MANUAL ON THE USE OF THERMOCOUPLES IN TEMPERATURE MEASUREMENT

卿 STP 470A

AMERICAN SOCIETY FOR TESTING AND MATERIALS

MANUAL ON THE USE OF THERMOCOUPLES IN **TEMPERATURE MEASUREMENT**

Sponsored by ASTM Committee E-20 on **Temperature Measurement** and Subcommittee IV on Thermocouples AMERICAN SOCIETY FOR TESTING AND MATERIALS

ASTM SPECIAL TECHNICAL PUBLICATION 470A

04-470010-40

AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race Street, Philadelphia, Pa. 19103

© BY AMERICAN SOCIETY FOR TESTING AND MATERIALS 1974 Library of Congress Catalog Card Number: 73-90277

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

> Second Printing, February 1977 Third Printing, July 1979 Fourth Printing, February 1981

Foreword

The Manual on the Use of Thermocouples in Temperature Measurements was sponsored and compiled by Committee E-20 on Temperature Measurement and Subcommittee IV on Thermocouples of the American Society for Testing and Materials. The editorial work was co-ordinated by **R.** P. Benedict, Westinghouse Electric Corp.

Related ASTM Publications

The Theory and Properties of Thermocouple Elements, STP 492 (1971), \$7.25 (04–492000–40)

Contents

Chapter	1—Introduction	1
Chapter	2—Principles of Thermoelectric Thermometry	3
	2.1 Historical Development of Basic Relations	3
	2.1.1 Seebeck	3
	2.1.2 Peltier	4
	2.1.3 Thomson	5
	2.1.4 Interim Summary	6
	2.1.5 Kelvin Relations	7
	2.1.6 Unsager Relations	10
	2.2 Laws of Thermoelectric Circuits	12
	2.2.1 Law of Intermediate Metal	13
	2.2.2 Law of Internetiate Metals	13
	2.3 Elementary Thermoelectric Circuits	14
	2.4 Bibliography	15
	2.4.1 Early Historical References	10
	2.4.2 Recent References	10
	2.5 Nomenclature	17
Chapter	3—Thermocouple Materials	19
	3.1 Common Thermocouple Types	19
	3.1.1 General Application Data	19
	3.1.2 Properties of Thermoelement Materials	23
	3.2 Extension Wire	24
	3.2.1 General Information	24
	3.2.2 Sources of Error	28
	3.3 Nonstandardized Thermocouple Types	33
	3.3.1 Platinum Types	34
	3.3.2 Indium-Rhodium Types	39
	3.3.4 Nickel Chromium Terres	40
	3.3.5 Nickel Melvhdenum Tures	42
	3.3.6 Tungsten Phanium Tungs	48
	3.4 Compatibility Problems at High Tomporature	49
	3.5 References	52 54
Chapter	4—Thermocouples Hardware and Fabrication	55
•	4.1 Sensing Element Assemblies	56
	4.2 Nonceramic Insulation	56
	4.3 Hard-Fired Ceramic Insulators	58
	4.4 Protection Tubes	58
	4.5 Circuit Connections	63
	4.6 Complete Assemblies	64
	4.7 Selection Guide for Protection Tubes	65
	4.8 Bibliography	70

Chapter	 5—Sheathed, Compacted Ceramic-Insulated Thermocouples 5.1 General Considerations 5.2 Construction 	71 71 71
	5.3 Insulation	74
	5.4 Wire	78
	5.5 Sheath	78
	5.6 Combinations of Sheath, Insulation, and Wire	78
	5.7 Limitations of the Basic Material	79
	5.8 Testing	81
	5.9 Measuring Junction	82
	5.10 Terminations	87
	5.11 Installation of the Finished Thermocouple	87
	5.12 Sheathed Thermocouple Applications	88
	5.13 References	90
Chapter	6—Emf Measurements	92
	6.1 General Considerations	92
	6.2 Potentiometer Theory	93
	6.3 Precision Potentiometry	95
	6.3.1 Laboratory High Precision	95
	6.3.2 Plant Precision	96
	6.3.3 Portable Precision	96
	6.4 Semiprecision Potentiometry	96
Chapter	7—Reference Junctions	98
	7.1 General Considerations	98
	7.2 Reference Junction Techniques	98
	7.2.1 Fixed Reference Temperature	99
	7.2.2 Electrical Compensation	101
	7.2.3 Mechanical Reference Compensation	103
	7.3 Sources of Error	103
	7.3.1 Immersion Error 7.3.2 Columnia Error	103
	7.3.2 Galvanic Error 7.2.2 Wine Motching Error	103
	7.4. Poforonoos	104
	7.4 Kelerences	104
Chapter	8-Calibration of Thermocouples	106
	8.1 General Considerations	106
	8.1.1 Temperature Scale	106
	8.1.2 Working Standards	110
	8.1.3 Annealing	111
	8.1.4 Measurement of Emi	112
	8.1.5 Homogeneity	112
	8.1.6 General Calibration Methods	114
	8.1.7 Calibration Uncertainties	110
	8.2 Calibration Using Fixed Points	118
	0.2.1 Freezing Points	118
	0.2.2 Milling Points	119
	8.2.1 Laboratory Europacia	119
	0.5.1 Laboratory rurnaces	120
	0.3.2 Surrey Liquid Dattis	123
	0.3.3 FIACU INSTANCE INSTANCE	123

8	3.4 Interpolation Methods	125
8	3.5 Single Thermoelement Materials	130
	8.5.1 Test Specimen	131
	8.5.2 Working Standard	131
	8.5.3 Reference Junction	131
	8.5.4 Measuring Junction	132
	8.5.5 Test Temperature Medium	132
	8.5.6 Emf Indication	132
	8 5 7 Procedure	133
ç	R 6 References and Ribliography	134
· · · ·	5.6 References and Bionography	134
Chapter 9-1	Installation Effects	136
	1 Temperature Measurement in Fluids	136
	911 Response	136
	912 Recovery	138
	9.1.2 Thermowells	130
	0.1.4 Thermal Analysis of an Installation	130
C	3.1.4 Inclinal Analysis of an installation	1/1
5	9.2 Surface Temperature Measurement	141
	9.2.1 Ochelal Kelhalks	141
	9.2.2 Instantion Methods	142
	9.2.3 Sources of Error	140
	9.2.4 Error Determination	147
	9.2.5 Procedures for Minimizing Errors	149
	9.2.6 Commercial Surface Thermocouples	149
ç	9.3 References	151
Charter 10	Defenses Tables for Themas and I.e.	155
Chapter 10	Reference Tables for Thermocouples	155
l	10.1 I nermocouple Types and Limits of Error	100
	10.1.1 Thermocouple Types	100
	10.1.2 Limits of Error	156
1	10.2 Thermocouple Reference Tables	157
]	10.3 Generation of Smooth Temperature-Emf Relationships	157
	10.3.1 Need for Smooth Temperature-Emf Relationship	157
	10.3.2 Methods of Generation	157
1	10.4 References	213
Chapter 11-0	Cryogenics	214
1	11.1 General Remarks	214
1	11.2 Materials	214
1	11.3 Reference Tables	216
1	11.4 References	228
Chapter 12—I	Bibliography	229
1	2.1 Introduction	229
1	12.2 Bibliography	229
1	12.3 CODEN for Periodical Titles	246
<u> </u>		• • •
Chapter 13—I	Definitions	249

Acknowledgments

Editors for this Edition of the Manual

- R. P. Benedict (chairman), Westinghouse Electric Corp.
- E. L. Lewis (secretary), Naval Ship Engineering Center
- J. A. Bard, Matthey Bishop, Inc.
- G. W. Burns, National Bureau of Standards
- R. S. Flemons, Canadian General Electric Co., Ltd.
- H. J. Greenberg, Engelhard Minerals and Chemical Corp.
- C. L. Guettel, Driver-Harris Co.
- F. S. Sibley, Hoskins Manufacturing Co.
- J. D. Sine, Honeywell, Inc.

Officers of Committee E-20

- D. I. Finch (chairman)
- R. F. Abrahamsen (secretary), Combustion Engineering Co.
- D. A. Toenshoff (membership), Engelhard Minerals and Chemical Corp.

Officers of Subcommittee E-20.04

- E. D. Zysk (chairman), Engelhard Minerals and Chemical Corp.
- R. P. Benedict (secretary), Westinghouse Electric Corp.
- A. J. Gottlieb (membership), Wilbur B. Driver Co.

Those Primarily Responsible for Individual Sections of the Manual

Introduction—J. L. Howard, The Boeing Co.

Principles-R. P. Benedict, Westinghouse Electric Corp.

Common Thermocouples—J. D. Sine, Honeywell, Inc.

Extension Wires-F. S. Sibley, Hoskins Manufacturing Co.

- Nonstandard Thermocouples—H. W. Deem, Battelle Memorial Institute, J. A. Bard, Matthey Bishop, Inc.
- Compatibility-D. L. Clark, Oak Ridge National Laboratory, J. L. Howard, The Boeing Co.
- Fabrication-H. J. Greenberg, Engelhard Minerals and Chemical Co.
- Sheathed Thermocouples-J. C. Faul, American Standard Aero Research Instrument Department
- Potentiometers-R. C. Stroud, Leeds and Northrup Co.
- Reference Junctions-R. S. Flemons, Canadian General Electric Co., Ltd.
- Calibration—J. F. Swindells and G. W. Burns, National Bureau of Standards, Washington, D. C.

Single Element Calibration-C. L. Guettel, Driver-Harris Co.

Fluid Installations-R. P. Benedict, Westinghouse Electric Corp.

Solid Installations-A. J. Otter, Atomic Energy of Canada, Ltd.

Reference Tables-J. D. Sine, Honeywell, Inc.

Cryogenics-R. L. Powell, National Bureau of Standards, Boulder

Bibliography—E. L. Lewis, Naval Ship Engineering Center, Philadelphia Div.

In addition to those listed, many other members of Committee E-20 have made substantial contributions to this manual as authors and reviewers. Their help is gratefully acknowledged.

Chapter 1—Introduction

First Edition, 1970

This manual has been prepared by Subcommittee IV of ASTM Committee E-20 on Temperature Measurement. The responsibilities of ASTM Committee E-20 include "Assembling a consolidated source book covering all aspects relating to accuracy, application, and usefulness of thermometric methods." This manual is addressed to the thermocouple portion of this responsibility.

The contents include principles, circuits, standard electromotive force (emf) tables, stability and compatibility data, installation techniques, and other information required to aid both the beginner and the experienced user of thermocouples. While the manual is intended to be comprehensive, the material, however, will not be adequate to solve all the individual problems associated with many applications. To further aid the user in such instances, there are numerous references and an extensive bibliography. In addition to presenting technical information, an attempt is made to properly *orient* a potential user of thermocouples. Thus, it is hoped that the reader of this manual will make fewer mistakes than the nonreader.

Regardless of how many facts are presented herein and regardless of the percentage retained, all will be for naught unless one simple important fact is kept firmly in mind. The thermocouple reports only what it "feels." This may or may not be the temperature of interest. The thermocouple is influenced by its entire environment, and it will tend to attain thermal equilibrium with this environment, not merely part of it. Thus, the environment of each thermocouple installation should be considered unique until proven otherwise. Unless this is done, the designer will likely overlook some unusual, unexpected, influence.

Of all the available temperature transducers, why use a thermocouple in a particular application? There are numerous advantages to consider. Physically, the thermocouple is inherently simple, being only two wires joined together at the measuring end. The thermocouple can be made large or small depending on the life expectancy, drift, and response-time requirements. It may be flexible, rugged, and generally is easy to handle and install. A thermocouple normally covers a wide range of temperatures, and its output is reasonably linear over portions of that range. Unlike many temperature transducers, the thermocouple is not subject to selfheating problems. In practice, thermocouples of the same type are interchangeable within specified limits of error. Also, thermocouple materials are readily available at reasonable cost, the expense in most cases being nominal.

The bulk of the manual is devoted to identifying material characteristics and discussing application techniques. Every section of the manual is essential to an understanding of thermocouple applications. Each section should be studied carefully. Information should not be used out of context. The general philosophy should be—let the user beware.

Second Edition, 1974

In preparing this edition of the manual, the committee has endeavored to include four major changes which greatly affect temperature measurement by means of thermocouples. In 1968, at the time the First Edition was being prepared, the International Practical Temperature Scale was changed. This new scale (IPTS-68) is now the law of the land, and Chapter 8 has been completely rewritten to so reflect this. In 1972-1973, new Thermocouple Reference Tables were issued by the National Bureau of Standards. Accordingly, Chapter 10 has been revised to include the latest tables of temperature versus electromotive force for the thermocouple types most commonly used in industry. Also, along these same lines, the National Bureau of Standards has issued new methods for generating the new Reference Table values for computer applications. These power series relationships, giving emf as a function of temperature, are now included in Chapter 10.3. Finally, there have been several important changes in thermocouple material compositions, and such changes have been noted in the appropriate places throughout the text. The committee has further attempted to correct any gross errors in the First Edition and has provided a more complete bibliography in Chapter 12.

Chapter 2—Principles of Thermoelectric Thermometry

The principles, or theory, underlying thermoelectric effects were not established by one man at one time, but by several scientists working over a span of many years beginning with Alessandro Volta, who concluded in 1800 that the electricity which caused Galvani's frog to twitch was due to a contact of two dissimilar metals. This conclusion was the forerunner of the principle of the thermocouple. Others built on this base; for example, Thomas Johann Seebeck (1821), Jean Charles Althanase Peltier (1834), and William Thomson—later Lord Kelvin—(1848–1854). During this same period, Jean Baptiste Joseph Fourier published his basic heat-conduction equation (1821), Georg Simon Ohm discovered his celebrated equation for electrical conduction (1826), James Prescott Joule found the principle of the first law of thermodynamics and the important I²R heating effect (1840–1848), and Rudolf Julius Emanuel Clausius announced the principle of the second law of thermodynamics and introduced the concept of entropy (1850).

2.1 Historical Development of Basic Relations

2.1.1 Seebeck

Seebeck discovered the existence of thermoelectric currents while observing electromagnetic effects associated with bismuth-copper and bismuthantimony circuits. His experiments showed that, when the junctions of two dissimilar metals forming a closed circuit are exposed to different temperatures, a net thermal electromotive force is generated which induces a continuous electric current.

The Seebeck effect concerns the net conversion of thermal energy into electrical energy with the appearance of an electric current. The Seebeck voltage refers to the net thermal electromotive force set up in a thermocouple under zero-current conditions. The direction and magnitude of the Seebeck voltage, E_s , depend upon the temperature of the junctions and upon the materials making up the thermocouple. For a particular combination of materials, A and B, for a small temperature difference

$$dE_S = \alpha_{A,B} dT \tag{1}$$

where $\alpha_{A,B}$ is a coefficient of proportionality called the Seebeck coefficient.

(This commonly is called the thermoelectric power.) The Seebeck coefficient is obtained usually in one of two ways: (1) as an algebraic sum, $\alpha_{A,B}$, of relative Seebeck coefficients, α_{AR} and α_{BR} , where, for a given temperature difference and at given temperature levels, emf's of each of the substances, A and B, making up the thermocouple are obtained with respect to an arbitrary reference material, R; and (2) by numerically differentiating tabulated values of E_S versus T for a given reference temperature, T_R , according to the relation

$$E_{S} = \int_{TR}^{T} \alpha_{A,B} dT$$
 (2)

In either case, the Seebeck coefficient represents, for a given material combination, the net change in thermal emf caused by a unit temperature difference; that is,

$$\alpha_{A,B} = \lim_{\Delta T \to 0} \frac{\Delta E_S}{\Delta T} = \frac{dE_S}{dT}$$
(3)

Thus, if $E = aT + 1/2bT^2$ is determined by calibration, then $\alpha = a + bT$. Note that, based on the validity of the experimental relation,

$$E_{S} = \int_{T_{2}}^{T} \alpha dT = \int_{T_{1}}^{T} \alpha dT - \int_{T_{1}}^{T_{2}} \alpha dT \qquad (4)$$

where $T_1 < T_2 < T$, it follows that α is entirely independent of the reference temperature employed. In other words, for a given combination of materials, the Seebeck coefficient is a function of temperature level only.

2.1.2 Peltier

Peltier discovered peculiar thermal effects when he introduced small, external electric currents in Seebeck's bismuth-antimony thermocouple. His experiments show that, when a small electric current is passed across the junction of two dissimilar metals in one direction, the junction is cooled (that is, it acts as a heat sink) and thus absorbs heat from its surroundings. When the direction of the current is reversed, the junction is heated (that is, it acts as a heat source) and thus releases heat to its surroundings.

The Peltier effect concerns the reversible evolution, or absorption, of heat which usually takes place when an electric current crosses a junction between two dissimilar metals. (In certain combinations of metals, at certain temperatures, there are thermoelectric neutral points where no Peltier effect is apparent.) This Peltier effect takes place whether the current is introduced externally or is induced by the thermocouple itself. The Peltier heat was found early to be proportional to the current, and may be written

$$dQ_P = \pi I dt \tag{5}$$

where π is a coefficient of proportionality known as the Peltier coefficient

or the Peltier voltage. Note that π represents the reversible heat which is absorbed, or evolved, at the junction when unit current passes across the junction in unit time, and that it has the dimensions of voltage. The direction and magnitude of the Peltier voltage depend upon the temperature of the junction and upon the materials making up the junction; however, π at one junction is independent of the temperature of the other junction.

External heating, or cooling, of the junctions results in the converse of the Peltier effect. Even in the absence of all other thermoelectric effects, when the temperature of one junction (the reference junction) is held constant and when the temperature of the other junction is increased by external heating, a net electric current will be induced in one direction. If the temperature of the latter junction is reduced below the reference-junction temperature by external cooling, the direction of the electric current will be reversed. Thus, the Peltier effect is seen to be related closely to the Seebeck effect. Peltier himself observed that, for a given electric current, the rate of absorption, or liberation, of heat at a thermoelectric junction depends upon the Seebeck coefficient, α , of the two materials.

2.1.3 Thomson

It remained for Thomson (see the Kelvin relations discussed next) to show that α and π are related by the absolute temperature. (We might appropriately mention at this time that the Peltier thermal effects build up a potential difference opposing the thermoelectric current, thus negating the perpetual-motion question.) Thomson came to the remarkable conclusion that an electric current produces different thermal effects, depending upon the direction of its passage from hot to cold or from cold to hot, in the same metal. By applying the (then) new principles of thermodynamics to the thermocouple, and by disregarding (with tongue in cheek) the irreversible I²R and conduction-heating processes, Thomson reasoned that, if an electric current produces only the reversible Peltier heating effects, then the net Peltier voltage will equal the Seebeck voltage and will be linearly proportional to the temperature difference at the junctions of the thermocouple.

This reasoning led to requirements at variance with observed characteristics (that is, $dE_s/dT \neq \text{constant}$). Therefore, Thomson concluded that the net Peltier voltage is not the only source of emf in a thermocouple circuit, but that the single conductor itself, whenever it is exposed to a longitudinal temperature gradient, must be also a seat of emf. (Becquerel had at that time already discovered a thermoelectric neutral point, that is, $E_s = 0$, for an iron-copper couple at about 280°C. Thomson agreed with Becquerel's conclusion and started his thermodynamic reasoning from there.)

The Thomson effect concerns the reversible evolution, or absorption, of heat occurring whenever an electric current traverses a single homogeneous conductor, across which a temperature gradient is maintained, regardless of external introduction of the current or its induction by the thermocouple itself. The Thomson heat absorbed, or generated, in a unit volume of a conductor is proportional to the temperature difference and to the current, that is,

$$dQ_T = \pm \sigma dT I dt \tag{6}$$

where σ is a coefficient of proportionality called the Thomson coefficient. Thomson refers to this as the specific heat of electricity because of an apparent analogy between σ and the usual specific heat, c, of thermodynamics. Note that σ represents the rate at which heat is absorbed, or evolved, per unit temperature difference per unit current, whereas c represents the heat transfer per unit temperature difference per unit mass. The Thomson coefficient is seen also to represent an emf-per-unit difference in temperature. Thus, the total Thomson voltage set up in a single conductor may be expressed as

$$E_T = \int_{T_1}^{T_2} \sigma dT \tag{7}$$

where its direction and magnitude depend upon temperature level, temperature difference, and material considered. Note that the Thomson voltage alone cannot sustain a current in a single homogeneous conductor forming a closed circuit, since equal and opposite emf's will be set up in the two paths from heated to cooled parts.

Soon after his heuristic reasoning, Thomson succeeded in demonstrating indirectly the existence of the predicted Thomson emf's. He sent an external electric current through a closed circuit, formed of a single homogeneous conductor which was subjected to a temperature gradient, and found the I²R heat to be augmented slightly, or diminished, by the reversible Thomson heat in the paths from cold to hot or from hot to cold, depending upon the direction of the current and the material under test.

2.1.4 Interim Summary

In summary, thermoelectric currents may exist whenever the junctions of a circuit formed of at least two dissimilar metals are exposed to different temperatures. This temperature difference always is accompanied by irreversible Fourier heat conduction, while the passage of electric currents always is accompanied by irreversible Joule heating effects. At the same time, the passage of electric currents always is accompanied by reversible Peltier heating or cooling effects at the junctions of the dissimilar metals, while the combined temperature difference and passage of electric current always is accompanied by reversible Thomson heating or cooling effects along the conductors. The two reversible heating-cooling effects are manifestations of four distinct emf's which make up the net Seebeck emf:

$$E_{S} = \pi_{A,B}|_{T2} - \pi_{A,B}|_{T1} + \int_{T1}^{T2} \sigma_{A} dT - \int_{T1}^{T2} \sigma_{B} dT = \int_{T1}^{T2} \alpha_{A,B} dT \qquad (8)$$

where the three coefficients, α , π , σ , are related by the Kelvin relations.

2.1.5 Kelvin Relations

Assuming that the irreversible I²R and heat-conduction effects can be disregarded completely (actually, they can be only minimized since, if thermal conductivity is decreased, electrical resistivity usually is increased, and vice versa), then the net rate of absorption of heat required by the thermocouple to maintain equilibrium in the presence of an electric current is

$$q = \frac{Q_{\text{net}}}{t} = \left[\pi_2 - \pi_1 + \int_1^2 (\sigma_A - \sigma_B) dT\right] I = E_S I \qquad (9)$$

This is in accord with the first law of thermodynamics, according to which heat and work are mutually convertible. Thus, the net heat absorbed must equal the electric work accomplished or, in terms of a unit charge of electricity, the Seebeck emf, E_s , which may be expressed in the differential form

$$dE_S = d\pi + (\sigma_A - \sigma_B)dT \tag{10}$$

The second law of thermodynamics may be applied also to the thermocouple cycle, the unit charge of electricity again being considered, as

$$\Delta S_{\rm rev} = \sum \frac{\Delta Q}{T_{\rm abs}} = 0 \tag{11}$$

where ΔQ implies the various components of the net heat absorbed (that is, the components of E_s), and T_{abs} implies the temperature at which the heat is transferred across the system boundaries. Equation 11 can be expressed in the differential form

$$dS_{\rm rev} = d\left(\frac{\pi}{T}\right) + \frac{(\sigma_A - \sigma_B)}{T} dT = 0$$
 (12)

Combining the differential expressions for the first and second laws of thermodynamics, we obtain the Kelvin relations:

$$\pi_{A,B} = T_{abs} \left(\frac{dE_s}{dT} \right) = T_{abs} \alpha_{A,B}$$
(13)

$$(\sigma_A - \sigma_B) = -T_{abs} \left(\frac{d^2 E_S}{dT^2} \right)$$
(14)

from which we can determine α , π , and $\Delta \sigma$, when E_s is obtained as a

function of T. Thus, if

$$E_s = aT + \frac{1}{2}bT^2 + \cdots$$
 (15)

is taken to represent the thermoelectric characteristics of a thermocouple whose reference junction is maintained at 0°C, and where the coefficients, a and b, are obtained (for example) by the curve fitting of calibration data, then

$$\alpha = (a + bT + \cdots) \tag{16}$$

$$\pi = T_{abs}(a + bT + \cdots) \tag{17}$$

$$\Delta \sigma = -T_{\rm abs}(b + \cdots) \tag{18}$$

Examples of the use of these coefficients are given in Table 1.

TABLE 1-Determination of various thermoelectric quantities applied to thermocouples.

Given, the two constants, a and b, as determined with respect to platinum via Eq 15:

Metal	a, V/°C	$b, V/(^{\circ}C)^2$
Iron(Fe)	+16.7	-0.0297
Copper(Cu)	+ 2.7	+0.0079
Constantan(Con)	-34.6	-0.0558

By way of illustration, consider the following combinations of materials: iron-copper and iron-constantan, with their measuring junctions at 200° C and their reference junctions at 0° C:

$$Iron-copper$$

$$a_{Fe-Cu} = a_{Fe} - a_{Cu} = 16.7 - 2.7 = 14\mu V/^{\circ}C$$

$$b_{Fe-Cu} = b_{Fe} - b_{Cu} = -0.0297 - 0.0079$$

$$b_{Fe-Cu} = -0.0376 \ \mu V/^{\circ}C)^{2}$$

$$Iron-constantan$$

$$a_{Fe-Con} = a_{Fe} - a_{Con} = 16.7 - (-34.6) = 51.3 \ \mu V/^{\circ}C$$

$$b_{Fe-Con} = b_{Fe} - b_{Con} = -0.0297 - (-0.0558)$$

$$b_{Fe-Con} = 0.0261 \ \mu V/^{\circ}C)^{2}$$

Since Seebeck voltage $E_s = aT + 1/2bT^2$,

$$Iron-copper$$

$$E_{s} = 14(200) + \frac{1}{2}(-0.0376)(200)^{2}$$

$$E_{s} = 2048 \ \mu V$$

$$Iron-constantan$$

$$E_{s} = 51.3(200) + \frac{1}{2}(0.0261)(200)^{2}$$

$$E_s = 10~782~\mu V$$

Note how different combinations of materials give widely different thermal emf's.

Now we proceed to write expressions for α , π , and $\Delta \sigma$, to note how the separate emf's combine to give the (net) Seebeck emf: Since $\alpha_{A,B} = a_{A,B} + b_{A,B}T$ = Seebeck coefficient

$$\begin{aligned} & Iron-copper \\ \alpha_0 &= 14 + (-0.0376)(0) = 14 \,\mu V/^{\circ} C \\ \alpha_{200} &= 14 + (-0.0376)(200) = 6.48 \,\mu V/^{\circ} C \end{aligned}$$

(Continued)

TABLE 1—Continued.

$$Iron-constantan
\alpha_0 = 51.3 + 0.0261(0) = 51.3 \,\mu V/^{\circ}C
\alpha_{200} = 51.3 + 0.0261(200) = 56.52 \,\mu V/^{\circ}C$$

Note that it is the great difference in Seebeck coefficients (thermoelectric powers) for the two combinations which accounts for the difference in thermal emf's:

$$E_s = \int_{T_R}^T \alpha_{A,B} \mathrm{d}T$$

Since $\pi_{A,B} = T_{abs} \alpha_{A,B}$ = Peltier coefficient = Peltier voltage

$$Iron-copper$$

$$\pi_{0} = 273(14) = 3822 \ \mu V$$

$$\pi_{200} = 473(6.48) = 3065 \ \mu V$$

$$Iron-constantan$$

$$\pi_{0} = 273(51.3) = 14 \ 005 \ \mu V$$

$$\pi_{200} = 473(56.52) = 26 \ 734 \ \mu V$$

Note that, in the case of the iron-copper (Fe-Cu) couple, $\pi_{\text{cold}} > \pi_{\text{hot}}$, whereas in the more usual Fe-Con couple, $\pi_{\text{hot}} > \pi_{\text{cold}}$.

Since $\Delta \sigma_{A,B} = -b_{A,B}T_{abs}$ = Thomson coefficient, and

$$E_{T} = \int_{T_{Rabs}}^{T_{abs}} \Delta \sigma \, dT = \frac{1}{2} b_{A,B} (T^{2}_{Rabs} - T^{2}_{abs}) = \text{Thomson voltage}$$

$$Iron-copper$$

$$E_{T} = \frac{0.0376}{2} (273^{2} - 473^{2})$$

$$E_{T} = 2805 \,\mu V$$

$$Iron-constantan$$

$$E_{T} = \frac{0.0261}{2} (273^{2} - 473^{2})$$

$$E_{T} = -1947 \,\mu V$$

We sum the various components

$$E_s = \pi_2 - \pi_1 + \int_1^2 \Delta \sigma \, dT = \text{Seebeck voltage}$$

$$Iron-copper$$

$$E_s = 3065 - 3822 + 2805$$

$$E_s = 2048 \, \mu V$$

$$Iron-constantan$$

$$E_s = 26 \, 734 - 14 \, 005 - 1947$$

$$E_s = 10 \, 782 \, \mu V$$

These figures of course, check with the original calculations. Note that, in the Fe-Cu case, the net Thomson emf far outweighs in importance the net Peltier emf, whereas in the Fe-Con case, the converse is true.

2.1.6 Onsager Relations

The historical viewpoint presented thus far has avoided the very real irreversible I²R and heat conduction in order to arrive at the useful and experimentally confirmed Kelvin relations. We shall now discuss how the present-day, irreversible thermodynamic viewpoint removes this flaw in our reasoning.

Basically, we judge whether a given process is reversible or irreversible by noting the change in entropy accompanying a given change in the thermodynamic state. Thus, if $dS > \delta Q_q/T_{abs}$, we say the process is irreversible; or, stated in a more useful manner,

$$dS_{\text{system}} = dS_{\text{across}}_{\text{boundary}} + dS_{\text{produced}}_{\text{inside}}$$
(19)

or

$$dS_s = dS_0 + dS_i = \frac{\delta Q_q}{T_{abs}} + \frac{\delta F}{T_{abs}}$$
(20)

Hence, only in the absence of entropy within the system boundaries do we have the reversible case, $dS_{rev} = \delta Q_q/T_{abs}$, which may be handled adequately by classical thermodynamics in the steady and quasi-steady states. Evidently, the rate of production of entropy per unit volume, ξ , is an important quantity in irreversible thermodynamics, which may be expressed as

$$\xi = \left(\frac{1}{Adx}\right)\frac{dS_i}{dt} = \left(\frac{1}{Adx}\right)\frac{\delta F}{T_{\rm abs}dt}$$
(21)

where Adx is the area times the differential length.

Another significant quantity, the product $T_{abs}\xi$ (called the dissipation), always can be split into two terms or a sum of two terms; one associated with a flow, J, and the other associated with a force, X. Furthermore, in many simple cases a linear relation is found (by experiment) to exist between the flow and force terms so defined. For example, in the one-dimensional, isothermal, steady flow of electric charges, $\delta Q_e/dt$ across a potential gradient, -dE/dx, it may be shown that

$$T_{\rm abs}\xi = \left(\frac{I}{A}\right)\left(-\frac{dE}{dx}\right) = J_e X_e \tag{22}$$

where J_e and X_e represent the electric flow and force terms, respectively, as defined by the entropy production method. The term J_e represents the electric-current density and the term X_e the electric-field strength or the electromotive force, which of course are related by the linear Ohm's law (that is, $J_e = L_e X_e$, where L_e represents the electrical conductivity). Again, in the one-dimensional, steady flow of thermal charges, dQ_q/dt , across a temperature gradient, -dT/dx, it may be shown that

$$T_{\rm abs}\xi = \left(\frac{Q}{A}\right) \left(\frac{1}{T_{\rm abs}} \frac{dT}{dx}\right) = J_q X_q \tag{23}$$

where J_q and X_q represent the thermal flow and force, respectively, as defined by the entropy production method. The term J_q represents the thermal current density, and the term X_q represents the thermomotive force, which are, of course, related by the linear Fourier's law (that is, $J_q = L_q X_q$ where L_q represents the product of the thermal conductivity and the absolute temperature). It has been found that, even in complex situations, it always may be stated that

$$T_{\rm abs}\xi = \sum J_K X_K \tag{24}$$

When several irreversible transport processes occur simultaneously (as, for example, the electric and thermal conduction in a thermocouple), they usually will interfere with each other; therefore, the linear relations must be generalized to include the various possible interaction terms. Thus, for the combined electric and thermal effects we would write

$$J_e = L_{ee}X_e + L_{eq}X_q \tag{25}$$

$$J_q = L_{qe}X_e + L_{qq}X_q \tag{26}$$

or, in general

$$J_i = \sum L_{ij} X_j \tag{27}$$

We have just seen that an entropy production necessarily accompanies both the I²R and heat conduction effects (that is, they are irreversible); therefore, the Kelvin relations could not follow from reversible thermodynamic theory without certain intuitive assumptions. By reasoning that the electric and thermal currents were independent, Thomson tacitly assumed that $L_{eq} = L_{qe}$ as we shall subsequently show. Experimentally, this reciprocal relationship often was found to be true. The American chemist, Lars Onsager, proved in 1931 from a statistical-mechanics viewpoint that the assumption

$$L_{ij} = L_{ji} \tag{28}$$

is always true when the linear relations between flows, J_k , and forces, X_k , are valid. The Onsager reciprocal relation forms the basis of irreversible thermodynamics. By applying these concepts to the processes involved in the thermocouple, we are led rationally and unambiguously to the Kelvin relations. Thus, whenever the junctions of a thermocouple are maintained at different temperatures, we expect that an electric potential difference, an electric current, and a thermal current will be present. The dissipation for this thermoelectric process is simply the sum of the electric and thermal terms previously given. That is,

$$T_{\rm abs}\xi = \frac{I}{A}\left(-\frac{dE}{dT}\right) + \frac{Q}{A}\left(\frac{1}{T_{\rm abs}}\frac{dT}{dx}\right)$$
(29)

The generalized linear laws for this case also have been given as

$$J_e = L_{ee} \left(-\frac{dE}{dT} \right) + \frac{L_{eq}}{T_{abs}} \left(\frac{dT}{dx} \right)$$
(30)

$$J_{q} = L_{qe}\left(-\frac{dE}{dx}\right) + \frac{L_{qq}}{T_{abs}}\left(\frac{dT}{dx}\right)$$
(31)

Recalling that the Seebeck emf is determined under conditions of zero electric current, the Seebeck coefficient, α , may be expressed in terms of the Onsager coefficients as

$$\alpha = \left(\frac{dE_s}{dT}\right)_{I=0} = \frac{L_{eq}}{L_{ee}T_{abs}}$$
(32)

Recalling that the Peltier coefficient, π , represents the heat absorbed, or evolved, with the passage of an electric current across an isothermal junction, this too may be expressed in terms of the Onsager coefficients as

$$\pi = \left(\frac{J_q}{J_e}\right)_{dT=0} = \frac{L_{qe}}{L_{ee}}$$
(33)

Finally, we recall that Thomson found experimentally (and expressed in the Kelvin relations) that the Seebeck and Peltier coefficients are related, as shown in Eq 13.

$$\pi = T_{\rm abs} \left(\frac{dE_s}{dT} \right) \tag{34}$$

In terms of the Onsager coefficients, this requires that

$$\frac{L_{qe}}{L_{ee}} = T_{abs} \left(\frac{L_{eq}}{L_{ee}T_{abs}} \right)$$
(35)

$$L_{qe} = L_{eq} \tag{36}$$

which indicates that the experimental results agree with those which are predicted by the entropy production-linear law-Onsager reciprocal relation approach; in other words, by irreversible thermodynamics, without using any intuitive assumption. The Kelvin relations, also in accord with experiment, must follow.

2.2 Laws of Thermoelectric Circuits

Numerous investigations of thermoelectric circuits in which accurate measurements were made of the current, resistance, and electromotive force have resulted in the establishment of several basic laws. These laws have been established experimentally beyond a reasonable doubt and may be accepted in spite of any lack of a theoretical development.

2.2.1 Law of Homogeneous Metals

A thermoelectric current cannot be sustained in a circuit of a single homogeneous material, however varying in cross section, by the application of heat alone.

A consequence of this law is that two different materials are required for any thermocouple circuit. Experiments have been reported suggesting that a nonsymmetrical temperature gradient in a homogeneous wire gives rise to a measurable thermoelectric emf. A preponderance of evidence indicates, however, that any emf observed in such a circuit arises from the effects of local inhomogeneities. Furthermore, any current detected in such a circuit when the wire is heated in any way whatever is taken as evidence that the wire is inhomogeneous.

2.2.2 Law of Intermediate Metals

The algebraic sum of the thermoelectromotive forces in a circuit composed of any number of dissimilar materials is zero if all of the circuit is at a uniform temperature.

A consequence of this law is that a third homogeneous material always can be added in a circuit with no effect on the net emf of the circuit so long as its extremities are at the same temperature. Therefore, it is evident that a device for measuring the thermoelectromotive force may be introduced into a circuit at any point without affecting the resultant emf, provided all of the junctions which are added to the circuit by introducing the device are all at the same temperature. It also follows that any junction whose temperature is uniform and which makes a good electrical contact does not affect the emf of the thermoelectric circuit regardless of the method employed in forming the junction (Fig. 1).

Another consequence of this law may be stated as follows. If the thermal emfs of any two metals with respect to a reference metal (such as C) are

FIG. 1-E unaffected by third material, C.

FIG. 2-Emf's are additive for materials.

known, then the emf of the combination of the two metals is the algebraic sum of their emfs against the reference metal (Fig. 2).

2.2.3 Law of Successive or Intermediate Temperatures

If two dissimilar homogeneous metals produce a thermal emf of E_1 , when the junctions are at temperatures T_1 and T_2 , and a thermal emf of E_2 , when the junctions are at T_2 and T_3 , the emf generated when the junctions are at T_1 and T_3 , will be $E_1 + E_2$.

One consequence of this law permits a thermocouple, calibrated for a given reference temperature, to be used with any other reference tempera-

FIG. 3-Emf's are additive for temperature intervals.

 (a) For temperature level (Junction 2 is held at a constant, known reference temperature)

FIG. 4—Several methods for introducing copper extension wires in elementary thermocouple circuits.

ture through the use of a suitable correction (see Fig. 3 for a schematic example).

Another consequence of this law is that extension wires, having the same thermoelectric characteristics as those of the thermocouple wires, can be introduced in the thermocouple circuit (say from region T_2 to region T_3 in Fig. 3) without affecting the net emf of the thermocouple.

2.3 Elementary Thermoelectric Circuits

Two continuous, dissimilar thermocouple wires extending from the measuring junction to the reference junction, when used together with copper connecting wires and a potentiometer, connected as shown in Fig. 4, make up the basic thermocouple circuit.

An ideal circuit is given in Fig. 5 for use when more than one thermocouple is involved. The usual thermocouple circuit, however, includes: measuring junctions, thermocouple extension wires, reference junctions, copper connecting wires, a selector switch, and potentiometer, as indicated in Fig. 6. Many different circuit arrangements of the above components are also acceptable, depending on given circumstances, and these are discussed in the appropriate sections which follow.

FIG. 5—Basic thermocouple circuit.

FIG. 6—Typical industrial thermocouple circuits.

2.4 Bibliography

2.4.1 Early Historical References

Volta, A., "On the Electricity Excited by Mere Contact of Conductng Substances of Dif-ferent Kinds," *Philosophical Transactions*, 1800, p. 403. Seebeck, T. J., "Evidence of the Thermal Current of the Combination Bi-Cu by Its Action

on Magnetic Needle, Royal Academy of Science, Berlin, 1822-1823, p. 265.

Fourier, J. B. J., Analytical Theory of Heat, Gauthier-Villars et Cie., Paris, 1822; English translation by Freeman, A., Cambridge University Press, Cambridge, 1878.

Ohm, G. S., "Determination of the Laws by Which Metals Conduct the Contact Electricity, and also a Draft for a Theory of the Voltage Apparatus," Journal for Chemie and Physik (Schweigger's Journal), Vol. 46, 1826, p. 137.

Peltier, J. C. A., "Investigation of the Heat Developed by Electric Currents in Homogeneous Materials and at the Junction of Two Different Conductors," Annalis de Chemie et de Physique, Vol. 56 (2nd Series), 1834, p. 371.

Joule, J. P., "On the Production of Heat by Voltaic Electricity," Proceedings of the Royal Society, Dec. 1840.

Thomson, W., "On an Absolute Thermometric Scale Founded on Carnot's Theory of the Motive Power of Heat, and Calculated from Regnault's Observations," *Proceedings of the Cambridge Philosophical Society*, June 1848.

Clausius, R. J. E., "About the Motive Force of Heat," Annalen der Physik und Chemie, Vol. 79, 1850, pp. 368 and 500.

Thomson, W., "On a Mechanical Theory of Thermo-Electric Currents," Proceedings of the Royal Society of Edinburgh, Dec. 1851.

Thomson, W., "On the Thermal Effects of Electric Currents in Unequal Heated Conductors," *Proceedings of the Royal Society*, Vol. VII, May 1854.

2.4.2 Recent References

Benedict, R. P., "Thermoelectric Effects," Electrical Manufacturing, Feb. 1960, p. 103.

Finch, D. I., "General Principles of Thermoelectric Thermometry," *Temperature*, Vol. 3, Part 2, Reinhold, New York, 1962.

Roeser, W. F., "Thermoelectric Circuitry," Journal of Applied Physics, Vol. 11, 1940, p. 388.

Dike, P. H., "Thermoelectric Thermometry," Leeds and Northrup Technical Publication EN-33A (1a), 3rd ed., April 1955.

Stratton, R., "On the Elementary Theory of Thermoelectric Phenomena, "British Journal of Applied Physics, Vol. 8, Aug. 1949, p. 33.

Miller, D. G., "Thermodynamic Theory of Irreversible Processes," American Journal of Physics, May 1956, p. 433.

Onsager, L., "Reciprocal Relations in Irreversible Processes," *Physical Review*, Vol. 37, Feb. 1931, p. 405.

Callen, H. B., "The Application of Onsager's Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects," *Physical Review*, Vol. 73, June 1948, p. 3149.

Hatsopoulos, G. N. and Keenan, J. H., "Analyses of the Thermoelectric Effects of Methods of Irreversible Thermodynamics," *Journal of Applied Mechanics*, Vol. 25, Dec. 1958, p. 428.

Benedict, R. P., Fundamentals of Temperature, Pressure, and Flow Measurements, Wiley, New York, 1969.

Pollock, D. D., The Theory and Properties of Thermocouple Elements, ASTM STP 492, American Society for Testing and Materials, 1971.

Benedict, R. P. and Russo, R. J., "A Note on Grounded Thermocouple Circuits," *Transactions*, American Society of Mechanical Engineers, *Journal of Basic Eingineering*, June 1972, p. 377.

Fenton, A. W., "The Theory of Thermoelectric Thermometers," United Kingdom Atomic Energy Authority, 1969, unpublished.

Fenton, A. W., "Errors in Thermoelectric Thermometers," *Proceedings*, Institute of Electrical Engineers, Vol. 116, No. 7, July 1969.

Fenton, A. W. et al, "Thermocouples: Instabilities of Seebeck Coefficients," United Kingdom Atomic Energy Authority, Report No. TRG 1447(R), Jan. 1967.

Freeman, R. J., "Distributed Seebeck Effect at High Temperature," High Temperature Thermometry Seminar, Oct. 1959, see TID 7586, Part 1.

2.5 Nomenclature

Roman

a,l	5	Coefficients

A	Area
4 A	1 11 0 00

- *E* Electric potential
- F Frictional loss
- I Electric current

J	Flow
k	Thermal conductivity
L	Constant of proportionality
Q	Heat
S	Entropy
t	Time
Т	Temperature
U	Internal energy
W	Work
x	Length or thickness
X	Force

Subscripts

A,B,C,	Thermocouple materials
e	Electrical
i,j,k	General subscripts
i	Internal
Р	Peltier
q	Thermal
R	Reference
S	Seebeck
Т	Thomson
abs	Absolute
rev	Reversible
1,2	States
Greek	
α	Seebeck coefficient
Δ	Finite difference

	I mile amerenee
π	Peltier coefficient
σ	Thomson coefficient
Σ	Sum
ξ	Entropy production/volume

Chapter 3—Thermocouple Materials

3.1 Common Thermocouple Types

The commonly used thermocouple types are identified by letter designations originally assigned by the Instrument Society of America (ISA) and adopted as an American Standard in ANSI C96.1-1964. This chapter covers general application data on the atmospheres in which each thermocouple type can be used, recommended temperature ranges, limitations, etc. Physical and thermoelectric properties of the thermoelement materials used in each of these thermocouple types are tabulated in Section 3.1.2.

The following thermocouple types are included (these are defined as having the emf-temperature relationship given in the corresponding letterdesignated Table in Chapter 10 within the limits of error specified in Table 41 of that chapter):

Type B—Platinum-30 percent rhodium (+) versus platinum-6 percent rhodium (-).

Type E—Nickel-10 percent chromium (+) versus constantan (-).

Type J—Iron (+) versus constantan (-).

Type K—Nickel-10 percent chromium (+) versus Nickel-5 percent (aluminum, silicon) (-) (see note).

Type R—Platinum-13 percent rhodium (+) versus platinum (-).

Type S—Platinum-10 percent rhodium (+) versus platinum (-).

Type T—Copper (+) versus constantan (-).

Temperature limits stated in the text are maximum values. Table 2 gives recommended maximum temperature limits for various gage sizes of wire. Table 3 gives nominal Seebeck coefficients for the various types. Temperature-emf equivalents and commercial limits of error for these common thermocouple types are given in Chapter 10.

3.1.1 General Application Data

Type T—These thermocouples are resistant to corrosion in moist atmospheres and are suitable for subzero temperature measurements. They have an upper temperature limit of 700°F (371°C) and can be used in a vacuum and in oxidizing, reducing, or inert atmospheres. This is the only

NOTE: Silicon, or aluminum and silicon, may be present in combination with other elements.

	Upper Temperature Limit for Various Wire Sizes (awg), °F (°C)						
Thermo- couple Type	No. 8 Gage (0.128 in. (3.25 mm))	No. 14 Gage (0.064 in. (1.63 mm))	No. 20 Gage (0.032 in. (0.81 mm))	No. 24 Gage (0.020 in. (0.51 mm))	No. 28 Gage (0.013 in. (0.33 mm))		
В				3100 (1705)			
E	1600 (871)	1200 (649)	1000 (538)	800 (427)	800 (427)		
J	1400 (760)	1100 (593)	900 (482)	700 (371)	700 (371)		
к	2300 (1260)	2000 (1093)	1800 (982)	1600 (871)	1600 (871)		
R and S	- 、 ,	· · ·		2700 (1482)			
Т		700 (371)	500 (260)	400 (204)	400 (204)		

TABLE 2—Recommended upper temperature limits for protected thermocouples.

Note—This table gives the recommended upper temperature limits for the various thermocouples and wire sizes. These limits apply to protected thermocouples, that is, thermocouples in conventional closed-end protecting tubes. They do not apply to sheathed thermocouples having compacted mineral oxide insulation. In any general recommendation of thermocouple temperature limits, it is not practicable to take into account special cases. In actual operation, there may be instances where the temperature limits recommended can be exceeded. Likewise, there may be applications where satisfactory life will not be obtained at the recommended temperature limits. However, in general, the temperature limits listed are such as to provide satisfactory thermocouple life when the wires are operated continuously at these temperatures.

thermocouple type for which limits of error are established in the subzero temperature range (see note 4 under Table 41, Chapter 10).

Type J—These thermocouples are suitable for use in vacuum and in oxidizing, reducing, or inert atmospheres, at temperatures up to 1400°F (760°C). The rate of oxidation of the iron thermoelement is rapid above 1000°F (538°C), however, and the use of heavy-gage wires is recommended when long life is required at the higher temperatures.

Bare thermocouples should not be used in sulfurous atmospheres above 1000°F (538°C).

This thermocouple is sometimes used for subzero temperatures, but the possible rusting and embrittlement of the iron wire under these conditions makes its use less desirable than Type T for low temperature measurements. Limits of error have not been established for Type J thermocouples at subzero temperatures (see Chapter 10).

Type K—Type K thermocouples are recommended for continuous use in oxidizing or inert atmospheres at temperatures up to 2300°F (1260°C). Because their oxidation resistance characteristics are better than those of other base metal thermocouples, they find widest use at temperatures above 1000°F (538°C). However, this thermocouple is suitable for temperature measurements as low as -420°F (-250°C), although limits of error have been established only for the temperature range 0 to 2300°F (-18 to 1260°C) (see Chapter 10).

	Thermocouple Type						
Temperature	E	J	K	R	S	Т	В
°C	Seebeck Coefficient-Microvolts /°C						
-190	27.3	24.2	17.1			17.1	
-100	44.8	41.4	30.6			28.4	
0	58.5	50.2	39.4			38.0	
200	74.5	55.8	40.0	8.8	8.5	53.0	2.0
400	80.0	55.3	42.3	10.5	9.5		4.0
600	81.0	58.5	42.6	11.5	10.3		6.0
800	78.5	64.3	41.0	12.3	11.0		7.7
1000			39.0	13.0	11.5		9.2
1200			36.5	13.8	12.0		10.3
1400		· · ·		13.8	12.0		11.3
1600	• • •				11.8		11.6
°F	Seebeck Coefficient-Microvolts/°F						
-300	15.5	14.4				9.7	
-200	22.0	20.6				13.7	
-100	27.0	24.6				17.3	
32	32.5	28.0	21.7	3.0	3.0	21.3	
200	37.5	30.1	23.2	4.1	4.0	25.7	0.5
400	41.5	30.9	22.3	4.9	4.8	29.8	1.1
600	43.5	30.7	23.1	5.5	5.1	32.7	1.8
800	45.0	30.6	23.5	5.9	5.3		2.4
1000	45.0	31.7	23.7	6.2	5.5		3.0
1500	44.0	35.7	22.8	6.9	6.1		4.4
2000			21.1	7.6	6.6		5.4
2500				7.6	6.6		6.2
3000	••••			7.6	6.5		6.5

TABLE 3—Nominal Seebeck coefficients (thermoelectric power).

The Type K thermocouple may be used in hydrogen or cracked ammonia atmospheres if the dewpoint is below -40° F (-40° C). However, they should not be used in:

1. Atmospheres that are reducing or alternately oxidizing and reducing unless suitably protected with protection tubes.

2. Sulfurous atmospheres unless properly protected. Sulfur will attack both thermoelements and will cause rapid embrittlement and breakage of the negative thermoelement wire through intergranular corrosion.

3. Vacuum except for short time periods (preferential vaporization of chromium from the positive element will alter calibration).

4. Atmospheres that promote "green-rot" corrosion of the positive thermoelement. Such corrosion results from preferential oxidation of chromium when the oxygen content of the atmosphere surrounding the thermocouple is low and in a certain range. It can cause large negative errors in calibration and is most serious in the temperature range 1500 to 1900° F (816 to 1038° C).

Green-rot corrosion frequently occurs when thermocouples are used in long unventilated protecting tubes of small diameter. It can be minimized by increasing the oxygen supply through the use of large diameter protecting tubes or ventilated protecting tubes. Another approach is to decrease the oxygen content below that which will promote preferential oxidation by inserting a "getter" to absorb the oxygen in a sealed protection tube.

Type E—Type E thermocouples are recommended for use over the temperature range of -420 to 1600° F (-250 to 871° C) in oxidizing or inert atmospheres. In reducing atmospheres, alternately oxidizing and reducing atmospheres, marginally oxidizing atmospheres, and in vacuum they are subject to the same limitations as Type K thermocouples.

These thermocouples are suitable for subzero temperature measurements since they are not subject to corrosion in atmospheres with high moisture content. However, limits of error for the subzero range have not been established.

Type E thermocouples develop the highest emf per degree of all the commonly used types and are often used primarily because of this feature.

Types R and S—Type R and S thermocouples are recommended for continuous use in oxidizing or inert atmospheres at temperatures up to $2550^{\circ}F(1399^{\circ}C)$; intermittently up to $2700^{\circ}F(1482^{\circ}C)$.

They should not be used in reducing atmospheres, nor those containing metallic or nonmetallic vapors, unless suitably protected with nonmetallic protecting tubes. They never should be inserted directly into a metallic primary protecting tube.

Types R and S thermocouples may be used in a vacuum for short periods of time, but greater stability will be obtained by using Type B thermocouples for such applications.

Continued use of Types R and S thermocouples at high temperatures causes excessive grain growth which can result in mechanical failure of the platinum element. It also renders the platinum susceptible to contamination which causes negative drifts in calibration, that is, a reduction in the emf output of the thermocouple.

Calibration changes also are caused by diffusion of rhodium from the alloy wire into the platinum, or by volatilization of rhodium from the alloy. All of these effects tend to produce negative calibration shifts.

Type B—Type B thermocouples are recommended for continuous use in oxidizing or inert atmospheres at temperatures up to 3100° F (1704°C). They are also suitable for short term use in vacuum to this temperature.

They should not be used in reducing atmospheres, nor those containing metallic or nonmetallic vapors, unless suitably protected with nonmetallic protecting tubes. They should never be inserted directly into a metallic primary protecting tube. Under corresponding conditions of temperature and environment Type B thermocouples will show less grain growth and less drift in calibration than Type R or S thermocouples.

3.1.2 Properties of Thermoelement Materials

This section indicates in Tables 4 to 10 and in Fig. 7 the physical and electrical properties of thermoelement materials as used for the common letter-designated thermocouple types (Types B, E, J, K, R, S, and T). These are typical data and are listed for information only. They are not intended for use as specifications for ordering thermocouple materials.

Thermoelement materials are designated in the tables by the established American Standard letter symbols JP, JN, etc. The first letter of the symbol designates the type of thermocouple. The second letter, P or N, denotes

FIG. 7-Thermal emf of thermoelements relative to platinum.

the positive or negative thermoelement, respectively. Typical materials to which these letter designations apply are listed next:

BP	Platinum-30 percent rhodium
BN	Platinum-6 percent rhodium
JP	Iron, ThermoKanthal ¹ JP
JN, EN, or TN	Constantan, Cupron, ² Advance, ³ ThermoKanthal JN
ТР	Copper
KP or EP	Chromel, ⁴ Tophel, ² T-1, ³ ThermoKanthal KP
KN	Alumel, ⁴ Nial, ² T-2, ³ ThermoKanthal KN
RP	Platinum-13 percent rhodium
SP	Platinum-10 percent rhodium
RN or SN	Platinum
¹ Trademark—Kanthal	Corp.
² Trademark—Wilbur H	B. Driver Co.

³ Trademark—Driver-Harris Co.

⁴ Trademark-Hoskins Manufacturing Co.

Note that JN, EN, and TN thermoelements, as just listed, are composed of the same basic types of material. The typical data contained in the following pages are applicable to any of these thermoelements, but the thermal emf (versus platinum) of the three types may differ significantly depending on the type of thermocouple for which each is intended.

It also should be noted that positive and negative thermoelements for a given type of thermocouple, as supplied by any one manufacturer, will conform to the calibration curve for that thermocouple within specified limits of error. However, because materials used for a given thermoelement by various manufacturers may differ slightly in thermal emf, larger errors may occur if positive and negative thermoelements from different sources are combined. This is particularly true of thermoelements for Types J, R, and S thermocouples.

3.2 Extension Wires

3.2.1 General Information

Extension wires are inserted between the measuring junction and the reference junction and have approximately the same thermoelectric properties as the thermocouple wires with which they are used. Table 11 gives comparative data on extension wires available for thermocouples in common use. Extension wires are normally available as single or duplex, solid or stranded, insulated wires in sizes ranging from 14 to 20 B&S gage. A variety of insulations and protective coverings is available in several combinations to suit the many types of environments encountered in industrial service (see Chapter 4).

Some advantages of using extension wires are:

1. Improvement in mechanical or physical properties of the thermoelectric circuit. For example, the use of stranded construction or smaller

			and and a	ndo id more						
					Thermoeleme	nt Material				
Property	đť	JN, EN, TN	TP	KP, EP	KN	RP	SP	RN, SN	BP	BN
Melting point (solidus temperatures) : °C	1490 2715	1220 2228	1083 1981	1427 2600	1399 2550	1860 3380	1850 3362	1769 3216	1927 3501	1826 1319
Resistivity: AB-cm: at 0°C at 2°C	8.57 9.67	48.9 48.9	1.56 1.724	70 70.6	28.1 29.4	19.0 19.6	18.4 18.9	9.83 10.4		
at 0°C at 20°C	51.5 58.2	294.2 294	9.38 10.37	421 425	169 177	114.3 117.7	110.7 114.0	59.1 62.4	 114.5	
Temperature coefficient of resistance, Ω/Ω.°C (0 to 100°C)	65 × 10 ⁻⁴	-0.1 × 10 ⁻⁴	43 × 10-4	4.1 × 10 ⁻⁴	23.9 × 10 ⁻⁴	15.6 × 10⁻⁴	16.6 × 10-⁴	39.2 × 10⁻⁴	13.3 × 10 ⁻⁴	20.0 × 10-4
Coefficient of thermal expan- sion, in./in. °C (20 to 100°C)	11.7 × 10-⁵	14.9 × 10-⁵	16.6 × 10⁻⁵	13.1 × 10⁴	12.0 X 10-⁵	9.0 X 10 - ∮	9.0 X 10⁻⁵	9.0 X 10⁻⁵		
Thermal conductivity at 100°C: Cal cm/s cm ² .°C Btu ft/h ft ^{2.°F}	0.162 39.2	0.0506 12.2	0.901 218	0.046 11.1	0.071 17.2	0.088 21.3	0.090 21.8	0.171 41.4		
Specific heat at 20°C, cal/g.°C	0.107	0.094	0.092	0.107	0.12 5	:	:	0.032	:	
Density: g/cm ³ lb/in. ³	7.86 0.284	8.92 0.322	8.92 0.322	8.73 0.315	8.60 0.311	19.61 0.708	19.97 0.721	21.45 0.775	17.60 0.636	20.55).743
Tensile strength (annealed): kgf/cm ² psi	3 500 50 000	5 600 80 000	2 500 35 000	6 700 95 000	6 000 85 000	3 200 46 000	3 200 45 000	1 400 20 000	4 900 70 000	2 800 40 000
Magnetic attraction	strong	none	none	none	moderate	none	none	none	none	ione

TABLE 4-Typical physical properties of thermoelement materials.

CHAPTER 3 ON THERMOCOUPLE MATERIALS 25

	JN, TN,			KP,			RN,				
	JP	ENª	ТР	EP	ΚN	RP	SP	SN	BP	BN	
Element	Nominal Chemical Composition, %										
Iron	99.5						. : .				
Carbon	^b							• • •			
Manganese	· · · ^b	• • •			2	· • ,	.				
Sulfur	^b										
Phosphorus	^b							<i>.</i>			
Silicon	^b				1						
Nickel	b	45		90	95						
Copper	b	55	100	• • •							
Chromium	b			10							
Aluminum					2						
Platinum						87	90	100	70.4	93.9	
Rhodium				• • •		13	10		29.6	6.1	

TABLE 5—Nominal chemical composition of thermoelements.

^a Types JN, TN, and EN thermoelements usually contain small amounts of various elements for control of thermal emf, with corresponding reductions in the nickel or copper content, or both.

^b Thermoelectric iron (JP) contains small but varying amounts of these elements.

Thermoelement	Environmental Recommendations and Limitations (see notes)
JP	For use in oxidizing, reducing, or inert atmospheres or in vacuum. Oxidizes rapidly above 540°C (1000°F). Will rust in moist atmospheres as in subzero applications.
	position is only 0.5 percent (increase in manganese) in 20-year period.
JN, TN, EN	Suitable for use in oxidizing, reducing, and inert atmospheres or in vacuum. Should not be used unprotected in sulfurous atmospheres above 540°C (1000°F).
	Composition changes under neutron radiation since copper content is converted to nickel and zinc. Nickel content in- creases 5 percent in 20-year period.
ТР	Can be used in vacuum or in oxidizing, reducing or inert atmospheres. Oxidizes rapidly above 370°C (700°F). Pre- ferred to Type JP element for subzero use because of its superior corrosion resistance in moist atmospheres.
	Radiation transmutation causes significant changes in com-
	Nickel and zinc grow into the material in amounts of 10 per- cent each in a 20-year period.
KP, EP	For use in oxidizing or inert atmospheres. Can be used in hydrogen or cracked ammonia atmospheres if dew point is below -40° C (-40° F). Do not use unprotected in sul- furous atmospheres above 540°C (1000°F).

 TABLE 6—Environmental limitations of thermoelements.

(Continued)
TABLE 6—Continued.

Thermoelement	Environmental Recommendations and Limitations (see notes)
	Not recommended for service in vacuum at high tempera- tures except for short time periods because preferential vaporization of chromium will alter calibration. Large negative calibration shifts will occur if exposed to mar- ginally oxidizing atmospheres in temperature range 815 to 1040°C (1500 to 1900°F).
	Quite stable to radiation transmutation. Composition change is less than 1 percent in 20-year period.
KN	Can be used in oxidizing or inert atmospheres. Do not use unprotected in sulfurous atmospheres as intergranular corrosion will cause severe embrittlement.
	Relatively stable to radiation transmutation. In 20-year period, iron content will increase approximately 2 percent. The manganese and cobalt contents will decrease slightly.
RP, SP, SN, RN, BP, BN	For use in oxidizing or inert atmospheres. Do not use un- protected in reducing atmospheres in the presence of easily reduced oxides, atmospheres containing metallic vapors such as lead or zinc, or those containing nonmetallic vapors such as arsenic, phosphorus, or sulfur. Do not insert di- rectly into metallic protecting tubes. Not recommended for service in vacuum at high temperatures except for short time periods.
	Type SN elements are relatively stable to radiation transmu- tation. Types BP, BN, RP, and SP elements are unstable because of the rapid depletion of rhodium. Essentially, all the rhodium will be converted to palladium in a 10-year period.

NOTE 1-Refer to Table 7 for recommended upper temperature limits.

NOTE 2-Stability under neutron radiation refers to chemical composition of thermoelement, not to stability of thermal emf.

Note 3—Radiation transmutation rates^{*a*} are based on exposure to a thermal neutron flux of 1×10^{14} neutrons/cm²·s.

^a Browning, W. E., Jr., and Miller, C. E., Jr., "Calculated Radiation Induced Changes in Thermocouple Composition," *Temperature*, Its Measurement and Control in Science and Industry, Part 2, Rheinhold, New York, Vol. C, 1962, p. 271.

diameter solid wire may increase the flexibility of a portion of the circuit. Extension wires also may be selected to adjust the electrical resistance of the circuit.

2. Cost improvement in thermoelectric circuitry. For example, certain base metal extension wires may be substituted for noble metal wires when the reference junction is situated at a distance from a noble metal thermocouple.

Extension wires may be separated into two categories having the following characteristics:

Category 1—Alloys substantially the same as used in the thermocouple. This type of extension wire normally is used with base metal thermocouples.

Thermoelement	No. 8	No. 14	No. 20	No. 24	No. 28
	(0.128 in.)	(0.064 in.)	(0.032 in.)	(0.020 in.)	(0.013 in.)
JP	760°C	593°C	482°C	371°C	371°C
	(1400°F)	(1100°F)	(900°F)	(700°F)	(700°F)
JN, TN, EN	871°C	649°C	538°C	427°C	427°C
	(1600°F)	(1200°F)	(1000°F)	(800°F)	(800°F)
ТР		371°C (700°F)	260°C (500°F)	204°C (400°F)	204°C (400°F)
KP, EP, KN	1260°C	1093°C	982°C	871°C	871°C
	(2300°F)	(2000°F)	(1800°F)	(1600°F)	(1600°F)
RP, SP, RN, SN			•••	1482°C (2700°F)	
BP, BN			••••	1705°C (3100°F)	

TABLE 7-Recommended upper temperature limits for protected thermoelements.

NOTE—This table gives the recommended upper temperature limits for the various thermoelements and wire sizes. These limits apply to protected thermoelements, that is, thermoelements in conventional closed-end protecting tubes. They do not apply to sheathed thermoelements having compacted mineral oxide insulation. In any general recommendation of thermoelement temperature limits, it is not practicable to take into account special cases. In actual operation, there may be instances where the temperature limits recommended can be exceeded. Likewise, there may be applications where satisfactory life will not be obtained at the recommended temperature limits. However, in general, the temperature limits listed are such as to provide satisfactory thermoelement life when the wires are operated continuously at these temperatures.

Category 2—Alloys differing from those used in the thermocouple. This type of extension wire normally is used with noble metal thermocouples and with several of the nonstandardized thermocouples (see Section 3.3).

3.2.2 Sources of Error

Several possible sources of error in temperature measurement accompany the use of extension wires in thermocouple circuits. Most of the errors can be avoided, however, by exercising proper precautions.

One type of error arises from the disparity in thermal emf between thermocouples and nominally identical extension wire components of Category 1. The disparity results from the variations occurring among thermoelements lying within the standard limits of error for each type of thermocouple and extension wire. Thus, for example, it is possible that an error as great as $\pm 8^{\circ}$ F could occur in the Type K/KX and J/JX thermocoupleextension wire combinations, where the standard limits of error are $\pm 4^{\circ}$ F for the thermocouple and the extension wires treated as separate combinations. Such errors can be eliminated substantially by selecting extension wires whose emf closely matches that of the specific thermocouple, up to the maximum temperature of the thermocouple-extension wire junction.

Thermo-		JN, TN,							
element	JP	EN	ТР	KP, EP	KN	RP	SP	BP	BN
Tempera-									
ture, °C				Seebeck C	oefficien	t, μV /°C			
-190	+6.3	-20.9	-4.1						
-100	14.4	27.0	+1.1						
0	17.8	32.2	5.9	+25.7	-13.5	+5.5	+5.5		
200	14.6	41.0	12.0	32.7	7.4	8.5	8.5	+9.2	+7.2
400	9.7	45.5	16.2	34.6	7.7	10.5	9.5	11.7	7.6
600	11.7	46.8		33.8	8.8	11.5	10.0	13.8	7.9
800	17.8	46.4		32.2	8.8	12.5	11.0	15.8	8.2
1000			• • •	30.8	8.3	13.0	11.5	17.7	8.5
1200				29.1	7.4	14.0	12.0	19.1	8.7
1400						14.0	12.0	20.0	8.7
1600			•••	• • •	• • •	13.5	12.0	20.4	8.7
Tempera-									
ture, °F				Seebeck C	Coefficien	t, μV /°F			
- 300	+2.5	-11.9	-2.1						
-200	6.7	14.0	+0.2						
-100	8.8	15.8	1.5						
32	9.9	17.9	3.3	+14.3	-7.5	+3.0	+3.0		
200	9.6	20.5	5.0	16.7	6.5	4.1	4.0	+4.1	+3.6
400	8.0	22.9	6.7	18.3	4.0	4.9	4.7	5.1	4.0
600	6.2	24.5	8.2	19.0	4.1	5.5	5.2	5.8	4.2
800	5.3	25.3		19.1	4.4	5.8	5.4	6.5	4.2
1000	5.7	26.0		18.9	4.8	6.2	5.5	7.4	4.3
1500	9.9	25.8		17.8	4.9	6.8	6.1	8.8	4.6
2000				16.7	4.3	7.6	6.6	10.2	4.8
2500			• • •	14.9	4.0	7.7	6.7	11.0	4.9
3000				• • • •		7.6	6.5	11.3	4.9

 TABLE 8--Seebeck coefficient (thermoelectric power) of thermoelements with respect to Platinum 67 (typical values).

 TABLE 9—Thermoelements—resistance change with increasing temperature.

		Ratio	of Resist	ance at T	emperatur	e Indicated	to Resist	ance at 0°	C (32°F)	
Thermo- elements	0°C (32°F)	20°C (68°F)	200°C (392°F)	400°C (752°F)	600°C (1112°F)	800°C (1472°F)	1000°C (1832°F)	1200°C (2192°F)	1400°C (2552°F)	1500°C (2732°F)
JP	1.00	1.13	2.46	4.72	7.84	12.00	13.07			
JN, TN, EN	1,00	0.999	0.996	0.994	1.024	1.056	1.092			
TP	1.00	1.11	1.86	2.75	3.70	4.75	5.96			
KP, EP	1.00	1.01	1.09	1.19	1.25	1.30	1.37	1.43		
KN	1.00	1.05	1.43	1.64	1.82	1.98	2.15	2.32		
RP	1.00	1.03	1.31	1.60	1.89	2.16	2.41	2.66	2.90	3.01
SP	1.00	1.03	1.33	1.65	1.95	2.23	2.50	2.76	3.01	3.13
RN, SN	1.00	1.06	1.77	2.50	3.18	3.81	4.40	4.94	5.42	5.66
BP	1.00	1.03	1.26	1.51	1.76	1.98	2.20	2.41	2.62	2.73
BN	1.00	1.03	1.40	1.78	2.14	2.47	2.78	3.08	3.37	3.51

				Nominal Resista	nce, ohms per	foot at 20°C	C (68°F)			
Awg No.	Diameter, in.	КХ	KP, EP	TN, JN, EN	ЧТ	đſ	RN, SN	SP	ВР	BN
Ŷ	0.1620	0.0067	0.0162	0 0112	0 000395	0 007	0 00743	0 00428	0 00440	0,00407
, " 0	0 148	10000		7110.0	CCC000.0	0.0027	C1700.0	00000	01100.0	1010010
~ ∞	0.1285	0.0107	0.0257	0.0179	0.000628	0.0043	0.00386	0.00697	0.00700	0.00648
10	0.1019	0.0170	0.041	0.0283	0.00099	0.0069	0,00614	0.01108	0.01113	0.01030
12	0.0808	0.0270	0.065	0.0448	0.00159	0.0109	0.00976	0.01761	0.01769	0.01637
14	0.0641	0.0432	0.104	0.0718	0.00253	0.0174	0.0155	0.0280	0.0281	0.0260
16	0.0508	0.0683	0.164	0.113	0.00402	0.0276	0.0247	0.0445	0.0447	0.0414
17	0.0453	0.0874	0.209	0.145	0.00506	0.0349	0.0311	0.0562	0.0564	0.0523
18	0.0403	0.111	0.266	0.184	0.00648	0.0446	0.0399	0.0719	0.0722	0.0669
20	0.0320	0.173	0.415	0.287	0.0102	0.0699	0.0624	0.1125	0.1130	0.1046
22	0.0253	0.276	0.663	0.456	0.0161	0.1111	0.0993	0.1790	0.1798	0.1664
23	0.0226	0.347	0.833	0.576	0.0204	0.1401	0.1251	0.2257	0.2267	0.2099
24	0.0201	0.438	1.05	0.728	0.0257	0.1767	0.1578	0.2847	0.2859	0.2647
25	0.0179	0.553	1.33	0.918	0.0324	0.2228	0.1990	0.3589	0.3605	0.3337
26	0.0159	0.700	1.68	1.16	0.0408	0.281	0.2509	0.4526	0.4546	0.4208
28	0.0126	1.11	2.48	1.85	0.0649	0.447	0.3989	0.7197	0.7229	0.6692
30	0.0100	1.77	4.25	2.94	0.1032	0.710	0.6344	1.144	1.149	1.064
32	0.0080	2.76	6.65	4.59	0.1641	1.13	1.009	1.819	1.827	1.691
34	0.0063	4.45	10.7	7.41	0.2609	1.80	1.604	2.893	2.906	2.690
36	0.0050	7.08	17.0	11.8	0.4148	2.86	2.550	4.600	4.620	4.277
38	0.0040	11.1	26.6	18.4	0.6597	4.54	4.056	7.316	7.348	6.803
40	0.0031	18.4	44.2	30.6	1.049	7.22	6.448	11.63	11.68	10.81
16# "	Birmingham w	ire gage.								

30

TABLE 10-Nominal resistance of thermoelements.

TABLE 11-Extension wires for common thermocouples.^a

Thermoconte	Extension	Alloy	Type	T	Limits of 1	Error, °F	Magnetic ^b	Response
Type	Type	Positive Element	Negative Element	remperature Range, °F	Standard	Special	٩.	z
Base Metal	Category 1							
ш	EX	NiCr (Chromel) [€]	constantan	32 to 400	±3		0	0
J	Xſ	iron	constantan	32 to 400	土4	± 2	Σ	0
¥	КX	NiCr (Chromel) ^c	NiAl (Alumel) ^c	32 to 400	±4		0	М
Т	TX	copper	constantan	-75 to 200	$\pm 1 \frac{1}{2}$	$\pm \frac{3}{4}$	0	0
Noble Metal	Category 2							
R	SX	copper	copper alloy	75 to 400	±12	:	0	0
S	SX	copper	copper alloy	75 to 400	±12	:	0	0
в	BX	copper	copper	32 to 200	:	:	0	0
^a Extension wires	s for other thermo	scouple types will be for	ind in Section 3.3.					

^b M denotes ferro-magnetic alloy: O denotes nonferro-magnetic alloy. ^c Former (proprietary) designation.

FIG. 8—Error due to ΔT between the thermocouple-extension wire junctions.

A second source of error can arise if a temperature difference exists between the two thermoelement-extension wire junctions. Errors of this type are potentially greater in circuits employing extension wires of Category 2, where each extension element may differ significantly in emf from the corresponding thermoelement. Such errors may occur even though the extension pair emf exactly matches the thermocouple emf at each temperature. Referring to Fig. 8, schematically representing emf versus temperature curves for positive and negative thermoelements P and N, and corresponding extension wire elements PX and NX, the following relationships apply at any temperature T within the operating range of the extension wires:

Thermocouple output = extension pair output that is,

$$E_P - E_N = E_{PX} - E_{NX} \tag{37}$$

Rearranging to

$$E_P - E_{PX} = E_N - E_{NX}$$
(38)

If a temperature difference exists between the two junctions such that P joins PX at T_P , and N joins NX at T_N , an unwanted emf will exist across the two junctions, of magnitude

$$\Delta E = (E_P - E_{PX})_{T_P} - (E_N - E_{NX})_{T_N}$$
(39)

Rearranging Eq 39 according to Eq 38:

$$\Delta E = (E_P - E_{PX})_{T_P} - (E_P - E_{PX})_{T_N}$$
(40)

The sign of ΔE will depend on the relationship of temperature T_P to T_N and the relationship of PX and NX to P and N.

This ΔE will be interpreted as an error in the output of the measuring thermocouple. Such errors do not exceed about one degree at the measuring junction, per degree of ΔT between the thermocouple-extension wire junctions, for any of the thermocouples and extension wires listed in Table 2. These errors can be essentially eliminated by taking steps to equalize the temperatures of the two junctions.

A third source of error lies in the presence of reversed polarity at the thermocouple-extension wire junctions, or at the extension wire-instrument junctions. Although a single reversal of polarity in the assembly would be noticeable, an inadvertent double reversal likewise may produce measurement errors, but could escape immediate detection.

A fourth source of error concerns the use of connectors in the thermocouple assembly. If the connector material has thermal emf characteristics which differ appreciably from those of the thermocouple extension wires, then it is important that a negligible temperature difference be maintained across the connector. This follows directly from the Law of Intermediate Metals (see Section 2.2.2). Thus, in situations where a connector made of a third metal spans a substantial temperature gradient, unwanted emfs are generated between the thermoelectric materials and the extremities of the connector, and they appear as errors in the output of the thermocouple. The magnitude of errors of this type can vary over a wide range depending on the materials involved and the temperature difference spanned by the connector.

If the emf errors arising from the use of extension wires or from other sources are to be expressed as temperature errors, the Seebeck coefficient at the measuring junction temperature must be used.

A useful graphical method of evaluating error sources in thermoelectric circuits is detailed in a paper by Moffat (see Ref 34 on p. 239).

3.3 Nonstandardized Thermocouple Types

Newer thermccouple materials are being evaluated constantly to find combinations which perform special functions more reliably than the common thermocouples. The special functions for which these newer combinations are required frequently involve very high temperatures, but also may include unusual environments such as special atmospheres or areas susceptible to vibration.

Each of the combinations described in this section has been designed to measure temperatures under specific conditions and to perform with a degree of reliability superior to other combinations under these same conditions. The properties of each combination are detailed to allow a quick selection of a combination which is most likely to be suitable for a special condition. Thermocouple compositions are given in weight percent with the positive thermoelement of the thermocouple named first.

The information on newer thermocouple materials is presented using comments, tables, and curves. The comments made for the various thermocouple systems are intended to convey information not easily shown by tables or curves. The information contained in the tables is intended to help the reader to quickly decide if a certain thermocouple system, or a specific thermocouple, is suited to his particular needs. The information given is general and nominal, and cannot be used too literally. For example, the useful maximum temperature of a thermocouple depends in part on wire size, insulation used, method of installation, atmosphere conditions, vibration present, etc. The evaluation of certain properties as good, fair, or poor is subject to wide ranges of interpretation in terms of a particular application; hence, no attempt is made to define these terms. Approximate millivolt-versus-temperature relations for the various thermocouples are shown by curves. The curves are presented to show general temperature ranges for the various thermocouples but are not intended for use in converting emf to temperature. The reader should contact the wire manufacturer for temperature-emf tables.

The thermocouples described here are in use, and sufficient data and experience are available to warrant their inclusion. No attempt is made to include the many other thermocouple materials described in the literature which may have limited uses, or for which there are limited data, or for which there are serious problems of stability, emf reversibility, structural strength, etc.

The best source of information for a specific thermocouple in the "newer material" classification is considered to be the manufacturer of the particular thermocouple under consideration. Other useful information can be found in Ref 1.5

3.3.1 Platinum Types

3.3.1.1 Platinum-Rhodium Versus Platinum-Rhodium Thermocouples—The standard Type R and Type S thermocouples can be used for temperature measurement to the melting point of platinum, 1769°C (3216°F) on a short-term basis, but, for improved service life at temperatures over 1200°C (2192°F), special platinum-rhodium thermocouples are recommended.

⁵ The italic numbers in brackets refer to the list of references in this manual.

The platinum-40 percent rhodium versus platinum-20 percent rhodium thermocouple, called the "Land-Jewell" thermocouple, is especially useful for continuous use to 1800°C (3272°F) or occasional use to 1850°C (3362°F). However, it is seldom used where the Type B thermocouple will suffice because of lower output and greater cost.

Other thermocouples suggested for high-temperature measurement have been a platinum-13 percent rhodium versus platinum-1 percent rhodium combination and a platinum-20 percent rhodium versus platinum-5 percent rhodium combination. The former shows slightly less tendency toward mechanical failure or contamination at high temperatures than the standard Type R and Type S thermocouples, while the latter has properties very similar to those of the Type B thermocouple.

Figure 9 and Table 12 show the characteristics of these alloys.

	Pt-20Rh Versus Pt-5Rh	Pt-40R h Versus Pt-20R h	Pt-13Rh Versus Pt-1Rh
Nominal operating temperature range, in:			
Reducing atmosphere			
(nonhydrogen)	NR^{a}	NR	NR
Wet hydrogen	NR	NR	NR
Dry hydrogen	NR	NR	NR
Inert atmosphere	1700°C (3092°F)	1800°C (3272°F)	1600°C (2912°F)
Oxidizing atmosphere	1700°C (3092°F)	1800°C (3272°F)	1600°C (2912°F)
Vacuum (short-time use)	1700°C (3092°F)	1800°C (3272°F)	1600°C (2912°F)
Maximum short-time			
temperature	1770°C (3218°F)	1850°C (3362°F)	1770°C (3218°F)
Approximate microvolts per			
degree:			
Mean, over nominal			
operating range	6.8/°C (12.2/°F)	2.5/°C (4.5/°F)	9.9/°C (17.8/°F)
At top temperature of			
normal range	9.9/°C (17.8/°F)	4.7/°C (8.45/°F)	12.2/°C (22.0/°F)
Melting temperature, nominal:			
Positive thermoelement	1900°C (3452°F)	1930°C (3520°F)	1865°C (3389°F)
Negative thermoelement	1820°C (3308°F)	1900°C (3452°F)	1771°C (3220°F)
Stability with thermal cycling	good	good	good
High-temperature tensile			
properties	good	good	good
Stability under mechanical			
working	good	fair	good
Ductility (of most brittle ther-			
moelement) after use	good	fair	good
Resistance to handling			
contamination	fair	fair	fair
Recommended extension wire,			
175°C (347°F) max:			
Positive conductor	Cu	Cu	Cu
Negative conductor	Cu	Cu	Cu

TABLE 12—Platinum-rhodium versus platinum-rhodium thermocouples.

^{*a*} NR = not recommended.

FIG. 9-Thermal emf of platinum-rhodium versus platinum-rhodium thermocouples.

All special platinum-rhodium versus platinum-rhodium thermocouples, like the standard Types R, S, and B thermocouples, show improved life at high temperatures when protected by double-bore, full-length insulators of high-purity alumina.

3.3.1.2 Platinum-15 Percent Iridium Versus Palladium Thermocouples— The platinum-15 percent iridium versus palladium combination was developed as a high-output noble-metal thermocouple. It combines the desirable attributes of noble metals with a high emf output at a lower cost than other noble-metal thermocouples.

The output becomes more linear and the Seebeck coefficient (thermoelectric power) increases with increasing temperature. In the absence of vibration, the useful range can probably be extended closer to the melting point of palladium, 1550°C (2826°F).

Figure 10 and Table 13 show the characteristics of these alloys.

FIG. 10—Thermal emf of platinum-iridium versus palladium thermocouple.

Extension wires of base metals have been developed to provide a reasonable match with the thermocouple to about 700° C (1292°F).

Resistance to corrosion of the platinum-15 percent iridium alloy is better than that of the platinum-rhodium alloys in current use. Palladium is slightly less resistant to corrosion than the platinum alloy group. It will superficially oxidize at 700°C (1292°F). The oxide decomposes at about 875°C (1607°F) leaving a bright metal. When subjected to alternating oxidizing and reducing atmospheres, surface blistering may result. As with all noble metals, the catalytic effect of the wires must be considered in combustible atmospheres. Its use may be preferred to base metals, however, for many applications. Both wires are ductile and may be reduced to very small sizes and still be handled with relative ease.

3.3.1.3 Platinum-5 Percent Molybdenum Versus Platinum-0.1 Percent Molybdenum Thermocouple---Platinum alloys containing rhodium are not suit-

	Pt-15Ir Versus Pd
Nominal operating temperature range, in:	
Reducing atmosphere (nonhydrogen)	NR ^a
Wet hydrogen	NR
Dry hydrogen	
Inert atmosphere	1370°C (2500°F)
Oxidizing atmosphere	13/0°C (2300 F)
Vacuum	NK 1660°C (2826°E)
maximum short-time temperature	1550°C (2820 F)
Approximate microvolts per degree:	
Mean, over nominal operating range	12/°C (22/°F)
At top temperature of normal range	13.6/°C (24.6/°F)
Melting temperature, nominal:	
Positive thermoelement	1785°C (3245°F)
Negative thermoelement	1550°C (2826°F)
Stability with thermal cycling	good
High-temperature tensile properties	fair
Stability under mechanical working	good
Ductility (of most brittle thermoelement) after use	good
Resistance to handling contamination	fair
Recommended extension wire:	
Positive conductor	base metal alloys ^b
Negative conductor	base metal alloys ^{b}

TABLE 13—Platinum-iridium versus palladium thermocouple.

^{*a*} NR = not recommended.

* General Electric Company.

able for use under neutron irradiation since the rhodium changes slowly to palladium. This causes a drift in the calibration of thermocouples containing rhodium. However, a thermocouple of platinum-5 percent molybdenum versus platinum-0.1 percent molybdenum is suitable for use in the helium atmosphere of a gas-cooled atomic reactor. Good stability at temperatures up to 1400°C (2552°F) has been reported. The output of the thermocouple is high and increases in a fairly uniform manner with increasing temperature.

Figure 11 and Table 14 show the characteristics of these alloys.

The thermocouple usually is used in an insulated metallic sheath of platinum-5 percent molybdenum alloy. The sheath may be joined to a Type 321 stainless steel sheath beyond the area of the helium atmosphere. Both the platinum-molybdenum alloy and the Type 321 stainless steel behave well under neutron irradiation and are compatible with graphite which normally is used in the reactor.

Extension wires for this thermocouple can be copper for the positive conductor and copper-1.6 percent nickel for the negative conductor. Using

FIG. 11—Thermal emf of platinum-molybdenum versus platinum-molybdenum thermocouple.

these materials the junctions between the thermocouple and the extension wires should be maintained below $70^{\circ}C$ (158°F).

3.3.2 Iridium-Rhodium Types

3.3.2.1 Iridium-Rhodium Versus Iridium Thermocouples—Iridium-rhodium versus iridium thermocouples are suitable for measuring temperature to approximately 2000°C (3632°F), and generally are used above the range served by platinum-rhodium versus platinum thermocouples. They can be used in inert atmospheres and in vacuum, but not in reducing atmospheres, and they may be used in oxidizing atmospheres with shortened life.

The alloys of principal interest are those containing 40, 50, and 60 percent rhodium. They may be used for short times at maximum temperatures

	Pt-5Mo Versus Pt-0.1Mo
Nominal operating temperature range, in:	
Reducing atmosphere (nonhydrogen)	NRª
Wet hydrogen	NR
Dry hydrogen	NR
Inert atmosphere (helium)	1400°C (2552°F)
Oxidizing atmosphere	NR
Vacuum	NR
Maximum short-time temperature	1550°C (2822°F)
Approximate microvolts per degree:	
Mean, over nominal operating range	29/°C (51.2/°F)
At top temperature of normal range	30/°C (54/°F)
Melting temperature, nominal:	
Positive thermoelement	1788°C (3250°F)
Negative thermoelement	1770°C (3218°F)
Stability with thermal cycling	good
High-temperature tensile properties	fair
Stability under mechanical working	good
Ductility (of most brittle thermoelement) after use	good
Resistance to handling contamination	fair
Recommended extension wire 70°C (158°F) max:	
Positive conductor	Cu
Negative conductor	Cu-1.6Ni

TABLE 14—Platinum molybdenum versus platinum molybdenum.

^{*a*} NR = not recommended.

2180, 2140, and 2090°C (3956, 3884, and 3794°F, respectively), these temperatures being 60°C (140°F) or more below the respective melting points. Figure 12 and Table 15 show the characteristics of these alloys.

The wires must be handled carefully. They are flexible in the fibrous (as drawn) state, but when annealed are broken easily by repeated bending.

Metals said to be suitable for extension wires are copper for the positive conductor and stainless steel or an aluminum alloy for the negative conductor.

3.3.3 Platinel Types

3.3.3.1 Platinel Thermocouples—Platinel,⁶ a noble-metal thermocouple combination, was metallurgically designed for high-temperature indication and control in turbo-prop engines. This combination approximates within reasonable tolerances the Type K thermocouple curve.

Actually, two combinations have been produced and are called Platinel I and Platinel II. The negative thermoelement in both thermocouples is a

⁶ Trademark-Engelhard Industries, Inc.

65 percent gold-35 percent palladium alloy (Platinel 1503), but the positive one in Platinel I is composed of 83 percent palladium, 14 percent platinum, and 3 percent gold (Platinel 1786), while that used in Platinel II contains 55 percent palladium, 31 percent platinum, and 14 percent gold (Platinel 1813). Platinel II is the preferred type and has superior mechanical fatigue properties. The thermal emf's of these combinations differ little, as shown in Fig. 13. Other properties are given in Table 16.

From Fig. 13 it is apparent that the emf match with the Type K thermocouple is excellent at high temperatures, but some departure occurs at low temperatures. Generally, the user of Platinel makes the connection between the thermocouple and the extension wire (Type K thermocouple wire) at an elevated temperature (800°C) where the match is good. However, if this is done, care should be taken to ensure that the junctions of both conductors are at the same temperature. If the junction is made at a temperature

FIG. 12—Thermal emf of iridium-rhodium versus iridium thermocouples.

	601r-40Rh Versus Ir	50Ir-50Rh Versus Ir	40Ir-60Rh Versus Ir
Nominal operating temperature ra Reducing atmosphere	inge in:		
Wet hydrogen	ND a	ND	ND
Dry hydrogen	ND	ND	ND
Inert atmosphere	2100°C (2812°E)	2050°C (2722°E)	2000°C (2622°E)
Ovidizing atmosphere	2100 C (3012 F)	2030 C (3722 F)	2000 C (3032 F)
Vacuum	1100°C (2012°E)	INK 2050°C (2722°E)	1NK 2000°C (2622°E)
Maximum short time	2100 C (3012 F)	2030 C (3722 F)	2000 C (3032 F)
temperature	2190°C (3974°F)	2140°C (3884°F)	2090°C (3794°F)
Approximate microvolts per degree Mean over nominal operat-	e:		
ing range At top temperature of	5.3°C (2.9°F)	5.7°C (3.2°F)	5°2.C (2.9°F)
normal range	5.6°C (3.1°F)	6.2°C (3.5°F)	5.0°C (2.8°F)
Melting temperature, nominal:			
Positive thermoelement	2250°C (4082°F)	2202°C (3996°F)	2153°C (3907°F)
Negative thermoelement	2443°C (4429°F)	2443°C (4429°F)	2443°C (4429°F)
Stability with thermal cycling	fair	fair	fair
properties			
Stability under mechanical	• • •		
working	• • •		• • •
Ductility (of more brittle ther-			
moelement) after use	poor	poor	poor
Resistance to handling con- tamination:			
Recommended extension wire	• • •	• • •	
Positive conductor			
Negative condudtor		• • •	

TABLE 15--Iridium-rhodium versus iridium thermocouples.

^{*a*} NR = not recommended.

where the extension wire/thermocouple emf match is not too close, then corrections should be made. Other base-metal extension wires capable of matching the emf of the Platinels very closely at low temperatures [to $160^{\circ}C$ ($320^{\circ}F$)] are also available.

It is recommended that precautions usually followed with the use of platinum-rhodium versus platinum thermocouples be observed when the Platinels are employed. Tests have shown that phosphorus, sulfur, and silicon have a deleterious effect on the life of the thermocouples.

3.3.4 Nickel-Chromium Types

3.3.4.1 Nickel-Chromium Alloy Thermocouples—Special nickel-chromium alloys are supplied by various manufacturers as detailed in the following paragraphs. Figure 14 and Table 17 give characteristics of these alloys.

	Platinel II	Platinel I
Nominal operating temperature range, in:		
Reducing atmosphere (nonhydrogen)	NR ^b	NR
Wet hydrogen	NR	NR
Dry hydrogen ^a	1010°C (1850°F)	1010°C (1850°F)
Inert atmosphere	1260°C (2300°F)	1260°C (2300°F)
Oxidizing atmosphere Vacuum	1260°C (2300°F) NR	1260°C (2300°F) NR
Maximum short-time temperature (<1 h)	1360°C (2480°F)	1360°C (2480°F)
Approximate microvolts per degree: Mean, over nominal operating range		
(100 to 1000°C) At top temperature of normal range	42.5/°C (23.5/°F)	41.9/°C (23.3/°F)
(1000 to 1300°C)	35.5/°C (19.6/°F)	33.1/°C (18.4/°F)
Melting temperature, nominal:		
Positive thermoelement—solidus	1500°C (2732°F)	1580°C (2876°F)
Negative thermoelement—solidus	1426°C (2599°F)	1426°C (2599°F)
Stability with thermal cycling	good	good
High-temperature tensile properties	fair	fair
Stability under mechanical working	?	?
Ductility (of most brittle thermoelement) after	use good	good
Resistance to handling contamination	?	?
Recommended extension wire at approximately 800°C (1472°F):		
Positive conductor	Туре КР	Type KP
Negative conductor	Type KN	Type K N

TABLE 16—Platinel thermocouples.

^a High-purity alumina insulators are recommended.

^b NR = not recommended.

3.3.4.1.1 Geminol—The Geminol⁷ thermocouple was developed primarily for improved resistance to deterioration in reducing atmospheres.

The composition of the positive thermoelement has been adjusted specifically to combat in reducing atmospheres the destructive corrosion known as "green rot."

The substitution of an 80 percent nickel-20 percent chromium type alloy for the conventional (Type KP) 90 percent nickel-10 percent chromium alloy positive thermoelement, and a 3 percent silicon in nickel alloy for the conventional (Type KN) manganese-aluminum-silicon in nickel alloy negative thermoelement, results in a more oxidation-resisting thermocouple.

The temperature-emf curve is practically parallel to that of the conventional Type K thermocouple above 760°C (1400°F).

3.3.4.1.2 Thermo-Kanthal special—The Thermo-Kanthal special thermocouple was developed to give improved stability at temperatures between 982°C (1800°F) and 1260°C (2300°F) over that obtained with conventional base-metal thermocouple materials.

⁷ Trademark—Driver-Harris Co.

FIG. 13—Thermal emf of platinel thermocouples.

3.3.4.1.3 Tophel II-Nial II-

1. The Tophel II-Nial II thermocouple was developed for improved oxidation resistance and emf stability over the conventional Type K thermocouple alloys in both oxidizing and reducing atmospheres at elevated temperatures.

2. Tophel II, which is the positive thermoelement, is a Ni-10Cr base alloy with additions to resist "green rot" attack in reducing atmospheres at elevated temperatures. The emf of Tophel II is within the standard tolerance of the conventional Type K positive thermoelement over the entire temperature range of 32 to 2300° F (0 to 1260° C). Tophel II can be matched with any acceptable Type K negative thermoelement to form a couple which is within the standard tolerance for the Type K thermocouple.

	Geminol	Thermo-Kanthal Special	Tophel II-Nial II	Chromel 3-G-345- Alumel 3-G-196
Nominal operating temperature range, in: Reducing atmosphere (nonhydrogen) Wet hydrogen Dry hydrogen Inert atmosphere Oxidizing atmosphere. Vacuum Maximum short-time temperature	1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1040°C (1904°F) 1260°C (2300°F)	1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1206°C (2200°F)	1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1206°C (2000°F) 1260°C (2300°F)	1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1205°C (2200°F) 1260°C (2300°F)
Approximate microvolts per degree: Mean, over nominal operating range At top temperature of normal range	18.7/°C (10.4/°F) 22.2/°C (12.3/°F)	22.6/°C (12.6/°F) 20.0/°C (11.1/°F)	40 μV /°C (22.5 μV /°F) 36 μV /°C (20 μV /°F)	40.7 μV /°C (22.6 μV /°F) 36 μV /°C (20 μV /°F)
<i>Melting temperature, nominal:</i> Positive thermoelement Negative thermoelement Stability with thermal cycling High-temperature tensile, properties Stability under mechanical working Ductility (of most brittle thermoelement) after use Resistance to handling contamination	1400°C (2550°F) 1430°C (2600°F) good good intermediate good good	1432°C (2610°F) 1410°C (2570°F) good intermediate good fair	1430°C (2600°F) 1400°C (2550°F) good good fair good good	1430°C (2600°F) 1400°C (2550°F) good fair good good good
Recommended extension wire: Positive conductor	Geminol P	Thermo-Kanthal P	Tophel II or any	Chromel 3-G-345 or
Negative conductor	Geminol N	Thermo-Kanthal N	I ype K(+) Nial II	any 1 ype K(+) Alumel 3-G-196 any Type K(-)

TABLE 17—Nickel-chromium alloy thermocouples.

CHAPTER 3 ON THERMOCOUPLE MATERIALS 45

FIG. 14—Thermal emf of nickel-chromium alloy thermocouples.

3. Nial II, which is the negative thermoelement, is a Ni-2.5Si base alloy with additions to improve the oxidation resistance and emf stability in an oxidizing atmosphere at elevated temperatures. The emf of Nial II is within the standard tolerance of the conventional Type K thermoelement between the range of 300 to 2300° F (149 to 1260° C). From 32 to 300° F (0 to 149° C), the Nial II is about 0.1 mV less negative than the conventional Type K negative thermoelement with reference to platinum.

4. The Tophel II-Nial II thermocouple meets the emf tolerances designated in ASTM Specification E 230 for the Type K thermocouple from 300 to 2000°F (149 to 1093°C). From 32 to 300°F (0 to 149°C), the Tophel II-Nial II thermocouple generates 0.1 mV (or 5 deg equivalent) less than the standard Type K thermocouple at the same temperature.

5. Tophel II-Nial II thermocouples can be used on existing instruments designed for the Type K thermocouples for temperatures sensing and control within the range of 300 to 2300° F (149 to 1260° C). If extension wire is needed, the negative extension wire should be Nial II, while the positive extension wire could either be Tophel II or any acceptable Type K (+) extension wire.

6. Through the improvements in both oxidation resistance and emf stability, Tophel II-Nial II thermocouples offers longer useful and total service life than conventional Type K thermocouples of the same size. As a corollary benefit, finer size Tophel II-Nial II thermocouples can be used to achieve equivalent or better stability than conventional Type K couples of larger sizes.

3.3.4.1.4 Chromel 3-G-345-Alumel 3-G-196—The Chromel 3-G-345-Alumel 3-G-196 thermocouple is designed to provide improved performance under extreme environmental conditions where the conventional Type K thermocouple is subject to accelerated loss of stability.

More specifically, Chromel 3-G-345 is a Type K positive thermoelement in which the basic 10 percent chromium-nickel alloy is modified to give improved resistance to preferential chromium oxidation ("green rot"). At temperatures from 1600 to 1900°F (871 to 1038°C), conventional Type K positive thermoelements operating in marginally oxidizing environments are subject to embrittlement and loss of output as a result of such attack.

Under those conditions, Type K thermocouples employing Chromel 3-G-345 positive thermoelements offer greater stability than conventional Type K thermocouples. The usual precautions regarding protection of Type K thermocouples in corrosive environments apply to the special thermocouple as well.

The modified Chromel thermoelement meets the accepted curve of emf versus platinum for Type K positive thermoelements, within standard tolerances. It can be combined with either Alumel 3-G-196 or conventional Alumel to form Type K thermocouples meeting standard emf tolerances.

Alumel 3-G-196 is a Type K negative thermoelement of greatly improved oxidation resistance. It is suited to use in both reducing and oxidizing atmospheres, where its stability of output is especially advantageous in fine wire applications at high temperatures. It is nominally 2.5Si-Ni.

Alumel 3-G-196 meets the accepted curve of emf versus platinum for Type K negative thermoelements at all temperatures from 32 to 2300° F (0 to 1260° C). It can be combined with either Chromel 3-G-345 or regular Chromel to form thermocouples meeting standard Type K thermocouple tolerances over the entire range from 32 to 2300° F (0 to 1260° C).

Type K thermocouples employing either or both special thermoelements can be used with conventional extension wires at no sacrifice in guaranteed accuracy of the thermocouple-extension wire combination.

	19 Alloy/20 Alloy
Nominal operating temperature range, in:	
Reducing atmosphere (nonhydrogen)	1205°C (2200°F)
Wet hydrogen	1205°C (2200°F)
Dry hydrogen	1205°C (2200°F)
Inert atmosphere	1205°C (2200°F)
Oxidizing atmosphere	not recommended
Vacuum	1205°C (2200°F)
Maximum short time temperature	1260°C (2300°F)
Approximate microvolts per degree:	
Mean, over nominal operating range	55 $\mu V/^{\circ}C$ (31.0 $\mu V/^{\circ}F$)
	between the range of
	1000 to 2300°F, 59 µV/°C
At top temperature of normal range	(32.9 µV /°F)
Melting temperature, nominal:	
Positive thermoelement	1430°C (2600°F)
Negative thermoelement	1450°C (2640°F)
General stability with thermal cycling (good, fair, poor)	good
High temperature tensile properties (good, fair, poor)	good
Unaffected by mechanical working (good, fair, poor)	fair
Ductility (of most brittle thermal element) after use (good,	
fair, poor)	fair
Resistance to handling contamination (good, fair, poor)	good
Recommended extension wire:	
Positive conductor	20 Alloy
Negative conductor	19 Alloy

 TABLE 18—Physical data and recommended applications of the
 19 Alloy / 20 Alloy thermocouple.

3.3.5 Nickel-Molybdenum Types

3.3.5.1 19 and 20 Alloys⁸ (nickel-nickel molybdenum alloys)—

1. The 19 Alloy/20 Alloy⁷ thermocouple was developed for temperature sensing and control applications at elevated temperatures in hydrogen or other reducing atmospheres. The emf table of the 19 Alloy versus the 20 Alloy does not conform to the Type K or any existing base metal thermocouples designated by ASTM Specification E 230.

2. The 19 Alloy, which is the negative thermoelement, is essentially a Ni-1Co alloy. Its emf versus platinum values are somewhat more negative than those of the Type K negative thermoelement within the range of 32 to 2300° F (0 to 1260° C).

3. The 20 Alloy, which is the positive thermoelement, is essentially a Ni-18Mo alloy. Its emf versus platinum values are less positive within the range of 32 to 500°F (0 to 260°C) than the Type K positive thermoelement, but more positive within the range of 500 to 2300°F (260 to 1260°C). Figure 15 and Table 18 show the characteristics of these alloys.

⁸ The 19 Alloy versus 20 Alloy thermocouple was developed by the General Electric Co. Since 1962, the Wilbur B. Driver Co. has been the sole manufacturer of the 19 Alloy and the 20 Alloy.

FIG. 15—Thermal emf of nickel versus nickel-molybdenum alloys.

4. The 19 Alloy/20 Alloy thermocouple, when properly sealed in a protection tube, offers excellent emf stability at elevated temperatures in hydrogen or other reducing atmospheres.

5. The oxidation resistance of the 19 Alloy/20 Alloy thermocouple is not good. The 19 Alloy/20 Alloy thermocouples are not recommended for use in an oxidizing atmosphere above $1200^{\circ}F$ (649°C).

6. 19 Alloy/20 Alloy extension wire should be used in connection with the 19 Alloy/20 Alloy thermocouple.

3.3.6 Tungsten-Rhenium Types

There are three tungsten-rhenium thermocouple systems available-tungsten versus tungsten-26 percent rhenium, doped tungsten-3 percent rhenium versus tungsten-25 percent rhenium and doped tungsten-5 percent rhenium versus tungsten-26 percent rhenium. The price of the first combination has the lowest cost. All have been employed to 2760°C (5000°F), but general use is below 2316°C (4200°F). Applications for these couples have been found in space vehicles, nuclear reactors, and many high-temperature electronic, thermoelectric, industrial heating, and structural projects. However, when employed in a nuclear environment, the effect of transmutation of the thermal emf of the couples should be considered.

The use of tungsten in certain applications as the positive element may pose a problem, since heating tungsten to or above its recrystallization temperature (approximately 1200°C) causes embrittlement resulting in a loss of room-temperature ductility; an effect that is not experienced with the alloy leg containing high rhenium. With proper handling and usage this combination can be employed satisfactorily for long periods. One approach to the brittleness problem is to add rhenium to the tungsten thermoelement. Early research showed that the addition of 10 percent rhenium to the tungsten element did much to retain ductility after recrystallization. This much rhenium, however, greatly reduced the emf response for the thermocouple. Other techniques to retain room-temperature ductility are used by manufacturers; these include special processing and doping with the addition of 5 percent or less rhenium to the tungsten thermoelement.

Doping usually consists of using additives during the process of preparing the tungsten powder and results in a unique microstructure in the finished wire. The additives essentially are eliminated during the subsequent sintering of the tungsten-rhenium powder compact. In fact, presently known analytical techniques do not disclose the presence of the additives above the background level of such substances normally present as impurities in nondoped tungsten or tungsten-rhenium alloys.

The emf response of tungsten-3 percent rhenium and tungsten-5 percent rhenium thermoelements used with thermoelements containing high percentages of rhenium is satisfactory. The thermoelectric power of the tungsten versus tungsten-26 percent rhenium, tungsten-3 percent rhenium versus tungsten-25 percent rhenium, and tungsten-5 percent rhenium versus tungsten-26 percent rhenium is comparable at lower temperatures, but drops off slightly for the latter two as the temperature is increased.

The tungsten thermoelement is not supplied to the user in a stabilized (recrystallized) condition; therefore, a small change in emf is enccuntered at the operating temperature. In the case of the doped W-3Re, doped W-5Re, W-25Re, and W-26Re thermoelements, these are supplied in a stabilized (recrystallized) condition.

All three thermocouple combinations are supplied as matched pairs guaranteed to meet the emf output of producer developed tables within ± 1 percent. In addition, compensating extension wires are available for each of the three combinations with maximum service temperatures as

high as 871°C (1600°F) for tungsten-5 percent rhenium versus tungsten-26 percent rhenium.

Important factors controlling the performance at high temperatures are: the diameter of the thermoelements (larger diameters are suitable for higher temperatures), the atmosphere (vacuum, high-purity hydrogen, or highpurity inert atmospheres required), the insulation, and sheath material. Some evidence is at hand, however, which indicates the possibility of selective vaporization of rhenium at temperatures of the order of 1900°C and higher when bare (unsheathed) tungsten-rhenium thermocouples are used in vacuum. For this reason, the vapor pressure of rhenium should be considered when a bare couple is used in a high vacuum at high temperatures. This, of course, is not a problem when these couples are protected with a suitable refractory metal sheath.

Figure 16 and Table 19 show the characteristics of these alloys.

FIG. 16—Thermal emf of tungsten-rhenium versus tungsten-rhenium thermocouples.

	W Versus W-26R e	W-3Re Versus W-25Re	W-5Re Versus W-26Re
Nominal operating temperature			
Reducing atmosphere (nonhydrogen)	NR ^a	NR	NR
Wet hydrogen	NR	NR	NR
Dry hydrogen	2760°C (5000°F)	2760°C (5000°F)	2760°C (5000°F)
Inert atmosphere	2760°C (5000°F)	2760°C (5000°F)	2760°C (5000°F)
Oxidizing atmosphere	NR	NR	NR
Vacuum ^b Maximum short-time	2760°C (5000°F)	2760°C (5000°F)	2760°C (5000°F)
temperature	3000°C (5430°F)	3000°C (5430°F)	3000°C (5430°F)
Approximate microvolts per degree: Mean, over nominal operat- ing range 0°C to 2316°C			
(32°F to 4200°F) At ton temperature of normal	16.7/°C (9.3°F)	17.1/°C (9.5°F)	16.0/°C (8.9°F)
range 2316°C (4200°F)	12.1/°C (6.7/°F)	9.9/°C (5.5/°F)	8.8/°C (4.9/°F)
Melting temperature, nominal:			
Positive thermoelement	3410°C (6170°F)	3360°C (6080°F)	3350°C (6062°F)
Negative thermoelement	3120°C (5648°F)	3120°C (5648°F)	3120°C (5648°F)
Stability with thermal cycling High-temperature tensile	good	good	good
properties Stability under mechanical	good	good	good
working Ductility (of most brittle	fair	fair	fair
thermoelement after use)	poor	poor to good depending on atmosphere or degree of vacuum	poor to good depending on atmosphere or degree of vacuum
Resistance to handling con-			-
tamination Extension wire	good available	good available	good available

TABLE	19	-Tungsten-rh	ienium	thermocouple	S.
-------	----	--------------	--------	--------------	----

^{*a*} NR = not recommended.

^b Preferential vaporization of rhenium may occur when bare (unsheathed) couple is used at high temperatures and high vacuum. Check vapor pressure of rhenium at operating temperature and vacuum before using bare couple.

3.4 Compatibility Problems at High Temperatures

In order for thermocouples to have a long life at high temperatures, it is necessary to limit reactions between the metals, the atmosphere, and the ceramic insulation. Such reactions may change the strength or corrosionresistant properties of the alloys, the electrical output of the thermocouple, or the electrical insulation properties of the ceramic insulant.

	Co Ni Si	2723 2651 2588		2183 1770	~2646																	
	Fe	2802		2192	2588	~2696																
	Τï	3034		2426	1727	1860	1985															
	Pt	3224		1526	~2651	~2590	\sim 2730	2390														
·S. a	Zr	3353		~ 2480	~1764	1789	1705	~ 2876	2165													
system	ŗ	3407		\sim 2408	2444	2552	2743	2525	2552	~ 2372												
f binary	>	3452		\sim 2550	2198	2264	2675	~2777		2246	3182											
itures o	Rh	3560				~2550	~ 2750		~ 3224													
ompero	Ηf	4030			2102	2214	2372	2985		3353												
telting t	Ru	4082			2651	~ 2550	2802				2453											
imum m	cp	4425		2372	2145	2255	2480	~ 3034	~ 3092	3164	3020	3290			3056							
)—Min	Ľ	4428		2588		~ 2460		2687	~3224													
BLE 20	Mo	4730		~ 2570	~2398	2444	2624	\sim 3034	3224	2740	3380	3452	3524	3506	3533	~4250						
TA	Ta	5423		2525	2480	2331	\sim 2462	\sim 3034		3308	3092	3308			3578	~ 4425		~ 4730				
	ం	5432				~ 2723												~4406	~4388			
	Re	5724		\sim 2057	2651	~ 2723	~ 2802	~3034	\sim 3224	2912	3407	3452		~3416		4415		4424	4874			
	w	6170		2550	~ 2651	~2696	2775	\sim 3034	\sim 3224	~ 3020	3038	2974		3488	4001	\sim 4425		~ 4730	~5423	4937	\sim 5070	
	Element	Melting Point, °F	Element:	Si	ź	ပိ	Fe	ц	Pt	Zr	ර්	>	Rh	JН	Ru	රි	Ir	Mo	Ta	ő	Re	M

f him . 103 ltin -TABLE 20-Minimi

" Adapted from: Constitution of Binary Alloys by Rodney P. Elliot, McGraw-Hill, New York, 1965.

At extremely high temperatures reactions can be expected between almost any two materials. Table 20 has been included to show the temperatures at which such reactions occur between pairs of metallic elements. At lower temperatures, certain reactions do not occur and such as do occur, proceed at a slower rate. Because of potential reactions, it is important to identify the impurities and trace elements as well as the major constituents of the thermocouple components. The "free energy of formation" (Gibbs free energy) for the oxides of each element at the temperatures of interest, can be determined to predict possible oxide reactions. Other reactions may occur and attention should be given to the possible formation of the carbides, nitrides, etc. of the various elements.

Helpful data may be obtained from published reports, but, because of the importance of trace elements and impurities, the sources should be treated with caution. In some cases, the amount and types of impurities in the materials used were unknown.

Certain reactions may be somewhat self-limiting in that the reaction product provides a protective film against further reaction. However, spalling or chipping off of the reaction product may occur because of thermal or physical stress. Thus, the reaction rate and the use of the corrosion product as protection can be ascertained only if tested under the desired operating conditions and times.

The use of oxygen-gettering material should be considered in instances where oxygen is present in limited amounts [2]. This method has been employed with enclosed Type K thermocouples to limit the preferential oxidation of the positive thermoelement. A thin tube (or sliver) of titanium at the hottest location of the thermocouple has been used.

3.5 References

- [1] Caldwell, F. R., "Thermocouple Materials," NBS Monograph 40, National Bureau of Standards, 1 March 1962.
- [2] Neswald, R. G., "Titanium for Realists," Space / Aeronautics, Vol. 48, No. 5, Oct. 1967, pp. 90-99.

Chapter 4—Thermocouple Hardware and Fabrication

A complete thermocouple temperature sensing assembly, in accordance with the present state of the art, consists of the following:

A. Sensing element assembly including, in its most basic form, two dissimilar wires, supported by an electrical insulator and joined at one end to form a measuring junction. Such assemblies usually fall into one of three categories; those formed from wires have nonceramic insulation, those with hard-fired ceramic insulators, and those made from sheathed, compacted ceramic-insulated wires.

B. Protection tube—ceramic and metal protection tubes, sometimes referred to as thermowells, serve the purpose of protecting the sensing element assembly from the deleterious effects of corrosive or oxidizing or reducing atmospheres. In some cases, two concentrically arranged protection tubes may be used. The one closest to the sensing element assembly is designated the primary protection tube, while the outer tube is termed the secondary protection tube. Combinations such as an aluminum oxide primary tube and silicon carbide secondary tube often are used to obtain the beneficial characteristics of the combination, such as resistance to cutting flame action, and ability to resist thermal shock.

C. Connector—sensing element assembly wire terminations are made to either

- (a) Terminals
- (b) Connection head
 - 1. General purpose type
 - 2. Screw cover type
 - 3. Open type
- (c) Plug and jack quick-disconnect
- (d) Military standard (MS) type of connector

D. Miscellaneous hardware such as

- (a) Pipe nipple or adapter to join the protection tube to the head
- (b) Thermocouple gland—used primarily with sheathed, compacted ceramic-insulated thermocouple assemblies to serve the dual function of mounting and sealing-off pressure in the mounting hole (see Chapter 5).

4.1 Sensing Element Assemblies

Typical thermocouple element assemblies, shown in Fig. 17, A and B, illustrate common methods of forming the measuring junction, A—by twisting and welding and B by butt-welding. C shows an assembly using nonceramic insulation such as, asbestos or fiber glass. D, E, and F show the use of various forms of hard fired ceramic insulators, double bore (D) fish-spine (E) and four-hole (F). Fish-spine provides flexibility, and four-hole provides for two independent sensing elements.

4.2 Nonceramic Insulation

The normal function of thermocouple insulation is to provide electrical insulation for the thermocouple assembly. If this function is not provided or is compromised in any way, the indicated temperature may be in error. Insulation is affected adversely by moisture, abrasion, flexing, temperature extremes, chemical attack, and nuclear radiation. Each type of insulation

FIG. 17—Typical thermocouple element assemblies.

has its own limitations. A knowledge of these limitations is essential if accurate and reliable measurements are to be made.

Some insulations have a natural moisture resistance. Teflon, polyvinyl chloride (PVC), and polyimide are examples of this group. With the fiber type insulations, moisture protection results from inpregnating with substances such as wax, resins, or silicone compounds. Once the impregnating materials have been vaporized off, there is no longer moisture protection. Typically, this occurs once the insulation has been exposed above 400°F (204°C). The moisture penetration problem is not confined to the sensing end of the thermocouple assembly. For example, if the thermocouple passes through hot and cold zones or through an area which is time-wise alternately hot and cold, condensation may produce errors in the indicated temperature, unless adequate moisture resistance is provided.

Protection from abrasion and flexing usually is provided by impregnating materials. However, one cycle over 400°F (204° C) usually results in a deterioration of this protection. After exposure to higher temperature (1100 to 1400°F) (593 to 760°C), whole sections of the insulation can fall off resulting in bare wire and a possible "short." Thermocouples in this condition should not be used if any flexing or abrasion is expected. It is recommended that they be discarded or that the exposed portion of the thermocouple assembly be cut off and another junction formed.

Insulations are rated for a maximum temperature both for continuous usage and for a single exposure. These distinctions should be observed when selecting an insulating material. At elevated temperatures even those insulations which remain physically intact become conductive. Under these conditions, the output of the thermocouple may be a function of the highest temperature to which the insulation is exposed, rather than the temperature of the measuring junction. The change in insulation resistance may be permanent if caused by deterioration of organic insulants or binders which leave a carbon residue. In considering the temperature to which the insulation is exposed, it should not be assumed that this is the temperature of the measuring junction. A thermocouple may be attached to a massive specimen which is exposed to a high temperature source to achieve a rapid heating rate. Parts of the thermocouple wires not in thermal contact with the specimen can be overheated severely while the junction remains within safe temperature limits. With this in mind, high quality insulation should be used when rapid heating rates are expected. Very little factual information is available on actual deterioration rates and magnitudes, but the problem exists so a conservative approach is recommended.

The basic types of elevated temperature insulations are fiber glass, fibrous silica, and asbestos. Of the three materials, firbous silica has the best hightemperature electrical properties, although its handling and abrasion characteristics leave something to be desired. The next best high-temperature insulation is asbestos. Because this material has very poor mechanical properties a filler fiber or an impregnating material is added. In some instances, this filler is cotton or another organic compound which leaves a carbon residue after exposure to high temperature, and this results in a breakdown of electrical insulation. Asbestos loses its mechanical strength after exposure to elevated temperatures and tends to drop off even if the thermocouple assembly is not being handled. A more commonly used insulation is fiber glass. It can be impregnated to provide excellent moisture and mechanical characteristics. The main difficulty is that it becomes a conductor above 950°F (510°C). If one is willing to sacrifice the handling characteristics, a nonimpregnated fiber glass insulation is available which is good to 1200°F (649°C).

Chemical deterioration of insulation materials can produce a number of problems. If the environment reacts with the insulation, both the insulation and environment can be affected adversely. The insulation can be removed physically or made electrically conductive, and the process system can become contaminated. For example, some insulation materials are known to produce cracking in austenitic stainless steels.

In summary, an insulation should be selected only after considering possible exposure temperatures and heating rates, the number of temperature cycles, mechanical movement, moisture, routing of the thermocouple wire, and chemical deterioration (see Table 21).

Industry has established insulation color codes for various letter-designated thermocouple and extension wire types, as shown in Table 22.

4.3 Hard-Fired Ceramic Insulators

Hard-fired ceramic insulators most commonly used with bare thermocouple elements are mullite, aluminum-oxide, and steatite, the latter being the most common material where fish-spine insulators are concerned. Single, double, and multibore insulators are available in a wide variety of sizes in both English and metric dimensions.

Lengths in the English dimensional units commonly stocked by many suppliers are 1, 2, 3, 6, 12, 18, 24, and 36 in., with longer lengths to as great as 72 in. being available on special order.

It is usually advisable, especially in the case of precious metal thermocouple element assemblies, to keep the insulator in one piece to minimize contamination from the environment.

Hard-fired ceramic insulators are made in oval as well as circular crosssection examples of which are shown in Fig. 18. Properties of refractory oxides are tabulated in Table 23.

4.4 Protection Tubes

4.4.1 Factors Affecting Choice of Protection Tubes

Thermocouples must be protected from atmospheres that are not compatible with the thermocouple alloys. Protection tubes serve the double

Insulation	Continuous Use Temperature Limit, °F	Single Exposure Temperature Limit, °F	Moisture Resistance	Abrasion Resistance
Cotton	200	200	poor	fair
Polyvinyl	220	220	excellent	excellent
Enamel and cotton	200	200	fair	fair
Nylon ^a	260	260	good	good
Teflon ^a	400	600	excellent	excellent
Polyimide	600	750	excellent	good
Teflon and fiber glass ^b	600	700 to 1000	excellent to 600°F	good
Fiber glass-varnish or silicone impregnation	900	1000	fair to 400°F, poor above 400°F	fair to 400°F, poor above 400°F
Fiber glass, nonimpregnated	1000	1200	poor	fair
Asbestos and fiber glass with silicone ^c	900	1200 ^d	good to 400°F	fair to 400°F, poor above 400°F
Felted asbestos	1000	1200	poor	poor
Asbestos over asbestos	1000	1200	poor	poor
Refrasil ^e	1600	2000	very poor	very poor

 TABLE 21—Insulation characteristics.

^a Trademark—E. I. duPont de Nemours & Co. ^b The Teflon vaporizes at 600°F with toxic effects.

^c Individual wires are asbestos and overbraid is fiber glass. ^d At 1400°F, the wire may be contaminated after a short exposure.

^e Trademark—H. I. Thompson Co.

	Delevity	Thermo	couple Extension w	ire
Name and Duplex Symbol Color	and Overall Covering	Name and Symbol	Single Conductor	Duplex Color
Copper constantan, Tblue redTbrownChromel yellowAlumel, Iron Iron ChromJbrownIron constantan, Chromel E constantan, red E brownChromel purple constantan, Pt-10Rh platinum, R	+ overall + - overali + - overall + - overall + - overall	Copper constantan, TX Chromel Alumel, KX Iron constantan, JX Chromel constantan, EX Copper alloy %11, SX	blue red-blue trace yellow red-yellow trace white red-white trace purple red-purple trace black red-balck trace black red-black trace	blue red blue yellow red yellow white red black purple red purple black red green black red green

TABLE 22—Color code of duplex thermocouple wire and extension wire insulators.

Oval Double Bore Insulator

Round Double Bore Insulator

Round Four Bore Insulator

FIG. 18—Cross-section examples of oval and circular hard-fired ceramic insulators.

purpose of guarding the thermocouple against mechanical damage and interposing a shield between the thermocouple and its surroundings so as to maintain it as nearly as possible in its best atmosphere.

The agencies that must be excluded are: (a) metals (solid, liquid, or vapor) which, coming into contact with the thermocouple, would alter its chemical composition; (b) furnace gases and fumes which may attack the thermocouple materials (sulphur and its compounds are particularly deleterious); (c) materials such as silica and some of its metallic oxides, which, in contact with the thermocouple in a reducing atmosphere, are reduced, and combine with the thermocouple to attack it; and (d) electrolytes which would attack the thermocouple material.

The choice of the proper protection tube is governed by the conditions of use and by the tolerable life of the thermocouple. There may be occasions when the strength of the protection tube may be more important than the long term thermoelectric stability of the thermocouple. On the other hand, gas tightness and resistance to thermal shock may be of paramount importance. In other cases, chemical compatibility of the protection tube with the process may be the deciding factor.

4.4.2 Common Forms of Protection Tubes

4.4.2.1 Metal Tubes—Metal tubes offer adequate mechanical protection for base metal thermocouples at temperatures to 2100°F (1150°C). It must be remembered that all metallic tubes are somewhat porous at temperatures exceeding 1500°F (815°C) so that, in some cases, it may be necessary to provide an inner tube of ceramic material.

				Maxi-				Ther	mal				
				mum Normal		Specific Heat	Linear Expan-	Condu (cal s ⁻	ctivity ¹ C ⁻¹	Moduli	us of	-npoM	
		Doroe	Fusion Tem-	Use	Density,	Capacity	sion (10 ⁻⁶	cm-2	cm)	Ruptur	e, psi	lus of	Thermal
		ity. vol-	pera-	pera-	True (t) .	°C) 20 to	°C) 20 to	At	At	At	At	ticity.	Stress
	Composition	ume %	ture, °C	ture, °C	(g/cm ³)	1000°C	1000°C	100°C	1000°C	20°C	1000°C	10° psi	Resistance
Sapphire crystal	99.9 Al₂O₄	0	2030	1950	3.97(t)	0.26	8.6	0.072	0.019	40 000- 150 000	30 000- 100 000	55	very good
Sintered alumina	99.8 Al ₂ O ₃	3 to 7	2030	1900	3.97(1)	0.26	8.6	0.069	0.014	30 000	22 000	53	good
Sintered beryllia	99.8 BeO	3 to 7	2570	1900	3.03(t)	0.50	8.9	0.500	0.046	20 000	10 000	45	excellent
Sintered calcia	99.8 CaO	5 to 10	2600	2000	3.32(t)	0.23	13.0	0.033	0.017	:	÷	:	fair-poor
Chrome-alumina cermet (Haynes Stellite LT-1)	77 Cr, 23 Al ₂ O ₃	7	1850	1300	5.9(b)	0.16	8.9	0.08	0.05	45 000	20 000	37.5	excellent
Sintered magnesia	OgM 8.96	3 to 7	2800	1900	3.58(r)	0.25	13.5	0.082	0.016	14 000	12 000	30.5	fair-poor
Sintered mullite	72 Al ₂ O ₃ , 28 SiO ₂	3 to 10	1810	1750	3.03(1)	0.25	5.3	0.013	0.008	12 000	7 000	21	good
Sintered forsterite	99.5 Mg2SiO4	4 to 12	1885	1750	3.22(t)	0.23	10.6	0.010	0.005	10 000	:	:	fair-poor
Sintered spinel	99.8 MgAl ₂ O4	3 to 10	2135	1850	3.58(r)	0.25	8.8	0.033	0.013	12 300	11 000	34.5	fair
Sintered titania	99.5 TiO ₂	3 to 7	1840	1600	4.24(<i>t</i>)	0.20	8.7	0.015	0.008	8 000	6 000	:	fair-poor
Sintered thoria	99.8 ThO ₂	3 to 7	3050	2500	10.50(t)	0.06	9.0	0.022	0.007	12 000	7 000	21	fair-poor
Sintered yttria	99.8 Y_2O_3	2 to 5	2410	2000	4.50(<i>t</i>)	0.13	9.3	(0.02)	÷	:	;	÷	fair-poor
Sintered urania	99.8 UO2	3 to 10	2800	2200	10.96(1)	0.06	10.0	0.020	0.007	12 000	18 000	25	fair-poor
Sintered stabilized zirconia	92 ZrO ₂ , 4 HfO ₂ ,		0150	0000			4					:	
	4 CaO	3 to 10	0007	0077	(1)9.5	0.14	10.0	0.00	c00.0	000 07	15 000	77	fair-good
Sintered zircon	99.5 ZrSIO ¹	5 to 15	2420	1800	4.7(<i>t</i>)	0.16	4.2	0.015	0.008	12 000	6 000	30	good
Silica glass	99.8 SiO ₂	0	1710	1100	2.20(t)	0.18	0.5	0.004	0.012	15 500	:	10.5	excellent
Mullite porcelain	70 Al2O3, 27 SiO2, 3 Mo + M2O	2 to 10	1750	1400	2.8(b)	0.25	5.5	0.007	0.006	10 000	6 000	10	poog
High alumina porcelain	90-95 Al ₂ O ₃ , 4-7 SiO ₂ , 1-4 Mo + M ₂ O	2 to 5	1800	1500	3.75(b)	0.26	7.8	0.05	0.015	50 000		53	verv pood
												2	

TABLE 23—Properties of refractory oxides.^a

CHAPTER 4 ON THERMOCOUPLE HARDWARE AND FABRICATION

61

^a Kingery, W. D., "Oxides for High Temperature Applications," Proceedings of the International Symposium on High Temperature Technology, McGraw-Hill, New York, 1960.

(a) Carbon steels can be used to 1300°F (700°C) usually in oxidizing atmospheres.

(b) Austenitic stainless steels (300 series) can be used to 1600°F (870°C), mostly oxidizing although Types 316, 317, and 318 can be used in some reducing atmospheres.

(c) Ferritic stainless steels (400 series) can be used from 1800 to 2100°F (975 to 1150°C) in both oxidizing and reducing atmospheres.

(d) High nickel alloys, Nichrome, Inconel, etc., can be used to 2100° F (1150°C) in oxidizing atmospheres.

Where the protection tube is subject to high pressure or flow-induced stresses or both a drilled thermowell often is recommended. Although less expensive metal tubes, fabricated by plugging the end of the protection tube, may satisfy application requirements, more stringent specifications usually dictate the choice of gun-drilled bar stock, polished and hydrostatically tested as a precaution against failure.

Examples of drilled thermowells are shown in Fig. 19.

4.4.2.2 Ceramic Tubes—Ceramic tubes are used usually at temperatures beyond the ranges of metal tubes although they are sometimes used at lower temperatures in atmospheres harmful to metal tubes.

Flanged Thermowell

FIG. 19—Examples of drilled thermowells.
The ceramic tube most widely used has a Mullite base with certain additives to give the best combination of mechanical and thermal shock properties. Upper temperature limit 3000°F (1650°C).

Silicon carbide tubes are used as secondary protection tubes. This material resists the cutting action of flames. It is not impermeable to gases and, where a dense tube is required, a nitride-bonded type material can be obtained so that the permeability is greatly reduced.

Fused alumina tubes can be used as primary or secondary protection tubes or both where temperatures to 3600° F (1980°C) are expected and when a gas tight tube is essential. Fused alumina tubes and insulators should be used with platinum-rhodium, platinum thermocouples above 2200°F (1200°C) in order to ensure long life and attain maximum accuracy. (The Mullite types contain impurities which can contaminate platinum above 2200°F (1220°C). The alumina tubes are more expensive than the Mullite base tubes but can be obtained impervious to most gases to 3300°F (1815°C).

4.4.2.3 Metal-Ceramic Tubes—"Cermets" are combinations of metals and metallic oxides which, after proper treatment, form dense, highstrength, corrosion-resistant tubes usable to about 2600°F (1425°C) in most atmospheres.

4.5 Circuit Connections

The electrical output of a thermocouple assembly is taken at the end of the extension wires which are most often a separate component of the temperature sensing system. Thermocouples, usually of the sheathed mineral insulated variety, can incorporate a transition fitting inside which the extension wires are welded or brazed to the ends of the thermocouple wires in what usually is referred to as an intermediate junction. Thus the sensing element and extension wires are an integral part of the temperature sensing system.

Where hard-fired ceramic insulators are used, the thermocouple wires usually terminate in a head which is attached firmly to the protection tube in which the insulator is housed—or it may be supported by the insulator itself.

The connection between thermocouple and extension wires is made by means of a screw clamp or binding post to permit easy replacement of the thermocouple. The user should be aware of the need to keep the temperature of the termination below 400°F in the interest of overall accuracy. In any case, the termination should never exceed the temperature limitation of the extension wires.

Highest system accuracy is achieved by running the thermocouple conductors to the reference junction and avoiding the use of extension wires. If circuit connectors are necessary, they should be of thermoelectric materials. Connectors of the quick-disconnect type usually are so designed. For example, a Chromel-Alumel thermocouple connector incorporates Chromel and Alumel pins or sockets or both.

Industrial types of thermocouple assemblies using heads of the general purpose or screw cover type contain a terminal block assembly consisting of a ceramic block and floating brass terminals. One assumes in using such a component that the temperature of the terminals is uniform and that no temperature gradient exists along their length. In accordance with the law of intermediate metals, no error should result providing this condition results.

Closed and open type heads are generally of cast iron body construction and cast or sheet metal formed covers incorporating an asbestos composition gasket seal. Cast aluminum or zinc alloy die castings are also available. The terminal block assembly may be a phenolic molding which would limit its use to about 170°C (338°F). Higher temperature capability would dictate the use of a ceramic terminal block assembly.

4.6 Complete Assemblies

Figure 20 shows complete assemblies of the components which have been described in the foregoing sections. Many other combinations are possible. Manufacturers' catalogs may be consulted for details.

FIG. 20-Typical examples of hard-fired ceramic-insulated thermocouples.

4.7 Selection Guide for Protection Tubes

The following information has been extracted from various manufacturer's literature. It is offered as a guide to the selection of protection tubes. Caution should be exercised in applying this information to specific situations.

Application	Protection Tube Material							
Heat treating:								
Annealing								
Up to 1300°F (704°C)	wrought iron							
Over 1300°F (704°C)	28 % chrome iron or Inconel ^a							
Carburizing hardening								
Up to 1500°F (816°C)	wrought iron or 28% chrome iron							
1500 to 2000°F (1093°C)	28% chrome iron or Inconel							
Over 2000°F (1093°C)	ceramic							
Nitriding salt baths	28% chrome iron							
Cyanide	nickel							
Neutral	28% chrome iron							
High speed	ceramic							
Iron and steel:								
Basic oxygen furnace	quartz							
Blast furnaces								
Downcomer	Inconel, 28 % chrome iron							
Stove Dome	silicon carbide							
Hot blast main	Inconel							
Stove trunk	Inconel							
Stove outlet flue	wrought iron							
Open hearth								
Flues and stack	Inconel, 28% chrome iron							
Checkers	Inconel, Cermet							
Waste heat boiler	28 % chrome iron, Inconel							
Billet heating slab heating and butt weld	ding							
Up to 2000°F (1093°C)	28 % chrome iron, Inconel							
Over 2000°F (1093°C)	ceramic, silicon carbide							
Bright annealing batch								
Top work temperature	not required (use bare Type J thermocouple)							
Bottom work temperature	28% chrome iron							
Continuous furnace section	Inconel, ceramic							
Forging	silicon carbide, ceramic							
Soaking pits								
Up to 2000°F (1093°C)	Inconel							
Over 2000°F (1093°C)	ceramic, silicon carbide							
Nonferrous metals:								
Aluminum								
Melting	cast iron (white-washed)							
Heat treating	wrought iron							
Brass or bronze	not required (use dip-type thermocouple)							
Lead	28% chrome iron, wrought iron							
Magnesium	wrought iron, cast iron							
Tin	extra heavy carbon steel							
Zinc	extra heavy carbon steel							
Pickling tanks	chemical lead							

^a Trademark-International Nickel Co.

Protection Tube Material

Application

Cement	
Exit flues	Inconel, 28 % chrome iron
Kilnsheating zone	Inconel
Ceramic:	
Kilns	ceramic and silicon carbide
Dryers	wrought iron, silicon carbide
Vitreous enameling	Inconel. 28% chrome iron
Glass:	
Fore hearths and feeders	platinum thimble
Lehrs	wrought iron
Tanks	
Roof and wall	ceramic
Flues and checkers	28 % chrome iron, Inconel
Paper:	
Digesters	Type 316 stainless steel, 28 % chrome iron
Petroleum:	
Dewaxing	Type 304 stainless steel or carbon steel
Towers	Type 304 stainless steel or carbon steel
Transfer lines	Type 304 stainless steel or carbon steel
Factionating column	Type 304 stainless steel or carbon steel
Bridgewall	Type 304 stainless steel or carbon steel
Power	
Coal-air mixtures	Type 304 stainless steel
Flue gases	wrought iron or 28 % chrome iron
Preheaters	wrought iron or 28% chrome iron
Steel lines	Type 347 or 316 stainless steel
Water lines	carbon steel
Boiler tubes	Type 309 or 310 stainless steel
Gas producers:	•
Producer gas	28 % chrome iron
Water gas	
Carburetor	Inconel, 28 % chrome iron
Superheater	Inconel, 28 % chrome iron
Tar stills	carbon steel
Incinerators	
Un to 2000°F (1093°C)	28 % chrome iron. Inconel
Over 2000° F (1093°C)	ceramic (primary), silicon carbide (secondary
Food:	
Baking ovens	wrought iron
Charretort, sugar	wrought iron
Vegetables and fruit	Type 304 stainless steel
Chemical:	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Acetic acid	
10 to 50 % 70°F	Type 304 stainless steel
50 % 212°F	Type 316 stainless steel
99 % 70 to 212°F	Type 430 stainless steel
Alcohol ethyl methyl	
$70 \text{ to } 212^{\circ}\text{F}$	Type 304 stainless steel
Ammonia	spe so i stantess stort
All concentration 70°F	Type 304 stainless steel
Ammonium chloride	A JPC JOT Stanness store
All concentration 212°F	Type 316 stainless steel
Ammonium nitrate	· JPC JIO Stanness steel
All concentration 70 to 212°F	Type 304 stainless steel
73) concentration, 70 to 212 1	x jpc 504 stanness steel
	(Pantinese)

Application

Protection Tube Material

Ammonium sulphate 10% to saturated, 212°F Barium chloride All concentration, 70°F Barium hydroxide All concentration, 70°F Barium sulphite Brines Bromine Butadiene Butane Butylacetate Butyl alcohol Calcium chlorate Dilute, 70 to 150°F Calcium hydroxide 10 to 20%, 212°F 50 %, 21 2°F Carbolic acid All. 212°F Carbon dioxide wet or dry Chlorine gas Dry, 70°F Moist, 20 to 212°F Chromic acid 10 to 50%, 212°F Citric acid 15%, 70°F 15%, 212°F Concentrated, 212°F Copper nitrate Copper sulphate Cresols Cyanogen gas Dow therm^e Ether Ethyl acetate Ethyl chloride 70°F Ethyl sulphate 70°F Ferric chloride 5%, 70°F to boiling Ferric sulphate 5%, 70°F Ferrous sulphate Dilute, 70°F Formaldehvde

Type 316 stainless steel Monel^b carbon steel Nichrome^c Monel tantalum Type 304 stainless steel Type 304 stainless steel Monel copper Type 304 stainless steel Type 304 stainless steel Type 316 stainless steel Type 316 stainless steel 2017-T4 aluminum, Monel Type 316 stainless steel Hastelloy C^d Type 316 stainless steel Type 304 stainless steel Type 316 stainless steel Type 316 stainless steel Type 304 stainless steel Type 304 stainless steel Type 304 stainless steel Type 304 stainless steel carbon steel Type 304 stainless steel Monel Type 304 stainless steel Monel tantalum Type 304 stainless steel Type 304 stainless steel Type 304 stainless steel

^b Trademark—Driver-Harris Co.

Trademark—Union Carbide Corp.

^d Trademark – International Nickel Co.

^e Trademark—Dow Chemical Corp.

Protection Tube Material Application Formic acid 5%, 70 to 150°F Type 316 stainless steel Freon Monel Gallic acid 5%, 70 to 150°F Monel Gasoline Type 304 stainless steel 70°F Glucose 70°F Type 304 stainless steel Glycerine 70°F Type 304 stainless steel Glycerol Type 304 stainless steel Hydrobromic acid 98 %, 212°F Hastellov B Hydrochloric acid 1%, 5%; 70°F 1%, 5%; 212°F Hastelloy C Hastelloy B 25%, 70 to 212°F Hastellov B Hastelloy C Hydrofluoric acid Hydrogen peroxide 70 to 212°F Type 316 stainless steel Hydrogen sulphide Type 316 stainless steel Wet and dry Iodine tantalum 70°F Lactic acid 5%, 70°F 5%, 150°F 10%, 212°F Type 304 stainless steel Type 316 stainless steel tantalum Magnesium chloride 5%, 70°F 5%, 212°F Monel nickel Magnesium sulphate Monel Hot and cold Muriatic acid 70°F tantalum Naphtha 70°F Type 304 stainless steel Natural gas Type 304 stainless steel 70°F Nickel chloride Type 304 stainless steel 70°F Nickel sulphate Type 304 stainless steel Hot and cold Nitric acid Type 304 stainless steel 5%, 70°F Type 304 stainless steel 20%, 70°F 50%, 70°F Type 304 stainless steel 50%, 212°F Type 304 stainless steel 65%, 212°F Type 316 stainless steel Concentrated, 70°F Type 304 stainless steel Concentrated, 212°F Tantalum Nitrobenzene Type 304 stainless steel 70°F

Application

Oleic acid 70°F Oleum 70°F Oxalic acid 5%, hot and cold 10%, 212°F Oxygen 70°F Liquid Elevated temperatures Palmitic acid Pentane Phenol Phosphoric acid 1%, 5%; 70°F 10%, 70°F 10%, 212°F 30% 70°F 21 30%, 70°F, 212°F 85%, 70°F, 212°F Picric acid 70°F Potassium bromide 70°F Potassium carbonate 1%, 70°F Potassium chlorate 70°F Potassium hydroxide 5%, 70°F 25%, 212°F 60%, 212°F Potassium nitrate 5%, 70°F 5%, 212°F Potassium permanganate 5%, 70°F Potassium sulphate 5%, 70°F Potassium sulphide 70°F Propane Pyrogallic acid Quinine bisulphate Dry Quinine sulphate Dry Sea water Salicylic acid Sodium bicarbonate All concentration, 70°F 5%, 150°F Sodium carbonate 5%, 70 to 150°F

Protection Tube Material

Type 316 stainless steel Type 316 stainless steel Type 304 stainless steel Monel steel stainless steel stainless steel Type 316 stainless steel Type 340 stainless steel Type 304 stainless steel Type 304 stainless steel Type 316 stainless steel Hastelloy C Hastellov B Hastelloy B Type 304 stainless steel Type 316 stainless steel Type 304 stainless steel Type 304 stainless steel Type 304 stainless steel Type 304 stainless steel Type 316 stainless steel Type 304 stainless steel Type 316 stainless steel Type 304 stainless steel Monel nickel Type 304 stainless steel Type 304 stainless steel

Type 304 stainless steel

Application

Protection Tube Material

Sodium chloride	
5%, 70 to 150°F	Type 316 stainless steel
Saturated, 70 to 212°F	Type 316 stainless steel
Sodium fluoride	
5%, 70°F	Monel
Sodium hydroxide	Type 304 stainless steel
Sodium hypochlorite	
5% still	Type 316 stainless steel
Sodium nitrate	. –
Fused	Type 316 stainless steel
Sodium peroxide	Type 304 stainless steel
Sodium sulphate	
70°F	Type 304 stainless steel
Sodium sulphide	
70°F	Type 316 stainless steel
Sodium sulphite	
150°F	Type 304 stainless steel
Sulphur dioxide	
Moist gas, 70°F	Type 316 stainless steel
Gas, 575°F	Type 304 stainless steel
Sulphur	
Dry-molten	Type 304 stainless steel
Wet	Type 386 stainless steel
Sulphuric acid	
5%, 70 to 212°F	Hastelloy B
10%, 70 to 212°F	Hastelloy B
50%, 70 to 212°F	Hastelloy B
90%, 70°F	Hastelloy B
90%, 212°F	Hastelloy D
Tannic acid	
70°F	Type 304 stainless steel
Tartaric acid	
70°F	Type 304 stainless steel
150°F	Type 316 stainless steel
Toluene	2017-T4 aluminum
Turpentine	Type 304 stainless steel
Whiskey and wine	Type 304 stainless steel
Xylene	copper
Zinc chloride	Monel
Zinc sulphate	
5%, 70°F	Type 304 stainless steel
Saturated, 70°F	Type 304 stainless steel
25 %, 212°F	Type 304 stainless steel

4.8 Bibliography

White, F. J., "Accuracy of Thermocouples in Radiant Heat Testing," Experimental Mechanics, Vol. 2, July 1962, p. 204.

Baker, H. D., Ryder, E. A., and Baker, N. H., Temperature Measurement in Engineering, Vol. 1, Wiley, New York, 1953.

Chapter 5—Sheathed, Ceramic-Insulated Thermocouples

5.1 General Considerations

When data were being gathered in 1961 for National Bureau of Standards Monograph 40 [3] on Thermocouple Materials, a section was included to cover ceramic packed thermocouple stock "because of the wide use and increasing popularity." New uses continue to be found for this unique heterogeneous materials combination. Compacted ceramic insulated thermocouple material consists of three parts as shown in Fig. 21.

The advantages of this configuration are:

1. It isolates the thermocouple wires from environments that may cause rapid deterioration.

2. It reduces long term calibration drift.

3. It lessens temperature versus wire size problems.

4. It provides an excellent high temperature insulation for thermocouple wires.

5. The sheath can be made of a metal compatible with the process in which it is being used and bears the brunt of the environmental effects.

6. It is easy to use:

- (a) Forms easily and retains the bent configuration.
- (b) The sheath can be welded without loss of insulation.
- (c) Available in a wide variety of sizes and materials.

(d) Readily fabricated into finished thermocouple assemblies with minimum of technique and equipment.

(e) Useful at high pressures or high temperatures or both.

7. It is inexpensive as a finished thermocouple.

5.2 Construction

All compacted types of thermocouples are made by similar processes: they begin with matched thermocouple wires surrounded by noncompacted ceramic insulating material held within a metal tube. By swaging, rollforming, or other mechanical reduction processes the tube is reduced in diameter, the insulation is compacted around the wires, and the assembly is elongated.

FIG. 21-Compacted ceramic insulated thermocouple showing its three parts.

Several options are available to the designer of the sheathed material depending upon the material combinations selected for the temperature measurement application.

Briefly, these are the factors considered in making a design, based on a finished product specification.

- 1. Type of wire material.
- 2. Number of wires and their diameter.
- 3. Type of sheath material.
- 4. Type of insulation.
- 5. Length, outside diameter, and wall thickness.

A ductile sheath and refractory (brittle) wire combination requires a design wherein the starting tubing diameter is only slightly larger than the finished size and only large enough on the inside diameter to accommodate a crushable preformed ceramic insulation with the wire(s) strung through the insulator hole(s). This combination then would be reduced to the final diameter by one of the compaction methods usually in a single reduction pass. The design is such that the wire is neither elongated nor reduced in diameter because of its brittle nature at room temperature.

A brittle sheath/brittle wire combination does not lend itself to a compacted insulation design and, therefore, is assembled as a tube-insulatorwire combination without the subsequent sheath reduction.

Ductile wire/ductile sheath combinations cover the widest range of commonly used materials and offer the designer the widest choice of design approaches.

He may elect to make his design using the approach outlined for the ductile sheath/brittle wire combination. He also may choose to use powder loading of the insulating material using a centralizing device and vibration as a variation on the method for making the sheathed wire assembly. Iso-static pressing of the combination is another approach occasionally used; however, by far, the most common technique is to use crushable preformed insulators.

The multiple pass approach as generally described by Siede and Edison [4] lends itself to initial starting material dimensions appreciably larger than the finished diameter of the compacted thermocouple. Since there is a constant volume relationship between the initial compacted tube diameter (D_0) and length (L_0) and the final tube diameter (D_F) and length (L_F) , the final lengths achieved are

$$L_F = L_0 \left(\frac{D_0}{D_F}\right)^2$$

and are restricted only by the capabilities of the reduction and annealing facilities available and by the ceramic and metallurgical capabilities of the designer, the design team, or the material suppliers.

The reduction processes, as investigated by Rautio [5], indicate that the sheath diameter, wall, insulation spacing, and wire diameter are all reduced proportionately once the compaction point of the insulation is reached.

For design insight into the reduction effects on the tube diameter and wall thickness, Mohrnheim's [6] paper and its associated references are recommended. LaVan [31] compares the various reduction methods in his paper.

Nominal physical dimensions of sheathed ceramic insulated thermocouples are shown in Fig. 22 [7]. The ratios of sheath outside diameter to wire size and to sheath wall thickness offer a balance between maximum wall thickness (for protection of the sheath compacted insulant) and suitable insulation spacing for effective insulation resistance at elevated temperature.

A decrease in the diameter of the thermoelements could be advantageous in regard to insulation resistance, but it is detrimental structurally according to the work done by Ihnat [8]. Hansen [9] reported when wire diameters were one half of the nominal sizes (Fig. 22) multiple reductions of the sheathed assembly were restricted because of wire fracture.

Ihnat reported on the factors affecting the choice of insulation materials on the basis of resistivity, mechanical strength, resistance to thermal shock, vibration stress, thermal expansion, chemical compatibility, and cost.

Other factors such as relative hardness, compacted density, thermal conductivity, and neutron radiation effects have been reported by Zysk [10].

It is estimated that 90 percent of all sheathed thermocouples produced to date have used magnesium oxide (MgO) as the insulation material. Magnesium oxide is popular as a thermocouple insulator because of its overall compatibility with standard thermoelements and sheathing materials, its relative low cost, and availability.

Aluminum, beryllium, and thorium oxide insulations are also available from suppliers for use with certain wire and sheath combinations. The latter two materials are combined usually with refractory sheath and thermoelements.

FIG. 22—Graph showing idealized relationship between thermocouple sheath outside diameter and nominal internal dimensions for reactor grade thermocouples.

Because many applications of ceramic insulated thermocouples are at temperatures above 400° F, much attention has been given to cleanliness and chemical and metallurgical purity of the components. Bliss [11] points up many of the fabrication and application difficulties that can be experienced if extreme care is not exercised by the supplier. A warning heeded by the sailors and frontiersmen of early America can be applied today to the sheathed thermocouple manufacturer: Keep your powder clean and dry!

5.3 Insulation

For most practical purposes the sheathed thermocouple material should have a minimum insulation resistance of 100 megohms at 500 V dc for diameters larger than $\frac{1}{16}$ in. outside diameter. This readily is obtained by dry, uncontaminated compacted ceramic. The capture of oil, oil vapors, moisture, perspiration, and lint during manufacture can cause low insulation resistance. The hygroscopic nature of the insulants, especially MgO, and capillary attraction cause rapid absorption of moisture through exposed ends of the sheath. Furthermore, the insulation resistance of all ceramics falls at elevated temperature. Also the insulation resistance of all ceramics, compacted and uncompacted, reduces with an increase in temperature.

For insulation resistance greater than 1000 megohms, special techniques may be required to obtain and maintain these values. It is entirely feasible that 1000 megohms stock laying exposed to 70°F air and a relative humidity above 50 percent will experience a degradation of insulation resistance to less than 0.1 megohm in 15 min. Higher humidity will cause a more rapid degradation. Therefore, the following precautions should be exercised when handling compacted ceramic insulated thermocouples:

1. Do not leave an end exposed for periods longer than 2 or 3 min. Immediately seal ends.

2. Expose ends only in a region of low relative humidity.

3. Store assembly in a warm (above 100°F) and dry (relative humidity less than 25 percent) area.

Some of the characteristics of the more common compacted ceramics are shown in Tables 24 and 25.

 ${\sf TABLE\,24--Characteristics\,of\,insulating\,materials\,used\,in\,ceramic-packed\,thermocouple\,stock.}$

Insulator	Minimum Purity, %	Melting Point, °F	Approximate Usable Temperature, °F
Magnesia (MgO)	99.4	5 050	3 000
Alumina (Al ₂ O ₃)	99.5	3 650	2 800
Zirconia (ZrO ₂)	99.4	4 500	1 200
Beryllia (BeO)	99.8	4 550	4 200
Thoria (ThO ₂)	99.5	5 950	5 000

 TABLE 25—Thermal expansion coefficient of refractory insulating materials and three common metals.

Material	Average Coefficient of Expansion $\times 10^{-6}$ (25 to 700°C), °C ⁻¹
Copper	16.5
Stainless steels	13.9 to 16.4
Aluminum	9.6
Magnesium oxide	12.9
Beryllium oxide	8.1
Aluminum oxide	7.1 to 8.0
Zirconium oxide	4.2 to 5.2

		ength,° psi	At 1600°F		23 000	23 000	17 000				5 000	11 000	3 000	2 000	64 000	13 000	51 000		21 000				
properties [3].		Tensile Stre	At 200°F	68 000	87 000	75 000	70 000	75 000			93 000	150 000	77 000	106 000	136 000	147 000	125 000		000 06				
ick and some of their	ended	Continuous Maximum	I emperature, °F	1 650	2 000 2 100	1 700	1 600	1 600	1 200	2 000	2 100	2 200								600	008	00/ 000	1 000
ked thermocouple sto	Recomm		Operating Atmosphere	ORNV	ORNV ORNV	ORNV	ORNV	ORNV	ORNV	ORNV	٩NO	٩NO							ONV	O₄RNV		ORNV	
erials of ceramic-paci		Recommended	Maximum in Air, °F	1 920	2 000	1 650	1 650	1 680	1 550	2 000	2 000	1 500	1 640	2 300	1 820	1 820	1 400	1 640	2 100	600	100	2 800 2 200	7 200
3LE 26Sheath mat			Melting Point, °F	2 560	2 560	2 500	2 550	2 600	2 700	2 700	2 550	2 620	2 500	2 350	2 310	2 425	2 375	2 460	2 600	1 980	1 850	1 220	NCC 7
TAI			Material	Stainless steel: 304	309 310	316	321	347	430	446	Inconel	Inconel X	Incolov	Hastellov X	Hastelloy C	Havnes 25	Hastelloy B	Monel	Chromel	Copper	Brass	Aluminum	NICITOTIC

Alumel	2 550	2 100	ONV		82 000	19 000
Nickel	2 647	1 100				
Iron	2 798	600				
Zircaloy	3 350	1 400				
Platinum	3 217	3 000	٩N٥	3 000		
Pt-Rh 10%	3 362	3 100	NO	3 100		
Columbium	4 474	1 600	N>	3 800	110 000	
Molybdenum	4 730	400	VNR		137 000	30 000
Molybdenum disilicized		3 100	NO	3 000		
Molybdenum chromalized		3 100	NO	3 000		
Tantalum	5 425	750	>	5 000	96 000	22 '000
Titanium	3 035	600	N N	2 000		
Nore-Symbols describin.	a atmospheres	are: O = ovidizine	N - reducing: N	– neutral: V – vac		

vacuum. NOTE—Symbols describing atmospheres are: $\mathbf{U} = \text{oxtuizing}$; $\mathbf{K} = \text{reducing}$; $\mathbf{N} = \text{neutral}$; $\mathbf{v} = \text{vacu}^a$ Scales readily in oxidizing atmosphere. ^a Scales readily in oxidizing atmosphere. ^b Very sensitive to sulfur corrosion. ^c After exposure to temperature of 100 h except for stainless steels; Haynes 25, W, Mo, Ta, and Cb.

5.4 Wire

The wire is the primary functioning part of the assembly. It is the exposure of the junction of the dissimilar materials to heat that generates a commensurate voltage. From established tables (see Chapter 10) the voltages can be converted into temperature. Deviation from these tables, as given in Chapter 10, are equally applicable to sheathed thermocouples.

Since the wires are contained in a protective sheath and firmly held, small diameter wires can be exposed to high temperatures for long periods of time without serious deterioration.

5.5 Sheath

The sheath material performs several functions in the ceramic-insulated thermocouple system:

1. It holds the oxide in compaction.

- 2. It shields the oxide and thermoelements from the environment.
- 3. It furnishes mechanical strength to the assembly.

Since no one sheath material is suitable for all environments a wide variety of different materials are offered. Table 26 shows a group of materials that can be used as sheaths and some of their characteristics.

For maximum life a sheath diameter should be selected that offers the heaviest wall in relationship to the maximum use temperature.

Table 27 illustrates recommended temperatures for various sheath diameters and corresponding wall thicknesses. With the proper selection of sheath material for the environment, the thermocouple can be exposed to temperatures as high as 2000°F for any diameter but at some decrease in life.

Nominal diameter (in)	0.040	0.062	0.125	0.188	0.250
Nominal wall (in.)	0.007	0.010	0.020	0.025	0.032
Type K (°F)	1 400	1 600	1 600	1 600	1 800
Type J (°F)	1 000	1 200	1 400	1 400	1 600
Type E (°F)	1 200	1 400	1 400	1 600	1 700

 TABLE 27—Recommended maximum long-term service temperature for various sheath dimensions [27].

5.6 Combinations of Sheath, Insulation, and Wire

Precautions to be observed in selecting combinations are:

1. Be sure the sheath material will survive the environment (see Tables 26 and 27). Do not fail to realize that a thin sheath will deteriorate more rapidly than a thick one.

2. Be sure the assembly of sheath and wire is fully annealed for maximum sheath life and stability of wire calibration.

3. Select a sheath and wire material of similar coefficients of linear expansion. For example: Platinum-rhodium and platinum have about one half the expansion of stainless or Inconel; a grounded hot junction will pull apart unless sufficient expansion loops are allowed in the wire. Insulators often are used for this combination that are hard fired, and either noncompacted or isolated junctions also are used.

4. Select a sheath and wire material of similar annealing characteristics.

5. The combination of Chromel Alumel, iron constantan or Chromel constantan with an aluminum or copper sheath is not desirable. Table 28 indicates the capability of wire and sheath materials.

6. Table 29 gives dimensions of available ceramic-packed stock.

Sheath							num Alloys	elloy X	Jer	uinum	nel 600	nel 702	alum	mbium Alloys
Wire	304	310	316	321	347	440	Plati	Hast	Copi	Alun	Inco	Inco	Tant	Colu
Type K	1	1	1	1	1	1	1	1	4	4	1	1	3	3
Type J	1	1	1	1	1	3	4	4	4	4	3	3	4	4
Type T	3	3	3	3	3	3	4	4	1	4	3	3	4	4
Type E	1	1	1	1	1	1	1	1	4	4	1	1	3	3
Types B, R, and S	1	1	1	1	1	1	1	1	4	4	1	1	4	4
Tungsten rhenium alloys	3	3	3	3	3	3	3	1	4	4	3	3	3	3
Iridium rhodium alloys	3	3	3	3	3	3	3	1	4	4	3	3	3	3
Copper	3	4	3	3	3	4	4	4	1	2	3	4	2	2
Nickel	1	1	1	1	1	1	1	1	4	4	1	1	3	3
Aluminum	4	4	4	4	4	4	4	4	4	1	4	4	4	4
Nichrome ^a	1	1	1	1	1	1	1	1	4	4	1	1	3	3

TABLE 28—Compatibility of wire and sheath material [13].

Note-1. Easy manufacturing and good operational compatibility.

2. Easy manufacturing but poor operational compatibility.

3. Difficult manufacturing but good operational compatibility.

4. Difficult manufacturing and poor operational compatibility.

^a Trademark---Driver-Harris Co.

5.7 Limitations of the Basic Material

1. The sheath can be bent around a mandrel twice the sheath diameter without damage.

2. The life of material having 0.032 in. diameter or less is limited due to grain growth in the sheath wall.

3. Four wires in 0.062 in. sheath diameter and smaller are not practical to handle in the field.

		(a)		
Sheath	Outside	Nominal	Approximate	Nominal
Outside	Diameter	Wall	Wire,	Production
Diameter, in.	Tolerance, $\pm in$.	Thickness, in.	B&S gage	Length, ft
0.010	0.001	0.0015	48	250
0.020	0.001	0.003	38	250
0.032	0.001	0.005	36	250
0.040	0.001	0.007	34	250
0.062	0.002	0.010	29	150
0.090	0.002	0.014	26	125
0.125	0.002	0.018	24	100
0.188	0.003	0.025	18	60
0.250	0.003	0.032	17	40
0.313	0.003	0.040	16	40
0.375	0.003	0.049	. 14	30
0.430	0.003	0.065	13	30
0.500	0.003	0.065	12	30
		(b)		
		Nominal Conduc	tor Diameters, in	•
Sheath Diameter, in.	1-Wire	2-Wire	3-Wire	4-Wire
0.313	0.064	0.051	0.040	0.040
0.250	0.051	0.040	0.032	0.032
0.188	0.040	0.032	0.022	0.022
0.125	0.032	0.022	0.011	0.011
0.042	0.022	0.011	0.006	0.006
0.040	0.011	0.006		
0.025	0.006	0.004		

TABLE 29—Dimensions and wire sizes of available ceramic-packed material.

4. Two wires in 0.032 in. sheath diameter and smaller are difficult to handle in the field but are used in laboratory environments.

5. All crushed ceramics are like sponges and tend to capture moisture at the exposed surfaces. The tendency is reduced greatly in air at temperatures of 120°F and greater. If moisture does get into the assembly (as indicated by a reduction of insulation resistance), it can be substantially removed from the ends of the sheath by the following process:

A. Select a point about 6 in. from the exposed end and apply heat until the sheath is dull red.

B. Gradually work this slightly incandescent zone towards the exposed end.

C. When end has cooled below 250°F, apply a sealant, such as:

- (a) Dow Corning DC 803,
- (b) General Electric Glyptal,

- (c) wax, or
- (d) proprietory sealants.

TADIC 10 C.

6. Compacted ceramic material usually is coiled for shipping as shown in Table 30.

TABLE 30-	-Compactea	ceramic	material	couled f	or snipping.	

Diameter, in.	0.025	0.040	0.062	0.125	0.188	0.250	0.313	0.375
Size of coil, in.	18	18	24	30	48	48	60	60
Weight, lb/100 ft	0.2	0.5	0.8	3.0	6.0	11.0	16.0	24.0

7. Stock material and completed thermocouples usually are supplied to the end user in the fully annealed state with proper metallurgical grain size and no surface corrosion.

8. Therefore, the following precautions should be exercised when specifying or handling compacted ceramic insulated thermocouples:

A. Ensure that the sheath material is annealed fully.

B. If the material is coiled to a diameter which causes a permanent set, subsequent annealing may be required.

C. Avoid repeated bending at same location as this work hardens the sheath and may change the thermocouple calibration.

D. Do not expose the sheath to deleterious temperatures or atmospheres (see Tables 26 and 27).

5.8 Testing

Many tests have been devised to evaluate sheathed ceramic insulated thermocouples. These tests cover the physical and metallurgical properties of the sheath and thermoelements, the isothermal electrical properties of the insulation, and the thermoelectric properties of the thermoelements.

ASTM has issued a specification E 235 [14] on sheathed thermocouples for nuclear and other high reliability applications that covers Type K thermoelements in various sheath materials with options available for other sheath materials; alumina or magnesia insulations and alternative thermoelements. In Aerospace Information Report 46 [15] the Society of Automotive Engineers has covered the preparation and use of Type K thermoelements for turbojet engines, while the military has issued Mil T 22300 [16] (Ships) and Mil T 23234 [17] (Ships) for nuclear application of the sheathed thermocouples. In addition many government and commercial laboratories, thermocouple fabricators, and thermocouple users have issued specifications covering specific tests and test procedures for evaluating sheathed thermocouple materials.

Scadron [18] outlined some of the tests and tolerances that are applied for the verification of physical, electrical, and thermoelectric integrity of the sheathed thermocouple. Most manufacturer's catalogs cover some aspects of the tests, guarantees, and procedures used to verify product integrity.

Fenton et al [33] were concerned with inhomogeneity in bare and sheathed thermoelements and developed procedures and apparatus for testing for drift and inhomogeneity.

National Bureau of Standards Circular 590 [19] covers thermocouple testing. While this work was devised for the bare thermoelements it is applicable to the metal sheathed, ceramic insulated stock for evaluation of the electrical characteristics.

Sections 3 and 10 cover thermoelectric characteristics as well as recommendations for upper temperature limits and limits of error for most thermoelement materials. A notable exception for sheathed thermocouples is made in Table 2.

Increased life and accuracy was achieved using sheathed thermocouples by McElroy and Potts [20] in their study for the Oak Ridge National Laboratories of drift characteristics of Type K elements. A report from Stroud [21] indicates that a sealed sheathed thermocouple with $\frac{1}{8}$ -in.-diameter Inconel sheath, MgO insulation, and Type J thermoelements was exposed for more than 3500 h at 2000°F (1093°C) in air without falling outside the acceptable calibration error band. This is an example of one of the benefits of the sheathed construction. Zysk [10] points up that small dimensions, flexibility, and complete resistance to thermal shock are other advantages of this material.

Table 31 shows various characteristics, tests, and the source of testing procedure which are applicable to sheathed ceramic-insulated thermo-couples.

5.9 Measuring Junction

Measuring or "Hot" Junction

Numerous variations in measuring junction construction are possible with this type of material. The application dictates the most desirable method.

1. Exposed or Bare Wire Junction—In this type of a junction the sheath and insulating material are removed to expose the thermocouple wires. These wires are joined to form a measuring junction. The junction may be of the twist-and-weld or butt-weld type.

- (a) Fast response (see Table 32).
- (b) Exposed magnesia will pick up moisture.
- (c) Not pressure tight.
- (d) Wires subject to mechanical damage.
- (e) Wires subject to environment and usually will have a very short life.
- (f) Useful life shortened as a result of rapid calibration drift.

TABLE 31—Various characteria	stics tests, and the source of testing	procedure applicable to sheath ceram	ic-insulated thermocouples.
Characteristics	Tests	Procedure	Comments
	Physical and Me	TALLURGICAL	
1. OD of sheath	ring gage, micrometer, or met mounts for high precision	good mechanical practice or transverse section per ASTM Method E 3-62	tolerances per Table 29 sample preparation: requires care to prevent smear
2. Roundness of sheath	rotate for total indicated reading	Vee block and dial indicator	important for tube fitting use
3. Sheath surface finish	profilometer or roughness gage	ANSI Standard B46.1	also check clean finish for welding and brazing
4. Sheath wall thickness	thread gage micrometer or metallurgical mount	transverse section per ASTM Method E 3-62	concerns machining, bending, welding, life: can be checked only at ends
5. Insulation spacing	comparator or metallurgical mount	transverse section per ASTM Method E 3-62	see electrical tests
6. Insulation compactness	(A) tap test, (B) helium pressure, (C) dye absorption,(D) compaction density	 (A) supplier catalog, (B) MIL- T-22300, (C) and (D) ASTM Method D 2771-69 	relative values must be related to application
7. Wire diameter	micrometer or metallurgical mount	visual or transverse section per ASTM Method E 3-62	±1 wire gage size (Table 29)
8. Wire surface and roundness	micrometer and visual	3-point diameter check	10% out of round max showing slight embedment of insulating material into wire
9. Ductility and formability	bend and visual or metal- lurgical mount	ASTM E 235-73	bend 90 deg only for ease of mak- ing metallurgical mount
10. Sheath integrity	(A) water immersion (B) hydrostatic (C) helium leak,(D) dye penetrant	 (A) water soak with ends protected [18], (B) ASTM Method E 165-65, (C) ASTM Method E 235-73, (D) ASTM Method E 235-73, (D) ASTM Method 	 (A) may use hydrostatic pressure or steam for some applications: seal weld to protect insulation

CHAPTER 5 ON SHEATHED, CERAMIC-INSULATED THERMOCOUPLES

83

(Continued)

	TABLE 31C	ontinued.	
Characteristics	Tests	Procedure	Comments
11. Junction integrity	radiographs	ASTM Method E 235-73	application for junction and 4 in. of sheath
12. Material compatability	thermal cycling	ASTM Method E 235-73	thermal expansion for grounded junction integrity check
13. Metallurgical integrity	metallurgical mount	ASTM Method E 235-73	checks grain size
14. Response time	thermal response test	gas: SAE 46, liquid [24]	assesses thermal mass and welding technique
15. Uniformity of properties	Tests 1, 2, 3, 10, 11, and 13 full length	as noted	use sampling procedure for large runs
16. Stability under service conditions	application experience or life tests	as required	check with other users in same field
	CONSTANT TEMPERATU	JRE ELECTRICAL	
17. Insulation resistance	megohm meter between wires and sheath and wires	ASTM Method E 235-73	50 V for OD less than 0.061, 500 V for greater than 0.062
18. Electrical resistance (loop)	Wheatstone bridge	Chapter 3	tolerances ± 1 gage size based on wire type, length and dia: also checks continuity
19. High temperature insulation resist,	nce megohm meter or Wheatstone bridge	immerse full length except for end in temperature chamber: test with ungrounded junction or before junction is made	relative to operational require- ment, effective means of testing insulation quality at expected operating temperature of thermocouple
20. Dielectric strength	high potential generator	ac voltage (current limited) applied at room temperature for 1 min 80 V per mil of insulation [32]	seldom used check for contamina- tion and voids in insulation: voltage usually 500 V for 0.062 OD and larger

84

MANUAL ON THE USE OF THERMOCOUPLES IN TEMPERATURE MEASUREMENT

	Isothermal El	ECTRICAL	
21. Capacitance	capacitance bridge		test is usually not applied to thermocouples
22. Uniformity along length	Test 17, 18, 19, 20, 21 for full length	check samples or full lengths coiled if necessary	all tests are seldom necessary for single application
23. Stability under service conditions	application experience or life tests	as required	check for experience by other users
	THERMOELECTRIC	Properties	
24. Emf versus temperature	potentiometer and heat or cold source	Chapter 6	test at one or more points up to maximum use temperature
25. Homogeneity	heat source and galvanometer	NBC Circular 590 and Ref 33	max of $\pm 100 \mu$ V for J, K, T; $\pm 25 \mu$ V for B, R, S thermo- elements
26. Uniformity full length	Test 24 and 25 for full length	apply sampling procedure for large quantities	random sampling is most economical approach
27. Stability under service conditions	experience or life tests	actual tests	no substitute for actual conditions because of temperature gradients

CHAPTER 5 ON SHEATHED, CERAMIC-INSULATED THERMOCOUPLES 85

FIG. 23—Exposed or bare wire junction.

2. Grounded Junction—A closure is made by welding in an inert atmosphere so that the two thermocouple wires become an integral part of the sheath weld closure. Thus, the wires are "grounded" to the sheath.

- (a) Slower response than exposed wire (see Table 32).
- (b) Pressure tight to above 100 000 psi.
- (c) Wires protected from mechanical damage.
- (d) Wires not exposed to environment and will have a longer life.
- (e) Coefficient of expansion wire must be close to that of sheath to prevent pulling apart of hot junction. There are proprietary type of hot junctions that permit the use of materials with differing coefficients of expansion.

3. Ungrounded or Isolated Junction—This type is similar to the grounded junction except that the thermocouple wires are first made into a junction which is then insulated from the sheath and the sheath closure. The closure is formed by welding without incorporating the thermocouple wires. Thus, the thermocouple is "ungrounded" in relation to the sheath material.

- (a) Slower response than grounded hot junction (see Table 32).
- (b) Pressure tight to above 100 000 psi.
- (c) Wires protected from mechanical damage.
- (d) Wires not exposed to environment and will have a longer life.
- (e) Strain due to differential expansion between wires and sheath is minimized.
- (f) Most expensive.
- 4. Reduced Diameter Junction-
 - (a) May be either grounded or insulated (2 and 3 mentioned previously).
 - (b) Applied where fast response is required at junction and heavier sheath or wires are desired for strength, life, or lower circuit resistance over the balance of the unit.

FIG. 24—Grounded junction.

FIG. 25—Ungrounded or isolated junction.

FIG. 26-Reduced diameter junction.

		S	heath Dia	meter, in.		
	0.040	0.062	0.125	0.188	0.250	0.313
Exposed junction in water	0.005	0.02	0.03	0.07	0.1	0.85
Exposed junction in gas ^a	0.03	0.15	0.3	0.6	0.8	1.6
Grounded junction in water	0.1	0.2	0.7	1.1	2.0	2.5
Grounded junction in gas ^a	0.8	1.6	4.5	8.3	12.5	17.5
Ungrounded junction in water	0.3	0.5	1.3	2.2	4.5	7.2
Ungrounded junction in gas ^a	1.6	3.2	9.0	24.0	38.5	48.0

TABLE 32—Thermocouple response time in seconds.

^a At mass velocity of 50 lb/s ft²

5.10 Terminations

There are numerous ways in which thermocouples of this nature can be treated at the "cold" end. The most common treatments are as follows:

(a) Square Cut and Sealed—Wire is procured in this manner when the user intends to fabricate his own cold end assembly. The seal inhibits moisture absorption.

(b) Wires, Exposed and Sealed—Here, the sheath and the insulation is removed leaving the bare thermocouple wires exposed for a specified length. The insulating material is then sealed to inhibit moisture absorption.

(c) Transition Fitting—The terminal end is provided with a fitting wherein the thermocouple wires are joined to more suitable wires. In this fitting the necessary sealant for the mineral insulant also is provided (Fig. 27).

The terminal in Fig. 27 is:

- 1. Useful where permanent connections are desired.
- 2. Least expensive.

(d) Terminals or Connectors—Various types of fittings are available to facilitate external electrical connections. These include screw terminal heads, open or enclosed, and plug or jack connections (Fig. 28).

5.11 Installation of the Finished Thermocouple

Many types of installation are possible with sheathed thermocouples. Typical installations are shown in Figs. 29, 30, and 31.

Other special flanges and adaptors are available from many thermocouple manufacturers.

FIG. 27—Termination consisting of attaching flexible connecting wires.

FIG. 28—Connectors consisting of a proprietory quick disconnect or screw terminals at the end of the compacted ceramic insulated cable.

FIG. 29-Fittings to adapt into process line. Up to 5000 psi.

FIG. 30-Braze for higher pressure operation. Up to 100 000 psi.

FIG. 31-Element in thermocouple well.

5.12 Sheathed Thermocouple Applications

Application information for sheathed thermocouples has been well covered in the literature. Many suggested applications are made in the various suppliers catalogs, and Sannes article [23] on the application of the smaller sheath diameters is useful. Section 9.2 of this manual is an excellent reference on surface temperature measurement. A boiler tube application of sheathed thermocouples is discussed in Ref 25. Gas stream performance is well documented [26-29] because of the applications to jet engines and rockets.

Nuclear reactor applications have used sheathed thermocouples extensively for monitoring and control. Johannessen discussed the reliability assurance [30] of such applications, and other aspects also are covered in the same reference.

In the event of failure of sheathed thermocouples, Table 33 [22] has been included to aid in analyzing the cause.

Component	Mode of Failure	Possible Causes of Failure
Sheath	longitudinal splits	excessive cold work, improper heat treat, improper drawing speed, or insufficient wall thickness
	rupture at high tem- perature	excessive vapor pressure due to presence of helium after leak check, moisture in insula- tion, or insufficient wall thickness
	galling, inclusions and pits	incomplete lubrication, improper reduction method, improper die configuration, con- taminated lubrication
	discoloration	improper heat treat atmosphere or tempera- ture, improper cleaning of sheath prior to heat treatment
	brittle material, carbide precipitates, large grain size	improper heat treat time or temperature or quenching or all three
Insulation	low insulation resistance	moisture, contamination or excessive migra- tion of conductors
	corona, arcing or break- down at dielectric potential	voids, moisture, contamination, conductor decentralization, excessive dielectric po- tential, loose pack
	loose pack	inadequate sheath reduction, poor initial design, low tensile sheath material, or in- sufficient sheath wall thickness
	discoloration	inherent contamination, contamination due to reaction with sheath or conductors or both, improper or unclean manufacturing facilities
Conductors	open circuit	excessive elongation, improper initial design, improper heat treatment: defective starting wires
	short circuit (conductor to conductor or conductor to sheath)	loose pack, voids, bend radius too small, improper assembly, conductor decentrali- zation and contaminated insulation
	embrittlement	excessive cold working, improper heat treat- ment, improper initial condition of con- ductor
	open circuit-high temperature	nonuniform reduction of area, temperature above wire melting point: defective initial wires (microcracks)
		(Continued)

TABLE 33—Failure mode and cause analysis.

Component	Mode of Failure	Possible Causes of Failure
Conductors out of calibration (con [*] t)		improper heat treatment, initial conductor out of calibration, cold work effects not re- moved, nonhomogeneous section
	poor conductor finish	improper heat treatment on initial conductor, excessive insulation grain size, insulation crushability, insulation grain configuration and hardness excessive swaging or rolling
	temperature /emf varia	ation nonhomogeneous conductor, nonuniform heat
	oblated conductors	worn swaging or rolling dies, or improper die setup
	microscopic conducto fractures	or temperature above melting point, excessive cold work and improper heat treat, defective initial wires
Thermocou	ple Failure Mode	Possible Causes of Failure
Open circuit a	at room temperature	brittle wires, excessive elongation in manufacture, improper heat treat or excessive cold work: initially defective wires
Open circuit a or during c	at high temperature ycling	brittle wires, nonuniform elongation causing necking of conductors, improper heat treat, excessive tem- perature for conductors, differential thermal expan- sion between conductors and sheath: defective initial wires
Short circuit		loose insulation, voids, insulation contamination, conductors twisted, conductor decentralization, moisture
Low insulation resistance		insulation contamination, moisture absorption, improper sealing at ends
High potential breakdown		contamination of insulation conductor decentraliza- tion, loose insulation, insufficient sheath wall thick- ness, voids, excessive potential
Sheath fractu	re during forming	bend radius too small, brittle sheath material, in- sufficient sheath wall thickness, inadequate or proper heat treat
Sheath fractu	re under vibration	support points too far apart, insufficient sheath wall thickness, brittle sheath due to inadequate or im- proper heat treat, excessive cold work
Sheath burn-t	hrough	temperature reaction with atmosphere lowering effec- tive melting point, insufficient sheath wall thickness, improper sheath material for application
Loose insulati	ion material	improper design and insufficient sheath wall thickness

TABLE 33—Continued.

5.13 References

- [3] Caldwell, F. R., "Thermocouple Materials," NBS Monograph 40, National Bureau of Standards, 1 March 1962.
- [4] Siede, O. A. and Edison, L. R., "Mechanics of Drawing and Swaging Ceramic Filled Tubes," paper presented at ASTM 69th Annual Meeting, Atlantic City, N. J., 30 June 1966.

- [5] Rautio, W. S., "Metal-Sheathed Ceramic-Insulated Thermocouples-Swage or Draw?" Instruments and Control Systems, May 1962.
- [6] Mohrnheim, F., "Definitions and Mathematical Relations of Tube Drawing Processes," Wire, Dec. 1959.
- [7] MacKenzie, D. J., "Graphs Showing Idealized Relationship Between Thermocouple Sheath O. D. and Internal Dimensions for Reactor Grade Thermocouples," American Standard, Inc., Internal Report, March 1963.
- [8] Ihnat, M. E., "A Jet Engine Thermocouple System for Measuring Temperatures up to 2300°F," WADC Technical Report 57-744, Jan. 1959.
- [9] Hansen, P. F., Internal Report Aero Research Instrument Department, American Standard, Inc., Project 91042, March 1968.
- [10] Zysk, E. D., Technical Bulletin, Engelhard Industries, Vol. V, No. 3, Dec. 1964.
- [11] Bliss, P., "Post Fabrication Testing of Sheathed Thermocouples," Pratt and Whitney Internal Report.
- [12] AEC Report 1067, Atomic Energy Commission, Washington, D. C.
- [13] Scadron, M. D., "Compacted Ceramic Insulated Thermocouples," 14th Annual Instrument Maintenance Clinic, ISA Meeting, Houston, Tex., Feb. 1966.
- [14] ASTM Method E 235-73, "Thermocouples Sheathed, Type K for Nuclear or for Other High Reliability Applications," 1973 Annual Book of ASTM Standards, Part 30, p. 731.
- [15] Committee AE-2, Society of Automotive Engineers, "The Preparation and Use of Chromel-Alumel Thermocouples for Turbojet Engines," Aerospace Information Report No. 46, 15 March 1956.
- [16] Military Specification, MIL-T-22300(Ships) "Thermocouples, Corrosion Resistant Metal Sheathed, for Nuclear Reactors," 11 Jan. 1960.
- [17] Military Specification, MIL-T-23234(Ships), confidential.
- [18] Scadron, L., "Ceramic Insulated Thermocouples," Instruments and Control Systems, May 1961.
- [19] Roeser, W. F. and Lonberg, S. T., "Methods of Testing Thermocouples and Thermocouples Materials," NBS Circular 590, National Bureau of Standards, 6 Feb. 1958.
- [20] McElroy, D. L. and Potts, J. F., "Thermocouple Research to 1000 F," Final Report OR-NL2773, Oak Ridge National Laboratory, 30 June 1959.
- [21] Stroud, R. C., Leeds & Northrup, Philadelphia, Pa., private communication, June 1960.
- [22] MacKenzie, D. J., "Failure Data and Analysis," American Standard, Inc., Internal Report, Jan. 1963.
- [23] Sannes, T., "Tiny Thermocouples," Instrumentation Technology, March 1967. [24] Rall, D. C. and Hombaker, D. R., "A Rational Approach to the Definition of a Meaningful Response Time for Surface Temperature Transducers," 21st Annual ISA Conference and Exhibit, Oct. 1966.
- [25] "Nickel Base Alloy Protection Tubes Aid Monitoring of Boiler Temperatures," Inco Nickel Topics, Vol. 18, No. 7, 1965.
- [26] Faul, J. C., "Thermocouple Performance in Gas Streams," Instruments and Control Systems, Vol. 35, Dec. 1962.
- [27] MacKenzie, D. J. and Scadron, M. D., "Selection of Thermocouples for High Gas Temperature Measurement," 524E National Aeronautic Meeting, Society of Automotive Engineers, April 1962.
- [28] Moffat, R. J., "Designing Thermocouples for Response Rate," Transactions, American Society of Mechanical Engineers, Feb. 1958.
- [29] Ihnat, M. E. and Hagel, W. C., "A Thermocouple System for Measuring Turbine Inlet Temperatures," Transactions, American Society of Mechanical Engineers, Journal of Basic Engineering, March 1960.
- [30] Johannessen, H. G., "Reliability Assurance in Sheathed Thermocouples for Nuclear Reactors," High Temperature Thermometry Seminar, TID7586, Oak Ridge National Laboratory, Oak Ridge, Aug. 1960.
- [31] LaVan, J. F., "ARI Evaluation Report on Ceramic Insulated, Metallic Sheathed Thermocouple Reducing Methods and Assoicated Equipment," PIR 4.1, Aero Research Instrument Co., Inc., 1961.
- [32] Faul, J. C., personal communication.
- [33] Fenton, A. W., Dacey, R., and Evans, E. J., "Thermocouples: Instabilities of Seebeck Coefficient," United Kingdom Atomic Energy Authority, TRG Report 1447 (R) 1967.

Chapte 6—Emf Measurements

6.1 General Considerations

The basic principle of thermoelectric thermometry is that a thermocouple develops an emf which is a function of the difference in temperature of its measuring junction and reference junction. If the temperature of the reference junction is known, the temperature of the measuring junction can be determined by measuring the emf generated in the circuit. The use of a thermocouple in temperature measurements, therefore, requires the use of an instrument capable of measuring emf.

There are two types of emf measuring instruments in use in industrydeflection meters (millivoltmeters) and potentiometers. The digital voltmeter, which is now being used extensively, is a type of potentiometer. Because of its limitations, the deflection meter is not used for precise measurements.

The deflection meter consists of a galvanometer with a rigid pointer which moves over a scale graduated in millivolts or degrees. The galvanometer indicates by its deflection the magnitude of the current passing through it, and if the circuit in which it is placed includes a thermocouple, it measures the current I generated by the thermocouple in the circuit. If the circuit has a resistance R and the emf is E, by Ohm's law, E = RI. If R is kept constant, I is proportional to E, then the scale can be calibrated in terms of millivolts rather than in milli- or microamperes. This calibration holds as long as R remains constant. Any change in R introduces an error in the indicated value of E. Changes in resistance may result from changes in temperature of the thermocouple or its extension wires or of the copper galvanometer coil, from corrosion of the thermocouple wires, from changes in the depth of immersion of the thermocouple, or from changes in contact resistance at switches or binding posts.

In general, the reference junctions of the thermocouple measuring circuit are located near the meter movement. The effect of temperature changes on these junctions is compensated for by a bimetallic spiral attached to one of the control springs of the pointer. This system maintains accurate meter calibration during changes in ambient temperature.

In spite of its limitations, the deflection meter serves a very useful purpose in a great variety of industrial measurements of temperature where the precision required does not demand the use of the potentiometric method of measurement. Where precision is required in the measurement of thermal emfs, the potentiometer invariably is used. Because of its reliability and freedom from the uncertainties arising from changes in circuit resistance, meter calibration, etc., as well as its much greater openness of scale, it is used in many cases where the precision needed might not seem to justify the higher cost.

Recording potentiometers are used widely for industrial process temperature measurement and control. When reliability and reproducibility are the prime concern, such instruments are satisfactory. However, because of potential inaccuracies in charts caused by printing limitations and humidity effects and practical limits on chart widths and scale lengths resulting in inadequate readability, they are not used where precision is the criteria.

6.2 Potentiometer Theory

Accurate measurement is usually a matter of comparing an unknown quantity against a known quantity or standard—the more direct the comparison, the better. Accurate weighing, for example, often is accomplished by direct comparison against standard weights using a mechanical balance. If the measured weights are too heavy for direct comparison, lever arms may be used to multiply the forces.

The potentiometer, as the term is used here, serves a similar function in the measurement of voltage, and, in fact, may be called a "voltage balance," the standard voltage being furnished by a standard cell, the "lever" being resistance ratios, and the galvanometer serving as the balance indicator. Since no current is drawn from the standard cell or the measured source at balance, the measurement is independent of external circuit resistance, except to the extent that this affects galvanometer or balancing mechanism sensitivity.

6.2.1 Potentiometer Circuits

Figure 32 shows a simple potentiometer circuit which includes a resistor R, a standard cell S, a battery B, a galvanometer G, and a rheostat r. R may be a calibrated slidewire, with a known resistance, and R' a fixed resistor such that R and R' is some simple multiple of the emf of S. If e is taken as 1.019 V, the sum of R and R' may be chosen as 101.9. If the switch K is turned to the standard cell position, the galvanometer, in general, will deflect. The setting of rheostat r, is adjusted until the galvanometer remains at rest when K is closed. Then the drop of potential of the battery current through R and R' is exactly equal to the emf of S, so that if the current in R and R', T = 1.019/101.9 A, or 10 mA, through each ohm of R there is then a drop of potential 0.010 V. If R is 20 ohms the total drop through the slidewire is 0.2 V.

Now if K is turned to the "thermocouple" position, a setting may be found for the sliding contact on R at which there will be no deflection of

FIG. 32-A simple potentiometer circuit.

the galvanometer. At this position, the drop of potential through R of the contact is equal to the emf of the thermocouple. If balance occurs at the 5 ohm point, the emf of the thermocouple is $0.01 \times 5 = 0.05$ V-50 mV.

In this measurement the galvanometer has been used only as a means of detecting the presence of a current, and readings are made only when no perceptible current is passing through it. Therefore, it is not calibrated, and it is only called upon to indicate on balance with sufficient sensitivity to give the desired precision of setting of the sliding contact. An increase in the resistance of the thermocouple circuit can increase only the limits of positions of the contact between which there is no perceptible deflection, but does not affect the position of balance, nor the measured value of the emf. Since the galvanometer is used only to indicate the existence and direction of current, it is necessary to design it to give a linear relationship between current and deflection. Zero stability is not extremely important since it is only necessary to look for departure from any equilibrium position when the key is closed to detect a need for adjustment and the direction in which it should be made. The galvanometer is usually of the suspension type, even in portable potentiometers because of sensitivity required, although electronic null balance detectors are available with similar sensitivities.

The calibration of an instrument of this type is stable since resistors and slidewires can be made with a high degree of stability. The emf of an unsaturated standard cell, as used for potentiometric work, does not change more than about 0.01 percent per year and has a negligible temperature coefficient.

The usefulness of an elementary potentiometer of this sort, having its entire range across the slidewire, is limited by the resolution possible in setting and reading the position of the contact on R.

6.2.2 Standard Cell

While the Zener diode is becoming used more widely as a reference, especially in digital voltmeters, the standard of reference for all voltage measurements is the Weston standard cell. Two types are available—the saturated and the unsaturated.

The saturated cell containing undissolved cadmium sulfate crystals is used in standardizing laboratories such as the National Bureau of Standards to represent the value of the absolute volt. Its emf is 1.01864 absolute volts at 20°C, reproducible within a few microvolts and reasonably constant over long periods of time. From 10 to 40°C its temperature coefficient is negative, the emf decreasing by about 40 μ V/°C rise in temperature.

In potentiometric work the unsaturated cell is used. It is more portable than the saturated type, and its temperature coefficient is very near zero. When new, its emf is about 1.019 V. This voltage tends to decrease about 100 mV (0.01 percent) per year, giving a useful life of about ten years.

A standard cell must never be short circuited, nor should its emf be measured with a voltmeter. In precise measurements, the balances should be made with a resistance of at least 10,000 ohms in series with the cell, until the balance is well within range of the detector scale.

Ambient temperatures near the cell should remain between $+4^{\circ}$ C and $+40^{\circ}$ C if the cell emf is to remain within ± 0.01 percent of its certified value.

6.3 Precision Potentiometry

There are three types of precision-indicating potentiometers presently available; they are (1) laboratory high precision, (2) plant precision, and (3) portable precision. There are three subtypes of the laboratory high precision instruments; (1*a*) six-dial, (1*b*) three-dial automatic balancing, and (1*c*) three-dial manual balancing.

6.3.1 Laboratory High Precision

The six-dial potentiometer meets the most exacting requirements for standardizing, research, and testing laboratories. It is particularly useful for precise temperature measurements in studies of specific heats, melting and boiling points, and for calibrating less precise potentiometers. It also is used for precise measurements such as required in calorimetry cryogenics. It measures emfs in the range of 0 to 1.6 V with 1 μ V, or less, limit of error. It is essentially free of thermal emfs, and transients amount to less than 0.1 μ V.

The three-dial automatic null balancing potentiometer indicator has a range of 0 to 70.1 mV, is readable to 1 μ V, and has a limit of error of 0.02 percent, or 3 μ V, whichever is greater. The balancing operation is automatic once the two-dial switches are set manually to place the unknown emf within the scale range. This automatic feature facilitates the rapid

measurement of a large number of emfs with a minimum of effort and skill on the part of the operator, and with a high degree of accuracy.

The three-dial, manually operated potentiometer, also is used for precise measurements of voltage. As applied to the measurement of thermal emfs, its characteristics are such as to make it the most generally used of all the potentiometers in this field when accuracy and convenience of measurement are demanded. It is not portable in the sense in which the term is applied to self-contained potentiometers, since to attain the results of which it is capable, some parts of the circuit must be mounted separately. In particular, when highest precision is required, a very sensitive reflecting galvanometer must be mounted in a vibration-free support.

6.3.2 Plant Precision Potentiometer

This potentiometer is a self-contained, two-dial automatic null balancing indicator. It has a range of 0 to 40 mV, is readable to 2.5 μ V, and has a limit of error of 0.5 percent below 6 mV and 0.33 percent above 6 mV. The balancing operation is automatic once the dial switch is set manually to place the unknown emf within the scale range.

6.3.3 Portable Precision Potentiometer

This potentiometer is a self-contained, three-dial, manually balancing instrument. It is used for precision checking of thermocouple pyrometers in laboratory and plant and for general temperature measurements. It has two ranges, -10.1 to 0 mV and 0 to 100.1 mV. It is readable to 1 μ V. Limits of error are: (a) \pm (0.05 percent of reading plus 3 μ V) without internal reference junction compensation and (b) \pm (0.05 percent of reading plus 6 μ V) with reference junction compensation.

An example of (a) when using an external reference junction (see Chapter 7) is as follows:

A Type K thermocouple develops 41.269 mV at 1000°C (1832°F). The thermocouple error ($\pm \frac{3}{4}$ percent) can be 7.5°C; the instrument error will be 0.0005 × 41.269 + 0.003 = 0.024 mV or 0.56°C.

The reference junction compensation (b) is provided by an additional slidewire. This slidewire is used to set the reference junction voltage to the value which corresponds to the temperature of the reference junction (obtain millivolt value from reference tables, Chapter 10).

The portable precision potentiometer is designed to measure thermocouple emfs with a precision adequate for all but the more refined laboratory applications. It includes a built-in lamp and scale galvanometer.

6.4 Semiprecision Potentiometry

Potentiometers are available similar to those used for precision potentiometry except for limits of error. They are essentially of the two-dial type with self-contained galvanometer, standard cell, and battery. They are used primarily for general temperature measurements by means of thermocouples, checking thermocouple pyrometers in laboratory and plant, and as a calibrated source of voltage.

One model has two ranges; -10.1 to 0 mV and 0 to 100.1 mV, it is readable to 1 μ V. The limit of error is $\pm (0.05$ percent of reading $\pm 20 \mu$ V) without reference junction compensator and $\pm (0.05$ percent of reading $\pm 40 \mu$ V) with reference junction compensator.

Chapter 7—Reference Junctions

7.1 General Considerations

A thermocouple circuit is by its nature a differential measuring device, producing an emf which is a function of the temperatures of its two junctions. One of these junctions is at the temperature which is to be measured and is referred to as the measuring junction. The other junction is maintained at a known temperature and is referred to as the reference junction. (In a practical thermocouple circuit (see Section 2.3) copper wires are often connected to the thermocouple alloy conductors at the reference junction. The term reference junctions will be used to refer to this situation.) If these junctions are both at the same temperature, the presence of the copper "intermediate metal" introduces no change in the thermocouple's emf. If they are not at the same temperature the analysis of the circuit is complicated. Moffat [34] gives a helpful analytical method.

The Seebeck coefficient (thermoelectric power) of many common thermocouples is approximately constant from the ice point to the upper temperature limit of the materials (see Section 3.1.1). For such thermocouples, an uncertainty in the temperature of the reference junction will reflect a similar uncertainty in the deduced temperature of the measuring junction. However this situation does not exist for all thermocouple pairs. Notable exceptions occur in the case of the high rhodium-in-platinum alloy thermocouples [35,36]. In particular, if the reference junction of a platinum-30 percent rhodium versus platinum-6 percent rhodium (Type B) thermocouple lies within the range 0 to 50°C (32 to 122°F), a 0°C (32°F) reference junction may be assumed, and the error will not exceed 3 μ V. This represents about 0.3°C (0.5°F) error in high-temperature measurements. [37]

7.2 Reference Junction Techniques

Three basic methods are used to take account of the reference junctions of the thermocouple circuit: (1) the junction is maintained at a fixed temperature, (2) the temperature of the reference junction is allowed to vary, and a compensating emf is introduced into the circuit or accounted for by calculation, (3) the temperature of the reference junction is allowed to vary, and compensation is made by a mechanical adjustment of the readout instrument.
Some variations of these techniques will be described in the following sections. Sources of error which are common to several techniques will be discussed in Section 7.3.

7.2.1 Fixed Reference Temperature

7.2.1.1 Triple Point of Water—A cell can be constructed in which there is an equilibrium between ice, water, and water vapor [38]. The temperature of this triple point is 0.01°C on the International Practical Temperature Scale of 1968, and it is reproducible to about 0.0001°C. Williams [39] describes a commercially available cell which is not affected by factors such as air saturation and pressure which can cause several millidegrees fluctuation in the temperature of an ice bath. To utilize such precision, extreme attention to immersion error and galvanic error is required, and the measurement system must be of the highest quality.

7.2.1.2 Ice Point—An ice bath consisting of a mixture of melting shaved ice and water forms an easy way of bringing the reference junctions of a thermocouple to 0°C (32° F). If a proper technique is used, the uncertainty in the reference junction temperature can be made negligibly small. With extreme care the ice point can be reproduced to 0.0001°C [40].

A recommended form of ice bath is described in Ref 41, and is illustrated in Fig. 33. Using the recommended construction with maximum diameters of 14 gage B&S for iron or nickel base alloys and 20 gage B&S for copper and noble metals, immersed at least $4\frac{1}{2}$ in. in the water-ice mixture, Caldwell [42] found the immersion error to be less than 0.05°C (see Section 7.3.1). Finch [43] describes an alternative construction which reduces the immersion error when large conductors must be used.

If improper technique is used, serious errors can be encountered. The largest error which is likely to occur arises due to melting of the ice at the bottom of a bath until the reference junctions are below the ice level and surrounded by water alone. This water may be as much as 4°C above the ice point. While an ice bath is being used excess water should be removed periodically and more ice added, so that the ice level is maintained safely below the reference junctions [41].

If the ice used to prepare the bath has been stored in a freezer at a temperature below 0°C, it may freeze the surrounding water and remain at a temperature below 0°C for some time. To avoid this condition the bath should be examined to confirm that a slush of ice shavings in water actually exists.

If appreciable concentrations of salts are present in the water used to make the ice bath, the melting point can be affected. McElroy [44] investigated various combinations of tap and distilled water to determine the error introduced. He observed bath temperatures of $+0.013^{\circ}$ C using distilled water with tap ice and -0.006° C using tap water and tap ice. It is probable that the use of tap water will not introduce significant errors unless accuracies better than 0.01°C are required [42].

FIG. 33—Recommended ice bath for reference junction.

Another possible source of error is galvanic action which is discussed in Section 7.3.2.

Although the ice bath is an easy way of achieving a convenient fixed point for the reference junctions in the laboratory, the need for constant attention makes it unsuitable for industrial application where some form of automatic reference junction is desirable.

7.2.1.3 Automatic Ice Point—The development of the thermoelectric refrigerator (Peltier cooler) has enabled the production of practical devices in which an equilibrium between ice and water is constantly maintained [45,46]. Since water expands 9 percent on freezing, the change of volume may be used to control the heat transfer. Substances which undergo a phase change do so without change of temperature. This is an important advantage since the system behaves as if it had an infinite thermal capacity.

This device can provide a reference medium which is maintained at a precise temperature, but careful design is necessary if this precision is to be utilized fully. The system is subject to immersion error (Section 7.3.1) and galvanic error (7.3.2) due to condensation.

Some commercially available devices provide wells into which the user may insert reference junctions formed from his own calibrated wire. Others are provided with many reference junction pairs brought out to terminals which the user may connect into his system. The latter type are subject to the wire matching error (Section 7.3.3).

If the potential errors have been successfully overcome, the error introduced into a system by these devices may be less than 0.1°C.

7.2.1.4 Constant Temperature Ovens—A thermostatically controlled oven provides a way of holding a reference junction at an approximately constant temperature. The major advantage of this method is that one oven can be used with a large number of circuits while maintaining isolation between the circuits without the need for providing separate power supplies for each circuit.

The oven must be maintained at a temperature above the highest anticipated ambient temperature. The need for temperature uniformity within the oven and a precise temperature control system are inherent complications, in addition to the immersion error (Section 7.3.1) and the wire matching error (Section 7.3.2).

Ovens are available with rated accuracies ranging from 0.1 to 0.05°C. A common commercially used junction temperature is 150°F, although other values may be specified.

To use reference junctions held at elevated temperatures with tables or an instrument based on a 0°C reference junction temperature, a constant amount must be added to the thermal emf.

A device using two ovens is available which makes this correction automatically. To generate the necessary emf (for example, 2.662 mV for a Type K system with a 150°F (66°C) reference junction temperature) an additional internal thermocouple is connected in series with the external thermocouple circuit. This internal thermocouple has its reference junction in the first oven and its measuring junction in the second oven. The second oven is maintained at a suitable temperature above that of the first so that the required emf is generated. The external thermocouple circuit then behaves as if its reference junction were at 0°C. The manufacturers' stated accuracies of these devices are similar to those of single oven units.

7.2.2 Electrical Compensation

If the temperature of the reference junction of a thermocouple is allowed to change, the output emf will vary in accordance with the Seebeck coefficient of the couple at the reference temperature. A compensating circuit containing a source of current, a combination of fixed resistors, and a temperature sensitive resistor (TSR) can be designed which will have a similar variation of emf as the temperature of the TSR is varied. If the reference junction of the thermocouple is coupled thermally to the TSR and the compensating circuit is connected in series with the thermocouple so that its temperature-variable emf opposes that caused by the reference junction, the thermocouple behaves as if the reference junction temperature were held constant. In addition, by suitable choice of the fixed resistors, any fixed reference junction temperature may be simulated. Since the TSR is at the temperature of the reference junction, no warm-up or stabilization time is involved. Muth [47] has given a more extended description of these circuits.

The disadvantages of this arrangement include the need for a stable power source for each thermocouple circuit, the difficulty of exactly matching the Seebeck coefficient over an extended temperature range, and the addition of series resistance in the thermocouple circuit.

This principle is used in almost all self-balancing recording thermocouple potentiometers. Here the power source already is present as part of the potentiometer circuit. The Seebeck coefficient is matched adequately to allow the accuracy of the entire instrument to be typically 0.25 percent of full scale over a reasonable range of ambient temperatures.

Electric reference junction compensators are also available as small circuit modules with self-contained battery power sources or for connection to a-c power. A typical specification for a battery powered unit is compensation to $\pm 0.5^{\circ}$ F over an ambient of ± 55 to $\pm 90^{\circ}$ F. Improved specifications are quoted for more elaborate devices.

Some portable manually balanced potentiometers are provided with a thermometer to read the reference junction temperature and an adjustable circuit calibrated in millivolts or temperature. The control must be set manually to add the required emf to simulate an ice-point reference junction temperature.

7.2.2.1 Zone Box—In systems employing many thermocouples an alternative method of dealing with the thermocouple reference junctions is sometimes used. All of the thermocouples are routed to a device called a zone box where each of the thermocouple conductors is joined to a copper wire which is routed to the emf measuring instrument [48,49].

Within the zone box all of the reference junctions between the thermocouple conductors and the copper wires are insulated electrically but kept in good mutual thermal contact with each other and with a single transduces which compensates for the temperature within the zone box. This transducer may be a thermocouple of the same type as the measuring thermocouples having any of the types of reference junction described above. In this case its emf may be added to each of the measuring thermocouples in turn as they are switched to the emf measuring instrument. Alternatively the transducer may be a thermistor or resistance temperature detector which needs no reference temperature. In this case, the analyzing instrument determines the necessary correction to the thermal emfs, based on the measured reference junction temperature. Several variations of this technique are described in Ref 49.

The advantage of this arrangement is the simplicity of the zone box which generally requires no heaters, controls, or power supplies. Since the zone box is approximately at the ambient temperature, the immersion error (Section 7.3.1) can be made easily negligible with a moderate amount of thermal insulation and care to avoid locations having extreme thermal gradients. The wire matching error (Section 7.3.3) should receive attention because the reference junctions are at ambient temperature and the calibration error at this temperature must be accounted for.

7.2.3 Mechanical Reference Compensation

To complete this account of methods used to compensate for the temperature of thermocouple reference junctions, a device used on millivolt pyrometers must be included. The millivolt pyrometer measures the thermal emf of a thermocouple circuit by measuring the current produced in a circuit of fixed and known resistance. The current operates a galvanometer with a rigid pointer which moves over a scale graduated in degrees [43]. The reference junction is at the temperature of the instrument, and hence the available thermal emf is a function of the temperature of the instrument. Compensation is often accomplished by attaching one of the hairsprings of the D'Arsonval galvanometer movement to a bimetallic thermometer element so that the electrical zero of the instrument is adjusted to correspond to the temperature of the instrument. This system is subject to the wire matching error (Section 7.3.3), but the precision of the pyrometer seldom justifies making corrections.

7.3 Sources of Error

Several sources of error which may disturb the control or measurement of the reference junction temperature are discussed in this section.

7.3.1 Immersion Error

Whenever reference junctions are being maintained at a temperature which differs from the ambient, heat is transferred between the reference temperature medium (oven, ice bath, etc.) and the ambient via the electrical insulation which separates the junctions from the medium and via the wires which emerge from the reference junctions. Thus the temperature of the junctions always differs from that of the reference medium to a greater or lesser degree. Caldwell [42] gives data which allow the error to be estimated for the standard type of ice bath. For other situations the error may be calculated by methods outlined in Refs 50 and 51, if the coefficients governing heat flow between the medium, the wires, and the ambient can be evaluated.

With careful design the immersion error usually can be made negligible.

7.3.2 Galvanic Error

If water is allowed to contact the thermocouple alloy and copper wires of the reference junction, a galvanic cell may be set up, causing voltage drops which disturb the thermal emfs. If the reference junction is at a temperature below the dew point, the water may appear due to condensation. Insulation on both wires and precautions to avoid the accumulation of water in contact with the wires normally will prevent this error [42,44].

7.3.3 Wire Matching Error

Thermocouple wire normally is calibrated with its reference junction at 0°C, and corrections are determined to enable accurate measurements at elevated temperatures. The calibration deviation at ambient temperature is seldom of interest and usually is not determined.

Many reference junction devices are equipped with thermocouple alloy wires, and provision is made for interconnection with the user's thermocouples at ambient temperatures. If the calibration of the wire supplied with the device differs from that of the thermocouples at the ambient temperature, a significant error can result due to the interconnection of the wires. This source of error often is overlooked, since it is assumed that if the interconnection of both wires of a thermocouple pair occurs at the same temperature no error is introduced. The existence of this error is visualized easily if the circuit is analyzed using Moffat's method [34].

A simple correction for the wire matching error can be made if the ambient temperature deviation of the wire supplied with the reference junction device is known and the user's thermocouples are calibrated at ambient temperature.

The wire matching error is avoided in those reference junction devices in which the user's wire is used to form the reference junctions.

7.4 References

- [34] Moffat, R. J., "The Gradient Approach to Thermocouple Circuitry," Temperature, Its Measurement and Control in Science and Industry, Vol. 3, Part 2, Reinhold, New York, 1962, pp. 33-38.
- [35] Caldwell, F. R., "Thermocouple Materials," Temperature, Its Measurement and Control in Science and Industry, Vol. 3, Part 2, Reinhold, New York, 1962, pp. 81-134.
- [36] Zysk, E. D., "Noble Metals in Thermometry, Recent Developments," Technical Bulletin, Englehard Industries, Inc., Vol. 5, No. 3, 1964.
 [37] Burns, G. W. and Gallagher, J. S., "Reference Tables for the Pt-30 Percent Rh Versus
- [37] Burns, G. W. and Gallagher, J. S., "Reference Tables for the Pt-30 Percent Rh Versus Pt-6 Percent Rh Thermocouple," *Journal of Research*, NBS-C Engineering and Instrumentation, Vol. 70C, No. 2, 1966.
- [38] Stimson, H. F., "Precision Resistance Thermometry and Fixed Points," Temperature, Its Measurement and Control in Science and Industry, Vol. 2, Reinhold, N. Y., 1955, pp. 141-168.
- [39] Williams, S. B., "Triple Point of Water Temperature Reference," Instruments and Control Systems, Vol. 33, 1960.
- [40] Thomas, J. L., "Reproducibility of the Ice Point," Temperature, Its Measurement and Control in Science and Industry, Vol. 1, Reinhold, New York, 1941, pp. 159-161.
- [41] "Recommended Ice Bath for Reference Junctions," SAE Aerospace Recommended Practice No. 691, Committee AE-2, Temperature Measurement Sensing, Society of Automotive Engineers, Inc., 1964.
- [42] Caldwell, F. R., "Temperatures of Thermocouple Reference Junctions in an Ice Bath," Journal of Research, NBS Engineering and Instrumentation, Vol. 69C, No. 2, 1965.

- [43] Finch, D. I., "General Principles of Thermoelectric Thermometry," Temperature, Its Measurement and Control in Science and Industry, Vol. 3, Part 2, Reinhold, New York, 1962, pp. 3-32.
- [44] McElroy, D. I., "Progress Report I. Thermocouple Research Report for the Period, November 1, 1956 to October 31, 1957," ORNL-2467, Oak Ridge National Laboratory.
- [45] Morgan, W. A., "Close Temperature Control of Small Volumes, A New Approach," Preprint Number 11.7-2-64, Instrument Society of America, 1964.
- [46] Feldman, C. L., "Automatic Ice-Point Thermocouple Reference Junction," Instruments and Control Systems, Jan. 1965, pp. 101-103.
 [47] Muth, S., Jr., "Reference Junctions," Instruments and Control Systems, May 1967,
- [47] Muth, S., Jr., "Reference Junctions," Instruments and Control Systems, May 1967, pp. 133-134.
- [48] Roeser, W. F., "Thermoelectric Thermometry," Temperature, Its Measurement and Control in Science and Industry, Vol. 1, Reinhold, New York, 1941, p. 202.
- [49] Claggett, T. J., "External Thermocouple Compensation," Instrumentation, Vol. 18, No. 2, Second Quarter, 1965.
- [50] Baker, H. D., Ryder, M. E., and Baker, M. A., Temperature Measurement in Engineering, Vol. 1, Section, 7, Wiley, 1953.
 [51] Bauerle, J. E., "Analysis of Immersed Thermocouple Error," Review of Scientific
- [51] Bauerle, J. E., "Analysis of Immersed Thermocouple Error," Review of Scientific Instruments, Vol. 32, No. 3, Mar. 1961, pp. 313–316.

Chapter 8–Calibration of Thermocouples

The calibration of a thermocouple consists of the determination of its electromotive force (emf) at a sufficient number of known temperatures so that, with some accepted means of interpolation, its emf will be known over the entire temperature range in which it is to be used. The process requires a standard thermometer to indicate temperatures on a standard scale, a means for measuring the emf of the thermocouple, and a controlled environment in which the thermocouple and the standard can be brought to the same temperature. Some of the more commonly used techniques for accomplishing such calibrations will be discussed in this chapter.

Much of this material is based upon National Bureau of Standards Circular 590, *Methods of Testing Thermocouples and Thermocouple Materials*, and the calibration methods appearing in *Temperature Measurement* of the American Society of Mechanical Engineers Performance Test Codes, PTC 19.3 (1973).

8.1 General Considerations

8.1.1 Temperature Scale

The International Practical Temperature Scale of 1968 (IPTS-68) is realized and maintained by the National Bureau of Standards to provide a standard scale of temperature for use by science and industry in the United States. This scale [52,53] was adopted by the International Committee of Weights and Measures at its meeting in October 1968 and has general international acceptance. It replaces the International Practical Temperature Scale of 1948 [54]. The IPTS-68 distinguishes between the International Practical Kelvin Temperature with the symbol T_{68} and the International Practical Celsius Temperature with the symbol t_{68} ; the relation between T_{68} and t_{68} is

$$t_{68} = T_{68} - 273.15 \text{ K}$$

The units of T_{68} and t_{68} are the kelvin, symbol K, and degree Celsius, symbol °C (formerly called centigrade). It is common practice to express values of temperature on the IPTS-68 in Kelvin temperatures below 0°C and in Celsius temperatures above 0°C. Values of Fahrenheit temperature, symbol °F, are obtained from the conversion formula

$$^{\circ}F = 9/5 \times ^{\circ}C + 32$$

The IPTS-68 is a practical, standard, empirical scale chosen in such a way that temperatures measured on it closely approximate thermodynamic temperatures. It is a practical scale because the value for a given temperature is more easily and reproducibly determined on it than on the thermodynamic scale. The scale is based on eleven reproducible equilibrium states (defining fixed points) to which numerical values are assigned, and on formulas establishing the relationship between values of International Practical Temperature and the indications of standard instruments calibrated at the defining fixed points.

The defining fixed points are established by realizing specified equilibrium states between phases of pure substances. These fixed points and the exact numerical values assigned to them are given in Table 34.

	Assigned Value of International Practical Temperature			
Equilibrium State	$T_{68}(K)$	$t_{68}(^{\circ}C)$		
Equilibrium between the solid, liquid and vapor phases of equilibrium hydrogen (triple point of equilibrium hydrogen)	13.81	-259.34		
Equilibrium between the liquid and vapor phases of equi- librium hydrogen at a pressure of 33 330.6 N/m ² (25/76 standard atmosphere)	17.042	- 256.108		
Equilibrium between the liquid and vapor phases of equi- librium hydrogen (boiling point of equilibrium hydrogen)	20.28	-252.87		
Equilibrium between the liquid and vapor phases of neon (boiling point of neon)	27.102	- 246.048		
Equilibrium between the solid, liquid and vapor phases of oxygen (triple point of oxygen)	54.361	-218.789		
Equilibrium between the liquid and vapor phases of oxygen (boiling point of oxygen)	90.188	-182.962		
Equilibrium between the solid, liquid and vapor phases of water (triple point of water)?	273.16	0.01		
Equilibrium between the liquid and vapor phases of water (boiling point of water) ^{b, c}	373.15	100		
Equilibrium between the solid and liquid phases of zinc (freezing point of zinc)	692.73	419.58		
freezing point of silver	1 235.08	961.93		
Equilibrium between the solid and liquid phases of gold (freezing point of gold)	1 337.58	1 064.43		

TABLE 34—Defining fixed points of the IPTS-68.ª

^a Except for the triple points and one equilibrium hydrogen point (17.042 K) the assigned values of temperature are for equilibrium states at a pressure $p_0 = 1$ standard atmosphere (101 325 N/m²). In the realization of the fixed points small departures from the assigned temperatures will occur as a result of the differing immersion depths of thermometers or the failure to realize the required pressure exactly. If due allowance is made for these small temperature differences, they will not affect the accuracy of realization of the Scale. The magnitudes of these differences are given in section III of Ref 52.

^b The equilibrium state between the solid and liquid phases of tin (freezing point of tin) has the assigned value of $t_{68} = 231.9681$ °C and may be used as an alternative to the boiling point of water.

^c The water used should have the isotopic composition of ocean water, see section III,4 of Ref 52.

The standard instrument used from 13.81 K (-259.34° C) to 630.74°C is the platinum resistance thermometer. The thermometer resistor must be annealed pure platinum that is mounted in a strain-free configuration. The resistance ratio $W(T_{68})$ of the platinum resistance thermometer, defined by

$$W(T_{68}) = R(T_{68})/R(273.15 \text{ K})$$

where $R(T_{68})$ is the resistance at T_{68} and R(273.15 K) is the resistance at 273.15 K, must not be less than 1.39250 at $T_{68} = 373.15 \text{ K}$. From 630.74°C to 1064.43°C the standard instrument is the platinum-10 percent rhodium versus platinum thermocouple. Above 1064.43°C, the IPTS-68 is defined by the Planck law of radiation with 1064.43°C as the reference temperature, but the type of standard instrument to be used for the measurement is not specified. However, visual and photoelectric optical pyrometers are the instruments usually used to realize the temperature scale in this region.

The procedures for interpolation lead to a division of the scale into four parts.

(a) From 13.81 K to 273.15 K (-259.34 to 0°C) the temperature T_{68} is defined by the formula

$$W(T_{68}) = W_{\rm CCT-68}(T_{68}) + \Delta W(T_{68})$$

where $W(T_{68})$ is the resistance ratio of the platinum resistance thermometer and $W_{CCT-68}(T_{68})$ is the resistance ratio given by a reference function [52,53]. The deviations $\Delta W(T_{68})$ are calculated from measured values of $W(T_{68})$ at the defining fixed points and the corresponding values of $W_{CCT-68}(T_{68})$. To obtain $\Delta W(T_{68})$ at intermediate temperatures interpolation formulas are used. For this purpose the range between 13.81 and 273.15 K is divided into four parts; 13.81 to 20.28 K, 20.28 to 54.361 K, 54.361 to 90.188 K, and 90.188 to 273.15 K. In each part $\Delta W(T_{68})$ is given by a polynomial [52,53] in T_{68} . The constants in the polynomials are determined from values of $\Delta W(T_{68})$ at the fixed points and the condition that values of $d \Delta W(T_{68})/d T_{68}$ given by joining polynomials must be equal at the junctions of the temperature ranges.

(b) From 0 to 630.74°C t_{68} is defined by

$$t_{68} = t' + 0.045 \left(\frac{t'}{100^{\circ}\text{C}}\right) \left(\frac{t'}{100^{\circ}\text{C}} - 1\right) \left(\frac{t'}{419.58^{\circ}\text{C}} - 1\right) \left(\frac{t'}{630.74^{\circ}\text{C}} - 1\right)^{\circ}\text{C}$$

where t' is defined by the formula:

$$t' = \frac{1}{\alpha} \left[W(t') - 1 \right] + \delta \left(\frac{t'}{100^{\circ} \text{C}} \right) \left(\frac{t'}{100^{\circ} \text{C}} - 1 \right)$$

where $W(t') = \frac{R(t')}{R(0^{\circ}C)}$. The constants $R(0^{\circ}C)$, α , and δ are determined by

measurement of the resistance of the platinum resistance thermometer at

the triple point of water, the boiling point of water (or the freezing point of tin^{9}), and the freezing point of zinc. The above formula for t' may also be expressed as

$$W(t') = 1 + At' + Bt'^2$$

where

$$A = \alpha \left(1 + \frac{\delta}{100^{\circ} \text{C}} \right)$$
 and

$$B = -10^{-4} \alpha \, \delta \, ^{\circ}\mathrm{C}^{-2}$$

(c) From 630.74°C to the gold point (1064.43°C) the temperature t_{68} is defined by the formula

$$E(t_{68}) = a + bt_{68} + ct_{68}^2$$

where $E(t_{68})$ is the electromotive force of a standard platinum-10 percent rhodium versus platinum thermocouple when one of its junctions is at 0°C and the other is at the temperature t_{68} . The constants *a*, *b*, and *c* are calculated from values of *E* at 630.74°C \pm 0.2°C, as determined by a platinum resistance thermometer, and at the freezing points of silver and gold.

For the foregoing interpolation formula to be valid, the platinum thermoelement of the standard thermocouple must meet certain purity requirements and the values of E at 630.74°C, the silver point and the gold point must also satisfy certain criteria [52,53]. Not all Type S thermocouples will meet these requirements, but suitable thermocouples may be obtained commercially.

(d) Above the gold point the temperature T_{68} is defined by the formula

$$\frac{L_{\lambda}(T_{68})}{L_{\lambda}(T_{68}(\mathrm{Au}))} = \frac{\exp\left[\frac{c_2}{\lambda T_{68}(\mathrm{Au})}\right] - 1}{\exp\left[\frac{c_2}{\lambda T_{68}}\right] - 1}$$

where $L_{\lambda}(T_{68})$ and $L_{\lambda}(T_{68}(Au))$ are the spectral concentrations at temperature T_{68} and at the freezing point of gold, $T_{68}(Au)$, of the radiance of a blackbody at the wavelength λ ; c_2 is defined to be 0.014388 metre kelvin and λ is in metres (exp [x] is defined to be e^x).

In addition to the defining points of the Scale, given in Table 34, certain other points may be useful for calibration purposes. Some of these and their reported temperatures are given in Table 35. Except for the triple point of benzoic acid, each temperature is for a system in equilibrium under a pressure of 1 standard atm.

9 See note^b, Table 34.

	°C
Boiling point of normal hydrogen	-252.753
Boiling point of nitrogen	-195.802
Sublimation point of carbon dioxide	-78.476
Freezing point of mercury	-38.832
Freezing point of water	0.00
Triple point of benzoic acid	122.37
Freezing point of indium	156.634
Freezing point of bismuth	271.442
Freezing point of cadmium	321.108
Freezing point of lead	327.502
Freezing point of antimony	630.74
Freezing point of aluminum	660.37
Freezing point of copper	1 084.8
Freezing point of nickel	1 455
Freezing point of palladium	1 554
Freezing point of platinum ^b	1 768

			TABLE 3	5—S	econdai	y re	feren	ice poi	ints.			
The	pressure ^a	is 1	l standard	atm,	except	for	the	triple	point	of l	benzoic	acid.

^a See Ref 52 for information on the effect of pressure variation.

^b See Ref 55.

8.1.2 Working Standards

Any one of several types of thermometers, calibrated in terms of the IPTS, may be used as a working standard for the calibration of thermocouples. The choice will depend upon the temperature range covered, whether a laboratory furnace or a stirred liquid bath is used, the accuracy expected of the calibration, or in cases where more than one type will suffice, the convenience or preference of the calibrating laboratory.

8.1.2.1 Resistance Thermometers—The standard platinum resistance thermometer is the most accurate standard for use from approximately -260° C (-436° F) to 630° C (-1166° F). In cases where an uncertainty approaching 0.1°C is necessary at temperatures below -56° C (-69° F) or above about 200°C (392° F) there are few alternatives to the use of resistance thermometers as standards.

8.1.2.2 Liquid-in-Glass Thermometers—This type of thermometer may be used from approximately $-183^{\circ}C$ ($-297^{\circ}F$) to $400^{\circ}C$ ($752^{\circ}F$), or even higher with special types. Generally, the accuracy of these thermometers is less below $-56^{\circ}C$ ($-69^{\circ}F$) where organic thermometric fluids are used, and above $300^{\circ}C$ ($572^{\circ}F$) where instability of the bulb glass may require frequent calibration. Specifications for ASTM liquid-in-glass thermometers are given in Ref 56. 8.1.2.3 Types E and T Thermocouples—Either of these types of thermocouples may be used down to a temperature of $-183^{\circ}C(-297^{\circ}F)$ or lower, but the attainable accuracy may be limited by the accuracy of the emf measurements and the inhomogeneity of the wire at low temperatures. The stability of the larger sizes of wire is greater than that of smaller wires under the same conditions. Twenty-four gage wire is a useful compromise between the lesser stability of smaller wire and the greater thermal conduction (greater required depth of immersion) of larger wire. Recommended upper limits are 425°C (797°F) for the Type E and 200°C (392°F) for Type T.

8.1.2.4 Types R and S Thermocouples—Type S or Type R thermocouple is the most satisfactory working standard for use in the range from 630° C (1166°F) up to about 1200°C (2192°F). Its use may be extended down to room temperature if it is desired to use the same standard over a wide range, but its sensitivity falls off appreciably as temperatures below 200°C (392°F) are reached. Twenty-four gage wire most commonly is used for these standards.

8.1.2.5 High Temperature Standards—The IPTS-68 above $1064^{\circ}C$ (1947°F) is defined by the Planck law of radiation, and the scale is usually realized by means of an optical pyrometer. The optical pyrometer [57], sighted on a blackbody cavity built into the calibration furnace, therefore, can serve as a working standard for all temperatures above $1064^{\circ}C$ (1947°F). On the other hand, thermocouples, calibrated on the optical pyrometer scale, can be used themselves as standards. The Type B thermocouple [58] is useful up to about $1600^{\circ}C$ (2912°F). Tungsten rhenium alloys can be used to higher temperatures, but the optical pyrometer more commonly is used.

8.1.3 Annealing

Practically all base-metal thermocouple wire is annealed or given a "stabilizing heat treatment" by the manufacturer. Such treatment generally is considered sufficient, and seldom is it found advisable to further anneal the wire before testing.

Although new platinum and platinum-rhodium thermocouple wire as sold by some manufacturers already is annealed, it has become regular practice in many laboratories to anneal all Types R, S, and B thermocouples, whether new or previously used, before attempting an accurate calibration. This is accomplished usually by heating the thermocouple electrically in air. The entire thermocouple is supported between two binding posts, which should be close together, so that the tension in the wires and stretching while hot are kept at a minimum. The temperature of the wire is determined most conveniently with an optical pyrometer.¹⁰

¹⁰ The ordinary portable type of optical pyrometer is very satisfactory for this purpose. As commonly used, the magnification is too low for sighting on an object as small as the wires of noble-metal thermocouples, but this is remedied easily by lengthening the telescope tube or using an objective lens of shorter focal length.

There are some questions as to the optimum temperature and length of time at which such thermocouples should be annealed to produce the most constant characteristics in later use [59] and as to whether annealing for more than a few minutes is harmful or beneficial. Most of the mechanical strains are relieved during the first few minutes of heatings at 1400 to 1500°C (2552 to 2732°F), but it has been claimed that the changes in the thermal emf of a couple in later use will be smaller if the wires are heated for several hours before calibration and use. The principal objection to annealing thermocouples for a long time at high temperatures, aside from the changes in emf taking place, is that the wires are weakened mechanically as a result of grain growth. It has been found that annealing at temperatures much above 1500°C (2732°F) produces rapid changes in the emf and leaves the wire very weak mechanically. In addition, rapid cooling [59] of the wires following annealing at elevated temperatures should be avoided since it can substantially alter the emf. Except for work of the highest precision, cooling at a rate not exceeding about 400°C/min is satisfactory. The National Bureau of Standards has adopted the procedure of annealing Types R, S, and B thermocouples for 1 h at 1450°C (2642°F), followed by slow cooling.

It has not been demonstrated conclusively that Types R, S, and B thermocouples after contamination can be improved materially in homogeneity by prolonged heating in air, although it is logical to suppose that certain impurities can be driven off or, through oxidation, rendered less detrimental.

8.1.4 Measurement of Emf

One of the factors in the accuracy of the calibration of a thermocouple, is the accuracy of the instrument used to measure the emf. Fortunately in most instances, an instrument is available whose performance is such that the accuracy of the calibration need not be limited by the accuracy of the emf measurements. For work of the highest accuracy it is advisable to use a potentiometer of the type designed by Diesselhorst [60], White [61], or Wenner [62], in which there are no slidewires and in which all the settings are made by means of dial switches. However, for most work, in which an accuracy of 5 μ V will suffice, slidewire potentiometers of the laboratory type are sufficiently accurate. Portable potentiometers accurate within 40 to 100 μ V also are available. For a more detailed consideration of emf measurements see Chapter 6.

8.1.5 Homogeneity

The emf developed by a thermocouple made from homogeneous wires will be a function of the temperature difference between the measuring and the reference junction. If, however, the wires are not homogeneous, and the inhomogeneity is present in a region where a temperature gradient exists, extraneous emf's will be developed, and the output of the thermocouple will depend upon factors in addition to the temperature difference between the two junctions. The inhomogeneity of the thermocouple wire, therefore, is an important factor in accurate measurements.

Thermocouple wire now being produced is usually sufficiently homogeneous in chemical composition for most purposes. Occasionally inhomogeneity in a thermocouple may be traced to the manufacturer, but such cases are rare. More often it is introduced in the wires during tests or use. It usually is not necessary, therefore, to examine new thermocouples for inhomogeneity, but thermocouples that have been used for some time should be so examined before an accurate calibration is attempted.

While rather simple methods are available for detecting thermoelectric inhomogeneity, no satisfactory method has been devised for quantitatively determining it or the resulting errors in the measurement of temperatures. Abrupt changes in the thermoelectric power may be detected by connecting the two ends of the wire to a sensitive galvanometer and slowly moving a source of heat, such as a bunsen burner or small electric furnace, along the wire. This method is not satisfactory for detecting gradual changes in the thermoelectric power along the length of the wire. Inhomogeneity of this nature may be detected by doubling the wire and inserting it to various depths in a uniformly heated furnace, the two ends of the wire being connected to a galvanometer as before. If, for example, the doubled end of the wire is immersed 10 in. in a furnace with a sharp temperature gradient so that two points on the wire 20 in. apart are in the temperature gradient, the emf determined with the galvanometer is a measure of the difference in the thermoelectric properties of the wire at these two points.

After reasonable homogeneity of one sample of wire has been established, it may be used in testing the homogeneity of similar wires by welding the two together and inserting the junction into a heated furnace. The resulting emf at various depths of immersion may be measured by any convenient method. Other similar methods have been described for detecting inhomogeneity [63].

Tests such as those described above will indicate the uncertainty in temperature measurements due to inhomogeneity in the wires. For example, if a difference in emf of $10 \,\mu$ V is detected along either element of a platinumrhodium couple by heating various parts of the wire to 600° C (1112°F), measurements made with it are subject to an uncertainty of the order of 1 deg below 500°C, or 2 deg to 1200°C. Similarly, if an emf of 10 μ V is detected along an element of a base-metal couple with a source of heat at 100°C, measurements made with it are subject to an uncertainty of the order of 0.2°C at this temperature. The effects of inhomogeneity in both wires may be either additive or subtractive, and, as the emf developed along an inhomogeneous wire depends upon the temperature distribution, it is evident that corrections for inhomogeneity are impracticable if not impossible.

8.1.6 General Calibration Methods

The temperature-emf relation of a homogeneous [64] thermocouple is a definite physical property and therefore does not depend upon the details of the apparatus or method employed in determining this relation. Consequently, there are numerous methods of calibrating thermocouples, the choice of which depends upon the type of thermocouple, temperature range, accuracy required, size of wires, apparatus available, and personal preference. However, the emf of a thermocouple with its measuring junction at a specified temperature depends upon the temperature difference between its measuring and reference junctions. Therefore, whatever method of calibration is used, the reference junction must be maintained constant at some known temperature (see Chapter 7), and this temperature must be stated as a necessary part of the calibration results.

Thermocouple calibrations are required with various degrees of accuracy ranging from 0.1 to 5 or 10°C. For an accuracy of 0.1°C, agreement with the IPTS-68 and methods of interpolating between the calibration points become problems of prime importance, but for an accuracy of about 10°C comparatively simple methods of calibration usually will suffice. The most accurate calibrations in the range -260°C (-436°F) to 300°C (572°F) are made by comparing the couples directly with a standard platinum-resistance thermometer in a stirred liquid bath. In the range 300 to 630°C (572 to 1166°F) (and below if a platinum-resistance thermometer and stirred liquid bath is not available) thermocouples are calibrated most accurately at the freezing or boiling points of pure substances. Between 630 and 1064°C (1166 and 1947°F), the Type S thermocouple calibrated at 630.74°C and the freezing points of gold and silver, serves to define the IPTS-68, and other types of thermocouples are calibrated most accurately in this range by direct comparison with the standard thermocouple calibrated as specified. Other thermocouples may be calibrated just as accurately at the fixed points as the Type S thermocouple, but interpolated values at intermediate points may depart slightly from the IPTS-68. Above 1064°C (1947°F), the most basic calibrations are made by observing the emf when one junction of the thermocouple is in a blackbody furnace, the temperature of which is measured with an optical pyrometer. However, the difficulties encountered in bringing a blackbody furnace to a uniform temperature make the direct comparison of these two types of instruments by no means a simple matter.

Although the Type S thermocouple serves to define the IPTS-68 only in the range 630.74 to 1064.43°C, this type of thermocouple calibrated at fixed points is used extensively both above and below this range as a working standard in the calibration of other thermocouples. For most industrial purposes a calibration accurate to 2 or 3°C in the range room temperature to 1200°C (2192°F) is sufficient. Other thermocouples can be calibrated by comparison with such working standards almost as accurately as the calibration of the standard is known. However, it might be pointed up that outside the range 630.74 to 1064.43°C any type of thermocouple suitable for the purpose, and calibrated to agree with the resistance thermometer or optical pyrometer in their respective ranges, has as much claim to yielding temperatures on the IPTS-68 as the Type S thermocouple. In fact, at the lower temperatures certain types of base-metal couples are definitely better adapted for precise measurements.

The calibration of couples then may be divided into two general classes, depending upon the method of determining the temperature of the measuring junction: (1) calibration at fixed points and (2) calibration by comparison with standard instruments such as thermocouples, resistance thermometers, etc.

In order to obtain the high accuracies referred to above and usually associated with calibrations at fixed points, it is necessary to follow certain prescribed methods and to take the special precautions described in detail in the following paragraphs, but for an accuracy of about 5°C the more elaborate apparatus to be described need not be employed.

8.1.7 Calibration Uncertainties

The several factors which contribute to the uncertainties in the emf versus temperature relationship for a particular thermocouple as determined by calibration may be grouped into two kinds; those influencing the observations at calibration points, and those arising from any added uncertainty as a result of interpolation between the calibration points. Errors from either of these sources of uncertainty can be reduced materially, within limits, through use of well designed equipment and careful techniques; hence, the required accuracy should be clearly understood when choosing calibration facilities.

Estimates of the accuracies attainable in the calibration of homogeneous thermocouples by different techniques are given in Tables 36, 37, 38, 39, and 40. The estimates assume that reasonable care is exercised in the work. More or less accurate results are possible using the same methods, depending upon soundness of the techniques used. While excessive care is a waste when relatively crude measurements are sufficient, it should be emphasized that inadequate attention to possible sources of error is more often found to be the practice than the converse. In the following some of the important considerations associated with the various calibration methods are emphasized briefly.

8.1.7.1 Uncertainties Using Fixed Points—The equilibrium temperatures listed in Table 35 (with the possible exception of the sublimation point of carbon dioxide) are sufficiently exact, and the materials are readily available in high enough purity, that accurate work can be done using these

			Calibration	Uncertainty	
Туре	Temperature Range, °C	Calibration Points ^a	At Observed Points, °C	Of Interpolated Values, °C	
S	0 to 1100	Zn, Sb ^b , Ag, Au	0.2	0.3	
R	0 to 1100	Sn. Zn, Al, Ag, Au	0.2	0.5	
В	600 to 1100	Al, Ag, Au	0.2	0.5	
E	0 to 870	Sn, Zn, Al	0.2	0.5	
J	0 to 760	Sn, Zn, Al	0.2	1.0	
K	0 to 1100	Sn, Zn, Al, Ag, Au	0.2	1.0	

TABLE 36—Accuracies attainable using fixed point techniques.

^a Metal freezing points.

^b Temperature measured by standard platinum resistance thermometer.

			Calibration Uncertainty		
Туре	Temperature Range, °C	Calibration Points ^a	At Observed Points, °C	Of Interpolated Values, °C	
R or S	0 to 1100	about every 100°C	0.3	0.5	
В	600 to 1100	about every 100°C	0.3	0.5	
Е	0 to 870	about every 100°C	0.5	0.5	
J	0 to 760	about every 100°C	0.5	1.0	
K	0 to 1100	about every 100°C	0.5	1.0	

 TABLE 37—Accuracies attainable using comparison techniques in laboratory furnaces (Type R or S standard).

 TABLE 38--Accuracies attainable using comparison techniques in stirred liquid baths.

				Calibration Uncertainty		
Туре	Temperature Range, °C	Calibration Points	Type of Standard ^a	At Observed Points, °C	Of Interpolated Values, °C	
E	-196 to 425	about every 100°C	PRT	0.1	0.2	
	-196 to 435	about every 50°C	PRT	0.1	0.1	
	-196 to 435	about every 50°C	E or T	0.2	0.2	
	- 56 to 200	about every 50°C	LIG	0.1	0.1	
Т	-196 to 250	about every 100°C	PRT	0.1	0.2	
	- 196 to 250	about every 50°C	PRT	0.1	0.1	
	- 196 to 250	about every 50°C	E or T	0.2	0.2	
	-56 to200	about every 50°C	LIG	0.1	0.1	

^{α} PRT = standard platinum resistance thermometer; E or T = Type E or T thermocouple; and LIG = liquid-in-glass thermometer.

TABLE 39—Tungsten-rhenium type thermocouples.
(Maximum calibration uncertainties for range 1000 to 2000°C
using melting points by wire or disk method).

	Calibration Ur	certainty
At Observed Po	oints	Of Interpolated Values ^a
Gold (1064.43°C) Nickel (1455°C) Palladium (1554°C) Platinum (1768°C)	$\pm 0.5^{\circ}C$ $\pm 3.5^{\circ}C$ $\pm 3.0^{\circ}C$ $\pm 3.0^{\circ}C$	1000 to 1455°C, ± 2.7 °C 1455 to 1554°C, ± 4.0 °C 1554 to 1768°C, ± 4.0 °C 1768 to 2000°C, ± 7.0 °C

^a These values apply only when all five observed points are taken.

 TABLE 40—Accuracies attainable using comparison techniques in special furnaces (optical pyrometer standard).

		Calibration Uncertainty			
Туре	Temperature Range, °C	At Observed Points, °C	Of Interpolated Values, ^a °C		
IrRh versus Ir ^b	1000 to 1300	2	3		
IrRh versus Ir ^b	1300 to 1600	3	4		
IrRh versus Ir ^b	1600 to 2000	5	8		
W versus WRe ^c	1000 to 1300	2	3		
W versus WRe ^c	1300 to 1600	3	4		
W versus WRe ^c	1600 to 2000	5	8		
R, S, or B	1100 to 1450	2	3		
B	1450 to 1750	3	5		

^a Using difference curve from reference table with calibration points spaced every 200°C.

^b 40Ir60Rh versus Ir, 50Ir50Rh versus Ir, or 60Ir40Rh versus Ir.

^c W versus 74W26Re, 97W3Re versus 75W25Re, or 95W5Re versus 74W26Re.

fixed points with no significant error being introduced by accepting the temperatures listed. Using freezing points, however, good designs of freezing point cells and furnaces are important for controlling the freezes and for providing sufficient immersion for the thermocouple, if the full potential of the method is to be realized.

Although uncertainties of the order of $\pm 1^{\circ}$ C in the temperatures are assigned to the freezing points (and hence by implication to the melting points) of palladium and platinum, these contribute in only a minor way overall uncertainties of calibrations using freezing point techniques.

8.1.7.2 Uncertainties Using Comparison Methods—The accuracy attained at each calibration point using the comparison method will depend upon the degree to which the standard and the test thermocouple are maintained at the same temperature and the accuracy of the standard used. Comparison measurements made in stirred liquid baths usually present no special problems provided that sufficient immersion is used. Because of the high-thermal conductivity of copper, special attention should be given to the problem of immersion when calibrating Type T thermocouples.

As higher and higher temperatures are used the difficulties of maintaining the test thermocouple and the standard at the same measured temperature are magnified whether a tube furnace, an oven with moderating block, or whatever means is used for maintaining the desired temperature. In addition, at temperatures of about 1500°C (2732°F), and higher, the choice of insulating materials becomes very important (see Chapter 4). Special attention must be paid to possible errors arising from contamination from the insulators or protection tube and from electrical leakage.

When an optical pyrometer is used as the temperature measuring standard, a good blackbody must be used, and the design must be such that the test thermocouple is at the same temperature as the blackbody.

8.2 Calibration Using Fixed Points

The indications of the Type S thermocouple calibrated at 630.74° C and the silver and gold points, as mentioned in Section 8.1.1, define the IPTS-68 between 630.74° C (1167°F) and 1064.43°C (1948°F). If such a thermocouple is calibrated also at the zinc point, a working standard will result which is accurate to about 0.3° C in the range 0 to 1100° C (32 to 2012° F). While the fixed-point calibration is prescribed for defining the IPTS-68, similar methods are also useful in the calibration of other types of thermocouples. Fixed points can be used with various degrees of accuracy, ranging from 0.1 to 5°C, for the calibration of various types of thermocouples in the range -260° C (-436° F) to the melting point of platinum at 1768°C (3214°F). Some of the fixed points for which values have been determined accurately are listed in Section 8.1.1, Table 35. Because of experimental difficulties, fixed points at temperatures higher than the freezing point of copper usually are realized as melting points rather than freezing points, as described later.

8.2.1 Freezing Points

The emf developed by a homogeneous thermocouple at the freezing point of a metal is constant and reproducible if all of the following conditions are fulfilled: (1) the thermocouple is protected from contamination; (2) the thermocouple is immersed in the freezing-point sample sufficiently far to eliminate heating or cooling of the junction by heat flow along the wires and protection tube; (3) the reference junctions are maintained at a constant and reproducible temperature; (4) the freezing-point sample is pure; and (5) the metal is maintained at essentially a uniform temperature during freezing.

Techniques for achieving these conditions are well developed [63,65,66]. Many of the metals listed in Table 35 of Section 8.1.1 are available commercially in high purity (99.999 percent or better) and can be used assuming the freezing point temperatures given in the table. It is essential, however, that protection tubes and crucibles be chosen of such material (see Section 4) that the pure metals will not be contaminated. Copper and silver must be protected from oxygen contamination [63], and it is also advisable to protect aluminum and antimony; this is done usually by using covered crucibles and covering the freezing point metals with powdered graphite or by sealing the crucible in a glass tube that contains a nonoxidizing gas such as argon or helium. The choice of a suitable furnace is also important. The furnace must provide uniform heating in the region of the freezing point sample, and have adequate controls to bring the sample slowly into its freeze. Complete units consisting of freezing point sample, crucible, and furnace are available commercially. Freezing point standard samples of tin, lead, zinc, aluminum, and copper may be purchased from the National Bureau of Standards.

8.2.2 Melting Points

The emf of a thermocouple at the melting point of a metal may be determined with the same apparatus as that described above for freezing points, but the use of the freeze is usually more satisfactory. Melting points are used to advantage, however, when only a limited amount of material is available or at high temperatures where experimental techniques with freezing points are difficult. To apply this method [67,68,69,70], a short length of metal whose melting point is known is joined between the end of the two wires of the thermocouple and placed in an electrically heated furnace the temperature of which is raised slowly. When the melting point of the metal is reached, the emf of the thermocouple remains steady for a few minutes and then drops to zero as the fused metal drops away from the junction. With good technique¹¹ the method can result in accuracies comparable to those with which the IPTS-68 is realized above 1064°C by optical pyrometry.

8.3 Calibration Using Comparison Methods

The calibration of a thermocouple by comparison with a working standard [71] is sufficiently accurate for most purposes and can be done conveniently in most industrial and technical laboratories. The success of this method usually depends upon the ability of the observer to bring the measuring junction of the thermocouple to the same temperature as the actuating element of the standard, such as the measuring junction of a standard

¹¹ This method is not well adapted to metals that oxidize rapidly, and, if used with materials whose melting temperature is altered by the oxide, the metal should be melted in a neutral atmosphere.

thermocouple or the bulb of a resistance or liquid-in-glass thermometer. The accuracy obtained is further limited by the accuracy of the standard. Of course, the reference junction temperature must be known, but this can be controlled, as described in Chapter 7. The method of bringing the measuring junction of the thermocouple to the same temperature as that of the actuating element of the standard depends upon the type of thermocouple, type of standard, and the method of heating.

8.3.1 Laboratory Furnaces

The calibration procedure consists of measuring the emf of the thermocouple being calibrated at selected calibration points, the temperature of each point being measured with a working standard. The number and choice of calibration points will depend on the type of thermocouple, the temperature range covered, and the accuracy required (see Sections 8.1.6 and 8.4).

8.3.1.1 Platinum-Rhodium Versus Platinum Thermocouples—Thermocouples employing platinum and platinum-rhodium alloys seldom are used for accurate measurements below 300°C (572°F) because the sensitivity of these thermocouples decreases rapidly at low temperatures.

These thermocouples usually are calibrated at temperatures up to 1200°C by comparison with either a Type S or Type R working standard in electrically heated furnaces. Above 1200°C (2192°F) the Type B thermocouple is a preferred working standard because of its greater stability at high temperatures. This thermocouple may be used to 1600°C (2912°F) or higher.

One method for the comparison of two such thermocouples is based upon the simultaneous reading of the emf of the standard and the test thermocouple without waiting for the furnace to stabilize at any given temperature. The measuring junctions are maintained always at close to the same temperature by welding them into a common bead or by wrapping them together with platinum wire or ribbon. A separate potentiometer is used to measure each emf, one connected to each thermocouple, and each potentiometer is provided with a reflecting galvanometer. The two spots of light are reflected into a single scale, the galvanometers being set in such a position that the spots coincide at the zero point on the scale when the circuits are open, and therefore also when the potentiometers are set to balance the emf of each thermocouple. Simultaneous readings are obtained by setting one potentiometer to a desired value and adjusting the other so that both spots of light pass across the zero of the scale together as the temperature of the furnace is raised or lowered.

By making observations first with a rising and then with a falling temperature, the rates of rise and fall being approximately equal, and taking the mean of the results found, several minor errors such as those due to differences in the periods of the galvanometers, etc., are eliminated or greatly reduced. This method is particularly adapted to the calibration of thermocouples at any number of selected points. For example, if it is desired to determine the temperature of a thermocouple corresponding to 10.0 mV, this emf is set up on the potentiometer connected to the thermocouple, the emf of the standard thermocouple observed as desired above, and the temperature obtained from the emf of the standard. If it is desired to determine the emf of a thermocouple corresponding to $1000^{\circ}C$ ($1832^{\circ}F$), the emf of the standard corresponding to this temperature is set up on the potentiometer connected to the standard, and the emf of the thermocouple being calibrated is observed directly with the second potentiometer. To reduce the time required to calibrate by this method the furnace should be so constructed that it will heat or cool rapidly. Fast response is obtained in one furnace design which employs a nickel-chromium tube as the heating element [63].

A similar furnace using a silicon carbide tube as the heating element can be used to extend the calibration range upward [58]. At temperatures above $1064^{\circ}C$ (1947°F) the IPTS-68 is defined in terms of ratios of radiation (Section 8.1.1) usually measured with a visual or a photoelectric optical pyrometer. If the test thermocouple is inserted into the back of a blackbody cavity built into the furnace, a pyrometer may be used directly as the working standard. Alternatively, the Type B thermocouple can be used as the working standard after it has been calibrated against a pyrometer.

The thermocouples are insulated and protected by suitable ceramic tubes (Chapter 4). It is essential that good insulation be maintained between the two potentiometers and thermocouple circuits except at the point where the junctions are welded together. The reference junctions are maintained at a known temperature (Chapter 7).

Variations of the two potentiometer method may be used to automate the calibration process when the thermocouple being calibrated and the standard thermocouple are of the same type [71]. If the emf of the standard is read with one potentiometer and the emf difference between the standard and the unknown are read with the second potentiometer, the calibration data may be recorded automatically [72,73].

If two potentiometers are not available for taking simultaneous readings, the furnace may be brought to essentially a constant temperature, and the emf of each thermocouple read alternately on one instrument [71].

When the thermocouples are calibrated by welding or wrapping the junctions together, both would be expected to be close to the same temperature even when the temperature of the furnace is changing. If it is necessary or advisable to calibrate the thermocouples without removing them from the protection tubes, then the junctions of the thermocouple being tested and that of the standard should be brought as close together as possible in a uniformly heated portion of the furnace. In this case it is necessary that the furnace be brought to approximately a constant temperature before taking observations.

There are a number of other methods of heating and of bringing the junctions to approximately the same temperature, for example, inserting the thermocouples properly protected into a bath of molten metal or into holes drilled in a large metal block. The block of metal may be heated in a muffle furnace or, if made of a good thermal conductor such as copper, may be heated electrically. Tin, which has a low melting point, 232°C (450°F), and low volatility, makes a satisfactory bath material. The thermocouples should be immersed to the same depth with the junctions close together. Ceramic tubes are sufficient protection, but to avoid breakage by thermal shock when immersed in molten metal it is preferable to place them inside of secondary tubes of iron, nickel-chromium, graphite, or similar material. In all of these methods, particularly in those cases in which the junctions of the thermocouples are not brought into direct contact, it is important that the depth of immersion be sufficient to eliminate cooling or heating of the junctions by heat flow along the thermocouple and the insulating and protecting tubes. This can be determined by observing the change in the emf of the thermocouple as the depth of immersion is changed slightly. If proper precautions are taken, the accuracy yielded by any method of heating or bringing the junctions to the same temperature may be as great as that obtained by any other method.

8.3.1.2 Base-Metal Thermocouples-The methods of testing base-metal thermocouples above room temperature are generally the same as those just described for testing noble-metal thermocouples with the exception, in some cases, of the methods of bringing the junctions of the standard and the thermocouple being tested to the same temperature and the methods of protecting platinum-rhodium standards from contamination. One arrangement of bringing the junction of a platinum-rhodium standard to the same temperature as that of a large base-metal thermocouple for accurate calibration is to insert the junction of the standard into a small hole (about 0.06 in. in diameter) drilled in the hot junction of the base-metal thermocouple. The platinum-rhodium standard is protected by ceramic tubes to within a few tenths of an inch of the hot junction, and the end of the ceramic tube is sealed to the thermocouple by pyrex glass or by a small amount of kaolin and water-glass cement. This prevents contamination of the standard thermocouple, with the exception of the small length of about 0.1 in., which is necessarily in contact with the base-metal thermocouple. If the furnace is uniformly heated in this region (and it is of little value to make such a test unless it is) contamination at this point will not cause any error. If the wire of the standard becomes brittle at the junction, this part of the wire may be cut off and enough wire drawn through the softened seal to form a new junction. The seal should be examined after each test and remade if it does not appear to be good. More than one base-metal thermocouple may be welded together and the hole drilled in the composite junction. The thermocouples should be clamped in place so that the junctions remain in contact. If two potentiometers are used for taking simultaneous readings, the temperature of the furnace may be changing as much as a few degrees per minute during an observation, but if a single instrument is used for measuring the emf, the furnace temperature should be maintained practically constant during observations. When wires, insulators, and protection tubes are large, tests should be made to ensure that the depth of immersion is sufficient.

8.3.2 Stirred Liquid Baths

At temperatures below 620°C (1148°F) stirred liquid baths provide an efficient medium for bringing a thermocouple and a temperature standard to the same temperature.

Water, petroleum oils, or other organic liquids, depending upon temperature range, are commonly used bath media. Molten salts or liquid tin are used at temperatures higher than are suitable for oil. Baths suitable for this work are described in Ref 74.

Base-metal thermocouples, either bare wire or insulated, may be calibrated accurately in such baths. Usually no special preparation of the thermocouple will be required other than to insert it to the bottom of a protection tube for immersion in the liquid bath. Borosilicate glass tubing, such as pyrex glass, is convenient for use up to 538°C (1000°F). Vitreous silica or ceramic tubing may be used to 620°C (1148°F). The tube should be closed at the immersed end and of an internal diameter such as to permit easy insertion of the thermocouple or thermocouples to be calibrated but no larger than necessary. Unfavorable heat transfer conditions in an unnecessarily large diameter tube will require a greater depth of immersion in the bath than would a close fitting tube. If a bare wire thermocouple is being calibrated, the wires must be provided with electrical insulation over the length inserted in the protection tube. Sheathed thermocouples may be immersed directly in the bath liquid in cases where the sheath material will not be attacked by the liquid. Salt baths for use at high temperature must be provided with suitable wells into which the thermocouple protection tubes and standard thermometers may be inserted for protection from the molten salt.

The standard thermometer may be a thermocouple standard inserted in the protection tube with the thermocouple being calibrated, or it may be a liquid-in-glass thermometer or resistance thermometer immersed in the bath close to the thermocouple protection tube. The choice of a standard thermometer will be governed principally by the degree of uncertainty which can be tolerated.

8.3.3 Fixed Installations

After thermocouples have been used for some time at high temperatures, it is difficult, if not impossible, to determine how much the calibrations are in error by removing them from an installation and testing in a laboratory furnace. The thermocouples are usually heterogeneous after such use and in such a condition that the emf developed by the thermocouples depends upon the temperature distribution along the wires [75]. If possible, such a thermocouple should be tested under the same conditions and in the same installation in which it is used. Although it is not usually possible to obtain as high a precision by testing the thermocouple in place as is obtained in laboratory tests, the result is far more useful in the sense of being representative of the behavior of the thermocouple [70]. The calibration is accomplished by comparing the thermocouple with a thermocouple standard.

In this case, as in the calibration of any thermocouple by comparison methods, the main objective is to bring the hot junction to the same temperature as that of the thermocouple being tested. One method is to drill a hole in the furnace, flue, etc., at the side of each thermocouple permanently installed, large enough to permit insertion of the checking thermocouples. The hole is kept plugged, except when tests are being made. The standard thermocouple is inserted through this hole to the same depth as the thermocouple being tested with the hot junction ends of the protection tubes as close together as possible. Preferably a potentiometer should be used with the standard thermocouple.

In many installations the base-metal thermocouple and protecting tube are mounted inside another protecting tube of iron, fire clay, carborundum, or some other refractory which is permanently cemented or fastened into the furnace wall. Frequently there is room to insert a small test thermocouple in this outer tube alongside of the fixed thermocouple. A third method, much less satisfactory, is to wait until the furnace, flue, etc., have reached a constant temperature and make observations with the thermocouple being tested, then remove this thermocouple and insert the standard thermocouple to the same depth.

If desired, comparisons can be made, preferably by either of the first or second methods at several temperatures, and a curve obtained for each permanently installed thermocouple showing the necessary corrections to be applied to its readings. Although testing a thermocouple at one temperature yields some information, it is not safe to assume that the changes in the emf of the thermocouple are proportional to the temperature or to the emf. For example, it has been observed that a thermocouple which had changed in use by the equivalent of 9°C at 315°C (16°F at 599°F) had changed only the equivalent of 6°C at 1100°C (11°F at 2012°F).

It may be thought that the method of checking thermocouples under working conditions is unsatisfactory because, in most furnaces used in industrial processes, large temperature gradients exist, and there is no certainty that the standard thermocouple is at the same temperature as the thermocouple being tested. This objection, however, is not serious, because if temperature gradients do exist of such a magnitude as to cause much difference in temperature between two similarly mounted thermocouples located close together, the reading of the standard thermocouple represents the temperature of the fixed thermocouple as closely as the temperature of the latter represents that of the furnace.

Another advantage of checking thermocouples in the same installation in which they are used is that the thermocouple, extension wires, and indicator are tested as a unit and under the conditions of use.

8.4 Interpolation Methods

An experimental thermocouple calibration consists of a series of voltage measurements determined at a finite number of known temperatures. If a test thermocouple were compared with a standard temperature instrument at 100 temperatures within a 10°F range, there would be little need for interpolation between the calibration points. However, if from 4 to 10 calibration points are all that can be afforded in a given range of interest, then what is needed to characterize an individual thermocouple is a continuous relation, by means of which temperatures can be approximated with a minimum uncertainty from voltage measurements at intermediate levels. Efforts to obtain such a continuous relation appear thwarted from the start because of the small number of discrete calibration points available. However, interpolation between the calibration points is possible since the emf changes only slowly and smoothly with temperature.

One can present raw calibration data directly in terms of temperature (T) and voltage (E_{couple}) , on a scale so chosen that the information appears well represented by a single curve (see Fig. 34) or by a simple mathematical equation. For example, for the highest accuracy in the range 630 to 1064°C with the Type S thermocouple, the method is that prescribed in Ref 63, page 13. An equation of the form $e = a + bt + ct^2$, is used where a, b, and c are constants determined by calibration at the freezing points of gold, silver, and antimony. By calibrating the thermocouple also at the freezing point of zinc and using an equation of the form e = a + bt + bt $ct^2 + dt^3$, the temperature range can be extended down to 400°C without introducing an uncertainty of more than 0.1°C in the range 630 to 1064°C. By calibrating the thermocouple at freezing points of gold, antimony, and zinc and using an equation of the form $e = a + bt + ct^2$, a calibration is obtained for the range 400 to 1100°C, which agrees with IPTS-68 to 0.5°C. However, in general, this practice of directly representing thermocouple characteristics does not yield results within the required limits of uncertainty.

A better method¹² is based on the use of differences between observed values and values obtained from standard reference tables. Such reference tables and the mathematical means for generating them are presented in

¹² Much of the material in this Chapter is based on Ref 77.

FIG. 34—Temperature emf plot of raw calibration data for an iron-constantan thermocouple.

Chapter 10 of this Manual. The data of Fig. 34 are replotted in Fig. 35 in terms of differences from the proper reference table. The maximum spread between points taken at the same level (replication), but obtained in random order with respect to time and level (randomization) is taken as the uncertainty envelope. This information, taken from Fig. 35 is plotted in Fig. 36, and constitutes a vital bit of information about the particular thermocouple and the calibration system. In lieu of an experimental determination of the uncertainty, one must rely on judgment or on the current literature for this information.

Usually, only a single set of calibration points is available. Typical points would be those taken from one run shown in Figs. 34 or 35, and these are shown in Fig. 37 together with four of the many possible methods for

representing the thermocouple difference characteristic. Although at first it appears that the most probable relation characterizing a given thermocouple is sensibly indeterminate from a single set of calibration points, it is an important fact that all experimental points must be continued within the uncertainty interval when the uncertainty interval is centered on the most probable interpolation equation.

Making use of this principle, together with the fact that overall experimental uncertainties are minimized by use of the least squares technique, one starts the search for the most probable interpolation equation by passing a least squares equation of the first degree through the experimental data. A check is then made to ascertain whether all experimental points are contained within the uncertainty envelope which is centered on the linear interpolation equation (see Fig. 38). One proceeds, according to the results of the foregoing check, to the next highest degree equation, stopping at the lowest degree least squares equation which satisfies the uncertainty requirements. For the example given here, a third degree interpolation equation is required (see Fig. 39). By obtaining voltage differences from the least squares fit of any set of calibration points, the uncertainty in the thermocouple difference characteristic will be within one half the uncertainty

FIG. 35—Difference plot of raw calibration data for an iron-constantan themocouple.

FIG. 36-Typical determination of uncertainty envelope (from data of Fig. 35).

FIG. 37—Various possible empirical representations of the thermocouple characteristic (based on a single calibration run).

FIG. 38—Uncertainty envelope method for determining degree of least squares interpolating equation for a single calibration run (linear).

FIG. 39—Uncertainty envelope method for determining degree of least squares interpolating equation for a single calibration run (cubic).

interval. Generally, the form of the uncertainty envelope and the degree of the most probable least squares interpolation equation are strongly dependent on the amount of calibration data available and on the temperature range under consideration. It is recommended that the number of distinct calibration points available should be at least 2 (degree +1). The factor two is arrived at from numerical analysis reasoning. A distinct calibration point is defined arbitrarily as one which is separated, temperaturewise, from all other points in the set by as much as one tenth the difference in temperature between the maximum and minimum temperatures of the particular run. The choice of one tenth presupposes a maximum practical degree of four for the least squares interpolation equation, in keeping with the low degree requirement of numerical analysis. Indeed, if the data cannot be represented by a fourth degree interpolation equation, one should increase the uncertainty interval and start the fitting procedure again.

Thus, in general, by using the proper reference table in conjunction with a difference curve, greater precision in temperature determination by means of thermocouples can be obtained from a given number of calibration points than from the use of the calibration data alone.

8.5 Single Thermoelement Materials

The standard method provided by ASTM for evaluating the emf characteristics of single thermoelement materials used in thermocouples for temperature measurement is designated as E 207 and is entitled "Standard Method of Thermal Emf Test of Single Thermoelement Materials by Comparison with a Secondary Standard of Similar Emf-Temperature Properties." The method covers the determination of the thermoelectromotive force of single thermoelement materials (thermoelements), against standard platinum, the cold junction being at the ice point, by comparison to the thermoelectromotive force of a working standard thermoelement of similar emf-temperature properties independently standardized with respect to the same standard platinum.

Summary of Method—The test thermoelements are welded to the working standard to form the test thermocouple. The method involves measuring the small electromotive force developed between the test thermoelement and the secondary working standard having emf-temperature properties similar to the thermoelement being evaluated. The thermoelectromotive force of the test thermoelement then is determined by algebraically adding this measured small emf to the known emf of the secondary working standard referenced to the standard platinum. The testing circuit is shown schematically in Fig. 40. Since the thermal emfs (against any reference material) of the test and standard thermoelements are similar, it is unnecessary to accurately control or measure the junction temperatures because the difference in emf changes insignificantly even for large changes in temperature at the junctions. Actually, the need for the accurate control

FIG. 40-Circuit diagram for thermal emf test.

of the measuring and reference junction temperatures is not eliminated, but merely is shifted to an accurate laboratory method which calibrates the secondary standard against the standard platinum [71].

8.5.1 Test Specimen

The test specimen is a length of wire, rod, ribbon, or strip of the coil or spool of the thermoelement material to be evaluated. The length is adequate to prevent the transfer of heat from the measuring junction to the reference junction during the period of test. A length of 2 to 4 ft, depending on the length of the testing medium and the transverse size of the thermoelement, is generally satisfactory. The transverse size of the specimen is limited only by the size of the test medium, the relative convenience of handling the specimens and working standard, and the maintenance of an isothermal test temperature junction.

8.5.2 Working Standard

The working standard is a thermoelement of emf-temperature properties similar to that of the test specimen, and which previously has been standardized thermoelectrically with respect to National Bureau of Standards Platinum No. 67. If a large amount of testing is anticipated, a coil or spool of working standard material is reserved. This working standard lot is selected on the basis of uniformity, and a minimum of three samples taken from the center and the ends of the lot is calibrated against the standard platinum. The working standard and the test specimen may differ in diameter, but it is convenient for their lengths to be about equal.

8.5.3 Reference Junction

The reference junction temperature of the test specimen and of the working standard is controlled during the period of test by maintaining it at the ice point (0°C). The ice-water junction is used because it is recognized as a convenient means for maintaining a constant temperature reference. The description and maintenance of the ice point are given in Chapter 7. A reference temperature other than the ice point may be used. However, the working standard should be calibrated against standard platinum using the alternate reference temperature, or the calibration data adjusted to correspond to the alternate reference temperature.

8.5.4 Measuring Junction

The measuring junction consists of a welded union of the test specimen and working standard. The weldment may be prepared by any method providing a good electrical connection which can be immersed fully in the uniform temperature region of the testing medium. Any number of test specimens and working standards may be welded together provided the resulting assembly does not introduce heat losses which prevent maintaining a uniform temperature region. If separation of the working standard and test specimen cannot be maintained during the test (except where they must make contact at the measuring junction), it is necessary that they be insulated from each other.

8.5.5 Test Temperature Medium

For temperatures up to 550°F (288°C), appropriate liquid baths may be used. For temperatures above 300°F (149°C), electrically heated tube or muffle type furnaces are recommended for comparison testing of base metal or noble metal thermoelement materials of similar emf-temperature properties. For convenience, a separate furnace may be controlled and available for each test temperature. This eliminates lost time in changing furnace temperatures when a large volume of testing is to be done. The length of each furnace is at least 15 in. so as to provide a minimum depth of immersion of 7 in. for the test thermocouple assembly. A constant immersion depth is maintained, whether single or multiple furnaces are used. The inside diameter of the furnace tube is approximately 1 to 3 in., the specific diameter depending upon the size and the number of the specimens to be included in the test thermocouple assembly. The furnace provides a uniform temperature zone extending at least 3 in. back from the measuring junction, or further if required to contain any inhomogeneity in the test thermocouple assembly. The temperature of each furnace is controlled manually or automatically to within $\pm 20^{\circ}$ F ($\pm 11^{\circ}$ C) of the desired value which is ample for comparison testing of thermoelements having compositions similar to the secondary working standard.

8.5.6 Emf Indicator

The emf generated by the thermocouple, consisting of the test specimen and the working standard, is measured with instrumentation sensitive to ± 0.001 mV with an accuracy over a 2 mV range of ± 1 percent of the reading plus 0.003 mV. Any millivoltmeter, with circuitry errors taken into account, or potentiometer with a galvanometer or null indicator, providing measurements within these tolerances is acceptable. An indicator with a bidirectional scale (zero center) is convenient, but a unidirectional instrument may be used if a polarity switch is provided in the copper connecting circuit, or if the copper extensions to the instrument are exchanged whenever the polarity between the working standard and test specimen is reversed.

8.5.7 Procedure

For a furnace medium the test thermocouple assembly is inserted into the furnace so that the measuring junction extends at least 3 in. into the uniform temperature zone taking care there is no contact between the wires and the furnace wall. The free ends of the working standard and the test specimens are bent as required so they may be inserted into the mercurycontaining glass tubes of the reference junction. If a horizontal furnace is used, the joined thermocouple assembly may be bent midway or towards the free ends in the form of an inverted "L." Care is exercised to minimize distorting the wires prior to testing because of the effect of cold work on emf output. After bringing the test temperature to the specified value, sufficient time is provided for the test assembly to reach steady state conditions before recording the emf generated between the test specimen and the working standard.

In a similar manner the emf generated between all other test specimens in the assembly is measured with respect to the working standard. Then the test temperature is raised to the next higher specified value, or the test assembly is advanced to the next furnace or bath having the next higher specified temperature if multiple furnaces or baths are used. A second set of readings is taken at the new temperature, and the procedure is repeated with readings taken at all specified temperatures. In all cases the readings are taken in sequence from the lowest to the highest temperature to minimize test variations between producer and consumer if any of the alloys are affected by differences in short time heating cycles. A working standard is used for one series of temperature changes only. However, if a portion considerably exceeding the region previously exposed to the uniform heating zone is discarded, the remainder of a base metal standard may be used for another test assembly. For noble metals and their alloys, the amount of reuse depends on the known stability of the material involved.

The polarity of the test thermoelement with respect to the working standard is determined as follows:

(1) If the test specimen is connected to the positive (+) terminal of an unidirectional potentiometer and balance can be achieved, the specimen is positive to the working standard.

(2) If the connections must be reversed to achieve balance, that is, the working standard must be connected to the positive terminal, the specimen is negative to the working standard.

(3) If an indicating potentiometer with a bidirectional scale is used, the specimen to the positive (+) terminal and the working standard to the negative (-) terminal are connected. The polarity of the specimen with respect to the working standard then will be indicated by the direction of balance of the instrument scale.

The emf of the test specimen with respect to Pt-67 is then reported for each test temperature after algebraically adding the measured emf between the test specimen and the standard, and the known emf between the standard and Pt-67.

8.6 References and Bibliography

References

- [52] "The International Practical Temperature Scale of 1968," Metrologia, Vol. 5, No. 2, April 1969, pp. 34-49.
- [53] Benedict, R. P., Technical Journal, Leeds & Northrup Co., Vol. 6, Summer Issue, 1969.
- [54] Stimson, H. F., "International Practical Temperature Scale of 1948, Text Revision of 1960," NBS Monograph 37, National Bureau of Standards, 1961.
- [55] Quinn, T. J. and Chandler, T. R. D., "A New Determination of the Freezing Point of Platinum," Metrologia, Vol. 5, No. 3, 1971, pp. 132-133. [56] ASTM Method E 1-71, "Standard Specifications for ASTM Thermometers," 1973
- Annual Book of ASTM Standarads, Part 30, p. 37.
- [57] Kostkowski, H. J. and Lee, R. D., "Theory and Methods of Optical Pyrometry," NBS Monograph 41, National Bureau of Standards, 1962.
- [58] Burns, G. W. and Gallagher, J. S., "Reference Tables for the Pt-30% Rh Versus Pt-6% Rh Thermocouple," Journal of Research, National Bureau of Standards, Vol. 70C, April-June 1966.
- [59] Corruccini, R. J., "Annealing of Platinum for Thermometry," Journal of Research, National Bureau of Standards, Vol. 47, No. 94, 1951, RP2232.
- [60] Diesselhorst, H., "Thermokraftfreier Kompensationapparat mit funf Dekadeu und kunstanter kleinem Widerstand," Zeitschrift für Instrumentenkunde, Vol. 28, No. 1, 1908.
- [61] White, W. P., "Thermokfraftfreie Kompensationapparat mit kleinem Widerstand und kustanter Galvanometereempfindlicheit," Zeitschrift für Instrumenteokunde, Vol. 27, No. 210, 1907.
- [62] Behr, L., "The Wenner Potentiometer," Review of Scientific Instruments, Vol. 3, No. 108, 1932
- [63] Roeser, W. F. and Lomberger, S. T., "Methods of Testing Thermocouple Materials," NBS Circular 590, National Bureau of Standards, 1958.
- [64] Finch, D. I., "General Principles of Thermoelectric Thermometry," Temperature, Its Measurement and Control in Science and Industry, Vol. 3, Part 2, Reinhold, New York, 1962, p. 3.
- [65] McLaren, E. H., "The Freezing Points of High Purity Metals as Precision Temperature Standards," Temperature, Its Measurement and Control in Science and Industry, Vol. 3, Part 1, Reinhold, New York, 1962, p. 185.
- [66] Trabold, W. G., Temperature, Its Measurement and Control in Science and Industry, Vol. 3, Part 2, Reinhold, New York, p. 45.
- [67] Fairchild, C. O., Hoover, W. H., and Peters, M. F., "A New Determination of the Melting Point of Palladium," Journal of Research, National Bureau of Standards, Vol. 2, No. 931, 1929, RP 65.
- [68] Barber, C. R., "The Calibration of the Platinum/13% Rhodium-Platinum Thermocouple Over the Liquid Steel Temperature Range," Journal of the Iron and Steel Institute, Vol. 147, No. 205, 1943.
- [69] Bedford, R. E., "Reference Tables for Platinum-20% Rhodium/Platinum-5% Rhodium Thermocouples," *Review of Scientific Instruments*, Vol. 35, No. 1177, 1964.
- [70] Quigley, H. C., "Resume of Thermocouple Checking Procedures," Instruments, Vol. 25, No. 616, 1952.
- [71] ASTM Method E 220-72, "Standard Method for Calibration of Thermocouples by Comparison Techniques," 1973 Annual Book of ASTM Standards, Part 30, p. 585.
- [72] "Automatic Thermocouple Comparator," Technical News Bulletin, National Bureau of Standards, Vol. 47, No. 5, May 1963, p. 82.
- [73] Toenshoff, D. A., "Automatic Calibration of Thermocouples," Technical Bulletin, Englehard Industries, Vol. 2, No. 3, Dec. 1961, p. 88.
- [74] ASTM Method E 77-72, "Standard Method for Verification and Calibration of Liquid-in-Glass Thermometers," 1973 Annual Book of ASTM Standards, Part 30, p. 132.
- [75] Dahl, A. I., "Stability of Base-Metal Thermocouples in Air from 800 to 2200°F," Journal of Research, National Bureau of Standards, Vol. 24, No. 205, 1940, RP 1278.
- [76] Benedict, R. P. and Ashby, F. H., "Empirical Determination of Thermocouple Characteristics," *Transactions*, American Society of Mechanical Engineers, *Journal of Engineering for Power*, Jan. 1963, p. 9.
- [77] Benedict, R. P., "Engineering Analysts of Experimental Data," Transactions, American Society of Mechanical Engineers, Journal of Engineering for Power, Jan. 1969, p. 21.

Bibliography

Temperature, Its Measurement and Control in Science and Industry, Vol. 1, Reinhold, New York, 1941, Vol. 3, Parts 1 and 2, 1962.

ASME Performance Test Codes, Instruments and Apparatus Supplement, Part 3, Temperature Measurement, American Society of Mechanical Engineers, New York, 1973.

Benedict, R. P., Fundamentals of Temperature, Pressure, and Flow Measurement, Wiley, New York, 1969.

Chapter 9–Installation Effects

9.1 Temperature Measurement in Fluids

Fluids are divided readily into two types, compressible and incompressible, or more simply into gases and liquids. However, many concepts involved in the measurement of temperatures in fluids are common to both types, and these are discussed first.

9.1.1 Response

No instrument responds instantly to a change in its environment. Thus in a region where temperature is changing, a thermocouple will not be at the temperature of its environment and, hence, cannot indicate the true temperature. The simplified temperature changes considered here are the step change and the ramp change. In the step change, the temperature of the environment shifts instantaneously from T_1 to T_2 . In the ramp change, the environment temperature shifts linearly with time from T_1 to T_2 .

It is common practice to characterize the response of a temperature sensor by a first order thermal time constant τ which is defined as:

$$\tau = \frac{wVc}{hA} \tag{41}$$

where w is specific weight, V is volume, and c is specific heat, all of the sensor; while h is the heat transfer coefficient, and A is the area of the fluid film surrounding the sensor.

A solution of the first order, first degree, linear, differential equation [78,79] resulting from a heat balance between the fluid film surrounding the sensor and the sensor itself is

$$T = C e^{-t/\tau} + \frac{1}{\tau} e^{-t/\tau} \int_0^t T_e e^{t/\tau} dt$$
 (42)

where T is the sensor temperature, and T_e is the environment temperature, both at time t, and C is a constant of integration.

For a ramp change in temperature (as is found in a furnace being heated at a uniform rate) Eq 42 reduces to

$$(T_e - T) = R\tau \tag{43}$$

Equation 43 states that if an element is immersed for a long time in an

environment whose temperature is rising at a constant rate $R = dT_e/dt$, then τ is the interval between the time when the environment reaches a given temperature and the time when the element indicates this temperature.

For a step change in temperature (as when a thermocouple is plunged into a constant temperature bath), Eq 42 reduces to

$$(T_e - T) = (T_e - T_1)e^{-t/\tau}$$
(44)

Equation 44 states that if an element is plunged into a constant-temperature environment, τ is the time required for the temperature difference between the environment and the element to be reduced to 1/e of the initial difference. Note that for practical purposes the sensor will reach the new temperature after approximately 5 time constants. See Fig. 41 for a graphical presentation of these equations.

Below a Mach number of 0.4, the time constant hardly is affected by the fluid velocity. The size of the temperature change affects τ because physical properties are not necessarily linear functions of temperature. Wormser [80] considers these effects in greater detail. Scadron and Warshawsky [81] present convenient nomographs for determining the time constant in the presence of heat transfer. Fluid turbulence tends to reduce the time constant by increasing the film coefficient.

FIG. 41—Graphical presentation of ramp and step changes.

If the sensor is contained in a thermowell the response time is increased because of the extra mass and the additional heat transfer coefficient involved. It may be necessary to consider the response as a second order function in which case a dead time is observed before the sensor responds to a step temperature change. However, Coon and Looney [82,83] state that the time constant usually is represented adequately by the first order time constant τ .

To achieve the best time constant, the measuring junction should be in intimate contact with the well tip. Spring loading is sometimes used to accomplish this.

The response time usually is measured in liquids by plunging the thermocouple assembly into a well-stirred bath held at constant temperature. If the response time is of the same order as the immersion time, the velocity of immersion or depth of immersion or both become important parameters in the measurement. Reference 84 indicates a method for standardizing the liquid baths used in this determination.

For the response time in gases, the literature should be consulted [85,86]. Manufacturers sometimes can supply this information for simple conditions.

Multijunctions [87] and electrical networks [88] have been used successfully to improve the response of a thermocouple.

9.1.2 Recovery

Whenever a gas moves with an appreciable velocity, in addition to the thermal energy in the form of random translational kinetic energy of the molecules, some of its thermal energy is in the form of directed kinetic energy of fluid flow. The static temperature is a measure of the random kinetic energy, while the dynamic temperature is a measure of the directed kinetic energy. The total temperature is a concept (not a measurement) which sums the static and the dynamic temperatures. Such a total temperature would be sensed by an adiabatic probe which completely stagnates an ideal gas. Thus

$$T_{\rm adi, ideal} = T_t = T + \frac{V^2}{2Jgc_p} = T + T_V$$
 (45)

where:

 T_t = total temperature,

- T = static temperature,
- T_V = dynamic temperature,
- V = directed fluid velocity,
- J = mechanical equivalent of heat,
- g =acceleration of gravity, and
- c_p = specific heat at constant pressure.

In real fluids, an adiabatic recovery factor (α) generally is defined such that

$$T_{\rm adi} = T + \alpha T_V \tag{46}$$

where α may be more or less than one depending on the relative importance of thermal conductance and thermal capacitance in the boundary layers surrounding the sensor. Since the Prandtl number is the ratio of these two effects, it is common to express recoveries in terms of the Prandtl number. See Refs 89, 90, 91, and 92 for more information on the recovery factor.

A real sensor immersed in a real fluid tends to radiate to its surroundings. Also there is a tendency for a conductive heat transfer along the probe stem. These two effects are balanced by a convective heat transfer between the probe and the fluid. In addition, real probes do not always stagnate a moving fluid effectively. To account for these realities in temperature measurement in moving fluids, a dynamic correction factor (K) is defined as

$$T_{\rm probe} = T + KT_V \tag{47}$$

where K corrects for impact, viscosity, and conductivity effects in the fluid, and radiation and conduction effects in the probe. K may take on any value depending on the relative importance of these effects. Variations of K between ± 35 cannot be ruled out. Therefore, the factor KT_V can far outweigh all other factors such as calibration deviations.

9.1.3 Thermowells

Protection tubes or thermowells or both often are used to separate the measuring junction of a thermocouple from the fluid whose temperature is of interest. Such devices are used to avoid contamination of the thermoelements, to provide safety in case of high pressure installations, to provide strength in the case of significant fluid bending forces in the thermocouple, etc. Thermocouples installed in wells can be withdrawn for inspection, calibration, and replacement. A thermocouple in a well responds more slowly to changes in fluid temperature. Typical wells and their strength requirements are defined in Ref 93.

The depth of immersion in the fluid is an important consideration. One method of checking for adequacy of immersion is to increase the depth of immersion of the thermocouple well assembly in a constant temperature bath until the thermocouple output becomes constant. A minimum immersion depth of ten times the well outside diameter is a rule of thumb often used.

9.1.4 Thermal Analysis of an Installation

A thermocouple installation may give an indication which differs from the fluid temperature which is to be measured because:

1. The boundary walls are at a temperature different from that of the fluid.

- 2. There may be a temperature gradient along the well.
- 3. The fluid may be flowing with an appreciable velocity.
- 4. The thermocouple may be improperly calibrated.

Item 4 has been covered in Chapter 8 and will not be considered further here.

Basically, the thermocouple temperature is the result of a heat balance between the various modes of heat transfer.

$$q_c = q_r + q_k \tag{48}$$

where q indicates rate of heat transfer and the subscripts c, r, and k signify respectively convection, radiation, and conduction. An equation has been developed to describe this heat balance mathematically [94] as

$$\frac{d^2T}{dx^2} + a_1(x) \frac{dT_x}{dx} - a_2(x, y)T_x = -a_2a_3(x, y)$$
(49)

where $a_1(x) = dA_k/A_k dx$ which indicates the effect of a change in crosssectional area of the well; $a_2(x, y) = dA_c(h_r + h_c)/kA_k dx$ which indicates the effect of radiation coefficient (h_r) , convection coefficient (h_c) , conductivity (k), surface area for convection (A_c) and cross-sectional area for conduction (A_k) ; $a_3(x, y) = (h_c T_{adi} + h_r T_w)/(h_c + h_r)$ which relates the heat transfer coefficients to the adiabatic fluid temperature (T_{adi}) and the surrounding wall temperature (T_w) .

Various solutions are possible for Eq 49 depending on the assumptions one is willing to make. Three simplified solutions are:

1. Overall Linearization—When the radiation coefficient is based on an average well temperature, the result is

$$\frac{T_x - a_3}{T_w - a_3} = \frac{e^{mx}}{1 + e^{2mL}} + \frac{e^{-mx}}{1 + e^{-2mL}}$$
(50)

where

$$m = \left(\frac{4D(h_r + h_c)}{k(D^2 - d^2)}\right)^{1/2}.$$

Typical values for h_r , h_c , and k are given in Ref 94. This approach leads to quick, approximate answers whenever the fluid can be considered transparent to radiation.

2. *Tip Solution*—When conduction effects are neglected along the well or protection tube, Eq 49 reduces to

$$T_{\rm tip} = a_3 \tag{51}$$

which can be solved at once since h_r and h_c are available in the literature (see Ref 94). This approximation normally would give tip temperatures which are too high since conduction tends to reduce T_{tip} .

3. Stepwise Linearization—This is the usual solution to Eq 49. Detailed equations are beyond the scope of this manual, but briefly one divides the well, lengthwise, into a number of elements. The temperature at the center of each element is taken to represent the temperature of that entire element. The heat balance equation is applied successively to one element after another until a match between tip and base temperatures is achieved. Each installation is different. Each must be evaluated carefully to determine if the installation is capable of yielding temperatures within the allowable uncertainties.

9.2 Surface Temperature Measurement

9.2.1 General Remarks

There is no easy method of attaching a thermocouple to a surface so that it can be guaranteed to indicate the true surface temperature. To do this, it would be necessary to mount the measuring junction so that it could attain but not affect the surface temperature. In most cases, the presence of the thermocouple (or any alternative transducer) will cause a perturbation of the temperature distribution at the point of attachment, and thus it only will indicate the perturbed temperature.

9.2.1.1 Measurement Error—In many cases, a significant difference will exist between the indicated temperature and the "true" surface temperature, that is, the temperature that the surface would reach if no thermocouple were present. This difference is normally termed a "measurement error," but it should not be confused with calibration or extension wire errors which are common to all thermocouple measurements. The relationship between the indicated and true surface temperature is often defined by the equation:

$$Z = \frac{T_s - T_i}{T_s - T_a}$$

where:

Z = installation factor,

 T_s = true surface temperature,

 T_i = indicated surface temperature, and

 T_a = temperature of the surroundings or coolant.

This equation expresses the measurement error $T_s - T_i$ as a fraction of the difference between the surface and ambient temperatures.

The value of Z for a particular installation may be calculated or found by experiment; however, as several simplifying assumptions normally are made in any theoretical derivation, experimental verification is necessary if an accurate value of Z is required. 9.2.1.2 Installation Types—There are two basic types of surface thermocouple installation: the permanent, which is used to give a continuous history of the surface temperature, and the temporary, normally made with a sensing probe in mechanical contact with the surface to obtain spot readings. The basic principles for accurate measurement are similar for both types, but the probe type of sensors are more susceptible to measurement errors and generally have a lower accuracy.

9.2.2 Installation Methods

The method of attaching the thermocouple to the surface is governed by considerations of the metallurgical and thermal properties of the materials, their relative sizes, and the modes of heat transfer at the surface. Common methods are shown in Fig. 42.

9.2.2.1 Permanent Installations—For thin materials, the thermocouple junction is attached either directly to the surface (Fig. 42a) or is mounted in a heat collecting pad (Fig. 42b). It may be welded, brazed, cemented, or clamped to the surface. Good mechanical support of the leads is necessary so that no stresses are applied to the junction.

FIG. 42-Common attachment methods.

For thicker materials, the thermocouple junction may be peened into the surface or installed in a groove (Fig. 42c). The groove may be filled so that the surface is restored to its original profile. A thermocouple in a groove normally will have its junction below the surface and will indicate the subsurface temperature. A similar technique used with tubes is shown in Fig. 42d.

The configuration shown in Fig. 42e may be used where rapid response is required, as the junction can be made very thin by electroplating or mechanical polishing techniques [95–99].

Several installation methods are illustrated in the literature cited, particularly in Refs 100 and 101.

Metal sheathed thermocouples are suited particularly to surface measurements, especially for severe environments. They combine good strength and small size, and the measuring junction may be reduced in diameter or flattened to achieve good response with small errors.

9.2.2.2 Measuring Junctions—The measuring junction may be formed in several ways, each having its own advantages and disadvantages.

The bead junction commonly is used. The temperature indicated is a function of the temperatures where the wires leave the bead [102,103] so that the bead should be small, and the wires should leave the bead as close to the surface as possible. This may be accomplished by using a flattened bead. Good thermal contact between the bead and the surface is essential, especially if there are temperature gradients. If the surface is a material of poor thermal conductivity, it may be advantageous to mount the measuring junction in a heat collecting pad, or button, which has a good conductivity [104].

The simplest junction is shown in Fig. 43, in which a single wire is brought to the surface which acts as the second thermoelement. The circuit is completed with a wire of the same material as the surface. This technique usually involves calibration of the wire/surface-material thermocouple. This

FIG. 43—"Single wire" thermocouple.

calibration may not be very reproducible since the surface material is probably not an alloy with controlled thermoelectric properties. It, however, does provide a junction exactly at the surface, and the perturbation errors (see Section 9.2.3) can be reduced to a very low value [95,105,106].

A common variation is the separated junction in which each wire is joined separately to the surface (which must be an electrical conductor). This type, which is really two series junctions, has the advantage that the two junctions form a part of the surface. The output of such a thermocouple is a weighted mean of the two individual junction temperatures, of the form

$$e_0 = e_m + (b_1 - b_2) \frac{(T_1 - T_2)}{2}$$

where:

 T_1 and T_2 = junction temperatures,

 e_0 = measured output,

- e_m = output which would be measured if both junctions were at the mean temperature $(T_1 + T_2)/2$, and
- b_1 and b_2 = Seebeck coefficients of the two thermocouple wires versus the surface material.

Moffat [34] gives a graphical method of analysis.

Thus, the output will be greater or less than the mean depending upon which wire is at the higher temperature. The output generally cannot be calculated, as neither T_1 , T_2 , nor the relationship between each wire and the surface will be known. There will be, therefore, an uncertainty in the measured temperature if temperature gradients exist. This error is minimized if the wires are bonded to the surface as close together as possible, to reduce $(T_1 - T_2)$. This type of junction has been shown to be more accurate than a bead junction [107,108].

9.2.2.3 Probes—It is often desirable to know the temperature distribution over a surface or to make a spot check at one particular point. These measurements are made with a probe containing a thermocouple junction which is held in mechanical contact with the surface. The configuration of the junction is based on the intended application, and several types are commercially available. The probes are in most cases held normal to the surface, and for ease in use should be spring-loaded, which also reduces the error.

Probes are subject to the same errors as permanent installations, but the designer has no control over the conditions of use, and so the errors associated with this type of measurement may be significant. Since the probe provides a heat conducting path from the surface, thermal resistance due to oxide or dirt causes an additional error.

Correction factors [109] for several types of junctions range from 0.013 to 0.168, but in general must be determined for specific conditions.

FIG. 44—Types of junction using metal sheathed thermocouples.

The size of the junction should be as small as possible. Several types of junction are illustrated in Fig. 44. The junction types in order of decreasing measurement error are: grounded, exposed, button, and separated.

In order to reduce measurement errors, probes with an auxiliary heater have been used [110,111]. The probe thermocouple is heated to the surface temperature so that no temperature gradients are set up when the probe is applied to the surface. One form of probe uses two thermocouples (Fig. 45). Equality of the auxiliary and surface junction temperatures indicates that no heat is being transferred along the probe and that the surface junction is at the surface temperature. With this type of probe, the two junctions must be very close, and the response to a change in heater power must be fast or an error can occur in transient measurements. A probe which is controlled automatically has been described recently [112,113]. It is claimed to have an accuracy of 3/8 percent and can be used to 1000°F (538°C) on a variety of materials, with a measurement time of less than one second. Sasaki and Kamanda [114] used a different approach and eliminated the auxiliary junction. The surface junction was arranged to contact the surface at two second intervals only. The heater input was modulated over a twenty second period and adjusted so that the maxima and minima were above

FIG. 45—Thermocouple probe with auxiliary heater, diagramatic arrangement.

FIG. 46—Three wire thermocouple to compensate for voltage drop induced by surface current.

and below the surface temperature. At contact the surface junction temperature changed due to heat exchange unless the two temperatures were equal. With this method the surface temperature of glass bulbs was determined with an accuracy of 0.5° F.

9.2.2.4 Moving Surfaces—Surface temperatures of moving bodies are measured by several methods. A junction mounted in a probe may be held against the body [115], but this method results in errors caused by friction. In metal cutting investigations, 'the metal body and the cutting tool are used as the thermocouple materials. The output of this type of junction has been investigated extensively and has been analyzed by Shu et al [116]. Slip-rings to rotating members, intermittent and sliding contacts have been used also. A general review of such installations is given in Ref 101.

9.2.2.5 Current Carrying Surfaces—A technique of eliminating errors caused by voltage drop in surfaces heated by the passage of d-c current has been described by Dutton and Lee [117]. A three-wire thermocouple forming two junctions is used (Fig. 46), and the emf's due to the voltage drop in the surface are balanced out during successive reversals of current. When the balance is correct, the thermocouple output is constant regardless of the direction of the heating current.

This technique is also useful for surfaces carrying large alternating currents. In other cases, filters will suffice to attenuate the a-c component. Self-balancing potentiometers usually are affected adversely if the a-c pickup level is high. D-c indicating instruments and portable potentiometers are normally insensitive to a-c and present no problem unless the current is high enough to damage the coils. If the thermocouple junction is not isolated from the surface, voltages appearing between the surface and the instrument ground (common-mode voltages) cause an error with some instruments.

9.2.3 Sources of Error

When a thermocouple is attached to a surface, its presence alters the heat transfer characteristics of the surface and normally will change the temperature distribution. This causes an error which will be referred to as perturbation error.

9.2.3.1—The causes of perturbation error can be broken down into the following:

The heat transfer characteristics of the surface are changed by the installation, that is, the surface emissivity or effective thermal conductivity will be altered or the wires may act as fins providing additional heat transfer paths.

Thermal contact resistance between the junction and the surface will cause a temperature gradient which will prevent the measuring junction from attaining the correct temperature if heat is being exchanged between the surface and its surroundings.

If temperature gradients exist, there will be an error due to uncertainty in the exact position of the junction or junctions relative to the surface [102,103].

The response time of the thermocouple installation introduces errors during transient conditions [118,119] (see also Section 9.1.1). The response time will be that of the surface installation and not of the thermocouple alone.

Although not discussed in this chapter, the errors associated with any thermocouple measurement, such as deviations from standard emf and lead wire errors, must be taken also into consideration [120,121].

9.2.4 Error Determination

The perturbation error must be determined if the surface temperature must be known with a high degree of accuracy. The installation should be designed to minimize this error, but in many cases materials and size make compromises necessary, so that an ideal design cannot be achieved. The error, and hence the correction factor, can be determined by the following methods.

9.2.4.1 Steady State Conditions—The direct calculation of the error involves solving the heat flow equation for the measuring junction and surface geometry. Normally simplifying assumptions are made, and the results must be interpreted in relation to them. The calculations show clearly the major sources of error and indicate means of reducing errors to a minimum [122,123,124,125,126].

Analog methods of solving the heat transfer equations using resistance or resistance-capacitance networks indicate the overall temperature distribution and show the perturbation effect of the thermocouple clearly. They are however difficult to make flexible, and so a number of analog models are required if a range of heat transfer conditions is to be studied [125,126,127,128].

Relaxation methods of solving the heat transfer equations have been used to calculate the temperature distribution; this method is attractive if a computer is available to perform the considerable amount of arithmetic required.

Direct experimental measurement on the installation is often the only satisfactory way to accurately determine the error. Care must be taken to simulate the service conditions exactly as a change in a variable can significantly affect the error. The major problem is to determine the true surface temperature. This is discussed extensively in the literature [96,128, 129,130,131,132,133].

9.2.4.2 Transient Conditions—If surface temperatures are changing, the response of the thermocouple attachment may cause a significant error. The response time of the thermocouple alone will have little significance for surface measurements if the heat transfer path between the surface and the measuring junction is poor or adds thermal mass.

The time required to change the measuring junction temperature causes the thermocouple output to lag the surface temperature in time and decreases its amplitude [108,118,119]. The time constant may be determined experimentally from the response to step or ramp functions of surface temperature change.

A. Insulated Thermocouple Normal to an Electrically Heated Surface— For surfaces with changing temperatures a bead thermocouple attached normal to an electrically heated surface and insulated from the ambient has been analyzed by Quant and Fink [134] and Green and Hunt [135].

The analysis showed that in order to obtain a rapid response with a small, steady-state error, it is necessary to use a small junction bead with good surface contact, small diameter wires, and good insulation between the wires and the surroundings.

B. Surface Heated by Radiation—Thermocouples mounted on a surface subject to radiant heating at temperature-rise rates up to 30° F per s were investigated by White [107]. His results showed that a separated-junction thermocouple produced the least error.

The thermocouple errors increased with increasing plate thickness and with increasing rates of temperature rise. Furthermore, the amount of bare thermocouple wire between the junction and the insulation should be a minimum.

Kovacs and Mesler [136] investigated the response of very fast surface thermocouples subject to radiant heating as a function of size and type of junction. Junctions were formed by electroplating or mechanical abrasion. Very thin junctions were subject to an overshoot error for high rates of temperature rise, as heat could not be transmitted back through the thermocouple to subsurface layers fast enough. On the other hand, too thick a junction corresponded to a junction beneath the surface. The junction thickness should be of the same order of magnitude as the distance between the two thermocouple wires to avoid overshooting.

C. Surface Subject to Aerodynamic Heating—An analysis and design of a thermocouple installation which can be mounted in a thin-metal skin subjected to aerodynamic heating is given in Ref 137. A finite difference calculation of the distorted temperature field indicated that errors due to insulation resistance at high temperatures were of the same order of magnitude as those due to the uncertainty of the exact junction location.

9.2.5 Procedures for Minimizing Error

The examples quoted in the preceding section have been treated separately. It is generally impossible to extrapolate from one set of conditions to another unless the installation is identical. The analyses show procedures that should be followed to reduce measurement errors. These are:

A. Use the smallest possible installation to avoid perturbation errors.

B. Bring the thermocouple wires away from the junction along an isotherm for at least 20 wire-diameters to reduce conduction errors. The use of thermocouple materials with low thermal conductivity also will reduce this error.

C. Locate the measuring junction as close to the surface as possible rather than above or below it.

D. Design the installation so that it causes a minimum disturbance of any fluid flow or change in the emissivity of the surface, to avoid changes in convective or radiative heat transfer.

E. Design the installation so that the total response is fast enough to cause negligible lag for the transients expected in service.

F. Reduce the thermal resistance between the measuring junction and the surface to as low a value as possible. If the surface has a low thermal conductivity, a heat collecting pad may be used.

9.2.6 Commercial Surface Thermocouples

Many surface installations are custom engineered, but industry does offer several standard surface thermocouples intended for specific applications [115,138].

9.2.6.1 Surface Types—Figure 47 shows several types which are mounted on the surface. Type *a* is a gasket thermocouple which normally is mounted on a stud and Type *b* is a rivet head. The clamp attachment, Type *c*, is used on pipelines and will be reasonably accurate if the pipe is lagged thermally. The weldable pad attachment, Type *d*, is used on boiler or superheater tubes and uses a metal sheathed thermocouple with a grounded junction. The sheath and pad materials are chosen to be compatible with the boiler environment. An accuracy of ± 2 percent is claimed for these thermocouples (± 1 percent if a correction factor supplied by the manufacturer is used).

For installations where it is possible to mount the thermocouples in the surface, stud- or rivet-mounted plugs similar to Type e are offered by several manufacturers. Variations of this type have been used extensively for heat transfer measurements [122,139] and for applications requiring very rapid response such as the measurement of surface temperatures in gun barrels

FIG. 47—Commercially available types of surface thermocouples.

and rocket exhaust chambers. The material of the plug must match the material of the surface, otherwise significant errors can be introduced [140], especially for materials with low thermal conductivity.

9.2.6.2 Probe Types—Probe type thermocouples for temporary or spot readings are offered usually as a complete package consisting of a thermocouple head which contains the measuring junction, a hand probe, and an indicating milliammeter calibrated in degrees. The measuring junctions are normally interchangeable so that one instrument can be used with a variety of heads. The type of head will depend on the surface characteristics. Common types are shown in Fig. 48.

The separated-junction probe is used on electrically conducting surfaces only. Dirt or oxide layers will introduce a thermal resistance error or even prevent the completion of the circuit. For greatest convenience, the two wires should be separately spring-loaded against the surface. The button type of junction must be held carefully as any deviation from the normal will cause a change in the height of the junction above the surface, and the

FIG. 48—Commercial probe thermocouple junctions.

readings will be inconsistent. The spring-loaded type of junction is available in several forms and has been adapted for measurements on moving surfaces [115].

The accuracy obtainable with these probes is not high. However, the errors can be reduced to 2 or 3 percent for good conducting surfaces in still air cooled by natural convection. If the surface is a poor thermal conductor or the rate of heat transfer is high, the error will be considerably higher than this.

For rotating or moving surfaces, probe instruments utilizing a junction spring-loaded against the surface are used. Heat generated by friction causes an error which can be significant. (Bowden and Ridler [141] have shown that the temperatures may reach the melting point of one of the metals.)

A heated thermocouple probe instrument for measuring the temperature of wires or filaments is described by Bensen and Horne [142], and a wire temperature meter [143] has been marketed recently.

9.3 References

- [78] Harper, D. R., "Thermometric Lag," NBS Scientific Paper 185, National Bureau of Standards, March 1912.
- [79] Benedict, R. P., Fundamentals of Temperature, Pressure, and Flow Measurements, Wiley, New York, 1969.
- [80] Wormser, A. F., "Experimental Determination of Thermocouple Time Constants," National AERO Meeting Paper 158D, Society of Automotive Engineers, April 1960.
- [81] Scadron, M. D. and Warshawsky, I., "Experimental Determination of Time Constants and Nusselt Numbers for Bare-Wire Thermocouples," NACA TN 2599, National Advisory Committee for Aeronautics, Jan. 1952.
- [82] Coon, G. A., "Response of Temperature-Sensing-Element Analyses," *Transactions*, American Society of Mechanical Engineers, Nov. 1957, p. 1857.
- [83] Looney, R., "Method for Presenting the Response of Temperature-Measuring Systems," Transactions, American Society of Mechanical Engineers, Nov. 1957, p. 1851.
- [84] Murdock, J. W., Foltz, C. J., and Gregory, C., "A Practical Method of Determining Response Time of Thermometers in Liquid Baths," *Transactions*, American Society of Mechanical Engineers, *Journal of Engineering for Power*, Jan., 1963, p. 27.
- [85] Caldwell, F. R., Olsen, L. O., and Freeze, P. D., "Intercomparison of Thermocouple Response Data," SAE Paper 158F, Society of Automotive Engineers, April, 1960.
 [86] Hornfeck, A. J., "Response Characteristics of Thermometer Elements," *Transactions*,
- [86] Hornfeck, A. J., "Response Characteristics of Thermometer Elements," Transactions, American Society of Mechanical Engineers, Feb. 1949, p. 121.

152 MANUAL ON THE USE OF THERMOCOUPLES IN TEMPERATURE MEASUREMENT

- [87] Benedict, R. P., Fundamentals of Temperature, Pressure, and Flow Measurements, Wiley, New York, 1969, p. 152.
- [88] Shepard, C. E. and Warshawsky, I., "Electrical Techniques for Compensation of Thermal Time Lag of Thermocouples and Resistance Thermometer Elements," NACA TN 2703, National Advisory Committee for Aeronautics, Jan. 1952.
- [89] Benedict, R. P., Fundamentals of Temperature, Pressure, and Flow Measurements, Wiley, New York, 1969, p. 126.
- [90] Roughton, J. E., "Design of Thermometer Pockets for Steam Mains," *Proceedings* 1965-1966, Institute of Mechanical Engineers, Vol. 180, Part 1, No. 39.
- [91] Faul, J. C., "Thermocouple Performance in Gas Streams," Instruments and Control Systems, Dec. 1962.
- [92] Werner, F. D., "Total Temperature Measurement," ASME Paper 58-AU-17, American Society of Mechanical Engineers.
- [93] "Temperature Measurement," ASME PTC 19.3, American Society of Mechanical Engineers, 1961.
- [94] Benedict, R. P. and Murdock, J. W., "Steady-State Thermal Analysis of a Thermometer Well," *Transactions*, American Society of Mechanical Engineers, *Journal of Engineering for Power*, July 1963, p. 235.
- [95] Bendersby, D., "A Special Thermocouple for Measuring Transient Temperatures," Mechanical Engineering, Vol. 75, No. 2, Feb. 1953, p. 117.
- [96] Powell, W. B. and Price, T. W., "A Method for the Determination of Local Heat Flux from Transient Temperature Measurements," *Transactions*, Instrument Society of America, Vol. 3, No. 3, July 1964, p. 246.
 [97] Moeller, C. E., "Thermocouples for the Measurement of Transient Surface Tem-
- [97] Moeller, C. E., "Thermocouples for the Measurement of Transient Surface Temperatures," *Temperature, Its Measurement and Control in Science and Industry*, Vol. 3, Part 2, Reinhold, New York, 1962, p. 617.
- [98] Ongkiehong, L. and Van Duijn, J., "Construction of a Thermocouple for Measuring Surface Temperatures," Journal of Scientific Instruments, Vol. 37, June 1960, p. 221.
- [99] Vigor, C. W. and Hornaday, J. R., "A Thermocouple for a Measurement of Temperature Transients in Forging Dies," *Temperature, Its Measurement and Control in Science and Industry*, Vol. 3, Part 2, Reinhold, New York, 1962, p. 625.
- [100] Baker, H. D., Ryder, E. A., and Baker, N. H., Temperature Measurement in Engineering, Vol. 1, Wiley, New Yoek, 1953, Chapters 8, 11, 12.
- [101] Baker, H. D., Ryder, E. A., and Baker, N. H., Temperature Measurement in Engineering, Vol. 2, Wiley, New York, 1961.
- [102] Bailey, N. P., "The Response of Thermocouples," Mechanical Engineering, Vol. 53, No. 11, Nov. 1931, p. 797.
- [103] McCann, J. A., "Temperature Measurement Theory," KAPL-2067-2, 1962, OTS, Department of Commerce, Washington, D. C.
- [104] Chapman, A. J., Heat Transfer, McMillan, New York, 1960.
- [105] Bailey, N. P., "The Measurement of Surface Temperatures, Accuracies Obtainable with Thermocouples," *Mechanical Engineering*, Vol. 54, Aug. 1932, p. 553.
- [106] Baker, H. D., Ryder, E. A., and Baker, N. H., Temperature Measurement in Engineering, Vol. 1, Wiley, New York, 1961, p. 90.
- [107] White, F. J., "Accuracy of Thermocouples in Radiant Heat Testing," Experimental Mechanics, Vol. 2, July 1962, p. 204.
- [108] Moen, W. K., "Surface Temperature Measurements," Instruments and Control Systems, Vol. 33, Jan. 1960, p. 71.
- [109] Otter, A. J., "Thermocouples and Surface Temperature Measurement," AECL-3062, March 1968, SDDO, AECL, Chalk River, Ont., Canada.
- [110] Roeser, W. F. and Mueller, E. F., "Measurement of Surface Temperatures," Bureau of Standards Journal of Research, Vol. 5, No. 4, Oct. 1930, p. 793.
- [111] Sasaki, N., "A New Method for Surface Temperature Measurement," Review of Scientific Instruments, Vol. 21, No. 1, Jan. 1950, p. 1.
- [112] Robertson, D. and Sterbutzel, G. A., "An Accurate Surface Temperature Measuring System," Proceedings of IEEE Industrial Heating Conference of Philadelphia, April 1969. See also Leeds and Northrup Technical Journal, Issue 7, Summer 1969.
- [113] "A Probe for the Instantaneous Measurement of Surface Temperature," RTD-TDR-63-4015, OTS, Department of Commerce, Washington, D. C.

- [114] Sasaki, N. and Kamanda, A., "A Recording Device for Surface Temperature Measurements," *Review of Scientific Instruments*, Vol. 23, No. 6, June 1952, p. 261.
- [115] "Unusual Thermocouples and Accessories," Instruments and Control Systems, Vol. 36, No. 8, Aug. 1963, p. 133.
- [116] Shu, H. H., Gaylard, E. W., and Hughes, W. F., "The Relation Between the Rubbing Interface Temperature Distribution and Dynamic Thermocouple Temperature," *Transactions ASME Journal of Basic Engineering*, Vol. 86, Series D, No. 3, Sept. 1964, p. 417.
- [117] Dutton, R. and Lee, E. C., "Surface-Temperature Measurement of Current-Carrying Objects," Journal, Instrument Society of America, Vol. 6, No. 12, Dec. 1959, p. 49.
- [118] Jakob, M., Heat Transfer, Vol. 2, Wiley, New York, 1957, p. 183.
- [119] Caldwell, W. I., Coon, G. A., and Zoss, L. M., "Frequency Response for Process Control," McGraw-Hill, New York, 1959, p. 295.
- [120] "Thermocouples and Thermocouple Extension Wires," Recommended Practice RPI-7, Instrument Society of America, 7 July 1959.
- [121] Finch, D. I., "General Principles of Thermoelectric Thermomtery," Temperature, 1ts Measurement and Control in Science and Industry, Vol. 3, Part 2, Reinhold, New York, p. 3.
- [122] Jakob, M., Heat Transfer, Vol. 2, Wiley, New York, 1957, p. 153.
- [123] Chapman, A. J., Heat Transfer, McMillan, New York, 1960.
- [124] Boelter, L. M. K. et al, "An Investigation of Aircraft Heaters XXVIII-Equations for Steady State Temperature Distribution Caused by Thermal Sources in Flat Plates Applied to Calculation of Thermocouple Errors, Heat Meter Corrections, and Heat Transfer by Pin-Fin Plates," Technical Note 1452, National Advisory Committee for Aeronautics, 1944.
- [125] Schneider, P. J., Conduction Heat Transfer, Addison-Wesley, Cambridge, Mass., 1955, p. 176.
- [126] Fitts, R. L., Flemons, R. S., and Rogers, J. T., "Study of Temperature Distribution in a Finned Nuclear Fuel Sheath by Electrical Analogue and Mathematic Analysis (Revision)," R65CAP1, 19 Jan. 1965, Canadian General Electric, Peterborough, Ont.
- [127] Chan, K. S. and Rushton, K. R., "The Simulation of Boundary Conditions in Heat Conduction Problems in a Resistance-Capacitance Electrical Analogue," Journal of Scientific Instruments, Vol. 41, No. 9, Sept. 1964, p. 535.
- [128] Brindley, J. H., "Calibration of Surface-Attached Thermocouples on a Flat-Plate Fuel Element by Electrical Analogue and Analytical Techniques," *Transactions of the American Nuclear Society*, Vol. 6, No. 2, Nov. 1963, p. 333.
- [129] Boelter, L. M. K. and Lockhart, R. W., "Thermocouple Conduction Error Observed in Measuring Surface Temperatures," Technical Note 2427, National Advisory Committee for Aeronautics, 1946.
- [130] Stoll, A. M. and Hardy, J. D., "Direct Experimental Comparison of Several Surface Temperature Measuring Devices," *Review of Scientific Instruments*, Vol. 20, No. 9, Sept. 1949, p. 678.
- [131] Oetken, E. R., "Evaluation of Surface-Attached Thermocouples During Forced Convection Heat Transfer," IDO-16889, OTS, Department of Commerce, Washington, D. C.
- [132] Sudar, S., "Calibration of OMRE Fuel-Element Surface Thermocouple Assembly," NAA-SR-Memo 3671, 1959.
- [133] Browning, W. E. and Hemphill, H. L., "Thermocouples for Measurement of the Surface Temperature of Nuclear Fuel Elements," *Temperature, Its Measurement and Control in Science and Industry*, Vol. 3, Part 2, Reinhold, New York, p. 723.
- [134] Quant, E. R. and Fink, E. W., "Experimental and Theoretical Analysis of the Transient Response of Surface Bonded Thermocouples," *Bettis Technical Review*, WAPD-BT-19, Reactor Technology, June 1960, p. 31.
- [135] Green, S. J. and Hunt, T. W., "Accuracy and Response of Thermocouples for Surface and Fluid Temperature Measurements," *Temperature*, 1ts Measurement and Control in Science and Industry, Vol. 3, Part 2, Reinhold, New York, p. 695.
- [136] Kovacs, A. and Mesler, R. B., "Making and Testing Small Surface Thermocouples for Fast Response," *Review of Scientific Instruments*, Vol. 35, No. 4, April 1964, p. 485.

- [137] "Design and Construction of a Unit for Measuring Metal Skin Temperatures, Phase I, Theoretical Analysis and Design," SC-4461 (RR), Dec. 1960, OTS, Department of Commerce, Washington, D. C.
- [138] See Thermocouple Manufacturers' Catalogs.
- [139] Sellers, J. P., "Thermocouple Probes for Evaluating Local Heat Transfer Coefficients [159] Schers, S. T., Thermocouple Troces for Levaluating Local freat Transfer Coefficients in Rocket Motors," Temperature, Its Measurement and Control in Science and In-dustry, Vol. 3, Part 2, Reinhold, New York, p. 673.
 [140] Nanigan, J., "Thermal Properties of Thermocouples," Instruments and Control Sys-tems, Vol. 36, No. 10, Oct. 1963, p. 87.
- [141] Bowden, F. P. and Ridler, K. E. W., "Physical Properties of Surfaces III. The Surface Temperature of Sliding Metals," *Proceedings*, Royal Society London A, Vol. 154, 1936, p. 644.
- [142] Bensen, J. and Horne, R., "Surface Temperature of Filaments and Thin Sheets," Instruments and Control Systems, Vol. 35, No. 10, Part 1, Oct. 1962, p. 115.
- [143] Report No. 152, British Iron and Steel Research Organization.

Chapter 10—Reference Tables for Thermocouples

The practical use of thermocouples in industrial and laboratory applications requires that the thermocouple conform to an established temperature —electromotive-force relationship within acceptable limits of error. Since the thermocouple in a thermoelectric thermometer system is usually expendable, conformance to established temperature-emf relationships is necessary in order to permit interchangeability.

Section 10.2 consists of reference tables that give temperature-emf relationships for the thermocouple types most commonly used in industry. These are identified as thermocouple Types B, E, J, K, R, S, and T, as defined in ANSI Standard C96.1.

Data in these tables are based upon absolute electrical units and the International Practical Temperature Scale of 1968. All temperature emf data contained in Section 10.2 have been extracted from ASTM Standard E 230-72.

Reference tables giving temperature emf relationships for single leg thermoelements referenced to platinum (NBS Pt 67) are not included in this manual but are contained in ASTM Standard E 230-72.

10.1 Thermocouple Types and Limits of Error

10.1.1 Thermocouple Types

The letter symbols identifying each reference table are those defined in ANSI Standard C96.1. These symbols which are used in common throughout industry, identify the following thermocouple calibrations:

- Type B—Platinum-30 percent rhodium (+) versus platinum 6 percent rhodium (-).
- Type E-Nickel-10 percent chromium (+) versus constantan (-).
- Type J—Iron (+) versus constantan (-).
- Type K—Nickel-10 percent chromium (+) versus nickel-5 percent (aluminum, silicon) (-).¹³
- Type R—Platinum-13 percent rhodium (+) versus platinum (-).
- Type S-Platinum-10 percent rhodium (+) versus platinum (-).
- Type T—Copper (+) versus constantan (-).

¹³ Silicon, or aluminum and silicon, may be present in combination with other elements.

Detailed information covering the advantages and limitations of each of these thermocouple types, their recommended temperature ranges, and detailed physical properties of the thermoelements comprising them are contained in Section 3.1 of this manual.

10.1.2 Limits of Error

The limits of error for the common letter designated thermocouple types, as listed in Table 41, are taken from ANSI Standard C96.1. Most manufacturers supply thermocouples and thermocouple wire to these limits of error or better.

			Limits of Error							
	Temperatu	ire Range	Standa	rd	Special					
Туре	°F	°C	°F	°C (Note 2)	°F	°C (Note 2)				
B	1600 to 3100	871 to 1705	$\pm \frac{1}{2}$ percent							
Ε	32 to 600	0 to 316	±3°F		±2¼°F					
	600 to 1600	316 to 871	$\pm \frac{1}{2}$ percent		$\pm \frac{3}{8}$ percent					
J	32 to 530	0 to 277	±4°F		±2°F					
	530 to 1400	277 to 760	$\pm \frac{3}{4}$ percent		$\pm \frac{3}{8}$ percent					
ĸ	32 to 530	0 to 277	±4°F		±2°F					
	530 to 2300	277 to 1260	$\pm \frac{3}{4}$ percent		$\pm \frac{3}{8}$ percent					
R or S	32 to 1000	0 to 538	$\pm 2\frac{1}{2}^{\circ}F$							
	1000 to 2700	538 to 1482	$\pm \frac{1}{4}$ percent							
Т	-300 to -150	-184 to -101			± 1 percent					
	-150 to -75	-101 to -59	± 2 percent		± 1 percent					
	-75 to 200	- 59 to 93	±1½°F		±¾°F					
	200 to 700	93 to 371	$\pm \frac{3}{4}$ percent		$\pm \frac{3}{8}$ percent					

TABLE 41—Limits of error for thermocouples.

NOTE 1—In this table the limits of error for each type of thermocouple apply only over the temperature range for which the wire size in question is recommended (see Table 2). These limits of error should be applied only to standard wire sizes. The same limits may not be obtainable in special sizes.

Note 2—Where limits of error are given in percent, the percentage applies to the temperature being measured when expressed in degrees Fahrenheit. To determine the limit of error in degrees Celsius, multiply the limit of error in degrees Fahrenheit by 5/9.

NOTE 3—Limits of error apply to thermocouples as supplied by the manufacturer. The calibration of a thermocouple may change during use. The magnitude of the change depends upon such factors as temperature, the length of time, and the conditions under which it was used.

NOTE 4—Type T wire cannot be expected to meet the limits of error at temperatures below the ice point unless so specified at time of purchase. Selection is usually required.

10.2 Thermocouples Reference Tables

Following is a list of the reference tables included in this section:

Table Number	Thermocouple Type	Temperature Range
42	В	0 to +3308°F
43	В	0 to +1820°C
44	Е	-454 to $+1832^{\circ}F$
45	Е	-270 to +1000°C
46	J	-350 to +2192°F
47	J	-210 to +1200°C
48	К	-454 to $+2500^{\circ}$ F
49	К	-270 to +1372°C
50	R	-58 to $+3214^{\circ}$ F
51	R	-50 to +1768°C
52	S	-58 to $+3214^{\circ}$ F
53	S	-50 to $+1768$ °C
54	Т	-454 to +752°F
55	Т	-270 to +400°C

10.3 Generation of Smooth Temperature-Emf Relationships

10.3.1 Need for Smooth Temperature-Emf Relationship

A table of reference values for use with thermocouples should be capable of easy and unique generation to facilitate its use in computer and similar applications. Furthermore, the reference values should agree closely with the characteristics of the thermocouple type under study, so that differences will change only slowly and smoothly with temperature level.

Reference Tables 42 to 55 (Section 10.2) give values to three decimal places only, and this roundoff in table values results in inherent discontinuities in the temperature-emf relationship as represented by the tables.

This section provides means for generating smooth, continuous temperature-emf relationships, to as many decimal places as have any useful significance, for the thermocouple types included in this standard. These data will be useful in all applications where discontinuities in the established reference values are objectionable, or where storage of complete tables is impractical.

10.3.2 Methods of Generation

The values of each of the seven thermocouple types given in Tables 42 to 55 are generated by power series equations according to Ref 144. The coefficients of these equations for the appropriate ranges are given in Tables 56 to 62. Note that these coefficients yield values of emf in microvolts.

TABLE 42-Type B thermocouples.

EMF i	n Absolut	e Millivol	lts							Reference Junctions		ons at 32 F
DEG F	0	1	2	3	4	5	6	7	- 8	9	10	DEG F
			Т	HERMOELE	CTRIC VO	LTAGE IN	ABSOLUT	E MILLIY	OLTS			
0	0.006	0.006	0.006	0.006	0.005	0.005	0.005	0.005	0.004	0,004	0.004	
10	0.004	0.004	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	10
20	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	20
30	0.000	0.000	0.000	-0.000	-0.000	-0.000	-0.001	-0.001	-0+001	-0.001	-0.001	30
40	-0.001	-0+001	-0.001	-0+001	~0.001	-0.001	-0+002	-0.002	-0+002	-0.002	-0.002	40
50	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	50
60	-0.002	-0.002	-0.002	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	60
70	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.003	-0.002	-0.002	-0.002	-0.002	70
80	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	80
90	-0.002	-0.002	-0.002	-0.002	-0+002	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	90
100	-0.001	-0.001	-0.001	-0.001	-0.000	-0.000	-0.000	-0.000	0.000	0.000	0.000	100
110	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	110
120	0.002	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.003	0.004	0.004	120
130	0.004	0.004	0.004	0.005	0.005	0.005	0.005	0.005	0.006	0.006	0.006	130
140	0.006	0+006	0+907	0.007	0.007	0.007	0.008	0.008	800+0	0.009	0.009	140
150	0.009	0.009	0.009	0.010	0.010	0.010	0 011	0 011	0 011	0 012	0.010	160
160	0.012	0.012	0.013	0.013	0.013	0.014	0.014	0.014	0.015	0.012	0.012	150
170	0.015	0.016	0.016	0.016	0.017	0.017	0.017	0.018	0.018	0.019	0.019	170
180	0.019	0.019	0.020	0.020	0.021	0.021	0.021	0.022	0+022	0.023	0.023	180
190	0.023	0.023	0.024	0+024	0.025	0.025	0.026	0.026	0.027	0.027	0.027	190
200	0.027	0.020										
210	0.027	0.033	0+028	0.029	0.029	0+030	0.030	0.031	0.031	0.032	0.032	200
220	0.037	0.038	0+038	0.039	0.039	0.040	0.041	0.041	0.042	0.047	0.047	210
230	0.043	0.043	0.044	0.044	0.045	0.046	0.046	0.047	0.042	0.048	0.049	230
240	0.049	0+049	0.050	0.050	0.051	0.052	0.052	0.053	0.053	0.054	0.055	240
250	0.055	0.055	0.056	0.057	0.057	0.058	0.058	0.059	0.060	0.060	0.061	250
270	0.061	0.069	0.062	0.000	0.054	0.064	0.065	0.066	0.067	0.067	0.068	260
280	0.075	0.076	0.077	0.077	0.078	0.079	0.080	0.080	0.081	0.014	0.015	270
290	0.083	0.083	0.084	0+085	0.086	0.086	0.087	0.088	0.089	0.090	0.085	290
											00070	270
300	0.090	0.091	0.092	0.093	0.094	0.094	0.095	0.096	0.097	0.098	0.099	300
310	0.099	0.099	0.100	0.101	0.102	0.103	0.104	0.104	0.105	0.106	0.107	310
330	0.107	0+108	0+109	0+110	0.111	0+111	0,112	0.113	0.114	0.115	0.116	320
340	0.125	0.126	0.127	0.128	0.129	0.130	0.131	0.132	0.123	0.134	0.125	330
		•••••				001200		00002	0.133	0.124	0.199	540
350	0.135	0.136	0.137	0.138	0.138	0.139	0.140	0.141	0.142	0.143	0.144	350
360	0.144	0.145	0.146	0.147	0.148	0.149	0.151	0.152	0.153	0.154	0.155	360
370	0.155	0.156	0.157	0.158	0.159	0.160	0.161	0.162	0.163	0.164	0.165	370
390	0.105	0 177	0.179	0.158	0.169	0.171	0.172	0+173	0.174	0.175	0.176	380
370	0.110	0.111	0.110	0.119	0.180	0.182	0.183	0.184	0.185	0.190	0.18/	390
400	0.187	0.188	0.189	0.191	0.192	0.193	0.194	0.195	0.196	0.197	0.199	400
410	0.199	0.200	0.201	0.202	0.203	0.205	0.206	0.207	0.208	0.209	0.210	410
420	0.210	0.212	0.213	0.214	0,215	0.217	0.218	0.219	0.220	0.221	0+223	420
430	0.223	0.224	0.225	0.226	0.228	0.229	0.230	0.231	0.233	0.234	0.235	430
440	0+235	0.236	0+238	0+239	0.240	0+242	0.243	0.244	0.245	0.247	0.248	440
450	0.248	0.249	0.251	0.252	0.253	0.254	0.256	0.257	0.258	0.260	0.261	450
460	0.261	0.262	0.264	0.265	0.266	0.268	0.269	0.271	0.272	0.273	0.275	460
470	0.275	0.276	0.277	0.279	0.280	0.281	0.283	0.284	0.286	0.287	0.288	470
480	0.288	0.290	0.291	0.293	0.294	0.295	0.297	0.298	0.300	0.301	0.303	480
490	0.303	0.304	C+305	0.307	0.308	0.310	0.311	0.313	0.314	0.315	0.317	490
500	0 317	0 318	0 330	0 331	0 3 3 3	0 336	0 224	0 333	0 0 00	0 330		
510	0.332	0.333	0.335	0.336	0.328	0.339	0.341	0.342	0.329	0.345	0.347	500
520	0.347	0.348	0.350	0.351	0.353	0.355	0.356	0.358	0.359	0.361	0.362	520
530	0.362	0.364	0.365	0.367	0.369	0.370	0.372	0.373	0.375	0.376	0.378	530
54C	0.378	0.380	0.381	0.383	0,384	0.386	0.388	0.389	0.391	0.392	0.394	540
560	0.410	0.412	0.414	0.399	0.401	0+402	0.404	0.405	0.407	0.409	0.410	550
570	0.427	0.429	0+414	0.432	0.434	0.434	0.420	0.430	0.424	0+425	0+427	560
580	0.444	0.446	0.448	0.449	0.451	0.453	0.455	0.456	0.441	0.460	0.447	580
590	0.462	0.463	0+465	0.467	0.469	0.470	0.472	0.474	0.476	0.477	0.479	590
						-						
600	0.479	0.481	0.483	0.485	0.486	0.488	0.490	0.492	0.494	0.495	0.497	600
610	0.497	0.499	0.501	0.503	0.504	0.506	0.508	0.510	0.512	0.514	0.515	610
620	0.515	0.517	0.519	0.521	0.523	0.525	0.527	0.528	0.530	0.532	0.534	620
630	0.534	0.536	0.538	0.540	0.542	0.544	0.545	0.547	0.549	0.551	0.553	630
640	0.553	0.005	0.557	0.559	0.561	0.563	0.565	0.566	0.568	0.570	0.572	640
DECE					· · ·						10	DEC 2
000 P		1	_ 2	و	4	,	6		8	¥	10	UEG F

Temperature in Degrees Fahrenheit^a

EMF in Absolute Millivolts Reference Junctions at 32 F 7 0 DEG F 6 8 10 DEG F 0 1 2 3 4 5 THERMOELECTRIC VOLTAGE IN ABSOLUTE MILLIVOLTS 0.572 0.592 0.612 0.574 0.594 0.614 0.576 0.596 0.578 0.580 0.582 0.584 0.586 0.588 0.590 0.592 650 650 0.604 0.608 0.578 0.600 0.602 0.606 0.610 0.612 660 670 660 670 0.616 0.618 0.620 0.622 0.626 0.630 0.632 0.644 0.646 0.650 0.652 680 0.632 0.634 0.636 0.638 0.640 0.642 0.648 680 0.659 0.669 690 0.661 0.663 0.652 0.654 690 0.656 0.684 0.705 0.727 0.748 0.771 0.690 0.711 0.733 0.675 0.677 0.679 0.682 0.686 0.688 0.692 0.694 700 700 0.673 0.892 0.714 0.735 0.757 0.780 0.716 0.737 0.759 0.703 0.724 0.746 0.768 710 0.694 0.716 0.737 0.759 0.696 0.718 0.740 0.762 0.699 0.720 0.742 0.764 0.701 0.722 C.744 0.766 710 0.707 0.709 720 730 740 0.751 0.753 0.755 730 0.782 740 0•795 0•818 0•841 750 760 770 0.800 750 0.782 0.784 0.786 0.789 0.791 0.793 0.798 0.802 0.804 0.802 0.825 0.848 0.872 0.896 0.809 0.832 0.855 0.804 0.827 0.851 0.874 0.811 0.834 0.858 0.881 0.821 0.827 0.814 0.816 760 770 0.807 0.830 0.853 0.877 0.846 0.851 780 0.960 0.862 0.865 0.867 0.870 0.874 780 0.893 790 0.379 790 0.886 0.920 0.944 0.969 0.994 1.020 0.905 0.910 0.935 800 0.898 0.901 0.903 0.908 0.913 0.915 0.918 0.922 800 0.908 0.932 0.957 0.982 1.007 0.913 0.937 0.962 0.987 1.012 0.915 0.939 0.964 0.989 1.014 0.947 0.922 0.947 0.972 0.997 0.930 0.954 0.979 0.925 0.927 0.942 81C 820 810 0.949 0.974 0.979 0.967 0.992 1.017 0.952 820 0.959 0.984 0.997 830 840 830 1.002 840 1.004 1.027 1.037 1.063 1.090 1.043 1.069 1.095 850 1.022 1.025 1.030 1.032 1.035 1.040 1.045 1.048 850 1.071 1.074 860 870 1.074 1.074 1.100 1.056 1.082 1.108 860 1.050 1.053 1.058 1.061 1.066 870 1.076 1.084 1.100 1.103 1.105 1.111 1.113 1.116 1.119 1.121 1.124 1•127 1•153 880 880 1.148 890 1.127 1.129 1.135 1.140 890 1,172 1.178 1.175 1.181 900 900 1,153 1.156 1.159 1.162 1.167 1.170 1.181 1.208 1.236 1.189 1,192 1.197 1.225 1.253 1.281 1.205 910 1.183 1.186 1.194 1.200 1.203 1.208 910 920 1.211 1.239 1.267 1.216 1.216 1.244 1.272 920 1.214 1.219 1.247 1.261 1.264 1.241 1.250 1.255 1.258 930 930 940 1.270 1.284 940 1.264 1.287 950 1.307 1.335 1.292 1.295 1.298 1.301 1.304 1.309 1,312 1.315 1.318 1.321 950 1.350 1.379 1.409 960 970 980 1.321 1.350 1.379 1.338 1.367 1.397 1.341 1.370 1.400 1.344 1.373 1.403 960 970 1.324 1.327 1.330 1.332 1.347 1.353 1.359 1.361 1.364 1.356 1.406 1.385 980 1.423 1.435 990 1.409 1.411 1.414 1.417 1.420 1.426 1.429 1.432 1.438 990 1,000 1.438 1.441 1.444 1.447 1.450 1.453 1.456 1.459 1.462 1.465 1.468 1,000 1.468 1.499 1.529 1.474 1.505 1.536 1.480 1.511 1.542 1.483 1.514 1.545 1.487 1.517 1.548 1,010 1.496 1.471 1.477 1.490 1.493 1.499 1:010 1.502 1.508 1.520 1.523 1.526 1.529 1,020 1.539 1.030 1,030 1.040 1.560 1.563 1.566 1.570 1.573 1.576 1.579 1.582 1.585 1.588 1.591 1,040 1.620 1.623 1,050 1.598 1.607 1.613 1.617 1.050 1.591 1.595 1.601 1.504 1.610 1.642 1.674 1.705 1.645 1.648 1.680 1.713 1.652 1.684 1.716 1.748 1.655 1.687 1.719 1,060 1.623 1.626 1.629 1.632 1.636 1.639 1.060 1.070 1,080 1.687 1.690 1.693 1.696 1.700 1.703 1:080 1.722 1.726 1.732 1.735 1.739 1.742 1.745 1.752 1.090 1.775 1.778 1.755 1.758 1.765 1.768 1.771 1.781 1.785 1,100 1.100 1,752 1.762 1.801 1.834 1.868 1.808 1.841 1.875 1.814 1.848 1.882 1.785 1.818 1.851 1.791 1.824 1.795 1.798 1.804 1.811 1.944 1.818 1,110 1,110 1.788 1,120 1,130 1.855 1.858 1.861 1.865 1.871 1.878 1.885 1,130 1.892 1.895 1.898 1.902 1.905 1.909 1.912 1.915 1.919 1.140 1,885 1.919 1.953 1.922 1.957 1.936 1.939 1.943 1.946 1.950 1.953 1,150 1.150 1.926 1.929 1.933 1.960 1.963 1.977 1.981 1.967 1.974 1.984 1.988 1,160 1,160 2.019 2.022 1,170 1.988 1.991 2.002 2.005 2.009 2.022 2.026 2.029 2.033 2.036 2.054 2.040 2.043 2.047 2.051 2.058 1.180 2.075 2.079 2.082 2.086 2.093 1.190 1.190 2.104 2.107 2 • 1 1 1 2.114 2.118 2+121 2.125 2.128 1.200 2.093 2.096 2.100 1.200 2.139 2.175 2.211 2.143 2.179 2.215 2 • 150 2 • 186 2 • 222 1,210 2.128 2.132 2.136 2.172 2.146 2.154 2.157 2.161 2.197 2.164 1+210 2.182 2.190 2.193 2.201 1.220 2.233 2.237 1,230 1.230 2,201 2.204 2.208 2.246 1,240 2.237 2.241 2.244 2.252 2.255 2.259 2.263 2.266 2.270 2.274 1.240 2.303 2.340 2.311 1,250 2.299 2.307 2.274 2.277 2.281 2.285 2.288 2.292 2.296 1.250 2.329 2.366 2.404 1,260 2.311 2.348 2.314 2.318 2.322 2.359 2.325 2.333 2.337 2.344 2.340 1,260 2.370 2.374 2.378 2.381 2.415 2.385 1.270 2.423 1,220 2.385 1,280 2.389 2.393 2.396 2.400 1,290 2.427 2.430 2.434 2.438 2.442 2.446 2.449 2.453 2.457 2.461 1,290 DEG F 9 10 3 4 5 6 7 8 DEG F 0 2 1

* Converted from degrees Celsius (IPTS 1968).

Temperature in Degrees Fahrenheit^e

EMF in	Absolute	Millivolts		Temperature in Degrees Fahrenheit ^e							Reference Junctions at 32 F		
DEG F	o	1	2	3	4	5	6	7	8	9	10	DEG F	
			тне	RMOELEC	TRIC VOL	AGE IN A	BSOLUTE	MILLIVOL	TS				
1,300	2.461	2.465	2.465	2 • 4 7 2	2.476	2.460	2.484	2.488	2.491	2.495	2.499	1,500	
1,310	2.499	2.503	2.507	2.511	2.515	2.518	2.522	2.526	2.530	2.534	2.538	1,310	
1,320	2.538	2.542	2.545	2.549	2.553	2.557	2.561	2.565	2.569	2.573	2.576	1.320	
1.340	2.615	2.519	2.584	2.588	2.631	2.596	2.630	2.643	2.605	2+612	2.615	1,330	
								2.045		2.0001	2.0000	1.540	
1,350	2.655	2.659	2.663	2 • 66 7	2.670	2.674	2.678	2.662	2.686	2.690	2.694	1,350	
1,360	2.694	2.698	2.702	2.706	2.710	2.714	2.718	2.722	2.726	2.750	2.734	1,360	
1.370	2.134	2.738	2.742	2.746	2.750	2.754	2.758	2.762	2.765	2.770	2.774	1.370	
1,380	2.814	2.818	2.822	2 . 786	2.790	2.835	2.830	2.902	2+906	2.810	2.814	1,380	
									2.004.	2.0001	2.0000	1.575	
1,400	2,855	2.859	2.863	2.867	2.871	2.875	2.879	2.883	2.887	2.892	2.896	1.466	
1,410	2.076	2.900	2.904	2.908	2.912	2.916	2.920	2.924	2.928	2.933	2.937	1.410	
1,430	2.978	2.962	2.986	2.947	2.905	2.909	2.901	2.900	2.970	2.914	2.978	1.420	
1,440	3.019	3.024	3.028	3.032	3.036	3.040	3.045	3.049	3.053	3.015	3.061	1.4450	
1 450	0.000	a	6 0 7 6										
1,460	3,103	3-107	3-112	3.116	3.120	3.124	3 1 2 0	3.133	3.095	3.099	3.103	1,450	
1.470	3.146	3,150	3,154	3,158	3.163	3-167	3-171	3,175	3 190	3 164	20100	1,460	
1,480	3,188	3.192	3,197	3,201	3.205	3 209	3.214	3.218	3.222	3.227	3.231	1.480	
1.490	3.231	3.235	3.239	3.244	3.248	3.252	3.257	3.261	3.265	3.269	3.274	1,490	
1.500	2 274	3 376	3 369	3 387	3 201	3 205	3 300	3 304	2 2 2 5	2 2 2 2			
1.510	3,317	3.321	3.326	2.220	2 324	3.330	3 342	3 347	3 353	3 364	2.3()	1,500	
1.520	3-361	3-365	3.360	3.374	3.379	3-392	3 367	3 301	1 205	3 400	3.604	1,510	
1,530	3.404	3.409	3.413	3.417	3.422	3.426	3-421	3.435	3.439	3.444	3.448	1.520	
1.540	3.448	3.453	3.457	3.461	3.466	3.470	3.475	3.479	3.484	3.488	3.492	1,540	
	2 402	2 / 02	2 601										
1.560	3.537	3.541	3.546	3,550	3.555	3.559	3.564	3.568	3.528	3.532	3.537	1,550	
1.570	3-581	3-586	3.590	3,595	3.599	3-604	3 609	3 613	3.417	3.675	3.494	1,550	
1.580	3.626	3.631	3.635	3.640	3.644	3.649	3.653	3.658	3.662	3.667	3.672	1.560	
1,590	3.672	3.676	3,681	3.685	3.690	3.694	3.699	3.763	3.708	3.712	3.717	1,590	
1.600	3.717	3 - 721	3.726	2.721	2.725	3 745	3 744	3 740	3 360	3 75 9			
1,610	3.762	3.767	3.772	3.776	3.781	3-785	3.790	3.795	3.709	3.756	3.805	1,600	
1.620	3.808	3.813	3.818	3.822	3.827	3.831	3,836	3.841	3.845	3.850	3-854	1.620	
1+630	3.854	3.859	3.864	3.868	3.873	3.877	3.882	3.887	3.891	3.896	3,901	1.630	
1,640	3.901	3 • 905	3.910	3.915	3,919	3.924	3.929	3.935	3,936	3.945	3.947	1,640	
1.650	3-967	3.952	3-957	3 061	3-966	3.971	3 975	2 690	3 005	3 040	3 0.07		
1 +660	3.994	3.999	4.003	4.008	4.013	4.017	4.022	4-027	4.031	4.036	4.041	1,650	
1,670	4.041	4.046	4.050	4.055	4.060	4.064	4.069	4.074	4.079	4.000	4.088	1.670	
1,680	4.088	4.093	4.098	4.102	4.107	4.112	4.117	4.121	4.126	4.131	4.136	1.680	
1,690	4.136	4.140	4.145	4.150	4.155	4.159	4.164	4.169	4 . 174	4.178	4.183	1,690	
1.700	4.183	4.188	4.193	4.108	4.202	4.207	4 212	4 317	6 331	4 334	(202	. 70.0	
1,710	4.231	4.236	4.241	4.245	4.250	4.255	4.260	4.265	4.269	4.274	4.274	1.710	
1,720	4.279	4.284	4.269	4,294	4.298	4.303	4.308	4.313	4.318	4.323	4.327	1.720	
1,730	4.327	4.332	4.337	4.342	4.347	4.352	4.357	4.361	4.366	4.371	4.376	1,730	
1.740	4.376	4.381	4.386	4.391	4.395	4.400	4.405	4.410	4.415	4.420	4.425	1,740	
1,750	4.425	4.430	4.435	4.439	4.444	4.449	4.454	4.459	4.464	4.464	4.474	1.750	
1,760	4.474	4.479	4.484	4.488	4.493	4.498	4.503	4.508	4.513	4.518	4.523	1.760	
1,770	4,523	4.528	4.533	4,538	4.543	4.548	4,552	4.557	4.562	4.567	4.572	1.770	
1,780	4.572	4.577	4.582	4.587	4.592	4.597	4.602	4.607	4.612	4.617	4+622	1,780	
1+790	4.622	4.627	4.632	4.637	4.642	4.647	4.652	4.657	4.662	4.667	4.672	1,790	
1.800	4.672	4.677	4.682	4.687	4 . 692	4.697	4.702	4.707	4.712	4.717	4.722	1.800	
1,810	4.722	4.727	4.732	4.737	4.742	4.747	4.752	4.757	4.762	4.767	4.772	1.810	
1,820	4.772	4.777	4.782	4.787	4.792	4.797	4.802	4.807	4.812	4.817	4.823	1.820	
1,830	4.823	4.828	4.833	4.838	4.843	4.848	4.853	4.858	4.863	4.868	4.873	1,830	
1,840	4.873	4.878	4.883	4.888	4 • 8 9 4	4.899	4.904	4.909	4.914	4.919	4.924	1+840	
1,850	4.924	4.929	4.934	4.939	4.945	4.950	4.955	4.960	4.965	4.970	4.975	1.850	
1,860	4.975	4.980	4.985	4.991	4.996	5.001	5.006	5.011	5.016	5.021	5.027	1,860	
1,870	5.027	5.032	5.037	5.042	5.047	5.052	5.057	5.063	5.068	5.073	5.078	1,870	
1,880	5.078	5.083	5.088	5.094	5+099	5.104	5.109	5.114	5.119	5.125	5.130	1,880	
1,890	5.130	5.135	5.140	5.145	5.150	5.156	5.161	5.166	5.171	5.176	5.182	1,890	
1,900	5.182	5.187	5.192	5.197	5 • 202	5.208	5.213	5.218	5.223	5.229	5.234	1,900	
1,910	5.234	5.239	5.244	5.249	5.255	5.260	5.265	5.270	5.276	5,281	5.286	1,910	
1,920	5.286	5.291	5.297	5.302	5.307	5.312	5.318	5.323	5.328	5,333	5.339	1,920	
1,930	5.339	5.344	5.349	5.354	5.360	5.365	5.370	5.376	5.381	5.386	5.391	1.930	
	1+0+1	14646	5.402	2.407	2.413	2.419	2.423	5.428	5.434	5.439	5.444	1,940	
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F	

EMF in	Absolute	Millivolts		Ter	nperature	Reference Junctions at 32 F						
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
	-		Тн	RMDELEC	RIC-VOL	TAGE IN	ABSOLUTE	MILLIVOL	TS			
1.950	5.444	5.450	5.455	5.460	5.466	5-471	5.476	5.482	5.487	5.492	5.497	1,950
1,960	5.497	5.503	5.508	5.513	5.519	5.524	5.529	5.535	5.540	5.545	5.551	1,960
1,970	5.551	5.556	5.561	5.567	5.572	5,578	5.583	5,588	5.594	5.599	>∙604	1,970
1,980	5.604	5.610	5.615	5.620	5.626	5.631	5.637	5.642	5.647	5.653	5.658	1,980
1,990	5.658	5.663	5.669	5.674	5.680	5.685	5.690	5.696	5.701	5.707	5.712	1,990
2,000	5.712	5.717	5.723	5.728	5.734	5.739	744. ز	5.750	5.755	5.761	5.766	2,000
2,010	5.766	5.771	5.777	5.782	5.788	5.793	5.799	5.804	5.810	5.815	5.820	2.010
2,020	5.820	5.826	5.831	5.837	5.842	5.848	5.853	5.859	5.864	5.869	5.875	2,020
2,030	5.875	5.880	5.886	5.891	5.897	5.902	5,908	5.913	5.919	5.924	5.930	2,030
2,040	5,930	5.935	5.941	5.946	5,951	5.957	5,962	5.968	5.973	5.979	5.984	2,040
2,050	5.984	5.990	5.995	6.001	6.006	6.012	6.017	6.023	6.028	6.034	6.039	2,050
2,060	6.039	6.045	6.051	6.056	6.062	6.067	6.073	5.078	6.084	6.089	6.095	2,060
2,070	6,095	6.100	6.106	6.111	6,117	6.122	6.128	6.134	6.139	6.145	6.150	2,070
2,080	6,150	6.156	6.161	6.16/	6.172	6.178	6.184	6.189	6.195	6.200	6.200	2,000
2,090	6.206	6.211	6.217	6.223	5.228	0.234	0.239	0.245	0.200	0.200	0.202	2 10 70
2,100	6.262	6.267	6.273	6.278	6.284	6.290	6.295	6.301	6.306	6.312	6.318	2,100
2,110	6.318	6.323	6.329	6.334	6.340	6.346	6.351	6.357	6.362	6.368	6.374	2,110
2,120	6.374	6.379	6.385	6,391	6.396	6.402	6.408	6.413	6.419	6.424	6.430	2,120
2,130	6.430	6.436	6.441	6.447	6.453	6.458	6.464	6.470	6.475	6.481	6.487	2 + 1 30
21140	0.40,	0.472	0.470	0.004	0.000			0.000	0.000			
2,150	6.543	6.549	6.555	6.560	6.566	6.572	6.577	6.583	6.589	6.594	6.600	2,150
2,160	6.600	6.606	6.612	6.617	6.623	6.629	5.634	6.640	6+646	6.651	6.657	2,160
2,170	6,657	6.663	6.669	6.674	6.680	6.686	6.692	6.697	6.703	6.709	6.714	2.170
2,180	6.714	6.720	6.726	6.732	6.737	6.743	6.749	6.755	6.760	6.766	6.772	2,180
2,190	6.772	6.778	6.783	6.789	6.795	6.801	0.006	5.812	6.818	6.024	0.029	2,190
2,200	6.829	6.835	6.841	6.847	6,852	6.858	6.864	6.870	6.876	6.881	6.887	2,200
2,210	6.887	6.893	6.899	6.904	6.910	6.916	6.922	6.928	6.933	6.939	6.945	2,210
2,220	6,945	6.951	6,957	6.962	6.968	6.974	6,980	6.986	6.991	6.997	7.003	2.220
2,230	7.003	7.009	7.015	7.021	7.026	7.032	7.038	7.044	7.050	7.055	7.061	2,230
2,240	7.061	7.067	7.073	7.079	7.085	7.090	7.096	7.102	7.108	7,114	7.120	2,240
2,250	7,120	7.126	7.131	7.137	7.143	7.149	7.155	7.161	7.167	7.172	7.178	2,250
2,260	7.178	7.184	7.190	7.196	7.202	7.208	7.213	7.219	7.225	7.231	7.237	2,260
2,270	7.237	7.243	7.249	7.255	7.260	7.266	1.272	7.275	7.284	7.290	7.296	2.270
2,280	7.355	7.302	7.308	7.314	7.378	7.384	7.390	7.396	7.402	7.408	7.414	2,290
2,270							_					
2,300	7.414	7.420	7.426	7.432	7.438	7.444	7.450	7.456	7.461	7.467	7 6 3 3	2,300
2,310	7.4/3	7.479	7.485	7.491	1.497	7.503	7.509	7.515	7.521	7 607	7 507	2,320
2,320	7.533	7.539	7.545	7.551	7 616	7 4 7 2	7 4 78	7 634	7.640	7 046	7.652	2,520
2,3340	7.652	7.658	7.664	7.670	7.676	7.682	1.588	7.694	7.700	7.706	7.712	2,340
							7 7.0	a : ac .	2 7/0	7 744	7 773	2 360
2,350	7.712	7.718	7.724	7.730	7.736	7.742	7 909	7 916	7 9 20	7.077	7.833	2,360
2,360	7.112	7.778	7.784	7.790	7 4 7 9 6	7 802	7.800	7 0 75	7.620	7 487	7-1935	2,370
2,370	7.000	7.039	7.005	7.031	7.017	7.003	7 9 2 9	7.035	7.961	7.947	7.953	2.380
2,380	7,953	7.959	7.905	7,972	7.978	7.984	7.990	7.996	8.002	8.00.3	8.014	2,390
2,400	8.014	8.020	8.026	8.032	8.038	8.044	8.051	8.057	0.063	8.069	8.075	2,400
2,410	8.075	8.081	8.087	8.093	8.099	8,105	8.111	8,118	d•124	8.130	8.136	2,410
2,420	8.136	S.142	5.148	8.154	8.160	8.166	8.172	8.179	8.185	8.191	8.197	2,420
2,430	8.197	8.203	6.209 8.270	8.215	8.221	8.227	8.234	8.240 8.301	8.246	2•2•2 داد•3	8.208	2,430
2,450	8,319	8.326	8.393	8.338	8.344	8.350	8,356	8:474	8-430	8-416	8.081	2:400
2.470	8.442	8-449	8.455	8.461	8.467	8.473	8.479	8.486	8.492	8.498	8.504	2 4 70
2.480	8.504	8.510	8.516	8.523	8.529	8.535	8.541	8.547	8.554	8.500	6.566	2,480
2,490	8,566	8,572	8.578	8.585	8,591	8.597	8.603	8.609	8.616	8.622	douzi	2 ,470
2.500	8.628	8.634	8.640	8.647	8.653	8.659	8.665	8.671	8.678	8.684	8.690	2,500
2,510	8.690	8.696	8.702	8.709	8.715	8.721	8 727	8.733	8.740	8.746	8,752	2,510
2,520	8,752	8.758	8.765	8 771	8.777	8.783	8,790	8.796	8.802	8.608	8.814	2,520
2,530	8.814	8.821	8.827	8.833	8.839	8.846	8,852	8.858	8.864	8.871	8.877	2,530
2,540	8.877	8.883	8.889	8.896	8.902	8.908	8,914	8.921	8.927	8.953	8.939	2,540
2,550	8,939	8.946	8.952	8.958	8,964	8.971	8,977	8.983	8.989	8,996	9.002	2,550
2,560	9,002	9.008	9.015	9.021	9.027	9.033	9.040	9.046	9.052	9,058	9.065	2,560
2,570	9.065	9.071	9.077	9.084	9.090	9.096	9.102	9.109	9.115	9.121	9.128	2,570
2,580	9.128	9.134	9.140	9.146	9.153	9.159	9.165	9.172	9.178	9.184	9.191	2,560
2,590	9.191	9.197	9.203	9.209	9.216	9.222	9.228	9.235	9.241	9.247	9+254	21370
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

EMF in	Absolute	Millivolts	5		•	Ũ				Reference	e Junctio	ns at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
2,600	9,254	9.260	9.266	9.273	9.279	9.285	9.291	9.298	9.304	9.310	9.317	2,600
2,610	9.317	9.323	9.329	9,336	9.342	9.348	9.355	9.361	9.367	9.374	9.380	2,610
2,620	9.380	9.386	9.393	9.399	9.405	9.412	9.418	9.424	9.431	9.437	9.443	2,620
2,630	9.443	9.450	9.456	9.462	9.469	9.475	9.481	9.488	9.494	9.500	9.507	2,630
2 9040	9.507	9.513	9,019	9.720	9.532	9.538	9,545	9.551	9.558	9.064	9.570	2,640
2,650	9.570	9.577	9.583	9.589	9.596	9.602	9.608	9,615	9.621	9.627	9.634	2,650
2,660	9.634	9.640	9.647	9.653	9.659	9.666	9.672	9.678	9.685	9.691	9.697	2,660
2 +6 /0	9.697	9.704	9.710	9.717	9.723	9.729	9.736	9.742	9.748	9./55	9.761	2,670
2,690	9.825	9.831	9.838	9.844	9.851	9.857	9.863	9.870	9.876	9.603	9.889	2,690
2 700	0 800	oor		0.000	0.014		0 007					
2.710	9.953	9.895	9.902	9.908	9.915	9.985	9.927	9.994	9+940	9.94/	10.017	2,710
2,720	10.017	10.023	10.030	10.036	10.043	10.049	10.056	10.062	10+068	10.075	10.081	2,720
2,730	10.081	10.088	10.094	10.100	10,107	10.113	10.120	10.126	10+133	10.139	10.145	2,730
2,740	10.145	10.152	10,158	10,165	10,171	10.178	10.184	10.190	10.197	10.203	10.210	2,740
2,750	10.210	10.216	10.223	10.229	10.235	10.242	10,248	10.255	10.261	10.268	10.274	2.750
2,760	10.274	10.280	10.287	10.293	10.300	10.306	10,313	10.319	10.325	10.332	10.338	2,760
2,770	10.338	10.345	10.351	10.358	10.364	10.371	10.377	10.383	10.390	10.396	10.405	2,770
2,780	10.403	10.409	10.416	10.422	10.429	10.435	10.441	10.448	10.454	10.461	10.467	2,780
2,790	10.467	10.474	10.480	10.487	10.493	10.500	10.506	10.512	10.519	10.525	10+532	2,790
2,800	10.532	10.538	10.545	10.551	10.558	10.564	10,571	10,577	10.584	10,590	10.596	2,800
2,810	10.596	10.603	10.609	10.616	10.622	10.629	10.635	10.642	10.648	10.655	10•66 1	2,810
2,820	10.661	10.668	10.674	10.680	10.687	10.693	10.700	10.706	10.713	10.719	10.726	2,820
2,840	10.726	10.732	10.739	10.745	10.752	10.758	10.765	10.771	10.778	10.784	10.790	2+830
2,040	10.190	10.191	10.005	10.010	10.010	10.025	10.029	10.030	10+642	10.049	10+000	2 9 0 4 0
2,850	10.855	10.862	10.868	10.875	10.881	10.888	10.894	10.901	10.907	10.914	10.920	2,850
2,860	10.920	10.926	10.933	10.939	10.946	10.952	10,959	10.965	10.972	10.978	10.985	2,860
2,880	11,050	10.991	10.998	11.004	11.011	11.017	11.024	11.095	11.03/	11.043	11+050	2,8870
2,890	11.115	11.121	11.128	11.134	11.141	11.147	11.154	11.160	11.166	11.173	11.179	2,890
2.000					11 205							
2,910	11.244	11.251	11.257	11.264	11.270	11.277	11.283	11.229	11.296	11.303	11.309	2,900
2,920	11.309	11.316	11.322	11.329	11.335	11.342	11,348	11.355	11+361	11.368	11.374	2,920
2,930	11.374	11.381	11.387	11.394	11.400	11.407	11.413	11.420	11.426	11.433	11.439	2,930
2,940	11.439	11.446	11.452	11.459	11.465	11.472	11.478	11.485	11.491	11.498	11.504	2,940
2,950	11.504	11.511	11.517	11.524	11.530	11.537	11.543	11.550	11.556	11.563	11.569	2,950
2,960	11,569	11.576	11,582	11,589	11,595	11.602	11.608	11.615	11.621	11.628	11.634	2,960
2,970	11.634	11.641	11.647	11.654	11.660	11.667	11.673	11.680	11.686	11.693	11.699	2,970
2,980	11.699	11.706	11.712	11.719	11.725	11+732	11.738	11.745	11+751	11.62	11.820	2,980
2000	11.04	11	11	110,04	110/70	114171	11.000	11.010	11.010	11.0025	11.002/	2000
3,000	11.829	11.836	11.842	11.849	11.855	11.862	11.868	11.875	11.881	11.5555	11.894	3.000
3,010	11.894	11.901	11.907	11.914	11.920	11.927	11.933	11.940	11.946	11.953	11.959	3,010
3,020	11.959	11.966	11.972	11.979	11,985	11.992	11,998	12.005	12.011	12.018	12.024	3,020
3,030	12.024	12.031	12.037	12.044	12.050	12.057	12,063	12.070	12.076	12.083	12.089	3,030
3,040	12.009	12.090	12.102	18.109	12.115	12,121	12.128	12+134	12+141	12+147	12+154	3+040
3,050	12.154	12.160	12.167	12.173	12,180	12.186	12,193	12.199	12.206	12.212	12.219	3,050
3,060	12.219	12.225	12.232	12.238	12.245	12.251	12.258	12.264	12.271	12,277	12.284	3,060
3.080	12.284	12.290	12.297	12.203	12.310	12.316	12.323	12.329	12.336	12.342	12.349	3,070
3,090	12.413	12.420	12.426	12.300	12.374	12.551	12.387	12.394	12+400	12+401	12.478	3+080
3,110	12,478	12.489	12+491	12 662	12 540	12+511	12 592	12.523	12+530	12.536	12.543	3+100
3,120	12.608	12.614	12.621	12.627	12+509	12.640	12.546	12.653	12+595	12.666	12+000	3,120
3,130	12.672	12.679	12+685	12.692	12.698	12.705	12.711	12.718	12.724	12.750	12.737	3,130
3,140	12,737	12.743	12.750	12.756	12.763	12.769	12.775	12.782	12.789	12.795	12.801	3,140
3,150	12.801	12.808	12.814	12.821	12.827	12.834	12.840	12.847	12.853	12.860	12.866	3.150
3,160	12.866	12.872	12.879	12.885	12.892	12.898	12,905	12.911	12.918	12.924	12.930	3,160
3,170	12,930	12.937	12.943	12.950	12.956	12,963	12,969	12.976	12.982	12.988	12.995	3,170
3.180	12,995	13.001	13.008	13.014	13.021	13.027	13.034	13.040	13.046	13.053	13.059	3,180
3+190	13.059	13.066	13.072	13.079	13.085	13.091	13.098	13.104	13+111	13.117	13.124	3,190
3,200	13.124	13.130	13.136	13.143	13.149	13.156	13.162	13.169	13+175	13.181	13.188	3,200
3,210	13,188	13,194	13,201	13.207	13,213	13.220	13.226	13.233	13.239	13.246	13.252	3,210
3,220	13,252	13,258	13,265	13.271	13,278	13.284	13.290	13.297	13.303	13.310	13.316	3,220
3,240	13,380	13.387	13.393	13.399	13.406	13.412	13.418	13.425	13.431	13.438	13.444	3,240
DEG F	٥	1	2	3	4	5	6	7	8	9	10	DEG F

Temperature in Degrees Fahrenheit^a

EMF in	Absolute	Millivolt	s							Referen	ce Junctio	ns at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
3,250	13.444	13.450	13.457	13.463	13.470	13.476	13.482	13.489	13.495	13.502	13.508	3.250
3.260	13,508	13,514	13.521	13.527	13,533	13.540	13,546	13.553	13.559	13,565	13.572	3,260
3,270	13.572	13.578	13,585	13,591	13,597	13.604	13,610	13,616	13.623	13,629	13.635	3,270
3,280	13.635	13.642	13,648	13,655	13.661	13.667	13.674	13.680	13.686	13.693	13.699	3,280
3,290	13.699	13,706	13.712	13.718	13,725	13.731	13.737	13.744	13.750	13.756	13.763	3,290
3,300	13.763	13.769	13.775	13.782	13.788	13.794	13.801	13.807	13.814			3,300
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			<u></u>	1000 100								

Temperature in Degrees Fahrenheit^a

TABLE 43—Type B thermocouples.

EMF in	Absolute	Millivolt	is			-				Refere	nce Junctio	ons at 0 C
DEG C	0	1	2	3	4	5	6	۲	8	9	10	DEG C
			т	HERMOELE	CTRIC VO	LTAGE IN	ABSOLUT	E MILLIV	OLTS			
0	0.000	-0.000	-0,000	-0.001	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002	0
10	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.002	-0.003	-0.003	-0.003	10
20	-0.003	-0.003	-0.003	-0.003	-0.003	-0.002	-0.002	-0.002	-0+002	-0.002	~0.002	20
30	-0.002	-0.002	-0.002	-0.002	-0.002	-0.001	-0.001	-0.001	-0.001	-0.001	-0.000	30
40	-0.000	-0.000	-0.000	0.000	0.000	0.001	0.001	0.001	0.002	0.002	0.002	40
50	0.002	0.003	0.003	0.003	0.004	0.004	0.004	0.005	0.005	0.006	0.006	50
60	0.006	0.007	0.007	0.008	0+008	0.009	0.009	0.010	0.010	0.011	0.011	60
70	0.011	0.012	0.012	0.013	0.014	0.014	0.015	0.015	0.016	0.017	0.017	70
80	0.017	0.018	0.019	0.020	0.020	0.021	0.022	0.022	0.023	0.024	0.025	80
90	0.025	0.026	0.026	0.027	0.028	0.029	0.030	0.031	0.031	0.032	0.033	90
100	0.033	0.034	0.035	0.036	0.037	0.038	0.039	0.040	0.041	0.042	0.043	100
110	0.043	0.044	0.045	0.046	0.047	0.048	0.049	0.050	0.051	0.052	0.053	110
120	0.053	0.055	0.056	0.057	0.058	0.059	0.060	0.062	0.063	0.064	0.065	120
130	0.065	0.066	0.068	0.069	0.070	0 071	0.073	0.074	0.075	0.077	0.078	130
140	0.078	0.079	0.081	0.082	0.083	0.085	0.086	0.088	0.089	0.091	0.092	140
150	0.092	0.093	0.095	0.096	0.098	0.099	0.101	0.102	0.104	0.106	0.107	150
160	0.107	0.109	0.110	0.112	0.113	0.115	0.117	0.118	0.120	0.122	0.123	160
170	0.123	0.125	0.127	0.128	0.130	0.132	0.133	0.135	0.137	0.139	0.140	170
180	0.140	0.142	0.144	0.146	0.148	0.149	0.151	0.153	0.155	0.157	0.159	180
190	0,159	0.161	0.163	0.164	0.166	0.168	0.170	0.172	0.174	0.176	0.178	190
200	0 179	0 180	0 197	0 194	0 104	A 100	0.100	0.192	0.194	0 197	0.100	200
200	0.190	0.180	0.202	0.184	0.207	0 200	0.211	0 214	0 216	0.218	0 220	200
220	0 2 2 0	0.222	0.225	0 2 2 7	0.2207	0.231	0 734	0 236	0.239	0.240	0.243	270
220	0 243	0 2/5	0 247	0.250	0 262	0 254	0 267	0.250	0.263	0.240	0.245	220
240	0.266	0.269	0.271	0.274	0.276	0.279	0.281	0.284	0.286	0.289	0.291	240
							0.0.7					
250	0.291	0.294	0.296	0.299	0.301	0.304	0.307	0.309	0.312	0.314	0.317	250
260	0.317	0.320	0.322	0.325	0.328	0.330	0.333	0.336	0.338	0.341	0.344	260
260	0.11	0.320	0.322	0.325	0.328	0.330	0.333	0.336	0.338	0.341	0.344	260
270	0.344	0.341	0.247	0.352	0.395	0.398	0.360	0.303	0.360	0.309	0.572	270
280	0.401	0.404	0.406	0.409	0.412	0.415	0.418	0.421	0.395	0.427	0.431	200
2,00	00.01	0.404		0.407	00411	0000122	0.10	00421	0.424		0.451	270
300	0.431	0 • 4 3 4	0.437	0.440	0.443	0.446	0.449	0.452	0.455	0.458	0.462	300
310	0.462	0.465	0.468	0+471	0.474	0.477	0.481	0.484	0.487	0.490	0.494	310
320	C.494	0.497	0.500	0.503	0.507	0.510	0.513	0.517	0.520	0.523	0.527	320
340	0.561	0.564	0.568	0.571	0.575	0.578	0.582	0.585	0.589	0.592	0.596	340
								••••		•••		
350	0.596	0.599	0.603	0.606	0.610	0.614	0.617	0.621	0.625	0.628	0.632	350
200	0.660	0.650	0.637	0+643	0.647	0.650	0.654	0.656	0.001	0.000	0.009	360
380	0.007	0.075	0.011	0.050	0.733	0.000	0.692	0.096	0.699	0.703	0.707	570
390	0.746	0.750	0.754	0.758	0.762	0.766	0.770	0.774	0.778	0.782	0.786	390
	_											
400	0.786	0.790	0.794	0.799	0.803	0.807	0.811	0.815	0.819	0.823	0.827	400
410	0.827	0.832	0.836	0.840	0.844	C.848	0.853	0.857	0.861	0.865	0.870	410
420	0.870	0.874	0.878	0.885	0.887	0.891	0.895	0.900	0.904	0.908	0.913	420
450	0.957	0.91/	0.966	0.926	0.975	0.979	0.939	0.988	0.9948	0.997	1.002	430
440		0.001	0.000	0.910	0.000	0.717	••••	0.000	0.,,,,		1.002	440
450	1.002	1.006	1.011	1.015	1.020	1.025	1.029	1.034	1.039	1.043	1.048	450
460	1.048	1.052	1.057	1.062	1.066	1.071	1.076	1.081	1.085	1.090	1.095	460
470	1.095	1.100	1.104	1.109	1.114	1.119	1.123	1.128	1.133	1.138	1.143	470
480	1.143	1.148	1.152	1.157	1.162	1.167	1.172	1.177	1.182	1.187	1.192	480
490	1.192	1.197	1.202	1.206	1.211	1.216	1.221	1.226	1+231	1.200	1.241	490
500	1.241	1.246	1.252	1.257	1.262	1.267	1.272	1.277	1.282	1.287	1.292	500
510	1.292	1.297	1.303	1.308	1.313	1.318	1.323	1.328	1.334	1.339	1.344	510
520	1.344	1.349	1.354	1.360	1.365	1.370	1.375	1.381	1.386	1.391	1.397	520
530	1.397	1.402	1.407	1.413	1.418	1.423	1.429	1.434	1.439	1.445	1.450	530
540	1.450	1.456	1.461	1.467	1.472	1.477	1.483	1.488	1.494	1.499	1.505	540
55C	1,505	1.510	1.516	1.521	1.527	1.532	1.538	1.544	1.549	1,555	1.560	550
560	1.560	1.566	1.571	1.577	1.583	1.588	1.594	1.600	1.605	1.611	1,617	560
570	1.617	1.622	1.628	1.634	1.639	1.645	1.651	1.657	1.662	1.668	1.674	570
580	1.674	1.680	1.685	1.691	1.697	1.703	1.709	1.715	1.720	1.726	1.732	580
590	1.732	1.738	1.744	1.750	1.756	1.762	1.767	1.773	1.779	1.785	1.791	590
						/						
600	1,851	1.857	1.803	1.869	1.815	1.821	1.888	1.894	1.839	1.845	1.851	600
620	1.912	1,918	1,924	1,031	1.937	1.942	1.949	1,955	1.961	1.968	1.974	620
630	1.974	1.980	1.984	1.993	1 999	2.005	2.011	2.018	2.024	2.030	2.036	630
640	2.036	2.043	2.049	2.035	2.062	2.068	2.074	2.081	2.087	2.094	2.100	640
	•				<u> </u>							
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C

Temperature in Degrees Celsius (IPTS 1968)

DEG C	0	1	2	3	4	5	6	7	8 		10	DEG C
			THE	RMOELEC	RIC VUL	AGE IN	ABSULUTE	MILLIVOL				
650	2.100	2.106	2.113	2.119	2.126	2.197	2.139	2.145	2.151	2.158	2.230	660
670	2.230	2.236	2.243	2.249	2.256	2.263	2.269	2.276	2.282	2.289	2.296	670
680	2.296	2.302	2.309	2.316	2.322	2.329	2.336	2.343	2.349	2.356	2.363	680
690	2.363	2.369	2.376	2.383	2.390	2.395	2.403	2.410	2.417	2.424	2.430	690
700	2.430	2.437	2.444	2.451	2.458	2.465	2.472	2.478	2.485	2.492	2.499	700
710	2.499	2.506	2.513	2.520	2.527	2.534	2.541	2.548	2.555	2.562	2.630	710
720	2.569	2.576	2.583	2.590	2.591	2 604	2.0011	2.689	2.696	2.703	2.710	730
740	2.639	2.046	2.724	2.732	2.739	2.746	2.753	2.760	2.768	2.775	2.782	740
750	2 1782	790	3.797	2.804	2.811	2.818	2.826	2.833	2.840	2.848	2.855	750
760	2.855	2.862	2.869	2.877	2.884	2.892	2.899	2.906	2.914	2.921	2.928	760
770	2.928	2.936	2.943	2.951	2.958	2.966	2.973	2.980	2.988	2.995	3.003	770
780	3.003	3.010	3.018	3.025	3.033	3.040	3.048	3.055	3+063	3.070	3.078	780
790	3.073	3.086	3.093	3.101	3.108	3,116	3,124	3.131	3.139	3.140	2.194	790
800	3.154	3.162	3.169	3.177	3.185	3.192	3.200	3.208	3.215	3.223	3.231	800
810	3.231	3.239	3.246	3.254	3.262	3.269	3.277	3.265	3.293	3.379	3.387	820
820	3.308	3.316	3+324	3.332	3.419	3.426	3.434	3.442	3.450	3.458	3.466	830
840	3.466	3.474	3.482	3.490	3.498	3.506	3.514	3.522	3.530	3.538	3.546	840
850	3.546	3.554	3.562	3.570	3.578	3.586	3,594	3.602	3.610	3.618	3.626	850
860	3.626	3.634	3.643	3.651	3.659	3.667	3.675	3.683	3.691	3.700	3.708	860
870	3.708	3.716	3.724	3.732	3.741	3 • 749	3.757	3.765	3.773	3.782	3.790	870
098	3.873	3•798 3•881	3.890	3•815 3•898	3.823	3.831 3.915	3.840 3.923	3.848 3.931	3.856	3.948	3.957	890
			2 0 7 2	0.000	2 000	2 000	4 0.07	4.016	6.024	4.032	4.041	900
900	3.957	3.965	3.973	3.982	3.990	4.083	4.092	4.100	4.109	4.117	4.126	910
910	4.126	4.135	4.143	4.152	4.160	4.169	4.177	4.186	4.195	4.203	4.212	920
930	4.212	4.220	4.229	4.238	4.246	4.255	4.264	4.272	4.281	4.290	4.298	930
940	4.298	4.307	4.316	4.325	4.333	4.342	4.351	4.359	4.368	4.377	4.386	940
950	4.386	4.394	4.403	4.412	4•421	4.430	4.438	4.447	4.456	4.465	4•474	950
960	4.474	4.483	4.491	4.500	4.509	4.518	4.527	4.536	4.545	4.553	4.502	960
970	4.562	4.571	4.580	4.589	4.598	4.607	4.616	4.020	4.034	4.733	4.742	980
980	4.692	4.001	4.760	4.517	4.000	4.787	4.796	4.805	4.814	4.824	4.833	990
1.000	4.833	4.842	4.851	4.860	4.869	4.878	4.887	4.897	4.906	4.915	4.924	1.000
1.010	4.924	4.933	4.942	4.952	4.961	4.970	4.979	4.989	4.998	5.007	5.016	1,010
1,020	5.016	5.025	5.035	5.044	5.053	5.063	5.072	5.081	5.090	5.100	5.109	1.020
1,030	5.109	5.118	5.128	5.137 5.231	5.146	5.156	5.165	5.174	5.184 5.278	5.193	5.297	1:030
1,040	202	J+212						5 3/3	5 9 7 9	5 383	6.301	1.050
1,050	5.297	5.306	5.410	5.420	5.334	5.439	5.449	5.458	5.468	5.477	5.487	1,060
1.070	5.487	5.496	5.506	5.516	5.525	5.535	5.544	5.554	5.564	5.573	5.583	1,070
1,080	5.583	5.593	5.602	5.612	5.621	5.631	5.641	5.651	5+660	5.670	5.680	1,080
1,090	5.680	5.089	2.044	5.109	20110	20120	20130	20140				
1,100	5.777	5.787	5.796	5.806	5.816	5.826	5.836	5.845	5.855	5.865	5.875	1,100
1,110	5.875	5.885	5.895	5.904	5.914	5.924	5.934	5.944	5.053	5.964	5.973	1,120
1,120	5.9/3	5.983	5.993	6.102	6.112	6+122	6.132	6.142	6.152	6.162	6.172	1,130
1,140	6.172	6.182	6.192	6.202	6.212	6.223	6.233	6.243	6.253	6.263	6.273	1,140
1,150	6.273	6.283	6.293	6.303	6.313	6.323	6.333	6.343	6.353	6.364	6.374	1,150
1,160	6.374	6.384	6.394	6.404	6.414	6.424	6.435	6.445	6.455	6.465	6.475	1,160
1,170	6.475	6.485	6.496	6.506	6.516	6.526	6,536	6.547	6.557	6.567	6.577	1,170
1,180	6.577	6.588	6.598	6.608	6.618	6.629	6.539	6.750	6.743	6.773	6.782	1,190
1,190	6.680	6.690	6.701	6./11	6.121	0.132	0.142	0.192	0.705	0		
1,200	6.783	6.794	6.804	6.814	6.825	6.835	6.846	6.856	6+866	6.877	6.887 6.991	1,200
1,210	6.887	5.898	7.012	7.023	7.033	7.044	7.054	7.065	7.075	7.086	7.096	1,220
1.230	7.096	7.107	7.117	7.128	7.138	7.149	7.159	7.170	7.181	7.191	7.202	1,230
1,240	7.202	7.212	7.223	7.233	7.244	7.255	7.265	7.276	7.286	7.297	7.308	1,240
1,250	7.308	7.318	7.329	7.339	7.350	7.361	7.371	7.382	7.393	7.403	7.414	1,250
1,260	7.414	7.425	7.435	7.446	7.457	7.467	7.478	7.489	7.500	7.510	7.521	1,260
1+270	7.521	7.532	7.542	7.553	7.564	7.575	7 402	7.596	7,715	7,725	7.736	1,280
1,280	7.736	7.747	7.758	7.769	7.780	7.790	7.801	7.812	7.823	7.834	7.845	1.290
			-					7			10	DEG C
UEGC	v	1	2	د	4	2	0	,	0			

EMF in	Absolute	Millivolts	•							Referen	ce Junctio	ns at 0 C
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C
			TH	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			_
1,300	7.845	7.355	7.866	7.877	7.885	7.899	7,910	7.921	7.932	7.943	7,953	1,300
1,310	7.953	7.964	7.975	7.986	7.997	8.008	8.019	8.030	8.041	8.052	8.063	1,310
1,320	8.063	8.074	8.085	8.096	8,107	8.118	8.128	8.139	8.150	8.161	8.172	1,320
1,340	8.283	8.105	8.305	8.205	8.327	8.338	8.349	8-249	8+261	8+272	8+283	1:330
					**527	0.000	0.347	00,000	0.011	00,000	0	11,340
1,350	8.393	8.404	8.415	8.426	8.437	8,449	8.460	8.471	8 • 482	8.493	8,504	1.350
1,360	8.504	8.515	8.526	8.538	8.549	8.560	8.571	8,582	8.593	8.604	8.616	1,360
1,370	8.616	8.627	8.638	8.649	8.660	8.671	8.683	8.694	8.705	8.716	8.727	1.370
1.390	8.839	20120	8.863	C+ (61 9 973	9 994	8.183	8.795	8.805	8-817	8.828	8.839	1.380
1,270	0.037	C.051	0.002	0.013	0.004	e.070	0.901	0.710	0.929	0.741	8.952	1.590
1,400	8.952	8.963	8.974	8.986	8,997	9,008	9.020	9.031	9.042	9.053	9.065	1.400
1,410	9.065	9.076	9.087	9.099	9.110	9.121	9.133	9.144	9.155	9.167	9.178	1,410
1,420	9.178	9.189	9.201	9.212	9.223	9.235	9.246	9.257	9.269	9.280	9.291	1.420
1+430	9.291	9.303	9.314	9.326	9.337	9.348	9.360	9.371	9+382	9.394	9.405	1,430
1+440	9+405	9.417	9.428	9.439	9.451	9.462	9.474	9.485	9.497	9.508	9.519	1,440
1.450	9.519	9.531	9.542	9.554	9.565	9.577	9.588	9.500	9-611	9.622	9.634	1.450
1,460	9.634	9.645	9.657	9.668	9.680	9.691	9.703	9.714	9.726	9.737	9.748	1.460
1,470	۶. 748	9.760	9.771	9.783	9.794	9.806	9.817	9.829	9.840	9.852	9.863	1.470
1.480	۶.863	9.875	9.886	9.898	9.909	9.921	9,933	9.944	9.956	9.967	9.979	1.480
1.490	9,979	9,990	10.002	10.013	10.025	10.036	10+048	10.059	10.071	10.082	10.094	1,490
1.500	10 094	10 106	10 117	10 120	10 160	10 153	10.140	10 175	10 107	10.100		
1,510	10.210	10.221	10.233	10.129	10,140	10.152	10,163	10.175	10+187	10.198	10+210	1+500
1,520	10.325	10.337	10.349	10.360	10.372	10.383	10.279	10-407	10.418	10.430	10,441	1+510
1,530	10.441	10.453	10.465	10.476	10.488	10.500	10.511	10.523	10.534	10.546	10.558	1.530
1,540	10.558	10,569	10.581	10.593	10.604	10.516	10.627	10.639	10+651	10.662	10.674	1,540
1,550	10.674	10.686	10.697	10.709	10.721	10.732	10.744	10.756	10.767	10.779	10.790	1.550
1.560	10.790	10.802	10.814	10.825	10.837	10.849	10.860	10.872	10.884	10.895	10.907	1,560
1,570	10.907	10.919	10.930	10.942	10.954	10.965	10.977	10,989	11.000	11.012	11.024	1,570
1,580	11.024	11.035	11.047	11.059	11.070	11.082	11.094	11.105	11.117	11.129	11.141	1.580
1,590	11.141	11.192	11.164	11,176	11.187	11.199	11.211	11.222	11.234	11.246	11.257	1.590
1,600	11.257	11.269	11.281	11.292	11.304	11.316	11,328	11.339	11.351	11,363	11.374	1,600
1,610	11.374	11.386	11.398	11.409	11.421	11.433	11.444	11.456	11.468	11.480	11.491	1.610
1,620	11.491	11.503	11.515	11.526	11.538	11.550	11,561	11.573	11.585	11.597	11.608	1.620
1.630	11.608	11.620	11.632	11.643	11.655	11.667	11.678	11.690	11.702	11.714	11.725	1,630
1+640	11. 125	11./3/	11.149	11.760	11.//2	11.784	11.795	11.807	11+819	11.630	11.842	1,640
1:650	11.842	11.854	11.866	11.877	11.889	11.901	11.912	11.924	11.936	11.947	11.959	1.650
1.660	11.959	11,971	11.983	11,994	12.006	12,018	12.029	12.041	12.053	12.064	12.076	1.660
1.670	12.076	12.088	12.099	12.111	12.123	12.134	12,146	12.158	12.170	12.181	12.193	1.670
1,680	12,193	12.205	12.216	12.228	12.240	12.251	12.263	12.275	12.286	12.298	12.310	1.680
1+690	12,310	12+321	12.333	12.345	12.356	12.368	12,380	12.391	12.403	12.415	12.426	1,690
1,700	12.426	12.438	12.450	12.461	12.473	12.485	12.496	12.508	12.520	12.531	12.543	1.700
1,710	12.543	12.555	12.566	12.578	12.590	12.601	12.613	12.674	12.636	12.648	12.659	1.710
1,720	12.659	12.571	12.683	12.694	12.706	12.718	12.729	12.741	12.752	12.764	12.776	1.720
1.730	12.776	12.787	12.799	12.811	12.822	12.834	12,845	12.857	12.869	12.880	12.892	1,730
1.740	12,892	12,903	12,915	12.927	12.938	12.950	12.961	12.973	12.985	12.996	13.008	1,740
1.750	13.008	13.019	13.031	13.043	13.054	13.066	13.077	13.089	13.100	13.112	13.124	1.750
1,760	13.124	13.135	13.147	13.158	13.170	13.181	13,193	13.204	13.216	13.228	13.239	1+760
1.770	13.239	12.251	13.262	13.274	13.285	13.297	13.308	13.320	13.331	13.343	13.354	1.770
1.780	13,354	13.366	13.378	13.389	13.401	13.412	13.424	13.435	13.447	13.458	13,470	1.780
1,790	12.470	13.461	13.493	13.504	13.516	13.527	13,539	13.550	13.562	13.573	13,585	1,790
1.800	13,585	13,596	13.607	13.619	13.630	13.642	13.653	13.665	13.676	13.688	13.699	1,800
1.810	13.699	13.711	13.722	13.733	13.745	13.756	13.768	13.779	13.791	13.802	13.814	1,810
1,820	13.814											1,820
		·										<u> </u>
DEGC	Q	1	2	3	4	5	6	7	8	9	10	DEG C

Temperature in Degrees Celsius (IPTS 1968)

TABLE 44—Type E thermocouples.

Temperature in Degrees Fahrenheit^a

EMF in	Absolute	Millivolts	5		nporacero					Reference	e Junction	ns at 32 F
DEGF	0	1	2	3	4	5	6	7	8	9	10	DEGF
			тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
-450	-9.830	-9.832	-9.833	-9.834	-9.835							-450
-440	-9.809	-9.812	-9.814	-9.817	-9.819	~9.821	-9.823	-9.825	-9.827	-9.829	-9.830	-440
-430	-9.775	-9.779	-9.783	-9.786	-9.790	-9.793	-9.797	-9.800	-9.803	-9.806	-9.809	-430
-420	-9.729	-9./34	-9.739	-9.744	-9.749	-9.703	-9.708	-9.713	-9.719	-9.724	-9.729	-410
-410	-9.604	-9.611	-9.619	-9.626	-9.633	-9.639	-9.646	-9.653	-9.659	-9.666	-9.672	-400
- 200		-0 526	-9.542	-9 550	-9.558	-9.546	-9.574	-9.582	-9.589	-9.597	-9.604	-390
-380	-9.437	-9.446	-9.455	-9.464	-9.473	-9.482	-9.491	-9.500	-9.509	-9.517	-9.526	-380
-370	-9.338	-9.348	-9.358	-9.368	-9.378	~9.388	-9.398	-9.408	-9.418	-9.427	-9.437	-370
-360	-9,229	-9.241	-9.252	-9.263	-9.274	-9.285	-9.296	-9.306	-9.317	-9.327	-9.338	-360
-350	-9.112	-9.124	-9.136	-9.148	-9.160	-9.172	-9.184	-9.195	-9.207	-9.218	-9.229	-350
-340	-8,986	-8.999	-9.012	-9.025	-9.038	-9.050	-9.063	-9.075	-9.088	-9.100	-9.112	-340
-330	-8.852	-8.866	-8.880	-8.893	-8.907	-8.920	-8.934	-8.947	-8.960	-8.973	-8.986	-330
-320	-8.710	-8.725	-8.739	-8.754	-8.768	-8.782	-8.796	-8.810	-8.824	~8.838	-8.852	~320
-310	-8.561	-8.576	-8.436	-8.606	-8.468	~8.483	-8.499	-8.000	-8.530	-8.545	-8.561	-300
-300		-8.420							0.070			-280
-290	-8.240	-8.257	-8.273	-8.290	-8.306	-8.323	-8.339	-8.355	-8.3/2	-8.200	-8.2404	-290
-280	-8.069	-8.086	-8.104	-8.121	-8.138	-8.155	-7 900	-9 016	-8.036	-8.051	-8-049	-270
-210	-7.091	-7.776	-7.744	-7.763	-7.781	-7.800	-7.818	-7.837	-7.855	-7.873	-7.891	-260
-250	-7.516	-7.535	-7.555	-7.574	-7.593	-7.612	-7.631	-7.650	-7.669	-7.688	-7.707	-250
740	7 319	-7. 339	-7.359	-7.279	-7.399	-7.418	-7-438	-7-458	-7.477	-7.497	-7.516	-240
-230	-7.116	-7.137	-7.157	-7.178	-7.198	-7.218	-7.239	-7.259	-7.279	-7.299	-7.319	-230
-220	~6.907	-6.928	-6.949	-6.970	-6.991	-7.012	-7.033	-7.054	-7.075	-7.095	-7.116	-220
-210	-6.692	-6.714	-6.735	-6.757	-6.779	-6.800	-6.822	-6.843	-6.864	-6.886	-6.907	-210
-200	-6.471	-6.494	-6.516	~6.538	-6.560	-6.582	-6.604	-6.626	-6.648	-6.670	-6.692	-200
-190	-6.245	-6+268	~6.291	-6.314	-6.336	-6.359	-6.382	-6.404	-6.427	-6.449	-6.471	-190
-180	-6.013	-6.037	-6.060	-6.084	-6.107	-6.130	-6.153	-6.176	-6.199	-6.222	-6.245	-180
-170	-5.776	-5.800	-5.824	~5.848	-5.872	-5.896	-5.919	-5.943	-5.967	-5.990	-6.013	-170
-160	~5.534	-5.559	-5.583	-5.607	-5.632	-5.656	-5.680	-5.704	-5.728	-5.752	-5.776	-160
-150	-5.287	-5.312	-5.337	-5.362	-5.300	~5.411	-1.430	-9.400	-).48)	-9.910	-,,,,,,	-150
-140	-5.034	-5.060	-5.085	-5.111	-5.136	-5.161	-5.186	-5.212	-5.237	-5.262	-5.287	-140
-130	-4.777	-4.803	-4.829	-4.855	-4.880	-4.906	-4.932	-4.958	-4.983	-2.009	-9.034	-130
-120	-4.515	-4.541	-4.56/	-4.594	-4.020	-4.397	-4.6072	-4.635	-46123	-4.488	-4-515	-110
-100	-3.976	-4.003	~4.031	-4.058	-4.085	-4.112	-4.139	-4.167	-4.194	-4.221	-4.248	-100
							-3 944		-3.921	-2.949	-3.976	-90
-90	-3.700	-3.728	-3.175	-3.504	-3.532	-3.560	-3.588	-3.616	-3.644	-3.672	-3.700	-80
-80	-3 134	-3.143	-3,192	-3.770	-3.249	-3.277	-3.306	-3.334	-3.363	-3.391	-3.419	-70
-60	-2.845	-2.874	-2.903	-2.932	-2.961	-2.990	-3.019	-3.04B	-3.077	-3.106	-3.134	-60
-50	-2.552	-2.581	-2.611	-2.640	-2.670	-2.699	-2.728	-2.758	-2.787	-2.816	-2.845	-50
- 40	-2.254	-2.284	-2.314	-2.344	-2.374	-2.404	-2.433	-2.463	-2.493	-2.522	-2.552	-40
-30	-1.953	-1.983	-2.014	-2.044	-2.074	-2.104	-2.134	-2.164	-2.194	-2,224	-2.254	-30
-20	-1.648	-1.678	-1.709	-1.740	-1.770	-1.801	-1.831	-1.862	-1.892	-1.923	-1.953	-20
-10	-1.339	-1.370	-1.401	-1.432	-1.463	-1.494	-1.525	-1.555	-1.586	-1.617	-1.648	-10
- 0	-1.026	-1.057	-1.089	-1.120	-1.151	-1.183	-1,214	-1.245	-1.276	-1.308	-1.339	- 0
n	-1-026	-0,994	-0.963	-0,937	~0.900	-0.868	-0.836	-0.805	-0.773	-0.741	-0.709	٥
10	-0.709	-0.677	-0.645	-0.613	-0.581	-0.549	-0.517	-0.485	-0.453	-0.421	-0.389	10
20	-0.389	-0.357	-0.324	-0.292	-0.260	-0.227	-0.195	-0.163	-0.130	-0.098	-0.065	20
30	-0.065	-0.033	0.000	0.033	0.065	0.098	0.131	0.163	0.196	0.229	0.262	30
40	0.262	0.295	0.327	0.360	0.393	0.426	0.459	0.492	0.525	0.558	0.591	40
50	0.591	0.624	0.658	0.691	0.724	0.757	0.790	0.824	0.857	0.890	0.924	50
60	0.924	0.957	0.990	1.024	1.057	1.091	1.124	1.158	1.192	1.225	1.507	60
10	1.259	1.292	1 4 4 4	1.360	1.722	1.747	1.801	1,475	1.029	1.903	1.017	80
90	1.937	1.972	2.006	2.040	2.075	2.109	2.143	2.178	2.212	2.247	2.281	90
100	2.281	2.314	2.350	2. 385	2.419	2.454	2.489	2.523	2.548	2.593	2.627	100
110	2.627	2.662	2.697	2.732	2.767	2.802	2.837	2.872	2.907	2.942	2.977	110
120	2.977	3.012	3.047	3.082	3.117	3.152	3,187	3.223	3.258	3.293	3.329	120
130	3.329	3.364	3.399	3.435	3.470	3.506	3.541	3.577	3.612	3.648	3.683	130
140	3.683	3.719	3.755	3.790	3.826	3.862	3.898	3.933	3.969	4.005	4.041	140
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

EMF in	Absolute	e Millivol	ts	Te	mperatur	e in Degr	ees Fahrer	heit"		Referen	ce Junctio	nsat 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			TI	HERMOELE	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	DLTS			
150	4,041	4.077	4,113	4.149	4.185	4.221	4.257	4.293	4.329	4.365	4.401	150
160	4.401	4,437	4.474	4.510	4.546	4.582	4.619	4.655	4+691	4.728	4.764	160
180	4./64	4.801	4.83/	4+874	4.910	4.947	4,983	5.020	5.056	5.093	5.130	170
190	5.498	5.535	5.572	5,609	5.646	5.683	5.720	5.757	5.794	5.832	5.869	190
200	5.869	5.906	5.943	5.981	6.018	6.055	6.092	6.130	6.167	6.205	6.242	200
210	6.242	6.280	6.317	6.355	6.392	6.430	6.467	6.505	6+543	6.580	6.618	210
220	6.618	6.656	6.693	6.731	6.769	6.807	6.845	6.882	6+920	6.958	6.996	220
240	7.377	7.415	7.453	7.491	7.530	7.568	7.606	7.645	7.683	7.721	7.760	240
250	7.760	7.798	7.837	7.875	7.914	7.952	7.991	8.029	8.068	8-106	8.145	250
260	8.145	8.184	8.222	8.261	8,300	8.338	8.377	8,416	8.455	8.494	8.532	260
270	8,532	8,571	8.610	8.649	8.688	8,727	8.766	8.805	8.844	8.883	8.922	270
280	8.942	8,961	9.392	9+039	9.078	9.118	9.157	9,196	9.235	9,274	9.314	280
270	7.514	7.575	7.372	7.452	7.4/1	9.510	7.550	7.309	9.029	9,008	9.708	290
300	9.708	9.747	9.787	9.826	9.866	9.905	9.945	9.984	10.024	10.064	10.103	300
320	10.103	10+143	10+183	10.223	10.262	10.302	10.342	10.382	10.421	10.461	10.501	310
330	10.901	10.941	10.981	11.021	11.061	11,101	11.142	11.182	10+821	11.262	10.901	320
340	11.302	11.343	11.383	11.423	11.464	11.504	11.544	11.585	11.625	11.665	11.706	340
350	11.706	11.746	11.787	11.827	11.868	11.908	11.949	11.989	12.030	12.070	12.111	350
360	12.111	12.152	12.192	12.233	12.273	12.314	12,355	12,396	12.436	12.477	12.518	360
380	12.976	12.967	12.008	12.049	12+681	12.722	12.763	12.804	12.844	12.885	12.926	370
390	13.336	13.378	13.419	13.460	13.501	13.542	13,583	13.624	13.666	13.707	13.748	390
400	13,748	13.789	13.831	13.872	13,913	13.955	13,996	14.037	14.079	14.120	14.161	400
410	14.161	14.203	14.244	14.286	14.327	14.368	14.410	14.451	14.493	14.534	14.576	410
420	14.576	14.618	14.659	14.701	14.742	14.784	14.826	14.867	14.909	14.950	14.992	420
440	15.410	15.451	15.493	15.117	15.159	15.201	15.243	15.284	15.326	15.368	15.410	430 440
450	15.829	15.871	15.912	15.954	15.996	16.038	16.080	16.123	16.165	16.207	16.249	450
460	16.249	16.291	16.333	16.375	16.417	16.459	16.501	16.544	16.586	16.628	16.670	460
470	16.670	16.712	16.755	16.797	16.839	16.881	16.924	16.966	17.008	17.051	17.093	470
490	17.517	17.559	17.602	17.644	17.687	17.305	17.772	17.389	17.432	17.899	17.942	480
500	17.942	17.984	18.027	18.070	18.112	18.155	18,197	18.240	18.283	18.325	18.368	500
510	18.368	18.411	18.453	18.496	18,539	18.581	18.624	18.667	18.710	18.752	18.795	510
520	18.795	18.838	18.881	18.924	18,966	19.009	19.052	19.095	19.138	19.181	19.223	520
540	19.653	19.200	19.739	19.352	19.395	19.868	19,481	19.524	19.567	20.040	19.653 20.083	530 540
550	20.083	20.126	20.169	20.212	20.256	20.299	20.342	20-385	20.428	20.471	20.514	550
560	20.514	20.558	20+601	20.644	20.687	20.730	20.774	20.817	20.860	20.903	20.947	560
570	20.947	20.990	21.033	21.076	21.120	21.163	21,206	21.250	21.293	21.336	21.380	570
580	21.380	21.423	21.466	21.510	21,553	21.597	21.640	21.683	21.727	21.770	21.814	580
570	21.014	21.057	21.901	21.944	21.987	22.031	22.014	22.110	220101	220205	22+248	590
600	22.248	22.292	22.336	22 • 379	22.423	22.466	22.510	22.553	22.597	22.640	22.684	600
610	22.684	22.728	22.771	22.815	22.859	22,902	22.946	22.989	23.033	23.077	23.120	610
630	23.558	23.601	23.645	23.489	23.723	23.339	23,383	23.426	23.470	23.514	23.558	620
640	23.996	24.039	24.083	24.127	24.171	24.215	24.259	24.302	24.346	24.390	24.434	640
650	24.434	24.478	24.522	24,566	24.610	24.654	24.698	24.742	24.786	24.829	24.873	650
660	24.873	24.917	24,961	25.005	25.049	25.093	25.137	25.181	25.225	25.269	25.313	660
670	25.313	25.357	25.401	25.445	25.490	25.534	25.578	25.622	25.666	25.710	25.754	670
690	26,195	26.239	26.283	26.328	26.372	25.974	26.460	26.504	26.107	26.593	26+195 26+637	680 690
700	26.637	26.681	26.725	26.770	26.814	26.858	26.902	26.947	76-991	27.035	27-079	700
710	27.079	27.124	27.168	27.212	27.256	27.301	27.345	27.389	27.434	27.478	27.522	710
720	27.522	27.566	27.611	27.655	27.699	27.744	27.788	27.832	27.877	27.921	27.966	720
730	27.966 28.409	28.010 28.454	28.054 28.498	28.099 28.543	28.143 28.587	28.187 28.632	28.232 28.676	28.276 28.720	28.321 28.765	28.365 28.809	28.409 28.854	730 740
750	28.854	28.898	28.942	78.987	29.037	79.074	29.121	20.165	20.210	20.254	20 200	750
760	29.299	29.343	29.388	29.432	29.477	29.521	29.566	29.610	29+655	29.699	29.744	750
770	29.744	29.788	29.833	29.878	29.922	29.967	30.011	30.056	30.100	30.145	30.190	770
780	30.190	30.234 30.680	30.279 30.725	30.323 30.769	30.368 30.814	30•412 30•859	30.457 30.903	30.502 30.948	30•546 30•993	30.591 31.037	30•636 31•082	780 790
DEG F	0	1	• 2	3	4	5	6	7	8	9	10	DEG F

EMF in Absolute Millivolts Reference Junctions at 32 F 9 10 DEG F DEG E 0 2 3 4 5 6 7 8 1 THERMOELECTRIC VOLTAGE IN ABSOLUTE MILLIVOLTS 31.305 31.752 32.199 31.439 31.886 32.334 31•484 31•931 32•378 800 810 820 31.082 31.529 31.976 31.127 31.573 31.171 31.618 31.216 31.663 32.110 31.261 31.707 32.155 31.350 31.395 31.529 800 31.797 31.976 32.423 32.871 31.842 32.289 810 32.020 32.065 820 32.423 32.513 32.557 32.647 33.095 32.692 33.140 32.736 33.184 32.826 33.274 830 840 32.468 32.602 32.781 830 33.050 33.229 33.319 840 33.319 33.767 34.215 33.408 33.857 34.305 34.754 35.202 33.677 33.767 850 850 33.364 33.453 33.498 33.543 33.588 33.632 33.722 33.453 33.901 34.350 34.798 35.247 33.946 33.946 34.395 34.843 33.543 33.991 34.440 34.888 34.036 34.484 34.933 34.081 34.529 34.978 34.170 34.619 33.812 34.126 34.574 34.215 860 870 860 870 34,260 34.664 34.664 34.709 35.023 880 35.068 880 35.382 35.427 890 35.292 35.337 35.517 890 35.562 35.606 900 35.651 35.696 35.741 35.786 35.831 35.876 35.921 35.966 36.011 900 36.235 36.684 37.134 36.325 36.415 36.864 37.314 910 920 930 36.190 36.280 36.729 37.179 36.370 36.819 37.269 36.460 910 920 36.011 36.056 36.100 36.145 36.460 36.909 37.358 930 940 36.954 36.999 37.044 37.089 37.358 37.538 37.583 37.628 37.673 37.718 37.763 37.808 940 38.257 950 950 37.808 37.853 37.898 37,943 37.988 38.033 38.078 38.123 38.168 38.213 38.078 38.527 38.977 39.426 39.876 38.662 38.707 39.157 960 970 38.257 38.707 39.157 39.606 38.347 38.797 38.392 38.842 38.482 38.932 38.617 39.067 38.437 38.887 38.572 39.022 960 970 38.302 38.752 980 990 39.247 39.696 39.291 39.336 39.786 39.381 39.831 39.471 39.921 39•516 39•966 19.561 39.606 980 39.202 40.011 40.056 990 39.651 40.280 40.730 41.179 41.629 40.325 40.775 41.224 41.674 40.146 40.595 41.045 41.494 41.943 40.191 1,000 1,000 40.056 40.101 40.236 40.370 40.415 40.460 40.505 40.865 40.910 40.955 40.820 1,010 40.640 41.090 41.539 40.685 1,010 40.505 40.955 40.550 1.020 41.000 41.449 41.898 1,020 1,030 41.404 41.584 41.719 41.764 41.808 41.853 1.030 42.033 42.303 1.040 41.988 42.078 42.123 42.168 42.213 42.258 1,040 42.392 42.842 43.290 43.739 42.527 42.976 43.425 43.874 1,050 42.348 42.797 43.246 43.694 44.143 42.482 42.931 42.572 42.617 42.662 42.707 42.752 1,050 42.303 42.437 43.156 42.886 43.335 43.784 43.021 43.470 43.919 43.201 1.060 43.066 43.515 43.964 43.111 43.560 1.060 43.380 43.829 44.278 1,070 43.201 43.650 1.070 44.053 44.098 44.008 +080 1,090 44.322 44.412 44.457 1.090 44.098 44.188 44.233 44.367 44.861 45.309 45.757 46.205 44.995 44.950 1,100 44.547 44.592 44.636 44.726 44.816 44.905 1,100 44.681 45.264 45.712 46.160 45.443 45.891 46.339 1,110 45.085 45.533 45.981 46.428 45.174 45.622 46.070 46.518 1.110 44.995 45.443 45.040 45.130 45.578 45.219 45.354 45.398 45.219 45.667 46.115 46.563 45.488 45.802 1,120 46.294 45.891 1,130 46.025 46+697 46.786 46.384 46.607 46.652 1+140 46.831 47.278 47.725 48.172 46.876 47.323 47.770 48.217 46•921 47•368 47•815 48•261 47.144 47.189 47.234 1,150 1,150 46.786 46.965 47.010 47.055 47.099 47.412 47.859 48.306 48.752 47.457 47.904 48.351 47.546 47.993 48.440 47.234 47.681 47.502 47.591 47,636 1.160 47.681 1.160 48.083 48.529 48.975 1,170 47.949 48.038 48.127 48.574 1,180 48.127 1,190 48.574 48.618 48.663 48.708 48.797 48.842 48.886 48.931 49.020 1,190 1.200 49.198 49.288 49.332 49•377 49.421 49.466 49.020 49.065 49.109 49.154 49.243 1,200 1,210 1,210 1,220 1,230 49.020 49.466 49.911 50.357 49.085 49.510 49.956 50.401 49.555 50.001 50.446 49.600 50.045 50.490 49.644 50.090 50.535 49.689 50.134 50.579 51.024 49.733 50.179 50.624 49.778 50.223 50.668 49.822 50.268 50.713 49.867 49•911 50•357 1,210 50.312 50.757 1.220 50.802 1,230 51.202 51.246 1,240 50.802 50.846 50.891 50.935 50.980 51.069 51.113 51.157 1,240 51.513 51.957 52.401 52.844 51.557 51.602 51.646 51.691 1,250 51.469 1,250 51.291 51.335 51.380 51.424 51.246 51.824 52.268 52.711 51.868 52.312 52.756 51.913 52.357 52.800 52.002 52.445 52.889 52.046 52.490 52.933 52.135 52.578 53.022 1,260 1,270 1,280 1,260 51.691 52.135 52.578 51.735 52.179 51.780 52.090 52.534 52.977 1,280 52.623 52.667 53,022 53.066 53,110 53.155 53,199 53.243 53.288 53.332 53.376 53.420 53.465 1.290 1,290 53.819 53.863 53.907 1,300 1.300 57.465 53.509 53.553 53.597 53.642 53.686 53.730 53.774 53.907 54.349 54.791 55.233 53.996 54.438 54.880 54.040 54.482 54.924 54.084 54.526 54.968 54.128 54.570 55.012 54.173 54.615 55.056 54.217 54.659 55.100 54.261 54.703 55.145 54.305 54.747 55.189 54.349 54.791 55.233 1,310 53,951 1,310 1.320 54.394 1,330 54.835 55.277 55.453 55,498 55.321 55.365 55.409 55.542 55.586 55.630 55.674 1,340 55.938 56.379 56.819 57.259 56.071 1,350 55,674 55.718 55.762 56.203 55.806 56.247 1.350 55.850 55.894 55.982 56.026 56.115 56.511 56.951 57.390 56.555 56.995 57.434 56.159 56.291 56.335 56.423 56.863 56.467 1,360 56.115 1,360 56.687 57.127 56.643 56.995 57.039 57.083 57.171 57.215 57.303 57.346 1.380 ,380 57.478 57.566 57.610 57.742 57.830 1,390 57.522 57.654 57.698 57.786 57.873 1,390 57.917 1,400 1,400 57.961 58.005 58.049 58-093 58.137 58.181 58.224 58.268 58.312 57.873 58.619 59.057 59.494 58.224 58.663 59.101 59.538 58.707 59.144 59.582 58.750 59.188 59.626 1•410 1•420 1•430 58.575 58.400 58.444 58.882 59.319 59.757 58.487 58.926 58.531 58.969 1,410 58.312 58.750 58.356 58.794 59.188 59.626 59.232 59.669 59.363 59.800 ,430 59.276 59.407 59.451 1,440 59.713 59.844 59.888 59.932 59.975 60.019 60.063 1+440 DEG F 4 7 8 9 10 DEG F ٥ 5 6 1 3

Temperature in Degrees Fahrenheit^a

EMF in Absolute Millivolts										Reference Junctions at 32 F		
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
_			TH	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	L75			
1+450	60.063	60.106	60.150	60.194	60.237	60+281	60,325	60.368	60.412	60.455	60.499	1,450
1,460	60.499	60.543	60.586	60.630	60.674	60.717	60.761	60.804	60.848	60.892	60.935	1,460
1,470	60.935	60.979	61.022	61.066	61.109	61,153	61.197	61.240	61.284	61.327	61.371	1.470
1,480	61,371	61.414	61,458	61.501	61.545	61.588	61,632	61.675	61.719	61.762	61,806	1,480
1,490	61.806	61.849	61.893	61.936	61.980	62.023	62,067	62.110	62.154	62.197	62.240	1,490
1,500	62.240	62.284	52.327	62,371	62.414	62.458	62.501	62.544	62.588	62.631	62.675	1,500
1,510	62.675	62.718	62.761	62.805	62.848	62.892	62,935	62.978	63.022	63.065	63.108	1,510
1,520	63.108	63.152	63,195	63,238	63.282	63.325	63,368	63.412	63 • 4 5 5	63.498	63.542	1,520
1+530	63.542	63.585	63,628	63.671	63.715	63.758	63.801	63.844	63.888	63.931	63.974	1,530
1,540	63.974	64.017	64.061	64.104	64.147	64.190	64.234	64.277	64.320	64.363	64.406	1,540
1.550	64.406	64.450	64.493	64,536	64.579	64.622	64.665	64.709	64.752	64.795	64.838	1,550
1,560	64.838	64.881	64.924	64.967	65.011	65.054	65.097	65.140	65+183	65.226	65.269	1,560
1,570	65.269	65.312	65.355	65.398	65.441	65.484	65,528	65.571	65.614	65.657	65.700	1,570
1,580	65.700	65.743	65.786	65.829	65.872	65+915	65,958	66.001	66.044	66.087	66.130	1,580
1,590	66.130	66.173	66.216	66.259	66+302	66+345	66.387	66.430	66.473	66,516	66.559	1,590
1,600	66.559	66.602	66.645	66.688	66.731	66.774	66.817	66.859	66-902	66-945	66.988	1+600
1+610	66.988	67.031	67.074	67.117	67.159	67.202	67.245	67.288	67-331	67-374	67.416	1.610
1,620	67.416	67.459	67.502	67.545	67.588	67.630	67.673	67.716	67.759	67-801	67-844	1.620
1.630	67.844	67.887	67.930	67.972	68.015	68.058	68.101	68.143	68-186	68.229	68-271	1.630
1,640	68.271	68.314	68.357	68.399	68.442	68.485	68,527	68,570	68.613	68,655	68.698	1,640
1.650	68.698	68.740	68.783	68.826	68.868	68.911	68.953	68.996	69.029	69-081	69.124	1.650
1,660	69.124	69.166	69.209	69.251	69.294	69.337	69.379	69.422	69.464	69.507	69.549	1+660
1,670	69.549	69.592	69.634	69.677	69.719	69.762	69.804	69.847	69.889	69.931	69.974	1+670
1.680	69.974	70.016	70.059	70.101	70.144	70.186	70.228	70.271	70.313	70.356	70.398	1.680
1,690	70.398	70.440	70.483	70.525	70.567	70.610	70,652	70.694	70.737	70.779	70.821	1,690
1.700	70.821	70.864	70.906	70.948	70.991	71.033	71.075	71,119	71.140	71 202	71. 264	1.700
1.710	71.244	71.287	71.329	71.371	71.413	71.456	71.498	71.540	71.692	71.624	71.467	1,710
1.720	71.667	71.709	71.751	71.793	71.835	71.878	71.920	71.962	72.004	72.046	72.088	1.720
1,730	72,088	72.130	72.173	72.215	72.257	72.299	72.341	72.383	72-425	72.467	72.509	1.730
1,740	72.509	72,551	72.593	72.635	72.678	72.720	72.762	72.804	72.846	72,888	72.930	1,740
1.750	72.930	72.972	73.014	73.056	73.098	73.140	73.182	73.224	72.264	73.309	72.260	1.760
1.760	73.350	73.392	73.434	73.475	73.517	73.569	73 601	73.643	73 4 96	73 727	73 749	1,760
1.770	73.769	73.811	73.853	73.895	73.936	73.978	76 020	74.043	76 106	76 166	74 109	1,770
1.780	74.188	74.229	74.271	74.313	74.366	76.207	74 620	74-680	74 6 3 2	74 644	74 606	1,790
1.790	74.606	74-648	74.689	74 721	74.773	74.916	74 867	74.800	74.040	74.087	74.000	1,790
.,,,,	,		, 40007	140131		(4015	14.051	/ 0 7 0	14.940	14.902	19+024	10/90
1.800	75.024	75.065	75.107	75.149	75.191	75.232	75.274	75.316	75.357	75.399	75.441	1,800
1.810	75.441	75.483	75+524	75.566	75.608	75.649	75.691	75.733	75.774	75.816	75.858	1,810
1,820	75.858	75,899	75.941	75.983	76.024	76.066	76,108	76.149	76.191	76.233	76,274	1,820
1.830	76.274	76.316	76.358									1,830
DEG F	0	1	2	3	4	5	6	7	8	9	10	OEG F

Temperature in Degrees Fahrenheit^a
TABLE 45-Type E thermocouples.

Temperature in Degrees Celsius (IPTS 1968)

EMF ir	Absolute	e Millivol	ts						, 	Refere	nce Junctio	ons at 0 C
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEGC
			T	HERMOELE	CTRIC VO	LTAGE IN	ABSOLUT	E MILLIV	OLTS			
-270	-9.835											-270
-260	-9.797	-9.802	-9.808	-9.813	-9.817	-9.821	-9.825	-9.828	-9.831	-9.833	-9.835	-260
-250	-9,719	-9.728	-9.737	-9.746	-9.754	-9.762	-9.770	-9.777	-9.784	-9.791	-9.197	-250
-240	-9.604	-9.617	-9.630	-9.642	-9.654	-9.666	-9.677	-9.688	-9.699	-9.709	-9.719	-240
-230	-9.455	-9.472	-9.488	-9.503	-9.519	-9.534	-9.549	-9.563	-9.577	-9.591	-9.604	-230
-220	-9.274	-9.293	-9.313	-9.332	-9.350	-9.368	-9.386	-9.404	-9.421	-9.438	-9.455	-220
-210	-9.063	-9.085 -8.850	-9.107	-9.129	-9.151	-9.172	-8,971	-8.994	-9.017	-9.040	-9.063	-200
-190	-8,561	-8,588	-8,615	-8.642	-8.669	-8.696	-8.722	-8.748	-8.774	-8.799	-8.824	-190
-180	-8.273	-8.303	-8.333	-8.362	-8.391	-8.420	-8.449	-8.477	-8.505	-8,533	-8.561	-180
-170	-7.963	-7.995	-8.027	-8.058	-8.090	-8.121	-8,152	-8.183	-8.213	-8,243	-8.273	-170
-150	-7.279	-7.315	-7-351	-7.387	-7-422	-7.458	-7-493	-7-528	-7.562	-7.597	-7.631	-150
				7 - 00		7	7 192	. 7 140	7 206	7 243	7 279	140
-140	-6-516	-6.556	-6.596	-1.020	-6-675	-6.714	-6-753	-6.792	-6-830	-6.869	-6.907	-130
-120	-6.107	-6.149	-6.190	-6.231	-6.273	-6.314	-6.354	-6.395	-6.436	-6.476	-6.516	-120
-110	-5.680	5.724	-5.767	-5.810	-5.853	~5.896	-5.938	-5.981	-6.023	-6.065	-6.107	-110
-100	-5.237	-5.282	-5.327	~5.371	-5.416	-5.460	-5.505	-5.549	-5.593	-5.637	-5.680	-100
~90	-4.777	-4.824	-4.870	-4,916	-4.963	-5,009	-5.055	-5.100	-5.146	-5.191	-5.237	-90
~80	-4.301	-4.350	-4.398	-4.446	-4.493	-4.541	-4,588	-4.636	-4.683	-4.730	-4.777	-80
-70	-3.811	-3.860	-3.910	-3.959	-4.009	-4.058	-4.107	-4.156	-4-204	-4.273	-4.301	-70
-50	-2.787	-2.839	-2.892	-2.944	-2.996	-3.048	-3.100	-3.152	-3.203	-3.254	-3.306	-50
-40	-2.254	-2.308	-2.362	-2.416	-2.469	-2.522	-2,575	-2.628	-2.681	-2.734	-2.787	-40
-30	-1.709	-1.764	-1.819	-1.874	-1.929	-1,983	-2.038	-2.092	-2.146	-2.200	-2.254	-30
-20	-1.151	-1.208	-1.264	-1.320	-1.376	-1.432	-1.487	-1.543	-1.599	-1.054	-1.709	-20
~ 0	0.000	-0.059	-0.117	-0.176	-0.234	-0.292	-0.350	-0.408	-0.466	-0.524	-0.581	- 0
	0.000	0.050	0 119	0 176	0.226	0 295	0 364	0-413	0-472	0.612	0-691	0
10	0.591	0.651	0.711	0.770	0.830	0.890	0.950	1.011	1.071	1.131	1.192	10
zõ	1.192	1.252	1.313	1.373	1.434	1.495	1.556	1.617	1.678	1.739	1.801	20
30	1.801	1.862	1.924	1.985	2.047	2.109	2.171	2.233	2.295	2.357	2.419	30
40	2.419	2.482	2.544	2.007	2.007	2.0152	20195	2.000	20721	20704	5.041	
50	3.047	3.110	3.173	3.237	3.300	3.364	3.428	3.491	3.555	3.619	3.683	50
70	4.329	4.394	4-459	4-524	4.590	4.655	4.720	4.786	4.852	4.917	4.983	70
80	4.983	5.049	5.115	5+181	5.247	5.314	5.380	5.446	5-513	5.579	5.646	80
90	5.646	5.713	5.780	5.846	5.913	5,981	6.048	6.115	6.182	6.250	6.317	90
100	6.317	6.385	6.452	6.520	6,588	6.656	6.724	6.792	6.860	6.928	6.996	100
110	6.996	7.064	7.133	7.201	7.270	7.339	7.407	7.476	7.545	7.614	7.683	110
120	7.683	7.752	7.821	7.890	7.960	8.029	8.099	8.168	8.238	8.307	8.377	120
140	9.078	9.149	9.220	9.290	9.361	9.432	9.503	9.573	9.644	9.715	9.787	140
150	9.787	9.858	9.929	10.000	10.072	10.143	10.215	10.286	10.358	10.429	10.501	150
160	10.501	10.573	10.645	10.717	10.789	10.861	10,933	11.005	11.077	11.150	11.222	160
170	11.222	11.294	11.367	11.439	11.512	11,585	11.657	11.730	11.803	11.876	11.949	170
180 190	11.949 12.681	12.022	12.095	12.168	12.241	12•314 13•049	12.387	12,461	12.534	12,608	12.681	190
200	13.419	13.493	13.567	13.641	13.715	13.789	13.864	13.938	14.012	14.087	14.161	200
210	14.161	14.236	14.310	14.385	14.460	14.534	14.609	14.684	14.759	14.834	14.909	210
2 2 0	14.909	14.984	15.059	15.134	15.209	15.284	15.359	15.435	15.510	15.585	15.661	220
230	15.661	15.736	15,812	15,887	15.963	16.038	16.114	16.190	16.266	16.341	16.417	230
240	16.41/	10.493	10.004	10.040	16.721	10.141	10.0/3	10.949	17.025	17.101	1/01/0	240
250	17.178	17.254	17.330	17.406	17.483	17.559	17.636	17.712	17.789	17.865	17.942	250
260	17.942	18.787	18-864	18.941	19-019	18.095	19,172	19.249	19.326	19-404	19-481	200
280	19.481	19.558	19,636	19.713	19.790	19,868	19.945	20.023	20.100	20.178	20.256	280
290	20.256	20.333	20.411	20.488	20.566	20.644	20.722	20.800	20.877	20.955	21.033	290
300	21.033	21.111	21.189	21.267	21.345	21.423	21.501	21.579	21.657	21.735	21.814	300
310	21.814	21.892	21.970	22.048	22.127	22.205	22.283	22.362	22.440	22.518	22.597	310
320	22.597	22.675	22.754	22.832	22.4911	22.989	23.844	23.934	25+225	25.304	25.505	330
340	24.171	24.250	24.329	24.408	24.487	24.566	24.645	24 724	24.803	24.882	24.961	340
DEG C	0	1	2		4	5	6				10	DEG C

EMF in Absolute Millivolts DEG C 0 1 2 3 ٨ 7 5 6 8 9 10 DEG C THERMOELECTRIC VOLTAGE IN ABSOLUTE MILLIVOLTS 24.961 25.754 25.041 25.833 350 25.120 25.913 25.199 25.278 25.437 26.230 27.026 27.824 25,357 25.675 26.469 27.265 25.516 25•595 26•389 25.754 25.357 26.151 26.947 27.744 28.543 26.072 26.867 27.664 26.310 27.106 27.903 360 370 25.992 26.549 27.345 28.143 26.549 27.345 26.628 26.708 26.787 27.186 380 28.063 390 28.143 28.223 28.303 28.383 28.463 28.623 28,703 28.783 28.863 28,943 400 28.943 29.423 29.023 29.103 29.183 29.263 29.343 29.503 29.584 29.664 29.744 410 420 430 29.904 30.707 31.511 29.984 30.787 31.591 29.263 30.065 30.868 31.672 32.477 29.423 30.225 31.028 31.833 29.503 30.305 31.109 31.913 29.744 29.824 30.627 30.145 30.948 30.386 31.189 31.994 30•466 31•270 32•074 30.546 30.546 31.350 31.430 31.752 32.235 32.316 32.396 440 32.155 32.638 32.557 32.719 32.799 32.880 32.960 450 32,960 33.041 33.122 33.283 34.090 34.897 33.202 33.364 33.444 33.525 33+605 33.686 33.767 33.767 34.574 35.382 33.928 34.736 35.544 460 470 33.848 34.009 34.816 35.624 34.170 34.978 34.251 35.059 34.332 35.140 34.413 34.493 34.574 35.220 35.301 36.109 35 • 382 480 35.463 35.705 35.786 35.867 35.948 36.029 36.190 490 36.190 36.271 36.352 36.433 36.675 36.837 36.918 36.999 500 36.999 37.080 37,161 37.242 37.323 37.403 37.484 38.293 37.727 37.565 37.646 38.455 37.808 37.889 38.698 39.507 37.970 38.779 39.588 37.808 38.617 38.132 38.941 510 38.213 39.022 39.831 40.640 38.051 38.860 38.536 39.345 40.155 38.617 39.426 40.236 38.374 520 39•264 40•074 39.103 39.912 39•184 39•993 39.426 39.750 40.559 530 39.669 40.236 540 40.316 40.397 40.478 40.721 40.802 40.883 40.964 41.045 41.045 41.853 550 41.206 42.015 41.287 42.096 41.368 42.177 41.449 42.258 41.530 41.125 41.611 41.692 41.773 41.853 41.530 42.339 43.147 43.955 560 570 41.934 42.662 42,419 42.500 42.581 42.662 42.743 42.824 42.904 43.712 42.985 43.793 43.066 43.874 43.228 44.035 43.308 43.389 43.470 580 43.551 43.632 44.116 44.197 44.278 590 44.439 44.358 44.520 44.601 44.681 44.762 44.843 44.923 45.004 45.085 600 45.085 45.165 45.246 46.052 45.327 45.407 45.488 45.569 45.649 45.730 45.811 45.891 45.891 45.972 45.527 46.133 46.938 47.743 48.547 46.213 47.019 47.824 46.294 47.099 47.904 48.708 46.455 47.260 48.065 610 46.375 46.536 46.616 46.697 47.180 620 46.858 47•341 48•145 47.421 48.226 47.502 47.582 48.386 47.663 630 47.502 640 48.306 48.627 48.788 48.868 48.949 49.029 49.109 650 49.109 49.189 49.270 49.350 49.430 49.591 49.510 49.671 49.751 49.831 49.911 49.911 50.713 660 670 49.992 50.072 50.873 50.152 50.953 51.753 50.232 51.033 51.833 52.632 50.312 51.113 51.913 52.711 50.392 51.193 51.993 50.472 51.273 52.073 50.553 51.353 52.152 50.633 51.433 52.232 50.713 51.513 52.312 680 690 51.673 52.472 51.513 51,593 52.392 52.552 52.791 52.871 52.951 53.031 53.110 700 53.110 53.270 53.429 53.190 53.350 53.509 53.589 53.668 53.748 53.828 53.907 53.907 54.703 55.498 56.291 54.226 55.021 55.815 54.305 55.100 55.894 54.385 55.180 55.974 54.703 55.498 56.291 710 54.464 55.259 54.544 55.339 54.623 55.418 53.987 54.066 54.146 54.782 55.577 54.862 55.656 54.941 55.736 720 56.053 56+132 56.212 740 56.370 56.449 56.529 56+608 56.687 56.766 56.845 57.004 56.924 57.083 750 57.083 57.162 57.241 57.320 57.399 57.478 57,557 57.636 57.715 57.794 57.873 58.110 58.899 59.687 58.189 58.978 59.765 58.268 59.057 59.844 58.347 59.136 59.923 58.426 59.214 60.001 58.505 59.293 60.080 58.584 59.372 58.663 59.451 760 770 57.873 58.663 57.952 58.742 58.031 58.820 780 790 59.451 59.608 60.159 60.237 60.551 60.316 60.394 60.473 60.630 60.708 60.787 60.865 60.944 61.022 61.336 62.119 62.900 63.680 800 61.022 61.101 61.179 61.258 61•414 62•197 62•978 63•758 61.493 61.571 61.728 61.649 61.806 61.806 62.588 63.368 64.147 61.884 62.666 63.446 61.962 62.744 63.524 62.041 62.822 63.602 62.275 63.056 63.836 62.353 63.134 63.914 810 820 62.432 63.212 62.510 63.290 62,588 63.368 830 63.992 64.069 840 64.225 64.303 64.380 64.458 64.536 64.614 64.691 64.769 64.847 64.924 65.157 65.932 66.705 67.476 68.246 850 64.924 65.002 65.080 65.235 65.312 65.390 65.467 65.545 65.622 65.700 65.777 66.009 66.782 67.553 66.087 66.859 66.164 66.937 67.707 66.241 67.014 67.784 66.319 67.091 67.861 66.396 67.168 67.938 66.473 67.245 68.015 860 65.700 66.473 65.855 870 66•628 67•399 66.551 67.245 67.322 880 67.630 890 68.630 68.092 68.169 68.323 68.399 68.476 68.553 68.706 68.936 69.702 70.466 71.227 900 68.783 68.860 69.013 69.090 69.166 69.243 69.320 69.473 69+396 69.549 69.549 70.313 70.008 70.771 71.532 70.237 70.999 71.759 910 920 69.626 70.390 69.779 69.855 69.931 70.694 70.084 70.161 70.923 70.313 70.542 70.618 930 940 71.075 71.151 71.304 71.380 71.456 71.608 71.683 71.835 71.835 71.911 71.987 72.063 72.139 72.215 72.290 72.366 72.442 72.518 72.593 950 72.593 72.669 72.745 72.820 72.896 72.972 73.047 73.123 73.199 73.274 73-350 73.350 74.104 74.857 75.608 73.425 74.179 74.932 73.501 74.255 75.007 75.758 73.576 74.330 75.082 73.652 74.405 75.157 73.727 74.480 75.232 73.802 74.556 75.307 73.878 74.631 75.382 73.953 74.706 75.458 74.029 74.781 75.533 74.104 960 970 980 75.608 990 75.683 75.833 75.908 75.983 76.058 76.133 76.208 76.283 76.358 1.000 76.358

5

7

6

9

10

8

DEG C

0

1

2

3

4

Temperature in Degrees Celsius (IPTS 1968)

Reference Junctions at 0 C

350

360

370 380

390

400

410

420

440

450

460 470

480

490

500

510 520 530

540

550

560 570

580

590

600

610

620

630

640

650

660 670

680

690

700

710

730

740

750

760

780

790

800

810

820

830 840

850

860

870

880

890

900

910 920

930

940

950

960 970

980

990

1.000

DEG C

TABLE 46—Type J thermocouples.

NOTE—The maximum recommended temperature limit for Type J thermocouples is 1400 F (760 C) as specified in Table 2. Extension of the Type J tables beyond 1400 F gives temperature-electromotive force data to 2192 F (1200 C). This extension is a mathematical extrapolation based on limited calibration data and caution should be exercised in its use. The basis for the extended curve is discussed in NBS Monograph 125.

EMF in	Absolute	Millivolt	s	Tei	mperature	in Degre	es Fahren	heit ^a		Reference	ce Junctior	ns at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			TH	ERMOELE	TRIC VOL	LTAGE IN	ABSOLUT	E MILLIVO	DLTS			
-350	-8.137											-350
-34D	-8.030	-8.041	-8.052	-8.063	-8.074	-8.085	-8,096	-8,106	~8.117	-8.127	-8.137	-340
-330	-7,915	-7.927	-7.938	-7.950	-7.962	-7.973	-7.985	-7,996	-8.008	-8.019	-8.030	-330
-320	-7.791	-7.803	-7.816	-7.829	-7.841	-7.854	-7.866	-7.878	-7.890	-7.903	-7.915	-320
-310	-7.659	-7.672	-7.686	-7.699	-7.712	-7.726	-7.739	-7.752	-7.765	-7.17B	-7.791	-310
-300	~/.519	-7.533	-1.748	-1.562	-1.518	-7.590	-1.004	-/.618	-/.631	-/+0,45	-/+009	-300
-290	-7.372	-7.387	-7+402	-7.417	-7.432	-7•447	-7.461	-7.476	-7.490	-7.505	-7.519	~290
-280	~7.218	-7.234	-7.250	-7.265	-7.281	-7.296	-7.311	-7.327	-7.342	-7.357	-7.372	-280
-270	~7.05/	-7.074	-/•090	-/.106	~7.122	-/.139	-/+155	-/.1/1	-7.18/	- / 6 202	-/+218	-270
-250	~6.070	-6.734	-6.751	-6.749	-6 786	-6.804	-6.821	-6 638	-1.024	-6 873	-6.890	-260
-290	~0./10	-0.134	-0.,)1	-0.107	-0.100	-0.004	-0.021	-0.030	~0.000	-0.015	-0.090	-270
-240	-6.536	-6.554	-6.572	-6.591	-6.609	-6.627	-6+645	-6.663	-6.680	-6.698	-6.716	-240
-230	-6.350	-6.369	-6.388	-6.407	-6.425	-6.444	-6.462	-6.481	~6.499	-6.518	-6.536	-230
-220	-6.159	-6.178	-6.198	-6.217	~6.236	-6.255	-6.274	-6.293	~6+312	-6+331	-6+350	-220
-210	-5.962	-5.982	-5.801	-6.022	-6.041	-6.061	-0.081	-6.100	-6.120	-6.139	-0.179	-210
-200	~2.00	-9.700	-2.001	-20021	-20041	-2001	-9.082	-2.902	~7.722	-3.742	-20702	-200
-190	~5.553	-5.574	-5.594	-5,615	-5.636	-5+657	-5.678	-5.698	~5.719	-5.739	-5.760	-190
-180	~5.341	-5.362	-5.383	-5.405	-5.426	-5.447	-5.468	-5.490	-5.511	-5.532	-5.553	-180
-170	-5.124	-5.146	-5.168	-5.190	-5.211	-5+233	-7.255	-5.276	-5.298	-5+319	-5.341	-170
-160	-4.903	-4.925	-4.748	-4.970	-4.992	-2+014	-2.036	-2.028	-5.080	-5+102	-5+124	-160
-150	-4.070	-4.700	-40125	-40/40	-40/00	-40171	-4013	-4.030	-4.090	-4.001	~~ 0 3	-170
-140	-4.448	-4.471	-4.494	-4,517	-4.540	-4.563	-4.586	-4.609	-4.632	-4.655	-4.678	-140
-130	-4.215	-4.238	-4.262	-4.285	-4.309	-4.332	-4.355	-4.379	-4+402	-4.425	-4+448	-130
-120	-3.978	-4.001	-4.025	-4.049	-4.073	-4.097	-4.120	-4.144	-4.168	-4.191	-4.215	-120
-100	-3.492	-3.517	-3.541	-3.566	-3.590	-3.615	-3.639	-3.664	-3.688	-3.712	-3.737	-100
					- 10//							
-90	-3.245	-3.270	-3.294	-3.319	-3.344	-3.369	-3.394	-3.418	-3.443	-3.408	-3+492	- 90
-70	-2.740	-2.765	-2.791	-2.816	-2.842	-2.867	-2.892	-2.918	-2.943	-2.968	-2.994	- 70
-60	-2.483	-2.509	-2.534	-2.560	-2.586	-2.612	-2.637	-2.663	-2.689	-2.714	-2.740	-60
-50	-2,223	-2.249	-2.275	-2.301	-2.327	-2.353	-2.379	-2.405	-2.431	-2+457	-2+483	-50
-40	-1.960	-1.987	-2.013	-2.039	-2.066	-2.092	-2.118	-2.144	-2+171	-2.197	-2.223	-40
-30	-1.695	-1.722	-1.748	-1.775	-1+802	-1+828	-1+855	-1.881	-1.908	-1.934	-1+960	-30
-20	-1.428	-1.455	-1.481	-1.508	-1.535	-1.562	-1.589	-1.615	-1.642	-1.669	-1.695	-20
-10	-1,158	-1.185	-1.212	-1.235	-1.266	-1.293	-1.320	-1.347	-1.374	-1.401	-1.428	-10
- 0	-0.885	-0.913	-0.940	-0.967	-0.995	-1+022	-1.049	-1.076	-1.103	-1,131	-1.158	- 0
0	-0.885	-0.858	-0.831	-0.803	-0.776	-0.748	-0.721	-0.694	-0.666	-0.639	-0+611	0
10	-0.611	-0.583	-0.556	-0.528	-0.501	-0.473	-0.445	-0.418	-0+390	-0.362	-0+334	10
20	-0.334	-0.307	-0.279	-0.251	-0.223	-0.195	-0.168	-0.140	-0.112	-0.084	-0+056	20
30	-0.056	-0.028	0.000	0.028	0.056	0.084	0.112	0.140	0.168	0.196	0.224	30
40	0.224	0+253	0+281	0+309	0.337	0+365	0.394	0.422	0+450	0+478	0.507	40
50	0.507	0.535	0.563	0.592	0.620	0.648	0.677	0.705	0.734	0.762	0.791	50
60	0.791	0.819	0.848	0.876	0.905	0.933	0.962	0.990	1.019	1.048	1.076	60
10	1 363	1 202	1.134	1.162	1+191	1.220	1.248	1.277	1.306	1.335	1.363	10
90	1.652	1.681	1.710	1.739	1.768	1.797	1.826	1.855	1.884	1.913	1.942	90
100	1.942	1.971	2.000	2+029	2.058	2.088	2.117	2.146	2 • 175	2.204	2.233	100
110	2.233	2+263	2+292	2.321	2.350	2.472	2 7 6 7	2+438	2.467	2.497	2.926	110
120	2.820	2.860	2.970	2.004	2.024	2.967	2.007	20132	2.054	20171	2.020	130
140	3.115	3.145	3.174	3.204	3.233	3.263	3.293	3.322	3+352	3.381	3.411	140
150	2 611	2 443	2.470		2 200		2 6 - 2					
160	3.411	3.700	3.410	3.500	3.530	3.560	3.589	3.619	3.649	3.678	3.708	150
170	4.006	Je 1 38 4 4 0 34	4.066	50178	2+021	5+05/	4.184	4.214	3.941	4.275	4.305	170
180	4,305	4.335	4.365	4.395	4.425	4,455	4.485	4.515	4.545	4.575	4.605	180
190	4.605	4.635	4.665	4.695	4.725	4.755	4.786	4.816	4.846	4.876	4.906	190
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

^a Converted from degrees Celsius (IPTS 1968).

EMF in	Absolute	Millivolt	s							Referen	ce Junction	ns at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			TH	HERMOELE	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	DLTS			
200	4.906	4.936	4.966	4.996	5-026	5.057	5.087	5-117	5.147	5.177	5,207	200
210	5.207	5.238	5.268	5.298	5.328	5.358	5.189	5.419	5.449	5.479	5.509	210
220	5.509	5.540	5.570	5.600	5.630	5.661	5.691	5.721	5.752	5.782	5-812	220
230	5.812	5.843	5.873	5.903	5.934	5.964	5 994	6.025	6-055	6.085	6.116	230
240	6.116	6.146	6.176	6.207	6+237	6+268	6.298	6.328	6.359	6.389	6.420	240
	-					-		-				-
250	6.420	6.450	6.481	6.511	6.541	6.572	6.602	6.633	6+663	6.694	6.724	250
260	6,724	6.755	6.785	6.816	6.846	6.877	6,907	6,938	6+968	6.999	7.029	260
270	7,029	7+060	7.+090	7+121	7.151	7.182	7.212	7.243	7.274	7.304	7.335	270
280	7,335	7.365	7,396	7.426	7.457	7.488	7,518	7.549	7.579	7.610	7.641	280
290	7.641	7.671	7.732	7.732	7.763	7.794	7.824	7.855	7.885	7.916	7.947	290
300	7.947	7.977	8.008	8-039	8.069	8,100	8,131	8,161	8.192	8.223	8,253	300
210	P 253	8.284	8.215	8.345	8 376	8.407	8 437	P / 6 P	8 400	P 520	8.560	310
320	8 560	8.501	8.672	8.452	8 4 9 3	8.714	8 745	0 775	8 904	0.937	8.867	320
320	0 847	P. 998	8.020	8 940	P 000	0.023	9 05 2	0.093	0.000	D 166	0 176	320
340	0.175	8.206	9.236	0.747	8.990	9.329	9.350	9.083	9+113	9.144	9+1/2	340
340	7.112	7.200	,,,,,,,,	74201	74270	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/ 3/7	7.570	7.421		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	540
350	9.483	9.513	9.544	9.575	9.606	9.636	9.667	9.698	9.729	9.760	9.790	350
360	9.790	9.821	9.852	9.883	9.914	9.944	9.975	10.006	10.037	10.068	10.098	360
370	10.098	10.129	10.160	10.191	10.222	10.252	10.283	10.314	10.345	10+3/6	10.407	370
380	10.407	10.437	10,468	10.499	10.530	10.561	10,592	10.622	10.653	10.684	10.715	380
390	10,715	10.746	10,777	10.807	10.838	10.869	10.900	10.931	10.962	10.992	11.023	390
400	11,023	11.054	11,085	11,116	11,147	11.177	11.208	11.239	11.270	11.301	11.332	400
410	11.332	11.363	11.393	11.424	11.455	11.486	11.517	11.548	11-578	11.609	11.640	410
420	11.640	11.671	11.702	11.733	11.764	11.794	11.825	11.856	11.887	11.918	11.949	420
420	11 840	11.080	12.010	12 061	12 072	12 103	12 124	12 145	12 104	12 224	12 257	420
440	12.257	12.288	12.319	12.350	12.381	12.411	12.442	12.473	12.504	12.535	12.566	440
450	12 564	12.597	12.427	12 458	12 409	12 720	12 751	12 782	12 012	12 843	12 974	450
440	12 876	12 905	12 024	12 047	12 000	12 020	12 050	12 000	12 121	12 152	12.103	420
470	12 183	12.214	13 244	12 275	12 304	13. 337	12 340	13 300	13 420	13.460	13 401	400
410	13.403	10 500	10 652	10.504	13.500	13.357	12,500	13.377	13.450	13.400	13.471	470
480	13.491	13.522	13.000	13.584	13.615	13.642	12.676	13.707	13.738	13.769	13.800	480
470	13.000	19.030	13.001	13.072	130725	13.794	13.702	14.015	140040	14.077	140100	470
500	14.108	14.139	14.170	14.200	14.231	14.262	14.293	14.324	14.355	14.385	14.416	500
510	14.416	14.447	14.478	14.509	14.539	14.570	14.601	14.632	14.663	14.694	14.724	510
520	14.724	14.755	14.786	14.817	14.848	14.878	14.909	14.940	14.971	15.002	15.032	520
530	15.032	15.063	15.094	15.125	15.156	15.186	15.217	15.248	15.279	15.310	15.340	530
540	15.340	15.371	15.402	15.433	15.464	15.494	15.525	15.556	15.587	15.617	15.648	540
550	15.648	15.679	15.710	15.741	15.771	15.802	15.833	15.864	15.894	15.925	15.956	550
560	15.956	15.987	16.018	16.048	16.079	16,110	16 141	16 171	16.202	14.233	16.264	560
570	1/ 24/	14 204	14 325	14 354	16 307	16 617	14 440	16 670	14 510	16.600	14 571	570
500	16.571	16 602	16 622	16 663	16 606	14 725	14 754	16 704	16.017	16, 949	16 870	5.80
500	16.271	16.002	16 840	16.003	10:094	17 022	17 0/ 3	17,004	17 124	10.040	17 104	500
390	10.017	10.909	10.740	10.9/1	11.001	11.052	11+0055	11.094	17.124	17.455	11.100	290
600	17.186	17.217	17.247	17.278	17.309	17.339	17.370	17.401	17.432	17.462	17.493	600
610	17.493	17.524	17.554	17.585	17.616	17.646	17.677	17,708	17.739	17.769	17.800	610
620	17.800	17.831	17.861	17.892	17.923	17.953	17.984	18.015	18.046	18.076	18.107	620
630	18.107	18.138	18.168	18,199	18.230	18.260	18,291	18.322	18.352	18.383	18.414	630
640	18.414	18.444	18.475	18,506	18,537	18.567	18,598	18.629	18.659	18,690	18,721	640
					10 0/0		18 045	10.025	10 0//	10 007	10 027	460
650	18.721	18.(21	10.182	18.813	18.043	10.0/4	10.905	10.757	10 920	10 307	10 221	650
660	19.027	19.058	19.089	19.119	19+150	19.180	19+211	19.242	19+272	19.505	19+334	660
670	19.334	19.364	19.395	19.426	19.456	19.48/	14.218	19.248	19.579	19.010	19+040	6/0
680	19.640	19.671	19.702	19.732	19.763	19.793	19.824	19.855	19+885	19.916	19.947	680
690	19,947	19.977	20.00B	20.039	20.069	20.100	20,131	20,161	20+192	20.222	20.253	690
700	20.253	20.284	20+314	20.345	20.376	20.406	20.437	20.467	20+498	20.529	20.559	700
710	20.559	20.590	20+621	20+651	20.682	20.713	20,743	20.774	20.804	20.835	20.866	710
720	20.866	20.896	20.927	20.958	20.988	21.019	21.049	21.080	21.111	21.141	21.172	720
730	21.172	21.203	21.233	21.264	21.295	21.325	21,356	21,386	21.417	21.448	21+478	730
740	21.478	21.509	21.540	21.570	21.601	21.631	21.662	21.693	21.723	21.794	21.785	740
750	21.785	21.815	21.846	21.877	21.907	21.938	21.968	21.999	22.030	22.060	22.091	750
760	22.091	22.122	22.152	22.183	22.234	22.244	22.275	22.305	22.336	22.367	22.397	760
770	22,397	22.428	22.459	22.489	22.520	22,551	22.581	22.612	22.643	22.673	22.704	770
780	22.704	22.735	22.765	22.796	22.824	22.857	22.888	22.918	22.949	22.980	23.010	780
790	23.010	23.041	23.072	23.102	23.133	23.164	23,194	23.225	23.256	23.286	23.317	790
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

Temperature in Degrees Fahrenheit^e

EMF in	Absolute	Millivolts								Reference	e Junction	s at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			Тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
800	23.317	23.348	23.378	23.409	23.440	23.471	23.501	23.532	23.563	23.593	23.624	800
810	23.624	23.655	23.685	23.716	23.747	23.777	23.808	23.839	23.870	23.900	23.931	810
820	23.931	23,962	23.992	24.023	24.054	24.085	24.115	24.146	24.177	24.207	24.238	820
830	24.238	24.269	24.300	24.330	24.361	24.392	24.423	24.453	24.484	24,515	24.546	830
840	24,546	24.576	24.607	24.638	24.669	24.699	24.730	24.761	24.792	24.822	24.853	840
850	24.853	24.884	24.915	24.946	24.976	25.007	25.038	25.069	25+099	25.130	25.161	850
860	25,161	25.192	25.223	25 • 254	25.284	25.315	25.346	25.377	25.408	25+438	25+469	860
870	25.469	25.500	25.531	25.562	25.593	25.623	25.654	25.685	25.716	25.747	25+778	870
880	25.778	25.809	25.840	25.870	25.901	25.932	25,963	25,994	26.025	26.056	26.087	880
890	26.087	26.118	26.148	26.179	26.210	26.241	26.272	26.303	26.334	26.365	26.396	890
900	26.396	26.427	26.458	26.489	26.520	26+551	26.582	26.613	26.644	26.675	26.705	900
910	26.705	26.736	26.767	26.798	26.829	26.860	26.891	26.922	26.954	26.985	27.016	910
920	27.016	27.047	27.078	27.109	27.140	27.171	27.202	27.233	27.264	27.295	27.326	920
930	27.326	27.357	27.388	27.419	27.450	27.482	27.513	27.544	27.575	27.606	27.637	930
940	27.637	27.668	27.699	27.731	27.762	27.793	27.824	27.855	27.886	27,917	27.949	940
950	27.949	27.980	28.011	28.042	28.073	28.105	28,136	28.167	28.198	28.230	28.261	950
960	28,261	28,292	28,323	28.355	28,386	28.417	28.448	28,480	28,511	28,542	28.573	960
970	28,573	28+605	28.636	28.667	28.699	28.730	28,761	28,793	28.824	28.855	28.887	970
980	28.897	28.918	28.950	28.981	29.012	29.044	29.075	29.107	29.138	29.169	29.201	980
990	29.201	29.232	29.264	29.295	29.327	29.358	29.390	29.421	29.452	29.484	29.515	990
1,000	29.515	29.547	29.578	29+610	29.642	29.673	29.705	29.736	29.768	29.799	29.831	1,000
1,010	29.031	29.002	27.094	29.920	29.901	29.709	30.020	30.052	30.084	30.433	30.444	1,010
1.020	20 464	30 4 96	30 627	30 - 242	30 501	30.503	30 454	30 6 96	30.400	30 750	30 464	1,020
1,040	30.782	30.813	30.845	30.877	30.909	30.941	30.973	31,005	31.036	31.068	31.100	1,040
1,050	31.100	31,132	31.164	31,196	31.228	31,260	31.292	31,324	31.356	31.388	31.420	1,050
1,060	31.420	31.452	31.484	31.516	31.548	31.580	31.612	31.644	31.676	31.708	31.740	1,060
1,070	31,740	31.772	31.804	31.836	31.868	31.901	31.933	31,965	31.997	32.029	32.061	1,070
1,080	32.061 32.384	32.094 32.416	32.126 32.448	32.158 32.480	32.190 32.513	32.222	32.255	32.287	32.319	32.351 32.674	32.384 32.707	1,080
1.100	32 707	32.739	32.772	32 804	32.826	22.840	32.901	32.934	32.966	32.999	33.031	1.100
1.110	33.031	33.064	33.096	33.129	33,161	33,194	33.226	33.259	33.291	33.324	33.356	1.110
1.120	33,356	33.389	33.422	33.454	33.487	33.519	33.552	33.585	33.617	33.650	33.683	1.120
1.130	33.683	33.715	33.748	33.781	33.814	33.846	33.879	33,912	33.945	33.977	34.010	1,130
1,140	34.010	34.043	34.076	34.109	34.141	34.174	34.207	34.240	34.273	34.306	34.339	1,140
1,150	34.339	34+372	34.405	34.437	34.470	34.503	34.536	34,569	34.602	34.635	34+668	1,150
1,160	34.668	34.701	34.734	34.767	34.801	34.834	34.867	34.900	34.933	34.966	34.999	1,160
1,170	34,999	35.032	35.065	35.099	35.132	35+165	35.198	35.231	35.265	35.298	35,331	1,170
1,180	35.331	35.364	35.398	35.431	35.464	35.498	35.531	35.564	35.598	35.631	35.664	1,180
1,190	35.664	35.698	35./31	35.764	35.798	35.831	35.865	35.898	35.932	35.965	35.999	1,190
1,200	35.999	36.032	36.066	36.099	36.133	36.166	36.200	36.233	36.267	36.301	36.334	1,200
1,210	36.334	36.368	36.401	36.435	36.469	36.502	36.536	36.570	36.603	36.637	36.671	1,210
1,220	36.671	36.705	36 • 738	36.772	36.806	36.840	36.873	36.907	36.941	36.975	37.009	1,220
1,230	37.009	37.043	37.016	37.110	37.144	37 - 178	37.552	27.240	37+280	37 454	37.340	1,250
1+240	57.540	51.302	37.0410	57.490	3/+404	51.910	37.992	37.580	51.620	57.054	57.600	1,240
1,250	37,688	37.722	37.756	37.790	37.825	37.859	37.893	37.927	37.961	37.995	38.030	1,250
1,260	38.030	38+064	38.098	38.132	38.167	38.201	38.235	38.269	38.304	38.338	38.372	1,260
1,270	38.372	38.407	38.441	38.475	38,510	38.544	38.578	38.613	38+64/	38.682	38./16	1.270
1,280	38,716	38.751	38.785	38,819	38.854	38.888	38.923	38.957	38 • 992	39.027	39.061	1,280
1+290	39,061	39.096	39.130	39.165	39.199	39.234	39.269	39.303	39.338	39.373	39.407	1,290
1,300	39.407	39.442	39.477	39.511	39.546	39.581	39.615	39.650	39.685	39.720	39.754 40.103	1,300
1.320	40.103	40.138	40.172	40.207	40.242	40.277	40.312	40.347	40+382	40.417	40.452	1,320
1.330	40.452	40.487	40.522	40.557	40.592	40.627	40.662	40.697	40.732	40.767	40.802	1.330
1,340	40.802	40.837	40.872	40.908	40.943	40.978	41.013	41.048	41.083	41.118	41.154	1,340
1.350	41.154	41.189	41.224	41.259	41.294	41.329	41.365	41.400	41.435	41.470	41.506	1,350
1,360	41.506	41.541	41.576	41.611	41.647	41.682	41.717	41.753	41.788	41.823	41.859	1,360
1,370	41.859	41.894	41.929	41.965	42.000	42.035	42.071	42.106	42+142	42.177	42.212	1,370
1,380	42.212	42.602	42.283 42.638	42.319 42.673	42.354	42.390 42.744	42.425	42.400	42.496 42.851	42.531	42.567	1+380
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

Temperature in Degrees Fahrenheit^a

EMF in	Absolute	Millivolt	s							Referenc	e Junction	s at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			тн		TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS	_		
1,400	42.922	42.957	42,993	43.029	43.064	43.100	43.135	43.171	43.207	43.242	43.278	1,400/
1,410	43.278	43.313	43.349	43.385	43.420	43.456	43.492	43.527	43.563	43.599	43.635	1.410
1,420	43.635	43.670	43.706	43.742	43.777	43.813	43.849	43.885	43.921	43.956	43.992	1.420
1,430	43.992	44.028	44.064	44.099	44.135	44.171	44.207	44.243	44.279	44.314	44.350	1.430
1,440	44.350	44.386	44.422	44.458	44.494	44.529	44.707	44.601	44.03/	44.0/3	44 . 109	1.440
1,450	44.709	44.745	44.780	44.816	44.852	44.888	44.924	44.960	44.996	45.032	45.067	1.450
1,460	45.067	45.103	45.139	45.175	45.211	45.247	45.283	45.319	45.355	45.391	45.426	1.460
1,470	45.426	45.462	45.498	45.534	45.570	45.606	45.642	45.678	45.714	45.749	45.785	1,470
1,480	45.785	45.821	45.857	45.893	45.929	45.965	46.001	46.037	46.072	46.108	46.144	1,480
1,490	46.144	46.180	46.216	46.252	46,288	46.324	40.379	40.397	40.431	40+40/	40.703	1 .490
1,500	46.503	46.539	46.575	46.610	46.646	46,682	46.718	46.754	46.790	46.825	46.861	1,500
1,510	46.861	46.897	46.933	46.969	47.005	47.040	47.076	47.112	47.148	47.183	47.219	1.510
1,520	47.219	47.255	47.291	47.327	47.362	47.398	47.434	41.410	47.505	47.541	41.021	1,520
1,530	47.577	47.612	47.048	4/.084	47+720	4/ . /	47.791	41.021	47.002	47.070	48.290	1,540
11540	41.734	4/ 907	40.003	40+041	40.070	40.112	40.14/	40.105	400217	400224	400270	
1,550	48.290	48.325	48.361	48.397	48.432	48.468	48.503	48.539	48.574	48.610	48.645	1,550
1,560	48.645	48.681	48.716	48,752	48,787	48.823	48.858	48.894	48.929	48.965	49.000	1,560
1,570	49.000	49.036	49.071	49.107	49.142	49.177	49.213	49.248	49.283	49.319	49.354	1,570
1,580	49.354	49.390	49.425	49.460	49.496	49.531	49.766	49.001	49.031	49.012	47.107	1,500
1,590	49.707	49.743	49.118	49.813	49.848	49.883	49.919	49.954	47.787	50.024	50.000	1,270
1.600	50.059	50+095	50.130	50.165	50.200	50.235	50.270	50.305	50.340	50.376	50+411	1,600
1,610	50.411	50.446	50.481	50.516	50.551	50.586	50.621	50.656	50.691	50.726	50.761	1,610
1,620	50,761	50.796	50.831	50.866	50,901	50.936	50,970	51.005	51.040	51.075	51.110	1,620
1,630	51.110	51.145	51.180	51.215	51+249	51.284	51.319	51.354	51.389	51.423	51.458	1,630
1,640	51.458	51.493	51.528	51.562	51.597	51.632	51.667	51.701	51.736	51.771	51.805	1,640
1,650	51.805	51.840	51.875	51.909	51.944	51.978	52.013	52.048	52.082	52 . 117	52.151	1.650
1.660	52,151	52.186	52.220	52.255	52.289	52.324	52.358	52.393	52.427	52.462	52.496	1.660
1,670	52.496	52.531	52.565	52.600	52.634	52.668	52.703	52.737	52.772	52.806	52.840	1.670
1,680	52.840	52.8/5	52.909	52.943	52.977	53.012	53.388	53.422	53.456	53.491	53.525	1.680
1.710	53.725	53.559	53.573	53.62/	53.661	53.695	53.729	53.763	53.797	53.831	53.865	1,700
1.720	54 205	54.230	54.272	54 307	54.001	54.374	54 409	54 442	54 4 76	54.510	54.544	1.720
1.730	54.544	54.577	54.611	54.645	54.679	54.712	54.746	54.780	54.814	54.847	54.881	1.730
1.740	54.881	54.915	54.948	54.982	55.016	55.049	55.083	55.117	55+150	55.184	55.218	1,740
1.750	EE 210	66. 161	55.205	66 310	66.262	65.205	55 419	55.452	55.496	65 520	65.552	1.750
1.760	55.553	55.587	55.620	55-654	55.687	55.720	55.754	55.787	55.821	55-854	55.888	1.760
1.770	55.888	55.921	55.954	55.988	56.021	56.055	56.088	56.121	56.155	56.188	56.221	1.770
1,780	56,221	56.255	56.288	56.321	56.354	56.388	56.421	56.454	56.487	56.521	56.554	1,780
1,790	56,554	56.587	56.620	56.654	56.687	56.720	56.753	56.786	56+819	56.853	56.886	1.790
1,800	56.886	56.919	56.952	56.985	57.018	57.051	57.084	57.118	57.151	57.184	57.217	1,800
1.810	57.217	57.250	57.283	57.316	57.349	57.382	57.415	57.448	57.481	57.514	57.547	1,810
1.820	57.547	57.580	57.613	57.646	57+679	57.712	57.745	57.778	57.810	57.843	57.876	1,820
1.830	57.876	57.909	57.942	57.975	58.008	58.041	58.074	58.106	58.139	58+172	58.205	1.830
1,840	58,205	58.238	58 • 2 / 1	58.303	58.336	58.369	58.402	58.435	58,46/	58.000	58.533	1,840
1,850	58.533	58.566	58,598	58.631	58.664	58.697	58.729	58.762	58.795	58,827	58.860	1.850
1,860	58.860	58.893	58.926	58.958	58.991	59.024	59.056	59.089	59.121	59.154	59,187	1,860
1.870	59,187	59,219	59.252	59.285	59.317	59.350	59.382	59.415	59.448	59.480	59.513	1.870
1,880	59,513	59.545	59.578	59.610	59.643	59.676	59.708	59.741	59.773	59.806	59.838	1,880
1.890	59,838	59.871	59.903	59.936	59.968	60.001	60.033	60.066	60.098	60+131	60.163	1.890
1,900	60.163	60.196	60.228	60.261	60.293	60.326	60.358	60.390	60.423	60.455	60.488	1,900
1.910	60.488	60.520	60.553	60.585	60.617	60.650	60.682	60.715	60.747	60.179	60.812	1,910
1,920	60.012	60+844	61 200	60.909	60.941	61 207	61.006	61.038	61.071	61+103	41 450	1.920
1,940	61.459	61.491	61.523	61,555	61.588	61.620	61.652	61.685	61.717	61.749	61.781	1.940
					() 01-		() 0				()) (
1.950	62,104	62.124	62 140	61.878	62.222	61+743	61.975	62.330	62-039	62+0/2	62+104	1,960
1.970	62.424	62-458	62.491	62.527	62.555	62.597	62-610	62+550	62.694	62.716	62.748	1.970
1.980	62.748	62.780	62.813	62.845	62-877	62.909	62.941	62-974	63.004	63.038	63.070	1,980
1.990	63.070	63.102	63.134	63.167	63.199	63.231	63.263	63.295	63.327	63.359	63.392	1,990
DEG E	0	1	2	3	- 4	5	6	- 7		9	10	DEG F

Temperature in Degrees Fahrenheit^a

EMF in	Absolute	Millivolts	5		•					Reference	e Junction	is at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			нт	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
2,000	63,392	63.424	63.456	63.488	63.520	63.552	63,584	63.617	63.649	63.681	63.713	2,000
2,010	63.713	63.745	63.777	63.809	63.842	63 • 874	63,906	63.938	63.970	64.002	64.034	2,010
2,020	64.034	64.066	64.098	64.131	64.163	64.195	64,227	64.259	64+291	64.323	64+355	2,020
2.030	64.355	64.387	64.420	64.452	64.484	64.516	64,548	64.580	64.612	64.644	64.676	2,030
2,940	64.676	64.708	64.740	64.773	64.805	64.837	64.869	64.901	64.933	64.965	64.997	2,040
2,050	64,997	65.029	65.061	65.093	65.125	65.158	65,190	65.222	65.254	65,286	65,318	2,050
2,960	65.318	65.350	65.382	65.414	65.446	65.478	65,510	65,542	65.574	65.606	65.638	2,060
2,970	65.638	65.671	65.703	65.735	65.767	65 • 799	65,831	65.863	65.895	65.927	65.959	2,070
2,080	65.959	65,991	66.023	66.055	66.087	66.119	66.151	66,183	66.215	66,247	66.279	2,080
2,090	66.279	66.311	66.343	66.375	66.407	66.439	66,472	66.504	66.536	66.568	66+600	2,090
2,100	66.600	66.632	66.664	6.6+696	66.728	66•760	66,792	66.824	66.856	66.888	66.920	2,100
2,110	66.920	66.952	66,984	67.016	67.048	67.080	67,112	67.144	67.176	67.208	67.240	2,110
2,120	67.240	67.272	67.304	67,336	67.368	67.400	67.432	67,464	67.495	67.527	67.559	2,120
2,130	67.559	67,591	67.623	67,655	67.687	67.719	67,751	67.783	67.815	67,847	67.879	2,130
2,140	67.879	67.911	67.943	67.975	68,007	68.039	68.071	68.103	68.134	68.166	68.198	2,140
2,150	68,198	68.230	68.262	68.294	68.326	68.358	68,390	68.422	68.454	68.486	68.517	2:150
2:160	68.517	68.549	68.581	68:613	68.645	68+677	68.709	68.741	68.772	68,804	68.836	2,160
2,170	68,836	68.868	68,900	68,932	68.964	68.995	69.027	69.059	69.091	69.123	69.155	2,170
2,180	69,155	69.186	69.218	69.250	69.282	69.314	69.345	69.377	69+409	69.441	69.472	2,180
2,190	69.47?	69.504	69.536									2 . 190
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

Temperature in Degrees Fahrenheit^a

TABLE 47—Type J thermocouples.

NOTE—The maximum recommended temperature limit for Type J thermocouples is 1400 F (760 C) as specified in Table 2. Extension of the Type J tables beyond 1400 F gives temperature - electromotive force data to 2192 F (1200 C). This extension is a mathematical extrapolation based on limited calibration data and caution should be exercised in its use. The basis for the extended curve is discussed in NBS Monograph 125.

EMF in	EMF in Absolute Millivolts Temperature in Degrees Celsius (IPTS 1968) Reference Junctions at 0 C													
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C		
			, TH	ERMOELE	CTRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	DLTS					
-210	-9.096											220		
-200	-7.890	-7.912	-7,934	-7.955	-7,976	-7.996	-8.017	-8•037	-8.057	-8.076	-8.096	-200		
-190	-7.659	-7.683	-7.707	-7.731	-7.755	-7.778	-7.801	-7.824	-7.846	-7.868	-7.890	-190		
-180	-7.402	-7.429	-7.455	-7.482	-7.508	-7.533	-7.559	-7.584	-7.609	-7.634	-7.659	~180		
-160	-/+122	-/+171	-/+100	-/+209	-1.231	-/+267	-7.004	- 1 - 321	-7.348	-/.3/5	-7.402	-170		
-150	-6.499	-6.532	-6.565	-6.598	-6.630	-6.663	-6.695	-6.727	-6.758	-6.790	-6.821	-150		
-140	-6.159	-6.194	-6.228	-6,263	-6.297	-6.331	-6,365	-6.399	-6.433	-6.466	-6.499	-140		
-130	-5.801	-5.837	-5.874	-5.910	-5.946	-5.982	-6.018	-6.053	-6+089	-6.124	-6.159	-130		
-120	-5.426	-5.464	-5.502	-5.540	-5.578	-5.615	-5.653	-5.690	-5.727	-5.764	-5.801	-120		
-110	-5.036	-5.076	~5,115	-5.155	-5.194	-5.233	-5.272	-5.311	-5.349	-5.388	-5.426	-110		
-100	-4.032	-4+673	-4./14	-4.755	-4.795	~4.836	-4.876	-4.916	-4.956	-4.996	-5.036	-100		
-90	-4,215	-4.257	-4.299	-4.341	-4.383	-4.425	-4.467	-4.508	-4.550	-4.591	-4+632	-90		
-80	-3.785	-3.829	-3.872	-3,915	-3.958	-4.001	-4.044	-4.087	-4.130	-4.172	-4.215	-80		
~ 10	-3.344	-3+389	~3.433	-3.478	-3.522	-3.566	-3.610	-3.654	-3.698	-3.742	-3.785	-70		
-50	-2.431	-2.478	-2.524	-2.570	-2.617	-2.663	-2.709	-2.755	-3.255	-2.847	-3.344	-50		
-40	-1.960	-2.008	-2.055	-2.102	=2.150	-2.197	-2.244	-2.201	- 7 990	. 7 784	2.421	4.0		
-30	-1.481	-1.530	-1.578	-1.676	-1.674	-1.722	-1.770	-1.818	-1.865	-1.913	-2.431	-40		
-20	-0.995	-1+044	-1.093	-1.141	-1.190	-1.239	-1.288	-1.336	-1.385	-1.433	-1.481	-20		
-10	-0.501	-0.550	-0.600	-0.650	-0.699	-0.748	-0.798	-0.847	-0.896	-0.945	-0+995	-10		
- 0	0.000	-0.050	-0.101	-0.151	-0.201	-0.251	-0.301	-0.351	-0.401	-0.451	-0.501	- 0		
0	0.000	0.050	0.101	0.151	0.202	0.253	0.303	0.354	0+405	0.456	0.507	0		
10	0.507	0.558	0.609	0.660	0.711	0.762	0.813	0.865	0.916	0.967	1.019	10		
20	1.019	1.070	1.122	1.174	1.225	1.277	1.329	1.381	1.432	1.484	1.536	20		
40	2.058	2.111	2.163	2.216	2.268	2.321	2.374	2.426	2.479	2.006	2.058	30 40		
50	2.585	2+638	2.691	2.743	2.796	2.849	2,902	2.956	3.009	3.062	3,115	50		
60	3.115	3.168	3.221	3.275	3.328	3.381	3.435	3.488	3.542	3.595	3.649	60		
70	3.649	3.702	3.756	3.809	3.863	3.917	3.971	4.024	4.078	4.132	4.186	70		
80	4.186	4.239	4.293	4.347	4.401	4.455	4.509	4.563	4+617	4.671	4.725	80		
90	4.725	4.780	4.834	4.888	4.942	4.996	>.050	5.105	5.159	5.213	5,268	90		
100	5.268	5.322	5.376	5.431	5.485	5.540	5.594	5.649	5.703	5.758	5.812	100		
120	5.812	5.867	5.921	5.976	6.031	6.085	6.140	6.195	6.249	6.304	6.359	110		
130	6.907	6.967	7.017	7.073	7.127	7,197	7.227	7.292	0+797	7.402	5.457	120		
140	7.457	7.512	7.567	7.622	7.677	7.732	7.787	7.843	7.898	7.953	8.008	140		
150	8.008	8.063	8.118	8.174	8.229	8.284	8.339	8.394	8.450	8.505	8.560	150		
160	8,560	8.616	8.671	8,726	8.781	8.837	8.892	8.947	9.003	9.058	9.113	160		
170	9.113	9.169	9.224	9.279	9.335	9.390	9.446	9.501	9.556	9.612	9.667	170		
180	9.667	9.723	9.778 10.333	9.834 10.388	9.889 10.444	9.944 10.499	10.000 10.555	10.055 10.610	10.111	10•166 10•721	10.222	180 190		
200	10.777	10.832	10.888	10.943	10.999	11.054	11.110	11.145	11 221	11 274	11 233	300		
210	11.332	11.387	11.443	11.498	11.554	11.609	11.665	11.720	11.776	11.831	11.887	210		
220	11.887	11.943	11,998	12.054	12.109	12.165	12.220	12.276	12+331	12.387	12 442	220		
230	12.442	12.498	12.553	12.609	12.664	12.720	12.776	12.831	12.887	12.942	12.998	230		
240	12,998	13.053	13.109	13,164	13.220	13.275	13.331	13.386	13.442	13.497	13,553	240		
250	13.553	13.608	13.664	13.719	13.775	13.830	13,886	13.941	13.997	14.052	14.108	250		
260	14.108	14.163	14.219	14.274	14.330	14.385	14.441	14.496	14.552	14.607	14.663	260		
280	15,217	15.272	14.7/4	14.829	14.885	14.940	14.995	15.051	15.106	15.162	15.217	270		
290	15.771	15.827	15.882	15.939	15.902	16.0494	16,100	12.005	14.314	12./10	12.171	280		
	******		10002		******	10+0+0	100104	10+13A	10+214	100510	100020	290		

16.602 17.155 17.708 18.260 18.813

5

16.547 17.100 17.653 18.205 18.757

4

16.657 17.210 17.763 18.316 18.868

6

16•713 17•266

17.818 18.371 18.923

7

16.768 17.321

17.874 18.426 18.978

8

16.823 17.376 17.929 18.481 19.033

9

16.879 17.432

17.984 18.537 19.089

10

340

DEG C

300 310 320

330 340

DEG C

16.325 16.879 17.432 17.984 18.537

0

16.436 16.989 17.542 18.095 18.647

2

16.380

16.934 17.487

18.039 18.592

1

16.491 17.044 17.597 18.150 18.702

3

Temperature in Degrees Celsius (IPTS 1968)

EMF in	Absolute	: Millivolt	ls .							Refere	nce Junctio	ons at 0 C
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C
				HERMOELE	CTRIC VO	TAGE IN	ABSOLUTE	MILLIV	DLTS			
350	19.089	19.144	19.199	19.254	19.309	19.364	19.420	19.475	19.530	19.585	19.640	350
360	19.640	19.695	19.751	19,806	19.861	19.916	19,971	20.026	20.081	20.137	20.192	350
370	20.192	20+247	20.302	20.357	20+412	20.467	20,523	20.5/8	20.633	20.000	20 • 74 3	370
380	21.295	21.350	21.405	21.460	21.515	21.570	21.625	21.680	21.736	21.791	21.846	390
			_									
400	21.846	21.901	21.956	22.011	22.066	22.122	22.177	22+232	22.28/	22.342	22.397	400
420	22.949	23.004	23.060	23.115	23.170	23.225	23.280	23.336	23.391	23.446	23.501	420
430	23,501	23.556	23.612	23.667	23.722	23,777	23.833	23.888	23.943	23.999	24.054	430
440	24.054	24.109	24.164	24.220	24.275	24.330	24,386	24.441	24.496	24.552	24.607	440
450	24.607	24.662	24.718	24.773	24.829	24 . 884	24.939	74.995	25.050	25.106	25-161	450
460	25,161	25.217	25.272	25.327	25.383	25.438	25.494	25.549	25.605	25.661	25.716	460
470	25.716	25.772	25.827	25.883	25.938	25.994	26.050	26.105	26.161	26.216	26.272	470
480	26+272	26.328	26.383	26.439	26.495	26.551	26.606	26.662	26.718	26.774	26.829	480
490	20.029	20.882	20.941	26.997	27.053	27.109	21.103	21+220	21.210	21,352	21.000	490
500	27.388	27.444	27.500	27.556	27.612	27.668	27.724	27.780	27.836	27.893	27.949	500
510	27.949	28.005	28.061	28.117	28.173	28.230	28.286	28.342	28.398	28.455	28.511	510
520	28,511	28.567	28.624	28.680	28.736	28.793	28,849	28,906	28.962	29.019	29.075	520
530	29.075	29.132	29.188	29.245	29.301	29.358	29,415	29.471	29.020	29.202	29+642	540
240	27.042	270070	270125	270012	271007	270720	27.00	30.0037	10.010	30.123	50.2.0	540
550	30.210	30.267	30.324	30.381	30.439	30.496	30,553	30.610	30.667	30.724	30.782	550
560	30.782	30.839	30.896	30.954	31.011	31.068	31.126	31.183	31.241	31.298	31.356	560
570	31,356	31+413	31.4/1	31+528	31.586	31.044	31.02	31./09	31.81/	31.072	32.513	570
590	32.513	32.571	32.629	32.687	32.746	32.804	32.862	32.921	32.979	33.038	33.096	590
600	33.096	33.155	33.213	33.272	33,330	33.389	33.448	33.506	33.565	33.624	33.683	600
620	34.273	34.332	34.391	34.451	34.510	34.569	34.629	34+688	34.748	34.807	34.867	620
630	34,867	34 • 926	34.986	35.046	35.105	35.165	35.225	35.285	35.344	35.404	35.464	630
640	35.464	35.524	35.584	35.644	35.704	-35.764	35.825	35.885	35.945	36.005	36.066	640
	.		24 3.24	a. a. a	3/ 207							
650	36 671	36.732	36.792	36.953	36.914	36.975	37.036	30.409	30.049	30.010	30.071	650
670	37.280	37.341	37.402	37.463	37.525	37.586	37.647	37.709	37.770	37.831	37.893	670
680	37.893	37.954	38.016	38.078	38.139	38.201	38.262	38.324	38.386	38.448	38.510	680
690	38,510	38.572	38.633	38.695	38.757	38.819	38,882	38,944	39.006	39.068	39.130	690
700	39,130	30.107	39.255	39.317	39.379	30.447	39.504	39.567	39.479	39-697	39.754	700
710	39,754	39.817	39.880	39.94Z	40.005	40.068	40.131	40.193	40.256	40.319	40.382	710
720	40.382	40.445	40.508	40.571	40.634	40.697	40.760	40.823	40.886	40.950	41.013	720
730	41.013	41.076	41.139	41.203	41.266	41.329	41.393	41.456	41.520	41.583	41.647	730
740	41.647	41.710	41.74	41.837	41.901	41.965	42.028	42.092	42.156	42.219	42.283	740
750	42.283	42.347	42.411	42.475	42.538	42.602	42.666	42.730	42.794	42.858	42.922	750
760	42.922											760
760	42.922	42.980	43.692	43.756	43.178	43.885	43.949	49.970	42.437	44.142	43.207	770
780	44.207	44.271	44.336	44.400	44.465	44.529	44.594	44.658	44.723	44.788	44.852	780
790	44.852	44.917	44.981	45.046	45.111	45.175	45.240	45.304	45.369	45.434	45.498	790
800	45.498	45.541	45-427	45.692	45.767	45.821	45.884	45.950	46.015	46.080	46-144	800
810	46.144	46.209	46.273	46.338	46.403	46.467	46.532	46.596	46.661	46.725	46.790	810
820	46.790	46.854	46.919	46.983	47.047	47.112	47.176	47.241	47.305	47.369	47.434	820
830	47.434	47.498	47.562	47.627	47.691	47.755	47.819	47.884	47.948	48.012	48.076	830
040	40.010	408140	400204	400207	400,000	44,277	400401	400525	400507	401055	401110	0.0
850	48,716	48.780	48.844	48.908	48.972	49.036	49.099	49.163	49.227	49.291	49.354	850
860	49.354	49.418	49.481	49.545	49.608	49.672	49.735	49.799	49.862	49.926	49.989	860
870	60 621	50.484	50.747	50-810	50.873	50.936	50.998	51.061	51.124	51.187	51.249	880
890	51.249	51.312	51.375	51.437	51.500	51.562	51,625	51.687	51.750	51.812	51.875	890
							-					
900	51.875	51.937	51.999	52.061	52.124	52.186	52.248	52.310	52.372	52.434	52.496	900
920	53,115	53,174	53.228	53,299	53.341	53.427	53.484	53.545	53.607	53.668	53.729	920
930	53,729	53,791	53.852	53.913	53.974	54.035	54.096	54.157	54.219	54.280	54.341	930
940	54.341	54.401	54.462	54.523	54.584	54.645	54.706	54.766	54.827	54.888	54.948	940
050	54 04 0	55.000	55,070	55,194	55,101	55,751	55.212	55.270	55.427	55.492	55.552	950
960	55.553	55.613	55.674	55.734	55.794	55.854	55.914	55.974	56.035	56.095	56.155	960
970	56,155	56,215	56.275	56.334	56.394	56.454	56.514	56.574	56.634	56.693	56.753	970
980	56,753	56.813	56.873	56.932	56.992	57.051	57.111	57.170	57.230	57.289	57.349	980
990	57,349	57.408	57.468	57+527	57.586	57.646	\$1.705	51.764	57+824	57.883	57.94Z	990
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C

EMF in	Absolute	Referen	ce Junctio	ons at 0 C								
DEG C	0	1	2	3	4	5	6	٦	8	9	10	DEG C
			тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
1+000	57,942	58.001	58,060	58,120	58.179	58.238	58.297	58.356	58+415	58.474	58.533	1,000
1,010	58,533	58.592	58,651	58,710	58.769	58.827	58.886	58.945	59+004	59.063	59.121	1,010
1,020	59,121	59.180	59,239	59.298	59.356	59.415	59.474	59.532	59.591	59.650	59.70B	1+020
1,030	59.70B	59.767	59.825	59.884.	59.942	60.001	60.059	60.118	60+176	60.235	60 • 293	1,030
1,040	60.293	60.351	60.410	60.46B	60.527	60.585	60.643	60.702	60.760	60.818	60.876	1,040
1+050	60.876	60.935	60.993	61.051	61.109	61.168	61.226	61.284	61.342	61.400	61.459	1+050
1,060	61,459	61.517	61.575	61.633	61,691	61.749	61.807	61.865	61.923	61.981	62.039	1,060
1.070	62.039	62.097	62.156	62 • 214	62 . 272	62.330	62.388	62.446	62.504	62.562	62.619	1,070
1.080	62.619	62.677	62.735	62.793	62.851	62 • 909	62.967	63.025	63.083	63.141	63.199	1,080
1,090	63,199	63.257	63.314	63.372	63.430	63.488	63,546	63.604	63.662	63,719	63.777	1.090
1,100	63.777	63.835	63,893	63,951	64.009	64.066	64.124	64.182	64.240	64.298	64.355	1,100
1,110	64,355	64.413	64.471	64.529	64.586	64,644	64.702	64.760	64.817	64.875	64.933	1,110
1,120	64.933	64.991	65.04B	65.106	65.164	65.222	65.279	65.337	65.395	65,453	65.510	1,120
1,130	65,510	65.568	65,626	65.683	65,741	65.799	65,856	65.914	65.972	66.029	66.087	1,130
1,140	66.087	66.145	66.202	66,260	66.318	66.375	66.433	66.491	66 • 548	66.606	66.664	1,140
1,150	66,664	66.721	66.779	66.836	66.894	66.952	67.009	67.067	67.124	67.182	67.240	1+150
1,160	67.240	67.297	67.355	67.412	67,470	67.527	67.585	67.643	67.700	67.758	67.815	1,160
1,170	67.815	67.873	67,930	67.988	68,045	68,103	68,160	68.217	68.275	68.332	68.390	1,170
1,180	68.390	6B.447	68.505	68.562	68.619	68.677	68.734	68.792	68+849	68.906	68.964	1+180
1,190	68,964	69.021	69.078	69.135	69.193	69.250	69.307	69.364	69.422	69.479	69.536	1,190
1+200	69.536											1+200
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C

TABLE 48—Type K thermocouples.

Temperature in Degrees Fahrenheit^a

EMF in	Absolute	Millivolt	s		•	5				•Reference	æ Junction	ns at 32 F
DEG F	0	· 1	2	3	4	5	6	7	8	9	10	DEG F
			Tł	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
-450	-6.456	-6•456	-6.457	-6.457	-6.458							-450
-440	-6.447	-6.448	-6.449	-6.450	-6.451	-6.452	-6.453	-6.454	-6.454	-6.455	-6.456	-440
-430	-6.431	-6.433	-6.435	-6.436	-6.438	-6.440	-6.441	-6+443	-6.444	-6.445	-6+447	-430
-420	-6.409	-6.411	-6.414	-6+416	-6+419	-6+421	-0.423	-6.427	-6.421	-6.429	-6.409	-420
-400	-6.344	-6.348	-6.352	-6+355	-6.359	-6+363	-6.366	-6.370	-6.373	-6.377	-6.380	-400
- 390	-6.301	-6.306	-6-310	-6.315	-6.319	-6.323	-6-328	-6.332	-6-336	-6-340	-6.344	-390
-380	-6.251	-6.257	-6.262	-6.267	-6.272	-6.277	-6.282	-6.287	-6+292	-6.296	-6.301	-380
-370	-6.195	-6.201	-6.207	-6.213	-6.219	-6.224	-6.230	-6+235	-6.241	-6+246	-6.251	-370
-360	-6.133	-6.139	-6.146	-6.152	-6.158	-6.165	-6.171	-6.177	-6.183	-6.189	-6.195	-360
-350	-6.064	-6.071	-6.078	-6.085	-6.092	-6.099	-6.106	-6.113	-6.119	-6.126	-6.133	-350
-340	-5.989	-5.997	-6.004	-6.012	-6.020	-6.027	-6.035	-6.042	-6.049	-6.057	-6.064	-340
-330	-5.908	~5.917	-5.925	-5.933	-5,941	-5.949	-5.957	-5.965	-5.973	-5,981	-5.989	-330
-320	-5.822	-5.831	-5.839	-5.848	-5.857	-5.866	-5.874	-5.883	-5.891	-5.900	-5.908	-320
-310	-5.730	-5+739	-5+748	-5.758	-5.767	-5+776	-2.786	-5.795	-5.804	-5.813	-5.822	-310
-300	-5.032	-2.042	-2.622	-2.002	-2.012	-2.095	-2*041	-5.701	-9./11	-20 (20	-5.750	-300
-290	-5.529	~5.540	-5.550	-5.561	-5.571	-5.581	-5.592	-5+602	-5.612	-5.622	-5.632	-290
-280	-5.421	-5•432	-5+443	-5.454	-5.465	-5.476	-5.487	-5.497	-5.508	-5+519	-5.529	-280
~270	-5,308	-5.319	-5,331	-5.342	-5.354	-5.365	-5.376	-5.388	-5.399	-5.410	-5.421	-2/0
-260	-5.190	~5+202	-5+214	-5.226	-5.238	-5+249	-2+261	-2+2/3	-2+285	-2+270	-5.190	-260
-290	-9.007	-3.079	-2.072	-9.104	-94116	-9.129	-20141	-54155	-24182	-20170	-5.170	-250
-240	-4.939	-4.952	-4.965	-4.978	-4.990	-5.003	-5.016	-5.029	-5.041	-5.054	-5.067	-240
-230	-4.806	-4.819	-4.833	-4.846	-4.860	-4.873	-4.886	-4.899	-4.912	-4.926	-4.939	-230
-220	-4.527	-4.563	-4.09/	-4.710	-4.124	-4.598	-4.612	-4.627	-4.779	-4.655	-4.669	-220
-200	-4.381	-4.396	-4.410	-4.425	-4.440	-4.454	-4.469	-4.484	-4.498	-4.512	-4.527	-200
100	4 220	-4 345	. 4 241	4 274	- 4 201	-4 204	4 2 2 1	-6 226	-4 26)	-4 366	-4 281	-190
-190	-4.230	-4+245	-4.107	-4.122	-4.138	-4.153	-4.169	-4.184	-4.200	-4.215	-4.230	-180
-170	-3.917	-3.933	-3.949	-3.965	-3.981	-3.997	-4.012	-4.028	-4.044	-4.060	-4.075	-170
-160	-3.754	-3.770	-3,787	-3.803	-3.819	-3.836	-3.852	-3.868	-3+884	-3.901	-3.917	~160
-150	-3,587	-3.604	-3.621	-3.637	-3.654	-3.671	-3.688	-3.704	-3,721	-3,737	-3.754	-150
-140	-3.417	-3.434	-3.451	-3.468	-3.485	-3.502	-3,519	-3.536	-3.553	-3.570	-3.587	-140
-130	-3.242	-3.260	-3.277	-3.295	-3.312	-3.330	-3.347	-3.365	-3+382	-3.399	-3.417	-130
-120	-3.065	-3+082	-3.100	-3.118	-3.136	-3.154	-3,172	-3,189	-3.20/	-3.225	-3.242	-120
-110	=2.883	-2.902	-2.920	-2.938	-2.956	-2.9/4	-2.992	-3.010	-3+029	-3.047	-2.883	-110
-100	-2.077	-20111	-2.130	-2.194	-20113	-2.191	-2.010	-2.020	-2+041	-2.000	-2.0005	-100
-90	-2.511	-2.530	-2.549	-2.567	-2.586	-2.605	-2.624	-2.643	-2+661	-2.680	-2.699	-90
-80	-2.320	-2.339	-2.358	-2.377	-2.397	-2.416	-2.437	-2+424	-2.4/3	-2+492	-2.511	-80
-10	-1.929	-2+145	-1.968	-2+104	-2.008	-2.028	-2.047	-2.067	-2.087	-2.106	-2.126	-10
-50	-1.729	-1.749	-1.769	-1.789	-1.809	-1.829	-1.849	-1.869	-1.889	-1.909	-1.929	-50
-40	-1.527	-1.547	-1.567	-1.588	-1.608	-1.628	-1.648	-1.669	-1.689	-1.709	-1.729	-40
-30	-1.322	-1.342	-1.363	-1.383	-1.404	-1.424	-1.445	-1.465	-1+486	-1.506	-1.527	-30
-20	-1.114	-1.135	-1.156	-1.177	-1.197	-1.218	-1.239	-1.260	-1.280	-1.301	~1.322	-20
-10	-0.904	-0.925	-0.946	-0.968	-0.989	-1.010	-1.031	-1.051	-1.072	-1+093	-1.114	-10
- 0	-0.692	-0.714	-0.735	-0.756	-0+777	-0.799	-0.820	-0 • 841	-0+862	-0.883	-0+904	- 0
0	-0.692	-0.671	-0.650	-0.628	-0.607	-0.585	-0.564	-0.543	-0.521	-0.500	-0+478	0
10	-0.478	-0+457	-0.435	-0.413	-0.392	-0.370	-0.349	-0.327	-0.305	-0.284	-0.262	10
20	-0.262	-0.240	-0.218	-0,197	-0.175	-0.153	-0.131	-0.109	-0.088	-0.066	-0.044	20
30	-0.044	-0.022	0.000	0.022	0.044	0.066	0.088	0.110	0.132	0.154	0.176	30
40	0+1/6	0+198	0+220	0.242	0+264	0+286	0.108	0.331	0.353	0.315	0.397	40
50	0.397	0.419	0.441	0•464	0.486	0.508	0.530	0.553	0.575	0.597	0.619	50
60	0.619	0.642	0.664	0.686	0.709	0.731	0.753	0.776	0.798	0.821	0.843	60
70	1.049	1.000	0+888	0.910	1,160	0.955	0.978	1.224	1.023	1,045	1.29%	10
90	1.294	1.316	1.339	1.362	1.384	1.407	1.430	1.452	1.475	1.498	1.520	90
100	1.520	1.547	1.544	1.600	1.411	1.494	1.467	1.400	1.703	1.725	1.749	100
110	1.749	1.771	1.794	1.817	1.820	1.867	1-885	1.909	1.921	1.954	1.977	110
120	1.977	2.000	2.022	2.045	2.068	2.091	2.114	2.137	2.160	2.187	2.206	120
130	2.206	2.229	2.252	2.275	2.298	2,321	2.344	2.367	2.390	2.413	2.436	130
140	2.436	2 • 459	2.482	2.505	2.528	2.551	2.574	2.597	2.620	2.643	2.666	140
DEG F	0	1	2	Э	4	5	6	7	8	9	10	DEG F

EMF in	n Absolute	Millivolt	\$							Referen	ce Junctio	ns at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
_			TH	ERMOELE	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	NLTS	_		
150	2.666	2.689	2.712	2.735	2.758	2.781	2.804	2.827	2.850	2.873	2.896	150
160	2.896	2.920	2.943	2.966	2+989	3+012	3.035	3.058	3.081	3.104	3+127	160
170	3,127	3.150	3.173	3.196	3.220	3.243	3,266	3.289	3.312	3.335	3.358	170
180	3.358	3.381	3.404	3.427	3.450	3.473	3.496	3.519	3.543	3.566	3.589	180
190	3.589	3.612	3.635	3.658	3.681	3.704	3.727	3.750	3.773	3.796	3.819	190
200	3,819	3.842	3.865	3.888	3.911	3.934	3.957	3.980	4.003	4.026	4.049	200
210	4.049	4.072	4.095	4.118	4.141	4.164	4.187	4.210	4.233	4.256	4,279	210
220	4.279	4.302	4.325	4.348	4.371	4.394	4.417	4.439	4.462	4.485	4.508	220
230	4.508	4.531	4.554	4.577	4.600	4.622	4,645	4.668	4.691	4 0 0 1 7	4 . 13 /	230
240	4.151	4 . / 29	40102	4+805	4.020	4.031	4.075	4.070	40717	4.742	4 6 7 0 4	240
250	4.964	4.987	5.010	5.033	5.055	5.078	5.101	5.124	5.146	5.169	5.192	250
260	5.192	5.214	5.237	5 • 260	5.282	5.305	5.327	5.350	5.373	5.395	5.418	260
270	5.418	5.440	5.463	5.486	5.508	5.531	5,553	5.576	5.598	5.621	5+643	270
280	5.643	5.666	5.688	5.711	5.733	5.756	5.778	5.801	5.823	5.845	5.868	280
290	2+868	2+841	5.913	2+430	5.928	24400	6.003	6.025	6+040	6.070	6.092	290
300	6.092	6.115	6.137	6.160	6.182	6+204	6.227	6.249	6.271	6.294	6.316	300
310	6.316	6.338	6.361	6.383	6+405	6.428	6,450	6.472	6.494	6.517	6.539	310
320	6.539	6.561	6.583	6.606	6+628	6.650	6.672	6.695	6.717	6.739	6.761	320
330	6./61	6.784	6.806	6.828	6.850	6.873	6.895	6.917	6.939	5.961	6+984	330
340	6.984	7.006	1+028	7.020	7.072	7.094	/•11/	7.139	1+101	/.103	7.205	340
350	7.205	7.228	7.250	7.272	7.294	7.316	7.338	7.361	7.383	7.405	7.427	350
360	7.427	7.449	7.471	7.494	7.516	7.538	7.560	7.582	7.604	7.627	7.649	360
370	7.649	7.671	7.693	7.715	7.737	7.760	7,782	7.804	7.826	7.848	7.870	370
300	1.010	9.114	8.137	9.150	P.181	8.203	8 2 2 5	8.248	8.270	8.292	8.314	390
370	0.072	0.114	0.131	0.197	0.101	0.205	0.227	0.140	0.2.10	0	0.514	570
400	8.314	8.336	8.359	8.381	8.403	8.425	8.448	8.470	8.492	8.514	8.537	400
410	8.537	8.559	8.581	8.603	8+626	8.648	8,670	8.692	8.715	8.737	8 • / 5 4	410
420	8.729	8.782	0.037	8+820	0.077	0.004	9 117	9,139	9.161	9,184	9,206	420
440	9.206	9.229	9.251	9.273	9.296	9.318	9.341	9.363	9.385	9.408	9.430	440
											0.445	
450	9.430	9.423	9.472	9.498	9.745	9,743	9,700	9,813	9.610	9.858	9.880	450
470	9.880	9.903	9.926	9.948	9,971	9,993	10.016	10.038	10.061	10,084	10.106	480
480	10.106	10.129	10.151	10.174	10.197	10.219	10.242	10.265	10.287	10.310	10.333	480
490	10.333	10.355	10.378	10+401	10+423	10.446	10.469	10.491	10.514	10.537	10.560	490
500	10 540	10 592	10 405	10 429	10 450	10 672	10 606	10 719	10.741	10.764	10.787	500
510	10.787	10.810	10.833	10.855	10.878	10.901	10.924	10.947	10.969	10.992	11.015	510
520	11.015	11.038	11.061	11.083	11.106	11.129	11.152	11.175	11.198	11.221	11.243	520
530	11.243	11.266	11.289	11.312	11.335	11,358	11.381	11.404	11.426	11.449	11.472	530
540	11.472	11.495	11.518	11.541	11.564	11.587	11.610	11.633	11.656	11.679	11.702	540
550	11.702	11.725	11.748	11.770	11.793	11.816	11.839	11.862	11.885	11.908	11.931	550
560	11.931	11.954	11.977	12+000	12.023	12.046	12.069	12.092	12.115	12.138	12.161	560
570	12.161	12.184	12.207	12.230	12.254	12.277	12.300	12.323	12.346	12,369	12,392	570
580	12,392	12.415	12.438	12.461	12.484	12.507	12.530	12.553	12.576	12.599	12.623	580
590	12.623	12.646	12.669	12.692	12+715	12.738	12.761	12.784	12.80/	12.831	12.854	590
400	17 954	12 977	12.900	11 072	17.944	12 969	12.992	13.016	13.039	13.062	13.085	600
610	13.085	13.108	13.131	13.154	13.178	13.201	13.224	13.247	13.270	13.293	13.317	610
620	13.317	13.340	13.363	13.386	13.409	13.433	13,456	13.479	13.502	13,525	13.549	620
630	13.549	13.572	13.595	13.618	13.641	13.665	13.688	13.711	13.734	13,757	13.781	630
640	13,781	13.804	13.827	13.850	13.874	13.897	13,920	13,943	13.967	13.990	14.013	640
650	14.013	14.036	14.060	14+083	14.106	14.129	14.153	14.176	14.199	14.222	14.246	650
660	14.246	14.269	14.292	14.316	14.339	14.362	14.385	14.409	14.432	14.455	14.479	660
670	14.479	14.502	14.525	14.548	14.572	14.595	14.618	14.642	14.665	14.688	14.712	670
680	14.712	14.735	14.758	14.782	14.805	14.828	14.852	14.875	14.898	14.922	14.945	680
690	14.945	14.968	14.992	15+015	15+038	15.062	12.085	12.108	120132	120122	15+1/0	690
700	15.178	15.202	15.225	15.248	15.272	15.295	15.318	15,342	15.365	15.389	15.412	700
710	15.412	15.435	15.459	15.482	15.505	15.529	15,552	15.576	15.599	15.622	15.646	710
720	15.646	15.669	15.693	15.716	15.739	15.763	15.786	15.810	15.833	15.856	15.880	720
730 740	15.880	15.903	15+927	15.950	15+974	15+99/	16.255	16.278	16.302	16.325	16.349	740
140	100-14		100131	101104	100000	1000001						
750	16.349	16.372	16+395	16.419	16.442	16.466	16.489	16.513	16.536	16.560	16.583	750
750	16.203	16.007	10.030	16+054	16+0//	16,935	16,050	16,987	17:004	17,029	17,062	770
780	17.053	17.074	17,100	17,123	17,147	17,170	17,194	17.217	17.241	17.264	17.288	780
790	17.288	17.311	17.335	17.358	17.382	17.406	17.429	17.453	17.476	17.500	17.523	790
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

Temperature in Degrees Fahrenheit^e

Law P Absolute Philings Reference Junctions Reference Junctions </th <th>EME :-</th> <th>Aboolute</th> <th>Million</th> <th></th> <th>Ter</th> <th>nperature</th> <th>in Degre</th> <th>es Fahren</th> <th>heit^a</th> <th></th> <th>Pafarata</th> <th>. Iunatia</th> <th></th>	EME :-	Aboolute	Million		Ter	nperature	in Degre	es Fahren	heit ^a		Pafarata	. Iunatia	
DEG F 0 1 2 3 4 5 6 7 8 9 10 DEG F THERMOGLECTRIC VOLTAGE IN ADSOLUTE MILLIVOLTS 800 17,753 17,942 17,960 17,921 17,942 17,994 19,994 800 810 17,950 11,7941 17,994 11,994	ENT IN	Absolute	MIIIIVOIt	, 			<u> </u>				Reference	e Junction	ns at 32 P
Intermedical Critic Vol. Lage In Assource Will IVA Vill IVA 800 11,532 17,552 17,522 17,522 17,525 18,526 18,526 18,526 18,526 18,526 18,525 18,525 18,525 18,525 18,525 18,525 18,525 18,526	DEG F	0	1	2	3		5	6	7	8	9 	10	DEGF
e00 (7,523 (7,547) (7,576) (7,661) (7,763) (7,647) (7,763) (7,647) (7,761) (7,771) (7,772) (7,971) (7,772) (7,971) (7,772) (7,971) (7,772) (7,971) (7,772) (7,971) (7				TH	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO				
Bit D 17,789 17,882 17,882 17,882 17,882 17,882 17,894 19,290 17,893 17,991 18,183 18,282 18,282 18,282 18,282 18,282 18,282 18,282 18,282 18,282 18,283<	800	17.523	17.547	17.570	17.594	17.617	17+641	17.664	17.688	17,711	17.735	17.759	800
Seco 14.250 18.215	810	17.759	17.782	17.806	17.829	17.853	17,876	17.900	17.923	17.947	17.971	17.994	810
BACO BACO <th< td=""><td>820</td><td>17.994</td><td>18.018</td><td>18+041</td><td>18.065</td><td>18.088</td><td>18.112</td><td>18.136</td><td>18.159</td><td>18.183</td><td>18.206</td><td>18.230</td><td>820</td></th<>	820	17.994	18.018	18+041	18.065	18.088	18.112	18.136	18.159	18.183	18.206	18.230	820
abs: 18.702 18.735 18.735 18.745 18.462 18.462 18.462 18.462 18.463 18.453 19.150 19.171 19.150 19.171 19.150 19.171 19.150 19.171 19.150 19.171 19.150 19.171 19.150 19.150 19.251 19.550 11.550 11.550 11.550	840	18.460	18.489	18,513	18.536	18.560	18.584	18.607	18.631	18.654	18.678	18.702	840
Beso IB-98	850	18.702	18.725	18.749	18.772	18.796	18.820	18.843	18.867	18.890	18.914	18.938	850
B*0 19.17 19.21 19.24 19.24 19.24 19.25 1	860	18,938	18.961	18.985	19.008	19.032	19.056	19.079	19.103	19.127	19.150	19.174	860
Berg Ist 20 Ist 20 <thist 20<="" th=""> <thist 20<="" th=""></thist></thist>	870	19.174	19.197	19.221	19.245	19.268	19+292	19.316	19.339	19.363	19.386	19.410	870
900 19.883 19.907 19.954 19.978 20.012 20.025 20.092 20.012 20.012 20.014 20.015 20.015 20.015 20.015 20.015 20.014 <td>890</td> <td>19.646</td> <td>19.670</td> <td>19.694</td> <td>19.481</td> <td>19.505</td> <td>19.528</td> <td>19.788</td> <td>19.5/6</td> <td>19.599</td> <td>19.623</td> <td>19.646</td> <td>880 890</td>	890	19.646	19.670	19.694	19.481	19.505	19.528	19.788	19.5/6	19.599	19.623	19.646	880 890
910 20.120 20.143 20.147 20.167 20.121 20.228 20.261 20.298 20.309 20.309 20.593 20.593 20.593 900 20.593 20.616 20.468 20.471 20.473 20.479 20.595 20.595 20.568 20.506 20.593 900 20.693 20.616 20.468 20.471 20.473 20.479 20.595 20.575 20.578 20.578 20.596 20.513 990 20.593 20.678 20.677 20.691 20.574 20.494 20.477 20.599 20.579 20.578	900	19.883	19.907	19.930	19.954	19.978	20.001	20.025	20.049	20.072	20.096	20.120	900
920 20.356 20.380 20.430 20.427 20.451 20.477 20.498 20.712 20.522 20.552 20.559 20.599 20.599 990 20.830 20.830 20.487 20.490 20.712 20.795 20.719 20.795 2	910	20.120	20.143	20.167	20.190	20.214	20.238	20.261	20.285	20.309	20.332	20.356	910
930 20.993 20.616 20.666 20.680 20.755 20.755 20.756 20.757 <td>920</td> <td>20.356</td> <td>20.380</td> <td>20.403</td> <td>20.427</td> <td>20.451</td> <td>20+474</td> <td>20.49B</td> <td>20.522</td> <td>20.545</td> <td>20.569</td> <td>20.593</td> <td>920</td>	920	20.356	20.380	20.403	20.427	20.451	20+474	20.49B	20.522	20.545	20.569	20.593	920
Y=0 20.6930 20.6930 20.6931 2	930	20.593	20.616	20+640	20.664	20.688	20.711	20.735	20.759	20.782	20.806	20.830	930
990 21.066 21.090 21.114 21.137 21.161 21.185 21.228 21.228 21.228 21.280 21.290 21.393 990 990 21.050 21.297 21.351 21.371 21.351 21.477 21.455 21.462 21.462 21.463 21.456 21.569 990 990 22.014 22.038 22.061 21.655 21.667 21.452 21.462 21.706 21.730 21.735 21.777 970 990 912.014 22.038 22.046 22.046 22.045 22.046 20.046 20.06 20	940	20.830	20+853	20+877	20.901	20.924	20.948	20.972	20.995	21.019	21.043	21.066	940
900 21.203 21.217 21.391 21.374 21.392 21.462 21.469 <td>950</td> <td>21.066</td> <td>21.090</td> <td>21.114</td> <td>21.137</td> <td>21.161</td> <td>21.185</td> <td>21.208</td> <td>21 • 232</td> <td>21.256</td> <td>21.280</td> <td>21.303</td> <td>950</td>	950	21.066	21.090	21.114	21.137	21.161	21.185	21.208	21 • 232	21.256	21.280	21.303	950
100 21.977 21.1267 21.667 21.667 21.667 21.667 21.667 21.667 21.667 21.667 21.667 21.667 21.667 21.667 21.667 21.667 21.667 21.667 22.616 22.616 22.616 22.617 22.446 22.464 22.465 22.667 22.667 22.667 22.667 22.667 22.667 22.667 22.667 22.667 22.667 22.667 22.667 22.667 22.667 22.677 22.710 22.775 23.107 23.661 23.667 21.979 21.981 1.000 24.673 24.661 23.677 24.671 24.671 24.671 24.671 24.671 1.000 23.677 <td>960</td> <td>21,303</td> <td>21.327</td> <td>21.351</td> <td>21.374</td> <td>21.398</td> <td>21.422</td> <td>21.445</td> <td>21.469</td> <td>21.493</td> <td>21.516</td> <td>21.540</td> <td>960</td>	960	21,303	21.327	21.351	21.374	21.398	21.422	21.445	21.469	21.493	21.516	21.540	960
990 122.014 122.036 22.037 122.132 122.135 1000 1000 122.135<	980	21.777	21.504	21+907	21.011	21.872	21+627	21.910	21.943	21.966	21.990	22.014	970
	990	22.014	22.038	22.061	22.085	22.109	22.132	22.156	22.180	22.203	22.227	22.251	990
	1,000	22.251	22.274	22.298	22.322	22.346	22.369	22.393	22.417	22.440	22.464	22.488	1,000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,010	22.488	22.512	22.535	22.559	22.582	22.606	22.630	22.654	22.677	22.701	22.725	1,010
	1,020	22.725	22.748	22.772	22.796	22.819	22.843	22.867	22.890	22.914	22.938	22.961	1.020
	1,040	23.198	23.222	23.246	23.032	23.050	23.080	23.340	23,127	23.151	23.411	23.198	1,030
$ \begin{array}{c} 1.060 & 23.472 & 23.469 & 23.719 & 23.748 & 23.746 & 23.750 & 23.814 & 23.837 & 23.861 & 23.885 & 23.408 & 1.006 \\ 1.070 & 24.908 & 23.995 & 23.995 & 23.995 & 24.003 & 24.027 & 24.050 & 24.017 & 24.058 & 24.145 & 1.070 \\ 1.080 & 24.145 & 24.169 & 24.92 & 24.453 & 24.240 & 24.263 & 24.287 & 24.317 & 24.571 & 24.571 & 24.571 & 24.587 & 24.161 & 1.090 \\ 1.100 & 24.618 & 24.462 & 24.665 & 24.699 & 24.713 & 24.756 & 24.500 & 24.783 & 24.607 & 24.851 & 24.854 & 1.100 \\ 1.100 & 24.618 & 24.642 & 24.665 & 24.699 & 24.713 & 24.776 & 24.760 & 24.783 & 24.607 & 24.851 & 24.697 & 24.811 & 1.090 \\ 1.100 & 24.618 & 24.678 & 24.902 & 24.929 & 24.947 & 24.997 & 25.020 & 25.042 & 25.067 & 25.091 & 11.10 \\ 1.120 & 25.091 & 25.114 & 25.148 & 25.161 & 25.168 & 25.209 & 25.252 & 25.252 & 25.579 & 25.351 & 1.120 \\ 1.140 & 25.653 & 25.568 & 25.610 & 25.693 & 25.697 & 25.618 & 25.400 & 25.964 & 25.997 & 25.633 & 1.130 \\ 1.140 & 25.663 & 25.668 & 25.689 & 25.897 & 25.618 & 25.400 & 25.964 & 25.987 & 26.611 & 26.034 & 1.150 \\ 1.160 & 26.700 & 26.729 & 26.578 & 26.579 & 26.578 & 26.617 & 26.617 & 26.263 & 26.726 & 1.160 \\ 1.160 & 26.700 & 26.729 & 26.578 & 26.589 & 27.699 & 27.028 & 27.458 & 26.957 & 26.681 & 26.957 & 26.975 & 1.160 \\ 1.180 & 26.975 & 26.597 & 26.517 & 26.517 & 26.611 & 26.034 & 26.957 & 26.976 & 1.160 \\ 1.180 & 26.740 & 26.764 & 26.787 & 26.511 & 26.034 & 27.093 & 27.116 & 27.163 & 27.167 & 27.167 & 27.210 & 1.200 \\ 1.200 & 27.452 & 27.452 & 27.528 & 27.599 & 27.562 & 27.658 & 27.657 & 27.641 & 1.210 & 1.200 \\ 1.200 & 27.442 & 27.946 & 27.492 & 27.514 & 27.534 & 27.358 & 27.578 & 27.778 & 27.777 & 27.777 & 27.777 & 27.777 & 27.777 & 27.850 & 27.658 & 27.658 & 27.658 & 27.657 & 1.210 & 1.200 & 1.200 & 27.914 & 27.921 & 27.924 & 27.924 & 27.924 & 27.914 & 27.914 & 27.914 & 27.914 & 27.921 & 27.924 & 27.944 & 27.924 & 27.946 & 27.698 & 28.652 & 28.658 & 28.618 & 28.610 & 28.612 & 28.642 & 28.658 & 28.618 & 28.610 & 28.628 & 28.618 & 1.260 & 28.982 & 28.648 & 28.697 & 28.628 & 28.648 & 1.260 & 1.280 & 28.648 & 21.65$	1.050	23.435	23.459	23.482	23.506	23.530	23.553	23.577	23.601	23.624	23.648	23.672	1.050
$ \begin{array}{c} 1.070 \\ 1.070 \\ 2.5.908 \\ 2.4.165 \\ 2.4.165 \\ 2.4.165 \\ 2.4.165 \\ 2.4.165 \\ 2.4.165 \\ 2.4.165 \\ 2.4.469 \\ 2.4.429 \\ 2.4.53 \\ 2.4.470 \\ 2.4.53 \\ 2.4.465 \\ 2.4.469 \\ 2.4.429 \\ 2.4.53 \\ 2.4.470 \\ 2.4.53 \\ 2.4.50 \\ 2.4.52 \\ 2.4.53 \\ 2.4.50 \\ 2.4.52 \\ 2.4.51 \\ 2.4.51 \\ 2.4.51 \\ 2.4.51 \\ 2.4.51 \\ 2.4.51 \\ 2.4.53 \\ 2.4.53 \\ 2.4.54 \\ 2.4.65 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.68 \\ 2.4.53 \\ 2.4.52 \\ 2.4.55 \\ 2.5.20 \\ 2.5.23 \\ 2.5.25 \\ 2.5.20 \\ 2.5.25 \\ 2.5.25 \\ 2.5.27 \\ 2.5.20 \\ 2.5.27 \\ 2.5.25 \\ 2.5.25 \\ 2.5.27 \\ 2.5.25 \\ 2.5.25 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ 2.5.27 \\ 2.5.28 \\ $	1,060	23.672	23.695	23.719	23.743	23.766	23.790	23.814	23,837	23.861	23.885	23.908	1+060
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,070	23.908	23.932	23,956	23.979	24.003	24.027	24.050	24.074	24.098	24.121	24.145	1.070
1:100 24.618 24.62 24.655 24.655 24.736 24.736 24.740 24.740 24.740 24.740 24.740 24.740 24.956 25.020 25.067 25.061 25.037 1.110 1:120 25.037 25.337 25.336 25.342 25.222 25.256 25.779 25.533 25.551 1.120 1:140 25.553 25.566 25.866 25.867 25.661 25.774 25.775 25.779 1.140 1:150 25.763 25.866 25.869 25.869 25.861 25.774 25.779 25.779 1.140 1:160 26.034 26.032 26.128 26.127 26.164 26.987 26.462 26.774 1.160 1:180 26.707 26.869 26.892 26.552 26.575 26.252 26.575 27.777 27.163 27.174 27.163 27.174 27.161 27.163 27.171 1.100 1:180 26.707 26.975 26.975 27.562 27.552 27.575 27.210 27.222 27.667 2	1,080	24.145	24.169	24.192	24.216	24.240	24.263	24.287	24.311	24.334	24.358	24,382	1.080
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					24			24 2.4		2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.310	24.010	24+642	24.002	24.025	24+113	24 . 972	24.904	24.783	24.807	24.021	24.091	1,100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,120	25.091	25.114	25+138	25.161	25.185	25.209	25.232	25.256	25.279	25.303	25.327	1,120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,130	25.327	25.350	25.374	25.397	25.421	23.445	25.468	25.492	25.515	25.539	25.563	1.130
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,140	20.000	25.786	224610	27.633	25.051	25.681	27.104	25.728	25.751	25.115	25.199	1,140
1:100 2:4.038 2:6.038 2:6.105 2:6.102 2:6.176 2:6.197 2:6.197 2:6.192	1,150	25.799	25.822	25.846	25.869	25.893	25.916	25.940	25.964	25.987	26.011	26.034	1,150
1:80 26.505 26.529 26.549 26.549 26.595 26.992 27.161 27.160 27.161 27.160 27.163 27.120 27.455 17.20 26.01 28.01 28.01 28.01 28.01 <td>1,170</td> <td>26.034</td> <td>26.202</td> <td>26.081</td> <td>26+105</td> <td>26+128</td> <td>26+152</td> <td>20.176</td> <td>20.179</td> <td>26+223</td> <td>20+440</td> <td>26.270</td> <td>1+160</td>	1,170	26.034	26.202	26.081	26+105	26+128	26+152	20.176	20.179	26+223	20+440	26.270	1+160
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.180	26.505	26.529	26.552	26.576	26.599	26.623	26.646	26.670	26.693	26.717	26.740	1,180
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,190	26.740	26. 764	26.787	26.811	26.834	26.858	26.881	26.905	26.928	26.952	26 . 975	1,190
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,200	26.975	26.999	27.022	27.046	27.069	27.093	27.116	27.140	27.163	27.187	27.210	1+200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,210	27.210	27.234	27.257	27.281	27.304	27.328	27.351	27.375	27 . 398	27.422	27.445	1,210
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,220	27.445	27.468	27.492	27.515	27.539	27.562	27.586	27.609	27+633	27.656	27.679	1,220
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,240	27.914	27.937	27.961	27.984	28.007	28.031	28.054	28.078	28.101	28.124	28.148	1,240
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,250	28.148	28.171	28.195	28.218	28.241	28.265	28.288	28.311	28.335	28.358	28.382	1,250
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,260	28.382	28.405	28.428	28.452	28.475	28.498	28.522	28,545	28.569	28.592	28.615	1,260
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,270	28.615	28.639	28.662	28.685	28.709	28.732	28.755	28.779	28.802	28 . 825	28.849	1.270
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,280	28.849	28.872	29.128	28,919	28.942	28.965	28.988	29.012	29.035	29.050	29.082	1,280
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,300	29.3)5	29.338	29.361	29.384	29.408	29.431	29.454	29.477	29.501	29.524	29.547	1.300
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,310	29.547	29.570	29.594	29.617	29.640	29.663	29.687	29.710	29.733	29.756	29.780	1,310
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,320	29.780	29.803	29.826	29.849	29.872	29.896	29.919	29.942	29.965	29.989	30.012	1+320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,330	30.012	30.035	30.058	30.081	30.104	30.128	30+151	30.174	30.197	3020	30.244	1,330
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,340	30.244	30+267	30.290	30.313	30.336	30+359	30.383	30.406	30.429	30.452	30.475	1,340
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,350	30.475	30.498	30.521	30,545	30.568	30.591	30.614	30.637	30.660	30.683	30.706	1.350
1.380 31.46 31.47 31.27 31.280 31.281 31.379 31.31	1.370	30.917	30+961	30.984	31.007	31.030	31.063	31.074	31.099	30+891	31,145	31.)64	1+360
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,380	31.168	31+192	31.214	31.237	31.260	31.283	31.306	31.329	32.353	31.376	31.399	1.380
1,400 31.629 31.652 31.675 31.698 31.721 31.744 31.767 31.790 31.813 31.836 31.836 31.839 1,400 1,410 31.859 31.662 31.975 31.927 31.950 31.976 32.019 32.062 32.065 32.048 1,410 1,420 32.088 31.11 32.134 32.157 32.180 32.226 32.249 32.727 32.324 32.317 1,420 1,430 32.546 32.463 32.463 32.465 32.465 32.465 1,420 1,440 32.546 32.569 32.659 32.656 32.461 32.435 32.475 32.475 32.456 1,420 1,440 32.546 32.569 32.659 32.651 32.663 32.706 32.729 32.775 1,440 DEG F 0 1 2 3 4 5 6 7 8 9 10 DEG F	1,390	31.399	31.422	31.445	31.468	31.491	31.514	31.537	31,560	31.583	31.606	31.629	1,390
1+410 31.859 31.662 31.905 31.927 31.950 31.976 32.019 32.024 32.065 32.058 32.171 1420 1+420 32.068 32.111 32.137 32.430 32.203 32.226 32.249 32.274 32.371 1+420 1+430 32.317 32.363 32.986 32.409 32.432 32.455 32.451 32.523 32.546 1,430 1+440 32.566 32.569 32.592 32.615 32.463 32.461 32.463 32.706 32.729 32.775 1,440 DEG F 0 1 2 3 4 5 6 7 8 9 10 DEG F	1,400	31.629	31.652	31.675	31.698	31.721	31.744	31.767	31.790	31.813	31.836	31.859	1,400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1+410	31.859	31.882	31.905	31.927	31.950	31.973	31.996	32.019	32.042	32.065	32.088	1,410
1,440 32,546 32,569 32,592 32,615 32,638 32,661 32,683 32,706 32,779 32,775 1,440 DEG F 1 2 3 4 5 6 7 8 9 10 DEG F	1,430	32.317	32.340	32,364	32,157	32.409	32.203	32.455	32.479	32+272	32.523	32.544	1+420
DEG F 0 1 2 3 4 5 6 7 8 9 10 DEG F	1.440	32.546	32.569	32.592	32.615	32+638	32.661	32.683	32.706	32.729	32.752	32.775	1,440
	DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

				Te	mperatur	e in Degre	es Fahrer	nheita				
EMF in	Absolut	e Millivol	ts							Referen	ce Junctio	ns at 32
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG
			T	HERMOELE	CTRIC VO	LTAGE IN	ABSOLUT	E MILLIV	OLTS			
1,450	32.775	32.798	32.821	32.843	32.866	32.889	32.912	32.935	32.958	32.980	33.003	1,450
1,460	33.003	33.026	33.049	33.072	33.094	33.117	33.140	33.163	33.186	33.208	33.231	1,460
1,480	33.450	33.254	33.277	33.300	33,322	33.345	33.368	33.391	33.413	33.436	33.459	1,470
1,480	33.686	33.482	33.504	33.527	33.550	33•573 33•800	33.823	33.618	33•641 33•868	33.664	33.686 33.913	1,480
1,500	33.913	33.936	33.959	33.981	34.004	34.027	34.049	34.072	34.095	34 . 117	34.140	1.500
1,510	34.140	34.163	34.185	34.208	34.231	34.253	34.276	34.299	34.321	34.344	34.366	1,510
1,520	34.366	34.389	34•412	34.434	34 • 457	34.480	34.502	34.525	34.547	34.570	34.593	1,520
1,530	34.593	34.615	34.638	34.660	34.683	34.705	34.728	34.751	34.773	34.796	34.818	1,530
1,540	34+818	34.841	34 • 86 3	34.886	34.909	34 • 93 1	34.954	34.976	34.999	35.021	35+044	1,540
1,550	35.044	35.066	35.089	35.111	35.134	35.156	35.179	35.201	35.224	35.246	35.269	1,550
1,570	35.494	35.516	35.510	25 541	35.583	35.581	35 404	35.426	35.449	35.471	35.494	1,560
1,580	35.718	35.741	35.763	35.785	35.808	35.830	35.853	35.875	35.897	35.920	35.942	1.580
1,590	35.942	35.965	35.987	36.009	36.032	36.054	36.077	36.099	36 • 1 21	36.144	36.166	1,590
1,600	36.166	36.188	36.211	36.233	36.256	36.278	36.300	36.323	36.345	36.367	36.390	1.600
1,610	36.390	36.412	36.434	36.457	36.479	36.501	36.524	36.546	36.568	36.590	36.613	1,610
1,620	36.613	36.635	36.657	36.680	36.702	36.724	36.746	36.769	36.791	36.813	36.836	1,620
1,630	36.836	36.858	36.880	36.902	36.925	36.947	36.969	36.991	37.014	37.036	37.058	1,630
1,640	3/.058	37.080	37.103	37.125	27.147	37.169	37.191	37.214	37.236	37.258	37.280	1,640
1,650	37.280	37.303	37.325	37.347	37.369	37.391	37.413	37.436	37.458	37.480	37.502	1,650
1,660	37.502	37.524	37.547	37.569	37.591	37.613	37.635	37.657	37.679	37.702	37.724	1,660
1.680	37.945	37.967	37.989	38.011	38.033	38.055	38.078	38.100	37+901	37.923	3/ 945	1,670
1,690	38.166	38.188	38.210	38.232	38.254	38.276	38.298	38.320	38.342	38.364	38.387	1,690
1.700	38.387	38,409	38.431	38.453	38.475	38.497	38.519	38.541	28.563	38.585	38.607	1.700
1,710	38.607	38.629	38.651	38.673	38,695	38.717	38.739	38.761	38.783	38.805	38.827	1,710
1,720	38,827	38.849	38.871	38.893	38,915	38.937	38.959	38,981	39.003	39.024	39.046	1,720
1,730	39.046	39.068	39.090	39.112	39.134	39.156	39.178	39.200	39 • 222	39.244	39.266	1,730
1 • 7 4 0	39+200	39.288	39+310	39+331	39.353	39.375	39.397	39.419	39.441	39.463	39.485	1,740
1.750	39.485	39.507	39.529	39.550	39.572	39.594	39.616	39.638	39.660	39.682	39.703	1,750
1,770	39.922	39.725	39.966	39 0 0 7	39.191	39.013	37.835	39.856	39.878	39.900	39.922	1 760
1.780	40.140	40.162	40.183	40.205	40.227	40.249	40.271	40.292	40+314	40.336	40.358	1,780
1,790	40.358	40.379	40.401	40+423	40.445	40.466	40.488	40.510	40.532	40.553	40.575	1,790
1,800	40.575	40.597	40.619	40.640	40.662	40.684	40.705	40.727	40.749	40.770	40.792	1.800
1,810	40.792	40.814	40.836	40.857	40.879	40.901	40.922	40.944	40.966	40.987	41.009	1,810
1,820	41.009	41.031	41.052	41.074	41.096	41.117	41.139	41.161	41.182	41.204	41.225	1,820
1,830	41.225	41.247	41.269	41.290	41.312	41.334	41.355	41.377	41.398	41.420	41.442	1,830
1,040	41.442	41.403	41.405	41.506	41.528	41.550	41,971	41.073	41.614	41.030	41.67/	1+840
1,850	41.657	41.679	41.701	41.722	41.744	41.765	41.787	41.808	41.830	41.851	41.873	1,850
1,860	41.873	41.895	41.916	41.938	41.959	41, 981	42.002	42.024	42.045	42.067	42.088	1,860
1.880	42.303	42.325	42.346	42.367	42.389	42.410	42.432	42+239	42 • 2 60	42.496	42+303	1,870
1,890	42.518	42.539	42.560	42.582	42.603	42.625	42.646	42.668	42.689	42.710	42.732	1,890
1,900	42.732	42.753	42.775	42.796	42.817	42.839	42.860	42.882	42.903	42.924	42.946	1,900
1,910	42.946	42.967	42.989	43.010	43.031	43.053	43.074	43.095	43.117	43.138	43.159	1,910
1,920	43.159	43.181	43.202	43.223	43.245	43.266	43.287	43.309	43.330	43.351	43.373	1,920
1,930	43.373	43.394	43.415	43.436	43.458	43.479	43.500	43.522	43.543	43.564	43.585	1,930
. 96.0	43 700	42 810	43 84.7	4.9.945	43 395	4.9	42 000					
1.960	44.010	44.031	44.053	44.074	44.095	43.904	44.137	43.947	43+968	43.769	44+010	1,960
,970	44.222	44.243	44.265	44.286	44.307	44.328	44.349	44.370	44.391	44.413	44.434	1,970
98 0	44.434	44.455	44.476	44.497	44.518	44.539	44.560	44.582	44.603	44.624	44.645	1,980
1,990	44.645	44.666	44.687	44,708	44.729	44.750	44.771	44.793	44.814	44.835	44.856	1+990
.000	44.856	44.877	44.898	44.919	44.940	44.961	44.982	45.003	45.024	45.045	45.066	2 .000
2,010	45.066	45.087	45.108	45.129	45.150	45.171	45.192	45.213	45.234	45.255	45.276	2,010
.030	45.484	45.507	45.528	4343399	45.570	424301	45.612	42.423	43.444	40,400	40,400	2,020
.040	45.695	45.716	45.737	45.758	45.779	45.800	45.821	45.842	45.863	45.884	45.904	2,040
,050	45.904	45.925	45.946	45.967	45.988	46.009	46.030	46+051	46.071	46+092	46.113	2.050
.060	46.113	46.134	46.155	46.176	46.196	46.217	46.238	46.259	46.280	46.300	46.321	2,060
.070	46.321	46.342	46.363	46.384	46.404	46.425	46.446	46.467	46.488	46.508	46.529	2,070
+080	46.529	46.550	46.571	46.591 46.799	46.612	46.633	46.654	46.674	46.695	46.716	46.737	2,080
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C
			_									

EMF in	Absolute	Millivolts			•	-				Reference	e Junctior	is at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
·			Тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	TS			
2,100	46.944	46.964	46.985	47.006	47.026	47.047	47.068	47.088	47.109	47.130	47.150	2,100
2,110	47,150	47.171	47.191	47.212	47.233	47.253	47.274	47.295	47.315	47.336	47.356	2,110
2,120	47.356	47.377	47.398	47.418	47.439	47.459	47.480	47.500	47.521	47.542	47.562	2,120
2,130	47.562	47.583	47.603	47.624	47.644	47.665	47.685	47.706	47•726	47.747	47•767	2,130
2,140	47.767	47.788	47.808	47.829	47.849	47.870	47.890	47.911	47.931	47.952	47.972	2,140
2,150	47.972	47.993	48.013	48.034	48.054	48.075	48.095	48.116	48.136	48.156	48.177	2,150
2,160	48.177	48.197	48,218	48.238	48.258	48.279	48.299	48.320	48.340	48.360	48.381	2,160
2,170	48.381	48.401	48.422	48.442	48.462	48.483	48.503	48.523	48.544	48.564	48.584	2,170
2.180	48.584	48.605	48.625	48,645	48.666	48.686	48.706	48.727	48.747	48.767	48•787	2,180
2,190	48.787	48.808	48.828	48.848	48.869	48.889	48.909	48.929	48.950	48.970	48.990	2,190
2.200	48.990	49.010	49.031	49.051	49.071	49.091	49,111	49.132	49.152	49.172	49.192	2,200
2.210	49.192	49.212	49.233	49.253	49.273	49.293	49.313	49.333	49.354	49.374	49.394	2,210
2,220	49.394	49.414	49.434	49.454	49.474	49.495	49,515	49.535	49.555	49.575	49.595	2,220
2.230	49.595	49.615	49.635	49.655	49.675	49.696	49.716	49.736	49•756	49.776	49.796	2,230
2,240	49.796	49.816	49.836	49.856	49.876	49.896	49.916	49.936	49.956	49.976	49•996	2,240
2.250	49.996	50.016	50.036	50.056	50.076	50.096	50.116	50.136	50.156	50.176	50.196	2,250
2.260	50.196	50.216	50.236	50.256	50.276	50.296	50,315	50.335	50.355	50.375	50.395	2,260
2.270	50.395	50.415	50.435	50.455	50.475	50.494	50.514	50.534	50.554	50.574	50.594	2,270
2.280	50.594	50.614	50.633	50.653	50.673	50.693	50.713	50.733	50.752	50.772	50.792	2,280
2,290	50.792	50.812	50.832	50.851	50.871	50.891	50.911	50.930	50.950	50.970	50.990	2,290
2.300	50.990	51.009	51.029	51.049	51.069	51.088	51,108	51.128	51.148	51.167	51.187	2,300
2,310	51,187	51.207	51.226	51.246	51.266	51.285	51.305	51.325	51.344	51.364	51.384	2,310
2.320	51.384	51.403	51.423	51.443	51.462	51.482	51.501	51.521	51.541	51.560	51,580	2,320
2.330	51,580	51.599	51.619	51+639	51.658	51.678	51.697	51.717	51.736	51.756	51.776	2,330
2,340	51,776	51.795	51.815	51,834	51.854	51.873	51.893	51.912	51.932	51.951	51.971	2:340
2.350	51,971	51,990	52.010	52.029	52.049	52.068	52.088	52.107	52 . 1 27	52 • 146	52.165	2,350
2.360	52,165	52+185	52.204	52.224	52.243	52.263	52.282	52.301	52.321	52.340	52.360	2,360
2.370	52.360	52.379	52.398	52.418	52.437	52.457	52.476	52.495	52 • 515	52.534	52.553	2,370
2.380	52.553	52.573	52.592	52.611	52.631	52.650	52.669	52.689	52.708	52.727	52.747	2,380
2,390	52.747	52.766	52.785	52.805	52.824	52.843	52.862	52.882	52.901	52.920	52.939	2,390
2 4 00	c 2 0 2 0	5 2 050	43 D70	53 007	52 014	E2 026	63 055	E2 074	E2 003	£2 332	E2 122	3 4 0 0
2+400	52.959	52 959	52.978	52.997	53.010	53.030	52.055	52.074	53.095	53.300	53 132	2,400
2 4 10	53 324	52 343	53 34 3	53 107	53 400	53 610	53 420	53.460	22.202	53.694	53.515	2 4 20
2 4 2 0	53.515	52 534	53 552	53,501	53 502	53 613	53 439	53 4400	53.477	53 687	53 704	2 4 2 0
2,440	53.706	53.725	53.744	53.763	53.782	53.801	53.821	53.840	53.859	53.878	53.897	2,440
2,450	53.897	53.916	53.935	53.954	53.973	53.992	54.011	54.030	54+049	54.068	54.087	2,450
2,460	54.087	54.106	54.125	54.144	24.163	54.182	54.201	54.220	54+239	54.258	54.277	2,460
2,410	54.217	54.296	54.515	54.334	54, 153	54.372	54 • 391	24+410	54+429	24.44/	54.466	294/0
2,480	54.466 54.656	24.485 54.675	54.504 54.694	54.712	54.542 54.731	54.561 54.750	54.580 54.769	54.599 54.788	54.618	54.826	54.845	2,480
2,500	54.845											2,500
		_								0	10	056 5
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEGF

Temperature in Degrees Fahrenheit^a

TABLE 49—Type K thermocouples.

EMF in	Absolute	: Millivolt	\$	•						Referen	nce Junctio	ns at 0 C
DEG C	O	1	2	3	4	5	6	7	8	9	10	DEG C
			т	HERMOELE	CTRIC VO	TAGE IN	ABSOLUTE	E MILLIV				
-270	-6.458											÷270
-260 -250	-6.441 -6.404	-6.444 -6.408	-6.446	-6.448 -6.417	-6.450 -6.421	-6.452 -6.425	-6.453	-6.435	-6.456 -6.435	-6.437 -6.438	-6.458 -6.441	-250
-240	-6.344	-6.351	-6.358	-6.364	-6.371	-6.377	-6.382	-6.388	-6. 394	+6.399	-6-404	-240
-230	-6.262	-6.271	-6+280	-6.289	-6.297	-6.306	-6.314	-6.322	-6.329	-6.337	-6.344	-230
-220	-6.158	-6.170	~6.181	-6.192	-6.202	-6.213	-6.223	-6.233	-6.243	-6.253	-6.262	-220
-210	-6.035 -5.891	-6.048 -5.907	-5.922	-5.936	-5.951	-5.965	-5.980	-5.994	-6.007	-5.021	-6.035	-200
-190	-5.730	-5.747	-5.763	-5.780	-5.796	-5.813	-5.829	-5.845	-5.860	-5.876	-5.891	-190
-180	-5.550	-5.569	-5.587	-5.606	-5.624	-5.642	-5.660	-5.678	-5.695	-5.712	-5.730	-180
-1/0	-5,354	-5,3/4	-2.394	-5.207	-5.228	-2.424	-7.4/4	-5.292	-2+212	-5.333	-5.354	-1/0
-150	-4.912	-4.936	-4.959	-4.983	-5.006	-5.029	-5.051	-5.074	-5.097	-5.119	-5.141	-150
-140	-4.669	-4.694	-4.719	-4.743	-4.768	-4.792	-4.817	-4.841	-4.865	-4.889	-4.912	-140
-130	-4.410	-4.437	-4.463	-4.489	-4,515	-4.541	-4.567	-4.593	-4.618	-4.544	+4.669	-130
-110	-4.130	-3.881	-3.910	-3.939	-3.968	-3.997	-4.025	~4.053	-4.082	-4.110	-4.138	-120
-100	-3.553	-3.584	-3.614	-3.644	-3.674	-3.704	-3.734	-3.764	-3.793	-3.823	-3.852	-100
-90	-3.242	-3,274	-3.305	-3.337	-3.368	-3.399	+3.430	-3.461	-3.492	-3.523	-3.553	-90
-80	-2.920	-2.953	-2.985	-3.018	-3.050	-3.082	-3.115	-3,147	-3.179	-3.211	-3.242	-80
-70	-2,586	-2.620	-2.654	-2.687	-2,721	-2.754	-2.788	-2.821	-2.854	-2.887	-2.920	-70
-50	-1.889	-1.925	-1.961	-1.996	-2.032	-2.067	-2.102	-2.137	-2.173	-2.208	-2.243	- 50
-40	-1.527	-1.563	-1.600	-1.636	-1,673	-1.709	-1.745	-1.781	-1.817	-1.853	-1,889	-40
-30	-1.156	-1.193	-1.231	-1.268	-1,305	-1.342	-1.379	-1.416	-1.453	-1.490	-1.527	-30
-20	-0.777	-0.816	-0.854	-0.892	-0.930	-0.968	+1.005	-1.043	-1+081	-1+118	-1.150	-20
- 0	0.000	-0.039	-0+079	-0.118	-0.157	-0.197	-0.236	-0.275	-0.314	-0.353	-0.392	- 0
n	0.000	0.039	0.079	0.119	0.158	0.198	0.238	0.277	0.317	0.357	0.397	0
10	0.397	0.437	0+477	0.517	0.557	0.597	0.637	0.677	0.718	0.758	0.798	10
20	0.798	0.838	0.879	0.919	0,960	1.000	1.041	1.081	1.122	1.162	1.203	20
30 40	1.203	1.244	1.693	1.325	1.366	1.407	1.448	1.489	1.940	1.981	2+022	40
50	2.022	2.064	2.105	2.146	2.188	2.229	2.270	2.312	2.353	2.394	2.436	50
60	2.436	2.477	2.519	2.560	2.601	2.643	2.684	2.726	2.767	2.809	2.850	60
70	2.850	2.892	2.933	2.975	3,016	3.058	3.100	3.141	3.183	3.224	3,266	70
80 90	3.681	3.307	3.349	3.390 3.805	3.432 3.847	3.888 3.888	3.930	3.971	4.012	4.054	4.095	90
100	4.095	4.137	4.178	4.219	4.261	4.302	4.343	4.384	4.426	4.467	4.508	100
110	4,508	4.549	4 . 5 90	4.632	4.673	4.714	4.755	4.796	4.837	4.878	4.919	110
120	4.919	4.960	5.001	5.042	5.083	5.124	5.164	5.205	5.246	5.287	5.327	120
130 140	5.327	5.368	5.814	5.450 5.855	5.895	5.531	5.976	6.016	5.652 6.057	6.097	6.137	140
150	6.137	6.177	6.218	6.258	6.298	6.338	6.378	6.419	6.459	6.499	6.539	150
160	6.539	6.579	6+619	6+659	6.699	6.739	6.779	6.819	6.859	6.899	6.939	160
170	6.939	6.979	7.019	7.059	7.099	7.139	7.179	7.219	7.259	7.299	7.338	170
190	7.338	7.378	7.817	7.857	7.897	7,937	7.977	8.017	8.057	8.097	8.137	190
200	8.137	8.177	8.216	8,256	8.296	8.336	8.376	8.416	8.456	8.497	8.537	200
210	8,537	8.577	8.617	8.657	8,697	8.737	8.777	8.817	8.857	8.898	8.938	210
220	8.938	8.978	9.018	9.058	9.099	9.139	9.179	9.220	9.260	9.300	9.341	220
240	9.745	9.786	9.826	9.867	9.907	9.948	9.989	10.029	10.070	10.111	10.151	240
250	10.151	10,192	10.233	10.274	10,315	10.355	10.396	10.437	10.478	10.519	10.560	250
260	10,560	10.600	10.641	10.682	10.723	10.764	10.805	10.846	10.887	10.928	10.969	260
270	10,969	11.422	11.463	11.504	11.544	11.587	11.629	11.669	11.717	11.757	11.793	280
290	11.793	11.835	11.876	11.918	11.959	12.000	12.042	12.083	12.125	12,166	12.207	290
300	12.207	12.249	12.290	12.332	12.373	12,415	12.456	12.498	12.539	12.581	12.623	300
310	12.623	12.664	12.706	12.747	12.789	12.831	12.872	12,914	12.955	12.997	13.039	310
320	13.456	13.497	13.510	13.581	13.623	13.665	13.706	13.748	13.790	13.832	13.874	330
340	13.874	13.915	13,957	13.999	14.041	14.083	14.125	14.167	14.208	14.250	14.292	340
DEG C	0	1	2		4	5	6	7	8	9	10	DEG C

Temperature in Degrees Celsius (IPTS 1968)

Temperature in Degrees Celsius (IPTS 1968)

DEG C 0 1 Z 3 4 5 6 7 8 9 10 DEG C THERMOLLCURIC VOLTAGE IN ADSOLUTE MILLIVOLTS THERMOLLCURIC VOLTAGE IN ADSOLUTE MILLIVOLTS Sign 1:-712 1:-724 1:-724 1:-724 1:-724 1:-725 1:-725 1:-725 1:-725 1:-725 1:-721 1:-725 1:-725 1:-721 1:-725 1:-721 1:-725 1:-721 1:-725 1:-721 1:-725 1:-721 1:-721 1:-725 1:-721 1:-721 1:-725 1:-721 1:-725 1:-721 1:-725 1:-721 1:-725 1:-721 1:-724 1:-725 1:-721 1:-724 1:-721 1:-724 1:-725 1:-721 1:-724 1:-725 1:-721 1:-724 1:-725 1:-721 1:-724 1:-725 1:-721 1:-724 1:-725 1:-721 1:-724 1:-725 1:-721 1:-724 1:-725 1:-721 1:-725 1:-725 1:-725 1:-725 1:-725 <th>Cavit in</th> <th>Ausonate</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Keleten</th> <th></th> <th></th>	Cavit in	Ausonate									Keleten		
THERMODELECTRIC VOLTAGE 1M ABSOLUTE MILLIVOLTS 350 14.272 14.356 14.428 14.460 14.556 14.628 14.670 14.712 350 350 16.355 15.355 15.355 15.355 15.457 15.675 15.781 15.675 15.781 15.675 15.781 15.675 15.781 15.875 15.889 15.957 15.781 16.783 <th>DEG C</th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>. 6</th> <th>7</th> <th>8</th> <th>9</th> <th>10</th> <th>DEG C</th>	DEG C	0	1	2	3	4	5	. 6	7	8	9	10	DEG C
150 14.722 14.376 14.476 14.480 14.922 14.586 14.428 14.628 14.522 15.484 15.000 15.132 350 370 15.132 15.176 15.132 15.135 15.132 15.135 <				TH	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
Bach Dir. 712 Li. 776 Li. 483 Li. 480 Li. 480 <thli. 480<="" th=""> <thli. 480<="" th=""> <thli.< td=""><td>350</td><td>14.292</td><td>14.334</td><td>14.376</td><td>14,418</td><td>14,460</td><td>14,502</td><td>14.544</td><td>14.586</td><td>14.628</td><td>14.670</td><td>14.712</td><td>350</td></thli.<></thli.></thli.>	350	14.292	14.334	14.376	14,418	14,460	14,502	14.544	14.586	14.628	14.670	14.712	350
370 15.132 15.148 15.240	360	14.712	14.754	14.796	14,838	14.880	14.922	14.964	15.006	15.048	15.090	15.132	360
BAD 15.552 15.658 15.671 15.771 <th15.771< th=""></th15.771<>	370	15.132	15.174	15.216	15.258	15.300	15.342	15.384	15.426	15.468	15.510	15.552	370
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	380	15,552	15.594	15.636	15,679	15.721	15.763	15.805	15,847	15.889	15,931	15,974	380
$ \begin{array}{c} c_{00} 16, 95 \\ 16, 195 \\ 16, 16, 26 \\ 17, 24 \\ 17, 28 \\ 18, 29 \\ 1$	390	15.974	16.016	16.058	16.100	16.142	16.184	16.227	16.269	16.311	16,353	16,395	390
100 107 1	400	16.395	16.438	16.480	16.522	16.564	16.607	16.649	16.691	16.733	16.776	16.818	400
117.44.1 17.450 17.45	410	10.010	16.000	17 224	16.943	10.987	17.029	17.605	17.537	17 690	17 677	17 444	410
440 14.008 16.103 16.173 16.216 18.525 16.307 16.345 18.345 18.400 18.477 18.513 4.400 450 18.513 18.535 18.595 18.400 18.513 14.535 18.400 18.513 14.535 18.405	420	17.241	17.203	17 749	17,300	17.934	17.974	17 010	17.961	18.004	18.046	18.088	430
450 18.513 18.555	440	18.088	18.131	18,173	18,216	18.258	18.301	18.343	18.385	18,428	18.470	18,513	440
18.938 18.948 19.048 19.055 19.150 19.125 19.225 19.278	450	18.513	18.555	18,598	18-640	18.683	18.725	18,768	18.810	18.853	18.895	18.938	450
$ \begin{array}{c} 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,$	460	18.938	18,980	19.023	19.065	19.108	19.150	19,193	19.235	19.278	19.320	19.363	460
440 19,788 19,873 19,873 19,875 20,004 20,004 20,0054 20,0055 20,0172 20,217 20,017 20,014 20,0155 20,0172 20,217 20,017 20,0155 20,0172 20,217 20,017 20,0155 20,0172 20,0155 20,0172 20,0164 20,0155 20,0172	470	19.363	19.405	19.448	19.490	19.533	19.576	19.618	19.661	19.703	19.746	19.788	470
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	480	19.788	19.831	19.873	19.916	19.959	20.001	20.044	20.086	20.129	20.172	20.214	480
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	490	20.214	20.257	20.299	20.342	20.385	20.427	20,470	20.512	20,555	20.598	20.640	490
$ \begin{array}{c} 110 \\ 210 $	500	20.640	20.683	20.725	20.768	20.811	20.853	20.896	20.938	20.981	21+024	21.066	500
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	510	21.066	21.109	21.152	21.194	21.237	21.280	21.322	21.365	21.407	21,450	21.493	510
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	520	21.493	21.535	21.578	21.621	21.663	21.706	21.749	21.791	21.834	21.876	21.919	520
540 22,346 22,386 22,431 22,473 22,473 22,472 22,472 22,472 22,472 22,472 22,472 22,472 22,472 22,472 22,472 22,472 22,472 22,472 22,485 23,028 23,070 23,113 23,156 23,168 23,477 23,587 23,258 23,258 23,258 23,258 23,258 23,258 23,258 23,258 23,258 24,050 24,416 24,050 24,416 24,050 24,416 24,050 24,416 24,057 24,416 24,050 24,416 24,057 24,416 24,057 24,416 24,057 24,416 24,057 24,416 24,057 24,416 24,057 24,416 24,057 24,416 24,057 24,416 24,057 24,416 24,057 24,416 24,057 24,416 24,057 24,416 24,057 24,157 24,157 24,157 24,157 24,157 24,157 24,157 24,157 24,157 24,157 24,157 24,157 <td>530</td> <td>21.919</td> <td>21.962</td> <td>22.004</td> <td>22.047</td> <td>22.090</td> <td>22.132</td> <td>22,175</td> <td>22,218</td> <td>22.260</td> <td>22.303</td> <td>22.346</td> <td>530</td>	530	21.919	21.962	22.004	22.047	22.090	22.132	22,175	22,218	22.260	22.303	22.346	530
	540	22.346	22,388	22.431	22.473	22.516	22.559	22.601	22.644	22.687	22.729	22.772	540
$ \begin{array}{c} 560 & 23.198 & 23.241 & 23.284 & 23.284 & 23.284 & 23.284 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 23.467 & 24.517 & 24.637 & 24.439 & 24.439 & 24.439 & 24.438 & 24.476 & 550 & 24.476 & 24.519 & 24.664 & 24.464 & 24.468 & 24.468 & 24.467 & 24.391 & 24.439 & 24.447 & 24.548 & 24.339 & 24.432 & 24.248 & 24.539 & 24.539 & 24.539 & 24.539 & 24.539 & 24.539 & 24.539 & 24.539 & 24.539 & 24.539 & 24.539 & 24.539 & 24.549 & 27.448 & 27.458 & 27.459 & 27.458 & 27.459 & 27.458 & 2$	550	22.772	22.815	22.857	22.900	22.942	22.985	23.028	23.070	23.113	23.156	23.198	550
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	560	23.198	23.241	23.284	23.326	23.369	23.411	23.454	23.497	23.539	23.582	23.624	560
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	570	23.624	23.667	23.710	23,752	23.795	23.837	23.880	23.923	23.965	24.008	24.050	570
59024.47624.51924.56124.66124.64424.64624.73124.74124.81724.85724.90224.90260024.90224.94424.98725.02225.01225.11425.15725.19225.24225.24425.37160061025.57225.57425.45425.945425.96425.62425.273126.17662161025.77125.77425.86226.09126.13326.17662161025.77127.76227.64526.64226.64226.59963164024.64527.44527.46226.64226.64226.69426.99827.90227.02265027.02227.06527.10727.14927.19227.21427.27427.31627.40327.44565166024.76527.90727.95127.93727.16427.64527.46727.86726.97667028.79028.75128.79728.91728.91728.96129.00429.06429.05667028.79928.75128.79728.91728.96129.04229.64629.5529.55770028.79629.68029.56229.56770029.56229.56770070129.56729.56229.56229.56229.56770029.56229.56770070029.56730.64930.59130.59130.625730.29830.34130.31330.17	580	24.050	24.093	24.136	24,178	24,221	24,263	24.306	24.348	24.391	24.434	24.476	580
	590	24.476	24.519	24.561	24.604	24.646	24.689	24.731	24.774	24.817	24.859	24.902	590
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	600	24.902	24.944	24.987	25.029	25.072	25.114	25.147	25.199	25.242	25.284	25.327	600
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	610	25.327	25.369	25.412	25.454	25.497	25.539	25.582	25.624	25.666	25.709	25.751	610
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	620	25.751	25.794	25.836	25.879	25.921	25.964	26.006	26.048	26.091	26.133	26.176	620
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	630	26.176	26.218	26.260	26.303	26.345	26.387	26.430	26.472	26.515	26.557	26.599	630
	640	26.599	26.642	26.684	26.726	26,769	26.811	26.853	26.896	26.938	26.980	27.022	640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	650	27.022	27.065	27.107	27.149	27.192	27.234	27.276	27.318	27.361	27.403	27.445	650
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	660	27.445	27,487	27.529	27.572	27.614	27.656	27.698	27.740	27.783	27.825	27.867	660
	670	27.867	27.909	27.951	27.993	28.035	28.078	28,120	28.162	28.204	28,246	28.288	670
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	680 690	28.288	28.330	28.372	28.414	28.456	28.498	28.540	28.583	28+625	28.667	28.709	680
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		100					20.000						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	700	29.128	29.170	29.212	29.234	29.290	49.338	29.380	29.422	29.464	29.505	29.547	700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	720	29.945	30.007	30.049	29.013	2701132	27.176	27.790	27.040	27+662	27.724	27.707	720
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	730	27.783	30.474	30.666	30.608	30.549	30.591	30.432	30.674	30.716	30.757	30.799	730
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	740	30.799	30.840	30.882	30.924	30.965	31.007	31.048	31.090	31.131	31.173	31.214	740
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	750	31.214	31.256	91.297	31.339	31.380	31.422	31.463	31.504	31.546	31.587	31.629	750
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	760	31.629	31.670	31.712	31.753	31.794	31.836	31.877	31.918	31.960	32.001	32.042	760
78032,45532,45632,45732,57832,45832,72332,74332,74332,48432,48532,48678079032,86632,90732,94832,99033,03133,07233,11333,15433,19533,26333,46533,27779080033,47133,18433,14333,46233,52333,66433,66533,66636,66736,66736,66736,66736,66736,66736,66735,67835,71835,71835,71835,71835,71835,71835,71835,71835,71835,71835,71835,71835,71835,71835,71836,72436,76436,60336,6433	770	32.042	32.084	32.125	32.166	32.207	32.249	32.290	32.331	32.372	32.414	32.455	770
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	780	32.455	32.496	32.537	32.578	32.619	32.661	32.702	32.743	32.784	32.825	32.866	780
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	790	32.866	32.907	32.948	32.990	33.031	33.072	33.113	33.154	33.195	33.236	33.277	790
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	800	33.277	33.318	33,359	33.400	33,441	33.482	33,523	33,564	33.604	33,645	33.686	800
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	810	33.686	33.727	33.768	33.809	33.850	33.891	33,931	33.972	34.013	34.054	34.095	810
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	820	34.095	34,136	34.176	34,217	34,258	34.299	34,339	34,380	34.421	34.461	34.502	820
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	830	34.502	34.543	34.583	34.624	34.665	34.705	34.746	34.787	34.827	34.868	34.909	830 840
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
cev 35.1cv 35.7cv 35.80v 35.7cv	850	35,314	35,354	35.395	35.435	35.476	35.516	35.557	35.597	35.637	35.678	35.718	850
000 30.325 30.404 30.404 30.404 30.404 30.404 30.405 37.405	950	32.12	32.128	36 202	36 363	34 282	32.720	36.243	36.603	36.4/3	36.493	36.574	870
30.12 31.25 31.27 31.27 32.27 32.27 32.27 32.27 32.27 <th< td=""><td>800</td><td>36.441</td><td>36.54</td><td>36.202</td><td>34.444</td><td>36.494</td><td>36 754</td><td>36,744</td><td>36.804</td><td>36.9443</td><td>36,885</td><td>36.924</td><td>280</td></th<>	800	36.441	36.54	36.202	34.444	36.494	36 754	36,744	36.804	36.9443	36,885	36.924	280
900 37.325 37.465 37.445 37.524 37.564 37.644 37.684 37.724 900 910 37.724 37.664 37.803 37.883 37.923 37.963 38.024 38.02 38.02 38.02 38.02 38.02 38.042 38.082 38.122 910 920 38.122 38.164 38.201 38.21 38.320 38.400 38.439 38.479 38.519 910 38.519 38.558 38.598 38.617 38.115 920 38.122 38.459 38.459 38.451 38.320 38.360 38.400 38.439 38.479 38.515 920 910 38.519 38.598 38.649 38.421 38.320 38.360 38.400 38.439 38.451 920 940 38.915 38.598 38.649 39.33 39.073 39.112 39.211 39.271 39.270 39.270 39.281 39.270 39.281 39.270 39.285 39.664	890	36.925	36.965	37.005	37.045	37.085	37.125	37.165	37.205	37.245	37.285	37.325	890
910 37.724 37.764 37.803 37.843 37.883 37.923 37.663 38.002 58.042 38.082 38.122 910 920 38.122 38.162 38.201 38.241 38.281 38.320 38.360 38.400 38.439 38.475 38.519 920 930 38.519 38.558 38.598 38.698 38.638 38.677 38.717 38.756 38.706 38.837 38.8175 38.519 920 940 38.915 38.954 38.994 39.388 39.428 39.467 39.507 39.512 39.191 39.231 39.270 39.310 940 950 39.310 39.349 39.388 39.428 39.467 39.507 39.516 39.585 39.625 39.664 39.703 950 960 39.703 39.713 39.713 39.713 39.861 39.861 39.900 39.939 39.979 40.018 40.057 40.096 960 970 40.096 40.136 40.175 40.214 40.253 40.292 40.332 40.723 40.761 40.614 40.489 977 980 40.879 40.918 40.957 40.996 41.035 41.074 41.113 41.152 41.191 41.230 41.269 990 DEG C 0 1 2* 3 4 5 6 7. 8 9 10 DEG	900	37.325	37.364	37.405	37.445	37.444	37.524	37.544	37.604	37.644	37.684	37.724	900
920 38.122 38.201 38.241 38.251 38.320 38.360 38.400 38.436 38.436 38.436 38.436 38.436 38.436 38.436 38.436 38.436 38.436 38.435 38.455 920 930 38.519 38.568 38.436 38.476 38.436 38.475 38.455 920 940 38.915 38.558 38.598 38.428 39.677 38.717 38.712 39.121 39.211 </td <td>910</td> <td>37.724</td> <td>37,764</td> <td>37,80</td> <td>37,843</td> <td>37.88-</td> <td>37,923</td> <td>37,042</td> <td>38,007</td> <td>38.047</td> <td>38,087</td> <td>38,127</td> <td>010</td>	910	37.724	37,764	37,80	37,843	37.88-	37,923	37,042	38,007	38.047	38,087	38,127	010
930 38,519 38,558 38,558 38,638 38,677 38,717 38,754 38,765 38,836 38,875 38,915 930 940 38,915 38,558 38,638 38,677 38,717 38,754 38,875 38,875 38,875 38,875 38,875 38,875 38,875 38,875 38,915 930 950 39,310 39,349 39,388 39,428 39,467 39,507 39,546 39,585 39,664 39,703 39,7103 99,7103 39,7103 39,7103 39,713 39,811 39,801 39,800 39,939 39,970 30,618 40,0157 40,0169 40,0157 40,214 40,253 40,292 40,312 40,711 40,404 40,488 970 980 40,488 40,257 40,264 40,253 40,723 40,762 40,804 910 41,269 990 990 40,879 40,918 40,957 40,996 41,035 41,074 41,113 41	920	38.122	38.162	38.201	38.241	38.281	38.320	38.360	38.400	38.439	38.479	38.519	920
940 38,915 38,955 38,995 38,994 39,033 39,073 39,112 39,152 39,191 39,231 39,270 39,310 940 950 39,310 39,349 39,388 39,428 39,467 39,507 39,545 39,685 39,625 39,664 39,703 95 960 39,703 39,743 39,782 39,821 39,861 39,900 39,939 39,979 40,018 40,057 40,096 95 970 40,096 40,136 40,175 40,214 40,253 40,222 40,321 40,310 40,410 40,404 90,488 97 980 40,488 40,527 40,566 40,605 40,665 40,665 40,666 40,723 40,376 40,610 40,464 40,488 97 990 40,487 40,918 40,957 40,994 41,035 41,074 41,113 41,152 41,123 41,126 995 DE6 C 0 1 2 3 4 5 6 7. 8 9 10 DE6 0	910	38.519	38.568	38.598	38.638	38.677	38,717	38.754	38.796	38.834	38.875	38,915	930
950 39.310 39.349 39.388 39.428 39.467 39.507 39.546 39.585 39.625 39.664 39.703 956 960 39.703 39.743 39.782 39.861 39.900 39.393 39.979 40.018 40.057 40.096 966 970 40.096 40.135 40.214 40.253 40.224 40.322 40.3271 40.610 40.449 40.488 970 980 40.488 40.527 40.906 40.654 40.723 40.762 40.810 40.840 40.849 970 990 40.887 40.918 40.957 40.996 41.035 41.074 41.113 41.152 41.191 41.230 41.269 990 DEG C 0 1 2* 3 4 5 6 7. 8 9 10 DEG 0	940	38,915	38.954	38.994	39.033	39.073	39.112	39.152	39.191	39.231	39.270	39.310	940
960 39,703 39,743 39,782 39,821 39,861 39,900 39,939 39,979 40,018 40,057 40,096 960 970 40,096 40,136 40,175 40,214 40,253 40,252 40,322 40,311 40,410 40,449 40,488 970 980 40,488 40,527 40,566 40,665 40,665 40,665 40,6723 40,723 40,762 40,801 40,840 40,849 990 990 40,879 40,918 40,957 40,996 41,035 41,074 41,113 41,152 41,191 41,230 41,269 990 DEG C 0 1 2 3 4 5 6 7. 8 9 10 DEG 0	950	39,310	39.349	39.388	39.428	39.467	39.507	39.546	39.585	39.625	39.664	39.703	950
970 40.096 60.136 40.175 40.214 40.253 40.252 40.332 40.31 40.410 40.488 970 980 40.488 40.527 40.566 40.605 40.665 40.684 40.723 40.762 40.801 40.840 40.879 980 990 40.879 40.918 40.957 40.996 41.035 41.074 41.113 41.152 41.191 41.230 41.269 997 DEG C 0 1 2 3 4 5 6 7. 8 9 10 DEG C	960	39.703	39.743	39.782	39.821	39.861	39.900	39.939	39.979	40.018	40.057	40,096	960
980 40.488 40.527 40.566 40.605 40.645 40.684 40.723 40.762 40.801 40.807 980 990 40.879 40.918 40.957 40.996 41.035 41.074 41.113 41.152 41.191 41.230 41.269 990 DEG C 0 1 2 4 3 4 5 6 7. 8 9 10 DEG C	970	40.096	40.136	40.175	40.214	40,253	40.292	40,332	40.371	40,410	40.449	40.488	970
990 40.879 40.918 40.957 40.996 41.035 41.074 41.113 41.152 41.191 41.230 41.269 990 DEG C 0 1 2 * 3 4 5 6 7. 8 9 10 DEG C	980	40.488	40.527	40.566	40.605	40.645	40.684	40.723	40.762	40.801	40.840	40.879	980
DEG C C 1 2 * 3 4 5 6 7. 8 9 10 DEG C	990	40.879	40.918	40.957	40.996	41.035	41.074	41.113	41.152	41.191	41.230	41.269	990
	DEG C	Ċ	1	2 *	3	4	5	6	7.	8	9	10	DEG C

EMF in	Absolute	Millivolts	6					_		Referen	ce Junctio	ns at 0 C
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C
			тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS	_		
1.000	41,269	41.308	41.347	41.385	41.424	41.463	41.502	41.541	41.580	41.619	41.657	1.000
1.010	41-657	41.696	41.735	41.774	41.813	41.851	41.890	41.929	41.968	42.006	42.045	1,010
1.020	42.045	42.084	42.123	42.161	42.200	42.239	42.277	42.316	42.355	42.393	42.432	1.020
1.030	42.432	42.470	42.509	42.548	42.586	42.625	42.663	42.702	42.740	42.779	42.817	1,030
1.040	42,817	42.856	42.894	42.933	42.971	43.010	43.048	43.087	43.125	43.164	43.202	1.040
1.050	43.202	43.240	43.279	43.317	43.356	43.394	43.432	43.471	43.509	43.547	43.585	1.050
1.060	43.585	43.624	43.662	43.700	43.739	43.777	43.815	43.853	43.891	43.930	43.968	1,060
1.070	43.968	44.006	44.044	44.082	44.121	44.159	44.197	44.235	44.273	44.311	44.349	1.070
1.080	44.349	44.387	44.425	44.463	44.501	44.539	44.577	44.615	44.653	44.691	44.729	1,080
1,090	44.729	44.767	44.805	44.843	44.881	44.919	44.957	44.995	45.033	45.070	45.108	1.090
1.100	45.108	45.146	45.184	45.222	45.260	45.297	45.335	45.373	45.411	45.448	45.486	1.100
1.110	45.486	45.524	45.561	45.599	45.637	45.675	45.712	45.750	45.787	45.825	45.863	1.110
1.120	45.863	45,900	45.938	45,975	46.013	46.051	46,088	46,126	46.163	46.201	46.238	1,120
1.130	46.238	46.275	46.313	46.350	46.388	46.425	46.463	46.500	46.537	46.575	46.612	1,130
1,140	46.612	46.649	46.687	46.724	46.761	46.799	46.836	46.873	46.910	46.948	46.985	1.140
1.150	46.985	47.022	47.059	47.096	47.134	47.171	47.208	47.245	47.282	47.319	47.356	1,150
1.160	47.356	47.393	47.430	47.468	47.505	47.542	47.579	47.616	47.653	47.689	47.726	1,160
1.170	47.726	47.763	47.800	47.837	47.874	47.911	47.948	47.985	48.021	48.058	48.095	1,170
1.180	48.095	48.132	48.169	48.205	48.242	48.279	48.316	48.352	48.389	48.426	48.462	1,180
1.190	48.462	48.499	48.536	48.572	48.609	48.645	48.682	48.718	48.755	48.792	48.828	1,190
					40.074	40.010	49 047	49.083	49-120	49-156	49.192	1.200
1,200	48.828	48.865	40.901	48.937	40.714	47.010	40 410	49.444	49.493	49.519	49.555	1.210
1.210	49,192	49.229	49.205	49.301	49.330	49.374	47.410	47.440	470405	49.880	49.916	1.220
1,220	49.555	49.591	49.627	49.663	49.700	49.130	47+112	47.000	47+044 50 204	50.240	50.276	1.230
1.230	49.916	49.952	49.988	50.024	50.060	50.096	50+132	50 - 188	50 204	50 598	50 4 3 3	1.240
1,240	50.276	50.311	50.347	50.383	50.419	50.455	50,491	50.526	20.562	20.0270	20.022	19240
1.250	50.633	50-669	50.705	50.741	50.776	50.812	50,847	50.883	50,919	50.954	50.990	1 + 250
1.260	50.990	51.025	51.061	51.096	51.132	51.167	51.203	51.238	51.274	51.309	51.344	1,260
1.270	51.344	51,380	51.415	51.450	51.486	51.521	51,556	51.592	51.627	51.662	51.697	1.270
1,280	51-697	51.733	51.768	51.803	51.838	51.873	51,908	51.943	51.979	52.014	52.049	1,280
1.290	52.049	52.084	52.119	52,154	52.189	52.224	52,259	52.294	52.329	52.364	52.398	1,290
1.300	62.398	52.433	52+468	52.503	52.538	52.573	52.608	52.642	52.677	52.712	52.747	1.300
1.310	52.747	52.781	52.816	52.851	52.886	52.920	52,955	52.989	53.024	53.059	53.093	1.310
1.320	53.093	53.128	53.162	53 197	53 232	53.266	53.301	53.335	53.370	53.404	53.439	1.320
1.330	53.430	53.473	53.507	53.542	53.576	53,611	53,645	53.679	53.714	53.748	53.782	1,330
1,340	53.782	53.817	53.851	53.885	53.920	53,954	53,988	54.022	54-057	54.091	54.125	1.340
1.350	54.125	54.159	54.193	54.228	54+262	54.296	54.330	54.364	54.398	54-432	54.466	1.350
1 360	54.466	54.501	54.535	54.569	54-603	54.637	54.671	54 705	54.739	54.773	54.807	1,360
1.370	54.807	54.841	54.875									1.370
DEG C	0	ı	2	3	4	5	6	7	8	9	10	DEG C

Temperature in Degrees Celsius (IPTS 1968)

Reference Innctions at 0 C

TABLE 50—Type R thermocouples.

EMF i	n Absolut	e Millivol	ts	Т	emperatur	re in Degr	ees Fahre	nheit ^a		Referen	nce Junctio	ons at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			- T	HERMOELE	CTRIC VO	LTAGE IN	ABSOLUTE	E MILLIV	OLTS			
- 50	-0.210	-0.212	-0.214	-0.216	-0.218	-0.220	-0,222	-0.224	-0.226			-50
-40	-0.188	-0.190	-0.192	-0.194	-0.197	-0.199	-0.201	-0.203	-0.205	-0.207	-0.210	~40
-30	~0.165	-0.167	~0.169	-0.172	-0.174	-0.176	-0.179	-0.181	-0.183	-0.185	-0.188	-30
-20	-0.141	-0.143	-0.145	-0.148	-0.150	-0.153	-0.155	-0.158	-0.160	-0.162	-0.165	-20
-10	-0.116	-0.118	-0.121	-0.123	-0.126	-0.128	-0.131	-0.133	-0.136	-0.138	-0+141	-10
-											•••••	Ū
10	-0.089	-0.087	-0.084	-0.082	-0.079	-0.076	-0.073	-0.071	-0:068	-0.065	-0.063	.0
20	-0.035	-0.033	-0.037	-0.034	-0.031	-0.030	-0.048	-0.043	-0.040	-0.037	-0.035	10
30	-0.006	-0.0032	-0+029	-0.020	-0.025	-0.020	-0.017	-0.015	-0.012	-0.007	-0.006	20
40	0.024	0.027	0.030	0.033	0.036	0.039	0.042	0.045	0.048	0.051	0.054	40
												_
50	0.054	0.097	0.060	0.064	0.06/	0.070	0.073	0.076	0.079	0.082	0.086	50
70	0.118	0.121	0.124	0.137	0.131	0.134	0 103	0.108	0.111	0.114	0.118	50
80	0 150	0.154	0.167	0.141	0.166	0.147	0.137	0.174	0.177	0.147	0.190	/0
90	0.184	0.189	0.191	0.194	0.100	0.201	0.205	0.209	0.212	0.215	0.210	80
70	00104	0.100	0.171	0.174	0.140	0.201	0.209	0.208	0.212	0.213	0.210	40
100	0,218	0.222	0.225	0.229	0.232	0.236	0.239	0.243	0.246	0.250	0.253	100
110	0.253	0.257	0.261	0.264	0.268	0.271	0.275	0.278	0.282	0.286	0+289	110
120	0.289	0.293	0.296	0.300	0.304	0.307	0.311	0.315	0.318	0.322	0.326	120
130	0.326	0.329	0.333	0.337	0.340	0.344	0.348	0.351	0.355	0.359	0.363	130
140	0.363	0.366	0.370	0.374	0.378	0.381	0.385	0.389	0.393	0.397	0.400	140
150	0.400	0.404	0.408	0.412	0.416	0.419	0.423	0.427	0.431	0.435	0-439	150
160	0.439	0.443	0.446	0.450	0.454	0.458	0.462	0.466	0.470	0.474	0.478	160
170	0.478	0.482	0.485	0.489	0.493	0.497	0.501	0.505	0.509	0.513	0.517	170
180	0.517	0.521	0.525	0.529	0.533	0.537	0.541	0.545	0.549	0.553	0.557	180
190	0.557	0.561	0.565	0.569	0.573	0.577	0.581	0.586	0.590	0.594	0.598	190
200												
200	0.639	0.643	0.606	0.610	0.654	0.618	0.622	0.668	0.631	0.635	0.639	200
220	0.681	0.645	0.649	0.691	0.690	0.000	0.004	0.000	0.012	0.070	0.001	210
230	0.723	0.727	0.731	0.736	0.740	0.744	0.768	0.753	0.714	0.717	0.723	220
240	0.766	0.770	0.774	0.778	0.783	0.787	0.791	0.796	0.800	0.804	0.809	240
250	0.852	0.813	0.817	0.822	0.826	0.830	0.835	0.839	0.844	0.848	0.852	250
270	0.897	0.801	0.001	0.000	0.810	0.014	0.079	0.883	0.888	0.072	0.897	260
280	0 941	0 964	0.960	0.710	0.714	0.917	0.725	0.923	0.752	0.757	0.941	270
290	0.986	0.991	0.995	1.000	1.004	1.009	1.013	1.018	1-022	1.027	1.032	290
		••••										2.00
300	1.032	1.036	1.041	1.045	1.050	1.054	1.059	1.064	1.068	1.073	1.077	300
310	1.077	1.082	1.087	1.091	1.096	1.101	1.105	1.110	1.114	1.119	1.124	310
320	1.124	1.128	1.133	1.138	1.142	1.147	1.152	1.156	1.161	1.166	1.170	320
330	1.170	1.1/5	1.180	1.184	1.189	1.194	1.199	1.203	1.208	1.213	1.217	330
540	1.1.1	1.222	1.221	1.232	1.230	1.241	1.240	1.221	1.233	1.200	1.205	540
350	1.265	1.270	1.274	1.279	1.284	1.289	1.294	1.298	1.303	1.308	1.313	350
360	1.313	1.318	1.322	1.327	1.332	1.337	1.342	1.346	1.351	1.356	1.361	360
370	1.361	1.366	1.371	1.375	1.380	1.385	1.390	1.395	1.400	1.405	1.409	370
380	1.409	1.414	1.419	1.424	1.429	1.434	1.439	1.444	1.449	1.453	1.458	380
390	1.478	1.463	1.408	1.4/3	1.4/8	1.483	1.488	1.493	1.498	1.503	1.508	390
400	1.508	1.512	1.517	1.522	1.527	1.532	1.537	1.542	1.547	1.552	1.557	400
410	1.557	1.562	1.567	1.572	1.577	1.582	1.587	1,592	1.597	1.602	1.607	410
420	1.607	1.612	1.617	1.622	1.627	1.632	1.637	1.642	1.647	1.652	1.657	420
430	1.657	1.662	1.667	1.672	1.677	1.682	1.687	1.692	1.698	1.703	1.708	430
440	1.708	1.713	1.718	1.723	1.728	1.733	1.738	1.743	1.748	1.753	1.758	440
450	1.758	1.764	1.769	1.774	1.779	1.784	1.789	1.794	1.799	1.804	1.810	450
460	1.810	1.815	1.820	1.825	1.830	1.835	1.840	1.845	1.851	1.856	1.861	460
470	1.861	1.866	1.871	1.876	1.882	1.887	1.892	1.897	1.902	1.907	1.913	470
480	1.913	1.918	1.923	1.928	1.933	1.938	1.944	1.949	1.954	1.959	1.964	480
490	1.964	1.970	1.975	1.980	1.985	1.991	1.996	2.001	2.006	2.011	2.017	490
500	2.017	2.022	2.027	2.032	2.038	2.043	2.048	2.053	2.059	2.064	2.069	500
510	2.069	2.074	2.080	2.085	2.090	2.095	2.101	2,106	2.111	2.117	2.122	510
520	2.122	2.127	2.132	2.138	2.143	2.148	2.154	2,159	2.164	2.170	2.175	520
530	2.175	2.180	2.186	2.191	2.196	2.201	2.207	2.212	2.217	2.223	2.228	530
540	2.228	2.233	2.239	2.244	2.249	2.255	2.260	2.266	2.271	2.276	2+282	540
						_						
DEG F	0	1	2	3	4	5	6	7	8	y	10	DEG F

EMF in	Absolute	Millivolts				Degree				Reference	e Junction	ns at 32 F
DEG F	0	1	2	3	4	. 5	6	7	8	9	10	DEG F
			TH	RMOELEC	TRIC VOL	TAGE IN /	BSOLUTE	MILLIVOL	. T S			
550	2.282	2.287	2.292	2.298	2.303	2.308	2.314	2.319	2.325	2.330	2.335	550
560	2.335	2.341	2.346	2.351	2.357	2.362	2.368	2.373	2.378	2.384	2.389	560
570	2.389	2.395	2.400	2.405	2.411	2.416	2.422	2.427	2.433	2.438	2.443	570
590	2.498	2.503	2.509	2.460	2.520	2.525	2.531	2.536	2.487	2.947	2+498 2+552	580 590
600	2.552	2.558	2.563	2.569	2.574	2.580	2,585	2.591	2.596	2.602	2.607	600
610	2.607	2.613	2.618	2.624	2.629	2.635	2.640	2.646	2.651	2.657	2.662	610
620	2.662	2.668	2.673	2.679	2.684	2.690	2.695	2,701	2.706	2.712	2.718	620
630	2.718	2.723	2.729	2.734	2.740	2.745	2,751	2.756	2.762	2.767	2.773	630
640	2.173	2.779	2.784	2.790	2.795	2.801	2.806	2.812	2.818	2.823	2.829	640
650	2.829	2.834	2.840	2.845	2.851	2.857	2.862	2.868	2.873	2.879	2.885	650
660	2.885	2.890	2.896	2.901	2.907	2.913	2.918	2.924	2.929	2.935	2.941	660
680	2.997	2.940	2.008	2.93/	2.010	2.909	2.974	2.980	2.980	2.991	2.997	670
690	3.053	3.059	3.065	3.070	3.076	3.082	3.087	3.093	3.099	3,104	3.110	690
700	3.110	3.116	3.121	3.127	3.133	3.138	3.144	3.150	3+155	3.161	3.167	700
710	3.167	3.172	3.178	3.184	3.189	3.195	3.201	3.207	3.212	3.218	3.224	710
720	3.224	3.229	3.235	3.241	3.247	3.252	3.258	3.264	3.269	3.275	3.281	720
730	3.281	3.287	3.292	3.298	3.304 3.361	3.309	3.315 3.373	3.321 3.378	3.327	3.332	3.338	730
75.0	2 204											
750	3.453	3.459	3.465	3.471	3.476	3.482	3.480	3.496	3.600	3.505	3.403	750
770	3,511	3.517	3.523	3.529	3.534	3.540	3.546	3.552	3.558	3.563	3.569	770
780	3.569	3.575	3,581	3.587	3,592	3.598	3.604	3.610	3.616	3.622	3.627	780
790	3,627	3.633	3.639	3.645	3.651	3.657	3.662	3.668	3 • 6 7 4	3.680	3.686	790
800	3.686	3.692	3.697	3.703	3.709	3.715	3.721	3.727	3.733	3.738	3.744	800
810	3.744	3.750	3.756	3,762	3.768	3.774	3.779	3.785	3.791	3.797	3.803	810
820	3,803	3.809	3.815	3.621	3.826	3.832	3.838	3.844	3.850	3.856	3.862	820
840	3.802	3.868	3.033	3.8/9	3+885	3.891	3.897	3.903	3.909	3.915	3.921	830
		3.327		3.730	3.744	3.750	3.930	5.962	2.900	3.9/4	3.900	840
850	3.980	3.986	3.992	3.998	4.004	4.009	4.015	4.021	4.027	4.033	4.039	850
870	4.099	4.105	4.110	4.116	4.122	4.128	4.134	4.160	4.146	4.152	4.158	850
880	4.158	4.164	4.170	4.176	4.182	4.188	4,194	4.200	4.206	4.212	4.218	880
890	4.218	4.224	4.230	4.236	4,242	4.248	4.254	4.260	4 • 266	4.272	4 • 278	890
900	4.278	4.284	4.290	4.296	4.302	4.308	4.314	4.320	4.326	4.332	4.338	900
910	4.338	4.344	4.350	4.356	4.362	4.368	4.374	4.380	4.386	4.392	4.398	910
920	44398	4.404	4.410	4.416	4.422	4.428	4.434	4 • 440	4.446	4.452	4.458	920
940	4.519	4.525	4.531	4.537	4.543	4.489	4.555	4.501	4.507	4.513	4.519	930
950	4.580	4.586	4.592	6 . E G R	4.404	6.610	A 414		6 6 28	4 494		
960	4.640	4.647	4.653	4.659	4.665	4.671	4.677	4.683	4.689	4.695	4.040	990
970	4.701	4.707	4.714	4.720	4.726	4.732	4.738	4.744	4.750	4.756	4.762	970
980	4.762	4.769	4.775	44781	4.787	4.793	4.799	4.805	4.811	4.818	4.824	980
990	4.824	4.830	4.836	4.842	4.848	4.854	4.860	4.867	4.873	4.879	4.885	990
1.000	4.885	4.891	4.897	4.904	4.910	4.916	4.922	4.928	4.934	4.940	4.947	1:000
1,010	4.947	4.953	4.959	4.965	4.971	4.977	4.984	4.990	4.996	5.002	5.008	1,010
1.030	5.070	5-074	5.082	5.021	5.005	5.039	5.045	5+052	5+058	5+084	5.070	1,020
1.040	5.132	5.138	5.144	5.151	5.157	5.163	5.169	5.175	5+120	5.188	5.132	1+0-40
1,050	5.194	5.200	5.207	5.213	5.219	5.225	5.231	5.238	5.244	5.250	5.256	1+050
1,060	5.256	5.263	5,269	5.275	5.281	5.288	5.294	5.300	5.306	5.313	5.319	1.060
1,070	5.319	5.325	5.331	5.337	5.344	5.350	5,356	5.362	5.369	5.375	5.381	1+070
1,080	5.381	5.388	5.394	5.400	5.406	5.413	5.419	5.425	5.431	5.438	5.444	1.080
14040	2.444	5.490	2.496	5.463	5.469	5.475	5.482	5.488	5.494	5.500	5.507	1+090
1.100	5.507	5.513	5.519	5.526	5.532	5.538	5.544	5.551	5.557	5.563	5.570	1,100
1,120	5.570	5+576	5.582	5+589	5+595	5.601	2.607	5.614	5+620	5.626	5.633	1+110
1.130	5.696	5.702	5,700	5.715	2 0 0 2 0 5,721	2+064	5.73	5.740	2.683	5.690	5.696	1,120
1,140	5.759	5.766	5.772	5.778	5.785	5.791	5.797	5.804	5.810	5.816	5.823	1,130
1,150	5.823	5.829	5.835	5.842	5.848	5.855	5.86)	5.867	5.874	5.880	5.886	1.150
1,160	5.886	5.893	5.899	5.905	5.912	5.918	5.925	5.931	5.937	5.944	5.950	1,160
1,170	5.950	5.957	5.963	5.969	5.976	5.982	5.988	5.995	6.001	6,008	6.014	1.170
1,180 1,190	6.014 6.078	6+021 6+085	6 • 027 6 • 091	6+033 6+098	6+040 6+104	6+046 6+110	6.053 6.117	6.059	6+065	6+072	6.078	1+180
		-										
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

TABLE 50—Type R thermocouples (continued). Temperature in Degrees Fabreabait*

EMF i	n Absolut	e Millivol	ts	14	mperatur	e in Degri	ces ranrer	ineit		Referen	ice Junctio	ons at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			T	HERMOELE	CTRIC VÓL	TAGE IN	ABSOLUTE	MILLIVO	DLTS			
1,200	6.143	6.149	6.155	6.162	6.168	6+175	6.181	6.188	6+194	6.201	6+207	1+200
1,210	6.207	6.213	6.220	6.226	6.233	6.239	6.246	6.252	6+259	6.265	6.272	1,210
1.230	6.136	6.343	6.340	6.291	6.297	6.304	6.310	6.317	6.323	6.330	6.336	1+220
1,240	6.401	6.408	6.414	6.421	6.427	6.434	6.440	6.447	6.388 6.453	6.395	6+401 6+466	1,230
1+250	6.466	6.473	6.479	6.486	6.492	6.400	6-505	6.517	4 610			
1 # 260	6.532	6.538	6.545	6.551	6.558	6.564	6.571	6.577	6.694	6.590	6.532	1+250
1.270	6.597	6.603	6.610	6.616	6.623	6.630	6.636	6.643	6.649	6.656	6.662	1,270
1,280	6.662	6 • 6 6 9	6.675	6.682	6.689	6.695	6.702	6.708	6.715	6.721	6.728	1.280
1,290	6.728	6.735	6.741	6.748	6.754	6.761	6.767	6.774	6+781	6.787	6.794	1,290
1,300	6.794	6.800	6.807	6.814	6,820	6.827	6.833	6.840	6.847	6.853	6.860	1+300
1,310	6.860	6.866	6.873	6.880	6+886	6.893	6.899	6.906	6.913	6.919	6.926	1,310
1,320	6+926	6.932	6.939	6.946	6.952	6.959	6.966	6.972	6.979	6.985	6.992	1,320
1,340	5.992	6+999	7.005	7.012	7.019	7.025	7.032	7.039	7.045	7.052	7.059	1,330
1,340	1.039	1.065	1+012	1+018	/+085	7.092	/.098	7.105	7.112	7.118	7.125	1,340
1,350	7.125	7.132	7.138	7.145	7.152	7.158	7.165	7.172	7.178	7.185	7.192	1,350
1,360	7,192	7.198	7.205	7.212	7.218	7.225	7.232	7.239	7.245	7.252	7.259	1,360
1,380	7 3 26	7 2 2 2 2	7 220	7.279	7.285	7.292	7.299	7.305	7.312	7.319	7.326	1,370
1,390	7.393	7.399	7.406	7.413	7.420	7.426	7.433	7.440	7+379	7.386	7.393	1,380
									1.441	/++35	/ 6460	14390
1,400	7.460	7.467	7.474	7.480	7.487	7.494	7.500	7.507	7.514	7.521	7.527	1,400
1.420	7.595	7.602	7.600	7 615	7.554	7.561	7.568	7.575	7.582	7.588	7.595	1+410
1.430	7.663	7.670	7.676	7.683	7.690	7.607	7 7 7 1	7 - 642	7.649	7.656	7.663	1+420
1,440	7.731	7.737	7.744	7,751	7.758	7.765	7.771	7.778	7.785	7.792	7.799	1,430
1.450	7.799	7.805	7.812	7.010	7 014	7 0 0 0	7 6/-	7				
1+460	7,867	7.874	7.880	7.887	7.894	7,901	7.908	7.915	7.021	7.860	7.867	1+450
1+470	7.935	7.942	7.949	7.956	7.963	7.969	7.976	7 981	7.990	7,997	8.004	1+460
1,480	8.004	8.010	8.017	8.024	8 6 0 3 1	8.038	8.045	8.052	8.058	8.065	8+072	1.480
1,490	8.072	8.079	8.086	8.093	8.100	8.107	8.113	8.120	8.127	8.134	8.141	1,490
1,500	8.141	8 • 1 4 8	8 • 155	8.162	8.168	8.175	8.182	8.189	8.196	8.203	8.210	1.500
1,510	8+210	8+217	8.224	8.231	8.237	8.244	8.251	8.258	8.265	8.272	8.279	1,510
1.530	8.348	8.355	8.367	8.300	8.306	8.313	8.320	8.327	8.334	8.341	8.348	1,520
1,540	8.417	8.424	8.431	8.438	8.445	8.452	8.459	8.466	8.403	8.480	8.417	1,530
1.550	9 687	4 4 9 4	0 601	0 500								
1.560	8.556	8.563	8.570	8.577	8.584	8.522	8.529	8.535	8.542	8.549	8.556	1,550
1,570	8.626	8.633	8.640	8.647	8-654	8-661	8.668	8.675	9-692	8 689	8.626	1,560
1,580	8.696	8.703	8.710	8.717	8.724	8.731	8,738	8.745	8.752	8.759	8.766	1.580
1,590	8.766	8.773	8.780	8.787	8.794	8.801	8.808	8.815	8+822	8.829	8.836	1,590
1,600	8.836	8+843	8.850	8.857	8.864	8+871	8.878	8.885	8.807	8.899	9-907	1.400
1,610	8.907	8.914	8.921	8,928	8.935	8.942	8,949	8.956	8.963	8.970	8.977	1,610
1,620	8.977	8.984	8.991	8.998	9.005	9.012	9.019	9.026	9.033	9.040	9.048	1,620
1.640	9.048	9.055	9.062	9.069	9.076	9.083	9.090	9.097	9.104	9.111	9.118	1,630
	9.110	90120	76132	90140	9.147	9.154	9.161	9.168	9.175	9.182	9.189	1,640
1.650	9.189	9.196	9.203	9.210	9.218	9.225	9.232	9.239	9.246	9.253	9.260	1.650
1+660	9,260	9+267	9.274	9.282	9.289	9.296	9.303	9.310	9.317	9.324	9.331	1,660
1.680	9,403	9+330	9+346	9.353	9.360	9.367	9.374	9.381	9.388	9.395	9.403	1,670
1,690	9.474	9.481	9.488	9.495	9.503	9.418	9.445	9.453	9+460	9.467	9.474	1,680
1 700												11070
1,710	9,617	9.553	9.560	9.567	9.574	9.581	9.589	9.596	9.603	9.610	9.617	1,700
1,720	9.689	9.696	9.704	9.711	9.718	7.000	7.000	9.008	9+675	9.682	9+689	1,710
1,730	9,761	9.768	9.776	9.783	9.790	9.797	9.804	9.812	9.819	9.826	9.833	1,720
1,740	9.833	9.840	9.848	9.855	9.862	9.869	9.877	9.884	9.891	9.898	9.906	1.740
1 + 750	9.906	9.913	9.920	9.927	9.934	9,942	9.040	0.044	9-042	D 071	0.070	1 77-
1,760	9,978	9.985	9.992	10.000	10.007	10.014	10.021	10.029	10.036	10.043	7.710	1.740
1,770	10.050	10.058	10.065	10:072	10.079	10.087	10.094	10.101	10+109	10.116	10.123	1.770
1,780	10.123	10.130	10.138	10.145	10.152	10+159	10.167	10.174	10.181	10.189	10.196	1,780
19/90	10.196	10.203	10+210	10.218	10.225	10.232	10.240	10.247	10.254	10.262	10.269	1,790
1,800	10.269	10.276	10.283	10.291	10.298	10.305	10.313	10.320	10.227	10.325	10-24"	1.000
1,810	10.342	10.349	10.357	10,364	10.371	10.379	10.386	10.391	10.400	10.408	10-415	1,810
1,820	10,415	10.422	10.430	10.437	10.444	10.452	10.459	10.466	10.474	10.481	10.488	1.820
1,830	10.488	10.496	10.503	10.511	10,518	10.525	10.533	10.540	10.547	10.555	10.562	1,830
	10,302	10.569	10+577	10.584	10.591	10.599	10.606	10.613	10.621	10.628	10.636	1,840
DEG F	0	1	2	3	4	5	6	7	8		10	DEG F
		-	-	-		-	•	•			10	

Temperature in Degrees Fahrenheit^a

TABLE	50-Type F	<i>R</i> thermocouples	s (continued).

EMF in	Absolute	Millivolts	5	Ter	nperature	in Degre	ees Fahren	h c it ^a		Reference	æ Junction	ns at 32 F
OEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	L75			_
1,850	10.636	10.643	10.650	10.658	10.665	10.672	10.680	10.687	10.695	10.702	10.709	1,850
1,860	10.783	10.791	10.793	10.805	10,813	10.820	10.828	10.835	10.842	10.850	10+783	1,870
1.880	10.857	10.865	10.872	10.879	10.887	10.894	10.902	10.909	10.917	10.924	10.931	1.880
1,890	10.931	10.939	10.946	10.954	10.961	10.968	10,976	10.983	10.991	10.998	11.006	1,890
1,900	11.006	11.013	11.021	11.028	11.035	11.043	11.050	11.058	11.065	11.073	11.080	1,900
1,910	11.080	11.088	11.095	11.102	11.110	11.117	11,125	11.132	11.140	11.147	11.155	1.910
1,920	11.155	11.162	11.170	11.1//	11.184	11 247	11.199	11.282	11.289	11.297	11.304	1,920
1,940	11,304	11.312	11.319	11.327	11.334	11.342	11.349	11.357	11.364	11.372	11.379	1.940
1 + 950	11,379	11.387	11.394	11.402	11.409	11.417	11.424	11.432	11.439	11.447	11.454	1,950
1.960	11.454	11.462	11.469	11.477	11.484	11.492	11.499	11.507	11.514	11.522	11.529	1,960
1,970	11.529	11.537	11.544	11.552	11+559	11.567	11.574	11.582	11.590	11, 597	11.605	1.970
1,980	11.680	11.688	11.695	11.703	11.710	11.642	11.050	11.733	11.665	11.748	11.756	1.990
2.000	11.756	11.763	11.771	11.778	11.786	11.793	11,801	11.808	11.816	11.824	11.831	2,000
2;010	11,831	11.839	11.846	11.854	11.861	11.869	11.877	11.884	11.892	11.899	11.907	2,010
2.020	11,907	11.914	11.922	11.930	11.937	11.945	11.952	11.960	11.968	11.975	11.983	2.020
2.030	12.059	12.066	12.074	12.005	12.013	12.021	12.028	12.036	12.043	12.031	12.039	2.030
2.050	12,135	12.142	12:150	12,157	12.165	12.173	12,180	12.188	12.196	12.203	12.211	2.050
2.060	12.211	12.218	12.226	12.234	12.241	12.249	12,257	12.264	12.272	12.279	12.287	2.060
2.070	12.287	12.295	12.302	12.310	12.318	12.325	12,333	12.340	12.348	12.356	12.363	2.070
2,080 2,090	12.363	12.371 12.447	12.379 12.455	12.386	12.394 12.470	12.402	12.409 12.486	12.417	12.424	12•432 12•509	12•440 12•516	2+080 2+090
2.100	12 516	12.624	12.632	12.510	12.547	12.555	12.562	12.570	12.577	12.585	12.593	2.100
2,110	12.593	12.600	12.608	12.616	12+623	12.631	12.639	12.646	12.654	12.662	12+669	2.110
2.120	12.669	12,677	12.685	12.693	12.700	12.708	12,716	12.723	12.731	12.739	12.746	2 • 1 2 0
2,130	12.746	12.754	12.762	12.769	12.777	12.785	12.792	12.800 12.877	12.808 12.885	12.815	12.823	2 • 130 2 • 140
2.150	12.900	~12.009	12.015	12.023	12.021	12.938	12.946	12.954	12.962	12,969	12.977	2.150
2,160	12.977	12.985	12.992	13.000	13.008	13.016	13.023	13.031	13.039	13.046	13.054	2,160
2,170	13.054	13.062	13.069	13.077	13.085	13.093	13.100	13.108	13.116	13.123	13.131	2:170
2 • 180 2 • 190	13,131	13.139	13.147	13.154	13.162	13.170	13,178	13.185	13.193	13.201	13.208	2 • 1 80 2 • 1 90
2.200	13,286	13,293	13.301	13.309	13.317	13.324	13.332	13.340	13.348	13.355	13.363	2,200
2+210	13.363	13.371	13.379	13.386	13.394	13.402	13.409	13.417	13.425	13.433	13.440	2,210
2,220	13.440	13.448	13.456	13.464	13.471	13.479	13.487	13.495	13.502	13.510	13.518	2.220
2,230	13.518 13.595	13.526 13.603	13.533 13.611	13.541 13.619	13.549 13.627	13.557	13.564	13.572	13.580	13.588	13•595 13•673	2+230
31350	12 673	12 491	13.699	12 696	13.704	13.712	13.720	13.727	13.715	13.743	13.751	2.250
2,260	13,751	13,759	13.766	13,774	13.782	13.790	13.797	13.805	13.813	13.821	13.828	2.260
2.270	13,828	13.836	13.844	13.852	13.860	13.867	13.875	13.883	13.891	13.898	13.906	2,270
2,280	13,906 13,984	13.914 13.992	13.922 14.000	13.930 14.007	13.937 14.015	13,945 14,023	13.953 14.031	13.961 14.039	13.968 14.046	13.976 14.054	13•984 14•062	2 • 280 2 • 290
3 300	14 042	16 070	14 079	16 095	14 002	14 101	14 100	16.116	14.174	14.132	14.140	2.300
2.310	14.140	14.148	14.155	14.163	14.171	14.179	14.187	14.194	14.202	14.210	14.218	2.310
2.320	14,218	14.226	14,233	14,241	14.249	14.257	14.265	14.272	14.280	14,288	14.296	2.320
2.330	14,296	14.304 14.382	14.311 14.389	14.319 14.397	14.327 14.405	14.335	14.343	14.350	14.358	14.366	14+374 14+452	2 • 3 3 0 2 • 3 4 0
2		14 440	14.449	14 676	14 4 9 2	16 601	16 600	14 607	14 614	14 522	14 520	2.260
2+350	14,492	14.538	14.546	14.554	14.561	14.569	14.577	14.585	14+514	14.600	14.608	2.360
2.370	14.608	14.616	14.624	14.632	14.640	14.647	14 655	14.663	14.671	14.679	14.686	2.370
2+380	14,686	14.694	14.702	14.710	14.718	14.726	14.733	14.741	14.749	14.757	14.765	2.380
2.390	14.765	14.772	14.780	14.788	14.796	14.804	14.812	14.819	14.827	14.835	14.843	2 • 3 90
2.400	14.843	14.851	14.859	14.866	14.874	14.882	14.890	14+898	14.906	14.913	14.921	2 • 400
2.410	15.000	15.007	15.015	14.945	15.031	15-035	15.047	15-054	15-047	15-070	15.078	2+420
2+430	15,078	15.086	15.094	15,101	15,109	15,117	15.125	15.133	15.141	15.148	15.156	2,430
2.440	15,156	15.164	15.172	15.180	15,188	15.195	15,203	15.211	15.219	15,227	15.235	2,440
2.450	15.235	15.242	15.250	15.258	15.266	15.274	15.282	15.289	15.297	15.305	15.313	2 • 4 5 0
2:460	15,301	15.200	15,407	15,415	12.344	15.421	15 420	15.444	15-464	15,384	15,470	2:450
2.480	15.470	15.478	15.486	15.493	15.501	15.505	15.517	15,525	15.533	15.540	15.548	2 480
2.490	15.548	15.556	15.564	15.572	15.580	15.587	15,595	15.603	15.611	15,619	15.627	2,490
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

EMF in Absolute Millivolts Reference Junctions at 32 F 9 DEG F 0 7 10 DEG F 1 2 3 4 5 6 8 THERMOELECTRIC VOLTAGE IN ABSOLUTE MILLIVOLTS 15.627 15.705 15.784 15.674 15.752 15.831 15.705 15.784 15.862 2,500 15•635 15•713 15.642 15+650 15.658 15.666 15.682 15.689 15.697 2,500 15.858 15.737 15.815 15.893 15.972 15.768 2,510 15.721 15.729 15.744 15.760 15.776 2,510 15.823 15.901 15.980 2.520 15•791 15•870 15.799 15.807 15.854 2,520 15.941 15.909 2.530 15.862 15.878 15.886 15.917 15.925 5.933 16.011 15,941 15.956 15,995 2,540 15.948 15.964 16.003 16.019 2,540 2,550 16.058 2,550 16.019 16.035 16.050 16.066 16.074 16.082 16.090 16+097 16.027 16.043 16.137 2,560 2,570 2,580 16.097 16.105 16.113 16.121 16.129 16.145 16,152 16+160 16.168 16+176 2,560 16.176 16.184 16.192 16.199 16.215 16.231 16.309 16.239 16.317 16.207 16.223 16+247 16.254 2,570 16.254 16.286 16.301 16.325 16.333 2,580 2.590 16.349 16.380 16.341 16.356 16.364 16.372 16.388 16.396 16.403 16.411 2.590 16.435 16.513 16.592 16.670 16.427 16.443 16.521 16.599 16.678 16.411 16.458 2,600 16.419 16.466 16.474 16.482 16.490 2,600 16.450 16,490 16.498 16.505 16.537 2.610 16.545 16.552 16.560 16.568 2+610 2,620 16.584 16.607 16.623 16.631 16.639 2,520 16.646 2,630 16.646 16.654 16.662 16,686 16.694 16.701 16.709 16,717 16.725 2,630 2.640 16.733 16.748 16.756 16.764 16-788 16.803 2,650 16.803 16.811 16.819 16.827 16.842 16.921 16.850 16.858 16.874 16,835 16+866 16.882 2,650 16.905 16.983 17.062 16.929 17.007 17.085 16.936 17.015 17.093 16.952 17.030 17.109 16.882 2.660 16.889 16.897 16.913 16+944 16+960 2,660 16.960 16.968 16.976 16.991 17.069 16.999 17.022 17.038 2,670 2,670 2,690 17.116 17.124 17.132 17.140 17.148 17.156 17.163 17-171 17+179 17.187 17.195 2,690 17.218 17.296 17.374 17.453 2,700 2,710 2,720 2,730 17.195 17.202 17.281 17.210 17.234 17.312 17.390 17.468 17.242 17.320 17.398 17.476 2,700 17.226 17.265 17,249 17+257 17+273 17.328 17.406 17.484 17.304 17.351 17.429 17.507 2.710 17.288 17.335 2,720 17.351 17.359 17.367 17.382 17.421 2 . 7 30 17.492 2.740 17.507 17.515 17-523 17,531 17.538 17.546 17.554 17.562 17.570 17.577 17.585 2.740 2,750 17.585 17.593 17.601 17.663 2.750 17.609 17.616 17.624 17.632 17.640 17.648 17.655 2,760 17.663 17.741 17.819 17.671 17.749 17.827 17.679 17.757 17.835 17.687 17.694 17.772 17.850 17.702 17.710 17.788 17.866 17.718 17.796 17.874 17.726 17.733 17.741 17.819 17.897 2,760 2,770 2,780 2,780 17.842 17.889 17.358 17.881 17.94/. 17.897 17.913 17.951 2,790 17,905 17,920 17.928 17.936 17.959 17.967 17.975 2.790 2,800 17.975 17.983 17,990 17.998 18.006 18.014 18.021 18.029 18.037 18.045 18.053 2,800 2,810 2,820 18.053 18.060 18.068 18.076 18.084 18.091 18,099 18,107 18.115 18.123 2,810 18.130 18,208 18.216 18.231 18.309 2.830 18.208 18.223 18.239 18.247 18,255 18.262 18.270 18.278 18.286 2.830 2,840 18,301 18.317 18.324 18,332 18.340 18.348 18.355 2,840 18,363 18.363 18.441 18.518 18.410 18.487 18.564 18•425 18•502 2:850 2:860 2.850 18.371 18.379 18.386 18.394 18-402 18.417 18.433 18.441 18.456 18.472 18.479 18.495 18.510 2,860 18.448 18.464 18.518 18.595 2,870 18+580 18.649 18.673 2,880 18.626 18.634 18.642 18.665 2.880 18.595 18.603 18.611 18.619 18.657 18,673 18,680 18,688 18.696 18.727 18.734 18.750 2,890 2,900 18,750 18.758 18.765 18.773 18.781 18.788 18,796 18.804 18.812 18.819 18.827 2,900 18.827 18.904 18.981 18.842 18.919 18.996 18.881 18.958 2.910 18.850 18.858 18.865 18,873 18.896 18.835 18.885 18.904 2 920 2 930 2 940 18.927 19.004 19.081 18.935 19.012 19.089 18.912 18.989 18.973 18.943 18,950 18.966 18.981 2,920 19.019 19.104 19.035 19.112 19.043 19.050 19.058 2,930 2,940 19.073 19.058 19.066 19.096 19.181 19.257 19.334 19.411 19.158 19.196 2,950 19.135 19.142 19.150 19,165 19.173 19.188 19.204 19+211 2,950 2 960 2 970 2 980 19.211 19.288 19.365 19.219 19.296 19.372 19.227 19.303 19.380 19.234 19.311 19.388 19•242 19•319 19•395 19.250 19.326 19.403 19.280 19.357 19,265 19.273 19.288 2,960 19.342 19.418 19.349 19.426 19.365 19.441 2,970 2,980 2.990 19.441 19.449 19.457 19.464 19.472 19-479 19.487 19.495 19.502 19.510 19.518 2.990 19.548 19.579 19.594 19.518 19.525 19.541 19.556 19.563 19.571 19,586 3,000 3,000 19.533 3,010 3,020 3,030 19.594 19.670 19.746 19.602 19.678 19.754 19.609 19.685 19.761 19.617 19.693 19.769 19.624 19.701 19.777 19.632 19.708 19.784 19.640 19.716 19.792 19.647 19.723 19.800 19.655 19.731 19.807 19.663 19.739 19.815 19.670 19.746 19.822 3.010 3,020 3,030 3,040 19.822 19.830 19.837 19.845 19.853 19.860 19.868 19.875 19.883 19.891 19.898 19.898 19.974 20.050 19,966 3,050 3.050 19-906 19.913 19.921 19.929 19.936 19.944 19.951 19.959 19.974 3,060 19.982 20.057 19.989 19.997 20.004 20.012 20.019 20.027 20.034 20.042 20.050 3,060 3.070 3,080 20.125 20.132 20.140 20.148 20.155 20-163 20.170 20.178 20.185 20.193 20+200 3.080 20.275 3,090 20.215 20.230 20.238 20.245 20.253 20+260 20.268 3.090 3,100 3,110 20.275 20.350 20.424 20•283 20•357 20 • 297 20 • 372 20 • 446 20 • 520 20.312 20.387 20.461 20.535 20.335 20.409 20.483 20.557 20•342 20•417 20•491 20•565 20.290 20.305 20.320 20,327 20.350 3,100 3,110 20.290 20.365 20.439 20.513 20.305 20.380 20.454 20.528 20.394 20.469 20.543 20.616 20.402 20.476 20.550 20+350 20+424 20+498 20+572 3,120 20.432 3.120 3.130 20.498 20.506 3,130 20.572 3,140 20.594 20+579 20.587 20.601 20.609 20.623 20+631 20.638 20+645 3+140 DEG E 0 2 з 4 5 6 7 8 9 10 DEG F 1

Converted from degrees Celsius (IPTS 1968).

Temperature in Degrees Fahrenheit^a

EME in	Absolute	Millivolte		Теп	nperature	in Degree	es Fahren	heit ^a		Referenc	e Innction	ns at 37 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			тн	ERMOELEC	TRIC VOL	TAGE IN A	ABSOLU7E	MILLIVO	.15			<u> </u>
3.150	20.645	20.653	20.660	20.667	20.675	20.682	20.689	20.697	20.704	20.711	20.718	3+150
3.160	20.718	20.726	20.733	20.740	20.748	20.755	20.762	20.769	20.777	20.784	20.791	3+160
3.170	20.791	20.798	20.806	20.813	20.820	20.827	20.834	20.842	20.849	20.856	20.863	3,170
3.180	20.863	20 870	20.878	20.885	20.892	20.899	20.906	20.914	20.921	20.928	20.935	3+180
3,190	20.935	20.942	20.949	20.956	20,964	20.971	20.978	20.985	20.992	20.999	21.006	3,190
3,200 3,210	21.006 21.077	21.013 21.084	21.021 21.091	21.028 21.098	21.035 21.105	21.042	21.049	21.056	21.063	21.070	21.077	3,200 3,210
DEG F	0	1	2	3	4	5	6	۲	8	9	10	DEG F

TABLE 51—Type R thermocouples.

EMF in Absolute Millivolts

Temperature in Degrees Celsius (IPTS 1968)

Reference Junctions at 0 C

DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C
			T	HERMOELE	CTRIC VO	LTAGE IN	ABSOLUT	E MILLIV	OLTS			
- 50	-0.226											-50
~40	-0.188	-0+192	-0.196	-0+200	-0.204	-0.207	-0.211	-0.215	-0-219	=0.223	-0-226	-40
-30	-0.145	-0.150	-0.154	-0.158	-0.163	-0.167	-0.171	-0.175	-0.180	-0.184	-0.188	-30
-20	-0.100	-0.105	-0.109	-0.114	-0.119	-0.123	-0.128	-0.132	-0.137	-0.141	-0.145	-20
~10	-0.051	-0+056	-0.061	-0.066	-0.071	÷0∙076	-0.081	-0.086	-0.091	-0.095	-0.100	-10
- 0	0.000	-0.005	-0.011	-0.016	-0.021	~0.026	-0.031	-0.036	-0.041	-0.046	-0.051	- 0
0	0.000	0.005	0.011	0.016	0.021	0.027	0.032	0.038	0.043	0.049	0.054	D
10	0.054	0.060	0.065	0.071	0.077	0.082	0.088	0.094	0.100	0.105	0+111	10
20	0.111	0.117	0.123	0.129	0.135	0.141	0.147	0.152	0.158	0.165	0.171	20
30	0.171	0.177	0.183	0.189	0.195	0.201	0.207	0.214	0.220	0.226	0.232	30
40	0.232	0.239	0.245	0.251	0.258	0.264	0.271	0.277	0.283	0.290	0.296	40
50	0.296	0.303	0.310	0.316	0.323	0.329	0.336	0.343	0.349	0.356	0.363	50
60	0.363	0.369	0.376	0.383	0.390	0.397	0.403	0.410	0.417	0.424	0.431	60
70	0.431	0.438	0.445	0.452	0.459	0.466	0.473	0•480	0 • 487	0.494	0.501	70
80	0.501	0.508	0.515	0.523	0.530	0.537	0.544	0.552	0.559	0.566	0.573	80
90	0.7/3	0.581	0.588	0.595	0.603	0.610	0.617	0.625	0.632	0.640	0.647	90
100	0.647	0.655	0.662	0.670	0.677	0.685	0.692	0.700	0.708	0.715	0.723	100
110	0.723	0.730	0.738	0.746	0.754	0.761	0.769	0.777	0.784	0.792	0+800	110
120	0.800	0.808	0.816	0.824	0.831	0.839	0.847	0.855	0.863	0.871	0.879	120
130	0.879	0.887	0.895	0.903	0.911	0.919	0.927	0.935	0.943	0.951	0.959	130
140	0.959	0.967	0.975	0.983	0.992	1.000	1.008	1.016	1.024	1.032	1.041	140
150	1.041	1.049	1.057	1.065	1.074	1+082	1.090	1.099	1.107	1.115	1.124	150
160	1.124	1.132	1.140	1.149	1.157	1.166	1.174	1.183	1.191	1.200	1.208	160
170	1.208	1.217	1.225	1.234	1.242	1.251	1.259	1.268	1.276	1.285	1.294	170
180	1.294	1.302	1.311	1.319	1.328	1.337	1.345	1.354	1.363	1.372	1.380	180
190	1,380	1.389	1.398	1.407	1.415	1.424	1.433	1.442	1.450	1.459	1.468	190
200	1.468	1.477	1.486	1.495	1.504	1.512	1.521	1.530	1.539	1.548	1.557	200
210	1.557	1.566	1.575	1.584	1.593	1.602	1.611	1.620	1.629	1.638	1.647	210
220	1.647	1.656	1.665	1.674	1.683	1.692	1.702	1.711	1+720	1.729	1.738	220
230	1.738	1.747	1.756	1.766	1.775	1.784	1.793	1.802	1.812	1.821	1.830	230
240	1.830	1.839	1.849	1.858	1.867	1.876	1.886	1.895	1.904	1.914	1.923	240
250	1.923	1.932	1.942	1.951	1.960	1.970	1.979	1.988	1.998	2.007	2.017	250
260	2.017	2.026	2.036	2.045	2.054	2.064	2.073	2.083	2.092	2.102	2.111	260
270	2.111	2.121	2.130	2.140	2.149	2.159	2.169	2.178	2.188	2.197	2.207	270
280	2.207	2.216	2.226	2.236	2.245	2.255	2.264	2.274	2.284	2.293	2.303	280
290	2.303	2.313	2.322	2.332	2.342	2.351	2.361	2.371	2.381	2.390	2.400	290
300	2,400	2.410	2.420	2.429	2.439	2.449	2.459	2.468	2.478	2.488	2.498	300
310	2.498	2.508	2.517	2.527	2.537	2.547	2.557	2.567	2.577	2.586	2.596	310
320	2.596	2.606	2.616	2.626	2.636	2.646	2.656	2.666	2.676	2.685	2.695	320
330	2.695	2.705	2.715	2.725	2.735	2.745	2.755	2.765	2.775	2.785	2.795	330
340	2.795	2.805	2.815	2.825	2.835	2.845	2.855	2.866	2.876	2.886	2.896	340
350	2.896	2.906	2.916	2.926	2.936	2.946	2,956	2.966	2.977	2.987	2.997	350
360	2.997	3.007	3.017	3.027	3.037	3.048	3.058	3.068	3.078	3.088	3.099	360
370	3.099	3,109	3.119	3.129	3.139	3,150	3,160	3.170	3.180	3.191	3.201	370
380	3.201	3+211	3,221	3.232	3.242	3.252	3,263	3.273	3.283	3.293	3.304	380
390	3.304	3.314	3.324	3,335	3.345	3,355	3.366	3.376	3.386	3.397	3.407	390
400	3.407	3.418	3.428	3.438	3.449	3.459	3.470	3.480	3.490	3.501	3.511	400
410	3.511	3.522	3.532	3.543	3.553	3,563	3.574	3.584	3.595	3.605	3.616	410
420	3.616	3.626	3.637	3.647	3.658	3,668	3.679	3.689	3.700	3.710	3.721	420
430	3.721	3.731	3.742	3.752	3.763	3.774	3.784	3.795	3.805	3.816	3 826	430
440	3,826	3.837	3.848	3.858	3.869	3.879	3,890	3.901	3.911	3.922	3.933	440
450	3,933	3.943	3.954	3.964	3.975	3,986	3.996	4.007	4.018	4.028	4.039	450
460	4.039	4.050	4.061	4.071	4.082	4.093	4.103	4.114	4.125	4.134	4.146	460
470	4.146	4.157	4.168	4.178	4.189	4.200	4.211	4 222	4.232	4.243	4.254	470
480	4.254	4.265	4.275	4.286	4.297	4.308	4.319	4.329	4.340	4.351	4.362	480
490	4.362	4.373	4.384	4.394	4.405	4.416	4.427	4.438	4.449	4.460	4.471	490
500	4.471	4.481	4.492	4.503	4.514	4.525	4.576	4.547	4.558	4.569	4-580	500
510	4.580	4.591	4.601	4.632	4 623	4.634	4.645	4.656	4.667	4.679	4.689	510
520	4.689	4.700	4.711	4.722	4.733	4.744	4.755	4.766	4.777	4.788	4.799	520
530	4.799	4.810	4.821	4.832	4.843	4.854	4.865	4.876	4.888	4.899	4.910	530
540	4.910	4.921	4.932	4.943	4.954	4.965	4.976	4.987	4.998	5.009	5.021	540
550	5.021	5.032	5.043	5.054	5.065	5.076	5.087	5.099	5.110	5.121	5.132	550
560	5,132	5.143	5.154	5.166	5.177	5.188	5.199	5,210	5.221	5.233	5.244	560
5/0	2.244	5.275	5.266	5.278	5.289	5.300	5.311	5.322	5.334	5.345	5.356	570
590	5,469	5.368 5.480	5.379	5.390	5.401 5.514	5.413 5.526	5.424 5.537	5.435	5.446 5.560	5.458 5.571	5.469 5.582	580 590
DEG C	0	1	,									DEG
			-	2	-	-		•			••	010 0

EMF in	Absolute	Millivolts	i							Referen	ce Junctio	ons at 0 C
DEG C	C	1	2	3	4	5	6	7	8	9	10	DEG C
			TH	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
400	5.587	5.594	5.605	5.616	5+628	5.639	5+650	5.662	5.673	5.685	5+696	600
610	5.696	5.707	5.719	5.730	5.742	5.753	5.764	5.776	5.787	5.799	5.810	610
620	5.810	5.821	5.833	5.844	5.856	5.867	5.879	5.890	5.902	5.913	5.925	620
630	5,925	5.936	5.948	5.959	5.971	5.982	5.994	6.005	6.017	6.028	6.040	630
640	6.040	6.051	6.063	6.074	6.086	6.098	6.109	6.121	6.132	6,144	6.155	640
650	6.155	6.167	6.179	6.190	6.202	6.213	6.225	6.237	6.248	6.260	6.272	650
660	6.272	6+283	6 • 295	6.307	6.318	6.330	6.342	6.353	6.365	6.377	6.388	660
670	6.388	6.400	6.412	6.423	6.435	6+447	6.458	6.470	6.482	6+494	6.505	670
680	6.505	6+517	6.529	6.541	6.552	6.564	6.576	6.588	6.599	6.729	6.743	690
690	5.023	0+033	0.04/	0.000	0.010	0.002	0.074	8.100	84110	0.727	00/72	0,0
700	6.741	6 • 753	6.765	6.777	6.789	6.800	6.812	6.824	6.836	6.848	6.860	700
710	6.860	6.872	6.884	6.895	6.907	6.919	6.931	6.943	5.955	5.951	5.9/9	710
720	6,979	6+991	7.003	7.015	7.027	7.039	7.051	7.065	7.074	7 206	7.218	720
730	7.098	7.110	7.122	7.134	7.140	7.158	7.201	7.303	7.315	7.327	7.339	740
740	7.218	7+251	1+243	1.200	10201	10217	1.42.71	1.505				
750	7.339	7.351	7.363	7.375	7.387	7.399	7.412	7.424	7.436	7.448	7.460	750
760	7,460	7•472	7.484	7.496	7.509	7.521	7.533	7.545	7.557	7.569	7.582	760
770	7.582	7+594	7.606	7.618	7.630	7+642	/•655	7.667	1.619	7 914	7 976	780
780	7.703	7.716	7.728	7.740	7.752	7 • 765	7.000	7.010	7.801	7.437	7.949	700
190	(.826	(•828	(.450	1.000	1.015	1.001	1.900	1.712	1.724			
800	7.949	7,961	7.973	7.986	7.998	8.010	8.023	8.035	8.047	8.060	8.072	800
510	8.072	8.085	8.097	8.109	8.122	8 • 1 3 4	8.146	8.159	8.171	8.184	8 • 196	810
820	8.196	8 • 208	8.221	8.233	8.246	8.258	8.271	8.283	8.295	8.306	8+320	820
830	8.320	8.333	8.345	8.358	8.370	6.383	8.395	8.408	8,420	8.433	8.445	830
840	8.445	8.498	8.470	8.483	8.495	8.009	a•520	0,000	0,349	0.000	0.010	040
850	8.570	8.583	8.595	8.608	8.621	8.633	8.646	8.658	8.671	8.683	8.696	850
860	8.696	8.709	8.721	8.734	8.746	8.759	8.772	8.784	8.797	8.810	8.822	860
870	8.822	8.835	8,847	8,860	8.873	8.885	8.898	8.911	8.923	8.935	6.949	870
880	8.949	8+961	8.974	8,987	9.127	9.012	9.152	9.165	9.178	9.191	9.203	890
870	9.078	9009	7.101	**11 4	ו12 /	J140						
900	9.203	9.216	9.229	9.242	9.254	9.267	9.280	9.293	9.306	9.319	9.331	900
910	9.331	9.344	9.357	9.370	9.383	9.395	9.408	9.421	9.434	9.44/	9.460	910
920	9.460	9.473	9.485	9.498	9.511	9.524	9.531	9.550	9.565	9.705	9.718	920
930	9.589	9.502	9.514	9.627	9.540	9.783	9.796	9.809	9.822	9.835	9.848	940
							0.00/	0.020	0.067	0.045	0.079	950
950	9.848	9.861	9.874	9.887	9.900	9.913	10.056	10.069	10.052	10.095	10.109	960
980	9.7/8	9.991	10.004	10.148	10.161	10.174	10-147	10.200	10.213	10.227	10.240	970
970	10.240	10-253	10.266	10.279	10.292	10.305	10.319	10.332	10.345	10.358	10.371	980
990	10.371	10.384	10.398	10.411	10.424	10.437	10.450	10.464	10.477	10.490	10.503	990
1.000	10.503	10.516	10.530	10.543	10.556	10.569	10.583	10.596	10.609	10.622	10.636	1,000
1.010	10.636	10.649	10.662	10.675	10.689	10.702	10.715	10.729	10.742	10.755	10.768	1,010
1.020	10.768	10.782	10.795	10.808	10.822	10.835	10.848	10.862	10.875	10.5888	10.902	1,020
1,030	10.902	10.915	10.928	10.942	10.955	10.968	10.982	10.995	11.009	11.022	11.035	1.030
1,040	11.035	11.049	11.062	11.076	11.089	11.102	11.116	11.129	11.143	11.156	11.170	1,040
1,050	11.170	11.183	11,196	11.210	11,223	11.237	11.250	11,264	11.277	11.291	11.304	1.050
1,060	11,304	11.318	11.331	11,345	11,358	11.372	11.385	11,399	11.412	11.426	11•439	1,060
1,070	11.439	11.453	11.466	11.480	11.493	11.507	11.520	11.534	11.547	11.561	11.574	1,070
1,080	11.574	11,588	11.602	11.615	11.629	11.642	11.656	11.669	11.683	11.697	11+710	1,000
1,090	11,710	11.724	11.737	11.751	11.765	11.778	11.792	11.009	11+914	11.035	11+040	1,070
1,100	11.846	11.860	11.874	11.887	11.901	11.914	11.928	11,942	11.955	11.969	11.983	1,100
1,110	11,983	11,996	12.010	12.024	12.037	12.051	12.065	12.078	12.092	12.106	12.119	1.110
1,120	12.119	12.133	12.147	12.161	12.174	12 • 188	12.202	12.215	12.229	12+243	12+257	1,120
1,130	12.257	12.270	12.284	12.298	12.311	12.325	12.339	12,355	12.500	12.500	12+374	1,140
1,140	12.394	12.408	12.421	12.435	12+449	12.403	14.4/6	12.490	12.504	12.0010	12 0 7 52	11140
1,150	12.532	12.545	12,559	12.573	12.587	12.600	12.614	12.628	12.642	12.656	12.669	1,150
1,160	12.669	12.683	12.697	12.711	12.725	12.739	12.752	12.766	12.780	12+/94	12.808	1+100
1,170	12.808	12.822	12.835	12.849	12+863	12.877	12.891	12.905	12.918	12.07	12.005	1,190
1,180	12.946	12.960	12.974	12.988	13.002	13.016	13.029	13.043	12.10	13.210	13.224	1.190
1,190	19.085	13.099	19,113	120127	150140	13+174	13.108	130102	130170	~~*×וU	******	
1,200	13.224	13.238	13.252	13.266	13.280	13.293	13.307	13.321	13.335	13.349	13.363	1,200
1,210	13.363	13.377	13,391	13.405	13.419	13.433	13.447	13.461	13.475	13.489	13.502	1,210
1,220	13,502	13.516	13.530	13.544	13.558	13.572	13.586	13.600	13.614	13.628	13.642	1,220
1,230	13.642	13.656	13.670	13.684	13.698	13.712	13.726	13.740	13:754	13.900	13.400	1,230
19240	13. 182	420190	19010	120024	130030	10.092	13.000	19.030	1,5+0,74		100.12	.,
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C

Temperature in Degrees Celsius (IPTS 1968)

Temperature in Degrees Celsius (IPTS 1968)

Reference Junctions at 0 C

EMF in	Absolute	Millivolts		. emperi		-Broos -	Reference Junctions at 0 C						
DEG C	0	1	2	3.	4	5	6	7	8	9	10	DEG C	
			тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS				
1,250	13,922	13.936	13.950	13.964	13.978	13.992	14+006	14.020	14.034	14.048	14.062	1,250	
1,260	14.062	14.076	14.090	14.104	14.118	14.132	14.146	14.160	14.174	14.188	14.202	1,260	
1,270	14.202	14.216	14.230	14.244	14.258	14.272	14.286	14.301	14.315	14.329	14.343	1,270	
1,280	14.343	14.357	14.371	14.385	14.399	14.413	14.427	14.441	14.455	14.469	14.483	1,280	
1,290	14.483	14.497	14.511	14.525	14.539	14.554	14.568	14.582	14.596	14.610	14.624	1,290	
1,300	14.624	14.638	14.652	14.666	14.680	14.694	14.708	14.722	14.737	14.751	14.765	1,300	
1,310	14.765	14.779	14.793	14.807	14.821	14.835	14.849	14.863	14.877	14.891	14.906	1,310	
1,320	14,906	14.920	14.934	14.948	14.962	14.976	14.990	15.004	15.018	15.032	15.047	1,320	
1,330	15.047	15.061	15.075	15.089	15.103	15.117	15.131	15.145	15.159	15.173	15.188	1,330	
1,340	15,188	15.202	15.216	15.230	15.244	15.258	15,272	15,286	15.300	15,315	15.329	1,340	
1.350	15.329	15.343	15.357	15.371	15.385	15.399	15.413	15.427	15.442	15.456	15.470	1.350	
1,360	15.470	15.484	15.498	15.512	15.526	15.540	15.555	15.569	15.583	15.597	15.611	1.360	
1+370	15.611	15.625	15.639	15.653	15.667	15.682	15.696	15.710	15.724	15.738	15.752	1.370	
1,380	15.752	15.766	15.780	15.795	15.809	15.823	15.837	15.851	15.865	15.879	15.893	1,380	
1+390	15.893	15.908	15.922	15.936	15.950	15,964	15,978	15.992	16.006	16.021	16.035	1,390	
1.400	16-035	16-049	16+063	16-077	16-091	16-105	16.119	16.134	16+148	16+162	16+176	1+400	
1.410	16.176	16.190	16.204	16-218	16.232	16.247	16.261	16.275	16.289	16.303	16.317	1.410	
1.420	16.317	16.331	16.345	16.360	16.374	16.388	16.402	16.416	16-430	16-444	16-458	1.420	
1.430	16.458	16.472	16.487	16.501	16.515	16.529	16.543	16.557	16.571	16.585	16.599	1.430	
1+440	16.599	16.614	16.628	16.642	16.656	16.670	16.684	16.698	16.712	16.726	16.741	1,440	
1-460	16 741	14 755	16 769	14 782	14 797	16 811	16 825	16.830	14.952	14.867	16.882	1.450	
1,460	14 882	16 896	16.910	16 926	16 928	16.952	16 944	16.980	16.094	17 008	17.022	1,460	
1,470	17 022	17.037	17.051	17 045	17.079	17.093	17 107	17-121	17.126	17.149	17.143	1,400	
1.480	17,163	17.177	17,192	17-206	17.220	17.234	17.248	17.262	17.276	17.290	17.304	1.480	
1,490	17.304	17.318	17.332	17.346	17.360	17.374	17.388	17.403	17.417	17.431	17.445	1,490	
1.600	17 445	17 459	17 473	17 497	17 601	17 516	17 620	17 543	17 667	17 671	17.585	1.500	
1,510	17 585	17.500	17.613	17 627	17.641	17.655	17 640	17 684	17.409	17 712	17.726	1,510	
1.520	17.726	17.740	17.754	17.768	17.782	17.796	17.810	17.824	17.828	17.852	17.866	1.520	
1.530	17.866	17.880	17.894	17.908	17.922	17.936	17.950	17.964	17.978	17.992	18.006	1,530	
1,540	18,006	18.020	18.034	18.048	18.062	18.076	18.090	18.104	18.118	18.132	18.146	1,540	
	10 144	10 1/0	10 174	10 100	10 202	10 214	18 300	10 344	10 260	10 272	10 204	1 6 6 0	
1,550	10.140	10.100	10.114	10+100	10.202	10+210	18 340	10+244	18.207	18.411	18.425	1,500	
1,580	10.200	10 4 20	10.013	10.521	10.541	10.005	18 509	18 623	18.627	18 550	18.564	1,570	
1,570	10.425	10.437	18.692	10.40/	18 4 20	10 495	18 44.9	18.442	18.474	18.690	18.703	1,580	
1,590	18,703	18.717	18,731	18.745	18,759	18,773	18,787	18.801	18.815	18.828	18.842	1,590	
			10.070										
1,610	18.042	18+856	10.000	18.884	18+898	10.912	10.920	10.939	18.953	18+90/	10.901	1,600	
1,610	10.001	10.122	10 167	19+023	10 176	17.090	19 2024	17.078	17.092	19.100	170117	1,610	
1,620	10 267	19.133	17.147	17+101	17+175	17+100	19 340	17+210	19 260	10 282	19 206	1.620	
1,640	19,395	19.409	19.423	19.437	19.450	19.464	19.478	19,492	19.505	19.519	19.533	1,640	
	10 622	10 447	10 642	10 67	10 662	10 (6 2	10 415	10 (20	10 442	10 464	10 (7-		
1,650	19,000	19.547	19.560	19.574	19.588	19.602	19.615	19.629	19.643	19.656	19.670	1,620	
1,000	19.070	19+004	19.090	19./11	19.725	19+/39	17+752	194/00	19.780	19+793	19.807	1,000	
1.680	19.007	19+821	19+834	19.848	19.002	19.872	20.025	20.039	20.053	20.066	19.944	1+670	
1,690	20.080	20+093	20.107	20+120	20+134	20.148	20.161	20.175	20+188	20.202	20.215	1,690	
			20.212		20 2/2		DO 041						
1,700	20.215	20.229	20.242	20.256	20.269	20.283	20.296	20.309	20.323	20+336	20+350	1,700	
1,720	20.330	20.407	20 610	20+590	20 627	20+41/	20+430	20+443	20+457	20+4/0	20+403	1,710	
1.730	20.614	20.420	20.642	20-654	20.649	20-692	20.605	20.370	20.721	20.734	20.749	1,730	
1.740	20.748	20.761	20.774	20.787	20.800	20.813	20.826	20.839	20.852	20.865	20.878	1,740	
			2- 00		20.00-		20.055			a. 00:			
1,750	20.878	20.891	20.904	20.916	20.929	20.942	20.955	20+968	20.981	20.994	21.006	1,750	
19760	21+006	21+019	210032	<1+045	21405/	21.070	21.083	21+096	21.108	_		1,760	
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C	

TABLE 52—Type S thermocouples.

EMF i	n Absolut	e Millivol	ts							Referen	ns at 32 F	
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
				HERMOELE	CTRIC VO	LTAGE IN	ABSOLUT	E MILLIV	OLTS			
-50	-0.218	-0.220	~0.222	-0.225	-0.227	-0.229	-0.231	-0.233	-0.236			-50
-40	-0.194	-0.197	-0.199	-0.202	-0.204	-0.206	-0.209	-0.211	-0.213	-0.215	-0.218	-40
-30	-0.170	-0.173	-0.175	-0.178	~0.180	-0.182	-0.185	-0.187	-0.190	-0+192	-0.194	-30
-20	-0.145	-0.148	-0.150	-0.153	-0.155	-0.158	-0.160	-0.163	+0.165	-0.168	-0.170	-20
- 10	-0.119	-0.122	-0.097	-0.127	-0.129	-0.132	-0.135	~0.111	-0.114	-0.142	-0.119	- 0
~	-0.097	-0.089	=D.086	-0.084	-0-081	-0.078	-0.075	-0-073	-0.070	-0+067	-0+064	0
10	-0.064	~0.061	-0.058	-0.056	-0.053	~0.050	-0.047	-0.044	-0.041	-0.038	-0.035	10
20	-0.035	-0.033	-0.030	-0.027	-0.024	~0.021	-0.018	-0.015	-0.012	-0.009	-0.006	20
30	-0.006	-0.003	0.000	0.003	0.006	0,009	0.012	0.015	0.018	0.021	0+024	30
40	0.024	0.027	0.030	0.033	0.037	0.040	0.043	0.046	0.049	0.052	0.055	40
50	0.055	0.058	0.062	0.065	0.068	0.071	0.074	0.077	0.081	0.084	0.087	50
60	0.087	0.090	0.093	0.097	0.100	0.103	9,106	0.110	0.113	0.116	0.119	60
70	0.119	0.123	0.126	0.129	0.133	0.136	0.139	0.142	3.146	C.149	0,152	70
80	0.152	0.156	0.159	0.163	0.166	0.169	0.173	0.176	0.179	0.183	0.185	80
90	0.186	0.190	0.193	0.197	0.200	0.203	0.207	0.210	0.214	0.217	0.221	90
100	0.221	0.224	0.228	0.231	0.235	0.238	6.242	0.245	0.249	0.252	0.256	100
110	0.256	0.259	0.263	0.266	0.270	0.274	0.277	0.281	0.284	0.288	0.291	110
120	0.291	0.295	0.299	0.302	0.306	0.309	0.313	0.317	0.320	0.324	0.328	120
130	0.328	0.331	0.335	0.339	0.342	0.346	0.350	0.353	0.357	0.361	0.365	130
140	0.365	0•368	0.372	0.376	0.379	0.383	0.387	0.391	0.394	0.398	0.402	140
150	0.402	0.406	0.409	0.413	0+417	0.421	0.425	0.428	0.432	0.436	0.440	150
160	0.440	0+444	0.448	0.451	0.455	0.459	0.463	0.467	0.471	0.474	0.478	160
170	0.478	0.4B2	0.486	0.490	0.494	0.498	0.502	0.506	0.510	0.513	0.517	170
180	0.517	0.521	0.525	0.529	0.533	0.537	0.541	0.545	0,549	0.553	0.557	180
190	0.557	0.561	0.565	0.569	0.573	0.577	0,581	0.585	0.589	0.593	0.597	190
200	0.597	0+601	0.605	0.609	0.613	0.617	0.621	0.625	0+629	0.633	0.637	200
210	0.637	0.641	0.645	0.649	0.653	0.658	0.662	0.666	0.670	0.674	0.678	210
220	0.678	0+682	0.686	0.690	0.695	0.699	0.703	0.707	0.711	0.715	0.719	220
230	0.719	0.724	0.728	0.732	0.736	0.740	0.744	0.749	0.753	0.799	0.761	230
2.40												
250	0.803	0.808	0.812	0.816	0.820	0.824	0.829	0.833	0.937	0.842	0+846	250
260	0.846	0.850	0.854	0.859	0.863	0.86/	0.872	0.876	0.880	0.004	0.007	200
270	0.007	0.036	0.07/	0.902	0.900	0.910	0 958	0.963	0.967	0.971	0.976	280
290	0,976	0.980	0.985	0.989	0.993	0.998	1.002	1.007	1.011	1,015	1.020	290
300	1.020	1.024	1.029	1.033	1.048	1.042	1.046	1.051	1.055	1.060	1.064	300
310	1.064	1.069	1.073	1.078	1.082	1.087	1.091	1.095	1.100	1.104	1.109	310
320	1.109	1.113	1.118	1.122	1.127	1.131	1.136	1.140	1.145	1.149	1,154	320
330	1,154	1.158	1.163	1,168	1.172	1.177	1.161	1.186	1.190	1.195	1.199	330
340	1.199	1.204	1.208	1.213	1.218	1.222	1.227	1.231	1.236	1.240	1.245	340
350	1.245	1.250	1.254	1,259	1.263	1.268	1.273	1.277	1.282	1.286	1,291	350
360	1.291	1.296	1.300	1.305	1.309	1.314	1.319	1.323	1.328	1.333	1.337	360
370	1.337	1.342	1.347	1.351	1.356	1,360	1.365	1.370	1.374	1.379	1.384	370
380	1.384	1.388	1.393	1.398	1.402	1.407	1.412	1.417	1.421	1 4 7 2	1.431	330
390	1.431	1.435	1.440	1.449	1.449	1.494	1.439	1.404	1.400	1.475	1.4470	370
400	1.478	1.482	1.487	1.492	1.497	1.501	1.506	1.511	1.516	1.520	1.525	400
410	1,525	1.530	1.535	1.539	1.544	1.549	1.554	1.558	1.563	1.568	1.573	410
420	1.573	1.577	1.582	1.587	1,592	1-597	1.601	1.606	1.611	1.615	1.620	420
430	1.620	1.625	1.630	1.635	1.640	1.644	1.649	1.654	1+659	1.004	1.009	430
440	1.003	1.673	1.018	1.083	1+080	1.693	10048	1.702	1.707	1.112	1.11	440
450	1.717	1.722	1.727	1.731	1.736	1.741	1,746	1,751	1.756	1.761	1.765	450
470	1.814	1.910	1.824	1.829	1.824	1.830	1.843	1.848	1.853	1.858	1.863	470
480	1.863	1.868	1.872	1.879	1.883	1.889	1.891	1.898	1.902	1.907	1.912	480
490	1.912	1.917	1.922	1.927	1.932	1.937	1.942	1.947	1.952	1.957	1.962	490
500	1,962	1.967	1.972	1.977	1,981	1.986	1.991	1.996	2.001	2.006	2.011	500
510	2.011	2.016	2.021	2.026	2.031	2,036	2.041	2.046	2.051	2.056	2.061	510
520	2.061	2.066	2.071	2.076	2.081	2.086	2.091	2.096	2.101	2.106	2.111	520
530 540	2.111	2.116	2.121	2.126	2.131 2.181	2.136	2.141 2.191	2.146	2.151 2.201	2.156	2.161	540
UEG F	ų	1	2	3	4	,	•			,	10	

Temperature in Degrees Fahrenheit^e

DEG F 0 1 2 3 4 5 6 7 THERMOELECTRIC VOLTAGE IN ABSOLUTE MILLIVO 550 2.211 2.216 2.221 2.227 2.232 2.237 2.242 2.247 560 2.262 2.267 2.277 2.282 2.887 2.292 2.297 570 2.313 2.318 2.323 2.328 2.398 2.343 2.348 580 2.363 2.348 2.374 2.382 2.445 2.445 580 2.414 2.419 2.425 2.430 2.435 2.446 2.439 2.343 2.445 2.4450 600 2.4455 2.471 2.4267 2.430 2.4452 2.4450 2.4450 2.4450 610 2.456 2.471 2.4262 2.430 2.4362 2.4582 2.592 2.591 2.458 2.548 2.548 2.548 2.548 2.548 2.548 2.548 2.548 2.548	8 2.252 2.302 2.353 2.404 2.455 2.506	9 2 • 257 2 • 307 2 • 358 2 • 409 2 • 460	10 2 • 262 2 • 313	DEG F
THERMOELECTRIC VOLTAGE IN ABSOLUTE MILLIVO 550 2.211 2.216 2.221 2.227 2.232 2.237 2.222 2.227 560 2.262 2.267 2.232 2.237 2.229 2.237 2.229 570 2.313 2.318 2.323 2.328 2.338 2.332 2.343 2.343 2.343 2.399 580 2.363 2.368 2.379 2.384 2.399 2.394 2.399 590 2.414 2.445 2.440 2.446 2.445 2.440 2.445 2.450 600 2.455 2.476 2.461 2.486 2.496 2.501 610 2.517 2.527 2.532 2.537 2.542 2.542 2.542 2.542 2.542 620 2.658 2.573 2.558 2.542 2.599 2.504 2.599 2.506 630 2.6620 2.657 2.6532 2.6630 2.657 2.6656	2.252 2.302 2.353 2.404 2.455	2 • 257 2 • 307 2 • 358 2 • 409 2 • 460	2.262	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.252 2.302 2.353 2.404 2.455	2.257 2.307 2.358 2.409 2.460	2.262	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.302 2.353 2.404 2.455	2•307 2•358 2•409 2•460	2.313	550
5/0 2.4113 2.418 2.423 2.428 2.433 2.433 2.434 2.429 580 2.563 2.568 2.474 2.379 2.384 2.438 2.394 2.499 590 2.414 2.419 2.425 2.430 2.435 2.440 2.445 2.450 600 2.465 2.411 2.426 2.481 2.486 2.440 2.445 2.450 600 2.465 2.411 2.476 2.481 2.486 2.491 2.496 2.501 610 2.517 2.522 2.527 2.532 2.537 2.542 2.548 2.594 2.594 2.594 2.594 2.594 2.594 2.594 2.592 2.501 600 2.656 2.573 2.578 2.584 2.593 2.594 2	2.353 2.404 2.455 2.506	2.358 2.409 2.460		560
500 2:414 2:419 2:425 2:430 2:384 2:384 2:384 2:384 2:384 2:394 500 2:414 2:419 2:425 2:430 2:435 2:445 2:445 2:456 600 2:445 2:414 2:419 2:425 2:430 2:445 2:445 2:456 610 2:517 2:527 2:532 2:537 2:542 2:542 2:542 2:558 620 2:568 2:573 2:578 2:584 2:599 2:594 2:599 2:594 2:599 2:594 2:599 2:594 2:599 2:594 2:599 2:594 2:599 2:594 2:599 2:594 2:599 2:594 2:599 2:656 6:40 2:651 2:656 4:65 2:651 2:656 4:65 2:651 2:656 4:65 2:651 2:656 4:65 2:651 2:656 4:65 2:657 2:658 2:697 2:703 2:708 2:708 2:708 <td>2.506</td> <td>2.409</td> <td>2.363</td> <td>570</td>	2.506	2.409	2.363	570
600 2.465 2.471 2.476 2.481 2.486 2.491 2.496 2.501 610 2.517 2.522 2.527 2.532 2.537 2.542 2.548 2.553 620 2.568 2.573 2.578 2.584 2.589 2.594 2.599 2.504 630 2.620 2.625 2.630 2.635 2.640 2.666 2.651 2.656 640 2.672 2.677 2.682 2.687 2.697 2.697 2.703 2.708	2.506		2•414 2•465	580 590
610 2.517 2.522 2.527 2.532 2.537 2.542 2.548 2.553 620 2.568 2.573 2.578 2.554 2.569 2.594 2.599 2.694 630 2.620 2.625 2.630 2.635 2.640 2.666 2.651 2.656 640 2.672 2.677 2.682 2.687 2.697 2.697 2.703 2.708		2.512	2.517	600
620 2.558 2.573 2.589 2.589 2.599 2.599 2.604 630 2.620 2.625 2.630 2.635 2.640 2.651 2.656 640 2.672 2.677 2.682 2.687 2.697 2.703 2.708	2.558	2.563	2.568	610
640 2.672 2.677 2.682 2.687 2.697 2.703 2.708	2.609	2.615	2.620	620
	2.661 2.713	2.666 2.718	2 • 6 7 2 2 • 7 2 3	630 640
DOU 20123 20729 20734 20739 20744 20749 2.755 2.766	2.745	2.770	2 775	4.50
660 2.775 2.781 2.786 2.791 2.796 2.801 2.807 2.812	2.817	2.822	2.828	660
670 2.828 2.833 2.838 2.843 2.848 2.854 2.859 2.864	2.869	2 875	2.880	670
680 2.880 2.885 2.890 2.895 2.901 2.906 2.911 2.916	2.922	2.927	2.932	680
690 2.932 2.937 2.943 2.948 2.953 2.958 2.964 2.969	2.974	2.979	2.985	690
700 2.985 2.990 2.995 3.000 3.006 3.011 3.016 3.022	3.027	3.032	3.037	700
710 3.037 3.043 3.048 3.053 3.058 3.064 3.069 3.074	3:080	3.085	3.090	710
720 3.090 3.095 3.101 3.106 3.111 3.117 3.122 3.127	3.132	3.138	3.143	720
740 3.196 3.201 3.207 3.212 3.217 3.223 3.228 3.233	3.185	3.191	3.196	730 740
750 2 249 2.254 2.240 2 245 2 270 2 274 2 281 2 284	2 202	2 207	2 202	750
760 $3_{*}302$ $3_{*}308$ $3_{*}313$ $3_{*}318$ $3_{*}320$ $3_{*}320$ $3_{*}231$ $3_{*}230$	3.245	3.350	3+302	750
770 3.356 3.361 3.366 3.372 3.377 3.382 3.388 3.393	3.398	3.404	3.409	770
780 3.409 3.414 3.420 3.425 3.430 3.436 3.441 3.447	3+452	3.457	3.463	780
790 3.463 3.468 3.473 3.479 3.484 3.489 3.495 3.500	3.506	3,511	3.516	790
800 3.516 3.522 3.527 3.532 3.538 3.543 3.549 3.554	3.559	3,565	3.570	800
810 3.570 3.575 3.581 3.586 3.592 3.597 3.602 3.608	3.613	3.619	3.624	810
820 3.624 3.629 3.635 3.640 3.645 3.651 3.656 3.662	3.667	3.672	3.678	820
830 3.073 3.737 3.743 3.749 3.754 3.759 3.744 3.770	3.721	3,726	3.732	830
040 Jerst Jerst Jerst Jerst Jerst Jerst Jerst Jerst	3.775	2.101	3.700	840
850 3:786 3:791 3:797 3:802 3:808 3:813 3:819 3:824 860 3:840 3:846 3:851 3:857 3:862 3:867 3:873 3:878	3.829	3.835	3.840	850
870 3.895 3.900 3.906 3.911 3.916 3.922 3.927 3.933	3.928	3,944	3.949	870
880 3.949 3.955 3.960 3.965 3.971 3.976 3.982 3.987	3.993	3,998	4.004	880
890 4.004 4.009 4.015 4.020 4.025 4.031 4.036 4.042	4.047	4.053	4.058	890
900 4.058 4.064 4.069 4.075 4.080 4.086 4.091 4.096	4.102	4.107	4.113	900
910 4.113 4.118 4.124 4.129 4.135 4.140 4.146 4.151	4.157	4.162	4.168	910
720 4.100 4.173 4.173 4.174 4.184 4.190 4.195 4.201 4.20b 930 4.223 4.228 4.234 4.239 4.236 4.256 4.256 4.254 4.241	4+212	4 • 217	4.223	920
940 4.278 4.283 4.289 4.294 4.300 4.305 4.311 4.316	4.322	4.327	4.333	950
950 4.333 4.338 4.344 4.349 4.355 4.360 4.366 4.371	4.477	4.382	4.388	950
960 4.388 4.393 4.399 4.404 4.410 4.415 4.421 4.426	4.432	4.438	4.443	960
970 4.443 4.449 4.454 4.460 4.465 4.471 4.476 4.482	4.487	4 493	4.498	970
980 4.498 4.504 4.509 4.515 4.521 4.526 4.532 4.537	4.543	4.548	4.554	980
990 4.554 4.559 4.565 4.570 4.576 4.582 4.587 4.593	4 • 5 98	4.604	4.609	990
1.000 4.609 4.615 4.620 4.626 4.632 4.637 4.643 4.648	4.654	4.659	4.665	1,000
1,010 4,665 4,670 4,676 4,682 4,687 4,693 4,698 4,704	4.709	4.715	4.721	1,010
1,020 $4,721$ $4,720$ $4,721$ $4,720$ $4,721$ $4,723$ $4,729$ $4,814$ $4,754$ $4,7601,030$ $4,776$ $4,782$ $4,788$ $4,793$ $4,799$ $4,804$ $4,810$ $4,815$	4 • 765	4.1/1	4 / 76	1,020
1,040 4.832 4.838 4.843 4.849 4.855 4.860 4.866 4.871	4.877	4.883	4.885	1,040
1,050 4,888 4,894 4,899 4,905 4,911 4,916 4,922 4,927	4.032	4.939	4.944	1.050
1,060 4,944 4,950 4,956 4,961 4,967 4,972 4,978 4,984	4.989	4.995	5.000	1,060
1.070 5.000 5.006 5.012 5.017 5.023 5.029 5.034 5.040	5.045	5.051	5.057	1+070
1.080 5.057 5.062 5.068 5.074 5.079 5.085 5.090 5.096	5.102	5.107	5.113	1+080
19070 2.112 2.114 2.124 2.130 5.136 5.141 5.147 5.153	5.158	5.164	5.169	1,090
1+100 5+169 5+175 5+181 5+186 5+192 5+198 5+203 5+209	5.215	5.220	5.226	1,100
1,110 Jecco Jecji Decij	5 • Z / 1	5.217	5.203	1+110
1+130 5+339 5+345 5+351 5+356 5+362 5+368 5+373 5+379	5.385	5,391	5.394	~ 1.130
1.140 5.396 5.402 5.408 5.413 5.419 5.425 5.430 5.436	5.442	5.447	5.453	1.140
1,150 5,453 5,459 5,465 5,470 5,476 5,482 5,487 5,493	5.499	5.504	5.510	1.150
1,160 5,510 5,516 5,522 5,527 5,533 5,539 5,544 5,550	5.556	5,562	5.567	1,160
1+170 5.567 5.573 5.579 5.585 5.590 5.596 5.602 5.608	5.613	5.619	5+625	1,170
1+180 5+625 5+631 5+636 5+642 5+648 5+653 5+659 5+665 1+190 5+682 5+688 5+694 5-700 5-705 5-711 5-717 5-707	5.671	5.676	5.682	1,180
	20128	2+134	2 • /40	1,190
DEG F 0 1 2 3 4 5 6 7				

EMF in	Absolute	Millivolts	i	Ter	Reference Junctions at 32							
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	_15			
1.200	5.740	5.746	5.751	5.757	5.763	5.769	5.774	5.780	5.786	5.792	5.797	1.200
1,210	5.797	5.803	5.809	5.815	5.821	5.826	5.832	5.838	5.844	5.849	5.855	1,210
1+220	5.855	5.861	5.867	5.873	5.878	5.884	5.890	5.896	5.902	5.907	5.913	1,220
1,230	5.913	5.919	5.925	5.931	5.936	5.942	5.948	5.954	5.960	5.965	5.971	1,230
1,240	5.9/1	2.911	2,983	2.989	5.994	6.000	6.000	6.012	6.018	6.023	6.029	1,240
1,250	6.029	6.035	6.041	6.047	6.052	6.058	6.064	6.070	6.076	6.082	6.087	1,250
1,260	6.087	6.093	6.099	6.105	6.111	6.117	6.122	6.128	6.134	6.140	6.146	1,260
1,280	6.146	6.152	6.157	6.163	6.169	6.175	6.181	6.187	6.192	6.198	6.204	1,270
1,290	6,263	6.268	6,274	6.280	6.286	6.292	6.298	6.304	6.309	6.315	6.321	1.290
1,300	6,321	6.327	6.333	6.339	6.345	6.350	6.356	6.362	6.368	6.374	6.380	1,300
1,320	6.300	0.300	6.450	0.397	6 • 4 0 3	6.409	6.415	6.421	6+421	6.433	6.439	1,310
1.330	6.498	6.503	6.509	6.515	6.521	6.527	6.533	6.539	6.545	6.551	6.557	1,330
1,340	6.557	6.562	6.568	6.574	6.580	6.586	6.592	6.598	6.604	6,610	6.616	1,340
1,360	6.616	6+622	6.627	6.633	6.639	6.645	6.651	6.65/	6.663	6.669	6.675	1,350
1.370	6.734	6.740	6.746	6.752	6.758	6.764	6.770	6+776	6.782	6.788	6.794	1:300
1,380	6.794	6.800	6.805	6.811	6.817	6.823	6.829	6.835	6.841	6.847	6.853	1.380
1,390	6.853	6.859	6.865	6.871	6.877	6.883	6.889	6.895	6.901	6.907	6.913	1,390
1.600	4 913	4 010	4 975	4 021	6 027	6 0 6 3	6 0/0	6 051			(0=2	
1.410	6.972	6.978	6-984	6.900	6.996	7.002	7.009	7.014	7 020	7 034	7.022	1,400
1,420	7.032	7.038	7.044	7.050	7.056	7.062	7.068	7.074	7+020	7.086	7.092	1,410
1,430	7.092	7.098	7.104	7.110	7.116	7+122	7.128	7.134	7.140	7 146	7.152	1.430
1,440	7.152	7.158	7,164	7.170	7.176	7.182	7.188	7.194	7.200	7.206	7.212	1.440
1.450	7.212	7.718	7.224	7.230	7 226	7 363	7 24.8	7 264	7 140	7 744	7 272	1 (60
1.460	7.272	7.278	7.285	7.291	7.297	7.303	7.309	7.315	7.321	7.327	7.333	1.450
1,470	7.333	7.339	7.345	7.351	7.357	7.363	7.369	7 375	7.381	7.387	7.393	1.470
1,480	7.393	7.399	7.405	7.411	7.417	7.423	7.429	7.436	7.442	7.448	7.454	1,480
1,490	7.454	7•460	7.466	7.472	7.478	7.484	7.490	7.496	7.502	7.508	7.514	1,490
1,500	7.514	7.520	7.526	7.533	7.539	7.545	7.551	7.557	7.563	7.569	7.575	1.500
1,510	7.575	7.581	7.587	7.593	7.599	7.605	7.612	7.618	7.624	7.630	7.636	1,510
1,520	7.636	7.642	7.648	7.654	7.660	7.666	7.672	7.679	7.685	7.691	7.697	1,520
1,530	7.697	7.703	7.709	7.715	7.721	7.727	7.733	7.740	7.746	7.752	7.758	1,530
1,540	1.190	/ . / 04	1.110	1.110	10182	/ . /88	1.195	7.801	7.08.7	7.813	7.819	1,540
1,550	7.819	7.825	7.831	7.837	7.843	7.850	7.856	7.862	7.868	7.874	7.880	1,550
1,560	7.880	7.886	7.892	7.899	7.905	7.911	7.917	7.923	7.929	7.935	7.942	1,560
1,570	7.942	7.948	7.954	7.960	7.966	7.972	7.978	7.985	7.991	7,997	8.003	1.570
1,590	8.065	8.071	8.077	8+021	8.089	8.034	8.040	8.108	8+052	8.120	8.065	1,580
												11270
1,600	8.126	8.132	8.138	8.145	8.151	8.157	8,163	8+169	8.176	8.182	8.188	1.600
1,620	8.250	8.256	8 262	8.205	8.213	8.219	8.225	8.231	8.237	8.244	8.250	1,610
1,630	8.312	8.318	8.324	8.330	8.336	8.343	8.349	8.355	8.361	8.368	8.374	1,620
1+640	8.374	8.380	8.386	8.392	8.399	8.405	8.411	8.417	8.423	8.430	8+436	1+640
1.650	9 436	9 442	8 4 4 9	0 / 5 5	8 (()	0 7	0 / 70		a . a/			
1,660	8-498	8.504	8.611	8.517	8.573	8.620	8,536	8-4/9	8 480	8.492	8+498	1,650
1,670	8.560	8.567	8.573	8.579	8.585	8.592	8,598	8.604	8.610	8.617	8.623	1+670
1,680	8.623	8.629	8,635	8.642	8.648	8,654	8.660	8+667	8.673	8.679	8.685	1,680
1,690	8.685	8.692	8.698	8.704	8.711	8.717	8.723	8.729	8.736	8.742	8.748	1:690
1.700	8.748	8.754	8,761	8.767	8.773	8.780	8.786	8.792	8.798	8.805	9.811	1.700
1,710	8,811	8,817	8.823	8.830	8.836	8.842	8.849	8.855	8.861	8.867	8.874	1,710
1,720	8.874	8.880	8.886	8.893	8.899	8.905	8,912	8.918	8.924	8.930	8.937	1,720
1,730	8.937	8.943	8.949	8.956	8.962	8.968	8.975	8.981	8.987	8.993	9.000	1,730
1 \$ 740	9.000	9.006	9.012	9.019	9.025	9.031	9.038	9.044	9.050	9.057	9.063	1,740
1,750	9.063	9.069	9.076	9.082	9.088	9.095	9.101	9.107	9.114	9.120	9.126	1.750
1,760	9.126	9.133	9.139	9.145	9.152	9.158	9.164	9.171	9.177	9.183	9.190	1,760
1,770	9.190	9.196	9.202	9.209	9.215	9.221	9.228	9.234	9.240	9.247	9.253	1,770
1,780	9.253	9.259	9.266	9.272	9.278	9.285	9,291	9.298	9.304	9.310	9.317	1,780
T # (90	A+211	9.323	9.329	9+336	9+342	9+348	¥,355	9.361	9.368	9.374	9.380	1,790
1,800	9.380	9.387	9.393	9.399	9.406	9.412	9.419	9.425	9.431	9.438	9.444	1,800
1+810	9.444	9.450	9.457	9.463	9.470	9.476	9.482	9.489	9.495	9.502	9.508	1+810
1.820	9.508	9.514	9.521	9.527	9.533	9.540	9.546	9.553	9.559	9.565	9.572	1,820
1,840	9.636	9.642	7000 90649	9.655	9.662	9.604	9.674	9.681 9.681	7.623 9.687	9.630	9.636	1,830
												11040
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

EMF in Absolute Millivolts Reference Junctions at 32 F 0 DEG F n 2 5 6 7 8 10 DEG F • THERMDELECTRIC VOLTAGE IN ABSOLUTE MILLIVOLTS 9.700 9.764 9.829 9.893 9.726 9.790 9.855 9.707 9.771 9•713 9•777 9•732 9•797 9.719 9.739 9.745 9.752 9.758 9.764 1,850 1,850 9.822 9.887 9.951 9.784 9.803 9.809 9.816 9.829 1.860 9.835 9.900 9.964 9.867 9.932 9.997 1,870 9.842 9.906 9.848 9.913 9.861 9.926 9.874 9.938 9.893 9.880 1,870 9.919 9.945 1,880 1,890 9,958 9.971 9.97 9.984 9.990 10.003 10+010 10.016 10.023 1.890 10.023 1,900 10.029 10.036 10+042 10.048 10.055 10.061 10.068 10.074 10.081 10.087 1.900 1,910 1,920 1,930 10.094 10.159 10.100 10.107 10.113 10.120 10.133 10.139 10.146 10.152 10.087 10.126 1,910 10.152 10.191 10.211 10.230 10.237 10.250 10.276 1,930 10.224 10.243 10.256 10.263 10.269 10.282 1,940 10.282 10.289 10.295 10+302 10,308 10.315 10.321 10+334 10.341 10.348 10.348 1,950 10.354 10.361 10.367 10.374 10.380 10.387 10.393 10.400 10.406 10.413 1,950 10.426 10.491 10.557 10.445 10.511 10.576 10.465 10.531 10.596 1,960 10.432 10.439 10.452 10.459 10.472 10.478 1,960 10.413 10.419 10.478 10.485 1,980 10.544 10.550 10.563 10.570 10.583 10.589 10.603 10.609 1.980 1,990 10.609 10.616 10.622 10.629 10.635 10.642 10.648 10.655 10+662 10.668 10.675 1:990 2.000 10.675 10.681 10.747 10.688 10.694 10.701 10.714 10.780 10.721 10.786 10•727 10•793 10.734 10.800 2,000 2,010 10.708 10.740 10.740 10.806 10.872 2,010 10.754 10.760 10.767 10.773 10.806 10.813 10.846 10.912 10.977 10.852 10.918 10.984 10.859 10.925 10.991 10.865 10.931 10.997 2,020 10.832 10.826 10.839 10.872 2,020 2.030 10.885 10.892 10.898 10.905 10.938 11.004 2,030 2,040 10.938 10.944 10.951 10.958 10.964 2.050 11.004 11.010 11.017 11.024 11.030 11.037 11.043 11.050 11.057 11.063 11.070 2.0050 11.070 11.136 11.202 11.1037 11.103 11.169 11.235 2,060 11.076 11.096 11.110 11.116 11.123 11.129 11.083 11.090 11.136 2:060 11.143 11.149 11.162 2.080 11.209 11.222 11.242 11.248 11.265 11.262 11.268 2,090 11.275 11.288 11.295 11.308 11.335 11,268 11.282 11.301 11.328 11.321 2,090 2.100 11.335 11.348 11.361 11.381 11.341 11.355 11-368 11.374 11.388 11.394 11.401 2.100 11.381 11.428 11.494 11.560 11.627 11.447 11.514 11.580 11.647 11.401 11.467 11.534 11.408 11.474 11.414 11.481 2,110 2,120 11.421 11.487 11.554 11•434 11•501 11.441 11.454 11.461 11.467 2:110 2.120 11.574 11.587 11.594 11.600 2,130 2,130 11.541 11.547 11-567 2,140 11.600 11.607 11.614 11.620 11.634 11.687 11.754 11.820 11.694 11.760 11.827 2.150 11.667 11.674 11.740 11.680 11.700 11.707 11.714 11.720 11.727 11.734 2,150 2,160 11.734 11.747 11.767 11.774 11.780 11.794 11.800 11.787 2,160 11.854 11.807 11.874 11.900 11.907 11.914 11.920 11.927 2,180 11.867 11.880 11.887 11.894 11.934 2,180 11.934 11.954 11.994 2,190 11.947 11.960 12.001 12.001 12.067 12.134 12.201 12.268 2.200 12.007 12.014 12.021 12.087 12.027 12.034 12.041 12.047 12.114 12.054 12.061 12.067 2,200 12.081 12.107 12.128 12.074 12.094 12.101 2,210 12.121 12.134 2,210 2,220 12.141 12.154 12.161 12.181 12.188 2.220 2,230 12.208 12.221 12.228 12.235 12.241 12.248 12.261 12.268 2 . 230 2 . 240 12,215 12.255 12.282 12.335 12.402 12.469 12.349 12.416 12.483 12.355 12.362 12.429 12.496 12.369 12.436 12.503 12.382 12.395 2.250 12.342 12.375 12.389 12.402 2,250 12.582 12.449 12.516 12.583 12.409 12.422 12.469 12.442 12.510 12.577 2.260 12.456 12.463 2.260 12.530 2,270 2.270 12.476 12.604 12.536 12.550 12.570 2,280 12,563 12.590 12.604 12.617 12.624 12.610 12.630 12.637 12.644 12.651 12.657 12.664 2,290 12.691 12.758 12.825 2.300 12.671 12.677 12.684 12.698 1,2.,704 12.731 12.738 12.711 12.718 12.724 2+300 12.738 12.805 12.872 12.745 12.812 12.879 12.751 12.819 12.886 12.765 12.832 12.899 12.778 12.845 12.913 12.785 12.852 12.919 2:310 2:320 12.771 12.839 12.792 2,310 12.798 12.805 12.866 12.872 2,330 12.893 12,906 12.926 2,330 2,340 12.940 12.946 12.953 12.960 12.967 12.973 12.980 12.987 12.993 13.000 13.007 2:340 13.007 2,350 13.014 13.020 13.027 13.034 13.047 13.054 13.061 13.067 13.074 2.350 13.041 13.081 13.148 13.101 13.168 13.108 13.115 13.128 2,360 2.360 13.074 13.088 13.094 13.121 13.135 13.142 13.189 2,370 13.142 13.155 13.162 13.202 13.209 13.276 2.380 13.216 13.209 13.222 13.229 13.236 13.243 13.249 13.263 13.269 2.380 2.390 13.276 13.290 13.296 13.303 13.310 13.317 13.323 13.330 13.337 13.344 2.390 13.404 13.472 13.539 13.606 13.674 2.400 13.357 13.371 13.384 13.391 13.397 13.344 13.350 13.364 13.377 13.411 2+400 13.411 13.418 13.424 13.438 13.505 13.573 13.451 13.465 13.478 2,410 13.431 13.499 13.566 13.458 2,410 13.445 13.512 13.579 13.647 2:420 13.519 13.526 2:420 2,430 13.546 13,552 13.559 13.600 13.613 2.430 2,440 13,613 13.620 13.627 2,440 13.633 13.640 13.681 13.654 13.660 13.667 2,450 13.681 13.714 13.782 13.721 13.788 2,450 13.687 13.694 13.701 13.708 13.728 13.734 13.741 13.748 13.748 13.768 2,460 13.755 13.761 13.829 13.775 13.795 13+802 13.809 13.815 2+460 2+470 13.842 13.910 13.977 13.849 13.916 13.984 13.856 13.822 13.836 13.869 2,480 2,490 13.883 13.903 13.93C 13.997 13.890 13.957 13.896 13.937 13.943 13.950 2.480 14.011 13,964 13.991 14+004 14.018 2,490 ٥ 4 5 7 8 9 10 DEG F DEG F 6 3 2 з

* Converted from degrees Celsius (IPTS 1968),

Temperature in Degrees Fahrenheit^a

EMF in	Absolute	Millivolt	5	101	inperature	in Degre	co ramen	uen		ce Junctions at 32		
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
2,500	14.018	14.024	14.031	14.038	14.045	14,051	14.058	14.065	14.072	14.07B	14.085	2,500
2,510	14,085	14.092	14.098	14.105	14.112	14+119	14.125	14.132	14.139	14.146	14 • 152	2,510
2,520	14,152	14.159	14.166	14.173	14.179	14,186	14.193	14.200	14+206	14,213	14.220	2,520
2,530	14.220	14.226	14.233	14.240	14.247	14.253	14.260	14.267	14.274	14.280	14.287	2,530
2,540	14.287	14.294	14.301	14.307	14.314	14.321	14.328	14.334	14•341	14.348	14.354	2,540
2,550	14.354	14.361	14.368	14.375	14.381	14.388	14.395	14.402	14.408	14.415	14.422	2:550
2.570	14.489	14.496	14.503	14.509	14.516	14.523	14.530	14.536	14.543	14.550	14.556	2,570
2.580	14,556	14.563	14.570	14.577	14.583	14.590	14.597	14.604	14.610	14.617	14.624	2.580
2,590	14.624	14.631	14.637	14.644	14.651	14.657	14.664	14.671	14.678	14.684	14.691	2,590
2,600	14.691	14.698	14.705	14.711	14.718	14.725	14.731	14.738	14.745	14.752	14.758	2,600
2,610	14.758	14.765	14.772	14.778	14.785	14.792	14.799	14.805	14+812	14.819	14.826	2,610
2,620	14.826	14.932	14.839	14.846	14.852	14.859	14.866	14.873	14.879	14.886	14.893	2.620
2,530	14.093	14.899	14.906	14.913	14.920	14.926	14.933	14.940	14.946	14.952	14.960	2,630
21640	14.960	14.967	14.973	14,980	14.987	14.994	12+000	15.007	15+014	15.020	15.027	2.640
2,650	15.027	15.034	15.041	15.047	15.054	15.061	15.067	15.074	15+081	15.088	15.094	2,650
2,660	15.094	15.101	15.108	15.114	15.121	15.128	15.134	15.141	15.148	15.155	15.161	2,660
2 .670	15,161	15.168	15.175	15.181	15.188	15.195	15.202	15.208	15.215	15.222	15.228	2,670
2,680	15.228	15.235	15.242	15.248	15.255	15.262	15.269	15.275	15.282	15.289	15.295	2.680
2,690	15.295	15.302	15,309	15.315	15.322	15.329	15.336	15.342	15.349	15,356	15.362	2,690
2,700	15.362	15.369	15.376	15.382	15.389	15.396	15.403	15.409	15.416	15.423	15 • 4 2 9	2 .700
2,710	15.429	15.436	15.443	15.449	15.456	15.463	15.469	15.476	15+483	15+490	15+496	2,710
2 . 720	15.496	15.503	15.510	15.516	15.523	15.530	15.536	15.543	15.550	15.556	15.563	2,720
2,730	15.563	15.570	15.576	15.583	15.590	15.597	15.603	15.610	15.617	15.623	15.630	2,730
2,740	15.630	15.637	15.643	15.650	15.657	15.663	15.670	15+677	15.683	15.690	15.697	2,740
2,750	15.697	15.703	15.710	15.717	15.723	15.730	15.737	15.743	15 • 750	15,757	15.763	2:750
2,760	15.763	15.770	15.777	15.783	15.790	15.797	15.804	15.810	15.817	15.824	15.830	2,760
2,770	15.830	15.837	15.844	15.850	15.857	15.864	15.870	15.877	15.883	15.890	15.897	2,770
2,780	15.897	15.903	15.910	15.917	15.923	15.930	15.937	15.943	15.950	15.957	15.963	2.780
2,790	15.963	15.970	15.977	15.983	15.990	15.997	16.003	16.010	16.017	16.023	16.030	2.790
2,800	16.030	16.037	16.043	16.050	16.057	16.063	16.070	16.077	16+083	16.090	16+096	2,800
2,810	16.090	16.103	16+110	16.110	16.123	16+130	16.136	16.143	16.150	16.150	16+163	2+810
2,820	16.229	16+170	16.243	16.269	16.266	16.242	16 2/9	16+207	16+210	16 - 299	16+229	2+020
2,840	16.296	16.302	16.309	16.315	16.322	16.329	16.335	16.342	16+349	16.355	16.362	2,840
2,850	16.362	16.368	16.375	16.382	16.388	16.395	16.402	16.408	16+415	16.421	16+428	2.850
2,860	16,428	16.435	16.441	16.448	16.454	16.461	16.468	16.474	16.481	16.488	16.494	2.860
2,870	16.494	16.501	16,507	16.514	16.521	16.527	16.534	16.540	16.547	16.554	16.560	2,870
2,880	16,560	16.567	16.573	16.580	16.587	16.593	16.600	16.606	16+613	16+620	16+626	2+880
2,890	16.626	16.633	16.639	16.646	16.653	16.659	16,666	16.672	16.679	16.686	16.692	2 • 890
2,900	16.692	16+699	16.705	16.712	16+719	16.725	16.732	16.738	16.745	16.751	16+758	2,900
2,910	16.758	16.765	16.771	16.778	16.784	16.791	16.797	16.804	16 • 811	16.817	16.824	2,910
2,920	16.824	16.830	16.837	16.844	16.850	16.857	16.863	16.870	16.876	16.883	16.890	2,920
2,930	16.890	16.896	16.903	16.909	16,916	16.922	16.929	16.935	16.942	16.949	16.955	2,930
2.940	16,955	16.962	16.968	16.975	16,981	16,988	16.995	17.001	17.008	17.014	17,021	2,940
2,950	17.021	17.027	17.034	17.040	17.047	17.053	17.060	17.067	17.073	17.080	17.086	2:950
2,960	17.086	17.093	17.099	17.106	17.112	17.119	17.125	17.132	17.139	17.145	17.152	2,960
2,970	17.152	17.158	1/+165	17.171	17.178	17.184	17,191	17.197	17+204	17.210	17.217	2,970
2,980	1/.21/	17.223	17.230	17.237	17.243	17+250	17.256	17.263	17.269	17.276	17+282	2+980
2.990	11+202	17.289	11.5290	17+302	17+308	17.319	17.321	17.328	17.334	17.541	11.341	5 4 4 40
3,000	17.347	17.354	17.360	17.367	17.373	17.380	17.386	17.393	17.399	17.406	17.412	3.000
3,010	17.412	17.419	17.425	17.432	17.438	17.445	17.451	17.458	17.464	17.471	17.477	3,010
3,020	17.477	17.484	17.490	17.497	17.503	17.510	17.516	17.523	17.529	17.536	17.542	3+020
3.030	17.542	17.549	17.555	17.562	17.568	17.575	17.581	17.588	17.594	17.601	17.607	3.030
3,040	17.607	17.614	1/+620	17.627	17.633	17.639	11.646	17.652	17+059	1/*002	11.012	31040
3,050	17.672	17.678	17.685	17.691	17.698	17.704	17.711	17.717	17+723	17.730	17.736	3,050 3,060
3.070	17.801	17.907	17.814	17.820	17.824	17.832	17.839	17.844	17.852	17.859	17.865	3.070
3.080	17.845	17.871	17.879	17.894	17.891	17.897	17.903	17.910	17.914	17.923	17.929	3.080
3.090	17.929	17,935	17.942	17.948	17.954	17.961	17.967	17.974	17.980	17.986	17.993	3,090
3.100	17.993	17.009	18.005	14.013	19.019	18.024	18-031	18.037	18-043	18-050	18-056	3.100
3-110	18.054	18.062	18.069	18.075	18.081	18.089	18.094	18.100	18.107	18.113	18,119	3.110
3.120	18.119	18.124	18.132	18.138	18.145	18,151	18,157	18,163	18.170	18,176	18.182	3,120
3+130	18.182	18.189	18.195	18.201	18.207	18.214	18.220	18.226	18 . 232	18.239	18.245	3,130
3,140	18.245	18.251	18.257	18.264	18.270	18.276	18.282	18.289	18 . 295	18.301	18.307	3,140
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

*Converted from degrees Celsius (IPTS 1968).

Temperature in Degrees Fahrenheit^o

Temperature in Degrees Fahrenheit ^a												
EMF in	Absolute	Millivolts	s							Kelerend	e Junction	sat 52 r
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
		_	тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
3,150	18,307	18.313	18.320	18.326	18.332	18.338	18.344	18,351	18.357	18,363	18.369	3,150
3,160	18,369	18.375	18.381	18.388	18.394	18.400	18,406	18,412	18.418	18.424	18.431	3,160
3.170	18,431	18.437	18,443	18.449	18.455	18.461	18,467	18.473	18.479	18.486	18.492	3+170
3.180	18.492	18.498	18.504	18,510	18,516	18,522	18,528	18.534	18.540	18.546	18,552	3:180
3,190	18,552	18.558	18,564	18,570	18.576	18.582	18,588	18.594	18.600	18,606	18.612	3,190
3,200	18,612	18.618	18.624	18,630	18.636	18.642	18.648	18.654	18.660	18.666	18.672	3,200
3,210	18,672	18.678	18.684	18.690	18.696							3.210
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F

TABLE 53—Type S thermocouples.

EMF in	Absolute	Millivolt	s	•		Ũ		,		Refere	nce Junctio	ons at 0 C
DEG C	0	1	z	3	4	5	6	7	8	9	10	DEG Ć
			1	HERMOELE	CTRIC VO	LTAGE IN	ABSOLUT	E MILLIVO	DL T S			
-50	-0.236											-50
-40	-0.194	-0.199	-0.203	-0.207	-0.211	-0.215	-0.220	-0.224	-0+228	-0.232	-0.236	-40
-30	-0.150	-0.155	-0.159	-0.164	-0.168	~0.173	-0.177	-0,181	-0.186	-0.190	-0.194	-30
-20	-0.103	-0.108	-0.112	-0.117	-0.122	-0.127	-0.132	-0.136	-0.141	-0.145	-0.150	-20
-10	-0.053	-0.058	-0.063	-0.068	-0.073	-0.078	-0.083	-0.088	-0.093	-0.098	-0.103	-10
- 0	0.000	-0.005	-0.011	-0.015	-0.021	-0.02/	-0.032	-0.037	-0+042	-0.046	-0.055	- 0
0	0.000	0.005	0.011	0.016	0.022	0.027	0.033	0.038	0.044	0.050	0.055	0
10	0.055	0.061	0.067	0.072	0.078	0.084	0.090	0.095	0.101	0.107	0.113	10
20	0.113	0.119	0.125	0.131	0.137	0.142	0.148	0.154	0.161	0.167	0.173	20
30	0.173	0.179	0.185	0.191	0.197	0.203	0+210	0.216	0-222	0.292	0.235	30 40
40	0.235	0+241	0.247	0.254	0.200	0.200	0.215	0.217	0+280	0.00	0.277	-0
50	0.299	0.305	0.312	0.318	0.325	0.331	0.338	0.345	0.351	0.358	0.365	50
60	0.365	0.371	0+378	0.385	0.391	0.398	0.405	0.412	0+419	0.425	0+432	50
10	0.452	0.439	0.516	0 5 7 7	0.630	0.537	0 544	0.551	0+455	0.566	0.502	80
90	0.573	0.580	0.587	0.594	0.602	0.609	0.616	0.623	0.631	0.638	0.645	90
100	0.645	0.653	0.660	0.667	0.675	0.682	0.690	0.697	0.704	0.712	0.719	100
110	0.719	0.727	0.734	0.742	0.749	0.151	0.764	0+112	0.780	0.864	0.872	120
120	0.873	0.802	0.897	0.818	0.825	0.833	0.041	0.926	0.836	0.942	0.950	130
140	0.950	0.957	0.965	0.973	0.981	0.989	0.997	1.005	1.013	1.021	1.029	140
150	1.029	1.037	1.045	1.053	1.061	1.069	1.077	1.085	1.093	1.101	1.109	150
160	1.109	1.11/	1.125	1+133	1.141	1.149	1.158	1 749	1.164	1.764	1.170	170
180	1.273	1.291	1.289	1,297	1.306	1.314	1.322	1.331	1.339	1.347	1.356	180
190	1.356	1.364	1.373	1.381	1.389	1.398	1.406	1.415	1.423	1.432	1.440	190
200	1.440	1.448	1.457	1.465	1.474	1.482	1.491	1.499	1.508	1.516	1.525	200
210	1 611	1.534	1.4742	1.637	1.545	1.654	1.663	1.671	1.680	1.689	1.698	220
230	1.698	1.706	1.715	1.774	1.732	1.741	1.750	1.759	1.767	1.776	1.785	230
240	1.785	1.794	1.802	1.811	1.820	1.829	1.838	1.846	1.855	1.864	1.873	240
	1 070			1 000	1 000	1 017	1 0 7 (1 025	1 044	1 05 1	1 067	750
250	1.962	1.971	1.979	1.988	1.997	2.006	2.015	2.024	2.033	2.042	2.051	260
270	2.051	2.060	2.069	2.078	2.087	2.096	2.105	2.114	2,123	2.132	2.141	270
280	2.141	2.150	2.159	2.168	2.177	2.186	2,195	2.204	2.213	2.222	2.232	280
290	2.0232	2.241	2.250	2.0259	2.268	2.277	2.286	2.295	2.304	2.314	2.323	290
300	2.323	2.132	2.341	2.350	2.359	2.368	2.378	2.387	2.396	2.405	2.414	300
310	2.414	2.424	2.433	2.442	2.451	2.460	2.470	2.479	2.488	2.497	2.506	310
320	2,506	2.516	2.525	2.534	2.543	2.553	2,562	2.571	2.581	2.590	2.599	320
330	2.599	2.608	2.618	2.627	2.636	2.646	2.655	2.664	2.674	2.683	2.692	330
340	2.692	2.702	2./11	2.720	2.130	2.139	2.148	2./58	2.161	2.110	2.186	340
350	2.786	2.795	2.805	2.814	2.823	2.833	2.842	2.852	2.861	2.870	2.880	350
360	2.880	2.889	2.899	2.908	2.917	2.927	2.936	2.946	2.955	2.965	2.974	360
370	2,974	2.984	2.993	3.003	3.012	3.022	3.031	3.041	3.050	3.029	3.069	370
390	3.164	3.174	3.183	3.193	3.202	3.212	3,221	3.231	3.741	3.250	3.260	390
570					,							
400	3.260	3.269	3.279	3.288	3.298	3,308	3.317	3.327	3.336	3.346	3.356	400
410	3.356	3,365	3.375	3.384	3.394	3.404	3.413	3.423	3.433	3+442	3+452	410
420	3.452	3.462	3.4/1	3.481	3+491	3.500	3 607	3.616	3.676	3,636	3.645	430
440	3.645	3,655	3.665	3.675	3.684	3.694	3.704	3.714	3.723	3.733	3.743	440
450	3.743	3.752	3.762	3.772	3.782	3.791	3.801	3.811	3.821	3.031	3.840	450
460	3,938	3.948	3.958	3.968	3.977	3.987	3.997	4.007	4.017	4.027	4.036	470
480	4.036	4.046	4.056	4.066	4.076	4.086	4.095	4.105	4.115	4.125	4.135	480
490	4,135	4.145	4.155	4.164	4.174	4.184	4.194	4.204	4.214	4.224	4.234	490
500	4 724	4 742	4 76 9	4 742	6 172	A 797	4.203	6.304	4-313	4.323	4.333	500
510	4.333	4.343	4.352	4.362	4.372	4.382	4.392	4.402	4.412	4.422	4.432	510
520	4.432	4.442	4.452	4.462	4.472	4.482	4.492	4.502	4.512	4.522	4.532	520
530	4.532	4.542	4.552	4.962	4.572	4.582	4.592	4.602	4.612	4.622	4.632	530
540	4.632	4.642	4.652	4.662	4.672	4.682	4.692	4.702	4.712	4.722	4.732	540
550	4.732	4.747	4.752	4.762	4.772	4.782	4.792	4.802	4.812	4.822	4.832	550
560	4.832	4.842	4.852	4.862	4,873	4.883	4.893	4.903	4.913	4.923	4.933	560
570	4,933	4.943	4.953	4.963	4.973	4.984	4.994	5.004	5.014	5.024	5.034	570
580	5.034	5.044	5.054	5.065	5.075	5.085	5.095	5.105	5.115	5.125	5.136	580
	5.130	7.146	7+100	7+166	2+1/6	5+186	5.197	9.207	5.211	1	20221	
DEGC	0	1	2	3	4	5	6	7	8	9	10	DEG C

Temperature in Degrees Celsius (IPTS 1968)

Temperature in Degrees Celsius (IPTS 1968)

EMF in Absolute Millivolts

Reference Junctions at 0 C

DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C
			тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILL1VO	LTS			
- 600	5,237	5.247	5.258	5.268	5.278	5.288	5.298	5.309	5.319	5.329	5,339	600
610	5,339	5+350	5.360	5.370	5.380	5.391	5,401	5.411	5.421	5.431	5+442	610
620	5.442	5.452	5.462	5.473	5.483	5.493	5.503	5.514	5.524	5.534	5.544	620
630	5.544	5.555	5.565	5.575	5.586	5.596	5.606	5.617	5.627	5.637	5.648	630
640	5.648	5.658	5.668	5.679	5.689	5.700	5.710	5.720	5.731	5.741	5.751	640
650	5,751	5.762	5.772	5.782	5.793	5.803	5.814	5.824	5.834	5.845	5.855	650
660	5.855	5.866	5.876	5.887	5.897	5.907	5.918	5.928	5.939	5.949	5.960	660
670	5.960	5.970	5,980	5.991	6.001	6.012	6.022	6.033	6.043	6.054	6.064	670
680	6.064	6.075	6.085	6.096	6.106	6.117	6.127	6.138	6.148	6.159	6.169	680
690	6.169	6.180	6.190	6.201	6.211	6,222	6.232	6.243	e.253	6.264	6.274	690
700	6.274	6.285	6.295	6.306	6.316	6.327	6.338	6.348	6.359	6.369	6.380	700
710	6.380	6.390	6.401	6.412	6.422	6.433	6.443	6.454	6.465	6.475	6.486	710
720	6.486	6.496	6.507	6.518	6.528	6.539	6.549	6.560	6.571	6.581	6.592	720
730	6.592	6.603	6.613	6.624	6.635	6.645	6.656	6.667	6+677	6.688	6.699	/30
740	6.699	6.709	6.720	6.731	5.141	6.152	6.763	6.773	6 • 784	6.195	6.805	740
750	6.805	6.816	6.827	6.838	6.848	6.859	6.870	6.880	6.891	6.902	6.913	750
760	6,913	6.923	6.934	6.945	6.956	6•966	6.977	6.988	6+999	7.009	7.020	760
770	7.020	7.031	7.042	7.053	7.063	7.074	7.085	7.096	7+107	7.117	7.128	770
780	7.128	7 • 1 39	7.150	7.161	7,171	7.182	7.193	7.204	7.215	7.225	7.236	780
790	7,236	7.247	7.258	7.269	7.280	7.291	(.301	7.312	7.323	7.334	7.345	790
800	7.345	7.356	7.367	7.377	7.388	7.399	7.410	7.421	7.432	7.443	7.454	800
810	7.454	7.465	7.476	7.486	7.497	7,508	7.519	7.530	7.541	7.552	7.563	810
820	7.563	7.574	7.585	7.596	7.607	7.618	7.629	7.640	7.651	7.661	7.672	820
830	7.672	7.683	7.694	7.705	7.716	7.727	7.738	7.749	7 • 760	7.771	7.782	830
840	7,782	7,793	7.804	7.815	7.826	7.837	/ .848	7.859	7.870	7,881	7.892	840
850	7,892	7.904	7.915	7,926	7.937	7.948	7,959	7.970	7.981	7.992	8.003	850
860	8.003	8.014	8.025	8+036	8.047	8.058	8.069	8.081	8.092	8.103	8.114	860
870	8,114	8 • 125	8.136	8.147	8.158	8.169	8.180	8,192	8.203	8.214	8,225	870
880	8.225	8.236	8.247	8 • 258	8.270	8,281	8.292	8.303	8.314	8.325	8.336	880
890	8,336	8.348	8.359	8.370	8.381	8.392	8,404	8.415	8.426	8.437	8.448	890
900	8,448	8.460	8.471	8.482	8.493	8.504	8.516	8.527	8 • 5 3 8	8.549	8.560	900
910	8,560	8.572	8.583	8.594	8.605	8.617	8.628	8.639	8.650	8+662	8.673	910
920	8.673	8.684	8.695	8.707	8.718	8.729	8.741	8.752	8.763	8.774	8.786	920
930	8,786	8.797	8.808	8.820	8.831	8.842	8.854	8.865	8.876	8.888	8.899	930
940	8,899	8.910	8.922	8,933	8.944	8.956	8,967	8.978	8,990	9.001	9.012	940
950	9.012	9.024	9.035	9.047	9.058	9.069	9.081	9.092	9.103	9.115	9,126	950
960	9,126	9.138	9.149	9.160	9.172	9,183	9.195	9.206	9.217	9.229	9.240	960
970	9,240	9.252	9.263	9.275	9•286	9.298	9.309	9.320	9.332	9.343	9.355	970
980	9,355	9.366	9.378	9.389	9.401	9.412	9.424	9.435	9.447	9.458	9.470	980
990	9.470	9.481	9.493	9.504	9.516	9.527	9.539	9.550	9.562	9.573	9.585	990
1,000	9,585	9.596	9.608	9.619	9.631	9.642	9.654	9.665	9.677	9.689	9.700	1,000
1,010	9.700	9.712	9.723	9.735	9.746	9.758	9.770	9.781	9.793	9.804	9.816	1,010
1,020	9,816	9.828	9.839	9,851	9.862	9.874	9.886	9.897	9.909	9.920	9.932	1,020
1:030	9,932	9.944	9.955	9.967	9.979	9,990	10.002	10.013	10.025	10.037	10.048	1,030
1,040	10.048	10+060	10.072	10.083	10.095	10.107	10.118	10.130	10.142	10+154	10.165	1,040
1,050	10.165	10.177	10.189	10.200	10.212	10.224	10.235	10.247	10.259	10+271	10+282	1,050
1,060	10.282	10.294	10.306	10.318	10.329	10.341	10.353	10.364	10.376	10.388	10+400	1,060
1:070	10.400	10.411	10.423	10.435	10.447	10.459	10.470	10.482	10.494	10.506	10.517	1,070
1.080	10.517	10.529	10.541	10.553	10.565	10.576	10.588	10.600	10.612	10.624	10.635	1:080
1,090	10.635	10.647	10.659	10.671	10.683	10.694	10.706	10,718	10.730	10.742	10.754	1,090
1,100	10,754	10.765	10.777	10.789	10.801	10.813	10.825	10.836	10.848	10.860	10.872	1,100
1,110	10.872	10.884	10.896	10.908	10,919	10.931	10,943	10.955	10.967	10.979	10.991	1,110
1,120	10,991	11.003	11.014	11.026	11.038	11.050	11.062	11.074	11.086	11.098	11.110	1,120
1,130	11.110	11.121	11.133	11.145	11.157	11.169	11.181	11.193	11.205	11.217	11.229	1,130
1 + 1 4 0	11,229	11.241	11.252	11.264	11.276	11.288	11.300	11.312	11.324	11.336	11.348	1,140
1,150	11,348	11.360	11.372	11.384	11.396	11.408	11.420	11.432	11.443	11.455	11.467	1,150
1,160	11.467	11.479	11.491	11.503	11.515	11.527	11.539	11.551	11.563	11.575	11.587	1,160
1,170	11.587	11.599	11+611	11.623	11.635	11.647	11.659	11.671	11.683	11.695	11.707	1,170
1,180	11,707	11.719	11.731	11.743	11.755	11.767	11.779	11.791	11.803	11.815	11.827	1:180
1,190	11,827	11.839	11.851	11.863	11.875	11.887	11.899	11.911	11.923	11.935	11.947	1,190
1,200	11.947	11.959	11.971	11.983	11.995	12.007	12.019	12.031	12.043	12.055	12.067	1,200
1,210	12,067	12.079	12.091	12.103	12.116	12,128	12.140	12.152	12.164	12.176	12.188	1,210
1+220	12,188	12.200	12.212	12.224	12.236	12.248	12.260	12.272	12.284	12.296	12.308	1,220
1.230	12.308	12.320	12,332	12.345	12.357	12.369	12.381	12.393	12.405	12,417	12,429	1:230
1+240	12.429	12.441	12.453	12.465	12.477	12.489	12.501	12.514	12.526	12.538	12.550	1 +2 40
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C

EMF in	MF in Absolute Millivolt					· _			Reference Junctions at 0 C			
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C
			TH	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	LTS			
1,250	12,550	12.562	12.574	12.586	12.598	12.610	12.622	12.634	12.647	12.659	12+671	1,250
1,260	12.671	12.683	12.695	12.707	12.719	12.731	12.743	12.755	12.767	12.780	12.792	1,260
1,270	12.792	12.804	12.816	12.828	12.840	12.852	12,864	12.876	12.888	12,901	12.913	1,270
1,280	12,913	12,925	12.937	12.949	12.961	12.973	12,985	12.997	13.010	13.022	13.034	1,280
1,290	13.034	13.046	13.058	13.070	13.082	13.094	13.107	13,119	13.131	13.143	13,155	1,290
1,300	13,155	13.167	13.179	13.191	13.203	13.216	13,228	13.240	13.252	13.264	13.276	1,300
1,310	13.276	13.288	13.300	13.313	13.325	13.337	13.349	13.361	13.373	13.385	13.397	1,310
1,320	13.397	13.410	13.422	13.434	13.446	13.458	13,470	13.482	13.495	13.507	13.519	1,320
1.330	13,519	13.531	13.543	13.555	13.567	13.579	13.592	13.604	13.616	13.628	13.640	1,330
1,340	13.640	13.652	13.664	13.677	13.689	13.701	13.713	13.725	13.737	13.749	13,761	1,340
1,350	13,761	13.774	13.786	13.798	13.810	13.822	13.834	13.846	13.859	13.871	13.883	1.350
1,360	13.883	13.895	13.907	13.919	13.931	13.943	13,956	13.968	13,980	13,992	14.004	1,360
1,370	14.004	14.016	14.028	14.040	14.053	14,065	14.077	14.089	14.101	14.113	14.125	1,370
1,380	14.125	14.138	14.150	14.162	14.174	14.186	14.198	14.210	14.222	14.235	14.247	1,380
1.390	14.247	14.259	14.271	14.283	14.295	14.307	14.319	14,332	14.344	14.356	14.368	1,390
1,400	14,368	14.380	14.392	14.404	14.416	14.429	14.441	14.453	14.465	14.477	14.489	1,400
1•410	14.489	14.501	14.513	14+526	14.538	14.550	14,562	14.574	14.586	14.598	14.610	1,410
1,420	14.610	14.622	14.635	14.647	14.659	14.671	14,683	14.695	14.707	14.719	14.731	1,420
1,430	14.731	14.744	14.756	14,768	14,780	14.792	14.804	14+816	14.828	14.840	14.852	1,430
1+440	14.852	14.865	14.877	14.889	14,901	14.913	14.925	14.937	14.949	14.961	14.973	1,440
1.450	14,973	14.985	14.998	15.010	15.022	15.034	15.046	15.058	15.070	15.082	15.094	1.450
1,460	15.094	15,106	15.118	15.130	15.143	15.155	15.167	15.179	15.191	15.203	15.215	1.460
1,470	15.215	15.227	15.239	15,251	15,263	15.275	15.287	15.299	15.311	15.324	15.336	1.470
1,480	15.336	15.348	15.360	15.372	15,384	15.396	15,408	15.420	15,432	15.444	15.456	1,480
1,490	15.456	15.468	15.480	15.492	15.504	15.516	15.528	15.540	15.552	15.564	15.576	1,490
1,500	15.576	15,589	15+601	15.613	15.625	15.637	15.649	15.661	15.673	15.685	15.697	1.500
1,510	15.697	15,709	15.721	15.733	15.745	15.757	15.769	15.781	15.793	15.805	15.817	1.510
1,520	15.817	15.829	15+841	15.853	15.865	15.877	15.889	15.901	15.913	15.925	15+937	1.520
1,530	15.937	15.949	15.961	15,973	15,985	15.997	16.009	16.021	16.033	16.045	16.057	1,530
1,540	16.057	16.069	16.080	16.092	16.104	16.116	16.128	16 • 140	16.152	16.164	16.176	1,540
1,550	16.176	16.188	16.200	16.212	16.224	16.236	16.248	16.260	16.272	16.284	16.296	1.550
1,560	16.296	16.308	16.319	16.331	16.343	16.355	16.367	16.379	16.391	16.403	16.415	1.560
1,570	16.415	16.427	16.439	16.451	16.462	16.474	16.486	16.498	16.510	16.522	16.534	1.570
1,580	16.534	16.546	16.558	16.569	16.581	16.593	16.605	16.617	16.629	16.641	16.693	1,580
1,590	16.653	16.664	16.676	16•688	16.700	16.712	16,724	16.736	16.747	16.759	16.771	1,590
1.600	16.771	16.783	16.795	16.807	16.819	16.830	16.842	16.854	16.866	16.878	16.890	1.600
1.610	16.890	16,901	16,913	16.925	16.937	16.949	16,960	16.972	16.984	16.996	17.008	1+610
1,620	17.008	17.019	17.031	17.043	17.055	17.067	17.078	17.090	17.102	17.114	17.125	1.620
1,630	17,125	17.137	17.149	17.161	17.173	17.184	17.196	17.208	17.220	17.231	17.243	1.630
1,640	17.243	17.255	17.267	17.278	17.290	17.302	17.313	17.325	17.337	17.349	17.360	1,640
1,650	17.360	17.372	17.384	17.396	17.407	17.419	17-43)	17.447	17.454	17.466	17.677	1.650
1.660	17.477	17.489	17.501	17.517	17.574	17.536	17.548	17.550	17.571	17.583	17.504	1,660
1,670	17.594	17.606	17.617	17.629	17.641	17.652	17.664	17.676	17.697	17.699	17.711	2+670
1,680	17.711	17.722	17.734	17.745	17.757	17.769	17.780	17.792	17.803	17.815	17.826	1.680
1.690	17.826	17.838	17.850	17,861	17.873	17.884	17.896	17.907	17,919	17.430	17.942	1,690
1,700	17.942	17.953	17,965	17,976	17.968	17.999	18.010	18.027	18.022	18.045	18.056	1.700
1.710	18.056	18.068	18.079	18.090	18,102	18.113	18,124	18,134	18.147	18.154	18.170	1.710
1,720	18.170	18.181	18.192	18.204	18,215	18.226	18.237	18.249	18.260	18.271	18.282	1.720
1.730	18.282	18.293	18,305	18.316	18.327	18.338	18.349	18,360	18.372	18.383	18.394	1.730
1,740	18.394	18.405	18,416	18.427	18.438	18.449	18,460	18.471	18 . 482	18.493	18.504	1,740
1,750	18,504	18,515	18.526	18.536	18.547	18.558	18.569	18.580	18,591	18.607	18-612	1.750
1,760	18.612	18.623	18,634	18.645	18,655	18.666	18.677	18.687	18.698			1,760
056 6												
VEG C	U	1	2	з	4	>	6	7	8	9	10	DEG C

Temperature in Degrees Celsius (IPTS 1968)
TABLE 54—Type T thermocouples.

Temperature in Degrees Fahrenheit^a

EMF in Absolute Millivolts							Referen	ce Junctio	ns at 32 F			
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
	_		тн	ERMOELEC	TRIC VOL	TAGE IN	ABSOLUTE	MILLIVO	L75			
-450	-6.254	-6.255	-6.256	-6.257	-6.258							-450
-440	-6.240	-6.242	-6.243	-6+245	-6.247	-6.248	-6.250	-6.251	-6+252	-6+253	-6.254	-440
-430	-6.217	-6.220	-6.223	-6.225	-6.227	-6.230	-6.232	-6.234	-6.236	-6.238	-6.240	-430
-420	-6.187	-6.191	-6.194	-6.197	-6.200	-6.203	-6.206	-6.209	-6.212	-6.215	-6.217	-420
-410 -400	-6.105	-6.154 -6.110	-6.158	-6.162	-6.124	-6.170 -6.128	-6.133	-6.137	-6.181	-6.146	-6.150	-400
-390	-6.053	-6.059	-6.064	-6.069	-6+075	-6.080	-6.085	-6.090	-6+095	-6.100	-6.105	-390
-380	-5.995	-6.001	-6.007	-6.013	-6.019	-6.025	-6.030	-6.036	-6.042	-6.048	-6.053	-380
-370	-5.930	-5.937	-5.943	-5.950	-5.957	-5.963	-5.969	-5.976	-5.982	-5.988	-5.995	-370
-360	-5.860	-5.867	-5.874	-5.881	-5+889	-5.896	-5.903	-5.910	-5.916	-5.923	-5.930	-360
-350	-5.785	-5.792	-5,800	~5.808	-5.815	-5.823	~5.830	-5.838	-5+845	-5.853	-5.860	-350
-340	-5.705	-5.713	-5.721	-5.729	-5.737	-5.745	-5.753	-5.761	-5.769	-5.777	-5.785	-340
-330	-5.620	-5+629	-5+638	-5.646	-5.655	-5.663	-5.672	-5.680	-5.688	-5.697	-5.705	-330
-320	-5.532	-5.541	-5.550	-5.559	-5.568	-5.576	-5.585	-5.594	-5.603	-5.612	-5.620	-320
-310	-5.439	-5.448	-5.457	-5.467	~5.476	-5.486	-5.495	-5.504	-5-513	-5.522	-5.532	-310
-300	-5.341	-5.301	-5+361	-5+371	-5.381	-5.390	-2.400	-2.410	-2.419	-24429	-2.439	-300
-290	-5.240	-5.250	-5.261	-5.271	-5.281	-5.291	-5.301	-5.311	-5.321	-5.331	-5.341	-290
-280	-5,135	-5.145	-5.156	-5.167	-5.177	-5.188	-5.198	-5.209	-5.219	-5+230	-5+240	-280
-270	-5.025	-5.036	-5.047	-5.058	-5.069	-5.080	->.091	-5.102	-5.113	-5.124	-5.135	-270
-260	-4,912	~4.923	-4.935	-4.946	-4.958	-4.969	-4.980	-4.992	-5.003	-5.014	~5+025	-260
-250	-4 194	-4.896	-4.518	-4.830	-4.042	-4.673	-4,865	-4.8//	-4+889	-4.900	-4.712	~250
-240	-4.673	-4.685	-4.698	-4.710	-4.722	-4 • 734	-4.746	-4.758	-4.770	-4,782	-4.794	-240
-230	-4.548	-4.560	-4.573	-4.586	-4.598	-4.611	-4.623	-4.636	-4+648	-4.661	-4.673	-230
-220	-4.419	~4.432	-4.445	-4.458	-4.471	-4.484	-4.497	-4.509	-4.522	-4.535	-4.548	-220
-210	-4.285	-4.299	-4.313	-4.326	-4.339	-4.353	-4.366	-4.379	-4.392	-4.406	-4.419	-210
-200	-4-149	-4.103	-4+177	-4.191	-4.204	-4.218	-4.232	-4.240	-4.259	-4.212	-4.280	-200
-190	-4.009	-4.023	-4.037	-4.051	-4.065	-4.079	-4.093	-4.107	-4.121	-4.135	-4.149	-190
-180	-3.864	-3.879	-3.894	-3.908	-3,923	-3.937	-3.951	-3.966	-3.980	-3+994	-4+009	-180
~170	-3.717	-3.732	-3.746	-3.761	-3.776	-3.791	-3.806	-3.820	-3.835	-3.850	-3.864	-170
-150	-3,410	-3.580	-3.441	-3.651	-3.472	-3.488	-3.503	-3,519	-3.534	-3,550	-3.565	-150
~140	-3.251	-3.267	-3.283	-3.299	-3.315	-3.331	-3.347	-3.362	-3.378	-3.394	-3.410	-140
-130	-3.087	-3.105	-3.121	-3.138	-3.154	-3.170	-3,186	-3.203	-3.219	-3,235	-3,251	-130
~120	-2,923	-2,939	-2.956	-2.973	-2.989	-3.006	-3.023	-3.039	-3.056	-3.072	-3.089	-120
-110	-2,753	-2.771	-2,788	-2.805	-2.822	-2.838	-2,855	-2,872	-2.889	-2.906	-2.923	-110
-100	-2,581	-2,598	-2.616	-2.633	~2,.650	-2.667	-2.685	-2.702	-2.719	-2.736	-2.753	-100
-90	-2.405	-2.422	-2.440	-2.458	-2.475	-2.493	-2.511	-2.528	-2.546	-2.563	-2.581	-90
-80	-2,225	-2+243	-2,261	-2.279	-2.297	-2,315	-2.333	~2.351	-2.369	-2.387	-2+405	-80
-70	-2.042	-2+001	-2+079	-2.098	-2 + 110	-1 950	-2.192	-6+1(1	-2.005	-2.024	-2.043	
-50	-1.667	-1.686	-1.705	-1.724	-1.743	-1.762	-1.781	-1.800	-1.819	-1.838	-1.856	-50
-40	-1.475	-1.494	-1.513	-1.533	-1.552	-1.571	-1.591	-1.610	-1.629	-1.648	-1.667	-40
-30	-1.279	-1.299	-1+319	-1.338	-1.358	-1.377	-1.397	-1.416	-1.436	-1.455	-1.475	-30
~20	-1.081	-1.101	-1.121	-1.141	-1.160	-1.180	-1.200	-1.220	-1.240	-1.260	-1.279	-20
-10	-0.879	~0.899	-0.920	-0.940	-0.960	-0.980	-1.000	-1.021	-1.041	-1.061	-1.081	-10
- 0	-0.674	-0.695	-0.716	-0.736	-0.757	-0.777	-0.798	-0.818	-0.838	-0.859	-0.879	- 0
0	-0.674	-0.654	~0.633	-0.613	-0.592	-0.571	-0.550	-0.529	-0.509	-0.488	-0.467	0
10	-0.467	-0.446	-0.425	-0,404	-0.383	-0.362	-0.341	-0.320	-0.299	-0.277	-0+256	10
20	~0,256	-0,235	-0.214	-0,193	-0.171	-0.150	-0.129	-0,107	-0+086	-0.064	-0+043	20
30	-0.043	-0+022	0.000	0.022	0.043	0.065	0.086	0.108	0.130	0.151	0+173	30
40	0+1/3	0.195	0.216	0,+238	0.260	0+282	0.303	0.325	0.341	0.269	0.391	40
50	0.391	0.413	0.435	0,457	0.479	0.501	0.523	0.545	0.567	0.589	0.611	50
60	0.611	0.634	0.656	0.678	0.700	0.722	0.745	0.767	0.789	0.812	0.834	60
70	0.834	0.857	0.879	206+0	0.924	0+947	0.969	0.992	1.014	1.037	1.060	/0
80	1,288	1.311	1.334	1+128	1.380	1.403	1.196	1.449	1+242	1.495	1.518	90 90
	1.200	1.541		10001	1,530							
100	1.518	1.542	1.565	1.588	1.611	1.635	1.658	1.681	1.705	1.728	1.752	1.00
110	1.020	1.115	1.799	1.822	1.846	1.869	1.893	1.917	1,940	1.964	1.988	120
130	2,225	2.250	2.025	2.208	2.322	2.347	- 2.371	2.306	2.410	2.443	2.467	130
140	2.467	2.492	2.516	2.540	2.565	2.589	2.613	2,638	2.662	2.687	2.711	140
DEG F	U.	1	2	3	4	5	6	7	8	9	10	DEG F

*Converted from degrees Celsius (IPTS 1968).

TABLE 54—Type T thermocouples (continued).

EMF ir	Absolute	e Millivol	tš							Referen	ce Junction	ns at 32 F
DEG F	0	1	2	3	4	5	6	7	8	9	10	DEG F
			T	HERMOELE	CTRIC VO	LTAGE IN	ABSOLUT	E MILLIV	OLTS			
150	2.711	2.736	2.760	2.785	2.809	2.834	2.859	2.883	2.908	2.933	2.958	150
160	2.958	2.982	3.007	3.032	3.057	3.082	3.107	3.131	3.156	3.181	3.206	160
170	3.206	3.231	3.256	3.281	3.307	3.332	3.357	3.382	3.407	3.432	3.458	170
180	3.458	3.483	3.508	3.533	3.559	3.584	3.609	3.635	3.660	3.686	3.711	180
190	3.711	3.737	3.762	3.788	3.813	3.839	3.864	3.890	3.916	3.941	3.967	190
200	3.967	3.993	4.019	4.044	4.070	4.096	4.122	4.148	4.174	4.199	4.225	200
210	4.225	4.251	4+277	4.503	4.329	4.355	4.381	4.408	4.434	4.460	4.486	210
220	4.400	4 • 212	4.038	4+565	4.591	4.61/	4.643	4.670	4.696	4.722	4.749	220
240	5.014	5.040	5.067	4.828	4.854	4.881	4.90/	4.934	4.960	4.987	5.014	230
250	5 281	5 307	6 334	5 3/1			£ 4.2	E ((0		6 6 9 9		
240	5.550	5.577	5 6 6 0 4	5 4 3 1	2+200	5.415	2.442	5.469	2.490	2.223	5.550	250
270	5.821	5.869	5.975	5.051	5.000	5.057	5 005	5.739	2.161	2.194	5.021	260
280	6.094	6.122	6-149	5.177	6 204	6.232	6 350	6.012	6.039	6.007	6.074	270
290	6,369	6.397	6.425	6.452	6.480	6.508	6.536	6.563	6.591	6.619	6.647	290
200												
310	6.04/	0.0/2	6.702	6.730	6./58	6.786	6.814	6.842	6.870	6.898	6.926	300
310	6.926	6.954	6.982	7.010	7.038	7.066	7.094	7.122	7+151	7.179	7.207	310
320	7.201	7.235	7.263	7.292	7.320	7.348	1.377	7.405	7.433	7.462	7+490	320
340	7 490	7.518	7.547	7.575	7.604	7.632	7.661	7.689	7.718	7.746	7.775	330
340	1.112	1.004	1.032	(+001	1.589	(.918	(. 94 /	1.912	0.004	8.033	0.062	340
350	8.062	8.090	8.119	8,148	8 • 177	8.206	8.235	8.264	8.292	8.321	8.350	350
360	8,350	8.379	8.408	8.437	8,466	8.495	8.524	8,553	8.583	8.612	8.641	360
370	8,641	8.670	8.699	8,728	8,757	8.787	8,816	8.845	8 . 8 74	8.904	8.933	370
380	8.933	8.962	8.992	9.021	9.050	9.080	9,109	9.139	9+168	9.198	9.227	380
390	9.227	9.257	9.286	9,316	9.345	9.375	9.404	9.434	9.464	9.493	9.523	390
400	9,523	9.553	9+582	9.612	9.642	9.671	9.701	9.731	9.761	9.791	9.820	400
410	9,820	9.850	9.880	9.910	9,940	9.970	10.000	10.030	10.060	10.090	10.120	410
420	10.120	10.150	10+180	10.210	10.240	10.270	10.300	10.330	10.360	10.390	10.420	420
430	10.420	10.451	10.481	10.511	10.541	10.572	10.602	10.632	10.662	10.693	10.723	430
440	10.723	10.753	10.784	10.814	10.845	10.875	10,905	10.936	10.966	10.997	11.027	440
450	11.027	11.058	11.088	11.119	11.149	11.180	11.211	11+241	11.272	11+302	11.333	450
460	11.333	11.364	11+394	11.425	11.456	11.487	11.517	11.548	11.579	11.610	11.640	460
470	11.640	11.671	11.702	11.733	11.764	11.795	11,826	11.856	11.887	11.918	11.949	470
480	11.949	11.980	12.011	12.042	12.073	12.104	12.135	12.166	12.198	12.229	12.260	480
490	12.260	12.291	12.322	12.353	12.384	12.416	12.447	12.478	12.509	12.540	12.572	490
500	12.572	12.603	12.634	12.666	12.697	12,728	12,760	12,791	12.822	12.854	12.885	500
510	12.885	12.917	12.948	12.979	13.011	13.042	13.074	13,105	13.137	13.168	13.200	510
520	13.200	13.232	13.263	13.295	13.326	13.358	13.390	13.421	13.453	13.485	13.516	520
530	13,516	13.548	13.580	13.611	13.643	13.675	13.707	13.739	13.770	13.802	13.834	530
540	13.834	13.866	13.898	13,930	13,961	13,993	14.025	14.057	14.089	14.121	14 • 153	540
550	14.153	14.185	14.217	14.249	14.281	14.313	14.345	14.377	14.409	14.441	14.474	550
560	14.474	14.506	14.538	14.570	14.602	14.634	14.666	14.699	14.731	14.763	14.795	560
570	14.795	14.828	14.860	14.892	14.924	14,957	14.989	15.021	15.054	15.086	15.118	570
580	15.118	15.151	15.183	15,216	15.248	15.280	15.313	15.345	15.378	15.410	15.443	580
590	15.443	15.475	15.508	15.540	15.573	15+605	15.638	15.671	15.703	15.736	15.769	590
600	15.769	15.801	15.834	15 844	16 800	16.023	15 945	15 997	16 020	16 063	16 00/	600
610	16.094	16,129	16,161	16,194	16.777	16.360	16,202	16.275	16.359	16.30	16.4.34	600
620	16.424	16.457	16.490	16 6 2 2	10.227	10.277	16 6 2 9 2	10+525	10+300	16, 770	16+424	610
630	16.753	16.786	16.819	16.852	16.886	16 019	16 952	16.985	17 018	17.051	17 084	630
640	17.084	17.117	17.150	17,184	17.217	17.250	17.283	17,316	17.350	17.383	17.416	640
450	17 616	17 450	17 402		17 640	17 600	17 / 14	17 // 0	17 (02	17 714	17 760	450
660	17.750	17.783	17.916	17.950	17.949	17.017	17.010	17.084	17+685	17+110	18 086	650
670	18.084	18,119	18,151	18,195	18.210	18,262	18, 204	18,210	18.353	18.39/	18.430	600
680	18.420	18.454	18.497	19 621	18.555	19 509	18 622	18.654	18.400	18.722	18.757	680
690	18.757	18.791	18.824	18.858	18.892	18.926	18,960	18,993	19.027	19.061	19.095	690
700	19.095	19,120	19,142	19,107	19.220	19 344	19,200	19.331	19,344	19,400	19.434	700
710	19.434	19.448	19.502	19.524	19.570	19.604	19 6290	19.673	19.704	19.740	19.774	710
720	19.774	19,808	19.842	10,977	19.011	17.004	19.070	20.012	20.047	20.081	20.114	720
730	20.114	20.150	20.184	20.218	20.262	20.287	20.321	20.355	20.389	20.423	20+458	730
740	20.458	20.492	20.526	20.560	20.595	20.629	20,663	20.698	20.732	20.766	20.801	740
750	20.801	20.835	20.869									750
DEG E	0	1	2	٦	4	5		7	P	9	10	DEG F
acu r		1	-	,	-		5	,	ġ		* 7	000

Temperature in Degrees Fahrenheit^a

* Converted from degrees Celsius (IPTS 1968).

TABLE 55—Type T thermocouples.

EMF in Absolute Millivolts

Temperature in Degrees Celsius (IPTS 1968)

Reference Junctions at 0 C

											_	
DEG C	0	1	2	3	4	5	- 6	7	8	9	10	DEG C
			TH	ERMOELEC		TAGE IN	ABSOLUTE	MILLIV				
						-						
-270	-6.258											-270
-260	-6.232	-6.236	-6.239	-6.242	-6.245	-6.248	-6.251	-6.253	-6+255	-6.228	-6.258	-260
-250	-0.101	-0+10/	-0.173	-0.190	-6.204	-0.207	-0.214	-0.217	-0+224	-0.220	-0.232	-250
-240	-6.105	-6.114	-6.122	-6.130	-6.138	-6.146	153	-6.160	-6.167	-6.174	-6.181	-240
-230	-6.007	-6.018	-6.028	-6.039	-6.049	-6.059	-6.068	-6.078	-6.087	-6.096	-6.105	-230
-220	-5.889	-5.901	-5.914	-5.926	-5.938	-5.950	-5.962	-5.973	-5.985	-5.996	-6.007	-220
-210	-5,753	-5,767	-5.782	-5.795	~5.809	-5.823	-5.836	-5.850	-5.863	-5.8/6	-5.889	-210
-200	-5.003	-24013	-24034	-2.620	-54665	-20000	-3.695	-5./10	-24/24	-2.139	-20122	-200
-190	~5.439	-5.456	-5-473	-5-489	-5.506	-5-522	-5.539	-5.555	-5.571	-5.587	-5.603	-190
-180	-5.261	-5.279	-5.297	-5.315	-5.333	-5.351	-5.369	-5 387	-5.404	-5.421	-5.439	-180
-170	-5,069	-5.089	-5,109	-5,128	-5.147	-5.167	-5.186	-5.205	-5.223	-5.242	-5.261	-170
-160	-4.865	-4.886	-4.907	-4.928	-4.948	-4.969	-4.989	-5.010	-5.030	-5.050	-5.069	-160
-150	-4.648	-4.670	~4.693	-4.715	-4.737	-4,758	-4,780	-4.801	-4 • 823	-4.844	-4.865	-150
-140	-4 419	-4 442	-4-466	-4 489	-4.512	-4.535	-4 558	-4 681	-4 603	-4 626	-4.648	-140
-130	-4.177	-4.202	-4.276	-4.407	-4.275	-4.299	-4.323	-4.347	-4.371	-4.395	-4.419	-130
-120	-3.973	-3.949	-3.974	-4.000	-4-026	-4.051	-4.077	-4.102	-4.127	-4.152	-4.177	-120
-110	-3.656	-3.684	-3.711	-3.737	-3.764	-3.791	-3.818	-3.844	-3.870	-3.897	-3.923	-110
-100	-3,378	-3.407	-3.435	-3.463	-3,491	-3.519	-3.547	-3.574	-3.602	-3.629	-3.656	-100
-90	-3.089	-3,118	-3.147	-3.177	-3.206	-3.235	-3.264	-3.293	-3.321	-3.350	-3.378	-90
-80	-2.788	-2.818	-2.849	-2.879	-2.909	-2.939	-2.970	-2.999	-3.029	-3.059	-3.089	-80
-70	-2.475	-2.507	-2.539	-2.570	-2.602	-2.635	-2.664	-2.695	-2. /26	-2.151	-2.788	-70
-60	-1 910	-2+105	-2.210	-1 020	-2.203	-2.515	-2.020	-2.053	-2.087	-2.120	-2.152	-50
- 50	-1.017	1.073	10000	1., 720	1	1.701	2.0020					-0
-40	-1.475	-1.510	-1.544	-1.579	-1.614	-1.648	-1.682	-1.717	-1.751	-1.785	-1.819	-40
-30	-1.121	-1.157	-1.192	-1.228	-1.263	-1.299	-1.334	-1.370	-1.405	-1.440	~1+475	-30
-20	-0.757	-0.794	-0.830	-0.867	-0.903	-0.940	-0.976	-1.013	-1.049	-1.085	-1.121	-20
-10	-0.383	-0.421	-0.458	-0.496	-0.534	-0.5/1	-0.608	-0.646	-0.683	-0.720	-0.757	-10
- 0	0.000	-0.039	-0.077	-0.116	~0.154	-0.193	-0.231	-0.209	-0.307	-0.949	-0.365	- 0
0	0.000	0.039	0.078	0.117	0.156	0.195	0.234	0.273	0.312	0.351	0.391	0
10	0.391	0.430	0.470	0.510	0.549	0.589	0.629	0.669	0.709	0.749	0.789	10
20	0.789	0.830	0.870	0.911	0.951	0.992	1.032	1.073	1.114	1.155	1.196	20
30	1.196	1.237	1.279	1.320	1.361	1.403	1.444	1.486	1.528	1.569	1.611	30
40	1.611	1.653	1.695	1.738	1,780	1.822	1.865	1.907	1,950	1,992	2.035	40
50	2.035	2.078	2,121	2.164	2.207	2.250	2.294	2.337	2.380	2.424	2.467	50
60	2.467	2.511	2.555	2.599	2.643	2.687	2.731	2.775	2.819	2.864	2.908	60
70	2,908	2.953	2.997	3.042	3.087	3,131	3,176	3.221	3.266	3.312	3.357	70
80	3.357	3.402	3.447	3.493	3.538	3.584	3,630	3.676	3.721	3,767	3.813	80
90	3.813	3.859	3.906	3.952	3.998	4.044	4.091	4.137	4.184	4.231	4.277	90
1.00	4.277	4.326	4.371	4.418	4.465	4.512	4.559	4.607	4.654	4.701	4.749	100
110	4.749	4.796	4.844	4.891	4.939	4.987	5.035	5.083	5,131	5.179	5.227	110
120	5.227	5.275	5.324	5.372	5.420	5.469	5,517	5.566	5.615	5,663	5.712	120
130	5.712	5.761	5.810	5.859	5.908	5.957	6.007	6.056	6.105	6,155	6.204	130
140	6.204	6.254	6.303	6.353	6.403	5.452	6,502	6,552	6.602	6.652	6.702	140
						4	7	7 055	7 104	7 164	7 207	150
150	6.702	6 • / 23	5.803	. 6.823	0.903	7 442	7 513	7 564	7 415	7 666	7.718	160
170	7.718	7.769	7.821	7.872	7.924	7.975	8.027	8.079	8,131	8,183	8.235	170
180	8.235	8.287	8.339	8.391	8.443	8.495	8.548	8.600	8.652	8.705	8.757	180
190	8.757	8.810	8.863	8.915	8.968	9.021	9.074	9.127	9.180	9.233	9,286	190
								0.440		0 747	0.920	200
200	9.286	9.339	9+392	9.446	9.499	9+553	9.606	10 198	90/13	9.101	10.360	210
220	10 360	10.414	10 469	10 523	10.578	10.632	10.687	10.741	10.796	10.851	10.905	220
230	10.905	10.960	11.015	11.070	11,125	11,180	11.235	11.290	11.345	11.401	11.456	230
240	11.456	11.511	11.566	11.622	11.677	11.733	11.788	11.844	11.900	11,956	12.011	240
250	12.011	12.067	12.123	12.179	12.235	12.291	12.347	12.403	12.459	12.515	12.572	250
260	12.572	12.628	12.684	12.741	12.797	12.854	12.910	12.967	13.024	13.000	13+137	200
270	13.107	13.194	13.231	13.30/	13 024	12 002	14 051	14 109	14 164	14.222	14.281	280
280	14 281	14.230	14.394	14.454	14.512	14.570	14.628	14.684	14.744	14.802	14.860	290
£ 70	140201	140329	141310	144474	144716	******						
300	14,860	14.918	14.976	15.034	15.092	15.151	15.209	15.267	15.326	15.384	15.443	300
310	15.443	15.501	15.560	15.619	15.677	15.736	15.795	15.853	15.912	15.971	16.030	310
320	16.030	16.089	16.148	16.207	16.266	16.325	16.384	16.444	16.503	16.562	16.621	320
330	16.621	16.681	10 . /40	16.800	10.859	10.919	17 674	17.624	17.694	17.754	17.814	340
<u></u>	11.611	116211	9000	110370	210-30	114,710						
DEG C	٥	1	2	3	4	5	6	7	8	9	10	DEG C

EMF in	Absolut	e Millivol	ts	Tempe	rature in	Degrees (Celsius (II	PTS 1968)	Referen	nce Junctio	ns at 0 C
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C
			T	HERMOELE	CTRIC VO	LTAGE IN	ABSOLUT	É MILLIV	OLTS			
350	17.816	17.877	17.937	17.997	18.057	18.118	18.178	18.238	18.299	18.359	18.420	350
360	18.420	18.480	18.541	18,602	18,662	18.723	18.784	18.845	18.905	18,966	19.027	360
370	19.027	19.088	19.149	19.210	19.271	19.332	19.393	19.455	19.516	19.577	19.638	370
380	19.638	19,699	19.761	19.822	19,883	19,945	20.006	20.068	20,129	20.191	20.252	380
390	20.252	20.314	20.376	20.437	20.499	20.560	20,622	20.684	20.746	20.807	20.869	390
400	20.869											400
DEG C	0	1	2	3	4	5	6	7	8	9	10	DEG C

TABLE 55—Type T thermocouples (continued).

This method permits easy generation of the temperature-emf values by a digital computer. It provides a smooth, continuous relationship, and the values will round off to the established temperature-emf values given in Tables 42 to 55 [145].

Alternative generation schemes for temperature-emf relationships are described in Refs 146 and 147.

Temperature Range	Degree	Coefficients	S	Power of T Term
- 270 to 0°C	14	3.8740773840	E + 1	1
		4.4123932482	E - 2	2
		1.1405238498	E – 4	3
		1.9974406568	E – 5	4
		9.0445401187	E – 7	5
		2.2766018504	E - 8	6
		3.6247409380	E - 10	7
		3.8648924201	E – 12	8
		2.8298678519	E – 14	9
		1.4281383349	E - 16	10
		4.8833254364	E – 19	11
		1.0803474683	E – 21	12
		1.3949291026	E – 24	13
		7.9795893156	E - 28	14
0 to 400°C	8	3.8740773840	E + 1	1
		3.3190198092	E – 2	2
		2.0714183645	E – 4	3
		-2.1945834823	E – 6	4
		1.1031900550	E - 8	5
		-3.0927581898	E – 11	6
		4.5653337165	E - 14	7
		-2.7616878040	E ~ 17	8

 TABLE 56—Power series expansion for the thermoelectric voltage of Type T thermocouples.

Temperature Range	Degree	Coefficient	ts	Power of Term
-210 to 760°C	7	5.0372753027	E + 1	1
		3.0425491284	E – 2	2
		-8.5669750464	E - 5	3
		1.3348825735	E – 7	4
		-1.7022405966	E - 10	5
		1.9416091001	E - 13	6
		-9.6391844859	E – 17	7

 TABLE 57—Power series expansion for the thermoelectric

 voltage of Type J thermocouples.

TABLE :	58—Power	series	expansion	for the	thermoelectric
	voltage	of Typ	pe E therm	ocoupl	es.

Temperature Range	Degree	Coefficient	s	Power of T Term
-270 to 0°C	13	5.8695857799	E + 1	1
		5.1667517705	E – 2	2
		-4.4652683347	E – 4	3
		-1.7346270905	E – 5	4
		-4.8719368427	E - 7	5
		-8.8896550447	E – 9	6
		-1.0930767375	E - 10	7
		-9.1784535039	E – 13	8
		-5.2575158521	E - 15	9
		-2.0169601996	E - 17	10
		-4.9502138782	E - 20	11
		-7.0177980633	E - 23	12
		-4.3671808488	E — 26	13
0 to 1000°C	9	5.8695857799	E + 1	1
		4.3110945462	E – 2	2
		5.7220358202	E - 5	3
		-5.4020668085	E – 7	4
		1.5425922111	E – 9	5
		-2.4850089136	E – 12	6
		2.3389721459	E - 15	7
		-1.1946296815	E - 18	8
		2.5561127497	E – 22	9

Temperature Range	Degree	Coefficients		Power of T Term
-270 to 0°C	10	3.9475433139 E 2.7465251138 E	+1 -2	1 2
		-1.6565406716 E -1.5190912392 E -2.4581670924 E -2.4757917816 E -1.5585276173 E -5.9729921255 E -1.2688801216 E	2 - 4 - 6 - 8 - 10 - 12 - 15 - 17	3 4 5 6 7 8 9
0 to 1372°C	8+ exp	-1.1382797374 E -1.8533063273 E 3.8918344612 E 1.6645154356 E -7.8702374448 E 2.2835785557 E -3.5700231258 E 2.9932909136 E -1.2849848798 E 2.2239974336 E	z = 20 z + 1 z = 2 z = 5 z = 7 z = 10 z = 13 z = 16 z = 20 T = 1272	10 0 1 2 3 4 5 6 7 8
		$+125 \exp\left[-\frac{1}{2}\right]$	$\frac{127}{65}$	ļ

 TABLE 59—Power series expansion for the thermoelectric voltage of Type K thermocouples.

TABLE	60—Power	series expansion	for the thermo	electric
	voltage	of Type R therm	nocouples.	

Temperature Range	Degree	Coefficients	5	Power of T Term
-50 to 631°C	7	5.2891395059	E 0	1
		1.3911109947	E – 2	2
		-2.4005238430	E – 5	3
		3.6201410595	E – 8	4
		-4.4645019036	E – 11	5
		3.8497691865	E – 14	6
		-1.5372641559	E – 17	7
631 to 1065°C	3	-2.6418007025	E + 2	0
		8.0468680747	E 0	1
		2.9892293723	E – 3	2
		-2.6876058617	E — 7	3
1065 to 1665°C	3	1.4901702702	E + 3	0
		2.8639867552	E 0	1
		8.0823631189	E – 3	2
		-1.9338477638	E - 6	3

Temperature Range	Degree	Coefficients	;	Power of T Term
- 50 to 631°C	6	5.3995782346	E 0	1
		1.2519770000	E – 2	2
		-2.2448217997	E – 5	3
		2.8452164949	E – 8	4
		-2.2440584544	E – 11	5
		8.5054166936	E – 15	6
631 to 1064°C	2	-2.9824481615	E + 2	0
		8.2375528221	E 0	1
		1.6453909942	E - 3	2
1064 to 1665°C	3	1.2766292175	E + 3	0
		3.4970908041	E 0	1
		6.3824648666	E - 3	2
		-1.5722424599	E - 6	3

TABLE 61—Power series expansion for the thermoelectric voltage of Type S thermocouples.

TABLE 62—Power series expansion for the thermoelectric voltage of Type B thermocouples.

Temperature Range	Degree	Coefficient	ts	Power of T Term
0 to 1820°C	8	-2.4674601620	E – 1	1
		5.9102111169	E – 3	2
		-1.4307123430	E – 6	3
		2.1509149750	E – 9	4
		-3.1757800720	E – 12	5
		2.4010367459	E - 15	6
		-9.0928148159	E — 19	7
		1.3299505137	E - 22	8

10.4 References

- [144] Powell, R. L., Hall, W. J., Hyink, C. H., Sparks, L. L., Burns, G. W. Scroger, M. G., and Plumb, H. H., "Thermocouple Reference Tables Based on the IPTS-68," NBS Monograph 125, Narional Bureau of Standards, 1973.
- [145] ASTM Standard E 230-72, "Temperature-Electromotive Force (EMF) Tables for Thermocouples," 1973 Annual Book of ASTM Standards, Part 30, p. 621. [146] British Standard, BS 4937, 1973, is in substantial agreement with Ref 144.
- [147] An alternative generation scheme in use prior to 1973 is described in the following references:
 - (a) Benedict, R. P. and Ashby, H. F., "Improved Reference Tables for Thermocouples," Temperature, Its Measurement and Control in Science and Industry, Part 2, Vol. 3, 1962, p. 51.
 - (b) Benedict, R. P., "The Generation of Thermocouple Reference Tables," Electro-Technology, Nov. 1963, p. 80.

Chapter 11—Cryogenics

11.1 General Remarks

Although there is some variation in the defined temperature range involved, cryogenics (kri-o-jen-iks) usually indicates concern with temperatures in the liquid oxygen range (about 90°K or -183°C) or lower. This temperature range will be discussed primarily in this chapter. Since a triple point (of water) or ice bath reference junction often is used, additional comments and values will be given for the entire subzero (0°C) range.

Most aspects of cryogenic thermometry are similar to those applicable at room or high temperatures. In particular, the measurement systems and thermoelectric theory are nearly identical. However, there are significant differences with respect to some materials, techniques or assembly and fabrication, calibration schemes, and methods of practical usage. Fortunately the added difficulties with some details are offset by the removal of a few problems peculiar to high-temperature thermometry: chemical transformations are insignificant; oxidation, reduction, and impurity migration do not occur because of the low temperatures. Annealing of physical imperfections is also absent for the same reasons. Maintenance of fixed points and techniques of calibration are usually considerably easier and sometimes much more accurate. Thermal radiation is usually not important, at least if simple precautions are taken to account for it.

Several books have been written on thermometry and on the experimental techniques necessary for cryogenic research by Scott [148] on cryogenic engineering, and by White [149] and by Rose-Innes [150] on smaller, scientific systems.

11.2 Materials

Many thermocouple materials developed for high-temperature usage have too low a sensitivity at low temperatures to be practical; others have a reasonable sensitivity, but are very erratic with large inhomogeneities and lot-to-lot variations. Only three of the letter-designated type thermocouples have proven themselves for cryogenic use: Types E, T, and K. Type E is definitely recommended as the most valuable for general low temperature use. It is better because of its higher sensitivity (coupled with only average inhomogeneity voltages) and lower thermal conductivity of both thermocouple materials. The latter property is particularly important for obtaining good thermal tempering of measuring junctions. Tables for the total voltage and Seebeck coefficient are given in Section 11.3 for each of the thermocouples just mentioned. These tables were taken from Ref 151.

There are other, but uncommon, materials that have a higher sensitivity at very low temperatures, below 50° K: gold-cobalt and gold-iron. Both are negative thermoelectric materials and should be matched with KP or EP "normal" silver, or less preferably, TP, to obtain a thermocouple pair. The older material, gold-cobalt (2.1 atomic percent cobalt) has been found to have significant instabilities caused by room temperature annealing of the metastable solution of cobalt in gold. Because of those problems goldcobalt should not be used any more in the future. The alloy gold-0.07 atomic percent iron has replaced gold-cobalt: it does not have alloying instabilities, it is more homogeneous, and it has a larger Seebeck coefficient.

A table giving the total voltage and Seebeck coefficient of KP or EP versus *gold*-0.07 atomic percent iron is given also in Section 11.3. This table is taken from data published by the National Bureau of Standards [152]. Reference tables for several other material combinations that are used as thermocouples in the cryogenic range are also given in this reference.

Figure 49 compares various Seebeck coefficients for materials used in the cryogenic range. Type K is not shown, but would be slightly above Type T.

FIG. 49—Seebeck coefficients for Types E, T, and EP versus Au-0.07Fe.

11.3 Reference Tables (for use in the cryogenic range)

			dS/dT,				dS/dT,
<i>Т</i> , К	$E, \mu V$	<i>S</i> , μV/K	nV /K²	Т, К	<i>Ε</i> , μV	$S, \mu V/K$	nV /K ²
0	0.00	-0.203	604.4	45	413.20	17.149	318.9
1	0.09	0.384	571.8	46	430.51	17.467	316.3
2	0.76	0.941	543.0	47	448.14	17.782	313.0
3 4	3.69	1.472	495.6	48 49	484.32	18.404	308.3
5	5.92	2.464	476.2	50	502.88	18.711	305.6
6	8.61	2.931	459.4	51	521.74	19.015	303.0
7	11.77	3.383	444.7	52	540.91	19.317	300.3
° 9	19.41	4.248	432.1	53 54	580.14	19.010	297.7
10	23.87	4.664	411.7	55	600.20	20.206	292.5
11	28.74	5.072	403.6	56	620.55	20.497	289.9
12	34.01	5.472	396.7	57	641.19	20.786	287.4
13	39.08 45.74	5.805 6.254	390.8	50 59	683.33	21.072	284.9
15	52.18	6.637	381.5	60	704.83	21.637	280.0
16	59.01	7.017	377.8	61	726.61	21.915	277.7
17	66.22	7.393	374.6	62	748.66	22.192	275.4
10	81.75	8.137	369.5	64	793.59	22.400	273.1
20	90.07	8.505	367.4	65	816.47	23.008	268.8
21	98.76	8.872	365.6	66	839.61	23.276	266.7
22	107.81	9.237	363.9	67 68	863.02	23.541	264.6
23 24	127.01	9.000	360.8	69	910.63	24.067	260.7
25	137.15	10.321	359.3	70	934.82	24.326	258.8
26	147.65	10.680	357.9	71	959.28	24.584	256.9
27	158.51	11.037	356.4	72	983.99	24.840	255.1
28 29	181.30	11.747	353.4	73	1034.18	25.347	251.7
30	193.22	12.099	351.8	75	1059.65	25.598	250.0
31	205.50	12.450	350.1	76	1085.37	25.847	248.4
32	218.12	12.800	348.4	11	1111.35	26.095	240.9
33 34	231.09	13.493	340.5	79	1164.03	26.585	243.9
35	258.08	13.836	342.7	80	1190.73	26.829	242.4
36	272.09	14.178	340.6	81	1217.68	27.070	241.0
37	286.43	14.517	338.4	82	1244.87	27.311	239.1
30 39	316.14	14.035	333.9	84	1272.30	27.330	230.2
40	331.50	15.523	331.5	85	1327.88	28.024	235.7
41	347.19	15.853	329.1	86	1356.02	28.259	234.5
42	363.20	16.181	326.6	87	1384.40	28.493	233.2
43 11	3/9.33	16 829	324.1 321 5	00 89	1413.01	28.957	232.0

TABLE 63—Type E-thermoelectric voltage, E(T), Seebeck coefficient, S(T), and derivative of the Seebeck coefficient, dS/dT [151].

TABLE 63—Contin	nued.
-----------------	-------

<u></u> Т, К	Ε, μV	<i>S</i> , μV /K	dS/dT, nV/K²	<i>Т</i> , К	Ε, μV	<i>S</i> , μV /K	dS/dT, nV/K ²
	1 470 02	20 197	220.7	125	2001 20	29 512	197 7
90	14/0.92	29.107	229.7	135	2020 80	38,512	186 6
91	1529 75	29.410	228.0	130	3078 69	38 885	185 9
92	1559 51	29.044	226.3	178	3117 66	39 070	185 1
94	1589.49	30.097	225.2	139	3156.83	39.255	184.4
95	1619.70	30.321	224.1	140	3196.17	39,439	183.7
96	1650.13	30.545	223.1	141	3235.70	39.623	183.0
97	1680.79	30.768	222.0	142	3275.42	39.805	182.3
98	1711.67	30.989	221.0	143	3315.31	39,987	181.6
99	1742.77	31.210	219.9	144	3355.39	40.169	180.9
100	1774 <u>.</u> 09	31.429	218.9	145	3395.65	40.349	180.3
101	1805.63	31.647	217.9	146	3436.09	40.529	179.6
102	1837.38	31.865	216.9	147	3476.71	40.708	179.0
103	1869.36	32.081	215.9	148	3517.51	40.887	178.3
104	1901.54	32.297	214.9	149	3558.48	41.065	1//./
105	1933.95	32.511	213.9	150	3599.64	41.242	177.0
106	1966.57	32.724	212.9	151	3640.97	41.419	176.4
107	1999.40	32.937	211.9	152	3682.47	41.595	175.8
108	2032.44	33.148	210.9	153	3724.16	41.771	175.2
109	2065.69	33.359	310.0	154	3766.02	41.946	1/4.6
110	2099.16	33.568	209.0	155	3808.05	42.120	173.9
111	2132.83	33.777	208.1	156	3850.26	42.293	173.3
112	2166.71	33.984	207.1	157	3892.64	42.466	172.7
113	2200.80	34.191	206.2	158	3935.19	42.639	172.1
114	2235.09	34.397	205.2	159	3977.91	42.811	1/1.5
115	2269.59	34.601	204.3	160	4020.81	42.982	170.9
116	2304.29	34.805	203.4	161	4063.88	43.153	170.3
117	2339.20	35.008	202.4	162	4107.11	43.323	169.7
118	2374.31	35.210	201.5	163	4150.52	43.492	169.1
119	2409.62	35.411	200.6	164	4194.10	43,001	108.5
120	2445.13	35.611	199.7	165	4237.84	43.829	167.9
121	2480.84	35.811	198.8	166	4281.76	43.997	167.3
122	2516.75	36.009	198.0	167	4325.84	44.164	166.7
123	2552.86	36.207	197.1	168	4370.08	44.330	165.1
124	2589.17	36.403	196.2	169	4414.50	44.490	105.5
125	2625.67	36.599	195.4	170	4459.07	44.661	164.9
126	2662.36	36.794	194.5	171	4503.82	44.826	164.3
127	2699.25	36.988	193.7	172	4548.73	44.990	163.7
128	2736.34	3/.181	192.9	173	4393.80	45.155	162.5
129	2//3.02	31.314	192.0	1/4	4039.03	45.510	102.5
130	2811.09	37.565	191.2	175	4684.43	45.478	161.8
131	2848.75	32.756	190.4	176	4729.99	45.640	161.2
132	2886.60	32.946	189.6	179	4//3./1	45.800	160.0
133	2924.04	30.130	100.9	170	4021, 39	45.901	150.0
134	2902.07	30.324	100.1	1/7	4007.03	70.120	192.4

<i>т</i> , к	<i>Ε</i> , μV	<i>S</i> , μV /K	$\frac{dS}{dT}$, nV/K ²	Т, К	Ε, μV	<i>S</i> , μV/K	<i>dS /dT</i> , nV /K ²
180	4913.83	46.279	158.7	230	7413.67	53.482	130.9
181	4960.19	46.438	158.1	231	7467.22	53.613	130.4
182	5006.70	46.596	157.5	232	7520.89	53.743	129.9
183	5053.38	46.753	156.9	233	7574.70	53.872	129.4
184	5100.21	46.909	156.2	234	7628.64	54.002	129.0
185	5147.20	47.065	155.6	235	7682.70	54.130	128.5
186	5194.34	47.221	155.0	236	7736.90	54.259	128.0
187	5241.64	47.375	154.4	237	7791.22	54.386	127.5
188	5289.09	47.529	153.7	238	7845.67	54.514	127.1
189	5336.70	47.683	153.1	239	7900.25	54.641	126.6
190	5384.46	47.835	152.5	240	7954.95	54.767	126.1
191	5432.37	47.988	151.9	241	8009.78	54.893	125.7
192	5480.43	48.139	151.2	242	8064.74	55.018	125.2
193	5528.65	48.290	150.6	243	8119.82	55.143	124.8
194	5577.01	48.440	150.0	244	8175.02	55.268	124.3
195	5625.53	48.590	149.4	245	8230.35	55.392	123.9
196	5674.19	48.739	148.8	246	8285.81	55.516	123.5
197	5723.00	48.888	148.2	247	8341.38	55.639	123.1
198	5771.97	49.036	147.6	248	8397.09	55.762	122.7
199	5821.08	49.183	147.0	249	8452.91	55.884	122.3
200	5870.33	49.330	146.4	250	8508.85	56.006	121.9
201	5919.74	49.476	145.9	251	8564.92	56.128	121.5
202	5969.28	49.622	145.3	252	8621.11	56.250	121.2
203	6018.98	49.767	144.7	253	8 6 77.42	56.371	120.8
204	6068.82	49.911	144.1	254	8733,85	56.491	120.5
205	6118.80	50.055	143.6	255	8790.40	56.611	120.1
206	6168.93	50.198	143.0	256	8847.07	56.731	119.8
207	6219.20	50.341	142.5	257	8903.86	56.851	119.4
208	6269.61	50.483	141.9	258	8960.78	56.970	119.1
209	6320.16	50.625	141.4	259	9017.81	57.089	118.7
210	6370.86	50.766	140.9	260	9074.95	57.208	118.3
211	6421.69	50.907	140.3	261	9132.22	57.326	117.9
212	6472.67	51.047	139.8	262	9189.61	57.444	117.4
213	6523.79	51.186	139.3	263	9247.11	57.561	116.9
214	6575.04	51.325	138.8	264	9304.73	57.677	116.3
215	6626.44	51.464	138.3	265	9362.46	57.793	115.6
216	6677.97	51.602	137.8	266	9420.31	57.908	114.8
217	6729.64	51.739	137.3	267	9478.28	58.023	113.9
218	6781.45	51.876	136.8	268	9536.36	58.136	112.8
219	6833.39	52.013	136.3	269	9594.55	58.248	111.5
220	6885.47	52.149	135.8	270	9652.85	58.359	110.0
221	6937.69	52.284	135.3	271	9711.27	58.468	108.2
222	6990.04	52.419	134.8	272	9769.79	58.575	106.2
223	7042.53	52.554	134.3	273	9828.42	58.680	103.7
224	7095.15	52.688	133.8	274	9887.15	58.783	100.9
225	7147.90	52.821	133.3	275	9945.98	58.882	97.6
226	7200.79	52.955	132.8	276	10004.91	58.978	93.8
227	7253.81	53.087	132.3	277	10063.94	59.069	89.3
228	7306.97	53.219	131.9	278	10123.05	59.156	84.2
229	7360,25	53.351	131.4	279	10182.25	59.237	78.2
				280	10241.52	59.312	71.4

TABLE 63—Continued.

<u></u> Т, К	<i>Ε</i> , μV	<i>S</i> , μV /K	<i>dS /dT</i> , nV /K²	<i>Т</i> , К	Ε, μV	<i>S</i> , μV /K	$\frac{dS}{dT}$, nV/K ²
0	0.00	-0.400	526.6	45	272.34	11.245	193.5
ĩ	-0.15	0.099	473.2	46	283.68	11.437	190.3
2	0.18	0.549	428.0	47	295.21	11.625	187.1
3	0.94	0.958	390.1	48	306.93	11.811	184.0
4	2.09	1.332	358.4	49	318.83	11.993	181.0
5	3.59	1.677	332.3	50	330.92	12.173	178.0
6	5.43	1.998	310.9	51	343.18	12.349	175.2
7	7.58	2.300	293.5	52	345.62	12.523	172.5
8	10.03	2.586	279.7	53	368.23	12.694	169.8
9	12.75	2.860	268.8	54	381.00	12.863	167.3
10	15.74	3.124	260.3	55	393.95	13.029	164.9
11	19.00	3.381	254.0	56	407.06	13.193	162.6
12	22.50	3.633	249.3	57	420.33	13.354	164.4
13	26.26	3.880	246.0	58	433.77	13.514	158.4
14	30.26	4.125	243.8	59	447.36	13.671	156.4
15	34.51	4.368	242.5	60	461.11	13.826	154.6
16	39.00	4.610	241.8	61	475.01	13.980	152.9
17	43.73	4.852	241.5	62	489.07	14.132	151.3
18	48.70	5.094	241.6	63	503.28	14.283	149.8
19	53.92	5.335	241.8	64	517.64	14.432	148.4
20	59.37	5.577	242.2	65	532.14	14.580	147.1
21	65.07	5.820	242.5	66	546.79	14.726	146.0
22	71.01	6.062	242.7	67	561.59	14.872	144.9
23	77.20	6.305	242.7	68	578.54	15.016	143.9
24	83.62	6.548	242.6	69	591.62	15.159	142.9
25	90.29	6.790	242.2	70	606.86	15.302	142.1
26	97.20	7.032	241.6	71	622.23	15.444	141.3
27	104.36	7.273	240.8	72	637.74	15.584	140.6
28	111.75	7.513	239.7	73	653.40	15.725	139.9
29	119.38	7.752	238.3	74	669.19	15.864	139.3
30	127.25	7.990	236.7	75	685.13	16.003	138.8
31	135.36	8.226	234.8	76	701.20	16.142	138.3
32	143.70	8.459	232.7	77	717.41	16.280	137.8
33	152.28	8.691	230.4	78	733.76	16.417	137.4
34	161.08	8.920	227.9	79	750.24	16.555	137.0
35	170.12	9.147	225.2	80	766.87	16.691	136.6
36	179.38	9.371	222.4	81	783.63	16.828	136.2
37	188.86	9.592	219.4	82	800.52	16.964	135.9
38	198.56	9.809	216.4	83	817.55	17.100	135.6
39	208.48	10.024	213.2	84	834.72	17.235	135.3
40	218.61	10.236	210.0	85	852.02	17.370	135.0
41	228.95	10.444	206.7	86	869.46	17.505	134.7
42	239.49	10.649	203.4	87	887.03	17.640	134.5
43	250.24	10.851	200.1	88	904.74	17.774	134.2
44	261.19	11.049	196.8	89	922.58	17.908	133.9

 TABLE 64—Type T-thermoelectric voltage, E(T), Seebeck coefficient, S(T), and derivative of the Seebeck coefficient, dS/dT [151].

<i>Т</i> , К	$E,\mu V$	<i>S</i> , μV /K	dS/dT, nV/K ²	<i>T</i> , K	$E,\mu V$	<i>S</i> , μV /K	<i>dS dT</i> , nV /K ²
90	940.56	18.042	133.7	140	2004.33	24.420	123.2
91	958.66	18.175	133.4	141	2028.82	24.543	123.0
92	976.91	18.309	133.1	142	2053.42	24.666	122.9
93	995.28	18.442	132.9	143	2078.15	24.789	122.7
94	1013.79	18.574	132.6	144	2103.00	24.911	122.6
95	1032.43	18.707	132.3	145	2127.97	25.034	122.4
96	1051.20	18.839	132.1	146	2153.07	25.156	122.3
97	1070.11	18.971	131.8	147	2178.28	25.279	122.1
98	1089.14	19.102	131.5	148	2203.62	25.401	121.9
99	1108.31	19.234	131.2	149	2229.08	25.522	121.8
100	1127.61	19.365	131.0	150	2254.67	25.644	121.6
101	1147.04	19.496	130.7	151	2280.37	25.766	121.4
102	1166.60	19.626	130.4	152	2306.20	25.887	121.2
103	1186.29	19.757	130.1	153	2332.15	26.008	121.0
104	1206.12	19.886	129.8	154	2358.21	26.129	120.7
105	1226.07	20.016	129.6	155	2384.40	26.249	120.5
106	1246.15	20.146	129.3	156	2410.71	26.370	120.3
107	1266.36	20.275	129.0	157	2437.14	26.490	120.1
108	1286.70	20.404	128.7	158	2463.69	26.610	119.8
109	1307.17	20.532	128.5	159	2490.36	26.730	119.0
110	1327.76	20.661	128.2	160	2517.15	26.849	119.3
111	1348.49	20.789	128.0	161	2544.06	26.968	119.0
112	1369.34	20.916	127.7	162	2571.09	27.087	118.8
113	1390.32	21.044	127.5	163	2598.24	27.206	118.5
114	1411.43	21.171	127.2	104	2023.30	27.324	110.2
115	1432.66	21.298	127.0	165	2652.88	27.442	118.0
110	1454.02	21.425	126.8	166	2680.39	27.560	117.7
117	14/5.51	21.552	126.0	167	2708.00	27.0/8	117.4
110	1497.13	21.0/8	126.3	160	2/33.74	27.795	116 9
119	1510.07	21.805	120.1	109	2703.39	27.912	110.0
120	1540.74	21.931	126.0	170	2/91.56	28.029	116.0
121	1562.73	22.057	125.8	171	2819.00	28.145	116.0
122	1584.85	22.182	125.6	172	2847.85	28.201	115.7
123	1607.10	22.300	125.4	175	2070.17	20.377	115.7
127	1651.06	22.455	125.5	175	2004.01	20.425	115.5
125	1674 59	22.338	125.1	175	2955.10	20.000	113.2
120	1607 22	22.003	123.0	170	2901.02	20.723	114.7
127	1097.33	22.000	124.0	178	2990.00	20.030	114.7
120	1743 20	22.955	124.7	170	3048 51	20.952	114.4
120	1745.20	23.050	124.3	190	2077 62	29.007	112 0
130	1789 56	23.162	124.4	181	3106 87	29.101	113.7
131	1812 03	23.300	124.5	182	3136 22	29.294	113.7
133	1836 42	23.555	124.2	183	3165 68	29 521	113.1
134	1860.04	23.679	123.9	184	3195.28	29.634	113.0
135	1883.78	23,803	123.8	185	3224 95	29.747	112.8
136	1907.64	23.926	123.7	186	3254.76	29.860	112.5
137	1931.63	24.050	123.5	187	3284.67	29.972	112.3
138	1955.74	24.173	123.4	188	3314.70	30.085	112.1
139	1979.98	24.297	123.3	189	3344.84	30.197	111.9

TABLE 64—Continued.

T.	A	B	L	E	6	4-	-С	0	11	'iı	ıu	ec	ł.
----	---	---	---	---	---	----	----	---	----	-----	----	----	----

—— T, K	<i>Ε</i> , μV	S, μV /K	<i>dS /dT</i> , nV /K ²	<i>T</i> , K	<i>Ε</i> , μV	<i>S</i> , μV /K	dS/dT, nV/K ²
190	3375 09	30, 308	111.7	235	4848.69	35.093	100.0
101	3405 46	30 420	111 5	236	4883.84	35,193	99.9
107	3/35 03	30 531	111.3	237	4919 08	35,293	99.7
102	2466 57	30 643	111.5	238	4954 42	35 392	99.5
195	3497.22	30.754	111.0	239	4989.86	35.492	99.4
195	3528.03	30.865	110.8	240	5025.40	35.591	99.3
196	3558.95	30.975	110.6	241	5061.04	35.690	99.2
197	3589.98	31.086	110.4	242	5096.78	35.789	99.1
198	3621.12	31.196	110.2	243	5132.62	35.888	99.0
199	3652.37	31.306	110.0	244	5168.56	35.987	98.9
200	3683.73	31.416	109.8	245	5204.60	36.086	98.8
201	3715.20	31.526	109.6	246	5240.73	36.185	98.8
202	3746.78	31.635	109.4	247	5276.97	36.284	98.7
203	3778.47	31.744	109.2	248	5313.30	36.382	98.6
204	3810.27	31.853	108.9	249	5349.73	36.481	98.5
205	3842.18	31.962	108.7	250	5386.26	36.579	98.4
206	3874.20	32.071	108.5	251	5422.89	36.678	98.3
207	3906.32	32.179	108.2	252	5459.62	36.776	98.1
208	3938.55	32.287	108.0	253	5496.44	36.874	97.9
209	3970.90	32.395	107.7	254	5533.37	36.972	97.6
210	4003.34	32.503	107.4	255	5570.39	37.069	97.3
211	4035.90	32.610	107.2	256	5607.50	37.166	97.0
212	4068.56	32.717	106.9	257	5644.72	37.263	96.6
213	4101.34	32.824	106.6	258	5682.03	37.359	96.1
214	4134.21	32.930	106.3	259	5719.44	37.455	95.6
215	4167.20	33.036	106.0	260	5756.94	37.551	95.0
216	4200.29	33.142	105.7	261	5794.54	37.645	94.3
217	4233.48	33.248	105.4	262	5832.23	37.739	93.6
218	4266.78	33.353	105.0	263	5870.02	37.833	92.9
219	4300.19	33.458	104.7	264	5907.90	37.925	92.1
220	4333.70	33.562	104.4	265	5945.87	38.017	91.3
221	4367.31	33.667	104.0	266	5983.93	38.108	90.5
222	4401.03	33.770	103.7	267.	6022.08	38.198	89.8
223	4434.85	33.874	103.4	268	6060.32	38.287	89.0
224	4468.78	33.977	103.1	269	6098.66	38.376	88.4
225	4502.81	34.080	102.7	270	6137.08	38.464	88.0
226	4536.94	34.183	102.4	271	6175.58	38.552	8/./
227	4571.17	34.285	102.1	272	6214.18	38.640	87.8
228	4605.51	34.387	101.8	273	6252.86	38.728	88.2
229	4639.94	34.488	101.5	274	6291.64	38.816	89.0
230	4674.48	34.590	101.2	275	6330.50	38.906	90.5
231	4709.12	34.691	101.0	276	6369.45	38.99/	92.6
232	4743.87	34.792	100.7	277	6408.49	39.091	95.6
233	4778.71	34.892	100.5	278	6447.63	39.189	99.7
234	4813.65	34.993	100.2	279	6486.87	39.291	105.0
				280	6526.22	39.399	111.8

Т, К	$E, \mu V$	<i>S</i> , μV/K	<i>dS /dT</i> , nV /K²	<i>T</i> , K	$E, \mu V$	<i>S</i> , µV/K	<i>dS /dT</i> , nV /K ²
0	0.00	0.241	146.9	45	214.95	9.683	212.9
1	0.32	0.391	154.3	46	224.74	9.896	211.8
2	0.78	0.549	161.3	47	234.75	10.107	210.8
3	1.42	0.714	167.7	48	244.96	10.317	209.7
4	2.21	0.884	173.7	49	255.38	10.526	208.7
5	3.19	1.061	179.2	50	266.01	10.735	207.6
6	4.34	1.243	184.3	51	276.85	10.942	206.5
7	5.67	1.429	189.0	52	287.89	11.148	205.5
8	7.20	1.621	193.4	53	299.14	11.353	204.4
9	8.92	1.816	197.3	54	310.60	11.556	203.3
10	10.83	2.015	200.9	55	322.26	11.759	202.3
11	12.95	2.218	204.2	56	334.12	11.961	201.2
12	15.27	2.424	207.2	57	346.18	12.162	200.1
13	17.80	2.632	209.9	58 59	358.44	12.361	199.1
14	20.33	2.045	212.5	57	570.70	12.000	
15	23.48	3.057	214.5	60	383.56	12.757	197.0
16	26.65	3.272	216.4	61	396.41	12.954	196.0
17	30.03	3.489	218.1	62	409.47	13.149	195.0
18	33.63	3.708	219.5	63	422.71	13.344	194.0
19	37.45	3.928	220.8	64	436.15	13.537	193.0
20	41.48	4.150	221.9	65	449.79	13.730	192.1
21	45.75	4.372	222.8	66	463.61	13.922	191.1
22	50.23	4.595	223.5	6/	4//.63	14.112	190.2
23	54.94	4.819	224.0	68	491.84	14.302	189.2
24	39.07	5.043	224.4	09	500.25	14.471	100.5
25	65.02	5.268	224.7	70	520.82	14.678	187.4
26	70.40	5.493	224.9	71	535.59	14.865	186.5
27	76.01	5.718	224.9	72	550.55	15.051	185.6
28	81.84	5.942	224.8	73	565.69	15.237	184.8
29	87.89	6.167	224.6	74	581.02	15.421	183.9
30	94.17	6.392	224.3	75	596.53	15.604	183.1
31	100.68	6.616	224.0	76	612.23	15.787	182.2
32	107.40	6.840	223.5	//	628.11	15.969	181.4
33	114.36	7.063	223.0	78	644.17	16.150	170.0
34	121.53	7.285	222.4	79	660.41	16.330	1/9.8
35	128.93	7.508	221.7	80	676.83	16.510	179.1
36	136.54	7.729	221.0	81	693.43	16.688	1/8.3
37	144.38	7.950	220.3	82	/10.20	10.800	177.9
38	152.44	8.169	219.4	83	727.16	17.043	176.1
39	160.72	8.388	218.6	84	144.29	17.220	1/0.1
40	169.22	8.607	217.7	85	761.60	17.396	175.3
41	177.94	8.824	216.8	86	//9.08	17.7/1	1/4.6
42	186.87	9.040	215.8	8/	/96./4	17.745	1/3.9
43	196.02	9.256	214.9	88	814.3/	10 001	173.2
44	205.38	9.470	213.9	89	832.58	18.091	1/2.0

 TABLE 65—Type K-thermoelectric voltage, E(T), Seebeck coefficient, S(T), and derivative of Seebeck coefficient, dS/dT [151].

TABLE 65—Continued.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 Т. К		 S. μV /K	dS/dT, nV/K ²	<i>Т</i> , К	Ε, μV	S, μV /K	dS /dT, nV /K ²
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		050 75	18 264	171.0	140	1966 10	26 107	142.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	830.73	10.204	171.9	140	1900.10	26.249	141 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	809.10	18 606	171.2	141	2018 60	26.391	141.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92	006 31	18.000	169 9	142	2010.00	26 532	140.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93 94	925.18	18.946	169.3	144	2071.66	26.672	140.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95	944.21	19.115	168.6	145	2098.40	26.811	139.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96	963.40	19.283	168.0	146	2125.28	26.950	138.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	982.77	19.451	167.4	147	2152.30	27.089	138.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98	1002.31	19.618	166.8	148	2179.46	27.227	137.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99	1022.01	19.784	166.2	149	2206.75	27.364	137.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	1041.87	19.950	165.5	150	2234.19	27.501	136.4
102 1082.11 20.280 164.3 152 2289.46 27.772 $135.$ 103 1102.47 20.444 163.7 153 2317.30 27.907 134 104 1122.99 20.608 163.2 154 2345.27 28.041 133 105 1143.68 20.770 162.6 155 2373.38 28.175 133 106 1164.53 20.933 162.0 156 2401.62 28.308 132 107 1185.55 21.094 161.4 157 2430.00 28.440 132 108 1206.72 21.255 160.8 158 2458.50 28.572 131 109 1228.06 21.416 160.2 159 2487.14 28.703 130 110 1249.55 21.576 159.7 160 2515.91 28.834 130 111 1271.21 21.735 159.1 161 2543.28 29.093 129 113 135.00 22.052 157.9 163 2603.00 29.222 128 114 1337.13 22.210 157.4 164 2632.28 29.350 127.71 115 1359.42 22.367 155.6 167 2720.90 29.478 127.71 116 1381.86 22.524 156.2 166 2691.24 29.604 126.71 117 1404.46 22.679 155.6 167 2720.90 29.8	101	1061.91	20.115	164.9	151	2261.76	27.637	135.7
1031102.4720.444163.71532317.3027.9071341041122.9920.608163.21542345.2728.0411331051143.6820.770162.61552373.3828.175133.1061164.5320.933162.01562401.6228.308132.1071185.5521.094161.41572430.0028.4401321081206.7221.255160.81582458.5028.5721311091228.0621.416160.21592487.1428.7031301101249.5521.576159.71602515.9128.8341301111271.2121.735159.11612544.8128.9641291121293.0221.894158.51622573.8429.093127.1151359.4222.367156.81652661.7029.478127.1161381.8622.524156.21662691.2429.604126.1171404.4622.679155.61672720.9029.731126.1181427.2222.835155.11682750.7029.856125.1191450.1322.990154.51692780.6229.981124.1201473.2023.144153.91702810.6630.106124.1211496.4223.297153.41712840.83 <td< td=""><td>102</td><td>1082.11</td><td>20.280</td><td>164.3</td><td>152</td><td>2289.46</td><td>27.772</td><td>135.1</td></td<>	102	1082.11	20.280	164.3	152	2289.46	27.772	135.1
104 1122.99 20.608 163.2 154 2345.27 28.041 133 105 1143.68 20.770 162.6 155 2373.38 28.175 133 106 1164.53 20.933 162.0 156 2401.62 28.308 132 107 1185.55 21.094 161.4 157 2430.00 28.440 132 108 1206.72 21.255 160.8 158 2448.50 28.572 131 109 1228.06 21.416 160.2 159 2487.14 28.703 130 110 1249.55 21.576 159.7 160 2515.91 28.834 130 111 1271.21 21.735 159.1 161 2544.81 28.964 129 112 1293.02 21.894 158.5 162 2573.84 29.093 $129.$ 113 1315.00 22.052 157.9 163 2603.00 29.222 128 114 1337.13 22.210 157.4 164 2632.28 29.350 127.7 115 1359.42 22.524 156.2 166 2691.24 29.604 126 117 1404.46 22.579 155.6 167 2720.90 29.731 126 118 1427.22 22.835 155.1 168 2750.70 29.856 125 119 1450.13 22.990 154.5 169 2780.62 29.981 124 <	103	1102.47	20.444	163.7	153	2317.30	27.907	134.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104	1122.99	20.608	163.2	154	2345.27	28.041	133.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105	1143.68	20.770	162.6	155	2373.38	28.175	133.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	106	1164.53	20.933	162.0	156	2401.62	28.308	132.7
108 $1206, 72$ $21, 253$ 100.8 138 $2438, 30$ $23, 372$ 131 109 $1228, 06$ $21, 416$ 160.2 159 $2487, 14$ $28, 703$ 130 110 $1249, 55$ $21, 576$ $159, 7$ 160 $2515, 91$ $28, 834$ 130 111 $1271, 21$ $21, 735$ $159, 1$ 161 $2544, 81$ $28, 964$ 129 112 $1293, 02$ $21, 894$ $158, 5$ 162 $2573, 84$ $29, 093$ 129 113 $1315, 00$ $22, 052$ $157, 9$ 163 $2603, 00$ $29, 222$ 128 114 $1337, 13$ $22, 210$ $157, 4$ 164 $2632, 28$ $29, 350$ 127 115 $1359, 42$ $22, 677$ $156, 8$ 165 $2661, 70$ $29, 478$ 127 116 $1381, 86$ $22, 524$ $156, 2$ 166 $2691, 24$ $29, 604$ $126, 126$ 117 $1404, 46$ $22, 679$ $155, 6$ 167 $2720, 90$ $29, 731$ $126, 117$ $1404, 46$ $22, 679$ $155, 6$ 167 $2780, 62$ $29, 981$ $124, 120$ $1473, 20$ $23, 144$ $153, 9$ 170 $2810, 66$ $30, 106$ $124, 121$ $1496, 42$ $23, 297$ $153, 4$ 171 $2840, 83$ $30, 230$ $123, 122, 1519, 80$ 122 $159, 83$ $23, 603$ $152, 2$ 173 $2901, 53$ $30, 475$ $122, 123$ 124 $1567, 00$ $23, 755$ <td>107</td> <td>1185.55</td> <td>21.094</td> <td>161.4</td> <td>157</td> <td>2430.00</td> <td>28.440</td> <td>132.1</td>	107	1185.55	21.094	161.4	157	2430.00	28.440	132.1
100 1228.00 21.410 100.2 150 21011 22.010 120 110 1249.55 21.576 159.7 160 2515.91 28.834 130 111 1271.21 21.735 159.1 161 2544.81 28.964 129 112 1293.02 21.894 158.5 162 2573.84 29.093 129 113 1315.00 22.052 157.9 163 2603.00 29.222 128 114 1337.13 22.210 157.4 164 2632.28 29.350 127 115 1359.42 22.367 156.8 165 2661.70 29.478 127 116 1381.86 22.524 156.2 166 2691.24 29.604 126 117 1404.46 22.679 155.6 167 2720.90 29.731 126 118 1427.22 22.835 155.1 168 2750.70 29.856 125 119 1450.13 22.990 154.5 169 2780.62 29.981 124 120 1473.20 23.144 153.9 170 2810.66 30.106 124 121 1496.42 23.297 153.4 171 2840.83 30.230 123 122 1519.80 23.755 151.6 174 2932.07 30.597 121 125 1590.83 23.906 151.1 175 2962.73 30.718 <td< td=""><td>108</td><td>1206.72</td><td>21.255</td><td>160.8</td><td>158</td><td>2436.30</td><td>28.372</td><td>130.9</td></td<>	108	1206.72	21.255	160.8	158	2436.30	28.372	130.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107	1228.00	21.410	150.7	160	2515 01	28.705	130.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111	1249.33	21.370	159.7	161	2513.91	28.054	129.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112	12/1.21	21.735	158.5	162	2573 84	29,093	129.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112	1315 00	22.052	157.9	163	2603.00	29.222	128.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114	1337.13	22.210	157.4	164	2632.28	29.350	127.8
1161381.86 22.524 156.2166 2691.24 29.604 1261171404.4622.679155.61672720.9029.7311261181427.2222.835155.11682750.7029.8561251191450.1322.990154.51692780.6229.9811241201473.2023.144153.91702810.6630.1061241211496.4223.297153.41712840.8330.230123.1221519.8023.451152.81722871.1230.353122.1231543.3223.603152.21732901.5330.475122.1241567.0023.755151.61742932.0730.597121.1251590.8323.906151.11752962.7330.718121.1261614.8124.057150.5176293.5130.839120.1271638.9524.207149.91773024.4130.959119.1281663.2324.357149.31783055.4231.079119.1291687.6624.506148.81793086.5631.197118.1301712.2424.654148.21803117.8231.316117.1311736.9724.802147.61813149.1931.433117.1321761.8424.950147.01823180.68<	115	1359.42	22.367	156.8	165	2661.70	29.478	127.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	116	1381.86	22.524	156.2	166	2691.24	29.604	126.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117	1404.46	22.679	155.6	167	2720.90	29.731	126.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118	1427.22	22.835	155.1	168	2750.70	29.856	125.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119	1450.13	22.990	154.5	169	2780.62	29.981	124.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120	1473.20	23.144	153.9	170	2810.66	30.106	124.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121	1496.42	23.297	153.4	171	2840.83	30.230	123.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122	1519.80	23.451	152.8	172	2871.12	30.353	122.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123	1543.32	23.603	152.2	173	2901.53	30.475	122.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	124	1567.00	23.755	151.6	1/4	2932.07	30.597	121.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	125	1590.83	23.906	151.1	175	2962.73	30.718	121.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	126	1614.81	24.057	150.5	176	2993.51	30.839	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	127	1638.95	24.207	149.9	179	3024.41	30.939	119.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	128	1663.23	24.357	149.3	170	3035.42	31.079	117.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	129	1687.00	24.300	140.0	1/9	3000.30	21 216	117.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	130	1712.24	24.654	148.2	180	311/.02	31.310	117.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131	1/36.9/	24.802	147.0	101	3149.19	31.433	117.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132	1/01.04	24.930	147.0	182	3212 20	31 666	116.0
135 1837.35 25.388 145.3 185 3275.86 31.897 114. 136 1862.81 25.533 144.7 186 3307.81 32.011 114. 137 1888.42 25.678 144.1 187 3339.88 32.125 113.	133	1812.04	25.243	145.9	184	3244.02	31.782	115.3
136 1862.81 25.533 144.7 186 3307.81 32.011 114 137 1888.42 25.678 144.1 187 3339.88 32.125 113	135	1837 35	25 388	145 3	185	3275.86	31,897	114.7
137 1888.42 25.678 144.1 187 3339.88 32.125 113.	135	1867 81	25.533	144.7	186	3307.81	32.011	114.1
	137	1888.47	25.678	144.1	187	3339.88	32.125	113.4
138 1914.17 25.821 143.5 188 3372.06 32.238 112	138	1914.17	25.821	143.5	188	3372.06	32.238	112.8
139 1940.06 25.965 142.9 189 3404.36 32.351 112	139	1940.06	25.965	142.9	189	3404.36	32.351	112.2

<u></u>	Ε, μV	<i>S</i> , μV/K	<i>dS /dT</i> , nV /K ²	<i>T</i> , K	Ε, μV	<i>S</i> , μV /K	<i>dS /dT</i> , nV /K ²
190	3436.76	32.463	111.5	235	5000.69	36.825	82.2
191	3469.28	32.574	110.9	236	5037.55	36.907	81.6
192	3501.91	32,684	110.3	237	5074 50	36.988	80.9
193	3534.65	32,794	109.6	238	5111 53	37,069	80.3
194	3567.50	32.904	109.0	239	5148.64	37.149	79.6
195	3600.46	33.012	108.3	240	5185.83	37.228	79.0
196	3633.52	33.120	107.7	241	5223.10	37.307	78.4
197	3666.70	33.228	107.1	242	5260.44	37.385	77.7
198	3699.98	33.334	106.4	243	5297.87	37.462	77.1
199	3733.36	33.440	105.8	244	5335.37	37.539	76.4
200	3766.86	33.546	105.1	245	5372.94	37.615	75.8
201	3800.46	33.651	104.5	246	5410.60	37.691	75.1
202	3834.16	33.755	103.8	247	5448.32	37.765	74.5
203	3867.96	33.858	103.2	248	5486.13	37.840	73.8
204	3901.87	33.961	102.5	249	5524.00	37.913	73.2
205	3935.89	34.063	101.9	250	5561.95	37.986	72.5
206	3970.00	34.165	101.2	251	5599.98	38.058	71.9
207	4004.22	34.266	100.6	252	5638.07	38.130	71.2
208	4038.53	34.366	99.9	253	5676.23	38.201	70.6
209	4072.95	34.466	99.3	254	5714.47	38.271	69.9
210	4107.46	34.565	98.6	255	5752.78	38.340	69.2
211	4142.08	34.663	98.0	256	5791.15	38.409	68.5
212	4176.79	34.761	97.3	257	5829.59	38.477	67.9
213	4211.60	34.857	96.7	258	5868.10	38.545	67.2
214	4246.50	34.954	96.0	259	5906.68	38.612	66.5
215	4281.51	35.049	95.3	260	5945.33	38.678	65.8
216	4316.60	35.144	94.7	261	5984.04	38.743	65.1
217	4351.79	35.239	94.0	262	6022.81	38.808	64.3
218	4387.08	35.333	93.4	263	6061.65	38.872	63.6
219	4422.46	35.426	92.7	264	6100.56	38.935	62.8
220	4457.93	35.518	92.1	265	6139.52	38.998	62.1
221	4493.49	35.610	91.4	266	6178.55	39.059	61.3
222	4529.15	35.701	90.7	267	6217.64	39.120	60.5
223	4564.90	35.791	90.1	268	6256.79	39.180	59.6
224	4600.73	35.881	89.4	269	6296.00	39.239	58.8
225	4636.66	35.970	88.8	270	6335.27	39.298	57.9
226	46/2.6/	36.059	88.1	271	63/4.60	39.355	57.0
227	4708.77	36.146	87.5	272	6413.98	39.412	56.1
228	4744.96	36.233	86.8	273	6453.42	39.467	55.1
229	4781.24	36.320	86.2	274	6492.91	39.522	54.1
230	4817.60	36.406	85.5	275	6532.46	39.575	53.0
231	4004.00	30.491	84.8	2/6	03/2.06	39.628	51.9
232	4890.39	30.3/3	84.2	2/7	0011.72	39.679	50.8
233	4927.20	30.039	83.3	2/8	0031.42	39.729	49.6
234	4903.90	30.743	02.9	219	0091.18	37.//8	40.4
				280	6730.98	39.826	47.1

TABLE 65—Continued.

<i>T</i> , K	Ε, μV	<i>S</i> , μV /K	$\frac{dS}{dT}$, nV/K ²	<i>Т</i> , К	Ε, μV	<i>S</i> , μV /K	$\frac{dS}{dT}$, nV /K ²
0	0.00	0.000	0.0	45	710.22	16.569	26.9
1	7.85	8.673	1565.8	46	726.81	16.597	29.3
2	17.27	10.127	1346.7	47	743.42	16.628	31.4
3	28.04	11.375	1152.4	48	760.06	16,660	33.3
4	39.96	12.439	980.4	49	776.74	16.694	35.0
5	52.86	13.342	828.8	50	793.45	16.730	36.5
6	66.59	14.103	695.4	51	810.20	16.767	37.8
7	81.03	14.739	578.6	52	826.99	16.806	38.9
8	96.04	15.265	476.7	53	843.81	16.845	39.9
9	111.52	15.697	388.1	54	860.68	16.885	40.7
10	127.40	16.045	311.5	55	877.58	16.926	41.4
11	143.59	16.323	245.6	56	894.53	16.968	42.0
12	160.03	16.540	189.2	57	911.52	17.010	42.5
13	176.65	16.704	141.4	58	928.55	17.053	42.9
14	193.42	16.825	101.0	59	945.63	17.096	43.2
15	210.29	16.909	67.3	60	962.74	17.139	43.4
16	227.23	16.962	39.5	61	979.90	17.183	43.6
17	244.21	16,989	16.8	62	997.11	17.226	43.7
18	261.20	16.997	-1.4	63	1014.36	17.270	43.7
19	278.19	16.988	-15.7	64	1031.65	17.314	43.7
20	295.17	16.966	-26.6	65	1048.99	17.358	43.7
21	312.12	16.935	-34.6	66	1066.36	17.401	43.7
22	329.04	16.898	-40.1	67	1083.79	17.445	43.6
23	345.92	16.856	-43.5	68	1101.25	17.489	43.5
24	362.75	16.811	-45.1	69	1118.76	17.532	43.4
25	379.54	16.766	-45.3	70	1136.32	17.575	43.3
26	396.28	16.721	-44.2	71	1153.92	17.619	43.2
27	412.98	16.678	-42.1	72	1171.56	17.662	43.1
28	429.64	16.637	-39.2	73	1189.24	17.705	42.9
29	446.26	16.600	-35.7	74	1206.96	17.748	42.8
30	462.84	16.566	-31.8	75	1224.73	17.790	42.7
31	479.39	16.536	-27.5	76	1242.55	17.833	42.6
32	495.92	16.511	-23.0	77	1260.40	17.875	42.4
33	512.42	16.490	-18.4	78	1278.30	17.918	42.3
34	528.90	16.474	-13.8	79	1296.24	17.960	42.2
35	545.37	16.463	-9.2	80	1314.22	18.002	42.0
36	561.83	16.456	-4.7	81	1332.24	18.044	41.9
37	578.28	16.453	-0.4	82	1350.30	18.086	41.8
38	594.73	16.455	3.8	83	1368.41	18.128	41.6
39	611.19	16.461	7.8	84	1386.56	18.169	41.5
40	627.66	16.471	11.6	85	1404.75	18.211	41.3
41	644.13	16.484	15.2	86	1422.98	18.252	41.2
42	660.63	16.501	18.5	87	1441.25	18.293	41.0
43	677.14	16.521	21.5	88	1459.57	18.334	40.9
44	693.67	16.544	24.3	89	1477.92	18.375	40.7

TABLE 66—Thermocouple, KP or EP versus gold-0.07 atomic percent iron-thermoelectric voltage, Seebeck coefficient, and derivative of the Seebeck coefficient; E = f(T) [152].

<i>T</i> , K	$E, \mu V$	<i>S</i> , μV /K	<i>dS /dT</i> , nV /K ²	<i>T</i> , K	$E,\mu V$	<i>S</i> , μV /K	dS /dT, nV /K ²
90	1496.32	18.415	40.5	140	2462.15	20.094	26.7
91	1514.75	18.456	40.3	141	2482.25	20,120	26.5
92	1533.23	18.496	40.2	142	2502.39	20,147	26.3
93	1551.74	18.536	40.0	143	2522.55	20.173	26.1
94	1570.30	18.576	39.7	144	2542.73	20.199	26.0
95	1588.89	18.615	39.5	145	2562.94	20.225	25.8
96	1607.53	18.655	39.3	146	2583.18	20.250	25.6
97	1626.20	18.694	39.1	147	2603.45	20.276	25.4
98	1644.92	18.733	38.8	148	2623.73	20.301	25.3
99	1663.67	18.772	38.5	149	2644.05	20.327	25.1
100	1682.46	18.810	38.3	150	2664.39	20.352	24.9
101	1701.29	18.848	38.0	151	2684.75	20.376	24.7
102	1720.10	18.880	37.7	152	2705.14	20.401	24.6
103	1758.00	18.924	37.4 37.1	155	2725.55	20.426	24.4
105	1776 98	18 998	36.8	155	2766 45	20.474	24.1
106	1796.00	19.035	36.5	156	2786.94	20.498	23.9
107	1815.05	19.071	36.2	157	2807.45	20.522	23.7
108	1834.14	19.107	35.8	158	2827.98	20.545	23.5
109	1853.27	19.143	35.5	159	2848.54	20.569	23.4
110	1872.43	19.178	35.2	160	2869.12	20.592	23.2
111	1891.62	19.213	34.8	161	2889.72	20.615	23.0
112	1910.85	19.248	34.5	162	2910.35	20.638	22.8
113	1930.12	19.282	34.2	163	2931.00	20.661	22.6
114	1949.42	19.316	33.8	164	2951.67	20.683	22.5
115	1968.75	19.350	33.5	165	2972.37	20.706	22.3
116	1988.12	19.383	33.2	166	2993.08	20.728	22.1
117	2007.52	19.416	32.8	167	3013.82	20.750	21.9
118	2026.95	19.449	32.5	168	3034.58	20.772	21.7
119	2046.41	19.481	32.2	169	3055.37	20.793	21.5
120	2065.91	19.513	31.8	170	3076.17	20.815	21.3
121	2085.44	19.545	31.5	171	3096.99	20.836	21.1
122	2105.00	19.5/6	31.2	172	3117.84	20.857	21.0
123	2124.39	19.607	30.9	173	3138.71	20.878	20.8
125	2163 87	19 668	30.3	175	3180 51	20.019	20.0
126	2183 55	19.698	30.0	176	3201 44	20.919	20.4
127	2203.26	19.728	29.7	177	3222.38	20.960	20.2
128	2223.00	19.758	29.4	178	3243.35	20,980	19.9
129	2242.78	19.787	29.2	179	3264.34	20.999	19.7
130	2262.58	19.816	28.9	180	3285.35	21.019	19.6
131	2282.41	19.845	28.7	181	3306.38	21.038	19.4
132	2302.27	19.873	28.4	182	3327.43	21.058	19.2
133	2322.16	19.902	28.2	183	3348.50	21.077	19.1
134	2342.07	19.930	28.0	184	3369.58	21.096	18.9
135	2362.02	19.958	27.7	185	3390.69	21.115	18.8
136	2381.99	19.985	27.5	186	3411.81	21.133	18.6
13/	2401.99	20.013	27.3	18/	3432.96	21.152	18.5
130	2422.01	20.040	2/.1	100	3434.12	21.1/1	18.4
122	2442.0/	20.00/	20.9	107	34/3.50	21.189	18.3

TABLE 66—Continued.

					_		
 Т, К	Ε, μV	<i>S</i> , μV /K	<i>dS /dT</i> , nV /K ²	<i>T</i> , K	Ε, μV	<i>S</i> , μV /K	<i>dS/dT</i> , nV/K ²
190	3496 49	21, 207	18.1	235	4467.28	21.881	10.3
101	3517 71	21.207	18.0	236	4489.17	21.891	10.1
102	3538 0/	21.223	17.9	237	4511 06	21 901	9.9
192	2560.20	21.245	17.9	238	4532 97	21.901	9.8
193	3581.47	21.201	17.7	239	4554.88	21.921	9.6
195	3602.75	21.296	17.6	240	4576.81	21.930	9.5
196	3624.06	21.314	17.5	241	4598.74	21.940	9.4
197	3645.38	21.331	17.4	242	4620.69	21.949	9.3
198	3666.72	21.348	17.3	243	4642.64	21.958	9.3
199	3688.08	21.366	17.2	244	4664.61	21.968	9.2
200	3709.45	21.383	17.1	245	4686.58	21.977	9.2
201	3730.84	21.400	17.0	246	4708.56	21.986	9.3
202	3752.25	21.417	16.9	247	4730.55	21.995	9.3
203	3773.68	21.434	16.8	248	4752.55	22.005	9.4
204	3795.12	21.450	16.7	269	4774.56	22.014	9.5
205	3816.58	21.467	16.5	250	4796.58	22.024	9.6
206	3838.05	21.483	16.4	251	4818.61	22.034	9.8
207	3859.54	21.500	16.3	252	4840.64	22.043	10.0
208	3881.05	21.516	16.2	253	4862.69	22.053	10.2
209	3902.58	21.532	16.0	254	4884.75	22.064	10.3
210	3924.12	21.548	15.9	255	4906.82	22.074	10.6
211	3945.67	21.564	15.8	256	4928.90	22.085	10.8
212	3967.24	21.580	15.6	257	4950.99	22.096	11.0
213	3988.83	21.595	15.4	258	4973.09	22.107	11.1
214	4010.43	21.610	15.3	259	4995.20	22.118	11.3
215	4032.05	21.626	15.1	260	5017.33	22.129	11.5
216	4053.69	21.641	14.9	261	5039.46	22.141	11.6
217	4075.33	21.655	14.7	262	5061.61	22.152	11.6
218	4097.00	21.670	14.5	263	5083.77	22.164	11.7
219	4118.67	21.684	14.3	264	5105.94	22.176	11.6
220	4140.36	21.698	14.0	265	5128.12	22.187	11.5
221	4162.07	21.712	13.8	266	5150.31	22.199	11.3
222	4183.79	21.726	13.6	267	5172.52	22.210	11.1
223	4205.52	21.739	13.3	268	5194.73	22.221	10.7
224	4227.27	21.753	13.1	269	5216.96	22.231	10.3
225	4249.03	21.766	12.8	270	5239.19	22.241	9.7
226	4270.80	21.778	12.5	271	5261.44	22.251	9.0
227	4292.58	21.791	12.3	272	5283.70	22.259	8.2
228	4314.38	21.803	12.0	273	5305.96	22.267	7.3
229	4336.19	21.815	11.8	274	5328.23	22.274	6.3
230	4358.01	21.826	11.5	275	5350.51	22.280	5.2
231	4379.84	21.838	11.3	276	5372.79	22.284	4.0
232	4401.68	21.849	11.0	277	5395.08	22.288	2.7
233	4423.54	21.860	10.8	278	5417.36	22.290	1.3
234	4445.40	21.870	10.5	279	5439.65	22.290	-0.1

TABLE 66—Continued.

11.4 References

- [148] Scott, R. B., Cryogenic Engineering, Van Nostrand, Princeton, N. J., 1959.
- [149] White, G. K., Experimental Techniques in Low Temperature Physics, Oxford University Press, London, 1959.
- [150] Rose-Innes, A. C., Low Temperature Techniques, Van Nostrand, Princeton, N. J., 1964.
- [151] Sparks, L. L., Powell, R. L., and Hall, W. J., "Reference Tables for Low-Temperature Thermocouples," NBS Monograph 124, National Bureau of Standards, 1972.
- [152] Sparks, L. L. and Powell, R. L., "Low Temperature Thermocouples: KP, "Normal" Silver, and Copper Versus Au-0.02 at % Fe and Au-0.07at % Fe," Journal of Research, National Bureau of Standards, Vol. 76A, No. 3, May-June 1972.

Chapter 12—Bibliography

12.1 Introduction

The material contained herein was collected from two general sources: (1) scientific, technical, and trade journals and (2) reports of investigations sponsored or conducted by various governmental agencies. The material is an addition to the references and bibliographies appended to the other sections of the manual, the National Bureau of Standards' papers edited by Swindells, and the National Bureau of Standards' bibliography edited by Freeze and Parker, both of which are listed herein. The entries are generally for the period 1963 to 1967, with a few earlier and later items that were brought to our attention. Because of the rapid expansion of the technology, the list does not claim to be exhaustive. Not all of the items are necessarily of current interest, since a few years have made obsolete many that can now be considered only source material of historic interest.

While reasonable coverage was intended, it is inevitable that oversights and other unintentional omissions have occurred; however, references to the volumes of the series "Temperature, Its Measurement and Control in Science and Industry" except the latest Vol. IV have been deliberately omitted because the many references to the series throughout the manual are sufficient to assure reference to the series.

The method used to identify the periodicals follows that used in ASTM Data Series DS 23B, 1970 and DS 2313-S1, 1972, Coden for Periodical Titles. For the convenience of the reader who may not have access to these publications, the Coden used in this bibliography are identified in Section 12.3. Numbers prefixed by the letters AD refer to report numbers in the U.S. Government Technical Abstract Bulletin; those by N63, etc., are identifying numbers in the Scientific and Technical Aerospace Reports.

12.2 Bibliography

- Anon., "Automatic Recording and Control Used in Thermocouple Comparator," DSER, July-Aug. 1963.

Anon., "Automatic Thermocouple Comparator," INCS, Vol. 37, No. 5, May 1964. Anon., "Cable Application Information Data Sheet," Thermo-Electric Co. Inc., EDS-72, Oct. 1963.

Anon., "Calibrating Platinum Thermocouples," PTMR, Vol. 8, No. 4, Oct. 1964. Anon., "Calibrating and Checking Thermocouples in Plants and Laboratories," Leeds and Northrup Co., Folder A1-1121-1965, 1965.

Anon., "Continuous Immersion Thermocouple Aids Blast Furnace Control," IRSE, Vol. 41, No. 7, July 1964.

- Anon., "High Temperature Thermometry at Pratt and Whitney Aircraft CANEL," Pratt and Whitney Aircraft, CANEL, PWAC-462, June 1965.
- Anon., "Improved Thermocouple Techniques for Safe Operation of Modern Boilers," POWE, Jan. 1963.
- Anon., "Metallic Thermocouples for Measurement of Temperature above 1600 C," METL, Vol. 61, No. 365, March 1960.
- Anon., "Methods for Testing Used Thermocouples and for Calibrating Thermocouple Materials," Honeywell, Technical Bulletin B15-15A, 1951.
- Anon., "New Thermocouple Tables," NBST, May 1966. Anon., "Pallador II—A New High-Output Noble Metal Thermocouple," PTMR, Vol. 9, No. 5, July 1965.
- Anon., "The Physical Properties of the Noble Metals," EITB, Vol. 6, No. 3, Dec. 1965. Anon., "A Rhodium-Platinum Thermocouple for High Temperatures," PTMR, Vol. 9, No. 1, Jan. 1965.
- Anon., "Rugged Reliable Space Sensors," MEEN, Vol. 85, No. 9, Sept. 1963. Anon., "Soviet Infrared Sensors. I—Thermal Sensors," L. C. ATD Report P-65-44, July 1965, AD-619813.
- Anon., "Standards and Calibration-NBS Thermocouple Research," NBST, Vol. 48, No. 12, Dec. 1964.
- Anon., "Steam, Its Generation and Use," The Babcock and Wilcox Co., 1965.
- Anon., "Surface Temperature Measurements with Thermoelectric Materials," Wright-Patterson Air Force Base, Ohio, Technical Document Report No. ASD-TR-61-373, Aug. 1962.
- Anon., "Telemetry Transducer Handbook," Vol. 1, Revision 1, Radiation, Inc., WPAF, WADD-TR-61-67, Sept. 1963.
- Anon., "Thin Film Thermocouple," IRES, Sept. 1968. Anon., "Transducer Measures Low-Heat Flux Values," PREN, Vol. 35, No. 26, 21 Dec. 1964.
- Anon., "Unusual Thermocouples and Accessories," INCS, Vol. 36, Nos. 5, 6, 7, 8, May, June, July, Aug. 1963.
- Aarset, B. and Kjaerhein, G., "In-Core Applications and Experience with Thermocouples in the Halden Boiling Water Reactor," STSI, Vol. 4, Part 3, Sec. 8D, June 1971.
- Abrahamsen, R. F., "Thermocouple Installations for Tube Surface Temperature Measurement," ISAP, Paper No. 44-TC-61, June 1961.
- Accinno, D. J. and Schneider, J. F., "Platinel-A Noble Metal Thermocouple to Replace Chromel-Alumel," EITB, Vol. 1, No. 2, Sept. 1960.
- Accinno, D. J., "A Vacuum Furnace for High Temperature Thermocouple Calibration," EITB, Vol. 2, No. 1, June 1961.
- Adams, R. K. and Simpson, R. L., "Review of Techniques for Determining EMF-Temperature Characteristics," STSI, Vol. 4, Part 3, Sec. 8A, June 1971.
- Adams, R. K. and Simpson, R. L., "Smoothed Thermocouple Tables of Extended Signifi-"Oak Ridge National Laboratory, Report No. ORNL-3649, Vol. 1, April 1970. cance,'
- Aliotta, J., "Effects of Impurities on the Thermoelectric Properties of Platinum," INCS, Vol. 45, No. 3, March 1972.
- Allen, J. G. and Pears, C. D., "Evaluation of the Performance of Tungsten-Tungsten 26 Rhenium Thermocouples to About 5000 F," SRI, STAR N64-16269.
- Almond, R. J., "Errors in Thermocouple Circuits," INCS, Vol. 33, No. 1, Jan. 1960.
- Anderson, A. R. and MacKenzie, D. J., "Materials for High (2500-4000 F) Gas Turbine Temperature Measurements," SAEJ, Paper No. 158B, April 1960. Anderson, T. M. and Bliss, P., "Tungsten-Rhenium Thermocouples Summary Report,"
- STSI, Vol. 4, Part 3, Sec. 8B, June 1971.
- Angerhofer, A. W., "Cryogenic Instrumentation—I," CEGN, Vol. 12, No. 10, Oct. 1965. Ash, R. L. et al, "Catalytic Considerations in Temperature Measurement," STSI, Vol. 4, Part 3, Sec. 8B, June 1971.
- Ashlan, E. E., "Design of a Low-Zero Drift Thermocouple Element," IEIM, Vol. IM-20, No. 1, Feb. 1971.
- Ayers, D. L. and Cobb, M. W., "A Comparison of Thermocouples and Thermistors for Surface Temperature Measurement of Low Conductivity Materials," ISAC, Paper No. 68-511, Vol. 5, Oct. 1968.

- Baas, P. B. R. and Mai, K., "Trends of Design in Gas Turbine Temperature Sensing Equipment," STSI, Vol. 4, Part 3, Sec. 8C, June 1971.
- Babbe, E. L., "Increased Thermocouple Reliability for In-Pile Experiments," Atomics International, Report NAA-SR-10511, 1965.
- Bailleal-Langlais, J., "Les Thermocouples," VIDE, Vol. 14, No. 84, Nov.-Dec. 1959.

Bauerle, J. E., "Analysis of "Immersed" Thermocouple Error," RSIN, Vol. 3, Mar. 1961.

- Baxter, W. G. et al, "Life Testing Small Diameter Thermocouples as a Function of Thermal Cycling," General Electric Co., Cincinnati, Ohio, GEMP-737, 1969.
- Beakley, W. R., "Method of Modifying the Thermal EMF Temperature Characteristics of Constantan Thermocouple Wire," JSIN, Vol. 31, No. 7, July 1954.
- Beck, J. V., "Study of Thermal Discontinuities and Associated Temperature Disturbances in a Solid Subject to a Surface Heat Flux," "Effects of Sensors in Low Conductivity Materials upon Temperature Distribution and its Measurements," AVCO Corp., RAD-TR-9(7)-59-26, Feb. 1960, AD-461644.
- Beck, J. V., "Thermoelectric Temperature Disturbances in Low Conductivity Materials," JHTR, May 1962.
- Beck, J. V. and Hurwicz, H., "Effect of Thermocouple Cavity on Heat Sink Temperature," JHTR, Vol. 82, No. 1, Feb. 1960.
- Bedford, R. E., "Reference Tables for Platinum 20% Rhodium-Platinum 5% Rhodium Thermocouples," RSIN, Vol. 35, No. 9, Sept. 1964.
- Bedford, R. E., "Reference Tables for Platinum 40% Rhodium-Platinum 20% Rhodium Thermocouples," RSIN, Vol. 36, No. 11, Nov. 1965.
- Bedford, R. E. et al, "New Reference Tables for Platinum 10% Rhodium/Platinum and Platinum 13% Rhodium/Platinum Thermocouples," STSI, Vol. 4, Part 3, Sec. 8A, June 1971.
- Belling, P. R., "High Pressure Thermocouple Feed Through," INCS, Vol. 35, No. 11, Nov. 1962.
- Benedict, R. P. and Ashby, H. F., "Empirical Determination of Thermocouple Characteristics," JEPO, Vol. 85, No. 1, Jan. 1963.
- Benedict, R. P., "Engineering Analysis of Experimental Data," JEPO, Vol. 91, No. 1, Jan. 1969.
- Benedict, R. P., "The Calibration of Thermocouples by the Freezing-Point Baths and Empirical Equations," JEPO, April 1959.
- Benedict, R. P., "International Practical Temperature Scale of 1968," LNTJ, No. 6, Spring 1969.
- Benedict, R. P., "Review of Practical Thermometry," ASMS, Paper No. 57-A-203, Dec. 1957.
- Benedict, R. P. and Russo, R. J., "Grounded Thermocouple Circuits," INCS, Vol. 45, No. 8, Aug. 1972.
- Benedict, R. P. and Russo, R. J., "A Note on Grounded Thermocouple Circuits," JBAE, Vol. 94, No. 2, June 1972.
- Benedict, R. P., "Temperature and Its Measurement," ELTE, Vol. 72, No. 7, July 1963. Benedict, R. P., "Temperature Measurement in Moving Fluids," ASMS, Paper No. 59-A-257, Dec. 1959.

- Benedict, R. P., "Thermoelectric Effects," ELMA, Feb. 1960. Bennett, H. E., "Noble Metal Thermocouples," Johnson, Matthey and Co., Ltd., Feb. 1956. Bennett, H. E., "Pallador Thermocouple," PTMR, Vol. 4, No. 2, April 1960. Bennett, H. E., "The Care and Maintenance of Thermocouples," PTMR, Vol. 9, No. 2, April 1965.
- Bergund, C. N. and Beairsto, R. C., "An Automatic Technique for Accurate Measurement of Seebeck Coefficient," RSIN, Vol. 38, No. 1, Jan. 1967.
- Berman, R., "Gold-Iron Alloys for Low Temperature Thermocouples," STSI, Vol. 4, Part 3, Sec. 8A, June 1971.
- Berry, J. M. and Martine, D. L., "Thermocouple Immersion Errors," ASTT, No. 178, 1955.
- Bertodo, R. J., "Thermocouple for the Measurement of Gas Temperatures up to 2000 C," PIML, Vol. 177, No. 22, 1963.
- Blackburn, G. F. and Caldwell, F. R., "Reference Tables for Thermocouples of Iridium-Rhodium Alloys Versus Iridium," JNBC, Vol. 68, No. 1, Jan. 1964.

- Bliss, P., "Fabrication of High-Reliability Sheathed Thermocouples," STSI, Vol. 4, Part 3, Sec. 8C, June 1971.
- Bliss, P. and Morgan, R. K., "High Accuracy Temperature Measurements," ISAC, Paper No. 70-645, Vol. 25, Part 4, Oct. 1970.
- Boerdijk, A. H., "Diagrams Representing States of Operation of General Thermocouple," JAPI, Vol. 31, No. 7, July 1960.
- Boerdijk, A. H., "Contributions to General Theory of Thermocouples," JAPI, Vol. 30, No. 7, July 1959.
- Bondareva, A. P., "Calibration of Copper Constantan Thermocouples at Low Temperature." MSTC, No. 3, March 1970.
- Bondareva, A. P., "Calibration of Platinorhodium-Platinum Thermocouples at Two Points or One Point in the Range of 300-1300 C," MSTC, No. 7, July 1970.
- Bondareva, A. P., "Method of Calibrating Copper-Constantan Thermocouples at Negative Temperatures by Means of the Boiling Point of Water," MSTC, No. 10, Oct. 1969.
- Boon, G. and Van-Der Woulde, F., "Very Stable and Simple Compensator for Thermocouples," RSIN, Vol. 36, No. 6, June 1965.
- Bose, B. N., "Thermocouple Well Design," ISAJ, Vol. 9, No. 9, Sept. 1962.
- Boudreaux, P. J., "Providing Thermocouple Compensation at Low Cost," ELEC, Vol. 35, No. 11, Nov. 1962.
- Brodbeck, F. W., "Thermocouple Installation Development for Cooled Surfaces Exposed to High Heat Flux," McDonnell Co., St. Louis, Mo., unpublished, 1967. Brooks, E. J. and Krammer, W. C. "Tungsten-Rhenium Alloy Thermocouples and Their
- Use in a UO2-Fueled Reactor," Argonne National Laboratory, Report ANL-6981, 1965.
- Brooks, E. J. and O'Neal, E. W., "Keep Your Thermocouple Leads Dry," ISAJ, Vol. 12, No. 3, March 1965.
- Brown, D. A. H. et al, "Construction of Radiation Thermocouples Using Semi-Conducting Thermoelectric Materials," JSIN, Vol. 30, No. 6, June 1953.
- Brownell, H. R., "Thermoelement Transfer," INCS, Vol. 36, No. 1, Jan. 1963.
- Bullis, L. H., "Vacuum-Deposited Thin-Film Thermocouples for Accurate Measurement of Substrate Surface Temperature," JSIN, Vol. 40, No. 12, Dec. 1963.
- Burley, N. A., "Nicrosil and Nisil: Highly Stable Nickel-Base Alloys for Thermocouples," STSI, Vol. 4, Part 3, Sec. 8B, June 1971.
- Burley, N. A., "Solute Depletion and Thermo-EMF Drift in Nickel-Base Thermocouple Alloys," JIME, Vol. 97, Aug. 1969.
- Burnett, S. J., "Molybdenum-Tantalum Thermocouple Characteristics," UKAA, Harnwell, UK, unpublished, 1966.
- Burns, G. W. and Gallagher, J. S., "Reference Tables for the Pt-30 Percent Rh Versus Pt-6 Percent Rh Thermocouple," JRNB, Vol. 70, No. 2, April-June 1966.
- Burns, G. W. and Hurst, W. S., "An Investigation of W-3% Re and W-25% Re Thermoelements in Vacuum, Argon and Hydrogen," NASA, CR-72639, March 1970.
- Burns, G. W. and Hurst, W. S., "A Program in Refractory Metal Thermocouple Research," JRNB, Vol. 75C, April-June 1971.
- Burns, G. W. and Hurst, W. S., "Some Studies on the Behavior of W-Re Thermocouple Materials at High Temperature," NASA, CR-72884, Feb. 1972.
- Burns, G. W., and Hurst, W. S., "Studies of the Performance of W-Re Type Thermocouples," STSI, Vol. 4, Part 3, Sec. 8B, June 1971.
- Burns, G. W., "Studies at NBS of Platinum-6% Rhodium Versus Platinum-30% Rhodium Thermocouple-Preliminary Report," SEPP, Paper 750B, 23-27 Sept. 1963.
- Caldwell, F. R. et al, "Intercomparison of Thermocouple Response Data," SEPP, Paper 158F, National Aeronautic Meeting, April 1960.
- Caldwell, R., "Temperature of Thermocouple Reference Junctions in an Ice Bath," JRNB, Vol. 69C, No. 2, April–June 1965.
- Callcut, V. A., "Ageing of Chromel-Alumel Thermocouples," The British Non-Ferrous Metals Research Association, UK AEA TRG Report 1021 (R/X), 1965.
- Campari, M. and Garribba, S., "Behavior of Type K Thermocouples in Temperature Measurement, The Chromel-P-Alumel Thermocouples," RSIN, Vol. 42, No. 5, May 1971.
- Cameron, G. and Blanchard, R. L., "Performance and Use of Metal Freezing Point Cells Which Generate Precise Temperature," ISAJ, Vol. 2, No. 3, 1963.

- Carlson, A. V., An "Evaluation of Radiation Compensating Thermocouple Temperature Sensors," U.S. Army Electronics Research and Development Activity, Arizona, USAERDAA-MET-10-64, Sept. 1964, AD449874.
- Carpenter, F. D. et al, "EMF Stability of Chromel/Alumel and Tungsten-3% Rhenium/ Tungsten-25% Rhenium Sheathed Thermocouples in a Neutron Environment," STSI, Vol. 4, Part 3, Sec. 8D, June 1971.
- Carr, K. R., "Testing of Ceramic Insulator Compaction and Thermoelectric Inhomogeneity in Sheathed Thermocouples," STSI, Vol. 4, Part 3, Sec. 8C, June 1971.
- Carter, D. F. and Wells, P. H., "Rhodium-Platinum Thermocouples as Precision Temperature Sensors," PTMR, Vol. 17, No. 2, April, 1973.
- Chambers, J. T. et al, "Experimental Evaluation of a Dual Element Transducer for High Temperature Gas Measurements," American Radiation and Standard Sanitary Corp., Mountain View, Calif., ARL 63-58, March 1963, AD-409-816.
- Charet, I., "High Detectivity Microcalorimeters," JSIN, Vol. 40, No. 8, Aug. 1963.
- Chenoweth, J. M., "Gun-Barrel Measurements Involve Rapidly Fluctuating Temperatures," INST, Vol. 26, No. 11, Nov. 1953.
- Claggett, T. J., "Average Thermocouple Measurement Through Interconnected Thermocouples," INSR, Vol. 22, No. 2, Sept. 1969.
- Claggett, T. J., "Differential Temperature Measurement Using Electrical Sensors, "INSR, Vol. 23, No. 1-2, 1970.
- Claggett, T. J., "External Thermocouple Compensation," INSR, Vol. 18, No. 2, 1965.
- Clark, R. B., "Calibration and Stability of W/WRe Thermocouples to 2760°C (5000°F)," ISAP, Paper No. 16.10-4-64, Oct. 1964.
- Cochrane, J., "Relationship of Chemical Composition to the Electrical Properties of Platinum," STSI, Vol. 4, Part 3, Sec. 8B, June 1971.
- Conrad, G., "Linearization of Thermocouple Voltages," RSIN, Vol. 39, No. 11, Nov. 1968.
- Cook, G. E. and McCampbell, W. M., "Thermocouple Probe Controls Welding Torch," CENG, Vol. 14, No. 11, Nov. 1967.
- Covert, E. E. and Gollnick, A. F., Jr., "Design and Calibration of a Small Heat Transfer Gage and Its Application to Aerodynamic Heating Studies at Supersonic Speeds," ISAC, Paper No. 68-535, Vol. 5, Oct. 1968.
- Cox, J. E., "High Vacuum Thermocouple," RSIN, Vol. 34, No. 8, Aug. 1963.
- Culpin, M. F. and Martin, K. A., "Instruments for Measuring the Temperature of a Running Thread-Line and a Jet of Viscous Liquid," JSIN, July 1960.
- Cutt, "Proportional Control Steadies Cryosurgical Probe Temperature," CENG, Vol. 12, No. 3, March 1965.
- Dallman, A. C., "Mechanical Reliability and Thermoelectrical Stability of Noble Metal Thermocouples at 2000 F Temperature and Dose Rates up to 10 to 2 Power Nvt," WPAF, SEG TDR-64 7, April 1964, AD-601-267.
- Danberg, J. E., "The Equilibrium Temperature Probe. A Device for Measuring Temperature in Hypersonic Boundary Layers," Naval Ordnance Laboratory, White Oak, Md., NOL-TR-61-2, Dec. 1961, AD-439-624.
- Daneshesku, S. K., "Selection and Calibration of Tungsten and Molybdenum Wire for Thermocouples," MSTC (IZTE), No. 5, May 1959.
- Darling, A. S. et al, "Platinum and the Refractory Oxides," PTMR, Vol. 15, No. 1, Jan. 1971.
- Darling, A. S., "Thermoelectric Properties of Rhodium-Platinum Alloys," INCS, Vol. 34, No. 5, May 1961.
- Darling, A. S. and Selman, G. L., "Some Effects of Environment on the Performance of Noble Metal Thermocouples," STSI, Vol. 4, Part 3, Sec. 8B, June 1971.
- Dau, G. J. et al, "Nuclear Radiation Dose Rate Influence on Thermocouple Calibration," NUCA, Vol. 5, Nov. 1968.
- Dauphinee, T. M., "An Apparatus for Comparison of Thermocouples," CJPH, Vol. 33, 1955.

Dauphinee, T. M., "Use Thermocouples for Measuring Temperatures Below 70 K," JSIN, Vol. 30, No. 11, Nov. 1953.

- Davis, D. A., "Two Thermocouples Suitable for Measurements of Temperature up to 2800 C," JSIN, Vol. 1, Jan. 1960.
- Decker, W. H., "Bellows Seals Furnace Couples," PEPR, Vol. 8, Aug. 1953.

- DeLee, R. V. and Seari, A. E., "Study to Determine Suitable High Temperature, High Altitude, Total Temperature Sensors," Rosemount Engineering Co., Report No. 11652B, Nov. 1965, NASA No. N66-13968.
- Denison, J. N., "Technique to Construct Fine Wire Thermocouples," RSIN, Vol. 33, No. 8, Aug. 1962,
- Devita, V. A., "Predicting Cryogenic Thermocouple Time Constant," CENG, Vol. 12, No. 7, July 1965.
- Diven, J. L., "Temperature Deficiency of a Heat Transfer Calorimeter," Brown Engineering Co., Huntsville, Ala., Technical No. R-44, April 1963, AD 415146.
- Dobovisek, B. and Rosina, A., "Analysis of the Influence of Various Atmospheres on the Thermoelectric Power of the NiCr-Ni Thermocouples," MMQT-RMZB, No. 3A, 1968.
- Donne, M. D., "Tests and Data Concerning Platinel-A New High Temperature Thermocouple," EITB, Vol. 5, No. 1, June 1964.
- Dow, M. B., "Comparison of Measurement of Internal Temperatures in Ablation Material by Various Thermocouple Configurations," National Aeronautics and Space Administration, NASA-TND-2165, Nov. 1964.
- Droege, J. W. et al, "Chemical Compatibility in the Use of Refractory Metal Thermocouples." STSI, Vol. 4, Part 3, Sec. 8B, June 1971.
- Droege, J. W. et al, "Refractory-Metal Thermocouples in Nuclear and High-Temperature Applications," Battelle Memorial Institute, Columbus, Ohio, Report BMI-X-10246, Nov. 1968.
- Dutt, M. and Stickney, T., "Conduction Errors in Temperature Sensors," ISAT, Vol. 9, No. 2, Feb. 1970.
- Dutton, R. and Lee, E. C., "Surface Temperature Measurement of Current Carrying Objects," ISAJ, Vol. 6, No. 12, Dec. 1959.
- Eisenman, W. L. et al, "Properties of Photodetectors, Photodetector Series, 58th Report," Naval Ordnance Laboratory, Corona, Calif., Report No. NOLC-588, July 1963, AD-413-131.
- Eldridge, D. A. G. and Mansell, D. H. L., "An Automatic Temperature Measuring System for Propellants Undergoing Stability Trials," Ministry of Aviation, Explosives Research and Development Establishment (UK), ERDE, Sept. 1965.
- Elliott, R. D., "Dynamic Behavior of Missile Skin Temperature Transducers," ISAP, Paper No. 160-LA-61, Sept. 1961.
- Evans, D. J. and Strnat, K., "An Apparatus for Direct and Differential Thermal Analysis at Temperature up to 1500 C," WPAFB-ASD-TDR-63504, July 1963, AD-418-225. Evans, R. A. and Holt, J., "Calibration Drift Effects in Nickel-Alloy Thermocouples,"
- UKAA, Risley (UK), TRG Report 1510(R), 1967.
- Fairchild, C. I. et al, "Vapor Deposition in the Fabrication of Fission Thermocouples," MSCO, Paper A68-42, Feb. 1968.
- Falweiler, R. C., "Investigation of High Temperature Thermal Expansion Devices and Design of a Unit for Use with Thermal Image Heating," Lexington Labs, Inc., Cambridge, Mass., AFCRL 62-952, Dec. 1962, AD-296433,
- Farrow, R. L. and Levitt, A. P., "Tungsten/Tungsten-Rhenium Thermocouples in a Carbon Atmosphere," U.S. Army Materials Research Agency, Watertown, Mass., AMRA-IR-64-12, July 1964, AD-606-565.
- Faul, J. C., "Thermocouple Performance in Gas Streams," INCS, Vol. 35, No. 12, Dec. 1962.
- Fenton, A. W., "Errors in Thermoelectric Thermometers," Proceedings, Institution of Electrical Engineers, Vol. 116, No. 7, July 1969.
- Fenton, A. W., "The Theory of Thermoelectric Thermometers," United Kingdom Atomic Energy Authority, unpublished, 1969.
- Fenton, A. W., "The Travelling Gradient Approach to Thermocouple Research," STSI, Vol. 4, Part 3, Sec. 8E, June 1971.
- Fenton, A. W. et al. "Thermocouples: Instabilities of Seebeck Coefficients." United Kingdom Atomic Energy Authority, Report No. TRG 1447(R), Jan. 1967.
- Finch, D. I., "General Principles of Thermoelectric Thermometry," Leeds and Northrup Co., Technical Publication ENS2 (1), 1961.
- Finnemore, D. K. et al, "Secondary Thermometer for the 4 to 20 K Range," RSIN, Vol. 36, No. 9, Sept. 1965.

- Fitts, R. B. et al, "Observations on Tungsten-Rhenium Thermocouples Used In-Reactor in (U,Pu) O₂ Fuel Pins," STSI, Vol. 4, Part 3, Sec. 8D, June 1971.
- Flemons, R. S. and Lane, A. D., "Thermocouple for Surface Temperature Measurement in Multielement Nuclear Fuel Bundles," STSI, Vol. 4, Part 3, Sec. 8D, June 1971.
- Fluke, G. L., "Tungsten-Rhenium Thermocouple Performance in STR-13 Test," Aerojet-General Corp., 7461:0094, July 1964, AD-453293.
- Foote, P. D. et al. "Pyrometric Practice," NBSE, No. 170, 1921.
- Francinllo, S., "Thermocouple Development, Lithium-Cooled Reactor Experiment," Pratt-Whitney Aircraft Co., Report No. 422, N-64-16000.
- Franco-Ferreira, E. A. and Williams, L. C., "Fabrication of Instrumented Fuel Elements and In-Pile Capsules," WEJU, Vol. 49, No. 6, June 1970.
- Freedman, J. W., "Panel Discussion on Pyrometric Practice in Elevated Temperature Testing," ASTT, No. 178, 1955.
- Freeze, P. et al, "Development of Test Facilities-Nobel Metal Thermocouple Research Program, 1000-2000°C," NASA, OR-72861, Jan. 1971.
- Freeze, P. D. and Parker, L. P., "Bibliography of Temperature Measurement, Jan. 1953 to Dec. 1969," NBSP, No. 373, Nov. 1972.
- Freeze, P. D. et al, "Reference Table for the Palladium Versus Platinum-15% Iridium Thermocouple," NBS, Report No. ASD-TDR-62-523, Dec. 1962, AD-295-607.
- Fuschilla, N., "Inhomogeneity Emfs in Thermoelectric Thermometers," JSIN, Vol. 31, No. 4, April 1954.
- Garelick, L., and Hauptmann, E., "Linearizing Thermocouple Amplifiers," ISAC, Vol. 26, Part 4, Oct. 1971.
- Garsuch, R. G., "Thermal Transfer Voltmeter," INCS, Vol. 36, No. 1, Jan. 1963.
- Gelb, G. H. et al, "Manufacture on Fine Wire Thermocouple Probes," RSIN, Vol. 35, No. 1, Jan. 1964.
- George, A. L., "Conversion Formula for Thermocouples," INCS, Vol. 36, No. 7, July 1963.
- Getting, I. C. and Kennedy, G. C., "Effects of Pressure on the EMF of Chromel-Alumel and Platinum-Platinum 10% Rhodium Thermocouples," JAPI, Vol. 41, No. 11, Oct. 1970.
- Giedt, W. H. and Corallo, R. A., "Determination of High Gas-Stream Temperatures from Short-Exposure Probe Responses," ISAC, Paper 68-509, Vol. 5, Oct. 1968.
- Glawe, G. E. and Szaniszlo, A. J., "Long-Term Drift of Some Noble- and Refractory-Metal Thermocouples at 1600 K in Air, Argon, and Vacuum," STSI, Vol. 4, Part 3, Sec. 8B, June 1971.
- Glawe, G. E. et al, "Radiation and Recovery Corrections and Time Constants of Several Chromel-Alumel Thermocouple Probes in High Temperature, High Velocity Gas Streams," NASA, TN-3766, Oct. 1956.
- Goldberg, J. L. and Ling, H. M., "Automatic Switching of Sensitive Thermocouples," ELEG, Vol. 36, No. 9, Sept. 1964.
- Goodier, B. G. et al, "High-Temperature Core Thermocouple Development for the Nuclear Rocket Engine Program (Rover)," STSI, Vol. 4, Part 3, Sec. 8D, June 1971.
- Gorton, R. E., "Temperature Measurement for Aircraft-Turbine-Engine Development," EXMC, May 1939.
- Gottschlich, R. and Bellezza, M., "EMF Deviation of Chromel-Alumel Thermocouples Caused by Neutron Irradiation," European Atomic Energy Community, Report EUR 3257.e, 1966.
- Graham, J. W., "Project Asset Instrumentation Test of Columbium Sheathed Platinum Rhodium Thermocouples," McDonnell Aircraft Corp., St. Louis, Mo., Report No. 051-052, Aug. 1962, AD-298-369.
- Greenberg, H. J., "Temperature Measurement in the Glass Industry," STSI, Vol. 4, Part 3, Sec. 8C, June 1971.
- Greenberg, H. J. and Sysk, E. D., "Applied Research, Fabrication and Testing of 2300 F Thermocouples for Air-Breathing Propulsion Systems," Engelhard Industries, Inc., East Newark, N.J., Report ASD-TDR-C2-891, Jan. 1963, AD-400-470.
- Greenwood, T. L., "Thermocouple Continuity Monitor," Marshall Space Flight Center, NASA, NASA Technical Brief 63-10567.
- Greg, W. T. and Finch, D. I., "How Accurately Can Temperature Be Measured?" PHTO, Sept. 1971.

- Griffin, J. E. and Hermach, F. L., "Differential Thermocouple Voltmeter," CELE, Nov. 1962.
- Gross, J. and Griffith, C. B., "Thermocouple for Molten Steel," MEPO, Vol. 83, No. 6, June 1963.
- Gross, P. M. et al, "An Advanced High Temperature Thermocouple for Use on Aerospace Vehicles," Weston Instruments Co., A-FFDL-TR-66-24, May 1966, AD-487-788.
- Gross, P. M. et al, "A Re-Entry Thermocouple for Use up to 4500 F," ISAT, Vol. 3, No. 4, Oct. 1964.
- Gucker, F. T., Jr., and Peterson, A. H., "Simple Circuit for Adapting Thermocouple Recorders to Measure Voltage in High Resistance Circuits," ANCH, Vol. 25, No. 10, Oct. 1953.
- Gumprecht, D. L., "Cycle Counter for Zone-Refining Systems," CHEG, Vol. 69, 26 Nov. 1963.
- Gushehin, G. I. et al, "Thermocouple for Accurate High-Temperature Measurements in a Vacuum and in the Presence of Reactor Radiation," MSTC, No. 6, June 1970.
- Gutt, W., "Microfurnace for High Temperature Microscopy and X-Ray Analysis up to 2150 C," JSIN, Vol. 41, No. 6, June 1964.
- Hall, B. F., Jr., and Spooner, N. F., "Application and Performance Data for Tungsten-Rhenium Alloy Thermocouples," SEPP, Paper No. 750C, Sept. 1963.
- Hall, B. F., Jr. and Spooner, N. F., "Temperature Measurement in a Graphite Environment from 1600°C to 2500°C," ISAP, No. 16.13-3-64, Oct. 1964.
- Hall, D. N., "Transmutation of Thermocouple Alloys," Bristol Aerojets, Ltd., Weston-Super-Mare, UK, unpublished, 1966.
- Hartz, R. A., "Temperature Transducers—A Guide for Selection," MADE, Vol. 38, No. 21, 15 Sept. 1966.
- Harvey, G. F., ed., "ISA Transducer Compendium," second edition, Part 3, Instrument Society of America, Pittsburg, Pa., 1972.
- Harvey, N. D., "Instrumenting Models for Aerodynamic Heat Transfer Studies Involving Transient Heating Rates," ISAT, Vol. 6, No. 1, Jan. 1967.
- Heckelman, J. D. and Kozar, R. P., "Measured Drift of Irradiated and Unirradiated W3% Re/W25% Re Thermocouples at 2073°K," STSI, Vol. 4, Part 3, Sec. 8D, June 1971.
- Heitzman, W. P., "Dual Thermocouple Temperature Control," INCS, Vol. 37, No. 5, May 1964.
- Hendricks, J. W. and McElroy, D. L., "High Temperature-High Vacuum Thermocouple Drift Tests," ASTM Paper, unpublished, Annual Meeting, June 1964.
- Henning, C. D. and Parker, R., "Transient Response of an Intrinsic Thermocouple," JHTR, Vol. 89, No. 2, May 1967.
- Herskovitz, M. B., "Thermal Cycling Life Tests of Metal Sheathed Thermocouple Assemblies," ORNL, Report No. ORNL-TM-3907, Sept. 1972.
- Hicks, E. W., Jr., "The Requirements for a Direct Reading 5000 F Thermocouple," ISAP, Paper No. 29.2.63, Chicago, Ill., Sept. 1963.
- Hicksman, M. E. and Ivory, J. E., "Basic Studies of the Metallic State (Thermoelectric Properties of Tungsten and Kovar-A)," RNRL, April 1965.
- Hill, J. S., "The Use of Fibro Platinum in Thermocouple Elements," EITB, Vol. 11, No. 3 Dec. 1961.
- Hoig, L. B., "Design Procedure for Thermocouple Probes," SEPP, Paper No. 158C, National Aeronautic Meeting, April 1960.
- Hoitink, N. C. et al, "Effects of Fast Neutron Irradiation on the Performance Characteristics of Reactor-Grade Thermocouples," NBSP, Report BNWL-1365, June 1970.
- Holland, J. F., "Describing Temperature-EMF Relationship for Thermocouples," INCS, Vol. 40, No. 12, Dec. 1967.
- Hormuth, G. A., "Thermocouple Pyrometry," MADE, Vol. 41, No. 19, 21 Aug. 1969.
- Houke, H. F., "Study of High-Current Resistance Testing of Grounded Shealded Chromel-Alumel Thermocouples," Aerojet Liquid Rocket Plant, Report No. 347,60.00.00-A6-02, Aug. 1961, AD-45984.
- Houska, C. R. and Keplin, E. J., "A High Temperature Furnace for Quantitative X-Ray Intensity Measurements," Union Carbide Research Department, Tarrytown, N. Y., TRC 14, April 1963, AD-405-495.

- Howard, J. L., "Error Accumulation in Thermocouple Thermonuetry," STSI, Vol. 4, Part 3, Sec. 8E, June 1971.
- Howley, S. A. et al, "Fabrication of Miniature Thermocouple for UHF Acoustic Detectors," RSIN, Vol. 33, No. 10, Oct. 1962.
- Hughes, P. C. and Berley, N. A., "Metallurgical Factors Affecting Stability of Nickel-Base Thermocouples," JIME, Vol. 91, 1962–1963.
- Huhes, W. F. and Gaylord, E. W., "On the Theoretical Analysis of a Dynamic Thermocouple, 2-The Continuous Area Interface," JAMC, Vol. 27, No. 2, June 1960.
- Hurst, N. J., "Effect of Thermocouple Size and Installation on Thermocouple Readings," U.S. Army Missile Command, Redstone Arsenal, Ala., RS-TM-64-1, April 1964, AD-612493.
- Hust, J. G. et al, "Methods for Cryogenic Thermocouple Thermometry," STSI, Vol. 4, Part 3, Sec. 8A, June 1971.
- Irvine, F. H. et al, "Measurements of the Response of Various Thermocouple Arrangements," Royal Aircraft Establishment, AERO-2959, April 1964, AD-449469.
- Jackson, R. C., "Installed, System Calibration Thermocouples," ISAT, Vol. 9, No. 2, 1970.
- Jacobsen, F. K. et al, "Reliability Analysis of High-Temperature Thermocouples in Irradiation Capsules," Gulf General Atomic, Inc., San Diego, Calif., Report No. GA-A10864, Oct. 1971.
- Janeschitz-Kriegel et al, "A Temperature Probe for Flowing Polymer Melts," JSIN, Vol. 40, No. 8, Aug. 1963.
- Jensan, J. T. et al, "Thermocouple Errors Using Pt-Pt(Rh) Thermocouples on Nickel Surfaces," RSIN, Vol. 32, No. 12, Dec. 1964.
- Jones, E. W., "Facile Thermocouple Calibrations," INCS, Vol. 40, No. 5, May 1967. Jones, T. P., "A Comparison of Fixed-Point and Intercomparison Methods of Calibration of Platinum-Platinum Rhodium Thermocouples in the Temperature Range 0° to 1064°C," STSI, Vol. 4, Part 3, Sec. 8A, June 1971.
- Jordan, H. C., "Welded Thermocouple Junctions," INCS, Vol. 33, No. 6, June 1960.
- Jury, S. H., "Mechanically Refrigerated Ice Bath," INCS, Vol. 40, No. 5, May 1967.
- Kamenetskii, A. P. and Gladkaya, N. V., "Developing New Types of Thermocouples with Higher Resistance to Bending Stresses," MSTC, No. 11, Nov. 1969.
- Kanter, J. J., "Panel Discussion on Pyrometric Practices," ASTT, No. 178, 1955.
- Kashmiry, M. A., "Hermach-Engelhard Transfer Standard," INCS, Vol. 36, No. 1, Jan. 1963.
- Kaufman, A. B., "Cryogenic Characteristics of Alloy Wires," INCS, Vol. 37, No. 3, March 1964.
- Kelly, D., "Thermocouple Temperature Measurement without Special Instruments," INCS, Vol. 33, No. 1, Jan. 1960.
- Kendall, D. N. et al, "SemiConductor Surface Thermocouples for Determining Heat Transfer Rates," ITAE, July 1967.
- Kepner, A. A., "Thermocouple Temperature Transducer," North American Aviation Inc., Downey, Calif., Report No. MC 449 0006, Nov. 1962, AD-415-586.
- Kilkin, G. M. et al, "Lithium-Boiling Potassium Test Loop-Interim Report," Jet Propulsion Laboratory, TR 32-1083, Sept. 1966, N67-26629.
- King, J., "The Design of a Temperature Compensated Thermocouple Reference Circuit," Naval Ordnance Test Station, China Lake, Calif., NOTS TR-3462, NAVWEPS 8492, May 1964, AD-600675.
- Kisely, V. M., "Thermal Probes for Measuring the Density of Heat Flows," Foreign Translation Division, WPAF, Ohio, FTD-TT-64-1151(1 + 2), April 1965, AD-614949.
- Klein, C. A. et al, "Analysis and Experimental of an Ultra-High Temperature Pyrolytic Graphite Thermocouple," Raytheon Co. Research Division, AFFDL-TR-6627, June 1966, AD-802214,
- Klein, C. A. et al, "Development of an Ultra-High Temperature Pyrolytic Graphite Thermocouple," Raytheon Co., Waltham, Mass., AD-431-203.
- Knowlson, P. M. and Bartie, P. M., "Sealing a Stainless Steel Sheathed Thermocouple into a Magnox End-Cap," JIME, Vol. 93, 1964-1965.
- Kollataj, J. H., "Digitized Thermocouple Compensation Yields Direct Reading for Data Logger," ELEC, Vol. 93, No. 3, Feb. 1970.

Koselapor, V. I. and Skvortsov, Y. M., "Thermocouple Needle," INDL (ZVDL), July 1963.

- Kostkowski, H. J. and Burns, G. W., "Thermocouple and Radiation Thermometry above 900 K," NASA, Symposium, Measurement of Thermal Radiation Properties of Solids, Sept. 1963.
- Kovacs, A. and Mesler, R. B., "Making and Testing a Small Surface Thermocouple for Fast Response," RSIN, Vol. 35, No. 4, April 1964.
- Krag, J., "Improved Needle Thermocouple for Subcutaneous and Intramuscular Temperature Measurements in Animals and Men," RSIN, Vol. 25, No. 8, Aug. 1954.
- Krivka, M. A., "Make Your Own Thermocouples," MADE, 9 June 1960.
- Krysiak, K. F. et al, "A Thermocouple Suitable for Use from 2500 to 4500 F on Aerospace Vehicles," Weston Instrument Division, Daystrom Inc., Newark, N. J., X10232, June 1963, AD-414-562.
- Kuhlman, W. C., "Status Report of Investigation of Thermocouple Materials for Use at Temperatures above 4500 F," SEPP, Paper No. 750D, Sept. 1963.
- Kuhlman, W. C., "Research and Evaluation of Materials for Thermoelectric Application Suitable for Temperatute Measurement up to 4500 F on the Surface of Glide Re-Entry Vehicles," General Electric Co., Cincinnati, Ohio, TDR-63-233, March 1962 and 1963, AD-404-577.
- Kuhlman, W. C. and Baxter, W. G., "1000 Hour-2300°C Thermocouple Stability Tests," General Electric Co., Cincinnati, Ohio, Report No. GEMP-738, Oct. 1969.
- Kutateladze, K. S. et al, "Use of Nitride Bonded Carborundum for Thermocouple Sheaths," GLCE, Vol. 25, No. 9–10, Sept.–Oct. 1968.
- Lachman, J. C., "Calibration of Rhenium-Molybdenum and Rhenium-Tungsten Thermocouple to 4000 F," XAER, APEX 365, April 1958, AD-159-884.
- Lachman, J. C., "New Development in Tungsten/Tungsten-Rhenium Thermocouples," ISAC, Paper No. 150-LA-61, Sept. 1961.
- Lachman, J. C., "Refractory Metal Thermocouples," ASMS, Paper No. 59-HT-21, Aug. 1959.
- Lanza, G. et al, "Studies on Plasmas and Pulsed Magnetic Field Effects (Plasma Thermocouples)," N 64-15493, 1963.
- Lee, J. D., "The Measurement of Velocity and Temperature in a Hypersonic Laminar Boundary Layer," Ohio State University, Columbus, Ohio, ASD TRD-62-914, Dec. 1962, AD-295-466.
- Lentz, E., "Behavior of Pt/PtRh and Ni/NiMo Thermal Elements in the High Temperature Vacuum Furnace in the Presence of Material Containing Chromium," WSKR, Vol. 20, No. 8, Aug. 1969 (in German).
- Leonard, J. H., "Conditions Contributing to Radiation-Induced Thermocouple Decalibration," NUCA, Vol. 6, March 1969.
- Leonard, J. H. and Hunkau, D. B., "Direct Radiation Effects on Thermocouples," NUCA, Vol. 3, Dec. 1967.
- Levinstein, H., "Infrared Detectors," Syracuse University Research Institutes, N. Y., Physics 105-1, Feb. 1963, AD-296-831.
- Lewis, E. L., ed., "Instrument Standards," Naval Ship Engineering Center, Philadelphia Division, Philadelphia, Pa., 1970.
- Lewis, H. W. and Reitz, T. R., "Efficiency of the Plasma Thermocouple," JAPI, Vol. 31, April 1960.
- Leyda, W. E., "Summary of Pyrometric Procedure Employed by One Company in Creep-Rupture Testing," ASTT, No. 178, 1955.
- Lidorenko, N. S. et al, "Determination of Temperature and Electrical Fields of Noninsulated Thermoelectric Systems," IAET, No. 5, Sept.-Oct. 1969 (in Russian).
- Liermann, J. and Tarassenko, S., "Temperature Measurement on Nuclear Fuel Elements," STSI, Vol. 4, Part 3, Sec. 8D, June 1971.
- Lipson, H. G. and Bouthillette, L. Q., "Epoxy Vacuum Seal for Introduction of Leads into Cryogenic Equipment," Air Force Cambridge Research Laboratory, Bedford, Mass., AFCRL 63-78, March 1963, AD-410018.
- Loeffler, R. E., "Thermocouples, Resistance Temperature Detectors, Thermistors-Which," iNCS, Vol. 40, No. 5, May 1967.
- Lyell, J. A., "Designing a Modern Metrology Laboratory," JISN, Vol. 11, No. 6, June 1964.

- MacKenzie, D. J. and Scadron, M. D., "Selection of Thermocouples for High Gas Temperature Measurement," SEPP, Paper No. 524E, April 1962.
- Maevaskaya, L. A. and Morozor, A. D., "Thermoelectric Anemometer for Measuring Air Flow Speeds," MSTC (IZTE), No. 7, July 1962.
- Majdic, M., "Investigations on Extremely Thin Thermocouple Wires Made from Precious Metal Alloys," PMTL, Vol. 7, No. 2, Feb. 1970 (in German and English). Mamykin, P. S. and Drozdova, T. A., "Thermocouple Sheaths for Measuring Metal Tem-
- peratures Continuously During Melting," Refractories, No. 1-2, Jan.-Feb. 1971.
- Marglis, O. M. et al, "Tips for Immersion Type Thermocouples Made from Zirconium Dioxide of Increased Resistance to Heat," OGNP, No. 12, 1962, AD-411-058.
- Markina, N. V. and Tsykanov, V. A., "Methods for In-Pile Investigations of Radiation Effects on the Accuracy of Thermocouple Reading," Scientific Research Institute of Atomic Reactors, Melekess (USSR), Paper No. SRIAR-P-130, 1971.
- Martincavage, J., "Thermocouple Linearizing Circuit," INCS, Vol. 43, No. 9, Sept. 1970.
- Martin, C. D. and Gabbard, C. H., "Experience with Type K Thermocouples in an Experimental Nuclear Reactor," STSI, Vol. 4, Part 3, Sec. 8D, June 1971.
- Matthew, H. L., "Thermocouple Calibration in a Subsonic Air Flow," University of Wyoming Master Thesis, May 1965, AD-617-305.
- McCoy, H. E., Jr., "Influence of CO-CO₂ Environments on the Calibration of Chromel-P Alumel Thermocouples," Oak Ridge National Laboratory, Report No. ORNL-P-1070, March 1965.
- McDearman, J. R. et al, "A Three-Wire Insulator-Shunting Model for High-Temperature Thermocouple Errors," IEIM, Vol. 1EC1-18, No. 4, Nov. 1971.
- McElroy, D. L., "Progress Report of Thermocouple Research-Report for Period Nov. 1, 1956 to Oct. 31, 1957, Oak Ridge National Laboratory, Report No. ORNL-2467, 1968.
- McLaren, E. H. and Murdock, E. G., "New Considerations on the Preparation, Properties and Limitations of the Standard Thermocouple for Thermometry," STSI, Vol. 4, Part 3, Sec. 8A, June 1971.
- McSherry, P. B., "Metal Ceramic Wall Lengthens Thermocouple Life," IRAG, Vol. 172, 29 Oct. 1953.
- Meador, J. D., "Dynamic Testing of Gas Sample Thermocouples," SEPP, Paper No. 158G, April 1960.
- Mesalovich, G. I., "Local Temperature Measurements in Forging and Stamping," MSTC (IZTE), Nov. 1962.
- Mikhaylenko, L. I. et al, "Temperature Measurement in Moving Drops," HTSR, Vol. 1, No. 3, May 1969.
- Miksch, E. S., "Equilibration of the Ice-Water Temperature Standard," RSIN, Vol. 36, No. 6, June 1965.
- Miller, C. E. and Flynn, T. M., "On the Problems of Measuring Transient Temperature in Cryogenic Fluids," ISAT, Vol. 6, No. 2, April 1967.
- Miller, J. T., "The Revised Course in Industrial Technology," INPA, Vol. 18, No. 1, Jan. 1964.
- Moeller, C. E., "Special Surface Thermocouples," INCS, Vol. 36, No. 5, May 1963. Moen, W. K., "Thermocouple Sensor Installation," INCS, Vol. 42, No. 12, Dec. 1969.
- Moen, W. K., "Thermocouple Sensor Installation," INCS, Vol. 42, No. 12, Dec. 1969. Moen, W. K., "Use Thermocouples Right and Melt Away Weight," SAEJ, Vol. 71, No. 11, Nov. 1963.
- Moffat, R. J., "Gas Temperature Measurement: Direct Design of Radiation Shielding," ISAC, Paper 68-517, Vol. 5, Oct. 1968.
- Moffat, R. J., "Stable High Temperature Thermometry Rig," SEPP, Paper No. 158E, April 1960.
- Moffat, R. J., "Understanding Thermocouple Behavior: The Key to Precision," ISAC, Paper No. 68-628, Vol. 5, Oct. 1968.
- Monroe, J., "Automatic Thermal Transfer Meter," INCS, Vol. 36, No. 1, Jan. 1963.
- Morgan, E. S., "Effect of Stress on Therma E.M.F. of Platinum-Platinum/13% Rhodium Thermocouples," BJAP, Ser. 2, Vol. 1, No. 11, Nov. 1968.
- Morrison, R. D. and Lachenmayer, R. R., "Thin Film Thermocouples for Substrate Temperature Measurement," RSIN, Vol. 34, No. 1, Jan. 1963.
- Morrison, R. G., "Application of Miniature Intrinsic Thermocouples for Reactor Transient Diagnostics," Los Alomos Scientific Laboratory, LA-DC-7004, March 1965.

Muth, S., Jr., "Reference Junctions," INCS, Vol. 40, No. 5, May 1967.

- Nanigian, J. et al, "Instantaneous Heat Transfer Pressure and Surface Temperature Characteristics of Solid Propellant Rocket Igniters," U.S. Naval Propellant Plant, Indian Head, Md., Report No. 178, April 1960.
- Nanigian, J., "Matching Thermocouple Well Material to Wall Improves Accuracy," ISAJ, Vol. 10, No. 2, Feb. 1963.
- Nanigian, J., "Ribbon Thermocouples in the 3000 to 5000 F Range," INCS, Vol. 39, No. 5, May 1966.
- Nanigian, J., "Temperature Measurements and Heat Transfer Calculation in Rocket Nozzle Throats and Exit Cones," ISAC, Paper No. 29.3.63, Sept. 1963.
- Nanigian, J., "Thermal Properties of Thermocouples," INCS, Vol. 36, No. 10, Oct. 1963.
- Nielson, I. O., "Selection of Thermocouples for Temperature Profiling of Semiconductor Diffusion Furnaces," SSTE Vol. 13, No. 10, Oct. 1970.
- Nilson, J. R., "Elimination of Electrical Interference In High Temperature Thermocouple Installations," ISAC, Paper No. 36 SF60, May 1960.
- Nishihara, H. et al, "Some Applications of Dynamic Temperature Measurements in Fluid Flow Associated with Nuclear Reactor Systems," STSI, Vol. 4, Part 3, Sec. 8D, June 1971.
- Northover, E. W. and Hitchcock, J. A., "The Effect of Heating on the Local Thermo-Electric Power Characteristics of Commercial Thermocouple Wires," INPA, July 1968.
- Northover, E. W. and Hitchcock, J. A. "New High-Stability Nickel Alloy Thermocouple," INPA, Vol. 25, No. 9, Sept. 1971.
- Novak, P. R. and Asamoto, R. R., "An In-Pile Evaluation of W-Re Thermocouple Systems for Use to 4700°F in SEFOR Fuel," General Electric Co., San Jose, Calif., Report No. GEAP-5468, Oct. 1968.
- Nydick, S. E., "Thermocouple Errors in Ablation Materials," ISAC, Paper No. 16.12.-3-66, Oct. 1966.
- O'Connor, T. J., "A Split-Flow Enthalpy Probe for Measurement of Enthalpy in Highly Heated Subsonic Streams," ISAC, Paper No. 68-539, Oct. 1968.
- Oleinikova, L. D. et al, "Stability of Tungsten-Rhenium Thermocouples VR 5/20 and VR 10/20 in the Range 1450–2000 C," MSTC, No. 10, Oct. 1969.
- Olsen, K. N., "Temperature System Standardizer," Rocketdyne, Canoga Park, Calif., TR-6113, AD-409-338.
- Olsen, L. O. and Freeze, P. D., "Reference Tables for the Platinel II Thermocouples," JRNB, Vol. 68C, No. 4, Oct.-Dec. 1964.
- Olsen, L. O., "Catalytic Effects of Thermocouple Materials," MEPO, Vol. 85, No. 1, Jan. 1964.
- Olsen, L. O., "Guideposts to Keep Thermocouple Users Out of Hot Water," SAEJ, Vol. 72, No. 8, Aug. 1964.
- Olsen, L. O., "Some Recent Developments in Noble Metal Thermocouples," SEPP, Paper No. 750 A, 23–27 Sept. 1963.
- Pak, V., "Calibration of Thermocouples in a Dynamic Condition," MSTC(IZTE), Vol. 6, No. 6, June 1963.
- Pak, V., "A Thermocouple for Measuring Temperature Drops in Electrically Conductive Media," INDL (ZVDL), July 1963.
- Pak, V. et al, "Simplified Equipment for Calibration of Precious Metal Thermocouples in a Dynamic Condition," MSTC (IZTE), June 1963.
- Palmer, E. P. and Turner, G. H., "Response of Thermocouple Junctions to Shock Waves," Utah Research and Development Co., Inc., Report No. ATL-TR-66-36, April 1966, AD-484507.
- Palmer, R. B. P., "Thermoelectric Fields in Liquids," JSIN, Vol. 30, No. 6, June 1953.
- Palmer, T. Y., "Comparison of Aspirated and Radiation-Compensating Thermocouples," FITE, Vol. 6, No. 3, Aug. 1970.
- Palatnik, L. S. et al, "High Temperature Stable Thin-Film Thermocouples," MSTC, Vol. 14, No. 7, July 1971.
- Parker, R., "Method for Determining the Response of Temperature Sensors to a Rapid Temperature Rise," ISAC, Paper No. 16.10-1-66, Oct. 1966.
- Parker, R., "Response of Thermocouples to a Rapid Temperature Rise," ISAT, Vol. 8, No. 2, 1969.

- Parlov, B. P., "Correction of Indications of Thermocouples," MSTC, Vol. 14, No. 5, May 1971.
- Patter, R. D., "Open Circuit Thermocouple," MEPO, Vol. 64, No. 11, Nov. 1953.
- Paul, M. C. and Obery, P. E., "Modified Pyrometer Temperature Measurement Technique," RSIN, Vol. 35, No. 1, Aug. 1964.
- Pesko, R. N. et al, "Theory and Practice of Plated Thermocouples," STSI, Vol. 4, Part 3, Sec. 8E, June 1971.
- Plyukhin, V. S. and Kologrivov, V. N., "Emf of Thermocouples Compressed by a Shock Wave," ZPMF, 1962, WPAF-FTD, Report No. FTD-TT-63-1057, AD-426901.
- Pokhodnya, I. K. and Fruman, I. l., "The Temperature of a Weld Pool," AUSV, No. 5, 1955, AD-400830.
- Pollock, D. D., "The Theory and Properties of Thermocouple Elements," ASTT, No. 142, May 1971.
- Potts, J. F., Jr., and McElroy, D. L., "Basic Studies on Base Metal Thermocouples," SEPP, Paper No. 158 A, April 1960.
- Potts, J. F. and McElroy, D. L., "Thermocouple Research to 1000 C Final Report, Nov. 1, 1957 to June 30, 1959," ORNL Report No. ORNL 2773, 1959.
- Powell, R. L., "Revision of the Standard Reference Data for Thermocouples," STSI, Vol. 4, Part 3, Sec. 8A, June 1971.
- Powell, R. L. et al, "Low Temperature Thermocouples 1. Gold-Cobalt or Constantan Versus Copper or 'Normal Silver'," CRYO, No. 5, March 1961.
- Powell, W. B. and Price, E. W., "A Method for Determination of Level Heat Flux from Transient Temperature Measurements," ISAC, Paper No. 8.2.63, Sept. 1963.
- Prentice, J. L., "Flashdown in Solid Propellants," Naval Ordnance Test Station, China Lake, Calif., NOTS TP 3009, Dec. 1962, AD-295979.
- Rabinowitz, E., "Equations Give Quick Estimates of Friction Temperature," PREN, Vol. 35, No. 4, March 1964.
- Rainey, W. T., Jr., and Bennett, R. L., "Stability of Base Metal Thermocouples in Helium Atmosphere," ISAT, Vol. 2, No. 1, Jan. 1963.
- Ramachandran, S. and Acre, T. R., "Measuring Molten Steel Temperature," ISAJ, Vol. 11, No. 3, March 1964.
- Rauch, W. G., "Design and Construction of Needle Thermocouples," MESD, Vol. 65, No. 3, March 1954.
- Redford, R. E., "New Reference Tables for Platinum 10% Rhodium/Platinum and Platinum 13% Rhodium/Platinum Thermocouples," ISAT, Vol. 9, No. 3, 1970.
- Redr, M. et al, "Thermocouples for Prolonged and Deep Temperature Measurement of Liquids in Moulds," HUTL, Vol. 18, No. 7, 1963.
- Rezgol, I. A., "Calculation of Multicascade Thermoelements," IAET, No. 5, Sept.-Oct. 1969 (in Russian).
- Rezgol, I. A., "Effective Characteristics of Cascaded Thermopyles," IAET, No. 6, Nov.-Dec. 1969 (in Russian).
- Richards, D. B. et al, "Thermocouples in Magnetic Fields," JAPI, Vol. 40, No. 9, Aug. 1969.
- Robertson, D., "A New Sensitive Temperature Detector for Use in High Pressure Fluid Piping," ASMS, Paper No. 59-A-201, Dec. 1959.
- Robertson, G. D., Jr., and Scholl, R. F., "Rotating Thermocouple System," RSIN, Vol. 42, No. 6. June 1971.
- Roeser, W. F. and Lonberger, S. L., "Methods of Testing Thermocouples and Thermocouple Material," NBSS, No. 590, Feb. 1958. Rosenbaum, "Some Low Temperature Thermometry Observations," RSIN, Vol. 40, No. 4,
- April 1969.
- Rozenblit, G. B., "Measurement of Small Temperature Variations on the Surface of Solid Bodies," MSTC, Vol. 2, No. 2, Feb. 1962.
- Rubin, L. G., "Measuring Temperature," ISCT, No. 25, Jan. 1964. Rubin, L. G., "Temperature Concepts, Seals and Measurement Techniques," Raytheon Co. Technical Memorandum T-538.
- Ruff, A. W., Jr., "Open-Probe Thermocouple Control of Radio-Frequency Heating," RSIN, Vol. 35, No. 6, June 1964.
- Russell, A., "Inexpensive Thermocouple-Scanner Using Gold-Plated Relays," CNTL, Vol. 7, No. 63, Sept. 1963.

- Safronnikov, S. A., "Thermocouple for Precision Measurements on Industrial Objects," MSTC, No. 2, Feb. 1970.
- Salt, K. J. and Wintle, C. A., "Improved Accuracy of Temperature Measurement with Thermocouples," UKAA, Report No. AEEW-R522, 1967.
- Sandefur, N. L. et al, "Reliability of High-Temperature Thermocouples in Irradiation Capsules," Gulf General Atomic, Inc., San Diego, Calif., Report No. GA9653, Sept. 1969. Sannes, T., "Tiny Thermocouples-Advances in Design Extended Applications," 1NTH,
- Vol. 14, No. 3, March 1967.
- Savage, B., "Multipoint Thermocouple Reference Junction," JSIN, Vol. 40, No. 1, Jan. 1963. Scadron, L., "Ceramic Insulated Thermocouple," INCS, May 1961. Scadron, M. D., "Time Response Characteristics of Temperature Sensors," SEPP, Paper
- No. 158H, April 1960.
- Scadron, M. D. and Warshowsky, I., "Experimental Determination of Time Constants and Nusselt Numbers for Bare-Wire Thermocouples in High-Velocity Air Streams and Analytic Approximation of Conduction and Radiation Errors," NACA, TN-2599, Jan. 1952.
- Schinizlein, J. G. et al, "Temperature Transducer for Thermogravimetric Studies," RSIN, Vol. 36, No. 5, May 1965.
- Schmoll, R. H., "Temperature Measurements with Thermocouples," INCS, Vol. 44, No. 6, June 1971.
- Schriempf, J. T., "Basic Studies of the Metallic State (Thermoelectric Power of 0.02 AT-% Iron in Gold)," RNRL, April 1965. Selman, G. L., "On the Stability of Metal Sheathed Noble Metal Thermocouples," STSI,
- Vol. 4, Part 3, Sec. 8C, June 1971.
- Sheldon, L. E., "Multiplexing Thermocouple Signal to a Computer-Controlled Data System," ISAC, Paper No. 53.3.63, Sept. 1963.
- Shepard, C. E. and Warshawsky, I., "Electrical Techniques for Time Lag Compensation of Thermocouples Used on Gas Turbine Temperature Measurements," INST, Vol. 26, No. 11, Nov. 1953.
- Shepard, R. L. et al, "Equivalent Circuit Modeling of Insulator Shunting Errors in High Temperature Sheathed Thermocouples," STSI, Vol. 4, Part 3, Sec. 8C, June 1971.
- Sherman, A., "Thermocouple Circuit Restorer," INAU, Vol. 27, No. 1, Jan. 1954.
- Shmonin, A. A., "Measurement and Control of Temperature in Furnaces," MSTC (IZTE), Vol. 2, No. 2, Feb. 1962.
- Shortland, M. and Standly, D. J., "Thermocouple Switch Works inside Slab Furnace," INPA, Vol. 20, No. 1, Jan. 1966.
- Shu, H. H. H., "Relation Between the Rubbing Interface Temperature Distribution and Dynamic Thermocouple Temperature," ASMS, Vol. 86, No. 3, Sept. 1964.
- Sibley, F. S., "A New Oxidation and Corrosion Resistant Nickel Alloy Thermocouple Marching Type J Iron-Constantan in Calibration," ISAC, Paper No. 21.2.62, Oct. 1962.
- Siede, O. A. and Edison, L. R., "Mechanics of Drawing and Swaging Ceramic Filled Tubes," ASTM, Paper, unpublished, Annual Meeting, June 1966.
- Siede, O. A., "Manufacturing Procedures and Techniques for Metal Sheathed Ceramic Insulated Thermocouples," ASTM, Paper, unpublished, Annual Meeting, June 1966.
- Silverman, L., "Reference Junctions," INCS, Vol. 36, No. 6, June 1963.
- Simmons, F. S. and Glawe, G. E., "Theory and Design of a Pneumatic Temperature Probe and Experimental Results Obtained in a High Temperature Gas Stream," NACN, ON-3393, Jan. 1957, AD-118-995.
- Simmons, J. D., "Tungsten-Molybdenum Thermocouple for Immersion Pyrometer," JISI, Vol. 175, No. 12, Dec. 1953.
- Slater, H. W., "Improvements in Fine Wire Thermocouples," JSIN, Vol. 30, No. 8, Aug. 1953.
- Slaughter, J. I. and Margrave, J. L., "Temperature Measurement," U.S. Air Force, Space Systems Division, Report No. TDR-169 (3240-20) TN-1, Oct. 1962, AD-298-142.
- Smith, A., "A Differential Thermocouple and Its Errors in a Reactor Environment," UKAA Report No. AERE-R 5921, 1969.
- Smith, C. P., "Thermocouples," EMTD, Vol. 12, No. 12, Dec. 1969.
- Smith, E. C., "Swaged MgO Thermocouples," INCS, Vol. 34, May, 1961.
- Sparks, L. L. and Hall, W. J., "Cryogenic Thermocouple Tables-Part II. Reference Materials Versus Thermocouple Alloys," NBSP Report No. 9719, Dec. 1968.
- Sparks, L. L. and Hall, W. J., "Cryogenic Thermocouple Tables-Part III. Miscellaneous and Comparative Material Combinations," NBSP, Report No. 9721, Jan. 1969.
- Sparks, L. L. and Hust, J. G., "Thermoelectric Voltage of Silver-8at% Gold Thermocouple Wire, SRM733, Versus Common Thermocouple Materials (Between Liquid Helium and Ice Fixed Points)," NBSP, No. 260-34, 1972.
- Sparks, L. L. and Powell, R. L., "Available Low Temperature Thermocouple Information and Services," NBSP, Report No. 8750, Feb. 1965.
- Sparks, L. L. and Powell, R. L., "Cryogenic Thermocouple Thermometry," MESD, Vol. 1, No. 2, March-April 1967.
- Sparks, L. L. and Powell, R. L., "Final Report on Thermometry Project," NBSP, Report No. 9249, June 1966.
- Sparks, L. L. and Powell, R. L., "Laboratory Method for Assessing Homogeneity and Interchangeability of Thermocouple Wires," MTRS, Vol. 11, No. 8, Aug. 1971.
- Sparks, L. L. and Powell, R. L., "Low Temperature Thermocouples: KP, "Normal" Silver, and Copper Versus Au-0.02at % Fe and Au-0.07at % Fe," JRNB, Vol. 76A, No. 3, May– June 1972.
- Sparks, L. L. and Powell, R. L., "Reference Data for Thermocouple Materials Below the Ice Point," STSI, Vol. 4, Part 3, Sec. 8A, June 1971.
- Sparks, L. L. et al, "Cryogenic Thermocouple Research," ISAT, Vol. 9, No. 3, 1970.
- Sparks, L. L. et al, "Cryogenic Thermocouple Tables," NBSP, Report No. 9721, July 1968.
- Sparks, L. L. et al, "Reference Tables for Low-Temperature Thermocouples," NBSM, No. 124, June, 1972.
- Spooner, N. F. and Thomas, J. M., "Longer Life for Chromel-Alumel Thermocouples," MEPO, Nov. 1955.
- Spooner, N. F. and Sibley, F. S., "Versatile Thermocouple with High Output," MEPO, Vol. 96, No. 5, Nov. 1969.
- Stamper, J. A., "Differential Sensing Controlled Thermocouple," RSIN, Vol. 34, No. 4, April 1963.
- Starner, K. E. and Varwig, R. L., "Thick Film Thermocouple Gages for Rough Model Heat Flux Measurements," ISAT Vol. 9, No. 2, 1970.
- Starr, C. D. and Wang, T. P., "Effect of Oxidation on Stability of Thermocouples" ASTE, Vol. 63, 1963.
- Starr, C. D. and Wang, T. P., "Thermocouples and Extension Wires," STSI, Vol. 4, Part 3, Sec. 8B, June 1971.
- Stein, P. K., "A New Conceptual Model for Components in Measurement /Control Systems: Practical Application to Thermocouples," STSI, Vol. 4, Part 3, Sec. 8E, June 1971.
- Stepka, F. S. and Hickel, R. O., "Methods for Measuring Temperatures of Thin-Walled Gas Turbine Blades," NACN, E56G17, Nov. 1956, AD-112-316.
- Stern, J. et al, "Preliminary Results of Nobel Metal Thermocouple Research Program, 1000-2000 C," NASA, CR-72646, Jan. 1970.
- Stevenson, J. A., "Metal-Clad Thermocouples," PTMR, Vol. 4, No. 4, Oct. 1960.
- Stewart, W. F. and Edwards, S. F., "Calibration of Small Gauge Thermocouples," RSIN, Vol. 43, No. 1, Jan. 1972.
- Stimson, H. F., "International Temperature Scale of 1948, Test Revision of 1960," NBSM, No. 37, Sept. 1961.
- Stover, C. M., "Method of Butt Welding Small Thermocouples 0.001 to 0.010 Inches in Diameter," RSIN, Vol. 31, No. 6, June 1960.
- Stowe, B. W., "Embedded Thermocouple Measurements of Cooled Turbine Buckets Subject to High Heat Flux Conditions," ISAT, Vol. 8, No. 2, 1969.
- Strittmaster, R. C. et al, "Measurement of Temperature Profiles in Burning Solid Propellant," U.S. Army Material Command, Ballistic Research Laboratory, Report No. BRL-MR-17-37, March 1966, AD-635188.
- Strub, J. W., "The Use of Chord Thermocouples for Monitoring the Thermal Resistance of Boiler Waterside Deposits," PAPW, Vol. 23, 1961.
- Sturm, W. J. and Jones, R. J., "Applications of Thermocouples to Target Temperature Measurement in the Internal Beam of a Cyclotron," RSIN, Vol. 25, No. 4, April 1954.
- Swaney, F. S., "Open Hearth Bath Temperature Measurement," INST, Vol. 26, No. 2, Feb. 1953.

- Swartzlander, E. E., Jr., "Comparison of Temperature Sensors for Apollo Experiment Instrumentation," ISAC, Paper No. 69-665, Vol. 24, Part 4, Oct. 1969.
- Swindells, J. F., ed., "Precision Measurement and Calibration-Temperature," NBSS, No. 300, Vol. 2, Aug. 1968.
- Taligren, V. and Kracht, V., "Reliable D.C. Amplifier for Thermocouple Vacuum Gauges," ELEG, Vol. 36, No. 10, Oct. 1964.
- Tarassenko, S., "Mesure des Temperatures d'un Coeur de Reacteur Nucleaire," CMEA, Saclay, Report No. CEA-R-3916, Nov. 1969.
- Tauras, J. A., "Some Designs Using Sheathed Thermocouple Wire for Jet Engine Applications," STS1, Vol. 4, Part 3, Sec. 8C, June 1971.
- Thielke, M. R., "Thermoelectric Materials," National Carbon Co., Jan. 1959, AD-220537.
- Thomas, D. B. and Freeze, P. D., "The Effects of Catalysis in Measuring the Temperature of Incompletely-Burned Gases with Noble-Metal Thermocouples," STSI, Vol. 4, Part 3, Sec. 8B, June 1971.
- Thomas, D. B., "Furnace for Thermocouple Calibrations to 2200 C," JRNB, Vol. 66C, No. 7, July 1962.
- Thomas, D. B., "Some Studies on the Reproducibility of Tungsten-Rhenium Type Thermocouples," ISAC, Vol. 26, Part 2, Paper No. 71-611, Oct. 1971.
- Thomas, D. B., "Studies on the Tungsten-Rhenium Thermocouple to 2000 C," JRNB, Vol. 67, No. 4, Oct.-Dec. 1963.
- Thornberg, D. D. and Wayman, C. M., "Thermoelectric Power of Vacuum-Evaporated Au-Ni Thin-Film Thermocouples," JAPI, Vol. 40, No. 7, June 1969.
- Thulin, A., "Composite Thermocouple-Resistance Sensors with Linear Output," JSIN, Vol. 2, No. 12, Dec. 1969.
- Tillinger, M. H., "Noise Thermometry at High Pressure," Polytechnic Institute of Brooklyn, TR-1, June 1965, AD-467-990.
- Tkach, J. D. and Meservey, R. H., "Corrosion of Thermocouple Sheath Materials in a Pressurized Water Reactor Environment," Aerojet Nuclear Co., Idaho Falls, Idaho, unpublished, 1972.
- Toenshoff, D. A., "Automatic Calibration of Thermocouples," EITB, Vol. 2, No. 3, Dec. 1961.
- Toenshoff, D. A., "Discussion of Common Thermocouple Calibration Problems," SEPP, Paper No. 690429, April 1969.
- Toenshoff, D. A., "A Recording Tester for Wire Homogeneity," Englehard Industries, East Newark, N. J., unpublished.
- Toenshoff, D. A., "Twist Upgrades Brittle W/Rh TC Junctions," INTH, Vol. 17, No. 10, Oct. 1970.
- Toenshoff, D. A. and Zysk, E. D., "Material Preparation and Fabrication Techniques for the Production of High Reliability Thermocouple Devices," STSI, Vol. 4, Part 3, Sec. 8C, June 1971.
- Tschang, P. S., "Temperature Determination in Moderately Dense High Temperature Gases by Transient Thermocouple Probes," WPAF, ARL-65-95, May 1965, AD-617-702.
- Tseng, Y. et al, "Platinum-Molybdenum Thermocouple," EITB, Vol. 9, No. 3, Dec. 1968.
- Tseng, Y. et al, "Tungsten 3 Rhenium vs Tungsten 25 Rhenium Thermocouple—Some Recent Developments," EITB, Vol. 11, No. 1, June 1970.
- Tsyplyatnikov, G. P. and Aleskorskiy, V. B., "A Thermochemical Gas Analyzer for Continuous Detection of Oxygen," IVUK, Vol. 3, No. 3, 1960, AD-295-607.
- Turner, C. H., "Response of a Thermocouple Junction to Shock Waves in Copper," JAPI, Vol. 35, No. 10, Oct. 1964.
- Turner, R. C. and Gordon, G. D., "Thermocouple for Vacuum Tests Minimizes Errors," SPAE, Vol. 41, No. 1, Jan. 1964.
- Tye, R. P., "The Arts and Practices of Thermal Conductivity Measurements," ISAC, Paper No. 68-523, Vol. 5, Oct. 1968.
- Vaughan, C. L., "A Temperature Transducer that Measures Peak Temperature," ISAC, Paper No. 69-575, Vol. 24, Part 2, Oct. 1969.
- Vertogradsky, V. A., and Chekhovskoy, V. Ya., "Thermal Properties of Tungsten-Rhenium Alloys Used in High Temperature Thermocouples," STSI, Vol. 4, Part 3, Sec. 8B, June 1971.

- Vesser, W. C. and Vaughan, C. L., "A Measurement Bridge for Locating Peak Temperature from a High-Impedance Thermocouple Transducer," ISAC, Paper No. 69-577, Vol. 24, Part 2, Oct. 1969.
- Vrolyk, J. J. and Kinzie, P. A., "Feasibility Investigation of Heat-Flow Rate Measuring Techniques," WPAF, RTD-TDR-63-4077, Jan. 1964, AD-431-189.
- Walker, B. E. et al, "High Temperature Materials Research," RNRL, April 1965. Walter, B. E. et al, "Instability of Refractory Metal Thermocouples," RSIN, Vol. 36, No. 6, June 1965, AD-621-484.
- Walker, B. E. et al, "Study of the Instability of Noble Metal Thermocouples in Vacuum." RSIN, Vol. 36, No. 5, May 1965.
- Walker, B. E. et al, "Thermoelectric Instability of Some Noble Metal Thermocouples at High Temperature," RSIN, Vol. 33, No. 10, Oct. 1962.
- Wang, T. P., "Temperature Sensors," INCS, Vol. 40, No. 5, May 1967.
- Wang, T. P. et al, "EMF Stability of Type K Thermocouple Alloys," SEPP, Paper No. 690426, April 1969.
- Wasserman, P., "Zener Diode Voltage References," MESD, Vol. 3, No. 4, July-Aug. 1969. Watson, G. G., "Techniques for Measuring Surface Temperatures," INPA, Vol. 20, Nos. 3-8, March-Aug. 1966.
- Wechter, G. H., "The Accuracy of Thermocouples in Measuring Surface Temperatures of Stainless Steel Specimens Subject to Radiant Heat-Phase II," Aeronautical Structures Laboratory, Naval Air Development Center, NAEC, ASL 13 R 360FR101, July 1963, AD-412-317.
- Weiner, S. and Schwartz, F., "Thermopile IR Detectors," SPAE, Vol. 40, No. 8, Aug. 1963.
- White, F J., "Accuracy of Thermocouples in Radiant Heat Testing," EXMC, Vol. 2, July 1962.
- Whitow, L, and Porter, M. J., "Method of Reducing Time Lag of Transducers Which Have Exponential Response," ELOE, Vol. 31, No. 379, Sept. 1959.
- Wilkinson, R. H., "Measurement of Temperature Distribution Over Metal Objects Using Single-Wire Thermocouples," STSI, Vol. 4, Part 3, Sec. 8E, June 1971.
- Wilks, C. R., "Creep and Rupture Test Pyrometry," ASTT, No. 178, 1955.
- Williams, R. J. and Kaiura, E. H., "Time Constant Study of Some Commercial Temperature Sensors at Cryogenic Temperatures," The Boeing Co., Report No. D2-23831-1, July 1965, AD-485191L.
- Wilson, A. D. and Ulsh, H. B., "Theory of the Parallel Thermocouple," RSIN, Vol. 39, No. 3, Mar. 1968.
- Wool, M. R. et al, "Measurement of Convective and Radiative Heat Fluxes at the Surface of an Ablative Material," ISAC, Paper No. 69-579, Vol. 24, Part 2, Oct. 1969.
- Wormser, A. F., "Experimental Determination of Thermocouple Time Constants with Use of a Variable Turbulence, Variable Density Wind Tunnel and the Analytic Evaluation of Conduction Radiation and Other Secondary Effects," SEPP, Paper No. 158 D, April 1960.
- Wormser, A. F. and Pfuntner, R. A., "Pulse Technique Extends Range of Chromel Alumel to 7000 F," INCS, Vol. 37, No. 5, May 1964.
- Wormser, A. F. and Pfuntner, R. A., "Pulse Thermocouple Measures at 5700 F," SPAE, Vol. 40, No. 7, July 1963.
- Wright, D. F. and Acheson, G. F., "Effect on the Static Strength of Aluminum Alloy Test Specimens of the Attachment of Thermocouples by a Welding Technique," Royal Aircraft Establishment, Technical Note, Structures 345, Jan. 1964, AD-440894.
- Young, R., "Thermoelectric Thermometry," CEEN, Vol. 33, No. 14, Oct. 1960.
- Zabawsky, Z., "Construction and Calibration of a Heat Flow Meter for Thermal Conductivity Measurements," ISAC, Paper No. 68-520, Vol. 5, Oct. 1968.
- Zabawsky, Z. and Gavan, F. M., "Thermocouples and Their Usage in ASTM Standards," MTRS, Vol. 5, No. 2, Feb. 1965.
- Zopf, W. D., "Thermal-Electric Type Instrumentation for the Detection and Relative Measurement of Infrared Radiation in a Selected Wave Length Bound of Essentially Black Body Radiation," Arkansas University Masters Thesis, 1963, AD-298162.
- Zysk, E. D., "Noble Metals in Thermometry-Recent Developments," EITB, Vol. 5, No. 3, Dec. 1964.
- Zysk, E. D., "A Review of Recent Work with the Platinel Thermocouple," EITB, Vol. 4, No. 1, June 1963.

- Zysk, E. D. and Robertson, A., "Newer Thermocouple Materials," STSI, Vol. 4, Part 3, Sec. 8B, June 1971.
- Zysk, E. D. and Robertson, A. R., "Nonmetallic Thermocouples for Above 1000 Degrees C," INTH, Vol. 19, No. 3, May 1972.
- Zysk, E. D. and Robertson, A. R., "Thermocouples for Above 1500 Degrees C," INTH, Vol. 18, No. 11, Nov. 1971.
- Zysk, E. D. and Toenshoff, D. A., "Calibration of Refractory Metal Thermocouples," ISAP, Paper No. 12.11-4-66, Oct. 1966.
- Zysk, E. D. et al, "Tungsten 3 Rhenium Versus Tungsten 25 Rhenium—A New High Temperature Thermocouple," EITB, Vol. 3, No. 4, March 1963.

12.3 Coden for Periodical Titles

CODEN	Title
ANCH	Analytical Chemistry
ASMS	American Society of Mechanical Engineers, Paper
ASTE	American Society for Testing and Materials, Proceedings, Committee
	Reports, Technical Papers
ASTT	American Society for Testing and Materials, Special Technical Publi-
	cation
ATEL	Avto Matika I Telemekhanika (USSR)
AUSV	Automaticheskaya Svarka (USSR) Translated by Administrative Center
	for Scientific Information and Liaison (UK)
BJAP	British Journal of Applied Physics
CEEN	Certificated Engineer (UK)
CELE	Communication and Electronics
CENG	Control Engineering
CHEG	Chemical Engineer, The
CJPH	Canadian Journal of Physics
CMEA	Commissariat a l'Energie Atomique Rapport (FR)
CNTL	Control
CRYO	Cryogenics
DSER	Data Systems Engineering
EITB	Engelhard Industries, Inc., Technical Bulletin
ELEC	Electronics
ELEG	Electronic Engineering
ELMA	Electrical Manufacturing
ELOE	Electronic Engineer
ELTE	Electro-Technology
EMTD	Engineering Materials and Design
EXMC	Experimental Mechanics
FITE	Fire Technology
GLCE	Glass and Ceramics (USSR)
HUTL	Hutnicke Listy (Czech)
HTSR	Heat Transfer—Soviet Research (USSR)
IAET	Izvestiya Akademii Nauk SSSR Energetika: Transport (USSR)
IEIM	Institute of Electrical and Electronic Engineers (IEEE) I ransactions on Instrumentation and Measurement
INAU	Instruments and Automation
INCS	Instruments and Control Systems
INDL	Industrial Laboratory (USSR)
INET	Instruments and Experimental Techniques (USSR)
INLA	Industrial Laboratories
INPA	Instrument Practice (UK)
INSR	Instrumentation
INST	Instruments
INTH	Instrumentation Technology
IRAG	Iron Age, The

CODEN	Title
IDES	Industrial Dessarah
INES	Industrial Research
IRSE	Iron and Steel Engineer
ISAC	Instrument Automation Conference and Exhibit Proceedings, Annual, Instrument Society of America
ISAJ	Instrument Society of America Journal
ISAP	Instrument Society of America Preprint (Paper)
ISAT	Instrument Society of America, Transactions
ISCT	International Science and Technology
ITAE	Institute of Electrical and Electronic Engineers, Transactions on Aero- space and Electronic Systems
IVUK	IZ Vestiya Vysshikh Uchebnykh Zavedeniy, Khimiya I Khimicheskaya Tekhnologiya (USSR)
IZTE	Izmeritel'naja Tekhnika (USSR)
IAMC	Journal of Applied Mechanics (ASME)
IAPI	Journal of Applied Physics
IBAE	Journal of Basic Engineering (ASME)
IEPO	Journal of Engineering for Power (ASME)
IHTR	Journal of Heat Transfer (ASME)
UMF	Journal of the Institute of Metals (LIK)
IISI	Journal of Iron and Steel Institute (UK)
	Journal of Research, National Rurson of Standarda
JNIND	Journal of Research, National Buleau of Standards
INTI	Loade and Northmun Co. Technical Isurnal
	Machina Design
MADE	Machine Design
MEEN	Metal Dragmeering
MERO	Metal Progress
MESD	Measurements and Data
MEIL	Metallurgia
MMQT	Mining and Metallurgy Quarterly Transactions
MSCO	Metallurgical Society Conference
MSTC	Measurement Techniques (USSR)
MIRS	Material Research and Standards
NAAR	National Advisory Committee for Aeronautics, Research Abstracts
NACN	National Advisory Committee for Aeronautics, Technical Notes
NASA	National Aeronautical and Space Agency
NBSE	National Bureau of Standards Technological Papers
NBSM	National Bureau of Standards Monograph
NBSP	National Bureau of Standards Miscellaneous Publication
NBSS	National Bureau of Standards Special Publication
NBST	National Bureau of Standards, Technical News Bulletin
NSSP	National Aeronautics and Space Administration Special Publication
NUCA	Nuclear Applications
OGNP	Ogneapory (USSR)
ORNL	Oak Ridge National Laboratories
PAPW	Proceedings of the American Power Conference
PEPR	Petroleum Processing
PHTO	Physics Today
PIMI	Proceedings of the Institution of Mechanical Engineers (IIK)
PMTI	Praktische Metallographie
POWE	Power
PREN	Product Engineering
PRTF	Pribory I Teknika Eksperimenta (LISSE)
DTMD	Detinum Metels Poulou
DM7D	Dudarska Matalurski Zharnik (LISSD)
	Ruuaisko—Wielaiurski Zoornik (USSK)
RINKL DOINI	Report of Inaval Research Laboratory Progress
ROIN	Review of Scientific Instruments
SAEJ	SAE Journal, Society of Automotive Engineers

SEPPSAE, Preprint, Society of Automotive EngineersSPAESpace AeronauticsSSTESolid State TechnologySTAEScientific and Technical Aerospace Reports (STAR), National Aeronautic and Space AdministrationSTSITemperature, Its Measurement in Science and IndustryUKAAUnited Kingdom Atomic Energy AuthorityVIDEVide (France)WEJUWelding JournalWPAFWright-Patterson Air Force Base, OhioWSKRWerkstoffe und KorrosionXAERUnited States Atomic Energy CommissionZPMFZhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)ZVDLZavodskava Laboratoriva (USSR)	CODEN	Title
SPAESpace AeronauticsSSTESolid State TechnologySTAEScientific and Technical Aerospace Reports (STAR), National Aeronautic and Space AdministrationSTSITemperature, Its Measurement in Science and IndustryUKAAUnited Kingdom Atomic Energy AuthorityVIDEVide (France)WEJUWelding JournalWPAFWright-Patterson Air Force Base, OhioWSKRWerkstoffe und KorrosionXAERUnited States Atomic Energy CommissionZPMFZhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)ZVDLZavodskava Laboratoriva (USSR)	SEPP	SAE, Preprint, Society of Automotive Engineers
SSTESolid State TechnologySTAEScientific and Technical Aerospace Reports (STAR), National Aeronautic and Space AdministrationSTSITemperature, Its Measurement in Science and IndustryUKAAUnited Kingdom Atomic Energy AuthorityVIDEVide (France)WEJUWelding JournalWPAFWright-Patterson Air Force Base, OhioWSKRWerkstoffe und KorrosionXAERUnited States Atomic Energy CommissionZPMFZhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)ZVDLZavodskava Laboratoriva (USSR)	SPAE	Space Aeronautics
STAEScientific and Technical Aerospace Reports (STAR), National Aeronautic and Space AdministrationSTSITemperature, Its Measurement in Science and IndustryUKAAUnited Kingdom Atomic Energy AuthorityVIDEVide (France)WEJUWelding JournalWPAFWright-Patterson Air Force Base, OhioWSKRWerkstoffe und KorrosionXAERUnited States Atomic Energy CommissionZPMFZhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)ZVDLZavodskava Laboratoriva (USSR)	SSTE	Solid State Technology
STSITemperature, Its Measurement in Science and IndustryUKAAUnited Kingdom Atomic Energy AuthorityVIDEVide (France)WEJUWelding JournalWPAFWright-Patterson Air Force Base, OhioWSKRWerkstoffe und KorrosionXAERUnited States Atomic Energy CommissionZPMFZhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)ZVDLZavodskava Laboratoriva (USSR)	STAE	Scientific and Technical Aerospace Reports (STAR), National Aero- nautic and Space Administration
UKAAUnited Kingdom Atomic Energy AuthorityVIDEVide (France)WEJUWelding JournalWPAFWright-Patterson Air Force Base, OhioWSKRWerkstoffe und KorrosionXAERUnited States Atomic Energy CommissionZPMFZhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)ZVDLZavodskava Laboratoriva (USSR)	STSI	Temperature, Its Measurement in Science and Industry
VIDEVide (France)WEJUWelding JournalWPAFWright-Patterson Air Force Base, OhioWSKRWerkstoffe und KorrosionXAERUnited States Atomic Energy CommissionZPMFZhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)ZVDLZavodskava Laboratoriva (USSR)	UKAA	United Kingdom Atomic Energy Authority
WEJUWelding JournalWPAFWright-Patterson Air Force Base, OhioWSKRWerkstoffe und KorrosionXAERUnited States Atomic Energy CommissionZPMFZhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)ZVDLZavodskava Laboratoriva (USSR)	VIDE	Vide (France)
WPAFWright-Patterson Air Force Base, OhioWSKRWerkstoffe und KorrosionXAERUnited States Atomic Energy CommissionZPMFZhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)ZVDLZavodskava Laboratoriva (USSR)	WEJU	Welding Journal
WSKRWerkstoffe und KorrosionXAERUnited States Atomic Energy CommissionZPMFZhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)ZVDLZavodskava Laboratoriva (USSR)	WPAF	Wright-Patterson Air Force Base, Ohio
XAERUnited States Atomic Energy CommissionZPMFZhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)ZVDLZavodskava Laboratoriva (USSR)	WSKR	Werkstoffe und Korrosion
ZPMF Zhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR) ZVDL Zavodskava Laboratoriva (USSR)	XAER	United States Atomic Energy Commission
ZVDL Zavodskava Laboratoriya (USSR)	ZPMF	Zhurnal Prikladnei Mekhaniki I Tekhnicheskoi Fiziki (USSR)
	ZVDL	Zavodskaya Laboratoriya (USSR)

Chapter 13–Definitions

- adjusting device (liquid-in-glass thermometer), *n*.—a device to adjust the liquid in the bulb and main capillary to that needed for the intended temperature interval.
- bulb (liquid-in-glass thermometer), n.-the reservoir for the thermometer liquid.
- **bulb length (liquid-in-glass thermometer)**, *n*.—the distance from the bottom of the bulb to the point where the internal bulb diameter begins to decrease as the bulb merges into the stem.
- calibrate, v.: 1. general—to determine the indication or output of a measuring device with respect to that of a standard.
 - 2. *liquid-in-glass thermometer*—to determine the indication of the thermometer with respect to temperature established by a standard.

3. *thermocouple*—to determine the emf developed by a thermocouple with respect to temperature established by a standard.

- calibration point, n.: 1. general—a specific value, established by a standard, at which the indication or output of a measuring device is determined.
 - 2. *liquid-in-glass thermometer*—a temperature, established by a standard, at which the indication of the thermometer is determined.
 - 3. *thermocouple*—a temperature, established by a standard, at which the emf developed by a thermocouple is determined.
- Celsius, *n*.—the designation of the degree on the International Practical Temperature Scale. Also used for the name of the Scale, as "Celsius temperature scale." Formerly (prior to 1948) called "centigrade."
- centigrade, *n*.—the designation of the degree on the International Temperature Scale prior to 1948. (See *Celsius*.)
- coaxial thermocouple element, n—a thermocouple element consisting of a thermoelement in wire form, within a thermoelement in tube form with the two thermoelements insulated from each other and from the tube except at the measuring junction.
- **complete immersion thermometer**, *n*.—a liquid-in-glass thermometer designed to indicate temperatures correctly when the entire thermometer is exposed to the temperature being measured. (Compare *total immersion thermometer*.)
- **connecting wire (metal-sheathed heater)**, *n*.—a conductor used to connect the heater resistance wire to the power supply terminals.
- connection head, n.—a housing enclosing a terminal block for an electrical temperature-sensing device and usually provided with threaded openings for attachment to a protecting tube and for attachment of conduit.
- contraction chamber (liquid-in-glass thermometer), n.—an enlargement of the bore of the stem which serves to reduce its length, or to prevent contraction of the liquid column into the bulb.
- defining fixed points, *n*.—the reproducible temperatures upon which the International Practical Temperature Scale is based.
- degree, n.—the unit of a temperature scale.
- diameter, (liquid-in-glass thermometer), n.-the diameter as measured with a ring gage.
- electromotive force (emf), *n*—the electrical potential difference which produces or tends to produce an electric current.
- expansion chamber (liquid-in-glass thermometer), *n*.—an enlargement at the top of the capillary to provide protection in case of overheating.
- extension wire, n.—a pair of wires having such temperature-emf characteristics relative to the thermocouple with which the wires are intended to be used that, when properly connected to the thermocouple, the reference junction is transferred to the other end of the wires.

Fahrenheit, n—the designation of the degree and the temperature scale used commonly in public life and engineering circles in English-speaking countries. Related to the International Practical Temperature Scale by means of the equation:

$$t_{\rm F} = 9/5 t_{\rm C} + 32$$

- **fixed point,** *n*.—a reproducible temperature of equilibrium between different phases of a material. (See *defining fixed points* and *secondary reference points*.)
- freezing point, *n*.—the fixed point between the solid and liquid phases of a material when approached from the liquid phase under a pressure of 1 standard atm (101325 N/m²). For a pure material this is also the melting point.
- heater, metal sheathed, electrical resistance, n—one consisting of resistance wire or wires, with or without connecting wires, embedded in ceramic insulation compacted within a metal protecting tube.
- ice point, *n*—the fixed point between ice and air-saturated water under a pressure of 1 standard atm (101325 N/m²). This temperature is 0° C on the International Practical Temperature Scale.
- International Practical Temperature Scale of 1948 (IPTS-48), *n*.—the temperature scale adopted by the 11th General Conference on Weights and Measures in 1960. Replaced in 1968 by the International Practical Temperature Scale of 1968.
- International Practical Temperature Scale of 1968 (IPTS-68), *n*.—the temperature scale, which through adoption by the 13th General Conference on Weights and Measures in 1968, is defined in terms of fixed and reproducible equilibrium temperatures (defining fixed points) to which numerical values have been assigned, and equations establishing the relation between temperature and the indications of sensin instruments calibrated by means of the values assigned to the defining fixed points.
- kelvin, n.—the designation of the thermodynamic temperature scale and the degree on this scale. This kelvin scale was defined by the Tenth General Conference on Weights and Measures in 1954 by assigning the temperature of 273.16°K to the triple point of water. Also the degree on the International Practical Kelvin Temperature Scale.
- liquid-in-glass thermometer, n.—a temperature-measuring instrument whose indications are based on the temperature coefficient of expansion of a liquid relative to that of its containing glass envelope.
- lower range-value, n.—the lowest quantity that an instrument is adjusted to measure.
- measuring junction, *n*.—that junction of a thermocouple which is subjected to the temperature to be measured.
- melting point, *n*.—the fixed point between the solid and liquid phases of a material when approached from the solid phase under a pressure of 1 standard atm (101325 N/m²). For a pure material this is also the freezing point.
- partial immersion thermometer, n.—a liquid-in-glass thermometer designed to indicate temperatures correctly when the bulb and a specified part of the stem are exposed to the temperature being measured.
- **Peltier coefficient**, *n*.—the reversible heat which is absorbed or evolved at a thermocouple junction when unit current passes in unit time. Synonymous with *Peltier emf*.
- Peltier emf, n.—synonymous with Peltier coefficient.
- platinum 27, n—the platinum standard to which the National Bureau of Standards referred thermoelectric measurements prior to 1973.
- **platinum 67**, *n*—the platinum standard used by the National Bureau of Standards after 1972 as the reference to which thermoelectric measurements are referred.
- potentiometer, Group A, *n*—a laboratory high-precision type potentiometer having limits of error of approximately 0.2 μ V at 1000 μ V, and 5 μ V or less at 50 000 μ V.
- potentiometer, Group B, *n*—a laboratory precision type potentiometer having limits of error of approximately 1 μ V at 1000 μ V and 12 μ V or less at 50 000 μ V.
- primary standard resistance thermometer, n—a resistance thermometer that has had its temperature-resistance relationship determined in accordance with methods described in the text establishing the International Practical Temperature Scale.
- **primary standard thermocouple**, *n*.—a thermocouple that has had its temperature-emf relationship determined in accordance with methods described in the text establishing the International Practical Temperature Scale.

- **protecting tube**, *n*.—a tube designed to enclose a temperature-sensing device and protect it from the deleterious effects of the environment. It may provide for attachment to a connection head but is not primarily designed for pressure-tight attachment to a vessel.
- range, n.—the region between the limits within which a quantity is measured. It is expressed by stating the lower and upper range-values.
- **reference junction**, *n*.—that junction of a thermocouple which is at a known temperature.
- reference point (liquid-in-glass thermometer), n—a temperature at which a thermometer is checked for changes in bulb volume.
- refractory metal thermocouple, n.—a thermocouple whose thermoelements have melting points above that of 60 percent platinum, 40 percent rhodium, 1935°C (3515°F).
- resistance, insulation (sheathed thermocouple wire), *n*.—the measured resistance between wires or between wires and sheath multiplied by the length of the wire expressed in megohms (or ohms) per foot (or meter) of length. (Note: The resistance varies inversely with the length.)
- saddle (liquid-in-glass thermometer), n.—the bottom support of the enclosed scale of an enclosed-scale thermometer.
- secondary reference points, n—reproducible temperatures (other than the *defining fixed points*) listed in the text establishing the International Practical Temperature Scale as being useful for calibration purposes.
- secondary standard thermocouple, n.—a thermocouple that has had its temperature-emf relationship determined by reference to a primary standard of temperature.
- Seebeck coefficient, n.—the rate of change of thermal emf with temperature at a given temperature. Normally expressed as emf per unit of temperature. Synonymous with *thermoelectric power*.
- Seebeck emf, n.—the net emf set up in a thermocouple under condition of zero current. It represents the algebraic sum of the Peltier and Thomson emf. Synonymous with *thermal* emf.
- setting temperature (liquid-in-glass thermometer), *n*.—the temperature which causes a reading of zero on the main scale of an adjustable-range thermometer.
- sheath (enclosed-scale thermometer), n.—the cylindrical glass envelope which encloses the scale and capillary tube.
- sheathed thermocouple, *n*.—a thermocouple having its thermoelements, and sometimes its measuring junction, embedded in ceramic insulation compacted within a metal protecting tube.
- sheathed thermocouple material, n.—one or more pairs of thermoelements (without measuring junction(s)) embedded in ceramic insulation compacted within a metal protecting tube.
- sheathed thermoelement, *n*.—a thermoelement embedded in ceramic insulation compacted within a metal protecting tube.
- span, n—the algebraic difference between the upper and lower range-values.
- standard thermoelement, *n*.—a thermoelement that has been calibrated with reference to platinum 27 or platinum 67.
- stem (liquid-in-glass thermometer), *n*.—the capillary tube through which the meniscus of the liquid moves with change of temperature.
- temperature interval (liquid-in-glass thermometer), n.--a specified portion of the range of a thermometer.
- test thermocouple, n.—a thermocouple that is to have its temperature-emf relationship determined by reference to a temperature standard.
- test thermoelement, n.—a thermoelement that is to be calibrated with reference to platinum 27 or platinum 67 by comparing its thermal emf with that of a standard thermoelement.
- thermal electromotive force (thermal emf), n.—the net emf set up in a thermocouple under conditions of zero current. Synonymous with Seebeck emf.
- thermocouple, *n*.—two dissimilar thermoelements so joined as to produce a thermal emf when the junctions are at different temperatures.
- thermocouple assembly, *n*.—an assembly consisting of a thermocouple element and one or more associated parts such as terminal block, connection head, and protecting tube.
- thermocouple element, n.—a pair of bare or insulated thermoelements joined at one end to form a measuring junction and intended for use as a thermocouple or as part of a thermocouple assembly.

- thermocouple, Type E, B, J, K, R, S, or T, *n*.—a thermocouple having an emf-temperature relationship corresponding to the appropriate letter-designated table in ASTM Standard E 230, Temperature-Electromotive Force (EMF) Tables for Thermocouples, within the limits of error specified in that Standard.
- thermoelectric power, n.—the rate of change of thermal emf with temperature at a given temperature. Synonymous with Seebeck coefficient. Normally expressed as emf per unit of temperature.

thermoelectric pyrometer, *n*.—an instrument that senses the output of a thermocouple and converts it to equivalent temperature units.

- thermoelement, n.—one of the two dissimilar electrical conductors comprising a thermocouple.
- thermopile, *n*.—a number of thermocouples connected in series, arranged so that alternate junctions are at the reference temperature and at the measured temperature, to increase the output for a given temperature difference between reference and measuring junctions. thermowell, *n*.—a closed end reentrant tube designed for the insertion of a temperature-sensing
- element, and provided with means for pressure-tight attachment to a vessel.
- Thomson coefficient, n—the rate at which heat is absorbed or evolved reversibly in a thermoelement, per unit temperature difference per unit current.
- Thomson emf, n.—the product of the Thomson coefficient and the temperature difference across a thermoelement.
- to the temperature being measured. (Compare *complete immersion thermometer*).
- total length (liquid-in-glass thermometer), n.—the overall length including any special finish at the top.
- triple point (water), *n*.—the temperature of equilibrium between ice, water, and water vapor. This temperature is $+0.01^{\circ}$ C on the International Practical Temperature Scale of 1948. upper range-value, *n*.—the highest quantity that an instrument is adjusted to measure.
- verification (liquid-in-glass thermometer), *n*.—the process of testing a thermometer for compliance with specifications.
- verification temperatures (liquid-in-glass thermometer), n.—the specified temperatures at which thermometers are tested for compliance with scale error limits.
- working standard thermocouple, n.—a thermocouple that has had its temperature-emf relationship determined by reference to a secondary standard of temperature.

