with 10"' as a target in view of the rapid expansion taking 
place in civil air transport. 

(4) The average probability of failure per mile, F = P/V-N where V is the 
average ground speed. This definition enables a comparison of the safety of 
different modes of travel from place "A" to place "B" but it rather favors air 
travel because of its high speed. 

From a consideration of the above it is suggested that the most suitable 
measure of safety is the average failure rate per hour [f(.N)]. This is readily 
compared with operational statistics and it represents an average risk throughout 
the hfe. 

In addition it is proposed that a maximum permissible figure should be 
specified for the instantaneous failure rate or risk >iN). This is suggested because 
if an inspection procedure is adopted to limit the total probability of failure, the 
risk of failure may rise to quite a high value for a short period before each 
inspection. 

The proposed safety condition for reliability in fatigue is therefore: 
rprW < 10"''/h and TpA^ < KT^Ih. 
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General Conclusions 

The reliability analysis of the risk of structural fatigue failure which has been 
developed here takes into account the crack-propagation and residual strength 
characteristics in estimating the probabihty of failure of the structure under the 
service load spectrum. 

From a comparison of this method with the fail-safe and safe-hfe procedures 
for four typical cases that have been taken on aircraft structures it is concluded 
that the current methods can be unconservative in certain instances. 

This arises because both the fail-safe and safe-Ufe procedures are affected by, 
but only partly take account of, the probability of failure of the structure during 
the period in which it is being progressively weakened by the growing fatigue 
crack. 

The procedure proposed here for reUability in fatigue is applicable to both 
fail-safe and safe-life structures and for a prescribed safety level it will show 
whether inspection is feasible and, if not, it will evaluate the life to replacement. 
From investigation of the four cases considered, it is apparent that the potential 
advantage of inspection may prove to be very considerable. The analysis then 
enables an efficient inspection procedure to be planned using the crack-propaga­
tion and residual strength characteristics of the structure determined in a fatigue 
test, and information on the crack-detection capability of the inspection 
technique. 

However, as stated above, the procedure involves a number of assumptions 
and a considerable body of data, and for structures in general the method should 
be regarded at the present stage as a means of comparing the effect of various 
design parameters on the fatigue performance in order to obtain an efficient 
design. 

In the aeronautical field on the other hand, it is suggested that the structural 
design and development practice and the relevant background data are 
comprehensive enough to warrant development of the method to provide safety 
against fatigue failure. The procedure is based on the characteristics of the 
structure determined from structural tests and design analysis in conjunction 
with pooling of other representative data. This is an extension of the policy 
already adopted with the current philosophies for aircraft structures. 
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APPENDIX 

Discussion of Assumptions 

In the main body of this paper a statistical model for structural fatigue 
failure has been proposed which involves the following important assumptions 
regarding the static and fatigue strength of the population of structures: 

(1) Static strength and fatigue strength are independent. 
(2) Service load S is independent of static strength R. 
(3) For all points on the crack-propagation curve of any structure, the fatigue 

life bears a constant ratio to the median life at the same crack length. 
(4) The fatigue life to any given crack length has a log-normal distribution 

with constant variance independent of the crack length. 
(5) For structures all cracked to the same crack length /, the relative residual 

strength R(1)IIJ^R(.1) has a characteristic distribution which is the same for all 
crack lengths. 

These assumptions are discussed below and supporting evidence is presented. 

Independence of Static and Fatigue Strength 

As far as the basic material properties of static and fatigue strength are 
concerned, experimental evidence indicates that no definite correlation 
exists[2i-25]. For fabricated structures there is further indirect evidence, in that 
static ultimate load failure usually occurs in a different area, and by a different 
mechanism, to fatigue failure. This has been found in static and fatigue tests 
conducted on aluminum alloy structures[24,25] and similar results have been 
reported for welded steel components[25]. It can therefore be inferred that 
static failure through a cracked section will not be directly related to the factors 
that govern fatigue cracking. 

Independence of Service Load and Static Strength 

There is the possibility that a fatigue crack may increase the flexibility of the 
structure to the stage where the elastic response to gusts is markedly affected. 
However, experimental evidence suggests that this would require a very extensive 
crack, mainly because the crack causes only a local increase in flexibility of the 
structure. In fatigue testing aircraft wings at the Aeronautical Research 
Laboratories by the resonant vibration method it was found [24,2 7] that the 
primary modes of vibration were very little affected even by substantial cracks. 
It is therefore suggested that the extensive cracking required to cause an 
appreciable effect on structural response would be detected, either by visual 
inspection or by a marked change in trim of the aircraft. 

Constant Life Factor for Any Member of the Population 

Crack-propagation data such as that given in Refs 28 and 29 for test 
replications on a number of nominally identical specimens indicates that there is 
a constant factor Zjelating the life to a crack length / of any particular specimen 
to the median life Ni at the same crack length. That is, 

N,^z=Z-N, (23) 

for all values of crack length /. 
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This condition is in fact a corollary to the assumption in (4) of a log-normal 
distribution of life Ni^ z with^constant variance a^ for all values of /. This 
follows, since if log Ni ~ N{log, Ni, o^) then 

~ N, 
logA',-logAf, = log—~iV(0 , a^) (24) 

and this applies for all values of I since the log-normal distribution is assumed to 
apply for all values of / with the same variance a^. 

Therefore^ for any particular specimen, there corresponds a constant a such 
that log NiJNi = a*a. Therefore, Ni/Ni = e"'" = constant Z, since a and a are 
constant for all values of /. 

Log-Normal Distribution of Fatigue Life at Constant Crack Length 

This is a major assumption which is essential to the model of the fatigue 
process proposed in the paper and it has been examined in some detail. Three 
separate investigations, each based on an extensive body of experimental data, 
provide evidence in support of the assumption as follows: 

(1) Comprehensive surveys of fatigue-test data on various aluminum alloy 
structures[50,5i] have shown that the fatigue life to complete failure of 
fabricated structures has a probability distribution which is approximately 
logarithmic normal with a constant variance. Ford et a l [ J i ] propose a 
characteristic value of 0.20 for the standard deviation of the logarithm of fatigue 
life for aluminum alloy structures. This result indicates that at least at the 
terminal point of the crack propagation curve a logarithmic normal distribution 
of fatigue life applies. 

(2) Ford and Payne[ J2 ] have analyzed data from Mustang wings tested under 
constant amplitude loading. Groups of structures were tested at each of a 
number of load ranges and the maximum load of the loading cycle for each 
group varied from 16 to 80 percent of the ultimate failing load. 

Failure in each group of structures of course occurred at a crack length 
corresponding to the maximum load of the fatigue cycle and the data therefore 
comprise results for fatigue failure at a series of quite different crack lengths. 

Fo rd^nd Payne[i2] have pooled the data from these groups by taking the 
median N^ and the standard deviation S^ for any group k and for each test 
result Nif in the group the standardized variate (logiV^ — logA''fe)/Sfc has been 
calculated. 

The test results from all of the groups have been pooled in this way to give a 
total of 84 data points. It has been found that these pooled data form a large 
homogeneous sample which shows reasonable agreement with a logarithmic 
normal distribution. This provides evidence in support of a logarithmic normal 
distribution of fatigue life at any crack length. 

(3) A comprehensive investigation on this subject has been undertaken by 
Ingham and Grandage(Ji] using fatigue data from Mustang v/ings[34], fatigue 
data from C46 wings[55], and F-29A wings[i6]. 

From a study of these data it was found that following crack initiation the 
crack-propagation curves were practically linear over a considerable part of the 
life. 

That is, for each structure 
N,~Ni = p-l (25) 
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where Ni is the life of the structure to crack length /, Nf is the Hfe to initial 
failure, and |3 is the slope of the crack-propagation curve for the structure. 

Similarly for the median 

VV, - TV,- = 'fi-1 

where j3 is the slope of the median crack-propagation curve. Therefore, 

#^4 (26) 

The data again came from groups of structures tested at each of a series of 
load ranges. The slope |3 from the crack-growth curve of each structure in â  
particular group was obtained^ and divided by the median slope from the group jS 
to give a series of values of |3/j3. 

The assumption under test was that the life to any crack length / had a 
log-normal distribution with constant variance. It has been shown in the section 
on Constant Life Factor for Any Member of the Population, that under this 
assumption, for any structure, 

Ni, z = Z-N, (27) 

for any crack length /. In particular, A',̂  z - Z'Nj. Hence it would follow that 

Ni - Ni 

Ni - Â ,-
-'^ (28) 

where log Z ~ A^(0, a?og z)- It follows from Eqs 26 and 28 that the assumption 
requires /3/l3 = Z, and therefore 

log f ~ j ~AA(0, apog p) with a,og ^ = Ojog z 

The values of S\Q^ ^ for each of the three different types of structures were 
obtained by pooling the relevant data in each case. For the Mustang wings a 
value of 0.22 was obtained for 5|og ^ which is in good agreement with the value 
of 0.20 recommended for ^log z by Ford et a l [ J i l . For the C46 and T29A 
structures, however, S\Q^ ^ was significantly greater than this value in each case. 
This could be attributed to the much smaller sample size for these data 
combined with the difficulty in obtaining an accurate record of crack growth 
throughout the fatigue test. 

In testing the experimental data against the log-normal distribution the values 
of log (|3/j3) for each group of tests on a particular type of structure were divided 
by the value of Siog (j for the structure to give a standardized variate 

^ ^ l o g | - l o g | ^2^^ 

All the values were then pooled to give a total of 115 data points and these 
are shown plotted in Fig. 15 reproduced from Ingham and Grandage[i i] . It will 
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be observed that the plotted points show reasonably good agreement with the 
straight line of the normal distribution. 

Since these data represent the initial period of crack growth in the three 
different types of structures tested under a variety of different types of loading 
conditions, it is considered that the results provide good justification for the 
assumption of a log-normal distribution of fatigue life at any stage of the crack 
propagation. 

Characteristic Distribution for Residual Strength for Cracked Structures 

It is stated in the main body of the paper that for a structure of monolithic 
construction of high strength steel the residual strength Ri at any crack length is 
given by fracture mechanics theory and this assumption is well supported by 
experimental data. 

For a through crack of length / it can then be shown that 1. I 11. v - a i i L j i i^u 

where K is the fracture toughness for the material of the particular specimen. In 
the general case where the crack originates from the surface of the material and 
the crack front may have a more complex shape, Eq 23 then takes the form 

Ri = K-a-^ (31) 

where a is a factor determined by the shape of the crack front. 
Similarly for the median values 

~ 1 
/ i ^ ( / ) = / : • « • — ^ 

where K is the median value of fracture toughness. 
Hence the relative residual strength 

R{1) K 
X(/)=—77r = ^ 

is independent of the crack length /. 
This shows that for the monolithic structure the probability distribution of 

residual strength X{1) is the same for all crack lengths, and is in fact equivalent to 
the probability distribution of fracture toughness for the material. 

There is also evidence to show that the assumption of a characteristic 
distribution of relative residual strength applies to fabricated structures. The 
variability in ultimate strength of uncracked aircraft structures of aluminum 
alloy has been investigated by Freudenthal and Payne[iO] using multiple test 
data from eleven different types of structure and nine types of mainplane panels. 
The panels were all loaded to failure in compression but the different types of 
structure were tested to destruction under differing loading cases and tension, 
compression and shear failures were represented in these results. For each type 
of structure the dimensionless variate RQ/IJ-O was taken for each structure and 
thus all results were transformed to have a mean value of 1.0 and were then 
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pooled to give a total of 170 data points from the 19 different types 
represented. 

It was found that these data formed a homogeneous sample with a pooled 
standard deviation of 0.043, and the normal distribution gave a good fit over a 
considerable range of the variate i?o/Mo- This suggests that a single distribution 
of the ultimate failing load about the mean value can be obtained irrespective of 
the type of structure considered or its mode of failure. Furthermore it infers 
that the variability in residual strength of cracked structures is unlikely to be 
influenced by factors affecting the local load distribtjtion in the structure such as 
the length of a crack, but is mainly dependent on the variability in material 
properties and variations in manufacture. This is supported by the results of 
residual strength tests on Vampire wings[J7]. These specimens had all been 
fatigue tested to the stage where the main spar boom was cracked through 
resulting in a loss of approximately 20 percent of the total tension area. All 
specimens therefore contained the same failure of well defined extent and were 
loaded statically to destruction. The coefficient of variation of the failing load 
(or the standard deviation of relative residual strength R (0/MJ? (0) was 0.042. This 
is in good agreement with the value of 0.043 for the standard deviation in 
relative strength of uncracked structures, found by Freudenthal and Payne[70], 
referred to above, and indicates that the variability in relative strength is little 
affected by even substantial cracking. 
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DISCUSSION 

F. H. Hooke^ {written discussion)-The "risk function," "hazard rate," "force 
of mortality," or "instantaneous failure rate"^'^ is, by definition, the rate of 
failure at time ? or « of survivors of the population at time t or n. It is usually 
denoted r(n) and is related to the reUabiUty or probability of survival L{n) by 
the basic equation quoted by Dr. Payne. 

JL(„) = e-/o"'-(")dn 

and r(n)dn, putting dn = I, gives the probability of failure at the next load cycle 
of a member of the population which has survived to the nth load cycle. If, in 
the bivariate population of Dr. Payne's example, which is distributed in the 
variates / and R, we choose an element dldR, the probability of failure at the 
next cycle of a member which has survived -to « is: 

'<«)element = rin\l,R) = Fs(R) 

as is implied in Eq 3 where Fs(^) is the probabihty of the service load Fg{S) 
exceeding the element's strength^. The reliability or probabihty of survival of 
the element is shown to be* 

i(«)element =Lin\l,R) = ^-/"^sC^)' '" 

and the contribution of this element to the reliability of the singly distributed 
element in which / is constant is: 

dL(n\r) = e--'""^5(«)d«p(i?)di? 

• Senior principal research scientist, Structures Division, Aeronautical Research Labora­
tories, Department of Supply, Melbourne, Australia. 

2 Myers, R. H., Wong, K. L., and Gordy, H. M., Reliability Engineering in Electronic 
Systems, John Wiley & Sons, New York, 1964. 

3 Bazivski, I., Reliability Theory and Practice, t'rentice Hall, 1962. 
^ Hooke, F. H., "Analysis of Safe Fatigue Life and Safe Inspection Intervals by 

Reliability and Conventional Theory," ARL Report SM 335, 1971. 
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The conditional reliability of this population element dl in which / is constant 
while R is distributed about the mean value yiR{R) with density pR^ MR(^) i^' 

The risk function for this element dR is 

£ = 0 e-/o"^5(^)''«pR_ ^^iR)dR 

to which Dr. Payne's Eq 3 is an approximation. 
By a simple extension, the reliability for the whole bivariate population in / 

and Z is: 

^ ( " ) = £ 7 l':,'{e-^"''^''''''''"^''"}p(Dpx(^didx 

so that 

, ~M lx=o m \e-^>s(^>^ot>li\)dn\ p(^[)p^(^X)dldX 
r{n) = *- ^ i J . 

£ 7 £V {e-/"^s(^^o*l'l)''«| piDp^iX)dldX 

to which Dr. Payne's Eq 6 is an approximation, which amounts to averaging the 
probability of failure over all members of the population at a given time n. The 
approximation is, of course, exact where the risk is the same for all elements of 
the population, and is good where the probability of failure of an element is 
small. 

Equation 8 is Eq 6 with a change of variable; however, to proceed to Eq 9 

from Eq 8 by way of the basic relationship L{ns) = e'^"^''^"^^" would appear to 
lead to the result: 

Lsins) = exp | / " ;-f_ - / ; "p(^F^(^/ .o* \8[^ 

Pz{Z)dXdZdn 

which has the same proviso as before, namely that it is approximate. 
In the example studied by Dr. Payne, there are several regimes in the lifetime 
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of each member of the population, and in his Example A-I the regimes are as 
follows: 

(i) The uncracked period, from n = 0 to n =Ni, during which Fs{R) is the 
probability of a service load exceeding the virgin strength. 

(ii)The undetectably cracked and unweakened period, from «=7V,- to 
n = 3.67V;, during which FgiR) is, again, the probabiUty of a service load 
exceeding the virgin strength. 

(iii) The undetectably cracked but weakened period, from n = 3.67V,- to 
7V = 3.87V,- during which the probability of failure is increasing above its initial 
value. 

(iv) The period of detectable cracking and weakening, until the mean 
strength reaches limit load: this period is from n = 3.87V,- to 4.47\̂ -. 

(v) The instant at which the mean strength reaches limit load, or two thirds 
of the virgin strength, at n = 4.47V,-. 

(vi) The period during which the structure has less than limit load strength, 
that is, for «>4.47Vi-. 

(vii) The instant when R becomes equal to the mean load, and Fs{R) = 1. 

The reliability may be partitioned into its components by attention to the 
limits of integration of Fs{XiJio(p[l]) thus: 

jNi r3.(>Ni j3.8Ni \ 

It may perhaps be overlooked at the first reading that Dr. Payne's analysis 
suppresses failures in regime (i), defines as "static failures due to fatigue" 
regimes (ii) to (vi) and separately calculates those of regime (vii) as "fatigue 
failures." At short lives, that is, in regions where the probabihty of failure is small, 
the contributions from regimes (i) and (ii) are a major part. Rigorous calculation 
of the risk of failure from loads exceeding the virgin strength is easy. Some 
philosophical questions arise when one is considering whether to separate 
failures of uncracked structures from failures of undetectably cracked and 
unweakened structures, and also whether to separate failures of weakened 
structures under loads greater than their current strengths but less than their 
virgin strengths from failures of the same weakened structures under loads larger 
than their virgin strengths. 

Studies pubUshed elsewhere'' suggest that if one adds to the conventionally 
calculated probabilities of fatigue failure the probabilities of failure through 
exceeding the virgin strength, the result will be in close agreement with the 
probabilities of failure as calculated by reliabiUty theory. In view of the second 
paragraph of the General Conclusions, this matter requires further investigation. 
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It is the forte of reliability theory to take into account the risks of failure of 
structures whose strength has fallen to some value between their virgin strength 
and the largest load applied in the fatigue test. The latter is often, for military 
aircraft, limit load, and for civil aircraft often about three quarters of limit load. 
Dr. Payne's Spectrum I has limit load (S = 0.675uit) exceeded with a probability 
of 3X 10^, which is six times in a life of 20,000 load counts. A load of 
O.nSuii is exceeded with a probability of 5 X 10"^, that is, once per aircraft 
lifetime of 20,000 load counts, a load of 0.87Suit once in the lifetime of ten 
aircraft, 0.935uit once in the Ufetime of 100 aircraft, and 0.995uit once in the 
Ufetime of 1000 aircraft. 

Such "rare events" have an intrinsic variability, similar to the classic 
observations of von Bortkiewicz on the number of men killed by the kick of a 
horse in certain corps of the Prussian army (1875-1894).' The spectrum is 
"fuzzy" in this region, being an extrapolation from actual records on a fleet of 
much more limited size, and this "fuzziness" is communicated to the 
calculations of risk rate and reliabiUty. It is thought that the acquisition of more 
data may improve confidence in the estimations: it is not yet clear whether such 
improved confidence can be predictive or merely retrospective. 

A. O. Payne (author's closure)—Dv. Hooke has made three interesting 
comments on the paper: The first comment on the derivation of the risk 
function as given in Eq 6 of the paper, concerns the assumption which I have 
discussed under "Basic Assumptions" namely, as structures fail and are thus 
eliminated from the population, it is assumed that the effect of these losses on 
the shape of the probability distributions of static and fatigue strength may be 
neglected. 

In the derivation that he has presented. Dr. Hooke allows for the effect of 
such losses on the probabihty distribution of crack length / at a given life (which 
is in effect the probability distribution of fatigue strength). In determining the 
probability of survival (i(«)eiement) for structures with residual strength R 
containing cracks of any given length /, he obtains an exact expression for the 
probability of survival of such structures at life n. 

i(«)element = i («A R) = e'f^S^^y''" 

However, in proceeding to integrate this probability over all values of R (or X) 

5 von Bortkiewicz, L., "Das Gesetz der kleinen Zahlen," Teubener, Leipsiz, 1898; 
quoted in An Introduction to the Theory of Statistics, G. M. Yule and M. G. Kendall, 
Griffin and Co., 1945. 
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to give the probability of survival for all structures with a crack length /, the 
expression 

L{n/l) = f^^^e-^"^s('^y'^" 'p(RydR 

is obtained which ignores the progressive change in shape of the probabihty 
distribution of residual strength R (represented in the equation by p(R)) due to 
the fact that at any crack length /, the weaker than average structures will tend to 
fail first. 

This effect will be quite significant as indicated by the service load spectra in 
Fig. 6 of the paper which show that structures which have a strength 10 percent 
less than structures of average strength will have a probability of failure ten 
times greater. 

Dr. Hooke's final expression for r(n) is therefore, like the one given in Eq 6 of 
the paper, an approximation which will involve small errors provided the 
probability of failure in the population is very small. In view of the small 
probabilities of failure that will be acceptable in practice, together with the 
uncertainties in our knowledge of the shape of the original distributions of 
fatigue life and residual strength, this appears to be a reasonable approximation 
although it warrants further investigation. 

However, Dr. Hooke's final expression giving the risk function as the 
derivative of a term involving three integrations is open to the objection that 
additional computational inaccuracies are involved as compared to the simpler 
expression for the risk function in Eq 6 which involves a double integration. The 
numerical analysis procedure developed by MalUnson[7] has made possible the 
application of the reliability procedure in the general case but the inaccuracies 
involved in even a double integration are by no means negligible and this aspect 
is still being investigated. 

Regarding the second comment, the model of the fatigue process developed 
in the paper considers only the failure of structures containing a macroscopic 
fatigue crack—uncracked structures are not included in the calculations for the 
risk of fatigue failure. Since any structure containing a macroscopic crack is 
taken to have suffered some reduction in its static strength the regimes (i) and 
(ii) postulated by Dr. Hooke do not occur in my model of the fatigue process. 

His regimes (iii) to (vi) are all concerned with cracked structures that may fail 
by chance occurrence of a service load in excess of the mean load and are 
therefore included in what I have termed the risk of static fracture due to 
fatigue. 

Regime (vii) concerns structures cracked to such an extent that failure will 
occur under the mean load and this is considered in the risk of fatigue fracture. 

As stated in the paper, the identification of these two risks gives a physical 
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insight into the problem especially as regards the significance of the fail safe and 
safe life philosophies and the influence of an inspection procedure. 

In an ARL report^, Dr. Hooke took a different model of the fatigue process 
in which he postulates that fatigue cracks originate in the whole population of 
structures at zero life and in this case the various regimes he defined could be 
identified. He used* this model to calculate the probability of survival for some 
specific cases and he has not included the variabiHty in residual strength of 
structures cracked to a given crack length which has a very significant effect on 
the risk of failure. His results are therefore not comparable with the calculations 
carried out in this paper. 

The relevance to the present case, of the good agreement found by von 
Bortkiewicz between the frequency of deaths by horse kick in the Prussian 
Army and the Poisson probability distribution for the occurrence of rare events 
is not altogether clear. 

It is true that the service-load spectrum may have to be extrapolated to the 
high loads approaching the ultimate, by using experimental data for lower loads. 
However, the lower tails of the distributions of fatigue life and residual strength 
are more significant in the reliability approach, and are more difficult to obtain, 
than the distribution of service loads. The uncertainty in the form of the 
probabihty distribution of fatigue hfe presents a similar problem in the 
application of the currently used safe-life approach. 
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ABSTRACT: Broad-band and bimodal spectra random fatigue tests were 
performed on 2024-T3 aluminum aUoy specimens. The specimens were axially 
loaded through an electrohydraulic closed loop test system. The two spectra 
were produced by filtering the output of a random noise generator. These 
filters were adjusted to provide nearly identical ratios of the number of zero 
crossings with positive slope per second to the number of positive peaks per 
second for the two signals. There was no significant difference in mean fatigue 
lives of both spectra at the 0,01 significance level. 

KEY WORDS: fatigue(materials), stress analysis, probability theory, density 
functions, failure(materials), fatigue tests, random processes, loading, alumi­
num alloys 

Nomenclature 

B Material constants used in representing constant amplitude sinusoidal 
fatigue curve 

b Reciprocal of negative slope of constant amplitude sinusoidal fatigue 
curve 

D Fatigue damage 
E(x) Expected value of argument 

M Number of positive peaks per second 
NQ Number of zero crossings with positive slope per second 
Np Number of positive peaks to failure 

N, N{a) Number of cycles to failure in constant amplitude, sinusoidal fatigue 
test at stress amplitude 
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p{x) Peak-probability density function of x, where x is instantaneous 
value of signal 

erf Error function 
Hi Number of cycles at stress amplitude, a,-
Â ,- Number of cycles to failure at stress amplitude, a,-

p(a) Probability density function of peak stress 
a Stress amplitude, ksi, also used for standard deviation 

The phenomenon of fatigue of metals has been recognized for over a century. 
During this time interval investigators of metal fatigue have developed a 
considerable body of knowledge on the life of metals under constant-amplitude 
sinusoidal loading conditions. However, by far the majority of load spectra 
applied to loaded members in machinery and equipment are not comprised of 
only one load amplitude and frequency, but the applied load produces a 
randomly varying stress in the member. 

Many theories of cumulative damage have been proposed to help the designer 
predict the life of machine parts subject to loads of varying amplitude based on 
the presently available constant-amplitude fatigue response of materials. 
Miner [7] in 1945 proposed a linear cumulative damage rule that predicted 
failure when the summation of cycle ratios equalled unity. This rule has 
experienced wide acceptance among designers because no other proposed 
cumulative damage theory has emerged with significantly greater predictive 
accuracy. 

Other investigators, Shanley[2] and Liu et al[5], have proposed a modifica­
tion to the exponent on stress to account for sequence or stress interaction 
effects. 

A number of investigators, Corbin and Naumann['#], Naumann[5,6], 
Leybold and Naumann[7], Marsh and Mackinnon[5], and Heller et al[9] have 
performed randomized block tests. 

Kowalewski[iO] tested 2024 aluminum alloy specimens in cantilever bending 
with filtered random noise as the input to an electromagnetic shaker. Three 
power spectra were generated providing three \/a~ratios. A linear cumulative 
damage rule predicted the 50 percent probabiUty of failure accurately over the 
life range of lO" to 10^ zero crossings to failure. 

Swanson[i7] conducted random fatigue tests with two -v/cTratios. Consider­
ably different fatigue lives were reported for the two spectra except at 9 ksi rms. 

Bussa[i2] and Clevenson and Steiner[jf5] investigated different VcTratios 
with five and six different power spectra, respectively. 

Hillberry[74] proposed an equivalent-crack-length theory which predicts 
failure when the expected crack length reaches a length equal to the critical 
crack length in an equivalent-constant-amplitude test. The equivalent-constant-
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amplitude stress level is selected as that stress level vŝ ith a probability of 
occurrence of a peak stress equal to or exceeding this magnitude of 0.001 based 
on the peak-probability density function of the applied spectrum. This theory 
produced good agreement with experimental results for both broad-band 
(\/cr= 0.79) and narrow-band (\/a~= 1.0) loading. 

Hillberry[i4] as well as others based their predictions on the distribution of 
peak stresses occurring in the life history. In this investigation, random fatigue 
tests were run with two entirely different power spectra, but with nearly 
identical \/a~ratios. The peak-stress distributions are the same for identical \ / a 
ratios. As shown below, two different spectra with identical peak-stress 
distributions should produce the same fatigue lives at the same rms stress level. 

Peak-Probability Density Function and Cumulative Damage 

The peak-probability density function for a continuous random process with 
Gaussian distributed instantaneous values, x, is given by Broch [15] 

where 

-m 
a = standard deviation of x. 

Thus, the shape of the peak-probability density function depends on the 
parameter a only. 

The Palmgren-Miner cumulative damage rule can be represented as 

2. 77:= 1 (2) 

where 

«,• = number of cycles at stress amplitude, a,-
A'̂ ,- = number of cycles to failure at stress amplitude, a. 
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For constant amplitude test results the relationship betweeri stress amplitude 
and cycles to failure can be represented by an equation of the form 

Na^=B (3) 

The Palmgren-Miner damage theory can be extended to random loading by 
assuming that the damage produced by each positive peak is the same as the 
damage produced in a constant-amplitude fatigue test with the same stress 
amplitude. If Np is the total number of positive peaks to failure in random 
loading, the expected number of positive peaks to failure between a and o + da 
is 

Ko) =Npp{a)do (4) 

The expected damage of all positive peaks in the interval from a to a + do is 

"(g) -Npp{a)da 
N{a) N{a) ^^ 

The total expected damage is then 

Substituting Eq 3 into Eq 6 gives 

E(P)=^ [y''pio)do (7) 

Using the normalized peak-probability function, p(z), with the standardized 
variable z with zero mean and unit variance, Eq 7 becomes 

£'P)=^«JS,^')£ 2V(z)̂ 2 (8) 

Using the same material with constants b and B identical, the value of the 
integral will be the same for two spectra, which have the same peak-probability 
density of stress, p(z). Therefore, if tests of the same material are run at the 
same rms stress and with identical peak-probability density functions, the 
number of positive peaks to failure, Np, will be equal regardless of the value of 
the exponent b or the constant B. This assumes that the value of the expected 
damage is identically equal at failure. 
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Experimental Method and Test Results 

Equipment 

The fatigue tests for this investigation were performed on an MTS Systems 
Corporation electrohydraulic closed-loop fatigue machine which consisted of a 
20-gpm, 3000-psig hydraulic power supply, a servo ampUfier with an ac input 
module, two 15-gpm servovalves, a 20-kip load cell, a 5-kip actuator with an 
8-in. stroke, and a three-post load frame for the sinusoidal fatigue tests. For the 
random tests, a 20-kip actuator with a 5-gpm and a 15-gpm servovalve was used. 
Figures 1 and 2 are schematics of the constant-amplitude and random-loading 
fatigue-test systems. For the random tests, the output of a Gaussian noise 
generator was filtered to produce a broad-band and a bimodal spectra. For the 
sinusoidal tests a sine-wave function generator was used as the command signal. 

The frequency response of the test system was flat within ±0.4 db from 0.1 
to 65 Hz with sinusoidal input and the output measured on an oscilloscope. 

Specimen 

The specimens used in this investigation were machined from 2024-T3 
aluminum alloy rod, ]^ in. in diameter. The dimensions are indicated in Fig. 3. 
All specimens were hand polished using successively finer grades of emery cloth 
or silicon paper. First a fine grade emery cloth was used longitudinally to remove 
the turning marks. Polishing was continued until the machining marks were no 
longer visible. Then a 600 grit wet or dry silicon carbide paper was used 
transversely until the previous polish marks were no longer visible. Finally, the 
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FIG. 1 -Schematic of sinusoidal loading fatigue test system. 
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FIG. 2-Schematic of random loading fatigue test system. 

specimen was polished longitudinally with crocus cloth until the preceding 
polish marks were not visible. A light lubricating oil film was applied to all 
specimens to reduce humidity effects. 

Specimen Grips 

Woods metal (a low-melting-point alloy) grips were designed to minimize 
bending. The specimen was threaded into the top grip and a disk and lock nut 
attached to the bottom thread of the specimen. Molten Woods metal was poured 
into a cyUndrical ring in the bottom grip which was threaded into the actuator 
rod. The actuator rod was moved upward so that the molten Woods metal 
surrounded the disk. A cap was placed on the top of the ring and after the 
molten metal solidified, the specimen was loaded. 

Results of strain-gage measurements taken on three gaged specimens yielded 
bending strains no greater than 3.07 percent of the theoretical strain using the 
applied load and the measured cross sectional area. 

Sinusoidal Fatigue Tests 

Constant-amplitude fatigue tests were conducted using a sine-wave-function 
generator as the command signal. Six specimens were tested at each of six stress 
levels from 26.1 to 49.5 ksi. Most samples were run at a frequency of 40 Hz. 
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FIG. 3-Aluminum specimen. 

Random Fatigue Tests 

In order to determine the effect of the peak-probabihty density on fatigue 
life, tests were conducted using a low-pass filter and a combination of two 
narrow-pass filters which produced a bimodal power spectrum with two resonant 
frequencies. A Gaussian noise generator was used as a signal source for both the 
broad-band and bimodal spectra. The broad-band tests were run with a NQ/M, or 
y/al ratio of 0.70. For the bimodal spectrum, a filter using "twin-tee" rejection 
filters in the feedback loops of two operational amplifiers was used. The final 
stage gains were adjusted until the VcTratio for this spectrum was nominally the 
same as that of the broad-band spectrum. The measured value was 0.68. The two 
spectra were measured with a spectrum analyzer and averager with 0.2 Hz 
bandwidth filter and are presented in Fig. 4. Oscillograph traces of load or stress 
versus time for both spectra are shown in Fig. 5. 

Test Results 

The constant-amplitude test results are presented in Fig. 6 and random-
fatigue test results are plotted in Fig. 7. The open and solid circles represent the 
logarithmic mean of cycles to failure or positive peaks to failure and the bars 
indicate the range. Failure in this paper is defined as rupture or separation of the 
specimen into two pieces. The test results are listed in Tables 1 and 2. 

Statistical Analysis of Data 

Two parametric and two nonparametric tests were performed on the 
random-fatigue results. The two parametric tests were designed to determine 
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FIG. 4-Bimodal and broad-band random loading spectra. 

whether the two sample populations represented by the two spectra at identical 
stress levels were from the same or different underlying populations. A 
comparison was made of sample means using the Student's t test. This tested the 
hypothesis that the population mean lives with each spectrum (at one rms stress 
level) were the same. The Type I error under this hypothesis was set at 0.01. The 
results of this comparison indicated the hypothesis should be accepted at the 
0.01 significance level for all three rms stress levels. Since an assumption of equal 
variances was assumed in the above comparison of means, the second test (F 
test) was a two-sided comparison of the sample variances at each of the three 
stress levels. A Type I error of 0.02 was used. The variance ratios at all three 
stress levels fell within the acceptance interval and the hypothesis of equal 
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FIG. 5 -Oscillograph traces of broad-band and bimodal random loading response. 

CYCLES TO FAILURE 

FIG. 6 -Constant amplitude sinusoidal fatigue test results. 
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FIG. 1-Random loading fatigue test results. 

variances was accepted at this significance level. However, at a significance level 
of 0.10, the hypothesis of equal variances was accepted at two stress levels but 
was rejected at 12.3-ksi rms stress level. 

The two nonparametric statistical tests were also used on these data. Identical 
populations were again hypothesized for the "sign test"[i(5j. Two minus signs 
and four minus signs were obtained at the 12.3- and 11.3-ksi rms stress levels, 
respectively. A test at the higher stress level was not made due to the small 
number of samples for the broad-band spectrum. Using a binomial distribution, 
the conditional probability of fewer than three plus signs or fewer than three 
minus signs from 14 paired observations given that the probability of selecting a 
plus sign is 0.50 was calculated at 0.013. This defined a Type I error as 0.013. 
Thus, the result indicated acceptance of the hypothesis of identical populations 
at the 0.013 significance level. A second nonparametric test, the Wilcoxon-
Mann-Whitney test[76] was made at all three stress levels to test the identical 
distribution hypothesis. The results of this test at the 13.3, 12.3, and 11.3-ksi 

TABLE 1-Mean and standard deviation of constant-amplitude fatigue tests. 

Stress Amplitude 

ksi MN/m' 

49.5 341 
45.0 310 
41.7 288 
36.0 248 
31.5 217 
26.1 180 

" N = Antilog of average 

Number of 
Specimens 

6 
6 
6 
6 
6 
6 

of log Â  
* S_= Standard deviation of log N 

N° 

9 500 
25 840 
34 830 

159 100 
225 800 

1 412 000 

x" 
3.9777 
4.4124 
4.5420 
5.2016 
5.3538 
6.1497 

S" 

0.130 
0.109 
0.184 
0.146 
0.174 
0.167 

" X = Average of log Â  
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TABLE 2~Mean and standard deviation of random fatigue tests. 

rms Stress 

ksi MN/m' 

13.3 91.7 
12.3 84.8 
11.3 77.9 
13.3 91.7 
12.3 84.8 
11.3 77.9 

Spectrum 

Broad-band 
Broad-band 
Broad-band 
Bimodal 
Bimodal 
Brmodal 

Number of 
Specimens 

2 
8 
7 
7 
7 
7 

T' 

5.0302 
5.3645 
5.6716 
5.0081 
5.3990 
5.6356 

N * 

1.072 X 10' 
2.315 
4.694 
1.019 
2.506 
4.321 

5^ 

0.097 
0.055 
0.119 
0.119 
0.134 
0.148 

" X_= Average of log Np 
^ Np = Antilog of average of log Np 
" S = Standard deviation of log Np 

rms stress levels were within the acceptance interval at the 0.044, 0.007, and 
0.007 significance levels, respectively. 

Conclusions 

In this investigation, there was no significant difference at the 0.01 
significance level between the fatigue lives using two entirely different power 
spectra with identical peak-probability density functions at three rms stress 
levels. This indicates that the distribution of stress peaks is an important 
parameter in random fatigue. 

This investigation implies that the shape of the power spectrum influences the 
fatigue life under random-loading conditions only through its influence on the 
peak-probability density function. If this holds true for other v ^ ratios, then 
laboratory simulation studies should be performed with the same peak-probabil­
ity density function of stress, or equivalently the same s/cTTatio, as the actual 
field-stress spectrum. 

Any x/cT between 0 and 1.0 could be duplicated by using dual discrete 
resonances in the power spectrum or by adjusting the slope of the power 
spectrum with a bandwidth ratio of 100 or greater. Thus, laboratory studies of 
an ergodic process could produce accelerated test results using a filtered 
spectrum with higher center frequencies than the field data by maintaining the 
sameVcTratio. 
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ABSTRACT: Analyzing the fatigue damage of a notched specimen subjected 
to a random-stress history of narrow-band characteristics, the crack propaga­
tion factor is treated as a homogeneous random process reflecting statistical 
variations of material property within the specimen. On the basis of the 
proposed statistical-mechanical model of fatigue failure, into which a 
crack propagation model and a fracture criterion are incorporated, statistical 
distribution of fatigue life is predicted with the aid of the Monte Carlo 
technique by digitally simulating the stress history and the crack propagation 
factor as random processes. The results indicate that the spacial randomness in 
material property can, and in fact should be considered in order to account for 
the larger scatter of fatigue life observed in the experiment performed under 
the conditions compatible with the assumptions used in the analysis. 

KEY WORDS: fatigue(materials), fracture(materials), statistical analysis, 
random processes, loading, stress analysis, crack propagation, Monte Carlo 
technique, fatigue tests 

As is well known, a majority of important structures such as air and 
spacecraft, ships, and bridges are subject to loading of a random nature during 
their operation and the mechanical property of the material of which these 
structures are made exhibits micro as well as macroscopic spacial statistical 
variations. 

The problem of fatigue failure of structural components or specimens under 
the conditions of random loading has so far been a subject of study in a large 
number of papers without, however, considering the spacial variation of material 
strength parameters. As a first step, therefore, this paper attempts to study the 
effect of such randomness of material property (of specimen along its fracture 

1 Visiting senior research associate, and professor of civil engineering, respectively, 
Columbia University, New York, New York 10027. 
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path x) on the process of crack propagation within a notched specimen under 
conditions of random loading. 

For this purpose, it is assumed as usual that: (1) the stress history, s(t), due to 
loading is of the form of a narrow-band stochastic process with mean zero (the 
mean zero assumption is not essential to the following analysis); and (2) the 
crack-propagation process can be completely described by the sequence of 
"stress peaks" of the process s{t) (consisting of absolute values of local peak and 
trough stresses), which can be interpreted as point process[i] Si, S2, •. • , s„ 
with s,- indicating the absolute value of the j*** local extreme of the process s(t) 
(see Fig. 1). 

Under further usual assumptions as to the law of (stable) crack propagation, 
the cumulative fatigue damage, £)(c„) can be written as 

Dic„)-Dic„ _ i)=fcj(s„) (1) 

or 

where 

Z)(c„)-£)(co) = 2 kifisi) (2) 
I = 1 

D(c„) = fatigue damage; a function of fatigue crack length c„ existing 
immediately after the application of s„ 

f(sj) = a function of stress peak s,-
ki = Hxi), crack propagation factor; a random function of location, x,-, of 

crack tip along the fracture path immediately before the application 
ofSj. 

In the present study, the process k{x) and the sequence s,- will be digitally 
simulated with the aid of the methods respectively developed in Refs 2 and 3. 

FIG. 1 -Stress history and stress peaks. 
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This will make it possible to perform a digital experiment evaluating D{c„) 
numerically with the aid of Eq 1. Therefore, repeating the same computation on 
a sample of nominally identical specimens, each with a set of simulated 
realizations ofk{x) and x,-, one can produce a sample of Z)(c„) from which the em­
pirical distribution of D(c„) can be obtained. At the same time, with an appropriate 
failure criterion, a sample of fatigue life, N, and therefore its empirical 
distribution can be simulated. 

A similar digital experiment, however, has been performed with a constant 
crack propagation factor (determined from a fatigue test under various con­
stant-stress amplitudes). The result is plotted on extremal probability paper in 
Fig. 2 (open circles), together with the experimental result (solid circles) [5]. 
The numerical simulation indicated in this diagram is performed under the 
following reasonable assumptions [^]: (1) the initial crack length CQ is identical 
for all the specimens (if CQ is random, however, it can be treated as such); 
(2) D{c„) = lnc„; (3) /(x,) = s,'" (m; constant); and (4) the (unstable) failure 
criterion is given by an expression 

^cr '^ ^cr (3) 

where A:' > 0 is the fracture coefficient, Scr and c^r denote the critical stress peak 
and the critical crack length, and m2 denotes a positive constant. According to 
this criterion, failure (tearing) can occur to a specimen with a crack of any size, 
c„, if the (random) stress peak, s„, happens to exceed the critical value, x^o 
associated withc„;Scr = k'c^"'^. 

Figure 2 clearly indicates that the randomness in stress history alone cannot 
reproduce the wide dispersion of fatigue Uves as observed in experiment. The 

Total cycles to fracture N 

• Rotating bending test, O Numerical simulation 

\ 2 
^20.0Kg/nnnn 

FIG. 2-Distribution of fatigue life under random loading. 
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present paper will show that the introduction of randomness into the 
propagation factor and the fracture coefficient indeed alleviates, if not 
completely eliminates, this difficulty. In fact, in what follows, the procedure of 
simulating k{x), k', and s,- and reproducing crack growth and failure of a 
specimen is repeated over a sample of specimens, each subjected to an 
independent sequence of Sj- until failure. The resulting sample of fatigue Uves is 
compared with those obtained from experiments to see whether the assumptions 
and hypotheses used in the computation are to be accepted. It is in this sense 
that the words "Monte Carlo technique" are used here. 

It is acknowledged that a variety of laws of crack growth are proposed and 
used by a number of researchers under various experimental conditions (for 
example, see comments by Paris and Erdogen in Ref ^) . The particular law used 
here is one of these, and is considered reasonable; it serves well for the purpose 
of demonstrating the Monte Carlo procedure to be pursued in the present study. 

Statistical Characteristics of the Crack Propagation Factor and Stress History 

The crack propagation factor in Eq 1 is a measure of the material resistance 
to fatigue crack propagation in the sense that the smaller the factor, the tougher 
the material. Since the propagation of a fatigue crack is highly dependent upon 
the property of material in the microscopic vicinity of the tip of the crack, this 
factor should reflect a sensitivity to the statistical variation of microscopic 
structure of the material (referred to as "structural sensitivity" in this paper) 
even though the analysis is performed in a macroscopic approximation using Eq 
1. 

Evidently, such statistical variation in the structural sensitivity will produce a 
statistical variation of the rate of crack propagation. In fact, given a law of crack 
propagation such as Eq 1, it is possible to derive an empirical distribution 
function of the crack propagation factor from the statistical scatter of the rate 
of crack growth measured at various values of the amplitude of stress-intensity 
factor. Caution should be exercised, since the measurements are usually made 
macroscopically taking the average growth rate over several hundred stress 
cycles. It should also be pointed out that the empirical distribution function 
thus obtained contains no information on the (strictly speaking, three 
dimensional) spacial correlation of the crack propagation factor. Some of the 
experimental studies involving measurements of microscopic crack propagation 
report that the fatigue crack propagates successively creating striations randomly 
spaced as shown in Fig. 3, and suggest that the spacing of such striations is 
somehow related to the rate of crack propagation. In some instances, the 
correspondence between individual striations and stress cycles has been 
identified [5]. The statistical dispersion of the spacing of striations observed in a 
wide area of a crack surface are reported in some papers[6,7] (Fig. 4[7]). 
Detailed examination of striation patterns, however, indicates an important fact: 
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FIG. 4-Dependence ofstriation space on amplitude of stress-intensity factor. 

the striation spacing is not independent but correlated as shown in Fig. 3. These 
photographs show three microscopic areas chosen arbitrarily from a 0.5-mm 
square on a fatigue crack surface produced in a mild steel specimen. Independent 
spacings would be characterized by a random mixture of spacings of all sizes, for 
example, a spacing of extremely small size is immediately followed by that of 
extremely large size, and so forth. This impUes that the crack propagation factor 
may be represented by a random process of white characteristics. The three parts 
of Fig. 3, however, do not indicate such a trend. Rather, they exhibit a gradual 
change in size as the striation process proceeds, eventually producing notable 
differences in size at distant (microscopically) locations. This appears to 
substantiate at least qualitatively the hypothesis that the crack propagation 
factor, h^x), is a random process in space with a nonzero spacial correlation, 
although more quantitative observations must obviously be made in a future 
study. 

Since there is usually no reason to believe a priori that the statistical 
characteristics of a crack propagation factor at a particular location within a 
specimen differ from that at any other location, the process 14pc) is homoge­
neous. Also, the process l^x) is assumed to be ergodic so that statistical 
characteristics are identical for all the realizations of the crack propagation 
factor. 
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Because of the lack of further information, it is assumed that the crack propa­
gation factor k(x) is represented by a process such that the logarithm z(x) of 
k(x)l/c(x) has the following forms of the autocorrelation RzH), the mean 
square spectral density Sz{o:i), and the distribution function F(z); 

where 

E[.. 

R,i^) =E[zix)z(x + i)] = a.^e-''^^^ 

SAo,) = 4 / I ^z ( l )e - ' "^d | = ° ^ (a^ + co^) 

-«=/:v2.'.-{-*^'}* 

,.] = expectation 

(4) 

(5) 

(6) 

z{x) = ln^(x) — lnfc(x) 
a^ = standard deviation of z(x) 

l/a = correlation length of z(x) 

Although the validity of such assumptions should be tested in a future study, 
at least the hypothesis (Eq 6) implying that k{x) has a log-normal distribution 
appears to be reasonable. In this connection, it is pointed out that the emphasis 
in the present study is placed on: (1) the analytical approach through which the 
crack propagation and the failure criteria (Eqs 1 and 3) can be numerically 
treated to account for the scatter of fatigue life; and (2) on the identification of 
the specific information such as the form of R^i^) which should be obtained in 
future experiments. 

The well known relationship between the statistics of a log-normal variate and 
the corresponding normal variate indicates that 

Mfc=exp(Mz + '/^az^) (7) 

Ok ^ l^kOz for Oz^ « 1 (8) 

where 

,Xk=E[k(x)],n,=E[zix)] (9) 

a„^ =E[kix) - Mfc]^ a,' =E[z(x) - MZ]' (10) 

With the aid of the method developed in Ref 2, the process z(x) can be 
simulated in the form 
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z(.x) = o^ (j^j ^ cos(co,x + 9i) (11) 

where 

X = length along fracture path 
Oi = random variable distributed uniformly between 0 and In; independent of 

CO,- = random variable identically and independently distributed with density 
function g(cji) = S(coi)la^^; independent of (jjj(i¥=f) and 

If a large positive integer is used for M, the central limit theorem asserts that 
z(x) in Eq 11 is Gaussian. Furthermore, it can be shown that z{x) in Eq 11 
satisfies Eqs 4 and 5 and is ergodic and therefore so is fc(x). In passing, it is noted 
that a more efficient method of simulation [8] has recently been developed and 
can be used in place of Eq 11. 

It is noted here that when Eq 11 is used together with Eq 2,x should be 
replaced by the crack length, c. 

As to the random-stress history, the method developed in Ref J is employed 
to simulate the stress sequence since the experimental results, with which the 
present analysis is to be compared, are available under such a sequence. The 
method of simulation calls for digital generation of two independent Markovian 
sequences of Gaussian variables 

ai,a2,. • . 

bi, & 2 , . . . 

The (conditional) probabiUty of a, depends only on the realization of a,- _ i 
with the probability density 

P.\u<ai <u+ du\ = exp {-u^ ll)dul{2'nf^ (12) 

and the conditional density of a,- given a,- _ i = v 

P jM <fl,- < M + d« Ifl,- _ 1 =v\ 

= exp l ^ l i ^ } dul\2n{\-p')Y^ (13) 

where PJ^lf denotes the probability of events . The same probability densities 
apply to the sequence &,•. 
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The peak stress s, is then constructed in terms of A,- and fo,- in the form; 

Si=asiai^+bh'''l(2)y^ (14) 

where a^ is the root mean square of s,-. It can be shown [5] that the probabiUty 
density of $,• is that of the Rayleigh distribution 

Plu<s,<u + du\=^^e%p{-^2)duu>0 (15) 

and the joint probability density of s, ands,- _ i is 

p\u<Si<:U + du,v<Si^ 1 <v + dv| 

4MV ( M^+v^ ) , ( 2puv ) , , . . . . 

=a7Hr37)exp|--^7(rzv)|'°{a7(rr^r"'''' ̂ '^^ 
where Plyl, B^is the probability of joint occurrence of ^ and B and / o | . . .[is 
the zero-order modified Bessel function of the first kind. It can also be shown, 
by comparing Eqs 1 and 3 of Ref 1 with Eqs 15 and 16, respectively, that the 
sequence s,- represents a point process consisting of peak and trough values of a 
narrow-band process with mean zero, central frequency, co^, and normalized 
autocorrelation functions, r^r), such that p = r(7r/cj£,)- Such a narrow-band 
process can be obtained by filtering a white noise through a lightly damped 
oscillator (of single-degree of freedom) with natural frequency, cOg. Obviously, it 
is this interpretation that makes the sequence, s,-, meaningful in engineering 
applications. 

The digital simulation of both k{x) and s,- therefore requires the generation of 
random variables such as cj,-, 6,-, a,-, and i,- with specified density of conditional 
density functions. Such generation of random variables is routine with the aid of 
a digital computer. 

Numerical Example 

The preceding procedure of predicting crack propagation is now mumerically 
carried out with the aid of Eq 1 or its equivalent. At the same time, Eq 3 is used 
to compute the critical value s^r of the stress peak corresponding to the crack 
length, c, existing within a specimen immediately after the application of, say, 
Sj _ 1. If this critical value is exceeded by the stress peak, s,-, the fatigue failure 
occurs at the f"* application of stress peak. This failure criterion produces an S-N 
relationship when applied to a fatigue test performed under constant stress 
amplitude. For example, consider the result, as shown in Fig. 5, of a 
constant-stress-amplitude fatigue test [5,7] performed under rotating bending on 
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10 10' 10-' 10" 10'' 

Cycles to failure, N 

FIG. 5-S-N diagram under constant-amplitude test. 

10° 

thirteen nominally identical notched specimens (Fig. 6) of mild steel. Then, a 
special form of Eq 1 (the difference equation is approximated by a differential 
equation with ki =k2 = .. . = k) 

dc 
dn 

= fccs (mm/cycle) (17) 

under the initial condition CQ = 3.5 mm can be used with Eq 3 of the form 

s,r = ^'c-^-'(kg/mm^) (18) 

\ y 

FIG. 6 -Notched specimen. 
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to reproduce a central trend of the S-N relationship as indicated by the solid 
curve in Fig. 5, provided A: = 1.3 X 10"' ' and k' = 1.45 X 10'' are assumed. 

In Ref 9 it is assumed that the scatter of thirteen fatigue lives (at various 
levels of stress amplitude) around this central trend is attributable solely to the 
statistical variation (from specimen to specimen) of the coefficient k' in Eq 18 
and that the distribution is log-normal. 

To estimate two parameters of this log-normal distribution, first Eqs 17 and 
18 are used with k= \.3X 10"' ' and CQ = 3.5 mm (0.138 in.) to compute those 
values of k' which would exactly reproduce the thirteen fatigue lives at their 
respective stress levels. From this set of thirteen values of fc', the median value Ic' 
(ofA:')= 1.45 X 10* and the standard deviation 6(of In A:') = 0.37 are then 
estimated. Note that In k' is the mean value of Ink'. A pair of dashed curves in 
Fig. 5 (where the fatigue life is plotted on logarithmic scale) define a domain of 
±25 in which a fatigue life at any stress level will be found with an approximate 
probability 0.95. Inspecting Fig. 5, one can conclude that the statistical-mechan­
ical model assumed above with k' = 1.45 X 10'' and 6 = 0.37 appears to reflect 
correctly the extent of scatter as well as the central trend of the S-N 
relationship. 

In Fig. 7, the value of the critical stress peak s^r (that produces an immediate 
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FIG. 7 -Crack length at fracture as a function of nominal critical stress. 
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fracture to the specimen) is replotted from Ref 7 against the corresponding 
crack length (which existed at the time of appUcation of the critical stress peak); 
such a crack length can be identified and measured by inspecting the fracture 
surface. In Fig. 7, the solid line represents Eq 18 with k' = 1.45 X 10* and a pair 
of dashed lines define a domain of ±25 as in Fig. 5. This result reflects the 
fracture criterion given in Eq 18 and is independent of the crack propagation 
mechanism. Therefore, the hypothesis that the statistical variation in k' is solely 
responsible for the scatter of fatigue life, can be tested by checking whether the 
log-normal model for k' together with the estimated parameter values 
(^' = 1.45 X 10* and 5 = 0.37) reflects the extent of scatter of s^r shown in 
Fig. 7 as reasonably well as it did for the S-N diagram in Fig. 5. 

A close examination of Fig. 7 shows that the log-normal model ofk' appears 
to overestimate the scatter of the critical stress; the domain of ±26 in Fig. 7 is 
too wide to be a reasonable indication of the scatter, if the parameters involved 
in this log-normal model of k' are estimated from the observed S-N relationship 
as was done in this study. Obviously, it is expected that, if these parameters were 
estimated from the result given in Fig. 7, they would reproduce a much narrower 
dispersion in the S-N relationship than observed. The hypothesis that the 
coefficient k' is solely responsible for the scatter must therefore be discarded. 

It is this conclusion that initially motivated the present study in which the 
modified hypothesis is used so that not only the randomness of k' but also the 
stochastic nature of k (as a random process) are introduced into the 
statistical-mechanical model of fatigue failure. 

The following three different cases are considered for numerical computation 
(refer to Eqs4-10). 

Case A: jUfc = 1.3 X 10"" , 0^ = 0^=0 
F = 1.45X 10*, 6 = 0 

CaseB: /Xfc = 1.3 X 10"" , a^, = a^=0 
F=1 .45X 10*, 6=0.15 

CaseC: jUfc = 1.3 X 10"" , Ofc = 0.5/Xfe or Oz «< 0.5 
^ '=1.45X 10*, 6=0.15 

Case A deals with no randomness in either kix) or k'. In Case B, however, the 
randomness oik' is introduced with 6 = 0.15, whereas in Case C, the randomness 
of both k{x) and k' is taken into consideration. The value of 5 =0.15 has been 
used in all cases since this value appears to be consistent with the amount of 
scatter observed in Fig. 7. 

It is pointed out that, in Case C, an ad hoc assumption that the correlation 
length, 1/a, is equal to 1/8 mm has been used. A portion of a realization ofk{x) 
is plotted in Fig. 8 where the patterns of striations at three different points along 
the fracture path,x, are schematically shown. These patterns reflect the nonzero 
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Distance from crack tip x (mm) 
J I L 

Possible Striation Patterns 

FIG. 8 Sample of crack-propagation factor k(x) and possible striation patterns. 
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correlation introduced in the modified model and reproduce the gradual change 
of the size of striations observed in Fig. 3. 

In all cases, the stress peak s,-= ls(f,)l with 05 = 21.8 kg/mm^ (31.0 ksi) is 
simulated by the method described in the preceding section. In Ref 9, however, 
for experimental ease, a sequence of blocks of identical stress peaks (one block 
consists of 25 identical peaks) is appUed to each specimen until failure; a block 
of 25 stress peaks of s,- is followed by a block of 25 stress peaks of s,- + 1 and so 
forth, where s,-, s,+ j , and so forth, are the sequence described above. Three 
sequences, I, II, and III, of stress peaks are considered, each with a different 
autocorrelation property. In fact, sequences I, II, and III are constructed using 
Eqs 12 and 13 with p = 0.95, 0.98, and 0, respectively. This implies[5] that the 
correlation coefficients, ps, between s,- and s,-+ 1 are 0.90, 0.95, and zero, 
respectively, for sequences I, II, and III. For each sequence, nine realizations are 
simulated and each of these realizations is applied to one of nominally identical 
specimens shown in Fig. 6. Hence, three sets of nine specimens are tested until 
failure. The result is plotted on extremal probability paper (Fig. 9) where I, II, 
and III indicate the corresponding sets of nine specimens, respectively. 
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To establish a meaningful comparison, therefore, a similar sequence consisting 
of blocks of 25 stress peaks is applied to each specimen (with a particular 
realization of k(x)) in the numerical analysis using Eqs 17 and 18. The results of 
such analyses performed on 57 (nominally identical) specimens (Fig. 6), 19 for 
each of Cases A, B, and C, are also plotted on extremal probability paper; using 
open triangles for A, solid circles for B, and open circles for C. Figures 10 to 12 
show, respectively, the results under the stress sequences I, II, and III, each with 
the corresponding experimental result being replotted. Examination of these 
diagrams confirms the fact that only assumption C is capable of reproducing the 
extent of scatter actually observed without introducing unduly wide scatter to k' 
(recall Fig. 7). 

Conclusion 

This paper presents a Monte Carlo method by which the randomness of the 
material property as well as that of the applied load can be incorporated into a 
reasonable statistical-mechanical model of crack propagation process and failure 
criterion such as Eqs 1 and 3 or, equivalently, Eqs 17 and 18 to predict the 
statistical characteristics of fatigue life. In this Monte Carlo method, the 
crack propagation factor is treated as a stochastic process k(x) and the combined 
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effect of the randomness of k(x), k' and the stress peak, s,-, on the statistical 
characteristics is predicted analytically with the aid of digital simulation 
techniques (in simulating k{pc), k', and s,). The statistical characteristics are 
found to be in excellent agreement with those from the experimental results, 
indicating that the underlying assumptions and hypotheses are more than 
adequate. A number of quantities that have to be investigated in future 
experimental studies to improve the present method are identified. 
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On the Probabilistic Determination of 
Scatter Factors using Miner's Rule in 
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pp. 185-203. 

ABSTRACT: A particular two-parameter family of life-length distributions for 
fatigue life is assumed. This family, first formulated by Freudenthal and 
Shinozuka in 1961, was systematically examined by Bimbaum and Saunders 
in 1968 where it was derived, using considerations from renewal theory, for 
the number of cycles needed to force a fatigue-crack extension to exceed a 
critical value. By employing this new family, tolerance bounds are obtained 
for the population of life times until fatigue failure under a programmed load. 
This is accomplished by utilizing a generalization of Miner's rule which 
computes the mean hfe under the programmed load in terms of the mean lives 
under simpler programmed loads at stress levels for which data are available. 
Such bounds have never been obtained previously for any other Ufe-length 
distribution and the confidence level exactly determined. This paper concludes 
with an application of these results to a set of real fatigue data. 

KEY WORDS: probabiUty theory, distribution theory, loading, fatigue(mate-
rials), fatigue life, fatigue Umit, scattering, crack propagation 

Miner's rule, which is well known in engineering practice, has long been used 
to predict the accumulated fatigue damage in metals. This result [ i ] , is a 
deterministic formula which predicts the life until failure from fatigue under 
repetitions of a given cycle comprised of various fluctuations in load. This rule, 
in use, computes a weighted harmonic mean for the number of such cycles until 
failure, namely [Snj/f,] ~*, where «,• is the number of repetitions of the /**• load 
in each cycle and Vi is the number of oscillations until failure if only the /"^ load 
is repeated. 

The fundamental premise, in what follows, is that the number of repetitions 
until failure of any fixed load is not a physical constant, identically the same for 

• Department of Mathematics, Washington State University, Pullman, Wash.; formerly, 
Boeing Scientific Research Laboratories, Seattle, Wash. 
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each metallic specimen which can be measured exactly with a single test, but is, 
rather, a stochastic variable for which only knowledge of the distribution 
function should be employed in the prediction of the time until failure. 

It is known empirically (see Refs 2, 3 and the bibUographies given there), 
that under many practical conditions Miner's rule may be used to estimate the 
mean life. However, even in those cases where sufficient data have been 
accumulated to verify that Miner's rule is correct on the average, that is, is a 
good estimate of the mean, there is still far too much scatter to use it by itself to 
predict fatigue life. (This would be comparable to using an estimate of the 
average age of death to derive contingency tables for a life insurance pohcy.) 

By considering an appropriate generaUzation of Miner's rule as a function of 
the statistical estimates of the quantities Vj and by obtaining confidence bounds 
on the true value, one might hope to ascribe a precise probability level to the 
safety factors used in design which are presently derived from the use of the 
rule. From such a study the determination of an appropriate scatter (or safety) 
factor might be possible so as to obtain the exact level of risk that can be 
tolerated. The important practical problem which is considered here is the 
determination of exact confidence levels for the probability of failure as a 
function of the stochastic variation away from the estimate of mean life 
obtained from Miner's rule. To date no rigorous statistical method has been 
developed to satisfy such a need. 

That this does constitute a contribution to an acknowledged problem can be 
seen from a presently accepted method of calculating a combined lower 
tolerance bound, given in Ref 4 (p. 42). It is recalled that a tolerance bound is a 
bound before which, with a certain confidence, no more than a specified 
proportion of all future components subjected to the same stress history would 
fail. 

The reference cited says that the first step is to reduce the data at each stress 
level by normalizing with an appropriate transformation, such as the logarithm. 
Making such assumptions on the distribution of the transformed data (usually 
that it is normal) that one may determine a tolerance bound at each stress level, 
the lower tolerance bounds at each stress level are combined and then the lower 
tolerance bounds at the same confidence level are combined throughout the 
various stress levels in the programmed load by using Miner's rule. Reference 4 
states exphcitly that the exact probability level of the combined estimate 
obtained in this manner is not known; one may add that it also requires some 
faith to believe that the answer is not far off. 

Another method that has been advocated is to construct a PS-N curve by 
fitting a particular distribution, usually a WeibuU, to the available data at each 
stress level and computing an estimate of a specified percentile of that 
distribution. Then Miner's rule is used to combine these percentile estimates for 
the programmed load which contains the various stress levels. It is clear that this 
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method does not take into account the confidence levels with which each 
percentile was estabUshed (that is, the sample sizes) and so the combined 
probability level is not known. 

Programmed Loads and Cumulative Damage 

Next, the basic ideas of this section will be described as clearly as possible, in 
terms of their physical meaning and some of the conceptual difficulties which 
are often encountered will be discussed. The formal mathematical presentation is 
deferred until Appendix I. 

The nomenclature will be introduced first. A load function for a structural 
component is a function which at any time gives the stress imposed on that 
component. For such functions, X or co with or without affixes will be used. A 
load spectrum is a load function which assumes various values for a fixed 
duration of time d. (This includes as a special case constant-amplitude-load 
functions. A programmed load, which may be block loading or a loading with 
various stress values interspersed, is merely the repetition of a given spectrum of 
interest.) 

The following is the fundamental assumption concerning load functions. It is 
assumed there exists a finite set of loading functions fl = i c o j , . . . , ojm\, which 
are not necessarily of constant amplitude, and the mean life under the 
programmed load for each element of S2 is known. But further, an equivalence 
relation is known, in terms of cumulative fatigue damage (which might be 
interpreted as crack growth) between any spectrum, X, and the elements of Q,. 
This relation makes possible the definition of the function nj{\) which is equal 
to the number of load oscillations in the spectrum X, occurring in their given 
order, which are equal in incremental damage to each repetition of cjy for 
/ = l,...,m. 

According to statistical convention, E denotes the mathematical expectation 
of any random variable with which it is in juxtaposition. A result which follows 
under the above assumption and a very general condition on the distribution of 
incremental damage can be stated. It is intended that the validity of the result, as 
applied, need not be in question here, but the theorem is not true for every 
possible mathematical distribution of incremental damage. A formal discussion 
of this point, as well as the proof, are given in Ref 5. 

Theorem 1: Let T(X) be the random life, which is measured in periods of the 
spectrum X, under repetitions of the programmed load. Let Vj be the 
expected number of such periods of cycles which can be repeated until 
failure under the programmed load corresponding to cjj, that is. 

vj =ET(jiOf) for/= 1 , . . . ,OT 
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then the expected life,£'71[X), is bounded by 

1 
1 < EJIX) <. 

Thus, it is the expected Ufe that is bounded between two harmonic means, 
differing by at most unity, from an expression which is recognized as being 
equivalent to the original form of Miner's rule. The approximate equality, which 
will here be called "Miner's rule in expectation" 

^n^)=^^ (1) 

2 n,iX) 

will be assumed as exact hereafter. A few calculations will show that for virtually 
all cases of practical interest these bounds are so close that the approximation is 
fully adequate. 

Miner's rule in its original form was proved in Ref i under the most primitive 
and unrealistic of assumptions. In that derivation no stochastic variation was 
considered, so that all values were expected values in a sense. These unreaUstic 
assumptions concerning linear and deterministic accumulation of damage 
account for its lack of acceptance. In fact it is known that damage, under various 
interpretations of that word, does not accumulate in that fashion nor is the 
failure time deterministic. 

One of the implications of Miner's assumption was that the counting function 
ny(X) consisted merely of the number of peak stresses in the spectrum, X, equal 
in magnitude to those of the /*'" element of n and each coj was of constant 
amplitude of different maximum stress for each j = 1,... ,m. The foregoing 
assumptions do not preclude a strong dependence upon the order of peak loads. 
In fact, no assumption about the nature of nfK) is made other than its being 
discrete-valued. Its exact nature is unspecified and only its existence is assumed. 
In particular, in the present formulation two spectra with the same number and 
value of peak stresses would not necessarily yield the same values of the function 
nji") unless they occurred in exactly the same order. This is made clear in 
Appendix I. 

In order to make a proper determination of «y(X), one must take into account 
both the metallurgical and environmental considerations which are known (see, 
for example, Ref (5 and the entire volume given to this topic, Ref 7). It is not the 
purpose to pursue this aspect of the problem further in this paper. The problem 
of formulating the statistical aspects of the question will be considered next. 
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Distribution of Fatigue Life 
The problem of deciding which statistical law' is the "true one" in fatigue 

studies has occupied investigators for many years. This is believed to be a 
fruitless pursuit and can never be actually decided, since the amount of data 
which can be collected is generally not sufficient to discriminate among any of 
the two-parameter famiUes which are continuous, unimodal, and skewed to the 
right, using any of the usual statistical tests of goodness-of-fit. Fortunately this 
fact is now being realized and the construction of more powerful and 
appropriate tests is being undertaken [5]. At the present many models can be 
made to fit the extant data reasonably well within the area of central tendency 
of the distribution. This is not enough. What one wishes to accomplish is to 
make predictions about the percentage of failures which will occur before some 
service life which is determinable from the data at hand, at a prescribed 
confidence level. The reason for this is obvious. 

In practical situations it is the earhest fatigue failures that are of primary 
concern and they are the only ones whose prediction is of interest. Clearly 
among mathematical models for fatigue, all of which fit the data equally well, 
the one that can be used to obtain exact confidence levels, and so be used with 
assurance in design problems, should be adopted for use. This is because it allows 
one to make a calculation of the safety of the component in service which can 
be checked subsequently. Moreover, using an alternative model for which the 
level of safety is unknown leaves one relying on fickle luck. 

In an earlier publication, Bimbaum and Saunders [9] derived a distribution 
for life length based on the use of renewal theory to obtain the number of cycles 
for a fatigue crack to grow until it exceeds some critical value. The same authors 
also studied the estimation problem for this family of distributions [70]. 

The interconnection between this family of life lengths and the cumulative 
damage assumptions of the previous section will now be detailed. The set of 
programmed load functions which are admissible for the component within the 
use for which it was designed will be denoted by £.. 

Assumption 1: 
For any programmed load XejC there exist positive parameters a and j3, 
with a being constant but jS depending upon X, such that the fatigue hfe of 
a component subjected to X is a random variable T, expressed in units 
which are multiples of the period of X and 

/> f r < r l = $ fev/3)] for r > 0 (2) 

where $ is the standard normal distribution function and ? is the function 
defined by 

i{x) = V ^ - -4^ for ;c > 0 (3) 
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In Eq 2, the constant a is called the shape parameter while the constant |3 is a 
scale parameter called the characteristic (or median) life. The equality in 
distribution between the random variable T as defined in Eq 2 and its law is 
expressed as 

T~3iaJ) 

or what is equivalent, the expression in terms of a standardized normal 
distribution: 

-j{m~m(o,i) (4) 

The adequacy of this two-dimensional family of life-length distributions to 
describe fatigue life has been demonstrated elsewhere. In Ref 70 it has been 
fitted to some fatigue data. It had been previously given by Freudenthal and 
Shinozuka[7i] in a different parametric form and it is also implicit in the 
formula of Parzen[i2]. 

Using the notation in Ref 9, the function, ^ is defined as 

^(x) = t\2x) for all real X (5) 

where ? is given in Eq 3. It is also shown in Ref 9 that 

* W = [ P ( ^ ) ] ' (6) 

where 

p(x)=x + (x^ + l)'^ (7) 

It follows from Theorem 1 (more correctly from the assumed exact equaHty 
of Eq 1) and Assumption 1 that under a loading spectrum, X, the random life, T, 
has a distribution £? (a, jS) where 

^ = - — (8) 

I=1 ft-

This result has been stated earlier in Ref i . It follows from the results of Ref 
13 and the fact that 

£ ' r= /? f i+^) (9) -^H) 
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and the interpretation that i»,- = /3,. (l + ̂  ) in Miner's rule. Now it is assumed 

that a and «,(X), [ / = ! , . . . ,m] are known, but that the ft are unknown and 
must be estimated from the data. 

What is desired, of course, is an estimation procedure based on sparse data. It 
is presumed that one specimen only has been tested under each load spectrum, 
o),-, and the random life observed as T,. The observed life at each stress level is 
used to estimate the characteristic life and thus an estimate of fi is formed in 

h i (10) 
f «,-(X) 

where r,-~ 3 (a, ft). 
A service life, say TQ is selected which is also a random variable, based on the 

estimated median life under repeated spectrum, X, and a scatter factor K is 
computed by the formula 

7'o=^/K (11) 

The scatter factor, K, is to be selected so that the proportion of failures before 
To, each exposed to the repeated loading spectrum, X, and hence with life 
distribution, £? (a, ff), does not exceed e. But further, this event is to occur with 
confidence exceeding (1 — 6) where both e and 5 are preassigned and small. 

Succinctly, it is desired to find K in Eq 11 so that for given e,6 one should 
have 

pU\h(IA\<e\>\-B (12) -m-hY'] 
This expression is equivalent with 

PU^m<oae]>\-h 

where z^ = $"* (e) will be the notation for the lOOe*** percentile of the standard 
normal distribution. This, in turn, can be rewritten as 

P[^l&>u\<b (13) 

if 

(14) «^(f^e) 
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It will be shown that M in Eq 13 can be determined independently of all 
unknown parameters |3,- i = 1 , . . . ,m so that a precise tolerance bound at a 
specified confidence level can be found. Then using Eq 14, the scatter factor can 
be defined in terms of a precise probabilistic meaning. The principal result can 
be stated as follows (the proof is presented in Appendix II). 

Theorem 2: If 

where Ti~3ia,Pi) i= 1,... ,tn, is defined as an estimate for the true 
characteristic life 

itW 
under the programmed spectrum X, then with confidence at least (1—6) no 
more than a proportion e of all future components subjected to repetitions of 
the spectrum, X, will fail before the service life PIK, where K is a scatter factor 
given by 

V^=p(-fz,)p(f^) (16) 

with p defined in Eq 7. 
As an illustration of the range of values resulting from the use of Eq 16, some 

typical values of a, 6, and e are chosen and the resulting scatter factors, K are 
calculated. These are presented below. Table 1. 

a 6 e K 

0.10 0.20 0.01 1.32 
0.20 0.10 0.005 2.06 
0.15 0.05 0.001 2.02 
0.15 0.10 0.002 1.91 

The chosen values are within the range of those which have been found from 
fatigue testing, for example, see the estimates of a given in Ref iO. The choices 
of 6 and e are also usual. 
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Application 

As a simple illustration of the preceding theory, all the calculations will be 
performed for a tolerance bound making use of some rather extensive data 
which have been previously reported [Ji] and are presented here in Table 1. 
These fatigue tests were performed on 6061-T6 aluminum coupons cut parallel 
to the direction of rolling at 18 cps. 

Using the maximum likelihood estimation techniques for the shape and scale 
parameters which were developed in Ref 10 for this family of distributions, we 
obtain 

Shape Parameter Scale Parameter Maximum Stress 

Oi =0.170 
a2 =0.161 
as =0.310 

/3i = 131.8 X lOr̂  
fe = 392.7 
|33 = 1336.4 

31 X 10"̂  
26 
21 

These six parameters are regarded as being known. The fit of the data to the 
distributions with the appropriate maximum likelihood estimate, shape, and 
scale parameters is shown in Figs. 1 to 3 and is offered as evidence of the 
reasonableness of the assumption. 

It is assumed next that the characteristic lives at each stress /3i, fe, or jSs, are 
not known and only one observation T,- for j = 1,2,3 will be made at each stress 
level. In order to concentrate on the statistical concepts, any load order 
interactions within this stress range will be disregarded and a spectrum 
containing n i oscillations at the lowest stress level, ^2 at the intermediate level 
and «3 oscillations at the highest level will be constructed. The estimated median 
life would then be 

H2 rn ^''^ 

counted in terms of a cycle of duration H i + «2 + «3 osciDations. (Compensating 
for load-order interactions would change the values of «,- in Eq 17, but in any 
case they are presumed known.) 

Clearly this is a statistic, being a function of the observations Tj , T'2, Ts, 
which will change with each sample. However the theory previously derived and 
to be applied here is ignorant of the fact that enough experimentation has been 
done in this case to calculate directly the distribution of life under repetitions of 
any spectrum with oscillations taken from these three stress levels. 
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70 
104 
112 
120 
124 
130 
132 
136 
141 
144 
151 
158 
168 

233 
318 
342 
351 
363 
375 
395 
408 
420 
433 
452 
470 
490 

370 
858 

1010 
1108 
1203 
1270 
1355 
1475 
1522 
1604 
1763 
1890 
2100 

TABLE 

Sample Size = 

90 
105 
112 
120 
124 
130 
132 
136 
141 
144 
152 
159 
170 

96 
107 
113 
120 
124 
131 
133 
137 
142 
145 
155 
162 
174 

Sample Size = 

258 
321 
342 
352 
366 
376 
396 
408 
422 
437 
456 
473 
491 

268 
321 
342 
352 
367 
379 
400 
410 
423 
438 
456 
474 
503 

Sample Size = 

706 
886 

1016 
1115 
1222 
1290 
1390 
1478 
1530 
1608 
1768 
1892 
2130 

716 
886 

1018 
1120 
1235 
1293 
1416 
1481 
1540 
1630 
1781 
1895 
2215 

1 -Fatigue lifetimes in cycles (X 10"'). 

101 at 31,000 psi 

97 
108 
114 
121 
128 
131 
134 
138 
142 
146 
156 
163 
196 

102 at 26,000 psi 

276 
329 
344 
356 
370 
379 
400 
412 
426 
439 
460 
476 
517 

101 at 21,000 psi 

746 
930 

1020 
1134 
1238 
1300 
1419 
1485 
1560 
1642 
1782 
1910 
2268 

maximum 

99 
108 
114 
121 
128 
131 
134 
138 
142 
148 
157 
163 
212 

maximum 

290 
335 
349 
358 
370 
380 
400 
414 
428 
439 
464 
476 
540 

maximum 

785 
960 

1055 
1140 
1252 
1310 
1420 
1502 
1567 
1674 
1792 
1923 
2440 

stress per cycle 

100 
108 
114 
123 
129 
131 
134 
138 
142 
148 
157 
164 

stress per cycle 

310 
336 
350 
358 
372 
382 
403 
416 
432 
443 
466 
486 
560 

stress per cycle 

797 
988 

1085 
1199 
1258 
1313 
1420 
1505 
1578 
1730 
1820 
1940 

103 
109 
116 
124 
129 
131 
134 
139 
142 
149 
157 
166 

312 
338 
350 
360 
372 
389 
404 
416 
432 
445 
468 
488 

844 
990 

1102 
1200 
1262 
1315 
1450 
1513 
1594 
1750 
1868 
1945 

104 
109 
119 
124 
130 
132 
134 
139 
142 
151 
157 
166 

315 
338 
351 
362 
374 
389 
406 
416 
433 
445 
470 
489 

855 
1000 
1102 
1200 
1269 
1330 
1452 
1522 
1602 
1750 
1881 
2023 
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40 60 80 100 120 140 160 180 200 220 240 

CYCLES X 10-3 

FIG. 1-The empiric cumulative distribution 3 ("i. P,) for fatigue life at a stress of 
31,000 psL 

The distribution of life until fatigue failure is taken as£?(a,®, where 
conservatively, 

a = max(ai,a2,a3) 
1= y 1L (18) 

The true service time (population percentile) t^, at which only lOOe percent of 
all future components subjected to such a programmed spectrum will fail, is 
given by 

' < ' ^ (19) 

where a and p are given in Eq 18. 
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150 200 250 300 350 400 450 500 550 600 650 

CYCLES X 10-3 

FIG. 2-The empiric cumulative distribution f j ( " j , /3j) for fatigue life at a stress of 
26,000 psi. 

Theorem 2 asserts that for given e, 5 one can pick a safety factor K by Eq 16, 
namely 

r=p(-fz,)p^-fz,^ 

where z^ is the lOOy'** percentile of the standardized normal distribution for 
any value of 7 and p is the function defined in Eq 7 by 

p{x) = X-^ {\ + x^f^ (20) 

and claim that with a statistical confidence of 100 (1 - 5) percent, no more than 
a proportion of e of all future components subjected to that same spectrum will 
fail before the time (tolerance bound) /3/K. This tolerance bound is compared 
with the time-population percentile t^ as defined in Eq 19. 
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0 
300 

FIG. 3-
21,000 psi. 

500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 

CYCLES X 10"3 

-The empiric cumulative distribution £f (0:3, iSj) for fatigue life at a stress of 

Let a and |3 be the parameters for the hfe distribution under a spectrum 
which contains two oscillations at the higher stress of 31,000 psi and 8 
oscillations at the lower stress of 26,000 psi within each cycle. Thus disregarding 
any load-order interaction within this stress range, n, =2 and n^ =8. Since 
Pi = n0i (for / = 1,2) pi = 0.015 andp^ = 0.020 (see Table 3 for jS,). 

1 
& = 2^ Pi 

:28.1X 10^ 

where j3 is counted in units of the period d= 10. A conservative value of the shape 
parameter, namely, a = 0.17, will be used for the spectrum. 

Using Eq 16 with 5 = 0.10 and e = 0.002, that is, 90 percent confidence of 
less than one failure in 500 (which is a selection of confidence levels specified in 
certain regulations), the requisite calculation is performed from which K = 2.02 
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is obtained. Thus for a = 0.17 the true service time, t^, at which less than a 
proportion e = 0.002 will fail is, 

t,=^^l>(^z\ = ll3)^ 10̂  

also being counted in units oi d= 10; 4i(x) = [p(x)]^ with p defined in Eq 20. 
Thus what the theory asserts is that 90 percent of the time the estimated median 
life, ^, divided by K = 2.02 will not exceed the value t^. This follows from Eqs 13 
and 14. This value certainly does not violate one's intuition, since it is seen that 
the ratio jS/?̂  = 1.62 which is 80 percent of K . 

Picking two numbers at random between 1 and 102 inclusive, the 
corresponding ordered observations were selected. In this case the 60th and 76th 
ordered observations, respectively, from the 26,000 psi and 31,000 psi data were 
used. Thus 

Ti =138X 10^, Fj =438X 10' 

and from Eq 17, 

\̂ 138 438y 
^ X l ( r ^ = - r | 5 + ^ =29.51 

29.51 3 
measured in cycles of length 10 from which J3/K = = 14.61 X 10 . 

It is believed that if this procedure were repeated the resulting value would be 
less than 17.3 X 10' nine times out often on the average and in service only one 
in five hundred components will fail before 17.3 X 10' cycles of length 10. 

Concluding Remarks 

A few critical comments about this procedure for obtaining scatter factors are 
in order. It has been presumed throughout that the shape parameter is known 
and is the same for each distribution of fatigue life corresponding to any 
programmed spectrum from £. If this assumption is not met and the shape 
parameter is different, but known, for each different spectrum in fl, then either 
the conservative maximum value is used or more calculation is required. In 
particular it would be necessary (and perhaps difficult) to derive some method 
to compute the shape parameter under the programmed spectrmn from the 
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shape parameters of its constituent parts. However, there would seem to be little 
theoretical difficulty in obtaining a similar result to that of Theorem 2. On the 
other hand, if the shape parameters vary considerably with the co,'s and these 
values are unknown, then the problem of simultaneously estimating both shape 
and scale parameters and combining these estimates into a single tolerance 
bound independent of all the actual shape and scale parameters, which are 
unknown, seems to be very difficult. 

However, this does not appear to be the case if care is taken in insuring that 
the sample is from a single population. The inference that the shape parameter 
should vary considerably may be an unjustified extrapolation from experience 
with other two-parameter distributions. For example, the behavior of the 
standard deviation of the logarithmic life at different stress levels does not 
necessarily imply the same behavior for the shape parameter of the model 
presented here. 

A usual inquiry in such circumstances as this is whether the apparent degree 
of mathematical sophistication in the model is justified in terms of more 
accurate predictions than simpler ones. However, in this case there are no other 
methods for which the confidence level is known or can be calculated and thus 
no direct comparisons are possible. 

A further criticism of this approach is that it requires either an assumption 
about the shape parameter or an estimate of it from a rather large amount of 
data. This criticism apphes a fortiori to any other two-parameter models of the 
distribution of fatigue life. However, in many instances the great expense of 
full-scale testing of structures insures that only one observation will be made. 
Since it is impossible to estimate two parameters with one observation, either an 
assumption or prior information about one of the parameters must be employed 
for any inference to be made at all. 

In accord with the situation where the shape parameter is known and is 
constant and only the scale parameter varies with the choice of the spectrum in 
S2, it has been presumed that only one observation of the fatigue life is made for 
each spectrum in S2 and can be used to estimate the characteristic life. This 
situation is often the case in full-scale testing. If more observations are made, it 
is yet to be shown how such information could be fully utilized to increase the 
confidence level of the tolerance bound. The property that has been exploited is 
that fatigue life random variables, which have the distribution postulated in 
Appendix I, suitably scaled, are distributed as their own reciprocals and that the 
transformation i// is convex increasing. Clearly such properties may not apply to 
all estimates of the characteristic life formed from such random variables. 

An immediate extension of the preceding result could be accomplished by 
developing a wide class of random variables, all elements of which possess the 
requisite symmetries and the convexity necessary to obtain a tolerance bound. 
Work is now proceeding on this development. 

Copyright by ASTM Int'l (all rights reserved); Mon Dec 21 11:08:31 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



200 PROBABILISTIC ASPECTS OF FATIGUE 

APPENDIX I 

In this section the mathematical model for incremental damage and its 
relation to a programmed load will be formulated. 

A load function is a continuous piecewise linear function defined on zero to 
infinity, the value of which at any time gives the stress imposed on the structural 
component by its deflection. Moreover the slope of the function changes sign 
exactly once at the midpoint of each unit interval (/,/ + 1) for/ = 0 , 1 . . . . . . 4 load 
spectrum is a load function which takes the value zero except on some interval 
of the form (0, d) where the integer, d, is called the duration. A programmed 
load, X, is the repetition of a spectrum, X, and X̂  = (X,, X2, . . .) where Xy is the 
/ " ' repetition of the spectrum, X, defined for; = 0,1, . . . by 

Xy+ i(f) = X ( - / d + O f o r r > 0 

and d is the duration of X (and the period of ^ ) . 
A load history (a partially completed spectrum) of length i, denoted by X', is 

X restricted in domain to the interval (0, 0- To denote equality in distribution 
between two random variables ~ will be used. 

Assumption 2: There exists a finite set of loading functions of simple 
structure, say J2 = jcoi , . . . ,0)^ i , such that for any admissible loading 
spectrum, X, of duration, d, the random incremental damage, Z(X')^ for 
i = 1, . . . , d occurring during the ;'**' oscillation and due to the stress history, X', 
is equal in distribution to the incremental damage due to the load oscillation in 
exactly one element of f i , namely, 

m 

Z ( X ' ) ~ X |X' = W/jZ(a;;) (21) 
(•= 1 

where the relation = means equivalent in damage between partial spectra 
and JX' = (jOj\ is the indicator of the relation X' = Wy being 1 if true and zero 
otherwise. 

This assumption and the concepts involved are a restatement of those made in 
Ref 3. These have been detailed in order to make clear the generality of the 
approach. There follows from the equivalence relation =, the counting function 

d 

nj(K) = X \^' = ^i\ !=h-..,m (22) 

which represents the number of oscillations in the spectrum, X, occurring in order 
which are equivalent in damage to each oscillation in coy. This formula takes into 
account both the acceleration or deceleration of crack growth resulting from 
load-order interactions within each repetition of the spectrum. It follows that 
the expected cumulative damage in one replication of the spectrum, X, is 

2 EZ(.\')= ^ njiX)EZicOj) (23) 
1=1 != 1 
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Here E denotes the mathematical expectation of any random variable which 
follows. 

APPENDIX II 

For convenience the relevant results from Ref 10 which will be used 
subsequently are summarized here in a lemma. 

Lemma 1: If T - 2 ^ (a, |3) then i ~ £Fto-jand aT ---S^Ca, a|3) for any a > 0. 

Proving next 

Lemma 2: The function, t//, as defined in Eq 5 is nonnegative, convex and 
increasing and satisfies 

i//(- x) = -r-^, for all real x (24) 

Proof: It is trivial that ^ is nonnegative by Eq 6 and one sees that 

p{—x) = — ^ would imply the similar property, as in Eq 24, for <//. One may 
P\X } 

check this from Eq 7. It is sufficient to show that p^ is convex increasing by 
Eq 6, for which it is sufficient that the first and second derivatives are positive 

Z)(p^) = 2pp' DHP'') = 2pp" + 2ipy 

Now by Eq 7, 

p ' W = 1 + ^ p ^ i ^P{x)ls/x^ + 1 

and 

p " W = ( l + J c 2 r V 2 

Clearly, p , p ' , p " > 0 and therefore V/' > 0,i//" > 0. II 

Next the proof of basic result Theorem 2 is presented. 

Proof: Let X with or without affixes by 3]\0,—) and set Pi = ni(K)lfii for 

i= \, . . . ,m. Note that j3 = 1/Sp,. Now from Eq 15 

J^Pif.- J^Pi^(Xi)>^H^ ^PiXi) (25) 

When > denotes stochastic inequality between two random variables, recalling 
for any random variable U, V that U< V implies PlU^u] </"[ F > w] for all 
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real u. Here use has been made of the property Eq 24 and the fact that X,- is 
symmetric (that is, X,- ~ - Xj) to see that 

Then the convexity of \p has been used to obtain the stochastic inequality in Eq 
25. But it should be noted that since linear combinations of normal random 
variables are normal 

^ J,PiXi-m(o,^) 

where 

e ' = ^ ' E p / ' < l (26) 

Thus the stochastic inequaUty of Eq 25 may be written as 

m> uex) 
Hence 

P[m>u] <P[HeX)>u] =Pl2dX>^(u)] 

since ? is an order preserving transformation. Now using the bound for 6 in Eq 
26 it is seen that for M > 1 

mex>m^-^[-l^]<[^-'-f] 
Equating the right-hand side of the inequality above to 8 and solving for u shows 

u = 4/1 - ^ ) , which clearly exceeds unity for 6 small since t//(x) > 1 for:« > 0. 

Thus (Eq 13) has been effected. Setting the u above equal to (Eq 14) and solving 
for K yields the result. II 
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