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Foreword 

The Symposium on Applications of Continuum Damage Mechanics to Fatigue and Fracture 
was held in Orlando, Florida, on 21 May 1996. The symposium was sponsored by ASTM 
Committee E8 on Fatigue and Fracture. David L. McDowell, Georgia Institute of Technology, 
presided as symposium chairman and is editor of this publication. 
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Overview 

ASTM Special Technical Publications relate a long tradition of fundamental contributions 
to the disciplines of fatigue life prediction and fracture mechanics, with an emphasis on the 
understanding of the physics of these phenomena and development of appropriate experimental 
techniques. Some of the earliest, most significant contributions to fracture mechanics, for ex- 
ample, were relayed through ASTM symposia and resulting publications. The discipline of 
continuum damage mechanics (CDM), essentially the application of internal state variable 
concepts of nonequilibrium continuum thermodynamics of solids, has received increasing in- 
ternational attention in addressing fatigue and fracture issues in broad classes of materials. To 
date, CDM has received most attention abroad with particularly significant advances in Europe. 
One of the primary goals of the Symposium on Applications of Continuum Damage Mechanics 
to Fatigue and Fracture, held 21 May 1996 in Orlando, Florida was to summarize the state- 
of-the-art in application of damage mechanics to fatigue and fracture problems. As the field 
advances and its domain of fruitful applications are better understood, it is envisioned that the 
fatigue and fracture communities will embrace it to address many complex issues such as crack 
tip process zone mechanics, size and constraint effects, interaction of multiple damage modes, 
length scale issues in mechanics of fatigue and fracture, and so on. 

There are several important characteristics of CDM. In this approach, various forms of dis- 
tributed damage are represented by smooth, continuous field quantities. As damage accumu- 
lates, the elastic and/or elastic-plastic stiffness degrades. The evolution of damage is typically 
specified through a set of first order rate equations. Multiple damage mechanics may be coupled 
with the thermomechanical deformation response. The CDM constitutive description is inevi- 
tably integrated within a computationally-based framework along with the governing equations 
of conservation of mass, momentum and energy, so that notions of "global" parameters which 
have prevailed in the early years of fracture and fatigue mechanics yield to more detailed, 
mechanistic local descriptions. The limitations of global approaches, which are recognized as 
efficient engineering tools, therefore, will be much better understood with the advent of more 
and more CDM applications. In some cases, computational CDM approaches will form the 
basis for materials design and selection for given applications. 

It is instructive to contrast CDM with "micromechanics," another contemporary treatment 
of heterogeneous materials such as composites. Micromechanics typically involves application 
of continuum elasticity or plasticity theories to each of the individual constituents, with volume 
averaging over a unit cell or a representative volume element to achieve an equivalent homo- 
geneous description at a higher length scale. The derivation of void growth theories in ductile 
elasto-plastic solids is a good example, as is the theory of multiple microcracked brittle solids 
based on Green's functions. In some cases, micromechanics involves a local analysis of a 
dominant deformation or failure mechanism, without volume averaging; these solutions are 
sometimes useful in tailoring particular features of material microstructure to impart improved 
resistance to deformation or failure. They can also provide detailed information regarding the 
driving forces for evolution of damage. CDM may incorporate micromechanics results into its 
overall structure, as in the case of the aforementioned void growth theories, but has greater 
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2 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

breadth of scope, also potentially incorporating statistical mechanics aspects of evolution of 
damage and experimentally measured/inferred information. In fact, the overall framework of 
CDM, based on the use of internal state variables to represent evolving structure of the material, 
appeals strongly to irreversible statistical thermodynamics. CDM relations can also be con- 
structed from experiments, which can yield information regarding the proper choice of internal 
state variables and their evolution. Invariably, experiments form the basis for validating CDM 
models built up from micromechanics approaches at lower length scales. Hence, CDM is typ- 
ically a hybrid approach, blending observation with some degree of empiricism along with 
idealized analyses of specific mechanisms. 

These features render the framework of CDM useful for applications involving distributed 
defects in the presence of nonlinearities of various sorts such as inelastic flow, distributed 
frictional effects, and complex many-body interaction problems at various length scales. These 
sorts of problems are extremely difficult to pose properly for analytic micromechanical solution, 
notwithstanding whether the solution can be reasonably obtained for even well-posed problems. 
CDM is often useful as a constitutive framework for structural analysis, including changes of 
average local properties with evolution of damage. 

In some cases where micromechanics solutions are abundant and where certain average 
properties are assumed, these solutions may be explicitly incorporated into CDM. Indeed, this 
is highlighted in some of the composites papers presented at this Symposium. 

Some of the more difficult challenges facing CDM are shared with other constitutive equa- 
tions in continuum theories which seek to model effects of distributed sources of irreversible 
behavior. For example, local theories of CDM are subject to dependence upon the details of 
the numerical mesh and degree of refinement. Some current research aims to introduce material 
length scales which are associated with the mesh, or to introduce nonlocal effects through 
gradient terms in the CDM formulation or through mesh averaging procedures. Weighting the 
influence of distributed damage at the microscale on the collective macroscale stiffness and 
evolution of damage is a challenge as well. 

Effective medium approaches have been well-established in micromechanics to model the 
change of stiffness associated with a given state of damage. However, the evolution of damage 
remains a fertile subject for new developments. Generalization of energy release rate concepts 
to distributed damage is a natural feature of CDM, but distribution effects which depend 
strongly on nearest neighbor or second nearest neighbor spacing and clustering of defects have 
not been fully incorporated. Furthermore, many constitutive laws for engineering materials 
require a description of the effects of damage occurring at multiple length scales, with couplings 
between these scales. A good example is the influence in in situ matrix heterogeneity, micro- 
structure and residual stresses on load transfer, and interface damage in composites. Defects 
are rarely observed to be periodically distributed in the material; rigorous treatment of non- 
uniformly distributed defects requires tools not yet fully developed in CDM. 

A number of technologies have already benefited from the use of CDM, such as constraint 
effects in ductile fracture, modeling formability and impact damage, dynamic fracture, time 
dependent crack growth, fatigue crack initiation, creep-fatigue interaction and distributed dam- 
age in composites. Potential areas of application that might interest readers of this STP abound. 
These include, among others, crack tip process zone studies in fracture, crack growth history 
effects, validity limits of fracture mechanics (LEFM, EPFM and TDFM), fracture in hetero- 
geneous materials, tailoring microstructures and reinforcement architectures of advanced ma- 
terials for fracture and fatigue resistance, and modeling process-induced damage during primary 
forming, machining, solidification, or welding/joining. 

Among the authors of this volume are some of the pioneers of CDM as applied to fatigue 
and fracture problems involving both monolithic and composite materials. This field first 
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OVERVIEW 3 

emerged from development of continuum theories for creep damage evolution in the late 1950s, 
and its development flourished in the European community. Within the past few decades, it 
has received increased attention in the fields of fracture and fatigue of materials. This realm of 
applications are the focus of this Special Technical Publication. 

This Symposium sought to explore the state-of-the-art in CDM model development as well 
as its industrial usage, both in the United States and abroad. The integration of CDM into tools 
for assessing effects of processing, deformation and constraint on fracture was one arena of 
direct applicability to recent ASTM E8 technical thrusts. Applications involving the use of 
standard and nonstandard experiments to characterize CDM parameters were also an area 
of exploration. 

The papers in this STP are organized into several categories. The first set of papers deal with 
various aspects of modeling damage in composite materials. Some of the papers concern effects 
of high temperature environmental degradation, fatigue and viscous damage in metal and ce- 
ramic matrix composites. Theories are introduced which account for anisotropy, matrix micro- 
cracking, and delamination of composite layups. Here, we see examples of the use of micro- 
mechanics and experimental observations to construct useful damage mechanics relations for 
composites, including evolution of damage as well as relations for stiffness degradation. 

A second set of papers deals with some of the issues related to the scaling of effects of 
distributed damage on behavior at a higher length scale, for example, macroscopic. Special 
attention is focused on the dependence of the evolution of damage on nonuniformity of its 
distribution. Finally, a set of papers deals with various application examples of CDM, including 
particle erosion damage, fracture of weldments, and impact damage. We trust that this Special 
Technical Publication will provide valuable insight into the capabilities of CDM, as well as its 
future possibilities for fruitful application to the subjects of fracture and fatigue. 

David L. McDowell 
Georgia Institute of Technology, Atlanta, 

GA 30332-0405; symposium chairman 
and editor. 
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Serge Kruch 1 and Steven M. Arnold 2 

Creep Damage and Creep-Fatigue Damage 
Interaction Model for Unidirectional 
Metal-Matrix Composites 

REFERENCE: Kruch, S. and Arnold, S. M., "Creep Damage and Creep-Fatigue Damage 
Interaction Model for Unidirectional Metal-Matrix Composites," Applications of Continuum 
Damage Mechanics to Fatigue and Fracture, ASTM STP 1315, D. L. McDowell, Ed., American 
Society for Testing and Materials, 1997, pp. 7-28. 

ABSTRACT: A multiaxial, isothermal, continuum damage mechanics model for creep and 
creep-fatigue interaction of a unidirectional metal-matrix composite (MMC) volume element is 
presented. The model is phenomenological, stress based, and assumes a single scalar internal 
damage variable with directional-dependent evolution. The present creep damage model is an 
extension of the Leckie-Hayhurst creep damage model to unidirectional MMCs and is shown 
when taken to its isotropic limit, to directly simplify to this previously developed and validated 
isotropic creep damage model. This extension is accomplished by introducing into the isochro- 
nous damage function physically meaningful stress invariants that reflect the local stress and 
material orientation within a metallic, transversely isotropic material (for example, hexagonally 
packed unidirectional metal-matrix composite). These invariants are included based on the an- 
ticipation that the associated stress may strongly influence void growth at the fiber-matrix inter- 
face (as this interface is postulated to play a role, on the mesostructural scale, analogous to that 
of grain boundaries on the microstructural scale and interfacial degradation); and, consequently 
may correlate with a creep rupture mechanism based on interracial degradation through diffusion- 
related void growth. 

Creep-fatigue interaction is accomplished by directly adding together the mechanical effects 
of creep and fatigue damage. A uniaxial parametric study is performed under pure creep and 
creep-fatigue conditions, to demonstrate the sensitivity of the various material parameters and 
the capability of the formulation in attempting to characterize a class of composite materials. 
Specifically, two interaction regions will be examined, the first being important for low-frequency 
loading cycles (<5 Hz) and is termed "creep-dominated" interaction; whereas the second is for 
high-frequency loading cycles with a non-zero mean stress, and is termed "fatigue-dominated" 
interaction. Results are presented in the form of S-N and damage accumulation curves. 

KEYWORDS: continuum damage mechanics, cracking, fatigue (materials), fracture (materials), 
metal-matrix composites, creep (materials), composite materials 

Many approaches have been proposed in the literature to describe the degradation and failure 
of structures under creep and fatigue conditions. The most notable are the linear elastic fracture 
mechanic (LEFM) and the continuum damage mechanic (CDM) approaches. LEFM can be 
applied to analyze the influence and evolution of macroscopic defects within a structure, where 
the defect is characterized from a geometrical point of view, see Fig. 1. Alternatively, the CDM 
approach allows one to describe the material 's progressive deterioration (damage), for example, 
nucleation, growth and coalescence of micro-defects, from a virgin state (no damage) to the 

1 Research engineer, Office National d'l~tudes et de Recherches Armspatiales, B. P. 72-92322 Chatillon 
CEdex, France. 

2 Research engineer, NASA Lewis Research Center, Cleveland, OH 44135. 
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8 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 
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FIG. 1--Schematic of different damage modes and the associated scale in a monolithic metal: (a) 
creep damage--coalescence of cavities and intergranular defects; (b) fatigue damage--nucleation 
of slip bands, microcracks, and transgranular defects; and (c) creep/fatigue damage--interaction 
of intergranular and transgranular defects. 

final state, corresponding generally to macrocrack initiation and propagation (or the "breaking 
up" of the representative volume element). Consequently, the life limiting macroscopic prop- 
erties such as rupture strength, fatigue life, or creep rupture lifetime of the material can be 
predicted. 

The tracking, or description, of the evolution of damage is accomplished by introducing 
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KRUCH AND ARNOLD ON CREEP AND CREEP-FATIGUE DAMAGE 9 

special thermodynamic (internal) field variables representing, in an appropriate statistical sense, 
the local distribution and density of defects. Numerous damage theories, both micromechanical 
[1-6] and phenomenological [7-11], for example, have been proposed and discussed in the 
literature. There is great diversity in the mathematical nature of the damage variables (for 
example, a scalar [7,12,13], vectors [14,15], and tensors [12,16,171) and thus the damage the- 
ories; this stems from the difficulty in directly measuring "damage" macroscopically and the 
degree of approximation with which the internal variables describe the salient aspects of the 
macroscopic effects of the microdefect kinematics. For a number of excellent review articles 
and books on this subject, see Refs 7, 12, 18, and 25. 

In this paper, we analyze the behavior of unidirectional, continuously fiber-reinforced, hex- 
agonally packed, metal-matrix composites (MMCs), using recently developed phenomenolog- 
ical, stress-based isothermal, transversely isotropic creep, fatigue and creep/fatigue CDM mod- 
els, with a scalar internal damage variable [26,27], the evolution of which is directionally 
dependent. Because, the transversely isotropic fatigue damage model was previously described 
in detail [28], our attention will be focused on the transversely isotropic extension of the Leckie- 
Hayhurst creep damage model to unidirectional MMCs and the behavior of both anisotropic 
creep and fatigue models under conditions of creep-fatigue damage interaction. Specifically, 
two such interaction regions will be examined, the first is important for low-frequency loading 
cycles (<5 Hz) and is called creep-dominated interaction, whereas, the second is for high- 
frequency loading cycles with a non-zero mean stress, called fatigue-dominated interaction. 

The paper begins by summarizing the proposed mathematical structure of both the trans- 
versely isotropic creep and fatigue damage evolution laws, their associated material parameters, 
and the approach taken to achieve creep/fatigue interaction. Next, a brief parametric study of 
the creep damage model is conducted in order to establish which material parameters associated 
with creep will significantly influence the subsequent creep-fatigue interaction analyses. The 
creep damage analyses are performed under both uniaxial and multiaxial situations, whereas 
the creep-fatigue interaction cases are subjected to only uniaxiai load histories. All results 
presented are related to the prediction of the lifetime of a volume element subjected to cyclic 
loading, and were obtained with the computer code DAMAGE developed at ONERA. 

Damage Models 

Material (lattice) defects can be classified roughly with respect to their geometry into (1) 
point defects (for example, vacancies, interstitial and impurity atoms), (2) line defects (dislo- 
cations), (3) plane defects (slip planes and cracks), and (4) volume defects (cavities and inclu- 
sions). Numerous ways are available to define the internal variables associated with these 
defects and damage processes. Each definition, however, must correspond to some method of 
measurement and implies a given approach, either a micromechanical or phenomenological 
one. The phenomenological point of view, utilizing the concept of effective stress [12,29] with 
an equivalence in strain, is taken throughout this paper. Figure 1 clearly illustrates the damage 
mechanics for the three cases of interest, that is, creep, fatigue, and creep-fatigue interaction 
for monolithic metals. In Fig. la, the two primary damage mechanisms [30,31], nucleation and 
growth of integranular defects (typically by a diffusion process), are illustrated schematically 
when the material is subjected to a pure creep loading condition. Hayhurst [32] has shown that 
it is possible to make some connection between the equations obtained from a materials science 
approach and the more macroscopic ones developed under the framework of CDM. The fatigue 
crack initiation and growth process is illustrated in Fig. lb, with the damage (DF) being as- 
sociated, macroscopically, with the initiation and propagation of transgranular defects (for 
example, slip bands and microcracks), and Fig. lc depicts the interaction of intergranular and 
transgranular defects. It is surmized, within the pertinent domain where creep-fatigue interac- 
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10 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

tion is applicable, that the presence of cavities allow for easier crack propagation and that the 
increase in stress intensity at a crack tip causes an increase in the propensity of nucleation and 
coalescence of voids. 

Figure 2 is the extension of Fig. 1 to the "mesoscale" and illustrates the various meso- 
structural damage mechanisms that might result when a representative volume element (RVE) 
on the mesostructural scale (Fig. 3) of a given composite material is subjected to creep, fatigue, 
and creep-fatigue loadings, respectively. Here, damage mechanisms similar to those on the 
microstructural scale are postulated to occur on the mesostructural scale; the surface or interface 
of a constituent (the fiber) plays the role (on the mesostructural scale) of the grain boundary 
of a constituent (grain) on the microscopic scale. Furthermore, because of the internal structure 
of the material, a sufficient number of defects will be present, thus allowing a theoretically 
consistent continuum representation of both creep and fatigue damage to be constructed. The 
mathematical extension of the creep damage model (proposed by Leckie [33,34] and Leckie 
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FIG. 2--Schematic of different damage modes and the associated scale in a metallic composite. 
Fibers on mesostructural scale are analogous to grain boundaries on microstructural scale: (a) 
creep damage by way of intergranutar void growth; (b) fatigue damage--initiation and propagation 
of transgranular defects; and (c) creep fatigue--interaction of intergranular and transgranular 
defects. 
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KRUCH AND ARNOLD ON CREEP AND CREEP-FATIGUE DAMAGE 11 
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and Hayhurst [8,13]) and the NLCDR (nonlinear cumulative damage rule) fatigue model (de- 
veloped at ONERA [10,11,18,19,25-27,291), both valid for isotropic monolithic metals, is 
accomplished by introducing into the pertinent damage functions, appropriate stress invariants 
[35,36] representing stress states that are likely to strongly influence the various damage mech- 
anisms in metallic composites. These physically meaningful invariants (11, 12, and 13) represent 
the maximum transverse shear stress (and thus implicitly the maximum transverse stress), lon- 
gitudinal shear stress, and the maximum normal deviatoric stress in the fiber direction, respec- 
tively, and are defined as (see Refs 35 and 37) 

1 
I, = J2 - D:jfki - 7 (D0"si:) 2 

% 

(1) 

with 

]2 = Dijsjfm - (Di:sij) 2 (2) 

13 = (D:~j) 2 (3) 

1 1 
J2 = ~ s:u, D~: = d,dj s U = ~: - -~ 8ucr ~ 

and di (i = 1,2,3) are the components of a unit vector denoting the local fiber direction. 
It is well known that the direction-oriented creep and fatigue damage modes of interest here 

in a monolithic material suggest the need for a direction-dependent damage variable (for ex- 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



12 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

ample, a vector or tensor). Here, however, based on the strong initial anisotropy of the unidi- 
rectional composite, it is assumed that a scalar damage measure is sufficient provided the 
evolution of damage is directionally dependent and associated with the preferred direction of 
the material, as any load-induced damage anisotropy is expected to be dominated by the degree 
of initial transverse isotropy of the composite material. For example, if the composite is loaded 
in the fiber direction, the evolution of damage would be small relative to the case in which the 
composite is loaded normal to the fiber. However, because of the assumed scalar measure, the 
distribution of damage would be identical in all directions. Thus, the accumulation but not 
the magnitude of damage would be dependent upon the preferred direction of the material. 
Such an assumption, could potentially lead to errors in the life prediction of structures subjected 
to highly nonproportional loadings, particularly if components of stress in the plane of isotropy 
vary greatly. 

Pure Creep 

The transversely isotropic creep damage model used in this study is based on an extension 
of the Leckie and Hayhurst model [36,38] where the anisotropic isochronous failure surface is 
defined as 

A = A(o~u ) = /3Jx + (1 - ~ -  /3)E + ~ S  (4) 

in which the hydrostatic state of stress (J~), maximum transverse shear (E), and longitudinal 
shear (S) stress are assumed to be the dominant damage measures and are defined as 

Jt = o'ii (5) 

E = ~ (6) 

s = ~ (7) 

These invariants are included based on the anticipation that the associated stress may strongly 
influence void growth at the fiber-matrix interface (as this interface is postulated to play a role, 
on the mesostructural scale, analogous to that of grain boundaries on the microstructural scale 
and interfacial degradation); and, consequently may correlate with a creep rupture mechanism 
based on interracial degradation through diffusion-related void growth. 

This specific functional form for A given in Eq 4 will reduce, in the isotropic limit 

D U = ~ 6 o , to the original Leckie-Hayhnrst surface, expressed as 

h = ~(o-) = 3' ,to + / 3  J,  + (I - v - / 3 ) s  (8) 

when ~ = 0, ~/= 0, and s = V ~ 2 .  The validity of this assumed form, as well as any other 
form, must be determined experimentally as discussed by Robinson et al. [36] and Leckie 
[33,34]. The damage evolution law [8,33], extended now (through the isochronous failure 
surface) to account for initially transversely isotropic material symmetry (for example, hex- 
agonally packed unidirectional metallic composite materials), is given by 

dt (1 - De) -k (9) 
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KRUCH AND ARNOLD ON CREEP AND CREEP-FATIGUE DAMAGE 13 

where A is given in Eq 4, Dc is the creep damage variable, and A, r, and k are material 
parameters. Note, that here the exponent, k, is assumed to be a constant, thus implying linear 
accumulation of creep damage even though the evolution of damage may be nonlinear. The 
influence of these material parameters on the evolution of creep damage will be illustrated in 
the subsequent results section. 

The results of creep-like cyclic tests (for example, high frequency-low amplitude or high 
amplitude-low frequency) have shown the need to include some factor relating the response 
time of the material versus that of the rate of loading. For example, when a material is subjected 
to a high frequency loading with a mean stress equal to zero, the material damage induced by 
creep is negligible, thereby leading to the case of "pure" fatigue damage. However, if the 
material is subjected to a high frequency and a low or medium amplitude with a high mean 
stress, the damage induced by creep is dominant. Thus, a new material parameter (r), repre- 
senting a delay time for the applied load, and a "delayed" stress (o-~u) were introduced into the 
formulation, to account for the lag time between load application and material response [26]; 
that is, the effects of viscosity. The definition of tr d is given by the following differential 
equation 

dcra~j - ~riJ - ~ d t  (1 O) 
T 

For low-frequency load histories, the delayed stress is the real (or applied) stress, whereas for 
high-frequency load histories, the delayed stress is equal to the mean stress. 

Pure Fatigue 

In this section, the requisite multiaxial representation is given for the recently extended 
NLCDR [12] fatigue damage evolutionary law and the associated anisotropic damage surfaces. 
For a detailed explanation of the capability and features of this anisotropic (that is, transversely 
isotropic) damage evolution and life (ADEAL) model, see Refs 28, 38, and 39. The pure fatigue 
damage evolutionary law (valid for materials that possess initial transversely isotropic material 
symmetry) is defined as 

d D r =  [1 _ ( 1 _  r~ ~l+th~[. Fm it3 
' [(1 --b il dN 

with 

(11) 

(%,) 
a = 1 - a (12) 

(Ou) 

and, crft L = O'(0)ylL(1 -- 3bP), ML = M O L ( 1  - -  3cP); where a,b,c, t ,  tr(O)r tr, L, and MOL are 
material constants and the notation 

(x)= X, X >- 

defines the Macanley bracket. Note that one additional modification, besides the inclusion of 
a preferred direction, has been introduced into the preceding fatigue damage model; a hydro- 
static stress measure P, that is, P = ~'o'n~.. + (1 - s0o'n..g, that combines both the Sines and 
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14 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

Crossland criteria. This altemate hydrostatic measure (P), based on the macrohydrostatic stress 
field, is felt to be required as a judgment as the most applicable criteria cannot be made at this 
time due to the lack of experimental data on MMCs. 

Also, having introduced the most pertinent damage-producing stres~ measures (through the 
physically meaningful stress invariants, 1~, 12, and I3), the fatigue limit surface, ~p, and the 
static fracture surface, d# u, are defined as 

) (14) 

1 m a x  m a x  
r = 2 to t F~~176176 tro(to)) - 1 (15) 

and the normalized stress amplitude as 

= 
1 m a x  m a x  

2 t to 
- -  F~m)(tro(t) - tr~(to)) (16) 

where the general form for F~s~)s. ), or ~,.) may be expressed as 

F c ) =  ~-/--~)2L)2L{ ( 4 t o ~ ) -  1 ) I ' + 4 t o ~ ) -  1 7 1 ~  9) - - 1 2 + ~ I 3  (17) 

and tr&, or. L, ML, top, to., to,., ~ ,  ~/., and ~/,. are material parameters (some of them varying 
with the mean stress) that describe the initial anisotropy of the surfaces. Note that the subscripts, 
L and T, denote the longitudinal (along the fiber) and transverse (normal to the fiber) directions, 
respectively. Also in the preceding equations, to is the time at the beginning of the load cycle 
and t is some time during the load cycle, where the intent is to find the maximum value for the 
given loading history. 

Creep-Fatigue Interaction 

Analytically, the creep-fatigue interaction is represented using the effective stress concept, 
by assuming that the mechanical effects of creep and fatigue damage can be added directly, 
that is 

dD = dD~ + dO F 

dD = f~(o', T, D . . . .  ) + fF(tr, tr,., T, D . . . .  ) 
(18) 

where fc and f r  represent the characteristic functions of creep (for example, see Eq 9) and 
fatigue (for example, see Eq 11), respectively, and D = D c + O F. Thus, the two functions (fc 
and fF) can be determined independently from pure tensile creep and pure high-frequency 
fatigue tests. The conditions under which accumulation of both macroscopic effects would take 
place (for example, low frequency or loadings with hold times) are then predicted by integrating 
numerically the preceding equations. This approach has been shown to give reasonable results 
for several monolithic (isotropic) materials [12,40,41]. 
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The implementation of this approach is shown schematically as 

Do = 0 (START) 

CREEP 
Dn - 1 D* = D n -  1 + Fc ( D n -  1, Nc) 

~ FATIGUE 

Dn = D* + F f  (D*, Nj') 

t 
Dn = 1 (STOP) 

where one load cycle of fatigue is taken as the reference cycle and then divided into a discrete 
number of time steps. The damage in creep is computed for each time step and the total damage 
for one cycle in creep is computed. At the end of each reference cycle, the damage induced is 
then computed by combining both damages in fatigue and creep. This creep-fatigue damage 
interaction is then computed step by step at each time (or cycle) increment, where the integration 
of both damage criteria is accomplished using a Runge-Kutta algorithm. 

Results 

Pure  Creep 

Here, the uniaxial simplification of the anisotropic creep damage model is presented and a 
parametric study conducted to illustrate the influence of the pertinent material parameters, as 
well as fiber orientation, the global behavior of a volume element subjected to a constant 
uniaxial state of stress. The isochronous failure surface of Eq 4 becomes 

where 

A = {/3 + ( l  - a - - / 3 ) a ,  + a a 2 } ~ r  (19) 

%/[12 - 16 cos(0) 2 - 4 sin 02 + (2 cos(0) 2 - sin 02) 2] 
a~ = (20) 

6 

%/[(4 cos(0) 2 + sin 02 - (2 cos(0) 2 - sin 02)2)] 
a2 = (21) 

3 

and the integration of the damage evolution law, Eq 9, gives 

D =  1 - 1 t~J 

where tcr (the creep rupture time) is defined as 

tcr= (k + 1----'--5 

(22) 

(23) 
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FIG. 4--The angle dependency of the longitudinal shear (Aj), transve~e shear (A2) components. 

Clearly, the influence of fiber orientation (0) relative to the applied load direction is com- 
pletely contained within the coefficients, A1 and A 2. Both A1 and A2 are depicted in Fig. 4 as 
a function of Angle 0, where, for example, 0 = 0 and 90 ~ indicate loading parallel and transverse 
to the fiber direction, respectively. Similarly, Parameters a and/3 determine the longitudinal 
shear and hydrostatic stress influence, respectively, on the driving stress, A. Assuming a = /3  
= 0, then A = Altr and Fig. 4 clearly illustrate that no creep damage would occur along the 
fiber direction and that maximum damage would occur when the load is transverse to the fiber 
direction. An example of a stress versus rupture time (S versus t) plot (for three fiber orientation 
angles) substantiating this conclusion is shown in Fig. 5, given the reasonable baseline creep 
damage parameters in Table 1 (having SI units and not representing any specific material). 
Similar qualitative trends have been observed experimentally in that creep rupture times for 
laminates loaded in the fiber direction (0 = 0 ~ are substantially longer (one to three orders of 
magnitude) than those loaded transverse to the fiber direction (0 = 90~ even when the l o n -  
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T A B L E  1--Baseline creep and fatigue material parameters. 
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gitudinal applied load is an order of magnitude larger than that imposed transverse to the fibers, 
see Figs. 16 and 19 of  Ref  42 for an example given for an SCS-6/TIMETAL 21S composite 
system. Increasing/3 primarily impacts the difference between longitudinal and transverse creep 
damage in that, for example, i f /3  = 1, A = 0; whereas, i f /3  = 1, no angle dependence would 
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be detected; that is, A = tr (see Fig. 6). Holding fl fixed at zero and varying c~, we see that the 
fiber orientation at which maximum creep damage occurs shifts from (0 = 90 ~ ce = 0) to a 
minimum of (0 = 45 ~ if a = 1.0 and fl = 0.0), see Fig. 7. However, in Fig. 8, we see that for 
a fixed orientation, for example, 0 = 30 ~ the influence of a on the S-t curve and the damage 
evolution is relatively minimal. Finally, examining Eqs 17 and 18, it is apparent that the material 
parameters, A and r, predominately influence the time to rupture (see Figs. 9 and 10) whereas 
k impacts greatly the nonlinearity of the evolution of damage, see Fig. 1 l(bottom), while having 
minimal influence on the corresponding S-t response (see Fig. 11(top)). 
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Pure Fatigue 

A complete parametric study demonstrating the flexibility of the recently developed trans- 
versely isotropic fatigue damage model was presented in Ref 28, the results presented here are 
restricted to classical Wh/Sler curves for different fiber orientations relative to the applied load 
direction (see Fig. 12). The curves in Fig. 12 and subsequent figures are generated using the 
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FIG. 12--S-N curve given almost pure fatigue conditions. 

baseline fatigue and creep parameters given in Table 1 and the sinusoidal cycle with a high- 
frequency (~ = 25 Hz) and zero mean stress (S,. = 0.0), except where noted, that is 

S = S,. + S. sin(2rrvt) (24) 

where 

~ m  Ora 
S = Sm = - -  Sa = 

As observed in previous work, the fatigue strength decreases as fiber orientation increases 
until it reaches a minimum (for these sets of material parameters) under transverse loading, that 
is, 0 = 90 ~ Again, this qualitative trend is in keeping with experimental observations made 
for a number of titanium matrix composite systems (for example, see Fig. 10 in Ref 39 and 
Fig. 22 in Ref 43). The actual magnitudes are almost identical to those previously obtained 
(see Fig. 4 in Ref 38) since under these conditions, the effective stress (A) for creep is almost 
zero and consequently the resulting creep damage is inactive. 

Creep-Fatigue Interaction: Fatigue Dominated 

Two classes of creep-fatigue interactions will be examined. In this section, we will consider 
the case of a volume element of material subject to a high-frequency load cycle with and without 
zero mean stress, In Fig. 13, the equivalent S-N curves (for a fiber orientation of 30 ~ S., = 0.0, 
r = 5.5, and v = 25 Hz) for pure creep, pure fatigue, and creep-fatigue interaction responses 
are presented to illustrate the influence of the various damage measures and their interactions. 
Clearly, for all stress amplitudes, the fatigue damage mechanism dominates the creep-fatigue 
interaction curve; however, at lower stress amplitudes (where sufficient time elapses), creep 
damage does begin to play a role and so the creep-fatigue interaction response deviates from 
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FIG. 13--Illustration of fatigue-dominated load history. 

that of pure fatigue. Also, note an important theoretical consequence resulting from the presence 
of a creep damage mechanism in the creep-fatigue interaction response curve; that is, the 
complete elimination of the fatigue endurance limit. It is primarily these types of interaction 
effects that prompted the development of more sophisticated fatigue damage models as dis- 
cussed in Ref 38. 

The preceding creep damage sensitivity study indicated that both Parameters r and A had a 
similar and significant (potentially 3 to 5 orders of magnitude) impact on creep rupture life 
times. Consequently, the influence of changing r (from 5.5 to 2.0) on the resulting S-N curve 
for two different frequencies (that is, 5 and 25 Hz) and three fiber orientations is illustrated in 
Fig. 14. Here, we see for a given frequency a significant reduction in life, as expected, for all 
nonzero fiber orientations, when the creep damage is enhanced by reducing r from 5.5 to 2.0. 
Also, from Fig. 14, one can easily see the detrimental influence of decreasing the frequency of 
loading when a material is highly susceptible to creep damage (for example, r = 2.0). Note 
that the present fatigue model purposely has no frequency dependence, therefore, any difference 
in response can be totally attributed to the increased influence of the creep damage mechanism. 

Another important influencing factor is mean stress. In Fig. 15, we plot the normalized stress 
amplitude versus cycles to failure for six sinusoidal load histories, that is, crm = 0.0, 100, and 
200 MPa at two frequencies each (that is, v = 5 and 25 Hz). As expected, imposing a higher 
tensile mean stress results in an overall shorter life. Clearly, this mean stress influence is further 
enhanced, as demonstrated in Fig. 15, due to creep-fatigue interaction effects as the load fre- 
quency is decreased from v = 25 to 5 Hz. This is particularly evident at the higher tensile 
mean stress of 200 MPa. 

Creep-Fatigue Interaction: Creep Dominated 

Creep-dominated creep-fatigue interaction will occur when a volume of material is subjected 
to a low-frequency cyclic load. This class of behavior is clearly illustrated in Fig. 16, when as 
before (see Fig. 13) we plot the equivalent S-N response under pure creep, pure fatigue, and 
creep-fatigue interaction, given an orientation of 30 ~ S,, = 0.0, r = 2.0, and oJ = 0.25 Hz. In 
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and 2.0. 

Fig. 16, it is obvious that the creep-fatigue interaction response curve essentially follows that 
of the pure creep response, except in the higher stress regime where the lives are predicted to 
be slightly shorter than those due to pure creep alone. Again, note the loss of the apparent 
fatigue endurance limit. 

The parameter 09 that heretofore has not been examined can significantly influence the creep 
damage accumulation and thus the creep-fatigue interaction. The influence of ~" on the creep 
and creep-fatigue interaction S-N response is illustrated in Fig. 17, for a fiber orientation of 
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15 ~ a low frequency of 0.25 Hz, and a creep exponent r of 2.0, with all other parameters being 
equal to the baseline parameters given in Table 1. As an example, consider the predicted lives 
at the normalized stress amplitude of  0.4. Here, we see approximately a 27% increase in pure 
creep life for over a threefold increase in ~" (that is, r = 0.15 to T = 0.5) while only an 18% 
increase is observed for the case when creep-fatigue interaction is incorporated in the analysis. 
This decreased influence in creep-fatigue interaction is due to the fact that the fatigue stress 
versus time history is unaffected by ~', whereas the creep stress versus time is significantly 
impacted by changes in r; as illustrated in Fig. 18. The influence of ~" (see Fig. 18) is such that 
increasing ~" decreases the maximum stress amplitude affecting the creep damage evolution and 
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shifts the phasing of that maximum so as to delay it; thus, the name "delay stress" (cry). 
Similarly, given a fixed ~" value (for example, ~" = 0.5) and increasing the frequency of loading 
from 0.25 to 1 Hz, one can see in Fig. 19 that the reduction in maximum stress amplitude is 
increased. Consequently, as we continue to increase the frequency of loading, the significance 
of creep damage accumulation (irrespective of the chosen parameters) is minimized, that is, 
we move into the realm of "fatigue-dominated" creep-fatigue interaction. 

500 

4OO 

300 

100 

0 

-100 

-200 

-300 

�9 I I I I I I I 
0.25 I-l.z 

/ / ~  ".., / /  _"" # / ]  "PX b,"4 / /X 
, I , I , I , I , I I t 

- -  a faligue I 
. . . .  a ereep i 

r =  2.0 
"~ =0.5 

0.0 0.5 1.0 1.5 2.0 "75 3.0 3.5 4.0 

time (s) 
FIG. 19--Interaction of  delay stress and loading frequency on the fatigue and creep stress 

histories. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



26 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

Conclusion 

A multiaxial, isothermal, continuum damage mechanics model for creep and creep-fatigue 
interaction of a unidirectional metal-matrix composite volume dement has been presented. The 
model is phenomenological, stress based, and assumes a single scalar internal damage variable, 
the evolution of which is directionally dependent. The present creep damage model is an ex- 
tension of the Leckie-Hayhurst creep damage model to unidirectional MMCs and when taken 
to its isotropic limit, will directly simplify to this previously developed and validated isotropic 
creep damage model. The extension was accomplished by introducing into the isochronous 
damage function physically meaningful stress invariants that reflect the local stress and material 
orientation within a metallic, transversely isotropic material (for example, hexagonally packed 
unidirectional metal-matrix composite). These invariants were included based on the antici- 
pation that the associated stress state may strongly influence void growth at the fiber-matrix 
interface (as this interface is postulated to play a role, on the mesostructural scale, analogous 
to that of grain boundaries on the microstructural scale and interfacial degradation); and, con- 
sequently may correlate with a creep rupture mechanism based on interfacial degradation 
through diffusion-related void growth. 

Creep-fatigue interaction was accomplished by directly adding together the mechanical ef- 
fects of creep and fatigue damage. A uniaxial parametric study was performed under pure creep 
and creep-fatigue conditions, to demonstrate the sensitivity of the various material parameters 
and determine the capability of the formulation to characterize a class of composite materials. 
Specifically, two interaction regions were examined, the first (termed creep-dominated inter- 
action) is important for low-frequency loading cycles (<5 Hz); whereas the second (termed 
fatigue-dominated interaction) is for high-frequency loading cycles with a nonzero mean stress. 
Results were presented in the form of S-N and damage accumulation curves and suggest that 
the proposed creep, fatigue, and creep-fatigue interaction model is capable of representing a 
wide range of behavior. Experimental correlation and validation of the proposed model is 
anticipated in the future. 
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ABSTRACT: A life prediction model is being developed by the authors for application to 
continuous fiber metal-matrix composites (MMCs). The specific systems considered in this study 
are silicon-carbide fibers imbedded in titanium matrix. Due to multiple nonlinearities, the model 
utilizes a computationally based framework derived from thermodynamics and continuum me- 
chanics. Matrix inelasticity, damage evolution, and environmental degradation due to oxida- 
tion-related effects are also included within the model. To computationally implement the model, 
the finite element method is used with an evolutionary analysis of a unit celt accomplished via 
a time-stepping algorithm. Matrix inelasticity is modeled with the Bodner anisotropic hardening 
viscoplastic model. Damage growth such as fiber-matrix debonding, surface cracking, and matrix 
cracking is modeled via the inclusion of cohesive zone elements in the unit cell. The locations 
of these elements are chosen to correspond with experimentally observed damage. As environ- 
mental degradation varies in form, depending on the specific system, it is accounted for by 
including either an outer surface layer that is embrittled due to oxidation or degraded material 
properties that result from oxygen-induced changes in microstructure. 

The current paper outlines the formulation utilized by the authors to solve this problem, and 
recent results are discussed. Specifically, results are given for a four-ply unidirectional composite 
subjected to monotonic and fatigue loadings. In both cases, environmental degradation influences 
the initiation and evolution of damage. 

KEYWORDS: metal-matrix composites, oxidation, damage, fracture (materials), environmental 
degradation, life prediction, fatigue (materials), continuum damage mechanics, cracking 

Over the last three decades, metal-matrix composites (MMCs) have been considered as can- 
didate materials for a variety of advanced technological applications. MMCs have the potential 
to provide improved elevated-temperature performance as compared to the capabilities of cur- 
rently available monolithic metals or polymer-matrix composites. Unfortunately, continuous 
fiber MMCs have found only limited applications due to a variety of shortcomings that generally 
lead to low fracture toughness and limited life [1]. These limitations have resulted in consid- 
erable investigation by the research community, but full solutions have yet to be achieved. 

Titanium metal-matrix composites (TMCs) have been developed for use in a variety of 
elevated-temperature aerospace applications. These include the National AeroSpace Plane 
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(NASP), Integrated High Performance Turbine Engine Technology (IHPTET), and the High 
Speed Civil Transport (HSCT). TMCs are being considered because they provide improved 
performance at elevated temperatures, high specific strength, and high ductility as compared to 
other currently available materials [2]. Unfortunately, in most circumstances, TMCs have failed 
to reach production primarily because they have been found to have relatively short life in 
elevated-temperature environments. 

Two particular candidate metastable beta-titanium alloys have received the most interest over 
the past 10 to 15 years. Both alloys are usually used with continuous silicon-carbide fiber 
reinforcement. Unfortunately, when exposed to temperatures in excess of 550~ the first of 
these materials, Ti-15-3, was found to undergo severe oxidation that in turn induces premature 
failure. In an effort to develop a more oxygen-resistant titanium matrix, Ti-/321S was developed 
as a more promising matrix material. In the past five to six years, this matrix material has been 
the focus of many research efforts. Of all of the metastable titanium alloys, Ti-fl21S is consid- 
ered to be the most oxidation-resistant [3]. However, this material also experiences premature 
failure when subjected to fatigue loading at elevated temperatures. 

Recent Research 

Many previous research efforts have attempted to model the behavior of MMCs. Several 
suggested approaches have been based on micromechanics schemes [4-7]. These methods 
utilize approximate techniques such as the concentric cylinder model to determine effective 
composite properties that can then be used in conjunction with a mechanical finite element 
code to model MMC behavior. A second approach for modeling fatigue behavior has been to 
utilize a linear life fraction technique to determine the number of cycles to failure for a given 
maximum applied stress [8,9]. This technique, which does not require a full finite element 
analysis, involves determination of (1) local stresses via codes like METCAN [8] and (2) linear 
relation constants obtained empirically from experimental observation. In conjunction with 
these approaches, several computer codes have been developed to aid in life prediction of 
MMCs. A full review of many of these codes was recently completed [10]. In addition, detailed 
literature searches on TMCs are given in two recent publications [11,12]. 

To effectively model MMC behavior, several specific factors have been investigated, in- 
cluding (1) the effects of thermal gradients [13,14]; (2) the effects of fiber and interfacial layer 
morphologies on matrix response [15]; (3) the type of reinforcement used, especially long brittle 
fibers [16,17]; and (4) the effects of an inelastic matrix and damage evolution [18-20]. As a 
result of much study, it has been determined that two essential components for successful 
modeling of continuous fiber-reinforced MMCs are the incorporation of (1) an inelastic matrix 
model to accurately capture time-dependent behavior and (2) a damage evolution model to 
accurately predict unloading [21]. 

Since environmental effects play a substantial role in MMC behavior, several attempts have 
been made to incorporate environmental effects into proposed modeling efforts. Specific efforts 
include the use of an Arhennius-type expression in an attempt to include environmental damage 
due to oxidation in life prediction [22]. A diffusion-based model has predicted oxidation and 
subsequent oxidation-induced damage in MMCs [23-25]. Utilizing a diffusion-based oxidation 
model in conjunction with a micromechanics unit cell approach, TMC behavior has also been 
modeled with some success [26,27]. 

For modeling of the two most popular titanium systems, most methods have assumed fibers 
to be thermoelastic and have modeled Ti-15-3 and Ti-./321S stress-strain behavior using the 
Bodner-Partom thermoviscoplastic model [28], although others have been proposed [29]. Al- 
though the material parameters for Ti-/321S were determined by Neu [30]; the original constants 
were found to deviate from the experimentally observed cyclic loading behavior. Some re- 
searchers also suggested revisions to the original constants to increase isotropic hardening 
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effects [31]. In an attempt to capture the cyclic behavior of Ti-/321S, Neu and Bodner have 
recently developed a revised set of material parameters that vary exponentially as a function 
of hardening [32]. These new parameters are utilized in the current paper. 

Experimental Observations 

Titanium-15-3 

Despite the fact that Ti-15-3's microstructure remains relatively stable at elevated tempera- 
tures, it is extremely susceptible to oxidation. In fact, after two h at 650~ Ti-15-3 forms a 
considerable oxide layer of primarily rutile TiO2 as shown in Fig. 1. Unfortunately, this oxide 
layer is extremely porous, brittle, and nonprotective. Under mechanical loading, surface cracks 
quickly initiate in the oxide and continue to propagate towards the metallic substrate; thereby 
inducing other damage mechanisms that eventually lead to an earlier failure than would be 
observed in an inert environment. 

Titanium-t~21S 

Although Ti-/321S has superior oxidation resistance when compared to Ti-15-3, rapid deg- 
radation of mechanical properties has been observed at elevated temperatures. This degradation 
of mechanical properties can be indirectly attributed to oxidation dissolution [33,34]. Unlike 
Ti-15-3, Ti-/321S has been observed to form a thin, protective oxide layer, approximately 
3/zm thick after 72 h at 700~ as shown in Fig. 2. In fact, Ti-/321S is far superior to all other 
titanium alloys in experimentally observed weight gain measurements. Unfortunately, weight 
gain is measured in days, while a significant degradation of mechanical properties can occur 
within hours or perhaps even minutes. 

FIG. l--Oxide layer in Ti-15-3 at 650~ after 2 h. Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.
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FIG. 2--Oxide layer in Ti-f521S at 700~ after 72 h. 

FIG. 3--Distribution of alpha grains in Ti-f521S near the surface at 700~ after 24 h. Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.
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We have experimentally observed a high concentration of alpha phase near the surface of 
Ti-fl21S during oxidation. The alpha phase forms along the grain boundaries and coarsens 
away from the surface, as shown in Fig. 3. These observations have been noted by previous 
research efforts [33]. Apparently, oxygen quickly diffuses into the surface layer at elevated 
temperatures and acts as an alpha stabilizer that encourages the formation of the small Wid- 
manstatten alpha phase both within and along the large beta grains [33]. With this phase change, 
a severe loss of ductility has been observed [35,36]. In fact, this embrittled region has been 
found to develop within seconds with less than 1% weight gain at 800~ [37]. This embrittle- 
ment is similar to that found in alpha-beta titanium alloys. Previous studies of oxidation effects 
on alpha-beta titanium alloys have indicated that even low-level oxygen concentrations in the 
alpha phase significantly affect slip plane movement due to interstitially located oxygen atoms. 
Due to the limited available slip systems, alpha-beta titanium alloys experience a loss of duc- 
tility accompanied by an increase in stiffness [38]. In alpha-beta alloys, any alpha microstruc- 
tures other than equiaxed are generally susceptible to ductility loss at elevated temperatures 
[39]. Even the fatigue crack growth rate of alpha-beta alloys has been shown to increase with 
decreasing alpha phase grain size [40]. 

Failure of the composite is apparently caused by a succession of separate damage events. In 
the unoxidized case, damage initiates in the form of matrix radial cracks emanating from fibers 
[41]. Under continued loading, fiber cracks are assumed to form that will ultimately lead to the 
failure of the part. In the oxidized case, damage is first observed in the form of large substrate 
cracks along grain boundaries due to embrittlement caused by oxygen-induced microstructural 
changes. This damage mechanism is then followed by the formation of smaller surface cracks 
in the brittle thin oxide layer. These surface cracks form perpendicular to the load, as shown 
in Fig. 4. In [90] laminates, surface cracks lead to fiber/matrix debonding and eventual failure 

FIG. 4--Surface cracks in a SCS-6/Ti-~21S pre-oxidized (for 72 h) specimen loaded monotonically 
at 750~ Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015

Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



34 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

of the composite. In contrast, surface cracks in [0] laminates propagate to and around the first 
row of fibers. This fiber bridging causes the stress in the fiber to exceed the maximum allowable 
fiber stress and, in turn, causes failure. These mechanisms are then followed by radial cracking 
and, ultimately, failure is caused by fiber breakage. Although final failure occurs similarly in 
the unoxidized case, it occurs much sooner in the oxidized specimens. 

Several experimental studies have noted the impact of environment on fatigue life 
[5,9,22,42-44]. In out-of-phase (OP) fatigue testing, for example, the one damage mechanism 
that has been observed is surface cracking due to oxidation-induced embrittlement. This damage 
mechanism, along with fiber/matrix debonding, has been found to eventually lead to failure. 
In addition, material properties such as static moduli and coefficients of thermal expansion have 
been observed to degrade during high-temperature fatigue in a non-inert environment 
[43,45,46]. 

Computational Damage Evolution Model 

Thermomechanical Model 

In spite of the observed environmental effects, few attempts have been made to include the 
effect of environment on damage evolution. The approach presented here utilizes continuum 
thermomechanics to analyze a unit cell, as shown in Fig. 5. To model oxidation effects on 
MMCs, two approaches are used herein. In the case where oxidation occurs quickly, such as 
Ti-15-3, an oxide layer that is considered to be brittle is included within the model, as shown 
in Fig. 6. In the slower oxidation case where the oxide layer is thin but the layer beneath is 
embrittled, such as Ti-fl21S, it is assumed that three layers of degraded material exist at the 
free surface of the unit cell, as shown in Fig. 7. These layers are modeled as brittle (elastic) 
layers with reduced fracture toughness. It is beyond the scope of this paper to cover the for- 
mulation of the model in detail. However, we will review the pertinent equations here, and the 
interested reader is referred to Refs 20 and 26 for more complete coverage of this approach. 

The analysis of the metal-matrix composite is accomplished by satisfying the conservation 
of linear momentum 

~iu = 0 (1) 

ooor 

IOOOOOOO 
[ 0 0 0 0 0 0 0  

Free SurFace X~ u~=O 

r SyMmetry 

U t -- 0 :2:~... 

t 

/ ~.-o zxu3 
FIG. 5~Depiction of four-ply unidirectional composite and unit cell. 
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FIG. 6 - - T w o - d i m e n s i o n a l  f ini te  e lement  mesh  with surface oxide layer. 

where o'ij = o-,j(xk,t) is the stress tensor, and body forces and inertial terms are neglected. 
Furthermore, angular momentum is trivially satisfied by the assumption that the stress tensor 
is symmetric. Equation 1 is adjoined with strain-displacement equations 

1 
eij : ~ (Ui, j -~ Uj,i) (2) 

where u~ = u~(xk,t) is the displacement field, and % = %(Xk, t )  is the strain tensor for infinites- 
imal displacements. Finally, the thermomechanical constitutive equations are given by 

O'ij = Dijk,(ek, -- e~ c" -- e~l- e~) (3) 

where Dijkl is the elastic modulus tensor, e~ c is the phase change eigenstrain to be described 
later, e/t is the inelastic strain tensor, and e r is the thermal strain tensor. The thermal strain 
tensor is assumed to be a function of the temperature, which is obtained from a solution of the 
conservation of energy, which is assumed to be uncoupled in the current model [47]. The 
inelastic strain tensor and additional internal variables are assumed to be governed by internal 
variable evolution laws of the form 

~i~ = ~ij(~l,ekl,T,o~kl)~ I ~' 71 = 1 . . . . .  n; ~ : 1 . . . . .  n (4) 

Copyright by ASTM Int ' l  (all  r ights reserved);  Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement.  No further reproductions authorized.



36 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 
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FIG. 7--Three-dimensional finite element mesh for modeling surface embrittlement. (Top three 
layers of elements have degraded material properties.) 

where n is the number of internal variables. In the current research, the so-called anisotropic 
Bodner model is utilized [28]. This model has been selected partly because it has been shown 
to be accurate for titanium [32] but also because the material parameters do not appear to be 
available for other models. 

In the current paper, the properties in the fiber are assumed to be thermoelastic (e,~ --- 0). 
Assuming that the temperature field is known (from conservation of energy), the preceding 
field equations can be cast with appropriate mechanical boundary conditions to produce a well- 
posed boundary value problem. 

The thermomechanical model proceeds from the application of continuum thermomechanics 
to a thennoviscoplastic medium [47]. Due to the nonlinearities introduced by the thermovis- 
coplastic constitutive model, analytic solutions are not practical for most geometries and loading 
conditions. Therefore, the solutions are obtained computationally via the finite element method. 

The details of the formulation are given in Refs 20 and 14. Briefly, the conservation of 
momentum (Eq 1) is cast into a weak variational principle in terms of the primary variable u i 
= ui(xk,t). This variational principle is incrementalized in time, and the strain-displacement 
(Eq 2) and constitutive equations (Eq 3) are substituted to obtain a field problem that can be 
discretized for a typical finite element. Due to the fact that internal variable evolution equations 
(Eq 4) are ordinary differential equations, the variational principle must be incrementalized in 
time, and the solution is obtained by incrementing the boundary conditions with time. Due to 
the nonlinearity of evolution Eq 4 as well as the cohesive zone model to be described later 
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(they are actually numerically stiff), extremely small time steps are required in order to obtain 
accurate solutions, so that for cyclic loading the solution is computationally intensive. As 
described in the section on crack growth, this problem may be exacerbated by instabilities 
introduced during periods of crack propagation. 

Crack Growth Model 

The evolution of damage in the unit cell is accomplished by implementing cohesive zone 
elements into the finite element algorithm. This procedure is not only numerically efficient, but 
it is also physically attractive. The cohesive zone model utilizes a nonconvex quasi-potential 
to produce a smooth transition from displacement continuity along predetermined internal sur- 
faces to traction-free internal boundaries, thereby affecting crack growth. This procedure has 
been utilized recently by several researchers [20,48-50] to successfully model the evolution of 
damage in metals and MMCs. Most recently, Allen and co-workers [21,51] have used this 
procedure to model interactions between multiple damage modes. 

In the current paper, one of the models developed by Tvergaard [49] is used. The cohesive 
zone model proceeds from the definition of a quasi-potential 

~F( �9 (u,,u,) =-- a ' ) da '  (5) 

where 

27 
F()0 -= ~-  o'm,x(1 - 2a 2 + a 3) (6) 

and 

a --- [ ( u . / 8 . )  2 + (uJS , )  2 + (u,/6,)2] 1'2 (7) 

where u,, u,, and ut are, respectively, the normal and tangential components of crack opening 
displacement in the cohesive zone, as shown in Fig. 8. Furthermore, the function, F(A), is 
graphically depicted in Fig. 9, wherein the material parameter, o" . . . .  is depicted. In addition, 

FIG. 8--A two-dimensional depiction of  the crack opening displacements and surface tractions 
in the cohesive zone. 
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FIG. 9--Graphical depiction of the function, F(A). 

6., 6~, and 6, are material parameters. The resulting normal and tangential components of the 
tractions along the cohesive zone are 

T. - - (8) 
Ou. h 6. 

oO F(A) u, 
Ts = a'~u~ = ot~ ~ -~ (9) 

0q, F(A) u, 
7 ' ,=  a, Ou t a, h ,5, (10) 

respectively, where as and a, are the material properties relating normal to shear strength. The 
cohesive zone model description is completed by the constraint that 

A > _ I ~ L = T ~ = T t = O  (11) 

For both loading and unloading, T,, Ts, and Tp are one-to-one relationships. In addition, due 
to the tensile nature of the modeling, penetration was not considered in the analysis. 

The preceding formulation has been shown to produce a framework that is consistent with 
the notion of an energy release rate that is critical for crack growth [52,53]. This model has 
been implemented to the computational algorithm used in this paper, so that the code may be 
utilized to predict crack growth wherever interface elements are placed in the finite element 
mesh. 
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Model Predictions 

The first MMC considered was a [90]4 SiC/Ti-15-3 laminate. This was accomplished with 
the use of a two-dimensional generalized plane-strain analysis that was possible because the 
surface cracks form normal to the load direction. Using the same unit cell as shown in Fig. 6, 
an analysis has been performed for a monotonically increasing displacement applied normal to 
the fiber direction. As shown in Fig. 10, this analysis has been performed for two cases: (1) a 
specimen that is assumed to be unoxidized and (2) a specimen that is assumed to have been 
pre-oxidized with a surface oxide layer of 50 ~m thickness. It is seen in the figure that the 
average stress-strain behavior of the composite is deteriorated in the oxidized case. The reason 
for this can be explained by viewing Fig. 11, wherein the crack length is plotted versus time. 
Although both the oxidized and unoxidized specimens experience discontinuous crack growth, 
the development of surface cracks in the oxidized specimen tends to shed load to the interior 
of the composite, thereby causing interface debonding to occur somewhat earlier in the oxidized 
specimen. This effect is demonstrated in Fig. 12, wherein the evolution of interface radial stress 
shows unloading in the crack wake and an increased loading ahead of the crack tip as the 
interface crack propagates. It is our belief that this mechanism has a substantial impact on the 
life of the composite. 

Next a pre-oxidized [014 Ti-/321S was considered. Once again, the surface cracks form nor- 
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FIG. tO---Comparison of model for oxidized and unoxidized SiC/Ti-15-3 [90h cases. 
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FIG. I 1---Predicted crack growth for oxidized and unoxidized SiC/Ti-15-3 [90]4 cases, 

mal to the loading direction [21]. Prior to the development of the surface cracks, a two-dimen- 
sional generalized plane-strain analysis can be performed, but the development of these cracks 
leads to symmetry constraints that require the use of a full three-dimensional analysis. This 
complication forced the modification of our in-house code, SADISTIC [20]. We have now 
implemented three-dimensional continuum and planar cohesive zone elements to the code. In 
addition, it was necessary to implement three-dimensional versions of the elastic and thermo- 
viscoplastic constitutive subroutines, as well as the cohesive zone model. These have all been 
accomplished and are utilized in the analyses performed herein. 

In order to demonstrate the necessity to include microcracking in the analyses, we have 
performed one solution for a [0]4 without damage in the unit cell as shown in Fig. 7. As shown 
in Fig. 13, the macroscopically averaged strain reaches shakedown after approximately 80 load 
cycles. Since this does not occur in the experimental results [41], it is suggested that further 
ratchetting can only be modeled if progressive damage is incorporated into the analyses. 

To support this assumption, damage was included in another analysis of the same unit cell 
under monotonic loading in the fiber direction. Preliminary results were obtained by using an 
elastic model for the matrix. A surface crack quickly propagated through the embrittled region 
and was blunted by the nondegraded interior. Under continued monotonic loading, fiber bridg- 
ing is observed. Immediately following, the maximum allowable fiber stress is reached and 
failure occurs. Due to the brittle nature of the surface, the macroscopically averaged stress- 
strain behavior only captures the fiber bridging and fiber breakage, as shown in Fig. 14. Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
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FIG. 14--Predicted average stress versus strain with damage for monotonic loading of SCS-6/Ti- 
f521S [014 at 650~ 

Conclusion 

Results have been obtained herein for MMCs with and without oxygen-induced surface layer 
embrittlement. The results indicate that load sheds more quickly to the interior of the composite 
producing failure sooner in the pre-oxidized cases performed. Furthermore, additional results 
reported herein for predicting cyclic response suggest that the method described in this paper 
may be suitable for predicting MMC behavior under cyclic fatigue. Pursuit of such results will 
be the subject of continued research by the authors. 
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In Situ Damage Progression 
in General Layup Composites 

REFERENCE: Fan, J., "In Situ Damage Progression in General Layup Composites," Ap- 
plications of Continuum Damage Mechanics to Fatigue and Fracture, ASTM STP 1315, 
D. L. McDowell, Ed., American Society for Testing and Materials, 1997, pp. 46-64. 

ABSTRACT: In this paper, a methodology for progressive matrix cracking-delamination inter- 
action is proposed. Two damage variables and a five-layer equivalent constraint model (ECM) 
are introduced. After a mesoscopic stress analysis is conducted for the ECM, concepts of con- 
tinuum damage mechanics are applied to obtain the effective moduli by the approach proposed 
by Fan and Zhang in 1993. The critical matrix cracking densities at which the transition from 
matrix cracking to delamination occurs are found to be dependent on the number of plies of the 
weakest layer and almost independent of the layups. These numerical results of general layups 
are consistent with those obtained by Nairn and Hu in 1992 for cross-ply laminates. Results also 
show connections between the calculated energy release rates with the experimental data of the 
least required energy for damage initiation of T300/976 composite beams. 

KEYWORDS: continuum damage mechanics, cracking, fatigue (materials), fracture (materials), 
constraint effects, general layup composites, in situ damage effective factor, mesoscopic analysis, 
macroscopic analysis, five-layer model 

The predominant characteristics of damage progression in laminated composites are the 
important internal constraint effects that exist between different layers. These effects can be 
better understood if we look at the experimental results given by Timmer and Hahn [1]. Their 
tests were conducted on a quasi-isotropic [0~176176 laminate of AS4/3501-6 graphite/ 
epoxy composites. Matrix cracking in the 90 ~ layers occurred first, followed by matrix cracking 
in the - 4 5  ~ layers, but there was no matrix cracking at all in the 45 ~ layers. To find the reason 
for this phenomenon, the constraint conditions of 45 ~ layers and - 4 5  ~ layers were checked. 
From their tests, we could see that the 45 ~ layer and - 4 5  ~ layer were constrained directly by 
the strongest 0 ~ layers and the weakest 90 ~ layers, respectively. The much stronger internal 
constraint effects on the 45 ~ layers than that on the - 4 5  ~ layers make damage initiation difficult 
in the 45 ~ layer. 

In the past 20 years, there have been intensive research activities in damage analysis of 
composite materials. Different damage models have been proposed such as various kinds of 
shear lag models, variational approaches, a self-consistent scheme, an approximate elasticity 
approach, an internal variable method, and an approximate elasticity approach. The reader is 
suggested to refer to Ref 2. Here, only selected papers are reviewed to save the space. In the 
1970s, Garrett and Bailey [3] and Highsmith and Reifsnider [4] used one-dimensional shear- 
lag models to consider stiffness reduction in cross-ply laminates due to transverse matrix crack- 
ing. The internal constraint effects on damage progression of the 90 ~ plies were quantified 
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under the assumption that the applied stress is transferred to the 90 ~ plies from the constraining 
layers through shear deformation. In the formulation, some adjustable parameter related to the 
shear transfer layer was needed. Flaggs [5] developed a two-dimensional shear-lag model for 
investigating the constraint effects of --- 0 ~ layers on 90 ~ layers. The initiation strain of transverse 
matrix cracking in the 90 ~ layer was predicted well, but the evolution of matrix cracking was 
not considered. Hashin [6-8] developed a variational approach for the analysis of the [0~176 
laminate. In this work, the constraint effect was found to be dependent on the ply elastic moduli 
and ply thickness. Hashin's methodology has been proved to be an essential contribution in 
micromechanics-based damage analysis, and several recent works such as Praveen and Reddy 
[9], Varna and Berglund [I0], and Narin [11], and Narin and Hu [12] are the extensions of 
Hashin's. However, the premise of Hashin's approach is based on cross-ply laminates. There- 
fore, an extension of this scheme to general layups appears to be intractably complicated. 
Pagano [13,14] developed a method for layer and inter-layer stress analysis based on the Reiss- 
ner variational principle. This work currently has been applied to delamination and matrix 
cracking of cross-ply layups [15]. Other work, such as Gudmundson and Zhang [16], used 
known analytical solutions such as a row of cracks in a finite isotropic medium for damage 
analysis of cross-ply and angle-ply layups, but these analytical solutions are of limited appli- 
cability to composite laminates. There are also several models for delamination analysis [17- 
20]. However, these models were mostly developed for fixed geometry of cracks, and the 
interactive damage evolution between matrix cracking and delamination are seldom investi- 
gated. This situation is more clearly described by Lagace [21], "Clear procedure do not exist 
to predict the observed interacting growth of in-plane and out-of-plane damage modes and for 
the prediction of the overall load-carrying capability of the configuration." Choi, Downs, and 
Chang [22] developed an empirical relationship for the internal constraint effects. However, 
some of their model prediction is higher than the test data, some is lower. There is no definite 
trend. 

In summary, most existing damage models are only suitable for cross-ply layups and without 
considering interactive damage progression. Since cross-ply laminates are of limited use in 
engineering applications, new approaches that can analysis in situ damage progression of gen- 
eral layup composites are technically important. In this paper, a new methodology for damage 
analysis of an arbitrary ply of general layups is proposed. This approach is centered about the 
internal constraint effects through an introduction of the five-layer equivalent constraint damage 
model. Theoretical development is based on continuum damage mechanics by the introduction 
of two damage variables and by obtaining the effective properties of damaged layers through 
a volume averaging procedure to determine the in situ damage effective factors. Numerical 
results for T300/976 graphite/epoxy (Gr/Ep) are then introduced and discussed. 

A Five-Layer Equivalent Constraint Model (ECM) 

The central problem of modeling general layup composites is to develop a method for damage 
analysis of a generic ply, k, with a ply angle, 0 ~), between the ply coordinate axis, xl, k), and the 
laminate coordinate axis, Xt (Fig. 1). If  this can be done, then the damage analysis for any 
other ply can be dealt with similarly. To focus our effort, this work will concentrate on this 
damage analysis. In this regard, two things are important to make this analysis much simpler. 
One is to develop an equivalent constraint model to replace the complicated laminate structure 
for investigating the constraint effects. The other is to emphasize the important role of the ply 
coordinates, x~ k) (with a prime in the subscript, or with x, y as coordinates that are also used to 
denote the local coordinates for convenience, see Fig. 1), in the analysis of an arbitrary ply, k. 
Actually, this generic ply, k, as any other ply can be viewed as "a  local 90 ~ layer" with respect 
to its ply coordinate system x~, k). 
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TABLE 1--Layup effects on the least required damage initiation energy, E initiati~ (data obtained from 
test curves of Fig. 13 of Chou et al. [22]. 

Layup Type Material Type Layups ~-finitiation, Jim ~ 

A T300/976 Gr/Ep [0~/90]/0~/90~.s]s 415 
B T300/976 Gr/Ep [0~/--_45~/90~]~ 190 

[0~-_+45~/90s]~ 55 C T300/976 Gr/Ep o o o 
D T300/976 Gr/Ep [90~/0~/90~] 75 

Line loading is assumed to calculate the impact energy. 

A scrutiny of the experimental results in Ref 1 and the test data in Table 1 that are obtained 
from the test curves of Ref 22 suggests an approximate correlation between the internal con- 
straint effects and layups. First, the internal constraint effects highly depend on the geometry 
of the weakest ply under consideration. The thicker the 90 ~ layers, the less the required energy 
for damage initiation (see the comparison between the Layups B and C). Second, the very 
important role of the adjacent layer on the damage initiation in the weakest layer can be ob- 
served. The stronger the adjacent layer, the larger damage resistance can be obtained through 
constrained forces offered by adjacent layers (see the test result of Timmer and Hahn [1] and 
Layup A of Table 1). In addition, these constraint effects depend weakly on the geometry of 
the remote constraint layers. To emphasize the important roles of the weakest layer and the 
adjacent layer, these layers are totally included in the five-layer model. More specifically, all 
the geometric and material parameters of the weakest layer and the adjacent layers, such as the 
thickness (h (k-l), h tk), h (k+~)) ply angles (0 (k-l), 0 tk), 0(k§ and stiffness (~(k-1) ~(k) ~(k+l)] , \ x ~  , ~ / j  , ~ / j  J ,  

are considered in the five-layer ECM. However, the remaining layers will be handled in an 
approximate manner. This is because experimental results show relatively weak dependence 
of the constraint effects on remote layers, and also because of the advantages regarding a 
compromise of relative accuracy and simplicity. Specifically, all remaining plies above and 
below the adjacent layers of ply groups (k - 1) and (k + 1), respectively, will be lumped into 
two equivalent homogeneous anisotropic layers, that is, an upper group, Ik, and a lower group, 
Ilk. In general, this consideration results in a five-layer ECM for a generic damaged layer, k. 
The five layers are: the kth ply itself, two adjacent layers (k - 1) and (k + 1), and the remote 
equivalent layers, Ik and Ilk (see Fig. 2). 

Since the analysis for the kth ply is performed as the analysis for a "local 90 ~ layer" with 
respect to its ply coordinate system, x~, k>, it is advantageous to express the stiffness of the five 
layers also related to these ply coordinates. To do so, coordinate transformations from corre- 
sponding coordinates such as x~, ~§ and x~, k-~) to the local coordinate system, x~, k), are necessary. 
For the two remote equivalent constraint layers, it is convenient to obtain their average stiffness, 
Q,~') and ~Hk)~U , with respect to the laminate coordinates, X~, first, and then integrally transform 
to the ply coordinate system, x~, ~). It may be noted that the five-layer ECM can be degenerated 
to a four-layer or a three-layer ECM when the generic kth layer approaches or becomes the top 
(or bottom) layer. 

Quantitative Measures for Internal Constraint Effects 

In this paper, the theory of the overall moduli of a cracked body contributed by several 
researchers, namely, Valuenko and Kachanov [23], Budiansky and O'Connell [24], and Horii 
and Nemat-Nasser [25], is applied to formulate the basic relationship between damage param- 
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Lz 

k ~ t ~ 

(a) 

P/2 ~ X 

(b) 

(c) 

FIG. 2--Five-layer equivalent constraint model (ECM) and the representative unit cell: (a)five 
layer-model (b) a quarter of the unit cell, and (c) a generic sublaminate. 

eters and the effective moduli of the damaged layers. Following this theory, the overall com- 
pliance tensor, S~jkt, of a cracked body can be expressed as 

sijk~ = S~ + n,jk~ (1) 

Here, Superscript 0 denotes components of material without damage, thus ~k~ is the original 
compliance tensor of the homogeneous media. Huk~ is the increase of compliance induced by 
damage whose values depend on crack distribution and configuration. This is an elegant theory, 
since it can be used for a body with finite volume under general loading. However, the premise 
of this theory is that the media must be homogeneous. This premise makes it difficult to directly 
apply this theory to laminates because laminates are highly inhomogeneous media with layers 
in different directions. Due to this fundamental difficulty, to the author' s knowledge, there has 
been no relationship between this elegant theory and damage analysis of laminated composites 
until the work given by the present author and his co-workers for cross-ply and [+--0m/90,]S 
layups [26--29]. 
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In this work, each individual ply is considered as an effective homogeneous anisotropic 
media with matrix crack and delamination. Consequently, the theory can be suitably applied 
to any individual ply separately. Employing the truncated notation related to the ply coordinate 
system, x}, k), one expresses the relationship of average stress and average strain, as well as Eq 1, 
respectively, as 

~,k) ~k)~k) (2a) -~-..i'j'~j' 

-~'j' + --rj '  (2b) 

where Q),~, is the effective in-plane stiffness matrix of the damaged ply, the determination of 
which is the main concern of this formulation. For the damage mode of transverse matrix 
cracking and local delamination with respect to its local coordinate, x~, ~) (see Fig. 1), it can be 
proved that only ~ ,  and ~6%, are not zero, and we have 

s]k], = S~I !k), ~1- a(1 k)', ~'6'6'~(k) = S~6!k), + n(6k)6 ' '  ~)2'2' ,~'2'2", 

Furthermore, using the relationship between SI~, and ~,,/tg~ k? for an orthotropic lamina (see Eqs 
2.60 of Ref 30),  the effective stiffness matrix can be obtained as follows 

0 Qr , 0 Qo~696 , 

r A(k) I'll(k) A(k) 0 0 ] ~ 1 ,  l,Z Xl,,l, ~ l , 2 , z  J.l,l, 

__ // ')~(k) A(k) \~Vl '2 ' /  

[ ~ o l ' O  : ' l ' l '  QO~k)l' r A(k) (3) 

0 ~t/6,6,L x6,6, ] 

in which the A~ ), directly relate to ~k,,], and ~6k)6 , as follows 

- 
/-iO(k)L/(k) 
~,~1'1 'la 1'1' ,~.(k) _ 

1 + ,qO(k)T~k) , 1~6'o" 
~1'1 '  vr 1'1' 

6,6,,~16,6, 
t'-iO(k) l$l(k) 

1 + ~ 6 ' 6 '  vr 6 ' 6 '  

The second matrix of Eq 3 denotes the stiffness reductions caused by damage. From the 
expressions of their components, we see that the reduced stiffnesses are expressible by means 
of just two factors, A~k,], and �9 It is important to notice that these two factors depend not 
only on the in situ damage state, but also on the internal constraint effects. This is because 
these factors correlate the average stress and average strain according to (see Eqs 2a and 3) 

A]k,], = 1 - QO,,,~k,) + QO,: ,~)  (4a) 

7 ' 6 ,  A~k~ = 1 (4b) 6'e/ i'10 X'-,( k ) 
~6'6'  I"6'6' 

On the other hand, the constraint forces applied at the contact surfaces will change the average 
stress and average strain in the kth ply and, in turn, these constraint effects will change the 
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values of  these factors. Therefore, these factors are functions of the in situ internal constraint 
conditions. From the preceding discussions, we see the two factors that determine the constraint 
effects through the second matrix of Eq 3. Therefore, it will be taken as quantitative measures 
for the internal constraint effects on all-ply stiffness reductions of an arbitrary ply. These 
measures are renamed as IDEF, short for the in situ damage effective factors. Since all quantities 
used later are related to the ply coordinates, x~r ), the prime in the subscript will be dropped 
from now on. 

Determination of the In Situ Damage Effective Factors (IDEFs) 

In this work, a unit cell that represents a specific distribution and configuration of damage 
state within the kth ply is taken from the five-layer ECM (Fig. 2). Two damage variables are 
introduced. They are the normalized matrix crack density, Ctd k) = tlS (k), and the normalized 
delamination length, D (k)dz = lCk)/S (k), where t denotes ply thickness, and 1 (k) and S (k) are one 
half of the local delamination length and one half of the interval between two transverse matrix 
cracks, respectively, as can be seen in Fig. 2a. The important thing is to carry on a homoge- 
nization process to obtain the effective in-plane stiffness matrix, Q~,~, through the determination 
of the IDEF. A meso/macroscopic approach is then introduced for this purpose. From a me- 
soscopic point of view, the task is to determine the stress and strain distribution in the unit cell 
under applied loading. The stress analysis for this unit cell involves a formulation of approx- 
imate boundary value problems (BVP) for fixed geometries. From a macroscopic point of view, 
the homogenization process is realized through a volume average of mesoscopic stress and 
strain in the damaged ply. Having had the distributions of the stress, ~ k )  and strain, e~ k), in the 
ply, k, the volume average of stress and strain over the volume, v (k), can be obtained by the 
following volume averages 

1 fv tr~f) dv~k)= 1 f e~k) dv (5a,b) 

O:(xlY) = 7 (k)O~x~ k) dr ,  "=(k)~Sy ~--- --~(k) (k) 15y-(k) (5c,d) 

Now, by substituting the average stress and strain into Eqs 4a and b, explicit closed-form 
solutions for the IDEF can be obtained. To exemplify the proposed approach and to avoid 
lengthy mathematical descriptions, in the following discussion, a problem of transverse matrix 
cracking-local delamination interaction of a symmetric five-layer ECM under the tensile applied 
loading will be analyzed. The unsymmetric analysis will be published elsewhere. 

Matr ix  Cracking-Local  Delaminat ion Interact ion f o r  a Symmetr ic  F ive-Layer  E C M  

Here, local delamination denotes the inteffacial cracks originate from transverse matrix 
cracks in the "local 90~ ' '  Plane-strain conditions are assumed, and strain in the thickness 
direction is neglected. In this case, only one quarter of that model is needed for mesoscopic 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



FAN ON DAMAGE PROGRESSION 53 

analysis. This quarter is shown in a shield area in Fig. 2 and can be divided into six sublaminates 
in which Sublaminates 3, 4 denote the 90 ~ layers. Sublaminates 2, 5 are the adjacent layers, 
and Sublaminates 1, 6 are the homogeneous remote layers (Fig. 2b). The analysis for each 
sublaminate will be conducted by the first-order plate theory. This stress analysis was used 
previously for a two-layer unit cell by Armanios et al. [17]. Following their formulation, a 
generic sublarriinate is shown in Fig. 2c. Where resultants of tensile stress, shear stress, and 
bending moment are denoted by N, Q, and M, respectively. The peel and interlaminal shear 
stresses are denoted by P and T, with t and b subscripts for the top and bottom surfaces, 
respectively. The basic equations are listed as follows. 

Displacement Field--Let u and w denote displacements relative to the x and z axes, and U 
and W represent the axial midplane stretching and transverse displacement, respectively, and 
fl is the rotation. The displacement field is described as 

u(x,z) = U(x) + z[3(x), w(x,z) = W(x) (6a,b) 

ez is neglected and w is zero along the center horizontal line of the unit cell, therefore, transverse 
displacement, w, and its derivative w~,, are zero in Sublaminates 1, 2, 3, and 4. 

Equilibrium Equations--The z-axis is located at the central line between two transverse 
cracks. The equilibrium equations take the form (see Fig. 2c) 

h 
N~ + Tt - Tb = O, Q~ + P, - Pb = O, M ,  - Q + ~ (T t + To) = 0 (7a,b,c) 

in this paper, the Subscripts ,x and ,xx following a variable such as N~, N ~  denote the first and 
second derivatives of N with respect to the x-coordinate, respectively. 

Constitutive Equations in Terms of  Forces and Moments--  

N = AIIU~ + Bl,fla, Q = A55(~ + w,), M = BuUa + D~,f l .~  (8a,b,c) 

Where A U, B o, and D o are the stretching, coupling, and bending stiffness of the classical laminate 
theory, respectively. 

Now, analyses will be conducted through the following three groups: Group I includes Sub- 
laminates 1, 2, and 3; Group II contains Sublaminates 5 and 6; and Group III refers to Sublam- 
inate 4. The common procedure for formulating governing equations is to obtain relationships 
between interfacial forces (T, Tb) and displacements (/3, U, w) through combining Eqs 7a and 
c with Eqs 8a, b, and c). Then, continuity conditions of displacements and reciprocal relation- 
ships of forces at the interfaces of Groups I and II are used to obtain governing equations for 
/3 (o (i = 1 - 5). For Group III, there is only one layer. Its governing equations for M (4) can 
be easily obtained. Let the exponential parameters represent the eiginvalues, h., to, and 6, for 
Groups I, II, and III, respectively, with the main results as follows. 

(a) Group I: Sublaminates 1, 2, and 3--The governing equations are 

[a,, a,qp  I o o 

La3x a32 a~dl.~J o A(~JLB(~J 
= 0 (9) 
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54 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

The first matrix is a symmetric matrix. Its elements, atj, are explicitly expressed in Appendix 
I_ Suppose/3 (;) = /3~)e au (i = 1,2,3), one obtains the following characteristic equations with 
h = h 2 

A)t ---~ + a h  ---~ + Ch + D = 0 (10a) 

A = alla22a33 + 2a]2a13a23 - a122a33 - a23an - a23a22 (10b) 

B = -(aHa22A(53) + a22a3.a ~ + A(2) - -  ~ 2  a ( 2 )  ~2 ad)  ~2 aOh  (lOc) a--55 a l i a 3 3  55 u13.c3t55 - -  u23z155 - -  0-12rx551 

C = ~ a(2),t(3) + . ao}ao)  + ~ a(oa(2) D = _ao)a(2)ao)  (10d, e) t~ 1 lZa55za55 t*22*3t55za55 ~33za55ta55,  zqt 55*3t 55tx55 

The numerical calculations for carbon fiber-reinforced polymeric-matrix composites show that 
the six eigenvalues, + As, ---h2, and + h3, are all real, and the eigenvectors are aj {p),p2,1 } r with 
aj to be determined by boundary conditions and 

2 (2) Fp)] = - - A ~  ~ ( a 2 2 a 1 3 -  a12a23)/~.) - -  a t 3 A 5 5 ~  
p2 - -  2 4 2 o) (11) L J_J (auh2 _ A(5~))(a22A2 _ a(2h a~2h~ t ( a n a 2 3  "155,' -- al2aj3A) - a23As5 J 

Since W~ = 0, from Eq 8b, we have Q = A55fl. Therefore, shear deformation is recognized 
through the rotation,/3. Furthermore, because the z-axis is taken at the symmetric vertical line 
of the unit cell (see Figs. 2a and b), Q is anti-symmetric and, in turn,/3 is antisymmetric about 
the z-axis. Mathematically, it reads 

(12a,b) Q(x) = - Q ( - x ) ,  f l(x) = - f l ( - x )  

Combining this equation with the solution of Eq 9 turns out 

03) 

(b) G r o u p  H: S u b l a m i n a t e s  5 a n d  6- -Us ing  the continuity condition at the interface be- 
tween Sublaminate 5 and 6 and noticing the fact that T(b 5) = 0, p~5) = 0, ~6) = 0, p}6) = 0, the 
governing equation can be derived as 

"cx55 ~'55 

A(1)-I- A ' 2 )  - - l J t ] ~ ( 6 ) J  Lb,  b=JL  J + o r155 t3t55 
(14a) 

where bl l ,  b12, and b22 can be found in Appendix I. Assuming flj = o o~ /3~ e , the characteristic 
equation is obtained as 

a ( l )  a ( 2 )  
( b l l b 2 2  - -  b12)o.14 "-~55 ;a55 Am + a(2) (bl~ + b22 - 2b12)092 = 0 

55 za55 
(14b) 

The four eigenvalues are all real and can be written as follows 

/A(l!A(2)~b56~. + - t) 22 9h  "~ + ] 55 11 --~12, 
t~ = - ~/(A55(1) + A55)(bllb22(2) _ b12)2 " o93,4 = 0 (15a,b) 
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The related eigenvector is {q, 1 }r, with 

b / a ( l )  + a ( 2 L  ,2 a ( l ) a ( 2 )  
12Va55 za55/wj + za55za55 

q = - (d(l) + a(2),.., 2 - -  a(l)a(2) (16) 
uI  l ~,~55 ~ ~55 ]toj ~155z~55 

The solutions for Eq 14a are 

/3(6)j 01 e " u  + 02 e -~ + 03 1 (17) 

(c) Group II1: Sublaminate 4 - - F r o m  Eqs 8a, b, and c and the boundary condition, we 
obtain 

with 

N(4) = 0 (18)  ij 

a (4) 
t~(4) -- za55 / ( 4 )  __ 0 (19) 

M (4) = qtle a~ + ~2e  ~x (20) 

a/US; 

- V O~' 

Constants in Eqs 13, 17, and 20 are determined through boundary conditions at the boundary 
of the unit cell, x = s (k), and continuity conditions at x = s (~) - 1 (k) between sublaminates (see 
Fig. 2b). Combining these solutions with Eqs 7a, b, and c and Eqs 8a, b, and c, all interfacial 
forces, moment, and force resultants can be determined. Specific results are expressed as follows 

N(J ) = a l 7 1  cosh()qx) + azrl2 cosh(hzx) + 0 ' 3 7 / 3  cosh(h3x) + A~ll)Ot4 

N(x 2) = a 1 7 4  cosh(Ajx) + Of 275 cosh(A2x) + O/376 cosh(A3x)  -4- A~Z)a5 

N(x 3) = - ~  "~ 74) cosh(Alx) - ff2(72 "]- 75) cosh(a2x) 
-- 0~3(73 "~- 7 6 ) c o s h ( A 3 x )  + "4(3)~' . . l l  t,t6 

0.5 A(~21 ) P 
N~5) - 

A]ll ) + A~I2]) 

0.5 a~'l ) P 
N(*)= 

A]ll ) + a(2) 
l , ( l l )  

where P is the applied loading, ai(i = 1 - 6), 7t,(l = 1 
Appendix II. 

(21a) 

(21b) 

(21c) 

(21d) 

(21e) 

- 6 )  are explicitly expressed in 

A Closed-Form Expression for  the IDEF 

For the case of matrix cracking-local delamination, the plane-strain conditions are assumed, 
resulting in ~y = 0 and ~,y = 0. In this case, only All  is needed. When using Eq 4a to calculate 
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56 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

the IDEF, the compatibility conditions of average strain between different layers are used, that 
is 

A{qk ) (22) 

This allows one to replace ~ )  with ~x~')/A~ ~. It turns out that 

D 

A (tk) ~t(k) 
A] k) = 1 

F i l l  l *q x 

A~l~)~/~k (23) 

\ j o  N~ 3) dx + ,~,_~,, N ~4) dx S (k) (24a) 

~xlk) \~O N(~ l) dx + ,~, t,k, N26) dx S ~k) (24b) 

Substituting Eqs 18 and 21a, c, and e into Eqs 24a and b and, in turn, into Eq 23, we obtain 

A~k) = (1 + dPL)[D (~)dt + dP2D(k)mCFl(X) ] 

1 + dPl[D(k)dl + f~2D(k)mcFl(x)] 
(25) 

where d91, (1)2, and F1 are functions of layups, geometric, and material parameters of the five 
layers. Their explicit forms are expressed in Appendix II. D (k)"c is another type of damage 
parameter for matrix crack density whose relationship with Cd Can be expressed as D (g)mc = 
C,h<k)/t. The independent variable, X, in the function, F(X ), is defined as 

1 - D (k)dl 
X -- D(k)mc (26) 

that is a combined damage parameter of matrix cracking and delamination. The appearance of 
damage parameters, X, D(k)at, and D (k)'~c, in the expression of the IDEF, A~l~ ), denotes that the 
IDEF can be applied to investigate interactions of different damage modes. 

D a m a g e  Evo lu t ion  L a w  

If damage only occurs in the weakest 90 ~ layer, the energy release rate for matrix cracking 
and delamination, respectively, are [26] 

G(k),,r _h(t)  OQ~k) ~kr~}k), r = 1,2...N (26a) 
d D ( k )mc 

OD(k~a~ 
r = 1,2...N (26b) 
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where ~r) are the average strains in the rth ply. From Eqs 26a and b and Eq 5, the energy 
release rates, G tk~a~ and G ~k)'~, can be obtained from the derivatives of the IDEF with respect 
to D ~*)a~ and D <k)''~, respectively. These derivatives obtained from Eq 25 are 

(1 + dP0q~2[Fl - xFt,~l 
0All/CgD ''r = (27a) 

(1 + ~ [ D  el + dP2DmCF1]) 2 

OAll/ODa t = (1 + qbl)[l - qb2Fl.~ ] 
(1 + qb,[D ~' + OzD"CF,(x)]) 2 

(27b) 

where F~, denotes the derivative of F(x). Based on these calculations, the level of available 
fracture energies under the current constraint conditions is evaluated and arranged in hierar- 
chical order for delamiuation versus matrix cracking modes, with individual accounting for 
each damaged ply. The Griffith energy principle is used in developing criteria for the damage 
initiation and progression of matrix cracking and delamination. These criteria are 

for matrix cracking 

G (k)mc = Gn~ c (28a) 

for delamination 

G O')al= G dt (28b) 

The quantities in the left-hand side of Eqs 28a and b denote energy release rate (or available 
fracture energy), and those in the right-hand side denote critical energy release rate (or required 
fracture energy for cracking), The damage scenario is generated by gradually incrementing the 
load amplitudes, tracking the comparative ratios between levels of available and required frac- 
ture energies, and switching to new damage configurations for which the criterion of damage 
evolution has been satisfied. 

Numerical Results and Verification 

The approach developed in this work is based on the IDEF concept via a meso/macroscopic 
analysis. This approach was applied to cross-ply laminate using an improved shear lag analysis 
for a three-layer constraint model and verified extensively by comparison with experimental 
results (more than 15 figures of comparison can be seen in Refs 2, 26-28).  The present work 
has been developed to apply this approach to general layup composites by proposing a five- 
layer constraint model with a more fine mesoscopic analysis than the shear lag analysis used 
previously. However, the verification for the new formulation is difficult due to the fact that 
there are very limited experimental results for general layup composites as well as for interactive 
damage progression. The consideration here is to use the experimental results [22] obtained by 
Choi, Downs, and Chang for verification of the predicted layup effects, and the calculated 
results given by Harin and Hu [12] for the predicted interactive damage progression. These 
verifications are not quite satisfactory because the conditions for comparison are difficult to be 
the same as we can see later. However, in the present numerical analysis, all material constants 
are taken for T300/976 graphite/epoxy (Gr/Ep) composites [22] that are used for the experi- 
ments of Choi et al. These constants are Ell = 156 GPa, E22 = E33 = 9.09 GPa, Gl2 = Gx3 
= 6.96 GPa, G23 = 3.24 GPa, ~'~2 = ~'13 = 0.228, and ply thickness: t = 0.132 mm. 
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Following the assumption of Nairn and Hu [20], the critical energy release rates for matrix 
cracking and delamination are assumed to be the same. The values used are 

G~ t = G~ c = 2.28. 10 -4 MPa/m 2 (28c) 

Figures 3 through 6 are obtained by the method proposed in this work. Figure 3 shows load- 
carrying curves versus normalized transverse matrix cracking density for [0~190~/0~/90~ At 
the first stage, the required applied stress for transverse matrix cracking is lower than that for 
delamination. Matrix cracking is then initiated and developed after the applied loading reaches 
the required loading for initiation of transverse matrix cracking. When the matrix crack density 
reaches the critical transverse crack density at the transition point, more applied stress is re- 
quired for further matrix cracking than for initiation of delamination. It turns out that the 
transition from matrix cracking to delamination occurs at that point. Figure 4 shows the critical 
matrix cracking densities for delamination initiation as functions of the number of 90 ~ plies. 
Since the ply thickness is fixed, the number is proportional to the thickness of the 90 ~ plies. In 
agreement with Eq 19, it can be seen from the figure that as the thickness of the 90 ~ layer 
increases, the critical damage density decreases. The interesting thing is that the decaying curves 
for the previous three layups are almost coincident with each other. This interesting phenomena 
was predicted by Narin and Hu (Fig. 5 of Ref 12) for cross-ply layups. Although constraint 
effects have little affect on the critical crack density, it has a significant effect on the load at 
which the critical density is reached as we can see later. When the number of the 90 ~ layer 
decreases from 5.5 to 1.5, the normalized critical matrix crack density increases from 0.22 to 
0.805, which corresponds to an increase from 5.8 cracks per centimetre to 28. This result means 
that when the 90~ group becomes very thin, the transition from matrix cracking to delam- 
ination becomes very difficult. The calculated results show that when the number, n, is less 
than 1, the transition from transverse matrix cracking to interlaminar local delamination does 
not occur. 

Figure 5 shows the internal constraint effects on the critical applied stresses at which initiation 
of matrix-cracking and the transition from matrix cracking to delamination occur, respectively. 
In the figure, three laminates with the same thickness of 900 layers are placed in such a way 
that the anisotropic constraint effects on the 90 ~ layer monotonically increase from the left 

[0J-454/901.5]s to the right one laminate [0~/90~/-45~/90~.5]~, through the middle laminate ~ § o o 
[0~/90~/0~/90~.5]~. From Fig. 5, we can see that the critical stresses are also monotonically 
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FIG. 3--Applied stress for initiation of delamination and for continued microcracking. 
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FIG. 4--The critical damage densities for delamination initiation as functions of the number of 
90~ 

increasing from the left to the right. These results illustrate that the higher the anisotropic 
constraint effects, the higher the required applied stresses for matrix-cracking initiation and for 
the transition from matrix cracking to delamination. 

Figure 6 shows energy release rates of matrix cracking versus normalized matrix cracking 
densities for the three kinds of layups under the applied tensile stress of 100 MPa. The curves 
in this figure can be used to explain results in Figs. 3 and 5. In fact, this figure shows that as 
the matrix cracking density increases, the available fracture energy decreases up to a very small 
value at the transition point. This is because when the matrix damage density approaches the 
transition point, the distance between the two cracks is short, and interactions between matrix 
cracks become intensive. These interactions cause the available fracture energy to be reduced 
and requires a larger applied stress for continued matrix cracking. In relation to Fig. 5, curves 
in Fig. 6 show that if a layer is constrained more strenuously by neighboring layers, it has less 
available fracture energy for damage initiation, and therefore requires more applied stress for 
matrix cracking and more stress for the transition from matrix cracking to delamination. For 
instance, Layup A in Table 1, that is [0~/90~/0~/90~5]s, has the largest damage resistance, or 
the greatest required initiation energy, E initiati~ This is because the highest constraint effects 

FIG. 5--The critical stresses for initiation of matrix cracking and delamination. 
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FIG. 6--Comparison of energy release rates for continued matrix cracking of three layups. 

of that kind of layup cause its available fracture energy for a fixed applied stress to be the 
smallest. 

Table 2 shows the available fracture energy, G "~, for matrix-cracking initiation under applied 
tensile stress of 400 MPa. Since the required energy, E i"i'i=~~ in Table 1 was obtained through 
impact bending, the two kinds of results cannot be used for direct quantitative comparison. 
However, Tables 1 and 2 are for the same material and layups, and their values may show 
some connections. In fact, in Table 2 the ratio of the available fracture energy, G mc, according 
to the order, D, C, B, A, is 6.6:2.46:1.33: 1. The ratio of E initiati~ for the required initiation 
energy according to the same order, D, C, B, A, is 1:1.36:2.18:7.55. This comparison shows 
that the inverse ratio of the required energy, E ~"it~"~ in Table 1 is roughly proportional to the 
ratio of available fracture energy in Table 2. This comparison seems reasonable due to the 
following reason. For an idealized elasticity body and fixed critical energy release rate, G~ ~, 
the lower the available fracture energy, GmC I . . . . . . . .  under fixed applied stress, the higher the 
required supply energy, E initiati~ to make G "~ reach the value of G~ '~. Therefore, the values of 
the two types of energies, G'~I . . . . . .  , and E initiati~ should be approximate inverse. 

C o n c l u s i o n s  

I. Two internal variables, namely, normalized matrix crack density and delarnination length, 
are introduced in this work. The effective stiffness matrix of a damaged ply is expressed through 
the introduced parameter's IDEF, based on the irthomogeneity theory of cracked bodies that 
were developed by Valuenko and Kachanov, Budiansky and O'ConneU, and Horii and Nemat- 

TABLE 2--Layup effects on available fracture energy, G ~ ,  for applied tensile stress, 400 MPa. 

Layup Type Material Type Layups G~, J/rn z 

A T300/976 Gr/Ep [0~/90~/0~/90~ 5]~ 36.5 
B T300/976 Gr/Ep [0~/_+45~/90~L 97.9 
C T300/976 Gr/Ep [0~/_+45]/90~1s 241 
D T300/976 Gr/Ep [90~/0~/90~] 181 
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Nasser. The homogeneous process of the cracked body is carried out by a volume average 
process of stress and strain in the damaged ply at hand. 

2. A methodology of interactive damage progression has been developed for general layup 
composites by accounting for internal constraint effects. These important effects are analyzed 
by proposing a five-layer ECM for the ply at hand. Considering any generic ply as a "local 
90 ~ layer" and embedding it in a five-layer ECM, the IDEF, proposed by Fan and Zhang in 
1993, is extended to an arbitrary layer with transverse matrix cracking-local delamination in- 
teraction. The introduced IDEF can be considered as a quantitative measure for the anisotropic 
constraint effects on interactive damage interaction of an arbitrary layer. 

3. By proposing a meso/macroscopic method for the analysis of a unit cell in the five-layer 
model, the IDEF of an arbitrary ply can be determined. In the mesoscopic analysis, a boundary 
value problem involved continuity conditions at the interface between sublaminates, and bound- 
ary conditions at the crack surface are solved for the symmetric ECM under the normal applied 
stress. From this, the sequential anisotropic stiffness reductions, the available fracture energy 
for competing damage modes, as well as the initiation, transition, and progression of damage 
modes can be determined and predicted. This methodology is exemplified by investigating the 
progressive matrix cracking-local delamination interaction. 

4. With this unique approach, the intractable problem of laminate inhomogeneity effects on 
interactive damage progression can be handled in a systematic manner. More specifically, this 
approach can be reduced to solve different boundary problems to determine the IDEF for the 
problems at hand. This situation is very similar to fracture mechanics analysis where the main 
problem is to determine stress intensity factors. Future work will include the solution of several 
important boundary value problems to obtain the related IDEF expressions, such as symmetric 
and unsymmetric five-layer analysis without using the assumption of plane-strain conditions. 
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..llv.,1 + A? )) (B~) + h(_~) (29) a,, : D~ ) (B~))2 a(l)za(2) 2 
- + + + 

1 B~? + A~ ) h (2) 
a,2 = A~) + A~2) + A?  ) T A?) + T A~2) 

h (3) ntllkOllA(3)[io(l) + 0 . 5  h ~  A(lll )) 
a13 = 2(A]]) + A]2) + A?)) 

a22 = D(l~) + 
~,z~ ] k"r//a(2)'~2{A a O ) a ( 3 )  + a (2 )a (3 )  + a O ) a ( 2 h  

ZXllZ311 Z , l l ~ l l  lXll-~Xll / 

4(A~? + A]] ) + A~ )) 

a2  3 ---- 

h (3) A~ ) h (z) 
4(A~? + A]] ) + A]] )) 
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(31) 
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(2 A~] ) + A]] )) (33) 
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a33 = D]  3) + 
(h(3)) 2 ,,111./'111a(3)/'A(l) -]- A~ 2)) 

4(A]] ) + A~  ~ + A] 3)) 

bl l  = D~ 2) + 
A(ba(2) l 1 ~t 11 ~.r ~(2)) 2 (/,, -~ 

(A]]) + A]21 )) 4 

h( 2 ) A(I)A ( 2 ) ( ~  B(ll) ~ = ~ 1 l"a 11 
b12 2 (A(~]) + A(L 2)) + A(1])/ 

b = :  = O {  1) - - -  
(B(llI))2 -a 1 l,Ca 11 A(I)A ( 2 ) (  h~_~l ) B~I)~2 

A]]) + (A(I]) + A]21 )) + A]])] 

(34) 

(35) 

(36) 

(37) 

APPENDIX II 

In the following, Layer I k corresponds to Layer  1, Layer  (k + 1) to Layer 2, and Layer k to 
Layer  3. 

Co = A]~ k) + A]kl +1) + A]~ ) 

Cz = A(I~ k) + A(l~ +') 

C 4 = 0.5 h(k)h~kl ) 

h(lk) t(lk) 
C6 = B(l~ k) + 2 "111 

C 1 = A]/] +l) -I- A~  ) (38, 39) 

C 3 = 0.5 A~ k+l) -{'- A([] ) (40, 41) 

C s =  (h(~---~ C I -  B~lkl) (42,43) 

C7 = 0.5 h(k+l)(A]~ k) - A(I~ )) (44, 45) 

'Yl = 
p I G  + P~h(k+')C3 + (74 

Co 

pie5 + p~h(k+l)C3 + C4 
Yz = (46, 47) 

Co 

p~C5 + p~h(k+l)C3 + C4 
3,3 = 

Co 

= g/(lk)~ 1 ~ 
~1~1 ~11 r e a l  + A(I~ ) XlYi 

= u( lk ) . |X  + A~I1 k) X2y 2 ~2 X-'ll /" 2"12 

~3 ~'11 V3"~'3 -~" A~ll k) A3~3 

(48) 

(49)  

(50) 

(51) 

A(kl+')AI(C4 - p ~ C  6 - p2C7 ) 
~74 = 

Co 

A(k+l)~ ,,.~ _ pIC6 - p~C7) 11 tt21-t'~4 

rl5 = Co 

A(1~+I)A3(C4 - p~C6 - p~C7) 
776 = 

Co 

(52) 

(53) 

(54) 
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F,(x) 

(p~p32 - p~p22) sinh(X2(s - l)) sinh(Aa(s - l)) A]])N 
0/1 = A A~ 1) + a]  2) + A~] ) 

_ ( p ~ 2  _ p~p2) sinh(Al(S - 1)) sinh(A3(s - l)) A ? W  
0/2 = - -  A A ?  ) +A~  2 ) + A ?  ) 

(p~p~ - p~p~) sinh(Ai(s - l)) sinh(A2(s - l)) A]31)N 
0/3 = A a]'l ) + A~ 2) + A ?  ) 

N 
0/4 = O~5 = 0/6 A]]) + A]]) + A ?  ) 

A = sinh(Al(S - l)) sinh(Az(S - l)) sinh(A3(s - l)) 
[(P~P~ - P~P~)(7/3 + "q6) coth(A3(s - I)) + (p~032 - p~p2)(r/1 + r/n) 
coth(;t ,(s - t)) + (p~p~ - p lP~)(m + ,7~) coth(&(s  - 0) l  

l - D al A ]  k) 
X - -  - - ,  t~  1 ~- A(k+l) D mc A~ "~- l l ( l l )  

A(k)t,tlk + a(k+D~t~ llV,U "~u /tPl2 + P13 + P23) 
r = 2(A]tk ) + A]kl+i ) + A]~I)) 

P,2 = P ~  - p2tp~ 

= - 

(55) 

(56) 

(57) 

(58) 

(59) 

(60, 61) 

(62) 

(63) 

(64) 

(65) 

(r/l + r/4)P23 coth(Alh(krv) + ('q2 + "qs)P13 coth(A2h(3) x) + (*/3 + T~6)P23 coth(,~.3h(3)x) 
(66) 
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ABSTRACT: A fatigue damage computational algorithm utilizing a mulfiaxial, isothermal, con- 
tinuum-based fatigue damage model for unidirectional metal-matrix composites has been imple- 
mented into the commercial finite element code MARC using MARC user subroutines. Damage 
is introduced into the finite element solution through the concept of effective stress that fully 
couples the fatigue damage calculations with the finite element deformation solution. Two ap- 
plications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis 
of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core 
were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/ 
matrix unit cell using both the finite element method and the generalized method of cells (GMC). 
Results are presented in the form of S-N curves and damage distribution plots. 

KEYWORDS: continuum damage mechanics, cracking, fatigue (materials), fracture (materials), 
metal-matrix composites, coupled deformation damage, uncoupled deformation damage, finite 
element methods 

In advanced engine designs, materials that allow higher operating speeds and longer dura- 
bility in addition to decreased weight are desirable. The use of metal-matrix composites 
(MMCs) may provide these benefits. For example, titanium metal-matrix composite (TMC) 
rotors are projected to have significant benefits in terms of increased rotor speeds and lower 
weight, as compared to the nickel and titanium rotors currently in service. However, to fully 
realize the benefits offered by MMCs, computationally efficient design and life prediction 
methods must be developed. Analysis of typical aerospace structures subjected to complex 
thermomechanical load histories requires the use of computational approaches such as the finite 
element method. In this regard, it is desirable to develop a life prediction algorithm that can 
be used in conjunction with the finite element method. 

Historically, two basic approaches have been used in predicting the life of structures; un- 
coupled or fully coupled deformation-damage methods. A typical uncoupled analysis consists 
of obtaining the stress state for each element from a finite element analysis, and then, using 
the stress state data as input to a fatigue damage model, the number of cycles to the initiation 
of a crack are predicted. Subsequently, a " local"  fracture mechanics approach is then used to 
propagate the crack. For example, a new finite element mesh is constructed to model the crack- 
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66 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

tip zone using a series of double nodes. The propagation of the crack is then controlled by a 
strain energy release rate criteria in conjunction with a node release scheme. 

An alternative to the uncoupled method is a fully coupled deformation and damage method. 
By utilizing the concept of  effective stress/strain equivalence, the effects of damage are ac- 
counted for in the finite element solution. Through the degradation of the material properties, 
as will be described in the computational scheme section, for a specified increment in damage, 
the individual finite element material properties are degraded and the subsequent finite element 
analysis then calculates the corresponding stress redistribution caused by the damage. This 
sequence of material degradation (representing damage) followed by re-analysis to capture 
stress redistribution effects is repeated until structural failure. 

This is the approach taken in the present study. Specifically, the computational scheme 
developed uses MARC, a nonlinear finite element code in which the fatigue damage algorithm 
is coupled to MARC through the use of provided user subroutines. In the next section, the 
requisite fatigue damage equations are presented. In the following section, the computationally 
coupled fatigue damage algorithm will be outlined. Finally, two applications of the computa- 
tional scheme will be presented. The first example is a reinforced MMC ring, representing a 
typical engine component, and the results will be presented in terms of the evolution of damage 
in the ring cross section. The second example is a micromechanics analysis of a fiber-matrix 
representative volume element (RVE). The damage distribution in the matrix will be shown. 

F a t i g u e  D a m a g e  F o r m u l a t i o n  

The fatigue damage calculations utilize a recently developed multiaxial, isothermal, contin- 
uum damage mechanics model for the fatigue of unidirectional metal-matrix composites [1]. 
The model is phenomenological, stress-based, and assumes a single scalar internal damage 
variable. Note that for an initially anisotropic material, the evolution of the damage, although 
a scalar, is directionally dependent. As will be shown, this directional dependence is accounted 
for in the terms, Fro, (I~fl, and ~ .  The present multiaxial, isothermal, continuum damage model 
for unidirectional metal-matrix composites may be expressed as [1] 

~+1 ~ - m d N  (1) ~ - , d D  = [1 - (1 - D) ] 1 - D 

N is the number of cycles at the current stress state (trk) and the increment in damage, (Dk -- 
D~_~), where Dk and Dk-i is the amount of damage at the current and previous increments, 
respectively. The quantity, c~, that is a function of the current stress state is defined as 

= 1 - a - -  (~byl) (2)  

where ( ) are the Macauley brackets. In Eq 2, the fatigue limit surface, ~ r ,  and the static 
fracture surface, ~ . ,  are defined as 

1 m a x  m a x  
~ S t  - 2 to - 7  F(~t)(~ - o'//(to)) - 1 (3) 

m a x  
�9 . = 1 - F c u ~ ( ~ r o ( t ) )  (4) 

t 

Note, the case, (~ , )  = 0, indicates static fracture, which is failure, making it unnecessary to 
perform the fatigue calculations. Thus, having to consider the possibility of a being undefined 
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is unnecessary. As will be discussed in the following section, the finite element is considered 
to have failed completely. The case, (dp~) = 0, indicates that the current stress state is below 
the fatigue limit and thus a is set equal to 1. This presents a special case when integrating the 
fatigue damage expression, Eq 1, and will be considered later in this section. 

The quantity,/~m, the normalized stress amplitude, is defined as 

1 max max 
F m -  2 t t T  F(m)(~ - -  fro(t~ (5) 

In the preceding equations, to is the time at the beginning of the current load cycle, and t is 
some time during the load cycle. The general form for F~sl).(u)" or (m) may be expressed as 

~ ' ~ L {  4to~) - 1 
F( ) = (4w~) - 1)I1 + r/~ ) 

9} 
- - 1 2  + ~la  (6) 

It is here in Eq 6 where the evolution of the damage becomes directionally dependent. This 
simply amounts to the assumption of partial anisotropy, where the "extent" (magnitude) of 
damage is affected by the directionality of the stress state. Specifically, the directional depen- 
dence enters through the quantities, I1,/2,13, to(), and r/~ ). The quantities, I1,/2,/3, are invariants 
having the form 

1 1 
I1 = ~ SijS 0 - d,djSj~S~, + ~ (dfljSo) 2 

I2 = d ,dyS#S , , -  (dfljSu) 2 (7) 

13 = (d,djSo) 2 

that are a function of the current deviatoric stress state, S k, as well as the vector, d~, that defines 
the materials' fiber orientation. In addition, the terms, to< ) and ~(), represent the ratios of 
longitudinal to transverse normal and shear stresses, respectively. Note, the longitudinal direc- 
tion is parallel to the fiber direction and transverse is perpendicular to the fiber direction. For 
initially transversely isotropic materials, o( ) and 7/( ) are > 1, and for isotropic materials, to( ) 
a n d r  h ) a r e =  1. 

For a current state of stress, Ok, which is above the fatigue limit, that is, a =/= 1 (integrating 
Eq 1) results in an expression for the number of cycles, N, that is 

([1 - (1 - Dk)/3+l] 1-'~ - [1 - (1 - Dk_l)/3+l] 1-'~) 
N = P~(1 - a)(/3 + 1) (8) 

Note that D,_ ~ is the total amount of damage at the beginning of the load block and D k is 
the total amount of damage at the end of this load block. 

In the present computational scheme, since the damage increment is controlled, both Dk and 
Ok-  l are known. That is, D k = O k_ 1 "~ AD where AD is the user-specified increment in damage. 
Thus, Eq 8 is used to predict the increment in the number of cycles for each element, N e, due 
to the increment in damage. 

To calculate the number of cycles to failure for an initial damage amount, D k_ 1, let Dk = 1, 
which results in the following 

(1  - [1 - (1  - D , _ l ) ' e - 1 ]  1 - ~ )  

NF = P~(1 -- or)(/3 + 1) (9) 
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As will be shown in the following section, it is also necessary to rewrite Eq 8 in terms of 
the damage Dk, that is 

1 1 

D , =  1 - 1 - [1 - (1 - Dk_,)(Ja+l] '-'~ + (1 -- a ) ( f l +  1)F,~N} l (10) 

Now, consider the case in which the current stress state is below the fatigue limit, that is, 
(~p) = 0, which leads to ct, = 1. Thus, Eq 1 takes the form 

fo* dD = [ P~mdN (11) 
(1 D)t 3 CN 

, 1 - (1  - D )  t3+1 J ' o  

Upon integrating Eq 11 ,  the increment in cycles, N, with initial damage, D/c_ l, may be expressed 
a s  

N= ( !~176 1) (12) 

Alternatively, the following expression for the damage, Dk, may be expressed as 

1 

D k = 1 - [1 - [1 - (1 - Dk_l) ~+l] exp((/3 + 1)P~mN)]}I3+I (13) 

For the number of cycles to failure, let Dk = 1 

- log[1 - (1  - D k _ l )  t3+1] 
NF = P~(/3 + 1) (14) 

The effect of damage is included in the finite element stress analysis by utilizing the concept 
of "effective stress" [2] and the hypothesis of strain equivalence [3,4]. Thus, the effect of 
damage may be accounted for by either using the effective stress, that is, increasing the stress, 
or by simply degrading the elastic and plastic material properties to represent the material 
softening due to damage. Material softening is used in the present approach with the degraded 
elastic constitutive matrix calculated by 

[C] = (1 - Dk)[C] (15) 

and similarly, the plastic material properties, for example, yield stress, try, is given by 

~-y = (1 - DDtry (16) 

Computational S c h e m e  

General Framework 
The present version of the fatigue damage algorithm utilizes average quantities in the damage 

calculations. For example, the stresses for each integration point are determined and then all 
integration points are averaged to give one stress state for each element. All subsequent damage 
calculations use these average quantities. However, the program was written in a sufficiently 
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general form so that all of the damage calculations may be performed at each integration point 
with minimal modifications. Specifically, all that is required is increased dimensions for various 
storage arrays. Note that, because of the scalar nature of the damage parameter used here, 
together with the assumptions previously discussed, the task of local (constitutive) level inte- 
gration is simply reduced to the use of the "exact" closed-form expressions given in the 
preceding section. 

A flowchart of the developed life prediction scheme is shown in Fig. 1. The deformation 
analysis is the actual finite element run. First, note there are two levels of failure criteria checks; 
element level and structural level. The element level includes a static fracture surface check 
that is part of the fatigue damage model (Eq 4). Additional criteria may be included such as a 
check on total mechanical strains, etc. If an element violates one of these failure criteria, that 
element is considered to have "failed" and its damage, D, is set equal to the maximum amount 
of damage allowed. As shown in Fig. 1, for a coupled analysis, the damage calculations are 
terminated and a deformation analysis is rerun in order to account for the stress redistribution 

_• Deformation Analysis: 
Applied Load Cycle 

I 
I 

I tructural Level Failure Criteria Ch 
I / 
L - -  __ .1 [ no failure 

+ t failure[ [ 
Element Level Failure Criteria Check 

i / 

[ / no failure 

t 
Fatigue Damage Calculations - -  - -  "~ ! ,,, | 

i' t 

jL,,  comp,.t  J 

_ _ _ . ~  U n c o u p l e d  A n a l y s i s  

C o u p l e d  A n a l y s i s  

FIG. 1--Coupled/uncoupled life prediction scheme. 
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due to that element's failure. For an uncoupled analysis, when element failure occurs, the 
analysis does not loop back and perform another deformation analysis; instead, it continues to 
the next element and performs the damage calculations. The structural level criteria monitors 
the global response of the structure. This could take the form of a check upon selected nodal 
displacements that, if they violate a specified displacement criteria, the structure is considered 
to have failed. For example, the tip displacement of a turbine blade may be required to stay 
within a given tolerance. Again, note that for an uncoupled analysis no structural failure criteria 
check is performed since the present fatigue damage algorithm assumes that the structure, when 
subjected to the initial "applied" load cycle, is in a completely undamaged state. 

The applied load cycles just mentioned are those actually defined by the user through the 
finite element input data file. In addition, the number of load increments per applied cycle must 
be specified by the user. This is necessary so that the program can internally monitor when a 
given applied load cycle has been completed and begin the damage calculation phase. The 
number of load increments used in the load cycle usually depends on the nonlinearity of the 
structural response and requires experience on the part of the user. At each increment during 
the applied load cycle, the average stress (strain is optional) state for each element is stored. 
At the last load increment of the current applied load cycle, the DAMAGE subroutine is called 
to perform the fatigue damage calculations, see Fig. 2. 

When DAMAGE is entered for each element, various element quantities, such as ct, ~ ,  qbu, 
f,~, are calculated and stored. When DAMAGE has been called for the last element in the 
mesh, the fatigue damage calculations are performed. Figure 2 shows the general algorithm for 
the fatigue damage calculations. 

Presently, the damage calculations are controlled by the increment in damage, AD. The user 
specifies the allowable increment in damage, for example, AD = 0.15, (15%). In CALCN, 
using Eq 9 or Eq 12, based upon the new value of damage and the given element's stress state, 
the number of cycles to failure, N~, is calculated and stored. Next a "sorting" subroutine, 
SORTN, is called (see Fig. 2) to determine which element has the minimum number of cycles 
to failure and is chosen as the "controlling element," that is 

NFmin : minNeF e = 1 --> n u m e l  (17) 

DAMAGE 
calculate 0~, O~, ato Pm 

and control fatigue darn~ge 
algorithm 

f 

[ CALCN 
v ] calculate cycles to failure based on 

I current damage 

I SORTN 
find minimum number of cycles to 
failure 

CALCD 

calculate actual amount of damage 
based on minimum cycles to failure 

FIG. 2 - -Fa t igue  damage  calculations. 
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"applied" load cycle 1 
predicts 

N 1 cycles 

continue 
to failure 

"applied" load cycle 2 
predicts 

N 2 cycles 

. . . . 

I I 

N1 N2 

FIG, 3--Cycle scheme for a coupled analysis. 

continue 
to failure 

Once the controlling number of cycles has been determined, the corresponding, actual 
amount of damage, D~, in all of the remaining elements must be recalculated. This is performed 
in subroutine CALCD using Eq 10 or 13. Note that since the damage was incremented by a 
specified amount, the controlling element's damage is already known. 

Figure 3 shows the cycle scheme used in the code. Recall that the "applied" load cycle is 
the actual load history that is applied and used in the finite element analysis. The subsequent 
cycles, shown in dashed lines, are the predicted cycles corresponding to NFm~, that is determined 
in SORTN. Here, it is assumed that the stress state in each element remains constant during 
the predicted NFmin cycles and at the end of NFmin , each element has incurred an amount of 
damage as calculated in CALCD. Note for a coupled analysis, the next applied load cycle is 
run in the finite element analysis to account for the stress redistribution due to the new damage 
state in each element (that is, D~) and again a new NFmin is predicted. This sequence of applied 
load cycle and predicted cycles is repeated until the structure has failed. For an uncoupled 
analysis, only one sequence, that is, only one applied load cycle, is performed. The resulting 
NFm~n would be used to merely indicate the location of damage initiation. 

In preparation for the subsequent applied load cycle, the element material properties are 
degraded according to the newly calculated element damage, D~. Finally, a subroutine, 
PATSTR, was also written that generates PATRAN [5] element results files. These files contain 
damage distributions at specified increments during the fatigue damage analysis. In addition, 
output files containing a summary table of the current number of fatigue cycles and remaining 
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cycles to failure for each element, and a summary table showing the damage evolution in each 
element are also generated. 

Some general comments on the fatigue damage algorithm need to be made. First, once an 
element attains the user specified maximum allowable damage, the element is assumed to fall 
and is no longer considered in any subsequent damage calculations. In the example presented 
in the next section, a cutoff value of 95% was specified based upon preliminary experience 
with difficulty in achieving global convergence when the element stiffness was reduced below 
5%. Further investigation of convergence difficulties needs to be addressed. Second, in the 
present fully coupled damage-deformation analysis, a perfect plasticity model was used. This 
idealization eliminates the need to account for cyclic hardening, and the corresponding update 
of the internal variables, which may occur during a specific block of fatigue cycles. In order 
to accurately account for the hardening, a projection/update of the internal variables through 
the load block would be required. In addition, it is usually assumed that the fatigue damage 
calculations are applied to a "stabilized" stress redistribution. Thus, when hardening is present, 
more than one applied load cycle may be necessary in order to achieve the stabilized stress 
redistribution. 

MARC Implementation 

As an example, the present fatigue damage algorithm was implemented into the finite element 
code MARC. Please note that based upon the discussion in the previous section, it should be 
apparent that the fatigue damage algorithm was developed in a form that is independent of the 
specific finite element code that is used. Most commercial finite element codes provide capa- 
bilities similar to those described here with regards to MARC. 

MARC provides various user subroutines [6] that allow implementation of constitutive mod- 
els, failure criteria, new elements, etc. By using a few select MARC user subroutines, the 
continuum-based fatigue damage model has been coupled with the nonlinear finite element 
solution scheme. The primary MARC user subroutine required is ELEVAR. In addition, when 
using the plasticity model contained in MARC, the subroutines HOOKLW and ANPLAS are 
used to degrade the elastic and plastic material properties, respectively. In this study, the user 
subroutine HYPELA was also used to implement the Bodner-Partom viscoplastic model into 
MARC. 

The subroutine ELEVAR is called at the end of each load increment once global convergence 
has been attained, and is intended to be used to output element quantities at the end of a given 
increment. In this algorithm, ELEVAR is used to store the current converged stress state for 
each element during the applied load cycle. The meaning of applied load cycle is the same as 
discussed earlier in the previous section. This is done through the MARC subroutines 
HOOKLW, for the elastic constants, and ANPLAS, for the anisotropic yield stress ratios using 
Eqs 17 and 18. Again, HOOKLW and ANPLAS are used when the MARC plasticity model is 
used. For the Bodner-Partom viscoplastic model, similar calculations are performed within the 
HYPELA routine. 

Example Applications 
A Cladded MMC Ring Insert 

As stated previously, one of the primary motivations of this research is to establish a com- 
putationally efficient method for predicting the fatigue life of typical aerospace components. 
This includes the ability to predict the location of damage initiation and to be able to track the 
propagation of damage throughout the structure. With this in mind, the fatigue damage algo- 
rithm was applied to a cladded MMC ring. The reasons for choosing this specific structure are 
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TABLE 1 Material properties for plastic deformation model 
(MPa). 

SiC/Ti 15-3 COMPOSITE MATERIAL 

Elastic 
El = 183959, E2 = E3 = 114457, vj2 = 0.28, /:13 = / : 2 3  = 0.32 

Inelastic 

try = 276, O'y-'~I = 5,  O'y2 O'y3 1 
0"3, O'y O'y 

MATRIX MATERIAL (Ti 15-3) 
Elastic 

E = 74466, v = 0.32 

Inelastic 
O-y = 514 

NOTE--The subscript, 1, denotes fiber direction. 

twofold. First, it represents a MMC rotor insert currently under consideration in advanced 
engine designs. Secondly, because of  its axisymmetric geometry and load conditions, qualitative 
stress distributions are known a priori. For example, maximum circumferential stress in the 
core occurs at its inner diameter and likewise for the cladding, thus providing some intuitive 
feel for where damage initiation will occur as well as how it may propagate. 

The composite core was described by Hill 's  anisotropic elastic-plastic constitutive model 
available in MARC [6], while the matrix cladding was assumed to be isotropic and elastic 
perfectly-plastic. The elastic and inelastic material parameters required for the deformation 
analysis are given in Table 1, while the associated material parameters for the fatigue damage 
model are given in Table 2. Note that the matrix cladding utilizes the isotropic form of the 
fatigue damage model, that is, to, = to: = tom = T/u ~--- ' 0 f l  = T~m = 1, whereas the composite 
core is represented by the transversely isotropic form of the model. The finite element model, 
representing the cross section of the ring, Fig. 4, consisted of 225 nodes and 64 eight-node 
axisymmetric elements (MARC element No. 28). A uniform pressure load was applied along 
the inner diameter of  the ring. 

With regards to the deformation analysis, burst pressure predictions have been previously 
made and compared to limited experimental data [7,8]. Very good correlation was observed, 
thus providing a level of confidence in the finite element modeling of  the ring. 

TABLE 2 Material properties for fatigue model [7] (MPa). 

SiC/Ti 15-3 COMPOSITE MATERIAL 
O'u = 10694 to, = 5.5 
tr: = 1972 co: = 12.482 
/3 = 1.842 tom = 11.8 
a = 0.012 ~7,, = r/fl = "0m = 1.0 
M = 22371 

MATRIX MATERIAL (Ti 15-3)--ISOTROPIC SIMPLIFICATION 
tr. = 6081 co. = 1.0 
o': = 965 to: = 1.0 
/3 = 2.27 co,. = 1.0 
a = 0.0365 aT, , = r/fl = 71,, = 1.0 
M = 6205 
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FIG. 4--Cladded MMC ring geometry and finite element model: (top) actual ring geometry (di- 
mensions are in mm) and (bottom) idealized ring geometry. 

Two types of fatigue life analyses were performed, namely, an uncoupled and a coupled 
analysis. The uncoupled life prediction results were obtained by taking four elements, labeled 
1, 2, 3 and 4 in Fig. 4 (bottom), in the radial direction of the composite core of the ring. It was 
assumed that the stress state was relatively constant in the z-direction, thus one element would 
represent all of the elements in a column of the composite core. In the uncoupled analysis, no 
fatigue calculations were performed on the elements associated with the matrix cladding be- 
cause of the initially low stress levels in the matrix cladding causing infinite fatigue lives to be 
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calculated. A finite element analysis was run in which the ring was subjected to a cyclic pressure 
load. During the analysis, the stress state history for each of the four elements was stored. The 
stress history for a given element (1, 2, 3, or 4) was then used to predict the corresponding 
fatigue life for that element. Since only a single cycle was used, no stress redistribution effects, 
due to damage, were accounted for in the uncoupled analysis. Figure 5 ( t o p )  shows the results 
of the uncoupled fatigue damage analysis. As expected, since Element 1 has the highest stress 
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FIG. 6--Fatigue damage distribution in ring cross section: (left) N/NF --~ 0.2 and (right) N/NF 
1.0. Cycles to failure, NF = 155. 

state, it correspondingly has the shortest fatigue life. Thus, damage is predicted to initiate along 
the composite core inner diameter. 

The fully coupled life prediction analysis follows the algorithm presented in the previous 
section that takes into account the effects of stress redistribution due to the propagation of 
damage. Now in the coupled analysis, finite lives and damage are predicted for the cladding, 
due to stress redistribution effects. Figure 5 (bottom) shows the fully coupled deformation and 
fatigue damage analysis results. The solid circles are analysis results obtained using the present 
fully coupled algorithm. A smooth solid line is drawn through these points to obtain the S-N 
curve. Note the dashed part of the S-N curve indicates an "extrapolation" since no analysis 
was run at a P/PL less than 0.30. Upon comparison, one observes that at pressures close to the 
burst pressure, the fatigue life predicted by the coupled analysis is close to that of the uncoupled 
analysis, since at high stress levels, once the damage initiates in the core, "structural" fail- 
ure of the ring occurred rapidly. On the other hand, at low stress levels, the fatigue life as 
predicted by the coupled analysis is longer than that predicted from the uncoupled analysis 
at the inside diameter. This difference may be viewed as the effect of propagation of the damage 
in the ring cross section. This propagation is caused by the stress redistribution effects that 
are automatically captured by performing a fully coupled deformation and fatigue damage 
analysis. 

Finally, Fig. 6 shows two selected damage distribution plots in the ring cross section pro- 
duced by the coupled fatigue damage analysis for P/PL = 0.85. Note that in Fig. 6 (left), the 
damage initiates along the inner diameter of the composite core. In addition, the first elements 
to completely fail are located in the inner radius "comers"  of the TMC core. Therefore, 
the assumption used in the uncoupled analysis of a uniform stress state in the z-direction 
for a given column of core elements was not appropriate. Conversely, in Fig. 6 (right) 
structural failure of the ring is depicted (that is, the composite core has completely failed) 
and due to stress redistribution, the matrix cladding has accumulated significant amounts of 
damage. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



WILT ET AL. ON A FATIGUE DAMAGE COMPUTATIONAL ALGORITHM 77  

I I I I I  
I ! 111  
l U l l  

I l l |  

[ ~  denotes fiber 

/ / / / .  
" i / / . l  . "  

l i I ~  I i  
,I i I /  

f l  ' t l  
, ' / I . . "  

FIG. 7--Finite element mesh (top) and GMC (bottom) RVEs. 

Micromechanical Failure Analysis 

The second application is on the microscale in which a fiber/matrix unit cell representing a 
square pack, 35% fiber volume ratio (FVR), SiC/Ti-15-3 composite was analyzed. Two ap- 
proaches were used to model and analyze the unit cell. The first approach utilized a finite 
element representation in which the unit cell was idealized using two mesh discretizations, 
consisting of 4 and 64 eight-node three-dimensional elements, Fig. 7. For the deformation 
response, the Bodner-Partom viscoplastic model was characterized for the Ti-15-3 matrix ma- 
terial (see Table 3) and the fiber utilized a simple isotropic linear elastic model (see Table 4). 

TABLE 3--Material properties for viscoplastic deformation model 
(MPa) SiC fiber material. 

Elastic 
E = 399910, ~ = 0.25 

Inelastic 
Do = 0, Zo =Zt  = m =  n = Q = 1 
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TABLE 4--Material properties for viscoplastic deformation model 
(MPa) Ti 15-3 matrix material. 

Elastic 
E = 74466, v = 0.32 

Inelastic 
Do = 1000, Zo = Z1 = 120 
m = l O ,  n = 3 ,  Q = l  

The Bodner-Partom viscoplastic model was implemented into MARC using the HYPELA user 
subroutine. The fatigue damage model, taken in its isotropic form, was characterized for the 
Ti-15-3 matrix constituent. 

The second approach utilized the generalized method of cells, GMC, developed by Aboudi 
[9]. GMC is a continuum-based micromechanics model that provides closed-form expressions 
for the macro response of the composite in terms of the individual constituents (phases). The 
GMC model and the fatigue damage algorithm have been incorporated into the stand-alone 
micromechanics analysis code, MAC [10]. MAC has the ability to analyze a material volume 
element subjected to various thermal, mechanical (stress or strain control), and thermomechan- 
ical load histories, and wherein different integration algorithms and a variety of constitutive 
models can be selected. Previous work [11] has shown the accuracy and computational effi- 
ciency of GMC with respect to deformation analysis. Part of this work, and future research, is 
to determine if GMC also provides accurate and computationally efficient fatigue damage 
predictions. 

The analysis consisted of stress-controlled cyclic loads applied in the longitudinal direction 
with respect to the unit cell. All four unit cells (both finite element and GMC) produced identical 
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FIG. 8--Longitudinal stress versus strain response: finite element and GMC. 
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TABLE 5--Fatigue lives for a 35% fiber volume fraction SCS-6/Ti-15-3 composite loaded 
longitudinally. 

Fatigue Life, Cycles 

Finite Element GMC 

Load, MPa 4 64 Difference, % 4-Cell 49-Cell Difference, % 

1345 2939 2858 3.0 2497 2494 0.2 
1207 4957 4859 2.0 4245 4234 0.25 
931 21497 20992 2.4 20459 20098 2. 
793 64496 62366 3.4 61235 59843 2.3 

longitudinal macro stress-strain responses, as shown in Fig. 8. However, the predicted longi- 
tudinal fatigue lives are different, see Table 5. An example macrolongitudinal S-N curve pro- 
duced with the 64 finite element model is shown in Fig. 9. Note, that if the SCS-6 fiber is taken 
to have a constant ultimate tensile strength (UTS) value, the lower stress amplitude lives in 
Fig. 9 are run outs. Consequently, in order to agree with the experimentally determined fatigue 
lives, a fiber kITS model that degrades as a function of time and temperature is required, Fig. 
10. All the lives indicated in Table 5 were generated using this time-dependent fiber UTS 
model. Referring to Table 5, note that the 4 and 64 finite element unit cells give results that 
are consistently within 2 to 3% of each other for all stress levels, and the 4 and 49 cell GMC 
results are within 0.2 to 2% of each other. This shows that for the longitudinal response the 4 
finite element unit cell produces results that are comparable to the 64 finite element unit cell. 
Similarly, the 4-cell GMC representative volume element (RVE) gives results that are as ac- 
curate as the 49-cell GMC RVE. Table 6 shows a comparison between the 4 finite element unit 
cell versus the 4-cell GMC RVE and the 64 finite element unit cell versus the 49-cell GMC 
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FIG. l O--Fiber constituent ultimate tensile strength (UTS) failure diagram. 

RVE. Note that at the higher stress amplitudes (1345 and 1207 MPa), the relative differences 
are on the order of 14 to 17%, while at the lower stress amplitudes (931 and 793 MPa), there 
is a relative difference of 4 to 5%. 

Figure 11 shows the damage distribution for the fatigue analysis having a maximum stress 
amplitude of 1345 MPa. The damage distributions were taken just before failure of the unit 
cell (that is, fiber fracture). Figure 11 shows the corresponding damage distributions for both 
the 4 and 64 finite element unit cells and the GMC 4-cell and 49-cell RVE models. 

C o n c l u s i o n s  

A coupled/uncoupled deformation and fatigue damage algorithm has been presented, The 
algorithm utilizes a multiaxial, isothermal, stress-based, transversely isotropic continuum fa- 
tigue damage model in which the fatigue damage calculations are coupled with the nonlinear 
finite element solution using the concept of effective stress. Incorporated in the life prediction 
scheme are failure criteria checks at both the element and structural level. The algorithm has 
been applied to a cladded MMC ring insert representing a typical aerospace component and 
results have been presented in terms of S-N curves along the damage distribution plots over 
the ring cross section. The fatigue damage results presented are qualitative in nature since no 

TABLE 6~Fatigue lives for a 35% fiber fraction SCS-6/Ti-15- 3 composite loaded longitudinally. 

Fatigue Life, Cycles 

4 Finite 4-Cell 64 Finite 49-Cell 
Load, MPa Element GMC Difference, % Elements GMC Difference, % 

1345 2939 2497 17.7 2858 2494 14.5 
1207 4957 4245 16.7 4859 4234 14.7 
931 21497 20459 5.0 20992 20098 4.0 
793 64496 61235 5.3 62366 59843 4.0 
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FIG. 1 l~Representative damage states: finite element and GMC unit cells. 

experimental results are currently available. However, full-scale burst pressure and fatigue tests 
will be performed on similar cladded MMC rings. Once these test results become available, a 
similar finite element analysis will be conducted to verify the present fatigue damage algorithm 
and continuum fatigue damage model. 

With regards to the micromechanics fatigue damage analysis, future work will involve pre- 
dicting the transverse fatigue behavior of the same SiC/Ti-15-3 composite. Comparisons will 
also be made between the finite element method and the generalized method of cells in terms 
of accuracy and computational efficiency. Finally, an attempt will be made to repeat the macro- 
based MMC ring insert life analysis, but this time using a micromechanics-based approach. 
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ABSTRACT: Matrix cracking, interfacial debonding and sliding, fiber breakage and fiber pullout 
induced loss of stiffness, inelastic strains, hysteresis loops, and crack closure. These mechanisms 
are analyzed within the framework of continuum mechanics through the introduction of internal 
variables. Two models that are faithful to the micromechanical analysis are studied. They provide 
guidance on the choice of the relevant internal variables to describe the mechanical behavior of 
unidirectional fiber-reinforced composites. Ultimate strength properties of fiber-reinforced com- 
posites are derived and compared with results related to localization. Extensions to cyclic load 
histories are discussed in terms of ultimate strength reached after cycling. 

KEYWORDS: matrix cracking, debonding, fiber breakage, inter'facial shear strength, inteffacial 
wear, ultimate strength, continuum damage mechanics, state potential, internal variables, fatigue 
failure maps, fatigue (materials), fracture (materials) 

The basic mechanisms related to the degradation of ceramic-matrix composites submitted to 
monotonic and cyclic load histories are matrix cracking, interfacial debonding and sliding, 
interracial wear, and eventually fiber breakage and fiber pullout. These mechanisms are studied 
within the framework of continuum mechanics by using results of micromechanical analyses. 
An explicit expression of the Helmholtz free energy density is derived in the case of monotonic 
and cyclic load conditions. In particular, internal variables are carefully chosen to describe the 
degradation mechanisms (for example, a damage parameter characterizing matrix cracking, 
another one modeling fiber breakage) and written in a more appropriate format to allow the 
derivation of constitutive equations applicable to structural calculations [1,2]. 

In the case of cyclic load histories, the gradual degradation of the interface is modeled by 
an interfacial wear law. The evolution laws of some state variables have to be rewritten to 
account for interfacial wear. 

In the case of monotonic and cyclic load histories, the failure conditions are written in terms 
of macrocrack initiation conditions (that is, localization conditions). Failure conditions are 
compared with ultimate tensile strength predictions. Under cyclic load, failure conditions are 
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summarized by the introduction of a shear stress map in which three different regimes appear 
depending on the stress amplitude and the number of cycles. 

Matrix Cracking Mechanism 

A continuum mechanics formulation applied to fiber-reinforced ceramic matrix composites 
(CMCs) is written within the framework of the thermodynamics of irreversible processes [3,4]. 
The first step in establishing such a model is to identify the internal variables that define the 
state of the material. The second step is to determine the expression of the state potential in 
terms of the state variables, and the third one is to define the evolution laws of the internal 
variables. The state potential, ~b, is made up._of the sum of two terms, namely, the elastic energy 
density, ~e, and the stored energy density, 0s. The elastic part is directly related to the applied 
load. The stored energy density is the result of residual stress fields that give rise to macroscopic 
strains with no applied load. By considering two elastic steps, the total free energy density can 
be evaluated following a so-called "cut and paste" technique introduced by Volterra [5]. This 
approach will be used to study the degradation of fiber-reinforced composites. 

General Expression of the Free Energy Density 

Loading a composite consisting of a brittle matrix supported by stronger fibers, usually causes 
multiple matrix cracking that is accompanied by interfacial debonding and sliding. In the fol- 
lowing, we assume that the whole matrix cracking process occurs at load levels lower than the 
fiber breakage mechanism, and therefore the former mechanism will first be analyzed. The 
matrix cracks, which are assumed to be perpendicular to the fiber directions, cause a stiffness 

FIG. 1 Elementary cell. 
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reduction when the applied stress, ~, is tensile. Furthermore, it is the closure of the cracks that 
indicates the onset of increased stiffness when the specimen is subsequently loaded in com- 
pression. We will use elementary cells of length, 2L, characterizing the average crack spacing, 
and consisting of two different materials (m and f) as shown in Fig. 1, where E is the Young's 
modulus of the unbroken composite, Em that of the matrix (m), and E s that of the fiber (f). In 
the absence of residual stresses due to processing, the presence of matrix cracks implies a 
potential energy density change A~c written as 

ae ,  = ~ ~(L)  (1) 

where ~c(L) = quantity depending on the average crack spacing, L [6]. 
The cracking mechanism is dissipative and does not store energy. It only influences ~e' 

Debonding followed by sliding gives rise to inelastic strains and hysteresis loops. To describe 
these phenomena, different models have been proposed [7,8]. They all consider a friction length, 
2IF, here assumed to be equal to the debond length, 2ld (Fig. 1). Similarly to cracking, which 
is a Mode I mechanism, debonding per se is purely dissipative. When debonding and slip occur 
simultaneously, a self-balanced microscopic stress field is introduced. The corresponding strains 
in the matrix and in the fiber are denoted by Aem(Z) and Aet(z), respectively, where z is the 
current coordinate. By application of the principle of virtual work, an overall inelastic strain, 
~,  can be derived [2] 

e ~ = ~  LAes(z) dz (2) 

Since the additional stress field is self-balanced, the debonding and sliding processes are able 
to store energy. This result shows that to fully characterize both mechanisms the knowledge 
of the stored energy density, ~bs, is crucial. It is expressed as the total elastic energy density 
associated with the residual stress field due to debonding and sliding 

1 r~ 1 
j_  [fEiAe~(z ) + (1 - f)E,~Ae2(Z)] dz (3) 

where f = fiber volume fraction. 
The matrix cracking process described by an internal damage variable complies with the 

requirement of a fully dissipative mechanism. In a continuum damage mechanics framework, 
the presence of a crack results in a stiffness reduction defined by an internal damage variable, 
D, [9] and the potential energy change can be written as follows 

F z D 
A~c - (4) 

2 E l  - D  

so that the corresponding Gibbs' elastic energy density of a damaged material is written as 
-~e = U'212E(1 - D). 

To characterize fully the debonding and sliding mechanisms, two variables are needed. The 
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first one is the inelastic strain, ~i, and the second, denoted by d, which is usually proportional 
to the debond length, Id, is introduced to define the stored energy (Eq 3) 

1 Aes(z) dz 
E ~  2 (1 - f )E. ,  ~ L 

(5) ~s = ~ ~ with d = r E ,  1 ( '  
Ae}(z) dz 

2L J-L 

In addition to the total strain, g, the total free energy density, ~, is therefore dependent on three 
internal variables: one damage variable, D, modeling matrix cracking and related to the average 
crack spacing, and two variables, ~i and d, describing debonding and sliding, and related to the 
debond length and the crack opening displacement due to sliding 

= E ( I ~ -  D) (e _ E~)2 + 2E d~2 (6) 

The associated forces are defined as follows 

o? o? 
- ~ =  -~e, Y -  ~-D, y - 

a~ ~ _  0-~ (7a,b,c,d) 
ad ' O-el 

Equation 7a defines the macroscopic stress, ~. Equation 7b defines the energy release rate 
density, Y, playing a similar role as the energy release rate, G, in linear elastic fracture me- 
chanics. Combining Eqs 7a and b, one shows that the energy release rate density, Y, is pro- 
portional to the square of the effective stress, ~/(1 - D). Similarly, Eq 7c defines the stored 
energy density, y, released during debonding and sliding. Since the variable, d, depends upon 
the details of the interfacial behavior, the definition of its associated force is also dependent 
upon the interfaciai behavior. Finally, Eq 7d defines the back stress, X, related to debonding 
and sliding. Again, its exact value depends upon the interfaciai behavior. 

To determine the evolution laws of the internal variables, two ways can be followed. The 
first one is using simulations of the complete micromechanical model along the lines developed, 
for instance, by Feillard et al. [10] to get the evolution of crack spacing, L, and debond length, 
ld, and then the state potential. The second one is by performing experiments. The damage 
variable, D, is obtained by measuring the initial unloading modulus (Fig. 2), and the corre- 

r t )  

Ei 
Strain, 

FIG. 2--Schematic stress/strain curve. 
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sponding inelastic strain is ~. Applications of this kind of identification ~ocedure can be found 
in Ref 11. To measure the damage variable, d, the stored energy density, ~b,, has to be evaluated, 
for instance, by using methods developed by Chrysochoos et al. [12] or Cho et al. [13]. 

Relationship Between Internal Variables and Microscopic Quantities 

In this subsection, expressions of the three internal variables, D, ~i and d, are derived from 
some simple micromechanical models. By using a shear lag analysis [14] and Eqs 1 and 4, the 
damage variable, D, is linked to the average crack spacing, L, by the relationship 

D (1 - f)Em tanh/3L 
- 2 ~ ( L )  - ( 8 )  

1 - O fE  s /3L 

where the constant,/3, is a function of the elastic and geometric properties of the fiber and the 
matrix and is on the order of 1/R s for many CMCs. The strain distribution, Aes(z), in the 
friction zone in the fiber is assumed to be linear and characterized by a constant interfacial 
shear strength, ~'o [15,16]. It is also assumed that the debond energy release rate, Gd, is negligible 
so that the inelastic strain, Ei, is then given by [8] 

EsRsL 

where 

R s = fiber radius, m; and 
la = debond length (inversely proportional to to), m. 

(9) 

Equations 2 and 9 show that the inelastic strain is a function of the average crack spacing as 
well as the debond length. It is worth noting that other interfacial models can be used: they 
will yield other expressions in Eq 9, even though Eq 2 remains valid. The definition of the 
variable, d, is directly obtained from its definition in the expression of the stored energy density, 
Ss, given in Eq 3 

3 ( 1  - -  f )E m ld 
d - (10) 

4 fE  s L 

The damage variable, d, defines the size of the slip zone related to the crack spacing length, 
ld/L. 

Effect of  Stress Redistribution Due to Matrix Cracking 

To study the ability of CMCs to redistribute stresses, a two-bar structure is analyzed (see 
Fig. 3a) that describes the effect of a strain concentration. This example is representative of 
more complex configurations (for example, plates with holes, notched specimens, pin-loaded 
structures) for which strain concentrations occur. The length and cross-sectional area of Bar 
(1) are A and (1 - F)S, and of Bar (2) are kA and FS. The model allows variation of the load 
distribution in the bars and consequently the stress concentration. To simplify the analysis, only 
matrix cracking is modeled by the introduction of the damage variable, D (that is, no inelastic 
strain). The damage variable evolves provided any local stress is greater than the matrix crack- 
ing stress, tr,,c, up to the ultimate strength, tr,. When a constant load, SE, is applied, three 
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different regimes can be defined. First, when the stress level is low (that is, Y./~,.c < 1 - F + 
F/k), there is no cracking (o-1 < ~rmc, ~r2 < trine) and the two bars behave elastically thereby 
defining an "elast ic"  regime. Second, for higher stress levels (1 - F + FIk <-- Z/O'mc < k(1 
- D0(1 - F)  + F), the shortest bar (that is, Bar (1)) experiences cracking (o5 >- irma) whereas 
the longest one is still elastic. This condition is defined as "confined cracking." The upper 
bound of this regime shows that the effect of confined cracking is a reduction of the stress 
concentration from an initial value of k to k(1 - D1) assumed to be greater than 1. Third, for 
very high stress levels (that is, Z/tr,~ -> k(1 - D0(1 - F) + F), the two bars experience 
matrix cracking and that defines a regime of "extensive cracking." The third regime exists 
provided the ultimate strength, o-., is not exceeded. When tr./~.~ < k(1 - D.), where Du is 
the damage parameter at the ultimate, the extensive cracking regime is excluded. On the other 
hand, when o-./o-~c -> k(1 - D.), the extensive cracking regime exists, when the strain con- 
centration is low (that is, oru[O'mc ~- k), the latter regime will always occur. 

Wear Mechanism During Cyclic Loading 

Under cyclic loading, wear may take place at the fiber/matrix interface because of stress 
reversals [17]. An estimate of the effect of cyclic loading on the mechanical behavior is possible 
when the influence of interfacial wear is included in the model. The effect of wear is a change 
of the residual stress field induced by debonding and sliding. Therefore, as the number of cycles, 
N, increases, there is a variation of the associated additional strains Aem(Z,N) and Aes(z,N). By 
inspection of Eqs 2 and 3, there is a direct influence of wear on the inelastic strain as well as 
the damage variable, d. Thus, to write the evolution laws during fatigue, one needs to model 
the evolution of wear as a function of  the number of cycles. 

When a constant stress amplitude is applied and if the interfacial behavior is modeled by a 
constant interfacial shear strength, the evolution, ~N),  as a function, N, can be written as ~(N) 
= ~o~(N), where ~P is a decreasing function with the number of cycles fib(0) = 1) [18]. The 
evolution of the variables, ~i(N) and d(N), can be related to the initial values, ~o an I do, reached 
during the first cycle by 

~,o do 
~(N) - d(N) - (11) 

go(N)' go(N) 

Effect  o f  Stress Redistribution Due  to Debonding During Fatigue 

The model is now used to assess the stress redistribution during fatigue of the two-bar 
structure depicted in Fig. 3a. This application is valid as long as the stress amplitude is slowly 
varying so that Eq 11 can be used. The key mechanisms to consider are matrix cracking 
modelled by D and debonding and sliding described by ~i. When the local stress is greater than 
the matrix cracking stress, O'mc, the damage variable and the inelastic strain grow until the total 
strain reaches a critical value, e.. For the case when the cyclic load has a constant maximum 
value, S~, three different regimes can again be identified. The elastic regime is the same as for 
a constant load condition when the behavior is everywhere elastic (when ~/tr,.c < 1 - F + 
F/k). The confined cracking regime is defined by 1 - F + FIk --< Z/tr,.c < k(1 - D1)(1 - F)  
+ F - (1 - D1)(1 - F)EeJgo(N)o'.,,r when the shortest Bar (1) experiences cracking so that 
debonding and wear occur. In this regime, the most loaded Bar (1) experiences a decrease of 
the maximum stress level, ~rL(N) = (Z -- FEeJ4P(N)k)/(1 - F + F/k(1 - DI)) as the number 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



BURR ET AL. ON CERAMIC-MATRIX COMPOSITES 89 

kA 

(2) 

t~2 

FS 

IIIIIIHIIIIlll I 

(a) 
SZ 

t 

k(1-F)+F- 

r ~  

"~i21 1 
N 

~ I -F+F/k 

0 
Z 

0 

.._ Extensive Cracking 

Confined Cracking I 
I 

Elastic I 
i 

1-1/k 
Matrix Cracking Damage, D 1 

(b) 

FIG. 3--(a): Two-bar structure, and (b): stress redistribution map exhibited by matrix cracking. 

of cycles, N, increases, therefore the damage variable, D~, remains constant. The effect of 
confined cracking is to reduce the stress concentration. Third, for very high stress levels (when 
Y,/~mc -> k(1 - D 0 ( I  - F)  + F - (1 - D1)(1 - F)Ee./~P(N)(rmc), the two bars experience 
cracking, debonding, and wear: it is an extensive cracking regime. The boundary between the 
two regimes is defined by the following condition schematically depicted in Figs. 4a and b 

E (1 - F)(1 - Dl)Eei[ 
- k ( 1  - F ) ( 1  - D O  + F - ( 1 2 )  

O'mc f~(N)O-mc 

The third regime exists provided the maximum accumulated strain, e. ,  is not reached. The 
failure condition is represented by the condition, el  = eu, that can be expressed as Y./~mc = 
Ee~lktrmc [k(1 - D~)(1 - F)  + F] - (1 - F)(1 - D1)Ee./d~(N)tr,~c. In many composites, e .  
is very well approximated by the ultimate tensile strain under monotonic load conditions and 
the dimensionless parameter, Ee./m.c,  varies between 4 and 8 for many composite materials 
[19]. When Egu[O'mck ~ 1, the extensive cracking regime will never be reached because failure 
occurs prior to reaching the confined/extensive regime boundary. Conversely, when Ee~ltr.~k 
> 1, the extensive cracking regime will occur. If ~ ( N  ~ +oo) > (1 - F)(1 - DOEeil /[{k  

(1 - DO - 1 }(1 - F) + F - FIk]tr,~c, fatigue life is infinite in the confined cracking regime 
(Fig. 4a). On the other hand, when ~(N---> +oo) _< (1 - F)(1 - D t ) E e J [ { k ( 1  - DO - 1} 
( 1  - F) + F - FIk]tr,,~, there is no fatigue endurance in the confined cracking regime (Fig. 
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FIG. 4--S tress  redistribution map exhibited by debonding and sliding. 

4b) and one number of cycles can be defined: Nl so that dP(Nl) = (1 - F)(1 - D O E e a / [ { k ( 1  

- D ~) - 1 } (1 - F)  + F - F/k] o',,,c. In Fig. 4, all the results are written in terms of a reference 
number of cycles, No, modeling the shear stress decay. In many CMCs, No is on the order of 
10 to 100 and can be smaller for SiC/CAS composites [19]. This study will be complete if fiber 
breakage is modeled, since for many composites, it is the key mechanism leading to final failure. 

F i b e r  B r e a k a g e  M e c h a n i s m  

A unit cell of length, LR, is considered where the matrix crack spacing is 2L. The length, Lk, 
is the "recovery" length and refers to twice the longest fiber that can be pulled out and cause 
a reduction in the load carrying capacity. For the sake of simplicity, it is assumed that matrix 
cracking has saturated and the stress contribution due to the matrix is negligible when compared 
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to that due to the fibers. The initial Young's modulus of the composite is thus assumed to be 
equal to rE:. Away from a fiber break, as in the case of matrix cracking, the fiber stress builds 
up through the stress transfer across the sliding fiber-matrix interface. If the interfacial shear 
stress, Zo, is assumed to be constant, the recovery length is related to the maximum stress in 
the fiber by [20] 

R T  
LR - - - : -  (13) 

7"0 

where T = reference stress (that is, fiber stress in the plane of the matrix crack), Pa. 
The model now discussed takes account of three features induced by fiber breakage and fiber 

pullout, namely, the reduction in stiffness due to fiber breakage, the inelastic strains due to 
fiber pullout, and the hysteresis loops. The details of the unloading and reloading process are 
complex and to avoid this difficulty it is useful to introduce the crack opening displacement, 
8, that characterizes the material state related to the reverse friction. The crack opening dis- 
placement, 8, is also useful in determining the conditions when closure occurs. To characterize 
the state of the composite, four quantities are required. These are the overall strain, E, the 
friction length, LF, the percentage, PF, of broken fibers within the recovery length, LR = 2LF, 
and the crack opening displacement, 8. To derive the free energy density associated to a loading 
sequence, we consider two different elastic steps to reach the same state. The first step consists 
of moving the unbroken fibers with respect to the broken fibers with no external load by an 
amount, & over a length, LF. The elastic density associated with this process is given by [21] 

f E F ( 8 )  2 4 - 3 P v  

 '=TE (14) 

and the opening displacement, 8, induces an overall inelastic strain, ~i 

8 
~i = 7 -  ?,~ (15) 

LF 

The second step, during which no friction occurs, consists of adding an elastic loading from 
the previous state. It involves an additional elastic energy density given by 

fEr 
~te = T (~ -- ~i)2 (16) 

The total free energy density is then the sum of the two energies. A more convenient expression 
for the free energy density is obtained by using state variables in a modified form. The state 
variables are the total strain, g, the damage variable modeling the percentage of broken fibers 
within La, D s = PF, and the inelastic strains, ~i,due to the crack opening displacement, 8, 
modeling fiber pullout. The free energy density, ~, can then be written in terms of the new 
internal variables 

fEF fEr 4 - 3D: -2 (17) 
-~ = T (-~ - ~,)2 + 2 -  3 0 ~  e, 
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The thermodynamic forces associated with the new state variables are respectively given by 

O. = O-~ fEr(_~ _ _~), y :  = 0-~ 2fEr {-~i ~ 2 
o--i = oo--: - T V:  : ' 

- _  o~_ i4-e,__~) 
X ~ fEF~-~-'~: (18a,b,c) 

where 

Y~ = energy release rate density associated with fiber breakage, Jm-3; and 
X = back stress, Pa. 

When the fibers are assumed to exhibit a statistical variation of strength that obeys a two- 
parameter Weibull law, the evolution laws of the damage variable and the inelastic strain are 
given by [21] 

[ ( - T+'I D: = 1 - e x p  - E:-eM , ei = ~D: (19) 
L \ s o l  J 

where 

sm+l -- LoS~'r (20) 
R• 

= current strain; 
~u = maximum strain; 
Sc = characteristic strength, Pa; 
m = shape parameter; 
So = stress scale parameter, Pa; 
Lo = gage length, m; and 

~- = interfacial shear strength, Pa. 

Provided the fibers are subject to global load sharing, that is, the load transmitted from each 
failed fiber is shared equally among the intact fibers, the ultimate tensile strength, ~trrs, is then 
scaled by the characteristic strength [22], So, according to 

~UTS = fScF(m) (21) 

The function, F, depends upon the shape parameter, m, and whether localization happens or 
not before the peak stress [20,23,24]. To assess the ultimate tensile strength, the function, F, 
is given by [20] 

( 2  '~l/(m+l) m + l (22) 
F(m) = \--~--~--~,] m + 2 

and to calculate the localization tensile strength, the function, F, can be written as [24] 

F(m) = ~ \ ~ - - - ~ /  1 + exp - m + 1 

Equations 20 and 21 show that the interfacial shear resistance, ~', is a key parameter. If wear 
is involved, it is expected that the interfacial shear strength, r, decreases as the number of 

Copyright by ASTM Int ' l  (all  r ights reserved);  Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement.  No further reproductions authorized.



BURR ET AL. ON CERAMIC-MATRIX COMPOSITES 93 

cycles, N, increases as discussed earlier. The simple model of interfacial wear introduced pre- 
viously can be used directly to evaluate the residual ultimate strength of fatigued CMCs [18]. 
The drawback of this simple wear model is that the influence of the load ratio is not modeled. 
In the following, we will introduce another wear mechanism accounting for the load ratio, R. 

F a t i g u e  F a i l u r e  M a p s  

When cyclic stress experiments are performed on CMCs, it is known that the first cycle is 
often the most damaging in reducing of shear strength [17]. Therefore, following the first 
reversal of sliding, the frictional shear stress is assumed to decrease from % to 7~. Upon first 
loading to a maximum stress, ~-, a friction length, 21~, is reached (ldo <-- L) over which the 
shear strength is equal to ro (Figs. 5a and b). Upon unloading to ~ - A~ = R~" a shear stress 
reversal occurs over a length, 21.1, for which the interfacial shear strength is equal to ~-~. Upon 
reloading to ~, there is shear stress reversal over the length, 2/.~, for which the interfacial shear 
strength is still z~; together with ~, debonding and sliding evolve from 2ldo to 21dl, for which 
the interfacial shear stress is %. As the number of cycles, N, increases, there is an increase of 
ld(N+l) and lu(N+~) [25]. A key parameter is involved: y = (to - ~'~)/(Zo + r~), 0 < y < 1. It 
measures the amount of wear. Provided subcritical crack propagation does not exist, there is 
no further matrix cracking under cyclic loading conditions. However, fiber breakage may occur 
since the longitudinal stress in the fibers increases as a result of wear. In the following, we will 

r ~  
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FIG. 5--Shear stress profile along the fiber direction during one unloading (a) -reloading 

(b) sequence. 
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FIG. 6--(a) Depiction of  the equivalent shear stress ~'*(N) where the symbol ~ denotes the 
slope of  a pointed straight line, and (b) shear stress map when "rJ'c o = 0.2, R = 0. 

neglect this phenomenon. Furthermore, crack closure effects may occur upon unloading. We 
assume that the stress amplitude is small enough to avoid that phenomenon. 

There are three cases to be considered. In case 1, L > ldN, the condition for matrix cracking 
saturation is not reached. For Case 2, l,,N <-- L --< laN, matrix cracking saturation occurs and the 
friction characteristics involve ro and r~. For Case 3, l ~  > L, matrix cracking saturation takes 
place but the friction characteristics only involve z= (Fig. 5b). An equivalent shear stress is 
defined to determine fatigue properties (Fig. 6a). The evolution of  the latter is given by 

" r * ( N )  _ 

1 - y L>-IdN 
1 -- TR -- (1 -- R))  iv+' 

1 - ~ (1 - R)(1 - f)Em~'R s (1 - 3/v) l~v --< L < ldN 
1 -- 3' 2fEzoL 

1 - Y _ ~'~ L < luN 
~ 1 + 7  ro 

(24) 

from which the shear stress map shown in Fig. 6b can be obtained. When N = 0, 7-*(0) = To 
since no reversal occurred. On the other hand, when N ---> + 0o, since T < 1, the maximum 
value of  7-*(0o) = %(1 - 3,)/(1 - TR) and the minimum value of 7-*(oo) = ~'~. This last result 
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shows that ~'~ can only be reached if saturation takes place during cycling (L < ld~) and 
complete reversal occurs at least one cycle over a length, L (L < l,oo). This map is useful for 
deriving the ultimate fatigue strength according to Eqs 21 and 24. Under monotonic loading 
conditions, the value of ~-in Eq 21 is taken equal to ~'o, whereas under cyclic loading conditions, 
it is taken equal to "r*(N). It is worth noting that these results directly include the amplitude 
effect by the presence of the load ratio, R. 

Conclusions 

The basic mechanisms related to the degradation of CMCs submitted to monotonic and cyclic 
load histories were studied within the framework of continuum mechanics by using results of 
micromechanical analyses. An explicit expression of the Helmholtz free energy density was 
derived in the case of monotonic load conditions. In particular, internal variables are carefully 
chosen to describe the degradation mechanisms (namely, matrix cracking, fiber breakage). In 
the case of cyclic load histories, the gradual degradation of the interface was modeled by the 
introduction of the effect of interfacial wear. The effect of stress redistribution is analyzed on 
two-bar structures. Generalizations of these results to two-dimensional configurations can be 
found in Refs 2 and 26 in which the tensorial nature of each internal variable introduced herein 
is discussed. 

In the case of monotonic and cyclic load histories, the failure conditions are written in terms 
of macrocrack initiation conditions (that is, localization conditions). Failure conditions are close 
to the ultimate tensile strength predictions. In fatigue, failure conditions are summarized by the 
introduction of a shear stress map in which three different regimes appear depending on the 
stress amplitude. These maps are useful to derive the ultimate tensile strength after cycling. 

Finally, the only practical application of CMCs are under high temperature exposure. In 
addition to the mechanisms discussed in this paper, the effects of high temperature are a change 
of the residual stresses due to the temperature rise and the mismatch of coefficients of thermal 
expansion of the matrix and the fibers, and to creep of the fibers or the matrix or both. These 
changes can be introduced in the present framework with minimal change of the formulation 
discussed herein [27]. Furthermore, microscopic properties (for example, interfacial shear 
strength) may be affected by temperature variations and induced change of chemical compo- 
sition at the interface. These phenomena can be accounted for by the relationships between 
microscopic and macroscopic quantities derived in this paper. 
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ABSTRACT: Improvements in design and the enhancement in performance of aerospace ve- 
hicles calls for the development of advanced materials capable of sustaining the increasing load- 
ing conditions while maintaining their structural integrity. Special consideration must be given 
to the behavior of such materials under fatigue loading conditions that dominate the flight regime 
loads. A micromechanical fatigue damage model for unidirectional metal-matrix composites is 
proposed. Damage evolution is considered at the constituent level through the application of the 
Mori-Tanaka averaging scheme. Individual damage criteria for the constituents are proposed and 
employed to define damage evolution equations for each of the consultants. The numerical results 
for high cycle fatigue loading are presented for variations in the material and model parameters. 

KEYWORDS: continuum damage mechanics, cracking, fatigue (materials), fracture (materials), 
damage, damage evolution, micromechanical fatigue damage, metal-matrix composites 

With the increased performance of aerospace vehicles, design factors such as weight and 
material strength play an increased role in their design philosophies. Along with such drastic 
performance enhancements, appropriate light-weight materials need to be developed that are 
capable of performing under such conditions as those occurring during flight while retaining 
their structural integrity. Such candidate materials have been identified among the composite 
materials, especially in the area of metal-matrix composites (MMCs). Special consideration has 
been given to titanium-matrix composites (TMC) because these materials maintain their ex- 
cellent strength-to-density ratio even at elevated temperatures. This intrinsic material property 
has drawn attention from the turbine engine manufacturing industry for potential use in ad- 
vanced aircraft turbine engines. This success can be attributed to the tremendous reduction in 
the weight of key engine components leading to a possible increase in engine performance or 
reduced fuel consumption or both. Titanium-matrix composites offer higher mechanical prop- 
erties, better dimensional stability, and strength retention at elevated temperatures, such as those 
occurring in turbine engines, as compared to their monolithic counterparts. Nevertheless, the 
employment of MMCs and TMCs still has major drawbacks. First, the production and manu- 
facturing costs for such materials are still high due to the special manufacturing processes 
involved. Second, the employment of such materials in vital components of an aircraft or space 
vehicle, such as a turbine engine, requires a thorough understanding and control of the material 
behavior under extreme loading conditions that occur during regular service life. This calls for 
the development of material models that are capable of predicting the real-life behavior of such 
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98 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

materials with a deterministic margin of risk. As of today, the behavior of MMCs and TMCs 
is not yet fully understood, and appropriate material models still lack reliability and applicability 
as compared to those 'of their monolithic counterparts. A considerable experimental as well as 
theoretical research effort is put forward to better understand and analytically model metal- 
matrix composites in order to provide a more efficient use of the tremendous potential contained 
in these new materials. In particular, the literature lacks a consistent and systematic approach 
to the analysis of cyclic damage (low-cycle/high-cycle fatigue) in high-temperature metal- 
matrix composites. This area is addressed in this paper, especially the consistent development 
of a fatigue damage model for unidirectional MMCs. 

Cyclic/Fatigue Damage Models in the Literature 

Reviewing the literature on the subject of fatigue in engineering materials reveals that the 
explanation of fatigue phenomena and the prediction of fatigue life have been the focus of 
immense research efforts for the last 50 years. The two major analytical approaches used are 
the phenomenological approach and the crack propagation approach. The former is concerned 
with lifetime predictions of complex loading histories using existing lifetime test data, mostly 
S-N data, for constant amplitude cyclic loading. The second approach is concerned with pre- 
dicting the growth of a dominant crack due to cyclic load that is not the case for metal-matrix 
composites. 

Almost all of the known fatigue damage models for composite materials are based on the 
models developed for their isotropic counterparts [1-9]. Lack of theoretical knowledge and 
sufficient experimental tests on composite materials led to the application of known fatigue 
damage models to predict the fatigue lifetime of such materials, despite the fact that the fatigue 
behavior of composite materials is quite different from that of isotropic materials, such as 
metals. With improvements in the theoretical knowledge of composite materials and experi- 
mental equipment, numerous studies have been conducted involving fatigue life and residual 
strength degradation, modulus degradation, and residual life theories. However, it was soon 
recognized from these models that the material structure of such composites has to be included 
in the development of fatigue damage models in order to arrive at more feasible and reliable 
models. Until now, there is no universal fatigue damage model based on the microstructure of 
the composite material that is capable of predicting the fatigue lifetime for general fatigue 
loading with reasonable reliability. 

Arnold and Kruch [10,11] presented a phenomenological, isothermal transversely-isotropic 
differential continuum damage mechanics (CDM) model for fatigue of unidirectional compos- 
ites. The model is based on the CDM fatigue models for isotropic materials developed at 
ONERA [12-17]. They considered the MMC as a pseudohomogeneous material with locally 
definable characteristics. Such local characteristics have been considered in the form of a di- 
rectional tensor representing the fiber direction. Furthermore, the concept of anisotropic failure 
surfaces has been introduced into the model based on deformation theories for the high- 
temperature MMCs of Robinson et al. [18] and Robinson and Duffy [19]. Despite rigorous 
development, the proposed model has two major drawbacks: (1) the expensive experimental 
setup and exhaustive experiments needed to obtain the material parameters used in the model 
equations, and (2) the employed scalar measure for the damage variable. Recently, Wilt and 
Arnold [20] presented a fatigue damage algorithm that employs the fatigue damage model 
developed by Arnold and Kruch [10,11]. They implemented their algorithm into the commercial 
finite element code MARC and used it to analyze a cladded MMC ring. Results were presented 
on a qualitative basis, since no experimental results are available. 

Nicholas [21] recently reviewed fatigue lifetime prediction models for TMCs that use fun- 
damentally different approaches. His investigation showed that various models are based on a 
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single parameter and have limited applicability. Two other models, a dominant damage model 
[22] and a life fraction model, show applicability to various loading ranges, frequencies, and 
temperature profiles. Neu [22] pointed out that despite the fact that several damage mechanisms 
exist, it is possible to consider the most dominant ones for modeling and include the influence 
of others, since their behavior might be similar. His model was able to match experimental 
data for isothermal and thermomechanical fatigue for low-cycle fatigue experiments. The life 
fraction models, which are based on the fact that fatigue damage accumulates simultaneously 
due to independent mechanisms, are able to model only specific composite layups for which 
their parameters have been calibrated. Various other fatigue investigations have been per- 
formed, but their focus is on specific ply-stacking sequences of interest at the time of the 
investigations. In general, it is found that even though micromechanical effects or mechanisms 
are considered and incorporated into the models there does not yet exist a true micromechanical 
fatigue damage model that considers the material behavior and damage evolution in the con- 
stituents individually. The following proposed micromechanical fatigue damage model is in- 
tended to exactly fill in this gap. It is considered a first step along a consistent route to develop 
a universal micromechanical fatigue damage model capable of modeling various loading con- 
ditions including thermomechanical as well as environmental effects that occur during the 
service life of dynamically loaded composite structures. 

Damage Mechanics Applied to Composite Materials 

Kachanov [23] pioneered the idea of damage in the framework of continuum mechanics. For 
the case of isotropic damage and using the concept of effective stress, the damage variable is 
defined as a scalar in the following manner 

A - -  
~o - ( 1 )  

A 

where A is the effect (net) resisting area corresponding to the damaged area, A. Using the 
hypothesis of elastic energy equivalence [24], the effective stress, ~, can be obtained from Eq 
1 by equating the force acting on the hypothetical undamaged area with the force acting on the 
actual damaged area. 

In a general state of deformation and damage, the scalar damage variable, ~p, is replaced by 
a fourth-order damage effect tensor, M, that depends on a second-order damage tensor, Oh. In 
general, the effective stress tensor, ~,  is obtained using the following relationship 

= M : r (2) 

where (:) indicates tensor contraction over two indices. The nature of the damage effect tensor, 
M, is discussed in the literature by Voyiadjis and Kattan [25,26]. 

In general, the analysis of composite materials falls into two categories. The first category 
consists of all approaches that employ the continuum concept [27,28], where the composite 
system is treated as one continuum and the equations of anisotropic elasticity are used in the 
analysis. The second category encompasses all approaches that use micromechanical models 
together with averaging procedures and homogenization techniques [29-33] to describe the 
material behavior. In these models, the composite is considered to be composed of a number 
of individual phases for which local equations are formulated. Employing a suitable homoge- 
nization procedure then allows one to analyze the material behavior of the entire composite 
system based on the local analysis. 
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100 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

Dvorak and Bahei-E1-Din [30,31] employed an averaging technique to analyze the elasto- 
plastic behavior of fiber-reinforced composites. They considered elastic fibers with an elasto- 
plastic matrix. However, no attempt was made to introduce damage in the constitutive equa- 
tions. Voyiadjis and Kattan [34], Voyiadjis et al. [35], and Voyiadjis and Kattan [36] introduced 
a consistent and systematic damage theory for MMCs utilizing the micromechanical composite 
model of Dvorak and Bahei-E1-Din [31]. The introduced two approaches, referred to in the 
literature as the overall and the local approaches, which allow for a consistent incorporation of 
the damage phenomenon in a composite material system. 

The overall approach [37] to damage in composite materials employs one single damage 
tensor to reflect all types of damage mechanisms that the composite undergoes like initiation, 
growth, and coalescence of microvoids and microcracks. Voyiadjis and Park [38] improved the 
overall approach by including and adopting a general damage criteria for orthotropic materials 
by extending the formulation of Stumvoll and Swoboda [39] to MMCs. In this improved model, 
all damage types are considered but the model lacks the consideration of local (constituent) as 
well as interfacial damage effects, In contrast to the overall approach, the local approach [40] 
introduces two independent damage tensors, ~b m and ~b s, and hence two independent damage 
effect tensors, M '~ and M s, to reflect the appropriate damage mechanisms in the matrix and 
fibers, respectively. It is this latter approach which is employed in the proposed micro- 
mechanical fatigue damage model. 

Micromechanical Fatigue Damage Model 

Stress and Strain Concentration Tensors--In the derivation of the model, the concept of 
effective stress [24,41] is used. The effective stress is defined as the stress in a hypothetical 
state of deformation that is free of damage and is mechanically equivalent to the current state 
of deformation and damage. In a general state of deformation and damage, the effective Cauchy 
stress tensor, ~ ,  is related to the current Cauchy stress tensor by the linear relationship given 
as in Eq 2. In the case of composite materials, similar constituent (local) stress relationships 
hold for the matrix and fiber stress tensors, o ~ and o J, respectively 

~.m = M m : ~ (3a) 

= M s : od (3b) 

where M m and M s are fourth-order local damage effect tensors for the matrix and fiber materials, 
respectively. The damage effect tensors, M ~ and M s are dependent on second-order damage 
variables, ~b m and q~s, respectively. These second-order tensors quantify the crack density in 
the matrix and fibers, respectively [42]. The crack density tensors incorporate both cracks in 
the fiber, matrix, as well as those due to fiber debonding. A complete discussion on these 
tensors is given in the work of Voyiadjis and Venson [42]. 

In the proposed model, the matrix is assumed to be elastoplastic and the fibers are assumed 
to be elastic, continuous, and aligned. Consequently, the undamaged (effective) incremental 
local (constituent) constitutive relationships are given by 

d - ~  = D'~ : d-~ '~ (4a) 

d--o.~ = ~'s : d-~S (4b) 
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The fourth-rank tensors, ~ and ~s,  are the undamaged (effective) matrix elastoplastic stiffness 
tensor and fiber elastic stiffness tensor, respectively. The incremental composite constitutive 
relationship in the damaged state is expressed as follows 

do" = D : de (5) 

where de is the incremental composite strain tensor. 
In order to arrive at the local (constituent) relationships, given by Eq 4a and b, a homoge- 

nization technique in the form of the Mori-Tanaka averaging scheme [43] is employed. Through 
the use of the so-called stress and strain concentration tensors, a relationship between the global 
applied effective composite stress, ~ ,  and the local effective stress in the constituents, ~,.,s~, 
is obtained as follows 

Vr m = B" : ~ (6a) 

~d = B s : or (6b) 

where ~s and ~m represent the effective stress concentration tensors connecting the local ef- 
fective stresses with the global effective stresses. In the damaged configuration, the following 
relationships are obtained 

o.m = B" : o. (7a) 

o "f = B  s : o .  (7b) 

Combining Eq 2, 3, 6, and 7, one obtains the relationship between the local stress concentration 
tensor and the local effective stress concentration tensor as follows 

B s = M - S : ~ S : M  (8a) 

B m = n - "  : ~m : M (8b) 

Similar relationships may be obtained for the deformations in the effective (undamaged) con- 
figuration as follows 

e'~ = A'~ : e  (9a) 

~s = ~-s : ~ (9b) 

where ~s  and A-'~ represent the effective strain concentration tensors connecting the local ef- 
fective strains with the global effective strains. In the damaged configuration, the relationships 
are given by 

e '~ = A '~ : e (10a) 

e s = A s : e (10b) 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



102 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

and furthermore 

A s = M y : ~s : M- I  (1 la) 

m 
A m : ll/1 'm : A "  : M - l  ( l lb)  

Ef f ec t i ve  V o l u m e  F r a c t i o n s - - D u r i n g  the process of damage evolution in the material, an- 
other phenomenon has to be considered. As damage progresses within each constituent, the 
effective load resisting area/volume changes while the gross area/volume remains the same. 
Since the distribution of forces/stresses to the constituents depends directly on the area/volume 
intact to resist an applied force/stress, there is a change in the allocation of the external applied 
force/stress to the constituents. This redistribution of force/stress due to progressing damage 
can be accounted for by defining the so-called effective volume fractions that are based on the 
updated damage variable during each load/stress increment. Expressions for the effective vol- 
ume fractions are given as 

m 
1 - -  ~)eq 

~m ~_ ( 1 2 )  

(1 - 4e%) + (1 - 4{q) -:z 
Co 

and 

~s = 1 - 4,{q (13) 

(1 - -  6efq) ~- (1 - 6 , % ) c ~  
do 

where co s and c~o are defined as the volume fractions for the fiber and matrix in the virgin 
material, respectively. The expressions for ~be~ and ~b{q are given as 

II ~ s  112 (14a) 
(])efq = II ~cfrit II L2 

]] q~" 112 (14b) m ~ m 
6,q  II 4,ont II L2 

with th{=, and ~bc%t defined as the critical damage tensors for the fibers and the matrix, respec- 
tively, and II " II ,.2 defined as the L2 - norm of the quantity enclosed in the vertical bars. 

P r o p o s e d  M i c r o m e c h a n i c a l  F a t i g u e  D a m a g e  M o d e l - - T h e  proposed fatigue damage cri- 
teflon, g, is considered a function of the applied stress, 0-, the damage parameter, th, the damage 
hardening parameter, r, and a tensor quantity, y, that is explained later. The equation for g is 
defined by 

g = ~" - 1 (15) 

where ~ is defined as 

= W~lWTkl(Ykt -- Tkt)(Yli -- Tl,) (16) 
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The term (Yk~ - 7kt) represents the translation of the damage surface and therefore accounts 
for damage evolution during cyclic loading. The tensor, Y, represents the thermodynamical 
force conjugate to the damage variable, ~b, and is defined as 

1 O M ~  
Vij ~- 2 (OrcdCabpqMpqklO'kl -It" O'pqMuvpqCuoabO'cd) Ot~ij (17) 

with Ci:kl -1 = Eijkl, while the quantity, 3', can in principle be compared to the backstress in 
plasticity theory, hence representing in this case the center of the damage surface in the ther- 
modynamical conjugate force space, Y. Its evolution equation is given as follows 

~u = c4,. (18) 

similarly to the evolution equation for the backstress in plasticity. The tensor quantity, w/j, 
accounts for the anisotropic expansion of the damage surface and is given as follows 

w o = u o + V U (19) 

where the tensor, u, is defined as 

u~i = A(/)rl(/)~k-A"-(o(o j gO (no sum on i) (20) 

The tensor, Vij, can be interpreted physically as the damage threshold tensor for the constituent 
material considered, while K represents the effect of damage hardening and is defined as follows 

r =  Y : ddp = Y : 6 dt 
1 

(21) 

Damage hardening is based on the increase in the initial damage threshold due to micro- 
hardening occurring at a very local material level [44]. The parameter, Yu, in Eq 16 adds to 
this hardening behavior due to the movement of the damage surface in the direction of the 
evolution, f ,  damage. The remaining variables, n, Ai, T//, ~/, and c, are material parameters to 
be determined for each individual constituent. The form of the variable, ~i, will be specifically 
discussed later in the numerical implementation. 

Based on thermodynamical principles, a potential function for each constituent is defined as 
[40] 

= I I P  + lid _ A d  - A2g (22) 

where liP, I I  d, f,  and g represent the dissipation energy due to plasticity, the dissipation energy 
due to damage, the plasticity yield surface for the constituent material considered, and the 
damage surface, respectively. For loading in the elastic regime (high cycle fatigue), the terms 
involving plastic dissipation energy are neglected. The term, l i  d , representing the dissipation 
energy due to damage is given as 

I I  d = r, j4,,j + S~,~ (23) 
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Applying the theory of calculus of several variables to solve for the coefficients, A] and 

A2, yields 

011 
- -  = 0 ( 2 4 )  
0Y,  

from which an expression for the damage increment is obtained as follows 

dqbq = dA2 ~ (25) 

Hence, dA2 may be determined using the consistency condition 

c~g. ag Og Og. 
dg = -~  . do" + ~--~ : dqb + Or-- dK + --.Oy dy  = 0 (26) 

Substitution of the appropriate terms (Eq 18 and 21) into Eq 26 yields 

Og. do" + Og Og Og 
dg = 0---~" ~-~ : d$ + OK Y : d~b - r ~--~: d~b = 0 (27) 

Replacing d~b with Eq 25, an expression for dA2 is obtained as follows 

Og dO'kl 
bO'k~ 

dA2 = (28) 

Og + Vi j -~r-  C OYq 

Back-substitution of F-xl 28 into Eq 25 yields an expression for the damage increment for the 
appropriate constituent in terms of a given stress increment as 

Og Og 
- -  - -  dokt 
Oo"~ OY, n, (29) 

o r  

where 

dqb o = qt Ukflo-kt (30) 

Og Og 

c~ Yi~ c~o'kt 

Og + Yrs -~K - C OY~ 

(31) 
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and 

1 - - -  1 - - -  l OMabcd  
Y= = ~ [OrcdEabpqMpqklO'kl ~- OrpqMuupqEuoabOrcd ] O~)r s (32, 33) 

As stated elsewhere [39], a damaging state in a constituent is given if for any state the damage 
criterion is satisfied 

g = 0 (34) 

for that specific constituent. In general, four different loading states are possible 

g < 0 (nondamaging loading) (35) 

g = 0 Og dYij < 0 (elastic unloading) (36) 

ag 
g = 0 ~ dYij = 0 (neutral unloading) (37) 

O._g_g dYij > 0 (loading from damaging state) (38) g = 0 ~r~j 

Using Eq 29, the damage increment per fatigue cycle may be obtained by integration over one 
stress cycle as 

dN ,. ~ ijkldO'kl "~ ~t~ ~ikldO'kl (39) 

where ~bUk ~ is given according to Eq 3 I. The dependence of damage on the mean stress and the 
amplitude of the stress cycle is implicitly included through the integration of Eq 39, 

Return to the Damage Surface 

In the numerical implementation of the model, it appears that after calculating the damage 
increment, d~b, for the current stress increment, do', and updating all the appropriate parameters 
depending on the damage variable, th, the damage surface is in general not satisfied. Therefore, 
it is necessary to return the new image point to the damage surface by employing an appropriate 
return criteria. 

At the beginning of the (n + 1) st increment, we assume that the damage surface, g, is satisfied 

g(")(oS"),4,("),K(")'), (")) = 0 (40) 

Applying the stress increment, do" (assuming a damage loading), will result in a damage incre- 
ment, d~b, that will be used to update the values for K and % Checking the damage surface (Eq 
15) with the updated values for o-, ~b, K, and 3/will in general yield 

g("+l)(OS"+l),~("+l),3r162 > 0 (41) 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



106 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

where 

os.+l) = o s.) + do s.+i) 

r = (~(n) + dcb(.+l) 

K(n+l) = K(n) -~- dK(n +1) 

,y(n+l) = ,y(n) + d.y(n+l) 

(42) 

(43) 

(44) 

(45) 

Using a "Taylor series" expansion of order, one expands the left-hand side of Eq 41 to yield 

g~.+l)(oS-) + doS"+1),4,(.) + d4r  "~ + dK~"+l),r ") + dr  

c~g (') Og (n) 
= g(")(~ + ~ d~ + 0~b d~b("+l) (46) 

(n) g ( n )  og 
+ 7 dK (n+l) + dy  ('+x) > 0 

OK Oy 

Recalling the relationships in Eqs 18 and 21, Eq 46 can be written as 

g("+l)(o~") + doS"+l),dp (n) + d~b~"+l),K ~") + Y~") : d~b("+t),r ") + cd$ ~"+l)) > 0 (47) 

The return to Be damage surface, that is, g("+t) = 0, is now achieved by adjusting the damage 
increment, d$, using a linear coefficient, a, such that 

g("+l)(oS") + doS"+l),~b (') + ad~b ('+l), r (') + al'~") : d~b("+l),y(") + acd~b ('+1)) = 0 (48) 

Substitution of the appropriate expressions for the derivatives in Eq 48 as well as Eqs 21 and 
18 and setting the left-hand side equal to zero allows one to solve for the unknown coefficient, 
a, such that 

(g OO + Og <') doS.+1)) 
0o" 

a = (Og  (,o + Y~"> + C dc~ ~'+'~ 
Og (') 0g (")~ (49) 

\04' 0r 0~' / 

Numerical Analysis 

The preceding model is implemented into a numerical algorithm and used to investigate the 
fatigue damage evolution in the individual constituents of a unidirectionally fiber-reinforced 
metal-matrix composite. No assumption, except those implicitly included in the stress and strain 
concentration tensors based on the Mori-Tanaka averaging scheme [43] are made. The imple- 
mentation is performed using full three-dimensional modeling hence avoiding any assumptions 
to be made upon simplification of fourth-order tensors to two-dimensional matrix representa- 
tion. The Mori-Tanaka averaging scheme is implemented using the numerical algorithm ac- 
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TABLE 1--Material properties used in the analysis. 

E, GPa u tr,, MPa try, MPa c, % 

Matrix (Ti-15-3) 92.4 0.35 933.6 689.5 67.5 
Fiber (SCS-6) 400.0 0.25 N/A a N/A 32.5 

a N/A = not available. 

cording to Lagoudas et al. [45]. Only an elastic analysis is performed at this time. Since no 
experimental data are yet available, a parametric study is conducted in order to demonstrate 
the influence of various parameters on the damage evolution in the constituents. The constit- 
uents are assumed to consist of an isotropic material. The materials used in the analysis are 
given in Johnson et al. [46] and are shown in Table 1. The fatigue loading is applied in the 
form of a sinusoidal uniaxial loading given as 

. . . . .  (5O) 

where 

o'11 . . . .  : 550 MPa and orij . . . . .  = 0 (for i, j :~ 1) 

trll~ = 450 MPa and tr,j~ = 0 (for i , j  ~ 1) 

For the numerical integration scheme, an adaptive algorithm was implemented such that the 
stress increments were taken as 

O'/j,mean 
Atru = 25 if tro < tr . . . .  0 (nondamage state) 

Atrlj = 1 MPa if trij < ~r . . . .  u (damage state) 

during the loading phase to the mean stress and 

ao'/j = L s m ~ )  - sin * trij,A (during cyclic loading) 

with 

/1" 
A 0 = - -  

50 
(during a nondamaging state) 

71" 
A 0 = - -  

90O 
(during a damaging state) 

for the cyclic loading phase. Here, 0 represents simply the phase angle during the cyclic loading. 
The preceding limit values were adopted based on a numerical investigation that yielded sat- 
isfactory behavior of the model using these values, 
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FIG. 1--Validation of  employed return criteria. 

The damage criterion is evaluated within each increment and a return criterion as described 
in Eqs 48 and 49 is applied if Ig(n+l)[ ~ 10 -3. Except at the very first incident of damage, this 
criterion shows satisfactory performance during the application of the return criterion (Eqs 41 
to 49). The numerical noise at the initiation of damage has been investigated and it was found 
that a reduction in the step size for the stress increment reduces the numerical error appropriately 
to fall within the specified bounds. This phenomenon is not observed at any other time during 
the analysis (Fig. 1). It is attributed to the point of discontinuity in the damage criterion at the 
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FIG. 2--Variation in damage evolution for various values of  A. 
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FIG. 3--Variation in damage evolution for various values of  Co. 

wake of damage. The flexibility of the model is demonstrated through a parametric study based 
on variations in Parameters A and ~ (see Figs. 2 and 3). For the parametric study, the values of 
all the parameters except for one are kept constant in order to study the effect of a single 
parameter on the model as shown in Table 2. The parameters, ~ and ~ ,  account for the 
variation in the damage evolution with respect to the number of cycles, especially the increase 
in the damage rate during the fatigue life of a material. The specific forms of Parameters ~r 
and ~ are obtained from experimental curves, such as those shown in Figs. 4 and 5, where 
the fatigue damage in the material is plotted versus the number of applied cycles. Since fatigue 
damage evolution for a specific stress ratio, R, is dependent on the applied mean stress as well 
as the stress amplitude, such experimental curves have to be obtained for different applied mean 
stresses and stress amplitudes. The damage, (h, in the material during the fatigue life may be 
obtained by using the stiffness degradation or an equivalent method, such as sectioning and 
subsequent scanning electron microscopic (SEM) evaluation of the specimens for damage quan- 
tification. Upon inspection of the obtained experimental curves, it is observed that basically 
three different regions can be distinguished during the fatigue life of the material (Figs. 4 and 

TABLE 2--Model parameters used in the analysis. 

V, MPa A, MPa ~7 ~ r MPa n Figure 

Matrix (Ti-15-3) 0.1 80 000 1.0 refer to Eqs 51 to 57 1.0 1.0 6 
Fiber (SCS-6) 3 160 000 1.0 refer to Eqs 51 to 57 1.0 1.0 6 

N, Nz Go ~:J ~2 Figure 

Matrix (Ti-15-3) 10 110 000 0.55 0.02 0.03 6 
Fiber (SCS-6) N/A a 110 000 0.56 N/A 0.03 6 

a N/A = not applicable. 
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Om~ O'rn4 O'rn3 

I . . . . . . . . . . . . . . .  log  N 

Phase I Phase II Phase I l l  

FIG. 4--- 4) - N diagrams for determination of  ~ for constant R (or,, < O'm: < O'm3 < O'm, 
< ~r~,). 

5). These different regions pertain to the damage initiation phase (Phase I), the damage prop- 
agation phase (Phase II), and the failure phase (Phase HI). A distinction for these regions can 
be made by specifying bounds in the form of the number of cycles such as N~ and N2, as 
indicated in Fig. 4. This is generally done by visual inspection using engineering judgment and 
physical intuition. Using these curves, an evolution equation for ~ with respect to the number 
of cycles, N, the applied mean stress, o-~, ,  and the stress ratio, R, may be established. For the 
current analysis, since no such experimental data are available, the following forms for Param- 
eters ~f and ~ in terms of N1 and 192 have been used and are given as 

~=----~_la + 1 
NT, NT, 

~=g+ (N~--(~-l)N-I ~,~ 

= ~ + \~) '~ 

(1 < N <-- NT) (51) 

(N7 < N <- NT) (52) 

(N > NT) (53) 

(1 < N < N~) (54) 

(N > N2 s) (55) 
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where 

am----~o + og ~ a ~  

b m = ~ + a ~  + \ ~ -  ~ / a ~  

(56) 

(57) 

The results for the parametric study in order to investigate the influence of the model parameter, 
~o, on the damage evolution in the matrix are shown in Fig. 3 with all other parameters kept 
constant. Varying the value of Parameter A and keeping ~:o constant will result in the curves 
shown in Fig. 2. Only the damage variable, ~b]l, is shown since the other components of ~b are 
equal to zero or their value is smaller by a magnitude of 100. The reference frames of the 
damage tensor and the material system are identical, hence " 1 "  representing the fiber direction 
while " 2 "  and " 3 "  indicate the transverse directions. For clarification, it should be emphasized 
that the plateaus exhibited in Figs. 2 and 3 represent the unloading phase in the cyclic loading 
where no further damage occurs. 

Two sample analyses of complete fatigue simulations have been conducted to show the 
capabilities of the developed model. The results of such an analysis for the damage evolution 
in the matrix, in the fiber, and the overall composite are shown in Fig. 6. Failure of the entire 
composite occurs due to fiber failure at about 116 000 cycles for the case of O']l.max = 1000 
MPa and a stress ratio of R = 0.1. In a second complete fatigue simulation, failure occurs at 
about 217 000 fatigue cycles for o'H . . . .  = 940 MPa and a stress ratio of R = 0.1. The obtained 
fatigue life in the two cases is compared with experimental results for a unidirectional composite 
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1600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1400 

1200 

== 1000 r O 

80O 

= = Johnso 
0 M o d e l  R e s u l t s  . . . . . . . . . . . . . . . .  

I I I I I I l l |  I I I . . . . .  | 

6--100 1000 10000 100000 1000000 
Number  of  Cycles 

FIG. 7--Comparison with experimental results [47] ;  W6hler diagram for R = 0.1. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



VOYIADJIS AND ECHLE ON MICROMECHANICAL FATIGUE DAMAGE 113 

[47] as shown in Fig. 7. The results show satisfactory agreement that establishes the potential 
of the proposed model. 

Conclusions 

A micromechanical damage model for fatigue loading based on thermodynamic principles 
is proposed. The model is applied to unidirectionally reinforced MMCs. Only elastic loading 
in the form of a uniaxial fatigue loading (in the fiber direction) is considered thereby reflecting 
high cycle fatigue loading. Numerical results from the parametric study show the influence of 
various model parameters on the damage evolution in the constituents. A sample analysis of a 
complete fatigue simulation with final failure is shown. 
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pp. 119-130. 

ABSTRACT: Initial defects are the main cause of the failure of structures made of brittle or 
quasi-brittle materials. The aim of this paper is to model within the framework of continuum 
damage mechanics these defects and their influence on the mechanical behavior of the structure 
they lie in by using a strain localization criterion. The microscopic and mesoscopic conditions 
for localization are studied by utilizing isotropic or anisotropic damage variables. A represen- 
tative volume element (RVE) containing one defect is defined and the failure criterion of such 
an RVE is derived. The initial defect is modeled by an initial damage parameter. The evolution 
law of this damage value depends upon the nature of induced damage. Finally, an extension of 
this study to the case of high-cycle fatigue is proposed. 

KEYWORDS: brittle materials, quasi-brittle materials, initial defects, initial damage parameter, 
induced damage parameter, continuum damage mechanics, damage localization, high-cycle fa- 
tigue, cracking, fatigue (materials), fracture (materials) 

Initial defects are usually the cause of failure of structures made of brittle or quasi-brittle 
materials such as ceramics, concrete, and cast iron under high-cycle fatigue loading conditions. 
Studying the failure of this kind of material requires information about the initial distribution 
of these defects as well as their evolution. In the case of brittle materials, failure can be studied 
at a mesoscopic level where the structure is divided into representative volume elements (RVEs) 
that contain only one defect. The defects can be modeled by penny-shaped cracks. The failure 
criterion may be defined by a critical size of the propagating defect. Statistical models may be 
employed to analyze the failure of these structures [I]. For quasi-brittle materials, the details 
of the defect geometry must be taken into consideration. In this case, studying the failure of 
the structure requires information at a microscopic level. 

Stationary waves were studied by Hadamard [2] in elasticity and by Hill [3] and Mandel [4] 
in elastoplasticity. Rice [5] related the localization of plastic shear bands to jumps of the velocity 
gradient. Borr6 and Maier [6] gave the conditions necessary for the onset of localized modes 
inside the body. These conditions are a generalization of the sufficient conditions derived by 
Rice and Rudnicki [5, 7]. Strain localization corresponds to the onset of a surface across which 
the velocity field is discontinuous. In the framework of infinitesimal strain, damage may be 
one of the mechanisms responsible of such a localization. Localization is due to strain softening. 
Hence, continuum damage mechanics is an appropriate theory to determine the local failure of 
an RVE, that is, to define a macrocrack initiation condition. This criterion is then a strain and 

Research assistant, research associate professor, and professor, respectively, Laboratoire de M6canique 
et Technologie, E.N.S. Cachan/C.N.R.S./Universit6 Paris 6, 61, avenue du Prrsident Wilson, F-94235 
Cachan Cedex, France. 

Copyright�9 by ASTM International 

119 

www.astm.org 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



120 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

damage criterion to predict localization corresponding to the transition from a homogeneous 
deterioration to a localized one. This approach has successfully been used for ductile materials 
[8,9]. 

The aim of this paper is to model, in the framework of continuum damage mechanics, the 
defects and their influence on the mechanical behavior of the structure they lie in. The first 
step consists of studying the behavior of a matrix without defects and the corresponding lo- 
calization conditions by using two different damage models. The first model corresponds to an 
isotropic description, and the second one to an anisotropic description that describes the creation 
of cracks in the matrix. In a second step, we define an RVE containing an initial defect and 
the failure criterion for such an RVE. The defects are modeled by an initial value of a damage 
variable. The evolution law of this damage parameter depends upon the nature of induced 
damage due to the loadings. In this paper, monotonic and high-cycle fatigue loadings are 
considered. Two phenomenological models are introduced: the first one is called an additive 
model where the induced damage is of the same nature as the initial damage, and the second 
is a multiplicative model where the induced damage is different from the initial one. Micro- 
mechanical analyses are carried out on pre-cracked cells and on volumes containing initial 
defects that can be modeled as cylindrical holes, and the propagating defects as penny-shaped 
cracks embedded in an elastic matrix. 

State Coupling: Elasticity and Damage 

The behavior of the matrix containing initial defects is considered to be elastic-damageable. 
The degradation mechanism is characterized by one scalar variable, D. This variable can be 
either isotropic or anisotropic. For the sake of simplicity, we will consider the case of plane 
stress. In the case of an isotropic damage description, the Helmholtz free energy density, ~b, 
and the associated force, Y, to the damage variable (that is, the energy release rate density [10]) 
can be written as [I1] 

1 E(1 - D)[e~l + 2velle22 + e222] + 2~(D)e22 
P - = 2 6  1 - u 2 

0~0 0"2 + 2vo'Ho'zz + 0"~2 0-~lz 
Y = - P  ~ = 2E(1 - D) z + 2G(D)(1 - D ) '  

where 

p = material density, kg/m3; 
el l ,  e22, e12 = components of the infinitesimal strain tensor; 

Orll, 0"22, 0"12 = components of the Cauchy stress tensor, Pa; and 
E, v = Young's modulus, Pa, and Poisson's ratio of the virgin material. 

G(D) = G(1 - D) 

(1) 

E 

D 
2(1 + v ) + - -  

1 - D  

(2) 

0 ~ _  o"71 + 0"72 (~(D) = 
Y = - P  OD 2E(I - D) 2' 

In the case of cracking that is normal to the 1-direction, an anisotropic damage variable is more 
appropriate. The damage variable, D, then is a function of the crack density (that is, zra2/S, 
where 2a is the crack size within a surface, S) and the Helrnholtz free energy density, qJ, and 
the energy release rate density, Y, are the following [12] 

1 E{(1 - D)eTl + 2v(1 -- D)elle22 + e22} 
+ 2(~(D)e~2 

p~b= 2 1 - v2(1 - D) 
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D a m a g e  Evo lu t ion  L a w  

In the case of an isotropic or anisotropic description, it was decided to model the damage 
evolution by a law developed by Marigo [13]. In this model the elastic domain is defined as 

f (Y ,O)  = Y - (Yth + MD) <-- 0 (3) 

where 

Y~h = threshold energy release rate density below which no evolution occurs, j/m3; and 
M = scaling parameter, J/m 3. 

For an initially virgin material (D(t = 0) = 0), the damage evolution is written as 

OF 
/)  = ~-~ )~ (4a) 

where the loading/unloading conditions are formulated in Kuhn-Tucker form as 

-> 0, f -< 0, Af = 0 (4b) 

where 

�9 ~ = damage multiplier derived from the consistency condition ,~)~ = 0, and 

F = damage potential written as F(Y) = (Y  - Yth)/M SO that A = ~ and / )  =/~(~) .  

Microscopic Initiation Conditions 

Local failure corresponds to the strain and damage localization in one point of the structure, 
that is, to the onset of a surface across which the strain rate is discontinuous, in other words, 
to the failure of the ellipticity condition. The strain rate is related to the stress velocity by 

I ~ : : ~  i f /9  = 0 (unloading) 

= ~ i f / )  :~ 0 (loading) (5) 

where 

E = fourth order elastic operator, Pa; 

H -- fourth order tangent operator, Pa; and 

~,_~ = second order stress rate (Pa/s) and strain rate tensors (l/s). 

Localization occurs inside the structure if and only if [6, 7] 

det ~.H.n_) = 0 (6) 

where n = vector normal to the localization surface. 
In the case of an isotropic damage description, the localization conditions for a plane stress 

state are depicted in Fig. 1, where k denotes the ratio of the in-plane minimum principal strain, 
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FIG. 1--Evolution of  the normalized energy release rate density at localization as a function of  
the ratio of  in-plane principal strains. 

e2, upon the maximum principal strain, el. The orientation of the localization surfaces are given 
in Figs. 2 and 3. The localization direction is unique and aligned with the maximum principal 
stress direction when the two principal strains are positive. On the other hand, they vary between 
0 ~ and _+45 ~ if the minimum principal strain is negative. 

When an anisotropic description is used, a closed-form solution for localization can be found 
provided the normal to the crack is parallel to the maximum principal strain direction, that is, 
the 1-direction. Localization occurs when 

H I I l l  = PHil22 = vH2211 = 0 w h i c h  l e ads  to Y = Yr (7) 

where H l l l l  , H l122  , and H22n are components of the tangent operator H, Pa. 

If F(Y) = (Y - Yth)/M, then Yc = (Yth + M)/3 and at localization o'1~ = (1 - F(Yc)) 
2 ~ c .  This value is the same as that obtained with the isotropic description in the case of 

J 

n2 ~ ) 2  E1 

FIG. 2--Orientation of the localization surfaces. 
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FIG. 3--Evolution of the orientation of the localization surface as a function of the ratio of in- 
plane principal strains in plane stress conditions, I~ol = Iq~/I or 1~ol = 1~o2[. 

pure tension. In Figs. 1 and 3, the results of the present analysis are shown in dashed lines. It 
must be noticed that in this case, the localization direction always coincides with that of the 
cracking direction. 

Behavior of a Predamaged RVE 

The presence of defects in a considered RVE is modeled on a mesoscopic scale by damage 
parameters that are chosen uniform in the RVE and dependent on both the RVE size and the 
defect characteristics (for example, size, orientation). In the case of cylindrical holes, an initial 
value, Do, of a mesoscopic isotropic damage variable, D, is assumed to be sufficient to model 
the influence of that kind of defect distribution. This isotropic damage variable is a function of 
the volume fraction of voids. In the case of a crack of size 2a with its normal aligned along 
the 1-direction in a cell of surface S, a mesoscopic anisotropic description may be used. It is 
characterized by a unique mesoscopic damage variable, D, of initial value, Do, that is a function 
of the crack density (that is, r 

In both isotropic and anisotropic cases, the question to address is the evolution of damage 
induced by the load history. When the nature of induced damage, d, is identical to that of the 
initial damage, Do, a first approach assumes that 

~) = __OF .~ and D(t = O) = Do (8) 
OY 

In this case, induced damage, d, is defined by the following relationship 

D = Do + d (9) 

This kind of approach has been used to model predamaged ductile materials [14]. 
On the other hand, if the induced damage is of a different nature from the initial damage, 

Do, other assumptions may be valid. The Helmholtz free energy density must take into account 
Do so that in the case of an isotropic description, the Young's modulus of the material in its 
initial state (at t = 0) is equal to E(1 - Do). The damage evolution law for the induced damage, 
d, may be given by 

,~ = OF ~t and d(t = O) = 0 (10) 
OY 
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In the case of an isotropic description for initial and induced damages, the final damaged elastic 
stiffness appears as E(1 - Do)(1 - d) that can be noted E(1 - D) so that the final damage, D, 
is expressed by 

D = D o +  d(1 - D o )  (11) 

such a multiplicative coupling corresponds to the model proposed by Hayhurst and Perrin to 
study weldments [15]. 

Initial Damage is a Crack 

Let us consider crack propagation of a pre-cracked system constituted of a plate with an 
initial crack of a size, 2ao. It can be shown that if this RVE is subjected to a load such that the 
maximum principal stress is normal to the initial crack, the final anisotropic damage variable, 
D, can be written as a function of the initial damage due to the initial crack, Do, and the induced 
anisotropic damage, d 

Do + d -  2Dod 
D = (12) 

1 - Dod 

In this case, we have an expression corresponding to neither an additive nor a multiplicative 
model. In particular, the additive model, D = Do + d, is recovered only in the case of small 
values of (Dod), even though the initial and induced damages are of  the same nature. 

Let us consider a case where there is an initial anisotropic damage, D~, corresponding to 
cracking normal to the 1-direction. If the material is subsequently loaded in the perpendicular 
2-direction, an induced damage variable, D2, may develop so that the Helmholtz free energy 
density can be written as [12] 

1 E{(1 - D0e21 + 2v(1 -- D1)(1 - D2)elle22 + (1 -- Dz)e~22} 

p~b 2 1 - v2(1 - D0(1 - D2) 

(~(D1,D2) = 
E 

D1 D2 
2(1 + v ) + - - +  

1 - D 1  1 - D2 

+ 2G(D1,D2)e~2 

(13) 

In that case, the multiplicative effect only appears in the terms modeling the Poisson effect. 

Initial Damage is a Hole 

In this part, numerical simulations are performed on plates containing holes of different sizes. 
The value of the initial isotropic damage, Do, is obtained by computing loss of stiffness due to 
the presence of a hole of a given diameter. 

Simulations are done on six plates of size 2b containing holes of diameters, 2r, so that the 
ratio b/r varies between 0.1 and 0.6 with a step of 0.1. Plates are subjected to a remote uniaxial 
displacement. For each displacement, the global reaction force is computed. The value of  the 
mesoscopic damage variable then corresponds to the loss of stiffness. The mesoscopic damage 
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FIG. 4---Evolution of the variation of the mesoscopic induced damage, D - Do, as a function of 
the mesoscopic energy release rate density, Y - Yth, for all the analyzed hole diameters with an 
isotropic damage description at the microscopic level 

evolution (defined by a damage offset of 0.0001) occurs when the energy release rate density, 
Y, reaches a threshold value depending upon the initial damage, Ya,(Do). The numerical results 
can be fitted by the following relationship 

Yth(Do) = Ytho(1 -- Do) 2 (14) 

The mesoscopic damage evolution is plotted as a function of the evolution of the energy release 
rate density, Y - Yth(Do), in Fig. 4. The relationship between the two variables can be fitted 
by 

D - Do = A [  ' Y -  YthoYth(D~ (15) 

where A, B = material parameters. 
Equation 15 shows again that in this case the damage evolution is neither multiplicative nor 

additive. However, if one assumes that the evolution of induced damage, d, may be influenced 
by the initial damage, Do, then Eq 15 corresponds to an additive model. 

Monotonic Failure Conditions of an RVE 

In this section, the failure criterion for an RVE containing an initial defect is analyzed in 
terms of strain and damage localization at a microscopic level. First, the localization conditions 
are obtained for cells containing cylindrical holes subjected to remote tension, a~, in plane 
stress conditions. The induced microscopic damage in the surrounding matrix is assumed to be 
either isotropic or anisotropic. 

The influence on the localization conditions of different parameters characteristic of the mesh 
refinement were studied. Figure 5 shows a typical mesh used for these numerical simulations. 
After several simulations, it appeared that the parameter that has the most important effect on 
the localization conditions is the size of the most loaded element, A. Figure 6 shows the evo- 
lution of the failure stress at localization for one initial damage value (Do = 0.02) as a function 
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FIG. 5--Mesh of  a plate with a hole corresponding to an initial damage, Do = 0.02. 
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FIG. 7--Mesoscopic stress at microscopic and mesoscopic damage localization for isotropic and 
anisotropic damage models at a microscopic level. 

of A/b. A fixed value, A/b = 0.009, is used for all simulations. The present value is taken as 
a compromise between mesh sensitivity and computation cost. 

Figure 7 shows the mesoscopic stress, ~=, at microscopic localization for different values of 
the initial damage variable, Do. The difference between the stress values at localization for the 
two models is not very important, which can be justified by the results of Fig. 1 for which the 
localization conditions for values of the strain ratio, k < 0, are identical for both models. The 
same conclusion can be drawn for the stress levels at mesoscopic localization, that is, peak of 
the mesoscopic stress, o-~. Besides, it can be shown that all the curves of Fig. 7 can be ap- 
proximated by the following expression 

E = /3(1 - Do) -l/€ + (1 - Do) (16) 

where 

E = normalized stress, and 
fl = material parameter depending on the damage description. 

It is worth noting that in this case the mesoscopic stress levels at microscopic and mesoscopic 
localization are very close to each other. Similar results have already been found for unidirec- 
tional fiber-reinforced composites [16]. It is worth remembering that the mesoscopic stress 
level at mesoscopic localization may be mesh-dependent. Since the latter is very close to that 
at microscopic localization, it is expected that the mesh-dependence is very weak. 

Extens ion  to H i g h - C y c l e  Fat igue  

It is assumed that the damage evolution law has the main features of a macrocrack propa- 
gation law based upon a generalized Paris' law [17] 

1 dO _[/ YN/-~m~ -- N/-Y-s 
(1 - D)  2 dN - C'~ " ~ ' - - ~ t h  ) (17) 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



128 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

where 

C,n = material parameters; 
2 

Ymax --  O'max 2E(1 - D) 2' maximum over one cycle of the energy release rate density, Jm-3; 

Y~ = critical energy release rate corresponding to microscopic failure (localization), Jm-3; 
and 

Yth = threshold energy release rate density below which no damage evolution occurs, Jm -3. 

If we consider that the initial damage values are bounded by a maximum damage value, DOM, 
two threshold stresses can be defined. A monotonic threshold stress, So, denoting the minimum 
value of the applied local stress above which local failure is certain under monotonic loading 
(that is, when the initial damage value of the RVE is equal to DOM). A cyclic threshold stress, 
Sth denoting the minimum value of the applied local stress below which local failure does not 
occur. These two stresses are defined by 

S~ = (1 - DOM) 2~e/~-~c, Sth = (1 - DOM) 2 ~ t h  (i8) 

Integration of Eq 17 gives the relationship between the damage value, D, after N cycles of 
constant amplitude Ymax - Ym~, --> Ymax - Yth and the initial damage value, Do 

~ D )  - ADo) = (1 - n)C tr~o~x N (19) 

- 1 ( 1  - DOM)" 

with 

) l--n 

1 1 if Do --> Dth, k - Sth 
~p(D) = '1 - D 1 --Dth Sc 

where Dth = threshold damage value associated to the applied stress O'max: Yth = 
2 

O'ma x 

2E(1 - Dth) 2" 
Microscopic localization occurs when the damage value reaches a critical value, De, corre- 

sponding to the critical energy release rate density 

2 
O'max 

Yc - 2E(1 - De) z (20) 

so that the number of cycles to failure, NF, is given by 

( q~(Dc) - tp(Do) = g NF; Sth ] 

where 

( O'maxX = (1 2. _n)C (O.max)n N F represents the e f f e c t  

g NF; Stn] ( ~  - 1 ] " - - - 1 ]  (1 -- DOM)" \ S t h ]  and of induced damage. 

(21) 

Equation 21 shows that in the general case, the effect of induced damage is neither additive 
nor multiplicative. 
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Conclusions 

An elastic law coupled with damage is introduced to study the behavior of quasi-brittle 
materials. Two kinds of damage variables are introduced to model the material degradation. 
The first one is an isotropic damage variable and the second is an anisotropic one able to model 
microcracking. The local failure criterion is damage localization at one point of the structure. 
Under plane stress conditions, the isotropic and anisotropic descriptions are equivalent in terms 
of load level and angle at localization when the ratio between the principal strains is less than 
zero. Microscopic localization corresponding to local failure appears when the energy release 
rate density reaches a critical value, Yc. 

The presence of an initial defect in an RVE is modeled by an initial damage value, Do, 
measuring stiffness loss due to the presence of the defect. Two models are introduced to study 
the damage evolution in an RVE containing an initial defect. The first one is an additive model, 
where the induced damage is of the same nature as the initial damage. The second one is a 
multiplicative law, which can model the cases where the induced damage is of a different nature 
from initial damage. A micromechanical study of a pre-cracked system shows that the damage 
law can be an additive model for small values of induced damage. In the general case, however, 
the damage law is more complicated as exemplified by a numerical micromechanical study of 
plates with holes. A mesoscopic damage law evolution can be identified by studying the evo- 
lution of the induced damage as a function of the energy release rate density. 

An extension to high-cycle fatigue using a damage evolution law deduced from a generalized 
Pads'  law for the case of macrocrack propagation is also proposed. The damage value after N 
cycles is given as a function of the initial damage value and the maximum applied stress. A 
critical damage value leading to damage localization is deduced from the critical value of the 
energy release rate density. This model also shows the complexity of the damage law in the 
general case. 
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Effects of Damage Distribution on Evolution 
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on Evolution," Applications of Continuum Damage Mechanics to Fatigue and Fracture, ASTM 
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ABSTRACT: Recent micromechanically inspired phenomenological theories using internal state 
variable (ISV) representations of damage have been used to predict the thermomechanical be- 
havior of microcracked solids. These models do not, in an explicit manner, account for distri- 
butions of microcracks in a representative volume element (RVE) and have been used success- 
fully only to determine the effective moduli of damaged solids. It has been demonstrated that 
while the distribution and interaction of damage entities within an RVE generally have a minor 
effect on the effective moduli, it has a significant effect on the evolution of damage and failure 
at the macroscale. Damage evolution rates, in general, cannot be described adequately by such 
theories because of their inability to account for interactions between damage entities in an 
arbitrary distribution. 

Key issues pertaining to the development of viable damage evolution equations using a con- 
tinuum damage mechanics approach are addressed. In particular, limitations associated with the 
use of ISVs that can be expressed either in terms of macroscopically measurable quantities or 
through a spatial average of the geometric features of individual damage entities are discussed. 
Numerical simulations of evolving crack systems in two-dimensional perfectly brittle solids 
indicate that "effective stress" models may have difficulty in characterizing damage evolution 
in brittle microcracked solids when the damage consists of cracks of variable size or spatial 
distributions. An argument for implementing ISVs based on higher-order moments of the damage 
distribution within an RVE is presented. 

KEYWORDS: continuum damage mechanics, damage evolution, brittle microcracked solids, 
internal state variable theory, damage distribution effects, cracking, fatigue (materials), fracture 
(materials) 

Characterization of the thermomechanical response of materials with distributed damage 
remains one of the key problems in solid mechanics. Many such materials are capable of 
sustaining substantial loading-induced mesostructural damage prior to catastrophic failure. Two 
primary aspects of the problem involve determination of effective properties for damaged solids 
and formulation of damage evolution laws. The former has received the bulk of the treatment 
in the literature, whereas the latter is much less developed. Critical differences in the way the 
distribution of damage influences the effective moduli and subsequent damage evolution dictate 
the manner in which each aspect of the problem may be appropriately described. Numerous 
micromechanical and continuum damage models have been suggested in order to address the 
problem. 

Micromechanical approaches, in general, attempt to predict the macroscale thermomechan- 
ical response of heterogeneous materials based on mesostructural models of a representative 
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volume element (RVE) within the material. An RVE may be defined as the minimum material 
volume that contains a sufficient number of damage entities to provide a "statistically homo- 
geneous" representation of the mesostruction [1]. Statistical homogeneity, for general purposes, 
requires that all global geometrical characteristics (volume fraction of constituents, two-point 
statistics, etc.) are the same in any RVE, irrespective of its position. Commonly, the RVE is 
defined as a cube of material with dimension, IREV, subject to the condition that IRvE/d is 
"sufficiently large." Here, d is the wavelength over which the traction or displacement on the 
RVE boundary fluctuates about some mean value under conditions of uniform displacement or 
traction, respectively [2,3]. The RVE may include specific mesostructural details of composite 
phase geometry, nature and distribution of damage, and properties of constituent materials. 
Micromechanical models have the distinct advantage of being able to capture structural details 
at the microscale and mesoscale, and to allow formulation of the kinetic equations for damage 
evolution based on the actual physical processes involved. The models, however, can be com- 
putationally inefficient in many practical applications, and can only be applied to limited classes 
of materials and damage mechanisms [4-6]. Mural [7], Nemat-Nasser and Hori [3], Christensen 
[8], and Torquato [9] provide extensive overviews of micromechanics of heterogeneous 
materials. 

Given the large-scale numerical calculations generally required for micromechanical analysis 
of heterogeneous materials, perhaps the most practical vehicle for the development of a general 
thermomechanical constitutive theory for damaged solids lies within the framework of contin- 
uum damage mechanics (CDM) using internal state variables (ISVs). Arising from the classical 
studies of creep rupture of metals by Kachanov [10] and Rabotnov [11], CDM is based on the 
thermodynamics of irreversible processes [12-14], internal state variable theory [15], and rel- 
evant physical considerations (assumption of distributed damage, homogenization concepts, 
definition of the damage variable, formulation of kinetic laws for damage evolution, etc. see 
Ref 4). A solid that is highly heterogeneous at the mesoscaie is considered an effective ho- 
mogeneous continuum at the macroscale. Macroscopic damage variables are judiciously se- 
lected to reflect the effects of RVE level irreversible processes on macroscaie material behavior. 
The fact that the theory refers to a homogeneous continuum, however, presents a serious ob- 
stacle in the development of damage evolution laws that incorporate effects of the heterogeneity 
of the solid at the mesoscale. Whereas effective moduli are somewhat insensitive to the distri- 
bution of damage, damage evolution is highly dependent on the local fluctuations in the damage 
distribution within the RVE used for stiffness calculations [16-19]. In the homogenization 
process, critical information regarding the largest flaw size, minimum distance between flaws, 
and distribution of damage within an RVE may be irrevocably lost. Such information is crucial 
to the development of viable evolution equations. Current CDM approaches have been limited 
generally to the case of dilute (noninteracting) damage. Lacy et al. [20] summarize key issues 
pertaining to the use of CDM to predict effective moduli and damage evolution in brittle 
microcracking solids. 

Brief Overview of CDM 

The specific Helmholtz free energy of a damaged solid can be characterized for the ther- 
moelastic case by the constitutive relationship 

= qt(�9 T, D ('~)) (1) 

where �9 is the Helmholtz free energy, �9 is the small strain tensor, Tis the absolute temperature, 
and D ~) are the damage internal state variables (ISVs) necessary to characterize the effect of 
mesostructural damage (and its distribution) on the macroscopic response (a - 1, 2 . . . . .  N). 
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LACY ET AL. ON EFFECTS OF DAMAGE DISTRIBUTION ON EVOLUTION 133 

Here, boldface characters denote tensorial quantities. The ISVs may be represented by scalar, 
vector, or higher-rank tensor quantities, although a tensorial representation of damage is usually 
preferable [21]. 

According to standard arguments, this framework leads to certain relationships for conjugate 
thermodynamic forces [4,22-29], that is 

0xlr 
am _ o__~_~ y~)  = - P O D  (~) (2a,b,c) cr = P - ~ E ' s  = OT' 

where ~ is the Cauchy stress tensor, s is the specific entropy, 1 ~ )  is the generalized thermo- 
dynamic force conjugate to D ~) (hereinafter referred to as "thermodynamic force"), and p is 
the mass density of the solid. Y~) is often interpreted as the strain energy release rate (ERR) 
associated with an increment of damage extension (evolution). The elasticity tensor for a given 
state of damage, C, is given by 

Cijkl : p -  (3) 
O%aE,~ 

It should be noted that damage development in heterogeneous materials may result in a change 
in material symmetry properties [6,30]. The rate of change of the internal state of the solid is 
governed by the evolution equations 

D ~) =/)(~)(r T, D (~)) (4) 

It is important to note that evolution of a given internal state variable, b r depends on the 
instantaneous values of all other ISVs, D (v), where 3' = 1 . . . . .  N. In general, the kinetic 
equations describing the evolution of damage may be written as independent equations of 
evolution for every internal state variable (Eq 4) or as derivatives of a suitably chosen potential 
function, invoking the postulate of generalized normality [14]. Furthermore, as a consequence 
of the second law of thermodynamics, the evolution equations (Eq 4) are governed by the 
dissipation inequality 

N 

(I ~~ b ~>) -> o (5) 

where a dot (.) denotes the scalar product of two tensors. Thus, the purely mechanical response 
of a damaged solid may be determined by the formulation of the constitutive equations given 
by Eqs 1 and 4, and by invoking the corollary conditions (Eqs 2a and c, and Eq 5). Equivalently, 
the formulation may be posed in terms of the Gibbs potential 

g = g(~r, T, Y*<~)) (6) 

resulting in equations analogous to Eqs 2 through 4 in terms of Variables ~r, T, and Y*<~) as 
well as the compliance tensor, S. We will focus on isothermal, purely mechanical applications 
here. 

Implementation of CDM 

The previous development, Eqs 1 through 6, is general in nature and may be used to char- 
acterize the response of materials containing damage that is both arbitrary in character (cracks, 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



134 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

voids, other inelastic deformation) and distribution. Practical considerations, however, often 
dictate the type and number of damage ISVs that can be used effectively in this approach. 

The selection of a macroscopic damage variable, in principle, may be somewhat arbitrary 
and need not directly reflect any of the underlying dissipative or energy transfer processes 
occurring at the mesoscale. Commonly, a damage parameter is selected that can either be 
expressed in terms of macroscopically measurable quantities (giving rise to so-called "effec- 
tive-stress" or similar models) or that incorporates prominent aspects of damage morphology 
in its definition (that is, so called "micromechanically inspired" damage variables). Either 
choice of damage parameter has inherent limitations that affect its utility in a CDM formulation. 
Some of the drawbacks associated with each approach are discussed in the following 
subsections. 

Effective Stress Models 

Numerous damage models have incorporated scalar or tensorial damage variables that can 
be characterized at the macroscale (for example, by change in compliance). Chaboche [31] 
developed a fourth-rank tensor representation of damage for the three-dimensional case, that is 

D = I - C * : C o  I (7) 

where C* and Co are the stiffness tensors for the solid in the damaged and undamaged states, 
respectively, ! is the fourth rank unit tensor, and a colon (:) denotes the second-order contraction 
of tensor indices. The components of the damage tensor in this case can be determined from 
elastic compliance changes. With such a representation of damage, it is possible to define a 
fictitious "effective stress," tr*, that produces the same elastic deformation in the undamaged 
solid as does the actual stress or, in the damaged configuration. The two stress states are related 
by the relationship [31] 

~r* = ( I  - D )  - t  : cr ( 8 )  

Such approaches have been used extensively to describe damage development in initially iso- 
tropic homogeneous ductile materials under creep and fatigue [28,31-38]. Damage variables 
inferred on the basis of the effective stress concept or similar notions (for example, effective 
area, section, volume, etc.) do not contain information regarding the nature and distribution of 
damage. 

In order to assess the viability of such macroscopic damage variables in a CDM formulation, 
parametric studies were performed to examine the effect of initial crack patterning on self- 
similar damage evolution for a number of periodic distributions of parallel cracks in two- 
dimensional, idealized, brittle solids under plane-strain conditions. Following the methodology 
outlined by Lacy et al. [20], numerical simulations of evolving crack systems were conducted, 
and the effective moduli and the RVE averaged ERR were calculated at each increment of 
damage evolution, for a given measure of damage. A macroscopically measurable damage 
parameter was selected in order to evaluate its utility in assessing damage evolution in periodic 
arrays of flaws of various sizes and spatial distribution. Such an idealized problem is used here 
to clearly demonstrate the issues, although we assert that these issues pertain to much broader 
classes of damage in nonlinear, history-dependent materials. 

Figure 1 shows a schematic of a representative model used in the numerical study. A periodic 
distribution of cracks parallel to the xl-axis was assumed in an RVE consisting of a linearly 
elastic, isotropic, homogeneous solid under isothermal conditions. Periodic boundary conditions 
were applied to simulate a repeating mesostructure. A displacement, u2, was applied in the 
x2-direction to the upper RVE boundary. The magnitude of u2 was chosen such that Mode I 
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l 
x 1 

I 
J j  

FIG. 1--Schematic of ~pical RVE and associated boundary conditions used in numerical simu- 
lations of damage evolution. 

crack extension of the worst-case crack tip in the RVE was imminent. Individual crack tips 
were incremented in self-similar fashion whenever K equaled Klo where K is the Mode I stress 
intensity factor (SIF) and Klc is the plane-strain fracture toughness of the material; the material 
was assumed to have no intrinsic toughening capability (that is, perfectly brittle). Accordingly, 
the applied displacement, u2, was adjusted at every increment of crack growth to ensure stable 
damage evolution. The RVE-averaged stiffness and ERR, as well as the local driving forces, 
were evaluated for each stable damage configuration. For illustration purposes, a macroscopi- 
cally measurable damage variable analogous to Eq 8 was used to characterize the damage 
distribution, that is 

Eo - E2 AE 
D . . . .  (9) 

Eo Eo 

where E2 and Eo are Young's moduli in the x2-direction for the damaged and virgin isotropic 
materials, respectively. For an RVE with some initial distribution of cracks, continuous damage 
evolution may be numerically simulated by a sequence of M - 1 increments of damage as- 
sociated with M stable damage states, D (~ where i = 1 . . . . .  M. Each stable damage state, D (~ 
has an associated threshold RVE-averaged strain energy density value, W (~ necessary for 
additional damage evolution to occur (that is, such that K = K~c for any given crack tip 
contained in the RVE). Following Lacy et al. [20], Eq 2c may be approximated for the ith 
stable damage state using the three-point formula [39] 

W(i+l) _ W(i- l )  
Y(1) = - p  D(i+l) _ D<i_I~ i = 2 . . . . .  M - 1 (10) 
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136 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

where D ~ is the value of the RVE-averaged thermodynamic force conjugate to damage, D <~ 
at the ith stable damage state. Two-point formulas analogous to Eq 10 may be used to evaluate 
y(0 for the cases of i = 1 and i = M [39]. Thus, Eqs 9 and 10 may be used to evaluate the 
RVE-averaged scalar damage ISV (in this case, effective modulus) and thermodynamic force 
conjugate to damage at every increment of damage evolution. 

Figure 2 shows three uniform crack distributions over the RVE consisting of one, four, and 
sixteen cracks, respectively. Each distribution had the same normalized vertical and horizontal 
spacing between neighboring cracks (h/w = 1); however, the initial crack lengths, a/WRvE, of 
the second and third configurations were approximately one-half and one-fourth, respectively, 

I t  

2w ] 
2WRV E = 1 (TYP) 

7 
h 

__.L 

b 

-1 2~ I'- 

~ - -  2 w  --~ 

0 

2h 

_l 
C 

~ o o 

[, 2w~w= 1 (TVP) ~ ~ =w~w= 1 (rvP) 

2h 

FIG. 2--Uniform crack distributions used in numerical simulations o f  damage evolution: (a) 
uniform crack distribution No. 1 (hlw = 1, 0.3 <-- a/WRvE <-- 0.95), (b) uniform crack distribution 
No. 2 (h/w = 1, 0.14 <-- a/wRw <-- 0.46), and (c) uniform crack distribution No. 3 (h/w = 1, 0.07 
<-- alwRv~ <-- 0.23). 
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FIG. 3 Normalized strain necessary to initiate damage evolution. 

of that of the first configuration. These configurations were used to demonstrate the effect of 
the relative distribution of crack lengths on macroscopic stiffness and ERR. Figure 3 shows a 
plot of the normalized critical threshold strain, E2/e~F, necessary to initiate damage evolution 
for each configuration, where ~2 is the RVE-averaged strain in the x2-direction and ~m~F is the 
critical threshold strain associated with the initial damage state of the crack distribution shown 
in Fig. 2b. As expected, the uniform distributions with the largest characteristic crack sizes had 
the lowest threshold strain values throughout the entire range of damage evolution. The results 
suggest that for periodic arrays of cracks in brittle solids, knowledge of the reduction in moduli 
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FIG. 4--Normalized thermodynamic force obtained from numerical simulations of damage evo- 

lution in uniform crack distributions. 

due to the presence of defects is insufficient to assess the likelihood of damage evolution or 
failure or both; the characteristic size of defects relative to the RVE size also has a significant 
effect on the critical strain necessary to initiate damage evolution. Similarly, the RVE averaged 
ERR was markedly different for each distribution. Figure 4 shows that, for a given reduction 
in stiffness, the normalized thermodynamic force, Y/Y~F, necessary for damage evolution de- 
creased as the characteristic crack size of the distribution increased, where Y is the thermody- 
namic force and }TREE is a reference (constant) thermodynamic force associated with the onset 
of crack extension for the initial damage state of the crack distribution shown in Fig. 2b. For 
each of the three uniform distributions, the thermodynamic force initially decreased rapidly 
with increasing stiffness reduction, and then approached a nearly asymptotic value that de- 
pended on the characteristic crack size. This reflects, perhaps, the effect of increasing shielding 
as the parallel cracks evolve from relatively dilute to strongly interactive configurations. These 
results indicate that distributions consisting of larger cracks will reach criticality and evolve at 
lower load levels and lower RVE strain energy release rates than distributions consisting of 
smaller cracks having the same degraded elastic modulus. 

In addition to the distribution of crack lengths, the spatial distribution of flaws also plays a 
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FIG. 5--Nonuniform crack distributions used in numerical simulations of  damage evolution: (a) 

strong enhancement (b/w = 8, 0.05 <- a/wRve <- 0.11), (b) moderate enhancement (h/w = 2, 0.1 <-- 
edwRvE <-- 0.23), (e) moderate shielding (h/w = 1/2, 0.1 <- a/wRvE <-- 0.45), and (d) strong shielding 
(h/w = 1/8, 0.08 <- a/WRvE <-- 0.52). 

critical role in damage evolution. Crack distributions that are biased toward either crack-tip 
shielding or enhancement configurations may exhibit markedly different RVE behavior. Figure 
5 shows four periodic crack distributions that are initially biased toward strong enhancement 
(h/w = 8), moderate enhancement (h/w = 2), moderate shielding (h/w = 1/2), and strong 
shielding (h/w = 1/8) configurations. These distributions were used to illustrate the effect of 
the relative spatial distribution of cracks on macroscopic stiffness and thermodynamic forces. 
Figure 6 shows that the normalized critical strain, ~ / ~ F ,  necessary to initiate damage evo- 
lution, similar to the uniformly distributed case, is a strong function of the initial patterning of 
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1.0 

damage. Those distributions biased toward enhancing configurations had significantly lower 
threshold strain levels. Furthermore, the critical strain decreased rapidly with increasing damage 
for the enhancing configurations. The threshold strain levels associated with shielding config- 
urations, however, remained relatively constant with increasing damage. This implies that in 
the presence of crack shielding, stable crack growth is possible in perfectly brittle materials. 
The differences in the trajectory of critical threshold strain for enhancement and shielding 
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configurations are understandable when considering that crack enhancement results in increased 
crack opening displacements and, correspondingly, higher SIFs, while in the case of crack 
shielding the opposite is true. For a given stiffness reduction, as the relative vertical spacing 
between cracks, a/h, decreased, the critical threshold strain, ~2/EREF, increased accordingly. 

Figure 7 shows the normalized thermodynamic force (ERR), YIYREF, associated with pro- 
gressive crack extension for each damage configuration. Unlike the uniformly distributed cases, 
the results are not as straightforward to interpret. For a given damage state, the ERR for the 
strong enhancement configuration was significantly larger than the other three cases, which is 
consistent with the previous observation suggesting that evolution of distributions of smaller 
cracks will require a larger thermodynamic force. It is also noted that the change of Y with 
AEIEo is greatest for the strongest enhancement, that is, crack extension releases the most strain 
energy for a finite change of D in this case. The thermodynamic force for the strong enhance- 
ment case remained a decreasing function of damage throughout the entire range of damage 
evolution. The thermodynamic force for the moderate enhancement and shielding cases initially 
decreased with damage evolution at low damage levels before approaching a nearly asymptotic 
value at higher damage values; the ERRs for both of these cases were comparable throughout 
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FIG. 7 Normalized thermodynamic force obtained from numerical simulations of damage evo- 
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the entire range of damage evolution, in spite of the difference in the nature of crack interactions 
associated with each distribution. Finally, the thermodynamic force associated with the strong 
shielding configuration, after a slight initial decline, increased with damage evolution before 
approaching an asymptotic value at higher damage values. 

The preceding numerical results confirm that certain macroscopically defined damage de- 
scriptors such as Eq 9 are incapable of distinguishing between various crack distributions that 
produce markedly different global responses. The "nonuniqueness" of results obtained in the 
numerical evaluation of threshold strain and thermodynamic forces for the given crack config- 
urations with common D values calls into question the viability of such a damage descriptor 
in addressing damage evolution of highly interactive crack systems in a CDM approach. Dam- 
age variables inferred on the basis of the effective stress concept or similar notions (for example, 
effective area, section, volume, etc.) do not contain information regarding the nature and dis- 
tribution of damage. Talreja [40] noted that in such an approach, two sets of damage entities 
of different characteristic sizes and concentrations leading to the same elastic compliance 
changes will be represented by the same damage variable. Damage evolution laws in such a 
formulation cannot be expressed in terms of the actual dissipative processes and energy release 
occurring at the mesoscale, and frequently result in estimation of damage evolution laws based 
on curve fitting experimental data. Even if stiffness change is correlated, internal dissipation 
may be quite inaccurately described, and extrapolation to other geometries and damage con- 
figurations is suspect. Consequently, ultimate failure or damage mode bifurcations or both 
cannot be accurately described, particularly those that might result from thermomechanical 
coupling or localization of damage within the RVE or both. 

As an alternative to using a macroscopically measurable damage parameter, implementing 
a damage variable that retains key information regarding the mesostructural damage distribution 
may better model the actual dissipative processes and energy release during damage extension. 
Use of such a parameter, however, is not without potentially serious shortcomings, particularly 
if it is based solely on the spatial average of key geometric features of the damage distribution 
in the RVE [20]. 

Micromechanically Inspired Damage Models 

In order to better model underlying dissipative or energy transfer processes occurring at the 
mesoscale, it is advantageous to choose a set of damage ISVs that incorporate salient aspects 
of damage morphology in their definition (that is, so-called "micromechanically-inspired" 
damage parameters). Damage evolution laws in such a formulation potentially may be ex- 
pressed in terms of the actual dissipative processes and energy release occurring at the meso- 
scale. Examples of micromechanically-inspired damage models have been introduced in the 
study of initially isotropic homogeneous brittle materials [4,16,17,24-27,41-43]. A second- 
rank tensorial characterization of cracks was first proposed by Vakulenko and Kachanov [44], 
and was further clarified by Kachanov [41], that is 

D U = -~ uinjdS (11) 

where n is a unit normal vector to the crack surface, u is the displacement jump across the 
crack surface, V is the volume of the RVE, and the integral is evaluated over all crack surfaces, 
S. Analogous to the damage descriptor given by Eq 11 is the crack density tensor [41,44], 
that is 

1 N 
Diy = -~ k~=l r 3 nikn~ (12) 
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for a three-dimensional solid with penny-shaped cracks and 

= n i n  ) Di j "A a 2 k k 
k = l  

(13) 

for a two-dimensional solid with slit cracks where rk and ak are crack radii and half-lengths of 
the kth crack, respectively; V and A are the volume and area of averaging, respectively; n k is 
the unit normal vector to the kth crack, and N is the total number of cracks. Allen et al. [45,46], 
Weitsman [47], and Talreja [6,48,49] used dyads similar to that of Eq 11 to construct vol- 
ume-averaged macroscopic damage variables to represent the effect of various crack-like sur- 
face discontinuities in composites (matrix cracks, fiber/matrix debonds, slipped surfaces, ply 
delaminations, etc.). It is essential to note that macroscopic damage variables obtained through 
a spatial average of the geometric features of individual damage entities, such as Eqs 11 through 
13, do not account for nonuniformity of the distribution of damage in the RVE and specifically 
neglect damage interactions. Such parameters are inappropriate to characterize the damage 
evolution of solids except for the case of dilute and noninteractive damage, such damage growth 
depends strongly on interactions. 

A set of micromechanically inspired damage ISVs necessary to adequately characterize the 
thermomechanical response of damaged solids may be represented as 

{D(~)} = {{D~om}, {D]~ {D~ ~ . . . . .  {D~X)}} 

where 

a = l  . . . . .  N 
/ 3 = 1  . . . . .  M 
f f = l  . . . . .  P 
~ =  1 . . . . .  Q 
X = I  . . . . .  V 
N = M + P + Q + . . . + V  

(14) 

Here, {D~o ~ represents the set of ISVs associated with the weighted zeroth-order moment 
(spatial average) of the geometric features of the RVE damage distribution. Equations 11 
through 13 are specific examples of ISVs of this type. {D~ ~ } represents the set of ISVs asso- 
ciated with the weighted first-order moment of the RVE damage distribution, and characterizes 
nearest-neighbor interaction effects. D~ ~ can be estimated using mark correlation functions 
[50,51] or other two-point statistics. These parameters would capture the effects of the gradi- 
ents of geometric features of the damage distribution on the macroscopic response. 
{D~ ~ } . . . . .  {D~ x) } are the sets of ISVs that reflect increasingly higher-order moments of the 
weighted damage distribution and, generally, could be quantified using n-point statistics (n = 
3 . . . . .  N - 1). Each of the sets of ISVs will have associated sets of thermodynamic forces, 
{ ~ ) } ,  { y~o} . . . . .  { y~x)}, that may be evaluated using Eq 2c. The dissipation inequality (Eq 5) 
for this case may be expressed as 

N P V 

(y~o~) . D~o~)) + ~ (y~o . D~o) + . . .  + ~ (y~x) . D~x)) > 0 
O-t  ,g=l x=l 

05) 

Clearly, the inclusion of ISVs characterizing the higher-order moments of the damage distri- 
bution greatly complicate the formulation, particularly considering that the higher-order terms 
must be reevaluated at every increment of damage evolution. This is especially troublesome 
for the case where individual damage entities are of arbitrary shape and damage evolution is Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
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not self-similar. Current micromechanically inspired CDM models typically utilize ISVs of 
Type D(o ~), and in practical applications it may only prove feasible to include ISVs of Types 
D(o ~) and D~ ~ Note that inclusion of ISVs of Type D~ ~) . . . . .  D(~ e~ in the Helmholtz free energy 
(Eq 1) or Gibbs free energy (Eq 6) explicitly introduce gradients of the damage distribution 
into the formulation, providing an inherently nonlocal description of the mesostructure. 

The number and type of ISVs that must be retained in order to minimally characterize the 
macroscopic response of damaged solids largely depends on the problem to be solved. If the 
primary interest is determination of effective elastic moduli, then the number of ISVs necessary 
to characterize the problem is somewhat reduced. The effective moduli of a damaged solid 
primarily depend on the "average" size, orientation, and spatial position of defects within an 
RVE; use of a spatially averaged damage variable, D(o ~), is generally suitable for this purpose. 
Kachanov [16,18] summarized the effect of crack systems on the effective moduli of linearly 
elastic isotropic solids. He observed that the effective moduli of solids containing randomly 
distributed, strongly interacting cracks are relatively insensitive to the distribution of cracks 
within a given material sample, provided the crack systems are not biased toward either crack 
shielding or enhancement configurations. Kachanov [16] noted that the assumption of nonin- 
teracting cracks was a reasonably good approximation when evaluating the stiffness properties 
of two-dimensional linearly elastic isotropic solids containing randomly distributed cracks, 
particularly at low crack densities. Kachanov [16-18] pointed out that this result is to be 
expected since effective moduli are "volume averaged" quantities that should remain some- 
what insensitive to the distribution of mesostructural constituents. When the crack distribution 
is "periodic" (nonrandom), however, significant differences in elastic moduli are possible for 
different crack distributions with the same crack density [52,53]. This suggests the need to 
incorporate additional sets of ISVs, { {D~ ~ } . . . . .  {D~ ~)} }, to evaluate the effective moduli for 
this case. 

When considering damage evolution for the case of nondilute interacting damage, however, 
it is essential to include ISVs that retain information regarding the distribution of damage within 
the RVE (for example, D~ ~ . . . . .  D~)). Damage evolution is highly dependent on the local 
fluctuations in the damage array geometry (see Refs 16, 17, and 19) as well as on the "extreme 
values" of the defect distribution (that is, largest defect size, minimum nearest neighbor dis- 
tance between flaws, etc.). Such information is crucial to the development of viable damage 
evolution laws. Lacy et al. [20] performed numerical simulations of self-similar damage evo- 
lution in two-dimensional, perfectly brittle, microcracked solids. They illustrated that the use 
of the ISVs of Type D(o ~) (specifically Eq 12) to characterize damage evolution can result in 
nonunique values of the thermodynamic force conjugate to damage (Eq 2c) for different dis- 
tributions of cracks that have the same crack density (Eq 12). The study underscored the need 
to include higher-order ISVs to better account for damage distribution effects on stiffness and 
evolution. One key obstacle in a CDM formulation, however, is determination of the minimal 
set of ISVs that can be used to adequately quantify the RVE energy release rate during damage 
evolution yet provide for a tractable solution. It is clear that the energy dissipated during damage 
evolution is not uniformly distributed throughout the RVE, but depends on the distribution of 
heterogeneities and damage entities in the RVE as well as the applied loading. The minimal 
set of ISVs necessary to characterize the evolution problem is that which adequately accounts 
for the distribution of Helmholtz free energy (Eq 1) or Gibbs potential (Eq 6) and energy 
release rate within an RVE. 

RVE Subvolumes and Length Scales 

In the preceding sections, the thermomechanical response of damaged solids in a CDM 
formulation was cast in terms of sets of ISVs that characterize the weighted damage distribution 
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within an RVE. Equivalently, the problem may be expressed in terms of the distribution of 
Helmholtz free energy within an RVE. For a damaged heterogeneous solid under a given 
thermomechanical loading, the local Helmholtz free energy, ~LOC, will assume a characteristic 
pointwise distribution within an RVE, that is 

~coc  = ~coc(X, ELoc, Tl.oc) (16) 

where x = (Xl, x2, x3) denotes local RVE coordinates, and ELOC and TLoc are the local RVE 
strain and temperature, respectively. Implicit in this relationship is the dependence of the local 
free energy on the distribution of heterogeneities and damage entities within the RVE. The 
volume averaged free energy for the RVE, in the sense of Hill [2], is given by 

~aw(E,  7", D~0 ~)) = "~ *Lot(X, EEOC, TLOC) dr (17) 

Assuming a sufficient number of damage ISVs (Eq 14) have been retained in order to provide 
a statistically homogeneous representation of the RVE damage distribution, mapping functions, 
~ ) ,  may be defined, in principle, that relate the RVE distribution of free energy to the damage 
ISVs, that is 

~IILoC(X, ~, T) = ~(a)(x,  ~, T~ D ~a)) : D ~) (18) 

where summation over a = 1 . . . . .  N is implied. In practice, however, the exact form of the 
mapping functions would be very difficult to determine. Nonetheless, if the RVE distribution 
of free energy is known, the effective moduli of the damaged solid may be estimated from Eqs 
3 and 17, that is 

02~AVE 
Cog I = p -  (19) 

O~.ijdekl 

Note that Eqs 17 and 19 implicitly neglect the distribution of free energy and damage in the 
RVE. As a consequence of the spatial variation of the free energy within an RVE, the energy 
dissipated during damage evolution, in general, will not be uniformly distributed throughout 
the RVE. Furthermore, we may assert that the microstructure will evolve along those trajectories 
that maximize the local energy dissipated (released) with a given increment of damage exten- 
sion. Dissipation in regions of the RVE characterized by peaks in the distribution of free energy 
release may be much higher than the RVE averaged dissipation. It would be inappropriate to 
characterize the evolution of damage in the RVE by using a spatial average of dissipation. 

The preceding discussion illustrates that the commonly accepted RVE definition (that is, 
lRvE[d is "sufficiently large") is best suited for determination of effective elastic moduli. Dam- 
age evolution, in general, involves length scales well below the characteristic RVE dimension, 
that is 

lsvld ~ 1 (to first-order) (20) 

and 

Isv << lRve (21) 

where Isv is the characteristic dimension of an RVE "subvolume." Note that volume averaging 
over individual subvolumes is insufficient to determine effective moduli, whereas volume av- 
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eraging over an RVE is insufficient to address damage evolution. The operative length scales 
over which these two critical aspects of the CDM problem must be characterized are markedly 
different. Furthermore, damage evolution occurs only in those subvolumes that reach criticality 
earlier due to preferred arrangement of microstructure (that is, "active" subvolumes). Any 
robust micromechanically inspired CDM model must distinguish between active and stationary 
RVE subvolumes in order to accurately characterize the energy dissipated during damage evo- 
lution. Incorporating a similar philosophy, Costanzo et al. [54] used micromechanics and ho- 
mogenization theory to derive exact macroscopic constitutive laws and evolution equations for 
inelastic heterogeneous materials with growing cracks. An approximate solution technique was 
suggested whereby an RVE can be discretized into a finite number of subvolumes; the distri- 
bution of ISVs within each subvolume was approximated using the products of finite dimen- 
sional variable functions of time and appropriately chosen shape functions. In general, however, 
optimum RVE subvolume averaging procedures for damage evolution remain undeveloped. 

While the focus of this paper has been directed toward perfectly brittle microcracked solids, 
the notion that distributed damage evolution (and associated energy release) occurs only within 
active RVE-subvolumes is completely general and may be applied to wide classes of materials 
sustaining various types of damage. Arguably, the problem of self-similar microcrack evolution 
in initially isotropic brittle solids may best be addressed using micromechanics. When other 
types of damage are considered in heterogeneous materials, however, micromechanical solu- 
tions become less tractable. In contrast, the higher-order CDM approach outlined here, in 
principle, is suitable for characterizing the thermomechanical response of multiphase materials 
with a wide array of damage mechanisms (for example, nucleation and nonself-similar growth 
of microcracks and voids in ductile materials, distributed matrix cracking and delamination in 
brittle composite laminates, etc.). The key challenge lies in defining appropriate damage ISVs 
(Eq 14) that adequately account for the distribution of energy released throughout the RVE 
during damage evolution. 

Conclusions 

Key issues pertaining to the development of viable damage evolution equations using a CDM 
approach have been addressed. In particular, limitations associated with the use of ISVs that 
can be expressed either in terms of macroscopically measurable quantities or through a spatial 
average of the geometric features of individual damage entities have been discussed. Imple- 
mentation of either type of ISV effectively "smears out" the effect of variations in the me- 
sostructure within the RVE; such variations play a crucial role in damage evolution and, in 
general, cannot be ignored. Numerical simulations of evolving crack systems in two-dimen- 
sional perfectly brittle solids indicate that "effective stress" models may have difficulty in 
characterizing damage evolution in brittle microcracked solids when the damage consists of 
cracks of variable size or spatial distributions. In such cases, effective stress models cannot 
accurately predict the strain to initiate damage extension nor the energy released during damage 
evolution for a given state of damage. Use of micromechanically inspired ISVs derived from 
quantities that are spatially averaged over the RVE, however, have similar shortcomings. An 
argument for implementing ISVs based on higher-order moments of the damage distribution 
within an RVE has been presented. Inherent in such a formulation is the assumption that the 
RVE, by definition, is somewhat better suited to characterize effective elastic moduli than 
damage evolution. Damage evolution involves length scales well below that of the characteristic 
RVE dimension; evolution occurs in a number of "active" subvolumes, the sum total of which 
may only represent a small fraction of the overall RVE volume. Further investigation of ap- 
propriate damage descriptors and RVE subvolume averaging procedures as well as numerical 
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simulations involving irregularly distributed damage systems are warranted to develop the 
higher-order CDM approach outlined here. 
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ABSTRACT: A general equation governing the evolution of number density of microdamage 
in the phase space has been derived previously, based on the concept of ideal microdamage. The 
phase space consists of necessary mesoscopic variables describing the state of microdamage. In 
the cases of parallel penny-shaped microcracks and spherical microvoids, two independent vari- 
ables, that is, their current and initial sizes, play a significant role in the evolution. This paper 
focuses on the two-dimensional (current and initial sizes) version of the equation and its solution. 
These results constitute a basis for the understanding of the underlying mechanisms governing 
damage evolution. Experimental techniques dealing with the statistical evolution of microcracks 
under impact and fatigue loadings are reported. These include specimen design, testing methods 
providing multifrozen stages of microdamage evolution, counting of microdamage, etc. Data 
processing, especially the conversion from sectional counting to volumetric distribution of mi- 
crodamage, is provided. In this way, the microdamage evolution is measured. As applications to 
the damage evolution under impact loading, two inverse problems are discussed, that is, nucle- 
ation and growth rates are deduced from the measured data of statistical evolution of microcracks. 
Another application is the prediction of the evolution of continuum damage in terms of nucleation 
rate, nN, and microdamage front, cy 

f ~  
D i = a Jo  d)(t, Co; o')nu(c0; o')dco 

This expression concisely links continuum damage evolution to its underlying mesoscopic dy- 
namics. This approach can be effective until a cascade of coalescence of microdamages leads to 
an evolution-induced catastrophe--a critical failure. 

KEYWORDS: continuum damage mechanics, cracking, fatigue (materials), microdamage, sta- 
tistical evolution, number density, fracture (materials) 

Nomenclature 

A Growth rate of microcracks in Phase Space [c] 
c Current size of microcracks 

Co Initial size of microcracks 
D Continuum damage 
n Number density of microcracks in Phase Space [c] 

no Number density of microcracks in Phase Space [c, Co] 
na Annihilation rate of microcracks in Phase Space [c] 
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nN Nucleation rate of microcracks in Phase Space [c] 
non Nucleation rate of microcracks in Phase Space [c, Co] 

pi Explicit (P~ = ,b~ 4: 0) independent variables describing the state of microdamage 
qj Implicit (qj = 0) independent variables describing the state of microdamage 

t Time, cyclic number, etc. 
V Growth rate of microcracks in Phase Space [c, Co] 
a Geometric factor of microdamage 
tr Stress 

Damage mechanics has become a very helpful tool for engineers to deal with failure prob- 
lems. Actually, the physical essence of damage is the population of distributed microdamage 
in a continuum element. Take an aluminum alloy, for example, the counting of microcracks 
on a sectional surface of the alloy subjected to impact loading is 102 to 104/mm 2. Then, the 
density of microcracks is about (103 to 106)/mm 3, That is to say, in a continuum element, 
approximately 1 mm 3 large, the evolution of continuum damage is the collective statistical 
behavior of the distributed microcracks. Despite this, continuum damage mechanics assumed 
a phenomenological measure of damage, D, and successfully treated a number of engineering 
problems, for example, see Ref 1. However, when one intends to correlate the damage evolution 
to the mesoscopic dynamics of microstructure of a particular material, it becomes necessary to 
investigate the statistical evolution of distributed microdamage. 

Microdamage can be grouped into microcracks and microvoids. This paper will be mail~ly 
concerned with microcracks in metals under impact and fatigue loadings. But the reviewed 
theoretical framework and relevant experimental techniques are also suitable for microvoids. 

Evolution Equation 

General Equation 

The equation governing the evolution of microdamage has been derived according to the 
conservation of microdamage in the phase space. That is to say, the rate of change of number 
density of microdamage within a control element in the phase space plus the excess of outgoing 
over incoming microdamage flux is equal to the excess of nucleation rate over annihilation 
rate [2] 

On ~ O(n �9 Pi) 
O--ti:l OPl = n N - -  nA 

(i) 

Here, Pi and qj are the independent variables describing the state of microdamage and constitute 
the phase space. They can be the size, orientation, position, etc., of microdamage. Pi =/~i are 
the dynamic rates and I denotes the total of variables pi. Whereas the rates of qj are equal to 
zero, hence, qj becomes implicit in Eq 1. For example, in Phase Space [c,co], pl = c, the current 
size of microdamage, and then I = 1, but ql = Co because of the invariable initial size at 
nucleation of a microcrack. Finally, n is number density of microdamage. For example, 
in Phase Space [c], n.  dc is the number of microdamages in the interval (c, c + dc) per 
unit volume. Also, all mesoscopic dynamics, P~, nN, and hA, are functions of corresponding 
variables as well as stress. Therefore, the number density of microdamage, n, should be n = 
n(t, Pi, qfi o'). 
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Ideal Microdamage 

According to the estimation of microcrack density (10 3 to 106)/111Ill 3, there is one microcrack 
in a cube with edges tens of/~m long. On the other hand, microcracks are only a few micro- 
meters large. Hence, microcracks are sparsely distributed in the alloy. In this case, a useful 
model is the ideal microdamage [3]. In this model, the coalescence of microdamages is ignored, 
that is, na ~ 0 in Eq 1. Also, the nucleation and growth of microdamage are governed by an 
average stress field due to the average interaction of microdamages. 

Practical Model  

In out impact and fatigue testing, the specimens are subjected to homogeneous and uniaxial 
loading. Hence, under planar impact loading, for example, microcracks were found to be par- 
allel and penny-shaped. So, the sizes of microcracks are the unique independent variables in 
the evolution. In practical measurements of microcracks, only the current sizes of microcracks 
can be measured, whereas their initial sizes at nucleation are unknown. Therefore, one can 
obtain the number density, n = n(t, c; ~), for measurement only. But, from micromechanics, 
the growth rate of microcracks is usually a function of current as well as initial sizes of micro- 
cracks, V = V(c, Co; g) [4]. So, we should consider two simplified ideal models in Spaces [c] 
and [C,Co], respectively 

On O(n �9 A) 
- -  + ~ = n u  ( 2 )  
Ot Oc 

Ono + O(no V) 
- -  ~ = nov (3) 
Ot Oc 

In the equations, the initial size of microcracks is an implicit independent variable, because it 
stays invariant during the course of evolution. The relationships between the two equations are 

n(t, c; tr) = f o  no dco (4) 

f=  
A = Jo Vnodco/n  (5) 

non = nN(Co) " 6(C -- CO) (6) 

Typical Solution 

From our tests of an aluminum alloy under impact loading, not only the growth rate, V, but 
also the nucleation rate, nu, are time independent. Based on this fact and the assumption of 
constant stress, ~r, a simple solution to Eq 3 has been derived 

n~co,O') 
no(t, c, Co; ~r) = no(c, Co; o-) = - -  when Co ~ c --< c s (7) 

V(c, Co,~r) 
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The unsteady front of microcracks, c s, is defined by the upper limit of the following integration 

~f s dc' 
t = o V ( c ' ,  Co; o') (8) 

Apart from the unsteady front, c s, the number density, no, remains steady in the region, Co < 
c < c s. Figure 1 shows the steady solution, no, and the front, c s, of microcracks. The front, c s, 
moves forward with velocity V(c s, Co; o% 

Measurement  

Testing Methods 

For material testing of microcrack evolution, a requirement is the homogeneity of stress in 
the field of observation of microcracks. So, in impact testing, we use one stage light gas gun 
to establish a uniaxial strain state in the specimen [5]. Moreover, a short stress pulse with 0.1/zs 
duration was used to investigate the nucleation, and a multistress pulse technique was used to 
study microcrack evolution. In the multistress pulse technique, a flyer plate was counterbored 
with several holes to create multistress pulses (Fig. 2) [6]. In this way, constant stresses with 
different durations are applied to different regions in one specimen. This test provides several 
frozen stages of microcrack evolution in one shot. The testing material is an aluminum alloy 
(Table 1). Typical parameters in the impact tests are 0.1 to 1/xs load durations and 1 to 7 GPa 
tensile stresses. 

For fatigue testing, a triangular-shaped specimen was used, see Fig. 3 [7]. When one end of 
the specimen is clamped in a support and another end is connected to a vibration testing 
machine, the surface tensile stress within the isosceles triangular section will keep constant. 
The test material is a structural steel (Table 1). Typical testing parameters are as follows: 

n O 

l l -  

C 
C O Cf (t,Co) Cf (t+z~t,Co) 

F I G .  1--Schematic solution, no, and interpretation of continuum damage evolution. 
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Barrel Salt Flyer 
~ T a r g e t .  holder 

Soft catcher Buffer 

topper 
Target ring 

) 
FIG. 2--Planar plate impact test layout and multiholed flyer. 

TABLE 1--Compositions of tested materials. 

Constituents, % by weight 

Material Cu Mo V Zr Ti A1 

Aluminum alloy a 6.3 0.3 0.2 0.18 0.06 

Constituents, % by weight 

C Si Mn Cr Fe 

Steel b 0.30 1.0 0.90 0.90 

First heated and rolled then quenched and aged. Average effective grain size is 32.8/zm and average 
size of second phase particle is 3.4/xm. 

b Annealed from 860~ Average ferrite grain size is 17.9/zm. 
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3 - ~  = -,-- 
FIG. 3--Triangular specimen in fatigue tests. 

frequency = 8 to 10 Hz, stress ratio = -1 ,  and maximum stress - 1.0 to 1.5 times yield 
strength. 

Observations of Microcracks 

In order to investigate the evolution of microcracks, proper counting of microcracks in tested 
specimens is a key step. 

For specimens subjected to plate impact loading, the following steps were taken. Before 
testing, the transverse isotropy and homogeneity of the aluminum alloy plate were examined 
and the size distribution of second phase particles was also measured. After testing, specimens 
were carefully recovered by a specially designed catcher in the gun to prevent secondary 
damage. Then, the tested specimens were sectioned and polished carefully. Microscopic ob- 
servations and counting of microcracks were conducted with an S-570 scanning electron mi- 
croscope and a Q-520 image analysis system with Polyvar-Met microscope. When using the 
image analysis system to count the number of microcracks, one should pay attention to the 
selection of contrast. In order to obtain reliable data, we usually perform counting on several 
view fields and use the two microscopes to double-check the counting. A typical processed 
evolution of microdamages is shown in Fig. 4. 

A similar counting procedure is applied to the fatigue specimen [71. The difference is that 
for a fatigue test we can trace the evolution of microcracks at a fixed field on the specimen's 
surface. In order to do this, some marks were made before testing on an assigned field on the 
surface with a hardometer. The fatigue test was periodically interrupted at pre-set intervals. 
Microscopic observations and counting of microcracks were conducted with microscopes dur- 
ing the intervals. A measured evolution of microcrack distribution is shown in Fig. 5. An 
interesting feature of the measurement is the double peaks. The location of the main peak is 
slightly less than the average ferrite grain size, see Fig. 5 and Table 1 [7]. 

Data Processing 

The counts of microcracks should be processed for further analysis of microdamage evolu- 
tion. Now, we focus on the data processing for impact tests. 

First, the counting of microcracks was conducted on sectional surfaces. Clearly, the counts 
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E 

FIG. 4--Measured number density of microcracks in impact test. 

should be converted to volumetric distribution. Seaman et al. [8] have developed a transfor- 
mation to do this. In our impact tests of the aluminum alloy, due to the uniaxial strain state 
and the transverse isotropy, the microcracks are approximately parallel to each other and penny- 
shaped. In this case, the transformation can be simply performed by the following integral 
equation and its conversion 

dc 
m(c') = c' , n(c) x/(c 2 -  c '2) (9) 

f~ 2 f~  m(c'____~) u(r = .(c") de" = -~ ~ tic' (lO) 

where m is the number density of microdamages with Size c '  on the sectional surface. In fact, 
both spherical voids and parallel penny-shaped cracks follow the same Eqs 9 and l0 [9]. The 
accuracy of the transformation from sectional to volumetric distributions has been checked by 
a critical numerical simulation. For the case of equal spheres that are 10/xm in diameter and 
randomly distributed in a volume, Fig. 6 shows the calculated volumetric distribution converted 
from sectional counting, m(c'). The converted volumetric distribution does show a sharp step 
at 10/zm. 
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FIG. 5--Measured microcrack number on sectional surface of a fatigue specimen. 
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FIG. 6---Cumulative volumetric distribution of equal spheres (I0 txm in diameter and total 10 000 
in a 1 mm 3 cube) calculated from sectional counting. 
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Other data processing includes commonly used Fourier smoothing, Lagrange interpolation, 
etc. Then, a set of data of evolution of microcracks, n = n(t, c; o'), is obtained, see Fig. 4. 

Applications 
Now, we have had two foundations for the study of damage evolution in materials. Theo- 

retically, we have the equations governing the evolution of microcracks. Experimentally, we 
have a set of data for the evolution. The following discussion shows some examples of their 
applications. The first two examples are inverse problems, that is, from the measured data of 
microcracks to inversely deduce the mesoscopic dynamics of microcracks aided by the evo- 
lution equation. The third one is a direct application of the evolution equation and the meso- 
scopic dynamics of microcracks to predict damage evolution. 

N u c l e a t i o n  

The key to reveal the nucleation law is to separate nucleation from the growth of microcracks. 
From Eq 2, one can deduce the following approximation [5] 

nzv = n(t, c; o')/t, when c >> A t  (11) 

In our impact tests, the measurements demonstrate that the typical values of crack size, c, and 
growth rate, A, in the aluminum alloy are about 4/~m and 10 m/s, respectively. So, when the 
load duration is chosen to be 10 -7, Eq 11 can be satisfied. We applied a short stress pulse 
(about 100 ns load duration) to investigate the nucleation law. It was found that the normalized 
distribution of microcracks at nucleation is in agreement with that of second phase particles 
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FIG. 7 Time-independent nucleation rate o f  microcracks in impact tests o f  an aluminum alloy. 
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[5] and the nucleation rate is independent of time. Further tests with longer durations, ap- 
proaching to fracture, confirms the time-independence, Fig. 7. 

Growth Rate 

From Eq 2, the determined nucleation rate, nN, and the measured evolution of number density, 
n(t,c; or), one can deduce the nominal growth rate, A 

A = A(t, c; (r) = nN -- dc'/n (12) 

However, the deduced growth rate, A, demonstrates obvious time-dependence. This is an in- 
dication of the existence of implicit variables governing the growth. As mentioned earlier, the 
growth rate of microcracks should be dependent on current as well as initial sizes of micro- 
cracks. When looking back to the definition (Eq 5) and the solution (Eq 7), one can find that 
the movement of the front, c s = Q(t, Co; ~r), can be calculated as the upper limit of the integral 

f 

A(t, cs; tr) = nu(c~; tr) dc~/n(t, Q; tr) 
o 

(13) 

according to the measured number density of microcracks, n(t,c; or); the determined nucleation 
rate, nN(Co; ~r); and the deduced nominal growth rate, A(t,c; ~r). Then differentiation of the 
unsteady front, c s, with respect to time gives the growth rate, V, 

(Ocs~ 
v = V(c f ,  Co; ~) = \ ~ - /  (14) 

When we plot the growth rate, V, against the extension (c - Co), rather than the ratio, C/Co [4], 
all data approximately collapse on a linear line, see Fig. 8. 

Evolution Law o f  Continuum Damage 

One can define the following damage moments as continuum damage 

Dj = c~ f f  e i �9 n(t,c; tr) de (15) 

where a is a geometric factor and j is the index of the damage moments. When j = 3, D3 
represents the volumetric fraction of damage and a = 7r/6 for spherical voids. When substituting 
the solution (Eq 7) and the expression (Eq 4) into the damage moments (Eq 15), one can obtain 

f :  fc f #nN(Co; ~r) dc (16) 
Dj = a dc~ o V(c, co; o') 

Differentiation of Eq 16 with respect to time leads to the evolution law of continuum damage 

Dj = a f f  e~(t, co)nu(co;~r) dco (17) 
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FIG. 8--Collapse of  data of  growth rate, V, o f  microcracks in impact tests o f  an aluminum 

alloy. 

This evolution law concisely correlates the evolution of continuum damage to its two meso- 
scopic dynamics: nucleation rate, nN, and growth rate, V, via the microdamage front, cf, defined 
by Eq 8. The implication of Eq 17 is shown in Fig. 1. The product of the shaded area, no" V .  dt 
= nu .  dt, and a weight function, c~, is the integrand and the core of the evolution law (Eq 17). 
To confirm this interpretaion, Fig. 9 provides two numerical results of number density of 
microcracks at different times, based on Eq 3. This figure clearly demonstrates the steady 
profile, no, and its unsteady front, Q. The following example illustrates the application of 
Eq 17 more concretely. 

Suppose j = 1, which demonstrates the effect of linear size of microdamage, and 

V = V*(c - Co)/C* (18) 

nN = nN*f(Co/C*) (19) 

where V* and nN* are functions of stress, tr, and c* is a characteristic size. After calculating 
cf according to Eq 8, one can obtain the evolution law of damage from Eq 17, Do and D~. 
Then 

ID1 = c*Ft Do/Fo + V*{D1 - c*F~ Do/Fo}/C* (20) 

where 

Fj = f :  ](x) x j dr 
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FIG. 9--Calculated dimensionless profiles of  number density of  microcracks, no, for impact tests, 
showing steady profile and unsteady front, cr (dimensionless variables, Co = 1, - -  t = 2 and 
. . . . . . . .  t = 2.5). 

Generally, one can define compound damage moments [I0] 

Dij = c~ ~o dco f ~  de dodno(t,C,Co; ~) (21) 

Integration of Eq 3 with respect to c and Co and substitution of the linear growth rate (Eq 18) 
into the obtained integration can lead to 

Dij = DN, i+j + jV* �9 (D o - Di+lj-O/c* (22) 

where 

DNj nN " d dc 

Details of the manipulation can be found in Ref 10. Equation 22 is macroscopically closed 
recurrently. Actually, the Eq 20 is the special case of Eq 22, when i = 0 and j = 1. So, in 
terms of damage moments, it is demonstrated that the evolution law of damage, D, can always 
be closely expressed for the cases with linear growth rate of microdamage. 

Summary 

An equation governing the statistical evolution of microdamage has been proposed, Relevant 
experimental techniques used in impact and fatigue tests and data processing of evolving mi- 
crocracks were developed. After considering the equation and the measured data of micro- 
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162 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

cracks, the mesoscopic laws of nucleation and growth of microcracks were determined. A 
concise formula of continuum damage evolution correlating mesoscopic dynamics of nucleation 
and growth of microcracks was obtained. 

The approach can accommodate nonuniform distributions of microcracks, etc., by introduc- 
ing new independent variables in the phase space. For example, damage localization has been 
recently examined with Eq 1 by introducing spatial variable. 
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A Unified Approach to Metal Fatigue Based 
on the Theory of Damage Mechanics 

REFERENCE: Chow, C. L. and Yu, L. G., "A Unified Approach to Metal Fatigue Based on 
the Theory of Damage Mechanics," Applications of Continuum Damage Mechanics to Fatigue 
and Fracture, ASTM STP 1315, D. L. McDowell, Ed., American Society for Testing and Ma- 
terials, 1997, pp. 165-185. 

ABSTRACT: This paper presents a unified approach to fatigue damage in metals based on the 
theory of damage mechanics. The theory that takes into account the gradual material degradation 
or deterioration under load is ideally suited for characterizing material behaviors progressively 
damaged under fatigue loading. This is because fatigue damage is caused by material degradation 
resulting from the initiation, growth, and coalescence of microcracks/voids in real-life materials 
under repeated/cyclic loading. In addition, a unified fracture criterion based on the damage me- 
chanics theory has been developed to predict the threshold conditions of macrocrack initiation 
and propagation as well as damage evolution in a material element with or without the presence 
of a macrocrack. This type of unified approach would not otherwise be possible using the con- 
ventional fatigue design methodology based on either the S-N diagram or the concept of fracture 
mechanics. 

The proposed fatigue damage model is based on the thermodynamic theory of irreversible 
processes with internal state variables. With the introduction of a new damage effect tensor, the 
necessary constitutive equations of elasticity and plasticity coupled with damage are developed. 
The constitutive equations derived enable the formulation of a fatigue damage dissipative poten- 
tial function and a fatigue damage criterion. The criterion is designed to subdivide the overall 
damage into two domains, namely, "fatigue damage" and "plastic damage." The fatigue dam- 
age evolution equation is subsequently developed based on the hypothesis that the overall damage 
is induced by the summation of "fatigue" and "plastic" damages. The model has been applied 
to predict successfully the fatigue life of smooth, notched, and center-cracked specimens under 
a wide range of loading cycles. 

KEYWORDS: damage mechanics, fatigue (materials), crack initiation, crack propagation, alu- 
minum alloys, finite element analysis, continuum damage mechanics, cracking, fracture 
(materials) 

Rupture of materials under varying loads, of which the magnitude and the direction are 
changing periodically or irregularly with time, is called fatigue failure. There are fundamental 
distinctions between the fatigue failure and the failure due to static loads. 

Characteristics of Fatigue Failure 

In the practical engineering environment, fatigue is a very important problem, since for the 
majority of engineering components of machines, equipment, vehicles, and structures, few 
external loads are static, but varying with time. Some researchers have argued that 50 to 90% 
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material failures are due to fatigue. In recent years, with the improvement of static design, and 
the applications of high-strength materials under high operation speed, the fatigue problems 
are becoming more and more important. 

Various theories and methods have been developed to study the fatigue process, including 
fatigue life estimation with macroscopic approaches, and a fatigue mechanism study with mi- 
croscopic schemes. There a great number of papers discussing fatigue problems published by 
researchers every year. However, accidents caused by fatigue are still occurring. This indicates 
that many problems of fatigue mechanism and fatigue phenomenon remain unsolved. The main 
shortcomings of the current theories and methods of fatigue study can be summarized as 
follows: 

(1) Most models to predict fatigue crack propagation are empirical formulae based on linear 
elastic fracture mechanics (LEFM). These models do not even perfectly mirror constant 
amplitude fatigue crack behavior. Kanninen and Popelar [1] have indicated that conven- 
tional fatigue crack growth models work because, being empirical, experimental results 
can be predicted when similitude exists. This is true despite the fact that the basic as- 
sumptions of LEFM are violated for fatigue. In fact, K-dominance exists only when the 
inelastic region can be contained within an annular region surrounding the crack tip. 
Obviously, for a growing crack that leaves a wake of residual plasticity behind it, this 
condition cannot be satisfied. When similitude does not exist, nonlinear methods are 
required. 

(2) Another major inconsistency in the LEFM is the use of AK that is defined as Km,x - 
K~n. Since unlike K~c, which is an intrinsic material property, both Kma x and Kmi, are 
dependent on specimen geometry and loading condition, the conventional fatigue growth 
rate in terms of AK, like the S-N curve, is based on a one-dimensional curve-fitting 
technique. 

(3) The conventional studies of the fatigue crack initiation and propagation are separated. 
The parameters used for crack initiation and propagation are different. So far, there are 
few models available for both processes. 

(4) In most studies of fatigue, only the variables related to the current state are taken into 
account, while the effects of load history are generally ignored. However, experimental 
data have shown that the effects of load history, such as the load sequence and the 
overload, affect the fatigue life greatly. 

(5) So far, some important factors, such as stress gradient, have not been taken into account 
in the fatigue calculation satisfactorily yet. 

The difficulty of fatigue study is not only that there are many influencing factors that can be 
classified as material properties; load characters; geometry, dimension, and surface conditions 
of components; and circumstances, but also that a very small variation of some factor, which 
is usually ignored for static loads, can cause great influence to the fatigue process. The effects 
of these factors, including their interactions, are very complicated. 

General Survey of Damage Mechanics 

In recent years, a new theory known as "damage mechanics" has been developed to study 
the engineering problems of strength, such as ductile fracture, creep rupture, and fatigue failure. 
Some successful progress has been made in theoretical studies and engineering applications. 

It is well known that macroscopic fracture has been studied for a long time. Around 1500, 
Leonardo da Vinci was already preoccupied with the characterization of fracture by means of 
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mechanical variables. And then, a number of failure criteria, that is, functions of components 
of stress or strain, characterizing the fracture of the volume element were proposed (for ex- 
ample, by Coulomb, Rankine, Tresca, yon Mises, Molar, and Caquot). However, it is only quite 
recently that concern has been directed towards modeling the progressive deterioration of ma- 
terials preceding the macroscopic fracture. 

The development of damage mechanics began in 1958. In that year, Kachanov published 
the first paper devoted to a continuous damage variable, conceived within the framework, 
limited indeed, of creep failure of metals under uniaxial loads. This concept was taken up again 
in the 1970s, mainly in France (Lemaitre and Chaboche), United States (Krajcinovic), Sweden 
(Hult), England (Leckie), and Japan (Murakami) and extended to ductile fracture and fatigue 
failure. 

Spectacular progress has been achieved by damage mechanics during the past decade, making 
it into a scientific discipline and one of the most active research frontiers in the failure theories 
of materials. The scope of the present damage mechanics theory encompasses research origi- 
nated from macroscopic, mesoscopic, and microscopic levels. The development of damage 
theory opens a new dimension to solve engineering problems. 

According to damage mechanics, "damage" refers to microcracks or microvoids, or both, 
in a damaged material element with certain geometric configuration. The geometry and material 
background of such an element will evolve with respect to the loading environment. The theory 
of damage mechanics studies the laws governing the formation and evolution of the microde- 
fects, and appropriate criteria by which material or structural failure under a prescribed loading 
environment can be predicted. 

The damage mechanics can be developed in the form of internal variable theory with the 
following assumptions [2]: 

(1) The response of the material depends only on the current state of the microstructural 
arrangement, and 

(2) The current state of the microstructural arrangement can be described by a finite set of 
internal variables. 

The damage theory comes as a product of the interdisciplinary studies of solid mechanics 
and material science. On one hand, the damage theory neglects the numerous details during 
the physical process of damage so that lengthy calculations in statistical mechanics are avoided. 
On the other hand, the incorporation of actual geometric images and physical procedures fea- 
tured in the damage provide a realistic background for damage variables and damage evolution. 
Consequently, damage is substantiated beyond abstract mathematical variables and equations. 
The damage theory enhances our understanding towards the essential aspects of damage and 
clarifies the ad hoc phenomenological assumptions. The damage model deals with, from ge- 
ometry as well as the thermal-mechanical deformation process, the configurations and distri- 
butions of various damage structures and predicts their nucleation, growth, and coalescence 
leading to macroscopic defects. In essence, the damage theory links structures of different 
length scales. As long as the constitutive equations and damage evolution laws for the material 
element are obtained, they can be directly invoked to assess the macroscopic damage behavior 
of specimens and structure components. 

Though the basic concept of damage was proposed for the study of creep, as it develops, 
the damage theory is being applied in many fields, such as metal forming, ductile fracture, 
fatigue, creep-fatigue, and creep with plastic deformation. In addition, its application is not 
only to metallic materials, but also to nonmetallic materials such as composites, concrete, and 
ceramics. 
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168 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

Objective 

As stated earlier, it is necessary and possible to develop new models to study fatigue prob- 
lems, to improve the predicted results, and to give better explanations to the fatigue mecha- 
nisms. The models can be established with the theory of damage mechanics with the following 
features: 

(1) Damage is defined as an accumulated variable related to the load history, and the history 
effects can thus be taken into account. Also some factors mentioned earlier can be con- 
sidered. Thus, the studies of fatigue procedure would be more comprehensive. 

(2) From the point of view of damage mechanics, there is actually no difference between 
crack initiation and propagation, both of which resulted from the failure of an element 
with a characteristic dimension. Thus, fatigue crack initiation and propagation can be 
studied with one model as a unified approach. 

(3) Under monotonic or cyclic loading, or both, most metallic material would become an- 
isotropic, which can be described by anisotropic damage. 

(4) One advantage of damage mechanics is that it provides a natural means of predicting 
the effects of interaction among damages of different physical natures. 

In this work, an orthotropic damage model of fatigue and plastic deformation is established 
to estimate fatigue life, including fatigue crack initiation and fatigue crack propagation. The 
model takes into account the effect of load history and the interaction of plastic damage and 
fatigue damage. With a modified general-purpose finite element program, the stresses and the 
total damage (including fatigue damage and plastic damage) near a notch root or crack tip can 
be calculated, and the life of crack initiation and the rate of crack propagation can therefore be 
predicted. 

Basic Concepts 

The basic concepts of the anisotropic damage theory, for which the elastic energy equivalence 
hypothesis is shown to be valid [3], has been described by Chow and Wang [4-11], and 
interested readers may refer to these references for details. However, some salient points of the 
theory are briefly illustrated in this section as they are required for the development of the 
proposed fatigue damage model. 

= M(D)'S (1) 

/~  = M(D) T,- ~:E e (2) 

1 1 
we(S,D) : ~ S:C-l:S ~- ~ S:~-I:S (3) 

= M(D)-I:C:M(D) T'-I (4) 

where S is the stress tensor, S is the effective stress tensor, E e is the elastic strain tensor,/~e is 
the effective elastic strain tensor, W~(S,D) is the elastic complementary energy, C is the elastic 
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stiffness tensor, and M(D) is the damage effect tensor. In the principal system of damage, M(D) 
is assumed as 

M(D) 

1 - D l  

1 - D 2  

1 - D 3  

1 
1 - : (D: + D3) 

2 

1 
1 - = (D3 + DI) 

2 

1 
1 - ~ ( D L  + D2) 

(5) 

where D l, Dz, and D3 are the principal values of damage, D, which is a symmetric tensor of 
second order. In this paper, the damage variable, D is defined as the overall damage tensor, 
including the fatigue damage and plastic damage 

dD = dD s + dD e (6) 

where D s and/9, are the fatigue damage tensor and the plastic damage tensor, respectively. 

Plastic Damage  

Plastic deformation, due to which plastic damage results, is a phenomenon of global slip. It 
is well known that fatigue cracks always appear along the persistent slip bands due to localized 
plastic deformation in smooth specimens [12]. Therefore, there is a close interaction between 
plastic damage and fatigue damage. Accordingly, it is necessary to take into account the effect 
of plastic damage on the evolution of fatigue damage. 

The evolution equations of plastic damage may be established by the damage energy release 
rate, Yp, defined as 

OW'(S,D) aMy 
L - = OD/:s (7) 

in which the superscript, s, means that the symmetric part only should be taken. The plastic 
damage criterion is assumed as 
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170 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

where Cpo is the initial strengthening threshold, Cp(Z) is the increment of the threshold, Z is 
the equivalent overall damage, and Ypeq is defined as 

1 
Yp~q = -~ Yp:Lp:Yp (9) 

Lp is the characteristic tensor of plastic damage that may be expressed as 

1 ~Tp 

*/v 1 

0 0 

0 0 

0 0 

7/p 0 0 0 

r/p 0 0 0 

1 0 0 0 

0 2(1 - rip) 0 0 

0 0 2(1 - r/e) 0 

0 0 0 2(I - ~Tp) 

where r/e is assumed to be a material constant. 

(lO) 

1 
Sine = ~ (Smax -~ Stain) Z 

Wec(Sc~D) = 2 ~c:C-l"Sc = Sc:C_~-l,Sc 

where ~ is the effective cyclic stress range tensor expressed as 

Sc = M(D):Sc  = M ( D ) : ( S  - S,,,,) = S - S,,~ 

where S is the stress tensor and Sine is the mean stress tensor. S,,~ is given by 

~G~ = , %  (11) 

o r ~  _ -,~pd t. 

where Zp is the equivalent plastic damage. 

Fat igue  D a m a g e  

It is well accepted that the elastic strain energy conventionally defined for static loading is 
unable to describe the fatigue damage without suitable modifications. Its evolution equations 
may be derived from the cyclic elastic complementary energy, W~(Sc, D) ,  defined as 

(13) 

(14) 

(15) 

where Sma x and S~a. are the maximum stress tensor and the minimum stress tensor, respectively. 
For multiaxial stress state, the terms "maximum" and "minimum" become ambiguous, but 
they may be regarded as two reverse points of a particular cyclic load range. 

(12) 

If the plastic damage criterion of Eq 8 is taken as the potential function, the plastic damage 
evolution equations can be accordingly deduced as 
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The damage energy release rate, Ys, corresponding to the fatigue damage can be obtained 
from 

( 0 ,y YS = OW~ (So D) Sc: C-l :M-l :  :Sc (16) 
ads ODs/ 

where Ys describes the variation of cyclic elastic strain energy due to cyclic loading and is 
used to derive the evolution equations of fatigue damage. During the nth cycle, the fatigue 
damage criterion is assumed as 

Ffd = Y}/e 2 - [Cso(Sme) + Cs(Zs.,Z)] = 0 (17) 

where Cso(Sme ) is the initial strengthening threshold, Cs(Zs.,Z) is the increment of the threshold, 
and Zsn is the equivalent fatigue damage yielded at the nth cycle. Yfeq is defined as follows 

1 
Yfeq : "2 Yf:Ls:Yf (18) 

where L s is the characteristic tensor of fatigue damage, which may be expressed as 

L s = 

1 "qs ~s 

~s 1 ~s 0 0 0 

~s "qf 1 0 0 0 

0 0 0 2(1 - "qs) 0 0 

0 0 0 0 2(1 - ~s) 0 

0 0 0 0 0 2(1 - ~s) 

where ~Ts is assumed to be a material constant. 

(19) 

Zs,, = Asa O(_G ) ASd (20) 

aFsd _ -- 
JDsn = Afd a("~--~f) 2 "z-~/~lse q Ls Yf (21) 

where the Subscript, n, indicates the nth cycle. 
The increments of fatigue damage and equivalent fatigue damage yielded in one cycle are 

dZs f 
dZ = / d Z .  ~ = dZs : ~__ ,~  (22) 

do, f d N  = dD s dD s" (23) 

If the fatigue damage criterion of Eq 17 is taken to be the energy dissipation function, the 
evolution equations of fatigue damage may be accordingly deduced as 
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172 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

The integrals are conducted over one cycle. Similar to Eq 6, it is assumed that 

dZ = dZ s + dZp (24) 

The fatigue failure criterion governing the threshold of a macrocrack initiation is 

Z = Zcr (25) 

where Zcr is the critical value of the overall equivalent damage, Z, measured from experiments. 

Determination of Parameters in the Damage Model 

In order to conduct a validation analysis for the proposed fatigue damage model described 
in the preceding sections, a series of experiments was conducted. The material chosen for 
fatigue tests was aluminum alloy 2024-T3, whose composition and mechanical properties are 
as follows: Fe 0.5%; Cu 3.8-4.9%; Mn 0.3-0.9%; Mg 1.2-1.8%; Zn 0.25%; Ti 0.15%; modulus 
of elasticity, E = 74 343 MPa; Poisson's ratio = 0.33, yield stress, O'y = 330.0 MPa; ultimate 
strength, o', = 482.2 MPa; and fatigue strength, o- s = 138.2 MPa (5 • 108 cycles). The 
parameters of plastic damage were determined by Wang [11]. Under uniaxial load, the element, 
~p, in the characteristic tensor of plastic damage, L,,  is 0.5526, and the critical value of equiv- 
alent damage, Zcr = 0.161. 

The incremental fatigue damage is a localized phenomenon and is therefore impractical to 
be measured effectively cycle by cycle. The increment of strengthening threshold of fatigue 
damage, Cf(Zt, ,Z),  to be evaluated may be assumed as 

Cf(Zfn,Z ) = Z f n f  fl zCf2 (26) 

In order to determine Parameters CsL and Cs2, eight groups of uniaxial fatigue test under the 
single block loading were conducted. The range of maximum stress was varied from 252 to 
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FIG. 1--Smooth fatigue specimen. 
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TABLE 1--Fatigue data for determination of parameters of the fatigue damage model. 

Stress, MPa Ne• a Nexp Ncal E~, % S,. 

420 to 60 21.7, 23.9, 27.5, 27.5, 33.0 26.7 24.3 --8.9 3 
420 tO 170 57.6, 61.2, 63.4, 66.3 62.1 52.6 --15.3 3 
400 tO 50 30.3, 32.2, 33.0, 37.2 33.2 30.7 --7.6 3 
400 tO 150 78.3, 78.7, 82.1, 84.5 80.9 63.8 --20.7 3 
350 to 50 50.8, 57.8, 63.2, 72.8 61.2 70.1 14.8 3 
350 to 150 154.9, 170.3, 211.2, 215.8 188.1 200.9 6.8 3 
300 tO 50 161.7, 198.0, 207.6, 223.1 197.6 196.5 --0.6 3 
252 tO 2 119.0, 178.3, 267.9, 293.1,315.2, 423.8 266.2 292.3 9.8 5 

" N •  103. 

420 MPa with each load increment of either 50 or 20 MPa, while the range of stress amplitude 
was from 100 to 180 MPa. 

The geometry of smooth fatigue specimens is shown in Fig. 1. The severely scratched pro- 
tective coating from as-received aluminum alloy, whose strength is about 33% lower than the 
aluminum alloy, was milled off. After machining, all specimens were polished with fine emery 
papers from No. 240 to No. 800. 

The test machine used was an electrohydraulic servocontrolled MTS machine of +-100 kN 
load range. Tests were performed at room temperature. The frequencies of the tests were varied 
from 5 to 20 Hz. The experiments were carried out under load control. All of the specimens 
were measured before each test with the precision of 0.02 mm. 

A least-squares method was used to determine the Csl and Cs2 parameters in Eq 26 with the 
experimental data. The fitted parameters are: Csl = 16877 and Cs2 = -0.5474562. C~2 < 0 
means that the development of fatigue damage is accelerated with the overall equivalent dam- 
age, Z. The element, ~Ts, is the characteristic tensor of fatigue damage, L s, is assumed to be 
equal to ~p. 

The experimental and calculated results are shown in Table 1, where Nexp is the experimental 
fatigue life; Nexp is the mean value of Nexp; Nca~ is the calculated fatigue life; Er is the relative 
error = (Nc,l - Nexp)/Nexp, and Sm is the minimum number of specimens recommended for 
fatigue studies [13], with the confidence level Y = 95%, and the relative error limit ~ = 5%. 
The prediction confirms the validity and accuracy of the fatigue damage parameters, Cfl and 
Cs2, to be employed for the subsequent fatigue analysis. 

Predications of Fatigue Damage 

In order to verify the proposed damage model, fatigue damage predictions for different 
specimen geometries and loading conditions are conducted, including smooth specimens with 
overload (Fig. 1), smooth specimens under two-block loads (Fig. 1), notched specimens (Fig. 
2) and center-cracked specimens (Fig. 3). The specimens are chosen to test validity of the 
proposed damage model as a unified approach to predict crack initiation from smooth and 
notched specimens and then cracked specimens. The conventional methods would employ two 
fundamentally different approaches to achieve similar predictions. 

Smooth Specimen 

Single Overload--In the practical engineering environment, structures and components un- 
dergo not only cyclic loads, but also some abrupt load changes, such as collision and impact, 
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F I G .  2--Notched specimen f or fatigue crack initiation. 
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which are usually much higher than the maximum loads imposed in normal cycles. On one 
hand, the abrupt load change would yield work hardening and residual stresses, which can 
retard the fatigue crack initiation and propagation. On the other hand, the abrupt load change 
may cause plastic deformation and therefore plastic damage. 

rolling direction 
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F I G .  3--Center-cracked specimen for fatigue crack propagation. 
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Four groups of loading conditions with overload are considered. The geometry of the spec- 
imens is the same as that for the determination of the fatigue damage as shown in Fig. 1. 

The stress chosen for overload for each group is 400 MPa. The load conditions are listed as 

Group O'ma x to  O'mi n Npr i 

1 252.0 to 2.0 0 
2 300.0 to 50.0 0 
3 300.0 to 50.0 60 000 
4 300.0 to 50.0 120 000 

where Np, is the cyclic number prior to the overload. After a given cyclic load for Np. cycles, 
the overload is introduced (if Npn = 0, the overload is applied before the cyclic load), then the 
specimen is cyclically loaded again until final rupture. 

When Npn is 0, the plastic damage due to the overload is calculated before the prediction of 
the fatigue damage. If Np~ is greater than 0, and the maximum stress of the cyclic load is higher 
than the yield stress, the plastic damage is calculated in the first cycle. The total equivalent 
damage is Zo. The plastic damage due to the overload is calculated next. After overload, the 
cyclic number of fatigue to final rupture is calculated where the integral is taken from Zo to 

Zcr. 
The calculated results, Nr are given in Table 2, where Er is the relative error = (Ncal - 

~/exp)/Nexp �9 

Two-Block Loads--In order to investigate the effect of load sequence on the fatigue damage 
accumulation, two-block load fatigue is considered. Four groups of loading conditions are 
considered here: 

Group ~t  max to  (7"1 min Nexpl O'2max to Or2min 

1 400.0 to 50.0 15 000 300.0 to 50.0 
2 300.0 to 50.0 100 000 400.0 to 50.0 
3 350.0 to 150.0 94 000 350.0 to 50.0 
4 350.0 to 50.0 30 600 350.0 to 150.0 

where Nexpl is the cyclic number for Block 1. 
Group 1 is high-low fatigue, and Group 2 is low-high fatigue, while Group 3 and Group 4 

have the same O'ma x and alternative Crm~,. For each load of Block 1, the cyclic number is about 
half of the fatigue life under the corresponding cyclic load. 

For Group 1, the plastic damage is calcualted in the first cycle of the first block with the 
maximum stress of 400 MPa, and then fatigue damage is calculated under the stress range of 

TABLE 2 Fatigue with overload. 

Stress, MPa Overload, MPa Npfi a Nexp Nca I E, % 

252 to 2 400 0 136.8 152.1 11.1 
300 to 50 400 0 108.7 101.6 -6.5 
300 to 50 400 60 84.9 83.3 1.9 
300 to 50 400 120 54.2 45.1 16.7 

aN),( 10 3" 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



176 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

TABLE 3--Fatigue with two-block load. 

Step 1 Step 2 

Stress, MPa N, xp a Stress, M P a  Nexp2 Nca]2 Er, % N~2 E,,, % 

400 to 50 15 300 to 50 49.8 53.4 7.3 108.3 117.5 
300 to 50 100 400 to 50 22.4 18.7 -16.5 16.4 -26.8 
350 to 150 94 350 to 50 35.6 38.6 8.3 30.6 -14.0 
350 to 50 30.6 350 to 150 96.5 116.9 21.1 94.0 -2.6 

" N •  10 3. 

400 to 50 MPa for 15 000 cycles. Finally, the cyclic number of fatigue under the stress range 
of 300 to 50 MPa to final rupture is calculated. 

For Group 2, no plastic damage is expected under Block 1. The fatigue damage is calculated 
under the applied stress range of 300 to 50 MPa for 100 000 cycles. The plastic damage is 
calculated in the first cycle of Block 2 with the maximum stress of 400 MPa, and then the 
cyclic number of fatigue under the stress range of 400 to 50 MPa to final rupture is assessed. 

For Group 3, the plastic damage is calculated in the first cycle of Block 1 with the maximum 
stress of 350 MPa, then fatigue damage is calculated under the stress range of 350 to 150 MPa 
for 94 000 cycles. Finally, the cyclic number of fatigue under the stress range of 350 to 50 
MPa to final rupture is calculated. 

For Group 4, the plastic damage is calculated in the first cycle of Block 1 with the maximum 
stress of 350 MPa, then fatigue damage is calculated under the stress range of 350 to 50 MPa 
for 30 600 cycles. Finally, the cyclic number of fatigue under the stress range of 350 to 150 
MPa to final rupture is calculated. 

The predicted results are summarized in Table 3, where Nca~2 is the calculatedfatigue life 
under the load of the second block, and Er is the relative error = (Nc~2 - N~xp2)/Nexp2. 

Miner's Rule--Since the Miner's rule is often adopted for the calculation of fatigue life 
under multiblock load, the calculated results (Nm2) by the Miner's rule are also given in Table 
3 for comparison, where Erm is the relative error = (Nm2 - -  Ncxp2)/Nexp2. 

The advantage of the Miner's rule is its simplicity, but there are persistent errors in the 
predicted results. Many experimental data have shown that for high-low fatigue the value of 
accumulated damage at failure is less than 1, while for low-high fatigue it is greater than 1. In 
Table 3, Group 1, the fatigue life calculated by the Miner's rule is 108.3 • 103 cycles, but the 
experimental result to be discussed later is 49.8 • 103 cycles, and the corresponding accu- 
mulated damage is 0.704. 

In addition, for the fatigue with overload, if we introduce the overload as one fatigue cycle 
under high maximum stress, the errors of the predicted results by the Miner's rule would be 
very large, about 49, 45, 27, and 12% for Group 1, Group 2, Group 3, and Group 4, respectively. 

Fatigue Crack Initiation at Notch Root 

For the fatigue life prediction of notched components, several methods have been proposed 
to calculate the stress or strain, or both, at the notch root, and to determine the fatigue life based 
on the fatigue data obtained from smooth specimens. As elucidated before, the method is based 
on the one-dimensional S-N curve that should not be used indiscriminately to predict fatigue 
life of the three-dimensional state of stresses in notched specimen. Therefore, using the theory 
of damage mechanics, the characteristics of stresses and strains near the notch root are different 
from those obtained with the conventional methods. 
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The geometry of notched specimens is shown in Fig. 2. Six groups of loading conditions are 
introduced as follows: 

Group @max to O'mi n 

1 85.0 to 5.0 
2 80.0 to 30.0 
3 110.0 to 30.0 
4 110.0 to 60.0 
5 140.0 to 60.0 
6 140.0 to 90.0 

For the finite element calculation, the eight-node isoparametric element is used, as shown in 
Fig. 4. Two types of element mesh are adopted, for which the dimensions of the finest elements 
near the notch root are 0.1 • 0.1 mm 2. 

Upon loading, the plastic damage at each Gaussian integral point, if any, is calculated first. 
At the steps where the remote load reaches the maximum value, the maximum stress at each 
Gaussian integral point is stored for the subsequent calculation of fatigue damage. In the steps 
where the remote load is reduced to the minimum value, the minimum stress at each Gaussian 
integral point is saved and the fatigue damage is calculated and accumulated. 

When the overall equivalent damage, Z, at the Gaussian integral point, 9, in the notch root 
element (Fig. 4) reaches the critical value Zcr, it is assumed that a fatigue crack initiates from 
the node, 1, at the notch root to the point, 9' (for 0.1 • 0.1 mm 2 element, 1-9' = 0.0113 ram), 
and the corresponding cyclic number is Nca,. Then the crack propagation was calculated by 
the damage field mobility (DFM) method [14]. The cyclic number for the fatigue crack to 
propagate from the point, 9', to reach the 1-mm length is N~a~2. The total cyclic number, Nc,~t, 
for the initiation of fatigue crack with a length of 1 mm at notch root is 

Ncalt = Ncall + Ncal2 (27)  

After crack initiation at the notch root under the load ranges of 85 to 5 MPa, 110 to 30 MPa, 
and 140 to 60 MPa, there is slight crack closure occurring at minimum load steps. The order 
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FIG. 4---Eight-node isoparametric element. 
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TABLE 4--Fatigue lives at notch root. 

Load, MPa Ncxp ~ Nm N~tl Ncal2 Ncalt E ,  % 

85 to 5 28.1 250 24.3 2.1 26.4 -6.0 
80 to 30 115.6 750 78.0 4.6 82.6 -28.5 
110 to 30 20.4 200 20.0 2.1 22.1 8.3 
110 to 60 86.7 500 54.5 7.6 62.1 -28.4 
140 to 60 13.1 150 17.1 3.4 20.5 56.4 
140 to 90 69.4 500 50.5 3.3 53.8 22.4 

~ 2 1 5  103. 

of magnitude of negative displacement is 10 -5 to 10 -4 ram, since the dominant part of the 
cyclic number for crack initiation is Nc~l. On the other hand, for Nc~12 the cyclic number for 
crack initiation at notch root is considerable, but it is not affected by the crack closure. In the 
present investigation, the crack closure effect is not considered. For other steps and other 
loading conditions, no crack closure has been observed. 

For the finite element calculation, to calculate fatigue damage cycle by cycle would be an 
extremely time-consuming task. Therefore, one calculation cycle is equivalent to Ncq real cycles 
(N, a ~ Nc~J100), which is determined after a numerical investigation for each load range. The 
calculated results are described in Table 4, where Er is the relative error (=  [Nca~t - Nexp]/ 
Uoxp). 

Fatigue Crack Propagation in Center-Cracked Specimens 

The geometry of center-cracked specimens is given in Fig. 3. Three groups of loading con- 
ditions are introduced as listed here: 

Group O'ma x t o  O'mi n 

1 60.0 to 20.0 
2 60.0 to 40.0 
3 80.0 to 60.0 

For the finite element calculation, the element configuration is the same as that for the notched 
specimen, Fig. 4. Two types of element mesh are adopted, for which the dimensions of the 
finest elements along the crack propagation line are 0.25 • 0.25 mm 2. 

Upon loading, plastic damage at each Gaussian integral point, if any, is calculated first. At 
the load steps where the remote load reaches the maximum value, the maximum stress at each 
Gaussian integral point is stored for the subsequent calculation of fatigue damage. In those 
loads where the remote load is reduced to the minimum value, the minimum stress at each 
Gaussian integral point is stored. There is no crack closure found for any load given previously. 
Also, at the minimum load steps, the crack propagation rate is calculated by the DFM method 
in the tip element. It is assumed that the crack propagation rate, da/dN, is constant for the crack- 
tip element (different constants for different tip elements). The cyclic number, N e, which is 
needed for the crack to propagate the length of the tip element, can be obtained. 

ae (28) 
Np - daMN 

where ae is the length of the element at the crack tip, and da/dN is the crack propagation rate 
of the tip element. During the crack propagation, Np decreases as da/dN increases. Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
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If fatigue damage at the Gaussian integral points in other elements occurs, the fatigue damage 
increments, dZ and dD, for one cycle are calculated, and the fatigue damage increments, AZ 
and ADp for N cycles are calculated as 

AZ s = NedZ s (29) 

ADs = NedD s (30) 

where AZ s and ADs are accumulated to the total damage, Z and D. 
The calculated results and curves of crack propagation rate versus crack length are shown 

in Table 5. 

Experiment and Discussion 

Smooth Specimen 

Single Overload--Four groups of experiments of fatigue with overload were conducted. 
The stress chosen for overload for each group is 400 MPa. The loading conditions are identical 
to those described earlier for the fatigue life prediction. 

The experimental data are summarized in Table 2, where ~/exp is the mean value of experi- 
mental fatigue life over overload. 

For smooth specimens, it is assumed that there is no residual stress occurring due to overload. 
The experimental data, Table 2, shows that there is a considerable effect of the plastic damage 
on fatigue lives. The less the c_yclic number of fatigue prior to the overload(Np~i), the longer 
the fatigue life after overload (Nexp), but the more the total fatigue life (Npd + Nexp) was reduced. 
If the cyclic number of fatigue prior to overload is 0, the fatigue life was reduced by about 
45%. 

Two-Block Loading--The smooth specimens used are the same as those for the determi- 
nation of the parameters of the fatigue damage model, Fig. 1. Four groups of experiments were 
conducted with the loading conditions identical to those used for fatigue life prediction de- 
scribed in an earlier section. 

Group 1 is high-low fatigue, and Group 2 is low-high fatigue, while Group 3 and Group 4 
have a constant ~ax but varying trmin. For each load of Block 1, the cyclic number is about 
half of the fatigue life under the corresponding cyclic load. After Block 1 loading, the dimen- 
sions of each specimen were remeasured. 

The experimental data are listed in Table 3, where Nexp2 is the mean value of experimental 
fatigue life under the load of Block 2. 

From the experimental results of two-block fatigue and fatigue with overload, it can be seen 
that the higher the maximum stress and the earlier it is applied, the larger the error is yielded 
due to the Miner's rule. The reason is not only the load sequence, but also the effect of plastic 
damage. Although the effect of load sequence can be taken into account in some nonlinear 
accumulation models, the effect of overload cannot be effectively considered in such a model. 

According to the Miner's rule, if the fatigue life is N under a certain cyclic stress, the 
contribution of fatigue damage in each cycle is a constant I/N, which is very small. But this 
assumption is not true for some materials, to which the plastic damage would greatly reduce 
the fatigue life. In the first cycle of a block load, or in the case of overload, if the maximum 
stress is the highest stress in the load history and exceeds the yield stress, plastic damage would 
be yielded, which is much greater than the fatigue damage accumulated in each cycle. With 
the consideration of plastic damage, the damage accumulation rule is neither the form shown 
in Fig. 5 (left) for linear accumulation nor Fig. 5 (right) for nonlinear accumulation, but the 
form shown in Fig. 6 (left) for linear accumulation or in Fig. 6 (right) for nonlinear accumu- 
lation, provided the plastic damage identical to the fatigue damage defined by the cyclic number 
can be determined. 
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Now, take a qualitative study of a linear fatigue damage accumulation accompanied by plastic 
damage, Fig. 6 (left). For Group 1 and Group 2, the fatigue damage accumulation line under 
the stress of 300 to 50 MPa is OP, and that under the stress of 400 to 50 MPa is OD2P, where 
OD2 is the plastic damage due to the maximum stress of 400 MPa. For Group 1, the path of 
damage accumulation during__the first block is OD2A, and the path of damage accumulation 
during the second block is BP. The total accumulated damage is then 

0 I +  JK < 1 (31) 

where OK = 1. For Group 2, the path of damage accumulation duri___ng the first block is OG, 
the plastic damage yielded in the first cycle_of the second block is GE, and the path of damage 
accumulation during the second block is CP. The total accumulated damage is 

- -  m 

0 I +  HK > 1 (32) 

If the maximum stresses of the first block and the second block are the same, such as those 
in Group 3 and Group 4, the damage accumulation paths are also the same, that is, ODLP in 
Fig. 6 (left). Thus for both Group 3 and Group 4, the d__amage accumulation path of Block 1 is 
OD,F, the damage accumulation path of Block 2 is FP, and the total accumulated damage is 

0 I +  IK= 1 (33) 

In Table 3, it can be seen that the errors of the Miner's rule of Group 3 and Group 4 are less 
than those in Group 1 and Group 2. In Group 4, the error of the Miner's rule is very small, 
even much less than the error of the damage model proposed. 

Therefore for some materials, the effect of plastic damage should be taken into account. If 
so, the results obtained by the Miner's rule can even be improved. 

Fatigue Crack Initiation at Notch Root 

The geometry of notched specimens is shown in Fig. 2. The specimens were prepared in 
accordance with Ref 15. The severely scratched protective coating was milled off. After ma- 
chining, the area around the notch root is polished with fine emery papers from No. 240 to No. 
800. The dimensions of the specimens were measured with precision up to 0.02 ram. 

The crack initiation was defined as the appearance of a macrocrack with the length of 1 mm, 
and monitored with a traveling microscope of 10 times magnification, which enabled the re- 
cording of the crack extension up to 0.01 mm. 

Six groups of experiments were conducted with the identical loading conditions used for the 
finite element analysis. For each group, six specimens were used. The experimental data are 
given in Table 4, where N~xp is the mean value of the fatigue life at notch root. 

In the fatigue experiments, it was observed that for a notched specimen, the rate of crack 
propagation from about 0.1 to 1 mm is rapid. Most fatigue life was spent in initiating a tiny 
crack (<0.1 ram) at notch root, which corresponds to the calculated results Nca,. In Table 4, 
it can be seen that most calculated results are acceptable, except those under the load of 140 
to 60 MPa, which are considered greater than N~xp. 

Fatigue Crack Propagation of Center-Cracked Specimens 

The geometry of center-cracked specimens is given in Fig. 3. The preparation of the speci- 
mens is made in accordance with Ref 15. The severely scratched protective coating was milled 
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184 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

off. After machining, the crack propagation area is polished with fine emery papers from No. 
240 to No. 800. The dimensions of the specimens were measured with precision up to 0.02 
mlI1.  

The pre-cracking of the specimens, the measurement of fatigue crack propagation, and the 
data treatment complied with the procedures specified in ASTM Test Method for Tensile Strain- 
Hardening Exponents (n-Values) of Rates (E 646-93). For pre-cracking, the mean stress was 
the same as the mean stress of the test, while the stress amplitude was from 50 to 70% of the 
stress amplitude of the test cited later. 

After pre-cracking, the initial crack length measured was 2ao -~ 28 ram. Then the crack 
propagated until the crack length was 2a -> 68 mm, after which the crack propagated very fast 
in an unstable manner. The crack propagation was monitored with a traveling microscope of 
• 10 magnification, which enabled the reading of the crack extension up to 0.01 mm. The crack 
increment, Aa, is about 0.5 to 1.5 mm. 

Three groups of experiments were conducted, with the loading conditions described in the 
section on center-cracked specimens. For each group, six specimens were tested. The crack 
propagation rate, da/dN, of each specimen was calculated by secant method, that is, ASTM 
Test Method for Measurements of Fatigue Crack Growth Rates (E 647-93), and then fitted by 
a polynomial. The mean value of daMN against crack length of each group was taken as the 
experimental result, shown in Table 5. 

One of the shortcomings of finite element analysis is its accuracy in stress calculation, which 
in turn affects damage. This would induce considerable errors in the calculation of the gradient 
of the total equivalent damage, Z, since the damage gradient is related to the values of Z at 
three Gaussian integral points, that is, Points 3, 6, and 9 (Fig. 4). In order to reduce the errors 
after each complete calculation, the calculated values of Z at Gaussian integral Points 3, 6, and 
9 of all crack elements were fitted respectively as straight lines by the least squares method. 
The gradient of Z for each crack-tip element was calculated by the modified values of Z. 

Because large scatter in fatigue test results is often observed, the predicted results shown in 
Table 5 are considered acceptable. 

Conclusions 

1. A damage model based on the damage mechanics theory and related to the elastic energy 
release rate has been established, in which the effect of maximum stress for plastic damage, 
and the stress amplitude and mean stress for fatigue damage are taken into account. This model 
can be used to calculate the fatigue lives for both low-cycle and high-cycle fatigue, under 
multiple-block loads, or with overloads, or a combination thereof, and also can be used to 
calculate the fatigue crack propagation rate. 

2. A general-purpose finite element program has been modified to conduct the damage- 
coupled calculation of stresses, strains, and damage, and also to simulate the fatigue crack 
propagation. The fatigue lives of crack initiation and fatigue crack propagation rates of different 
specimens with complex geometry have been satisfactorily predicted. 

3. For the fatigue under two-block loads and the fatigue with overload using smooth spec- 
imens, the calculated results show good agreement with the experimental data. The important 
influence of plastic damage on the fatigue damage is discussed. A qualitative analysis indicates 
that if plastic damage can be taken into account in the Miner's rule, an improvement in its 
prediction can be achieved. 

4. For fatigue in notched specimens, there is a phenomenon of stress reduction at notch root 
due to damage, which can increase the fatigue lives. For the fatigue crack propagation using 
center-cracked specimens, the calculated results are considered satisfactory. 
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Solid Mechanics Modeling of Erosion Damage 
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Damage," Applications of Continuum Damage Mechanics to Fatigue and Fracture, ASTM STP 
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ABSTRACT: The erosion process is studied from a solid mechanics perspective. This paper 
describes the analysis of multiple coincident particle impacts of an elastic steel sphere on an 
elastic-plastic copper target material. The analysis is performed using the DYNA2D nonlinear 
dynamic finite element code. The results of the DYNA2D analysis are compared against exper- 
imental results for the single impact case. Next, three methods of computing the damage induced 
by the impact process are studied; a strain-life approach using rainflow counting, the technique 
of cyclic plastic work, and a continuum damage mechanics based fatigue criterion. The damage 
predicted by each technique is presented and reviewed. Extensions of the procedures are 
discussed. 

KEYWORDS: continuum damage mechanics, cracking, fatigue (materials), fracture (materials), 
erosion, solid particle, impact, strain life, cyclic plastic work, nonlinear finite element analysis, 
modeling analysis 

It is well known that erosive wear, which ensues when solid particles entrained in fluid 
streams impinge on surfaces, is a serious problem for engineering systems such as catalytic 
cracking, combustion turbines, helicopter rotors, coal-fired steam generators, and many others. 
The importance of erosion is reflected in numerous detailed investigations of all its aspects 
(see, for example, the reviews in Ref 1--4). On the basis of those studies, reasonable consensus 
has been reached about the influences of particle (hardness, size, shape, and density) and par- 
ticle-flow (velocity, impact angle, and flux rate) parameters on erosion behavior. 

In contrast, the role played by properties of the eroding material, particularly ductile metals 
and alloys, is not well understood. This situation stems, in large part, from uncertainty about 
how damage accumulates with successive impacts on a surface. Thus, although erosion losses 
can, in principle, be lessened by materials improvements and surface treatments, the choices 
for such improvements are unclear because the materials properties that will ensure better 
erosion resistance cannot be specified. In consequence, resistant alloys and coatings are still 
selected on the basis of previous experience or by trial and error. A main motivation of the 
work reported here is to advance beyond the current reliance on empiricism; it seems much 
more promising to develop a mechanistic model that could lead to rational methods for de- 
signing resistant materials or coatings. 

Although there has not been a consensus about damage mechanisms in erosion, there is 
agreement that material removal in multiple-impact situations (cavitation-erosion, liquid-drop- 
let erosion, and most instances of solid-particle erosion) is not a result of single impacts. 
Damage can accumulate for thousands of impacts before a fragment of material is dislodged, 
and several investigations have treated solid-particle erosion as a manifestation of fatigue [5- 
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WOYTOWlTZ AND RICHMAN ON EROSION DAMAGE 187 

7]. More recently, good correlation was obtained between cyclic deformation parameters and 
material removal rates from six unalloyed metals that were eroded by glass spheres (about 14 
/zm in diameter) at 90 ~ incidence and 30 m/s velocity [8]. Thus, damage by cyclic deformation 
seems a reasonable starting point for a model of solid-particle erosion. 

Early attempts at finite element modeling of erosion usually simulated a single load cycle 
(that is, one particle impact) with isotropic hardening of the indented material [9,10]. The few 
studies of repeated elastic-plastic contacts [11,12] were hampered by limited variability of 
material responses and by sparse information about cyclic constitutive relations. More realistic 
simulation was achieved with a model that incorporated kinematic hardening and up to 50 
randomly located indentations [13]. Stress-strain responses characteristic of cyclic deformation 
were reproduced: stress and strain reversals, hysteresis loops, and strong history effects. How- 
ever, the assumptions of plane strain, quasi-static loading rates, and a damage algorithm derived 
for predominantly tensile load configurations, made it difficult, if not impossible, to relate 
quantitatively the model predictions to experimental observations of solid-particle erosion. 

The current study builds on previous work and attempts to remove some of the earlier 
modeling assumptions and limitations. In addition, since computation of the damage plays a 
major role in assessing erosion mechanisms, a comparison of three major techniques has been 
performed within the context of particle impact damage. The present study attempts to quantify 
the damage induced by multiple coincident impacts of a steel sphere on a copper target material. 
The results of this study form a basis for future predictions of erosion damage. 

Finite Element Analysis 

Modeling of Single Particle Impact 

In order to extend understanding of the erosion process, a solid mechanics model of a single 
particle impacting a surface was developed. Past studies have included elastic and plastic ef- 
fects. However, previous work in this area considered the process as quasi-static and often did 
not directly treat the contact surface effect. In the current study, a full dynamic analysis of the 
impact process is considered. The impacting particle is assumed to be a hardened steel sphere 
and the target material is copper. This system was selected for several reasons. First, experi- 
mental data were available from Sundararajan [14]. These experimental data included the ef- 
fects of particle size and impact speed on the resulting target material's crater dimensions. The 
steel sphere was considered to be much stronger than the copper material so that the plastic 
deformations and associated mechanical properties such as yield strength and the elastic-plastic 
stress-strain response for the steel were not needed. A copper target material was selected so 
as to minimize the strain rate effects. It is well known that copper generally has small strain 
rate effects compared to materials such as stainless steel. Thus, the mechanical model for the 
steel was taken to be elastic. The copper target material was modeled as a kinematically hard- 
ening elastic-plastic material with a constant tangent modulus. The mechanical properties for 
the two materials are summarized in Table 1. The steel properties of Table 1 are typical for 

TABLE 1--Mechanical properties. 

Property Steel Sphere (particle) Copper Target 

Young's modulus, E 203 X 10 3 M P a  138 • 103 MPa 
Poisson's ratio, v 0.30 0.30 
Density, p 7850 kg/m 3 8990 kg/m 3 
Yield strength, Sy N/A (elastic) 279 MPa 
Tangent modulus, E, N/A (elastic) 125.2 MPa 
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188 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

steel, while the copper properties were obtained by processing the static elastic-plastic stress- 
strain response from Sundararajan [14]. In order to model the copper material as a linearly 
hardening material, the total plastic work (area under the stress-strain curve) for the actual 
stress-strain curve was equated to the total area under the stress-strain curve assuming linear 
hardening. Using this approach, the yield strength and hardening modulus of Table 1 were 
obtained. 

The axisymmetric finite element model used in shown in Fig. 1. The DYNA2D [15] finite 
element code was used for the analysis, which allowed accurate modeling of dynamic effects. 
Slide lines (contact surfaces) were included in the analysis between the impacting sphere and 
target material. Since the model is axisymmetric, the results are applicable for normal impact 
situations. The first task was to test the accuracy of the finite element solution procedure against 
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FIG. 1--Finite element model of  sphere and target material. 
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TABLE 2--Comparison of finite element and experimental results for single impact. 

Impact Percent Percent 
Velocity, Crater Depth, Crater Depth Error, Crater Width, Crater Width Error, 

m/s FE, dre (mm) [14], d (mm) 100 X deeld FE, WFE (mm) [14], w (mm) 100 • WFe/W 

54.5 0.2820 0.248 13.7 2.233 2.20 1.0 
127.5 0.7019 0.626 12.1 3.369 3.20 5.3 
198.7 1.192 1.058 12.7 4.265 3.87 10.2 
253.1 1.529 1.412 8.3 4.539 4.30 5.5 

the test results of Sundararajan [14]. For this comparison, a steel sphere diameter of 4.76 mm 
was used and the analysis was performed for several different impact velocities. Comparisons 
against the measured test data of Sundararajan [14] are shown in Table 2. The crater depth, d, 
and width, w, are shown in Fig. 2 along with the deformed plot of a typical simulation. The 
displacements shown in Fig. 2 are to scale and have not been magnified relative to the other 
geometry. The sphere shown in Fig. 2 is in its rebound position from the surface. 

As can be seen, reasonable correlation has been obtained. The finite element results always 
overpredict both the crater depth and crater width. Perhaps this is a consequence of neglecting 
the rate effect on the stress-strain response. The 253.1 m/s simulation was tested using stress- 
strain data from Sundararajan [14] for a strain rate of 1 x 104 s -~ and improved correlation 

X 

FIG. 2--Deformed plot for impact velocity of 127.5 m/s (analysis time = 25 gs). 
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was obtained. However, since the strain rates are different throughout the model, there is no 
justification for using this constant strain rate data. For purposes of this investigation, the 
correlation with test data of Table 2 is considered adequate and no further refinement of the 
finite element modeling procedure was investigated. 

Modeling of Multiple Coincident Particle Impacts 

The finite element procedure just discussed was extended to allow for modeling of multiple 
coincident particle impacts. Up to four coincident particle impacts were investigated. This is 
considered to be the first step in eventually analyzing multiple noncoincident impacts that would 
be more representative of an actual erosion process. However, the modeling of noncoincident 
impacts precludes the use of an axisymmetric analysis and requires a three-dimensional dy- 
namic analysis. Understanding of the multiple coincident impact analysis was considered an 
important step toward this future goal. 

The finite element model used is essentially identical to that used for the single impact study 
with the exception that three additional steel spheres were introduced into the analysis. Slide 
lines (contact interfaces) were not introduced between the impacting spheres in order that they 
would pass through one another without any interaction. This is the natural behavior of most 
finite element codes unless special care is taken to introduce contact surfaces between objects. 
Therefore the analysis is set up such that at t = 0 there were four spheres located at different 
distances from the target surface. The spheres were spaced relative to one another so that each 
sphere had sufficient time to rebound from the surface before the next sphere impacted it. For 
this study, each of the spheres was given an initial velocity of 54.5 m/s. 

Selected results of this analysis are as follows. The y component of stress, O'yy, typically 
displayed large peaks of compressive stress followed by periods of essentially zero stress in 
between impacts, as expected. The shear stress response for an element located five elements 
in from the symmetry centerline and on the surface of the target material is shown in Fig. 3. 
(This element displayed a particularly high response.) Examination of the deformed shapes 
physically verifies that large shear stress responses would be expected at this location. A some- 
what unexpected result is the plot of infinitesimal shear strain for the same element that is also 
shown in Fig. 3. The shape shown in Fig. 3 is caused by the very high levels of plastic defor- 
mation; the elastic unloading is completely "swamped out" by the plastic deformation. This 
same basic behavior has been verified by performing identical analyses with the NIKE2D [16] 
code. When the levels of plastic strain are reduced by considering much lower impact velocities, 
then responses very similar to those obtained by McNaughton et al. [13] were obtained. 

Computation of Damage for Single and Multiple Coincident Impacts  

The main goal of the solid mechanics modeling procedure is to predict damage accumulation 
associated with particle impacts that can in turn be related to the erosion process. There are a 
number of approaches available for predicting damage. In order to gain confidence in the 
predicted damage levels, three prominent techniques for computing damage are investigated 
here. These techniques have been implemented in such a way that the damage does not feed 
back into the finite element analysis, except to the extent that the plasticity represents damage. 

Strain Life Approach 

The strain life approach to calculating impact damage has been investigated previously by 
McNaughton et al. [13] and was based upon the shear strain form described by Kandil et al. 
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FIG. 3--Shear stress and strain versus time for multiple coincident impacts (initial velocity = 
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[17] as later modified by Socie et al. [18] to include mean stress effects. In this form, the strain 
life equation is written as 

O',o r~ AYma-------2x + - -  = - -  (2Ns) b + y}(2Ns) C (1) 
2 E G 

where Aym~ x is the change in the maximum shear strain, tr, o is the mean normal stress, E is 
Young's modulus, G is the shear modulus, r~ = tr~/V~ is the shear strength coefficient, y '  f-~ 
V~e~ is the shear ductility coefficient, b is the fatigue strength exponent, c is the fatigue 
ductility exponent, and N s is the number of cycles. The damage associated with a predicted 
Ayma~ and a corresponding N s cycles to failure was taken to be D = 1/N s. 

The fatigue properties in Eq 1 are summarized in Table 3 for the copper target material. 
While Eq 1 appears to be a reasonable generalization of the uniaxial form of the strain life 
equation, there are some physically unappealing difficulties associated with using it. First, in 
the case where the axis of stress and strain are changing, the maximum shear difference (A Ymax) 
in general will refer to different physical planes of the material. This is particularly problematic 
for the case of large plastic deformation (large strains). Additionally, if one wishes to count 
the cycles to be used in Eq 1 using a procedure such as rainflow counting [19], the problem 
associated with changing planes of maximum shear strain is accentuated because the planes 
are even more likely to change owing to the ralnflow counting procedure's rearrangement of 
the strain sequences. To circumvent these problems, Eq 1 is used in the following manner. 
First, instead of using the infinitesimal definition of shear strain, we use the Green-Lagrange 
measure of shear strain in such a way that it reduces to Eq 1 for small deformation. Next, with 
reference to Fig. 1 of the axisymmetric finite element model, we first assume that the worst 
plane (the one that is associated with the maximum damage) occurs such that it is aligned with 
the x-y coordinate system of Fig. 1. The shear stress (r~y) in the x-y coordinate system is first 
rainflow counted over the time history of interest and the entire strain and stress tensor at each 
sample in time is sorted according to the rainflow counting procedure. Now assuming that the 
worst damage occurs on this plane, the change in shear strain, ayx r is used in Eq 1 to compute 
the predicted life and associated damage, D. This calculation is repeated over all the elements 
of the finite element model and the computed damage, D, for each element is saved. Next, it 
is assumed that the worst damage occurs on a plane that is rotated relative to the x-y coordinate 
system by some small angle, A0. Call this new coordinate system x ' -y ' .  The same procedure 
of rainflow counting the transformed shear stress, "rx,y, , and computing the damage for all 
elements is now performed using A%,y, (the transformed Ay~y) in Eq 1. By repeating this 
procedure such that we cover the entire right-hand plane (0 ~[0,7r/2]) and always saving the 
largest damage for any given element, the distribution of damage over the entire model is 
obtained. This has a physically appealing characteristic that shear strains occurring on different 
planes are not combined and one can also predict the angular orientation associated with the 
maximum damage. This orientation will in general be different for each element of the model. 

TABLE 3 Fatigue properties for copper target material. 

Property Value 

Fatigue strength coefficient, o-~ 
Fatigue strength exponent, b 
Fatigue ductility coefficient, e~ 
Fatigue ductility exponent, c 
Cyclic strain hardening exponent, n' 

564MPa 
-0.0857 

0.483 
-0.5714 

0.15 
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TABLE4--Damage venus number ofimpacts, strain l~eapproach. 

Impact Number Dma x Angle, 0 Element 

1 0.674 45 ~ 858 
2 1.150 45 ~ 858 
3 1.480 45 ~ 858 
4 1.790 45 ~ 858 

This technique has been applied to the impact process characterized by the shear stress and 
shear strain responses, %y and 3'xy, shown in Fig. 3. The resulting maximum damage, the angle 
associated with maximum damage and element number, is shown in Table 4 after 1, 2, 3, and 
4 coincident impacts. (The element numbers are shown in Fig. l.) The same calculations done 
for the infinitesimal definition of shear strain produces damages approximately 5 to 14% greater 
and worst case angles similar to those of Table 4. Additionally, it was found that for these very 
high levels of plastic strain, the normal stress correction of Eq 1, (tr, o/E) has negligible effect, 
as would be expected, since this normal stress correction will always have values on the order 
of elastic strains, which are very small compared to the plastic strains observed in this 
simulation. 

Cyclic Plastic Work Approach 

The technique of using the cyclic plastic work for characterizing damage has been studied 
for some time. Early studies by Morrow [20] discuss the use of this technique in the context 
of fully reversed, uniaxial loading. Later work, for example by Garud [21], generalized the 
approach to include multiaxial and effects of changing the principal axes of stress and strain 
over a cycle. The basic idea states that the cyclic plastic work, Wp, given at any point in a body 
can be used to characterize the accumulated damage at that point. The cyclic plastic work, Wp, 
generalized to the case of large deformations can be written as 

Wp = f tridl~ dt (2) 

where tr U is the Cauchy stress and d p is the plastic part of the rate of deformation tensor as 
discussed, for example, in Malvern [22]. Owing to the fact that for the present work the plastic 
strains are so much larger than the elastic strains, the plastic part of the rate of deformation 
tensor is simply approximated as the total rate of deformation in Eq 2. In order to convert the 
plastic work computed by Eq 2 to some measure of damage, a result due to Morrow [20] is 
used. According to Morrow's analysis, the plastic work associated with a single cycle of a 
symmetric power-hardening material with cyclic strain hardening exponent, n',  cycled over a 
total plastic strain range of Aep and with fully reversed stress amplitude, o-a, is given by 

1 - -  n I 

(3) 

where 

,/a A ~ 
(4) 
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TABLE 5--Number of cycles, damage, and plastic work per cycle for target copper material predicted 
by ~q S. 

~Wp, Power AWp, Linear 
N s D Asp Hardening Hardening 

1 1 0.6578 510.7MPa 365MPa 
5 0.20 0.2739 177.4 151 

10 0.10 0.1807 112.5 98.6 
100 0.010 0.0520 39.6 26.8 

1000 0.001 0.0168 8.6 7.1 
10 6 10 -6 0.0026 0.1 0.2 

Substituting Eq 4 into Eq 3 and using the uniaxial (tension/compression) form of Eq 1 for Aep, 
we arrive at the following relationship between the plastic work per cycle, AWp, and the number 
of cycles to failure, N s 

1 

1 + ],~ 
N~ = ~ ~ - -  n')  4o'}e-----~_] (5) 

Applying Eq 5 to the copper target material, the results of Table 5 can be obtained showing 
the predicted number of cycles to failure associated with a specified amount of plastic work. 
Taking the damage, D = 1/Ny, we arrive at the tabulated damage associated with the specified 
amounts of plastic work also shown in Table 5. Table 5 also indicates the associated plastic 
work per cycle assuming a linear-hardening material (constant tangent modulus, E,) that is used 
in the actual finite element modeling procedure. Thus, similar results will be obtained from the 
power-hardening material model and a linear-hardening material model as long as the relative 
levels of plastic strain are such that more than a few cycles are predicted before failure. 

Using the finite element model to calculate the accumulated plastic work from Eq 2 and the 
correlation between plastic work and damage just discussed, the results of Table 6 are obtained. 
The first column of damages displayed in Table 6 uses Eq 2 to compute W e then substitutes 
this result directly into Eq 5, which then results in a damage from the relationship, D = f iN s. 
The second column of damages displayed in Table 6 uses the same approach but first doubles 
the W e computed using Eq 2. Note that this second column of damages correlates well with 
the damages predicted using the strain-life approach. The reason for this can be seen by ref- 
erence to Fig. 4. Since the strain-life equation has been used to correlate the cyclic plastic work 
to damage, we see that given a Aee the strain-life equation assumes this is associated with a 
completely reversed cycle. The plastic work associated with a completely reversed cycle is 
approximately double that associated with a half cycle or one reversal. Hence, doubling the 
computed W e is equivalent to assuming complete reversal for each impact; the doubled W e 

TABLE 6--Damage versus number of impacts, cyclic plastic work 
approach. 

Impact 
Number D, Wp, Eq 2 D, Double Wp Element 

1 0.235 0.674 857 
2 0.369 1.060 857 
3 0.479 1.376 857 
4 0.585 1.680 857 
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Half Cycle Loading 

Fully Re, 

FIG. 4 ges in plastic strain. 

values in Table 6 are included mainly for the purposes of comparison to the damages computed 
by the strain-life approach in Table 4. We believe that the impact processes modeled here are 
better represented by the half-cycle type of loading shown in Fig. 4 and computed by Eq 2. 

Continuum Damage  Mechanics  Approach 

The last technique studied for computation of damage for the impact process is based upon 
continuum damage mechanics. Although this is still an active field of research and a number 
of approaches can be used, we selected an approach presented by Lemaitre [23] for computation 
of fatigue damage. With this approach, one develops a kinetics relationship that is used to 
predict damage. For the present formulation, the kinetics equation is given by Lemaitre [23] 
a s  

dO R~(-~, - ~o)~ep 
- -  = (6) 
dt F(1 - D) '~ 

where 

1 1 

R~ = ~ = f f '  :ff '  ~p = d :d  (7)  

and F, ~, and ,/are material constants that can be determined from the strain-life relations as 

T =  - + 1 and F -  ~ +  1 
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In Eq 7, or' denotes the Cauchy stress deviator tensor, d is the rate of deformation tensor, and 
o'* is an equivalent damage stress given by Lemaitre [23] as 

h f l - D ~ 2  (0"*) 2 = (1 + u)(o'):(,r) - u(tr{o')) 2 + \1  - Dhl 

[(1 + ~ , ) ( - ~ ) : ( - ~ ) -  v ( t r ( -o ' ) )  ~] 
(9) 

where the symbol " : "  denotes the inner product 

a:a = alia q 

where summation is performed over the repeated subscripts. The constant, a, affects the lin- 
earity or nonlinearity of the damage versus time response. For the present study, a was taken 
to be zero. Also in Eq 9, the stresses inside the Macaulay brackets ( ) are principal stresses 
and any term inside the Macaulay brackets that is less than zero is taken as zero. Equation 9 
represents a decomposition of the stress tensor into compressive (negative) and tensile (positive) 
parts. The compressive stresses are contained in the terms that are multiplied by h while the 
tensile stresses are contained in the first two terms. The variable, h, is termed the closure 
coefficient and Lemaitre [23] indicates that the value, h = 0.20, has been determined for a 
number of  materials. From Eq 9, one can see that the closure coefficient is related to the amount 
of damage introduced by compressive stress fields. The h = 0 value indicates that compressive 
stress fields do not affect the damage, while h = 1 indicates that compressive stress fields and 
tensile stress fields introduce the same amount of damage. Strictly speaking, the rate of defor- 
mation tensor used in Eq 7 should be decomposed into an elastic and plastic part, using only 
the plastic part in Eq 7. However, for the present study, the plastic strains are much larger than 
the elastic strains and, therefore, the total d is used in Eq 7 for convenience. 

Using the kinetics relationship of Eq 6, we computed the damage for the present simulation. 
Table 7 presents the results using a closure coefficient, h = 0.20, and also using a closure 
coefficient, h = 0.10. For closure coefficient, h = 0.0, very small values for damage are 
predicted. This is ascribable to the fact that for the impact process a highly compressive stress 
field is obtained. Damage values greater than 1.0 are not physically consistent with the form 
of Eq 6, therefore, it is not possible to compare such damages against previous predictions. As 
can be seen, the predicted damage values are quite consistent with those obtained using the 
strain-life and the cyclic plastic work approach. It is also of interest that the continuum damage 
mechanics approach predicts the most highly damaged element to be Element 817 that is 
directly below Element 857. Element 857 is predicted to be the most highly damaged element 
using the strain-life and cyclic plastic work methods. 

The strain-life and cyclic plastic work approaches to computing damage define the damage 
as being D = lINg. Therefore, in doing numerical calculations, it is possible to compute a 
damage, D, greater than 1.0. Computing a damage greater 1.0 has sometimes been physically 

TABLE 7--Damage versus number of impacts, continuum damage mechanics approach. 

Impact Number D, h = 0.20 D, h = 0.10 Element 

1 0.689 0.452 817 
2 1.0 0.899 817 
3 1.0 1.0 817 
4 1.0 1.0 817 
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explained by stating that failure is predicted to occur in less than one fully reversed cycle. This 
is probably pushing the experimental data and basis for computing the strain life parameters 
beyond their predictive capability. However, it is at least some measure of how "over dam- 
aged" the material is. For this reason, damage values greater than 1.0 have been left in Tables 
4 and 6. On the other hand, continuum damage mechanics does not allow damage values greater 
than 1.0 and such values are considered undefined. It is assumed that the material completely 
fails when D = 1.0. For this reason, the computations of damage using the continuum damage 
mechanics approach must stop when D = 1.0, and Table 7 reflects this. 

Discussion 

As expected, using different techniques to compute damage for such a complex process 
produces different predictions of damage. The fact that the cyclic plastic work predictions can 
be brought into line with the strain-life predictions by doubling the plastic work computed in 
the finite element analysis, and then using this doubled Wp in Eq 5 is physically understood. 
The reason for this behavior stems from the fact that the cyclic plastic work associated with 
an increment in plastic strain, as computed from Eq 3 assumes the increment in plastic strain 
was fully reversed. Such a fully reversed increment in plastic strain yields approximately double 
the plastic work compared to the case where the increment in plastic strain is not reversed, that 
is, substituting values of Wp computed from Eq 2 directly into Eq 5. 

Thinking of this in terms of using the strain life equation to predict damage, such as was 
done in producing Table 4, it seems that the damage computed in this manner is probably 
overstated. This is caused by the nature of the loading associated with the present study. The 
loading is indeed not fully reversed, but rather, approximately half of a fully reversed cycle. 
Thus, it seems likely that the cyclic plastic work computed from Eq 2 is the more realistic 
approach to assessing damage induced by repeated impacts of spherical particles on a metal 
target. 

Lemaitre's continuum damage mechanics approach to fatigue using a closure coefficient, h 
= 0.20, produces results that agree well with the strain-life approach and the cyclic plastic 
work approach when the computed W e is doubled. This agreement indicates that damage pre- 
diction can be reliably reproduced using any of the preceding techniques, providing that one 
treats the cyclic plastic work in the manner discussed here (doubling Wp), even though from 
the previous discussion this may lead to overstating the damage. If treating the increment in 
plastic strain as fully reversed is founded in experimental fact, then the preceding approaches 
to computing the damage associated with the complex impact process studied here are all in 
agreement. 

Conclusions 

The analyses presented here indicate that use of a nonlinear, dynamic, finite element pro- 
cedure can accurately predict the response of a target material subjected to single normal 
impacts. Comparisons of crater dimensions from the finite element results and the experimental 
results of Sundararajan [14] are considered very good. 

It is also concluded that equivalent measures of damage can be predicted with three different 
approaches based upon strain life, cyclic plastic work, and continuum damage mechanics. This 
is important in providing confidence in computed results. It is worth noting, however, that 
computing cyclic plastic work by a procedure that does not assume fully-reversed loading is 
probably the most realistic approach to damage calculation. From a practical perspective, the 
cyclic plastic work and continuum damage mechanics approaches will be much easier to apply 
than the strain life approach in three-dimensional analyses. The strain life approach discussed 
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here turns out to be very computationally intensive because of the repetitive transformations 
needed to compute damage in every conceivable plane for each element. 

As briefly mentioned earlier, future work associated with studying the damage caused by 
erosion will eventually involve three-dimensional modeling of impacts that are noncoincident 
and spatially located based upon stochastic considerations. The techniques developed herein 
provide a framework within which one can predict damage for such processes. It is hoped that 
this ability to predict the temporal and spatial growth of the damage field will eventually allow 
analytical predictions of material removal rates under erosive conditions. 
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ABSTRACT: In safety analyses of nuclear reactor pressure vessels, hypothetical cracks are often 
postulated in the ferritic base material beneath the austenitic cladding that is used to protect 
against corrosion. The criticality of the hypothetical cracks is strongly influenced by the integrity 
of the cladding. If the cladding is intact, the crack tip loading is significantly reduced compared 
with the case where the cladding is assumed to be broken. The assessment of the load-carrying 
capacity of such a cladding cannot be done on the basis of the J-integral concept since its 
application is problematic at the interface of two materials and steep gradients in the material 
properties in the heat-affected zone cannot be characterized by fracture mechanics tests mean- 
ingfully. Moreover, the shape of cracks is usually assumed as semielliptical and the conventional 
J-concept has to be modified to take into account the effect of the constraint, changing along the 
crack front, on the crack resistance behavior. To avoid these problems, the behavior of a flaw in 
the interface between ferritic and austenitic material has been analyzed by a micromechanical 
material model based on the Gurson flow function. 

A three-point-bend specimen consisting of a ferritic block with an austenitic cladding and a 
semielliptical crack in the ferritic base material beneath the cladding was tested and evaluated. 
The global (that is, load versus displacement curve) and local (that is, ductile crack extension in 
ferrite and austenite) behaviors of this specimen were predicted by means of two- and three- 
dimensional finite element analyses with the Gurson parameters determined for different material 
zones. The material characterization was done by utilizing subsized tension tests with improved 
evaluation and fracture mechanics tests with precracked Charpy-type specimens. 

KEYWORDS: micromechanical modeling, ductile fracture, Gurson model, finite element 
method, austenitic cladding, semielliptical crack, subsized specimens, continuum damage me- 
chanics, cracking, fracture (materials) 

Nuclear reactor pressure vessels made from ferritic steel usually of the type ASTM A 508 
CI 2 or C1 3 have an austenitic cladding layer on the inner surface for corrosion protection. 
Beneath this cladding, there is a small region where the capability of nondestructive exami- 
nation to detect cracks might be reduced. Therefore, in safety analyses, hypothetical cracks are 
postulated for just  that small region. The prediction of the initiation and propagation behavior 
of those cracks into the ferfitic vessel wall depends on whether the cladding remains intact. 
The assessment of the integrity of the cladding under these circumstances, however, is com- 
plicated, because at the boundary of two materials the J-integral concept is not applicable 
without further modifications, and because steep gradients in the material properties have to be 
taken into account. 

~ Senior scientist and department head, respectively, Fraunhofer-Institute fiir Werkstoffmechanik, 
D-79108 Freiburg, Germany. 
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SUN AND SCHMITT ON CRACK ASSESSMENT USING GURSON MODEL 201 

In contrast to the J-integral concepts, micromechanical material models can be employed to 
assess the initiation and propagation behavior of a crack at the interface of two different ma- 
terials, like ferrite and austenite, with different properties melted together. Micromechanical 
models are based on the physical understanding of microscopic processes of ductile fracture 
that are characterized by three phases: void nucleation, growth, and coalescence [1]. Gurson 
[2] derived a plastic potential for porous materials in which a scalar internal variable, the void 
volume fraction, f, was used to quantify an averaged effect of voids on the yielding behavior. 
Needleman and Tvergaard [3] introduced an empirical modification of Gurson's yield function 
to model the final stage of void growth, void coalescence, and developed evolution equations 
for the internal variable to take void nucleation into account. The modified Gurson model has 
been applied successfully to predict fracture behavior of notched tensile specimens [3,4] and 
cracked specimens [5,6]. Sun et al. [6-8] found that both global and local behavior of different 
specimens under various loading conditions can be properly simulated with one set of Gurson 
parameters that may be determined by testing and modeling simple specimens. Similar results 
were also found by Xia et al. [9] and Klingbeil et al. [10]. Rousselier [11] established another 
material model for ductile fracture as an alternative to the Gurson model. Since the difference 
between the Rousselier model and the Gurson model in description of the influence of stress 
triaxiality on void growth is negligible, the Rousselier model could be also successful applied 
to predict the geometry dependence of crack resistance curves of materials [12]. 

Due to the transferability of micromechanical parameters between different geometries and 
loading situations, the modified Gurson model has been used to extend the fracture mechanics 
database of an irradiated weld material [13]. This model can also be applied to calculate ductile 
crack extension preceding cleavage rupture in the brittle-to-ductile transition regime and to 
estimate the probability of cleavage fracture based on the Weibull concept [14]. The aim of 
this work is to demonstrate that it is possible to assess the behavior of a subclad crack located 
in a regime with steep property gradients based on the modified Gurson model. 

Micromeehanical Model and It's Verification 

The Modified Gurson Model 

To take the interaction of voids into account and to model void coalescence, Tvergaard [15] 
modified the Gurson's plastic potential by introducing the values, q~ and f*. The modified 
Gurson's plastic potential is given by 

= 2o.2,. + 2ql cosn~-~-~) - 1 - (elf*) 2 = 0 (1) 

with 

f for f --< fr 

: *  = :*. - L 
fc + f r _ f~" (f  - fc) for f > fc 

(2) 

where tr,j and ~r'q are the macroscopic Cauchy stress and its deviator, respectively; and or,, is 
the actual flow stress of the matrix material. The parameter, ql, holds for an earlier loss of the 
stress carrying capability of the material as in the Gurson original yield function. The modified 
void volume fraction, f*, is introduced to describe the coalescence of voids that occurs after a 
critical void volume fraction, fc, is reached. The material fully loses the stress carrying capa- 
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202 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

bility when f reaches the final value of f: .  The variable, f*, is equal to f*  = 1/ql at f = fs- 
The evolution equation for f consists of two terms describing void nucleation and growth 

= Luc, + S~rowt. (3) 

The process of void nucleation is usually described by a formula based on a normal distribution 
[3,5]. 

Three-Dimensional Unit Cell Calculations 

Micromechanical models derived analytically, for example, the modified Gurson model, can 
be verified by cell model calculations if no void nucleation is considered. The cell model 
calculations start from the assumption that the solid consists of a periodic assemblage of unit 
cells. Every cell contains a spherical hole in its center. Due to the periodic array of the cells, 
it is sufficient to simulate a representative unit cell by using appropriate boundary conditions. 
Koplic and Needleman [16] investigated the influence of stress triaxiality on the rate of void 
growth by means of axisymmetric computations of cylindrical unit cells and compared the 
results of the cell calculations with the predictions of the modified Gurson model. Since an 
assemblage of cylindrical cells cannot fill the space continuously and the stress ratios applied 
to these cells cannot be arbitrarily changed in all three directions, some three-dimensional cell 
calculations have been performed [17-19]. However, in all works mentioned earlier, a cubic 
periodical array of initially spherical voids is assumed for the cell calculations and it represents 
only one possibility of idealized spatial arrangements of voids. Of course, in real structural 
materials, voids or void-nucleating sites are located rather irregularly. 

Recently, Kuna and Sun [20] have analyzed the influence of the spatial arrangement of voids 
on the mesoscopic deformation response and the void growth of the unit cells for various stress 
triaxialities. Three different void arrangements, cubic primitive array, body-centered cubic ar- 
ray, and hexagonal array, were considered in three-dimensional unit cell calculations (Fig. 1). 
Due to symmetry, only 1/s of the unit cell had to be discretized for cubic primitive array and 
body-centered array. To change the stress ratios in all three axial directions, higher symmetry 
properties were not utilized. Since all symmetry conditions were used for the hexagonal void 
arrangement, only 1/24 of the cell had to be generated. Each calculation of the cell models was 
carried out by keeping a prescribed stress triaxiality constant throughout the loading history. 

a b c 

FIG. 1 Finite element meshes for three different unit cells models: (a) ~ cubic primitive cell, (b) 
cubic body centered cell, and (c) z/~ hexagonal cell. 
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FIG. 2 Mesoscopic response of the cubic primitive cell model for various values of triaxiality 
compared with approximations by the modified Gurson model. 

Comparing the results of the cell model calculations, it was found that the type of void arrange- 
ment affects only weakly the deformation behavior, whereas the maximum load and mechanism 
of plastic collapse are strongly influenced. Consequently, different sets of the Gurson param- 
eters (fc, fs, and ql) were obtained by fitting the cell-model results for different void distri- 
butions [20]. An interesting result is that for each void arrangement one may find one set of 
Gurson parameters with which the modified Gurson can predict the deformation and the col- 
lapse behavior of the corresponding cell for different values of triaxiality. For the cubic prim- 
itive arrangement, Fig. 2 shows the computed mesoscopic effective stress versus the effective 
strain curves for a variation of stress triaxiality from T = 1/3 up to T = 3.0. The semianalytical 
Gurson solutions added in Fig. 2 as thin lines were achieved by using the parameters that were 
fitted to the results of finite element cell models [20]. Considering the large variation of stress 
triaxiality and the high initial void volume fraction (fo = 0.114), the agreement between the 
unit cell calculations and the Gurson predictions is relatively good. This implies that the mod- 
ified Gurson model describes the constraint effect of the void growth very reasonably, and its 
parameters can be transferred between specimens with different constraints. 

Characterizaton of Materials in Different Regions 

The test component was made from a block of a ferritic steel, German Designation 20 
MnMoNi 5 5. At the surface of the block, an initial slit was produced by spark eroding and 
subsequently propagated by fatigue loading. The surface of the block was then removed up to 
the depth of the originally eroded slit, and the crack was closed by a thin Manna Metal Arc 
(MMA) welding layer. After grinding smooth, a two-layer band cladding with a total thickness 
of 7 nun was applied. The dimensions of the test piece were 900 by 120 by (60 + 7) mm 3. 
The semiellipfical subclad crack was 5 turn deep and 30 mm long. Figure 3 shows a schematic 
view of the cross section of the test piece. A second similar cladded block was available for 
material characterization. 
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204 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

FIG. 3--Schematic view of cross section of the test piece. 

In order to determine mechanical and micromechanical parameters for the base material, the 
heat-affected zones, and the cladding two actions were taken: 

1. determination of stress-strain curves and the modified Gurson model parameters from 
subsized smooth round tension specimens with diameter of 2 mm, and 

2. verification of these parameters and determination of the characteristic material length, 
lc, by testing and simulating SENB-(10 • 10)-type fracture mechanics specimens in which 
the front of the fatigue crack was located in the material zone to be characterized. 

Evaluation o f  Tension Tests 

To quantify the large gradients in the material properties in the region where the crack is 
located, the tensile specimens must be as small as possible. Therefore, in a preliminary study 
with ferritic base material, round and quadratic specimens with 2 mm and 10 mm diameter or 
width and rectangular specimens with dimensions 1 by 6 t o n i  2 w e r e  tested and analyzed in 
order to find suitable specimen shapes and sizes. Within the unavoidable material scatter, all 
curves fall nicely together and no size effect is found [21]. For the determination of true stress 
versus true strain curves, not only the actual area of the necking cross section but also the 
curvature radius of the necking part must be known to take account for effects of triaxiality in 
the necking region (Bridgman correction). The experimental determination of these quantities 
is much more difficult for specimens with quadratic or rectangular cross sections than for round 
bars. Therefore, only round specimens with 2-ram diameter were used to determine the param- 
eters of the cladded test block. 

The experiments were conducted at room temperature, and the necking profile was measured 
optically from photographs taken during the tests. Figure 4 shows the variation of yield stress, 
try, and reduction of area, Z, over the thickness of the block. As expected, the yield stresses 
obtained for the austenitic cladding lie below those of the heat-affected zone and also below 
the base material. It is remarkable that the ductility of the material in a narrow zone at the 
fusion line is much lower than those of the ferritic base material and the austenitic cladding. 

A total of seven tests representing different material zones were analyzed numerically in 
order to optimize the stress-strain curves and to determine the Gurson parameters. Based on 
earlier results, it was assumed that no initial voids were present (fo = 0). The parameters for 
strain-controlled void formation were chosen according to Needleman and Tvergaard [3]: e, 
-- 0.3, s, = 0.1. The volume fraction of void-forming particles, f , ,  was fixed such that the 
resulting critical void volume fraction, fc, was around 3 to 6%, which lay in the range of the 
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measured values for this class of materials. Finally, the re-value for each material zone was 
determined by fitting the sharp kink in the calculated load versus deformation curve to the 
experimental data at this point. The sudden drop of the load at the kink point is caused by 
the onset of macroscopic fracture in the specimen center. Figure 5 shows as an example the 
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TABLE liMicromechanical material parameters of different material zones. 

Gurson Parameters 
Specimen Number 

Material Zone (Fig. 5) f ,  fc fs 

Base material AY 519 0.002 0.06 0.212 
Base material AY 518 0.002 0.06 0.212 
HAZ 1 AY 517 0.002 0.06 0.212 
HAZ 1 AY 516 0.002 0.06 0.212 
HAZ 2 AY 515 0.002 0.04 0.197 
HAZ 2 AY 502 0.002 0.04 0.197 
Cladding AY 507 0.012 0.03 0.189 

measured and calculated force versus diameter change curves for specimen AY519 (base ma- 
terial). Table 1 compiles the micromechanical material parameters for the different zones. The 
values of fs  were calculated from f~ (Eq 2) by keeping the factor for the description of void 
coalescence constant, (f* - f~)/(fs - fc) = 4; and ql = 1.5 and f*  = 0.99/qz = 0.66 were 
used for all material zones. 

Simulation o f  Fracture Mechanics Tests 

An additional material parameter, the characteristic distance, lc, is required for the application 
of micromechanical models to cracked specimens or structures, as it is not sufficient for crack 
initiation to reach a criterion at one material point but that a minimum volume of material 
should be involved. The characteristic length, lc, is related to the microstructure (inclusion 
spacing). Since there is no size-scale in the Gurson model, many attempts have been made to 
introduce the length parameter~ It, into the Gurson model [7,9,11,22]. Here, we used a simple 
but practical concept to solve this problem. The mesh size at the crack tip was varied so that 
the measured load versus displacement curve of a fracture mechanics specimen was well re- 
produced by the Gurson model with the parameters obtained from tension tests. This implied 
that the l~-value was identified with the element length at the crack tip. Generally, the f~ and 
lc pair can be considered material constants that allow the transfer from tensile specimens to 
fracture mechanics specimens [7,8,22]. 

Four three-point-bend SENB (10 x 10) specimens taken from different material zones were 
tested and simulated in order to determine the/c-values and to verify the transferability of the 
Gurson material parameters obtained from tension tests. The specimens were side-grooved 
(10% each side) and have an initial crack length of 5 mm (a/W = 0.5). Each specimen was so 
fabricated that the crack propagated in the direction of the base material and the front of the 
fatigue crack was located as exactly as possible in the material zone to be characterized. As an 
example, the SENB specimen for the Heat-Affected Zone II (HAZ 2) is schematically presented 
in Fig. 6. During the JR(Aa)-tests, the potential drop method was used to determine the actual 
crack lengths. In addition to the investigations with SENB (10 X 10) specimens, a compact 
specimen, CT25, from base material was tested and simulated. 

According to previous experience with the 22 NiMoCr 3 7 material, the crack tip region of 
SENB and CT specimens was modeled with element sizes of 0.1 by 0.06 mm 2. The material 
properties for the Gurson model were identical with those obtained from the numerical simu- 
lations of the tensile specimens. The different material zones of the small SENB-specimens 
were represented by different material properties in different mesh zones. All fracture me- 
chanics specimens were side-grooved (20%), thus plane-strain models with isoparametric eight- 
noded elements and (2 X 2) integration scheme were used for the numerical simulations. 
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FIG. 6~Width of different material zones in the SENB-specimen for HAZ II. 

Figure 7 compares the measured and calculated force-displacement curves of the compact 
specimen of the base material. Figure 8 shows the corresponding JR-curves. In the numerical 
models, the crack propagation is identified with the extension of the damage zone along the 
ligament where the void volume fraction exceeds fr and where the stresses approach zero. The 
good agreement with the experimentally determined crack propagation confirms the choice of 
the element length (0.1 mm) and the transferability of the Gurson parameters from tensile to 
fracture mechanics specimens. For the austenitic cladding material, an element length of 0.05 
mm was determined by modeling the SENB specimen. 

In order to minimize the influence of friction, the tests with SENB (10 • l O)-type specimens 
were performed using supporting rolls that were not fixed and free to rotate. This setup caused 
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unexpected difficulties for the numerical simulations. Figure 9 shows the deformed mesh for 
such a specimen and setup. While the support was modeled as a rigid surface, the rolls were 
modeled with volume elements with contact surfaces between rolls and specimen. The loading 
hammer was introduced with truss elements having gaps of different size according to the shape 
of the hammer. During the experiments, small plates of hardened steel were put between spec- 
imen and supporting rolls to avoid plastic indentation on the specimen surfaces. The influence 
of the hardened steel plates was modeled by increasing the yield strength of the respective 
elements in the specimen. 

Assuming a realistic friction coefficient,/x = 0.2, between rolls, support, and specimen, this 
model gave convergent results only up to about maximum load, see Fig. 10, where the measured 
and calculated force versus displacement curves are compared. Beyond that point (arrow), 
convergence could be regained by increasing the friction coefficient to/z = 0.3. It is under- 
standable that a higher friction force stabilizes the numerical model as it makes the supporting 
rolls more difficult to slip away from the system in an unstable manner. However, now the 
calculated force deviates significantly from the measured one. Therefore, measured and cal- 
culated J-resistance curves can only be compared for small amounts of crack extension, Fig. 
1 l. The reasonable agreement confirms the choice of the material parameters. Keeping in mind 
that for the simulation of the component test three-dimensional modeling would be required, 
it was decided to change the test setup of the component test and to fix the rolls. 

Prediction of the Crack Behavior in the Component 

Experiment and Evaluation 

The cladded specimen was tested at room temperature in a three-point-bend setup (Fig. 12) 
with fixed supports in a servohydraulic test machine with a load capacity of 1.6 MN. The 
bending displacement was measured with an inductive displacement gage. Strain gages were 
applied to the specimen surface directly and was monitored with a direct-current potential drop 
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FIG. 12--Setup of component test, geometry of cladded specimen and, two-dimensional~three- 
dimensional combined finite element model. 
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(DCPD) arrangement at a constant current of 60 A. The potential drop was measured on the 
cladded specimen surface above the crack with a probe distance of 40 mm, catching predom- 
inantly crack extension in the cladding. For a better resolution of crack extension towards the 
base material, two additional probes were placed on the specimen sides directly beneath the 
cladding [21]. Before and after the test, the crack was sized by ultrasound. 

Figure 13 shows the measured force versus bending displacement curve as a solid line. Small 
load drops can be seen at displacements of about 3, 8, and 13 mm that were accompanied by 
audible signals probably caused by the specimen sliding over the supports. At a bending dis- 
placement of about 25 ram, the test was terminated and the specimen unloaded. Figure 14 
shows the fracture surface after severing the specimen by fatigue. Starting from the initial 
fatigue crack with dimensions of 5.4 by 31 mm z, ductile crack propagation, predominantly into 
the cladding, is observed with no lateral extension. On the ferritic side, the crack extended 
uniformly by about 1.7 mm. 

The correlation of the fracture events with signals measured during the test is difficult because 
the changes are small with respect to the overall dimensions of the specimen. Figure 15 shows 
the two potential-signals versus bending displacement. Three sections with roughly constant 
slope are identified: between 3 mm and 6 to 8 mm, between 8 and 15 nun, and between 15 
and 24 ram. Experience shows that indications for crack initiation and propagation may be 
drawn from changes in the slope. The change of slopes at 8 mm is more pronounced in the 
cladding signal while the change at 15 mm is clearly seen both in the cladding and in the base 
material signals. The potential signals together with those of strain gage indicate initiation 
events in the cladding at 3 or 8 mm, and in the ferritic base material at 15 mm bending 
displacement. 

Two-Dimensional and Three-Dimensional Simulations of the Component Test 

A schematic view of the specimen and test setup has already been given in Fig. 12. The 
stress-strain curves and the Gurson parameters of the materials in different zones determined 
earlier were used for the corresponding elements in the finite element models for the component. 
Before the test, a two-dimensional calculation was made in order to check different model 
variants and to give indications for the test results to be expected. In the two-dimensional 
calculation, the actual semielliptic crack had to be treated as one with two straight crack fronts 
(embedded crack) through the thickness of the component. Based on previous experience [8], 
a combined plane-strain/plane-stress model was established to compute both the local and the 
global behaviors correctly. A small region around the crack was modeled in plane strain, the 
other part in plane stress. The force versus displacement curve predicted by this two-dimen- 
sional model has been given in Fig. 13. The calculated damage developments at both crack 
tips were shown in Fig. 16. The dark areas imposed on the deformed mesh represent the damage 
zones where the final value of void volume fraction, fs, is reached. Since the stresses in the 
damage zone are nearly zero, the length of the damage zone can be defined as the numerical 
ductile crack extension. According to the two-dimensional model, the crack first initiates at the 
side of the austenitic cladding and propagates about 1 mm into the cladding before the crack 
initiation takes place at the side of ferritic base material. 

The post-test simulation was done with a combined three-dimensional/two-dimensional 
model with 1189 three-dimensional elements, 331 two-dimensional elements, and a total of 
6690 nodal points as shown in Fig. 12 where the distribution of the effective stress is imposed 
on the mesh. The mesh refinement in propagation direction around the crack corresponded to 
the two-dimensional meshes of the pre-test calculations. Due to limited computer capacities, 
the refined zone around the crack front extended only 1 mm, thus allowing damage and crack 
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FIG. 13--Measured and calculated force versus bending displacement curves for the 
component. 

FIG. 14~Fracture surface of  the component. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



SUN AND SCHMITT ON CRACK ASSESSMENT USING GURSON MODEL 213 

ii 
"~ -1- 

o 

--2- 

- - 5  . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  

0 5 10 15 20 25 50 
Bending displacement [ram] 

FIG. 15--Electric potential in austenite and ferritic measured during the component test. 
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propagation of only 1 ram. This is the reason why the analysis had to stop at 17-mm bending 
displacement when in the cladding the crack had extended by 1 mm. The calculated force 
versus bending displacement curves of the three-dimensional post-test calculations are included 
in Fig. 13 as well. The three-dimensional curve shows a very good agreement with the measured 
curve while the two-dimensional simulation increasingly underestimates the measured force. 

The crack extensions evaluated at the center plane of the specimen, that is, at the deepest 
point of the semielliptical crack in the three-dimensional model, are shown in Fig. 17 for the 
base material and the cladding. The calculations predict crack propagation to begin in the 
cladding and in the base material at about 3-mm bending displacement. While the crack prop- 
agates steadily through the cladding, the crack extension in the base material remains constant 
at a very small level of about 0.1 mm and accelerates only at a displacement of about 14 mm. 
These results are in agreement with the experimental findings with indications for initiation 
and propagation events at 3 and 15 mm also. It should be noted here that at a bending dis- 
placement of 3 mm the specimen is already in general yield conditions. 

FIG. 16---Deformed finite element mesh and calculated damage zones at two crack tips. 
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FIG. 17--Calculated crack extension in austenite and ferrite for the component. 

Conclusions 

A correct prediction of the behavior of a crack in the transition region between austenitic 
cladding and ferritic base material, taking into account gradients in the material properties, is 
possible by the application of micromechanical material models, like the Gurson model. The 
situation investigated here is typical for situations to be assessed in safety analyses. Three- 
dimensional cell calculations were used to verify the Gurson parameters. It turned out that the 
dependence of void growth and the corresponding deformation response in a porous material 
on stress triaxiality could be described by the Gurson model using one set of parameters, even 
for a large amount of porosity. 

For the numerical analyses, the determination of the local material properties including 
toughness behavior was essential, considering the large gradients in the boundary layer. This 
was achieved through testing and analysis of small tensile specimens, with a diameter of only 
2 mm, yielding micromechanical material parameters that are dependent on the distance from 
the fusion line. The transferability of these Gurson parameters into fracture toughness was 
confirmed by testing and evaluating SENB (10 • 10)-type specimens. Pre- and post-test sim- 
ulations of the cladded specimen showed a very good agreement with the experiment. Ductile 
crack initiation and extensions could be observed only above general yield. Although with 
increasing load (above general yield), the crack penetrated the cladding layer, crack extension 
in the ferritic base material was only marginal. 
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ABSTRACT: Since the notion of damage was introduced by Kachanov and Rabatnov in the 
late 1950s and early 1960s, the paradigm to better capture the physics of the internal state of a 
material has been realized in developing macroscale constitutive relationships for monolithic and 
composite materials. For ductile metals, damage occurs mainly in the form of void nucleation, 
growth, and coalescence. Localization and failure occur at two different stages in the deformation 
history and are very much functions of the void (porosity) evolution, which can be interpreted 
as the damage evolution, and the stress state history. The damage evolution of a polycrystalline 
metal is fully coupled to the stress history. In this study, different initial material properties are 
varied in four different boundary value problems to reflect the stress state and deformation history 
effects. Special attention is paid to three internal state variable evolution equations; one represents 
scalar damage, and the other two represent isotropic (scalar) hardening and kinematic (tensorial) 
hardening. Internal state evolution equations that capture history effects are necessary when 
trying to solve complex boundary value problems. This constitutive framework is embedded into 
a finite element formulation to solve such boundary value problems. Mesoscale analyses of A356- 
T6 aluminum under different stress states and initial material states are used to give insight into 
the void nucleation, growth, and coalescence issues that arise when formulating an internal state 
porosity evolution rule within a macroscale framework. This work was based on previous studies 
related to the four boundary value problems. Numerical calculations were performed to compare 
to 6061-T6 aluminum notch tension tests with different notched radii. The various notch radii 
induce different levels of stress triaxiality and allow for correlation of different void growth rules. 
Numerical calculations of forming limit diagrams for 606 I-T6 aluminum compared favorably to 
experimental results. Finally, penetration analyses were performed with 606 l-T6 aluminum disks 
as targets. 

KEYWORDS: continuum damage mechanics, internal state variable, localization, failure, finite 
element method, boundary value problem, cracking, fatigue (materials), fracture (materials) 

The mechanical properties of an engineering material depend upon the amount and type of 
microdefects within its structure. Deformation changes these microstructural features. When 
deterioration develops, damage is said to have occurred. The terminology of continuum 
damage mechanics (CDM) emerged when Kachanov [1] first introduced a damage variable 
to describe the microdefect density locally in a creeping material. The notion was that dam- 
age could be measured by the volume fraction of voids under creep conditions. Rabatnov [2] 
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furthered this notion with evolution of void density. CDM was developed for fatigue [3,4], 
creep ]5-7], creep-fatigue interactions [8,9], and ductile plastic damage [10-13]. CDM has 
been applied recently to britde materials [14,15] such as concrete [16,17] and geomaterials 
[18,19]. In this study, we employ CDM concepts in the context of void-induced damage in 
ductile metals. 

In ductile metals, most of the damage arises from nucleation, growth, and coalescence of 
voids. Nucleation can occur from either fracture of second-phase particles of decohesion of 
particles from the matrix material. It can also occur at triple points in a material via grain 
boundary diffusion [20,21]. The voids can grow as the stress triaxiality increases around the 
newly formed void; void growth can also result from grain boundary diffusion, surface diffu- 
sion, slip-dominated large deformation, or a combination of these mechanisms. Many research- 
ers have investigated different aspects of void growth and these are reviewed in Refs 20-22, 
from which porosity evolution rules have been used and couched in the context of internal state 
variable theory. 

Because porosity evolution is represented by an internal state variable evolution equation, it 
must be consistent with an appropriate thermodynamical framework [23,25]. Two classes of 
thermodynamically based constitutive equations have been posed that would include history 
effects of the microstructure within a material. The first is denoted by the concept of hereditary 
integrals: that the present state of the material depends on the present values and past history 
of observable variables. The second is based on the concept that the present state of the material 
depends only on the present values of observable variables and a set of internal state variables 
(ISVs) [26]. We employ the second approach in this paper. For the sake of conciseness, suffice 
it to say that porosity evolution must be taken into account by the free energy function or as a 
dissipative force that can be defined by a pseudo-potential of dissipation. 

From the viewpoint of rational thermodynamics [26], the ISVs provide the additional infor- 
mation necessary for a rational description of the thermodynamic state of the material. From 
the viewpoint of thermodynamics of irreversible processes [27], the ISVs provide the infor- 
mation required to describe neighboring constrained equilibrium states. Davidson et al. [28] 
and more recently Fremond and Nedjar [29] described the details of the irreversible state caused 
by damage from porosity evolution. 

This paper contains a summary of various features that are often included in CDM and ISV 
frameworks [30-34]. The ISV hardening equations and void growth rule are described. Four 
boundary value problems with different initial conditions are discussed. These problems use 
the local form of the Cocks-Ashby [22] void growth rule while neglecting void nucleation. One 
example includes an idealized mesoscale analysis of two pre-existing voids and a particle that 
nucleates a void by fracture or decohesion depending on the stress state. Another example 
includes analysis of different notch radii experiments. A third example involves analysis of the 
localization and failure involved with the forming limit diagrams (FLDs). A final example is 
presented in which a penetrator strikes an aluminum disk. Different initial material properties 
were examined in the context of porosity evolution. The initial porosity levels and the initial 
hardening variables were changed to simulate prestrain effects. 

Hardening Internal State Variables 

The deviatoric inelastic flow rule is that of Bammann [32,33,35], 

~_~ [ ~ - { R +  V(T)){l-4,~ow~}] e ' - z / 3 a  ' 
= s ( r )  s inh  v ( r ) { 1  II e-' - II (i) 
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where 

J~ = second invariant of deviatoric overstress, 
O" = deviatoric part of the Cauchy stress, 
~ '  = deviatoric part of the kinematic hardening internal state variable, 
R = isotropic hardening internal state variable, and 

f(T), V(T), and Y(T) = temperature dependent functions related to yielding [33,35]. 

Each of the two hardening internal state evolution equations represent effects of populations 
of dislocations in a hardening-recovery format. The kinematic hardening captures some of the 
directional hardening effects during inelastic deformation by shifting the yield surface center. 
The kinematic hardening evolution is given by 

= h(T)Z  - II II + r,(T  II a II (2) 

The evolution of the isotropic hardening variable, R, reflecting the effect of the gross dislocation 
density on hardening, is given by 

/~ =H(T)  H / ~ ] I -  [v~Ra(T)II~II +Rs(T)]R 2 (3) 

where 

h(T) and H(T) = direct hardening moduli, 
r,(T) and Rs(T) = scalar functions describing the diffusion-controlled static or thermal re- 

covery, and 
rd(T) and Ra(T) = functions describing dynamic recovery. 

Void (Porosity) Relationships 

Void growth rules have been studied by many researchers, but few have been used in solving 
boundary value problems with finite clement codes. With finite element models, an initial 
porosity level is assumed in order to initialize the void growth rule. The Cocks-Ashby void 
growth rule has been used successfully in macroscale boundary value problems [35-38]. This 
void growth rule was based on experimental creep data in which void growth was controlled 
by boundary diffusion and power law creep. At low stresses, voids are generally confined to 
grain boundaries in wrought materials or in dendritic arms in cast metals, where the boundary 
controls the growth mechanism. As voids become larger, the growth mechanism changes to 
power law creep. This rule is employed in our finite deformation plasticity problems because 
the mechanism for void growth is the same. The Cocks-Ashby rule is given by 

L3(2n + 1)x/~2J [ ( l  - (])growth) n 
(4) 

where n is determined by notch tensile experiments, and 11 is the first invariant of stress. We 
note that other functions for the void growth rule can be implemented into this framework but 
have not been exercised, for example, Cocks [39]. 
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Numerical Calculations 

Four problems are discussed in this section that illustrate the applicability of the CDM method 
at several length scales. Mesoscale analyses under different stress states were performed to 
give insight into the void nucleation, growth, and coalescence issues that arise when developing 
internal state porosity evolution functions within a macroscale framework. Numerical calcu- 
lations were performed to compare to 6061-T6 aluminum notch tension tests with different 
notched radii. Numerically calculated FLDs of 606 l-T6 were validated experimentally. Finally, 
macroscale analyses are compared to test in which high-speed steel rods penetrated aluminum 
disks. 

Mesoscale Analysis 

Initially lsotropic Material 

The following analyses are at the mesoscale where an idealized single second-phase elastic 
material with a failure criterion is embedded in a pure ductile matrix material. Included in the 
quarter-plane analysis are two holes within the matrix material representing idealized voids. 
Continuum principles are used and no intrinsic length scale parameter is employed. Our goal 
in these idealized mesoscale studies is to give insight into the interaction of the nucleation, 
growth, and coalescence of voids to help motivate macroscale functions. Various researchers 
have performed mesomechanical calculations on a representative volume element (RVE) to 
understand various features of the damage. To date, many of these mesoscale calculations did 
not directly incorporate multiple voids within an RVE with potential nucleation from a second- 
phase material. Our analysis represents a material such as A356-T6 cast aluminum in which 
the second-phase material content (mainly silicon) is 7% by volume. The silicon, which is 
stiffer and harder than the aluminum matrix, if a void nucleation site. The discontinuity gives 
rise to local stress concentrations leading to decoherance with the aluminum or fracture. The 
failure mechanism can also be influenced by porosity that develops from hydrogen shrinkage 
during the casting process. For A356 cast aluminum, this porosity level can reach a maximum 
of 1% void volume fraction. The schematic in Fig. 1 was used as an idealized case to represent 
the volume fraction of silicon and initial porosity in a mesomechanical context to understand 
the nucleation and growth of voids. In Fig. 1, L is the length of the side of the RVE with a 
value of unity so the geometry can be characterized in a normalized unitless state. Rs is the 
radius of the silicon particle with a value of 0.1781 to make 7% of the area fraction, I is the 
distance between the two holes with a value of 0.07978, and Dh is the diameter of each hole 
with a value of 0.07978. For future studies, these parameters will be varied to determine their 
interactions and effects on macroscale RVE quantities. Several calculations were performed to 
understand the response under different stress states and initial material conditions. For the first 
set of calculations, the material's initial state was assumed to be isotropic. In wrought and cast 
conditions, some materials can exhibit different length scales of porosity from hydrogen shrink- 
ing. As a consequence, an initial small-scale "micrnporosity" level was introduced (4~o = 
10 -5 ) with an even distribution in the aluminum matrix. 

In ductile metals, a smooth and continuously varying deformation pattern can give rise to a 
highly localized deformation pattern that forms into a so-called shear band. Localization into 
shear bands can be associated with three phenomena. The first is from local thermal softening. 
A thermomechanical instability arises locally in a narrow band of material that causes higher 
strain rates than in the adjacent region. This leads to softening in the narrow band. Also affecting 
localization is geometric softening that relates to the other two phenomena. Geometric softening 
is associated with evolving texture and dislocation substructures. Within a narrow band, one 
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FIG. 1--Schematic of  RVE with two holes and a silicon particle in a plate analysis with symmetric 

boundaries existing along the x and y axes. 

slip system would be more favorably oriented for crystallographic texture than those of the 
adjacent material, causing localization. The final form of localization comes from dislocation 
substructures that form in localized regions from evolving microbands at finite strains. 

Most of the constitutive developments related to these kinds of calculations have been as- 
sociated with rate-independent inelastic behavior. For rate-dependent inelasticity, the equilib- 
rium equations never lose ellipticity, so localization develops from global instabilities in the 
solution rather than by bifurcations. Clearly, the rate- and temperature-dependent model pre- 
sented in this paper experiences the global instabilities that induce the localization. 

The volume-averaged peak stress from the elements near the traction boundary was used to 
approximate the localization strain. These boundary elements all gave uniform stress-strain 
curves, but elements near the localized region gave an increase in hardening rate. We appreciate 
that localization can indeed occur before this strain, but our approximation is close to first 
order. 

When loaded in uniaxial tension and biaxial tension, similar RVE responses arose. When 
the RVE was loaded in the y-direction, the normal component of strain in the y-direction 
incurred intense strain gradients at the boundary edges of the RVE at x = 0 and y = 0.5. When 
the RVE was loaded in the y-direction, the intense strain gradients were also observed at x = 
0.5 and y = 0 for the normal component of strain in the x-direction. Figure 2 shows the effective 
plastic strain, porosity level, hydrostatic tensile pressure, and von Mises stress contours at 
localization within the RVE. Localization occurred in these banded regions as demonstrated in 
Fig. 2b that shows the porosity levels under biaxial loading conditions. It is interesting that 
localization did not occur near the two larger holes. Although the stresses were higher between 
the holes and at the particle-matrix interface as shown by the von Mises stress contour in Fig. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



-l
- 

0 m
 

m
 

-<
 

m
 

z u "n
 

m
 

rn
 

0 z i'-
 

0 0 r"
 

..-
I 

z z "n
 

r 
=

 

c N
I m
 

F
IG

. 
2

--
F

o
r 

th
e 

ca
se

 w
it

h
 a

n 
in

it
ia

l 
p

o
ro

si
ty

 
le

ve
l 

d
is

tr
ib

u
te

d
 e

ve
n

ly
 w

it
h

in
 t

he
 a

lu
m

in
u

m
 

m
a

tr
ix

 u
n

d
er

 b
ia

xi
a

l 
lo

ad
in

g 
co

nd
it

io
ns

 a
t 

lo
ca

li
za

ti
on

: 
(a

) 
ef

fe
ct

iv
e 

p
la

st
ic

 s
tr

a
in

 (
S

D
V

I2
),

 
(b

) 
p

o
ro

si
ty

 l
ev

el
 (

S
D

V
IO

),
 (

c)
 h

yd
ro

st
a

ti
c 

p
re

ss
u

re
, 

a
n

d
 (

d)
 

vo
n 

M
is

es
 s

tr
es

s.
 

po
 

C
op

yr
ig

ht
 b

y 
A

ST
M

 I
nt

'l 
(a

ll 
ri

gh
ts

 r
es

er
ve

d)
; W

ed
 D

ec
 2

3 
19

:4
1:

42
 E

ST
 2

01
5

D
ow

nl
oa

de
d/

pr
in

te
d 

by
U

ni
ve

rs
ity

 o
f 

W
as

hi
ng

to
n 

(U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n)
 p

ur
su

an
t t

o 
L

ic
en

se
 A

gr
ee

m
en

t. 
N

o 
fu

rt
he

r 
re

pr
od

uc
tio

ns
 a

ut
ho

ri
ze

d.



222 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

2d, the localization did not occur in those regions. The porosity rate is highest in these banded 
regions because the tensile pressure (I1) is very high compared to the von Mises (J2) stress. 
The porosity rate is a function of the stress triaxiality as Eq 4 illustrates, where the stress 
triaxiality is defined as the ratio of the tensile pressure over the von Mises stress. Although the 
tensile pressure and von Mises stresses are highest near the larger holes, the ratio of the two is 
smaller compared to their ratio at the edges. Figure 2 also demonstrates that although the stress 
triaxiality is highest at the plate edges, the highest levels of hardening and effective plastic 
strain are near the two larger holes and near the particle-matrix interface. 

These calculations assume a perfect interface between the silicon and aluminum interface. 
This assumption would allow for silicon fracture but no decohesion. Under these tensile loading 
conditions, the aluminum would tend to pull away from the silicon-inducing decohesion. As it 
turns out, the two holes were so close together that the influence on coalescence was not affected 
by decohesion nor fracture. 

When the initial microporosity distribution was neglected with the aluminum matrix (050 = 
0), the intense band of porosity was not observed at the boundaries. The triaxiality did not 
develop as quickly near the edges compared to the center of the RVE. As a result, localization 
occurred between the two larger holes in the middle of the RVE as the holes grew and coalesced. 
The distance between the two larger holes was too close for void nucleation to occur from the 
silicon particle either fracturing or decohering from the aluminum. Figure 3 shows contours of 
the tensile pressure, von Mises stress, and effective plastic strain at the localization when no 
initial microporosity level was assumed within the aluminum matrix. When the loaded elements 
are volume averaged to determine the localization and coalescence strains, they are much lower 
than for the case when an initial porosity level was introduced (050 = 10-5). For the case of no 
initial microporosity (050 = 0), the peak stress occurred at around 1.4% strain, but when 050 = 
10 -5, the peak stress occurred at a strain of about 0.56%. When comparing the pressure in 
Figs. 2 and 3, one can see that the distribution is much different, yet localization occurs in both 
RVEs. These two softening mechanisms arise from the two different sources of porosity: those 
represented by the internal state variable and those from the two larger holes. 

As a modification to this analysis, the direction of loading in the uniaxial calculation was 
changed to the x-direction in-line with the axis common to both holes. In the previous uniaxial 
calculation, the loading direction was perpendicular to the two holes. Figure 4 shows that the 
orientation of the holes in relation to the loading direction affects the hardening rate and lo- 
calization within the RVE. Often, void volume fractions are treated as scalar quantities with 
no orientation distribution effects. These calculations expose this assumption as false when 
considering macroscale formulations. The hardening rate of the volume-averaged elements at 
the boundary was higher for the x-direction loading than for the y-direction loading for the 
same RVE strain levels for the case of no initial microporosity. The peak stress occurred earlier 
in time as did the maximum strain level for the x-direction case (strain = 1.0% for the 
x-direction and strain = 1.4% for the y-direction). The isotropic hardening rate was higher for 
this case than the perpendicular loading case. 

When the equal-biaxial loading case was considered, the spatial orientations and gradients 
of the stresses, strains, and hardening parameters were quantitatively different than for the 
uniaxial case, although the qualitative trends were similar. The two holes grew together and 
the silicon particle really did not play a role in coalescence of the two larger holes. The ori- 
entation of the two holes changed the stress-strain response. The stress-time curve softened at 
0.04 s for the elements loaded in the y-direction, where the elements loaded in the x-direction 
softened at 0.06 s. 

When comparing the biaxial loading case with the two uniaxial cases, void coalescence 
occurred sooner and the two larger holes grew further inducing less material in the ligament 
between the two holes. Furthermore, the x-direction load at 0.075 s incurred less ligament 
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FIG. 4--Stress-strain curve of RVE loaded in different directions under uniaxial conditions. 

material than the y-direction loaded case. These results show an important phenomena that has 
often been neglected: spatial orientation and distribution of holes under different stress states 
play a key role in determining volume-averaged response of the RVE. 

When considering shear loads, the global stress triaxiality is zero, but a material like cast 
A356-T6 aluminum can fail in shear due to the second-phase particles interacting with the 
aluminum matrix inducing a local nonzero triaxial stress state. Figure 5 shows the volume- 
averaged stress-strain curve illustrating the localization experienced by the RVE under shear. 
This occurred whether ~bo = 0 or ~bo = 10 -5. The material simulated a fracture under this 
shearing mode causing localization of the RVE near the silicon-aluminum interface. 

Initially Anisotropic Material 

Mesoscale calculations were performed using the RVE method described earlier with dif- 
ferent anisotropic initial states to give understanding about the anisotropic influence on local- 
ization and failure. Although cast A356 is typically isotropic in nature, some post-casting 
processes, such as forging, have been performed to eliminate microporosity but introduce an- 
isotropy into the material. Furthermore, wrought materials are often extruded or rolled inducing 

5 

4 

3 

2 

1 ' l l ' l  ~ ' ' l l l r l l l  ' ~ I ' J I l ~  I I I  

0 0.005 0 . 0 1  0 .015  0 . 0 2  0 .025  0.03 
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FIG. 5--Stress-strain curve of RVE loaded under shear loads. 
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HORSTEMEYER AND REVELLI ON LOCALIZATION AND FAILURE 225 

anisotropy that is often ignored in a structural analysis calculation. In these calculations, the 
ah.,.minum matrix is assumed to have no initial porosity. 

For uniaxial loads in the y-direction, two different cases exist where the rolling direction can 
be parallel to the loading axis and perpendicular to the loading axis. For the former case, at a 
50% prestrain, the component values for the kinematic and isotropic hardening variables were 
ax~ = -23.2  MPa ( -3360  psi), Olyy • -23.2  MPa (3360 psi), and R = 41.0 MPa (5950 psi). 
These values were determined from Eqs 3 and 4, in which the components for the kinematic 
and isotropic hardening can be approximated when assuming that static recovery is negligible 
by 

or= = h ~ r a  t a n h [ ~ e x ~ ] ,  ayy = ~ tanh[V~raeyy] (5) 

and 

R = ~ t a n h [ ~ a a ]  (6) 

The 50% strain values were inserted into the initial state of the material for the mesoscale 
calculations to simulate a prestrain. For the mesoscale calculation, the peak stress occurred at 

FIG. 6--Four configurations showing different plane strain (two-dimensional) initial anisotropy 
cases. 
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FIG. 7--Stress-strain curves of loaded elements for the four different initial anisotropy cases. 

around 1.4% strain, which is the same as when no anisotropy was assumed. For the latter case, 
at a 50% prestrain with a ~  = 23.2 MPa (3360 psi), O[yy = -23 .2  MPa ( -3360  psi), and R = 
41.0 MPa, (5950 psi), the peak stress occurred at 1.2% strain. This difference shows that some 
sensitivity exists in the constitutive model as related to orientation effects on localization. 

For uniaxial loads in the x-direction, Ctxx = 23.2 MPa (3360 psi), Olyy = -23 .2  MPa ( -3360  
psi), and R = 41.0 MPa (5950 psi) represent 50% strain under plane strain rolling. For this 
case, the peak stress occurred at around 0.6% strain. Recall that when an isotropic initial state 
was assumed, the drop in localization strain level when loading from the y-direction to the 
x-direction was 1.4 to 1.0%. However, with this type of plastic anisotropy, the reduction de- 
creases from 1.4 to 0.6%. For the anisotropic case with ax~ = -23 .2  MPa ( -3360  psi), ayy = 
23.2 MPa (3360), and R = 41.0 MPa (5950 psi), the strain at localization was at 1.4% when 
loaded in the x-direction. These four different geometries and loading conditions are shown in 
the schematic in Fig. 6. Case 3 was the only case were initial anisotropy was influential. This 
result indicates the importance of knowing the initial state of the material before trying to 
predict results via numerical calculations. Although no significant difference was exhibited in 
the localization strain for these four cases, the stress-strain curves were somewhat different as 
demonstrated by Fig. 7. Cases 1 and 4 yield the same localization strain (1.4%) and they exhibit 
different stress levels because of the initial conditions. Because Cases 2 and 3 have localization 
strains (1.2 and 0.7%, respectively) less than Cases 1 and 4, the initial anisotropy in the hard- 

TABLE 1--Effects of  anisotropy on localization. 

Case Load Axis Anisotropy Axis Localization Strain 

1 y x 1.4% 
2 y y 1.25% 
3 x x 0.75% 
4 x y 1.4% 

No prestrain y . . .  1.4% 
No prestrain x . . .  1.0% 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 19:41:42 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



HORSTEMEYER AND REVELLI ON LOCALIZATION AND FAILURE 227 

ID I I 
rffi-.039 in r=.078 in r=-.156 in r=-.390 in 

FIG. 8--Schematic of four notch radii tested and used to correlate with damage model: 0.099 cm 
(0.039 in.), 0.198 cm (0.078 in.), 0.396 cm (0.0156 in.) and 0.99 cm (0.390 in.). 

ening parameters seems to play a more dominant role than the orientation of the holes (distri- 
bution effect). Table 1 summarizes the results. 

Notch Tension Tests 

Initially Isotropic Material 

The results in this section build upon the work of Bammann et al. [40]. The damage parameter 
for the void growth rules in Eq 4 are determined from axisymmetric notched tensile specimens 
(Fig. 8). The notch specimens are useful because the radius of curvature of the notch strongly 
influences the evolution of damage, due to the significant tensile pressure that develops in the 
specimen as seen in Fig. 9. The damage parameter for void growth is determined from one of 
the notched tests, and the remaining tests are then used to verify the model. The progressive 
failure of a notched specimen grows from the center outward. At the beginning of the defor- 
mation, the stress triaxiality is highest at the edge of the notch but not enough to induce failure. 
As deformation proceeds, the peak stress triaxiality moves toward the center of the specimen 
where the tensile pressure is highest. The element on the axial line of symmetry failed first. 

With a 0.635-cm (0.25-in.) diameter, the predicted effective plastic strain at failure ranged 
from 4.6%, for a notch radius of 0.0998 cm (0.0393 in.), to 32%, for a notch radius of 0.988 
cm (0.389 in.). Table 2, taken from Bammann et al. [40], compares the predicted strain to 
failure with the test data. This "global"  strain is the elongation over a 2.54 cm (1-in.) gage 
length at first observed material failure. The calculation values were volume-averaged over this 
distance. The model accurately predicts the strain to failure over the entire range of radii tested. 

Calculations were also performed to analyze the initial material porosity levels. Figure 10 
shows that as the initial porosity levels increase, the effective strain levels at failure increase 
linearly up to a certain porosity level (1.0%). The initial porosity below 0.1% affects the failure 
strain in a highly nonlinear fashion. Furthermore, at higher stress triaxialities (smaller notch 
radii), the initial porosity levels above 0.1% do not affect the failure strain significantly. At 
lower stress triaxialities (higher notch radii), the failure strains are much higher than the higher 
triaxiality cases. This sensitivity of the model to initial porosity levels needs further validation 
with experimental results but these results seem to fit our intuition. 
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228 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

FIG. 9--Contours of tensile pressure illustrating the highest value at the center of the specimen 
inducing void growth: (a) hydrostatic pressure, (b) von Mises stress, (c) porosity (SDVIO), and (d) 
effective plastic strain (SDV12). 

Initially Anisotropic Material 

Notch specimens are produced from stock that has experienced a variety of processing meth- 
ods depending on the material. Notch aluminum specimens typically come from hot extruded 
billets and so anisotropies may exist. Notch steel tensile specimens typically come from hot- 
rolled plates and may incur different anisotropies. Although in both cases isotropy may occur 
at the center of  the specimen, anisotropy may develop towards the edges and could play a role 
in determining the mechanical responses. 

In the previous notch tensile calculations, the material was assumed to be initially isotropic. 
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TABLE 2--Strain to failure: test versus prediction [40]. 

Radius, cm (in.) Number of Tests Test Average Calculation 

0.988 (0.389) 3 0.043 0.044 
0.399 ((3.157) 5 0.021 0.023 
0.200 (0.0787) 5 0.014 0.015 
0.0998 (0.0393) 5 0.011 0.013 

In order to gain insight into the effect of initial anisotropy on the notch tensile tests, calculations 
were performed that considered extrusion to understand the failure strain effects from initial 
anisotropy. Mackenzie et at. [411 showed from experimental data f~3r several steels that under 
rolling conditions notch tension tests are sensitive to the direction of the loading. The kinematic 
hardening model used in this paper can capture the Bauschinger effect to first order but, does 
not include effects of orientation from texture. The saturation of the kinematic hardening was 
assumed to occur at about 6% strain. Hence, for processes, such as rolling, extrusion, and 
channel die compression, when the material experiences 6% strain or more, the maximum level 
for deformation-induced anistropy was reached for this material model. There is no mechanism 
currently to address evolving texture or dislocation substructure evolution for those levels above 
6% strain. 

A 50% prestrain was simulated by introducing ~x~ = 23.2 MPa (3360 psi), %y = -23.2  
MPa ( -3360 psi), and R = 41.0 MPa (5950 psi) as an initial material state. The effective 
plastic strain at failure was 19.9% compared to the initially isotropic case of 18.1% for a notch 
radius of 0.099 cm (0.039 in). Also for this anisotropic case, the tensile pressure increased to 
489 MPa (70.9 ksi) from 428 MPa (62.0 ksi) at failure. For both cases, the failure occurred at 

6 . . . . . . . . .  

54 1 AI 6061T6 Analysis 

Notch Radii on 
~ test specimens 

3 R = . t 5 6  ~ 

R=.39" 

N 
' !  I �9 ' '  t i t �9 

0.000 0,002 0.004 0,006 0.008 0.010 0.012 
Initial Porosity 

FIG. tO---Failure strain versus initial porosity levels for different notch radii for 6061-T6 
aluminum. 
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230 APPLICATIONS OF CONTINUUM DAMAGE MECHANICS 

the center of the specimen, but maximum values for the von Mises stress, the highest values 
for the components of ~, and maximum value for R was near the notch edge. When the direction 
of the extrusion axis and transverse axis were reversed in the notch specimen, the effective 
plastic strain to failure was 16.1% with the tensile pressure at 490 MPa (71.1 ksi). This trend 
was also observed by MacKenzie et al. [41]. Clearly, the directionality of the prestrain plays a 
role of damage evolution and void growth in ductile metals. These deformation-induced aniso- 
tropic features are many times not included in equations of state or isotropic material models. 
Furthermore, these investigations, as do many others, clearly point out that picking an effective 
plastic strain to failure is not the appropriate failure metric. 

Forming Limit Diagrams (FLDs) 

Initially Isotropic Material 

The forming limits of sheet metal were first described by Keeler [42] in strain space by a 
forming limit diagram (FLD). Figure 11 shows a typical FLD that describes the localization 
(referred to as limit) and failure strains in two-dimensional strain space. Three-dimensional 
finite element analyses were performed to simulate the different stress states for biaxial tension, 
unbalanced biaxial tension (sometimes called stretch forming), plane strain, uniaxial, and shear 
(deep drawing). The details of the finite element analyses are explained in Horstemeyer et al. 
[38]. 

The material instability that was used in these calculations included two types. The first type 
was a geometric instability that is often used in numerical calculations that can occur due to 
machining and tolerance effects. A second type is that of porosity mismatch in adjacent material. 
Horstemeyer et al. [38] showed that these types of instabilities produce similar results. 
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FIG. 11--Schematic of forming limit diagram with limit (localization) and failure strain curves. 
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TABLE 3--Biaxial stretching results with different initial porosity levels. 

Case Porosity Mismatch % Localization Strain % Failure Strain 

1 0.1 times 5.2 10.6 
2 0.5 times 5.2 10.6 
3 1.0 times 4.8 9.3 
4 10 times 3.4 7.0 
5 100 times 2.6 3.9 
6 1000 times 0.001 1.2 

In this study, we chose different levels of porosity mismatches to show the different responses 
under biaxial stretching loading conditions. Table 3 summarizes the numerical results showing 
that as the porosity mismatch increased, the localization and failure strains decreased. The 
porosity mismatch is defined by the volume fraction of voids in one finite element compared 
to an adjacent element. The element near the center of the mesh was the one that was initialized 
differently while the rest of the mesh included a uniform distribution. Because of the equal- 
biaxial loading condition, the localization and failure strains in the x-direction are the same as 
that in the y-direction; hence, Table 3 only shows the localization and failure strain level that 
~epresents the x-direction and y-direction components. This trend corresponds directly to the 
different initial levels that were chosen in the notched tension test calculations. 

Initially Anisotropic-Forming Limit Diagrams 

The early investigation of Matsuoka and Sudo [43] revealed the various history effects for 
two-stage, nonproportional deformation. Combinations of simple deformation modes gave rise 
to a constant strain ratio (Ae JAe2). They discovered that higher limit strains result if the strain 
increment ratio is greater in the second stage loading than in the first stage. Conversely, lower 
limit strains result if the strain increment ratio is lower in the second stage loading than in the 
first stage. In other words, premature instabilities are observed for strain paths consisting of 
prior biaxial prestrain followed by plane strain loading. And prior plane strain preloading 
followed by biaxial loading increases the limit strains. Figure 12 demonstrates that our calcu- 
lations followed these history effects. The evolutionary internal state variables picked up the 
directional hardening effects thus accurately describing the load history changes to produce the 
proper trends of the FLD. 

Penetration Analysis 

Initially lsotropic Material 

A series of experiments was performed in which a gas gun shot a hardened steel rod into 
606 l-T6 aluminum disks at a range of velocities [40]. The disks were suspended in a manner 
so as to simulate a free boundary condition at the edges. In the experiments, impact velocities 
were measured with post-mortum inspection of each disk. Table 4 gives the pertinent geometric 
data for these tests, and Fig. 13 illustrates the finite element model and samples of iterative 
numerical analyses that were used to compare against the experimental results for two different 
velocity impact levels, with baseline material constants. 

The failure velocity was defined as that which caused the first crack on the backside of the 
target disk (Fig. 13b, c, and d), but the perforation velocity was that needed to develop a crack 
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TABLE 4---Specimen dimensions. 

Feature Dimension, cm (in.) 

Disk radius 5.715 (2.25) 
Disk thickness 0.3175 (0.125) 
Impact rod diameter 1.27 (0.500) 
Impact rod length 12.827 (5.05) 

totally through the thickness of the disk (such as in Fig. 13e, f, and g), typically punching out 
or perforating a hole in the center of the disk. In addition to the finite element mesh, Fig. 13 
illustrates the initiation of failure and full perforation. Numerical simulations compared well 
with test results, predicting the failure initiation velocity and perforation velocity to within 10% 
of the experimental results. 

To investigate the porosity effect, the initial porosity level of 10 4 was increased to 5.0 • 
10 -4. Increasing the initial material porosity by a factor of five for an initial penetrator velocity 
80.3 m/s (3160 in.Is), for which the baseline material produced only initiation of failure, resulted 
in weakening the material severely enough so that complete perforation was produced. The 
magnitude of the deformation and extent of failure in this case illustrates the highly nonlinear 
behavior of damage evolution, and thus initial porosity levels play a significant role in this type 
of boundary value problem. 

To investigate the effect of variable porosity over the structure, a second analysis with an 
initial random distribution (___ 10%) of porosity was also conducted, but showed no significant 
difference from the baseline case. This implies that the void volume fraction, not the void 
distribution, is the driving factor for damage in this boundary value problem. 

Initially Anisotropic Material 

The 50% prestrain values for the kinematic and isotropic hardening variables, that is, ax~ = 
-23.2  MPa ( -3360  psi), ayy = 23.2 MPa (3360 psi), and R = 41.0 MPa (5950 psi), were 
placed as initial values in the material model for the penetration problem. In the case of the 
lower impact velocity, this degradation in material caused greater tearing--approximately 
through 50% of the disk thickness compared to only 10% in the baseline case, v = 80.3 rn/s 
(3160 in./s). Interestingly, the greater propensity toward compression in the top portion of the 
disk induced a resistance such that tearing was difficult in this region. This was also shown in 
the higher initial impact velocity as well as can be seen in Fig. 14. The baseline case for the 
higher impact velocity, v = 94.0 m/s (3700 in./s), had produced a tear approximately through 
80% of the disk. The anisotropic case at this impact velocity produced damage that was very 
similar. 

The direction of the extrusion axis and transverse axis were reversed by changing the initial 
hardening constants in the x- and y-directions. Both impact velocities produced smaller damage 
resulting from the higher strength introduced in the in-plane direction of the disk retarding the 
tensile opening of the crack. 

Consequently, these perturbations on the initial state of the material support the notion that 
anisotropy and directionality of the prestrain affect damage evolution. In comparing the mag- 
nitude of the effect, however, we note that the results are not necessarily intuitive because of 
the nonlinearities that arise. 
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FIG. 13--Comparison of numerical results for steel bar striking an aluminum disk at different 
velocities. The case on the left, the bar strikes at 80.3 rrds (3160 in./s), just initiating failure on the 
back side of  the disk before it rebounds (the dark area in d). On the right, the bar strikes at 94 m/s 
(3700 in./s) resulting in complete perforation of  the disk. The dark area in g represents void space 
between the disk and perforated disk center. 
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FIG. 14--Comparison of analytic results for steel bar striking an aluminum disk with different 
initial material properties. 

S u m m a r y  

In this numerical study, a number of initial material properties related to porosity and ki- 
nematic and isotropic h~dening were varied to reflect the stress state and deformation history 
effects in different boundary value problems. Mesoscale calculations showed that initial "mi-  
croporosity" changes the localization behavior dramatically from the case where no micro- 
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porosity is assumed with two larger voids. Anisotropy reflected in hardening equations shows 
small differences with the isotropic case. Macroscale notch tensile calculations showed some 
sensitivity to the initial porosity level and also to initial anisotropy of the hardening parameters. 
Forming limits also showed a sensitivity to prestrains and initial porosity differences. Also, 
high-speed penetration of aluminum disks showed sensitivities toward initial material proper- 
ties. Further work needs to be performed with regard to orientation effects from texture within 
the context of continuum damage mechanics as well as including nucleation into the macroscale 
damage evolution. 
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