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Foreword 

The Twenty-Second National Symposium on Fracture Mechanics was held on 26-28 June 
1990 in Atlanta, Georgia. ASTM Committee E24 on Fracture Testing was the sponsor. The 
Executive Organizing Committee responsible for the organization of the meeting was com- 
posed of H. A. Ernst, Georgia Institute of Technology, who served as the symposium 
chairman, and the following vice-chairman: S. D. Antolovich, Georgia Institute of Tech- 
nology; S. N. Atluri, Georgia Institute of Technology; J. S. Epstein, Idaho National En- 
gineering Laboratory; D. L. McDowell, Georgia Institute of Technology; J. C. Newman, 
Jr., N A S A  Langley Research Center; I. S. Raju, North Carolina State A&T University; 
and A. Saxena, Georgia Institute of Technology. The proceedings have been divided into 
two volumes. H. A. Ernst, A. Saxena, and D. L. McDowell served as editors of Volume 
I and S. N. Atluri, J. C. Newman, Jr., I. S. Raju, and J. S. Epstein served as editors of 
Volume II. 
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Introduction 

The ASTM National Symposium on Fracture Mechanics (NSFM) is sponsored by ASTM 
Committee E24 on Fracture Testing. The objective of these symposia is to promote technical 
interchange between researchers in the field of fractiare, not only within the United States 
but international, as evidence by participation in these proceedings. The meeting attracted 
about 165 researchers in the field of fracture with presentations covering a broad range of 
issues in materials, computational, theoretical, and experimental fracture. 

The National Symposium on Fracture Mechanics is often the occasion at which ASTM 
awards are presented to recognize the achievements of current researchers. At the Twenty- 
Second Symposium several awards were presented. The ASTM Committee E24 Fracture 
Mechanics Medal was presented to Mr. Edward T. Wessel, Consultant and formerly with 
the Westinghouse Research and Development Center, Pittsburgh, for his outstanding lead- 
ership in guiding the Subcommittee on Elastic-Plastic and Fully-Plastic Fracture and the 
development of various elastic-plastic fracture mechanics standards. The ASTM Commit tee  
E24 George R. Irwin Medal was presented to Dr. John H. Underwood, U.S. Army Ar- 
mament Research and Development Center, for his pioneering efforts in developing methods 
and standards in linear and nonlinear fracture mechanics. The ASTM Award of Merit and 
honorary title of Fellow were given to Dr. John P. Gudas, National Institute of Standards 
and Technology, for his distinguished service and leadership in Committee E24. Dr. Jun 
Ming Hu, University of Maryland, received the ASTM Committee E24 Best Student Paper 
award for his paper "Deformation Behavior During Plastic Fracture of C(T) Specimens." 
Dr. C. Michael Hudson, Chairman of Committee E24, made the presentations. 

In 1989, ASTM Committee E24 lost one of its exceptional members and colleague, 
Professor Jerry L. Swedlow. For many years until his death, Dr. Swedlow was responsible 
to Committee E24 for the organizational oversight of all National Symposia on Fracture 
Mechanics. He played a crucial role, along with several others, in assuring the very high 
quality and vigor that we have come to associate with these Symposia. In the fall of 1989, 
the Executive Subcommittee of E24 passed the resolution initiating "The Jerry L. Swedlow 
Memorial Lecture" to be given at each National Symposium. The First Annual Jerry L. 
Swedlow Lecture was presented by Professor M. L. Williams, University of Pittsburgh. Dr. 
Williams presented a most interesting lecture which provided a "technical biography" of 
Professor Swedlow as well as suggesting various topics for future research (see ASTM STP 
1131, Volume I). 

We take this opportunity to express our appreciation to the late Jerry L. Swedlow, 
Chairman of the National Symposium on Fracture Mechanics Executive Subcommittee, for 
his support and guidance in initiating this symposium. 

Executive Organizing Committee of the 
Twenty-Second National Symposium 
on Fracture Mechanics 

Copyright�9 1992 by ASTM International www.aslm.org 
Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



Elastic Fracture Mechanics and 
Applications 

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  W e d  D e c  2 3  1 8 : 5 5 : 2 3  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .



C. Wm.  Smith 1 

Experimental Determination of Fracture 
Parameters in Three-Dimensional Problems 

REFERENCE: Smith, C. W., "Experimental Determination of Fracture Parameters in Three- 
Dimensional Problems," Fracture Mechanics: Twenty-Second Symposium (Volume I1), ASTM 
STP 1131, S. N. Atluri, J. C. Newman, Jr., I. S. Raju, and J. S. Epstein, Eds., American 
Society for Testing and Materials, Philadelphia, 1992, pp. 5-18. 

ABSTRACT: Two established optical methods are described briefly with refinements to allow 
accurate near-tip measurements for three-dimensional cracked body problems. Several illus- 
trations of their use are presented and compared with numerical results. 

KEY WORDS: stress-intensity factors, three-dimensional photoelasticity, moir6 interfero- 
metry, dominant eigenvalues, fracture mechanics, fatigue (materials) 

Despite the early contributions of Sneddon [1] and Green [2], the field of analytical fracture 
mechanics was based largely on two-dimensional concepts until Irwin [3] recognized the 
technological importance of the surface flaw. Shortly thereafter, improvements in the speed 
and storage capacity of digital computers, together with the parallel development of nu- 
merical methods of analysis, opened the way to a study of three-dimensional fracture prob- 
lems [4-7]. Many numerical analyses were then carried out rapidly, out-pacing the rather 
expensive and cumbersome parallel experiments for three-dimensional cracked body prob- 
lems. In order to partially narrow this gap between analysis and experimental code validation, 
the author and his colleagues undertook an effort, beginning some two decades ago to 
develop relatively inexpensive optical modeling approaches to three-dimensional cracked 
body problems. 

Beginning with the frozen stress photoelastic method [8], it was first refined for near-tip 
measurements and then applied to Mode I problems [9]. Later, it was extended to include 
all three local modes of analysis [10]. However, as the problems became more complex, it 
was deemed desirable to use two independent experimental methods of analysis of the same 
model in order to verify the experimental results independently of the numerical models. 
For this purpose, a refined high-density moir6 method was developed for use in tandem 
with the frozen stress method [11]. 

In the present paper, after presenting a brief review of the methods themselves, the results 
from their application to several three-dimensional cracked body problems will be presented. 
The methods will be then used together to obtain fracture parameters outside the realm of 
linear elastic fracture mechanics (LEFM). Results will be compared with various analytical 
and numerical solutions. 

1Alumni professor, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute 
and State University, Blacksburg, VA 24061. 
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6 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

Optical Methods and Their Refinements for Near-Tip Measurement 

When optical methods are applied to cracked body problems, some equipment modifi- 
cations may be anticipated in order to enhance near-tip measurement. They will now be 
described briefly. 

The method of frozen stress analysis was introduced by Oppel [8] in 1936. It involves the 
use of a transparent plastic that exhibits, in simplest concept, diphase mechanical and optical 
properties. That is, at room temperature, its mechanical response is viscoelastic. However, 
above its "critical" temperature,  its viscous coefficient vanishes, and its behavior becomes 
purely elastic, exhibiting a modulus of elasticity of about 0.2% of its room temperature 
value and a stress fringe sensitivity of 20 times its room temperature value. Thus, by loading 
the photoelastic models above critical temperature, cooling under load, and then removing 
the load, negligible elastic recovery occurs at room temperature and the stress fringes and 
deformations produced mechanically above critical temperature are retained. Moreover, the 
"frozen" model may be sliced without altering its condition. 

In order to determine useful optical data from frozen stress analysis, one needs to suppress 
deformations near the crack tip in the photoelastic material in its rubbery state above critical 
temperature and to be able to produce the same crack shape and size produced in the 
prototype. In order to accomplish the first objective, applied loads are kept very small, and 
a polariscope modified to accommodate the tandem application of Post-partial mirror fringe 
multiplication [12] and Tardy compensation [13] is employed. Such a polariscope developed 
by Epstein [14] is pictured in Fig. 1, which is self explanatory. Normally, fifth multiples of 
fringe patterns are read to a tenth of a fringe thus providing adequate data within about 1 
mm of the crack tip to two hundredths of a fringe order. 

Natural crack shapes are obtained by introducing a starter crack at the desired location 
in the photoelastic model of the structure before stress freezing by striking a sharp blade 
held normal to the crack surface with a hammer. The starter crack will emanate from the 
blade tip and propagate dynamically a short distance into the model and then arrest. Further 
growth to the desired size is produced when loaded monotonically above critical temperature. 
Loads are then reduced to stop growth and cooling is accomplished under reduced load. 
The shape of the crack is controlled by the body geometry and loads. By comparing crack 
shapes grown in photoelastic models by this process to those grown under tension-tension 
fatigue loads in steel, excellent correlation has been obtained [15] even when some crack 
closure was present at the free surface of the latter. It appears that the cracked body geometry 
and loads control the crack shape in thick, reinforced bodies and that the stress ratio, R (as 
long as it is positive), and plasticity or closure effects are of secondary importance. 

Artificial cracks are made by machining into the body a desired shape, maintaining a vee- 
notch tip with an included angle not exceeding 30 ~ . With this angle, near-tip stress fields 
are essentially the same as for branch cuts. 

By removing thin slices of material that are oriented mutually orthogonal to the crack 
front and the crack plane locally, photoelastic analysis of these slices will yield the distribution 
of the maximum shear stress in the slice plane. Then, by expressing this stress in terms of 
the near-tip Mode I singular stress field equations including the contribution of the regular 
stresses in the near-tip zone as constants, one can arrive at an algorithm for extracting the 
stress-intensity factor (SIF) for each slice. The Mode I algorithm for stress is summarized 
in Appendix I based upon LEFM. 

Moir6 interferometry was introduced by Weller et al. [16] in 1948. As with the case for 
the frozen stress method, some modification of the usual approach is desirable in order to 
obtain accurate near-tip data. In the present case, a "virtual" grating was constructed 
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SMITH ON THREE-DIMENSIONAL PHOTOELASTICITY 7 

FIG. 1 - -  Precision polariscope. 
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8 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

optically by reflecting part of an expanded laser beam from a mirror so as to intersect the 
unreflected part of the beam, forming walls of constructive and destructive interference 
which serve as the master grating (Fig. 2). The grating pitch is controlled by the wave length 
of light, F, and the angle, 13. The specimen grating, a reflective phase grating, is transferred 
to the frozen slice and is viewed through the virtual grating as it (the former) deforms in 
order to see the moir6 fringes proportional to the inplane displacement normal to the grating. 
By photographing the moir6 fringe patterns produced on the surface of a frozen slice after 
it has been annealed to its stress-free state, the inverse of the displacement fields produced 
in the plane of the slice by stress freezing may be measured. Algorithms for converting this 
data into appropriate fracture parameters can be deduced from LEFM near-tip displacement 
field equations [11]. 

Three-Dimensional Effects 

As implied in the foregoing, stresses and displacements in planes mutually orthogonal to 
the crack plane and its border often vary along the crack front. When this occurs, the 
foregoing methods may be used to determine the corresponding variation in the stress- 
intensity factor as one moves along the crack front. The vast majority of cracks that develop 
in structural components in service are surface flaws, whose borders intersect free surfaces 
of the body, usually at right angles. In such cases, not only does the SIF vary along the 
crack front, but the order of the dominant stress singularity is reduced locally where the 
crack intersects the free surface and this effect may be significant in nearly incompressible 
materials [17]. Optical data from the preceding methods may be also used to evaluate this 
effect, but special algorithms must be employed for that purpose. Such algorithms are 
recorded in Appendix II. The results from applying the preceding methods to determine 
the three-dimensional effects are illustrated by the following examples. 

Example I--Stress-Intensity Factor Distribution Around the Border of a Nozzle Corner 
Crack in an Intermediate Test Vessel Model 

Figure 3 is a photograph of the photoelastic test model that is about one eighth the size 
of the prototype. The shapes of natural cracks grown under internal pressure above critical 

B E  

MIRROR / ' ~ ,  

co,L NG / x 

L A S E R / , /  

FIG. 2--  l/Trtual grating. 
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SMITH ON THREE-DIMENSIONAL PHOTOELASTICITY 9 

FIG. 3--Model of intermediate test vessel (ITV). 

temperature are shown in Fig. 4 for increasing crack depths. By removing thin slices mutually 
orthogonal to the crack border and crack surface at intervals along each crack front after 
cooling under pressure and analyzing them photoelastically using the approach described in 
Appendix I, the stress-intensity factor (SIF) distributions shown in Fig. 5 were obtained 
showing how the SIF distribution changed as the crack shape changed. We note that the 
SIF increases near the middle of the crack front where growth is the slowest. That is, for 
stable crack growth, regions along the crack front where growth is slowest, or absent, will 
be regions where the K level builds up. When an increment of growth occurs in such a 
region, local stress is relieved and apparently transferred to adjacent regions. Kathiresan 
and Atluri [18] inserted the shape of the deepest crack (a/T = 0.71) into a three-dimensional 
finite element model that used special hybrid crack front elements along the crack border 
and isoparametric elements elsewhere and obtained the SIF distributions pictured in Fig. 5 
for two values of Poisson's ratio. These results indicate approximately the influence of the 
high value of Poisson's ratio (v ~ 0.48) of the photoelastic material above critical temper- 
ature. Details of this study are found in Ref 19. 
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10 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

VESSEL WALL 

6 

/'~ / / /  
5 / 

\ NOZZLE 

TEST 1 2 3 4 5 6 

a V (mm) 5.1 5.6 14.0 16.0 18.3 36.3 

a N (mm) 5.6 5.6 14.0 15.0 18.5 26.6 

a (mm) 3.9 4.8 11.9 12.4 15.5 22.4 

a/T 0.12 0.15 0.37 0.39 0.49 0.71 

T = 31.8 mm for a l l  t e s t s  
FIG. 4--Crack shapes in 1TV nozzle corner. 

Example II--Stress-Intensity Distribution Around the Border of a Semielliptical Surface 
Flaw in a Rocket Motor Model 

Figure 6 shows the configuration of a photoelastic model that was capped on the ends 
and pressurized above critical temperature to grow a semielliptical natural crack from a 
small starter crack to one of moderate depth. After stress freezing and slicing as indicated, 
the slices were analyzed photoelastically and SIF values computed for each slice as described 
in Appendix I. The results from an average of three approximate test replications are shown 
in Fig. 7. The uniformity in the SIF level around the crack front at these depths suggests 
an absence of the effects of the star-shaped inner boundary. To emphasize this effect, a 
comparison was made between these experimental results and the Newman-Raju finite 
element model (FEM) for a surface flaw in a pressurized cylinder [20]. This was done by 
finding the "equivalent" inner radius that matched the FEM results with the experimental 
results at the inner or outer boundaries or both of the equivalent cylinder. Results are shown 
on Fig. 7. Details of this study are found in Ref 21. 
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SMITH ON THREE-DIMENSIONAL PHOTOELASTICITY 1 1 

FIG. 5--SIF distributions for nozzle corner cracks and FEM results [18]. 

Example III--Determination of the Order of the Dominant Singularity when a Crack 
Intersects a Free Surface at Right Angles 

The photoelastic model pictured in Fig. 8 contained an artificial (machined) straight front 
crack. After loading, stress freezing, slicing, and analyzing the slices photoelastically as 
before, linear gratings with a line of density equivalent to 2400 f/mm were glued to one 
side of each slice and the slices were annealed, producing the inverse of the near-tip dis- 
placement field generated by stress freezing. A typical near-tip moir6 pattern for the uz 
displacement component is shown in Fig. 9. Using the algorithm of Appendix II (Eq 2), a 
distribution of k,(k~ = IX, - 11) was obtained and is shown in Fig. 10. The solid curve 
tracks the moir6 data. The value of h~ at the free surface of 0.35 compares favorably to 
Benthem's value of 0.33 [17]. Details of this study are found in Ref 22. 

Summary 

Two refined optical methods, frozen stress photoelasticity and moir6 interferometry, were 
described briefly and results from their use in examining near-tip three-dimensional effects 
in cracked body problems were presented and compared with analytical results. It is sug- 
gested that these experimental methods are useful in providing both input and validation 
information for three-dimensional cracked body problems. 

Acknowledgments  
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FIG. 7--Comparison of  SIF distribution along surface flaws in rocket motor models with Ref  20 (Ri 
are equivalent radii computed from Ref  20 so as to match the experimental data at inner (lower) and 
outer (upper~) boundaries of  the models). 
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SMITH ON THREE-DIMENSIONAL PHOTOELASTICITY 13 
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d = 6.35 mm 

a = 12.82 mm 

B = 1 3 . ~  mm 

e = 12.7 mm 

! = 5 Q 8  mm 

L = 76.2  mm 

S = 2 7 9 . 4  mm 

P = 2.32 N 

(drawing not to scale) 

FIG. 8--Four-point bending test specimen (FPBS). 

FIG. 9--Moir~ pattern for Uz for (FPBS). 
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14 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 
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FIG. 10--k~ distribution from FPBS using both moir~ and photoelastic data. 
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APPENDIX I 

L E F M  Frozen  Stress A l g o r i t h m - - T w o - P a r a m e t e r  A p p r o a c h  

By choosing a data zone sufficiently close to the crack tip that a Taylor Series Expansion 
of the nonsingular  stresses can be truncated to the leading terms, one may deduce, along 
0 = 7r/2 (Fig. 11), the expression [11] 

~(~ra) ~/2 - ~(Tra),/-------------- ~ + ~ (1) 

where 

KAe = r  (8wr) lj2, 

= remote uniform stress, 
a = crack depth, 

K 1 = SIF, 
�9 0 = nonsingular  part of r"m~ax, and 

r = distance from crack tip in the nz  plane. 

Equat ion 1 suggests an elastic l inear zone (ELZ)  in a plot of Kme/-6(Ira) 1~2 versus (r/a) ~/2. 
Experience shows this zone to lie usually between (r/a) 1~2 values of approximately 0.2 to 
0.4. By extracting optical data from this zone and extrapolating across a near-tip nonl inear  
zone, an accurate estimate of K1/-~(~ra) 1/a can be obtained as illustrated in Fig. 12. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



SMITH ON THREE-DIMENSIONAL PHOTOELASTICITY 15 

Z r 

zA #n  

t f f  
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APPENDIX II 

Variable Eigenvalue Algorithms 

When a crack border intersects a free surface at right angles, one has the intersection of 
three free surfaces that form a vertex singularity at the free surface. There is also a line- 
type LEFM singularity extending along the crack border inside the body. Excellent descrip- 
tions of this problem, based upon boundary integral and finite element analysis have been 
provided by Cruse [23] and Shivakumar and Raju [24]. Near the boundary, both singularities 
contribute to the local stress field. In the following discussion, an algorithm is developed 
using a pseudo-two-dimensional eigenvalue to estimate the projection of the vertex singu- 
larity effect into the plate thickness direction combined with the LEFM singularity. 

Using Benthem's three-dimensional variables, separable eigenfunction expansion of the 
O'ij and ui near the crack tip at the free surface for a quarter infinite crack intersecting a half 
space at right angles [17] and the LEFM results as a guide, one can construct the following 
functional forms for the near tip u=m~, and ~ x  [22] for extraction of X, and )% from moir6 
and frozen stress data, respectively, along 0 = ~r/2 (Fig. 11). From Fig. 13, we have 

lnu~ = lnD~ + h, l n r  (2) 

and from Fig. 14 

/ h~K~ \ 
l n ( ' r ~ x -  7o )=  l n ~ - ~ - )  - h ~ l n r  (3) 
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where 

u~ = displacement component in the z direction, 
r = distance from the crack tip, 

h, = dominant near-tip displacement eigenvalue, 
T0 = nonsingular part of rT~x, 
h~ = dominant stress eigenvalue, and 

Kh~ = stress eigenfactor. 

T0 is computed from LEFM (that is, assuming h~ = 1/2) at interior points and taken to 
be zero at the free surface to satisfy Ix~l = 1 - x .  there. Figures 13 and 14 present data 
from which Eqs 2 and 3 are used to determine h, and h~, respectively. 

This approach predicts a much thicker boundary layer effect than Refs 23 and 24 due to 
the vertex singularity. However, a full-field solution by Anders and Blom [25] yields com- 
parable results. 
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Crack-Mouth Displacements for 
Semielliptical Surface Cracks Subjected to 
Remote Tension and Bending Loads 
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ABSTRACT: The exact analytical solution for an embedded elliptical crack in an infinite body 
subjected to arbitrary loading was used in conjunction with the finite element alternating 
method to obtain crack-mouth-opening displacements (CMOD) for surface cracks in finite 
plates subjected to remote tension. Identical surface-crack configurations were also analyzed 
with the finite element method using 20-noded element for plates subjected to both remote 
tension and bending. The CMODs from these two methods generally agreed within a few 
percent of each other. Comparisons made with experimental results obtained from surface 
cracks in welded aluminum alloy specimens subjected to tension also showed good agreement. 

Empirical equations were developed for CMOD for a wide range of surface-crack shapes 
and sizes subjected to tension and bending loads. These equations were obtained by modifying 
the Green-Sneddon exact solution for an elliptical crack in an infinite body to account for 
finite boundary effects. These equations should be useful in monitoring surface-crack growth 
in tests and in developing complete crack-face-displacement equations for use in three- 
dimensional weight-function methods. 

KEY WORDS: cracks, elastic analysis, stress-intensity factor, crack-mouth-opening displace- 
ments, finite element method, finite element alternating method, surface crack, tension, bend- 
ing loads, fracture mechanics, fatigue (materials) 

Damage-tolerance analyses require accurate stress-intensity factors for two- and three- 
dimensional  crack configurations. Experience with several crack configurations have shown 
that cracks in three-dimensional  bodies tend to grow under  fatigue loading with nearly 
elliptical crack fronts. Because these crack configurations occur frequently in aerospace 
structures, considerable at tent ion has been devoted to analytical and experimental  studies 
on these configurations. While considerable data exist in the literature on stress-intensity 
factors, very little information is available on crack-face displacements. Crack-face displace- 
ments  are needed to develop more accurate three-dimensional  weight-function methods. 
Crack-mouth displacements are also needed to develop compliance equations so that surface 
cracks can be monitored in fatigue-crack growth rate or fracture tests. 

An  approximate solution for the crack-face displacements for a surface crack in a plate 
under  remote tension has been obtained by Fett [1] using the stress-intensity factor equations 
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3Regents' professor and director, Center for Advancement of Computational Mechanics, Georgia 
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20 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

of Newman and Raju [2], the virtual crack extension method and conditions of self- 
consistency. In this paper, the exact analytical solution of Vijayakumar and Atluri [3], 
Nishioka and Atluri [4], and Raju [5] for an embedded elliptical crack in an infinite body 
subjected to arbitrary loading was used in conjunction with the finite element alternating 
method [6,7] to obtain crack-mouth-opening displacements (CMOD) for surface cracks in 
finite plates subjected to remote tension. Identical surface-crack configurations were also 
analyzed with the finite element method using 20-noded elements for plates subjected to 
both remote tension and bending. The CMODs from these two methods are compared with 
each other. The numerical CMODs are also compared with experimental results from McCabe 
et al. [8,9] on welded 2219-T87 aluminum alloy specimens with a surface crack in a plate 
subjected to tension. 

Empirical equations were developed for CMOD for a wide range of surface-crack shapes 
and sizes subjected to tension and bending loads. These equations are obtained by modifying 
the Green and Sneddon [10] exact solution for an elliptical crack in an infinite body to 
account for finite boundary effects. 

Analysis 

A surface crack in a finite plate, as shown in Fig. 1, was analyzed. The three-dimensional 
finite element and finite element alternating methods were used to obtain the CMODs. In 
these analyses, Poisson's ratio (v) was assumed to be 0.3. A comparison of stress-intensity 
factors from these two methods are given in Ref 11 for both surface and corner cracks in 
plates. 

Two types of loading were applied to the surface-crack configuration: remote uniform 
tension and remote out-of-plane bending (bending about the X-axis). The remote uniform 

FIG. 1--Surface crack in a plate. 
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tensile stress is S, acting in the Z-direction and the remote bending moment is M. The 
bending stress, Sb, is the outer fiber stress calculated at the origin (X = Y = Z = 0 in Fig. 
1) without the crack present. 

Three-Dimensional Finite Element Method 

Figure 2 shows a typical finite element model for a surface crack in a rectangular plate. 
The finite element models employed 20-noded isoparametric parabolic elements throughout 
the body. Singularity elements were not used along the crack front. Typical models had 
about 800 elements and 5000 nodes. Symmetric boundary conditions were imposed on the 
Z = 0 and X = 0 planes. Models were subjected to either remote uniform stress or a linear 
bending stress on the Z = h plane. 

Finite Element Alternating Method 

This method is based on the Schwartz-Neumann alternating method [12]. The alternating 
method uses two basic solutions of elasticity and alternates between these two solutions to 
satisfy the required boundary conditions of the cracked body [13-15]. One of the solutions 
is for the stresses in an uncracked finite solid, and the other is for the stresses in an infinite 
solid with a crack subjected to arbitrary normal and shear tractions. The solution for an 
uncracked body may be obtained in several ways, such as the finite element or boundary 
element method. In this paper, the three-dimensional finite element method was used. 

The procedure is explained here briefly for Mode I problems. First, obtain the solution 
for the uncracked solid subjected to the given external loading using the finite element 
method. The finite element solution gives the stresses everywhere in the solid including the 
region over which the crack is present. The normal stresses acting on the region of the crack 
surfaces need to be erased to satisfy the crack-boundary conditions. The opposite of the 
stresses calculated on all boundaries are fit to n 'h degree polynomials in terms of X- and 
Y-coordinates. From the polynomial stress distributions obtained, calculate the stress- 
intensity factor [4] for the current iteration. Use the analytical solution of an embedded 

8 

h 

t 

Z 

b 
/ 

~_y 

X 

Y 

) 

m 

b 

_L_ 

FIG. 2--Finite element model of surface-cracked plate: (a) specimen model and (b) element pattern 
on Z = 0 plane. 
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elliptic crack in an infinite solid subjected to the polynomial normal traction [4] to obtain 
the normal and tangential stresses on all of the external boundaries of the solid. The opposite 
of these stresses are then considered as the externally prescribed stresses on the uncracked 
solid. Again, solve the uncracked solid problem due to these prescribed surface tractions. 
This is the start of the next iteration. Continue this iteration process until the normal stresses 
in the region of the crack are negligibly small or lower than a prescribed tolerance level. 
The stress-intensity factors in the converged solution are simply the sum of the stress-intensity 
factors from all iterations. 

The key element in the alternating method is, obviously, the analytical solution for an 
infinite solid with an embedded elliptical crack subjected to arbitrary normal and shear 
tractions. Such a solution was first obtained by Shah and Kobayashi [16] for tractions normal 
to the crack surface. However,  this solution was limited to a third-degree polynomial function 
in each of the Cartesian coordinates describing the ellipse. Vijayakumar and Atluri [3] 
overcame this limitation and obtained a general solution of arbitrary polynomial order. 
Nishioka and Atluri [4,6] improved and implemented this general solution in a finite element 
alternating method and analyzed surface- and corner-cracked plates. The details of the finite 
element alternating method are well documented [4-6], and they are not repeated here. 

In the three-dimensional finite element solution, 20-noded isoparametric parabolic ele- 
ments were used to model the uncracked solid. Two types of idealizations have been used 
to analyze surface- and corner-crack configurations [11]. In the first type, the idealization 
was such that the elements on the Z = 0 plane conform to the shape of the crack in the 
cracked solid (see Fig. 3a). Although the finite element solution is for the uncracked body, 
such an idealization is convenient to perform the polynomial fit using the finite element 
stresses from the elements that are contained in the region of the crack. The mesh is then 
generated by simply translating in the Z-direction the mesh on the Z = 0 plane. This model 
will be referred to as the mapped model. A typical mapped model is shown in Fig. 3a. In 
the second type, simple rectangular idealizations were used to model the solid. This model 

a b 

( 
/ x \ / x  

FIG. 3--Finite element alternating models for surface-crack analysis: (a) mapped model and (b) 
rectangular model. 
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is referred to as the rectangular model. A typical rectangular model is shown in Fig. 3b. 
Reference 11 showed that mapped and rectangular models give nearly identical results if 
sufficient degrees of freedom are used. However, the mapped models tend to converge 
faster than the rectangular models. Herein, mapped models will be used to obtain crack- 
surface displacements. Typical mapped models had about 250 elements and 1500 nodes; and 
the models used four elements to approximate the crack front. For all models, the solution 
converged to within 1% accuracy in five iterations (see Ref 11). 

Results and Discussion 

In this section, CMOD equations for a surface crack in a finite thickness plate subjected 
to remote tension and bending loads are developed. The CMOD values calculated from the 
two numerical methods are compared with each other and with the proposed equations. 
CMOD values from the proposed equations are also compared with experimental results 
over a wide range in crack shapes and crack sizes for remote tension. 

Crack-Mouth-Opening Displacements 

The CMOD was expressed in the form of the Green-Sneddon solution for an embedded 
elliptical crack in an infinite body multiplied by a boundary-correction factor, Gi, as 

EV/(Sia) = 4(1 - v2)/~Gi(a/c, a/t, c/w) (i) 

where the subscript i denotes tension load (i = t) or bending load (i -- b), V is the total 
displacement across the crack mouth (X = Y = Z = 0), a is the crack depth, c is the crack 
half-length, t is the thickness of the plate, w is half-width, and qb is the shape factor of the 
ellipse (which is equal to the complete elliptic integral of the second kind). The shape factor, 
qb, can be approximated by 

~2 = 1 + 1.464(a/c) L65 for a/c-< 1 (2a) 

and 

r ~ = 1 + 1.464(c/a) T M  for a/c > i (2b) 

The half-length of the bar, h, and the half-width, w, (see Fig. 1) were chosen large enough 
(h/w = 2 and w/a = 25) to have negligible free-boundary effects on crack-surface displace- 
ments. Values of normalized displacements (EV/S,a) were calculated for various crack shapes 
(a/c = 0.2 to 1) with a/t values of 0.2, 0.5, and 0.8. The normalized displacements from the 
finite element and finite element alternating methods are given in Table 1. The current 
alternating method could not be used to analyze the semicircular (a/c = 1) crack configu- 
ration. The alternating method was also not used to analyze surface cracks under the remote 
bending loads. Experimental results from Ref 8 for an a/c ratio of 2 were also used to extend 
the equations to a/c ratios greater than 1. 

Tension Loads- -The  boundary correction factor for surface cracks subjected to remote 
tension loading is 

G, = G, Gw (3) 
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TABLE 1 --Nondimensional CMOD (EV/S~a) from finite ele- 
ment (and finite element alternating) method (v = 0.3). 

a/t 

a/c 0.2 0.5 0.8 

TENSION 

1.0 3.040 3.284 3.758 

0.8 3.440 3.816 4.562 
(3.366) (3.824) (4.656) 

0.6 3.914 4.554 5.826 
(3.816) (4.464) (5.636) 

0.4 4.486 5.696 8.178 
(4.380) (5.620) (7.960) 

1/3 4.702 6.254 9.500 
(4.590) (6.140) (9.188) 

0.2 5.198 7.958 14.30 
(5.072) (7.748) (13.63) 

BENDING 

1.0 2.770 2.518 2.330 

0.8 3.108 2.866 2.712 

0.6 3.512 3.344 3.310 

0.4 3.996 4.078 4.410 

1/3 4.178 4.434 5.028 

0.2 4.592 5.516 7.258 

where 

(3, = [1.18 + O.08(c/a) ~ + 0.65(c/a)l-'5(a/t)2]g, 
g = 1 f o r a / c < -  1, 
g = c/a for a / c >  l ,  and 

G.. = {sec[rrc(a/t)~176 

for 0.2 -< a/c -< 2 and a/t < 1. These equations were found by using engineering judgment ,  
appropriate limits, and trial and error. 

Bending L o a d s - - T h e  boundary-correction factor for surface cracks subjected to remote  
bending loads is 

Gb = G, GwH (4) 

where G, and Gw are the same as in Eq 3, and H is the bending correction. The functional 
form of H was found by comparing the exact displacements for an embedded  circular crack 
in an infinite solid subjected to remote  tension and remote  bending. The coefficients were 
found by trial and error,  and H was given by 

H = 1 - [0.7 - 0.2(a/c)~ 

for 0.2 -< a/c -< 2 and a/t < 1. 
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Comparison of Crack-Mouth-Opening Displacements 

The normalized CMODs calculated from the finite element method (FEM) and finite 
element alternating method (FEAM) are given in Table 1 (top). A comparison between the 
two methods and the proposed equation (Eqs 1 and 3) for remote tension is shown in Fig. 
4. The results from the two methods agreed within a few percent of each other. The largest 
difference between the two methods occurred at deep cracks (a/t = 0.8) and for low aspect 
(a/c) ratios. The maximum difference was about 5%. The FEM tended to give higher CMOD 
values than the FEAM for all crack configurations analyzed. The equation, obtained 
by fitting to these results, gave CMOD values that were within about 3% of the FEM 
calculations. 

Fett  [1] has obtained an approximate solution for crack-opening displacements of semi- 
elliptical surface cracks in finite thickness plates under remote tensile loading. He used the 
Newman-Raju stress-intensity factor equations for local crack-front displacements and con- 
ditions of self-consistency to obtain full field crack-opening displacement equations. The 
equation for the boundary-correction factor on Eq 1 was 

(G,)ve, = 1.13[M1 + M2(a/t) 2 + M3(a/t)4][1.1 + 0.35(a/t) 2] (5) 

where Mi are functions of a/c and a/t and are given in Ref 2. The product of the terms in 
brackets give the stress-intensity boundary-correction factor at the free-surface location. A 
comparison among CMOD values from Fett 's  equation, finite element, finite element al- 
ternating, and the proposed equation are shown in Fig. 5. For low values of a/t, all results 
were within about 3% of each other. Results for a/c = 0.6 and 1 also agreed well for a/t 
ratios less than 0.8. However, for low a/c ratios and large a/t values, Fett 's  equation was 
substantially lower than both analyses and Eq 1 with G, from Eq 3. The reason for this 
discrepancy is not known but, for deep cracks, the local stress-intensity factors may not be 
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FIG. 4--Comparison of normalized CMODs from finite element method, finite element alternating 

method, and proposed equation for surface crack under remote tension. 
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FIG. 5--Comparison of normalized CMODs from Fett's equation, proposed equation, and analyses 

for surface crack under remote tension. 

sufficient to describe the CMOD due to the induced bending that develops in the surface- 
crack specimen. 

McCabe et al. [8,9] conducted tests on welded 2219-T87 aluminum alloy surface-crack 
specimens subjected to remote tension. These tests covered a wide range in a/t and a/c ratios 
for several plate thicknesses. Semielliptical surface notches were electrical discharged ma- 
chined (EDM) into each specimen to a specified a/t and a/c value. The EDM electrode had 
a thickness of 0.5 ram. The CMOD values were measured with a displacement gage mounted 
across the notch mouth with a total gage length of about 1 ram. A comparison between the 
CMOD values measured from tests and those calculated from the proposed equation for 
remote tension are shown in Fig. 6. The tests results agreed well (within about 6%) with 
the equation. 

The normalized CMODs calculated from the FEM for remote bending are given in Table 
l(bottom). A comparison between the FEM results and the proposed equation (Eqs 1 and 
4) is shown in Fig. 7. The equation, obtained by fitting to these results, gave CMOD values 
that were within about 3% of the FEM calculations. 

Concluding Remarks 

Crack-mouth-opening displacements (CMODs) for surface cracks in rectangular plates 
were obtained using three-dimensional finite element and finite element alternating methods. 
The plates were subjected to remote tension and remote out-of-plane bending loads. A wide 
range of crack shapes were considered (a/c = 0.2 to 1). The crack-depth-to-plate-thickness 
(a/t) ratios ranged from 0.2 to 0.8. The CMODs from these two methods generally agreed 
within a few percent of each other (maximum difference was about 5%). 

Empirical equations were developed for CMOD for a wide range in surface-crack shapes 
and sizes subjected to tension and bending loads. These equations were obtained by mod- 
ifying the Green-Sneddon exact solution for an elliptical crack in an infinite body to account 
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FIG. 6--Comparison of normalized CMODs from tests and proposed equation for surface crack under 
remote tension. 

for finite boundary effects and loading. Comparisons made with Fett's crack-opening dis- 
placement equations at the crack mouth showed good agreement except for deep, low aspect 
(a/c) ratio surface cracks. Comparisons made between the proposed equation and experi- 
mental results obtained on surface cracks in welded aluminum alloy specimens under tension 
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FIG. 7--Comparison qf normalized CMODs from finite element method and proposed equation for 
surface crack under remote bending. 
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also showed good agreement.  These equat ions should be useful in monitoring surface-crack 
growth in tests and in developing complete  crack-face-displacement equations for use in 
three-dimensional  weight-function methods.  
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ABSTRACT: Stress-intensity factors for axial surface flaws in pipes can be sensitive to the 
radius to thickness ratio (R/t) of the pipe depending on the depth to thickness (a/t) and the 
depth to length (a/c) ratios of the crack. This study combines solutions from the literature for 
plates and smaller R/t pipes with several new solutions for axial outer surface (OD) cracks in 
R/t = 40 pipes to obtain stress-intensity factors for a/t = 0.25, 0.50, and 0.75, and a/c in the 
range 0 to 1. The new solutions are obtained using the finite element alternating method. 

KEY WORDS: cracks, surface cracks, stress-intensity factors, finite element method, finite 
element alternating method 

Despite current concerns regarding its limitations when applied to highly loaded com- 
ponents made from tough materials [1], proof testing remains a popular method for certifying 
safety critical structural components. For example, proof testing is mandated under certain 
conditions for commercial aircraft, the space shuttle, and natural gas transmission line pipes. 
For gas transmission line pipe, proof tests are administered by over-pressurizing a section 
of pipe with water; thus the name "hydrotest" is given for line pipe proof tests. Concern 
in line pipe is for external axial surface cracks developed via a corrosion mechanism. 

During hydrotesting of gas transmission line pipe, water pressures from 1.25 to 1.5 times 
the maximum operating (service) pressures are introduced. At these pressures, inelastic 
behavior can be significant for all but the smallest cracks. In addition, the pressures are 
held for a period of time so that primary creep crack growth occurs along with the ductile 
growth. An elastic-plastic-primary creep surface crack model was developed to aid in de- 
veloping optimum proof test strategies and is reported elsewhere [2]. This model represents 
an extension of J-tearing theory to the time domain, and consists of a time-dependent plastic 
zone correction to the elastic surface crack solution. The purpose of this paper is to report 
stress-intensity factor solutions for axial external surface cracks in pipe that were developed 
for the preceding referenced model. 

Figure 1 defines the geometric parameters of this study and illustrates the semielliptical 
surface flaw of interest. The inner pipe radius is denoted R. The elliptic angle, +, is equal 
to 90 ~ at the deepest point on the crack front and is equal to 0 and 180 ~ at the points where 
the crack front intersects the surface. 

~President, Computational Mechanics, Inc., Julian, PA 16844. 
2Senior research scientist and research leader, respectively, Battelle Memorial Institute, Columbus, 

OH 43201. 
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30 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

FIG. 1--Definition of geometric parameters for pipes and plates with sernielliptical surface flaws. 

The line pipe of concern is thin wall, large diameter pipe. A typical pipe might have a 
diameter of 900 mm and an R/t ratio of 40. While stress-intensity factors have been compiled 
in the literature for axial surface flaws in pipe, these are generally for R/t ratios of 20 and 
smaller. Solutions for surface flaws in plates can be applied to flaws in large R/tpipe, provided 
the depth of the flaw (a/t) is small enough for the given flaw aspect ratio (a/c) as to not 
induce significant bulging. The purpose of this work was to develop stress-intensity factor 
solutions for R/t - 40 pipe for situations where plate solutions are inadequate. 

Background 

Much has been written over the last 30 years on the subject of evaluating Ks for finite 
surface flaws in fiat plates subjected to tensile loading. Newman [3] reviewed the methods 
and compared the resulting K~ solutions that were available up to 1979. The reviewed 
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methods included analytical methods, experimental methods, and engineering estimates. 
Newman evaluated the performance of the methods by comparing predicted and experi- 
mental crack initiation data for a brittle material. Finite element methods with adequate 
grid refinement appeared to give the best estimates of KI. 

Using the finite element method and several levels of grid refinement to establish con- 
vergence, Raju and Newman [4] tabulated KI solutions for semielliptical surface cracks in 
plates under tension for a wide range of geometric parameters. Later, Raju and Newman 
[5] fit a parametric equation to these results that made their results more convenient to use. 

The review of Newman [3] included a number of solutions that were obtained using the 
finite element alternating method. Newman, however, favored the singular finite element 
approach over the alternating method. At the time of that review, however, existing alter- 
nating method programs were hampered by the lack of a sufficiently general analytical 
solution for the embedded elliptical crack of the alternating method models. Until Vijay- 
akumar and Atluri [6] found a general solution to the embedded crack problem, all alter- 
nating method programs were plagued by the inability to represent high order traction 
variations on the crack surfaces. In addition, the extremely tedious nature of deriving and 
programming the analytical solutions make it likely that some reported solutions were not 
error free. Having the general solution to the embedded crack problem, Nishioka and Atluri 
[7] developed a relatively convenient method of implementing the solution within the frame- 
work of the finite element alternating method. The solution and equations resulting from 
Refs 6 and 7, referred to as the VNA solution, are used as the basis for the alternating 
method program used for the present study. 

With the improved accuracy afforded by the VNA solution, the finite element alternating 
method is seeing increased usage for the solution of three-dimensional crack problems. 
Nishioka and Atluri used the method to obtain solutions for surface flaws in pressure vessels 
[8]. O'Donoghue,  Nishioka, and Atluri [9] applied the method to interacting cracks under 
Mode I conditions. Simon, O'Donoghue,  and Atluri [10] applied the method to mixed-mode 
problems. Raju, Atluri, and Newman [i1] used the method to obtain solutions for small 
(a/t --~ 0) surface and corner cracks in plates. Most recently, Raju, Newman, and Atluri 
have applied the method to the calculation of crack mouth displacements for semielliptical 
surface cracks subjected to remote tensile loading [12]. 

Numerical Method 

The finite element alternating method program known as ALT3D [13] was used to generate 
the two- and three-dimensional solutions in this study. ALT3D combines the VNA solution 
[6, 7] with three-dimensional finite element modeling to obtain stress-intensity factors for 
embedded or surface flaws in finite bodies subjected to arbitrary loading. The solutions are 
obtained through an iterative process whereby residual tractions on the crack surfaces and 
on the external surfaces are alternately corrected until the magnitudes of the residuals 
become negligible. 

The alternating method has the following attractive features for obtaining stress-intensity 
factor solutions. 

1. The finite element grid does not include the crack geometry, thus greatly simplifying 
grid generation and at the same time allowing one grid to be used for a variety of 
crack sizes and orientations. 

2. For any given grid, the finite element stiffness matrix needs to be decomposed only 
one time (even if the crack geometry changes), thus making the method computationally 
efficient. 
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3. Although the VNA solution is for an embedded crack, the method can also handle 
partelliptical surface cracks. 

4. A convenient result of using the VNA solution is that stress-intensity factors (Modes 
I, II,  and III) are computed directly (no need for contour or surface integrals such as 
J or other means for indirectly computing stress-intensity factors from energy release 
rates). 

5. Multiple cracks can be defined, and thus problems with interacting cracks can be solved. 

ALT3D uses standard 8-noded isoparametric elements but then, at the user's option, adds 
incompatible displacement modes to provide improved bending response [14]. The VNA 
solution that is programmed into ALT3D allows crack surface tractions to be fit with poly- 
nomials of arbitrarily high order. Experience has shown that for practical refinement of 
finite element grids, fifth order polynomials are generally adequate. This corresponds to 
m = 2 (M = 2 in the notation of Refs 6 and 7). ALT3D currently allows the user to specify 
m as 0 (zero and first order terms), 1 (zero through cubic terms), or 2 (zero through fifth 
order terms). 

The iteration associated with the alternating method is stopped when the solution is 
considered to be sufficiently well converged. ALT3D can monitor convergence and halt the 
iteration process when the following is satisfied at each K calculation point specified by the 
user 

IK~aKII + IK~IAK~,] + IK~IIAK,,,I 
K 2 + K2~ + K2,I 

< to l e r ance  (1) 

where K and AK are the cumulative and incremental stress-intensity factors associated with 
the current iteration and the tolerance is supplied by the user. The tolerance used in the 
current work was 0.001 with Ks being calculated at five equally spaced points along the half 
crack front. 

Approach 

While it would have been possible to generate all of the required solutions using the 
alternating method finite element program in this study, it was decided to rely as much as 
possible on solutions already in the literature. The available solutions were not for the R/t 
= 40 pipe size of interest, but it was known that R/t dependence of the solutions becomes 
large only for long, deep cracks. That is, for shallow or relatively short cracks, the stress- 
intensity factor solution is nearly identical to that for a plate (R/t ~ ~c). Not only did this 
approach reduce the required number of solutions, it brought the subject of curvature and 
bulging effects into the study in a natural way. 

For very long cracks (a/c --~ 0) it is clear that the stress-intensity factor at the deepest 
point of the semielliptical surface crack must approach the value that would be obtained 
from a two-dimensional solution for an infinitely long crack. Having this two-dimensional 
solution is, therefore, very useful since it provides an upper bound on the solutions for finite 
aspect ratio cracks. Since the two-dimensional solution for an R/t = 40 pipe was not found 
in the literature, it was generated in this study. Rather than use a separate two-dimensional 
program, the same three-dimensional program was used to solve the two-dimensional prob- 
lem by using a single layer of three-dimensional elements with appropriate boundary con- 
ditions to simulate plane strain conditions. 

Rather than directly applying an internal pressure loading to the finite element models 
of this study, the loading was specified in terms of initial stress. This allowed the exact 
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elasticity solution for hoop stresses in a cylinder to be used as the "applied loading" and 
thus eliminated the small errors in hoop stress that would have resulted if the pressure- 
induced hoop stresses for the uncracked pipe were computed with the finite element model. 

The stress-intensity factor solutions of this study are normalized in the following way 

F - K, (2) 

where 

t = pipe wall thickness, 
R = inner pipe radius, 
p = internal pressure, 
a = crack depth, 
c = half crack length, and 

Q = shape factor approximated by 
Q = 1 + 1.464(a/c) T M  for a/c <= 1 
Q = 1 + 1.464(c/a) T M  for a/c > 1 

When applying plate solutions to the cylindrical problem, the applied stress is assumed to 
be uniform and equal to pR/t .  

Verification 

To establish the accuracy that could be expected from the ALT3D solutions for surface 
cracks in piping, several solutions were first obtained for R/t = 10 pipe. Raju and Newman 
[15] have obtained solutions for this problem using three-dimensional finite elements with 
singular crack tip elements and a nodal force method for inferring stress-intensity factors. 
The Raju and Newman solutions have been verified by numerous investigators and are 
believed to be accurate to within a few percent. Generally, it is expected that the Raju and 
Newman solutions tend to fall below the exact solution? 

Figures 2a and b show the two finite element grids used for the R/t = 10 verification 
calculations. Figure 2a shows the coarser of the two grids and is referred to in the discussion 
as the 8-element grid since it has 8 elements through the thickness in the most refined portion 
of the grid. This 8-element grid has 2516 nodes and 1790 8-noded elements. The 16-element 
grid has 5056 nodes and 3951 elements. Both grids model a quarter of the pipe by taking 
advantage of the two orthogonal planes of symmetry. The length of the modeled pipe segment 
is twice the inner radius of the pipe, and the end of the modeled segment was modeled as 
being traction free. 

The grids of Fig. 2 do not explicitly represent the crack, and therefore they can be used 
to model a variety of crack shapes. Figures 3 through 7 compare the current solutions with 
those of Ref 15. Figures 3 and 4 compare results for two crack lengths with a/t = 0.5 and 
contain results from both the 8- and 16-element grids. It can be seen that current solutions 
are in good agreement with the reference solutions with solutions from the 16-element grid 
tending to give the largest stress-intensity factors of the three solutions. The point where 
the crack intersects the surface (qb = 0) tends to be the location with the least favorable 
agreement. This may be related to the fact that KI, the amplitude of the r-1"2 stress field 
singularity, is possibly zero or undefined at this point as a result of the stress field singularity 

3This expectation results from discussions between J. C. Newman, Jr., and R. B. Stonesifer. 
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FIG. 2--Finite element grids used for benchmark analyses of the R/t = 10 pipe geometry: 
(a) &element grid and (b) 16-element grid. 

no longer being of the type r -  1/2. Benthem has found that the singularity at the surface point 
is r -~/2 only if Poisson's ratio is zero [16,17]. For the present calculations, Poisson's ratio is 
assumed to be 0.3. The nonzero KI values that are provided by the current solution and the 
reference solution can perhaps best be rationalized in terms of the fact that the energy 
release rate is not zero at the surface, and that the depth of influence of the surface effect 
is so small that the computed Kis are representative of points very near the surface. 

Figures 3 and 4 include a curve labeled "iteration 0." These curves represent the stress- 
intensity factor distributions that result when the initial hoop stresses are first applied to 
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F I G .  4--Comparison of normalized stress-intensity factors for an axial OD semielliptical surface flaw 
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FIG. 7- -Compar i son  o f  current and reference solutions lor  an axial OD semielliptical surface f laws 
in an R/t = lOpipe  (a/t = 0.8; a/c = 0.4). 

the analytical crack port ion of the model.  The difference between this curve and the final 
converged curve is due to interior and exter ior  pipe surface effects. 

Figures 5, 6, and 7 compare  A L T 3 D  solutions to the Raju  and Newman solutions for 
a/t = 0.2 and 0.8, and a/c - 0.2 and 0.4. The case of a/t = 0.8, a/c = 0.2 was not run 
because the refined region of the grid (see Fig. 2) did not  extend far enough in the axial 
direction to accommodate  this crack size. The  solutions for a/t = 0.2 are in good agreement  
with the Raju  and Newman solution except perhaps at the surface point. While the 16- 
e lement  A L T 3 D  solutions at a/t - 0.5 are above the reference solutions, this is not the 
case at a/t = 0.2. At  a/t - 0.8, the A E T 3 D  solution is further above the reference solution 
than at a/t = 0.5. The  maximum difference for the a/t = 0.8 case is less than 6% and occurs 
at a point other  than the surface point. 

By the nature of the alternating method,  the farther the problem is from that of an 
embedded  crack far from external boundaries,  the more iterations the solution will take to 
converge,  and the more opportunity there will be for errors to accumulate.  4 Therefore ,  the 
two-dimensional  problem of a deep single-edge crack in a plate is about as challenging a 
problem as can be devised for the three-dimensional  alternating method.  Since the constraint 
in the pipe geometry  will be always greater than that for the plate, it is reasonable to expect 
that the errors for the two-dimensional  single-edge crack solution should represent  the upper  
bound on errors for an axial crack in a pipe with the same a/t. Therefore ,  as a final check 
on the ability of the program to provide accurate solutions for the R/ t  = 40 pipe problem, 
A L T 3 D  was used to simulate a two-dimensional  plane strain single-edge crack specimen. 
The a/t that was modeled  was 0.75; the largest to be considered in this study. The grid was 

4The errors are due to the finite element approximation and the finite order of the polynomials used 
by the analytical portion of the model. 
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similar to the most refined portion of the 16-element grid of Fig. 2 except that it was one- 
element-layer thick, was unwrapped to represent a plate cross section, and was cut off at a 
position that would correspond to a 30 ~ segment of the R/t = 40 pipe. The calculated stress- 
intensity factor for a uniform applied stress was 4% below the value obtained from Ref 18. 
This is expected to be a reasonable estimate of the accuracy of the stress-intensity factors 
at the deepest point of the three-dimensional solutions that follow. 

Based on these results, it was concluded that the ALT3D program could be expected to 
provide reasonably accurate solutions to the problem of interest. A grid for the R/t = 40 
analyses was generated using 16 elements through wall at the crack plane. Since long and 
deep cracks were of most interest, the grid was generated to accommodate these types of 
cracks. Figure 8 shows the form of this three-dimensional R/t = 40 pipe grid. A two- 
dimensional grid was also generated for the infinite length (a/c = 0) crack geometry. This 
grid had the same form as the most refined portion of the three-dimensional grid and had 
only a single layer of elements in the axial direction. 

Results 

After verifying the accuracy of the alternating method program and the adequacy of the 
grid refinement, the next step was to find a way to use the available solutions from the 
literature. While solutions were not found for R/t = 40 pipes, solutions were found for 
R/t = 4, 10, and 20 and for plates (R/t--~ ~). Figures 9 through 12 illustrate how these 
available solutions [5,15,18,19] were used to obtain useful information for the R/t --- 40 
geometry. The normalized stress-intensity factor (F) at the deepest point on the crack front 
is plotted versus t/R. Figure 9 shows the dependence of F on t/R for the limiting case of 
a/c = 0. Numerous solutions were available from the literature for this two-dimensional 
case; however, no solutions were found for the R/t = 40 case of interest. For a/c = 0.2 

FIG. 8--Finite element grid used for analyses of the R/t = 40 pipe geometry. 
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(Fig. 10), F was relatively independent  of  dR for a/t = 0.25 and 0.50, but showed modera te  
dependence  for a/t = 0.75. For  a/c = 0.4 and 1.0 (Figs. 11 and 12), F was found to be 
relatively independent  of t/R and linear interpolation for R/t = 40 was reasonable.  

In Fig. 10, the shape of the curve for a/t = 0.75 between t/R of 0 and 0A was not clear 
from the available solutions, therefore  a new solution was generated at R/t = 40 (t/R = 
0.025). As a further  check on the accuracy of the A L T 3 D  calculations, an additional point 
was calculated at R/t = 40 for a/t = 0.50. Both points are seen to be in good agreement  
with the trends of the Raju  and Newman results. 

The original Raju  and Newman solutions of Figs. 10, 11, and 12 were for a/t = 0.2, 0.5, 
and 0.8 while the E P R I  solutions of Fig. 10 were  for a/t = 0.25, 0.5, and 0.75. Interpolat ion 
of the Raju  and Newman results [15] to a/t = 0.25 and 0.75 was considered preferable to 
extrapolat ion of the E P R I  results [19], and therefore a/t = 0.25 and 0.75 were used through- 
out this study. The  interpolations of the Raju  and Newman solutions were per formed using 
a quadratic interpolating polynomial.  

It can be seen from Figs. 9 through 12 that the solutions have a significant dependence  
on the crack aspect ratio (a/c). The next step was therefore to determine the nature of this 
dependence.  Basically, what was desired was the ability to determine the stress-intensity 
factor for any a/c between zero and unity. Taking points from the curves of Figs. 9 through 
12 at R/t = 40, and plotting them versus a/c, it became clear that more solutions were 
needed between a/c = 0 and 0.2 if a reasonably accurate interpolat ion was to be possible 
for the a/t ratios of 0.5 and 0.75. Therefore ,  new solutions were generated for a/c = 0.1 
and these two a/t ratios. 

Figure 13 combines the R/t = 40 results from Figs. 9 through 12 with the newly generated 
solutions. The  normalized stress-intensity factor, F, is plotted as a function of a/c for a/t = 

OD semi-elliptical axial crack 

Internal pressure loading 

Rlt = 40 

0 ALT3D (a/c > 0.2 from interpololion of 
Raju 8, Newman pipe and plate solutions) 

3 alt 

o t I I I I I 
0 0.2. 0.4 0.6 08 10 

a/c 

FIG. 13--Normalized stress-intensity factors at the deepest point (6 = 90~ for OD axial semielliptical 
surface cracks in PUt = 40 pipe. 
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0.25,0.50, and 0.75. While the new solutions at a/c = 0.1 significantly reduced the uncertainty 
concerning the a/t = 0.5 behavior, and also provided a significant improvement in the a/t 
= 0.75 trend for a/c > 0.1, there still remains a relatively large uncertainty in the shape of 
the a/t = 0.75 trend for a/c < 0.1. While it seems likely that the alternating method could 
be used to obtain a point at a/c = 0.05, this was not done in this study. The additional 
points between a/c = 0 and 0.1, used to define the piecewise linear curves of Fig. 13 and 
that are not identified with the plot symbol "A,"  are estimated values. 

The plateaus that appear in Fig. 13 near a/c = 0 were included for two reasons. First, as 
can be seen from Fig. 14, computations using a line spring model [20] for very large aspect 
ratio cracks (a/c as small as 0.02) in R/t = 10 pipe suggest that the slope of the F versus 
a/c curves approach zero as a/c goes to zero. Second, by introducing a plateau, stress-intensity 
factor predictions are less likely to be nonconservative. In estimating the size of the plateaus 
from the R/t = 10 solutions, use was made of the observation that the plateaus decrease in 
size for larger values of a/t. Also, since the plateaus are believed to be a feature of the 
cylindrical geometry, it was assumed that the plateau size is inversely proportional to 

Table 1 summarizes the results of Fig. 13 in tabular form. The plateau values for a/c are 
seen to be 0.025, 0.017, and 0.013 for a/t = 0.25, 0.5, and 0.75, respectively. 

Figure 15 compares the results of this study with predictions from equations proposed by 
Newman and Raju [21] and currently implemented in the NASA FLAGRO fatigue crack 
growth computer program [22]. It is seen that the Newman and Raju equation tends to be 
conservative. The largest degree of conservatism is, surprisingly, for a/c > 0.2 where the 
equation tends to be about 10% above the currently developed curves. There also appears 
to be significant conservatism for a/c approaching zero. 

6 

i 
l ID axial crack (Rlt = I0) 

5 1  Data from EPRI NP-3607 8, NP-1951 

a/ t  

2 

iI 1 I f I I I 
0 0.I 0.2_ 0.3 0.4 0.5 0.6 0.7 
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FIG. 14--Line spring model results showing small a/c behavior for ID axial surface cracks in R/t = 

lO pipe. 
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T A B L E  1 - -Norma l i zed  stress-intensity factors at the deepest 
point of OD axial semielliptical surface cracks in R/T = 40 

pipe. 

F 

a/t 0.25 0.50 0.75 

A/C 

0.000 1.48" 2.64" 6.42" 
0.013 . . . 6.42 ~ 
0.017 2.64 h 
0.025 1.48 b " ' " 
0.040 1.44 b 2.29 b 4.62 b 
O. 100 1.30 b 1.84" 2.74" 
O. 150 1.24 b 1.62" 2.20 ~ 
0.200 1.20 1.52" 1.92 a 
0.300 1.17 1.38 1.65 
0.400 1.14 1.30 1.49 
0.667 1.09 1.17 1.27 
1.000 1.04 1.08 1.12 

aComputed in this study with the finite element  alternating 
method.  

~'Estimated values. 

D i s c u s s i o n  

T h e  f in i te  e l e m e n t  a l t e r n a t i n g  m e t h o d  h a s  b e e n  f o u n d  to y ie ld  s o l u t i o n s  t ha t  a r e  in g o o d  

a g r e e m e n t  wi th  t h o s e  o b t a i n e d  u s i n g  p u r e  f in i te  e l e m e n t  a p p r o a c h e s  w h e r e i n  t he  c r ack  is 

d i rec t ly  r e p r e s e n t e d  in t h e  f in i te  e l e m e n t  m e s h  a n d  t h e  c r ack  t ip  s i ngu l a r i t y  is i n c o r p o r a t e d  

81~ ,~  ~ N e w m a n  8, RaN (FLAGRO/NASA TM 80073) 
7 ~ Current results 

6 ~ OD semi-elliptical axial flaw 
R/t = 40 

5 k Internal pressure loading 

4 - \\ a/_t 

_ _ _  _ - . . . .  . . . . . .  
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0 0.1 0.2 0.3 0.4 
a/c 

FIG. 15 - -Compar i son  of current results with predictions from an equation proposed by Newman and 
Raju. 
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into the model via special crack tip elements. This is consistent with the findings of Raju, 
Atluri,  and Newman [11]. 

The alternating method has some advantages over the pure finite element approach in 
terms of computational efficiency but its primary advantage is ease of use. For a given crack 
geometry and a given level of accuracy, fewer finite element degrees of freedom are needed 
with the finite element alternating method. However, the cost savings associated with this 
reduction is often offset by the calculations for the analytical portion of the solution and by 
the need for several iterations. If only a single crack geometry is of interest, the alternating 
method may actually require more computational effort. The alternating method's biggest 
computational advantage comes from the fact that more than one crack geometry can be 
analyzed without having to again assemble and decompose the stiffness matrix. Each ad- 
ditional analysis requires only about 10% of the computation of the first analysis. 

With the ever more powerful computers that are becoming available, the most significant 
advantage of the alternating method is not computational savings, but the reduced effort 
(man-hours) needed to generate the finite element mesh, run the analysis, and get the stress- 
intensity factors. Whereas the pure finite element approach requires a completely new 
analysis for each change in crack position or size, such changes with the alternating method 
involve changing only a few geometric parameters in the input file of the initial analysis. 
The other time saving aspect of the method is that mixed-mode stress-intensity factors are 
output at arbitrarily selected points on the crack front without any of the inconvenience of 
the usual post-processing steps associated with contour or domain integrals, energy release 
rates, or nodal force methods for obtaining stress-intensity factors from finite element 
solutions. 

Conclusions 

The alternating method finite element program, ALT3D, can be used to compute accurate 
stress-intensity factor solutions for semielliptical surface crack problems. Based on verifi- 
cation calculations, it is believed that the solutions obtained for the R/t  = 40 pipe in this 
study are within 4% of the exact solutions. 

Stress-intensity factor solutions for outer surface (OD) axial surface cracks are dependent 
strongly on R/t  and a/c for long (a/c < 0.2), deep (a/t > 0.5) cracks in pipes with R/t  greater 
than 10. 

While it is believed that the current results are probably more accurate than the equations 
of Newman and Raju for R/t  = 40 pipes, the equations appear to be conservative and 
eliminate the inconvenience of interpolating from a table. For example, estimating stress- 
intensity factors for an a/t other than those considered in this study would be inconvenient 
and prone to large interpolation error if done using Table l .  It would seem that with some 
relatively minor fine tuning, the Newman and Raju equation could be made to more closely 
fit the available solutions. The largest part of the conservatism of the equations for larger 
a/c appears to be the result of developing the equations for inner surface (ID) cracks and 
then somewhat arbitrarily assuming that stress-intensity factors for OD cracks are 1.1 times 
those for ID cracks. 

The behavior of the normalized stress-intensity factor for a/c less than 0.05, in particular 
the slope of the curve as a/c approaches zero, is probably of little practical importance since 
cracks with such large aspect ratios would probably deviate significantly from the assumed 
semielliptical shape. For such cracks, use of the two-dimensional limiting value at a/c = 0 
would seem to be most appropriate. 
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ABSTRACT: An inverse technique was used to calculate through-thickness fatigue crack 
closure behavior. The through-thickness variation in crack opening stress-intensity factor was 
calculated by considering the variation in the three-dimensional stress-intensity factor, the 
variation in crack growth rate along the crack front, and a relationship between the crack 
growth rate and effective stress-intensity factor range (da/dN - AK,.,). The three-dimensional 
stress-intensity factor variation was obtained from an elastic finite element analysis of specific 
crack front profiles observed experimentally. The variation in crack growth rate along the 
crack front was obtained experimentally from comparison of observed crack front changes. 
The da/dN - AK~, relationship was estimated from high stress ratio, constant load amplitude, 
fatigue crack growth tests. The through-thickness crack opening stress-intensity factor results 
agreed with crack opening measurements obtained from fatigue striations, near-tip strain gages, 
and remote strain and displacement gages. 

KEY WORDS: fatigue (materials), crack closure, through-thickness, inverse calculation, fa- 
tigue striations, fracture mechanics 

The concept of plasticity induced fatigue crack closure was first introduced by Elber  
[1-2],  who observed that propagating fatigue cracks will close while still under a tensile 
load. The closure of the crack tip reduces the stress-intensity factor range over  which damage 
may occur. Elber  referred to the reduced range as the "ef fec t ive"  stress-intensity factor 
range. 

Fatigue crack closure behavior has been determined experimental ly through the meas- 
urement  of  the load or  stress-intensity factor at which the crack opens. The "s tandard"  
methods of measuring the crack opening stress-intensity factor involve the use of strain or  
displacement measurements  both near  and remote  from the crack tip, the location of which 
has been shown to influence the observed crack opening stress-intensity factors [3,4]. A 
recent A S T M  round-robin test program to measure fatigue crack closure illustrated the large 
variability seen in these types of measurement  techniques [5]. 
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The dependence on measurement location and large variability of the common crack 
opening stress-intensity factor measurement techniques are, in part, a result of the three- 
dimensional nature of fatigue crack closure behavior. With the exception of very thin sheets, 
where the constraint is nearly plane stress over the entire thickness of the sheet, the through- 
thickness variation is due to the change in constraint from the so-called plane stress at the 
surface to plane strain in the interior conditions. This variation in constraint may result in 
a higher crack opening stress-intensity factor at the surface than in the interior. Experimental 
evidence of a through-thickness variation in crack closure behavior was observed through 
the use of optical interferometry on transparent polymers [6,7]. Similar results were obtained 
in metals using ultrasonic transmission [8] and fatigue striations [9-I1].  

The techniques required to obtain the through-thickness description of the fatigue crack 
closure behavior are complex, time consuming, and require a considerable investment in 
equipment. The objective of this research was to develop a simpler means of describing the 
through-thickness fatigue crack closure behavior. The resulting inverse method can be ap- 
plied to many crack problems. Inverse techniques have been used to determine stress- 
intensity factors for complex geometries [12] and average crack opening loads [13]. 

The following section provides a description of the inverse crack opening stress-intensity 
factor calculation. Then the procedure is used to calculate the variation in crack opening 
load through-thickness for middle crack tension (MT) and compact tension (CT) specimens 
subjected to constant stress-intensity factor range loading. Comparisons of the calculated 
and experimentally measured crack opening loads are also presented. 

Experimental and Numerical Methods 

The inverse calculation required a combination of experimental and numerical informa- 
tion. The experimental portion of the calculation required a description of the crack front 
profile, the rate of change of the crack front profile, and relationship for the crack growth 
rate-effective stress-intensity factor range (daMN - AKeff), independent of any crack opening 
load measurement. An independent daMN - AKeff relationship could be approximated, for 
many materials, from constant load fatigue crack growth tests conducted at high stress ratios. 
At high stress ratios, the crack would be open for the entire loading-unloading cycle, thus 
the effective stress-intensity factor range would be nearly equal to the applied stress-intensity 
factor range (AK). 

The numerical portion of the calculation involves determining the through-thickness stress- 
intensity factor variation for the specific curved crack profiles observed experimentally. 
Three-dimensional stress-intensity factor solutions exist for part through cracks such as an 
elliptical surface crack [14]. Solutions for other crack configurations, such as curved through 
cracks, have been presented in the literature [15-17]. However, fatigue crack front profiles 
are highly irregular, requiring separate three-dimensional finite element analysis for each 
specific crack front profile. The three-dimensional equivalent domain integral (EDI) method 
[18,19], in conjunction with a 20-node isoparametric finite element analysis, was used in the 
present analysis. 

Experimental Crack Growth Measurements 

Constant load amplitude and constant stress-intensity factor range fatigue crack growth 
tests were conducted on 9.5 mm (0.375 in.) thick, 76.2 mm (3.0 in.) wide middle crack 
tension (MT) and compact tension (CT) specimens. The material used was 2024-T351 alu- 
minum alloy. The constant load amplitude tests were conducted at stress ratios of R = 0.1 
and R = 0.5, and the relationship between crack growth rate and stress-intensity factor 
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range was determined, as shown in Fig. 1. Power law curve fits were used to describe the 
crack growth rate behavior of only the upper portion, 9.9 -< AK ~ 16.4 MPa ~ (9.0 - 
AK _< 15.0 ksi ~ . ) ,  of the data for the two stress ratios (the range of interest for the crack 
opening load measurements). The resulting power law descriptions indicate that the slope 
exponent (n) is 2.8 for the two stress ratios examined (R -- 0.1 and 0.5). 

da 
- c A K "  (1) 

d N  

The crack growth rate-effective stress-intensity factor range relationship was approximated 
from the constant load amplitude fatigue crack growth tests conducted at a stress ratio of 
R = 0.5. The fatigue striation and near-tip strain gage measurements indicated that, for 
the R = 0.5 tests of the 2024-T351 aluminum alloy, a small amount of crack closure was 
present only at the surfaces, thus the effective stress-intensity factor range was approximately 
equal to the applied stress-intensity factor range. This approximation would slightly under- 
estimate the value of the power law constant (c), which would in turn lower the calculated 
fatigue crack opening load. The value of 4.0 • 10 -l~ for c was obtained from the R = 0.5 
tests. 

da 
dN 

(m/cycle) 

10"7 

AK 
(ksi m~i ch) 

1 10 100 
10 -4 

1o da 
dN 

(inches/cycle) 

-6 
10 

10 
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FIG. 1--Cons tan t  load amplitude crack growth rate results and curve fi t  for  2024-T351 aluminum 
alloy. 
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Constant stress-intensity factor range tests were conducted at AK = 13.8 MPa 
(12.6 ksi ~ . )  and a stress ratio of R = 0.1. The crack lengths were determined 

optically and the stress-intensity factor range was kept constant, within -+ 2%, through load 
shedding. Crack opening load measurements were made at several crack lengths throughout 
each test, and after each measurement a series of high stress ratio (R = 0.8) cycles were 
applied. It was found that a crack advance of 0.12 mm (0.005 in.), under a stress ratio of 
R ~- 0.8, was sufficient to produce a visibly lighter region of crack growth, as shown in Fig. 
2. The lighter regions, called marker bands, outline the crack front at the time of the 
application of the high stress ratio cycles. The inverse calculation could be made for each 
marker band. 

The variation in crack growth rate along the crack front was obtained by comparison of 
consecutive marker bands. The crack growth rate along the crack front was constant for the 

Direction of Crack 

FIG. 2--Photograph of  marker bands indicating the crack front observed in MT-2 specimen, constant 
AK = 13.8 MPa ~ (12.6 ksi ~,/7-~.), R = 0.1. 
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constant AK tests, as shown in Figs. 3 and 4. Figure 3 contains the digitized representations 
of two consecutive marker bands, and in Fig. 4 the two marker bands were superimposed 
by equating the crack lengths at one edge of the specimen. The superposition indicated that 
the crack front shape of the two consecutive marker bands was constant, thus the crack 
growth rate at each point along the crack front was constant�9 In general, the functional 
relationship describing the variation in crack growth rate along the crack front could be 
expressed as an experimentally determined function of position through-thickness (z). 

d a  
d - N  = Fcg r (Z )  ( 2 )  
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FIG. 4--Superposi t ionof the  two consecutive crack fron~ shown in Fig. 3 (note the abscissa scale 
change). 
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FIG. 3--Digi t ized crack fronts for two consecutive marker bands o f  MT-2 test, constant AK = 13.8 
MPa X/m (12.6 ksi ~/in.), R = 0.1. 
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Numerical Stress-Intensity Factor Calculations 

The description of the variation of stress-intensity factor along the crack front required 
a knowledge of the specific shape of the crack front. In general, closed form solutions do 
not exist for three-dimensional stress-intensity factors, thus a numerical approach was re- 
quired. In this study, the digitized crack fronts were incorporated into a three-dimensional 
finite element analysis model. Figures 5 and 6 show the three-dimensional finite element 
model of the specimen and the idealization of the crack front shown in Fig. 4, respectively. 
The model had 1024 twenty-node isoparametric elements and 5882 nodes, with three degrees 
of freedom per node. The stress-intensity factor was calculated at discrete points along the 
crack front using the EDI method. Details of this method are described in Ref 19. The 
stress-intensity factor variation of the right half (2z/B > 0) of the crack front shape given 
in Fig. 3 was calculated using a plane strain approximation, as shown in Fig. 7. The functional 
relationship describing the variation in stress-intensity factor along the crack front could be 
expressed as a known numerically determined discrete function of position through-thickness 
(Kee(z)). 

, / 

a / 

Z 

Domain used fol 
EDI Calculation 

FIG. 5--Finite element mesh used in the three-dimensional ~tress-intensity factor calculations, a/w = 
0.2. 
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FIG. 6--Crack plane view of the three-dimensional finite element mesh used in the stress-intensity 
factor calculation of the crack front given in Fig. 4 (symmetry assumed). 
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FIG. 7 - -  Three-dimensional stress intensity factor solution for the crack front shown in Fig. 4, symmetry 
about the midplane (2z/B = 0.0) assumed. 
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The effect of crack front shape (Fcf) could be obtained by normalizing the three- 
dimensional stress-intensity factor variation with respect to the two-dimensional stress- 
intensity factor (K2D) for the same crack length and geometry. 

Fcf(z ) = Kfe(z)/KzD (3) 

Inverse Method 

The inverse method of determining the crack-opening stress-intensity factor requires three 
functional relationships: 

1. A description of the crack growth rate along the crack front (for example, Fig. 3). 
2. A description of the daMN - AK~ff relationship (Eq 2). 
3. A description of the variation of the stress-intensity factor along the crack front 

(Eq 3). 

These three functional relationships (described in previous sections) allow the through- 
thickness variation in crack-opening stress-intensity factor to be determined from the point- 
wise application of Elber's [1,2] definition of the effective stress-intensity factor along the 
crack front, 

Kop~.(z)'~ 
aKce~(z) = Kmax(Z ) - Kope,(z) = gmax(Z) 1 - Kmax(Z ) ,] (4) 

where Kopen(Z)lKmax(Z ) is the normalized crack opening stress-intensity factor (equivalent 
to the normalized crack opening load) along the crack front. Allowing for a three-dimensional 
variation in stress-intensity factor and crack opening load and recognizing that the crack 
opening calculations were for tests conducted under constant AK (two-dimensional equiv- 
alent) conditions, Eq 4 may be expressed as 

for the study reported herein, 
The effective stress-intensity factor range was evaluated by measuring the crack growth 

rate at discrete points along the crack front and using the da/dN - AKc,  relationship, as 
illustrated in Fig. 8. The normalized crack opening load, (For(z)) can easily be obtained 
from Eq 5. 

Comparison with Experimental Measurements 

The crack opening loads calculated using the inverse technique were compared with crack 
opening loads determined experimentally using fatigue striations, near-tip strain gages, 
backface strain gages, and remote displacement gages, as described in Ref 20. The fatigue 
striations method was developed by Sunder et al. [9-11] and produced crack opening load 
measurements at discrete points through-thickness of the specimen. The near-tip strain gages 
provided an upper and lower bound on the through-thickness fatigue crack opening load 
behavior, detecting the high crack opening load at the surface and the lower crack opening 
loads in the interior. The backface strain gages and remote displacement gages produced 
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M a r k e r ~  d ~  
Bands ~ . . /  

/ 

N 1 N 2 AKef f 
FIG. 8--Schematic of  technique used to determine the s stress-intensity factor range from the 

crack growth rate along the crack front. 

an average crack opening load. The comparisons were made for MT and CT specimens 
subjected to constant stress-intensity factor range loading of AK = 13.8 MPa X/~ 
(12.6 ksi X/~7.) at a stress ratio of R = 0.1. 

Calculated crack opening loads, in terms of gopen/K . . . .  along the crack front are compared 
with experimental measurements for MT and CT specimens [20] in Figs. 9 and 10, respec- 
tively. The calculated crack opening loads in the interior agreed with the results from the 
fatigue striations and with the lower bound of the near-tip strain gages. The calculated crack 
opening loads at the surface agreed with the upper bound of the near-tip strain gage and 

Kopen 
Kmax 

0.5 

0.4 

0.3 

0.2 

. . . .  i . . . .  ! . . . .  ! . . . .  

i Inverse Calculation 
Fatigue Striations 

- - -  Displacement Gage 
Near Tip Strain Gage Signals 

0 . 1  . . . .  I , �9 �9 o ! �9 , i i ! �9 

-1.0 -0.5 0.0 0.5 

t 

.0 

2z/B 
FIG. 9--  Comparison q f  the calculated and experimentally measured through-the-thickness fatigue crack 

opening loads for a middle crack tension specimen at a crack length of  2a/w = 0.38, R = 0.1. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



DAWICKE ET AL. ON INVERSE CALCULATION OF CRACK CLOSURE 55 

open 

K m a x  

0.5 

0.4 

0.3 

0.2 

�9 �9 �9 I . . . .  ! . . . .  ! . . . .  

Inverse Calculation 
Fatigue Striations 

- -  - Backface Strain Gage j 
/ 

Near Tip Strain Gage Signals ] (  
�9 Upper Bound / r  
�9 Lower Bound / ~  

O , 1  , �9 �9 �9 I . . . .  I . . . .  I . . . .  

-1.0 -0.5 0.0 0.5 1.0 

2z/B 
FIG. lO--Comparison of  the calculated and experimentally measured through-the-thickness fatigue 

crack opening loads for a compact tension specimen at a crack length of  2a/W = 0.44, R = 0.1. 

followed the trend of the near-surface fatigue striation crack opening loads. The calculated 
through-thickness crack opening loads also agreed with the results of a three-dimensional 
elastic-plastic finite element analysis reported in Ref 21. Thus, the present inverse method 
provides an alternative method for calculating the crack opening load variation along the 
crack front. The measured through-thickness normalized crack opening loads (Kopen/Kmax) 
for the CT and MT specimens were similar, with values of 0.18 and 0.20 for the interiors 
of the MT and CT specimens, respectively. The calculated normalized crack opening load 
at the surface was 0.42 for the MT specimen and 0.47 for the CT specimen. The sharp 
increase in the crack opening load was confined to the region within 1.8 mm (0.07 in.) from 
the free surfaces (or 15% of the thickness) for both the CT and MT specimens. 

The variation in shape of the calculated through-thickness crack opening loads of the CT 
and MT specimens are a result of the differences in the crack front profiles. The CT specimen 
exhibited more tunneling and had a slightly greater difference between the crack length at 
the surface and midthickness. The crack front profile differences may be due to subtle 
inherent variations in the state of stress in front of the crack in the CT and MT configurations. 

Summary 

This study introduced an inverse crack opening load calculation technique capable of 
describing through-thickness fatigue crack closure behavior. The calculation provided ex- 
cellent agreement with experimentally measured through-thickness fatigue crack opening 
loads. The MT and CT specimens both exhibited a significant through-thickness variation 
in fatigue crack closure behavior, for constant AK, R = 0.1 conditions. The normalized 
crack opening load (Kopen/Kmax) of the MT specimen was 0.42 at the surface and 0.18 in the 
interior, while that of the CT specimen was 0.47 at the surface and 0.2 in the interior. The 
sharp increase in the crack opening load was confined to within 1.8 mm (0.07 in.) from the 
free surface (or 15% of the thickness) for both specimen configurations. 

The through-thickness variation in crack opening load is an important consideration in 
the understanding of fatigue crack closure and its effect on crack growth. The large through- 
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thickness variation in measured and calculated crack opening load may explain the variability 
seen in the "standard" crack opening load measurement techniques. Measurement tech- 
niques that characterize the overall crack closure behavior with a single crack opening load 
will have considerable variability depending on which region of crack closure is emphasized. 
The measurement techniques that monitor near-tip quantities will produce higher values 
due to the close proximity to the higher crack opening load at the surface. Far field mea- 
surements will produce lower crack opening loads as the influence of the interior dominates 
the overall behavior. 

The methods of experimentally measuring through-thickness fatigue crack closure be- 
havior are very difficult and time consuming. The fatigue striation method requires extensive 
fractographic analysis, and other experimental techniques produce only a partial description 
of the through-thickness behavior. The inverse calculation provides a method of estimating 
the through-thickness fatigue crack closure behavior for many conditions and materials in 
which plasticity induced fatigue crack closure is the predominant mechanism. The method 
does require some experimental information, which is easily available through the application 
of marker bands and high stress ratio constant load amplitude tests. The numerical calculation 
of three-dimensional stress-intensity factors requires considerable computing resources, but 
the availability of high-speed computers makes the solutions within the grasp of many 
researchers. 
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ABSTRACT: The origins and rationale for the three plane-strain fracture toughnesses defined 
by the new ASTM Test Method for Plane-Strain (Chevron-Notch) Fracture Toughness of 
Metallic Materials (E 1304-89) are reviewed. Kt~,w represents the toughness measured in a 
greatly simplified test, but it can be less accurate than Kt, and Kt,j. The test for Klv is complete 
with all the procedures and validity criteria necessary to assure accurate measurements of 
plane-strain critical stress-intensity factors. When a material exhibits a crack-jump behavior, 
the K~ procedure must be modified, and the toughness is called K~vj. This paper suggests that 
ASTM E 1304-89 toughness measurements can be used for the full range of applications 
appropriate to K k values measured by the ASTM Test Method for Plane-Strain Fracture 
Toughness of Metallic Materials (E 399-83). However, a material-dependent constant, equal 
to about three times the crack-tip plastic zone radius, should be added to the preexisting flaw 
size in calculations of crack stability. 

KEY WORDS: measurements, plane strain fracture toughness, chevron-notched specimens, 
metals, conservative calculations, fracture mechanics, standards 

In late 1989, ASTM formally adopted ASTM Test Method for Plane-Strain (Chevron- 
Notch) Fracture Toughness of Metallic Materials (E 1304-89) [1,2]. Attr ibutes of the new 
standard include simplified specimen preparat ion (no fatigue precracking), small specimen 
size, low cost per test, and the ability to measure the toughness at a more localized spot in 
the parent  material. Figure 1 shows the chevron-notched specimen configuration, and Fig. 
2 shows a schematic of a load-displacement test record. 

To the new user, a puzzling aspect of ASTM E 1304-89 may be the introduction of three 
new symbols, K~v, K~vj, and KIvM, for its quasistatically measured plane strain fracture 
toughnesses, none of which are claimed to be equivalent  to the Krc measured by ASTM 
Test Method for Plane-Strain Fracture Toughness of Metallic Materials (E 399-83). This 
paper therefore discusses the origins, significance, and usage of the three toughness values 
that ASTM E 1304-89 measures. 

Toughnesses Defined by ASTM E 1304 

Kt~M 

The original work on the chevron-notch test method envisioned using only the peak load 
in the test, PM, plus a specimen size dimension and a calibrated dimensionless constant  to 

1president, Valyn International, Albuquerque, NM 87112. 
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FIG. 1--  (a) Short rod and short bar chevron-notched specimens. (b) Side and plan views of the short 
rod. The load causes a crack to initiate at the point of the chevron and to advance downward through 
the shaded area, splitting the specimen in two. The toughness is measured when the crack front spans 
about one third of the specimen's B-dimension. 

calculate the toughness [3,4]. No fatigue precracking was required because a stable natural 
crack is created during the initial loading of the specimen well before the toughness meas- 
urement is taken. Also, no crack length measurement was required because it was shown 
analytically that the peak load should always occur at the same scaled crack length, called 
the critical crack length, regardless of the specimen material and the scaled specimen size. 
This resulted in an extremely simple fracture toughness test method that compared sur- 
prisingly well with K~o, especially for most brittle materials [5,61. 

The original chevron-notched "short-rod" test method has been adopted with few changes 
in ASTM E 1304-89, and its result is given the symbol KIvM, where the M stands for maximum 
load. The method is based on first principles of linear elastic fracture mechanics (LEFM), 
and it contains the minimum specimen size validity criterion, B ~> 1.25(K,vM/%) 2, to guard 
against too much plasticity in the specimen. Nevertheless, it lacks certain other validity 
checks to assure that LEFM conditions are sufficiently well satisfied for an accurate test 
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FIG. 21Schematic  of  a load-displacement test record ]:or a chevron-notched specimen with smooth 
crack growth behavior. Some data analysis definitions and constructions are also shown. 

result. Therefore, the user must be aware that under certain circumstances, K~vM can differ 
quite significantly from the inherently more accurate K~v and Kh, i measurements of toughness. 

Kiv 

The test for K~v was developed to improve test accuracy and to guard against sizable errors 
that can occur in the K~v M method when LEFM conditions are not well satisfied. The 
assumption that the peak load occurs at the critical crack length is not used in the K~v test; 
rather, the load, Pc, corresponding to the critical crack length is obtained from two unloading 
compliance measurements of crack length during the test (note unloading cycles in Fig. 2). 
Having two fixes on the crack length allows the load at the critical crack length to be found 
by interpolation. Thus, the load (Pc) used in the toughness calculation may not be the peak 
load (PM) in the test (Fig. 2), although it is usually close to p~.  One of the validity checks 
concerns the ratio of the peak load to the load at the critical crack length: If PM/Pc exceeds 
1.1, the test is invalid because the LEFM condition, PM = Pc, is violated by too large a 
degree. 

Another  validity check in the K~v test concerns the behavior of the unloading slopes during 
the test. If the slopes deviate too much from ideal LEFM behavior, then instead of being 
close to zero, the p defined in the test (Fig. 2) will be outside of its prescribed range, -0 .05  
~< p ~< +0.10, and the test is invalid. This criterion not only screens out specimens with 
too much plasticity, but also eliminates tests of specimens containing macroscopic residual 
stresses that are large enough to be detrimental to the test accuracy [7]. The minimum 
specimen size validity criterion, B ~> 1.25(Klv/O-y) 2, must of course also be satisfied. 

K i v j  

Although the chevron-notch geometry promotes stable crack growth even in the most 
brittle materials, the crack speed is uncontrollable in certain materials; it is either zero or 
very high. A load-displacement test record of such a material is shown in Fig. 3. The crack 
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CRACK JUMP POINTS 

O. 

MOUTH OPENING DISPLACEMENT 
FIG. 3--Load-displacernent test record for a chevron-notched specimen with crack-jurnp behavior. 

jump behavior does not correlate with material brittleness. One way of explaining the crack 
jump behavior is to suppose that the critical stress-intensity factor for crack propagation in 
the material is a function of the crack speed, as was measured in Plexiglas, for example, by 
Johnson and Radon [8]. A decreasing critical stress intensity with increasing crack speed 
(Fig. 4) leads to crack jump behavior. The crack-jump behavior is a property of as many 
as 30% of all materials tested thus far by the chevron-notch method. 

The primary reason for the KI,j distinction of crack-jump tests is that the crack jump 
behavior makes it impossible to follow the K~, test procedure. For example, the KI, method 
requires measurement of the crack-advancing load at the critical crack length, ac. This is an 
easy task in smooth crack growth materials. In a crack-jump material, however, the critical 
stress-intensity factor must be calculated from the load required to initiate a crack jump 
from a crack-arrest point, and one cannot cause a prior crack jump to arrest precisely at 
ac. Therefore, compliance measurements are made of the crack-arrest points that happen 
to occur within the central region of the specimen, and a calibration curve that is a function 
of crack length, rather than a calibration constant corresponding to ac, is used to calculate 
KI.j . 

Another major difference in the K~vj procedure is the omission of the p validity check 
(see preceding section on Kx,.). The value of p should be calculated from unloading slopes 
that start from a crack-advancing load, which is where the crack-tip plastic zone is at its 
maximum. In a crack-jump material, then, one would need to load the specimen up to the 
crack-jump load without initiating the jump, and then perform the unloading slope meas- 
urement. Because of scatter in the jump-initiating load, this is not possible. Performing 
unloadings from loads less than the jump-initiating loads would incur substantial errors, 
because the plastic zone size at the crack tip varies as the square of the applied load. 
Therefore, the value o f p  is not measured in the KI,,j procedure, and the p validity check is 
omitted. This unavoidably makes the quality of the K~,j measurement somewhat less 
than that of K~,, and adds further justification for the use of a separate symbol for the 
measurement. 
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FIG. 4--The critical stress-intensity factor can be a function of the crack speed. A decreasing Kc with 
increasing crack speed leads to the crack-jump behavior. 

Usage of ASTM E 1304 Test Results 

Discussion 

For the last two decades, ASTM E 399 has been the only recognized standard for measuring 
the plane-strain fracture toughness of metallic materials under quasi-static loading condi- 
tions. The E 399 test result, K~c, is recognized world-wide as "the" plane-strain fracture 
toughness. Now, however, the new E 1304 standard has introduced three additional symbols 
for plane-strain fracture toughness of metallic materials under quasi-static loading, none of 
which are necessarily equivalent to the ASTM E 399-83 K~c. What are the potential uses of 
these new values of fracture toughness? 

One use is for the ranking of materials according to their plane-strain fracture toughness. 
This allows one to evaluate the effects of metallurgical variables or fabricating operations 
on the fracture toughness of new or existing materials. As far as is known, rankings of 
materials for these purposes by E 399 and E 1304 tests have always been the same. Another 
use might be for predicting the values of K~c of various lots of a given alloy, for example. 
According to E 1304, this is recommended only after an experimental study has been made 
to establish the correlation between K~c and the E 1304 result for the alloy of interest. A 
further important use concerns the ability of the chevron-notch test to measure the toughness 
at a much more localized spot in a parent material than has been possible using the E 399 
test. This capability results from the smaller minimum chevron-notch specimen size for a 
valid test, and from the fact that the crack-front length at the toughness measurement spans 
only about one third of the specimen's B-dimension (see Fig. 1). This allows one to measure 
the toughness variation through the thickness of tough plates of aluminum, for example, as 
was done in Refs 9 and 10. 

The question also arises as to whether the ASTM E 1304-89 measurements of plane-strain 
toughness can be used directly in calculations of crack stability in a structure, as the K~c of 
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ASTM E 399-83 is used. The answer is yes, but the calculation should be revised slightly. 
The following paragraphs discuss the basic differences between the E 399 and E 1304 test 
methods, and suggest a procedure for crack stability calculations using E 1304 test results. 

The ASTM E 399-83 test philosophy is based on measuring the critical stress-intensity 
factor necessary to produce the first motion of a pre-existing fatigue crack in the test material. 
One of the problems has been the definition of "first motion," since the crack must undergo 
at least a microscopic advance even by the time the load is raised to the fatigue pre-cracking 
level; otherwise, the fatigue pre-crack would not have grown. The difficulty is treated in E 
399 by using an operational definition wherein first motion is said to occur either at crack 
instability or at the 5% offset point, whichever comes first. In either case, the toughness is 
ideally measured at some point on the plane-strain R-curve of the material, rather than 
always at the plateau of the plane-strain R-curve. 

The ASTM E 1304-89 test, on the other hand, measures the critical stress-intensity factor 
corresponding to the advance of a steady-state crack [11], that is, the stress intensity at the 
plateau of the plane-strain R-curve [12]. This is one reason why E 1304 toughnesses often 
tend to be somewhat larger than E 399 K~ values. 

Most crack stability calculations that use Kk values involve situations in which an assumed 
flaw in a structure, usually a fatigue crack, is loaded until it becomes unstable, leading to 
catastrophic failure. The failure occurs at a stress-intensity factor somewhere on the R-curve 
of the material [13]. The similarities between the K~c test and the assumptions in the cal- 
culation generate some faith in the calculated results, although the R-curve stress intensities 
corresponding to K~c and to the catastrophic failure point may not be the same. 

Given that ASTM E 1304-89 test results correspond to the plateau of the plane-strain 
R-curve, a simple substitution of Kxv for Kk might give a nonconservative result in a crack 
stability calculation. Since E 1304 tests are less expensive than E 399 tests, it would be an 
advantage to have a calculation procedure in which E 1304 test results could be used in 
conservative crack stability calculations. 

A Conservative Calculation Procedure 

An easy way to make use of ASTM E 1304-89 test results in crack stability calculations 
is to follow exactly the same procedure that would be used in a calculation involving Krc, 
with the following changes: (l) use the E 1304 toughness (preferably K~v) in place of K~c, 
and (2) substitute a~ = a0 + 2~as for the size, ao, of the preexisting flaw or fatigue crack 
in the structure. Here, Aas is the distance that a fatigue precrack must advance under 
monotonic loading before its R-curve reaches the plateau value corresponding to the E 1304 
stress intensity (Fig. 5). The conservatism of this approach is shown next, after which the 
evaluation of Aas is discussed. 

According to R-curve theory, the load that will cause a structure with a precrack to 
catastrophically fail can be estimated graphically from the R-curve for the material [13-15]. 
First, the R-curve is plotted starting at the precrack length, a0, in the structure (Fig. 5). 
Then stress intensity (K) versus crack length (a) curves are plotted on the same graph, each 
curve assuming a different load on the structure containing the crack, until the curve is 
found that is tangent to the R-curve (Line OA in Fig. 5). The point of tangency defines the 
critical stress-intensity factor, and the load of the tangent K versus a curve is the failure 
load. The slopes of the K versus a curves increase with increasing loads, of course. 

From Fig. 5, it can be seen that if Kiv is used along with the original crack length, ao, to 
define the failure load, one would arrive at the failure load corresponding to Line OB. Since 
Line OB has a steeper slope than Line OA, the estimation of the failure load would be too 
high, a nonconservative result. However, if the crack-advance distance to attain the steady- 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



64 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

B A 
C 

KIv__-----2" ,'%'/ 
K vs a LINES FOR J ~ j t ~ /  = 
THREE DIFFERENT ~ . . . . .  ~ . . . .  
LOADS \ \ ~ .  J ~ / "  r ~ 'PLANE-S;RAIN 

! ~ a  s ..! 

! 
O a o a o 

CRACK LENGTH, a 
FIG. 5--Schematic o f  a plane-strain R-curve with stress intensity versus crack length (K versus a) lines 

for three particular loads. Straight lines rather than the more usual curved K versus a relationships are 
used here for  illustrative purposes. 

state stress intensity, Aa,, is added to a0 before making the calculation, one would arrive at 
the load corresponding to Line OC as the failure load. In this case, since Line OC has a 
smaller slope than Line OA, the estimation of the failure load would be smaller than the 
actual failure load, which would be a conservative result. It is apparent that using a; = 
a0 + Aa, in place of a0 will always give a conservative estimation of the failure load for any 
realistic shapes of the R-curve and the K versus a curves, and for any initial crack length, 

a 0 �9 

Since E 1304 measures plane-strain fracture toughnesses, calculations using its test results 
are most accurate in cases involving only plane strain. However, as with the application of 
K~c to real-world problems, one can make use of the fact that the toughnesses of metals are 
probably always the least in plane strain. Therefore, in cases where the plane-strain constraint 
is imperfect, one should obtain conservative estimates of failure by using plane-strain tough- 
ness values. 

Est imat ing  Aa~ 

The best way to obtain Aa, would be to determine the plane-strain R-curve of the material 
and to measure Aa, directly. Unfortunately, as pointed up by Irwin and Paris [16], a generally 
recognized method for measuring plane-strain R-curves has yet to be established, although 
one is certainly needed. 

The author has made rough measurements of the plane-strain R-curve of a 4340 steel 
using fatigue precracked chevron-notched specimens. The steel was heat treated to a hardness 
of HRC 30, and had a yield strength of 862 MPa (125 ksi). The chevron-notched specimens 
had a diameter of 25.4 mm, and were machined from the center of a 50.8 mm diameter rod 
of the specimen material. The axis of the specimen was the same as the axis of the parent 
rod. The measured/(iv was 122 MPa Vm. 

A schematic of the load versus specimen mouth-opening-displacement record of the tests 
is shown in Fig. 6. The upper-most envelope of the record, including the dashed-line portion 
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NORMAL TEST RECORD 
(NO FATIGUE) 

LOAD 

FATIGUE _ 
LOAD 

MOUTH OPENING DISPLACEMENT 
FIG. 6--Schematic of the chevron-notched specimen test sequence used to measure the plane-strain 

R-curves of 4340 steel and 6061-7"6 aluminum. 

of the smooth upper curve, denotes the load-displacement plot for a normal chevron-notch 
test in which steady-state crack conditions (constant Kiv) prevail. To measure the R-curve, 
the specimen was loaded to crack initiation at the point of the chevron (Point A in Fig. 6), 
and further loaded to some Point B where the crack had already grown a short distance. 
From Point B, the specimen was fatigue cracked at a load that produced a stress-intensity 
factor of no more than 0.6 Kiv at the crack tip, according to normal ASTM E 399-83 fatigue 
precracking procedure. The crack advance distance during fatigue cracking was determined 
by the compliance method. Following the fatigue cracking, the load was increased (Point 
C to Point D in Fig. 6) until it again matched the normal steady-state load-displacement 
envelope. Using the compliance method, a number of KR versus Aa points were determined 
for the data trace from Point C to Point D and beyond. The average maximum of the KR 
versus Aa curve was taken as Kiv, and the resulting R-curve data for two specimens in terms 
of KR/K~v versus Aa are shown in Fig. 7. It can be seen that Aa, for this material is a little 
over 2 mm. 

One would expect that Aa, values should tend to vary with the size of the plastic zone 
that is present at the tip of the steady-state crack, because all effects of the fatigue precracking 
on the crack tip configuration and stress intensity should be lost after the crack advances 
by a distance equal to a very few plastic zone radii [17]. The Irwin plane-strain plastic zone 
radius [18], given by 

r~, = (1/dr) ( K J % )  2 (plane strain) (1) 

for the 4340 steel of Fig. 7 is about 1 mm. It can be seen that the R-curve reaches the 
plateau value after a crack advance of about 2r,.. 

Very recently, Johnson and McDermott [19] have made plane-strain R-curve measure- 
ments on 6061-T6 aluminum using the same procedure as just described. Their results 
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FIG. 7--Plane-strain R-curve data for two 4340 steel specimens. 

indicate that the R-curve for this material approaches the plateau value at a crack advance 
distance of about 3r v or less. 

If plane-strain R-curve measurements  were available on various other materials, it might 
be possible to make a generalized statement of the form 

Aa, <~ n,~, (2) 

where n is a number  of the order of 3, for example. However,  no other reasonably accurate 
plane-strain R-curve measurements  of metals are known to the author. The literature does 
contain a number  of R-curve measurements  under  conditions approaching plane stress. It 
is of interest to evaluate n for the case of plane stress, where the numerical constant  in the 
Irwin ry equation is three times as large 

r, = ('/2nv) ( K , . I m f  (plane stress) (3) 

From plane-stress data covering a luminum alloys [20-23], steels [2122,24], and a t i tanium 
alloy [25], a good value of n appears to be 3. This is confirmed by Irwin and Paris [16], who 
noted that the plane-stress R-curve is generally within 5% of its plateau value after a crack 
growth of only about two plastic zone radii. 

According to McCabe [26], plane-strain R-curves rise to the plateau value in a much 
shorter crack advance than their plane-stress counterparts.  This would certainly be the case 
if n in Eq 2 is the same for both plane stress and plane strain, because the plastic zone size 
can be easily an order of magnitude smaller in plane strain than in plane stress, z Thus, 
McCabe's  observation is consistent with a constant  value of n between plane stress and 
plane strain. 

To summarize, the plane-strain R-curve data on 4340 steel and 6061-T6 a luminum,  the 
published plane-stress R-curve data on a number  of materials, and McCabe's  observation 

2The plane-stress toughness, Kc, is larger than the plane-strain toughness, K~,, and the constant in 
the equation for the plane-stress r,. is 7_~v, whereas it is V6~ for plane-strain. Thus if Kc is twice as large 
as K~v, for example, the plane-stress r,. will be twelve times as large as the plane-strain r~. (see Eqs 1 
and 3). 
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concerning the much smaller Aa, in plane strain than in plane stress are all consistent with 
an upper limit of Aa, of no more than about 3r~. in plane strain. Therefore, in crack stability 
calculations using chevron-notch test results, one might consider setting Aa, equal to 3r~. if 
direct measures of Aa, are not available. 

For the sake of simplicity, the discussions here have glossed over some fine points, such 
as the distinction between physical crack length and effective crack length. Also, although 
it does not affect the analyses or conclusions of this paper,  it should be mentioned that the 
crack extension, a, in a chevron-notched specimen is not constant along the crack front 
because of the triangular notch. Hopefully, this paper will stimulate further thinking 
and research that will refine the usage of ASTM E 1304-89 test results in crack stability 
calculations. 

Conclusions 

Although the introduction of three new symbols by ASTM E 1304-89 for plane-strain 
fracture toughness may at first seem unfortunate, the different symbols are necessary and 
beneficial in denoting the quality and the character of the different measurement procedures 
prescribed in the standard. Measurements of K~vM are the simplest to make, but can contain 
hidden errors. Measurements of Kiv should be done whenever careful, accurate determi- 
nations of plane-strain toughness are required. However, if a crack-jump behavior of the 
material prevents the usage of the K~v test procedure, the toughness can be well measured 
by the K~vj procedure. 

In addition to using E 1304 toughness tests for quality control, material ranking, material 
screening, etc., it is suggested that chevron-notched specimen tests can be applied to any 
situation that would otherwise require measurements of E 399 Krc values, including engi- 
neering calculations of crack stability. However, in crack stability calculations, the assumed 
preexisting flaw size, ao, should be enlarged by the crack advance distance, Aa,, required 
for a fatigue precrack to evolve into the steady-state crack configuration. Various lines of 
evidence suggest that Aa, is generally less than three times the crack-tip plastic zone radius, 
r~.. Plane-strain R-curve measurements on a number of different materials are recommended 
to further test and refine the relationship between Aa, and r,,. 
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ABSTRACT: This paper presents a comparison among stress-intensity factors for mixed-mode 
two-dimensional problems obtained through three different approaches: displacement corre- 
lation, J-integral, and modified crack-closure integral. All mentioned procedures involve only 
one analysis step and are incorporated in the post-processor page of a finite element computer 
code for fracture mechanics analysis (FRANC). Results are presented for a closed-form so- 
lution problem under mixed-mode conditions. The accuracy of these described methods then 
is discussed and analyzed in the framework of the their numerical results. The influence of 
the differences among the three methods on the predicted crack trajectory of general problems 
is also discussed. 

KEY WORDS: stress-intensity factors, linear elastic fracture mechanics, displacement corre- 
lation, J-integral, modified crack closure, local mesh refinement, crack trajectory, history of 
stress-intensity factors, fracture mechanics, fatigue (materials) 

The accurate numerical computation of stress-intensity factors is a key factor in the 
successful application of linear elastic fracture mechanics (LEFM) concepts. In the following 
sections, a brief introduction to three different approaches to stress-intensity factor (SIF) 
calculation is presented. The approaches are displacement correlation, J-integral, and mod- 
ified crack-closure integral. These capabilities are incorporated into the program, FRANC 
[1], taking advantage of a sophisticated data structure organization and graphics visualization 
environment. Distinct values of stress-intensity factors obtained from each approach may 
be calculated easily and compared in an efficient and elegant way. Such a comparison 
provides a convenient quality-assurance check during the performance of crack growth 
simulations governed by LEFM. 

Displacement Correlation Technique 

The idea behind this procedure is to correlate obtained numerical solutions for displace- 
ments at specific locations with the analytic solutions that are expressed in terms of the 

1Graduate students and professor of Structural Engineering, respectively, Department of Structural 
Engineering, School of Civil and Environmental Engineering and Program of Computer Graphics 
Fracture Group, Cornell University, Ithaca, NY 14850. 
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70 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

stress intensity factors. The type of element used to estimate the numerical values of the 
displacements is of particular interest. For quarter-point singular elements [2], the crack 
opening displacement (COD) profile at x = r is given by 

COD(r) = (4u,. j_ 1 - u~.i 2)~/-f (1) 

Where Uy 4_~ and uy 4 2 are the relative displacements in the X2 direction at locations j - 
1 and j - 2, and L is equal to Aa (Fig. 1). 

The analytical expression for the COD at x = r, neglecting higher order terms, is the 
following 

//K + 1\ [ 7 -  
C O D ( r )  = (2) 

where K is 

K = 3 - 4v inplane strain, and 

3 - -  l,' 

K - 1 + v inplane stress 

and G is the shear modulus. 

X2,Y 

~ / ~ . ~  / Xl, x 

Y 

FIG. 1--Crack-tip rosette of  quarterpoint elements. 
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By equating the numerical expression (Eq 1) to the analytical one (Eq 2), values of Mode 
I stress-intensity factor can be evaluated by 

K1 = \ 7 7 / / ~ - L -  ( 4 . , , ,  , - ,.,,, ~_ ~) (3) 

Similarly for Mode II, the COD is replaced by the crack sliding displacement (CSD) and 
following the same steps just described 

KII = ~ (4Uxd-1 - Ux4-2) ( 4 )  

Where ux4 1 and u~,j 2 are the displacements in the Xl direction at locations j - 1 and 
j - 2 (Fig. 1). 

A more detailed discussion of the displacement correlation technique and types of singular 
elements can be found in Refs 2, 3, 4, and 5. The displacement correlation technique had 
been so far the only procedure available to compute stress-intensity factors in FRANC. This 
method has now been augmented with the two techniques described next. 

J-Integral Formulation 

As proposed by Rice [6], the components of the J-integral for two-dimensional problems 
are defined by the familiar expression 

Jk : lira ~ ~ W n k -  %Ox--~kn, dF (5) 

where k varies from 1 to 2 and F~ is a contour of a vanishing radius, e, surrounding the 
crack tip. Usually, 1 and 2 correspond to the local crack-tip axes as displayed in Fig. 2. 

The equivalent domain integral (EDI) representation [7] will be used here. The main 
advantage of this alternative is to replace the integration along the contour with another 

X2 

n 

+ 

X l  

r0 
F = F o + F s - F ~  + 

FIG. 2--Crack-tip contours. 
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over a finite size domain. This approach is very attractive in a finite element environment 
where routines to perform numerical integration over a domain of finite size are always 
available. The aim of the transformation of the integration domain is to express the integral 
over F~ in terms of the closed contour, F. This objective is achieved when the integral over 
F0 and F~ vanishes. A continuous function, q ( X 1 , X 2 ) ,  is employed to avoid the integrations 
along the mentioned contours. This function assumes unit value at the crack tip and zero 
along F0 and F,. The variation of q ( X ~ , X 2 )  inside the domain is completely arbitrary. By 
introducing the weight function, q, the standard definition of the J-integral can be rewritten 
a s  

(6) 

The preceding integral is performed along a closed contour and, therefore, can be written 
in terms of a domain integral by means of the divergence theorem. The final form of the 
J-integral in terms of the EDI representation is given by 

= - - % - -  d A  - I % - - I r  q d A  
ax, a~k ~ ~ ox~ L OxkJJ 

(7) 

It can be noticed that the second term of the preceding integral expression vanishes for 
elastic problems. Versions of Eqs 6 and 7 were first proposed by deLorenzi [8] and refined 
by Li et al. [9]. In the case of a homogeneous, isotropic, linear elastic material surrounding 
the crack tip, the relationship among the two components of the J-integral and the Modes 
I and II stress-intensity factors is established as [10] 

K + I  
J~ - (K~ + K~,) (8) 

8G 

J2 - 2(~ + 1)KIKn (9) 
8G 

The EDI J-integral was implemented in FRANC.  An isoparametfic displacement finite 
element formulation is used in this program. This makes the calculation of the gradients of 
displacements, strains, strain energy density, and the q function an easy task if the nodal 
values of these quantities are known. Of course, displacements are nodal values and the 
artificial weight function, q, may be provided by its nodal values. However, a problem arises 
when estimating the gradients of strains and of the strain energy density. An extrapolation 
from the Gauss point values to the nodal ones is employed to overcome this difficulty. This 
extrapolation may be performed by a least-square fit of the Gauss point values [11]. Once 
the nodal values of the mentioned quantities are obtained, the procedure to obtain their 
gradients at the Gauss points is straightforward, because the Jacobian of the isoparametric 
mapping has been computed already for the finite element analysis. After computing each 
term entering the integral expression (Eq 7), the final step is to perform a numerical inte- 
gration using Gaussian quadrature (order 2 for the current implementation) over the ele- 
ments belonging to the domain. It should be pointed up, however, that the second part of 
Eq 7 vanishes for elastic materials and that in this case the extrapolation has no effect on 
the values of the J components. Therefore, the second term in Eq (7) will be neglected in 
the calculations being presented later. 
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The user has complete control over the domain of integration, being able to change it 
interactively and reperform the calculations at his or her convenience. The internal values 
of the weight function, q, may be also controlled by the user. The default value for these 
values of q is one. Values of Jl and J2 per unit thickness with respect to the local crack-tip 
axes are provided. If the problem is linear elastic, Modes I and II stress-intensity factors 
are calculated from the J-integral components. It should be pointed up that the J-integral 
is commonly used to characterize the stress and strain fields around the crack for certain 
nonlinear material constitutive relationships. Obviously in these cases, values of stress- 
intensity factors have no meaning and, therefore, are not calculated. 

Modified Crack-Closure Integral 

The modified crack-closure integral method was first proposed by Rybicki and Kanninen 
[12]. By using this approach, it is possible to obtain the energy release rate values for Modes 
I and II, separately. The idea is to use Irwin's concept of crack-closure integral taking a 
virtual crack extension tending to zero in the limit and admitting that the displacement field 
ahead of the crack tip can be approximated by the one behind it. This simplification is very 
important because with only one analysis step the energy release rates can he estimated. 
Actually, in the computation of the crack-closure integral, two complete analyses are nec- 
essary: one to obtain the stress field ahead of the crack before propagation and another to 
compute the displacement field after a virtual crack extension is introduced. The crack- 
closure concept is very useful when dealing with cracks in heterogeneous materials. No 
assumption of isotropy or homogeneity around the crack is necessary. The energy release 
rate is estimated only in terms of the work done by the stresses (or equivalent nodal forces) 
over the displacements produced by the introduction of a virtual crack extension. As shown 
by Buchholz [13], the crack-closure concept may be applied in mixed-mode problems to 
estimate the direction of propagation. Buchholz et al. also have shown the applicability of 
the method for orthotropic materials and interface cracks [14 ,15] .  

The expressions for G~ (potential energy release rate in Mode I) and Gn (potential energy 
release rate in Mode II) may be obtained according to Irwin as 

G , =  lim 2 s ] ~ ~ 0 8 a  x= ~%y(r  = x, 6 = 0, a)u~.(r = ~a - x ,  do = Ir, a + ~ a ) d x  (10) 

G I I  = lim 2 s 1 ~ o  Sa  =o 2 % y ( r  = x ,  (b = O , a ) u , ( r  = 8a - x ,  do = ~ r , a  + ?3a)dx (11) 

where %y and %:. are shear and normal stresses ahead of the crack tip, and Ux and G are 
the displacements with respect to the local tip axes X1 and )(2, respectively. 

Self-similar virtual crack extension, 8a, and the distribution of normal stress ahead of the 
crack tip is shown in Fig. 3. 

Stress-intensity factors can be related to the values of the potential energy release rates 
through the following expressions in the case of plane strain and self-similar propagation 

K + I  
G~ - K~ (12) 

8G 

K + I  
G~ - Kn (13) 

8G 
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Uy (r=x+Sa,r a +Sa) 

A X2'Y 

. . . . .  " X ,X 
~ . ~ ' x ' ~ a -  x J 

FIG. 3--Analytical crack-closure integral method. 

In FRANC,  a rosette of quarterpoint finite elements is placed around the crack tip (Fig. 
1) to capture the singularity of the stress and strain fields. As shown by Ramamurthy et al. 
[16], the values of G1 and GH through a modified crack-closure approach can be rewritten 
in terms of the equivalent nodal forces, F s and F~, and the relative nodal displacements, u x 
and Ux (Fig. 1): 

GI : ~ +(C2~F, , + Cs + C23~.]+eiu,4_2] (14) 

+(C2,Fx4 + C22)~..i+, + C23)~xo+z)Ux4-2J (15) 

where 

33v 21v 21~ 
CI~ - 2 52 C22 - 4 17 Ct3 - 2 32 

-33~r 2Dr -217r 
C21 - 8 + 14 C= - 16 3.5 C23 - -  8 Ji- 8 

The results obtained by Ramamurthy et al. [16] for a Q8 quarterpoint element can be 
used for the T6 elements used in FRANC once the singularity, 1/X/7, is captured in both 
types of elements. The obtained formula should provide better results in the limit Aa --~ 0, 
where Aa is the radius of the rosette of singular elements around the crack tip. 

E x a m p l e s  

To compare the use of the presented techniques for stress-intensity factor computation, 
a closed-form example is performed. This example consists of a large plate with an inclined 
crack at its center (Fig. 4) for which stress-intensity factors are known in closed form (B is 
taken such that finite size effects can be neglected) 

KT = ~ sin2~X/-~ 

KH = cr sin 13 cos 13X/-~ 
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X 

FIG. 4 - - E x a m p l e  1. 

By varying the angle [3 distinct levels of mixed-mode solutions are considered. For  [3 = 
90 ~ a pure Mode  I problem is provided for example.  Therefore ,  taking different values for 
13, it is possible not only to establish a comparison among the described techniques in terms 
of accuracy, but also to consider the effect of mixed-mode conditions on the numerical  
results. 

Plane stress analyses are per formed and results for [3 angles of 90, 60, 45, and 20 ~ are 
presented (see Tables 1 through 4). Different  levels of local mesh ref inement  around the 
crack tips are considered in order  to verify convergence.  Subdivisions of the initial rosette 
of singular elements with the ratio 0.5 are introduced in each mesh ref inement  step (Fig. 
5). The basic noncracked model  used is a 10 by 10 grid of Q8 finite elements.  The cracks 
then are introduced using F R A N C  capabilities. The finite e lement  meshes obtained for 
[3 = 90 and 60 ~ are displayed in Figs. 6 and 7, respectively. For  the remaining examples,  
the number  of equations,  nodal points, and elements  are of the same order. 

It can be observed that the results obtained through different methods are consistent, 
al though distinct levels of accuracy are achieved depending on the mesh ref inement  intro- 
duced and on the amount  of mixed-mode present. For pure Mode  I, J-integral  and modified 
crack-closure integral,  both energy-based approaches,  provided equivalent  results in terms 
of accuracy versus mesh refinement.  The values obtained with displacement correlation 
converged toward the theoretical  ones, but much more slowly. The observed inaccuracies 
in Mode  I stress-intensity factors through the displacement correlat ion technique are found 
to be consistent with the calculations by Banks-Sills and Bor tman [17]. 

TABLE 1- -For  [3 = 90 ~ the theoretical values o f  the stress.intensity factors are: K~ = 19.47 MPa 
and Kn = O. MPa  X/m. 

Displacement Correlation J-Integral 
Mesh 
Refinement K~ Kl~ K~ Ku KI Kn 

Modified Crack Closure 

1 21.54 - 0.01 20.93 a - 0.00" 19.27 - 0.02 
2 20.63 - 0.00 19.68 - 0.00 19.44 - 0.03 
3 20.11 - 0.00 19.61 - 0.00 19.51 - 0.02 
4 19.86 - 0.00 19.58 - 0.00 19.52 - 0.02 
5 19.74 - 0.00 19.54 - 0.00 19.52 - 0.02 

"Only singular elements in the integration domain. 
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TABLE 2 - - F o r  13 = 60 ~ the theoretical values o f  the stress-intensity factors are: K~ = 14.60 MPa 
~-m and Kn = 8.43 MPa ~/m. 

Mesh Displacement Correlation J-Integral 

Refinement K~ Kn K~ K, K~ K. 

Modified Crack Closure 

1 16.08 8.77 16.45" 7.00" 14.51 8.28 
2 15.41 8.40 15.29 6.81 14.64 8.45 
3 15.01 8.21 15.15 6.9g 14.67 8.46 
4 14.84 8.10 15.04 7.10 14.67 8.46 
5 14.74 8.03 14.99 7.15 14.67 8.45 

"Only singular elements in the integration domain. 

TABLE 3 - - F o r  fi = 45 ~ the theoretical values o f  the stress-intensity factors are." KI = 9.74 MPa 
and Kn = 9.74 MPa ~ .  

Mesh Displacement Correlation J-Integral 

Refinement K~ Kll K I KH KI Kn 

Modified Crack Closure 

1 10.79 10.11 12.07 ~ 8.00" 9.73 9.59 
2 10.31 9.70 11.11 7.71 9.83 9.76 
3 10.05 9.48 10.99 7.77 9.86 9.76 
4 9.93 9.35 10.90 7.81 9.86 9.75 
5 9.88 9.27 10.85 7.86 9.86 9.71 

"Only singular elements in the integration domain. 

TABLE 4 - - F o r  fi = 20 ~ the theoretical values o f  the stress-intensity factors are." Kj = 2.27 MPa 
and K .  = 6.26 MPa X/-m. 

Mesh Displacement Correlation J-Integral 

Refinement K~ K~ K~ K~ K~ KH 

Modified Crack Closure 

1 2.49 6.52 3.97" 5.93" 2.31 6.29 
2 2.41 6.24 4.34 4.69 2.33 6.29 
3 2.34 6.10 3.32 5.42 2.33 6.33 
4 2.32 6.01 2.91 5.62 2.33 6.31 
5 2.31 5.97 2.67 5.71 2.33 6.29 

"Only singular elements in the integration domain. 

It was observed for this example that the J-integral approach loses accuracy for mixed- 
mode problems compared to the other two methods. This effect is more pronounced, the 
larger the relative value of Mode II stress-intensity factor is with respect to Mode I. It may 
be explained by the fact that in the J-integral derivation self-similar crack extension is 
assumed. The separation of the symmetrical and antisymmetrical fields as proposed by Bui 
[18] should improve the results. This approach has been applied by Atluri et al. [19,20] with 
highly accurate results for mixed-mode problems. In addition Eischen [21], and Kienzler 
and Kordisch [22] suggested improved methods for obtaining J-integrals for mixed-mode 
problems. These modifications and decomposition techniques permit the use of the J-integral 
and EDI approaches for a wide range of linear and nonlinear deformation crack problems. 
Another important feature that may be observed for the J-integral values is that, although 
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(before) (after) 
FIG. 5 - -Loca l  mesh refinement. 

not as accurate, they seem to indicate bounds to the theoretical values. When the mesh is 
refined, the new calculated values indicate the direction of convergence for both Modes I 
and II stress-intensity factors. It should be pointed up that this kind of behavior is not 
observed for Mode II values calculated through the displacement correlation technique. 
Actually, for all the [3 angles (different from 90~ the displacement correlation Mode II 
values started slowly diverging from the expected value when a local mesh refinement was 
introduced. Concerning the domain of integration for J-integral, it may be concluded that 
if only singular elements are used, the accuracy is compromised. 

The modified crack-closure integral showed very good performance for all the applied 
mixed-mode conditions. Very accurate results were obtained for coarse meshes in all tested 
cases. Results oscillated around the theoretical values, however, without losing much ac- 

,4 

\ 

FIG. 6--Finite element mesh (f~ - 90 ~ (992 equations, 498 nodes, and 186 elements). 
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FIG. 7--Finite element mesh (~ = 60 ~ (944 equations, 474 nodes, and 172 elements) 

curacy when local mesh refinement was introduced. Theoretically, the more refined the 
local mesh (~a ~ 0), the more accurate the results should be. 

As a second example of application of the methods described, the trajectories of crack 
extension are calculated for the structure in Fig. 8. The finite element mesh used is presented 
in Fig. 9. An initial crack is assumed. The evolution of the crack may be traced conveniently 
taking advantage of the underlying topology-based data structure in FRANC [23]. The 
propagation is performed in a stepwise way, driven by LEFM concepts. The crack increment 
at each step is the only arbitrary variable employed. 

The direction of each crack increment and stability are determined using the maximum 
circumferential tensile stress criterion, ~,. This criterion takes into account the stress- 
intensity factors for the current state. Therefore, different approaches for stress-intensity 
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FIG. 8--Edge-crack problem. 
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FIG. 9--Edge-crack finite element model (720 equations, 381 nodes, and 124 elements). 

factor computation should not necessarily provide the same results in terms of trajectory. 
The crack increment at any step of propagation is kept constant. The same increment value, 
0.0508 m, is used with each of the SIF methods under investigation. The trajectories obtained 
are shown in Fig. 10. The histories of Modes I and II stress-intensity factors with respect 
to the crack length are presented in Figs. 11 and 12, respectively. The results in both plots 
are presented in MPa ~/m values. 

FIG. l O--Predicted crack trajectories after five steps o f  propagation: 1 = displacement correlation 
trajectory, 2 = J-integral trajectory, and 3 = modified crack-closure trajectory. 
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As can be seen from Fig. 10, the trajectories obtained are very close. The trajectories in 
this case are more sensitive to the crack increment chosen than to the SIF method used. 
This is a reasonable result since the direction of propagation provided by the ~ maximum 
theory depends on the ratio, KI/KH. From the histories of stress-intensity factors, it can be 
noticed that while Mode I values are almost the same, Mode II stress-intensity factors do 
not agree as well. Although distinct, these values are small compared to those for Mode I. 
Therefore, no substantial difference is noticed in the predicted crack paths in this example. 
However, considerably different crack trajectories are expected to be obtained if large 
differences in Mode II stress-intensity factors are computed from the three methods. 
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FIG. 12--History of  Mode II SIF. 
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Conclusions 

Three distinct approaches for stress-intensity factor computations have been compared: 
displacement correlation technique, J-integral, and modified crack-closure integral. Nu- 
merical results for different levels of mixed-mode conditions showed some interesting aspects 
of the numerical behavior of the described computational tools in terms of local mesh 
refinement. 

The displacement correlation technique showed good convergence for Mode I stress- 
intensity factors (errors from 10 to 2%). However, for Mode II values, the technique 
presented a slight divergence from the theoretical result. 

For the J-integral technique (EDI), poor accuracy was observed when only the quarter- 
point singular elements were considered in the domain of integration. Computed Mode II 
values were not accurate for all the investigated mixed-mode conditions, although a slow 
convergence was observed. The inaccuracy was more pronounced when Mode II became 
large relative to the Mode I value. 

The modified crack-closure integral technique provided accurate results for all levels of 
local mesh refinement. The errors verified were within 3% for all the studied cases. Mode 
I stress-intensity factors converged quickly to an asymptotic result, while Mode II values 
showed a small oscillation around the analytical solution. 

The observations presented so far were restricted to the analysis of the numerical results 
only. Although distinct levels of accuracy were obtained, the different approaches provided 
consistent results. 

Some insight on the effects of the differences among the three SIF methods on the evolution 
of a initial crack is also provided. For the example presented, the crack trajectory is more 
sensitive to the crack increment than to the method used for computing stress intensity 
factors. The histories of the stressqntensity factors in terms of crack length may be stored 
along the evolution process. This is necessary information for a fatigue analysis, for example. 
The influence of the differences among the presented methods on the predicted fatigue life 
of a structure will be investigated in the future. 
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Application of the Weight-Functions Method 
to Three-Dimensional Cracks Under General 
Stress Gradients 

REFERENCE: Malik, S. N., "Application of the Weight-Functions Method to Three- 
Dimensional Cracks Under General Stress Gradients," Fracture Mechanics: Twenty-Second 
Symposium (Volume II), ASTM STP 1131, S. N. Atluri, J. C, Newman, Jr., I. S. Raiu, and 
J. S. Epstein, Eds., American Society for Testing and Materials, Philadelphia, 1992, pp. 83- 
112. 

ABSTRACT: Recent advances in the weight-functions method have led to its application in 
determining stress-intensity factors (K) for corner and surface cracks. A major obstacle in 
accurately computing weight functions is that it not only requires the crack surface opening 
displacement (CSOD) fields, but also their rate of change with respect to the crack dimensions. 
In the present work, an approach similar to the two-dimensional Petroski and Achenbach 
method is developed and applied to determine the CSOD profiles as a function of three- 
dimensional crack dimensions. Near-crack-tip details as well as crack-mouth opening displace- 
ment (CMOD) were considered along with the Newman and Raju K-solutions for finite 
geometry three-dimensional problems of elliptical corner, surface, and subsurface (embedded) 
cracks. The weight functions determined from a uniform stress loading were then applied to 
compute K solutions for general stress gradients. Comparison of the obtained results with the 
Newman and Raju bending stress K solutions have shown excellent agreements even for quite 
deep corner and surface flaws. Corner cracks at circular holes were also used to verify the 
method. 

KEY WORDS: weight functions, stress-intensity factors, elliptical corner, surface and subsur- 
face cracks, general stress gradients, crack surface, crack mouth opening displacement fields, 
fracture mechanics, fatigue (materials) 

Recent  advances in the weight-functions method  have led to its application in determining 
stress-intensity factors (K) for three-dimensional bodies containing planar cracks. The weight- 
functions method  utilizes a known K solution distribution for a " re fe rence"  load, on a body 
with a given type of crack, to compute  K values for any general  loads acting on the same 
body. A major  obstacle encountered in accurate computat ion of weight functions is the fact 
that the method  requires not  only the crack-surface opening displacement (CSOD)  field, 
but also its rate of change (partial derivatives) with respect to the crack dimensions. Three-  
dimensional  crack problems will consume excessive computat ional  resources if one were to 
use either a finite e lement  (FE) or a boundary integral equat ion (BIE) method  to determine 
C S O D  fields and their partial derivatives for each and every problem. 

As an alternative approach, several methods  have been applied recently with reasonable 
success for obtaining accurate est imates of the C S O D  fields from known K solutions for 
any reference loading in two-dimensional  through-the-thickness crack problems. A few 

aFormerly: engineer, Life Methods Development, General Electric Company, Aircraft Engines, 
Cincinnati, OH 45215-6301. Presently: senior materials engineer, U.S. Nuclear Regulatory Commission, 
Washington, DC 20555 
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attempts have been reported, with limited success, for extending the two-dimensional ap- 
proaches to three-dimensional crack problems. In the present work. a unique and a self- 
consistent method is developed to obtain CSOD fields accurately for three-dimensional 
crack problems, and applied to compute K solutions for any general stress gradients. 

Background Review 

A novel two-dimensional method developed by Petroski and Achenbach [I] has been 
found to be very accurate for determining crack-surface displacement fields in "edge crack" 
type problems. It utilizes a self-consistency condition for reference load K solutions and the 
elastic near-tip crack opening displacement behavior to obtain the entire CSOD field. Gen- 
eralization of the Petroski-Achenbach (PA) method to three-dimensional semielliptical sur- 
face cracks in plates was done by Mattheck et al. [2]. They assumed the CSOD field for a 
semielliptical flaw to be similar to a set of two-dimensional edge cracks stacked, parallel to 
the minor axis of ellipse, along the curved crack-front; and to behave like a Griffith (center) 
crack at the free surface where mouths of all the edge cracks terminate. 

Several applications of the equivalent two-dimensional "'edge cracks set" approach to 
semielliptical surface flaws in pipes [3], flat plates [4], and to quarterelliptical corner cracks 
at circular holes in plates [5,6] have been reported with some success. There were a number 
of simplifying assumptions made in estimating the CSOD fields. For example, a drawback 
in Refs 5 and 6 is the use of the surface flaw type CSOD field to corner crack applications 
that will give considerable inaccuracies for larger cracks. Likewise, the reference K used to 
obtain CSOD fields for surface cracks in Refs 2 to 4 were not very accurate. 

The K solution in any three-dimensional crack problem varies continuously along the 
crack front, and as such represents infinite degrees of freedom (DOF) for the local K values. 
Computational costs would be very prohibitive if the local K values were to be determined 
and used for predicting the growth of the crack front in three dimensional bodies. A sim- 
plifying general trend in the literature has been to assume that an initially elliptical-shaped 
crack will remain elliptical after any growth. It is then possible to define two "effective" K 
values [7-9], one along each of the major and minor axes of an elliptical flaw. The K values 
for these two independent DOF are shown [8.9] to represent strain-energy release rate 
obtained by creation of corresponding crack surface area, when one of the crack dimensions 
(major or minor axes) is kept fixed and the other is increased, while maintaining the crack 
front to be elliptical. The concept of the two DOF "'effective" K values has been shown to 
have good correlation with experimental crack lengths and depths data [10-13] for a range 
of materials and loading conditions. 

Another  generalization of the Petroski-Achenbach (PA) method [1] was attempted re- 
cently [14] wherein the local K values were computed. However, a corner elliptical crack 
displacement field was used for both the surface and corner cracks. An additional assumption 
that the aspect-ratio, of the major to minor axes lengths, of the crack remains constant 
during growth was used to obtain the three-dimensional CSOD field. The resulting K so- 
lutions compared well with available results [15] only for very small surface cracks. This is 
expected since the larger surface cracks do not behave like corner cracks, and the elliptical 
aspect-ratios may remain constant [11-13] only during the initial part of crack propagation 
life. Also, the formulation for the surface crack in Ref 14 is applicable only to symmetric 
loadings, about the elliptical axes, resulting in equal growth of the two crack-tips at the free 
surface. 

In other studies [16,17], a CSOD field was proposed but with a limitation of constant 
aspect-ratio crack growths. Results were obtained for embedded elliptical crack in an infinite 
body and for surface cracks in a semiinfinite body. Since any "'finite width" correction 
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factors, such as the ones considered in Refs 2,5,6,14-15], were not used in developing the 
K solutions, the usefulness of the method for more practical applications in finite geometry 
specimens is yet to be evaluated. 

Other recently developed methods of computing K solutions for three-dimensional cracks 
include the finite element alternating method (FEAM) [18], the line spring model (LSM) 
[19], the traction BIE [20] method, and the slice synthesis technique [21]. These methods 
are more suitable for generating the reference K solutions to a given crack geometry rather 
than to be used in a crack growth life prediction code. Weight-functions approaches that 
deal with the PA-type method to three-dimensional problems appear to be more cost ef- 
fective in codes for predicting crack growth life. 

Present Approach 

From the review of the literature, it is clear that the methods for estimating CSOD fields 
in three-dimensional geometries are still not quite well established for weight-functions 
applications. One of the main objectives of the present work is to develop a systematic and 
self-consistent method of constructing CSOD fields from known reference K solutions for 
3-dimensional elliptical crack geometries of major interest. The degree of accuracy of the 
computed CSOD fields is very strongly dependent on the degree of accuracy of the reference 
loading K solutions used in obtaining them. Towards this end, Newman and Raju [15,22] 
have presented a number of K solutions in the form of analytical expressions that are based 
on their finite element computations for uniform tension and bending loads on elliptical 
(quarter, semi, and full) cracks in various specimen geometries. These K solutions are 
accepted widely for their accuracy and have been found to correlate well with numerous 
experimental data [12,13,23,24] on crack growth residual lives, and with other computational 
results [23,26]. 

In the present work, the Newman and Raju K solutions [15,22] have been used to compute 
the reference CSOD fields in finite geometry fracture specimens under load-controlled 
loadings (far-field uniform tensile stresses). The elliptical crack geometries considered are 
the corner cracks in plates and at circular holes and surface and embedded (subsurface) 
cracks in plates of finite dimensions. To model the K variation along the crack front, the 
approach of two DOF "effective" K [7-9] values along the major and minor axes of the 
elliptical flaw was utilized. The second major objective of the present work was to determine 
K solutions for any general stress distribution acting on elliptical cracks of interest. For any 
subsurface or surface cracks, the loading could be nonsymmetrical about the axes of ellipse 
that may give rise to different K values at the two opposite crack-front locations along major 
or minor axes or both; and thereby leading to unequal growths at those opposite locations. 
The computed K solutions were then compared with results available for specific stress 
gradients published in the literature. 

Crack-Surface Opening Displacement Field 

The two-dimensional method [1] is more suited for estimating CSOD fields in edge crack 
type problems. For other two-dimensional crack geometries, such as center-cracked plates 
(CCP), a general method [27,28] has been proposed wherein the "total" crack opening 
displacement (COD) field is a multiplication of two terms. The first term represents a 
maximum crack-mouth opening displacement (CMOD) that is a function of crack size and 
applied loads. The second term is an assumed CSOD profile, and is dependent on the type 
of crack. That is, whether a center, or, edge type of crack geometry exists in the two- 
dimensional specimen. In essence the first term controls the amplitude of the maximum 
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crack opening, and the second term describes the shape of opened crack. In the present 
work, this concept of COD estimation is extended to three-dimensional crack problems. In 
this regard the findings of Green and Snedden [29], that a uniform tension applied normal 
to an elliptical crack in an infinite elastic body creates an ellipsoidal crack opening shape, 
was utilized in constructing the second term in the COD fields. 

For an elliptical crack geometry shown in Fig. 1, the total COD field for a "reference" 
Mode I loading on a three-dimensional finite geometry specimen is represented as 

U,e,(a,c,x,y ) = [U(~(a,c) " U.(x/c, y/a)] (1) 

where Uo(a,c) is the CMOD value at the origin, x = y = 0, of the elliptical crack and 
U.(x/c, y/a) is the assumed CSOD profile for an embedded, corner, or surface crack. The 
a is crack depth along the minor axis parallel to the y coordinate, and c is the crack length 
along the major axis parallel to the x coordinate in Fig. 1. 

Green and Sneddon [29] have developed an exact solution for the CSOD profile of an 
embedded elliptical crack subjected to a uniform tensile stress in an infinite body. This 
CSOD profile in a finite geometry specimen is given as 

U.(x /c ,  y/a) = ~ [1 - ( x / cy  - ( y / a N  (2) 

where - c - < x  ~<cand - a - < y  ~< a. 
In Eq 2, the U. field represents two-dimensional center crack type behavior along the x 

and y axes that coincide with major and minor axes of the elliptical crack, respectively. It 
also satisfies the boundary condition of zero U, of displacement along the elliptical crack 
front. 

For a quarterelliptical corner crack, the U. field should be such that it satisfies the two- 
dimensional edge crack behavior along x and y axes in Fig. 1. As such, the U. field for a 

Y 

t 

K((t)=O) = KC, K ( r  = KA 

WIDTH = W 
L 

t 
A = CRACK EB~q~I T 

C = CRACK LE~6TB H 
I 

W >/T C 

N 
./I "', \ ~ E 

S 

�9 %,  ",, \ ; 
V.I 

KC 
- c >T 

FIG. l--Quarterelliptical corner crack geometry in a plate specimen. 

= T  

"- X 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



MALIK ON WEIGHT FUNCTIONS 87  

corner crack could be represented as 

U,(x/c, y/a) ~- ~ / [1  - ~/{(x/c) 2 + (y/a)2}] (3) 

w h e r e x - < c a n d y  <-a. 
A representation similar to Eq 3 was used by Banks-Sills [14] for corner as well as surface 

cracks. It could be seen, however, that for surface cracks Eq 3 does not yield a two- 
dimensional center crack type response along the free surface (that is, at y = a and 
X=C). 

For semielliptical surface cracks, it is proposed that the U, field should be such that it 
represents an edge crack type response along the crack depth directional axis, normal to 
the free surface, and behaves like a center crack along the free surface. The U, field for a 
surface crack in Fig. 1 could be given as 

U , ( x / c ,  y / a )  - -  ~ / [ 1  - ( x / c )  2 - ( y / a ) .  V {1 - (x/c)2}] (4) 

with - c - < x - <  c a n d y - <  a. 
To compute the CMOD field, Uo(a,c) in Eq 1, the three-dimensional K solution for a 

reference load on a given specimen geometry is needed. As discussed earlier, the two DOF 
"effective" K approaches are selected to represent the three-dimensional reference K so- 
lution. Using Fig. 2, the "effective" reference K solutions, Kra and K,c, due to incremental 
(shaded) crack area growths dSa and dSc, respectively, for a quarterelliptical crack are given 
a s  

(Kr,) 2 = (1/dS,) �9 f ,  so [{K'(s " d(ASa)] 

(4) f:2 
= =0 [K,(r �9 sin(C)] 2- de (5) 

Effect ive KA Effect ive KC 

dSA = (C.dA) P I /4 .  dSC = (A.dC) P I /4 .  
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FIG. 2- -  Two degrees of freedom model with effective KA and KC stress-intensity factors for a quar- 

terelliptical corner crack. 
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and 

(Krc) 2 = (lidS.) �9 fdSr [ { K r ( q b ) } 2  " d(a&)] 

(4)s;2 
= = 0  [ g r ( + )  " C O S ( + ) ] 2  " dqb (6) 

where, dSa = rrc(da)/4, and, dSc = 'rra(dc)/4; with da and dc being the growth in crack 
depth (along minor axis) and crack length (along major axis), respectively. 

The reference K along the elliptical crack front, K,(&), is taken from the Newman and 
Raju solution [15,22] for uniform tension loading. If the applied "new" load is the same as 
the reference load, err(x#), the weight-function method satisfies a self-consistency condition 
[I,28] which in terms of the effective K along crack depth, K,a, for a quarterelliptical crack 
is given as 

. fy(x) (K,,) 2 = (4E'/rrc). =0 J,=0 [{(r,(x,y) �9 (OUro,/Oa)} " dx dy] (7) 

where E '  is the appropriate elastic modulus of the material. For the plane-strain condition, 
E' is replaced by E/(1 - v2). Upon application of Leibnitz theorem, the partial derivative 
sign, (O/Oa), can be taken outside the area integral in Eq 7. If then the decomposition of 
Uree(a,c,x,y) from Eq 1 is substituted into Eq 7, it can be shown that the CMOD expression 
for a quarterelliptical crack is 

fo [(Kra)2 �9 da] 
Uo(a,c) = (8) 

4E ' ]  s s [{~r(X,y) " U.(x/c, y/a)} " dx dy] 
rrc / . 

where K.. and U. are known quantities are per Eqs 5 and 4. As such, the entire CSOD 
field for the reference loading can be estimated on the basis of the known K solution field 
as a function of a, c, and the crack-front angle, &. It is to be noted that in deriving Eq 8, 
the effective Kr<, Eq 6, could be also used along with the incremental crack growth area, 
dSc, to determine the expression for Uo(a,c). If the reference load, o.(x,y),  is constant on 
the crack plane, it could be taken outside the crack surface area integral in the denominator 
of Eq 8 to further simplify the computation. 

To quantify the general differences between the three crack surface opening displacement 
shapes, U. ,  given by Eqs 2 to 4, the CSOD volume per unit CMOD value over a quarter- 
elliptical crack area can be defined as 

is. s y'a,".,'y]/[S. (9, 

The values of this "normalized" CSOD for any aspect-ratio, a/c, are computed to be 
0.6667, 0.5658, and 0.5333 for an embedded (subsurface), surface, and corner crack, re- 
spectively. This implies that for a unit CMOD value, Uo(a,c), among the three elliptical 
crack opening shapes, the embedded crack has the largest opening volume and is followed 
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by the surface and then the corner cracks. This is true, based on physical grounds, since 
the embedded crack opens up as an ellipsoidal cavity at the crack mouth [29] with zero 
slopes along x and y axes, and the surface crack is assumed to open with a zero value of 
x-axis slope along the free surface. It would have been of significant interest if other in- 
vestigators [2,5,6,14,17,30] had reported some convenient parameter,  such as Eq 9, to 
compare their estimated displacement profiles, at least qualitatively. 

Weight-Functions Computation 

The K solutions for a new loading on the crack plane require computation of partial 
derivatives of the reference CSOD field Ur~f, Eq 1, with respect to the two DOF crack-front 
extensions. The required displacement gradients for the elliptical crack are determined by 
using 

(Ogr~f/Oa) = [(OUo/Oa)" U, + Uo" (oU,/Oa)] 

and 

(Ogro,/OC) = [(OUo/OC) " U ,  + Uo " (OU,/Oc)] (10) 

Here, the partial derivatives of U.(x/c, y/a) are obtained in closed forms by using Eqs 2 to 
4 for the embedded, corner, and surface cracks, respectively. Partial derivatives of the 
Uo(a,c) field could be determined numerically by fitting bicubic splines to the discrete CMOD 
values obtained through 8. If a sufficient number of sets of crack lengths, c (major axis), and 
crack depths, a (minor axis), are considered, the bicubic splines fit would lead to accurate 
partial derivative values. The computed derivatives of the reference displacement field 
maintain their near-crack-tip behavior due to the presence of closed-form expressions for 

U.(x/c, y/a). 
The two D O F  "effective" K values for any new loading, ~r,ew(X,y), are given as 

K~(a,c) = ~ fx ~y [O'n~w(X'Y)" (au~oJaso) . dx dyl (11) 

and 

(E,) Kc(a'c) = Krc fx fy [O'new(X'Y)" (OUref/~Sc) " dx dy] (12) 

where the incremental areas, dS,, and dSc, of the elliptical crack front, shown in Fig. 1, 
involve major and minor axes increments, da and dc, in an appropriate manner for the 
embedded,  corner, and surface cracks. The K,a and Krc are reference effective K values, 
Eqs 5 and 6, for the required a and c dimensions. Integrands in Eqs 11 and 12 are the weight 
functions. 

In the following sections, formulations and discussions of the results obtained will be 
presented for quarterelliptical corner cracks in plates and at circular holes, semielliptical 
surface cracks, and elliptical embedded (subsurface) cracks in finite geometry specimens. 
Verifications of the computed three-dimensional K solutions for some specific stress gradients 
are carried out for which numerical or analytical results or both are available in the literature. 
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Corner Crack Specimen 

A reference K solution along the quarterelliptical corner crack front, Kr(d~), under a 
uniform tensile stress, e,  in a finite cross-section plate, shown in Fig. 1, is taken from 
Newman and Raju's  work [15,22]. In the present work, it is proposed that the parameter,  
k, = [wac/(4TW)], which is found by equating the elliptical crack area with a through- 
thickness "single edge crack" area. This is quite different from the expression given in Ref 
22; where )t, defined as [(c/W)V~(~-T)], is not suitable for use in square cross-section 
(T = W) plates containing corner cracks. In square cross sections, the c/W and a/T de- 
pendencies should be interchangeable as used here. 

The K expressions in Ref 22 are valid for a/T <- 1, c/W <- 0.5, and 0.2 -~ a/c -< 2. It is 
expected that there would not be significant errors if the a and c values exceed somewhat 
beyond the specified limits. Upon substituting the expressions for reference Kr(cb) from Ref 
22 into Eq 5, the "effective" reference Kr,, values are obtained for a set of values of a (from 
0 to T) and c (from 0 to W). The Kr~ values and the U.,  crack opening shape in Eq 3, are 
then used in Eq 8 to obtain discrete values of CMOD, Uo(a,c). Here, ~r is equal to a constant 
tensile stress, cr, on the crack plane. The line and area integrals in Eq 8 are computed 
numerically. For this purpose, the discrete values of Kr,(a,c) were fit to one-dimensional 
cubic splines along the variable a (crack depth) for fixed values of c (crack length) for which 
Uo(a,c) are to be determined. 

Corner Crack Surface Opening Displacement 

The total CSOD field, Ur(a,c,x,y), for the reference loading is obtained by multiplying 
the CMOD values [Uo(a,c)], computed from Eq 8, with the U,(x/c,y/a) field approximation, 
given in Eq 3. The elastic CMOD values, Uo(a,c), obtained here can be used for comparison 
and calibration of experimental data. As an example, Fig. 3 shows the computed CMOD 
values for circular, a/c = 1, corner cracks ranging in size from 4% to full thickness of the 
plate specimen, and subjected to uniform tensile stress on the crack plane. There are no 
theoretical solutions available for CMOD values except that of embedded circular crack in 
an infinite body that is also shown in Fig. 3. The effect of the aspect ratio, a/c, on CMOD 
is shown in Fig. 4. 

As discussed in the previous section, Eqs 10 through 12, partial derivatives of the reference 
CSOD field are required to obtain K solutions for the new loads. These partial derivatives, 
computed by using bicubic splines fit to the CMOD values, have singular behavior in the 
vicinity of the crack front. Since these displacement gradients are used as a part of the 
integrands in Eqs 11 and 12, the singular integrand needs a sufficiently refined mesh for 
computing the area integrals over the crack surface. The Gauss-Legendre method, such as 
in finite element analyses, is used in the present work to compute the area integrals. A 
rectangular mesh is laid over the crack surface area. The remaining triangular areas adjacent 
to, but within, the elliptical crack-front boundary are included in the numerical integration 
scheme to improve accuracy. 

Corner Crack Effective K Solutions 

The accuracy of the computed values of the effective K, and K,. can be checked by taking 
the %ew(X,y) stress, in Eqs 11 and 12, to be the same as the reference stress, Crr(x,y), as 
shown in Eq 7. The resulting values of effective K,, and Krc can be compared with the 
Newman and Raju [15,22,31] solutions (when it is converted into effective K values as per 
Eqs 5 and 6). For a uniform tensile applied stress, the effective K, and Kc values obtained 
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by the present method are within 5% of the Newman and Raju (NR) solutions for various 
a/c ratios (0.5, 1, 2, and 0.2) and for a/T ratios ranging from very small to very large (-<1). 
This excellent comparison gives the confidence that the numerical computations strategy is 
working satisfactorily. 

Newman and Raju [22,31] have also provided corner crack K solutions for the "out-of- 
plane bending" moment on plates resulting in linearly decreasing stress on the crack plane. 
The present method was then applied to determine effective K values for a bending stress 
acting on elliptical corner cracks of various aspect ratios. The Uo(a,c) field in Eq 8 was 
computed by using the NR "uniform" tensile stress K solution [15,22]. The new effective 
K solutions computed using Eqs 11 and 12 included an out-of-plane bending stress for 
%ew(X,y)- The resulting K values are compared with the NR bending stress K solutions [22]. 
These comparisons are presented in Figs. 5 through 7. It could be seen that the effective K 
values by the present method and the NR solution compare extremely well. The differences 
are only of the order of 5% in most cases, and up to 10% in some cases, for the a/c ratios 
of 0.5, 1, and 2; and for various a/T ratios extending well into compressive bending stress 
regions. The accuracy of the bending K results obtained by using the present method is 
much more superior than by the solutions from a recently developed three-dimensional 
weight-functions method [14] where the differences, as compared to NR solutions, were as 
large as 25 to 30% for a/T ratios going only up to 0.4. 

The verification of corner crack "effective" K~ and Kc solutions just described for the 
bending stress field demonstrates the validity of the concepts and accuracy of implementation 
of the proposed new weight-function method for three-dimensional crack problems. It is 
expected that a similar degree of accuracy can be maintained for K solutions under any 
general stress gradients on corner cracks, as demonstrated by the results for corner cracks 
at holes that are presented in a separate section of this paper. For corner cracks under 
general stress gradients, there are no well-accepted solutions available in the literature, 
except for those located at holes in plates. 

Surface Crack Specimens 

Reference K solution along a semielliptical surface crack-front, Kr(a,c,~b), under a uniform 
tensile stress in a finite cross-section rectangular plate is taken from Newman and Raju 
[15,22]. The "effective" reference Kr, values are then computed using Eq 5 for various a 
and c values. The Kra(a,c) and U.(x/c, y/a), the crack opening shape from Eq 4, were then 
used in Eq 8 to obtain discrete values of the CMOD for semielliptical surface cracks. The 
computed reference CSOD fields were compared with an analytical power series approxi- 
mation by Fett [30]. Figure 8 shows this comparison for a circular surface crack at the free 
surface, X/c, and at the maximum depth locations, Y/a. [t is to be noted that a parabolic 
crack opening shape at maximum depth and an elliptical profile at the free surface was also 
obtained by Cruse [32,33] using a boundary element method. The comparison of the CSOD 
fields in Fig. 5 is very good. In weight-functions computations, the CSOD field is not used 
directly, but it is the rate of change of CSOD field with respect to the crack length and 
depth that is needed. Therefore, the accuracy with which these partial derivatives are com- 
puted is of prime importance. 

The computed CMOD values for surface cracks under uniform tensile stress are shown 
in Figs. 3 and 9 for three aspect ratio, a/c, values (0.5, 1, and 2). It could be seen in Fig. 3 
that at lower a/T ratios the surface crack CMOD values are somewhat smaller than the 
values for corner cracks. But for much deeper cracks, this difference becomes significant. 
As discussed earlier, there are no published works in the literature on computed elastic 
CMOD values for surface cracks with which to compare the present results. Raju, Newman, 

Copyright by ASTM Int ' l  (all  r ights reserved);  Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement.  No further reproductions authorized.



94 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

0 

if? 

0 

�9 
> 

�9 

La_l~ 
0 

, i , I = = ~ I ' ' = I l i ~ I '  

O u t -  o f -  Plane Bending SU'ess / 

on Corner Crack with ( a / c ) =  0.5 / 
/ x 

Sigma(X,Y) = 6.911 - 31.5"(] MPA / 
/ 

with Y 4 T = 63.5 MM, W = 254. MM /x 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ a 13 
13 

Z 

[] KA (Present Method) 

KA (Newman & Raju) 

I I 

• KC (Present Method) 

- - -  KC (Newman & Raju) 

O l  
O, 

0.0 0.2 0.4 0.6 0.8 1.0 

(A /T )  
FIG. 5--Comparison o f  effective K values for  an out-of-plane bending stress on corner cracks with 

an aspect ratio, a/c, o f  1/2. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



MALIK ON WEIGHT FUNCTIONS 95 

O 
04 

tO 

q 

O 
x / ' -  

Q) 
> 

b~ 
O 
�9 

%'-- 
N--  

W ~. 
O 

o L 
OI 

0.0 

O u t -  of - Plane Bending Stress 

on Corner Crack with ( a / c ) =  1.0 

Sigma(X,Y) = 6.911 - 3 1 . 5 ' 1 ' ]  MPA 

with Y 4 T =  6,3.5 MM, W = 254 MM 

X KC (Present Method) 

--- KC (Newman & Raju) 

/ 

J 

J 

a 0 0 

f 
J x  

J 
f x 

[] KA (Present Method) 
KA (Newman & Raju) 

0.2 0.4 0.6 0.8 1.0 

(A/T) 
FIG. 6--Comparison o f  effective K values for  an out-of-plane bending stress on corner cracks with 

an aspect ratio, a/c, of 1. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



96 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

0 

O u t -  o f -  Plane Bending S~ess 

on Corner Crack with (a /c)  = 2.0 

Sigma(X,Y) = 6.911 - 31.5Y] MPA 

with Y ~ < T =  6.3.5 MM, W ; 254MM 

I/3 

"- X KC (Present Method) 

- - -  KC (Newman & Raju) 

[] KA (Present Method) 

m KA (Newman & Raju) 

/ 

/ 

cl 

0 
' , c  "" 

> 

q) 

4 - -  

W 

O 
( ~  I I ' I . , n I , n i I ! i I i ' i i 

0.0 0.2 0.4 0.6 0.8 1.0 

([A/T) 
FIG. 7--Comparison o f  effective K values for an out-of-plane bending stress on corner cracks with 

an aspect ratio, a/c, of  2. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



MALIK ON WEIGHT FUNCTIONS 97 

o 

jKY 

f" I A l>x 
K--2C --W 

2W 

00 

x 

E 
~ o _  

>- 
><-~- 
~'~-- o 

(i) " 

d 

K 

Re,erenceCrockOoenn OsOoc.meo' L 
Surface Crack, A/C = 1, Uniform Tension \ 

O : Along [ Y / A ] Axis : (O)  F e t t  (30) \ [t~ 

o : A l o n g [ X / C ]  Axis : (4-) F e t t  (30) \~:  

o t L 
d , , , , , , , , , , , , , , , , , , , = i i i i i , * * i | t , | | | i i 

O.O O.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

[ X / C ] , o r ,  [ Y / A ]  
FIG. 8--Reference crack surface opening displacement (CSOD) for semielliptical surface cracks in a 

plate under a uniform tensile stress field. 

and Atluri [34] have just recently presented CMOD values for surface cracks under uniform 
tension and bending stresses. A brief comparison of the present results with a "draft" version 
of Ref 34 reveals very good agreement. For example, the CMOD values using the equations 
proposed in Ref 34 for uniform tensile load are within 6% of the present results for a / c =  
1 (a /T  values ranging from 0.2 to 0.8), within 9% for a/c = 0.5, and within 1% for a/c = 
2. The percentage difference between the CMOD values by the two methods decreased 
substantially for larger a/T  values. 

The computed effective K values by the present method, for surface cracks under uniform 
tensile stress, are within 5% of the Newman and Raju solutions [15,22] for a/c ratios of 0.5, 
1, and 2; and for a/T values ranging from 0 to 1. This again confirms that the present 
computational strategy for surface cracks is working very well. The method was then applied 
to the case of out-of-plane bending stress acting on surface cracks. The reference COD field 
was obtained from NR "uniform" tensile stress K values [15,22]. Figures 10 through 12 
show the results obtained for a/c ratios of 0.5, 1, and 2, respectively. For most of the computed 
effective K values, the maximum percentage difference relative to NR solutions [15,22] were 
under 5%; and for a few cases at larger a/T ratios, the differences became as high as 10%. 
This level of K solution matching for bending stresses gives good verification of the developed 
method for surface cracks. 

A nonsymmetric loading, leading to two different values of K,. at the free surface (Kd 
and Kc2), was applied. A linearly varying inplane stress of the type g.ew(X,Y) = 6.911 - 
7.874x] MPA, with -0.127 m < x < 0.127 m, was considered. Here, total width, W is 0.254 
m; and the thickness, T, is 0.0635 m. It was assumed that the surface crack is located at 
one half of the width, W, where the value of coordinate, x, is equal to zero. Figure 13 shows 
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the Kcl and Kc2 values as a function of a/T for an aspect ratio, a/c, of 1. Since the stress is 
dropping down linearly across the width, from 13.8 MPA to zero, the Kcl values are smaller 
than Kc2 values. The average of the Kc1 and Kc2 values at a given a/T ratio is found to be 
equal to the corresponding Kc value for a "constant" applied stress of 6.9 MPA. This fact 
is also shown in Fig. 13, where the Kc values by the present method as well as from Newman 
and Raju are plotted. Therefore, the amount of decrease in Kc~ value from Kc is the same 
as the amount of increase in the Kc2 value from the Kc. This provides a partial verification 
for the unequal K values at the free surface crack tips, Kcl and K~2, due to nonsymmetric 
loading on surface cracks. Similar conclusions could be drawn from Fig. 14, where the crack 
aspect ratio, a/c, is 1/2. At present, there are no K solutions available in the literature, for 
nonsymmetric loadings, with which to directly compare the present results. 

Subsurface Cracks 

For embedded (subsurface) elliptical cracks, the Green and Sneddon [29] expression for 
CSOD profile, as given in Eq 2, was used. To obtain the CMOD values, Eq 8 was used 
along with the NR K solutions [15,22] for finite geometry specimens containing subsurface 
cracks. Figures 3 and 15 show the resulting CMOD values for subsurface cracks in finite 
geometry specimens as well as in an infinite body. It could be seen that, for the T/W ratio 
considered, the CMOD values for finite geometry subsurface cracks are very close to the 
exact solution in an infinite body with smaller a/T ratios. This gives further confidence and 
verification of the developed method for computing COD fields in subsurface cracks for 
weight-functions applications. Also, it could be seen from Fig. 3 that the CMOD values, at 
any a/T ratio, for subsurface cracks are the smallest, followed by the surface and then the 
corner crack values. 

Table 1 shows the computed effective K values for uniform tensile stress on finite geometry 
specimens containing subsurface elliptical cracks for several aspect ratios, ale, as well as for 
a number of a/T values ranging from very small to very large (0.1 to 0.8). It could be seen 
that both/Ca and K c values are within 5% of the Newman and Raju solution for all the cases 
considered. Pure bending loads on subsurface elliptical cracks were not considered due to 
possible crack-surface closures that may cause K values to become negative for the closed 
portion of the crack front. 

The present formulation for subsurface flaws is general enough to handle any stress 
gradients including those that are unsymmetric about the elliptical crack axes that may lead 
to unequal K values (for example, K~t and K~,z; K,.1, and K~2 ) at two opposite locations along 
the crack front. Unsymmetric stresses were applied to subsurface cracks; and Eqs 11 and 
12 resulted in unequal K values at crack depths and lengths. However, at present there are 
no solutions available in the literature for unsymmetric stress gradients with which to compare 
the obtained results. It seems that either gathering experimental data on unsymmetric crack 
growths, or, using a finite element method would be a reasonable way to verify these K 
values. 

Corner Crack at Circular Hole 

The K values for corner cracks emanating from a circular hole in a plate are somewhat 
smaller than the K values for the same crack located at a plate corner and subjected to the 
same "ahead of circular hole" stress gradients. This is due to the presence of a finite 
circumference of the hole that results in constrained boundary conditions at the crack mouth 
[35,36]. To determine the effect of a bolt hole on corner crack K solutions, Newman and 
Raju [15,22] have developed empirical equations for K(~b) along the crack fronts that are 
based on their finite element analyses [37]. These K equations were obtained for "two 
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symmetric" corner cracks at the opposite sides of a central hole in a finite plate under 
remote, uniform tension, and linear bending stresses. 

Specimen geometry and size details of a corner crack at a circular hole in a plate are 
shown in Fig. 16. If the radius, R, of the hole is very small in comparison with the specimen 
half width, W, then the concentrated elastic stress distribution, ~,ef(x,y,z = 0), ahead of 
the hole for an applied uniform tensile far-field stress, ~, is given [38] in closed form as 

O'ref(X,y,z = 0 )  = ~r[1 + 0.5{R/(x + R)} 2 + 1.5{R/(x + R)} 4] (13) 

where 0 <- x <- (W - R). The present weight-function method was applied to determine 
the K values for corner cracks at holes. The NR K solutions for two symmetric cracks at a 
hole and the reference stress given in Eq 13 were used in Eqs 8, 11, and 12 to obtain the 
effective K values. The NR K values [15] for two symmetric corner cracks at a hole are 
used as a reference solution in the present weight function method to obtain a new set of 
reference displacement field, its partial derivatives, and the effective K values. These K 
values are presented in Tables 2 through 4 for crack aspect ratios, a/c, of 0.5, 1, and 2. It 
could be seen that the effective K values by the present weight-function method are in 
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FIG. 16--Corner crack originating from a circular hole in a plate specimen. 
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excellent agreement with the NR results for all the a/c and a/T ratios considered with 
differences of 5% or less. This gives another verification of the present work for corner 
cracks under nonlinear stress gradients. 

The problem of corner cracks at a hole was also analyzed using a "simulated hole" method. 
A quarter elliptical crack is considered at a plate corner that is subjected to a known "ahead- 
of-circular hole" stress distribution (Eq 13). This stress profile is used as the new stress, 

. . . .  in Eqs 11 and 12 to determine the effective K~ and Kc values. Results obtained in this 
way are called the "simulated hole" corner crack analyses, and are included in Tables 2 
through 4. It could be seen that the simulated hole concept leads to the effective K values 
that are in very good agreement with the NR solution, but only for the smaller a/T ratios. 
As the crack size increases, relative to the hole radius, the "simulated hole" K values become 
much larger than the "corner crack at a hole" K values by Newman and Raju [37,15,22] as 
well as by the present work. Therefore, the "simulated hole" approximation for corner 
crack at holes is appropriate only for smaller crack sizes, relative to the hole radius. 

Conclusions 

The work presented here is a more rigorous improvement of the existing methods for 
determining weight functions under any general two-dimensional stress gradients on elliptical 
cracks in three-dimensional structural components. The resulting K solutions compare ex- 
tremely well with widely accepted results by Newman and Raju [15,22,31,37] for elliptical 
surface, subsurface, and corner cracks in plates under tension and bending loads. Corner 
cracks at holes provided additional verification of the computed K values using the "sim- 
ulated hole" technique for severely nonlinear stress gradients at circular holes. 

The weight functions developed here also provide a systematic and self-consistent method 
for computing crack surface opening displacement fields, by using know reference K solutions 
for a given loading condition, which are at times needed to calibrate experimental data for 
part-through surface and corner cracks. The developed method could be included in any 
residual life prediction code for fatigue crack propagation in structural components. 
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ABSTRACT: Fracture mechanics-based fatigue crack growth prediction methods based on the 
line spring technique are presented. Developments in the line spring method are described 
that make it possible to apply the method to realistic welded structures for fatigue design 
studies. The line spring finite element described in the paper has been formulated to fit between 
isoparametric brick elements in order to allow shell-to-shell junctions to be represented more 
accurately. The effect of stress concentrations at weld toes has been also introduced. The 
accuracy of the line spring approach for the calculation of stress-intensity factors is demon- 
strated by comparison with three-dimensional finite element fracture mechanics results and 
empirically estimated values. Prediction of fatigue crack growth in girth welds and tubular 
connections is compared with observations of cracking in large-scale test specimens. An ex- 
ample of how the fatigue crack growth prediction methods could be applied to the design of 
welded joints is presented. 

KEY WORDS: fatigue (materials), fracture mechanics, finite elements, line spring method, 
welds, steels, offshore structures, tubular connections 

This paper  presents fracture mechanics-based fatigue crack growth prediction methods  
based on the line spring technique.  Deve lopments  in the line spring method  described in 
the paper  make  it possible to apply the method  to realistic welded structures for fatigue 
design studies. 

Cracking in welded structures is associated generally with local notch-like detail at shell 
or  plate junctions. The  finite e lement  [1] described in the paper  has been formulated to 
fit be tween isoparametric brick elements in order  to allow shell-to-shell junctions to be 
more accurately represented.  The effect of stress concentrat ions at weld toes has been also 
introduced. 

The line spring method  was originally applied to surface cracks in plates by Rice [2,3]. 
The basis of  the method  is to represent  the compliance of a surface crack in terms of 
distributed spring stiffnesses coupled to a shell or plate analysis of a structure. The  method  
was extended to Modes  II and III  [4] and was used to formulate  a finite e lement  for use 
with shell e lements  [5]. This type of analysis has been shown to give accurate results, 
particularly for longer deeper  cracks [1,6, 7] that alter the stiffness of a joint  and redistribute 
stresses in the structure. 

1Research engineer and research assistant, respectively, Shell Research, Arnhem, The Netherlands. 
2Students, respectively, Technical University, Delft, The Netherlands. 
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The accuracy of the line spring approach, both for the calculation of stress-intensity factors 
and prediction of fatigue crack growth development, is demonstrated for girth welds and 
tubular connections. 

The paper also presents an example of how the methods could be applied to the design 
of welded tubular connections of the type used in offshore structures. 

Formulation of the Line Spring Element 

The form of the line spring element is shown in Fig. 1. The relationship between the 
generalized loads, Qp and the relative displacement of the faces at any point, q/, can be 
represented by a compliance relationship 

qi = C,,Qj (1) 
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FIG. 1--Diagram of the line spring finite element. 
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The complimentary strain energy, fL of the spring can be used to calculate the relative 
displacements of the crack face by using Castigliano's theorem, that is 

0D 
qi =- ~ (2) 

The complimentary strain energy is related to the strain energy release rate with respect 
to crack depth, a, as follows 

j - (3) 
Oa 

Integrating Eq 3 with respect to crack depth, a, and substituting the result into Eqs 1 and 
2 gives 

fo' q' = ~d aa (4) 

Modes I, II, and III stress-intensity factors for conditions of plane strain are directly 
related to the strain energy release rate, that is 

j _ (K~ + K20 + KtI_._..2I (5) 
E'  2G 

where E' = E / ( 1  - tx2). 
Substitution of Eq 5 into Eq 4 allows the compliance coefficients to be extracted [3]. 

Mode I can be separated from Modes II and III. Although Modes II and III are coupled, 
Desvaux [4] showed that Modes II and III may be decoupled, and that shear and torsion 
effects in Mode III can be separated, without any significant loss in accuracy. The result is 
to reduce the number of compliance coefficients that are necessary to be calculated. 

The expressions for stress-intensity factors, used to calculate the strain energy release rate 
were taken from Ref 8. 

The relative displacements across the element can be related to the nodal displacements 
by an equation of the form 

{~} = [BI {U,} (6) 

The matrix, B, is based on the interpolation functions for the faces of quadratic isopar- 
ametric elements [9]. In addition to 20-noded solid elements, 15-noded wedge elements are 
also compatible with the line spring element. Inverting the compliance functions (Eq 1) 
gives an equation of the form 

{Q} = [S] {K} (7) 

The stiffness matrix, [K], can be derived by taking Eqs 6 and 7 and using them to calculate 
the work produced by virtual displacements over the length, l of the element 

[K] = ~i [BF [S] [B]as (S) 
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A typical fatigue crack growth prediction requires several calculations of the stress- 
intensity factor over the life of the crack. For this reason, the element was not implemented 
as part of the finite element package, but has been introduced into a post-processing analysis 
program. The post-processing program is called FRACTEL,  and it inserts the line spring 
elements into the finite element stiffness matrix after all unnecessary degrees of freedom 
not associated directly with the crack face have been eliminated. The reduction of the stiffness 
and load matrices can be carried out by any suitable finite element analysis program that 
generates substructures. 

Recovery of the stress-intensity factors is from the stress-intensity factor equations used 
to calculate J (Eq 5) after the stress resultants have been calculated from the nodal dis- 
placements from the solution of the reduced stiffness matrix. 

Crack Extension 

Crack extension is calculated normal to the surface of the shell. The stress-intensity factors 
used to calculate the extension of the crack were the values calculated at the element 
junctions. The stress-intensity factors at the element junctions were interpolated linearly 
from the element midlength values, which in turn were a linear interpolation from the values 
calculated at the Gaussian integration points in each element. Surface values of the stress- 
intensity factors were calculated by extrapolation from the nearest adjacent midlength and 
element junction values. The surface values of the stress-intensity factors are not used to 
calculate the growth of the crack along the surface. Extension along the surface was instead 
calculated by extrapolation of the subsurface crack profile by a parabolic function, as shown 
in Fig. 2. 

In the case where a crack has partially grown across an element, as shown in Fig. 2, the 
stress-intensity factors over the entire crack front are interpolated between the two cases 
shown in Fig. 2, described as the inner and outer profiles. Both the inner and outer profiles 
end at element junctions. Line spring elements outside the crack are held closed. The profiles 
in the end elements of the inner and outer crack cases are quadratic, and based on the 
slopes at Points A and B for the inner and outer profiles, respectively. Interpolation of all 
the stress-intensity factors over the crack front, between the inner and outer cases, is linear 
and is with respect to the position of the extrapolated profile on the surface in relation to 
the positions of the inner and outer cases. 

Outer and inner profiles for interpolation 
of stress intensity factors 

Normal crack 
A ~ ~ extension 

. . . . . . . . . . . .  i . . . . . . .   .v us 
! " ~ _ ~  _ _ - - _ _ - - - -  profile 

uadratic extrapolation to surface 
FIG. 2--Estimation of crack extension. 
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Influence of Weld Toe Stress Concentrations 

The stress-intensity factors used to estimate the compliance functions do not include the 
influence of the local weld toe stress fields. The approach used in the paper is to introduce 
the effect of the stress concentration into the calculation of the stress-intensity factors from 
the spring stress resultants by means of superposition principles [10]. An advantage of the 
superposition method is that for stress concentrators with a width less than the shell thickness, 
the influence of the stress concentration is independent of the shell thickness. 

Fatigue Crack Growth Predictions 

Thickness Transition Girth Welded Joints 

The thickness transition girth weld is a common type of joint in tubular structures. It is 
used in offshore structures to connect thinner brace or leg members to thicker walled tubes 
at node connections. 

Stress-intensity factors for uniform depth surface cracks in the joint shown in Fig. 3 were 
calculated using three-dimensional finite element subdivisions with collapsed isoparametric 
quarter-point solid elements to represent the crack tip. The stress intensities were calculated 
from the crack face displacements. The finite element model for the line spring analysis is 
shown in Fig. 4. The reduced load and stiffness matrices were calculated using the MARC 
finite element package. Comparison between the three-dimensional finite element analysis 
results and the line spring analysis is shown in Fig. 5. The results compared to within 8% 
at the center of the crack. The stress-intensity factors were normalized with respect to the 
nominal extreme fiber bending stress in the thinner cylinder at the joint. The nominal bending 
stress was calculated from simple bending theory, and does not include the effects of sec- 
ondary bending due to shell stiffness mismatch, or local notch stresses. The upturn in the 
stress-intensity factor distribution close to the end of the crack is due to the transition from 
a straight uniform depth crack front to the arc-shaped profile as the crack front approaches 

-T 
710D 

6m 

I 2m I 

25 

Slope 4:1 
I 50 

FIG. 3 - -A cylinder with a thickness transition girth weld under four-point bending. 
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FIG. 4--Finite element model of the thickness transition girth weld. 

the surface. Although the line spring technique is not intended to represent surface cracks 
in the area where the crack front meets the surface, the line spring method gave a fair 
representation of the stress-intensity factor distribution. This region is also a difficult area 
for three-dimensional finite element fracture mechanics, because the actual elastic singularity 
loses the square root form assumed in the collapsed quarter-point isoparametric elements 
used in the analysis. 

The thickness transition joint shown in Fig. 3 was a large-scale test joint used to validate 
the fatigue crack growth method. During the test, fatigue cracking initiated at the weld toe 
in the thinner shell on the outside of the joint, due to the local bending of the shell produced 
by the external thickness transition. Fatigue crack development during the test was measured 
by beachmarking at regular intervals [7], that is, marking the crack front by applying periods 
of fatigue loading with reduced amplitude. 

The first beachmark contained two overlapping cracks that eventually joined into a single 
crack. Taking the first beachmark as a single crack as the starting point, fatigue crack growth 
was calculated over the crack front until the point at which the crack penetrated the wall, 
Comparison between the predicted and observed crack shape development showed the 
influence of the overlapping crack in Fig. 6. Crack growth was retarded at the overlap, in 
comparison with the development of the single crack. 

Crack growth rates were calculated from the beachmarks, and stress-intensity factors were 
in turn estimated from the growth rates. Several fatigue crack growth rate correlations were 
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found in the literature for the material used to fabricate the joint [I1-14]. Comparison 
between the line spring results and the experimentally estimated distribution of stress- 
intensity factors shown in Fig. 7 is typical of the agreement for all the beachmark profiles. 

Crack Growth in Tubular Connections 

Stress-Intensity Factors--Crack growth in three tubular joint connections has been ana- 
lyzed and compared with predictions made using the FRACTEL post-processing program. 
The joints were T [15], Y, and K connections loaded under axial loading of the brace, as 
shown in Fig. 8. Test joints of a similar type have been used to develop empirical S-N design 
rules for offshore structures [16]. The joints were all laboratory test joints in which crack 
growth had been measured by beachmarking. 

Stress-intensity factors were calculated using three-dimensional finite element fracture 
mechanics for the cracks observed in the T-joint [17]. Crack growth rates in the T-joint 
were also used to estimate stress-intensity factors, and a typical comparison between line 
spring FRACTEL results, three-dimensional finite element results, and empirically estimated 
stress-intensity factors is shown in Fig. 9. Figure 9 shows the distribution of stress-intensity 
factors along the front of a particular crack observed in the chord of the joint. The cracking 
originated at the saddle point, as shown in Fig. 8, which is the area of highest combined 
local shell bending and membrane stresses. 

The line spring mesh for the Y-joint is shown in Fig. 10, and is typical of the meshes used 
for the T- and K-joint. A typical comparison between line spring FRA CT E L  results and 
empirically derived stress intensity factors is also presented in Fig. 11 for the Y-joint. Figure 
11 shows a typical distribution of stress-intensity factors along a particular crack profile 
observed in the joint. The cracking originated at the hot spot in the chord, the region where 
the combined local shell bending and membrane stresses are highest under the axial brace 
loads shown in Fig. 8. For a Y-joint, the hot spot lies between the crown and saddle positions. 
The main crack in the Y-joint was always accompanied by smaller side cracks that grew and 
coalesced with the main crack. The result of this was to produce a crack profile that has a 
low angle with respect to the shell as it approaches the surface as shown in Fig. 12. The 
stress-intensity factor distribution shown in Fig. 11 suggests that the effect of the shallow 
angle is to produce a reduction in stress-intensity factor as the crack approaches the surface, 
in contrast with the sharp increases shown in Figs. 5 and 9, where the crack profiles were 
normal or close to normal at the surface. In Fig. 11, the highest stress-intensity factors are 
not at the deepest point of the crack. 

Crack growth in the K-joint was governed by the coalescence of large overlapping cracks, 
which left large step marks over much of the depth. Comparison between stress-intensity 
factors estimated from the crack growth in the K-joint and line spring estimates for a single 
large nonoverlapped crack indicated that the delaying effect of the overlaps was similar to 
that observed in the thickness transition girth weld (see Fig. 6). 

Crack Growth Predictions--In tubular connections, there is a large amount of local shell 
bending at the junction. Load shedding around the crack raises the stresses adjacent to the 
crack. Evidence can be seen on fracture surfaces that the high stresses at the ends of the 
crack promote the initiation of smaller cracks that grow and coalesce with the main crack. 
Initiation and coalescence of adjacent cracks generated by a main crack was represented in 
fatigue crack growth predictions by adding a shallow uniform depth crack on either side of 
the main crack. 

Development of the crack in the T-joint is compared with line spring F R A C T E L  predic- 
tions in Fig. 13. Prediction of crack development in the Y-joint is also good, as shown in 
Fig. 12. In the case of the K-joint, the crack surfaces were heavily overlapped, and it was 
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not possible to distinguish any consistent pattern of development, or find a clearly distin- 
guishable beachmark that could be used as a starting defect for a crack growth calculation. 

Prediction of the actual number of cycles for a crack to grow from an initial size to a final 
depth depends on the choice of the most appropriate fatigue crack growth correlation data. 
The scatter in the empirically derived stress-intensity factors shown in Figs. 9 and 11, when 
translated into crack growth predictions from a calculated stress-intensity factor, could result 
in a 60% spread in fatigue life predictions. The empirical stress-intensity factor correlation 
that most consistently agreed with the line spring predictions [11] was used to calculate 
fatigue crack growth in the T-, Y-, and K-joints. 

Design Curves for Offshore Tubular Connections 

The strength of fracture mechanics fatigue life prediction methods is that they allow the 
potential fatigue life to be related to initial defect sizes and local conditions, which in turn 
enables the specification of standards for local detail and preservice inspection necessary to 
achieve a minimum required life. Fracture mechanics crack propagation life prediction 
methods can therefore be used to design joints to be defect tolerant, either as an alternative 
or as a supplement to the traditional S-N methods. 

The fatigue life of welded joints have a lower bound set by the behavior of a joint with 
a sharp weld angle and with a continuous defect. The lower limit to the fatigue life can be 
estimated for any initial depth of continuous defect. If a joint has even a natural radius at 
the weld toe, or local welding defects that are not continuous and are shallower than those 
used in the design life predictions, the joint will have a fatigue performance better than the 
predicted minimum. The simplest inspection criteria that could be applied to ensure that a 
weld will have a performance better than the minimum is therefore to ensure that the weld 
toe is not sharp and that the crack detection method can find continuous defects that exceed 
the defect size used in the design life predictions. 

The most likely source of a continuous defect is a hydrogen crack in the heat-affected 
zone (HAZ) at the weld toe. Depths of such defects can be in the range of 1 to 2 mm, and 
for that reason, a 2-mm deep defect, together with a sharp weld toe [10], has been taken 
as a reasonable basis for the example design curve in this section. 

Definition of the end of fatigue life as the point at which a fatigue crack penetrates the 
wall is used in many empirical design criteria, and is based on a simple experimental ob- 
servation. In the case of tubular connections, crack growth can decelerate when the crack 
is about to penetrate the wall. The example shown in Fig. 14, for the T-joint, is a case where 
the final 12% of wall thickness took up almost 50% of the total crack propagation life. In 
selecting a defect size that defines the end point of the fatigue crack propagation life, 
consideration should be given to ductile fracture in thicker sections, and also to more practical 
considerations such as the difficulties and expense of making reliable repairs in service. 
Fatigue life curves for the T-, Y-, and K-joints were calculated for continuous defects 2 mm 
deep. The final crack depth was taken arbitrarily to be at 0.88 of the chord wall. 

The fatigue crack growth rate data used to calculate the fatigue lives were that which was 
found to give consistently good agreement with the line spring stress-intensity factors [11] 

da/dN = 1.42 • 10 12(AK)Z71 (9) 

The preceding fatigue crack growth correlation was measured in air. In deriving a realistic 
design curve, a more appropriate fatigue crack growth correlation derived in cathodically 
protected seawater should be used. The fatigue crack growth correlation for air was used 
for comparison with the current S-N design rules, which are all based on endurance tests 
in air. 
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FIG. 14--Crack growth through the thickness in the T-joint. 

Comparison with the U.K. Department of Energy design curve [16] is shown in Fig. 15. 
The Department of Energy design recommendations base the design of tubular joints on 
the maximum nominal local bending and membrane shell stresses at the weld, known as 
the hot-spot stresses, and use a nominal 32-mm wall thickness with a correction for the 
actual wall thickness. The slope of the fracture mechanics-based curves differ from the 
S-N design curve, due to the slope of the fatigue crack correlation data (Eq 9). 

Discussion 

Accurate prediction of the surface growth of a crack is necessary for prediction of its 
growth in depth. The reason is that surface length of a crack affects the stress-intensity 
factors at the deepest point. Under-prediction of surface growth can lead to nonconservative 
underestimation of fatigue life. Calculation of stress intensities at the intersection of a crack 
front with the surface is difficult, even with three-dimensional finite element fracture me- 
chanics [18]. Many finite element solutions in this region show that conventional approaches 
using square root singularities cannot represent the actual singularity [19]. Study of the 
actual nonsquare root singularity in this region is mainly of academic interest, as a crack 
propagates along the surface by initiation of small side cracks due to high stresses being 
shed around the main crack. An approach to this problem has been made [20] by using 
S-N crack initiation data to predict the development of small side cracks of the order of 1 
or 2 mm depth. However, the use, shown in this paper, of uniform depth cracks to represent 
initiation and growth of side cracks, also appears to be effective. 

Another  feature of multiple crack initiation was shown in the case of the K-joint, where 
the overlaps, by connecting the faces of a much larger cracked area, appeared to hinder the 
growth of the main overall crack. This feature of crack growth raises a question over whether 
the results of fatigue endurance tests are conservative. 
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FIG. 15--Comparison of fracture mechanics-based design curves and U.K. Department of Energy 
design rules. Fatigue endurance curves for offshore tubular joints. 

The example of derivation of design curves using the fracture mechanics approach requires 
further development before it can be used to produce general design rules. A wider range 
of geometries requires further study, and life estimates under random loading are required 
to check if constant-amplitude design curves could be used to predict fatigue under random 
loading. Fracture and repair should be considered as end points of the crack propagation 
life. The example indicates how a defect-tolerant design based on inspection methods could 
be developed for particular critical joints. 

Conclusions 

Experience with FRACTEL has shown that the application of line spring fracture me- 
chanics as a post-processing exercise is highly economical, and that the accuracy of stress- 
intensity solutions is often comparable to three-dimensional finite element fracture 
mechanics. 

Fatigue crack growth can be modeled satisfactorily in complex tubular joints using line 
spring fracture mechanics. 

Further research is required on the prediction of initiation and coalescence of secondary 
cracking in welds during fatigue. 
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ABSTRACT: The JR-curves associated with small crack growth in 0.8-mm-thick 2024-T3, 
2024-0, 5052-H32 aluminum and 2091-T3 aluminum-lithium cruciform specimens and 2024-T3 
and 2024-0 aluminum single-edge-notched (SEN) specimens are presented. The cruciform 
specimens were loaded uniaxially and biaxially. The J-integral values were determined directly 
through contour integration of the stresses and strains using deformation theory of plasticity 
and power hardening law. The strains were computed from the measured in-plane displace- 
ments that were determined experimentally using moir6 interferometry. Path independency 
of the J-integral values were verified by the 5% scatter band for the near- and far-field Js. 
The JR results differed substantially from the J-values computed by using the far-field formula 
of Shih, German, and Kumar. Also the measured crack-tip displacement and strain fields did 
not agree with the asymptotic solutions of Hutchinson, Rice, and Rosengren computed from 
the measured J-values. These findings suggest that the current formulas for J calculations may 
be incorrect and that J may not be a suitable parameter for characterizing the crack tip. 

KEY WORDS: Jn-curves, HRR fields, elastic-plastic fracture, aluminum-lithium alloys, u and 
v displacement fields, ductile fracture, moir6 interferometry, three-dimensional nonlinear re- 
gion, fracture mechanics, fatigue (materials) 

There  are numerous theoretical  and numerical  models of the nonlinear plastic behavior  
at the crack tip: the Dugdale-Barenbla t t  cohesive zone model,  the power law hardening 
model  of Hutchinson,  Rice, and Rosengren  ( H R R )  [1-4] ,  the finite deformation asymptotic 
analysis of Knowles and Sternberg [5,6], the micromechanical  models such as the combi- 
nation of the J-integral  with local constraint (of Kordisch and Sommer)  [7], and the con- 
t inuum damage mechanics model  that uses the flow function introduced by Gurson [8-10]. 
Along with high-speed computers  have come numerous finite e lement  models [11-14]. These 
models are based on assumed constitutive relationships of the material  and at tempt  to predict 
the nature of the fracture process based on these assumptions. Such assumptions must be 
evaluated experimental ly by comparing the analytical or numerical results generated by 
these models with the measured displacement and strain fields. 

One of the most popular  global ductile fracture criteria of the past two decades is the 
J-integral  concept [4] for which enormous developmenta l  efforts have been expended in 
recent years. The J-integral  is heralded by many as a stable crack growth and a ductile 
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fracture criterion since in its linearly elastic limit, it reduces to the elastic strain energy 
release rate. The path independency of the J-integral also provides the experimentalist with 
the convenience of determining the potential energy change due to an incremental crack 
extension by far-field measurements. The asymptotic analysis of a symmetrically loaded, 
mathematically sharp crack tip in a power law hardening material leads to a crack-tip field 
that is contained well within the plastic zone. This field, for plane strain, was given by 
Hutchinson [2] and Rice and Rosengren [3] and are collectively referred to as the HRR 
field. Analogous fields for the generalized plane stress, Mixed-Modes I and II plane strain, 
and Mode III are also known. Hutchinson [2] determined the near-crack-tip fields for plane 
stress with small-scale yielding. The resulting stresses and strains are singular at the crack 
tip for a strain hardening material, as no allowance is made for blunting in the analysis. 

In addition, if one postulates a power hardening material and the existence of the HRR 
field [2,3], the crack-tip state can be then characterized by the J-integral. The amplitude of 
these fields are globally given solely in terms of the value of the local parameter,  J, which 
can be determined by a line integral. Such convenience prompted the use of J-integral for 
correlating fatigue, creep, void growth, and stable crack growth data in addition to its role 
of quantifying the onset of ductile fracture. The inherent unloading process associated with 
crack growth in ductile material, however, violates the postulate of nonlinear elasticity on 
which the J-integral is founded [4]. Physically, the asymptotic fields cannot dominate too 
close to the crack tip, due to the effects of crack blunting and the finite geometry changes. 
Also Hutchinson's model, which is a two-dimensional formulation, does not account for the 
effects of finite sheet thickness on the deformation and stress fields near a crack tip in a 
thin elastic-plastic sheet. While a plane stress state exists at the surface of the plate, high 
stress triaxiality can build up at the midplane near the tip of the crack. In addition to the 
finite thickness, large geometry changes in the crack-tip region will modify the stress and 
displacement fields of Hutchinson's [1,2] singular solution. The only nonlinearity introduced 
into the theoretical derivation of the HRR field is in the stress-strain relationship, and the 
equations of equilibrium and the strain-displacement relationship are taken to be linear. 
Also, asymptotically, as the crack tip is approached, the contribution to the strains that 
depend linearly on stress are neglected compared to the power-law terms. 

Extensive numerical analyses [11-13] showed that the J-integral is still a viable far-field 
parameter for determining the potential energy change under small crack extension and that 
the HRR field is a reasonable representation of the crack-tip state, where the asymptotic 
singular field dominates over a distance large in comparison to the crack-tip blunting and 
fracture process zone. Unfortunately, no comparable experimental verification of the pre- 
ceding numerical analysis, with the exception of Ref 15 and those of the authors [16-18] 
exist to date. 

The purpose of this study was to use the procedure, which was established previously 
[16-18], to provide the missing experimental verifications of the path independency of the 
J-integral and of the existence of an HRR field. 

Calculation of Strain from Moir~ Fringes 

Moir6 interferometry was used to record simultaneously the vertical and horizontal inplane 
displacements with stable crack growth in uniaxially and biaxially loaded aluminum alloys 
[19-21]. Figure 1 shows specimen configurations and J-integral paths and Table 1 shows 
the material properties, where G0, c~, and n are the yield stress and the strain hardening 
parameters for the Ramberg-Osgood stress-strain relationship of ~/~0 = ~r/~r0 + et(cr/~0)", 
where e0 is the yield strain. Since the moir6 fringe patterns represent lines of constant surface 
displacements, conversion of the displacement field to the corresponding strain field is usually 
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desired. The various techniques that are used to perform this conversion can be grouped 
roughly into two categories; mechanical differentiation [22] and the displacement-field ap- 
proach [23]. The method of data reduction used in this paper is based upon the displacement- 
field approach and is described next. 

Data Reduction by the Displacement-Field Approach 

The data reduction scheme used in the present study is an automated version of the 
displacement-field approach. The technique was automated through the use of digitizing 
equipment and a computer. The two primary pieces of equipment required were an HP 
ScanJet Plus Digitizer and a Macintosh II computer with a 80 MB hard disk drive and a 40 
MB removable hard disk. The moir6 patterns were first photographed with a 35 mm or 4 
by 5 camera, and 203 by 254 mm (8 by 10 in.) photographic prints were prepared. Since 

TABLE 1--Mechanical properties. 

Aluminum Yield Stress, ~r o Modulus of Elasticity, 
and AI-Li (MPa) MPa Ot n 

2024-0 67 74 200 1,0 4 
2024-T3 310 73 087 0,4 12 
5052-H32 190 70000 1.0 16 
2091-T3 330 78000 0,5 8 
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the area of specimen that was photographed was 25 by 25 mm (1.0 by 1.0 in.), the photo- 
graphic prints represent a nominal optical magnification of - x 9 to x 10. A digital record 
of the moir6 pattern is then obtained using the HP Scan Jet Plus Digitizer. Scanning the 
moir6 photographs at a resolution of 12 dots/mm (300 dots/in.); resulting in an effective 
resolution of about 106 to 118 dots/mm (2700 to 3000 dots/in.). Commercially available 
image processing software was used to edit the scanned image. The software permits viewing, 
filtering, and editing of the image at the pixel level. This allows the user to "clean up" any 
imperfections (such as dust particles and scratches) that appear in the image. Once the 
image is cleaned to an acceptable level, the image is stored on a disk or a disk backup. An 
example of the procedure is shown in Figs. 2a and b. Figure 2a shows the original photograph 
of a molt6 pattern recorded for the u-displacements induced in an aluminum specimen 
subjected to a 38-MPa tensile stress. Although this is a high-quality moir6 image, note the 
various scratches and dust particles present. This image was scanned and "fil tered," resulting 
in the digital image shown in Fig. 2b. 

After the digitization and filtering processes were completed, the moir6 data were reduced 
numerically using two computer programs that were developed in-house, that is, MOIRE 
and STRREG. MOIRE is used to convert the moir6 fringe patterns to strains. STRREG 
is then used to create a strain contour plot that can be displayed on a computer monitor or 
plotted using a graphics printer. Details of each program are given in the following sections. 

The digitized moir6 patterns created using the HP Scan Jet Plus system are stored in a bit 
map file, which in essence contains pixel information for every point on the image. The 
original 645 mm 2 (1 in. 2) grating area is represented by 5 760 000 pixel points in the digitized 
image. MOIRE computes derivatives in either the horizontal or vertical directions. Normal 
strain, ex, is determined from the u-displacement image, that is, ~x = du/dx; while Ey is 
determined from the v-displacement image, that is, ey = dv/dy. Note that the shear strain, 
exy, can be found by taking the derivatives du/dy and dv/dx and summing as exy = V2(du/dy 
+ dv/dx). The appropriate derivative is calculated using the fringe center locations of three 
adjacent fringes. For example, suppose the strain, ex = du/dx, is being calculated at Fringe 
Ni, whose center is located at Position xi. The derivative is obtained using the fringes 
immediately to the left and right of Fringe N~, that is Fringes N,_I and N~+I, and so the 
derivative, ex = du/dx, can be approximated as 

[1 (N,+, - N, a] 
(x,+, xi , )J 

where, f = virtual reference grating frequency. 
Noting that 

N~+, - N~_~ = -+2 

the preceding expression reduces to 

E x 
1 2_*scale 1 
f (Xi+I ~ - ~ i  1)J 

where scale = scale factor added to account for the difference in size of the original specimen 
and the computer image. 

Strains are calculated at the center of each fringe along the entire row (or column), for 
every row (or column) in the image. MOIRE evaluates "magnitudes" of strain. The program 
does not use the actual fringe number when calculating strain, but rather relative fringe 
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FIG. 2--Steps required to obtain strain field from moir~ fringe patterns: (a) original u-displacement 
field; (b) filtered and cleaned u-displacement field; (c) filtered v-displacement field; and (d) axial strain 
field map for the corresponding v-field. 

numbers, that is, the fringe locations, N~_ 1 and N~+ 1 used to calculate strains, e~ or %,, at 
Fringe Number Ni. 

The strain field map is generated using STRREG from a file that contains the x and y 
coordinates and either ex or ey, and from another file containing the maximum and minimum 
strain values. The total range of strain, as determined using the maximum and minimum 
strain values, is divided into eight intervals. A distinctive graphics pattern is assigned to 
each strain interval. Each calculated strain value and the corresponding x- and y-coordinates 
are read from the strain file. STRREG opens a graphics window in memory, which is slightly 
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larger than the original moir6 displacement photograph. The x- and y-coordinates are found 
in the graphics window. The corresponding graphics pattern is then assigned to that location 
and is plotted to the next coordinate location. If the local strain value has increased or 
decreased to a different strain interval, the graphics pattern is changed accordingly. The 
strain field map is stored in a MacPaint format, allowing for easy editing and printing. An 
example of the original and digitized moir~ fringe pattern and the preceding approach, that 
is, the corresponding ~;., is shown in Figs. 2c and d. 

Calculation of J-Integral from Moir6 Fringes 

The evaluation of the J-integral is essentially a numerical integration along a loop en- 
compassing the crack where the three strain components must be evaluated at identical 
points along the chosen path [16-18] .  STRAIN calculates strains at fringe center locations, 
which may or may not be exactly on the chosen path. Thus, an interpolation program 
(INTRP), which calculates the strains at every pixel point along the contour in the computer 
image, was developed. The positions of the u and v displacement fields may not be identical 
in the two photographs, therefore, INTRP requires that offset values be entered relating 
the relative position of the "origins" in the two fields, that is, d u / d x  and d u / d y  are calculated 
for the given path, while d v / d x  and dv / dy  are calculated for a path on the v-displacement 
field that corresponds to the path taken on the u-displacement field. This process ensures 
that the numeric integration is using three components of strain from the same location. 

The J-integral requires the strain components, the stress components, and the strain energy 
density. The three stress components are calculated using the J2-deformation theory of 
plasticity for multiaxial states with a power hardening stress-strain relationship. A Newton- 
Raphson routine was used to solve the three coupled nonlinear constitutive equations. The 
strain energy density, W, is determined using the stress and strain components just calculated. 

The J-measurement,  which was derived for rectangular contours surrounding the crack 
tip, is divided into line integrals along the vertical and horizontal segments shown in Fig, 
3. The integral value of J along the vertical segments is 

o~+~,, dy - w -  ~,, Tx + ~ .  ~ dy (1) J v  = , W -  %X Ox " ~ ": 

and along the horizontal segments the value of J is 

: - ~,,,,-- + "r~,. ~x dx  + ~"-"~x + % ' O x /  (2) JH~\ " Ox "" : " 

J = J v  + J n  (3) 

Accuracy of this J-evaluation procedure was assessed by evaluating Eqs 1 and 2 along a 
closed contour, which did not enclose the crack tip, and was 0.4% of the corresponding J- 
value in this paper. 

Results and Discussion 

D i s p l a c e m e n t  Fields  

Figures 3a and b show a typical moir6 fringe pattern corresponding to the simultaneous 
vertical and horizontal displacements, v and u, of an aluminum lithium (AI-Li) specimen. 
Figures 4 and 5 show plots of v and u versus the radial distance, r, at a crack-tip polar angle 
of 0 = 45 ~ For the power hardening exponent of n = 8 for 2091-T3 aluminum-lithium 
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FIG. 3--Simultaneous moir~ fringe patterns of  the vertical and horizontal displacements, v and u, of  
2091-T3 Al-Li. 
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.01 

>.001 

.0001 

.1 

.01 

E 
E 

v 

>.001 

.0001 
.1 

.1 

.01 
A 

E 
E 

v 

>.001 

~et/(~o = O. 1 

(a) 
. . . . . . .  ~ 1  | r . . . . . .  t . , , , �9 �9 - 

1 10 100 
r ( m m )  

. . . . . . . .  I . . . . . . .  i . . . . . . . .  

HRR 
Slope:O.11 

(b) 
i . . . .  ~ | 1  | . . . . . . .  i �9 , �9 . . . .  

1 10 100 
r ( m m )  

. . . . . . . .  I . . . . . . . .  e . . . . . . . .  

~net/% = 0.5 

HRR 

(c) 
.0001 . . . . . . . .  ' . . . . . . . .  ' . . . . . . .  

.1 1 10 100 
r ( ram)  

FIG. 4--Comparison o f  the v-displacement variation from moir# experiment with L E F M  and H R R  
predictions at different load levels at 0 = 45 ~ .for 209I-T3 Al-Li. 

Copyright by ASTM Int'l  (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



DADKHAH ET AL. ON DISPLACEMENT FIELDS AND JR-CURVES 143 

.I 

E~, .01 

.001 

.0001 
.1 

.1 

A 

E 
E .01 

.001 

. 0 0 0 1  

q.t/o o = 0.1 

(a) 
. . . . . . . .  i I i i | i i | | 1  . . . . . . . .  

1 10 100 
r ( m m )  

ii;i i i iiiii ! 
(b) 

. . . . . . . .  i . . . . . . . .  i . . . . . . . .  

.1 1 

o.,/% = 0.5 

.1 

EE,,~, .01 
" !  

.001 

r ( m m )  

J 

(c) 

10 100 

L E F M  

\ 
H R R  

.0001 . . . . .  , , , i  , �9 . . . . . . . . . . . . . .  
.1 1 10 100 

r ( m m )  

FIG. 5--Comparison o f  the u-displacement variation from moir# experiment with L E F M  and H R R  
predictions at different load levels at 0 = 45 ~ for  2091-T3 AI-Li. 

alloy, the H R R  field predicts a slope of 0.12 in the log-log plots of the v and u versus 
r-curves. For  the linear elastic fracture mechanics (LEFM)  field, the curves of log-log of u 
and v should be a family of straight lines with a slope of I/2. Figures 4a through c and 5a 
through c show the variations of v and u at 0 = 45 ~ for three applied load levels of cr, et/(r 0 
= 0.1 to %r = 0.5, where (r,r is the nominal  stress along the remaining l igament of  the 
specimen and % is the yield stress of the aluminum alloy. Also shown are the log-log plots 
of displacement versus radial distance, r, of L E F M  and H R R  fields at a crack-tip polar Copyright  by ASTM Int ' l  (al l  r ights  reserved);  Wed Dec 23 18:55:23 EST 2015
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angle of 0 = 45 ~ The displacements for the HRR field were calculated by using the average 
J-integral values obtained through contour integration of the moir6 data. The corresponding 
displacement fields for the LEFM crack tip were obtained by equivalent plane-stress stress- 
intensity factors computed from these J-integral values. 

Plots in Figs. 4a through c indicate that the v-field exhibited a nearly LEFM field at ~rne~/ 
% = 0.1, which later, near the crack tip, changed to HRR field as the plastic zone size 
increased for the intermediate load level, ~r,le~/(ra - 0.3. The HRR zone moved further 
ahead of the crack tip and was replaced by the three-dimensional nonlinear region (3D 
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NLR), near the crack tip, at a higher load of ~r,ethr0 = 0.5. The u-field, (Figs. 5a through 
c), on the other hand, exhibited a nearly LEFM field throughout the increasing applied 
load. 

The many log-log plots for all other aluminum alloys showed that the predicted power of 
1/n + 1 of r for the HRR crack-tip displacement was more or less replicated by the measured 
v-displacement but the measured u-displacement field consistently indicated a power of ~-0.5 
of the radial distance, r [16-18] .  
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Strain  Fields  

The correct representation of the displacement fields as r ~ 0 is 

ui - g~i = a~or \e~oEoln------~r / a~(o,n) (4) 

The dimensionless function of a~(0,n) and the normalizing constant, l., depend on the mode, 
n, and on whether plane strain or plane stress is assumed. The ~ allows for a possible 
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translation of the crack tip itself. Or, equivalently, a constant displacement term, fii, should 
be subtracted from the absolute displacement fields. Moir6 interferometry measures the 
relative displacements and is blind to a constant translation. Obviously, this rigid body 
displacement does not contribute to the strains [24,25]. In order to dispel any doubts on 
the contributions of the rigid body displacements to log-log plots of displacement fields, we 
turn to the strain fields derived from moir6 interferometry. 

Figures 6 through 8 show the variations of e, and e~. for two different strain hardening 
materials, 2024-0 and 2024-T3, with hardening components of n = 4 and 12, respectively. 
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Also shown are the log-log plots of the strain versus radial distance, r, of the HRR fields. 
The HRR field requires a r- ' /"  + 1 singularity in the strains. The strains for the HRR field 
were calculated by using J-integral values obtained through contour integrations of the moir6 
data. Figures 6a and b show plots of e~ and e~, versus the radial distance, r, for an angular 
orientation of 0 = 0 ~ (for 2024-0 aluminum). The magnitude of the predicted strains in 
both vertical and horizontal directions are close to the measured strains at 0 = 0 ~ 
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Figures 6c and d show the log-log plots of Figs. 6a and b. Moir6 results show that the ey 
variation agrees with the HRR prediction, where the slope of the log-log plot is - n / ( n  + 
1) = -0 .74  and the HRR slope is -0 .8 .  In contrast, the ex variation does not agree with 
the HRR prediction and the slope of the log-log plots are nearly - 0.5. Since we are looking 
at the plane stress condition, strain measurement along 0 = 0 ~ is valid for HRR field 
calculations. Figures 7a and b show plots of ex and e~. of 2024-0 aluminum for an angular 
orientation of O = 45 ~ which are consistent with plots at O = 0 ~ The magnitude of ex 
predicted from the HRR field underestimates the experimental ex at 0 = 45 ~ Figures 8a 
and b show the plots of strain for 2024-T3 aluminum alloy at a biaxiality ratio of B -- Fx/ 
Fy ~ 2 loading [17,18]. Due to external load along the crack plane, the magnitude of ex is 
higher than the calculated HRR field, but the - n / ( n  + 1) singularity value is consistent 
with the previous uniaxial tests where they all show a slope of about -0 .5 .  

The associated HRR crack-tip displacements and strains in all specimens were in agree- 
ment with the measured displacements and strains vertical to the crack, but consistently 
differed in magnitude and order of singularity with measured displacement and strain parallel 
to the crack. 
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H R R  Field Dominance 

Figures 9a through d show the zone of dominance of the HRR field with respect to the 
external loads for the v-displacement field. Also shown are the boundaries of the process 
zone or regions of three-dimensional nonlinear zone (3D-NLR). Note that in Fig. 4, for 
crnet/cr0 = 0.5, the slope of log(v)-log(r) near the crack tip is high, that is, about 0.8 to 1.0. 
This is the region of finite strain and fracture process zone (3D-NLR) in which the micro- 
scopic process of separation occurs. From Fig. 9, it is shown that the v-displacement indicates 
a large range of HRR dominance. Figures 9a through d also show that the three-dimensional 
nonlinear region grows larger as the load increases and the HRR dominance zone is insen- 
sitive to increase in the applied load or crack extension. Recent numerical results of Zhang 
and Ravi-Chandar [14] also show that the HRR dominance is not very sensitive to increase 
in the applied loading. As the magnitude of load increases, the size of the HRR region 
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increases, but beyond some limit load the size of HRR region remains unchanged. On the 
other hand, the 3D-NLR or the process zone grows continuously and annihilates the HRR 
zone as the load increases. It should be noted that the u-field has no range of H R R  dominance 
throughout the loading process from LEFM to elastic-plastic fracture. 

JR Curves 

Figures 10a through d show the JR-curves for 2091-T3 aluminum-lithium, 2024-T3, 2024-0, 
and 5052-H32 aluminum specimens, respectively. Despite the maximum differences of 4.4 
cm in the length of integration paths, the J-values for each crack length differed at the most 
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FIG. 12--JR curves of 5052-H32 and 2024-0 compared with predicted J, Jr, and Jp of Refs 28 or 29. 
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by 5%. The extrapolated JR-curves inferred a critical J of 8 to 10 MPa m for 209t-T3, 6 to 
7 MPa m for 5052-H32, and 9 to 10 MPa m for 2024-T3; there was no recognizable critical 
J for 2024-0. Figure 10c shows the JR-curves for the approximate [21] and exact [16] J- 
values obtained from 2024-0 small and large single-edge-notched (SEN) specimens, re- 
spectively. Figure 10d shows the JR-curves for 2024-T3 tests during stable crack growth. 
Also shown is the J-resistance curve obtained by deKoning [26] for a 2024-T3 and Ernst 
[27] for 2024-T351. Figures l l a  and b compare the measured JR-curves and the JR-curves 
predicted by using the J-prediction method by Shih et al. [28]. Shih's J-prediction method 
was obviously meant for a stationary crack, and the estimated J deviates substantially from 
the measured J-values at the larger crack extension, that is, Aa > 0.6 -- 1.0 mm. 

Figures 12a and b show the J~(Aa) and Jp(Aa), which were calculated using the EPRI 
estimation technique [28 or 29] compared with the measured J(Aa) curves using m0ir6 
interferometry. Since the crack tip is surrounded by large plastic deformation in 2024-0 and 
5052-H32 aluminum specimens, the fully plastic estimation would be expected to be used. 
The predicted JR, however, differed substantially from the measured J in both alloys. 

These findings raise some key issues regarding elastic-plastic fracture mechanics: Are the 
current formulas for J calculations incorrect? Even though the J is path independent, is it 
really a suitable parameter for characterizing the crack-tip fields? 

Conclusions 

1. Moir6 interferometry was used successfully to measure the displacement and strain 
fields around stably growing cracks in four aluminum alloys. One of the advantages 
of moir6 interferometry is that it does not involve a priori assumptions regarding the 
displacement and strain fields. 

2. Path independency of J is shown and the JR-curves associated with small crack extension 
in thin (0.8 ram) aluminum specimens are presented. 

3. These JR results differed substantially from the J-values computed by using the far- 
field formula of Shih, German, and Kumar. 

4. The u crack-tip displacement and strain fields did not agree with the asymptotic so- 
lutions of Hutchinson, Rice, and Rosengren computed from the measured J-values. 
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ABSTRACT: A hybrid finite element approach is presented for the analysis of cracked panels 
with riveted doublers in airframe structures. The method uses the super element developed 
by Tong to model the cracked panel with rivet holes, springs to model the rivets, and regular 
finite elements to model the doubler. The super element accurately models the crack and rivet 
holes of the skin while the regular finite element method provides the versatility to take into 
account the variety of doubler designs. Numerical results are presented to demonstrate the 
efficiency and accuracy of this approach, and to compare different doubler designs. 

KEY WORDS: fracture mechanics, fatigue (materials), finite element method, aircraft 
structures, aircraft repairs 

In December t978, the Federal Aviation Administration of the United States (FAA) 
issued the Amendment 45 to the FAR 25.571, Fatigue Evaluation of Flight Structure, 
requiring that the structure of all new transport category airplanes certificated in the United 
States be designed to damage tolerant principles. This is a requirement [1] that methods of 
advanced fracture mechanics be applied to evaluating the structural integrity of aircraft to 
ascertain that the airframe will not experience catastrophic failure due to fatigue, corrosion, 
or accidental damage under the expected load spectra throughout the operating life of the 
aircraft. In 1981, the FAA further issued advisory circula AC 91.56 providing guidance for 
development of the Supplemental Inspection Documents (SIDs) based on the damage tol- 
erant philosophy for existing large transport category airplanes. Since then, aircraft man- 
ufacturers have carried out damage tolerant evaluations to define inspection programs for 
both new designs and the existing older transport category airplanes. 

Damage tolerant evaluation is not normally performed for repairs and modifications to 
principal structural elements. The current practice generally assures that repairs or modi- 
fications would have an equal or better static strength as compared to the original design. 
In Ref2, Swift shows how these repairs and modifications can degrade the damage tolerance 
of the structure. The main causes for the degradation are due to the bearing loads and stress 
concentration induced otl the rivet holes at the location of repair and the reduced inspect- 
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ability of these holes because they are covered by the doubler. He has suggested a number 
of approaches to improve the design of these repairs to reduce the rivet forces, improve the 
inspectability, and consequently increase the fatigue life and damage tolerance of the repaired 
basic structure. 

Swift uses the displacement compatibility method to determine the rivet forces and the 
bearing stresses in the holes of built-up panels. The present paper presents a hybrid method 
for the analysis of cracked panels with riveted doublers. The method uses the super-element 
developed in Ref 3 with a slight modification to model the cracked panel with rivet holes, 
springs to model the rivets, and regular finite elements to model the doublers. The super- 
element accurately models the crack and rivet holes of the skin while the regular finite 
method provides the versatility to take into account the variety of doubler designs. 

As mentioned in Ref 3, the standard finite element method is versatile enough to take 
into account the effects of complex geometry variations, and different stiffener and fastener 
configurations. However, in order to account for the stress singularities at crack tips and 
rapid stress variations near rivet holes, enormous amounts of elements are required to model 
the structure with any degree of accuracy. Thus for an efficient finite element solution, it 
is natural to employ a hybrid super-element to account for the singular behavior. It is seen 
from Ref 4, that the use of the hybrid superelement to solve problems for structural com- 
ponents with cracks is extremely accurate and efficient in comparison to the standard finite 
element method. 

Hybrid Formulation 

Airframe structures often involve skins with bonded or riveted stiffeners. If the skin is 
damaged, a doubler(s) is riveted over the damaged area. Loads are transferred out of the 
skin to the doubler through the rivets. The bearing stress induced in the rivet holes will 
degrade the fatigue life of the skin. Therefore, it is essential to determine the rivet loads in 
order to quantify the effects of repairs on the damage tolerance of the structure. The hybrid 
finite element method is ideal for analysis that can accurately calculate the singular stresses 
at the crack tips and the nearly singular stresses around the rivet holes. 

Following the formulation given in Ref 3, we approximate the skin as an infinite panel 
with a centrally located crack of length 2a (Fig. 1). Remote stresses, ~r~l, e~2, and cry2, are 
applied. The panel is also subjected to loads, pk, along the surfaces of small holes at zk, 
k = 1, 2 . . . .  Complex variables are used in this formulation where 

Z = X + @  

p k  _ X k + i y k  (1) 

in which X k and yk denote the load per unit thickness in the x and y directions, respectively. 
The load at zk is applied on the hole surface of radius lz - zkl = e where e is small as 
compared to any characteristic dimension (such as the half crack length) of the problem. 
The applied forces are in self-equilibrium, that is 

Z P~ - o (2) 
k 
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FIG. 1--Concentrated loads and remote stresses on a cracked panel. 

Equations 2 and 3 are, respectively, the force and the moment equilibrium equations, and 
Im( ) denotes the imaginary part. 

A hybrid variational functional for the panel can be written as 

+ f R ~  tT~u~ds- ~R~= tT~ (4) 

where t is the panel thickness; ui are the displacements; 7",-(= ~ovl) and e0 are, respectively, 
the boundary tractions and stresses; and U(aij) is the complementary energy per unit volume. 
In Eq 4, we required that e~j satisfy a priori the equilibrium conditions in A and the traction- 
free conditions at the crack surface. The superscript, ( )~ denotes the known quantities 
associated with the solution of a cracked panel without holes subjected to given remote 
stresses. Therefore, the second term in the parenthesis and the last term on the fight side 
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are constants that have no effect on the functional variation. The tii are the displacements 
of the skin at the hole surface, ]z - zk] = ~, and are independent functional variables of 
~rp. The Euler equations for the panel can be derived through the first variation of 7rp. They 
are the compatibility equations in A, at the hole surfaces, and at R(---~ ~). 

Let us write 

% = 4,j + 0-~ 

Ti = Ti + T~ (5) 

In addition, we will choose % to satisfy also a priori the compatibility equation in A. In 
other words, % are selected such that an associated compatible displacement field, ui, in A 
exists. Writing u~ in the form 

ui = G + u7 (6) 

substituting both Eqs 5 and 6 into Eq 4, and converting the area integration to line inte- 
gration, ~rp becomes 

t ~ ~o_ 1 Tifii) d s -  1 (7) 

The detailed derivation of ~ri/and ui are given in Ref 3, which expresses the solution in terms 
of two stress functions (+,~). 

The remote stress solution without holes [5] is 

+ ~  0-22 - 

L[/~ = 4 0"22 --  

+ o"11 + + - -  

- -  0-11 ~ - -  C + + 2~  ~ + (8) 

where ~ and z are related by 

z +  I +  
a (9) 

The branch of the square root in Eq 9 is chosen to ensure that ]El -> 1. The transformation 
in Eq 9 maps the cracks surface in the z-plane to the unit circle centered at the origin in 
the E-plane. 
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The solution for a panel  with a crack and concentrated load, pk, at ~k is [3,6] 

d)k(0 -- 2(K + 1)V In (~ -- ~k) 2(K + 1)w In - ~k 

( 1 

2(K + 1)v (1 + ~,1(1 -- ~k)  

~k 4~s2 1 

2v(K + 1) (1 + ~ ) : a  2 (1 - ~k)  z 

pk 

2~(K 4- 1) 2 
[ ln(-~,)  + K~-In(-~)] 

-~ 2 v ( s  + 1) 2 -1 + ~ (10) 

and 

+(~)  = _ ~  ~(11 + ~2) (b ' (0  (11) 

where s is the radius of the hole at Ck and 

3 - -  V 
K - for plane stress 

1 + v (12) 

= 3 - 4v for plane strain 

in which v is the Poisson's ratio. The short bar over 6 denotes the complex conjugate of ~b, 
but not the independent  variable itself. 

For the case that the radii of the rivet holes are sufficiently small, we can approximate 
the stress functions for crij as the sum of the solutions for concentrated loads at ~k, that is 

+(0 = ~: +~(0 
k (13) 

k 

The expression in Eq 10 is the same as that of Eq 21 of Ref 3 except for the last three terms. 
The first of these three terms is added to ensure that the 0(1) displacements of (ul, u2) on 
the rivet hole surfaces are independent  of 0, the local angle defining each rivet hole. The 
last two terms are constants having no effects on the stress distribution and are added for 
the convenience of programming so that the H flexibility matrix in Eq 24 is symmetric. 

Returning to Eq 7, recall that T, and u~ are the tractions and displacements associated 
with the equilibrating and compatible stress field, ~,j, which also satisfies the traction-free 
conditions at the crack surface. The integration over R ~ zr is zero [3]. If the radii of the 
holes are sufficiently small, the integration over ]z - z~] = s can be carried out explicitly. 
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Because ti~ and u,? have no singularity in A,  as E --+ 0, we have 

i T f i f l s  = X k ( a ) k  + Yk(r + O(e ~) z-zkl=e 

~-~kl=~ T~uids = Xk(u~ + Yk(v~ + 0(e z) (14) 

where (ti, v)k and (u ~ v~ are the values of (/~1, Li2) and (u~, u~) at z~, respectively. We 
have 

( )] o a 1 4~ 
2tl(u~ + i .~) = (r~,~ K { + 1 + {2 (~2 _ 3) + 2 ~ -- ~ + 

+ ( r ~ 2 8 [ ( K - - 1 ) ( ~ - - ~ ) -  2 ( ~ -  ~ ) l k  

1 1 ] 
o ai ~ - ~ + ~ - =  

+ ~ r ' 2 2 -  1 + ~  2 r + ~  k 

The integration of ~r~ i over ]z - zjl = e with e --+ 0 can be performed easily in polar 
coordinates in the z-plane, that is 

fz ~Jl=~ Tf z f l s  = Re  J~i ~ - ( ~ .  - id',o)(fi , + ifi0)e dO (15) 

in which Re  denotes the real part of a complex function, and 

( - )  e-  i0 dqb 
t2. + /rio = e-i~ + ifi2) = ~ Kcb - Z~z- z - 

- -  e2 io ( %. ) dd~ d+ dZ+ d@ 
~rr -- i(TrO = ~ Z  -k -"~Z --  -Z ~Z2  -t- --~Z (16) 

where Ix is the shear modulus. 
Using Eqs 10, 11, and 13, we find 

e io 
d r r -  id'ro = - P J  + 0(1) 2Trg 

(17) 

at z = z j  + e e  ~~ Similarly, we obtain 

gt r + i~ o = e ~o ~ {pk[dk(~) + fk(~j)] + pk[ek(~j) + gk(~,)]} + 0(~) (18) 
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The functions dk(~), e~(O, i f ( 0 ,  and gk(O are defined as follows. For ~ :k {~, 

_ 1 
ff(~) 4(K + 1)~Ir 

+ (19) 

g~(~) - 

[ _ 1 1) _ m  +~k-- 
1 2 ( ~ -  1) /~J' 

4(K + 1 )~r  (1 + ~')(1 + ~ )  - (1 + ~)(1 - ~G) 

- ~ +- ~ d -  - ~,) 3 

4(~ + 1)~r  
ln(~ - G) (~  - ~k) 

ek(~) - 

and if ~ ~ G 

4(K + 1)l~r 

P ~ - ~  ~ 1 

- = 1 + ~  ~ - G  
(20) 

2--2 2 ] K 4e GG 
dk(;k) -- 4(K + 1)~'rr In a2(1 + ~  + ~ )  

ek(G) - 
4(K + 1)wrr (1 + ~)2 

(21) 

The functions d, e, f, and g are each different from those of Eqs 28 through 30 of Ref 3 by 
a constant that has no effect for the stress distribution. 

A substitution of Eqs 17 through 21 into Eq 15 yields 

fz_zjt= 7"fqds = Re [-fiJ ~ (pkD~ + ffkE~)] + O(e 2) (22) 

where 

D~' = dk({) + f f (~)  

E~ = ek({i) + gk({,) 
(23) 
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It is noted that the integration of 0(1) terms in the integrand is zero. After some algebraic 
manipulations, we get 

- fz  zjl:~ ?'itJids=(Xryr)(Hll~ sym]H2R// ( y  X) (24) 

where ( )r denotes the transpose, the subscripts ( )R and ( )t respectively denote the real 
and imaginary parts, ( ) denotes a vector or a matrix, and 

X r = ( X  1, X 2 . . . . .  ) 

y r  = (y , ,  y2 . . . . .  ) 

n~ = [D~ + E~] 

It is noted that 

He = [D~ - E k] (25) 

HIR = H~R 

H2R = H~R 

H,I = - H ~  

so that the flexibility matrix H of Eq 24 is symmetric. 

(26) 

Hybrid Functional for Repaired Panel 

The repaired panel shown in Fig. 2 consists of three parts: the skin, rivets, and a doubler. 4 
The variational functional of the panel is simply the sum of the functional of the three 
components. Each of the rivets is modeled as a series of springs representing the flexibility 
of the rivet stem and the adjacent holes of the skin and doubler. The stiffness of each spring 
element is shown in Fig. 3a, where Es, Er, and Ea are, respectively, the Young's moduli of 
the skin, rivet, and doubler; D is the rivet diameter; and t and td are the thickness of the 
panel and the doubler, respectively. The constants A, and A2 are obtained empirically 
through tests [2] and are, respectively, 5 and 0.8 for aluminum rivets, and 1.666 and 0.86 
for steel fasteners. The compliance coefficient of the rivet is 

A, A 2 A2 ) (27) 

Using the complementary energy formulation [3], the variational functional for the rivets 
can be written as 

I 1 1 ~r~ = ~k (Ud -- a)kF~ + (V~ -- P)kF~ - ~ aI(F~Y + (F~) 2] (28)  

4The original data used non-SI units. 
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(total 200rivets) 

where (F~, F~) are the forces on the rivet, (ti, v)k are the skin displacements around the 
rivet hole, and (ud, Vd)k are the doubler displacements at zk. 

Let us model the doubler by the regular finite-element method. The strain energy of the 
doubler is 

fA 
"rra = ta ~ erCedA (29) 

Ks = E~ t/A2 

IG = E~D/Al 

Kd = Ea td/A2 

a b 

t Kdv = Ed t~p/A2 1 K,~ = Ea td~/A2 

FIG, 3--Spring models for rivets: (a) single doubler design and (b) double doubler design. 
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where e is the strain vector, C is the elastic coefficient matrix per unit thickness, and A is 
the area of the doubler. 

Using Eqs 7, 28, and 29, we have the functional for the repaired panel 

= ~,,  + ~, ,  + ~ (30) 

which can be used to derive the finite element equations. The number of unknowns of the 
finite element equations can be reduced by eliminating the rivet displacements at the 
skin (a, v)k, and the rivet forces, (F~, F~). We shall consider the following two doubler 
designs. 

(a) Single Doubler (Fig. 2) 

The first variation of w with respect to (Fx k, F~) and (ti, v)k gives 

c~F~ = (Ua)k - (U)k 

oLF~ = (Vd)~ -- (9)k (31) 

and 

F k = t X  k 

F~ = tY  ~ (32) 

Requiring that the relationships between (F~, F~) and (X k, yk) are satisfied a priori, Eq 
30 reduces to 

= - ~  t Xk(u~ + Y~(v~ + -2kl=~ 2 7",fi, ds 

+ ~ t X~(Ud)k + Yk(Vd) ~ -- ~t[(Xk) 2 + (Y~)~] + -rr d (33) 

The independent field variables for Eq 33 are the doubler deflections (Ud, Vd)k and the stress 
functions (~, ~) with the nodal values of the deflection and rivet loads ( X  k, yk) ,  respectively, 
being the unknowns for the finite-element equations. 

(b) Doubler Lamination: Two-Side Doublers (Fig. 4) 

This is a design that can be used to reduce the abrupt change of bending rigidity at the 
edge of the doubler and, hence, minimize the induced bending stresses on the skin. This 
design also reduces the forces of the rivets of the first row to improve the life of the skin. 
For this design, we can model the flexibility around the holes of the doublers as two parallel 
springs (Fig. 3b). The variational functional for the rivets can be written as 

1 
It, = ~ ~ [K(a - K)2 + K(~ - ~)2 + K~(uds -- u) z 

k 

+ Kd,(Vd~ -- ~)2 + Kdp(Udp -- K)2 + Kep(Vd p __ ~)Z]k (34) 
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where (~, F)k are the fictitious displacements between the springs representing the rivet stem 
and the doubler holes and 

1 A2 + A~ 
= E,-~ E ~  (rivet stem and skin in series) 

Edtas 
gds -~- 

A~ 

Edt@ (35) 
K~p= A2 

are stiffnesses of the spring elements with the subscripts, s and p, denoting quantities 
associated with the secondary and primary doublers. 

The functional for the doublers is in the same form as that in Eq 29 except that the domain 
of integration now includes the area of both doublers. The first variation of ~r with respect 
to the displacements (t/, v')k, and (~, v)k gives 

t x  --  K ( a  - a )  

t Y  = K ( ~  - f,) (36) 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



TONG ET AL. ON THE HYBRID FINITE-ELEMENT METHOD 165 

I ( ( ~  - a )  + K~s(~ - u ~ )  + Kda(-a - usa) : 0 
K(-9 - 9) + K,~.(F - v,~) + Ksa(V - Vap) = 0 

(37) 

In Eqs 36 and 37 and in the subsequent discussion, the subscripts and superscripts, k, are 
dropped for convenience. We can solve for (ti, 9) and (K, ~) in terms of (X, Y), (ua~, va~), 
and (usa, Vda). Eliminating (t~, 9) and (~, ~), the functional, ~r, then becomes 

~r = ~,  - ~ t Xk(u~ + Yk(v~ + . . . .  I:~ 2 l'iuids 

I{K (x) 
+ ~ (X, u,a., Usp) K u,~ + (Y, v,~, vda) K v,~ 

Ud a Vdp k 

(38) 

where K is given by the matrix 

1 ) .m) / / , - t  + ; Ks. 
l _ t K , ~ _  K~Kse (39) 

K = ~ K~ + Ks; K~ + Ksp 

k tK@ - K,~Ks e Ka~Kae 
Ks~ + Ksp K~ + Ksp Ka~ + Kap / 

The independent variables for the functional are the doubler deflections (uam, Vam)k where 
m = s and p, and the loads (X k, Yg), the rivet loads on the panel per unit thickness. The 
nodal values of these quantities are the unknowns for the finite-element equations. 

Examples 

Figure 5 shows the results for a fuselage skin of thickness 1 mm (0.04 in.) with a crack 
of length 2a. A doubler of thickness 1.27 mm (0.05 in.) is riveted over the damaged area 
with four rows of rivets on each side of the crack in the x direction. Each row contains 25 
rivets, running from y = -304.8  mm ( - 1 2  in.) to y = +304.8 mm (+  12 in.). The rivet 
diameter is 4.76 mm (3/16 in.) and the rivet pitch is 25.4 mm (1 in.). The results for rivet 
forces, Fx, are shown in Fig. 5 for the case that the skin, rivets, and doublers are all made 
of aluminum (E = 107 psi, v = 0.33) with a crack length of 2a = 50.8 mm (2 in.). It is 
seen that the higher rivet loads are at the first row of rivets (x = +88.9 mm) (+3.5 in.) 
that connects the doubler to the skin, with the highest force of 103 kg (227 lb) at the corner 
rivet (x = 3.5 in., y = 12 in.) where both edges of the doubler come together. 

As a comparison to these rivet loads, the results of Swift [2] that are based on the 
displacement compatibility method are also shown. Although the rivet loads from Ref 2 are 
based on a skin without a crack, the present finite element results for a small crack, a = 1 
in., are an adequate comparison. The maximum rivet toad, Fx, from Ref 2 is 85 kg (187 
lb), which is 18% less than the present result of 103 kg (227 lb). This difference is mainly 
due to the inclusion of two-dimensional effects in the present finite element analysis, in 
comparison to the one-dimensional effects of the displacement compatibility method. Since 
the finite element results accurately model the effects at the first row of the doubler/skin 
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FIG. 5 - - R i v e t  load distribution (/b), F• single doubler, crack length 2a = 2 in. (50.8 ram). 

intersection, it is physically most plausible to compare with Ref 2 halfway along this edge 
row of rivets at y = 152.4 mm (6 in.),  which minimizes the effects of both the crack and 
the corner effect where the edges of the doubler  come together. At  this location, the present  
finite element  technique produces a rivet load of 85.4 kg (188 lb). As seen in Fig. 5, the 
comparison of rivet loads at y = 15L4 mm (6 in.) shows excellent agreement.  Another  
factor of importance is the effect of rivet load in the y direction, that is, normal to direction 
of applied stress of 103.4 MPa (15 ksi). For the maximum rivet load of F~ . . . .  = t03 kg (227 
lb), there is also a load component  in y direction of 34.5 kg (76 lb), so that the resultant 
rivet load is actually 108.5 kg (239 lb). 

The effect of crack length on the maximum rivet load, F,,  for the corner rivet, x = 88.9 
mm (3.5 in.), y = 304.8 mm (12 in.), is shown in Fig. 6. For a doubler  thickness of 1.27 
mm (0.05 in.), Fx reaches 134.4 kg (296 lb) when the crack length 2a is 609.6 mm (24 in.),  
that is, the crack reaches all the way to the edge of the doubler.  The additional rivet force 
in the y direction is small and has little effect on the resultant rivet load. 

An  important  indicator of fatigue life is the skin peak bearing stress that is calculated 
from the maximum rivet force at the corner rivet 

Fmax (40)  
Crb~ - tD  

where t is the skin thickness and D is the rivet diameter.  For the crack length of 50.8 mm 
(2 in.),  the peak bearing stress is calculated as %r = 239/(0.04)(0.1875) = 219.7 MPa 
(31 867 psi), while for a crack length of 609.6 mm (24 in.) the bearing stress is 272.4 MPa 
(39 500 psi). The ratio of bearing stress to the gross stress of 103.4 MPa (15 000 psi) is then 
2.12 and 2.63 respectively, for 50.8 and 609.6 mm (2 and 24 in.) crack lengths. If the skin 
is made of 2024-T3, the fatigue life of the basic structure with open holes and a stress ratio 
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FIG. 6--Maximum rivet load F~ for different crack lengths, single doubler. 
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of R = 0 is 160 000 cycles, but this fatigue life is reduced with increasing ratio of bearing 
stress to gross stress [2]. With the 1.27 mm (0.05 in.) doubler,  the fatigue life is reduced to 
about 39 000 cycles and 30 000 cycles, respectively, for 50.8 and 609.6 mm (2 and 24 in.) 
crack lengths, based upon open hole S-n data of Ref 2. 

As the thickness of the doubler  increases, the rivets in the first (edge) row carry an 
increasing portion of the load transferred to the doubler.  In Fig. 6, the maximum rivet load, 
Fx, for the corner rivet is plotted as a function of crack length, for a doubler  thickness of 
2.54 mm (0.10 in.), as well as for 1.27 mm (0.05 in.). The increase in rivet load with crack 
length, from a = 25.4 mm (1 in.) to a = 304.8 mm (12 in.), is 17 and 30%, respectively, 
for a doubler  thickness of 2.54 and 1.27 mm (0.10 and 0.05 in.). For a crack length of 609.6 
mm (24 in.),  the maximum corner rivet force for a 2.54 mm (0.10 in.) doubler  is 166.2 kg 
(366 lb), which is 24% higher than the 134.4 kg (296 lb) force for the 1.27 mm (0.05 in.) 
doubler.  Consequently,  the fatigue life of the skin is reduced further by the thicker doubler,  
even though a thicker doubler  can be stronger statically. The effect of doubler  thickness on 
maximum rivet load (corner rivet) is shown in Fig. 7 for 1 mm (0.040 in.) rivet skin thickness. 
It is seen that the rivet load is affected strongly by the doubler  thickness in the range from 
1 to 2.5 mm (0.04 to 0.10 in.), rising 45% in this range, which is similar to the result of 
Swift [2]. 

A doubler  design configuration that can be used to reduce fastener loads in the first 
doubler  row is the use of a multiple doubler  as shown in Fig. 4. Placing a secondary doubler  
on the inside of the panel and extending it one fastener row so that the outer rivet row of 
the skin only has a single doubler  connection,  produces a significant advantage in terms of 
load transfer and inspectability. Consider the case with a 0.63 mm (0.025 in.) inner (sec- 
ondary) doubler  and a 0.81 mm (0.032 in.) outer (primary) doubler.  For this configuration 
and a crack length of 2a - 50.8 mm (2 in.), the corner rivet load, Fx, x = 114 mm (4.5 
in.),  y = 304.8 mm (12 in.),  is reduced 22% to 79.9 kg (176 lb) as compared to 103 kg (227 
lb), x = 88.9 mm (3.5 in.), y = 304.8 mm (12 in.), for the 1.27 mm (0.05 in.) single doubler  
shown in Fig. 5. The skin bearing stress is reduced to 162 MPa (23 466 psi) and the ratio 
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of bearing stress to gross stress is 1.56, producing an enhanced fatigue life of 55 000 cycles. 
Additionally, inspectability of this type of doubler repair is improved since a crack in the 
first rivet row will now be visible. In Ref2, the critical rivet load, without a crack, is calculated 
as 55 kg (122 lb), which should be compared to the present rivet load of 66 kg (146 lb) 
located halfway along the edge row of rivets at y = 152.4 mm (6 in.). The difference in 
this result is due to alternate modeling of the rivet compliance in Ref 2 and the present 
analysis. The row-by-row rivet load distribution for this two-sided doubler configuration is 
shown in Fig. 8 for a crack length of 50.8 mm (2 in.). 
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A Hybrid Numerical-Experimental Method 
for Caustic Measurements of the T*-Integral 
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ABSTRACT: This paper presents a methodology of direct experimental measurement of the 
T*-integral, which has great potential as a nonlinear (elastoplastic) fracture mechanics param- 
eter. A hybrid numerical-experimental method was developed to measure the T*-integral by 
the size of reflected caustic pattern. To this end, the formation process of the caustic pattern 
for an elastoplastic crack tip in a compact tension specimen was simulated by a previously 
developed finite element simulation technique aided by computerized symbolic manipulation. 
Experimental measurement of the caustic pattern in the compact tension specimen was also 
carried out. Both simulated and actual caustic patterns agreed very well. The relations between 
the T*-integral and the size of caustic pattern were obtained for various optical setup. 

KEY WORDS: elastic-plastic fracture mechanics, method of caustics, finite element simulation, 
T*-integral, path independent integral, generalized J-integral 

In recent years, nonlinear fracture mechanics methodology for safety design against ductile 
fracture in structural components has been the object of intense study. In nonlinear fracture 
mechanics, consideration of integral type crack-tip parameters is essential due to a finite 
extent of a process zone or damaged zone near the crack tip. These integral type parameters, 
however, are usually difficult to evaluate experimentally and mathematically. Therefore, 
nonlinear fracture mechanics relies heavily on finite-element simulation technologies and 
appropriate integral-type crack-tip parameters. 

Among the integral-type crack-tip parameters proposed in literature, the path independent 
T*-integral derived by Atluri, Nishioka, and Nakagaki [1] has great potential as a unified 
crack-tip parameter, since the T*-integral is the most natural extension of the so-called 
(Rice's static) J-integral [2] and the nonlinear dynamic J-integral (J') [3], to nonlinear static 
and nonlinear dynamic crack problems. 

The method of caustics, which also is known as the shadow spot method, has many 
advantages, such as the simplicity of equipment and measurement, applicability to static as 
well as dynamic crack problems, and so forth. For these reasons, the method of caustics 
has been used to measure static and dynamic stress-intensity factors in many cases. 

However, only a few attempts [4,5] have been done to extend the method of caustics for 
the measurement of elastic-plastic crack-tip parameters. The present authors [6] have de- 
veloped a finite element simulation technique aided by computerized symbolic manipulation 
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for the formation process of reflected caustic pattern in an elastic-plastic material. This 
technique showed great ability to obtain simulated caustic patterns precisely. 

In the present study, based on the aforementioned numerical method aided by comput- 
erized symbolic manipulation, a hybrid numerical-experimental method is developed to 
measure the T*-integral by the size of reflected caustic pattern. Experimental measurement 
of the caustic pattern in the compact tension specimen is also carried out. In order to assure 
the accuracy of the present method, the simulated caustic patterns are compared with the 
actually measured caustic patterns. 

Nonlinear Fracture Parameter T*-Integral 

Consider a crack in an elastic-plastic body as shown in Fig. 1. For elastoplastic crack 
problems, a finite element analysis based on an incremental flow theory of plasticity is 
usually used. Therefore, it is natural to consider an incremental measure of the strength of 
the crack-tip field. First, based on this idea, Atluri,  Nishioka, and Nakagaki [1] have derived 
a general form of path independent integral T*, which is valid for any material-constitutive 
relation under quasi-static as well as dynamic conditions. For static crack problems, the 
T*-integral can he written as 

T*k = ~ A T :  (1) 

f 
A T ~  ~ Jl'~ [ ~ W t ~  k - (ti + At~)Au,.k - At~U,.k]dS (2a) 

= ~ + r c  [AWnk - (t, + At~)AUi.k -- At, u,.k]dS 

-t- fVF-V~ A(YiJ sij 2 ~sij -- Asij (~i) ~- -2 ~ i j  d V  
,k ,k 

(2b) 

where E denotes the summation along the loading history; AW = (A% + VzA~ii)Ae, j is the 
incremental stress working density; c% and s~j are the stress and the strain, respectively; nk 
the outward normal direction cosines; t~ and u~ are the traction and the displacement, re- 
spectively; ( ) ,  k denotes O( )/OXk. The general expression of the T*-integral including 
dynamic crack problems is given in Ref 1. The path independence of the T*-integral can 
be shown easily without using a constitutive relation. Therefore, the T*-integral is valid for 
any constitutive model, including plasticity, creep, and viscoplasticity. 

The T*-integral can be also expressed in a total form as follows 

f 
=-- | [Wnk -- tiu,.k]dS Tk al'e (3a) 

= fr+rc [Wnk -- tiui.~]dS 

+ fvr v~ [~Oe'Jk - W k]dV (3b) 
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FIG. 1--Nomenclature for a cracked body. 

The near-field path F~ in Eqs 2 and 3 will be taken along the boundary of a fracture process 
zone [7]. Usually the size of fracture process zone may be finite for growing cracks in ductile 
(elastic-plastic) materials. 

However, in brittle materials, the process zone should be very small, compared to the 
size of the crack itself. For this reason, an infinitesimally shrinking path to the crack tip can 
be used. It is also noted that, in numerical analyses for stationary cracks, V~ = 0(F~ = 0) 
can be used, as demonstrated in Ref 8. 

Note that in an elastic-plastic material under arbitrary loading history, W is the total 
accumulated increments of stress working density. Since ~q is not a single-valued function 
of eq, in general, we have W.k ~ (Yi]Eij,k. 

For elastic materials, since W corresponds to the strain energy density, the T~-integrals 
reduce to the J~-integrals derived by Nishioka and Atluri [3] for elastodynamic cases. More- 
over, for elastostatic cases, the T~ integrals reduce to the Jk integrals derived by Budiansky 
and Rice [9] for elastostatic cases. Thus, the T*-integral is a natural extension of the 
so-called (Rice's static) J-integral and the dynamic J-integral J ' .  For these reasons, the 
T*-integral may be considered as the generalized J-integral and has good features as a 
unified crack-tip parameter for various types of fracture mechanics. 

The T~-integrals can be regarded as the x~ components of the vector integral T* emanating 
from the crack tip. Accordingly, the ordinary coordinate transformation rule of vector can 
be used for the T~-integrals [10]. 

Physical and Mathematical Principles in the Formation of Reflec'.ed Caustic Pattern 

Consider a family of parallel light rays incident on an opaque specimen containing a crack 
as illustrated in Fig. 2. Here, we consider the optical setup for the method of reflected 
caustics. 
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The stress concentration around the crack tip causes a reduction of the thickness of the 
specimen as shown in Fig. 2. As a consequence, the polished surface of the specimen near 
the crack tip acts similar to a concave mirror. Thus, the light ray reflected from the Point 
P (Fig. 3) on the specimen is deflected inward and reaches the Point P'  on a virtual screen 
behind the specimen. As can be seen in Fig. 3, the position vector W of the image point 
P'  is given by 

W = h r  + w ( 4 )  

where k is the magnification factor of the optical apparatus, k takes a unit value (1.0) for 
a parallel light beam. 

Y y 

"" ~ ~Y i .. . . . . . . . . . . . . . .  ::-::::7_:::: :::::::::= . . . . .  

~ r  I X  - _ _ _  r ! x  

Virtual Specimen 
S c r e e n  

FIG. 3--Schematic of the optical setup for caustic by reflection. 
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The vector w, which indicates the deviation of the light ray on the screen, is given as 
[4,11] 

w = - 2Zo grad f (x ,y)  (5) 

where z 0 is the distance between the screen and the specimen, and f (x ,y)  is the total 
displacement of the specimen surface in the thickness direction x3. 

The outward deviation of the reflected image rays arourid the crack tip creates a dark 
spot on the virtual screen. This dark spot is surrounded by a bright light concentration, 
which is called the "caustic curve." The caustic curve consists of a series of the light rays 
passing through a particular curve on the specimen. This curve is called the "initial curve" 
of the caustic. Usually the initial curve for an elastostatic crack problem represents a circle 
around the crack tip. The initial curve can be determined by the condition where the mapping 
is not invertible between r on the specimen and W on the screen. Mathematically this 
condition can be expressed by the vanishing point of Jacobian 

J = o(wx,w~)  = 

O(x,s) 

ow~ o w .  
ax Oy 

OW s OW:. 
Ox Oy 

= 0 (6) 

where Wx and W~ are the components of the vector W with respect to x and y, respectively. 
Then, substitution of the determined initial curve into Eq 4 leads to the expression for the 
caustic curve. 

The surface deformation f (x ,y)  can be calculated by the three-dimensional finite element 
analysis. However, for thin plates, it is convenient to evaluatef(x,y) by using the generalized 
plane stress condition, as follows 

f (x ,y)  = Y~Af(x,y) (7) 

and 

~f(x ,y)  = (Bjo J2 A~33(x,y)dx3 

2 (A~Yll + A~Y22)1 -- 2v 
E (8) 

where ~ will be taken over the loading steps or time steps, and B is the specimen thickness. 
In the present paper, the surface deformation f (x ,y)  was calculated at the Oaussian 

integration points (3 x 3) in each eight-noded isoparametric element. In a previous paper 
[8], the formation of reflected caustic pattern was simulated using reflected light beams from 
the Gaussian points. However, this method was difficult to obtain initial curves and precise 
caustic curves. To overcome the difficulties, the authors [6] have developed a finite element 
simulation technique aided by computerized symbolic manipulation. In the new simulation 
technique, the surface deformation data at the Gaussian points first were smoothed by a 
least squares fitting of the following function 

6 

f(r,O) = Z ~ C,~, r~m~2)-t02~"-') (9) 
~1=1  n = l  
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where r,0 are the polar coordinate centered at the crack tip, and Cry, are the coefficients 
to be determined by the least squares method. 

To obtain the initial and caustic curves from Eq 9, Eq 6 should be solved after substituting 
Eq 9 into Eqs 4 through 6. In this process, numerous algebraic manipulations are required. 
Approximately 300 terms will appear in the algebraic expression of Eq 6. Therefore, the 
use of a computerized symbolic manipulation system, which is based on an artificial intel- 
ligence technique, is indispensable. Moreover,  the algebraic expressions of the partial de- 
rivatives appeared in Eqs 5 and 6 can be obtained easily if the computerized symbolic 
manipulation system is used. 

The initial curve Eq 6 can be rewritten substituting Eq 9 into Eqs 4 through 6, as 

10 

~'~ A . ( O ) R  ~ = 0 (10) 
n = O  

where R = rl/2; An(0 ) is the coefficient of the R" term, and a function of the angle 0. In 
the previous paper [6], algebraic expressions of A~(0) were determined by a computerized 
symbolic manipulation system (REDUCE).  To solve Eq 10 numerically, the angle range 
( - w -< 0 -< ~r) around the crack tip was divided into small segments. Then, for each respective 
angle, the 10 th order polynomial Eq 10, was solved numerically by Bairstaw method. The 
solutions in terms of R were converted to those of the polar coordinate system, with r = 
R 2. The locus of r represents the initial curve. The caustic curve can be evaluated by the 
use of the data of r into Eqs 4 and 5. 

Hybrid Numerical-Experimental Method for the T*-Integral Caustic Measurement 

The present authors [6] have developed a finite element simulation technique aided by 
computerized symbolic manipulation for the formation process of caustic pattern in an 
elastoplastic material. This technique was also used to establish the relation between the 
T*-integral and the size of caustic pattern for the nuclear pressure vessel A508K' steel (heat- 
treated with heating at 890~ for 1 h, oil quenching, and tempering at 250~ for 1 h) [12]. 
Experimental measurement of the caustic pattern in the A508K' compact tension specimen 
was also carried out. Figure 4 shows the geometry of the CT specimen. To validate the 

I_ 

-k_ 

r--B--" 
! J 

FIG. 4 - - C o m p a c t  tension specimen. 
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generalized plane stress condition, the reduced thickness of B = 10 mm was employed, 
while otherwise the same dimensions of 1TCT specimen were used. 

The material properties of A508K' steel are Young's modulus E = 244.7 GPa, Poisson's 
ratio v = 0.3, and the initial yield stress % = 800 MPa. After yielding, the experimental 
stress-strain curve exhibited the strain hardening of Ramberg-Osgood, as follows 

~/-0  = ~(~ . /~0) ' '  (11) 

where % and ep are the initial yield strain and plastic strain, respectively, and the material 
constant c~ and n are (x = 1.21 and n = 5.97. 

Figure 5 shows the experimental setup for the measurement of reflected caustic pattern 
with a parallel light (X = 1.0). To evaluate the maximum size of caustic pattern D at virtual 
screens behind the specimen, the caustic patterns were photographed together with a measure 
(Fig. 6). The crack opening displacement (COD) g at the load line was monitored by a 
COD clip gage. Displacement controlled load was applied such that, in the loading stage, 

increases from zero to 1.0 mm, and in unloading stage, g decreases from 1.0 mm to a 
certain value at the zero load. The photographs of caustic pattern were taken at the various 
loading stages including unloading stages. Figure 7 shows the experimental results for the 
sizes of the caustic pattern at various loading stages. 

To obtain the T* versus D relation, the finite element simulation aided by computerized 
symbolic manipulation was carried out evaluating both the simulated caustic pattern and 
the T*-integral in the A508K' compact tension specimen. The finite element mesh break- 
down with the eight-noded isoparametric elements for this simulation is shown in Fig. 8. 
Broken lines in the figure indicate the far-field paths for the calculation of the T*-integral. 
Figure 9 shows the development of plastic zone around the crack tip at the various loading 
stages (g = 0.2, 0.4, 0.6, 0.8, 1.0 ram). A fairly large plastic zone is seen at the maximum 
loading. 

FIG. 6 Photograph of experimemal setul). 
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FIG. 7--Experimental results for the size of caustic pattern. 

The simulated caustic patterns are shown in Fig. 10 comparing with the photographs of 
the actual caustic patterns. The projection of the shadow pattern appeared in the photograph 
for g = 0.2 mm is caused by a marking line of a scriber for machining the initial notch. The 
simulated caustic patterns agree very well with the actual caustic patterns. The initial curves 
obtained by the simulation are also indicated by broken lines. The caustic curves on the 
virtual screen are created by the light beams incident to these initial curves on the specimen. 

Figure 11 shows the variations of the size of caustic pattern D in the loading and unloading 
stages. Numerical results agree excellently with the experimental results. Agreement in both 

i 

FIG. --Finite element mesh for the compact tension specimen. 

I| 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



NISHIOKA ET AL. ON CAUSTIC MEASUREMENTS 179 

'=' .~ 

I 

U. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



180 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

FIG. lO--Comparison of actual caustic patterns and simulated caustic patterns. 
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simulated and actual caustic patterns assures that the T* versus D relation obtained by the 
simulation can be used for the direct experimental measurement of the T*-integral in a 
sense of the hybrid numerical-experimental method [13,14]. 

Figure 12 shows the simulated T* versus D relation for the parallel light (X = 1.0) used 
in the experiment. 

Concluding Remarks 

First, the actual reflected caustic patterns in the A508K' CT specimen were measured. 
From this experiment, the relations between the size of caustic pattern D and the crack 
opening displacement 8 were determined. 

Next, the formation process of the caustic pattern in the CT specimen was simulated by 
the previously developed finite element simulation technique aided by computerized sym- 
bolic manipulation. From this numerical simulation, the relations among the T* integral, 
the caustic size D, and the crack opening displacement 8 were obtained. The simulated 
caustic patterns agreed very well with the actual caustic patterns. 

The presently developed hybrid numerical-experimental method made it possible to meas- 
ure optically the T*-integral. 
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Three-Dimensional Elastic-Plastic Analysis 
of Small Circumferential Surface Cracks in 
Pipes Subjected to Bending Load 
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Circumferential Surface Cracks in Pipes Subjected to Bending Load," Fracture Mechanics: 
Twenty-Second Symposium (Volume ll), S. N. Atluri, J. C. Newman, Jr., I. S. Raju, and 
J. S. Epstein, Eds., American Society for Testing and Materials, Philadelphia, 1992, pp. 183- 
205. 

ABSTRACT: This study presents the elastic-plasfic behavior of a circumferentially surface- 
cracked pipe using the finite element method based on a three-dimensional model. 

The action of a pure bending load on the pipe is analyzed for three crack depths with a/t 
equal to 0.25, 0.5, and 0.75, and their eccentricities, a/c, being 0.2, 0.4, and 0.6, respectively. 

The material obeys a Ramberg-Osgood power law. The goals are to determine the stress- 
strain fields and the values of J on the crack front, to define the different plastic deformation 
stages reached as the load on the crack is increased, and to validate the Central Electricity 
Generating Board (U.K.) (CEGB) two-criteria rule for circumferential surface flaws on the 
basis of the J results. 

KEY WORDS: ductile fracture, elastic-plastic behavior, cracked pipe, semielliptical surface 
crack, pure bending, J-values, estimation scheme, RH/R6 rule, three-dimensional meshes, 
fracture mechanics, fatigue (materials) 

Defect assessment is of increasing importance in nuclear power plant piping systems for 
safety and economic reasons. 

Most cracked pipe geometries may be analyzed by considering either a circumferential 
or a longitudinal small surface crack in a pipe section. FRAMATOME has developed a 
large set of stress-intensity factor (SIF) solutions [1,2] for such surface cracks. However 
SIFs are parameters only valid for linear elastic fracture mechanics (LEFM) analyses. Since 
pressure vessels and primary piping systems are made of highly ductile steels, such as Type 
A533 carbon steel or Type 316 stainless steel, their failure modes occur very often under 
large-scale yielding conditions. This fracture behavior requires elastic-plastic fracture me- 
chanics (EPFM) analyses to be conducted. 

In LEFM, accounting for three-dimensional effects is the major difficulty. Nonlinear 
fracture processes are more complex and time-dependent. On one hand, they call for greater 
care in validation of criteria, on the other hand, EPFM parameter computations are usually 
very expensive. At a time when the need for engineering methods providing low-cost and 
fast defect assessment remains acute, whatever the material behavior, it seems much harder 
to develop simplified methods in EPFM than in LEFM. 

In response to this problem, FRAMATOME conducts its work in fracture mechanics on 
three different but related levels: basic, advanced, and design applications. 

1Mechanical engineer and expert, Fracture Mechanics, respectively, FRAMATOME, Tour Fiat, 
Cedex 16, 92084 Paris-La Defense, France. 
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1. Since the use of a global approach based on a single parameter,  J, is questionable in 
some EPFM analyses (see examples in Refs 3 and 4), F R A M A T O M E  is contributing 
to the development of local approaches for brittle [5] and ductile fracture [6, 7]. This 
level of investigation is aimed at gaining a better understanding of fracture behavior 
and working out related criteria. 

2. At  the second level, the discussion no longer concerns the type of criteria but their 
utilization. The question is how to validate an approach chosen with a view to industrial 
applications. This may be done through very accurate computations of the fracture 
parameter variations (see computations conducted in Refs 8 or 9 as a basis for a J- 
estimation method) and, if need be, by definition of corrective coefficients accounting 
for basic research results (like in Ref 10). 

3. In a third step advantage can be taken of the derivation of such reference solutions in 
order to build engineering formulae for global criteria based on J or crack-tip opening 
displacement (CTOD). 

These second and third types of development are illustrated in the present J analysis (for 
application of the fracture criterion proposed by Broberg [11] and Begley and Landes [12], 
or the crack stability criterion defined by Paris et al. [13]) of small circumferential inner 
surface cracks in a pipe subjected to simple loadings. Three cases are considered, where 
the pipe geometry, and the semielliptical shape and length of the crack are fixed: three 
pipes in pure bending with different crack depths. 

The objectives are the following: 

1. Computation of accurate stress-strain fields and J-values. 
2. Detailed explanation of the changes in fracture behavior under increasing load. 
3. Application of the J results to validation of the R6 rule simplified method [14] for 

circumferential surface cracks. 

Three-Dimensional Finite Element Model 

For analyzing these three cracked pipes, a three-dimensional incremental elastic-plastic 
finite element procedure has been used. The CASTEM code developed by the French 
Atomic Energy Commission (CEA) [15] facilitates mesh generation with its object-oriented 
programming environment. 

The mesh size and shape may be modified to create pipes with different crack depths 
from a simple cracked plate model (Fig. 1). 

Following a brief description of the material characteristics, the cracked pipe geometry 
and the finite element model, two justifications of the model are presented based on pub- 
lished results; one in LEFM, the other in EPFM. 

Model Description 

The material characteristics have been chosen to represent a stainless steel in use in a 
French pressure water reactor (PWR) primary loop and to allow the comparison with other 
computational results. The stress-strain behavior follows a Ramberg-Osgood law according 
to Eq 1 

(5 ~ + ~ ( 1 )  
E o O" o 
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FIG. 1--Plate cylinder transformation. 

where eo = go/E, E is the Young's modulus, and ~o is chosen equal to the 0.2% offset yield 
strength, ~y. Poisson's ratio; the elastic properties, or,. and E; and the plastic properties, ct 
and n, take the following values indicated at room temperature 

E = 177 000 MPa v = 0.3 

o-y = 120 MPa 

c ~ = 3  n = 5  

This represents the behavior of a highly ductile metal, and the Ramberg-Osgood form greatly 
accentuates the offset from the elastic slope for this value of ct. 

The cracked pipe geometry is a right circular cylinder whose mean radius, R,,, is 300 mm 
and thickness is 60 mm. This makes a very thick pipe with a curvature ratio, Rm/t = 5, 
representative of the primary loop pipe. The pipe length has been fixed at 2 m, after a 
detailed study of the minimum length-to-diameter ratio making the J solution almost in- 
dependent of the length. 

This length criterion is presented in the Appendix. 
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The present study concerns mainly defect assessment, thus only short cracks have a realistic 
size. We have decided to keep the crack length, its elliptical shape, and the material char- 
acteristics constant, and to concentrate our investigation on the effect of the crack depth. 

The half crack angle, y, value of 14.3 ~ corresponding to one quarter of the c/Rm ratio, 
the radius, R, and the length, 2L, are kept constant. Three cracked pipe geometries are 
defined by their relative crack depths, a/t, with respective values of 0.25, 0.50, and 0.75 (the 
corresponding a/c values are 0.2, 0.4, and 0.6). 

These three cracked pipes are subjected to increasing pure bending. 
The finite element method, based on small geometry change assumptions, is used to 

analyze these three configurations. For reasons of symmetry, only a quarter of the pipe 
(which is designated in the following as the cylinder) is meshed. We have selected isopar- 
ametric elements consisting essentially of 20-node cubes and 15-node prisms. To preclude 
any overestimate of the yield extension around the crack front, a finer mesh is used in the 
portion of the cylinder surrounding the crack. The "crack block" is 20 times shorter than 
the cylinder, its width being one sixteenth of the circumference. 

Since the stress and strain fields are singular at the crack tip, a fine mesh was developed 
consisting of tunnels surrounding the crack. 

Furthermore, a comparison of finite element analyses of surface cracked pipes [16] has 
shown that mesh refinement in the ligament has a strong influence on the accuracy of J- 
values. 

The same reference stipulates that the justification of the mesh using linear elastic results 
is not sufficient and also that nine nodes in the ligament can be considered as the minimum 
required. 

Thus Fig. 2 shows that a very large number of nodes (24) exists in the ligament and around 
the crack front in every direction. The whole mesh has 624 cubes, 66 prisms, and one 10- 
node tetrahedron element, which gives a total of 3554 nodes. Two-thirds of these nodes are 
concentrated in the crack block. 

Model Justification 

As stated before, the mesh for an elastic-plastic problem has to be justified both inside 
and outside the elastic domain. To our knowledge at the beginning of this analysis, no 
reference study matching the aforementioned criteria relative to mesh concentration was 
available for a thick cylinder with an elliptical surface crack. However, taking advantage of 
the object-oriented programming capabilities of CASTEM, we generated the mesh of the 
cracked cylinder from a surface-cracked plate. We decided then to base our comparisons 
on two well-established solutions for a surface-cracked plate subjected to tension [17,18]. 
These two finite element analyses consider a surface semielliptical crack in a finite thickness 
plate whose material behavior is respectively linear elastic or fully plastic. 

For the detailed description of these two cases, the aforementioned papers should be 
referred to. We will only mention the results and the conclusions of the comparisons. In 
both cases, the height and width of the plate are much larger than the crack length and 
depth, so that free boundaries other than the plate face perpendicular to the thickness 
direction have no effect on the crack driving force. 

(a) Comparison with the Linear-Elastic Solution of 1. S. Raju and J. C. Newman [17] 
The crack size is defined by a/t = 0.6 and a/c = 0.4. 
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FIG. 2--Mesh of crack block. 

Figure 3 compares our results to the influence functions 

f ,c,~b 

that represent the ratio of the SIF, K, to a reference SIF, Ko, d~ being the parametric angle 
of the ellipse. This SIF, Ko, is defined to make K/Ko independent of the load level and to 
reduce the effects of the crack size and shape 

Ko -- crT IIH/-~ 
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FIG. 3--The influence function, F(a/t, a/c, +), on the crack front versus the parametric angle, 4~. 

where 

~r T = applied stress, 
a = crack depth,  and 

Q = shape factor for an ellipse. 

A very good approximation to Q as a function of the a/c ratio is given in Ref  19. For  a/c 
< 1, this formula is 

' 6 '  

The agreement  be tween the K/Ko results obtained with our  3500-node mesh and the 
functions, F (0.6, 0.4, +), is excellent.  Therefore ,  we may consider that the mesh is validated 
for the elastic case. It should be noted that the same mesh is used for the cracked cylinder: 
the only differences concern the crack size and the t ransformation of the plate into a cylinder. 

(b) Comparison with the Inelastic Analysis o f  G. Yagawa, H. Ueda, and Y. Takahashi 
[18] 
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In this study, referred to here as the Y-U-T solution, the same type of configuration as 
in the previous paragraph has been chosen: a plate with a semielliptical crack having 
a/t = 0.6 and a/c = 0.4 subjected to uniform tensile loading. However, the material behavior 
is totally different: fully plastic instead of linear. To model this behavior, the authors consider 
an incompressible, nonlinear elastic material characterized by the power-law hardening 
equation 

- -  = c~ ( 2 )  

E0 

where ~, ~o, go, and n are material constants. 
The J-values can be normalized, so that the resulting influence functions depend only, 

for a given type of loading, on the parameters of the elliptical crack, a/t, a/c, ~, and on the 
hardening exponent, n. Thus, c~, %, and ~0 values need not be specified. We have chosen 
n = 5 and taken c~ = 1 for reasons of convenience. As usual, Eo = go/Eo, where Eo is 
Young's modulus. 

Using the J2 deformation plasticity theory, Yagawa et al. transform Eq I into a relationship 
between yon Mises equivalent strain, g, and stress, ~. 

Such an approach gives a correct approximation of the stress-strain field derived by the 
flow theory of plasticity if the structure is subjected to a monotonically increasing propor- 
tional loading. Also, it is much less expensive. 

However, for treating the incompressibility, the FEM technique has to be modified and 
Yagawa et al. have developed for that purpose a "selective reduced integration/penalty 
function method." The CASTEM code is based on flow theory of plasticity and does not 
allow Poisson's ratio, v, to reach the limit value of 0.5 corresponding to incompressible 
materials. Furthermore, this code requires the stress-strain curve to have a finite slope at 
the origin because the finite element procedure does not converge if strain values are very 
small. In order to solve these problems at low cost, we set the u-value at 0.495 and split the 
stress-strain curve into two parts, linear and nonlinear 

g 
= - -  for E < ~r 

EF 

5 

s - f o r e  > er 
EO 

where Er is a fictitious Young's modulus having a very high value and eF is the strain 
representing the limit of linear elastic behavior. 

The consequences of this modification of the stress-strain law are examined by comparing 
the Y-U-T solution to the results obtained with different linear parts. In the first case, Er~ 
is very high and eF~ = 10 4; in the other one, EF2 is huge and er2 is limited to ]0 -6. The 
Case i J results differ from the Y-U-T solution for g/go lower than 0.7, but above this 
threshold, the agreement is excellent (Fig. 4). 

In the second case, the scatter of J-values reduces to 5% for ~/go = 0.25. However, when 
the stress ratio, g/go, increases, convergence problems appear, showing that the upper limit 
for EF is reached. In any case, as soon as the stress-strain curves become close to each other, 
our mesh gives the same J-values as the Y-U-T solution. This justifies our mesh for an 
inelastic stress-strain law. 
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FIG. 4--J-values at the deepest crack point with increasing load. 
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Presentation of Results of Investigation 

A rotation is imposed on the pipe. Rather than defining four-point bending, with one 
fixed point and one moving point (for the quarter-cylinder), we have introduced a displace- 
ment field on the end surface of the pipe conforming to a bending state (see Fig. 5). This 
produces a state of constant pure bending in all the right cross sections, minimizing the 
length of the pipe. 

The calculations are performed in small displacements and the angle of rotation, @, 
increases gradually up to a threshold beyond which the toad plastifies the end cross section 
so further analysis is meaningless. 

For each cracked pipe, the load has been applied in 30 steps, the run time being close to 
5 h on a CRAY-XMP. 

Figure 6 records the change in moment with the rotation exerted on the end of the pipe, 
for the flaws under consideration. The crack depth has practically no effect on the resulting 
moment, which would seem extremely plausible considering the size of the crack (~ = 14.3 ~ 
and the rotations involved. 

Plastic Flow Behavior 

For all three flaw depths, the plastic behavior develops in three stages during the crack 
loading process. First, yielding remains contained within the ligament between the deepest 
point of the crack and the outer wall (Fig. 7a). 
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FIG. 7--Plastic flow deformation of crack block at three characteristic loading steps: (a) small-scale 
yielding, (b) ligament yielding (local yielding), (c) large-scale yielding, and (d) formation of a mechanism 
(global yielding). 
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At the deepest point, the plastic "wing" takes on the shape of an elongated butterfly's 
wing oriented at 45 ~ in the radial plane perpendicular to the crack plane. This justifies the 
plane strain hypothesis that is considered usually to apply at the crack tip. However, the 
plastic wing at the surface point of the crack reveals a plane stress field, with the plastic 
wing being much more compact (almost circular, the diameter of this zone being bigger than 
the maximum size of the plane strain plastic zone) and oriented in the axial direction. 

In a second stage, the ligament becomes plastic but remains contained within globally 
elastic surroundings (Fig. 7b). 

Finally, yielding spreads throughout the crack block (Fig. 7c) and the diametrically op- 
posite region (Fig. 7d) revealing the compression zone that is characteristic of a bending 
load. Subsequently, there is a gradual evolution until the pipe limit load is reached (plastic 
hinge mechanism). 

J-Integral Calculations 

The J-integral calculations were performed by the virtual crack extension method [20]. 
The rate of decrease of the potential energy, 2dI, during an infinitesimal increase in the 
crack is first calculated and then J is defined as the ratio 

AII 
j ~ m 

zXA 

where &A represents the virtual crack extension. 
In the following computations, only one node has been shifted. 
Figures 8, 9, and 10 record the evolution of the J-integral with changing moment at the 

deepest and surface points of the crack, respectively, for the three depths, a/t = 0.25, 0.5, 
and 0.75. For all the crack sizes processed, the value of J at the deepest point is always 
larger than J at the surface point. 

When yielding remains contained in the ligament (see Fig. 7a), J may be approximated 
by applying a plasticity correction to J~ calculated elastically. This value will be written J,,p. 
The previous three curves display the J-value corrected using Irwin's [21] plastic zone cor- 
rection given here as used in the RCC-M Code [22] 

where 

? aq 
rY = 6--~ L cry j 

for plane strain 

and such that 

= 1 for ry < 0.05 (t - a) 

and 

~ r , -  0.05 (t - a)]  2 
a = 1 + 0.15 L- 0.035 (t - a) J for 0.05(t - a) -< r,. -< 0.085(t - a) 
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Beyond, this approximation is no longer valid. 
When the flaw is deep (a/t = 0.5 or 0.75), Jcp approaches elastic-plastic J in a satisfactory 

manner for ry meeting the conditions just defined. 
For the flaw having a depth defined as one quarter of the thickness, the correction made 

to Je supplies unconservative results (see Fig. 8). In fact, when the ligament is large (t - a 
= 45 mm), the moment load that satisfies the condition that r~ = 0.085 �9 (t - a), becomes 
large compared to the pipe's global limit load. The deformations then develop within the 
structure independently of the presence of the crack [4]. So it is necessary to define another, 
more restrictive, validity limit for shallow defects. 

When yielding is generalized throughout the ligament (see Fig. 7b), and then through the 
pipe (see Fig. 7c and d), the elastic approach just described no longer gives a valid estimate 
of elastic-plastic J. It becomes necessary to define limit load criteria that adequately represent 
strain levels in the pipe. The two-criteria approach of the Central Electricity Generating 
Board (CEGB) [14] provides solutions that are presented in the last section of our study. 

Application in Accordance with the Two-Criteria Approach 

C E G B  Two-Cri teria A p p r o a c h  

Of the three alternatives proposed in Ref 14, we describe Option 2 here, whose failure 
assessment diagram (FAD) determination is based on the Electric Power Research Institute 
(GE-EPRI)  method [23] and represented by the evolution of the parameter 

KR=  
versus 

L R  - -  
applied load _ P 

limit load Po 

Je and J represent the elastic and total J-integrals, respectively. 
When the material behaves according to the Ramberg-Osgood law 

cr (4a) 
E o O" o 

it is possible to write, per the GE-EPRI  method [23] 

J = E---7-- + e~oeoch ~ , ~, n, R/ t  \-~o] (4b) 

where c = t - a, ae is a plastic zone corrected crack length, hi is a coefficient obtained by 
the finite element method, and Po is a conventional limit load. 

The dependence of the n parameter in Eq 4b leads Ainsworth to propose several changes 
in order to define a FAD that is independent ofn [24]. His main modification in the definition 
consists of a reference stress, O're f ~ P/P~.  (r o based on the "true" (for the given configuration) 
limit load expression, P6, such that h~ (n) is almost a constant. 
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Ainsworth makes the conservative assumption that there is a plastic zone corresponding 
to the case of an infinite plate under tension in plane stress. 

He thus obtains 

KR = {E e,e___! + 0.5 L2 } ~/2 
O ' r e f  ~ (5) 

that defines the FAD of the two-criteria rule, Option 2. 
The hypothesis underlying the normalization of the ratio, hl(n)/hl(1) is based, as we have 

seen, on a reference stress defined on the basis of a global limit load. 
This hypothesis has been validated by Ainsworth for plane geometries. Miller [25] has 

extended the analysis to three-dimensional surface defect configurations in pipes using pub- 
lished J results, in particular for a cylinder with a circumferential flaw under tension [26] 
or again for a pressurized cylinder with an axial flaw [27]. 

It is proposed later in the study to fill out the discussion with the J results obtained on 
our model. 

Analysis to Choose the Limit Load 

The three-dimensional case of a surface flaw in a pipe raises the problem of deciding 
which limit load should be considered. There are two possible approaches: 

1. The plasticity is confined to the vicinity of the crack. The limit load is a local limit 
load whose various formulations have been reviewed and compared by Miller [25] 
depending on the type of geometry (plate, test specimen, or cylinder) and loading 
(tension or pressure). 

2. Plastic flow is generalized in the cracked section of the tube. In that case the global 
limit load on the structure is considered. 

We need to know which instability criterion most closely meets Ainsworth's normalization 
hypothesis. 

As in the two approaches just described, we use the formulatiolt developed by the Battelle 
Institute as the local instability criterion [28]. 

The containment loss factor, Q, is then written [29] 

A 0 - A e  
Q - (6) 

Ao - A~/M 

where A e represents the crack area, A0 is the cross-sectional area of a 2(c + t) long pipe 
section, and M is the bulging factor. 

Eiber's expression, established empirically [30] from burst tests when pressure is applied 
to the sides of the crack, gives 

7 - -  C 2 
m z / 1 . 6 1  Rmt (7) v 

When there is a loss of plasticity containment, the global limit load referred to is the load 
on a circumferentially cracked pipe, calculated with a perfectly plastic rigid model. Defor- 
mation occurs at the elastic limit stress shown in Fig. 11. 
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FIG. 11--Deformation at the elastic limit stress. 

14 

The expression for the limit moment [28 or 31] is 

( l a .  ) 
Mo = 4~oR~,t cos 13 - ~ T s m y  (8) 

where 

a 

= t y/2 

The values of KR at the deepest and surface points, as a function of LR depending on the 
type of limit load, have been recorded in Tables 1, 2, and 3 for the three flaw depths 
(a/t = 0.25, 0.5, and 0.75). The corresponding figures at the deepest point (Figs. 12a, b, 
and c) show that, whatever the flaw depth, the reference stress calculated from the global 
limit load on the structure gives a (KR, LR) line very close to Ainsworth's FAD. On the 
other hand, the reference stress based on the local limit load gives a (KR, LR) line located 
well beyond Ainsworth's FAD. 

The results agree with the study by Miller [25] and show that the global limit load is more 
appropriate as a means of satisfying Ainsworth's normalization hypothesis, hl(n)/h~(1), as 
opposed to the local limit load approach that displays excessive conservatism. 

TABLE 1--K~ and L~ values for crack depth a/t = 0.25 with increasing bending. 

LR 

~, Local Global Deepest Surface 
deg Collapse Collapse Point Point 

0.1 0.376 0.3 0.99 0.98 
0.3 0.79 0.64 0.81 0.81 
0.4 0.9 0.725 0.74 0.75 
0.5 0.99 0.79 0.69 0.7 
0.6 1.06 0.85 0.65 0.67 
0.7 1.11 0.89 0.62 0.64 
0.8 1.16 0.93 0.60 0.61 
0.9 1.21 0.97 0.57 0.59 
1.0 1.25 1.0 0.55 0.57 
1.1 1.28 1.03 0.54 0.55 
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TABLE 2--Kr~ and LR values for crack depth a/t = 0.5 with increasing bending. 

201 

LR 
KR=  

qb, Local Global Deepest Surface 
deg Collapse Collapse Point Point 

0.1 0.395 0.32 1. 0.96 
0.3 0.83 0.665 0.76 0.78 
0.4 0.94 0.76 0.69 0.72 
0.48 1.0 0.81 0.65 0.682 
0.6 1.09 0.88 0.6 0.63 
0.69 1.14 0.92 0.57 0.61 
0.75 1.175 0.95 0.55 0.59 
0.9 1.245 1. 0.52 0.55 
1.0 1.29 1.035 0.5 0.535 
1.2 1.36 1.09 0.47 0.50 
1.3 1.39 1.12 0.46 0.49 

Conclusions 

This study presents the elastic-plastic behavior  of a circumferentially surface-cracked pipe 
using the finite e lement  method  based on a three-dimensional  model.  

The results show that the plastic flow in a pipe subjected to rotation goes through three 
stages: 

1. yielding is contained within the l igament,  
2. the loss of containment  of yielding inside the l igament remains concentrated in an 

elastic environment ,  and 
3. yielding becomes generalized throughout  the cracked section until the component  

global limit load is reached. 

When yielding is contained within the l igament,  the calculation of elastic J with Irwin's 
plastic zone correction [21] produces a satisfactory approach to J for flaws with depths of 

TABLE 3 - - K  R and L R values for crack depth a/t = 0. 75 with increasing bending. 

LR 
KR=  

q~, Local Global Deepest Surface 
deg Collapse Collapse Point Point 

0.05 0.21 0.17 0.985 1.0 
0.1 0.41 0.33 0.95 0.97 
0.2 0.69 0.55 0.82 0.87 
0.3 0.86 0.69 0.73 0.78 
0.4 0.97 0.78 0.66 0.72 
0.49 1.05 0.85 0.61 0.67 
0,7 1.19 0.96 0.53 0.59 
0,8 1.24 1.0 0.51 0.56 
0,9 1.29 1.04 0.49 0.54 
1,0 1.33 1.07 0.47 0.52 
1.1 1.37 1.1 0.45 0.505 
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half or three-quarters the thickness, if the RCC-M Code validity formulae [221 are applied. 
This approach is no longer conservative for the shallow flaw, and it is necessary to define 

a more restrictive validity limit. 
When loss of containment of plasticity within the ligament occurs, the elastic approach 

is no longer valid and a criterion governing plastic instability has to be introduced to come 
near to J. For this purpose, the CEGB two-criteria rule [14] is applied and the method is 
validated for circumferential surface flaws by defining a reference stress on the basis of the 
pipe's global limit load. The local limit load produces excessively conservative results. 

APPENDIX 

Minimum Pipe Length Criterion 

Different SIFs of J finite element methods solutions for the same configuration are easier 
to compare if end effects are avoided. 

In the case of a circumferentially cracked pipe, this requires fixing a minimum distance 
between the crack plane and any loading point. This distance, Z, depends on a large number 
of factors: the pipe and crack geometry, the material behavior, the type of loading, and to 
a large extent, the model. 

A detailed analysis of several results obtained for uncracked, through-wall-cracked or 
surface-cracked pipes subjected to tension or bending and behaving elastically or inelastically 
has led us to several general conclusions that are summarized here. 

A pipe is free from end effects if its length, 2Z, verifies the inequality 

Z ( R  crack size, material behavior, ~ - - > k  
2R ' mesh refinement, type of elements]  

where X is almost independent of the type of loading. 

1. For cracked pipes, k is increasing with R/t. 
2. The larger the crack, the greater is )~. 
3. k values are smaller for surface cracks than for through-wall cracks having the same 

length. 
4. h is slightly larger in EPFM than in LEFM. 
5. Isoparametric elements are strongly recommended. 
6. For short cracks, three-dimensional elements are recommended. 
7. For a thick pipe, with a short circumferential crack provided that the fineness of the 

mesh ensures a good approximation of the stress-strain field. 

Z 
- - > 3  
2R 
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ABSTRACT: Elastic-plastic behavior of a cracked structure subjected to cyclic loading is 
evaluated through a series of finite element analyses of a test specimen geometry. A specimen 
of an extremely ductile material (Type 304 stainless steel) is loaded to just below the Ji value 
at crack initiation, then unloaded and reloaded using R-ratios of 0.0, - 0.5, and - 1.0 including 
the effects of crack face contact. The crack-tip asymptotic fields, tensile and compressive 
plastic zones, and crack-tip parameters such as crack-tip-opening displacement and the J- and 
T*-integrals are evaluated and discussed in the context of cyclic loading for a stationary crack. 

KEY WORDS: elastic-plastic behavior, cyclic loading, crack closure. J-integral, T*-integral, 
asymptotic fields, crack initiation, fracture mechanics, fatigue (materials) 

The elastic-plastic behavior of cracked structures subjected to monotonically applied loads 
can now be predicted with engineering accuracy using the J-integral concept. This is because 
the J-integral may be interpreted as the strength of the asymptotic crack-tip fields, or the 
Hutchinson, Rice, and Rosengren fields (HRR), for a stationary crack in a monotonically 
loaded body. Often, even if gross violation of the limits of valid J-tearing theory as developed 
by Hutchinson and Paris [1] are made, reasonable and conservative engineering predictions 
of maximum load usually result (see the large data set developed by Wilkowski, et al. [2] 
for cracked pipes monotonically loaded to failure). Even for surface cracked structures 
where constraint effects are currently an issue of great interest and concern, conservative 
and reasonable predictions of crack instability may be made as long as the structure is 
monotonically loaded to failure [2]. 

In many practical instances, cracked structures that fail via ductile rupture experience 
cyclic tearing rather than monotonic tearing to failure. Here we distinguish between fatigue 
crack growth and cyclic tearing by defining the latter to occur when the value of J is near 
or greater than the initiation valve, J~. 

In situations where ductile cracked structures experience history-dependent crack-tip dam- 
age, the J-integral approach does not perform adequately. History-dependent damage at 
the crack tip will accumulate if the component experiences significant cyclic fatigue or tearing, 
as occurs in many structures such as nuclear pipe subjected to an earthquake spectrum. J 
cannot characterize history-dependent damage during cyclic loading because it loses its 
significance as the strength of the asymptotic crack-tip fields. Ductile crack growth analyses 
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based on J can lead to nonconservative failure load predictions depending upon the applied 
load history (see Ref 3, for instance). Indeed, this unpredictability renders current methods 
ineffective without further study. 

The focus of the present study is to further examine the cyclic tearing process by performing 
detailed finite element analyses of a compact tension specimen that experiences gross plastic 
deformation both during the loading and the unloading phases. We focus our attention on 
a high hardening, high-toughness steel (Type 304 stainless steel at 280~ since qualitative 
experimental data exists on this material for loading levels that induce cyclic tearing. Wil- 
kowski [4] has observed that when a through-wall cracked pipe of Type 304 stainless steel 
is loaded to a level producing a J-value just below initiation and then completely unloaded 
(R = -1 .0 )  and reloaded, crack growth initiation occurs at load levels much lower than 
expected for the corresponding monotonically loaded pipe. In addition, for an unload level 
to R = 0, crack growth initiation resistance upon reloading occurs at the load level expected 
during monotonic loading of a virgin pipe (that is, at J = Ji). In other words, the cyclic 
tearing damage induced at the crack tip for R = - 1.0 greatly reduces the crack initiation 
resistance of the pipe during subsequent reloading. For R = 0, little cyclic tearing damage 
occurs and crack growth initiation during reloading occurs as for virgin undamaged material. 
With these experimental observations in mind, the present paper attempts to determine if 
this behavior can be predicted using classic continuum theory. 

Background 

Before describing the analysis results, a brief discussion of previous studies of cyclic tearing 
behavior for cracked bodies is presented in order to bring the current study into focus. Note 
that conflicting results have been obtained from the different researchers. 

Experimental 
Clark et al. [5] showed that 10% unloadings produce virtually no effect on ductile fracture 

resistance. These observations led to the original unloading compliance method for moni- 
toring crack growth in fracture specimens before potential drop methods became popular. 
Kaiser [6] proposed a linear summation model for predicting crack growth behavior during 
cyclic tearing conditions. Under this framework, crack growth per cycle is estimated by 
separating the growth into cyclic fatigue and tearing components. The cyclic fatigue com- 
ponent is estimated by extrapolating fatigue data developed at low load levels to AK (or 
A J) levels that are typical of cyclic tearing, while the tearing component per cycle is estimated 
using classical J-tearing theory. 

Since Kaiser's model was proposed, a number of researchers have examined the appro- 
priateness of the model through experimental efforts and have obtained conflicting results. 
Landes and McCabe [7] show that the linear summation model performs adequately for 
HY130 steel and poorly for A508 steel. Their tests were for ratios of minimum to maximum 
load level (R) less than zero. Landes and Liaw [8] produced experimental results that suggest 
that the linear summation model performs adequately for R ratios greater than zero and 
performs poorly for R < 0. Joyce [9] developed experimental data on A710 Grade A steel 
for ratios of R = - 1.0. These data suggest that a linear summation model may be appropriate 
under load control, but is not at all useful for experimental data developed under complete 
crack opening displacement (COD) reversals. These results suggest that Kaiser's model is 
not general, but rather is perhaps appropriate for certain materials and up to certain load 
levels (or R ratios). 
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Analytical 

Most of the analytical studies that have been performed to date are concerned with cyclic 
fatigue; that is, the load levels are low and the corresponding plastic zone sizes are small 
compared with those corresponding to cyclic tearing. Many of the analysis efforts may be 
found in ASTM STP 982 [10] and references cited therein. In addition, Chan et al. [11] and 
Kubo et al. [12] have examined crack-tip field parameters including J (or A J) under cyclic 
fatigue conditions. From these efforts, we may conclude that the J-integral (or A J) is very 
much path dependent within the plastic zone, and, of course, path independent outside this 
zone. 

From these efforts, combined with the experimental studies just discussed, it appears that 
for low toughness materials where the plastic zone is relatively small a linear summation 
model for predicting cyclic tearing behavior may be adequate for engineering purposes. 
However, for high-toughness materials where large plastic zones develop during the cyclic 
tearing process, a linear summation model is likely to be inadequate. This conclusion is also 
supported by the results of Ref 3, which showed that nonconservative results may result if 
the prediction of cyclic behavior is made using the J-tearing theory. 

Cyclic Tearing Analysis 

As just stated, many of the elastic-plastic cyclic load analysis results of cracked bodies 
were performed to study fatigue crack growth where relatively low loads and corresponding 
small plastic zones prevail. Here, the cyclic elastic-plastic behavior of a stationary cracked 
body (compact tension specimen) is examined under conditions of large-scale yielding. 

The standard 0.75 T compact tension specimen shown in Fig. la  was modeled. The three 
loading sequences illustrated in Fig. lb  were modeled via the finite element method. The 
horizontal axis of Fig. lb  represents a time-like parameter that will be used to correlate the 
load at each part of the analysis sequence in subsequent figures. As seen in Fig. 1, the effect 
of the differing amount of damage induced for R = 0, - 0.5, and - 1.0 is considered. 

This particular compact specimen and the corresponding dimensions were chosen since 
they are typical of J-resistance curves developed for through-wall cracked pipes. 

Finite Element Model 

The symmetric finite element model utilized for all analyses is illustrated in Fig. 2. The 
positive or negative loading was applied to the top or bottom triangular elements, respec- 
tively, to simulate the load pin action on the holes. As seen in Fig. 2c, the mesh refinement 
in the crack-tip region is 0.002 C, where C is the uncracked ligament (C = 17.02 mm, see 
Fig. la) .  This mesh is about two times less refined than that used by Shih and German [13] 
in their finite element asymptotic studies. As discussed later, the refinement used here is 
quite adequate for capturing the monotonic and cyclic asymptotic crack-tip fields. 

Here we utilize one node at the crack tip. It is known that using multiple nodes at the 
crack tip, each of which may deform independently, results in a 1/r singularity in crack-tip 
strains, and no singularity in stress. This type of singularity is produced only in an elastic- 
perfect plastic material model. The material here is modeled as a power law hardening 
model and thus produces a singularity of the order of - 1/(n + 1), with n the hardening 
coefficient. Here, we choose to not introduce a 1/r singularity, but recognize that an un- 
derprediction of crack-tip-opening displacements may result by using a single crack-tip node. 
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The  mater ia l  was mode led  as a R a m b e r g - O s g o o d  power  law ha rden ing  mater ia l ,  wr i t ten  

in normal ized  form as 

_ cr + c~ (1) 
E o O" o 

where  

% = 135 MPa ,  

n = 3.6, 
~o = % / E ,  and 
E = 192 000 MPa.  
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The tensile properties were developed from a specimen cut from pipe. Classical flow theory 
of plasticity and small strain theory were utilized for all analyses. For the material considered 
here, which is a very tough stainless steel, a nonneglibible zone of large strains and rotations 
develops near the crack tip at maximum load. However, since the J-tearing theory is based 
upon small strain theory (J-resistance curves and estimation schemes are developed as such), 
these analyses are performed neglecting large strains. Implications regarding this assumption 
appear later in the discussion section. 

The value for J at crack initiation is between 550 and 650 N/mm, determined from a 
compact tension specimen cut from pipe (see Ref 2). For this material, corresponding 
material properties were used since qualitative experimental results exist for a through-wall 
cracked pipe loaded cyclically at high loads [4]. The maximum load applied (P) for each 
analysis was 1100 N, which corresponds to a J-value of about 600 N/mm. A B A Q U S  [14] 
was used for all analyses. Isotropic hardening was assumed. Plane-strain analyses using the 
mixed element with separate displacement and pressure unknowns were used. A VAX cluster 
computer system was used for the analyses. 

Results 

Observe from Fig. lb  that for all three analyses, the load is 1100 N at a parametric time 
equal to one. For times greater than one, the loads vary for the different analyses (R = 
0.0, - 0 . 5 ,  and -1 .0 ) .  The half crack-tip-opening displacement (CTOD) profile at the 
maximum monotonic load point (1100 N) for all three analyses is shown in Fig. 3. Significant 
crack-tip blunting suggests that a zone exists near the crack tip in which large deformation 
effects play an important role. The CTOD, defined using the convention of Rice [15] as the 
intersection of the included 90 ~ angle and the blunted crack faces, is about 1.2 ram. The 
CTOD predicted from the elastic-plastic handbook [16] is about 1.35. The J-integral, which 
was calculated on 15 different paths each encircling a different ring of elements in Fig. 2, 
was path independent and its magnitude was 610 N/ram. The corresponding handbook [16] 
value is about 620 N/ram. 

Plastic Zones 

The magnitude of the plastic zone extent can be observed in Fig. 4. This is an equivalent 
stress (yon Mises) contour plot. The contour values (1 through 6) are listed at the bottom, 
with the minimum value equal to the yield stress of 135 MPa. The "dot"  in the figure inset 
identifies the point on the load versus parametric time plot that represents the results in 
Fig. 4. Figure 4 then can be used to identify the extent of the plastic zone at the maximum 
monotonic load (with no unloading). The hatched regions in Fig. 4 thus represent regions 
in the specimen that have not yielded. The gross plastic deformation of the specimen is 
evident. 

Figures 5a and b show contour plots of the plastic strain developed during unloading (for 
parametric time >1, see figure insets) for the R = 0 and R = - 1 . 0  analyses, respectively. 
These plots represents the additional amount of plastic deformation developed between 
Times 1 and 2 for the R = 0 analysis and Times 1 and 3 for the R = - 1 . 0  analysis. 
Therefore, these contour plots reveal the extent of reverse plastic deformation that occurs 
during the unloading phase for the R = 0 and R = - 1.0 cases. The cross-hatched regions 
represent the reverse plastic deformation zone. The results for the R -- - 0 . 5  analysis are 
between these two results and are not shown here. A reverse plastic zone (compressive) 
very near the crack tip begins to develop almost immediately after reversing the load very 
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near the crack tip. However, the extent of the compressive zone near the crack tip is not 
extensive when the load is eliminated completely (Fig. 5a). As unloading continues, the 
crack-tip compressive zone rapidly extends until, at the R -- - 1.0 point (load = - 1100 N), 
net section gross reverse plastic deformation is experienced (Fig. 5b). 

The extent of the large compressive plastic zone that develops near the crack tip may 
affect the crack-tip damage and subsequent crack initiation point during reloading. By 
predicting the extent of this zone, one may possibly develop simple techniques for predicting 
cyclic tearing damage in cracked bodies. However, within the limits of this analysis (small 
strain theory, isotropic hardening, classical continuum constitutive plasticity theory), we 
should not expect to predict cyclic damage and history-dependent crack growth using the 
J-tearing theory. 

During unloading to R = - 1.0, no crack face contact was experienced. This is because 
the crack tip was stretched and blunted so severely that upon unloading a large amount of 
reverse plastic deformation would have to be achieved to overcome the tensile load plastic 
strains. While this is partially an artifact of the isotropic hardening assumption, this lack of 
crack face contact upon unloading for this material was also observed in through-wall cracked- 
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pipe cyclic bending experiments when the tensile load level produces an applied J-value 
near J, [4]. This will be further elaborated upon in the discussion section. 

Asymptotic Crack Field Stresses 

The stresses are compared with the corresponding HRR field stresses at different points 
in the analysis in Figs. 6 and 7 at 90 ~ to the crack plane. Figure 6 provides the radial stresses 
as a function of radial distance from the crack tip at the monotonic load point, the completely 
reversed load point, and the reload point (Points A, B, and C of the Fig. 6 inset) for the 
R = - 1 . 0  case. At the monotonic load point (Point A, inset) stresses compare very well 
with the HRR field up to about two crack-tip-opening displacements (recall gi ~ 1.2 mm) 

from the tip. 
At Point B, the complete unload point in the load history, the stress state is entirely 

compressive. In Fig. 6, the absolute value of the radial stresses at 90 ~ from the crack plane 
are plotted. Rather remarkably, these compressive stresses compare quite well with a neg- 
ative of the HRR field. Finally, after one cycle of unload-reload, with full account of the 
history dependence of flow theory of plasticity provided for, the stresses again compare 
quite well with the monotonic, history-independent HRR field. 

Figure 7 shows a similar comparison for the R = 0 case, where again the HRR field is 
preserved even after one cycle of unload-reload. This is not as surprising as the R = - 1.0 
results since the size of the reverse plastic deformation zone (Fig. 5a) is not large and the 
effect of history dependence is less pronounced. Again, the HRR field is preserved up to 
a distance several times g, from the crack tip. 

Figures 8 and 9 provide stresses compared with the HRR field for the intermediate load 
history of R = - 0.5. Figure 8 shows or00 stresses at 0 = 0 in front of the crack tip. For the 
monotonic load point (Point A indicated by the + symbol), the stress field compares with 
the HRR field up to about 1.5 mm (about 1.25 g,) ahead of the crack tip if we (arbitrarily) 
choose a 10% tolerance on the stresses compared to HRR stresses to define the point where 
divergence from the HRR field begins. The corresponding monotonic load stresses (Fig. 9) 
compare quite well with the HRR field at 0 = 90 ~ up to more than 2 5, from the tip. This 
was the general trend of all analysis results; that is, the stresses (all components) compare 
favorably with the HRR field for a shorter distance from the crack tip at 0 = 0 ~ compared 
with 0 = 90 ~ 

After one complete cycle of unload, the stresses in front of the crack tip are, of course, 
nearly identical to the monotonic load stress (Figs. 8 and 9). In addition, the HRR field is 
also maintained near the crack tip as if no unloading has occurred. Also plotted in these 
figures (open squares) are the absolute value of the stresses at the complete unload point 
of the load history. Here, it is seen that the comparison to the "negative" of the HRR field 
occurs over a much shorter distance from the crack tip compared with the R = - 1.0 case 
(Fig. 6). 

It is quite interesting to observe that the HRR field is preserved for a stationary crack 
taken through one complete cycle of load reversal for all three R-ratios considered here. 
Of course, the simplified constitutive law (isotropic hardening) and the small strain analysis 
assumption contribute to this effect. 4 However, it should be expected that, at Points A and 
C of Figs. 6 through 9, the value of the crack driving force as measured by J should not be 
affected significantly by the unload cycle as the near field stresses are not significantly 
affected. This is discussed next. 

~Observe (Figs. 3 to 5) that a significant amount of reverse plastic deformation does occur, especially 
for the case of R = -1.0. 
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Crack Driving Force 

The J-integraP was evaluated along 15 different paths ranging from very close to the crack 
tip to the far boundaries of the specimen (see Fig. 2). During the original monotonic loading 
portion of all analyses, J was basically path independent, along all but the first path (and 
slightly in error along the second path). The value of J at the maximum load of 1100 N is 
610 N/ram. During the unloading portions of all analyses, J decreased, became negative for 
the R - - 1 . 0  and R = - 0 . 5  cases, and was very much path dependent. However, upon 
reloading for all three R-ratio cases analyzed, J along all paths became path independent 
by the time the maximum load of 1100 N was again reached. Moreover, the value of J at 
maximum reload was again about 610 N/ram. This means that, within the context of the 
J-tearing theory confined by the assumptions inherent in this analysis, no history effect is 
predicted to occur. 

Discussion 

Monotonic Loading 

The specimen dimensions chosen for these analyses are shown in Fig. 1. Typically, spec- 
imens between 0.5 T and 2 T compact tension specimens are cut from pipe in order to 
develop J-resistance curves. The specimens are made to have a thickness close to the pipe 
thickness. The rationale for this approach is that a compact tension specimen J-resistance 
curve is a lower bound curve, and thus when it is used in a predictive analysis, the results 
will be conservative. Wilkowski et al. [2] have used this methodology to predict the behavior 
of numerous through-wall cracked-pipe experiments using a J-estimation scheme procedure 
with reasonable results. 

These analyses produce very good predictions despite several violations of the classic 
J-tearing theory, as lucidly described by Hutchinson [17]. These violations include crack 
growth beyond the limits imposed by Hutchinson and Paris [1] and violation of the HRR 
dominance as prescribed by the asymptotic studies of Shih and German [13], Parks [18], 

McMeeking [19], from the finite strain analysis of the small-scale yielding problem, found 
large strains of order unity directly in front of the blunted crack tip. This leads to a reduction 
in stress triaxiality near the tip and corresponding great reduction of the stress state compared 
with the singular small strain HRR field. These large strains persist for a distance of about 
one ~, ahead of the crack tip (ep > 0.15) for the elastic perfectly plastic limit of n --* ~. The 
zone of large strains (greater than 0.15) decreases as the material hardening increases (n 
decreases). Moreover, large deformation effects are important in terms of their effect on 
the stress state for a distance of about 2 or so ~, ahead of the blunted crack tip. The classic 
J-dominance argument is that the small strain HRR field controls the large deformation 
process zone at the blunted crack tip, and hence controls the fracture process if the HRR 
field is experienced for a distance greater than 2 ~, ahead of the crack tip. For bend-type 
cracked geometries, Refs 13 and 18 through 20 suggest that HRR field dominance occurs 
if the uncracked ligament, C, is greater than about 25 (J/%), which is about 110 mm for 
the present case. From Fig. 1, C is 17 mm from this case, and will clearly always miss the 
limit of 110 mm for any 1 T or 2 T specimen cut from pipe. From Figures 6 to 9, we also 
see that the HRR field is realized for less than 2 ~,, in general. 

5j was evaluated using a post-processor written especially for use with ABAQUS using the equivalent 
domain integral procedure. The J-integral module of ABAQUS assumes proportional loading is valid 
that results in the elimination of one term. For nonproportional loading, which occurs here, this term 
is not zero, and necessitates the use of the new post-processor. 
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limit of 110 mm for any 1 T or 2 T specimen cut from pipe. From Figures 6 to 9. we also 
see that the HRR field is realized for less than 2 ~,, in general. 

Thus, based on this discussion, J should not control the fracture process if the resistance 
curves are developed from small specimens. However, as just mentioned, Wilkowski et al. 
[2] have numerous practical examples showing that, for monotonic loading to failure, the 
J-tearing theory gives good predictions of failure load in pipe. Why does J work here when 
it appears to be inadequate? 

If we examine the path dependence of J from McMeeking's [19] results, we find that J 
varies from near zero at the blunted crack tip to its far-field value at about 0.5 b, from the 
tip. Beyond this point, J is only slightly lower than its far-field value. 6 Thus, while large 
strain effects are important to the stress field up to about 2 ~, or more distances from the 
crack tip, J is affected greatly only for distances of 0.5 ~, and less from the tip. In addition, 
Papaspyropoulos [21] performed a series of finite element analyses on 1 T, 3 T, and 10 T 
compact tension specimen experiments of the same plan-form thickness. In these numerical 
tests, the displacement versus crack growth record from a series of experiments served as 
input to the finite element analyses. The J-resistance curves developed did not differ much 
from each other at crack initiation and for small amounts of crack growth. Note that the 
10 T specimen is the only one that satisfies the strict HRR field J-dominance requirements 
(C >- 110 ram). It appears that the strict requirements on valid J-tearing theory application 
may be relaxed for practical applications. 

Cyclic Loading 
The present finite element analysis examined the cyclic tearing behavior in a practical 

engineering material (Type 304 stainless steel). This material is well suited for application 
of the J-tearing theory because of its high hardening characteristics (n = 3.6). A 0.75 compact 
tension specimen was analyzed as being subjected to three different cyclic load controlled 
conditions; R = 0, - 0 . 5 ,  -1 .0 .  The maximum load applied before unloading produces a 
J-value near the expected crack initiation value of Ji = 600 N/mm. 

The results indicate that the HRR field is preserved after one cycle of loading is completed. 
This suggests that J should be a useful parameter to describe and predict this behavior. 
J became nearly path independent after one complete cycle of loading. In addition, after 
reloading the specimens for all three R-ratio analyses, J again approached the monotonic 
value of Ji. This behavior is in disagreement with experimental observations of Wilkowski 
[4] that for initial monotonic loading of through-wall crack pipe of Type 304 stainless steel 
(288~ to near Ji (600 N/ram) for R = - 1.0 case, the crack should initiate at about one- 
half the load for virgin material, while an R = 0 case is almost unaffected by cyclic damage. 

There are several possible reasons why our analysis does not appear to model reality. 

1. The use of isotropic hardening is an unrealistic constitutive representation of cyclic 
plasticity. However, for one cycle of load, this hardening model should not perform 
extremely poorly. In Ref 3, an isotropic hardening model was used to model an unload 
cycle after an appreciable amount of crack growth had occurred. During reloading the 
near-field value of J (called T*-integral in Ref 3) predicted the crack reinitiation 
behavior of the experimental data quite well. In that analysis, J was extremely path 
dependent upon reloading. It is believed that the difference between the situation 
modeled in Ref 3 and that here is the crack growth. In Ref 3, an appreciable plastic 

6The lower the Ramberg-Osgood power coefficient, the more path independent J is beyond 0.5 ~, 
from the tip. For stainless steel, which is a high hardening material, n generally ranges between 3 
and 5. 
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wake developed along the flanks of the growing crack and appreciable local crack-tip 
nonproportional loading occurs while global loading continues. Here, for the stationary 
crack, local and global unloading/loading occur synchronously; that is, a kind of global 
proportional loading/unloading occurs. This may be why HRR fields are once again 
produced after the reload cycle, and J becomes path independent. Finally, in some 
recent preliminary results to be reported elsewhere, we have found that kinematic and 
isotropic hardening assumptions do not produce results appreciably different from those 
observed here if near- or far-field J is used as a crack growth criterion. 

2. The use of a classic continuum constitutive theory may not be appropriate for predicting 
cyclic damage observed in the experiments. It may be more appropriate to utilize a 
Gurson-type model for analyzing cyclic damage, as, for example, Needleman [22] used 
for monotonic loading to failure. Indeed, after loading to an applied J-level near J,, 
voids have developed in front of the blunted crack tip. During unloading, the voids 
may crease along their edges to different amounts depending on the applied R-ratio. 
Upon reloading, microcracks should be expected to develop at the void edges previously 
creased. This should lead to crack reinitiation predictions at a lower load level compared 
with undamaged material. 

3. The near- or far-field J-integral may be inappropriate for predicting cyclic damage and 
crack initiation. If this is the case, then efforts to develop cyclic J-resistance curves 
and separable fatigue/J-tearing methods may not be warranted. 

4. In the monotonic loading discussion section, we argue that large deformation effects 
and the corresponding J-dominance criterion can be relaxed. However, it may be that 
large deformation/strain effects play an important role in characterizing cyclic damage 
accumulation. Large deformation, large-strain finite element analyses of an initially 
blunted crack tip (in the spirit of McMeeking [19]) are under way and will be reported 
elsewhere. 

The results presented here are expected to be reproduced for other, less tough, materials. 
As discussed earlier, the initiation value of J for Type 304 stainless steel at 288~ is about 
600 N/mm, and this represents one of the highest toughness values expected for steel (see 
Ref 2 and the material property studies referred to therein). If the analyses had been 
performed for a carbon steel, say A106-B with Ji ~ 200 N/ram, similar results as produced 
here should be expected. Reviewing the finite element results produced here for a level of 
J = 200 N/mm where the CTOD (g,) is about one third, the stress field compares with the 
HRR field for distances more than 3 g, from the tip. Thus, the region dominated by large 
strains is contained within the small strain HRR field. Although not done here, after loading 
to Ji = 200, unloading and reloading, one would expect results similar to those presented 
in Figs. 6 to 9; that is, reproduction of the HRR field for a distance equal to that before 
unloading. Therefore, it appears that Reason 4 concerning large deformation effects may 
play a less significant role in being able to predict cyclic tearing damage. This is encouraging 
since the development of an engineering approach to predict cyclic tearing damage is sim- 
plified if large-strain effects can be neglected. This observation is consistent with earlier 
comments where we note that the stress field is affected up to 2 g,, while J is influenced up 
to 0.5 g,. Hence, one of the main purposes of this paper is to point up that currently accepted 
views regarding monotonically loaded elastic-plastic tearing cannot be extended easily to 
cyclic tearing without more work. 

Finally, these results perhaps raise more questions than produce answers, and work is 
continuing to addresses all four points just described. 
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ABSTRACT: Stationary crack-tip singularity fields of strain-hardening material, A1 2024-0, 
are investigated by combined moir6 and moir6 interferometry techniques as a crack goes 
through elastic and plastic deformation. The experimental results are compared with the 
corresponding theories at different stages, K field and HRR field, respectively. A two- 
dimensional finite element computation is also carried out at plastic deformation stage to aid 
the analysis. 

KEY WORDS: K field, HRR field, geometric moir6, moir6 interferometry, three-dimensional 
zone, plastic zone, fracture mechanics, fatigue (materials) 

The singularity fields at the crack tip are characterized differently for different materials. 
For linear elastic materials or when materials deform at the linear elastic stage, the stress 
and strain singularity fields are characterized by the stress-intensity factor, K, with the 
singularity of r o5, where r is the distance measured from the crack tip as derived by Williams 
in 1955 [1]. The singularity field is different if the material undergoes extensive plastic 
deformation prior to the crack initiation. Fracture in low-to-intermediate strength metals 
are of this nature. For strain hardening materials, Hutchinson, Rice, and Rosengren [2,3] 
contributed the two-dimensional asymptotic solutions for a monotonically loaded stationary 
crack tip of Mode I, which is referred to as the Hutchinson, Rice, and Rosengren (HRR) 
field. In the HRR solution, a path-independent integral, the J-integral [4], is assumed to 
be a measure of the intensity of deformation outside a process zone in the vicinity of the 
crack tip. The singularity form in this case depends on the hardening index, n. 

It is well known that linear-elastic deformation surrounding the crack tip can be described 
by the K solution over a zone within 10% of characteristic dimensions of the specimen [5]. 
The existence of the HRR field requires that materials must possess a strain hardening 
property and that the deformation be well approximated by the small deformation theory 
either under small- or large-scale yielding. As emphasized by Hutchinson [6], the HRR field 
should be of a size scale large compared with the near-tip finite strain zone and be well 
contained in the plastic zone. 

The results of HRR field studies are mostly computational and for the state of plane strain 
deformation. McMeeking [7] points up that the size of the finite strain zone is about 2 to 
3~,, where ~, is the crack-tip-opening displacement. Since the size of crack process zone is 
assumed to be comparable to that of the finite strain zone, the HRR field exists beyond 
3g,. Shih [8] relates quantitatively the crack-tip-opening displacement to the J-integral. 

1Leading professor and graduate students, respectively, Department of Mechanical Engineering, State 
University of New York at Stony Brook, Stony Brook, NY 11794. 
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Numerical computations [9,10] indicate that under small-scale yielding, the crack-tip de- 
formation can be approximated by the HRR equation within 20 to 25% of plastic zone size 
while under fully plastic yielding, it is about 0.01 to 0.07 times of uncracked ligament 
depending whether it is under tensile or bending configuration. 

Experiments on HRR field under the state of plane stress are done quite recently. Meas- 
urements are made mostly on the specimen surface. Dadkhah and Kohayashi [11] tested 
different aluminum alloys by applying the moir~ interferometry method and evaluated 
J-integral [12] from fringe patterns and compared the displacement along 45 ~ with the HRR 
equation. Rosakis et al. [13,14] used an interferometry technique to obtain full-field out- 
of-plane displacement and associated the experimental results with computation to inves- 
tigate the HRR field. Chiang et al. [15,16] applied the inplane moir~ technique and compared 
certain deformation components with the HRR solution at selected angles, Both experiments 
[13,15] and computations [17] show that a strong three-dimensional effect is found at r -< 
0.5t in front of the crack tip, where t is the specimen thickness. At r = 1 to 1.5t, the 
deformation transits from three-dimensional to a two-dimensional state as indicated by 
computation [17] and experiment [15,16]. Narasimhan and Rosakis reported that a much 
larger J-dominant zone or the HRR zone was found under plane-stress condition than under 
plane-strain condition [14,18] in a three-point-bend specimen with hardening index, n = 
22. The same phenomenon of larger HRR zone is also observed in other experiments [15,16]. 

In this paper, we study the crack-tip deformation at both the elastic and plastic stages 
and compare them with both the K and HRR fields. We wish to know the extend of the 
HRR zone when extensive plastic deformation has occurred in most parts of the specimen. 
We would like to know the relative dimensions of the crack-tip three-dimensional zone, K 
zone, HRR zone, and plastic deformation zone. To aid the analysis, a detailed two- 
dimensional finite element computation is also carried out by employing the ABAQUS finite 
element code. The computed distributions of strain component, ~.~, in front of the crack 
tip are compared with the experiment and HRR solution. 

Experiment 

The specimens are made of aluminum alloy, A1 2024-0. The material is assumed to be 
strain hardening and follow the Ramberg-Osgood law 

_ _  O "  

~ + ~ ( 1 )  
E o O" o 

where 

% and ~0 - yield strain and yield stress, respectively; 
c~ = a constant; and 
n - hardening index. 

and n are determined by fitting measured stress and strain into Eq 1 with the elastic term 
neglected. This is justified because elastic deformation is not considered in the derivation 
of HRR equations. 

The Ramberg-Osgood equation can be written into the form of a piecewise power law, 
that is 

E - -  E ~ EO 

Eo L \ ~  E >-- ~o 

(2) 
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Equations 1, 2, and experimental results are plotted in Fig. 1. The data points are closer 
to the piecewise relationship especially near the yield point. 

To have a better appreciation of the HRR field, a high strain-hardening material (n = 
3.0) was selected in the experiment since the size of the HRR field is greater in this case. 
The geometry of the specimen is given in Fig. 2. A long crack equal to 50% of the specimen 
width was made in order to introduce bending to the crack, because the HRR field is greater 
under bending than simple stretching. It was designed in such a way that all length dimensions 
are much greater than the specimen thickness (3.2 ram). As a result, it may be safe to 
assume that the state of plane stress prevails everywhere except near the crack tip. The 
crack was first machined by a notch with a 60 ~ V-shaped end horizontal to 3 mm less than 
the half width of the specimen. A fatigue crack about 3 mm long was initiated by applying 
cyclic loading. In order to measure both elastic and plastic crack-tip deformation fields, two 
optical methods were employed. On one side of the specimen surface, we used moird 
interferometry with a grating density equal to 2400 lines/mm to record the elastic defor- 
mation. On the other surface the method of geometric moird with a grating density equal 
to 20 or 40 lines/mm was applied to measure the plastic deformation. 

The specimens were loaded by applying tensile forces at the two ends. Three specimens 
were tested in the experiment. A typical load versus crosshead displacement curve is shown 
in Fig. 3. Moird fringe patterns were recorded at selected load levels. Moird interferometric 
fringes were recorded first, until they were too dense to be distinguishable with the exper- 
iment set up similar to that described in Ref 19. When large plastic deformation occurred, 
the crack-tip deformation was recorded by geometric moird. These fringe patterns are 
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contours of displacement component resolved along the principal direction of the grating. 
A typical set of fringe patterns obtained from moir6 interferometry and geometric moir6 
method are given in Figs. 4 and 5, respectively. 

The equations that relate fringes with displacements are 

u = Nxp, 

V ~ XvP~ 

(3) 

where 

N~ and Ny = fringe orders; 
Px and py = grating pitches with grating normal along x and y directions, respectively. 

FIG. 4--Moir~ interferometry fringe patterns (a) displacement in x direction and (b) displacement in 
y direction (P = 1.22 kN, scale 2.4:1, 2400 lines/mm). 
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FIG.  5--Geometry moirO fringe patterns (P = 9.66 kN, scale 4.2.'1, 20 lines~ram)," (a) displacement 
in x direction and (b) displacement in y direction. 
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In our experiments, we have selected p., to be equal to p,.. Strain components can be thus 
evaluated by the following equations 

Ou ON. 
E x x  - -  - -  p x  

Ox Ox 

Ov ON,, 
ey,, - Oy 0--y py (4) 

= + 7x : T px + - g /  P . /  

Comparison with the K-Field 

The stress, displacement, and strain fields for a linear elastic solid under Mode I loading 
are, respectively 

. ,  = 2-G \2 -~ /  f;,(o) 

1 K~ 
% - E (2:rr) ' :  f~(0) (5) 

and 

~'J - (2 f r )  '~ f:~(o) 

where 

K~ = stress-intensity factor, 
E = Young's modulus, 
G = shear modulus, and 
r = distance measured from the crack tip. 

The stress-intensity factor, K~, was evaluated by assuming a uniform remote stress dis- 
tribution applied to an edge-cracked panel [5]. Since the experiment results were in terms 
of displacement contours, comparison with the theory were done using the vertical displace- 
ment component, v, along selected angles. However, along 0 = 0 ~ the crack line, v = 0. 
As a consequence, we used e).y for the comparison. Figure 6 shows the result for KI = 7.5 
MN/m 3/2. As can be seen, the segment within which there is a reasonable agreement between 
theory and experiment varies from angle to angle, but does not exceed 10% of the ligament 
( -6 .4  ram) except at 0 - 30 ~ , where the limit is a little over 9 mm (about 14% of the 
ligament). 

Comparison with the HRR Field 

The theoretical model to describe the stationary crack-tip singularity field of a strain 
hardening material under large plastic deformation is the HRR solution for which the 
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FIG. 6--Experimental comparison with K field (K = 7.5 MN/ml S). 
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14 

expressions for displacement, strain, and stress are, respectively 

= [ j ]"/'"+') 

u, a~or ka~oeol------~j Qi(O, n) (6) 

I j I n'(n + l) 
= - -  ~,:(o, n)  

~i: o~eo Le~Eochj,,rj 
(7) 
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= [ j ]',',~ 
cr u % L(x%(rol--I-~j 6-u(e, n) (8) 

where J is Rice's path independent integral; In, tii, ~u, and 6" u depend on the hardening 
index, n, and whether a state of plane-stress or plane-strain prevails. The latter three 
quantities are also a function of polar angle, 0, with the coordinate origin being at the crack 
tip. All these parameters have been calculated and tabulated in Ref 20. 

J-Integral Estimation 

The intensity of the near-tip field in the HRR solution is measured by the path independent 
J-integral, which has the form 

J = fr (Wnx - (ruuiui4)ds (9) 

where F represents any contour encircling the crack tip, ui is the displacement vector, s is 
the length along the contour, n, is the unit normal to F, and W is the strain energy density. 

The J-integral may be estimated using a procedure proposed in Ref 15. Using a rectangular 
contour surrounding the crack tip as shown in Fig. 7, the contour integration can be divided 
into line integrals along the vertical and horizontal segments as follows. 

= fv (w-,~xxux.~-,~x,,.,,x)dy+ f, (,,x,,ux. +.,.,..,,x)dx 
1 . V 2  - f l  , H 2  ~ " " " 

(10) 

L _ X ~  

V2 

crack 

x, 

H2 

H1 
FIG. 7--Rectangular path of J-integral. 
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where ui.x can be calculated from the fringe patterns. 
By applying linear elasticity and deformation plasticity to a strain hardening material 

subjected to small deformation, the strain components are 

]/13" \ n - l  l + v  v 3eo e 
- - , i ,  

and stress components are derived as 

e i i [ E  1 ] (11) 
o-q = F(%) + 3(1 - 2v) 3F(o-e) Ekk~ij 

where 

F ( % ) - ( 1  + v) + 3a (%]" -~  
E 2E \~0/  

with effective strain 

e. = ~/~eoe q 

and effective stress 

O e =  

And strain energy density is 

l + v  
W -  

2E 

tn+l l) ~ (J'e 
_ _  fyi/l~ij __ - ~  l~2k ql_ ~ O[(TOC 0 - -  \%/ (12) 

where 

sq = deviatoric stress, 
eq = deviatoric strain, 
E = Young's modulus, and 
v = Poisson's ratio. 

Although the out-of-plane strain component is not available, its value was estimated from 
the plane-stress condition. ~zz is determined by an iteration procedure to let gzz approach 
zero. Thus, all the deformation components in Eq 10 can be calculated. 

Three paths were chosen for the integration as in Fig. 7 with xp ranging from 7 to 15 mm, 
xn ranging from 1 to 2.5 ram, and y ranging from 10 to 30 mm for each set of fringe patterns. 
In addition, a closed path not surrounding the crack was selected to further test the path 
independent nature of the J-integral. Only v fringe contours were used in the evaluation 
because u fringe contours are so sparse that their contribution may be ignored. 

This approach of calculating the J-integral suffers from a number of errors. First, the 
contribution from the u field is neglected although it is usually very small relative to the v 
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field. Second, the integrations can not be evaluated continuously. Error also arises while 
calculating the displacement derivatives. To offer a comparison, another estimation of the 
J-integral is made by measuring the crack-tip-opening displacement g,, which is also a meas- 
ure of crack damage. Shih [8] related g, to J-integral by 

~, = d(a, %) J (13) 
O" 0 

where 

d(~, ~o) = (~eo)V"D- 

Dn is a dimensionless quantity tabulated in Ref 20. 8, is defined as the separation where 45 ~ 
lines intersect the crack faces as shown in Fig. 8. In our calculation, g, was estimated by 
counting the fringe numbers from the v field fringe patterns at the positions of the 45 ~ 
intersection lines. A plot of g, versus load for one specimen is given in Fig. 9. Figure 10 
shows a plot of load versus J-integral where the experimental points were converted from 
that shown in Fig. 9 and the solid line is obtained from a finite element calculation (to be 
described later). 

The J-values for three different loadings as obtained from the two approaches are listed 
in Table 1. The first column is the resulting g,-values for the three loads. The second column 
is the J-values obtained using measured 8,, and the third column is the J-values calculated 
by approximated contour integration. The last column is the values obtained from an ar- 
bitrary closed path integration that did not enclose the crack tip. 

It is seen that the two sets of J-values agree with a 10% error. The J-value for an arbitrary 
closed loop is, however, quite off. We felt that the J-values from g, measurements were 
more accurate because the procedure was simple and less error prone. As a result, these 
J-values were used in the evaluation of the HRR field for the subsequent comparison. 

Experimental Comparison with the HRR Field 

The coarse grating densities used in the experiment could produce sufficient fringes for 
calculation only when the specimens were subject to large plastic deformation. As a result, 
the comparisons were made at high loads (P = 8.82 kN to P = 10.56 kN) but no obvious 
crack growth had occurred. Plastic deformation was believed to have extended well over 
50% of the ligament at P = 8.82 kN as can be deduced from the Eyy plot shown in Fig. 11. 

\ 

FIG. 8--Crack-tip opening. 
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It is seen that at r = 30 mm (r / t  ~ 10), e,., is about 0.0021 while the yield strain e0 is 0.0008. 
Large plastic zones were evident in the finite element calculation given in the next section. 
The v-field displacement was compared with the theory at selected angles from the crack 
tip. The strain, ~.,., was compared at 0 = 0 ~ as v = 0 in this direction. The comparisons 
were plotted as shown in Figs. 11 to 13, where the distance, r, was normalized by the 
specimen thickness, t. 

For comparison between theoretical and experimental results, we selected the following 
arbitrary criteria. For displacement component, v, we allowed one-fourth fringe error. That 
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TABLE 1--J-values.  

237 

S, mm J, kN/m (5,) J, kN/m (moir6) J, kN/m (arbitrary path) 

0.175 39.5 37.0 0.16 
0.25 56.4 53.5 0.43 
0.3 67.7 61.8 2.1 
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10 

corresponds to a distance of 0.00625 mm from the theoretical  curve. For  the strain com- 
ponent ,  %y, we assumed that agreement  was reached when the ratio of the experimental  to 
the theoretical  values was with 95%. And  we found that at P = 8.82 kN, the H R R  field 
extends around r/t = 6.2 to 7 depending on the angle, O. At P = 9.54 kN, it varies from 
4.4 to 6.2. Errors  in J will result in the shifting o[ the entire theoretical  curve. A case in 
point is shown in Fig. 13 where the result of P = 10.56 kN is presented.  Due  to the error  
in J ,  the experimental  result appears to agree with the theory within the three-dimensional  
zone. To  determine the H R R  region experimental ly,  it is crucial that the J-value be evaluated 
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10 

correctly. However, from the multiple experimental results we have obtained using v and 
%y, we can conclude that the H R R  field exists up to r/t = 5.0 to 6.0. 

Finite  E l e m e n t  A n a l y s i s  

To provide a comparison, an finite element analysis of the problem was also performed. 
The A B A Q U S  finite element code was utilized. Eight-node biquadratic plane-stress ele- 
ments were used and the mesh arrangement is as shown in Fig. 14. Due to the symmetric 
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\\\, , / / /  
\ \  / /  

FIG. 14- -Mesh  .for finite element calculation. 

nature of the problem, only half of the specimen was modeled. A piecewise strain-hardening 
relationship was assumed, since it was closer to the actual stress-strain relationship as shown 
in Fig. 1. The horizontal strain distribution at a section 110 mm above the crack line was 
measured by strain gages, the result of which is given in Fig. 15. The stress distribution was 
determined at these positions through Hooke's law. Such stress distribution was employed 
as the load boundary condition in the finite element calculations. The computed strain 
component, e,.~., in front of the crack tip was plotted and is shown in Figs. 16 and 17 for 
different loads together with experimentally measured values at the same load levels. The- 
oretical HRR curves were plotted by applying the J-integral obtained from the finite element 
computation. 
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The results show that large differences between the computation and experiment are 
found at the crack tip within r/t -- 1.5 that are attributed to the three-dimensional effects. 
The finite element computation was based on a two-dimensional model. However, recent 
research [13,15,17] shows that a three-dimensional zone near the crack tip exists at about 
1 to 1.5 times of the plate thickness, which is 3.2 to 4.8 mm in the specimens investigated. 
Some residual plastic deformation introduced during the precrack process also exists within 
this region. Relatively large differences between the finite element and experimental results 
are also seen at r/t = 1.5-3. Since strain values in this region are rather high, the deformation 
in the region may not exactly follow the deformation behavior with the determined material 
constants, ~ and n. Also, at high strain levels, slight variation of stress will introduce a large 
variation of strain for power-law hardening materials. These factors are believed to be the 
reason for the large difference between computational and experimental results in this region. 
One would expect smaller errors if the comparison were made between stress components. 

Better agreement between the two is found at around r/t = 3 to 5. Both results are also 
fairly close to the plane-stress HRR solution. These facts buttress the conclusions reached 
in the previous section concerning the extent of the HRR field. 

At a greater distance away from the crack tip, the computational result is very close to 
that of the experiment. It is especially true at P = 9.54 kN as shown in Fig. 17. The deviation 
seen in Fig. 16 may be due to the error in reading the load. When the testing machine was 
stopped to record the load, a small elastic unloading took place resulting in a load drop. 
The actual load would be slightly higher. 

The plastic zone can not be obtained from the experimental results because the recordings 
did not cover a large enough region. However, it was computed from the finite element 
analysis by finding the boundary along which the effective stress reaches the yield stress. 
The results at two load levels are presented in Fig. 18. It is seen that the plastic deformation 
occurs in quite a large region. It covers the entire ligament, except at the transition region, 
where the specimens are loaded by compression. 

P = & 8 2  KN 

, i 

j Region of plastic 
zone on the 

~ s p e c i m e n  

P = 9 . 5 4  K N  

FIG. 18--Plast ic  zone at different loads obtained from finite element computation. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



CHIANG ET AL. ON NEAR-CRACK-TIP DEFORMATION FIELDS 243 

Discussion and Conclusion 

By combining the method of moir6 interferometry and geometric moir6, we have inves- 
tigated the crack-tip singularity field of a strain-hardening material, AI 2024-0, under the 
Mode I plane-stress condition. Since the grating densities of the two optical methods are 
either 120 or 60 times different, the deformation information is not available at certain 
ranges of loading before large plastic deformation has already occurred. 

We find that at low-load levels, a K field exists at the crack tip and its size is about 10% 
of the ligament or crack length in this case. Under large-scale yielding, the experiment shows 
that the displacement component, v, and the strain component, %~., could be approximated 
by the plane-stress HRR equation up to r/t = 4.0 to 6.0 from the crack tip, which is about 
40% of plastic zone. The results in Fig. 18 indicate that the boundary of the plastic zone 
does not progress much after P = 8.82 kN. The outer boundary of the HRR zone obtained 
from the experiment at P = 9.54 kN was mapped as shown in Fig. 19. At  this load level, 
the experiment also has fairly good agreement with the computation beyond r/t = 3. The 
boundary of the HRR zone is determined by using the same criterion as described in the 
previous section of experimental comparison with the HRR field. The extent of the three- 

~ IMtic zone 

Crsck 

3-D zone 

HRR zone 

\ 
Edge of the specimen 

FIG. 19--Graphic representation o f  the HRR zone within the plastic zone (P = 9.54 kN) (three- 
dimensional zone taken from Ref  15). 
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dimensional  zone taken from Ref 15 was also plotted. Since data at 90 ~ are sparse, the 
boundary  at the edges was only an estimation. From the plotting, we see that the shape of 
the H R R  zone is quite similar to that of the plastic zone. The H R R  zone reaches r/t = 4.4 
(r = 14 ram) or 35% of the plastic zone size at 0 ~ The maximum r/t of 6.2 (r = 19.8 ram) 
is found at 45 ~ , which extends to about 33% of the plastic zone. 

This result is rather consistent with that of Chiang et al. [15,16], where the outer boundary  
of the H R R  zone was also found around 13 to 15 mm from the crack tip. Crack length in 
the experiments of Ref 15 was only 18% of the specimen width while the current ratio is 
50%. This introduces more bending to the ligament resulting in a greater H R R  zone. Since 
the plane-strain H R R  zone is about 20 to 25% of plastic zone under  contained yielding and 
1 to 7% of ligament under  full yielding [9,10], the H R R  zone under  the plane-stress condit ion 
as shown by our results is much greater than that of plane strain. 

Large plane-stress H R R  zones are also reported in Ref 18. In this study, the experimental  
boundary  conditions were used in a finite element  calculation of a three-point-bend specimen 
made of a weak hardening material (n = 22.0) under  large-scale yielding. The plane stress 
H R R  field extends to nearly r = 20J/~ o when the plastic deformation intensity parameter ,  
Ccro/J, reaches 70, where C is the uncracked ligament. These two equations lead to an r-to- 
l igament ratio of 28.6%. Our  current result shows an H R R  zone of around 25 to 30% of 
the uncracked ligament under  a combinat ion of bending and stretching. In general, since 
the H R R  zone increases with decreasing n (the hardening exponent) ,  the result suggests 
that the size of the H R R  zone under  a plane-stress condit ion is also greatly dependent  upon 
crack configuration. 
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for Testing and Materials, Philadelphia, 1992, pp. 246-256. 

ABSTRACT: A simple methodology is suggested to analyze the crack growth of a body up to 
maximum load, by integrating the step-like increments of applied load and crack extension. 
The crack-growth criterion is the critical rate of crack-tip opening displacement (CTOD) 
increase versus effective crack extension of plastic-zone-size adjustment. Formulations of linear 
elastic fracture mechanics and limit-load expressions are used in the calculation. The analysis 
also presents a K-resistance (KR) curve equation, which is complete with constants of fracture 
initiation toughness and crack-growth resistance. The proposed method is applied to 2024- 
T351 aluminum alloy specimens in plane stress, for which experimental data are available. 
The calculated maximum loads are in reasonable agreement with the failure loads. 

KEY WORDS: fracture initiation, crack growth, resistance (KR) curve, effective crack length, 
maximum load, fracture mechanics, 2024-T351 aluminum alloy 

One of the fundamental problems concerning use of a flawed structure or design against 
structural failure is to predict its critical state in terms of operating conditions. For small- 
scale yielding fracture, the fracture toughness of the ASTM Test Method for Plane-Strain 
Fracture Toughness of Metallic Materials (E 399-83) is a useful parameter in the determi- 
nation of critical loads or crack lengths. Further, metallic materials of stable crack growth 
are characterized in the R-curve of the ASTM Recommended Practice for R-Curve Deter- 
mination (E 561~86). It is a continuous record of crack extension resistance, KR in terms of 
stress-intensity factor as a function of crack extension. The KR-curve is regarded as a material 
property independent of original crack length and crack configurations for a given specimen 
thickness. The fracture instability of a specimen is predicted so that a crack-extension-force 
curve in units of stress-intensity factor, K, develops tangency with the KR-curve. This practice 
has been developed for use on ultra-high-strength sheet materials. However, McCabe and 
Schwalbe [1] showed that the KR-curve method can be applied to handle the ductile structural 
grades of materials by using effective crack length instead of physical crack length. The 
effective crack length is the physical crack size augmented for the effects of plastic defor- 
mation at a crack tip. The loading compliance of secants drawn to the test record of load- 
deflection is compared with the elastic compliance function to estimate effective crack sizes. 
The present analysis adopts this practice. 

This paper presents a method that allows easy determination of KR-curve from a test 
result, by deriving a KR-curve equation. An analytical procedure is presented for the cal- 
culation of loads against effective crack extensions up to maximum load, either in fracture 

1Associate professor, Department of Mechanical Engineering, Chung-Ang University, Seoul, 156- 
756, Korea. 

246 

Copyright�9 1992 by ASTM International www.astm.org 
Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



GU ON CRACK-GROWTH ANALYSIS 247 

instability or in plastic instability at limit load. The method is simple enough not to require 
specialized analytical or computational techniques of the J-resistance (JR) crack approach 
[2]. It can be applied to any specimen configuration with expressions of stress-intensity factor 
and limit load. Moreover, a microscopic crack-growth criterion associated with the KR-curve 
method is suggested with a material constant. Thus, direct comparison of crack-growth 
resistance between materials is made possible quantitively in the suggested method. The 
method is applied to various specimens of 2024-T351 aluminum alloy in plane stress. The 
calculated maximum loads are compared with experimental data in the literature, from 
which the accuracy of the suggested method may be assessed. 

Formulations 

A cracked body of metallic material under a continuously increased load, P, may follow 
the stages of fracture initiation, stable crack growth, and fracture or plastic instability. The 
fracture initiation toughness can be evaluated in the critical value, Ki, of stress-intensity 
factor or its equivalent parameters. Up to then, crack-tip blunting occurs with crack advance, 
negligibly small compared with total crack length. After fracture initiation, the crack-ex- 
tension force for slow stable crack growth is expressed in terms of crack-tip opening dis- 
placement (CTOD), V, defined with respect to the extended crack tip. The present analysis 
assumes crack growth in the step-like behavior of crack extension and load increment. Thus, 
the CTOD increment in a step is written as follows from the function, V, (P,a), of applied 
load, P, and current crack length, a 

dV, 0II, da + Ok', 
= O--a -~  dP (1) 

Here,  the first term on the right is due to crack extension without load increment and the 
second is due to load increase with a crack length fixed. The CTOD in linear elastic fracture 
mechanics is related to the stress-intensity factor, K, elastic modulus, E, and flow stress, er 0 

V, = KZ/%E (2) 

The stress-intensity factor is a function of crack length, available for specimen types in 
handbooks, for instance Murakami [3] 

K = e f l ~ )  (3) 

A crack-growth criterion is proposed so that a crack tip extends an incremental length, da, 
when the crack tip attains a critical CTOD increment. This critical rate of CTOD increment 
versus crack extension is termed crack-growth resistance constant 

dV,/da = /~ (4) 

When the CTOD increases linearly with the J-integral value, the criterion is consistent with 
the tearing-modulus approach [4] where material 's resistance to crack extension, da, is 
evaluated with an increase in J-resistance value, d J, and the ratio, dJ/da, is constant. Figure 
1 shows a schematic of the crack-growth process. For a crack tip at 0,, consider that the 
crack-growth criterion is met at Point A,  then the crack tip advances by an increment, da, 
to Point 02. During the time the CTOD at Point B increases (OV,/Oa)da, and it should be 
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FIG. 1--Schematic of  step-like crack-growth process. 

0 3 

further increased with load by (OV,/OP)dP. When the combined CTOD increment at Point 
B reaches a critical value, the crack tip advances to Point 03, rendering a CTOD increase 
(OV,/Oa)da at Point C. This crack-growth process, assumed to continue repeatedly, is step- 
like or finite-incremental rather than continuous. As there may be a CTOD before the 
current step of crack extension, the proposed criterion is different from those based on total 
CTOD, such as a critical CTOD or crack-tip opening angle (CTOA) criterion. The value, 
Ic, is not a measurable quantity in the conventional sense, but a derived quantity. Substituting 
Eqs 2, 3, and 4 into Eq 1, we get a load increment needed for an incremental crack extension 

d P  - 2Pf (a)  2 E a o l  C - 2P2f(a)  da (5) 

Starting from an initial load, P,, at an original crack length, a 0, the load in Eq 5 is integrated 
numerically for a plot of load versus crack length. The plot does not change with different 
sizes of finite differential increment, da. That agrees with a physical sense because crack- 
growth increments in the step may be of small, variable sizes. Significantly enough, the 
constants associated with material properties constitute a single term, EaoIc, in Eq 5. Thus, 
even though a constant coefficient is considered in Eq 2, that does not make a difference 
as far as the coefficient is used consistently in the evaluation of the parameters and their 
applications. 

The other consequence from the present crack growth analysis is the K resistance curve. 
Substituting Eq 2 into the criterion, Eq 4, and integrating it from the fracture initiation 
toughness, Ki, at the crack length, ao, gives 

K ~  = K 2, + EcroI,.(a - ao) (6) 

The KR-curve equation, unlike Eq 5, is independent of specimen type and crack configu- 
rations and complete with parameters, Ki and a0Ic. The fracture instability in ASTM E 561- 
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86 is defined by letting a crack-extension-force curve of stress-intensity factor, K, be tangent 
to the KR-curve. The tangent point is used to determine the fracture toughness, Kc for high 
strength and low ductility materials. Instead of the graphical procedure, they can be cal- 
culated in the Ks-curve equation as follows 

dK dKR 
da da 

(7) 

K = KR (8)  

Multiplying two equations (Eqs 7 and 8) and substituting Eqs 2 and 6 gives the crack-growth 
criterion (Eq 4), so the criterion is compatible with the instability condition in the KR-curve 
method. Moreover,  calculating the maximum load by integrating Eq 5 is easier than solving 
Eqs 7 and 8 directly for the load and crack length at fracture instability. The fracture 
instability load for a given KR-curve does not depend on the flow stress of material. However, 
in other situations, the load may attain the limit load on the specimen before reaching the 
condition, dP/da = 0, in the integrated Eq 5. Then the limit load is the maximum load, 
beyond which fracture instability may occur in a stroke-controlled test. Materials of an 
identical KR-curve may not yield the same maximum load on a specimen when their flow 
stresses are different. Whether the maximum load is attained at fracture instability or plastic 
instability, as the present formulation uses the expressions of the linear elastic fracture 
mechanics, the analysis is not applicable to the fracture analysis beyond maximum load. 
The two possible ways of attaining maximum loads are depicted schematically in Fig. 2, 
where the solid line is for applied loads calculated from Eq 5. First for low-ductility materials 
or structures, the limit-load curve (1) does not intersect with the applied-load curve, and 
the maximum load is the peak load, P1, corresponding to the instability condition in the 
Ks-curve method of ASTM E 561-86. Low-ductility structures may have a small ratio of 
initial crack length to specimen width. Second, for ductile materials or structures, the limit- 
load curve (2) in Fig. 2 intersects with the applied-load curve, and the maximum load is a 
limit load, P2, at the intersection point. This case is not included in the ASTM E 561-86. 

As mentioned earlier, the crack length is the effective crack length of plastic-zone-size 
adjustment rather than the physical crack length. Schwalbe and Setz [5] showed that effective 
crack size is valid up to the ligament yield load in bend specimens. The effective crack length 
is obtained in the loading compliance method of the ASTM E 561-86. However, for large- 
scale yielding specimens under limit load, the effective crack length is determined in the 
limit-load equation. 

Applications 

For a standard compact specimen of thickness, B, width, W, and crack length, a, of the 
configuration in Fig. 3, the stress-intensity factor in the ratio X = a/W is 

P (2 + X) 
K = B ~ / ~  (1 _--~/2  (0.886 + 4.64X - 13.32h 2 + 14.72X 3 - 5.6X 4) (9) 

Using the published experimental data [6] of loads and effective crack lengths for three 
compact specimens of 2024-T351 aluminum alloy, we get Ks-values in Eq 9. They are plotted 
up to maximum loads in Fig. 4, with relevant mechanical properties in the caption. The 
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data on three different-size specimens have an evident consistency. The effective crack 
extensions are the mean of two compliance measurements at load line and crack mouth up 
to maximum load. These baseline data of initial crack length-to-width ratio, ao/W = 0.5, 
were supplied for the determination of material properties in an extensive round-robin test 
program (ASTM Subcommittee E24.06.02). Accordingly, they are also used to determine 
the material constants, K~ and ~oI~, so that the calculated loads against crack length from 
Eq 5 may be best fit to the test records of load against effective crack length. This procedure 
is the same as letting the KR-curve, Eq 6, be fit to the measured KR data plotted against 
effective crack length. Then the determined constants are K~ = 34 MN/m 3/2 and cr0/~ = 12.2 
MPa for the plate of about a 12.7 mm (0.5 in.) thickness. The last crack-extension data for 
each specimen is disregarded in the evaluation, for the crack may extend significantly at the 
maximum load. The KR-equation (Eq 6) of the constants is also plotted in the solid curve 
in Fig. 4, with a reasonable representation of the experimental data. Since ductile fracture 
is assumed on this material, it is needed to separate the flow stress, ~o, from the constant 
Ic of crack-growth resistance. Thus, the flow stress determines that a maximum load is a 
limit load. In other words, loads and crack lengths are calculated in Eq 5 using the unse- 
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parated constant up to an experimental  failure load, and its final crack length is used to 
determine the flow stress in the limit-load expression. Even though the conventional  est imate 
of the flow stress in the middle of yield and tensile strength can be a first approximation,  
the flow stress in the preceding method gives a better  est imate of maximum loads. This 
difference in estimating flow stress may be due to the lack of rigorous fundamentals  in 
applying the limit-load expression of nonhardening flow stress to the hardening material  of  
the 2024-T351 aluminum alloy. The limit load on the compact  specimen in plane stress is 
given as follows in Ref  2 

c - W - a  

"q - [(2a/c) 2 + 2(2a/c) + 2]'": - (2a/c + 1) 

PL = 1.071'qcrocB (10) 

The  flow stress (~0 = 339 MPa) is determined so that the failure load on a compact  specimen 
(W = 203 mm) among the baseline data specimens can be a limit load in Eq  10. Consequently,  
the crack-growth resistance constant is Ic = 0.036. 

Using the determined material  constants, the maximum loads on various specimens of 
Fig. 3 are predicted and compared  with experimental  failure loads in Table 1. These ex- 
per imental  data, aside from the baseline data, were provided to evaluate the fracture analysis 
methods in the round-robin test [6]. The results on compact  specimens are plotted in Fig. 
5, where solid lines are calculations. All specimens of the ratio ao /W = 0.3, 0.5, and 0.7 

TABLE 1--Comparison between calculated (Pc) and experimental (Pr) [5] maximum loads on 
2024-T351 aluminum alloy specimens where Aa is the calculated effective crack extension at the 

maximum load. 

B, mm W, mm ao, mm Aa, mm Pc, kN PI, k N  

COMPACT SPECIMEN 

12.4 51 16.1 4.74 27.4 29.8 
12.6 51 26.5 2.52 13.6 14.2 
12.3 51 36.2 0.90 4.87 5.22 
12.5 102 31.4 10.69 54.3 54.7 
12.5 102 51.9 6.33 26.7 28.8 
12.6 102 71.2 3.11 9.90 10.1 
12.5 203 61.8 22.45 107.0 98.5 
12.6 203 102.4 13.82 53.0 52.1 
12.5 203 142.9 7.12 17.9 18.6 

CENTER-CRACKED SPECIMEN 

12.6 127 26.2 3.37 289.9 302 
12.6 254 51.2 8.07 578.7 581 

THREE-HOLE-CRAcK TENSION SPECIMEN 

12.6 254 13.9 7.54 759.5 754 
12.5 254 25.7 9.40 753.4 738 
12.5 254 38.6 8.48 753.4 735 
12.5 254 51.8 5.64 725.8 718 
12.6 254 64.3 3.23 688.5 696 
12.6 254 75.8 2.21 643.4 660 
12.5 254 90.0 2.91 575.2 580 
12.5 254 101.5 4.85 518.2 505 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



GU ON CRACK-GROWTH ANALYSIS 253 

C)  

. J  

i00 

80 r 

60 

40 

20 

I l i 

2024-T351 A1 

compact tension 

B=12.5 mm 

W=I02 mm 

mm 

\ 

W=203 mm 

\ 

I I 1 

0 0.2 0.4 0.6 O. 
ORIGINAL CRACK LENGTH / WIDTH ao/W 

FIG. 5--Comparison between predicted (solid lines) and experimental maximum loads on compact 
specimens of  2024- T351 aluminum alloy. 

for three specimen widths attained the maximum loads with limit load. The effective crack 
extensions at the maximum loads are also calculated and given in Table 1 as well as in Fig. 
6. These may be used to obtain the load-line displacements from the elastic compliance 
functions, available in Ref 3, for instance. There seems to be no geometrical proportionality 
between different-size specimens at the maximum loads. Note that in Fig. 6 the normalized 
crack extension at maximum load increases with specimen size. As the crack extension 
becomes large, the possibility of fracture instability increases in Fig. 2. This appears to 
explain the specimen-size dependence of fracture mode. The expressions for stress-intensity 
factor and plane-stress limit-load on center-cracked specimens of width, W, thickness, B, 
and crack length, 2a, shown in Fig. 1 are, respectively 

K = (P/BVOk/~asec( .rra/W) (11) 

PL = % B ( W  - 2a) (12) 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



254  FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

&a/W 

0.14 

0.12 

x 

0 . i 0  

g 
0.08 

z 

x 

0.06 

0.04 

0.02 

0.0 

I I i 

:Lu5 mm 

W=I02 mm 

W=51 mm 

2024-T351A l  

compact t ens ion  

B=12.5 mm 

- -  J 1 I I 

@ 0 . 2  0 . 4  0 . 6  0 . 8  

INITIAL CRACK LENGTH / WIDTH ao/W 

FIG. 6--Calculated effective crack extensions at maximum loads on compact specimens for  three 
specimen widths. 

For  t he  t h r e e - h o l e - c r a c k  t e n s i o n  s p e c i m e n  in Fig. 1, t he  s t r e s s - in t ens i ty  f ac to r  e x p r e s s i o n  is 
d e r i v e d  by N e w m a n  [6] wi th  the  f in i te  e l e m e n t  m e t h o d  

w h e r e  

K = ( P / W B ) X / ~  F (13) 

,•1 A # ( 1  - a / b )  ~2 

F = ,=,~ = (1 + a/r ) ' - '  [(yo/xo) 2 + (a/xo - 1)210 1)/2 

A l l  = 2.02 A12 = - 9 . 1 7  A21 = - -62 .37  A22 = 287.72  
A31 = 1025.8 A32 = - 2 8 4 5 . 1  A41 = - 8 2 7 0 . 6  A42 = 11927.3 
r = 12.7 m m  b = 165 m m  xo = 63.5 m m  Yo = 50,8 m m  

(14) 
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The limit load is approximated in the net-ligament yield load 

PL - 0.7%BW for a/W <~ 0.2 

PL = (~0B(0.gw - a) for a/W ~ 0.2 (15) 

Table 1 as well as Fig. 7 show good agreement between calculated and experimental loads 
on the three-hole-crack tension specimens of initial crack lengths ranging from ao/W = 0.05 
to ao/W - 0.4. 

Conclusions 

Crack growth is considered a process of alternating the increase of applied load and crack 
extension, based on the criterion of a critical rate, lc, of CTOD increase versus crack 
extension. Ductile fracture analysis is made possible by determining the effective crack 
length of plastic-zone-size corrections and limit-load expressions. The derived KR-curve 
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FIG. 7--Comparison between predicted and experimental maximum loads on three-hole-crack spec- 
imens of 2024- T351 aluminum alloy. 
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equation is independent of specimen configurations. It is used to determine the material 
constants of the analysis, among which the flow stress, ~r o, of material is presumably related 
to the limit load on the specimen of extended crack length. With test data on three compact 
specimens of 2024-T351 aluminum alloy, the constants are estimated in fracture initiation 
toughness, K~ = 34 MNm 3/2, flow stress, ~r0 = 339 MPa, and crack-growth resistance, Ic = 
0.036. The proposed method with the constants is applied to other compact specimens, 
center-cracked specimens, and three-hole-crack tension specimens of various crack lengths 
and specimen sizes. All of the calculated maximum loads are in reasonable agreement with 
available experimental failure loads, with an error of less than 10%. The stable crack 
extensions at maximum load are also calculated, and they, normalized to specimen width, 
increase with specimen size. The proposed method does not require a specialized compu- 
tational or experimental technique. Nevertheless, it can be used to predict failure loads with 
reasonable accuracy. 
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ABSTRACT: Most of the plastic gas distribution pipe now in service is polyethylene (PE). 
While this material has an excellent safety record, due to a variety of abnormal loadings that 
can arise in long-time service, some slow crack growth (SCG) related field failures have 
occurred. Accelerated test procedures to accurately predict the long-term performance of PE 
gas pipes are therefore required for the evaluation of existing gas piping systems and to qualify 
new pipe materials prior to installation. In addition, particularly as interest in the use of larger 
diameter and higher pressure polyethylene pipes increases, rapid crack propagation (RCP) 
can occur in a gas piping system at the site of an SCG failure, or as a result of third party 
damage, or by other similarly unforeseeable mechanisms, attention must be given to the 
possibility of RCP. Accordingly, dynamic fracture mechanics research aimed at preventing 
RCP in PE gas distribution pipelines has also been carried out. This paper reviews current 
advanced fracture mechanisms research on PE gas pipe materials that investigates both SCG 
and RCP events. 

KEY WORDS: fracture, fracture mechanics, gas pipelines, slow crack growth, rapid crack 
propagation, viscoelasticity, fatigue (materials) 

There  are about  640 000 km (400 000 miles) of plastic pipe in gas distribution service in 
the Uni ted  States, a substantial port ion of which is polyethylene (PE) piping. Given a 50- 
year  design life, some 2% of this total (12 000 kin) needs to be replaced each year. This 
amount  is in addition to the requirements  for expanding the current gas distribution piping 
system to accommodate  consumer demand that is currently about 24 000 km (15 000 miles) 
annually. Therefore ,  with the large amount  of piping that is needed,  there is clearly a 
considerable incentive for cost-effective and failure-free design and maintenance procedures 
for PE gas pipes. 

While the vast majori ty of the present PE gas piping system has been trouble free,  field 
failures have occurred as a result of abnormal  loadings such as improper  squeeze-off,  rock 
impingement ,  and excessive bending. In many instances, the failures have occurred after 
many years of service through a "br i t t le"  slow crack growth (SCG) mechanism. Quanti ta t ive 
knowledge of SCG therefore is needed to help ensure that the pipe materials selected for 
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new installations will not be susceptible to SCG, and thereby to assist the gas industry in 
making cost effective judgments on existing piping systems. In addition, due to the trend 
towards higher pressure and larger diameter piping systems, the possibility of rapid crack 
propagation (RCP) in distribution pipes arises. Taking the point of view that, if the conditions 
required for a long-running crack can be precluded, crack arrest will occur, crack arrest 
fracture mechanics principles are applicable to assess the integrity of engineering structures 
where fracture instability cannot be absolutely prevented. The primary motivation for the 
development of this technology has been experience with gas transmission pipelines subjected 
to third party damage where long-running crack propagation is entirely possible. 

A number of studies have been carried out recently both in Europe [1-4] and in this 
country [5,6] to investigate the possibility of RCP in PE pipes used in gas distribution 
service. While this work was successful in obtaining extensive experimental data, less effort 
was expended in the development of theoretical models for the prediction of crack propa- 
gation and arrest. The limited modeling was due in part to the lack of a suitable computational 
analysis for the complex fluid/structure behavior that occurs. In this regard, one of the first 
efforts was conducted by Kanninen et al. [7]. A portion of the experimental data was 
examined and, with the aid of finite element analyses and the fracture mechanics principles 
for steel transmission pipelines, a preliminary model for the prediction of RCP arrest was 
developed. 

Several issues involved in both SCG and RCP events in PE gas distribution piping systems 
call for the use of advanced fracture mechanics treatments. Because of their desire to bring 
the best available technology to the service of the industry, the Gas Research Institute (GRI) 
has enabled advances to be made in several areas. This paper reviews the work that has 
been performed recently in the development and validation of viscoelastic fracture mechanics 
for application to SCG, and in dynamic fracture mechanics for application to RCP of PE 
pipes. 

Background 

A difficulty that exists in quantifying the SCG behavior of PE gas distribution pipe 
materials arises from a competition between a "ductile" failure process that predominates 
at short times and high load levels and the long time "britt le" failure SCG mechanism that 
manifests itself only at lower loads. Unfortunately, as is now well-established, extrapolations 
of failure times based on ductile failure data generally provide anticonservative results. This 
has led to the successful development of accelerated, high temperature tests that reproduce 
the observed SCG failure morphology. However, the analyses of data obtained from such 
tests are difficult for two reasons. First, because PE is viscoelastic, creep and crack growth 
occur simultaneously. Second, at the high stress levels that occur at the tips of defects 
(notches and cracks), PE exhibits a local ratification process known as "crazing." The 
occurrence of this extreme nonlinear type of behavior significantly compounds the problem. 

In accelerating a test to obtain brittle SCG failures in short time intervals to be of practical 
use, the ancillary complications due to manufacturing and extrusion variations must be 
treated while residual stresses are eliminated. Hence, the test should employ actual extruded 
pipe materials. While several candidate SCG tests have been developed [8,9], only a few 
qualify on this basis. One such procedure is the three-point bend SCG test developed for 
GRI  by Battelle [10]. Through the application of existing fracture mechanics principles and 
procedures, it will be shown later that valid test data generated over one week can be used 
successfully for making service predictions that are reliable for many years. 

In regard to applications of fracture mechanics to gas distribution piping, it should be 
recognized that field failures are virtually always caused by external forces. Documented 
instances are those arising from rock impingement, squeeze-off or improper installation that 
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act in concert with internal pressure and residual stresses. With this in mind, a lifetime 
prediction methodology has been developed that quantifies the performance of the pipe. 
The robustness of this procedure will be demonstrated by analyzing a representative service 
condition that consists of an axial flaw produced during a squeeze-off process. 

Slow Crack Growth Testing and Analysis 

While several different types of test specimens have been proposed, because most of these 
require use of molded material, the test developed by Battelle [10] on a pipe segment is 
more appealing. The use of similar arc-shaped specimens for metals is discussed by Under- 
wood et al. [11]. Battelle SCG test specimens were produced by machining 17.78 mm (0.7 
in.) wide rings from 50.8 mm (2 in.) S D R l l  PE pipes�9 (SDR is the ratio of the outer diameter 
to the wall thickness of the pipe.) Each ring was further cut into three 120 ~ sectors and 
centrally notched. In order to minimize test procedure differences, the Battelle approach 
[8] for slicing the starter notch into the specimen was followed. All notches were nominally 
2.54 mm (0.10 in.) deep. Both room temperature and elevated temperature (40 and 60~ 
tests were conducted with load levels varying from 4.5 to 9 kg (10 to 20 lb) [12]. 

The key measurement in these tests is the time dependent load point displacement under 
constant load. It reflects changes in the compliance of the specimen due to combined creep 
and crack growth. Typical elevated temperature load point displacement histories on a 
recently manufactured PE gas pipe resin are presented in Fig. 1. A similar trend is evident 
at room temperature,  but here it can be many weeks before crack growth initiates. 
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FIG. 1--Measured load point displacement versus time for PE34081V SCG specimen at 60~ and 
-4 .5  kg (10.04 lb). 
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An examination of the fracture surface in conjunction with the load point displacement 
histories of these specimens revealed that the SCG process was discontinuous, consisting of 
rather abrupt crack extensions followed by arrests. Thus, there is a sequence of crack growth 
re-initiations and arrests until final collapse. The measured load point displacement history 
for an older PE gas pipe resin tested at room temperature and a load of 9 kg (20 lb) is 
shown in Fig. 2. Crack growth initiated after 38 h. It is apparent that the local point 
displacement record is appreciably smoother than those observed in Fig. 1. This implies 
that the crack growth rates are likewise more continuous. A similar trend has been observed 
for other older resins. 

It is clear that there are significant differences between the behavior of newer and older 
PE materials. The latter appears to exhibit more continuous crack growth while the former 
clearly exhibits more discontinuous crack growth in this test configuration. The measured 
craze lengths for these materials were also distinctly different, that is, four times longer for 
the newer than the older PE material. 

A detailed viscoelastic finite element analysis of these tests was performed, and this 
included nonlinear geometric and material behavior. Many complicating effects including 
anisotropy, residual stresses, large geometry changes, and nonlinear viscoelastic material 
behavior were treated. In order to circumvent the additional difficulty of crack growth, the 
analysis was focused on the preinitiation phase of the process. It was determined for the 
older resins (typified by the record in Fig. 2) that a linear viscoelastic analysis did a very 
good job in matching the measured load point displacement records. In contrast, a fully 
nonlinear viscoelastic analysis was required to match the load point displacement record for 
the newer resin given in Fig. 1 [13,14]. 
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A Fracture Mechanics  Assessment  of  the SCG Test 

A valid fracture mechanics methodology for use in the interpretation of SCG test data 
and for predicting PE gas pipe fracture behavior requires establishing the size of the zone 
of dominance of the singular stress field at the crack (notch) tip. For example, in linear 
elastic fracture mechanics (LEFM), the region of dominance must contain the inelastic zone 
at the crack tip. Another requirement on the size of this dominant region size is that it must 
be smaller than the characteristic dimensions of the structure. It is essential to establish the 
size of this region to ensure the transferability of fracture data obtained from laboratory 
specimens to the structure; for example, from an SCG specimen to a pipe. 

The focus of this analysis is the size of the region of dominance for the SCG specimen 
based on the linear elastic fracture mechanics methodology. Once the extent of the region 
has been determined, it can be then compared with the craze lengths measured in the SCG 
experiments. A linear viscoelastic analysis, with a very fine mesh in the immediate vicinity 
of the crack tip, was performed to establish the size of this region. A graded mesh with the 
smallest elements being approximately 0.001 b, where b is the length of the remaining 
ligament, was used. This mesh refinement permitted very precise determinations of the 
stress field in this region. 

The extent of the region of dominance is established conventionally by comparing the 
numerically determined full-field stresses (from the finite element results) for the specimen 
with the asymptotic or singular stress field [15]. For LEFM, the latter field has a r -1/2 
character, where r denotes the distance from the crack tip. Using the finite element solution, 
the stress-intensity factor is calculated. More specifically, in a LEFM approach, the singular 
stress component in the crack-tip region is given by 

~, = K / ~ 2 - ~  (1) 

The numerically computed values for the ratio of the full-field stress on the plane ahead of 
the crack to % as a function of distance from the crack tip are given in Fig. 3. 

An estimate of the dominance of the singular stress field can be made by invoking the 
criterion used by Shih [10] in the development of elastic-plastic fracture mechanics. In his 
work, the zone of dominance is that region in which the full-field stresses are within 90% 
of the singular stresses. Figure 3 indicates that the zone of dominance then extends ap- 
proximately 6% of the ligament ahead of the crack tip. This value is in agreement with 
determinations of LEFM analysis of other specimens [17]. The 80 and 70% limits are also 
shown here for comparison purposes. They represent dominant regions of 10 and 16%, 
respectively, of the remaining ligament. 

For a 50.8-mm (2-in.) S D R l l  SCG specimen, based on a ligament length of 3 mm (0.12 
in.), 6% of the ligament translates to 0.2 mm (0.008 in.) as the extent of this region. A 
comparison of this length with the measured craze lengths in the newer resins (designated 
here as PE2306IX) [12] and those measured by Battelle [10] for older resins designated as 
(PE2306II) is made in Fig. 4. Note that, while the 70 and 80% limits are also shown here, 
because it is conservative, the conclusions that are drawn will utilize the 90% limit. 

It is evident from Fig. 4 that the craze lengths for the older material used in the earlier 
Battelle tests [10] are about five times shorter than those measured for the present PE2306IX 
material for a given load. Also, as a general rule, the craze lengths for PE2306II are less 
than the extent of the region of dominance of the singular field, particularly at lower load 
levels. In contrast, the PE2306IX material exhibits craze lengths that extend beyond the 
region dominated by the crack-tip singularity. The solid lines (PE2306IX) lie above the 90% 
limit region of dominance. Craze lengths for other newer PE materials were also found to 
be greater than the size of the dominant region. 
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The implication of this finding is that the principles of LEFM are applicable for interpreting 
SCG data having short craze lengths and smooth crack growth. For such materials, generally 
the older PE resins, the correlation of crack growth data with the stress-intensity factor for 
the SCG specimen can be expected to be transferable to pipes having the same crack-tip 
constraint. However, for materials having longer craze lengths such as PE2306IX, LEFM 
conditions do not hold. Here, a more sophisticated analysis model that explicitly includes 
the crazed region must be developed to interpret SCG data and apply it to PE gas pipes of 
this type. Thus, the comparison typified by Fig. 4 therefore provides one of the most 
important results of this research, since it places the results from the Battelle SCG specimen 
on a firm theoretical foundation. 

Application of the SCG Test Data to Lifetime Predictions for PE Pipe 

A relatively straightforward approach that uses SCG data to predict the useful service 
life of PE pipes involves a two-part approach. In the first portion of the computation, a 
procedure to determine the crack growth characteristics for a PE material from SCG data 
has been developed. The second part consists of using this information in an example analysis 
of a pipe under service loadings. Because the approach is based on LEFM principles, it 
strictly valid only for materials with short craze lengths. In addition, as the "dwell" time 
required for crack incubation and initiation of growth is not yet being taken into account, 
the results provide a conservative estimate of the actual leak time. 

Development o f  a Lifetime Prediction Methodology for  P E  Pipes 

An engineering analysis model, based on the principles of linear viscoelasticity, has been 
developed recently by Popelar and his co-workers. This estimates the crack length from the 
load point displacement record, and the details are presented in Ref 12 and 18. This is 
combined with an analytical procedure that evaluates the stress-intensity factor for the SCG 
specimen. 

At  the heart of the methodology is a relationship between the crack growth rate and the 
stress-intensity factor that is assumed to take the following form 

da 
- -  = A K  m (2) 
dt 

where A and m are material constants and a is the crack length. This corresponds to a linear 
plot on a log-log scale where m is the slope and A is the intercept with the axis. Thus, a 
linear fit is made to the data to determine these constants. 

In the computer code that has been developed, the program will automatically calculate 
the material parameters, A and m. These constants quantify the slow crack growth behavior 
for the particular material tested. They can now be applied to a pipe in a service situation 
and used to make an estimate of the safe operating life of the pipe. This represents the 
transition from the short-term laboratory test (160 h) to long-term prediction for the pipe 
(many years). 

In addition to the material constants, A and m, lifetime prediction requires knowledge 
of the pipe geometry and loading to make an estimate of the safe operating period for the 
pipe. The present procedure takes account of several different loading situations including 
internal pressure, soil backfill, residual stresses from the extrusion process, rock impinge- 
ment, and squeeze off. The latter two correspond to severe loading situations and are most 
likely to result in pipe failure from SCG. In the analysis, it is assumed that a small flaw 
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exists in the axial direction. In practice, this only occurs in the case of an extremely severe 
load. The time taken for this crack to propagate through the wall corresponds to the lifetime 
of the pipe. 

Through a series of finite element computations for a range of pipe sizes, the stress- 
intensity factors under the various field loads have been computed as a function of crack 
length. Using the results of these computations, empirical expressions have been developed 
for the stress-intensity factors arising from the different loads. Therefore, once the load and 
crack length are known, the stress-intensity factor may be calculated easily. Since a LEFM 
approach is adopted here, the K contributions from the various loads can be added directly. 

The next step is to determine tl. , the portion of the total time to failure spent in crack 
growth for a given initial crack length. This is found by integrating Eq 2. The result is 

~a' da 
t~ = (3) 

o AKm 

where h is the wall thickness and a 0 is the initial flaw size. It is relatively straightforward to 
estimate t I by numerically integrating Eq 3. 

Example Lifetime Prediction for PE Pipe 

Field failures are generally caused by external force arising from rock impingement, 
squeeze-off, or improper installations that act in concert with internal pressure and residual 
stresses. The combined effect of these forces intensifies the stress that acts on defects (for 
example, inferior cold joint, knit lines, deep scratches) contained in the pipe wall. These 
defects can act as initiation sites for crack growth that in turn could lead to failure of the 
pipe. A limited amount of data is available on pipe failures due to the SCG mechanism, 
for example, as contained in Battelle's Field Failure Reference Catalog [19]. 

In order to illustrate the predictive capability of the analysis procedures just described, 
a preliminary investigation has been conducted on damage resulting from squeeze-off on 
the service life of gas distribution piping. Squeeze-off takes place during pipe repair when 
a pipe is squeezed to prevent gas flow. If done improperly, severe damage can be imparted 
to the pipe resulting in SCG [19]. 

In a recent example of a squeeze-off related failure, a small axial flaw developed on the 
inner surface of a pipe during a repair procedure. The pipe went into service in 1974 and 
the squeeze-off operation took place in 1980. At  this stage, the crack began to grow and 
eventually failed in 1988. It is assumed that the crack initiated during squeeze-off and 
thereafter began to grow in a slow fashion. 

Examination of the fracture surface indicated that an SCG failure occurred. Figure 5a 
contains a view of the fracture surface, showing a series of rings that appear to be centered 
around a point on the inner surface. This is the crack initiation site. The rings are likely 
due to crazing that takes place during short pauses in the crack growth process, similar to 
the discontinuous growth features that have been observed in laboratory specimens. A close- 
up view of the initiation region is given in Fig. 5b. Examination of this revealed the initial 
flaw was 0.127 mm (0.005 in.) deep in the pipe wall. 

The pipe in this case was a PE2306I, 76.2 mm (3-in.) IPS pipe with an SDR of 11.5 (wall 
thickness = 7.73 mm). The SCG results in Fig. 2 are for the same type of material. Thus, 
the crack growth properties from that test are appropriate for this service situation. From 
an analysis of that data, m = 1.83 and A = 1.96 x 10 -lz (mm/s)(kPa m~ -1-83 [9.2 x 
10 -14 (in./s)(psi in.~ The service loads acting on the pipe during the crack growth 
phase were (1) an average internal pressure of 0.28 MPa (40 psi), (2) a soil load due to 600 
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FIG. 5 - - ( a )  f'nlareed view o" :iacture .~urfuc'e showing pr,Jgrexs of  SCG in a squee:e-off region: 
agnification • 6. (h) ('lo.~e-up vw,v oJ" crack initiation siw ari.~ing ])'om squeeze-o.t.'t~" magn~tication • 25. 
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mm (2 ft) of backfill that corresponded to 0.012 MPa (1.73 psi), and (3) residual stresses 
in the pipe wall with the stress on the outside being 0.86 MPa (125 psi). For this loading 
situation, the predicted safe operating life for the pipe was 6.4 years. As the actual failure 
was likely to have occurred prior to the detection of the leak. this compares very favorably 
with the nominal lifetime of 8 years, beyond the squeeze-off. This example serves both to 
validate the analysis and also to illustrate the usefulness of the procedure. The result also 
illustrates that the SCG specimen is appropriate for obtaining useful crack growth data for 
PE pipe. 

RCP Analysis Approach 

Slow crack growth is just one of the failure processes that can occur in PE pipes. A 
potentially more serious situation can occur if a through-wall crack developed in an SCG 
mechanism provides the initiation site for a rapidly running axial crack. Third party damage 
is another possible cause of rapid crack propagation. The likelihood of a rapid crack in the 
axial direction, initiating from the site of a through-wall crack developed after SCG, becomes 
important as larger diameter pipes are used by the gas industry. Based on an extensive 
analysis of SCG failures, it has been estimated that the resulting damage is often a through- 
wall axial crack with a length roughly equaling two thirds of the pipe diameter. The stress- 
intensity factor variation with diameter is plotted in Fig. 6 for an S D R l l  pipe under internal 
pressures of 0.28 and 0.56 MPa (40 and 80 psi). This uses the expression for a through-wall 
crack in a pressurized pipe developed by Folias [20]. 

It is estimated that fracture initiation toughnesses for older PE materials are about 2.2 
MPa m 1/2 (2 ksi in.1/~). For existing piping systems, having diameters of less than 200 mm 
(8 in.) and pressures of less than 0.28 MPa (40 psi), crack initiation is not very likely. 
However, with the anticipated use of large diameter (up to 400 ram) and higher pressures 
(up to 0.7 MPa), it is clear that RCP initiation is an important consideration. 
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FIG. 6--Stress intensity factor variation with diameter (or a through-wall crack. 
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While PE is a viscoelastic material, the time frame for RCP is usually short enough such 
that the material behavior can be considered as elastic, provided an appropriate dynamic 
modulus is used. Therefore, dynamic crack propagation in PE pipes is governed by the 
relationship 

K(V,D,h,p, Eo) = Ko(V, 7') (4) 

where K is the computed dynamic stress-intensity factor and KD is the dynamic fracture 
propagation resistance, a material property dependent on crack speed, V, and temperature,  
T. As indicated by Eq 4, K is a function of crack speed, the mean pipe diameter, D, the 
wall thickness, h, the internal pressure, p,  and the dynamic Young's modulus, E o. 

In addition to propagation, Eq 4 also indicates the conditions needed for crack arrest; 
for example, when the minimum value of KD exceeds K because the crack propagates into 
a tougher piece of material. The arrest toughness, KA, is defined as the minimum value of 
KD. Unfortunately, arrest toughnesses have not been measured for the PE materials of 
interest. As an alternative, the absorbed energy in the Charpy impact test (Cv) is used. One 
of the deficiencies of the present work is that Cv is only loosely connected to K a. 

Earlier work [7] has shown that, over a range of admissible crack speeds, the steady-state 
driving force has a maximum value, Kmax, for a given diameter, wall thickness, pressure, 
and dynamic Young's modulus. Thus, the boundary between propagate and arrest behavior 
for PE gas pipes is given by 

Km~ • = K A (5) 

Through a recently completed Southwest Research Institute (SwRI) internal research 
project, a three-dimensional fully coupled fluid/structure interaction code PFRAC (Pipeline 
FRacture Analysis Code) was developed for flawed fluid containment vessels [21]. In the 
case of axial crack propagation in pipes, very complex interactions take place as the gas 
escapes from the breach and as the flaps open behind the crack tip. The initial verification 
was done by simulating full-scale burst tests for large (1400 mm diameter) steel gas trans- 
mission pipelines. PFRAC consists of two primary portions; one to model the structural 
behavior and the second to model the gas flow, in addition to an interface routine that 
couples these modules together. 

Computational Simulations of RCP in PE Pipes 

A series of computational simulations of RCP in PE pipe were performed using PFRAC. 
The primary quantity of interest in these analyses is the stress-intensity factor that is cal- 
culated from the energy release rate, G, using the well-known relationship 

K = V E ~ , G  (6) 

A typical computational result showing the stress-intensity factor as a function of propagation 
distance is given in Fig. 7. 

As shown in Fig. 7, as the crack begins to propagate from a plane of symmetry, the stress- 
intensity factor rises until steady-state conditions are achieved. After this, the driving force 
remains relatively constant. This plateau value is referred to as the steady-state stress- 
intensity factor. Some of the perturbations evident here are due to a finite element mesh 
dependency. An example of a deformed pipe shape during the steady-state phase of the 
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FIG.  7--Stress intensity factor variation with distance during RCP for a PE pipe. 
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propagation is illustrated in Fig. 8. This clearly shows the opening of the flaps behind the 
crack tip. 

To investigate the variation of the steady-state stress-intensity factor with velocity, a series 
of analyses was carried out. The results are shown in Fig. 9. In all of these computations, 
the crack was allowed to propagate a distance that was sufficient for a clearly identifiable 
steady-state plateau to form. It is important to note that in these analyses a constant crack 
speed has been imposed. However, it is recognized that RCP may not occur at each speed 
under service conditions. The results are plotted in the normalized form of K/Ko, where Ko 
is given by 

(7) 

where PL is the line pressure. The expression given by Eq 7 has been referred to by a number 
of names including the Irwin-Corten relationship, the critical stress formula, and the British 
Gas formula. It corresponds to the assumption that the pressure is constant ahead of the 
propagating crack tip and zero behind. 

It is evident from Fig. 8 that a maximum driving force is obtained as a function of the 
assumed crack speed. This value is denoted as Km,x. It is important to recognize that there 
is a unique Kmax value for every combination of PL, D, and SDR. That a maximum value 
as a function of crack speed exists can be understood by recognizing that, at low velocities, 
the crack-tip pressure is small and the inertia effects are unimportant. The crack-tip pressure 
is higher at increased velocities resulting in a larger value of K. However, when inertia 
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i' I 
;.% 

FIG. 8--Deformed shape of a PE pipe during steady-state phase of RCP; 300-ram diameter; p = 
0.83 MPa; v = 152 m/s. 

effects become significant at high velocities, K begins to drop again. Indeed, previous work 
has shown [15] that there is a limiting crack speed given by 

v, : ~ co (8) 

where Co = (E/p) 1/2 is the elastic bar wave speed. 
The maximum crack driving force for a given set of conditions is obviously a very important 

quantity. When inserted into the left-hand side of the crack propagation/arrest Eq 4, it 
establishes a bound on the arrest condition; see Eq 5. It is desirable to establish an analytical 
expression for the dependence of Kmax on the diameter, SDR, pressure, and dynamic Young's 
modulus. Accordingly, a series of parametric studies were carried out where the various 
design quantities were varied. Using these results, the maximum driving force is assumed 
to take the form 

Km.x = KoK (9) 

where 

k = C (D/Do)" (SDR - 1) m (ED/Es)" (lo) 

and C, n, m,  and r are dimensionless constants. For convenience, Do and Es are taken as 
25.4 mm and 689.5 MPa (100 ksi), respectively. This leads to following values for the 
constants [22] 

C = 1.45 
n = 0.67 

rn - -0 .58  
r = 0.79 
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FIG. 9--Parametric study of steady-state stress-intensi O' factor variation with assumed crack speed. 

Equation 9 can be used conveniently to estimate the maximum available stress-intensity 
factor for a given range of operating conditions. Thus, it will not be necessary to perform 
an extensive set of numerical computations for each proposed design option. 

Development of a Crack-Arrest Criterion for PE Pipes 

It was mentioned earlier that a significant amount of rapid crack propagation and arrest 
data exist that cover a wide range of materials. Since fracture toughness data are not 
available, Charpy energy can be used as an alternative. It is assumed that a crack will arrest 
when 

Kma,r < A (E~ Cv) 1'2 (11) 

where A is a dimensionless constant that remains to be determined. The quantity E, is 
included for dimensional convenience. For all PE materials considered, it is taken as 689.5 
MPa (100 ksi). 

To determine Constant A in Inequality 11, a comparison was made with a diverse range 
of experimental data. This included many examples of both crack propagation and arrest 
for different pipe sizes and materials. These data were obtained from four independent 
sources: British Gas [2], Battelle [5], Du Pont [6], and Washington Gas Light [23]. In all 
cases, cracks were initiated, but in some cases they arrested after a few diameters. These 
are termed "arrests," while long running cracks are termed as "propagations." Figure 10 
illustrates a plot of Kin,• against (EsCv) 1'2 for these data, with Km,x calculated from Eq 9. 

A well-defined demarcation between propagation and arrest in Fig. 10 is indicated by the 
solid line in the figure. From this plot, a value of 8.3 was estimated for Constant A. That 
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a simple straight line relationship, as given by the insertion of an equality sign in Inequality 
11, has been obtained to separate all the propagation and arrest data demonstrates the 
fidelity of the RCP arrest relationship. Hence, the methodology developed here can be used 
conveniently in the design of PE distribution piping systems to prevent long running rapid 
cracks, even if initiation occurs. For example, with a specified set of pipeline conditions, 
pressure, diameter, etc., the maximum driving force can be estimated using Eq 9. Then, 
Inequality 11 can be used to calculate the minimum Charpy energy for the PE material at 
the lowest expected temperature that is necessary to prevent crack propagation. 

C o n c l u s i o n s  

While data representative of the SCG process in PE gas pipe materials can be obtained, 
the manner in which fracture mechanics principles and computational methods are applied 
to interpret the test results is an issue independent of the test procedure. In this regard, it 
was found that the commonly used linear elastic fracture mechanics interpretation is ap- 
propriate for those PE gas pipe materials having short craze lengths. Specifically, a necessary 
condition for the transferability of LEFM-based SCG data for the assessment of the long- 
term performance of PE pipes has been established in this work. This condition has quantified 
the permissible size of the craze attending the crack tip at the onset of crack growth such 
that it is within the zone of dominance of the LEFM crack-tip fields in the SCG specimen. 
Thus, this research has established that data obtained from the SCG test can be valid for 
making long-term performance assessments of slow crack growth in PE gas pipe materials. 

To be sure of using SCG data correctly, it is necessary to estimate the craze zone length 
at the onset of cracking. This size must then be less than 6% of the ligament width. It 
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remains to develop crack growth analysis procedures for materials where nonlinear visco- 
elastic behavior takes place. 

In the course of the RCP work, two very useful expressions were developed. The first 
relates the maximum crack driving force to pipe quantities such as diameter, SDR, and ED. 
A link between this quantity and the absorbed Charpy energy for the pipe material was 
then used to delineate between crack propagation and arrest. Both expressions agree very 
well with available experimental and computational results. Thus, the extremely encouraging 
results from this study represent a significant step forward in the design of PE pipes against 
rapid crack propagation. It also appears likely that similar procedures can be used in the 
design of the larger steel gas transmission pipelines. 

These results also confirm earlier beliefs that a maximum driving force exists over a range 
of typical crack propagation velocities. Another pleasing aspect is that the model appears 
valid for a wide range of pipe materials. Equations 9 and 11 can be used as guidelines to 
prevent RCP in the design of PE pipes. However, a short-coming of the present RCP 
prevention criterion is that it is based on Charpy energy. There is no fundamental connection 
between this quantity and the arrest toughness. The obvious way to remedy this is to develop 
a small-scale test procedure for measurement of valid fracture toughness values for current 
and contemplated PE gas pipe materials. This work is presently underway and involves the 
use of a compact PE specimen placed between two pressure bars [24]. When completed, 
this will lead to a more fundamentally based fracture criterion. 
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ABSTRACT: This paper deals with three-dimensional thermoelastic fracture problems using 
both analytical and numerical results. The analytical temperature distribution of an infinite 
solid with an embedded elliptical insulated crack subjected to an uniform heat flow solved by 
the authors is first described briefly to provide a verification for the three-dimensional finite 
element model with collapsed quarter-point singular elements around the crack front. To 
determine the thermal stress-intensity factors, the three-dimensional path-independent inte- 
grals that are physically the energy release rates per unit area of crack extension along respective 
directions of crack growth are employed and computed for three-dimensional realistic ther- 
moelastic fracture problems. 

To evaluate the influence of geometry and Poisson's ratio on the computation of temperature 
distributions and thermal stress-intensity factors for various thermal conditions, several rep- 
resentative examples are presented. The variations of pure and mixed-mode thermal stress- 
intensity factors along the crack front are also studied for both through and part-through cracks 
in finite elastic solids. 

Good agreements between the computed results and referenced solutions show the validity 
and accuracy of the present analysis. 

KEY WORDS: thermoelastic fracture analysis, path-independent integral, thermal stress-in- 
tensity factor, part-through crack, fracture mechanics, fatigue (materials) 

Many structural components  such as turbines, combustion chambers,  nuclear reactors,  
pipelines, storage tanks, etc. are often serviced in severe temperature  environments.  Since 
unavoidable cracks or crack-like defects can occur during the manufacturing process of 
structures, the local thermal stresses at the regions near the imperfections are elevated even 
under  normal thermal conditions and may initiate crack propagat ion or  breakdown of the 
structures. As is commonly  known, the geometr ies  of such cracks or crack-like defects are 
usually complicated and a three-dimensional  analysis is required to study the thermoelast ic  
fracture behaviors of the cracked structure. 

The two-dimensional  thermoelast ic  fracture problems with various types of heat  transfer 
conditions on the crack surfaces have been discussed extensively in the li terature [1-9]. 
However ,  the work that is devoted to the study of three-dimensional  problems is still limited. 
Using the Hankel  transform technique,  F'lorence et al. [10] studied the thermoelast ic  fracture 
problem of an infinite solid with a penny-shaped insulated crack subjected to a uniform heat 
flow. The local intensification of the temperature  gradient accompanied by intensified ther- 
mal stresses near  the crack front was solved. Bregman and Kassir [11] analyzed fracture 
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behaviors of dissimilar media containing an interface penny-shaped insulated crack. Tsai 
[12] and Singh et al. [13] extended the study to a transversely isotropic medium with a 
penny-shaped crack and an external circular crack, respectively. In addition, Uchiyama and 
Tsuchida [14] obtained an analytical solution of a long cylinder with a penny-shaped insulated 
crack subjected to a steady uniform heat flow, and the effects of free boundary on the 
computation of thermal stress-intensity factors were discussed. However, those studies [10- 
14] were solved only for axisymmetric type problems. Hence, a more general study needs 
to be made for realistic three-dimensional thermoelastic fracture problems. 

The objective of this work is thus devoted to deal with three-dimensional thermoelastic 
fracture behaviors for a general elastic solid containing a through or part-through crack 
under various thermal conditions. An analytical solution of the three-dimensional temper- 
ature field for an infinite solid with an embedded elliptical insulated crack subjected to a 
steady uniform heat flow, as obtained by the authors earlier, is presented to verify the 
solution obtained by a three-dimensional finite-element model with collapsed quarter-point 
singular elements [15] around the crack front. Based on the accurate model of computing 
the temperature field, the thermoelastic fracture behavior of the structure is then studied. 
To predict the fracture behaviors of cracked structures, accurate determinations of stress- 
intensity factors are essential. Among various methods in evaluating stress intensity factors, 
the use of crack-tip integral fracture parameters becomes one of the most effective ways 
[9]. Based on the authors' previous work without using a specified smooth function needed 
for a standard equivalent domain integral (EDI) method [16,17], a simpler and more accurate 
approach of using three-dimensional path-independent integrals that are physically the en- 
ergy release rates per unit area of crack extension along respective directions of crack growth 
is employed here. 

Several examples with through or part-through cracks under various thermal conditions 
are presented to evaluate the influence of crack geometry and Poisson's ratio on the com- 
putation of temperature field and thermal stress-intensity factors. Good agreements between 
the computed results and referenced solutions show the validity and applicability of the 
present analysis. 

Analytical Solution of Three-Dimensional Temperature Fields 

To verify the numerical results obtained in this study for completeness, the analytical 
solution for a three-dimensional temperature field, as solved in the authors' previous work 
[18], is described here briefly. Consider an infinite solid with an embedded elliptical insulated 
crack subjected to a steady uniform heat flow with temperature gradient, q, as shown in 
Fig. 1, the crack region on the midplane, z = 0, is denoted as x2/a 2 + y2/b2 -< 1. Here,  
(x,y,z) are the Cartesian coordinates, and a and b are the half length of the major and 
minor axes of the elliptical crack. Due to the existence of the crack, the elevated temperature 
gradient near the crack front may be induced. Using the conformal mapping technique, the 
elliptical crack region can be first mapped conformally onto a penny-shaped crack for which 
the solution of the temperature field on the crack surface is available. After solving the heat 
conduction equation, the thermal boundary conditions on the crack plane are then satisfied 
through the use of inverse Fourier transformation. The complete solution of the temperature 
field, O(x,y,z), is thus quoted as (a detailed derivation can be seen in Ref i8) 

2ab2q f:~ I f  sin/) - pcosp coskx cos~y e ..... ~ 7  dXd~ O(x,y,z) = qz + ~ p3 (1) 
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FIG. 1 - -An infinite solid with an elliptical crack subjected to uniform heat f low. 

where E ( k )  is the complete  elliptical integral  of the second kind ( =  f U 2 ~ / 1  - k2sin2~qd~]), 
k 2 = 1 - b2/a 2, X and { are real constants,  and p = X/a2X 2 + b2{ z. The second term of the 
r ight-hand side of Eq 1 denotes  the variat ion of tempera ture  disturbed by the crack. As  a 
result,  the tempera ture  distr ibution on the elliptical crack surface can be further expressed 
as 

For  the case of the penny-shaped crack, say a = b, 0(x,y,0) = 2q/Tr~,/a 2 - (x 2 + y : ) ,  which 
is same as that  obta ined by Florence et al. [10]. 

In addit ion,  based on the coordinate  system (r,(b,~p) along and around the crack front 
(see Fig. 1), the near-field t empera ture  distr ibution (taking r as a small value) on the elliptical 
crack plane (that is, z = 0) can be rewri t ten as 

f 4 2 1/2 bq 2r(a2sineq~ + b2cos2~p) 1/2 + r2(ansin2q~ + b cos q~) 
O(r,~,q~) = ~ ab a ~ q ~  + ~ ) J  

for ~2 2 y2 + ~ 5 <  1, z = 0  

and 

X 2 y2 
O(r,O,~) = 0 fOra2-- + ~ - >  1, z = 0 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



CHEN AND HUANG ON THERMOELASTIC FRACTURE ANALYSIS 277 

As seen here, the r 1/2 type behavior of the near-field temperature distribution and r-  ~.,2 type 
singularity of temperature gradient on the crack surface are observed. 

Calculation of Thermal Stress-Intensity Factors 

To calculate the thermal stress-intensity factors, the path-independent integrals, ,/1, ,[2, 
and 03, that are physically the energy release rates per unit area of crack extension along 
respective directions of crack growth in the volume surrounding the crack front increment 
derived by the authors [19] are employed. Selecting a thin slice of cracked structure as 
shown in Fig. 2, the local orthogonal coordinates (X~,X>X3) denote the normal, binormal, 
and tangential front increments, respectively, and the origin, o, is located at the midpoint 
of the crack front increment. These path-independent integrals at the midpoint, o, are shown 
as follows 

(2) 

and 

l[fvOW(e3) fA OU3 f v O e ~ ]  G3 = B --~1 dV - +As T3 ~ I  dm+ cr3i-~l dW (3) 

where the subscript index k = 1,2 and ij = 1,2,3; We is the elastic strain energy density, ui 
is the displacement vector, and a0 is the stress tensor; E~ is the thermal strain tensor and 
denoted as e* = c~SijA0; a is the thermal expansion coefficient, 8,j is kronecker delta, and 
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FIG. 2--1ntegration domains of path-independent integrals Jl, -]2, and (3 3. 
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A0 is the temperature variation; W~ 3) is part of the elastic strain energy density that is 
calculated using stress, ~3j, and strain components, %, say, W~ 3) = 1/2 r B denotes the 
length of the crack front increment considered; V is the volume of the slice enclosing the 
crack front increment except the small volume surrounded by the assumed fracture region, 
A r. Hence, the first terms in Eqs 2 and 3 are integrable. A denotes the entire surface 
enclosing the slice of the cracked structure except the crack surface, As ,  and fracture region, 
A s. The detailed formulation of the path-independent integrals as stated in Eqs 2 and 3 can 
be referred to in the authors' previous work [19]. The path-independence of ]~ and C;3 has 
been also tested numerically. 

To calculate the thermal stress-intensity factors indirectly, the relationship between the 
thermal stress-intensity factors and path-independent integrals, Jl,  ]2, and G3, can be ex- 
pressed as [I9] 

1 
g I ~ - 

2 
( ~ " ] 1  - ,12 - G 3  -}- ~ / ` ] ;  -{- "i2 - {~3) 

g I I  = 2 ~ (~ / ` ]1  - -  "]2 - -  {~3 - -  "~"]1 ~- "]2 - -  a 3 )  

and 

2 L  

Kni = ~/21.zG 3 

~-L~ f -., 

1 

a / R  = 0 . 4  

L / ~  = 5 

E l e m e n t s :  1 S O  

N o d e s :  1 0 8 3  

/ 

. i  

FIG. 3--Finite element model of  a cylinder with an embedded elliptical crack. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



CHEN AND HUANG ON THERMOELASTIC FRACTURE ANALYSIS 279 

where KI, KH, and Kin represent the thermal stress-intensity factors for opening, sliding, 
and tearing modes, respectively; E is the Young's modulus; v is the Poisson's ratio; and Ix 
is the shear modulus. 

Fracture Mechanics Analysis of Three-Dimensional Thermoelastic Problems 

To evaluate the applicability of the present analysis, several representative examples with 
through or part-through cracks are solved using the finite element method. The geometry 
and Poisson's effect that have been recognized as the important factors for evaluating the 
strength of three-dimensional problems are also studied in the work. 

A Long Cylinder with an Embedded Elliptical Insulated Crack Subjected to Uniform 
Heat Flow 

In industrial applications, a crack due to material imperfection embedded in a solid (for 
example, a transmission shaft) is often found during the manufacturing process. Because of 
the geometric discontinuity, the heat conduction and radiation between the upper and lower 
crack surfaces are negligible and the embedded crack can be treated as an insulated crack. 
To study such thermoelastic fracture behaviors, a long cylinder with an embedded elliptical 
insulated crack subjected to a steady uniform heat flow, as displayed in Fig. 3, is modeled. 
Due to the symmetry of geometry, only one eighth is treated and antisymmetric thermal 
loading is taken. There are 180 elements (including 24 collapsed quarter-point singular 
elements and 156 conventional brick elements) and 1083 nodes employed in the analysis. 
The temperature distribution on the elliptical crack surface is first verified with the analytical 
solution obtained earlier in this paper where a is the half length of the major axis of the 
crack and R is the radius of the cylinder. As seen in Fig. 4, the variation of normalized 
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FIG. 4--Normalized temperature distribution on the crack surface. 
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FIG. 7--Finite element model of a thick plate with a through central crack. 

temperature, 0* = O/qa, on the crack surface versus normalized radius p = 
~/x2/a 2 + y2/b2 for a/b = 1 and 3 is displayed (a is constant). The singular characteristics 
of temperature gradient near the crack front as P approaches 1 is observed. It is noted that 
the maximum normalized temperatures are always found at the center of the crack surface. 
Good correlations between the computed results and obtained analytical solutions show the 
accuracy of the present finite element model. The fracture behaviors of the long cylinder 
are also studied. To calculate the path-independent integrals, the integration domains se- 
lected surrounding the crack front of each slice are also displayed in Fig. 3. The effect of 
the free lateral boundary of the cylinder on the computation of thermal stress intensity 
factors is also considered for aiR = 0.2, 0.4, 0.6, and 0.8, respectively. For comparison 
purposes, the pure Mode II problem is solved for the case of a/b = 1. The variation of 
normalized Mode II thermal stress-intensity factor, FII = KII /K~  versus a/R is shown in 
Fig. 5. Kn~ = Ec~qa3/2/3(l - v )~-~ is the analytical solution of an infinite solid with a penny- 
shaped crack [14]. Good agreements between present computed results and referenced 
solutions [14] are observed with the largest discrepancy about 6% at a/R = 0.8. The larger 
influence of free lateral boundaries is obtained as a/R increases. Fix is equal to 1 as a/R 
approaches zero for the case of the crack embedded in an infinite solid, and FII tends to 
infinite as a/R approaches 1. Figure 6 displays the variation of F u and F m (=  KIII/KII~ ) 
along the crack front for the case of elliptical crack with a/b = 3 versus various values of 
a/R. For all a/R, FII is maximum at the minor axis and minimum at the major axis. However, 
the maximum value of FIII occurs near 2~/Iv = 0.2. Again, the mixed-mode normalized 
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thermal stress-intensity factors, FIi and Fiii, increase as a/R increases. Due to the influence 
of the free boundary that occurred near the major axis, remarkable variations of FH can be 
obtained while there is nearly no change for F~ and FIH near the minor axis. 

A Thick Plate with a Through Central Crack 

A thick plate with a through central crack subjected to specific thermal loadings is solved 
for different Poisson's ratios. As seen in Fig. 7, only one eighth of the problem is modeled 
due to the symmetry of geometry and loading conditions. There are 135 elements (including 
20 collapsed quarter-point singular elements and 115 conventional brick elements) and 768 
nodes employed. Four different integration domains are selected in the model. Figure 8 
displays the variations of normalized Mode I thermal stress-intensity factor, FI ( =  K~/Ea(T: 
- T1)~ww) across the thickness of the plate for a/w = 0.5. The difference between the 
three-dimensional and plane strain solutions is noted. For comparison purposes, the plane 
strain solutions obtained using the procedure developed by Shih et al. [20], Chen et al. [6], 
and present technique for the case of v = 0.3 are also shown, respectively. The location of 
the largest FI is found at the middle plane (z = 0) of the plate. The influence of the magnitude 
of Poisson's ratio on the computation of thermal stress intensity factors is also noted. 
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A Thick Plate with a Part-Through Surface Crack 

A thick plate with a part-through crack, for example, a semielliptical surface crack sub- 
jected to given thermal loadings is then solved. As seen in Fig. 9, the temperature on the 
crack surface is 7"1 and on the surfaces at x = _+ w is Tz, Tz > T1. The other faces of the 
plate are insulated. Again, due to the symmetry of geometry and loading conditions, only 
one quadrant of the problem is modeled using 180 elements (including 24 collapsed quarter- 
point singular elements and 156 conventional brick elements) and 1083 nodes. Figures 10 
and 11 show the variations of F~ along the crack front with various crack aspect ratios (a is 
kept constant) and Poisson's ratios for a/w = 0.5, respectively. In these cases, maximum 
F1 is found at the minor axis of the crack, say, 2~p/~r = 1, and minimum F~ is observed at 
the major axis. It is noted tha t / ' I  decreases as the aspect ratio, a/b, increases mainly due 
to the change of the area of crack region. As would be expected, as a,b ~ ~, since there 
is no crack found in the plate, Fr approaches to zero. Further,  larger results of F~ are obtained 
for larger v. 

C o n c l u s i o n s  

The complete analytical solution of the temperature field for an infinite solid with an 
embedded elliptical insulated crack subjected to a steady uniform heat flow has been pre- 
sented for the verification of the three-dimensional finite element analysis model devised. 
To calculate the thermal stress-intensity factors, the three-dimensional path-independent 
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integrals that are physically the energy release rates per unit  area of crack extension along 
respective directions of crack growth have been employed successfully and computed for 
several three-dimensional thermoelastic fracture problems containing through or part-through 
cracks. The effects of thickness, boundary,  and Poisson's ratio on the computat ion of thermal 
stress-intensity factors along the crack front are also investigated thoroughly. The analysis 
procedure developed in this work has been demonstrated as an efficient tool in dealing with 
three-dimensional  thermoelastic fracture problems. 
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ABSTRACT: This paper is concerned with a study of growing crack-tip behaviors in ductile 
materials using the hybrid experimental and numerical method by means of a computer image 
processing technique. 

Here, a displacement field near a crack tip is first measured by the image processing tech- 
nique. Combined with a finite element technique, the strain, the stress, the near-crack-tip 
J-integral, and the crack-tip singular field are evaluated from the measured displacement field. 
In this procedure, elastic unloading phenomena occurring around a growing crack tip, which 
may play important roles in the near-crack-tip behaviors, are also evaluated and are taken 
into account in evaluating the near-crack-tip J-integral. 

The present method is applied to the analyses of a growing ductile crack in a tensile (CT) 
specimen made of Type 304 stainless steel. The transition behaviors of the crack-tip singular 
field, the elastic unloading, and the near-crack-tip J-integral in accordance with crack growth 
are discussed in detail through the comparison between experimental and theoretical results. 

KEY WORDS: fracture mechanics, fatigue (materials), ductile crack growth, image processing, 
compact tension specimens, stainless steels, J-integral, elastic unloading effects, crack-tip be- 
havior, HRR singular field 

For the assessment of fracture behaviors of structural components, various fracture me- 
chanics parameters have been proposed to date. Among them, the J-integral [1] may be 
one of the most promising parameters because of its applicability to linear as well as nonlinear 
fracture phenomena. The reasons why the J-integral has been popularly utilized may be 
summarized as follows. 

First of all, the J-integral is essentially the same as the energy release rate for fracture 
problems of elastic materials, and the J-integral preserves path independence under con- 
ditions such as the deformation theory of plasticity or nonlinear elasticity [1]. In addition, 
if the crack-tip state in a strain-hardening material of Ramberg-Osgood power-hardening 
type can be represented by the Hutchinson, Rice, and Rosengren (HRR) field [2,3], the 
J-integral becomes the amplitude of this crack-tip singular field. Some recent numerical 
studies [4-6] have also shown that the crack-tip field near a stationary crack on bimaterial 
interfaces can be a kind of the HRR field in an elastic-plastic regime. Owing to the path 
independence feature of the J-integral, the integrity assessment of structures based on the 
J-integral concept and numerical analyses such as the finite element method is applicable 
to complicated structures such as nuclear pressure vessels and piping [7,8]. 

1Professor, associate professor, and graduate students, respectively, Department of Nuclear Engi- 
neering, University of Tokyo, Bunkyo, Tokyo 113, Japan. 
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On the other hand, for experimental fracture mechanics, some simple procedures for 
J-integral evaluation [9,10] enable us to estimate the fracture toughness of elastic-plastic 
materials from load versus load-line displacement records. 

Although the J-integral has been applied to various integrity studies of structures, it should 
be noted also that this parameter still possesses some theoretical limitations. When cyclic 
loading is applied to a cracked body of an elastic-plastic material, or when a stable crack 
grows, the crack under the large-scale yielding condition is necessarily accompanied by 
nonproportional loading and elastic unloading [11]. As a result of this, the J-integral loses 
those attractive features previously mentioned. Some detailed analyses of crack-tip fields 
by the elastic-plastic finite element method have shown that the crack-tip field can be 
represented by the HRR field when an amount of crack growth is sufficiently small in 
comparison with ligament length [12]. Thus, the tearing modulus concept that treats stability 
of stable crack growth controlled by the J-integral was proposed in Ref 13 and has been 
used in the LBB (leak before break) assessment of nuclear piping systems. However, the 
tearing modulus criterion and the J-integral have sometimes been used beyond their theo- 
retical limitations. Therefore, various attempts have been made to develop some fracture 
mechanics theories applicable to large-scale crack growth phenomena. 

Some nonlinear fracture mechanics parameters, which coincide with the conventional 
J-integral under the proportional loading condition and still possess path independence even 
under a condition of large-scale crack growth [14,15], were proposed as some of these 
attempts, and their characteristics have been studied using the finite element method 
[16-18]. These parameters may be simply regarded as examples of the extended J-integrals, 
and their definitions can be summarized as follows: 

(a) The parameters are similar to the conventional J-integral in formulation, but defined 
along the near-crack-tip path that is a very small contour set in the vicinity of a crack 
tip. 

(b) The line integral calculated along the near-crack-tip path equals the line integral with 
an area integral portion calculated along a far-field path. This feature is also regarded 
as "path independence" in those advanced parameters. The effects of nonproportional 
loading, elastic unloading, body force, and inertia force (none of which are considered 
in the original J-integral) are taken into account in the area integral portion. 

(c) Sophisticated numerical techniques such as the finite element method have been 
indispensable to evaluate the parameters up to now. 

Thus, it is an interesting and important subject to experimentally evaluate the advanced 
parameters during large-scale ductile crack growth. 

The authors have studied an application of a computer image processing technique for 
experimental analyses of various structural behaviors. This method was first successfully 
applied to the measurement of strain distributions near a crack tip under elevated temper- 
ature creep conditions [19] and under dynamic loading conditions [20]. Combined with a 
stereo-vision technique, this method was applied to the strain measurement of a curved 
body such as pipes and bellows under elevated temperature conditions [21,22]. Recently, 
the data smoothing technique, which is utilized in the present method, was improved by 
developing the modified least-squares method based on the Sobolev norm and finite elements 
[23]. The improved method was applied to fracture mechanics analyses of stationary ductile 
cracks [24-26]. The series of nonlinear fracture mechanics studies has shown that the present 
method enables us to experimentally evaluate nonlinear crack-tip behaviors, such as the 
J-integral, or the singular fields although slight difference was observed between the results 
measured on specimen surface and average values in the thickness direction [26]. Similar 
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trends were also obtained in the three-dimensional finite element analyses of compact tension 
(CT) specimens [26-28]. 

In the present study, this hybrid method is applied to the analyses of large-scale crack 
growth behaviors, such as crack-tip singular fields, elastic unloading, and the near-crack- 
tip J-integral, in practical structural materials such as Type 304 stainless steel. Experimental 
studies on the singular field near a crack tip and the J-integral for growing cracks in center- 
cracked tension (CCT) specimens made of aluminum alloys have been conducted using 
moir6 interferometry by some researchers [29,30]. However, in these studies, elastic un- 
loading effects on crack-tip behaviors due to large-scale crack growth were not considered, 
which might play important roles in large-scale crack growth in ductile materials such as 
Type 304 stainless steel. In the present study, the elastic unloading phenomena and their 
effects on the near-crack-tip J-integral are discussed in detail. 

Nonlinear Fracture Mechanics Analyses Using the Image Processing Technique 

Outline of the Method 

First, the displacements of a number of small marks printed near a crack tip (Fig. 1) are 
measured directly using an image processing technique. Second, the displacement distri- 
bution is obtained by interpolating and smoothing the mark displacements with the help of 
finite element interpolation. The crack-tip singularity can be examined directly from the 
displacement distribution against a polar coordinate centered at a growing crack tip. The 
strain and the stress distributions near the crack-tip are calculated from the displacement 
distribution. A shape of an elastic unloading region around the crack-tip is evaluated through 
the examination of strain histories at a number of points in accordance with crack growth. 
The J-integral evaluated along a near-crack-tip path, which is called "the near-crack-tip 
J-integral," is evaluated by the line integration technique that is widely used in the finite 
element analysis. The flow of the present analysis is summarized in Fig. 2. 
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FIG. 1--Artificially printed marks before and after deformation. 
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Mark Displacement 

Figure i shows a schematic example of a specimen before and after loading, when hundreds 
of small marks are printed on a surface of the specimen. The images of the marks are 
photographed before and after deformation. Mark locations are determined automatically 
by the computer image processing technique, the details of which have been published in 
Refs 24 to 26. The displacement of each mark is the difference of the mark location before 
and after deformation. 
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Interpolation of Mark Displacements 

The least-squares method using polynomial interpolation functions, finite elements, and 
the spline functions are often utilized to interpolate discrete data such as mark displacements 
[19,20,31-35]. Most of the interpolation processes intend to maintain the continuity of 
derivative values among segmented interpolation functions or finite elements. Nevertheless, 
since these methods interpolate discrete data too precisely (even if the data involve random 
measurement errors), undesirable oscillation could be sometimes caused in derivative values. 
Therefore, the authors have proposed a new interpolation technique based on the least- 
squares method using both the Sobolev norm and finite elements [23]. 

The key idea of the present method can be summarized as follows. 
By analogy to the Sobolev norm, we employ the following error measure 

2 

,ND l ~ f A ( o  ~ U-~U]dA (1) + = -~ ;~,~ (u(x,) - ~(x,)} 2 + ~ ~ ,  ox~/ 

where ND is the number of measured points, DIM is the dimension number, u(x 3 and K(x~) 
are the interpolated and the measured displacements at Point xs, and Ou/Oxk and 0u--u-7-~ k the 
derivatives of the interpolated and the measured values with respect to xk, respectively, e~' 
is the coefficient to adjust dimensions of two terms in Eq 1 and is defined as follows 

A 
a '  = - -  (2) 

L 2 

where L is a representative length of a measured domain, and A is a size of the domain. 
In this interpolation method, a measured domain is subdivided into a number of finite 

elements independent of mark locations as schematically shown in Fig. 3, and then nodal 
displacements are determined by minimizing the error measure of Eq 1. 

Strain and Stress Distributions 

A displacement distribution is obtained by both the image processing technique and the 
interpolation technique with finite elements. Since the displacement is given as nodal values 
through this interpolation process, one can easily calculate strain and stress distributions 
using common numerical techniques. 

The distributions of infinitesimal strain and Green's  strain are calculated through numerical 
differentiation of the displacement field. A stress distribution is obtained from the strain 
distribution, assuming an appropriate constitutive equation of material such as the incre- 
mental or the deformation theory of plasticity. 

In general, the incremental theory of plasticity with the consideration of loading history 
is more reasonable to describe the deformation phenomena around a growing ductile crack 
than the deformation theory of plasticity. Nevertheless, the deformation theory of plasticity 
can still give us good approximation under the limited conditions such as proportional 
loading. Then, stress values are basically calculated based on the deformation theory of 
plasticity until elastic unloading occurs. 

In the deformation theory of plasticity, the total stress tensor, cri i, is directly related to 
the total strain tensor, %, as follows 

2G ( v + (I + v)G/H,~ijSm,,, ) (3) 
~ J -  1 + 3G/H, % + 1 - 2v 
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Marl, 

Mesh used in the smoothing process 
FIG. 3- -Mark  locations and overlapped finite element. 

where G is the elastic shear modulus, H s is the plastic secant modulus, v is Poisson's ratio, 
and ~ij is Kronecher's delta. H s is written in terms of the Mises-type equivalent stress, ~, 
and the equivalent plastic strain, ~ ,  as 

H, = ---- (4) 
g p 

Since Eq 3 is nonlinear with respect to stress, the total stress tensor corresponding to the 
total strain tensor is obtained by applying a simple iterative substitution method to Eqs 3 
and 4. 

Elastic Unloading 

Ductile crack growth is, of course, accompanied by elastic unloading. The behavior of 
such elastic unloading was studied theoretically in Ref 11 for steady-state crack growth in 
an elastic perfectly-plastic material under the two-dimensional plane-strain condition. How- 
ever, any comparable experimental studies on elastic unloading have not yet been performed. 

As has been already emphasized, the deformation theory of plasticity utilized in the present 
analysis does not model elastic unloading. Therefore, a shape of an elastic unloading region 
is evaluated experimentally as follows. 

First, the histories of equivalent strains at a number of points near a crack tip are plotted 
against crack growth as shown in Fig. 4. When a value of equivalent strain reaches almost 
a constant value at any point after it increases monotonously, it is judged that elastic 
unloading starts to occur at that point. It should be also noted that detailed processes of 
stress and strain reduction due to elastic unloading are not evaluated here because the 
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FIG. 4--Strain histories at points beside a growing crack. 

Unloaded elastic strain 

v Loading Step 

present method is not so accurate to measure decreasing elastic strain less than an order of 
0.1%. The accuracy of the present measurement method will be discussed in more detail 
later. 

Crack- Tip Displacement Singularity 

In power-law hardening materials, the J-integral possesses a meaning of the amplitude of 
the crack-tip singular fields, which are referred to as the HRR singular fields [2,3]. For 
example, the crack-tip displacement field is expressed as follows 

where J is the J-integral, e0 is the yield strain, (To is the yield stress, Fi(F, or F0) is a 
dimensionless function of 0 and n, and (r,0) are the polar coordinates centered at the crack 
tip as shown in Fig. 5. The hardening exponent, n, and the material constant, a,  are 
determined with the following Ramberg-Osgood type stress-strain relationship 

- + a ( 6 )  
E o ( T  O 

Experimental results of the dimensionless functions, F, and F0, for a stationary ductile crack 
can be found in Refs 24 to 26. 

Near-Crack-Tip J-integral 

Considering the two-dimensional crack problem and the path, F, shown in Fig. 5, the 
J-integral is defined as 

J = fr Wnl - (Tunj OXa/ dF (7) 
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ri 
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> x (x) 
FIG. 5--Crack-tip coordinates for the definition of J-integral. 

with 

W = J['i (Yijde 0 (8) 

where W is the strain energy density, ni is the xi component of the outward normal vector 
on F, and u i is the displacement vector. The J-integral is evaluated numerically by the path 
integration technique that is popularly used in the finite element fracture analysis. 

As described previously, ductile crack growth phenomena are necessarily accompanied 
by elastic unloading, whose effects are taken into account in the evaluation of Eq 7 as 
follows. 

The strain energy density term, W, and the traction force term, Ti = ~jnj, include the 
total stress tensor, ~ij. W is simply evaluated by using the total stress value directly calculated 
with Eq 3 on the assumption that a fraction of released elastic strain energy in the whole 
strain energy is negligible in the vicinity of a largely deformed ductile crack tip. 

On the other hand, an evaluation of the traction force term in Eq 7 is a little more 
complicated than that of W. Stress values are simply calculated with Eq 3 at the integration 
points where equivalent strain values are still increasing. A certain amount of stress reduction 
has to be taken into account at the integration points where elastic unloading occurs. How- 
ever, it is difficult to measure such stress reduction due to elastic unloading by the present 
method although the boundary between loading and elastic unloading regions is measurable. 
In addition, it is expected that the stress values in an elastic unloading region may be very 
small in comparison with those in a loading region. Thus, as the first order approximation, 
stress values are simply taken to be zero at the integration points where elastic unloading 
occurs. In other words, elastic unloading effects are overestimated here. 

It should be noted here that the preceding definition of the near-crack-tip J-integral in 
this study is similar to that of the T*-integral [15-18] in the following two senses. First, 
both integrals are defined along a near-crack-tip path. Second, both are considering elastic 
unloading effects although there are slight differences in the treatment of stress reduction 
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as described earlier. Thus, it is expected that the present study will be able to examine 
experimentally how and how much elastic unloading affects the behaviors of the near-crack- 
tip J-integral and indirectly, the T*-integral. 

Experiment 

Experimental Procedure 

Figure 6 shows a CT specimen made of Type 304 stainless steel, in which a mechanical 
notch is machined and then a fatigue precrack is given up to a total crack length of 115 mm. 
The measured stress versus plastic strain relationship of this material at room temperature 
is shown in Fig. 7, together with a bilinear approximation and the power-law hardening- 
type approximation that is obtained by the Ramberg-Osgood data fit for the stress-strain 
data ranging from 0 to about 30%. The material properties determined here are as follows: 
Young's modulus, E = 1.9 x 102 GPa; Poisson's ratio, v = 0.27; the yield stress, ~o -- 
234.0 MPa; the yield strain, e0 = 0.00126; the hardening exponent, n = 2.4; and the constant, 
c~ = 12.6, respectively. 

110 

I 
I 

wr  

2 0 0  

4 0  ~ . ~  5 0  

t 
@ 

SUS304 

FIG. 6--Configuration and dimension of specimen. 
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FIG. 7- -  Uniaxial stress-strain relationship of Type 304 stainless steel at room temperature. 

Hundreds of small marks are printed on the specimen surface by a photochemical etching 
technique. 

Displacement-controlled loading is applied statically to the specimen using a servohy- 
draulic MTS machine. The photographs of marks around a crack tip are taken with an 
autofocus camera while maintaining the applied load level at several loading steps. Focus 
and position of the camera are adjusted before loading starts. After this adjustment, the 
magnification factor of the photographs is completely fixed irrespective of deformation and 
crack growth to avoid the undesirable complexity of optical compensation. 

Color film is used in the experiment to easily distinguish marks from noise. 

Measured Loading Record and Mark Photographs 

Figure 8 shows the measured load versus load-line displacement curve. Small open circles 
indicate the loading steps where the mark photograph is taken while maintaining an appro- 
priate loading level. For example, Figs. 9a, b, and c show the mark photographs taken at 
Step 13 (An - 0.21 mm), at Step 19 (An = 0.80 mm), and at Step 24 (An = 7.61 mm), 
respectively. 

The figures include three kinds of marks. Among them, the smallest and medium marks 
are utilized in the present measurement. The diameter and distance of the smallest marks 
are 0.1 and 0.2 mm, and those of the medium marks are 0.2 and 1.0 mm, respectively. 

It can be seen that the marks are clearly distinguished from noise, irrespective of the large 
deformation in the vicinity of the crack tip and of a large amount of crack growth. 

Results and Discussions 

Measurement Error of Displacement and Strain 

A distance of neighboring smallest marks is 0.2 ram, and about 60 pixels are placed 
between neighboring marks in the image processing technique. A distance of neighboring 

Copyright by ASTM Int 'l  (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



YAGAWA ET AL. ON COMPUTER IMAGE PROCESSING 299 

200 

Z 

100 

" 0  

O 
,_1 

o Loading step where mark picture is taken 

~t.ep 10 ~tep 20 ~t.ep 30 
i 14.0 i 24.0 0 4.0 1 0 20 30 

Load - Line Displacement (ram) 
FIG. 8--Load versus load-line displacement curve. 

40 

medium marks is 1.0 mm, and about 60 pixels are also placed between neighboring marks. 
The lower measurable limit of the technique is a movement of one pixel. Then, the meas- 
urement error of mark displacement is estimated to be about 0.0033 mm in the former case, 
while it is about 0.017 mm in the latter case. 

In this experiment, out-of-plane motion occurs and would influence the inplane motion. 
To measure the out-of-plane motion is, however, difficult during the experiment. Instead 
of on-line measurement, we measured the residual out-of-plane deformation of the fractured 
specimen. This result is illustrated schematically in Fig. 10. If elastic unloading effects are 
neglected (this assumption seems to be correct because here significant plastic deformation 
occurs near a crack tip during ductile crack growth), the inplane displacement that was 
directly measured by the image processing technique should be corrected by the factor of 
1/cos(10.8 ~ = 1.018 in the region ranging from r = 0 to 6 mm, while corrected by the 
factor of 1/cos(3.8 ~ = 1.002 in the region ranging from r = 6 to 30 mm. It is considered 
that neglecting the out-of-plane motion would lead only to a 1 or 2% error at most to the 
inplane motion. 

To examine the accuracy of the interpolation technique, Fig. l l a  shows the distribution 
of displacement in the y-direction, v, along the uncracked ligament, that is, in the x-direction. 
In the figure, open circles denote the measured mark displacements, while a solid line shows 
the interpolated displacement. For the purpose of reference, the used mesh subdivision in 
the x-direction is shown in the same figure. Figure 11 indicates that the present interpolation 
technique leads to a 2 or 3% error in this case. Figure 11b shows the distribution of Ov/Ox 

along the uncracked ligament obtained through differentiation of the smoothed displacement 
shown in Fig. l la .  For the purpose of comparison, Fig. 11b also shows average gradient, 
Av/Ax,  which is simply calculated as the ratio of the difference of the measured displacements 
of neighboring marks to.their distance. This figure clearly demonstrates that the present 
interpolation technique gives us medium results smoothly interpolating oscillated average 
gradients of measured displacements. 

From such error estimation, it is expected that the present method can neither measure 
elastic strain nor stress reduction due to elastic unloading. 
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FIG. 9--(a)  Ma rk  picture around  a crack tip (Step 13, .3.a = 0.21 rnm); (b) m a r k  picture around  a 
crack tip (Step 19, ?aa = 0.80 ram); and  (c) mark  picture around  a crack tip (Step 28, ~a = 7.61 ram). 
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FIG. lO--Schematic of the deformed shape of the near-crack-tip .field measured from the fracture 
specimen. 

Strain Distribution 

Figures 12a and b show the distribution of infinitesimal strain in the y-direction and that 
of Green's  strain at Step 13, that is, Aa = 0.21 mm. In Fig. 12a, very large strain values, 
over 50%, are observed in the vicinity of the crack tip. It is found by comparing both figures 
that the maximum value of Green's  strain is about 20% larger than that of infinitesimal 
strain at the very vicinity of the crack tip, but that the difference between both strains is 
not so significant in other regions. For the purpose of simplicity, the subsequent analyses 
are performed based on infinitesimal strain. 

Elastic Unloading Behavior Near Crack Tip 

Figure 13 shows the measured transition behavior of an elastic unloading region in ac- 
cordance with crack growth of up to about Aa = 1.0 mm. The " + "  symbols in the figure 
denote the points at which the decision of loading or elastic unloading is made through the 
examination of the history of equivalent strain. 

This figure shows that the boundary between loading and elastic unloading regions is 
inclined about 90 ~ against the direction of crack growth just after the crack initiation, but 
that the boundary gets slanted backward in accordance with crack growth. For reference, 
the theoretical result obtained for steady-state crack growth in an elastic perfectly-plastic 
material under the plain-strain condition, that is, 115 ~ [11], is depicted with dashed lines. 
It can be estimated from the figure that after a certain amount of crack growth, the present 
experimental result approaches the theoretical one in a steady state. 

Crack-Tip Displacement Field 

Figures 14a, b, c, and d show the distributions of u, displacement against a polar coordinate 
centered at a growing crack tip. Figure 14a shows the result when a ductile crack is about 
to grow after large blunting. Figures 14b, c, and d show the results of ha = 0.80 mm, 3.06 
mm, and 7.61 ram, respectively. Here, Ur displacements in the range of 0 < 60 ~ were too 
small to be measured with sufficient accuracy. By the same reason, uo displacements in the 
range of 0 ~ < 0 < 90 ~ are not presented here. Although the measured results are limited, 
the following nature of a near-crack-tip displacement field might be estimated from Figs. 
14a through d. 

The near-crack-tip displacement field can be divided roughly into two regions. As shown 
in Fig. 14a, the near-crack-tip region is mostly characterized by the HRR singularity just 
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FIG. 13--Extension of elastic unloading region in accordance with crack growth. 

after crack initiation. Until a certain amount of crack growth, the small region where the 
slope of the displacement field is steeper than the HRR field expands over r = 1 mm as 
shown in Figs. 14b, c, and d. This small region is named, "a nonlinear field," following Ref 
30. On the other hand, as a crack grows larger, the HRR displacement field disappears and 
a quasi-linear elastic singular field appears. It can be seen from the comparison between 
Fig. 14r and d that this quasi-linear elastic field moves in accordance with the movement 
of the crack tip during a large amount of ductile crack growth. The phenomenon shown in 
Figs. 14a and b may be basically the same as those observed in the crack growth in aluminum 
alloys that were measured with moir6 interferometry [30]. On the other hand, the phenom- 
enon shown in Figs. 14c and d is first observed in the present study. This reappearance of 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



YAGAWA ET AL. ON COMPUTER IMAGE PROCESSING 305 

E 
E 
L 

a 

10  

A a  = 0.21 m m  �9 63* 
�9 72 ~ 
[] 90* 
o 1 0 8  ~ 

+ 1 1 7  ~ 

[ ]  

Slope = 0.29 
f +r ~e  

+ + o [ ] a r  . o=e 

~P+ �9 �9 �9 

.h�9 •• * *  ** , . r  
�9 eee 

. . . . . .  i . . . . . . . .  i �9 �9 

1 1 0  

Distance from c r a c k . t i p ,  r ( m m )  
100 

E 
E 
L 

10  

A a = 0 . 8  m m  

Slope = 0.29 

1 Nonlinear . ~ / ~ ~  
Field 

§ Slope = 0.85 a [] ,, * *ee ~ l r -  

/ :  . .  
§ �9 

[] �9 Q 

.1 

6 .1 

63 ~ 
72* 
90 ~ 
108 ~ 
117 ~ 

. . . . . . . .  ! . . . . . . . .  ! �9 �9 . . . . . .  

1 10 100 

Distance from c r a c k - t i p ,  r ( m m )  
F I G .  1 4 - - ( a )  Displacement f ield near a crack tip (Step 13, Aa = 0.21 ram) and (b)  displacement f ield 

near a crack tip (Step 19, Aa = 0.80 ram). 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



306 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

E 
E 
L 

10 

.1 

C 

A a = 3.06 mm 

N o n l i n e a r  
F ie ld  

S lope  = 0.85 

o 
/ o 

+ �9 �9 
D 

Slope  = 0.57 

o �9 �9 

[] �9 �9 

. . . . . . . .  I " " 

1 1 0  

Distance from crack-tip, r (mm) 

63* 

72 ~ 

90* 

108" 

117 ~ 

1 0 0  

E 
E 

10 

N o n l i n e a r  
F ie ld  

S lope  = 0.85 

A a  = 7 . 6 1  m m  

Slope  = 0 .57 

Y 
4/3 o 

J g ~  ~ 
+ �9 

[] D 

0 

4- 

63 ~ 

72  ~ 

90* 

108 ~ 

117 ~ 

, 1  . . . . . . . .  I . . . . . . . .  I . . . . . .  ; ~ 1  

d .1 1 10 1 0 o  

Distance from crack-tip, r (ram) 
FIG.  1 4 - - ( c )  Displacement field near a crack tip (Step 24, Aa = 3.06 ram) and (d) displacement field 

near a crack tip (Step 28, ~a = 7.61 mm).  

Copyright  by ASTM Int ' l  (al l  r ights  reserved);  Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
Universi ty of  Washington (Universi ty of  Washington) pursuant  to License Agreement.  No further  reproductions authorized.



YAGAWA ET AL. ON COMPUTER IMAGE PROCESSING 307 

a quasi-linear elastic singular field and its self-similar transition may be related to constant 
behaviors of the crack-tip opening angle (CTOA) and the T*-integral in steady-state ductile 
crack growth [36,37}. 

The present method cannot measure the distribution or a crack-tip displacement singular 
field in the thickness direction. However, three-dimensional finite element analyses of crack- 
tip singular fields for stationary cracks in a CT specimen [27,28[ have shown that the near- 
crack-tip fields on the center plane of a CT specimen is the same as the plane strain HRR 
solutions, and that the near-crack-tip fields near the specimen surface are a little smaller 
than the plane strain HRR solution. Numerical results of dimensionless functions, F,, near 
the specimen surface agreed well with the experimental results obtained by the present 
method [26-28]. 

Near-Crack-Tip J-Integral 

The near-crack-tip J-integral is evaluated by using the line integration technique along 
several small paths set near a crack tip, as shown in Fig, 15, which move together with a 
growing crack tip. Figures 16a, b, and c show the near-crack-tip J-integral plotted against 
a distance from the growing crack tip. For the purpose of comparison, the experimental 
J-integral value evaluated using the Merkle-Corten's formula [10] is drawn in the figure with 
a broken straight line. 

Those figures clearly indicate that the near-crack-tip region can be roughly divided into 
two regions. As shown in Fig. 16a, when a specimen's deformation is small, the near-crack- 
tip J-integral holds good path independence in the whole near-crack-tip region. However, 
when being deformed further, this J-integral strongly depends on path location in the bor- 

FIG. 15--1ntegration paths for J-integral calculation. 
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1 . 2  

dering near-crack-tip region, while path independence is held outside that region to some 
extent. This feature of the near-crack-tip J-integral corresponds to numerical results obtained 
from various finite element analyses [12,17]. 

Figure 17 shows the measured crack resistance curve, that is, the relationship between 
the near-crack-tip J-integral and crack growth measured on the specimen surface, with open 
circles and a solid line. The plotted value is an average value of the near-crack-tip J-integrals 
calculated along five paths set over r = 0.6 mm. The maximum difference among the five 
values is indicated also with an error bar. For the purpose of comparison, open square 
marks and a broken line indicate the conventional experimental J-integral obtained with the 
Merkle-Corten's formula, while cross marks and a dashed line indicates the conventional 
J-integral obtained with the formula by Ernst et al. [38], that is, the deformed J. The 
observations in this figure are summarized as follows: 

(a) Crack growth of up to several millimetres does not cause much difference between 
the Merkle-Corten's J and the deformed J, both of which are evaluated using load 
versus load-line displacement records. 

(b) The conventional J-integrals continue to increase in accordance with crack growth. 
(c) The near-crack-tip J-integral obtained by the present method agrees well with those 

of the conventional experimental J-integrals within about 20% difference in the range 
of crack growth of up to about Aa = 1 mm. 

(d) The near-crack-tip J-integral then starts to decrease and reaches almost a constant 
value of about 1.2 MN/m, when Aa = 2.0 mm, after about a 40% reduction from 
the maximum value. 

Such behaviors of the near-crack-tip J-integral during large-scale ductile crack growth, which 
is evaluated along a near-crack-tip path considering elastic unloading, are similar to those 
of the T*-integral [37]. As mentioned previously, the present near-crack-tip J-integral may 
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FIG. 17--Crack  growth resistance curve. 

overestimate the effects of elastic unloading than the T*-integral because stress values are 
assumed to be completely zero in the elastic unloading region. This overestimation might 
cause the sudden decrease of the present J-integral around Aa = 0.8 to 1.5 ram. Nevertheless, 
this constant behavior of the present J-integral after a certain amount of crack growth, which 
is estimated to be corresponding to the self-similar transition of the quasi-linear elastic 
singular displacement field, may give us experimental proof for one of the key features of 
the T*-integral. 

Conclusions 

Using the displacement field obtained by the computer image processing technique, the 
crack-tip singular displacement field, the elastic unloading behavior, and the near-crack-tip 
J-integral are evaluated experimentally for large-scale ductile crack growth. The main con- 
clusions given in the present study are summarized as follows: 

(a) The HRR singularity of the crack-tip displacement field seems to exist outside a 
smaller nonlinear region of r < 1 mm in Type 304 stainless steel, even if a crack is 
largely blunted and a short ductile crack grows. 

(b) The quasi-linear elastic singularity of the displacement field seems to exist near a 
crack tip after large-scale ductile crack growth, that is, in a steady state. 

(c) The shape of elastic unloading produced due to ductile crack growth is experimentally 
evaluated, and it is found that the unloading region, after a certain amount of crack 
growth, coincides with the theoretical results for steady-state crack growth [11]. 

(d) The near-crack-tip J-integral evaluated by the present method shows good path in- 
dependence outside the smaller nonlinear region. 
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(e) The near-crack-tip J-integral agrees well with the conventional  experimental  
J-integrals in the range of a small amount  of crack growth. 

(f)  The near-crack-tip J-integral reaches almost a constant value after large-scale ductile 
crack growth just like the T*-integral. 
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DISCUSSION 

M. A. Sutton (written discussion)-- The authors presented surface displacement data for 
a region very close to the tip of a growing crack in a Type 304 stainless steel specimen. It 
is well known that the surface dimpling in the crack-tip vicinity is substantial. Since the 
authors imaged the dots onto a CCD or other type array, the motion of the dots recorded 
by the camera has all three components of displacements in the data! 

Of course, under certain situations, the effect of the out-of-plane motion on the inplane 
data can be reduced to a value that is in the noise of the system and hence immeasurable. 
I believe that the authors should conclusively show by a baseline experiment or analytical 
work or both on their optical system how much the out-of-plane motion affects the inplane 
measurements! That is, they should provide an error band for their data due to the presence 
of significant out-of-plane motion. Otherwise, their data cannot be used with any confidence. 

G. Yagawa, S. Yoshimura, A, Yoshioka, and C-R. Pyo (authors' closure)--Since some 
other reviewers pointed up the same thing, we have added a section, Measurement Error 
of Displacement and Strain, in the revised paper. Please refer to it. 

M. A. Sutton (written discussion)--I should also note that much work has been done by 
Dr. Jim Sirkis (now at the University of Maryland) on dot patterns and how to accurately 
track their motion. The authors may wish to include his work in their references. 

G. Yagawa, S. Yoshirnura, A. Yoshioka, and C-R. Pyo (authors' closure)--We would 
like to refer to the work on dot patterns by Dr. Jim Sirkis and other researchers' works on 
data smoothing in the section, Interpolation of Mark Displacements, of the revised paper. 

Thank you very much for your kind suggestion. 

1Departrnent of Mechanical Engineering, University of South Carolina. Cola, SC 29208. 
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Traction Boundary Integral Equation (BIE) 
Formulations and Applications to Nonplanar 
and Multiple Cracks 

REFERENCE: Cruse, T. A. and Novati, G., "Traction Boundary Integral Equation (BIE) 
Formulations and Applications to Nonplanar and Multiple Cracks," Fracture Mechanics: Twenty- 
Second Symposium (Volume II), ASTM STP 1131. S. N. Atluri, J. C. Newman, Jr., I. S. 
Raju, and J. S. Epstein, Eds., American Society for Testing and Materials, Philadelphia, 1992, 
pp. 314-332. 

ABSTRACT: The hypersingular Somigliana identity for the stress tensor is used as the basis 
for a traction boundary integral equation (BIE) suitable for numerical application to nonplanar 
cracks and to multiple cracks. The variety of derivations of hypersingular traction BIE for- 
mulations is reviewed and extended for this problem class. Numerical implementation is ac- 
complished for piecewise-flat models of curved cracks, using local coordinate system integra- 
tions. A nonconforming, triangular boundary element implementation of the integral equations 
is given. Demonstration problems include several three-dimensional approximations to plane- 
strain fracture mechanics problems, for which exact or highly accurate numerical solutions 
exist. In all cases, the use of a piecewise-flat traction BIE implementation is shown to give 
excellent results. 

KEY WORDS: analytical methods, stress intensity factors, three dimensions, linear elastic 
fracture mechanics, boundary integral equations, boundary element methods, fracture me- 
chanics, fatigue (materials) 

Fracture mechanics formulations in the standard boundary integral equation (BIE) format 
suffer from a well-known problem of degeneracy when the two crack surfaces become one 
mathematical plane [1]. The reason for the degeneracy is that the formulation of elastic 
equilibrium must be able to distinguish between two surfaces, and the standard BIE cannot 
do this for cracks. Three well-established approaches to circumvent this degeneracy include 
the multiregion approach [2], the special Green's function approach [3], and the displacement 
discontinuity approach [4]. 

The multiregion approach has the drawback of needing to model the continuum ahead 
of the crack, between the crack front(s) and the external surface(s) of the body. The accuracy 
of the solution is compromised by the modeling; further, the need to initially model an 
internal surface limits the utility of this approach for fatigue crack growth modeling. 

The special Green's function approach seems inherently limited to two dimensions. The 
required Green's function is a solution to the elastic field equations for the case of an internal 
crack in the infinite body, subject to loading from a Kelvin (point load) singularity imposed 
at an arbitrary internal location. While such a solution is conceivable in three dimensions, 
such a closed-form solution in all but the most elementary three-dimensional problems seems 
unlikely. 

IH. Fort Flowers Professor of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235. 
2Assistant professor, Politecnico di Milano, Milan, Italy. 
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The displacement discontinuity (DD) method is the formulation now favored by most 
investigators as offering real advantages for complex three-dimensional fracture mechanics 
solutions with great flexibility in crack shape and form. However, the basic BIEs for this 
problem are hypersingular (unbounded integrals) and require special attention to the for- 
mulation and to the numerical implementation. The current report will make some obser- 
vations on these difficulties, and will extend one of the earlier approaches to the case of 
multiple and nonplanar internal cracks. The application of the formulation to surface cracks 
is straightforward and will be the subject of future reports. 

Displacement Discontinuity Formulations 

The following derivations address recent developments on the application of three dif- 
ferent, but related, displacement discontinuity (DD) formulation strategies. The DD is 
defined as a surface across which the displacement vector is discontinuous and is represented 
by the jump in the displacement vector, denoted as Au~(Q), where Q(y) is a point on the 
surface of displacement discontinuity, F. The surface of the DD is taken to be nonplanar 
and may be composed of a finite set of discrete surfaces. In some of the formulations, the 
surface is taken to be piecewise fiat. The bounding curve for the DD is denoted 0F and is 
assumed to be piecewise smooth. 

The stresses at any point not on F are denoted by ~kj(P), where p(x )  is the stress solution 
point. Whenp(x)  -~ F, the stress solution point is denoted as P(x) .  The stresses in an infinite 
body due to an arbitrary surface of DD are given by the following Somigliana identity 

8---V-~ Ckj(P) = ~ 8kjF, + 8,kFj + 8 o F . k } k u , ( Q ) d S ( Q )  

{ 2 2v 
+ - ~ -  v ntr'~ + nkVZr6 + nj•Zr'ik + 1 -- v n,V2r ki} A u , ( Q ) d S ( Q )  

8 T r  . 0 * 
= - - t~  + r (1) bt 

where 

F ( P ' Q )  = v z O r  ( r ( @ , Q ) )  
On = ,in i( Q ) (2) 

and where 

r ( p , Q )  = r (x ,y )  = ~/(x~ - ys)(x~ - y~) 

Or y~ -- x~ Or 
r i - - - (3) 

Oyi r (x ,y )  Oxi 

The Somigliana identity for the DD, Eq 1, is valid for any piecewlse smooth surface, F, 
upon which the applied tractions are in local equilibrium, A%j(p) = ak~(+) - % j ( - )  = 
0, for each point on the upper ( + )  and lower ( - )  surfaces of F. The DD identity is 
hypersingular. By this we mean that the identity contains unbounded terms as p ( x )  --~ P(x ) .  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  W e d  D e c  2 3  1 8 : 5 5 : 2 3  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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The various mathematical treatments in the literature report on different, but largely equiv- 
alent, approaches to coping numerically with the hypersingular nature of Eq 1. 

The first numerical application known to these authors of a form of this set of equations 
was made to the case of a circular crack loaded by normal pressures [5]. At  a slightly later 
time, Weaver published an application for rectangular cracks [4], and Bui [6] published a 
more general approach for cracks of arbitrary, planar shape. However, the numerical results 
of Bui were quite limited in terms of accuracy, an issue later seen to be related to the 
hypersingular nature of the governing equations. Somewhat earlier, Cruse [7] published a 
general formulation for flat cracks that is generally of the same approach as Bui, but without 
numerical results. Those numerical results were long in coming, in part due to the hyper- 
singularity issues on numerical implementation [8]. 

The first paper to operationally address the hypersingular Somigliana identity, Eq 1, 
reported on the limiting form of this identity for the interior point taken, in the limit, to 
the surface of the body [9]. Cruse showed that one could regularize the Somigliana stress 
identity by subtracting a rigid body displacement term from the displacement field, such 
that the displacement value at the limiting surface point is zero. However, such a local 
regularization process does not apply to the DD integral equation formulation contained in 
Eq 1. 

Three different approaches to reducing the hypersingular nature of Eq 1 will now be 
presented. The first approach [10] is a direct evaluation of Eq 1 for P(x) on F. Each term 
in the hypersingular integrals is integrated for an assumed, continuous DD field on F. The 
authors found that if the DD is continuous at P(x) and has a unique set of derivatives at 
P(x), then all unbounded contributions had zero integrals, due to zero-valued integrals of 
the angular variations of the integrands. This result occurs because the integral operator 
has zero-valued integrals at P(x), on the exclusion surface (see the Appendix) for the 
singularity, F~ at P(x). 

While the authors state that they are using the finite part (FP) approach to treating the 
hypersingular integral equations, this is not strictly true. The concept of the finite part of a 
hypersingular integral is developed in the Appendix to this paper. The essential element of 
the FP proof is that, for continuous integral operators, the unbounded results on the exclusion 
surface cancel the unbounded results arising from the remainder of the surface, F - F~. 
Nevertheless, we will refer to their work as a direct FP interpretation of the Somigliana 
identity for the DD. 

Given that the interior stresses and the hypersingular operator are continuous as p(x) 
P(x), the FP of the hypersingular Somigliana identity may be written in the following form 

8"rr (rxi(p) = ~ -  v ?~kjF i 
tx + 8,kF. i + 8~jFk}Au~(Q)dS(Q) 

~ r {  2 2v niV2r.~j]Aui(Q)dS(Q) (4) + - ~ - v  ntr"Jkt + nkV2r~ + njV:rik + 1 - - ~ - v  

where the double slash through the integral sign denotes the finite part of the integral. The 
resulting FP integral equation (Eq 4) may be converted to the equivalent traction BIE by 
taking the stress tensor to operate on the local normal to F at P(x). The integral identity 

�9 then relates the local tractions on the crack to the global distribution of the DD on the same 
crack surface. 

The use of the direct FP integral equation reduction, as in Eq 4, to a quadrature of the 
integral equations "requires" the use of closed-form integrations of the kernel functions. 
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Closed-form integrals are required to assure an exact FP interpretation of the resulting 
quadratures. The use of numerical integrations generally does not result in zero-valued 
multipliers of the unbounded terms. Further comments on the direct FP approach will be 
given in the discussion on numerical implementation of the traction BIE. The direct approach 
also magnifies the numerical errors in the BIE solution with the FP of the hypersingular 
integral operator, as found in Ref 9. 

A recent manuscript [11] has also applied a FP approach to the hypersingular Somigliana 
identity, this time for the problem of acoustic scattering at a surface of DD. In this FP 
development, the integral operator is first regularized through the use of continuity con- 
ditions on the DD and then interpreted in the FP sense. The resulting traction BIE is 
analytically equivalent to the development previously cited, but is more suitable for numerical 
quadrature of the resulting traction BIE, because of the regularization. Further, the hy- 
persingular integrals are isolated in such a way that the finite part interpretation can be 
applied more obviously than was done in Ref 10. However, the resulting equations are 
also more extensive as a consequence of the additional regularization steps taken in the 
formulation. 

The approach used in Ref 11 begins by taking the DD to be locally smooth, and given 
in terms of the first-order Taylor series expansion about the point P(x) 

Aui(Q) ~ Aui(P) + Au,,Jo{L(Q) - ~(P)} = Au,(P) + Au,.Jo-~ (5) 

where cx denotes the two orthogonal directions tangent to F at P(x). 
The series expression for the DD is substituted into the Somigliana identity for the DD, 

which results in the following expression, which again may be interpreted as a traction BIE 
for the DD on F by operating this equation on the normal to F at P(x). 

S--v-v r = f~ ~s - Au,(P) - At6.f~}dS(Q) 

+ A.i(e) Zki,(p,O)dS(O) + f, "Z.,/p,O)-LdS(O.) (6) 

The first integral in Eq 6 can be shown to be regular (that is, weakly singular) at P(x), 
in the sense given in the Appendix. As such, the first integral is amenable to numerical 
quadrature. The second integral has a FP integral result in terms of a path integral of the 
DD. The third integral contains both continuous and discontinuous" singular integral oper- 
ators; as such it must be treated as a Cauchy principal value integral asp(x)  --~ P(x). Unlike 
the direct FP approach, the implementation of Eq 6 in Ref 11 is more like the use of 
integration by parts to regularize the hypersingular traction BIE, than like the direct FP 
approach used in Ref 10. The use of numerical quadrature of the traction BIE identity (Eq 
6) requires such regularization, as will be further detailed in the discussion of numerical 
implementations. 

A (third) FP approach will now be applied to the static Somigliana identity for the DD, 
Eq 1. The integral operator will be manipulated into forms for which the divergence theorem 
and Stoke's theorem provide a transformation from surface integrals into path integrals, for 
which the F P  proofs are given in the Appendix. The approach is not limited to planar cracks 
and is easily implemented for multiple cracks. 

The formulation begins by taking the first term in the top line integral in Eq 1; this term 
can be modified in form so as to take advantage of Stoke's theorem in the area integration. 
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The modifications are given as follows 

fy~kjf, iA~'~idSZ fF~kj(~),il~lAgidS 

(7) 

The yi derivative in the second integral in Eq 7 is taken outside the terms involving the 
distance r(x,y) and the displacement discontinuity, Aui, but not outside the normal vector, 
nh thereby including the case of nonflat cracks. As given in the second line, the change in 
the derivative is canceled by the following, negative term. A third term is then subtracted 
from the first, to form a combination that can be integrated through Stoke's theorem. The 
fourth term in the integral cancels the term included for application of Stoke's theorem. 
The integral operator is continuous as p(x) --> P(x), and the FP interpretation for Stoke's 
theorem is written for a smooth surface F as 

fr (F~n/ - F4ni)dS = ~'/' ~r Fdxm (8) 

where ~,~ji is the permutation symbol. The resulting integral for the first term in Eq 1 may 
then be written as 

(9) 

The FP of Eq 9 exists for p(x) ~ P(x), based on the development in the Appendix, for 
continuous DD. The result requires that the DD have a unique set of derivatives at P(x). 
Implementation of Eq 9 can be made to problems with discontinuous DD fields at points 
other than P(x) by the inclusion of the line integral term, in the preceding equation. This 
will be discussed briefly in the numerical implementation section, Eqs 18 to 20. 

The preceding process of substitution and integration may be performed for each of the 
three terms in the first integral in Eq 1. When complete, it can be seen that the set of path 
integrals is zero for continuous DD on F, and the terms corresponding to the first surface 
integral in Eq 9 combine to form the discontinuity of the stress tensor (A~j  = 0) from the 
upper to the lower surface of F. This latter interpretation holds only for the case that the 
derivatives of the DD exist uniquely at P(x). The Laplacian of (l/r) is zero for all interior 
points; for the case of taking the interior point to the surface F, the FP of the operator is 
also zero, as shown in the Appendix. The first integral from Eq 1 is then given by the result 

41v ~yOi(p ) = ~ -  v 8~jni + giknj + 8onk .tAui.,(Q)dS(Q) 
Ix (10) 

The resulting equation is no longer hypersingular, as one of the derivatives has been 
transferred to the DD term on F. The result has a zero Cauchy principal value, so long as 
the derivatives of the DD are uniquely defined at all points P(x) on F. The gradient operation 
on the DD involves the normal derivative in the case of nonflat cracks. In such cases, the 
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normal derivative of the displacement will have to be eliminated through Hooke's law in 
order to have a true BIE formulation. This substitution poses no problems for the nonflat 
crack case. 

Following a similar process, the first three terms in the second integral in Eq 1 may be 
written in terms of path integrals of the DD at the crack front (zero values, except for 
surface crack problems), and additional terms. The terms arising from the first integration- 
by-parts terms combine to cancel the last term in the second integral in Eq 1. The complete 
results for the second integral are then found to be given by 

8---Ev 0.7,j(P) = ~ -  v r j,,[n,Au,., - n,Au,,,] 

+ V2rj[n~Au~.~ - nkAu~.~] + V2rk[n~Au~.j- njAuij]}dS(Q ) (11) 

It is to be noted that both Eqs 10 and 11 are true for any crack surface, so long as the 
surface is regular (for example, piecewise smooth). Further, the results are totally regular 
as p(x) ---, P(x). It can also be shown, using local coordinates, that the results in Eq 11 only 
involve derivatives in the surface F, and not normal to it, as shown in different form in Ref 
12. This is a common result of the integration-by-parts approach, although the forms are 
different. Thus, these results combine to form another traction BIE for the DD problem. 

The results obtained by combining Eqs 10 and 11 may be applied to the case of a piecewise- 
flat crack in order to compare the form of the terms to earlier formulations. We take the 
plane of the crack, F, to be given by the two coordinates x~, 13 = 1,2. The normal is taken 
to be in the -x3 direction, such that ni = -5i3. It is convenient to write 0.~j(x) in terms of 
the terms that correspond to the tractions on F, 0"33 , and %3 as follows 

~x 1 - 1) - " " 1 - p [r333Aua.. - r33.Au3.~ldS(Q) ( 1 2 )  

and as 

8__~ (Y~3(P) = --fr V2r~Au~~(Q)dS(Q) - fr V2r3Au~3(Q)dS(Q) ~x 

2 r - 1 - v  - fv [ ( ~ -  v .33~ V2r.~)Au~.~(Q) - 2 r.3~Au3.~(Q) + V2r.3Au3.~(Q)]dS(Q) (13) 

These relationships hold for any point off the crack. The condition of local crack surface 
stress equilibrium (A0.(x) = 0.(x +) -- 0.(x ) = 0) is imbedded in the traction BIE. The 
limiting form for points on the crack surface is obtained by setting x3 = 0, recognizing that 
the kernel terms with odd-order derivatives with respect to x3 are zero for P(x) E F. The 
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final forms of Eqs 12 and 13 are then obtained as the following principal value (PV) integrals 
(see the Appendix) 

and 

ix + 2 VZr~Au~,~(Q)]dS(Q) (15) 4"rr ~ = - f<r> [ V2r~Au~~(Q) 1 v r33~Au~*'*(Q) - 

where the derivative term r33~ - -  - -  (1/r2)r~. The PV for the exclusion surface, F~, is zero 
in this case due to the zero value integral of the first-order trigonometric functions, r.,, in 
each term. 

The preceding results are suitable traction boundary integral equations for the crack 
surface, F, subject to applied crack surface tractions. As has been shown in Ref 8, the 
limiting forms of these equations for the field point taken to F results in the Cauchy principal 
value interpretation for the integrals, so long as the DD has continuous inplane derivatives 
at the limiting point. Otherwise, the final forms of Eqs 14 and 15 are unchanged from those 
given. 

All of the integration-by-parts approaches appear to produce the same traction BIE for 
the normal stress, while the results for the shear tractions differ in their detailed forms. 
However, these authors believe that it is possible to transform all such traction BIE results 
into the same final form without affecting the numerical integration issues. We also believe, 
but have not proven, that all of the various forms of the traction BIE, so derived, are 
applicable to piecewise-flat cracks, so long as the integration is performed in a local coor- 
dinate system. 

Numerical Quadrature Issues 

Reference 8 reviews the numerical quadrature problems for traction BIE formulations 
found by earlier authors. The central issue in developing numerical quadrature algorithms, 
that was not properly treated in some of the earliest work, is the need for unique values of 
the derivatives of the DD at the collocation point P(x) on the crack surface, F. The work 
reported in Ref 8 found an additional problem in traction BIE quadrature having to do with 
the principal value interpretation of the integrals. When using Gaussian integration (or 
other, numerical quadratures) for a principal value area integral, the Gauss points must be 
placed symmetrically around the singularity. If the points are not symmetric, the local 
integration on the area around P(x) does not satisfy the principal value requirement, resulting 
in significant numerical errors at the collocation point. 

The two recent FP approaches to the traction BIE formulation [10,11] resolve these 
problems in unique and creative ways. In the first [10], the need for single-valued derivatives 
of the DD is accounted for by a smooth interpolation of these variables over a polygon 
"centered" at P(x). The authors then use exact integrations of the BIE kernel functions for 
the interpolation of the DD over F. 

Reference 11 uses curved isoparametric boundary element interpolations, as did Ref 8. 
The regularization process used on the hypersingular integrand is essentially equivalent in 
numerical terms to that used in Ref 8 to assure a proper numerical treatment of the principal 
value integrands, although the details of that statement require extensive comparisons of 
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each paper's algorithms. The requirement for single-valued derivatives of the DD at P(x) 
is satisfied by using nonconforming boundary elements for which the collocation points are 
not at the nodes of the elements, but are at interior points of the element. A result of the 
use of nonconforming elements is the need to account for discontinuities in the DD along 
element edges, by including the line integrals of the DD terms, such as in Eq 9. 

The current paper attempts to combines the best of these approaches to quadrature of 
the traction BIE, based on a form of the integral equations developed by an integration- 
by-parts strategy. The boundary elements are linear triangular elements for which exact 
integrations of the integral equation kernel functions are available [13]. The boundary 
collocation points are taken at interior points in the triangular elements, resulting in a 
nonconforming interpretation of the DD on F. As indicated earlier, previous authors have 
used a variety of paths to the integration-by-parts of the traction BIE formulation. The 
second author of this paper has recently developed another regularization process [14] that 
makes use of clear, physically based sets of integration-by-parts substitutions, thereby re- 
moving some of the ad hoc elements of the derivations in Ref 7. The approach in Ref I3 
is the one actually used for the numerical examples contained herein. 

The Somigliana identity, Eq 1, is again the basis of the new formulation. The formulation 
considers the potential for multiple cracks by taking two source points, P(~,-q), where ({,-q) 
refer to two surfaces, Fe and F~. The traction at the location of each surface due to the DD 
at the other surface is given as 

t~(~) = 6kj(~)nj(~) = n/(~) frn ?2ki(~,Qn)Au,(Q,~)dS(Qn) (16) 

and as 

{k('q) 6kJ(vl)nj('q) = ni('q) fr~ "2~Ji('q'Q~)Aui(Qr (17) 

As shown in Ref 13, each of these Somigliana identity equations can be regularized in 
the local crack surface coordinate systems such that they apply for points off the cracks and 
in the cracks. The Somigliana identities are then integrated-by-parts to obtain the following 
general traction BIE results 

tj(p) = fr Kj,~(p,Q)2xu,.~(Q)dS(Q) + ~or Gj,(p,Q)~u~(Q)ds(Q) (18) 

The boundary is next divided into triangular elements over which the displacement dis- 
continuity varies linearly. For the nth triangle, F n, we represent the DD and its inplane 
derivative in the "local" coordinate system using interpolation operators D D, and N as 

Aui(Q) = NT(Q)~,  

where Aup is evaluated at the three vertices of the nth triangle. The underlined symbol 
denotes a matrix operator. The DD is included in this implementation for each element 
boundary, except at the crack front, due to use of nonconforming boundary elements. 
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Then, the traction BIE for a given surface of DD can be written in the following operational 
form 

(20) 

or in more compact form as 

t j (p)  = giAu7 (21) 

This result applies for each of the crack surfaces. The terms in Eq 20 have been integrated 
exactly such that the required principal value interpretation is fully and exactly accounted 
for. This is in the same spirit as done in Ref 10. The resulting traction BIE may be applied 
to curved cracks by representing each as a set of piecewise-flat cracks. It is only necessary 
to collocate each of the traction results over each of the crack surfaces, at the n boundary 
element collocation points 

_t" = g""Au" (22) 

In Eq 22, _t n is a 3c n row vector, where c ~ is the set of traction collocation points; Au_ is a 
3d ~ column vector, where d n denotes the number of vertices on the element at which the 
DD field is unknown. 

For piecewise-flat models of curved cracks, we let R" denote the orthogonal matrix that 
transforms vector representations in the local-crack surface reference frame into the global 
coordinate system, denoted by upper-case symbols. Then 

t_" = G"nAu" (23) 

where 

G.~ = R . g ~ . R . r  

At this point, the DD on each of the m crack surfaces is simultaneously treated through 
superposition of all the traction BIE's for each DD by the summation 

M 

_th: ~ GhmA_u " (24) 
m =  1 

In order to obtain a square set of equations, we take three collocation points for each of 
the triangular elements. The three collocation points in each triangular element are taken 
to be along the axes connecting the element centroid to the vertices, at 60% of the distance 
from the centroid to the vertex. Fewer collocation points are needed for the elements along 
the crack front, where the DD at the crack front vanishes, in order to retain a square system 
of equations. The selection of the coordinates of these points in the triangle is based on 
numerical experience described in detail in Ref 13. 

Numerical Results for Multiple and Nonplanar Cracks 

The present numerical results are relevant to the analysis of cracks imbedded in an infinite 
medium subjected to a remote loading and are mainly intended to demonstrate the appli- 
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cability of the traction BIE to the case of nonplanar and multiple cracks. All the examples 
considered are for three-dimensional cracks whose geometries simulate two-dimensional 
angled and curved cracks (plane strain) in order that direct comparison to known solutions 
is possible. The case of a plane, isolated crack is also considered with the purpose of assessing 
the performance of the adopted technique in a simple situation. A planar crack surface 
"strip," parallel to the x2 axis, is used to model each crack surface segment in the two- 
dimensional cross sections shown in Fig. 1. Each strip, as defined in Fig. 2, is of variable 
width conforming to the maps in Fig. 1. Each strip is modeled symmetrically with respect 
to the plane, x2 = 0, by eight triangular elements, keeping the strip mesh along the xz 
direction unaltered in each example. The strips are taken to have very great length in the 
x2 direction in order that plane strain conditions are modeled. This modeling approach in 
no way detracts from the three-dimensional character of the solution algorithm, even though 
the models clearly are most accurate only near the axis, x2 = 0. Further, while three of the 
crack geometries are symmetric with respect to xl = 0, no symmetry is assumed in the 
numerical implementation of the traction BIE for these examples. 

A remote applied stress of ~r;~ 3 = 1000 (stress units) has been considered in all examples. 
The applied stress of ~r?3 - 1000 was also considered in the first example to validate the 
shear loading solution. The following values of material constants have been adopted: E = 
106 (stress units), v = 0.3. 

Unless otherwise specified, the DD results reported are average values obtained by weight- 
ing the DD values at adjacent element vertices (incompatible model). The weighting factors 
are the amplitudes of the element vertex angles, normalized by 360 ~ The weighted DD 
values are denoted by 2xu~ ~. The quantity 

[Au~ v -  • 
~, = max ~u ( (25) 

represents the maximum discrepancy between the weighted DD and the nodal DD, for 
k-elements surrounding the mesh point (element vertex) of interest. The discrepancy be- 
tween the reported DD results and the reference values of DD will be denoted by 

d e -  ( A u f - -  Au av) (26) 
A u f  

Example I 

The isolated straight crack in Fig. la ,  in which a = 5 units, is modeled by 14 strips of 
elements, the mesh points on the xl axis being located at x, = 0.0, +1.5,  +_3.0, +4.0,  
+_ 4.8, +_ 4.9, +_ 5.0. The discretization consists of 75 mesh points and 112 elements with 312 
DD unknowns. Table 1 displays the solution results, 8, d, for representative mesh-points 
along the Xx axis given remote applied tension and shear stresses. The reference solution is 
the exact two-dimensional DD solution given by 

Au, = [4(1 - vZ)lElcr~C,(a z - x2) '/z (i = 1, 3) (27) 

Table 1 clearly indicates the discrepancies that exist in nodal estimates of the local DD 
using the incompatible element modeling approach, especially near the crack tip. However,  
Table 1 also indicates that the weighted average values of the nodal DD are quite accurate, 
even without the use of a special crack-tip interpolation in the current numerical imple- 
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FIG. 2--Two representative planar crack surface element strips showing collocation points as heavy 
dots; crack front elements are at maximum x I. 

mentation. The normal stress and shear stress solutions are of essentially the same degree 
of accuracy, as expected. 

Example II 

This example considers the angled crack in Fig. lb, for which b = 10 and 2c = 10 + 
10X/2/2. The meshes used on the horizontal and inclined (45 ~ portion of the crack surface 
are identical. The mesh points along the x~ axis are located at x~ = -10.0 ,  - 9 . 9 ,  -9 .8 ,  
-9 .5 ,  -8 .6 ,  -7 .0 ,  -5 .2 ,  -3 .4 ,  -1 .6 ,  0.0. The total BEM mesh includes 144 elements 
with 95 mesh points. The number of DD unknowns is 1224. 

A reference solution for the corresponding two-dimensional DD problem has been ob- 
tained using the code BIECRX [3] that uses a Green's function approach to modeling the 
stress-free crack. In the BIECRX model considered, the horizontal portion of the crack is 
modeled as an open notch with a notch surface separation of 0.45 distance units. The crack 
branch is exactly modeled with the imbedded Green's function in BIECRX. A similar 
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TABLE 1--DD solution comparisons for Example 1. 

xJa, 
X 2 = 0 ~3, % d3, % ~ '  % d~, % 

0,0 0.26 -0.55 0.26 -0.55 
0,8 0.39 -0.82 0.5 -0.73 
0,92 0.70 - 0.04 0.73 0.07 
0.96 0.44 2.5 0.48 2.6 
0,98 4.1 2.5 4.1 2.6 

modeling strategy was demonstrated for other branched crack problems [15]. The stress- 
intensity factors (SIFs) KI and KII at the inclined crack tip as well as the DD along the upper 
surface of the branched crack are computed with comparable accuracy (for points away from 
the notch surfaces). 

Table 2 compares the SIF solutions obtained by BIECRX with the results of Tada [16]. 
The results are in essential agreement, given that both are numerical results. DD values 
obtained from BIECRX along the upper half of the crack branch, segment BC, are used 
as reference values for the present three-dimensional traction BIE results. The results are 
given in Table 3. 

The results in Table 3 clearly demonstrate the good accuracy for the branched crack 
solution that was obtained with the traction BIE code. The solution becomes mode accurate 
away from the crack tip, but in all cases the comparison is satisfactory. As the angle of the 
crack branch increases, we can expect the percent error in dl to increase, as the actual DD 
in the normal direction decreases and the DD error remains at about the same magnitude. 

Example III 

The circular crack geometry is shown in Fig. lc with R = 10 and a = 45 ~ The crack is 
modeled with 18 element strips. The locations for the 10 mesh points with x2 = 0, xl > 0 
is given by mapping onto a constant radius circle with angles of 0, 15, 30, 35, 40 ~ from the 
vertical through the center; the last five nodes approaching the crack tip are equidistant 
from each other and lie on a straight line segment of length = 0.4, tangent to the original 
crack shape at the crack tip (and hence at a slope of 45~ Thus, there are four coplanar 
element strips in the vicinity of each crack front. The size of the discretized problem is the 
same as for Example II. 

The analysis of this example focused on the evaluation of the SIFs through extrapolation 
from the DD values relevant to the mesh points (with x2 = 0) located on the four coplanar 
strips along the crack edge. Exact plane strain reference values for the SIFs is again available 
from Tada [16]. The stress intensity factors are taken for the DD problem from the usual 
DD asymptotic solution near the crack tip 

x/2~ 
K~J 4(1 - v) [Au, J 

TABLE 2--Stress-intensity factor comparisons for the branched 
crack, Example I1. 

BIECRX Ref 16 

K~/(o%~/~c) 0.565 0.569 
KiJ(o'~3N/wc ) 0.638 0.641 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



CRUSE AND NOVATI ON BOUNDARY INTEGRAL EQUATIONS 

TABLE 3--Comparison of the DD results with the BIECRX data for Example 11. 

327 

AU 1 �9 10 4 AU 3 �9 10 3 
r rib Aul �9 10 4 AU 3 �9 10 3 BIECRX BIECRX d1,% d 3 , %  

0.1 0.01 2.352 3.990 2.456 4.046 4.23 1.38 
0.2 0.02 3.340 5.656 3.480 5.709 4.02 0.93 
0.5 0.05 5.426 9.140 5.540 8.970 2.06 - 1.90 
1.4 0.14 9.293 14.999 9.446 14.719 1.62 - 1.90 
3.0 0.30 14.176 21.046 14.247 20.763 0.50 - 1.36 
4.8 0.48 18.530 25.359 18.405 25.086 - 0.68 - 1.10 

where Au~ and Au, are the weighted averaged normal  and tangential D D  components  at 
one of  the mesh points. The distance from the crack front is denoted by r. A linear ex- 
t rapolat ion of these effective stress-intensity factor values in Eq  28 for r ~ 0 is per formed 
using a least-squares fit, and provides the est imated crack-tip SIFs. The results are given in 
Table 4 where K 0 = %3~ ",/{w(R~r/4)}, the SIF solution for a flat crack of the width R~r/2. 
The value of K 0 for this problem (R = 10) is 4967.3 SIF units. The least square linear fit 
of the effective SIF data in Table  4 is then extrapolated to the crack front to obtain est imated 
SIF solutions. The  extrapolated values are given by K~ = 2486.3 SIF units, and Kn = 2757.8 
SIF units. The solutions from Tada [16] are 2563.6 and 2861.5 SIF units, respectively. The 
errors are then 3 and 4%,  respectively. These results are quite satisfactory and demonstra te  
the applicability of the traction BIE implementa t ion for curved cracks. 

Example IV 

The multiple crack configuration is shown in Fig. ld ,  with a = 5. Two cases have been 
studied, with h/a = 1 and h/a = 0.2. Each of the two plane surfaces is discretized by a 
mesh of 16 e lement  strips derived from the mesh of Example  I by simply subdividing each 
of the two edge strips into two 0.05 unit width strips. Addi t ional  mesh points are taken at 
xl = 4.95. For  the overall  model ,  there are 170 mesh points, 256 elements,  and 2160 D D  
unknowns. 

As in the previous example,  the SIF solutions are obtained by extrapolat ion to the crack 
front. Comparison is made  to the reference solution [17]. The reference solutions are cited 
to be 1% accurate. Table  5 summarizes the comparisons with the traction B I E  solutions. 
For  this example,  K0 = ~ / ( ~ a )  = 3963.3 SIF units. The extrapolat ion of the effective 
SIF data in Table 5 is based on the four points nearest  the crack tip, and does not  use the 
r = 1 data. The solution from Ref  17 is given for the two ratios in Tables 5 in 6. The Mode  
I values are seen to be in excellent agreement  between the two solution results. However ,  
the Mode  II results are less accurate on an absolute basis. The results suggest that the 

TABLE 4--Extrapolated stress-intensity factors for curved 
crack, Example III. 

r K~ K~ K'~/Ko K~,/Ko 

0.1 2510.8 2780.9 0.5055 0.5598 
0.2 2494.7 2757.9 0.5022 0.5552 
0.3 2514.5 2774.8 0.5062 0.5586 
0.4 2543.8 2804.1 0.5121 0.5645 
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TABLE 5--Comparisons of stress-intensity factor solutions for the multiple crack, Example IV. 

h/a = 0.2 h/a = 1.0 

r r/a ~3,% 8~,% K~/Ko K~/Ko 8~,,~/c ~,.% K~/Ko K~/Ko 

1.0 0.20 0.61 1.1 0.6057 0.1245 0.47 0 .77  0 . 7 9 8 5  0.0512 
0.4 0.08 0.80 1.1 0.6755 0.1532 0.72 0 .89  0 . 8 3 1 7  0.0578 
0.2 0.04 0.50 0 .53  0 . 6 9 0 9  0.1574 0.47 0 .49  0 . 8 2 9 5  0.0588 
0.1 0.02 0.52 0 .52  0 . 6 9 0 8  0.1572 0.50 0 .52  0 . 8 1 8 4  0.0586 
0.05 0.01 3.9 3.9 0.6985 0.1587 3.8 3.9 0.8217 0.0592 

Extrapolated values 0.7002 0.1594 0.8188 0.0593 

TABLE 6--Reference 16 stress-intensity factor results. 

h/a = 0.2 h/a = 1.0 

KI/K(~ Kn/Ko K~/K,) Klz/ Ko 

0.700 0.170 0.835 0.065 

amount of numerical error is the same for both modes, but is magnified on a relative basis, 
as the Mode II solutions are about one order of magnitude smaller than the Mode I values. 
Regardless, the comparison demonstrates that the implementation of the traction BIE is 

also valid for the case of multiple cracks. 
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APPENDIX 

The elastic Somigliana identity may be regularized through the use of FP results for various 
terms in the hypersingular integral equation for the DD. The FP of a hypersingular integral 
is a generalization of the concept of the Cauehy principal value of a singular integral. In 
the general case, let us define the value of a (hyper)singular integral in the following manner 

I(P) l imi t (  {. . .}dS(Q) = limit f~ {. . .}dS(Q) + limit ~_ {. . .}dS(Q) 
p ~ p  fly p_~p " I ' e  p ~ p  

(29) 

where F~ is taken to be a piecewise-smooth surface "centered" at the singular point r(p,Q) 
= 0. If the term in the brackets is weakly singular and the third integral is zero, then the 
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integrals are weakly singular, but regular. If the third term is finite (say, equal to C), then 
the singular integral is discontinuous and has a Cauchy principal value. If the second and 
third integrals are unbounded in the limit, then the integral is said to be hypersingular. We 
will now consider this case for integrals that can be transformed by Stoke's theorem or by 
the divergence theorem into path integrals. 

Hypersingular Integrals 

Assume first that the hypersingular integral can be written in the form of the Stoke's 
integral theorem 

fr (F.inj - F4ni)dS = e,,,ji ~r Fdx., (30) 

where the integrand, F, must be continuous and have continuous derivatives. Let the in- 
tegrand also be hypersingular (for example, 0(1/r "+ 1); n >- 2 for three-dimensional problems). 
Let P(x) be on F, adjacent to an "interior" point, p(x), such that the distance between the 
points is A, and 0 < A < ~. Equation 30 applies to any singular, differentiable function of 
r(p,Q), so long as A 4~ 0. 

Question 1 

What is the order, in terms of A, of the following equation written for the surface F~, 
where e > 0? 

13= fF~ ~(OF(P'Q)~xi Hi(Q ) Of(p,Q)oxj t'li(O)) dS(Q) -Emji ~Fe f(r'Q)dxrn(e) (3a) 

For A > 0, the integrand in Eq 31 can be transformed by Stoke's theorem, such that 

= 0  A 13 = e,,,.,i ~,rE {F(P,Q) - F(P,Q)}d~(Q) (E,-~+I) (32) 

where 0 ( 0 )  indicates the order of magnitude of the contained term. Thus, in the limit as 
A ~ 0, the integral is continuous at P(x) and 13 = 0 for any finite ~, and any piecewise- 
smooth surface F~. 

The hypersingular integral operator may also contain terms that can be written in terms 
of the Laplacian operator, which in turn may be transformed to a line integral through the 
divergence theorem. Again, the integrand is taken to be a hypersingular function of 
r(p,Q). This case results in the following question, with n -> 2. 

Question 2 

What is the order, in terms of A, of the following equation written for the surface F~, 
where e > 0? 

f OF(P,Q) 14 = V2F(p,Q)dS(Q) - J~,(~ On dcy(Q) (33) 
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For A > 0, the first term in Eq 33 is continuous as p(x) ~ P(x), and can be transformed 
by the divergence theorem, such that 

(34) 

Thus, as before, the integrand is continuous at P(x) and the limit of Eq 34 as A ~ 0 is zero, 
for any ~ > 0, and for any piecewise-smooth FE. 

Thus, since the hypersingular integrands are continuous at P(x), we may apply Stoke's 
theorem and the divergence theorem without restriction for A > 0, and take the limit as 
A --. 0, for any order hypersingularity in r(p,Q) with the results 

limit 72FdS(Q) = d~(Q) 
~ 0  e FE O n  

(35) 

The integrands in Eq 29 over the regular surface F - F~ are nonsingular and continuous 
for ~ > 0; thus, it is easily shown that the following identities also hold 

fr V2FdS= ~o OF(P,Q) d~ - ~o aF(P,Q) d~ 
re  r a n  rE Orl 

(36) 

where, in Eq 36, the path/normal is taken in the same sense as those in Eq 35. We may 
therefore combine the equations, seeing that the opposite terms cancel on F~. The resulting 
hypersingular equations are then given for any evaluation point by 

I(P) = limit (Fi(p,Q)nj F j(p,Q)n,)dS(Q) E,,j, r 

I(P) = limi0t V2F(P'Q)dS(Q) = r On 

Equation 37 defines the finite part integrals for the hypersingular integrals, as the nonsingular 
result of the cancellation of the area integral on F~ with the path integral aF~ from the 
integral on F - F~. Such FP results may be denoted by the double slash on the integral 
symbol 

f=v (F, in/ - Fjni)dS - e,~ji ~r F(P,Q)dxm 

~ VZFd S _ ~ OF(P,Q) d~ (38) 
r On 
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The essential common element of all evaluations of hypersingular integrals is the require- 
ment of continuity of the operator for p(x) ~ P(x), and the identification of all unbounded 
terms and their subsequent discarding. The assurance that these unbounded terms can be 
disregarded is given in the proofs such as given in this Appendix. 

Cauchy Principal Value (PV) 

In the case that the integrand in Eq 29 is singular (n = 1), the application of Stoke's 
theorem in Eq 30 or the divergence theorem in Eq 33 results in the following limiting 
approximations 

(39) 

14 = ~or~ (OF(-~n Q) OF(-~nQ))d~(Q) = O(1 ) (40) 

In the case of Eq 39, the integral operator is continuous as p(x) ~ P(x), and both of the 
two questions used for the hypersingular case also hold for the PV case. However, the 
results are usually presented as Cauchy PV results with a zero contribution on F~ due to a 
zero-value result of integrating the trigonometric part of the integrand. In the case of Eq 
40, we have the result for a discontinuous integrand; that is, the result is zero for P(x), and 
of O(1) for A > 0. For these cases, the results are presented as PVs of the integrals in the 
following form 

(41) 

where < F >  denotes the PV interpretation of the area integral. 
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ABSTRACT: The three-dimensional asymptotic singularity fields for surface cracks and corner 
at a bimaterial interface are evaluated by the finite element iterative method (FEIM). The 
FEIM approach to three-dimensional cases is described and extended to evaluate the second 
singular term. The results for the bimaterial surface crack are correlated with experimental 
results, and the implications of the corner singularity on adhesive failure are discussed. It is 
shown that surface singularities are stronger than two-dimensional singularities in both cases. 
which means that commonly used plain-strain conditions at interfaces are nonconservative. 

KEY WORDS: asymptotic fields, singularity, three-dimensional singularities, free surface, 
interfaces, bimaterials, adhesives, delamination, finite element method, eigenvalue analysis, 
numerical methods, fracture mechanics, fatigue (materials) 

Nomenclature 

El,  E 2 Elastic modulus 
U, {U} Displacement  field 

i Imaginary number  = ~ - - f  

K Stress intensity 
kl, k2 Real  and imaginary parts of the stress intensities 

Stress tensor 
k Stress singularity 

a,  e Real  and imaginary parts of the stress singularity 
O, d~ Spherical angles 
Re{'} Real  part of the function 

v Poisson's ratio 
r, R,, Rb Radial distance from point of singularity 

F, G Displacement  eigenfunction 
E Summation sign 
A Eigenvalue 

X, Y Eigenfunction 

Fracture failure is truly a three-dimensional  phenomena.  Since the inception of fracture 
mechanics, two-dimensional  plain-strain approximations were used. This has carried the 
field to its current successful achievements.  In dealing with homogeneous  media,  two- 
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dimensional analyses are satisfactory and in most cases lead to conservative results. As 
demonstrated here, this two-dimensional analysis could be nonconservative in nonhomo- 
geneous media. It is therefore argued that three-dimensional fracture analyses are funda- 
mental in the understanding of failure processes at interfaces and the development of fracture 
criteria. In addition, since measurements are usually performed at the surface, three- 
dimensional fracture mechanics analyses are needed for the interpretation of tests results. 

Evaluating three-dimensional singularities of the asymptotic field are among the most 
difficult eigenvalue problems in fracture mechanics, therefore numerical methods represent 
the only practical means for their calculation. In spite of the fact that analytical solutions 
(such as the eigenfunction expansion method) were performed for the evaluation of the 
three-dimensional singularity at the free surface of an elastic homogeneous media, analytical 
methods are not general enough to deal with the complex problem of bimaterial fracture. 
In addition, since no closed-form solution can be found for cases involving nonhomogeneous 
media, the asymptotic field is a function of the material properties and therefore the analysis 
has to be performed for each specific case. The need for a numerical method to evaluate 
the asymptotic field (eigenvalue problems) as well as the stress-intensity factors is becoming 
more apparent as in the cases of cracks in composite materials and at interfaces. Crack-tip 
Elements are successful in representing the singular field in homogeneous media when the 
singularity is known a priori, and the only parameters to be evaluated are the stress-intensity 
factor, J-integral, or the energy release rate. Still, difficulties arise in the use of such solutions, 
especially in anisotropic media because of the complexity of the expressions of the analytical 
solutions of the asymptotic field [1]. Therefore, the need for solving eigenvalue fracture 
problems in these cases and in bimaterial interfaces cannot be overemphasized. 

In the treatment of nonhomogeneous media and cracks at interfaces, the finite element 
iterative method (FEIM) was used in evaluating both the asymptotic field and the fracture 
parameters [2-4]. The method has the capability to handle two-dimensional and three- 
dimensional problems as well as plates and shells. FEIM relies on the use of general purpose 
finite element (FE) programs that should have the desired library of elements. It should be 
noted that FEIM requires no additional modification to the FE programs other than the 
ability to manipulate the results in an iterative manner. The global-local nature of the 
method, its generality, and ease of its use, makes the method attractive for the analyst as 
well as the designer. Application of general numerical methods such as FEIM is even more 
desirable in most problems of complex material systems, such as in the micromechanics of 
composite materials, polycrystaline interfaces, and interfaces of adhesives and thin films, 
where analytical methods cannot be performed. 

In this paper, we will give a brief review of the FEIM, its use in three-dimensional 
singularities, and its accuracy in the case of homogeneous media. The results for surface 
singularity near the terminal point of an interface crack at the free surface of an elastic 
bimaterial are discussed. It is shown that the bimaterial surface crack possesses a super 
singularity (that is, > r - ~  5). These three-dimensional FEIM results are then compared with 
experimental results and observations. Implications on failure in adhesive joints and bi- 
materials are also discussed. The case of a three-dimensional corner bimaterial interface is 
also discussed. In this case where no crack exists, the singularity could reach r 0.5 for v = 
0.499. Implications of these results on the failure of composites and adhesives are also 
discussed. 

The Finite Element Iterative Method (FEIM) for Three-Dimensional Cases 

In applying the FEIM to three-dimensional singularity problems, a spherical mesh is 
constructed with its center at the point of the singularity of interest. Figure 1 shows typical 
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meshes for surface cracks and corners. The mesh consists of layers of spherical shells, at 
radial distances that are increasing quadratically from the origin of the singularity. References 
2 and 3 give in detail the technique and its theoretical basis. .For eigenvalue analysis, an 
arbitrary displacement field, URb , is imposed first on the outermost shell, designated in Fig. 
1 by the radius, R b. However, since the power of the singularity of the three-dimensional 
asymptotic fields could depend on the loading mode (Modes I, II, or III), the imposed 
displacement field should reflect the mode of interest. An analysis is then carried out and 
the resulting displacements, /JR,, at an inner radius, R,, close to the singularity are scaled 
by A1 to make a crack opening displacement (COD) = 1.0 applied at the outer boundary, 
Rb, and the analysis is repeated again. This procedure is repeated several times until con- 
vergence is achieved according to the following condition [2] 

(x{U%t~} + [3{U,~t,} + "Y{U~b} = O, ~, [3, ~ = constants (1) 

where j, k, and l are any iteration number after convergence. It should be emphasized that 
the basic results of the analysis, URb, are obtained from any general-purpose FE program. 
The FEIM operations involve only post-processing of these results. In the FEIM, the asymp- 
totic displacement field is assumed to be of the form 

U = 2 U . . . . .  k l r '  ~F'(v,O,d~)+ 2 k,,,r' Fm(v,O,+) 
r n  1 m 2 

(2) 

where )k 1 > ?t 2 > )% . . . . . .  > h,,. 
For the most general cases, k,,,, X,,,, and F m are complex numbers and complex functions. 

In the case of a bimaterial interface crack, the first term is of the form [5] 

U = R e { ( k  1 4- ik2)r(l  ~+'~)[F(v,@,~b) + i G ( v , |  (3) 

Similar expressions can be written for the following weaker singularity terms that follow. 
This form of singular field is termed an oscillatory singular field since the stresses tend to 
oscillate with larger amplitudes as one approaches the singular point. They also lead to 
overlap and crack closure at small distances from the tip. Discussions regarding this solution 
form can be found elsewhere [17]. 

On the other hand, if the singularity is real, the asymptotic field is given by 

U = K r  (~ -A~F(v,e),cb) (4) 

It was shown in Ref 3 that after m iterations the FEIM reduces the results to those 
obtained by the power sweep of an eigenvalue problem of a transfer matrix [T]. 

{uR,} = [T] {URb} (5) 

Therefore, the resulting displacements can be expressed in terms of the linear combination 
of the complete set of the fundamental eigenfunctions of the matrix [T] 

{U~Ib} ~- ~x~i~7(3~lXl 4- /~tln~lXl 4- 2 :~ln~lXl (6) 
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where the bars represent the conjugate functions. At convergence, A1 > A2 > A3, the results 
of the iteration reduce to 

{U~b} = ATlXlXl + A7%~ (7) 

Using Eq 7, the m, m + 1, and m + 2 iterations can be written in the form 

m + 2 ~ d g ~ }  + ~dg~/~}  + ~{u~,  } : 0 (8) 

from which the characteristic equation for A is obtained 

131 + ~:A~ + 13~A~ = 0 (9) 

The stress singularity,/t = (c~ + ie), is evaluated from the roots of Eq 9, and as discussed 
in Ref 3 

A1 = (R,/Rb) ~ ~ (10) 

The resulting displacements after convergence can then be used to construct the asymptotic 
field as follows [2] 

Xl : Zl 4- iW~ = ~ [{UTe'~} + i(~{U~} - {U~'/~})/'q~] (11) 

and A1 = ~1 + i~h, and A~ - scaling factor. 
The preceding analysis leads to the evaluation of the first eigenvalue, or the strongest 

singularity. Using FEIM, it is also possible to investigate the form of the singularity of the 
second term of the expansion (Eq 2). For cases where the first singularity is real, an ortho- 
gonalization to the first eigenvector in the power sweep method is used. Therefore, the new 
trial vector, U~+I, to be imposed on the outer boundary in the iteration, will be 

G+,  = v , + ~  - ( v , + ,  . x , ) x ,  (12) 

where X1 is the normalized first eigenvector, X[X1 = 1, and V, ~1 is the resulting vector 
from any iteration. The preceding orthogonalization is proper only for the case of self- 
adjoint problems. Most interface crack problems are nonself-adjoint, and, therefore, they 
possess complex singularities (oscillatory singularities). In this case, the scheme should be 
of the form 

U s + l  = W s + l  - ( l ~ ; + l ,  y , ) X  1 ( 1 3 )  

where X ~ Y  1 = 1 and )L " Y1 = [T]rY1 �9 YI is the left-handed eigenvector and satisfies the 
preceding properties, and X1 can be calculated from Eq 11. In most of the cases studied 
here, [T] r = [T], therefore Y1 = X1, and, therefore, Eq 12 is sufficiently accurate for 
calculating the second eigenvalue. 

Three-Dimensional Surface Crack 

From an engineering design point of view, the analysis of surface cracks is probably more 
important than those in the interior, because of environmental effects. In addition, from 
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the experimental point of view, almost all measurements are performed at the surface. The 
homogeneous material surface crack was analyzed by FEIM [9] and agreed well with other 
analytical and numerical results [6, 7]. This was also verified recently by Smith [8]. 

Bimaterial three-dimensional surface cracks were recently investigated using the FEIM 
[9]. The mesh shown in Fig. la  was used to evaluate the singularity at the free surface of 
an elastic material bonded to a rigid substrate. The singularity was generally shown to be 
of a complex power, Eq 3. The real part, c~, was found to be greater than 0.5 (or the case 
of plane strain) and a strong function of Poisson's ratio, v. It increases from a = 0.5 for 
v = 0.0 to X = 0.7 for v = 0.48. Such behavior is usually termed a super singularity. The 
imaginary part starts at e = 0.174, which is the same value as plane strain at v = 0.0, and 
becomes zero at v > 0.25. 

The fact that the real part of the singularity is greater than 0.5 leads to an unbounded 
strain energy flux and J-integral at the surface. However, the strain energy density is still 
bounded, since 0 < X < 3/2. Similar results were obtained for Modes II and III for surface 
cracks in homogeneous media [7]. In the case of interracial cracks, the stress field is always 
a mixed mode, therefore, this super singularity will persist for any mode of loading. FEIM 
analysis has confirmed this conclusion for any selection of the initial {URb}. This singularity 
means that the crack would propagate at the surface before the interior (that is, the usual 
thumbnail is reversed). Correlation with experimental results is discussed later. 

In order to investigate the nature of the singularity of the second term of the asymptotic 
field, Eq 12 was used for the cases of ~ = 0, that is, v > 0.25. 

The results show that the second singularity, X2, is very close to 0.5. The values are h2 
= 0.507 for v - 0.3, X2 = 0.513 for v = 0.4, and X2 = 0.523 for v = 0.48. 

It is well known that the accuracy of the power sweep method deteriorates for the second 
eigenvalue. Therefore, one might be inclined to assume that the second singularity is ap- 
proximately equal to 0.5. In the boundary value problem, the dominate stress field will 
depend on the stress intensities associated with the first and second singularities. If the 
second stress intensity is much larger than the first, the influence of the super singularity 
or unbounded energy flux will be confined to a very small distance from the surface point, 
and the second singularity will dominate at a distance of the material grain size. 

Comparison with Experimental Results 

The comparisons discussed in this section are based only on the calculated singularity and 
the experimental observations. To perform a one-to-one correspondence between the an- 
alytical results and the experiments, the corresponding boundary value problem must be 
solved also. This however is not the subject of this paper. Therefore, we will refer to some 
other boundary value problem solutions in the literature [10-12] in order to substantiate 
comparison between the results. 

1. Surface Angle of a Propagating Interracial Crack 

In Ref 13 (Fig. 10), duplicated here in Fig. 2, a thin film of polyimide of the order of 35 
txm thick is bonded to a glass plate approximately 2 mm thick, and a straight cut is made. 
Observations of the cut test, which were performed on polyimide thin film, showed that the 
decohered region could be pinned along the cut or it could run along the cut, as shown in 
Fig. 2. Here, the lower part of this decohered region has two smaller decohesion regions 
that appear to be pinned at a point along the cut. The angle was found to be approximately 
48 ~ with the free edge of the cut. It was observed that when the crack front was at angles 
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FIG. 2--Schematic of the cut test [13]. Decohesion region from straight cut, glass plate with a film of 
polyimide. 

greater than 48 ~ the crack front would not be pinned and would propagate all along the 
free edge of the cut, as in the upper region of Fig. 2. 

The delamination fracture of such films is based on the analysis of the delamination 
geometry of the upper portion only in Fig. 2, which does not involve the free surface. It 
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was shown in Ref 13 that such delamination is governed by a mode-dependent interface 
toughness based on a critical energy release rate. This energy release rate is of special form, 
and it depends on two phase angles, which depend not only on the loading but also on local 
quantities including the singularity that governs the crack tip. This means that fracture of 
thin film interfaces depends not only on global quantities, but also on local processes at 
small distances from the crack tip. The behavior of the lower portion of the delamination 
in Fig. 2, depends on the free surface singularity along the cut. The three-dimensional 
singularity of such material (v - 0.48), at the vertex of the free surface of the cut, will 
depend on the angle of the crack front with the cut. It was found that an r-1'2 singularity 
occurs at 48 ~ for v ~- 0.49. At angles greater than 48 ~ the singularity power is greater than 
- 1/2 and reaches approximately - 0.7 for a 90 ~ crack front as was shown in Ref 9. Singtalarities 
greater than - ~/5 would thus lead to an unstable vertex (crack front) and would not 'pin the 
crack at the cut. These analytical results are therefore consistent with the preceding exper- 
imental observations, showing that crack fronts with angles greater than 48 ~ are unstable 
and propagate to the shape of the upper portion of Fig. 2. 

Results of the boundary value problem of a thin film with free surface interface are not 
available. However, in Ref 11, a three-dimensional analysis was performed using p-version 
finite element calculations to show that the corner (vertex) singularity region of dominance, 
in a nearly incompressible homogeneous media, is very strongly dependent on the boundary 
conditions and incompressibility. The region of dominance for a semielliptical surface crack 
(at the vertex) in a homogeneous media was found to be valid over distances of the order 
of 3% of the thickness of a compact tension specimen, and can reach 15% for incompressible 
materials. Delamination at interfaces poses a more complex and highly confined boundary 
condition, in addition to the polyimide incompressibility. Thus, it may lead to a large scale 
of dominance to apply to the free surface of a thin film. Therefore. these results have a 
bearing on the pinned front of the decohered region at distances of the order of micrometres 
to millimetres, where they can be related to a - 1/2 singularity. 

A second experiment discussed in Ref 14 can be also used for comparison with the results 
of FEIM given in Ref 9. In this experiment, a bimaterial double cantilever specimen is 
fractured at the interface. The bimaterial is made of glass bonded to aluminum. When side 
grooves were used, the crack propagation resulted in the normal thumbnail front. On the 
other hand, when flat surface specimens were tested, the propagation occurred at the surface 
ahead of the interior, that is, reversed thumbnail, and the crack propagation angle was 
approximately 27 ~ Figure 3 shows these results. The boundary value problem of this con- 
figuration was not performed. However, interpolation between the singular results of the 
FEIM in Ref 9 is used here. One finds that the angle of propagation for an elastic material 
of v = 0.30, on a rigid substrate (E]E2 - 0.0), is 31 ~ Extrapolating the results to the case 
of glass bonded to aluminum, this angle should be reduced, since E]E2 is not zero. which 
agrees with these experimental results. 

2. Surface Displacements" of  an Interface Crack 

Chiang et al. [15] performed surface displacement measurements on a thick aluminum 
plate using the moir6 interferometry method. The specimen had a single-edge sharp crack 
of half the width, crack length of 63.5 mm (2.5 in.) and thickness of 3.175 mm (Vs in.). The 
boundary value problem for this case was analyzed in Refs 10 through 12. The results of 
Ref 10 indicate that the effect of the weak vertex singularity at the free surface drops to 
zero within a boundary layer region of thickness of the order of 3% of the thickness of the 
plate. On the other hand, accurate measurements and analysis using the frozen stress pho- 
toelasticity and high-density moir6 interferometry [12] indicate that the thickness of the 
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FIG. 3--Crack front geometry for glass bonded to aluminum, double cantilever beam [14]. 

boundary layer exceeds 10%, that is, 0.31 mm (1/8o in.). The surface displacement results 
of Ref 14 are shown in Fig. 4. They were obtained at very small loads to guarantee elastic 
behavior. The moir6 photographs in Fig. 4 are magnified four times. Figures 4c and d show 
the corresponding FEIM results for the same free-surface displacements for v = 0.30 of the 
asymptotic field. This serves as a further correlation with the three-dimensional FEIM results 
that were reported previously in Ref 9. These results were also compared with the theoretical 
and numerical analysis of Benthem [7] and Bazant and Estenssoro [7] in Ref 9. 

The stronger singularity associated with bimaterial surface cracks was recently examined 
by Chiang et al. [16] using a white light speckle method where the surface displacements 
were measured and the singularity was calculated by extrapolation. These results also indicate 
that the surface singularity is stronger than r 05 as just discussed. 

Corner Singularity for an Adhesive Lap Joint 

In practice, it is usually common to find cracks at the adhesive corner of a lap joint, see 
Fig. 5. Investigation of the 90 ~ corner singularity has not been possible in the past because 
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FIG. 5--(a) Corner singularity in adhesive lap joint, and (b) failure at the corner. 

of the three-dimensional nature of the problem. The FEIM was applied to this problem and 
the singularity was found to be real and in the form 

U = Kr(1-x)V(v,  El~E:, O, r (14) 

where the values of (1 - ~.) are given in Table I for different values of adhesive and adherent 
elastic properties. 
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TABLE 1--Singularity at a corner interface. 

Case 
No. E]E2 vj v 2 (1 - h) 

1 0.01 0.0 0.3 1.0 
2 0.01 0.15 0.3 0.7462 
3 0.01 0.3 0.3 0.6310 
4 0.01 0.48 0.3 0.5477 
5 0.0 0.48 =0.5 
6 0.1 0.0 013 1.0 
7 0.1 0.15 0.3 0.8388 
8 0.l 0.3 0.3 0.7347 
9 0.1 0.48 0.3 0.6624 

Implications of Surface Singularity at a 90 ~ Corner 

The stress singularity in all the cases in Table 1 is weaker than a crack. However, in Case 
5, which represents the approximate properties of an adhesive and a typical adherent, the 
90 ~ corner singularity is close to that of a sharp crack, that is, r -~ a result not commonly 
recognized by adhesive designers. It is therefore anticipated that an elastomer or an adhesive 
with high Poisson's ratio (that is, close to v = 0.5) will initially fail at the corner rather than 
the interior. Once an interface crack at the surface is generated, a larger singularity will 
ensue (that is, the super singularity of a three-dimensional free-surface interface crack). This 
will aggravate the situation, leading to further propagation. Unless the stress intensity, K, 
in Eq 2 drops substantially, allowing the second singularity ( - r  -~ to take over, the interface 
surface crack will thus continue to propagate. This stress state coupled with the out-of-plane 
tension at the free surface are thought to be responsible for most of the edge failures in 
adhesive lap joints. The sketch in Fig. 5 shows such a failure scenario. 

Global Formalism of the Finite Element Iterative Method (FEIM) 

From the preceding discussion, it is essential to evaluate the stress-intensity factors for 
most of these three-dimensional cases. When the FEIM is used in stress-intensity calculation, 
that is, full boundary value problems, the initial boundary conditions {URb} for the spherical 
substructure are obtained from the global structure. One then can proceed to evaluate the 
asymptotic field as previously discussed, and the associated stress intensities can be calculated 
as subsequently shown. 

Evaluation of Stress Intensities 

It was shown in Ref 3 that the resulting eigenvector, )(1, from the iteration process in Eq 
11 could be used in evaluating the real and imaginary parts of the displacement function, 
that is 

X~ = Z + i W  = (k I + ik2)(F + iG)  (15) 

In carrying out the iterations in FEIM, one has to keep in mind that each iteration has a 
scaling factor of (Rs/Rb) 3 [18] that is essential in calculating the stress intensity factors (this 
scaling is ignored in the eigenvalue problem discussed in the previous sections). 
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If the analytical functions, F and G, are known (as given in Ref 5), then the stress 
intensities, kt and k2, can be calculated from 

kt = ( Z F  + W G ) / ( F F  + GG)  

k2 : ( W F  - ZG)/CFF + GG)  (16) 

However, if these analytical eigenfunctions are not known, a remote loading on an infinite 
domain must be analyzed first and the functions, Fand  G, are calculated using the definitions 
in Ref 5. Equation 16 would have the numerical values of F and G. 

In many cases, one is only interested in the relative values of kt and k2 in a specific 
material system under different loading conditions or geometric configurations of the spec- 
imen. For two cases, designated as I and II, one can relate the intensities using Eq 16. It 
was shown in Ref 3 that the relative values of the stress intensities can be then calculated 
from 

II/II /II/II __ Wl/ll __/I/lI I ~gi2[  = 

IIWII WI[WII _ZIW II WIWII I / ~ , , /  

, , w .  z , , w , ,  - w,w , - z I w , , j  [K ,j 07) 

The procedure for calculating the stress-intensity factors from Eq 16 is general and can 
be applied also to mixed-mode fracture in homogeneous materials by dropping the imaginary 
parts. It is also more accurate than evaluating intensities from individual points because it 
is an inner product that is similar to a contour integral around the singularity. Its accuracy 
should be even better than the J-integral because only the displacements are used in the 
calculations instead of strains. 

Conclusion 

Three-dimensional interfacial surface cracks and interfacial corner singularities were eval- 
uated using the finite element iterative method. It was shown that the interfacial surface 
crack singularity possesses a super singularity (greater than 1~Jr). This singularity reaches 
r 07 for a material with a Poisson's ratio, v = 0.48, bonded on a rigid substrate. The 
calculated asymptotic displacement field of free-surface vertex was compared with moir6 
interferometry measurements. Predicted crack propagation at the free surfa/:e rather than 
the plain-strain condition in the interior compared favorably with experimental results of 
glass aluminum interface cracks. 

A result of practical importance was presented on the three-dimensional interfacial 906 
corner, it was found that the singularity approaches r o s that is the same as a plain-strain 
crack. This singularity is also higher than a two-dimensional 90 ~ corner (approaches a max- 
imum of r-~ These results lead to the conclusion that an adhesive lap joint would fail at 
the free surface before the plane-strain center. 

It was concluded from the bimaterial free-surface singularity results discussed here that 
two-dimensional analysis at interfaces is nonconservative and three-dimensional analysis 
must be used. The FEIM was demonstrated to offer a general global-local approach for 
evaluating the asymptotic field as well as the stress-intensity factors. 
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ABSTRACT: An elliptical or partial-elliptical crack (either embedded or surface) of any ori- 
entation in a flat plate subjected to arbitrary crack surface loading is studied in this paper. 
Based on two analytical solutions, an elliptical crack embedded in an infinite space subjected 
to arbitrary crack surface loading and an uncracked flat plate subjected to arbitrary loading 
on its bounding surfaces, an alternating analytical procedure has been developed by the authors 
for the three-dimensional crack problem. The alternating analytical technique for the elliptical 
crack problem has been also implemented into a user-friendly computer software for use in 
mainframe and personal computers. 

KEY WORDS: linear elastic fracture mechanics, mixed-mode fracture, partial-elliptical crack, 
surface crack, embedded crack, flat plate, alternating technique, analytical solutions, three- 
dimensional problems, fracture mechanics, fatigue (materials) 

Many fracture mechanics problems associated with structural components  such as pressure 
vessels and airplane fuselages can be idealized as an elliptical or partial-elliptical crack in a 
flat plate, as illustrated in Figs. 1 and 2. An elliptical or partial-elliptical crack is often a 
good approximation and bounding geometry for an arbitrarily shaped crack. 

There have been numerous  researchers working on the three-dimensional  crack problem. 
A number  of technical papers presenting results for the problem under  various loading and 
geometry combinations are available in the literature. Atluri  [1,2] has provided a good and 
thorough review on this topic. Unti l  1981, analytical solutions for an elliptical crack embed- 
ded in an infinite space were available only for polynomial crack surface loads up to the 
sixth order. A general solution for an embedded elliptical crack in an infinite space subjected 
to polynomial crack surface loads of any order was first obtained by Vijayakumar and Atluri  
[3] and then by Nishioka and Atluri  [4]. This solution has been often referred to as the 
VN A  solution. 

For the problem of an elliptical or partial-elliptical crack in a more practical, finite thickness 
flat plate, an exact solution similar to that of Refs 3 and 4 is very difficult if not  impossible 
to derive. Numerical  methods such as the finite element  method (FEM) and the boundary  
integral evaluation (BIE) have been used by many researchers, for example, Raju  and 
Newman [5], to obtain the three-dimensional  fracture mechanics solutions. However,  such 

1Associate and engineer, respectively, Structural Integrity Associates. Inc., San Jose, CA 95118. 
2president, Computational Mechanics, Inc., Julian, PA 16844. 
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FIG. 1 - - A n  elliptical (or partial-elliptical) crack in a flat plate. 

conventional numerical methods as FEM and BIE often require not only a lengthy com- 
putation time but also a large amount of manpower in preparing the mesh. Worst of all, 
for problems involving different geometries or sometimes loading conditions, the labor 
intensive numerical procedure just mentioned has to be repeated for each case. Nishioka 
and Atluri [4] have demonstrated successfully the concept of an alternating finite element 
method for the problem of an elliptical crack in a structure component of any shape. With 
this alternating finite element method, the computation and the modeling time can be greatly 
reduced relative to usual numerical methods since only an uncracked structure needs to be 
analyzed in the finite element analysis. However, the alternating finite element method 
proposed by Nishioka and Atluri [4] requires (1) manpower to prepare a three-dimensional 
FEM mesh for the uncracked plate for each crack geometry, (2) a numerical package separate 
from the finite element program to do a fairly complex mathematical manipulation for the 
problem of an elliptical crack embedded in an infinite space, (3) a nodal force generator to 
convert the residual stresses on the free surfaces resulting from the VNA solution into nodal 
forces for the next iteration of the finite element analysis, and (4) an automated computer 
program to carry out the iterative procedure of the alternating finite element method. 

In this study, we have developed an analytical alternating procedure as well as a user- 
friendly computer program for problems of an elliptical or partial-elliptical crack in an infinite 
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FIG. 2 - - A n  elliptical (or partial-elliptical) crack at arbitrary location. 

flat plate. The cracked plate is assumed to be subjected to a set of arbitrarily applied crack 
surface tractions. The objective of this study is to enable researchers to simply enter plate 
thickness, crack location and orientation relative to the plate, crack dimensions, and crack 
surface loads to obtain KI, KH, and K m solutions at the crack front without going through 
the previously mentioned labor intensity numerical procedures. 

Assumptions 

The following assumptions were made to simplify the problem. 

(a) The plate of thickness t ( t  = 2h), extends infinitely in its plane, that is, the plate 
extends infinitely in both x- and y-directions in Fig. 1. 

(b) The plate material is assumed to be isotropic, homogeneous, and linear elastic. 
(c) It is assumed that the stress singularity at the intersection of the plate surface and the 

crack front is still -1/2 even though Sih [6], Benthem [7,8], Bazant and Estenssoro 
[9,10], and Shivakumar and Raju [11] have shown that, in the region of about 2% 
into the plate thickness from the surface, the stress singularity at the crack front is 
actually slightly weaker than - 1/2 for materials with Poisson's ratio of 0.3. 

Boundary Conditions 

As shown in Figs. 1 and 2, boundary conditions for the three-dimensional crack problem 
are: 

1. O n z  = - t/2 = - h 

% z ( X , y , - h )  = ~ x ( x , y , - h )  = ~ z y ( X , y , - h )  = 0 (1) 
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2. O n z  = t/2 = h 

~.z(x,y,h) = ~zx(x,y,h) = ~:y(X,y,h) = 0 

where t = 2h is the plate thickness. 

(2) 

3. On the crack surfaces 

x3 = O, (x]aO 2 + (x2/a2) 2 <- 1, (a, > a2) 

the traction can be expressed in the following form [1] 

O'3tx(Xl,X2,0 ) : ~ ~ ~ ~ A"]~ . . . . .  X~xm-2"+'x2 "+j (a = 1,2,3) 
i=0 j=0 m=O n=O 

(3) 

where A~j), .,. are known constants of the prescribed crack surface loading; x ~ - x z - x 3  is 
a Cartesian coordinate which, as illustrated in Figs. 1, 2, and 3, is related to the global 
x - y - z  coordinate system by three translations and three rotations in a coordinate trans- 
formation; and al and a2 are, respectively, lengths of the major and the minor axes of the 
bounding ellipse of the crack. 

Analytical Solution I - -An Elliptical Crack in an Infinite Space (the VNA Solution) 

A brief summary of the VNA solution is given next in this paper. For an elliptical crack 
embedded in an infinite space, as shown in Fig. 3, subjected to arbitrary crack surface loads 
given by Eq 3, the solution to the problem can be written in terms of three stress functions 
in the Trefftz's formulation [12,13] as 

f -  = 2 ~ ~ 2 C(ijg ...F2m 2n§ ((J~ = 1,2,3) (4) 
i--O j--O m=O n--0 

X 2 

2a 2 

2a 1 

FIG. 3--An elliptical crack embedded in an infinite space. 

X 1 
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where f~, f2, and f3 are the three  harmonic  stress functions; _~,~Cv, J) -~.~ are constants that  can 
be de te rmined  from the crack surface loading condit ion Eq 3; and Fm .(x~,x2 x3) are functions 
defined as 

F,. , .  = 0~' 07 _ [to(s)] . . . .  ~ ~fQ(s)  (5) 

where 

0 m 
0~ = ~ (a  = 1,2) (6) 

Oxy 

to(s) = 1 
x~ x~ x~ 

a~ + s a22 + s s 
(7) 

Q(s) = s(s + aZi)(s + a~) (8) 

and sl,  sz, and s3 are the roots  of the cubic equat ion 

to(s) = 0 (9) 

The stress components ,  cr.~, and the stress functions, f~, are related by Eqs 9a through f in 
Vi jayakumar  and Atlur i ' s  paper  [3]. 

When  calculating stresses from the stress functions, the following formulae given in Ref  
1 will be used repeatedly  

fs ' ds - n !  2 2 ~ [Jp-q4 . . . .  (s3) 
p=i/2 q=j/2 r=k/2 

( - 1 ) p ( 2 p -  2q)!(2q---Jv'vmrv">.t--~.~ 2q ,,.2q~2 2~-j,.2~-k~3 ] 

(n - p) ! (p  - q)!(q - r)!r!(2p - 2q - i)!(2q - 2r - j )!(2r - k)! 
(10) 

2 
- aZp+ 1 fo 1 (sn2;u)(nd2q-2~u)(ncZ'u)du 

2 
aZp +1 Lp.q r .r(S3)  (11) 

where sn, nd, and nc are Jacobian elliptic functions [14] defined as 

a~ (12) sn2ua - a~ + s3 

sn2u + cn2u = 1, K2sn2u + dn2u = 1, (13a) 
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d n e u  - K2cn2u = K '2, K'2Slt2L/ -~- Cr/2/~ ~- dr/2tt, (13b) 

t n u  = s n u / c n u ,  d c u  = d n u / c n u ,  (13c) 

c d u  = c n u / d n u ,  n d u  = 1 /dnu ,  (13d) 

n c u  = 1 /cnu ,  s d u  = s n u / d n u  (13e) 

K ~- = 1 -- (a2/al)  e, K"- = 1 -- K ~" (13f) 

and the L functions are defined as 

1 
.... - (2r - 1)K '2 { ( snZ '+ 'u ) (nc~-~-Su) (ndeq  2~ Su}lo s,lll L p , q  

+ [ 2 ( - p  + r - 1) + 2(p - q - r + 2)K2]-Lp.q .... t 

+ K2(-2p + 2q - 3)Le. ~ . . . . .  2} (14) 

1 ( -  ly+~+ IK'2{'-~}p! 
Lpv , - ~, 2 (fl _ - ~ _ -  y-~.Ty!'l:{q-i-,) (15) 

�9 ' K 2 p + 2  j = 0  y = 0  

1 P -" (_ly+V+ZK'a2 V)p! 

2m(2 -- K2)I2,. + (1 - 2 m ) I . , .  z - -  KZsnus " c n u s "  n d 2 " + t u s  
12m+2 = (2m + 1)K 'z (17) 

K 2 d n  2m i _ 2 m _ 2  = SU~ " s n u l  �9 c n u l  + (1 - 2m)K'21_z , , ,+2 + 2m(2 -- KZ)l_.., (18) 
(2m + 1) 

1 2 = E ( t ~ , K ) , l o  = F ( + , K )  = u ~ , l  2 = [E(+,K) - K2SnUsCdUs]/K':,ql  = t a n - S ( a J s 3 )  (19) 

In Eq 19, F(~,K) and E(O,K) are incomplete elliptic integrals of the first and second kinds, 
respectively, and ~ is the amplitude of us. 

By substituting Eq 4 into the equations for stresses then into Eq 3, a system of simultaneous 
linear algebra equations can be constructed for the unknown constants, C~:~ ..... in Eq 4. 
Once the unknown constants, C~j~_..., in Eq 4 are solved, it has been shown that stress- 
intensity factors at the crack tip can be evaluated by the following equations [2,3] 

K I  ~ 8 ~ L ~  el/4 { Li=0 j=o2 ,~=o ~ .=o ~ I ( - 2 ) 2 " + i + j ( 2 r n + i +  j +  1)! 

1 __c~ __sin0 (~i.j) ( 2 0 )  
~ 3 . n t -  n.n 

asa2 \ as / \ a2 / 

, , 2  

~v B 1/4 1 [Hs(0)a2 cos0 + Hz(O)as  sin0] (21) 
KH = 8p~ ala2 
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qT ~ 1/2 
g l l  I ~ 8~L~a--~2 )_ B-1 /4  ( la ,ae-  v) [H2(0)a2 cos0 - Ht(O)a, sin0] (22) 

where 0 is defined in Fig. 3 and 

Ht(O) = ~ ~ ~_, ~ (-2)2 '"+i+J(2m + i+ j+  1)! 
i=0 j=0 m:0  n=0 

-~n i 

( t . . . .  ( ? + ,  cosO sinO ~ u )  
\ at / \ a 2 /  i . . . . .  

(23) 

H2(O) = ~ ~ ~ 2 (-2)2m-i-j+2( 2m - i - j +  3)' 
i=0 i=0 m=0 n=O 

cosO sinO 09_~, , j) 

\ at / \ a2 / z,,,--,,, 

B = a~ sin20 + a22 cos20 

(24) 

(25) 

However, the solutions given by Eq 4, in general, do not satisfy the stress-free boundary 
conditions, Eqs 1 and 2, on its bounding surfaces even though they satisfy the governing 
equations, V2f~ = 0, and the crack surface boundary conditions in Eq 3. That is, ~=, %x, 
and ~z~. derived from the infinite space solution of Eq 4 are, in general, not zero on surfaces 
z = _+h. It is worth noting a tensor transformation corresponding to a coordinate trans- 
formation is usually necessary in calculating the previously mentioned stresses because, in 
general, coordinate systems x - y - z  and x t - x 2 - x 3  are different. A typical distribution of 
the "residual" stresses on the bounding for an embedded crack in a plate is illustrated in 
Fig. 4. 

To compensate for the nonzero stresses, a.~(a = x , y , z ) ,  on the bounding surfaces of the 
plate, another analytical solution is required. In the analytical alternating procedure, the 
negatives of the stresses, ~r~z, ~x,  and crzy , on the bounding surfaces of the plate, z = +-h, 
due to the solution given by Eq 4 will be used as the surface loads in Analytical Solution 
II. The residual stresses on the plate bounding surfaces can be decomposed into a double 
Fourier series through the use of the fast Fourier transform (FFT) method (see, for example, 
Ref 15). 

Analytical Solution I I - - A  Flat Plate Subjected to Arbitrary Surface Loads 

For an infinite fiat plate bounded by two surfaces at z = h and z = - h ,  the governing 
equations are the classical Beltrami-Mitchell equations 

1 02Q (26) V2~:: + - - -  - 0 
1 + v Oz 2 

VZO. x + 1 O2Q _ 0 (27) 
1 + v Ozc~x 

1 OZQ _ 0 (28) 
V2~'  + 1 + ~  Ozay 

V2Q = 0 (29) 
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0 z 

FIG. 4--Residual normal stress on the plate bounding surface for an embedded elliptical crack under 
uniform tension. 

and the equilibrium equations 

V - ~  = 0 (30) 

where cr is the stress tensor, V is the divergence operator, and 

(3~) 

is three times the volumetric pressure. The stress boundary conditions for the second an- 
alytical problem can be written as 

M N 

r = E E 
r n ~ - M  n = - - N  

(f.,~ + f',,)exp(im'trx/L1 + in'try~L2) (32a) 

M N 

~zx(X,y,h) = ~'~ ~ (g,.~ + g,'..)exp(im~rx/L1 + in~ry/Lz) (32b) 
r a =  M n =  - N  

jgl N 

~zy(X,y,h) = E E 
r n =  - M  n =  ~ N  

' " / in'rry/L:) (32c) (h .... + hm,,)expOm'nx Ll + 

and 

M N 

~r~=(x,y,-h) = E E 
m = - M  n =  N 

' " / imry/Lz) (33a) (f . , .  - f ' , ,)exp(tmTrx L1 + 
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M N 

%x(X,y , -h)  = E 
m =  - M  n = - N  

(--gm,~ + g',)exp(imTrx/L, + in~ry/L2) (33b) 

M N 

% y ( X , y , - h ) =  ~'~ Z 
r n = - M  n = - - N  

( - h , . .  + h'.)exp(im~rx/L1 + inlry/L2) (33c) 

where fro,, f ' , ,  gm~, g'~,  h .... and h', ,  are known constants and L~ and Lz are characteristic 
lengths of the crack problem, which will be discussed in more detail in the remaining part 
of this paper. In this study, the constants fro,, f ' , ,  �9 " �9 etc. are obtained by decomposing 
the residual stresses calculated from the first analytical solution by the FFT method. Phys- 
ically, the terms associated with fm,, gm~, and hmn represent symmetric surface loads while 
the terms associated with f ' , ,  g ' , ,  and h '~ represent antisymmetric surface loads. Since the 
surface tractions are stresses created by a system of self-equilibrium forces at the crack 
surfaces, according to the Saint-Venant's principle, we can find a set of L~ and L2 big enough 
that the surface tractions in the region (Ixl > L~, lyl > L=} of the bounding surfaces are 
negligible. For the same argument, we can also assume that the surface tractions are peri- 
odical functions o fx  and y with 2La and 2L2 as their periods, and that the fictitious tractions 
outside the region {Ix I < L~, lyl < t2} will not affect the resulting stresses in the crack region. 
In the preceding equations, Eqs 32 and 33 can be also interpreted as a Fourier series 
approximation of a Fourier integral. Physically, these fictitious periodic tractions are equiv- 
alent to tractions on the bounding surfaces of the plate caused by an infinite number of 
periodic cracks under the same crack surface loading conditions for each crack. It is worth 
noting that the plate is assumed to be uncracked in the second analytical problem. 

Solutions to Eqs 26 through 30 with boundary conditions, Eqs 32 and 33, can be written 
a s  

M N 

~G~ = ~ ~ (CL~,  + C~m~)exp(imTrx/L, + in~ry/L2) (34) 
M N 

where a,  13 - x, y, or z; and C~.,,, and C~,~. are functions of z to be determined by the 
governing equations and the boundary conditions. In the preceding equation, the C~, . .  
terms are for the symmetric part of the solution and the C~,.n terms are for the antisymmetric 
part of the solution. Substitution of Eq 34 into Eqs 26 through 30 leads to a system of 
ordinary differential equations for C~,~mn and C~,~. with boundary conditions from Eqs 32 
and 33. For each pair of harmonic numbers, m and n, their differential equations are 
decoupled from the differential equations associated with other pairs of harmonic numbers 
and can be solved explicitly. Stress solutions to these ordinary differential equations asso- 
ciated with harmonic numbers (re,n) are summarized next. Detailed derivation of these 
solutions can be seen in the Appendix of this paper. 

(a) Symmetric Parts 

A3~z 
- - -  sinh(~z) (35) C~ ..... = 2Azcosh(~z) 1 + u 

iX~zA 
- ~ cosh(~z) (36) C~zmn = -2Axsinh(~z)  1 + v 
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where  

i~r~zA 
" - - - c o s h ( y z )  C~ ..... = -2A~ , s inh (yz )  1 + v 

C'.ym. = (ihyO~ + ihx~'~2 - hxh.,,[~3)/"/2 

CIx.,n = ( - l I ,  - iX,,C~y,,,.)/(ih.) 

C~y... = ( - a :  - iMC'..., .)/(ix,.) 

mTr nTr 

l + v  
A -  A 

i 
- - - [ f , . . , s i n h ( y h )  + - ( h x g m .  + hyhm.)cosh(~lh)] 

"t 

1 ih, ,hA coth(yh)  
Ax - 2 s inh(yh)  g .... 2(1 + v~ 

1 ibm.hA coth(yh)  
A y -  2 s inh(yh)  h"n - 2(1 + v) 

1 y h A  
Az - fro. + - -  t a n h ( y h )  

2 cosh(yh)  2(1 + v) 

A = [s inh(2yh)  + 2yh]/2 

ihxA cosh(yz)  ih , , zAy s inh(yz)  
~2~ = - 2 A x y  cosh(yz)  - 1 +-------~ 1 + v 

[12 = - 2 A y y  cosh(yz)  - ih~,A cosh(yz)  ih , , zAy  s inh(yz)  
l + v  l + v  

A y z  
f~3 = 2A cosh(~/z) - 2A~cosh(yz)  + i + v s inh(yz)  

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(b) Ant i symmetr ic  Parts 

CL.,n = 2 A ' s i n h ( y z )  - - -  
A ",t z 

l + v  
cosh(yz) 

ih~zA' 
- - -  s inh(yz)  C~zm, , = - 2 A : c o s h ( y z )  1 + v 

i hyzA '  s inh(~z)  C~z,.n = - 2 A ~ c o s h ( y z )  1 + v 

(50) 

(5i) 

(s2) 
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Caymn = (ihy•; + ihxl~; - hxhyn;)/y/2 

Caxton = ( - - n ;  --  ihyC~ymn)/(ihx) 

C~ymn = ( - ~  - iX,:C~ymn)/(i)ty ) 

A'  - 
l + v  

A' 
[f.,ncosh(y/h) + i (hxg' .  + h,,h'.)sinh(y/h)] 

Y/ 

A ' -  
1 ihxhA' 

g ' .  - -  tanh(y/h) 
2 cosh(yh) 2(1 + v) 

A ~ -  
1 ih,.hA' 

h ' .  - -  tanh(yh) 
2 cosh(y/h) 2(1 + v) 

A ' -  
1 yhA '  

f ' n  + - -  coth(y/h) 
2 sinh(yh) 2(1 + v) 

A' = [sinh(2yh) - 2yh]/2 

1)~ = - 2Axy sinh(y/z) - - -  
ihxA ' ih~zAy 

sinh(yz) - -  cosh(yz) 
l + v  l + v  

I I ;  = - 2 A y y  sinh(yz) - - -  

357 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

ihyA ihyzA y 
sinh(yz) - -  cosh(yz) (62) 

l + v  l + v  

A y z  cosh(y/z) (63) 
l + v  

[23 = 2A sinh(yz) - 2Azsinh(yz ) + 

I t e r a t i o n  P r o c e d u r e  

With the preceding two analytical solutions, the total solution to the problem of an elliptical 
or partial-elliptical crack in a fiat plate under  arbitrary crack surface loads can be then 
obtained by summing a series of the two analytical solutions until  a convergence condit ion 
is met. The iteration procedure used in this study is shown in Fig. 5. In this study, the 
i teration of the alternating analytical procedure is terminated when the change of the max- 
imum stress-intensity factor along the crack front is less than 1%. It is found that, for most 
of problems tested in this study, only three to four iterations are required. 

N u m e r i c a l  I m p l e m e n t a t i o n  

The alternating analytical procedure discussed in this paper has been implemented in a 
computer  software, K-Solver [16], which can be executed in a mainframe computer  or even 
an IBM or compatible personal computer.  Users of this computer  program need only to 
input material  properties (E and v), plate thickness (t = 2h), crack dimensions (al, a2, and 
location of the center and orientat ion of the bounding ellipse of the crack), and crack surface 
loads (A(],j)m n,n values) and the software will calculate K~, KH, and Km at the crack border 
automatically. 

Copyright by ASTM Int ' l  (all  rights reserved); Wed Dec 23 18:55:23 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement.  No further reproductions authorized.



358 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

Input Geomet ry  and Loads 

1 
Fit  Crack Sur face Loads into 

Po lynomia ls  of x 1 and x 2 

! 

[ 
Calculate K I ,  K II , and K m 

for an e l l i p t i ca l  crack in 

in an in f in i te  space 

l 
Calculate residual  s t resses  

on z-h and z- -h  

l 
Use FFT to decompose the 

residual  s t resses  into Four ier  se r ies  

- 1 
Calculate s t resses  in the crack 

region for an uncracked plate 

w i th  Four ier  se r ies  sur face loads 

1 

Output  K~, K~ , and K~H 

at d i f f e ren t  crack f ront  

locat ions 

FIG. 5--Flow chart for the ahernating analytical technique, 
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To verify the alternating analytical procedure as well as the resulting software, a number  
of crack problems have been tested and checked against reference solutions, which are 
available in the literature. 

Embedded C r a c k - - M o d e  I Fracture 

The first test problem presented is an embedded elliptical crack at the middle of a finite 
thickness plate (thickness = 2h = t) subjected to a remote uniform tension, ty 0. Key 
dimensions in this problem are: 

1. xz in the thickness (minus z) direction; 
2. xl and x3 parallel to x and y, respectively; and 
3. az/a 1 = 0.4 and a2/h = 0.75. 

Solutions to this problem have been obtained by Shah and Kobayashi [17] with the con- 
ventional finite element method.  Both present solutions and the reference finite e lement  
solution to this problem are plotted together in Fig. 6. In this figure, 0 = 0 ~ is at the 

1,5 

1.4 

1.3 

"10 
0) 
N 

~  

o 

E 1,2 
# 

1.1 

1.0 

c c c c o  Reference [1,.3] 
16 FFT pts 
32 FFT pts 

ooooo 128 FFT pts 

[ I I ! I I I I 
0 10 2 0  3 0  4 0  5 0  6 0  7 0  8 0  g o  

(3 (degrees) 
FIG. 6--Normalized K, for an embedded crack in a flat plate under uniform tension (aJa, = 0.4, 

az/h = 0. 75). 
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interception point of the crack surface and the plate surface and 0 = 90 ~ is at the deepest 
crack front into the plate thickness. The K~ solutions shown in this figure have been nor- 
malized by a factor of ~ro/E(t~,K ) " (Ira2/a])l/2B TM where E(r and B are defined in Eqs 19 
and 25, respectively. It is seen from this figure that current solutions are within 4% of the 
reference solution [17] even with only 32 FFT points in each direction of the plate. The 
alternating analytical solution converged after three iterations and took less than 45 min of 
computer time for the case of 32 FFF  points in a 20-MHz, Intel-80386-based personal 
computer, which is also equipped with a 20-MHz, Intel-80387 math coprocessor. The stand- 
ard setup for the K-Solver is 128 FFT points, which would require 15 times more computer 
time than the 32 FFT point case but, as illustrated in Fig. 6, would also provide a slightly 
better correlation with the reference solution. 

Semielliptical Surface Crack--Mode I Fracture 

In addition to the first test problem, the "benchmark problem" defined by Refs 18 and 
19 and the surface crack problems analyzed by Newman and Raju [5] have been also checked. 
Because of the length constraint of this paper, only two cases are discussed here. One for 
the remote bending case in the "benchmark problem" and the other for the remote tension 

1.5 

1 .4  

1.3 

1.2 

~ 1 . 1  

._N 1.0 

70" 
0.8 

0.7 

0.6 

0.5 

- Error Band [1 9] 
( \ \ \  Best Estimated [19]  
. ~ , ~  o o o o o Present 

I I I I I I I I 
0 10  2 0  3 0  4 0  5 0  6 0  7 0  8 0  9 0  

0 (degrees) 
FIG. 7--Normalized K~ for a semielliptical surface crack in a flat plate under remote bending (az/t 

= 0.25, a2/a~ = 0.5). 
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tension case for one crack geometry  in the Newman-Ra ju  problems. Thickness of the plate 
in both check cases are t (=  2h). Dimensions for the benchmark problem are: 

1. x2 in the thickness (minus z) direction; 
2, xl and x3 parallel to x and y, respectively; 
3. az/t = 0.25, az/aa = 0.5; and 
4. maximum remote  bending stress = G0. 

The key dimensions for the Newman-Ra ju  problem are: 

1. xl in the thickness (minus z) direction; 
2. x 2 in minus x direction, x3 parallel to y; 
3. a] t  = 0.80, a2/a~ = 0.5; and 
4. remote  tension stress = %. 

These two check cases cover both shallow (25% plate thickness) and deep (80% plate 
thickness) surface crack problems and both remote  tension and bending loads. Results for 
two check problems are depicted in Figs. 7 and 8. Definit ion of the angle, 0, in these two 

1.5  

1 . 4  -- 

1 . 3 -  

1.2 

1.1 - -  o c t e t  Newman & Raju [5 ]  
e ~  Present 

1.0 

~E 0.9 
"o 

0 . 8  
.N 
-~ 0.7 

L E O . 6  - 
0 

Z 0.5 - 

0 . 4  

0.3 

0.2 

0 . 1  -- 

0 . 0  i I i I I I I f 
0 10  2 0  3 0  40  5 0  6 0  7 0  8 0  9 0  

@ (degrees) 
FIG, 8--Normalized K l for a semielliptical surface crack in a fiat plate under uniform tension 

(air = 0.8, a2/ax = 0.5). 
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FIG. 9 - -Norma l i z ed  KI for  a semielliptical surface crack in a fiat plate under remote shear, ~3~ (a2/t 

= 0.2, az/aa = 0.4). 

figures are the same as that for Fig. 6. The stress-intensity factor solutions shown in these 
figures have been also normalized by the same factor as that for Fig. 6. It is seen from Figs. 
7 and 8 that current solutions with 128 FFT points in each direction correlate well with the 
reference solutions. Again, both cases converged in three to four iterations during the 
alternating analytical procedure. 

Parametric studies on the effects of relative to L 1 and Lz sizes, and number of FFT point 
in each direction of the plate have been also conducted. It is found after an extensive 
numerical exercise that the optimal settings, in light of computer time and solution accuracy, 
for the alternating analytical procedure are 128 FFT points and La = L2 = 5 maximum 

(al, a2). 

S e m i e l l i p t i c a l  S u r f a c e  C r a c k - - M o d e  II  a n d  M o d e  I l l  F r a c t u r e  

The next check problem is a semielliptical surface crack subjected to shear loading. Key 
dimensions for this problem are: 

1. x2 in the thickness (minus z) direction; 
2. xl and x3 parallel to x and y, respectively; 
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FIG. l O - - N o r m a l i z e d  K for  a semielliptical surface crack tilted 45 ~ under remote tension (a2/t = 0,25, 
a2/a 1 = 0.5). 

3. a2/t = 0 .2 ,  az/a 1 = 0.4;  and 
4. remote shear stress ~'31 = ryx = Cro. 

Solution to this problem has been obtained by Smith and Sorensen [20] with an alternating 
technique different from the one used in this paper. Results for this check case are depicted 
in Fig. 9. Again, definition of this angle, 0, in this figure is the same as that in Fig. 6. Stress- 
intensity factors plotted in this figure have been also normalized by the same factor as Fig. 
6. It is seen from this figure that present solutions are within 4% of the reference solution. 
The standard numerical setup with 128 FFF points and L1 = L2 = 5al has been used in 
obtaining the solutions for this problem. 

Til ted ,  Semie l l ip t i ca l  Sur face  C r a c k - - M i x e d - M o d e  F r a c t u r e  

To fully explore the mixed-mode nature of the three-dimensional crack problem, the last 
test case discussed here is a tilted semielliptical surface crack subjected to remote tension. 
Dimensions for this problem are the same as the benchmark problem just discussed, except 
that the surface crack is tilted 45 ~ around its major axis al (or 45 ~ around the positive 
xl-axis). That is, the surface crack is no longer perpendicular to the plate surface but has a 
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45 ~ angle with the plate surface. The remote tension stress, c%, is applied in the y-direction, 
that is, ~yy = ~0 at the remote sections. Therefore, it is anticipated that the crack front will 
encounter all three fracture modes. Resulting stress-intensity factors for this problem are 
illustrated in Fig. 10. It is seen from this figure that K r and K ,  remain relatively constant 
along the crack front except at the regions of about 30 ~ from the plate surface. All K values 
presented in this figure have been normalized against the same factor as Fig. 6. To the 
authors' knowledge, there are no reference solutions available in the literature for this 
problem. The normalized K~ and K~ solutions at the crack tip for the corresponding two- 
dimensional slant crack problem are found to be 0.99 and 0.51, respectively. As expected, 
the two-dimensional solutions are higher than the three-dimensional solutions at the deepest 
crack front (0 = 90~ 

Conclusions and Recommendat ions  

An alternating analytical procedure has been developed in this study for the problem of 
an elliptical or partial-elliptical crack in a fiat plate subjected to arbitrary crack surface 
loading. With such an approach, the three-dimensional crack problem can be solved with 
great ease in lieu of shorter computer time and more importantly no FEM mesh preparation. 
The alternating analytical procedure has been also implemented into a F O R T R A N  computer 
program, which is very easy to use and can be executed in a wide range of computers. Of 
course, its shortcoming with respect to the conventional FEM (for example, Ref 5) or the 
alternating FEM (for example, Ref 4) is that it can only handle the flat plate geometry. 

An extension of the alternating analytical procedure to the problem of an elliptical or 
partial-elliptical crack in a cylindrical pipe subjected to arbitrary crack surface loading is 
also feasible and is worth exploring in the future. 
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APPENDIX 

Derivation of  Eqs 35 to 63 

The methodology used in this paper for deriving Eqs 35 to 63 are very similar to the one  
discussed in Ref21. Since each harmonic pair (m,n) in the solution is decoupled from other 
harmonic pairs, we can consider solutions for each single harmonic pair separately. An 
obvious format for the solutions for the harmonic pair (re,n) to the problem defined by Eqs 
26 to 33 is 

Q = C,n,,exp(iX~,x + ih~y) 

~r~:, = C ...... exp( ih~x  + iX~y) 

cry = Cz~,,,nexp(ihxX + iX~.y) 

cLz = C ...... exp( iXxx  + ihyy) 

(64) 

(65) 

(66) 

(67) 
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%x -- Cx~.,..,exp(iX.,x + iX, y) (68) 

% , . - -  C,,,,,,.exp(iX~x + ix,y) (69) 

%~, -- C.,.,,,exp(iX.~x + iX~y) (70) 

where X~ and Xy are defined in Eq 41, and C, .... C ......... . . . etc. are functions of z to be 
determined later from the governing equations and boundary  conditions. Substitution of 
Eqs 64 to 67 into Eqs 26 to 29 yields the following four ordinary differential equations 
(ODEs) for C~., C .. . . . .  C~., ....... and C~ ....... 

1 
C" 2 - - -  c;'.., (71) 

...... - y C  ...... l + v  

_ iX... C;.,, (72)  
C.'~ . . . .  - y~C,. ...... 1 + v 

iX,. C;.,, (73)  tt 2 C  _ _  

Cy.m,, - y .,,~ ..... 1 + v 

C ' , , -  y2C,. .  = 0 (74) 

where y is defined in Eq 41, and functions with a prime or a double prime as superscript 
are for the first and second derivatives (with respect to z), respectively, of the function. 

S y m m e t r i c  Case 

For symmetric loading, that is, for loading terms with coefficients f ..... g .... and h,.. in 
Eqs 32 and 33, it can be easily deduced that general solutions to the four ODEs  shown in 
Eqs 71 through 74 are 

C,,,,, = 2A cosh(yz) (75) 

A y z  sinh(yz) (76) C ....... = 2 A ~ c o s h ( y z )  1 + v 

i X , z A  cosh(yz) (77) C ....... = - 2 A ~ s i n h ( y z )  - 1 +---7 

ih,,zA cosh(yz) (78) C~ ..... = -2A, .s inh(yz)  1 + v 

where A ,  Ax ,  Av ,  and A Z are constants to be determined.  
The next step is to find solutions for C. ........ C,,. ...... and C.,,,,,,- Substitution of the preceding 

solution for %z, ~,,z, and %z in to the first two equations of the equil ibrium equations in 
Eq 30 and into E q 3 1  yields three algebraic equations for CA. ...... C,s.,,,, and C.,.n. as follows 

iXxAyz  i K ' A  cosh(yz) + 2A~y cosh(yz) (79) 
ihxCxxm. + iXyOx, ..... - l + v s i n h ( y z )  + 1 + v 
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ik~,A 
iXyAyz sinh(yz) + cosh(yz) + 2A/ ' /cosh(yz)  ih~Cxymn + iRyCyym" = 1 + V i + V 

(80) 

A y z  sinh(yz) Cxx~. + Cyy .... = 2 A c o s h ( y z )  - 2A,  cosh(yz) + 1 + v (81) 

Solutions to the preceding three algebraic equations are 

Cxxmn = ( - ~ 1  - ikyCxym,,)/(ih~) 

Cyymn = ( - ~ 2  -- ihxCxy.,,,)/(ihy) 

C.,m. = (iX,,nl + iXxO.2 - ,k,,k,,-O3)/Y 2 

(82) 

(83) 

(84) 

where fl l ,  Ft2, and f~3 are defined in Eqs 47 through 49. 
So far, there is a total of four unknown constants, A,  A , ,  A;,  and Az, in the stress solutions. 

The number of unknown constants can be further reduced by one by substituting Eqs 76, 
77, and 78 into the third equilibrium equation in Eq 30. After some algebraic manipulation, 
the unknown constant, A,  can be expressed in terms of the other three unknown constants 

as 

a - 2(1 + v) ( y a ~  - i X x a x  - iX ,A , . )  (85) 
y 

By substituting the stress expressions into the first stress boundary condition, that is, Eq 
32a, we obtain the following condition for the unknown constants, A and A2 

A y h  sinh(yh) = f ,~  (86) 2Azcosh(yh) 1 + v 

Similarly, from boundary conditions in Eqs 32b and 32c, we come up with two more 
conditions 

ikxhA cosh(yh) = g,,, (87) -2Axsinh(yh) 1 + v 

iX, hA cosh(yh) = hm, (88) -2A,.sinh(yh) 1 + v 

The four unknown constants, A,  Ax, A~, and A. ,  can be then solved quite easily from Eqs 
85 to 88. Expressions for the four unknown constants are depicted in Eqs 42 to 45, respectively. 

Antisymmetric Case 

Derivation of the solutions corresponding to antisymmetric loading terms, that is, terms 
with coefficients f'mn, g',,,,, and h '~  in Eqs 32 and 33, is very similar to the previously 
mentioned symmetric case except that all the hyperbolic sine functions and the hyperbolic 
cosine functions in the preceding equations should be interchanged. However, this inter- 
change rule does not apply to Eq 60, which is the counterpart of Eq 46, because Eq 42, 
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KUO ET AL. ON ELLIPTICAL CRACKS 367 

which contains the A term defined by Eq  46, is obtained by substitution of Eqs 43 to 45 
into Eq  85. Similarly, Eq  56 is obtained by substitution of Eqs 57 to 59 into Eq  85. Equat ion  
85 remains valid for both symmetric and antisymmetric cases. 
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ABSTRACT: The ductile fracture behavior of different specimens is analyzed by continuum 
damage-mechanics techniques. A model introduced by Gurson and modified by Needleman 
and Tvergaard has been implemented in the finite element program package, ADINA. The 
damage parameters of the model are measured and calculated from smooth tension tests, and 
the characteristic material distance is estimated from compact tension experiments. 

A steel, ASTM A710, and a weld metal for the steel, ASTM A508, are investigated. The 
damage parameters determined from the smooth bars are used to predict the deformation and 
fracture behavior of notched round bars and of sidegrooved compact specimens. For the weld 
metal, a side-grooved WOL-X-specimen is also simulated. In every case, a satisfactory agree- 
ment of prediction and experiment is observed. 

In order to investigate the influence of the stress state (constraint) in cracked specimens, a 
series of numerical computations of different specimen geometries and loading situations is 
performed utilizing the same set of parameters of the ASTM AT10 steel. The slopes of the 
predicted J-resistance curves increase with increasing ratio of tension versus bending load and 
with decreasing relative crack length. 

KEY WORDS: damage mechanics, constitutive relationships, Gurson model, void growth, 
void coalescence, fracture mechanics, ductile fracture, numerical simulation, geometry effects, 
constraint 

Global  failure criteria, as the J-integral  or the crack-tip opening displacement (CTOD) ,  
have been widely used to characterize ductile fracture processes. However ,  exper imental  
results give evidence that these single-parameter criteria may not describe ductile crack 
growth completely,  since the specimen size and the specimen geometry  have a pronounced 
influence on the crack resistance curve [1,2]. One approach to improve fracture mechanics 
concepts is the combinat ion of the J-integral  with the local constraint [3]. Ano the r  approach 
is the concept of continuum damage mechanics. This is the at tempt  to simulate macroscopical 
failure numerically by using new constitutive relationships incorporating models of micro- 
scopical rupture processes. A major  advantage of this type of micromechanical  models is 
that initiation and propagat ion of the crack occur naturally, that is, without using additional 
numerical techniques,  when the local softening due to the void growth results in the formation 
of a region transmitting only zero stresses. 

The model  adapted in this study is based on a flow function introduced by Gurson [4] 
and has further been developed by Needleman  and Tvergaard [5,6]. The microscopical 
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D-7800 Freiburg, Federal Republic of Germany. R. Kienzler is presently, Professor, University of 
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rupture processes described by nucleation, growth, and coalescence of voids were incor- 
porated in the constitutive relationships. This model has been used successfully to analyze 
fracture behavior in notched bars with different notch radii [5, 7]. For the analysis of cracked 
specimens, however, two additional problems had to be solved because of the great gradient 
of the stress field at the crack tip. At  first, according to the physical model for void coa- 
lescence [8] a characteristic microstructural distance, lc, has to be introduced into the analysis 
of cracked structures to avoid underestimation of the fracture toughness. This critical dis- 
tance, lc, might be related to the average inclusion spacing. Secondly, due to the localization 
of the softening at the crack tip, the finite element solution exhibits strong mesh-size de- 
pendence [9]. Within the frame of this work, the problems were treated by utilizing a simple 
but practical method described in more detail in Ref 10. 

One purpose of this work is to check whether the damage parameters determined from 
simple tensile bars are applicable to complex cracked specimens; another is to explain the 
geometry dependence of the JR-curve on the basis of the micromechanical model and to 
find the relationship between the stress multiaxiality and the slope of the JR-Curves. 

Modified Gurson Model 

The basis for the modified Gurson model is a plastic potential applicable to porous solids 
given by 

dO 3cr"J ~z f .  (Crxk~ _ [1 + (q,f*)2] = 0 (1) 
= 2~2 + 2ql cosh \2or,,/  

with cr,~ = flow stress of the material. The parameter,  ql, was introduced by Tvergaard [5] 
to improve the prediction of the Gurson model at small f values, f* is a function of the void 
volume fraction, f.  For f* = 0, the plastic potential (1) is obviously identical with that of 
yon Mises. If f* reaches the limit, 1/q~, the material loses its load carrying capacity because 
all stress components have to vanish in order to satisfy Eq 1. Since for small f the von Mises 
equivalent stress, ere, is close to the flow stress, or,,, it is evident that ~b is strongly dependent 
on the ratio of the hydrostatic stress over the yon Mises equivalent stress, cr~k/3(re. 

According to Needleman and Tvergaard, the nucleation of new voids and the growth of 
existing voids were introduced into the Gurson constitutive relationships by the following 
definition of the growth rate of f 

f - L.~,~.,o. + L . . . .  . (2) 

fm, c,~ation = B(o'm + d'kk /3) + D ~ (3) 

�9 . p  

fg . . . .  h = (1 - f )  "qk~ (4) 

where ~ is the plastic part of the strain rate tensor and e~ is the equivalent plastic strain. 
The parameters, B and D, were chosen under the assumption that void nucleation follows 
a normal distribution [11]. 

The effect of the void coalescence on the plastic deformation was modeled by replacing 
f of the original Gurson model by f* 

f* = {ffc f <-f~ 
+Lc(f -L) f>-L, (l -> l,.) 

(5) 
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In this work, the modeling of the void coalescence is active when the critical void volume 
fraction, fc, is exceeded over a critical distance, lc. The value of the constant, f,c, can be 
derived by setting 0e*(fi) = 1/ql ) in Eq 5 with f~-, that is, the void volume fraction at final 
failure. A detailed description of the constitutive relationships is given in Refs 7 and 10. 

Numerical and Experimental Procedures 

The modified Gurson model was implemented into the finite element program, ADINA.  
The inclusion volume determined by quantitative optical microscopy was used as the initial 
void volume in the numerical simulation. The void nucleation during the plastic deformation 
was assumed to be controlled by strain only, that is, B = 0. This assumption ensures that 
the stiffness matrix does not become asymmetric. The critical value, f~, was obtained by 
fitting the sudden drop in the load versus diameter change curve for a smooth bar. The void 
volume fraction at rupture, fi, was determined by quantitative metallography from specimens 
that were unloaded and sectioned close to the onset of macroscopical failure. 

In order to simulate large amounts of crack extension, the meshes for the cracked spec- 
imens were generated with homogeneous element size in the crack-tip region. The element 
length was identified with the critical distance, It, and determined by matching the computed 
load versus displacement curve with the experimental one of a cracked specimen. Plane 
strain conditions were assumed for the numerical analysis. The J-integral was evaluated as 
a contour integral. 

The experiments were performed with a sulfur shape-controlled steel, ASTM A710 Grade 
A, and a weld metal for a steel of Class ASTM A508. The yield points of the steels are 612 
and 587 MPa, respectively. Fracture mechanics investigations were carried out using 
CT25-, CT23-, and WOL25-specimens with 20% side grooves and a/W = 0.6. The Jn-curves 
were determined by the partial unloading technique. 

Results and Discussion 

Critical Damage Parameters 

In order to determine the critical void volume fraction at void coalescence, fc, smooth 
and notched round bars were tested and analyzed. These specimen geometries were chosen 
for two reasons; first, axial symmetric problems can be exactly simulated by two-dimensional 
models, and, thus, the computation expense is significantly reduced. Second, the stress 
distributions at the cross section in these types of specimens are so homogeneous that the 
critical value, fc, can be evaluated without accounting for a critical distance, It, and the 
corresponding damage variable, f,  depends only little on the mesh size. 

Since the standard smooth tensile bar is most widely used to characterize the material 
properties, special attention was paid to it in this work. An important step for the numerical 
description of the plastic deformation in the smooth bar is the simulation of the necking 
that occurs at maximum load during the displacement-controlled test. To consider the mul- 
tiaxiality of the stress state in the necking region, the stress-strain curve for the computation 
was modified according to Bridgman [12]. In Fig. 1, the calculated specimen contour was 
compared with the contour measured experimentally at the same load close to rupture. 

Obviously, an excellent agreement between the numerical and the experimental results 
was found. Figure 2 shows (for the smooth bar with a diameter of 8 mm and the notched 
bar with a notch radius of 4 mm and an inner diameter of 8 mm) the load versus diameter 
change curves from the numerical analysis and the experiments. An important phenomenon 
for the simulation is that due to void coalescence the load versus displacement curves of 
the tensile bars drop suddenly before final failure. By fitting the calculated load drop with 
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Simulation Experiment 

/ / o ~ 

FIG. 1--Comparison between simulated and measured necking of  a smooth bar. 

the experimentally observed one, a critical value, fc = 0.045, was determined from the 
smooth bar for the weld metal. Using the same re-value, the notched bar was also modeled. 
The good agreement between the predicted and the experimental onsets of the load drop 
for both specimen geometries implies that the effect of the strain constraint on the void 
growth is well covered by the modified Gurson model, and the critical value, fc, seems to 
be independent of the stress state. For the ASTM A710 steel, fc = 0.03 was obtained by 
simulating the smooth and notched bars. The predictions of both global and local behavior 
of the specimens were proved by accompanying experiments [7]. 

Simulat ion o f  Cracked Specimens 

To relate the micromechanical model to macroscopic fracture-mechanics concepts, all 
parameters used for the simulations of the smooth tensile bars were also applied to the 
analyses of cracked specimens. The unknown parameter,  l,., was determined by matching 
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FIG. 2--Comparison between numerical and experimental load versus diameter change curves for 
smooth bar and notched bar with notch radius o f  4 mm. 
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the calculated load versus displacement curve with the experimental curve of a compact 
tension (CT) specimen. Figure 3 shows for the weld metal a satisfactory agreement of the 
calculated and measured load versus displacement curves of the CT specimen with 20% side 
grooves. The applied/c-value was 0.08 mm, which is identified with the length of the elements 
at the crack tip. 

Figure 4 shows the calculated distribution of the maximum principal stress, ~ ,  ahead of 
the crack tip for different load levels. The broken lines apply to load steps where the fc- 
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FIG. 5--Measured and predicted JR-Curves for CT specimen (a) and WOL-X  specimen (b) of a weld 
metal. 
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value is exceeded locally. This figure explains that the numerical crack extension is a natural 
result of the creation of a layer that transmits only stresses close to zero. A good agreement 
between the calculated and experimental J-resistance curves of the CT specimen is shown 
in Fig. 5a. 

For safety analyses of reactor pressure vessels, J-resistance curves are often determined 
using WOL-X specimens. Since the specimen geometries and loading conditions of WOL- 
X and CT specimens are different, a simulation of the WOL-X specimen can serve as a 
check of the universality of the micromechanical model. Figure 6 shows the deformed finite 
element mesh for the WOL-X specimen. Due to the unsymmetrical "loading condition and 
specimen geometry, the whole specimen with a screw was modeled. The computation was 
performed using the same set of material parameters and the same mesh size in the crack 
tip region. The predicted J-resistance curve for the WOL-X specimen was compared with 

FIG. 6--Deformed finite element mesh of a WOL-X  specimen. 
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the experimental curves determined from three specimens. Figure 5b shows that the cal- 
culated resistance curve lies within a scatter band of the experimental results. 

Prediction of Geometry Effects on the JR-Curve 

Although up to now only two-dimensional simulations are feasible due to the very high 
computer time required, a number of different specimen types was analyzed in order to 
evaluate relative differences of the predicted J-resistance behavior that might be correlated 
to differences in the inplane constraint. In the simulations, the meshing of the crack-tip 
region and the damage parameters were kept constant. Only the remote part of the mesh 
was adjusted to match the actual specimen geometry and the loading, 

Table 1 gives details of the investigated specimens of the ASTM A710 steel. For all 
computations, plane strain conditions were assumed. 

Figure 7 compiles the J-resistance curves of all six specimens investigated. The differences 
between the CT specimen and the three-point bend specimen (SENB) are quite small, 
especially for small amounts of crack extension. This may be attributed to the fact that the 
compact specimen is essentially loaded in bending. The steepest curve comes from the center 
cracked panel (CCP). This specimen reflects the case of pure tension. 

In Ref 13, it has been found that the J-resistance curves of single-edge notched tension 
specimens (SENT) depend strongly on the loading situation. The model SENT-C "hydraulic 
clamps" reduces the bending reaction of the specimen due to the crack. As a consequence, 
the resistance curve is fairly steep and comes close to that for the CCP specimen. If, however, 
pin loading is modeled (SENT-P), the slope of the resulting resistance curve is much smaller 
and similar to those of the bending-type specimens. The explanation for this is that the pin 
load does not impede the transverse displacement of the specimen. This bending reaction 
of the specimen depends strongly on the crack length. Therefore, it is less pronounced in 
the model (SENT-S) with the short crack and the resulting resistance curve comes closer 
to the pure tension case. 

These well-known variations of JR-curves obtained for the same material with different 
specimen geometries can be attributed to differences in the state of stress at the crack front. 
The stress triaxiality is measured by the ratio, h, of the hydrostatic stress, ~k~/3, and the 
von Mises equivalent stress, %. Figure 8 shows the variation of h over the ligament shortly 
before initiation for all specimen configurations investigated. All curves have about the same 
shape with maximum constraint a short distance ahead of the crack tip. The constraint 

TABLE l--Specimen geometries. 

Width, Length, Crack Length Type of 
Code W (mm) L (ram) a/W Loading 

CT 50 37.5 0.624 mixed 

SENB 50 225 0.624 pure bending 
three-point bend 

CCP 100 225 0.624 pure tension 

SENT-C 50 225 0.624 mixed, 
clamping grips 

SENT-P 50 225 0.624 mixed, 
pin loaded 

SENT-S 50 225 0.1 mixed, 
pin loaded 
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increases with increasing bending load, the CT and SENB specimens exhibit the highest 
constraint level throughout the curve. 

In Fig. 9, the slopes of the calculated resistance curves, dJ/da, were plotted as a function 
of the maximum stress triaxiality, h, taken at the load at crack initiation. The dJ/da-values 
were in every case determined from the region between initiation and the crack extension 
of 0.85 mm. Obviously, a linear relation of dJ/da and h may be deduced. A similar function 
(dashed line) had been also postulated in Ref 14 for a similar material and applied successfully 
to surface flaws. It is surprising that the curve determined from numerical simulations in 
plane strain of different specimen and loading conditions is fairly parallel to that derived 
only from smooth and side-grooved compact specimens. The shift towards higher values of 
constraint is explained by the fact that plane strain provides an upper bound of stress 
triaxiality, although it must be kept in mind that the sizes of the (three-dimensional) crack- 
tip elements utilized in Ref 14 were about ten times larger than in this study. 

Conclusions 

The parameters for the application of the modified Gurson model can be determined by 
quantitative metallography and by comparing numerical and experimental load versus dis- 
placement curves of smooth tension bars. The fracture behavior of notched bars was sim- 
ulated very accurately using the parameters obtained from the smooth bar. 

For the analysis of cracked structures, the critical distance, l,., becomes important. With 
the l~-value determined from the CT specimen, the WOL-X specimen was simulated in a 
satisfactory way. The modified Gurson model was also applied successfully to predict dif- 
ferences in the slopes of J-resistance curves of different specimen geometries. In agreement 
with experimental observations, the slopes of the resistance curves increase with increasing 
ratio of tension versus bending load and decreasing crack length. 
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Matrix Cracks and Interphase Failure in 
Transversely Loaded Fiber Composites 

REFERENCE: Zhu, H. and Achenbach, J. D., "Matrix Cracks and Interphase Failure in 
Transversely Loaded Fiber Composites," Fracture Mechanics: Twenty-Second Symposium (Vol- 
ume I1 L ASTM STP 1131, S. N. Atluri, J. C. Newman, Jr.. I. S. Raju, and J. S. Epstein, 
Eds., American Society for Testing and Materials, Philadelphia, 1992, pp. 381-394. 

ABSTRACT: Interphases in a unidirectionally fiber-reinforced composite with hexagonal pack- 
ing are modeled by the spring-layer model. The composite is subjected to transverse tensile 
loading. A critical value of the circumferential stress (~0) at the matrix side of the interphase 
is taken as a criterion for the initiation of radial matrix cracks, while interphase failure is 
assumed to occur when the interphase strain energy density (U) exceeds a critical value. All 
numerical calculations have been carried out by the use of the boundary-element method. For 
a perfect composite, the results show % and U for various values of the interphase stiffnesses. 
For a composite that develops radial matrix cracking, U has been computed and the proclivity 
towards subsequent interphase failure is discussed. Conversely, for a composite that first 
develops interphase failure, ~0 has been calculated to determine the tendency towards sub- 
sequent radial matrix cracking. 

KEY WORDS: fiber composites, interphase failure, matrix cracks, fracture mechanics, fatigue 
(materials) 

The effect of fiber-matrix interphases on the mechanical behavior of fiber-composites has 
become of major  interest. In analytical studies, two models have been employed. Broutman 
and Agarwal [1], Christensen and Lo [2], Theocaris et al. [3], Maurer  et al, [4], Sideridis 
[5], and Benveniste et al. [6] have described the interphase as a layer between fiber (or 
inclusion) and matrix, of specified thickness and of elastic constants different from those of 
the matrix and the fiber. In an alternate model, a very thin interfacial zone of unspecified 
thickness has been considered. In this model,  it is assumed that the radial and the tangential  
tractions are continuous across the interphase, but the displacements may be discontinuous 
from fiber to matrix, due to the presence of the interphase in-between. The tractions are 
assumed to be proport ional  to the corresponding displacement discontinuities. The pro- 
portionality constants then characterize the stiffness of the interphase. This so-called spring- 
layer model was employed by Lene and Leguillar [7], Benveniste [8], Aboudi  [9], Steif and 
Hoysan [10], Achenbach and Zhu [11-13], and Hashin [14,15]. Both models just ment ioned 
were studied by Jasiuk and Tong [16]. A corresponding linearly viscoelastic model  of the 
interphase was employed by Moran et al. [17]. 

This paper is concerned with the study of the effect of an interfacial zone on the devel- 
opment  of matrix cracks and interphase failure in fiber-reinforced composites that are sub- 
jected to uniform transverse loading applied in the far-field. A unidirectionally-reinforced 

1Post-doctoral fellow and professor, respectively, Center for Quality Engineering and Failure Pre- 
vention, Northwestern University, Evanston, IL 60208. Mr. Zhu is now at the Department of Engi- 
neering Science and Mechanics, The University of Tennessee, Knoxville, TN 37996. 
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composite with hexagonal packing of the fibers is investigated. The boundary-element method 
(BEM) is used to obtain results within the framework of the two-dimensional theory of 
elasticity (plane strain). The interracial zone is represented by the spring-layer model. 

Formulation 

Figure la  shows a cross-sectional view of a fiber-reinforced composite with radial cracks 
in the matrix. The circular fibers, which are all of equal radius, a, are spaced periodically 
in a hexagonal packing sequence, and the matrix cracks, which are of equal length, d, are 
also located periodically in the composite. It is assumed that at some large distance the 
composite is subjected to uniform stresses, ero, applied in the transverse direction. The 
loading direction in Fig. l a  is called the midclosest packing direction (Mid-CPD). The basic 
cell chosen for analysis is a hexagon with sides, b, as shown in Fig. la  (the region enclosed 

~176176176 " . . . . . . . .  "~176176176 - -  

D 

H 

A 

(la) 

C 
*l 

P y 
p o  .." 

o x 

G B 

K[ x, I 
y KII 

(lb) (]c) 
FIG. 1--(a) Hexagonal array with matrix cracks and interphase failures subjected to Mid-CPD far- 

field uniform tensile stress %. (b) Quarter region of basic cell, a ~ fiber radius, Length BC = b, matrix 
crack Length PP' = d, and half length of interphase failure GG' = c. (c) Coordinate system for stress- 
intensity factors. 
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by the dashed lines). The periodicity of the composite then implies that the state of stress 
and deformation in the composite will be defined completely by the stresses and strains in 
a quarter region of a basic cell. This quarter region is shown in Fig. lb with the crack being 
denoted by the bold Line PP' 

The boundary conditions on the external surfaces of the trapezoid in Fig. lb can be 
expressed by 

3 1 X/3 C: 
- 4 b < - x < - - 4  b ' y  = - 4 b : % ~  O,v 2 

x e CB: u ( - x , y )  = - u ( x - y ) ,  v ( - x , y )  = - v ( x - y )  

x e CB: t~(-x,y)  = t~(x,-y),  t~(-x,y)  = ty(x , -y)  

(la, b) 

(2a, b) 

(3a, b) 

3 j ,,/5 c~ 
- b  < x  < - -:b, y = - T b :  Oyx = O, v = -= (4a, b) 

- -  - -  4 4 2 4 

3 x/5 x/5 
x = - ~ b ,  - ~ - b  < - y  < _ ~ - - b :  %~ = O, u = C, (5a ,b )  

where (u,v) and (t~, ty) are the components of the displacement and traction fields, respec- 
tively; cry x is the shear stress; and C~ and C2 are unknown constants. 

In addition, the condition that the crack faces are free of tractions yields the following 
relationships for (C, ty) on Line PP' 

x+ ~ PP': t~(x+,y+) = tv(x+,y+ ) = 0 (6a, b) 

x -  ~ PP--=: G ( x - , y - )  = t~ . (x - , y - )  = 0 (7a, b) 

Here, the x+ points are located on the upper face of the crack while _x points are on the 
lower crack face. 

From equilibrium requirements in the x- and y-directions, two additional equations can 

be obtained as 

f~ x ~  B tXs)ds = T b % (8) 

fi~C t,(s)ds + fco t,,(s)ds = 0 (9) 

Following the authors' previous paper [12], the compliant interphase between fibers and 
matrix is modeled by a distribution of mechanical springs. With respect to polar coordinates 
centered at Point A (see Fig. lb),  the relationships between the relevant stress and dis- 
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placement components may be then expressed as 

o';" = o'{ • k~(u~ - u~), if uT >- u~ 

o'~" = or{ and u ;  - u(, if u "  not -> u~ r 

,~,~ = , ~  = k o ( u ~ '  - u ~ )  

(10) 

(11) 

(12) 

where ~ is the interfacial radial stress and ~o is the interfacial shear stress. Quantities with 
upper index, rn and f, are defined in the matrix and the fiber regions, respectively. The 
constants, k~ and k0, are the coefficients of the springs. The addition of Eq 1!, ensures that 
the model will not allow an unrealistic radial overlap of the two materials in the interracial 
zone. 

It should be noted that the compliant conditions, Eqs 10-12, include the case of perfect 
contact (k~ = % ke = ~), when the stresses and displacements are continuous, and the 
case of no contact, that is, interphase failure (k, = ke ~ 0) when the stresses vanish. For 
an interphase that has failed over part of the circumference of a fiber, Eqs 10 and 12 imply 
that the stresses remain bounded by virtue of the boundedness of the displacements. 

Boundary Integral Equations 

The matrix region is further divided by adding a boundary, P'P", that is the straight 
elongation of Line PP'. The new boundary consists of the crack surface and its extension 
from the crack tip, P', to Point P" at the intersection with Line BC. Then, the trapezoid is 
divided into three separate regions, which may be denoted by PP"CDHP, GBP"PG, and 
AGHA,  and the boundary integral equation method (BIE) is applied to these three regions. 
Again, using the same approach as in the authors' previous paper [12], the following bound- 
ary integral equations are obtained 

- -  f f l + F 2  

where 

r;7(_~,~).7(~)ar(~),  ~ ~ r ,  + r :  (13) 

F 1 = PP" + P"C + CD + DH (14) 

r2 = H----P (15) 

and 

ui (x) JF~+,-~ UT(x~'~)t;n(~)dr(~) 

where 

( 
- I T~}'(x,~)u;"(~)dF({),  x e F3 + F4 (16) 

-3+K4 - 2 : - 

[ ' 3  = GB + BP" + P"P (17) 

F4 = PG (18) 
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Here, tT'({) and u~"(~) are the traction and displacement components, and U,7(x,~) and 
T57(x,~) are the fundamental solutions defined by 

1 1 
U;~'(x,~) - 8"~W"(1 - v") (3 - 4v")gn ~ 8i, + O& 

. = _ [•,,, O Ix" O 0 g~]nk(~_ ) (19b) 
V;'/(x,~) [_ Ox, U,"~jk + Ox--7 U~ + ~ Ox Z 

where, R = Ix - ~l, n(~) is the outward normal on the contour of interest. Also, X" and 
Ix" are the Lam6 constants and the Poisson's ratio, v", is related to )t" and Ix" by 

X m = 2v"W"/(1 - 2,, m) (20) 

The introduction of the P'P" boundary allows us to use the displacement BIE represen- 
tation to deal with the crack problem, thereby avoiding the use of the derivative of that 
BIE representation that would lead to higher order singularities and a more complicated 
algorithm. As discussed in some detail in the next section, a special crack tip element is 
used near the crack tip P'.  

The third integral equation for the displacement components, the one in the fiber, may 
be written as 

1 ! 

-s  + r4 ~)(x,_~)u;(~_)dF(~), _x ~ rs + F2 + F4 (21) 

where 

F5 = HA + A G  (22) 

Here, the fundamental solutions, u~(_x,~) and T~(_x,}), are also defined by Eqs 19a and b, 
but with elastic constants, )~I and ~I, of-the fiber, and the unit normal is now pointing out 
from the fiber material. For convenience, we employ indicial notation in this section; where 
xl = x and x2 = y, and the summation convention is implied for repeated indices. 

The boundary integral equations in Eqs 13, 16, and 21 have been solved numerically by 
the boundary-element method (BEM). Details can be found in Ref 18. 

A complication in the calculation occurs because of the presence of the alternative interface 
conditions given by Eqs 10 and 11. In the initial phase of the calculations, the radial interface 
stress ( r ' ( =  (r~) is computed under the assumption that Eq 10 applies. A positive value for 
the computed stress component indicates that the initial assumption was correct. If a negative 
value is obtained over one or more interface elements, Eq 10 is replaced by Eq 11 for those 
elements, and the calculation is redone. The radial interracial stress should still be obtained 
as negative in this adjusted calculation. 

The numerical calculations have been carried out for solids with the following material 
properties: 

1. matrix = Ixm = 97.9 GPa, v"  = 0.22, and 
2. fibers = ~J = 207 GPa, v~ = 0.22. 
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The results will actually apply for any pair of solids, which have the stated Poisson's ratios, 
and whose ratio of the shear moduli is the same as for the preceding materials. The interphase 
constants, kr and k0, were rendered dimensionless by dividing by W'Ya, where a is the radius 
of the fibers 

k r / ( ~ / a )  = ka, kol(o.m/a) = k: (23a,b) 

The variable parameters in the numerical algorithm are the half length of the interphase 
disbond, c, the length of the radial matrix crack, d, the fiber volume ratio, V I, and the 
interphase stiffness constants, ka and k2- The fiber volume ratio, V r is defined by 

I r a 2 / 3 / 3 b :  (24) 
V, = - - 4 - /  

The lengths of the boundary elements for all calculations were chosen as 0.04a or smaller, 
and the fields were assumed to be uniform over these elements (that is, "constant" elements 
are employed). It should be noted that the cracked configuration applies to a composite for 
which all fibers contain the same symmetrically oriented matrix cracks and interphase dis- 
bonds. 

Crack Tip Element 

It is to be expected that for bodies containing cracks, the use of conventional constant 
elements at the crack tips will not yield satisfactory numerical results. Blandford et al. [19] 
introduced the so-called traction singular quarter-point crack tip element with and without 
transition elements. The traction singular quarter-point element characterizes the behavior 
of the displacement and the traction at a crack tip by containing terms of the forms r v2 and 
r-vz, respectively. Martinez et al. [20,21] also considered the same quarter-point element, 
but they used a somewhat different procedure. These authors obtained quite accurate so- 
lutions for some simple crack problems. In the present paper, an alternative consideration 
is employed that avoids the lengthy programming that would be required if the quarter- 
point element method would be employed for the complicated geometrical configuration 
studied in this paper. 

At  the crack tip, the traction term, t(~q), is of the form of K'q-v2. Here, K is a constant 
and "q is the distance from the crack tip. If t(71) is integrated with a known smooth kernal, 
U(x,'q), over a small interval, (0,2), then the integration by parts yields 

K~q-vZU(x, 'q)d~ = t('q*) U(x,rl)drl - z~, -q* = 0.252 (25a,b) 

A = 23/2 f~2K(i l  1/2 - il) OU(x,2il)/Or I d'fl (25c) 

where, 2 is the dimension of the crack tip element. The term, z~, in Eq 25c is of the order 
23/z and is omitted in our numerical program. 

Equations 25a and c tell us that the conventional constant BEM can still be valid for the 
integral of the traction term over the crack-tip element, but the spatial variable of the 
traction term now is understood to be located at the quarterpoint,  not the midpoint, of the 
element, and the trunction error is of the order 23/2. 
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If U(x,~) also has a logarithmic singularity in the interval (0,f) (which is the case in the 
present crack problem when the field point is also located in the crack tip element) ,  then 
the integral in Eq 25c can be evaluated analytically as 

foK 'q -1/2Lnl 'q  - e /2ld" q = t(,q* = 0.25Qe[Ln(f/2) + X/2Ln(N/2 + 1) - 2 (26) 

Here,  the field point,  x, is taken the midpoint  of the element.  
Thus, the present approach follows the traditional constant  element  method,  but the 

traction at the crack tip is understood as the traction at the quarterpoint  of the element  
dimension away from the crack tip. The only modification needed is for the i th diagonal 
terms of the displacement Green ' s  function matrix 

(27a) 

When the crack tip e lement  is ith numbered ,  only the following two matrix elements  must 
be modified to 

0~ ' ,  a'f~ed : 02a,q, (27b) 

0 mOctified -- (27c) 
2 ( i + 1 ) 2 ( i + 1 )  ---~ U2(i+l)2(i+l)q2 

where 

q, = {(3v - 4)[0.753 35 - Ln(e/2)] + R I } / { ( 3 v  - 4)[1 - Ln(e/2)] + R~} (28a) 

q2 = {(3v - 4)[0.753 35 - Ln(e/2)] + R ~ } / { ( 3 v  - 4)[1 - Ln(e/2)] + R~} (28b) 

R, = (x,+, - x , ) l e ,  R2  = ( y , + ,  - y,)/f, t = [x,+t - _x,[ ( 2 9 a , b , c )  

Here,  .xi and xi+ 1 are the coordinates of the two-end nodes of the i 'h e lement;  02a, and 
~'~2(i+1)2(i+1) are from the conventional  BEM algorithm. 

Even though the leading term of the traction at the crack tip plays the main role in the 
characterization of the stress behavior at the crack tip, the second term, which is a constant,  
should not  be excluded. From our experience, it usually contributes about  3 to 12% of the 
traction at the quarterpoint  node of the crack-tip element.  In the present  numerical  program, 
the second term, which is assumed to be constant,  has been also taken into account. The 
matrix elements corresponding to the second term are the same as those corresponding to 
the traction term at the crack-tip element  for the conventional  BEM. Now, we have, ap- 
parently,  two more unknowns,  namely,  the second terms of the traction of the x- and 
y-directions at the crack tip element.  Hence,  two additional equations are required. 

The displacements on the upper and lower crack faces can be decomposed as 

x + ~ PP':  ~ ( x  + )  = -~(~) + a_~(x) (30a) 

x -  ----~PP': g ( ~ - )  = ~(~) - ~q(~) (30b) 
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where,  Au(x) are the crack opening displacements.  Analyt ical  expressions near  the crack 
tip are available for the crack opening displacements  as well as for the stresses, for the plane 
strain case. In the (x ' ,y ' )  coordinates  with their origin at Point P' (see Fig. lc) ,  the crack 
opening displacements  along Line PP'  are 

2~v,(x') = K ~ X / ~ 2 ( 1  - v) / ( tx~2~) ,  x' E PP'  (31a) 

A v d x ' )  = r  KIVIX 12(1 - v)/(txX/U4). 

and the stresses along Line P 'P '  are 

%,y,(x_') = K . /  2X/~7', %,,,(x_') = K,/ 2~/~x', 

x'  e PP'  (31b) 

x ' e  P 'P" (32a,b) 

In our numerical  program,  the components  of Av(_x') at the crack-tip e lement  on Line 
PP' are evaluated at the midpoint  of the element  while ~,.,~.,(_x') and ~.,.,.,.,(x') at the crack- 
tip e lement  on Line P'P" are evaluated at the quar terpoint .  Therefore ,  we have the following 
relat ionships 

Avl(x' = - -0 .5 f ,y '  = 0) = %, , , (x '  = 0 .25t .y '  = 0)2f(1 - v)/(IXX/8) 

Av2(x' = --0.5t~,y ' = 0) = (r~.,,,(x' = 0.25tCy' = 0)f(1 -- 2v)/(tx~/8) 

(33a) 

(33b) 

where,  f is the dimension of the crack-tip element .  
The crack opening displacements  in the (x,y) coordinates .  ~(,(x),  can be related to Av 

(x ' )  by 

a_v(_x') = T ( + )  a u ( x )  (34a) 

and the t r ac t ions , / (x ) ,  are related to [ ' ( x ' )  = [ r  g , , , , (x ' ) ]  by 

~ ' (~ ' )  = - T ( + ) - [ ( ~ )  (34b) 

where,  T(+),  which is called the 2 • 2 t ransform tensor,  is defined by 

[ cos(+) sin(+) ] (35) 
T(cb) = L -  sin(+) cos(+)J  

where,  cb is the crack or ientat ion angle. 
If AVl(X'), Av2(x'),  %,y, (x ' )  and %,,.,(x_') in Eqs 33a and b are replaced by u(x) and 

_fix) by the use of Eqs 34a and b, we obtain 

Aul(_x*) = --t~(x**)2e(1 - v)/(tx',/*) (36a) 

Aua(x*) = --t,.(x**)2~(1 - v)/(tx~/8) (36b) 
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where, x* is the point in the (x,y) coordinates corresponding to the point ( - 0 . 5 C 0 )  in the 
(x',y') coordinates, and x** is the point in the (x,y) coordinates corresponding to the point 
(0.252,0.) in the (x',y') coordinates. The quantities ~u~(x*), Au2(x*), tx(x**), and t jx**) 
are the unknowns in our calculations. 

The preceding equations reduce the number of unknown by two. So the numerical system 
is now solvable. 

In summary, the modified constant element method follows the conventional constant 
BEM, except that: 

1. The traction term at the crack tip is located at the quarterpoint of the crack-tip element, 
and the corresponding diagonal matrix terms are multiplied by q~ or q2, which are 
defined by Eqs 28a and b. 

2. The second term of the traction at the crack tip, which is assumed to be constant, is 
also included. 

3. The crack opening displacements at the crack tip are related to the traction terms at 
the crack tip by Eqs 36a and b. 

4. The number of unknowns of this modified constant element method is the same as 
that of the conventional constant element method. 

This modified constant element method has been applied to the same cases as studied in 
Blandford's and Martinez's papers, and good results have been obtained, with less than 3% 
error when compared with analytical solutions. The numerical results in the following section 
have been also obtained by the use of this modified constant element method. 

Numerical Results 

Figure 2 displays circumferential stresses in the matrix at the fiber-matrix interphase. 
These results show that for low interphase stiffness, % has its largest value near 0 = 45 ~ 
(solid line). On the other hand for a higher value of k~ and k2 (k~ = k~ = 1, dashed line), 
the maximum is near 0 = 80 ~ If a maximum circumferential stress criterion for initiation 
of matrix cracking is assumed, Fig. 2 suggests that low interphase stiffness and higher fiber 
volume ratio give rise to radial matrix cracks at angles much smaller than 0 = 90 ~ (solid 
line) in accordance with the experimental observations of Daniel et al. [22] (see Ref 12 for 
more details). 

The interphase strain energy density, /5, corresponding to the case of Fig. 2 is shown in 
Fig. 3. The definition of /7  is given by 

~ ~2 (37) 
2k2 

where ~,. = (rr/~ and ~r0 = ~r0/~0. 
Ifa critical value of/7 is adopted as an interphase failure criterion, which has the advantage 

that it involves both cr and %, the results of Fig. 3 suggest that interphase failure, will start 
near 0 = 0 ~ because /7 has its largest value at that location. It should be noted here that 
~r is included in U only when ~ is positive (tension). It is assumed that compressive values 
of ~r do not affect the integrity of the interphase. 

It is of interest to see the variation of the interphase strain energy density,/_,7, when matrix 
cracking has taken place. In Fig. 4, /7 is plotted for different lengths of a radial matrix 
crack. The crack is initiated at 50 ~ corresponding to the position of maximum or0 (solid line) 
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shown in Fig. 2. In the interval 0 < 0 < 50 ~ the magnitude of /7, which always has its 
maximum at 0 = 0, increases with increasing d/a. Hence, on the basis of a maximum strain 
energy density criterion for interphase disbond initiation, Fig. 4 suggests that failure of the 
fiber-matrix interphase may happen after the development of radial matrix cracks. 

For the case that interphase failure has developed first, Fig. 5 shows the variation of ge/ 
% along the matrix side of the interphase versus the half interphase failure length, c. It is 
noted that the initiation and the subsequent development of interphase failure gives rise to 
a considerable increase of the magnitude of cr0/g0 at the interphase. This suggests that a 
radial matrix crack may be initiated after the development of the interphase failure. 

The actual sequence of radial matrix cracking and interface failure depends on the critical 
values of ~0 and U. 

Figure 6 shows the effect of the interphase stiffness and the fiber volume ratio of the 
Mode I stress-intensity factor at the tips of the radial matrix cracks. The stress-intensity 
factor is defined in terms of the local crack tip coordinates shown in Fig. lc. The value of 
KI should be positive to be consistent with the existence of the matrix crack, and this is the 
case for all the numerical results presented here. Lower stiffness of the interphase in the 
circumferential direction, that is, lower k2, leads to higher KI values because there is less 
resistance to the crack opening displacement. For the same value of d/a,  a greater part of 
the matrix is cracked for a higher value of V r. Consequently, for fixed d/a,  K~ increases with 
fiber volume ratio, as shown in Fig. 6. 

Conclusions 

A numerical technique has been developed to calculate microlevel stresses for transverse 
loading of a unidirectionally fiber-reinforced composite with hexagonal packing, for the case 
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that the fiber-matrix interphases are modeled  by the spring-layer model.  Results are pre- 
sented for the circumferential stress at the matrix side of the interphase,  which is assumed 
to govern radial matrix cracking, and for the interphase strain energy density, whose critical 
value is assumed to govern interphase failure. The approach of this paper makes it possible 
to model  failure scenarios of radial matrix cracking and interphase failure. 
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ABSTRACT: The scattering of elastic waves by interfacial cracks in layered media has been 
investigated in this paper. A hybrid numerical method is employed for obtaining the solution. 
This method combines the finite element equations and the Green's function boundary integral 
representation. Numerical results are presented for the crack opening displacements (COD) 
and the Mode I and Mode II stress-intensity factors (SIF) as functions of nondimensional 
frequency when normal and tangential time harmonic line loads are applied on the free surface 
of the layered medium_ 
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Nomenclature  

a Crack length 
C 1 Longitudinal  wave velocity 
C2 Shear wave velocity 
CR Rayleigh wave velocity 

E (e~ Total  e lemental  energy 
Gki Green ' s  function 

H Layer thickness 
K1 Mode  I stress-intensity factor 
K2 Mode II stress-intensity factor 
k21 Shear wavenumber  of the layer 

K (e) Elementa l  kinetic energy 
L Crack e lement  length 
N Total  number  of nodal points 

N n Number  of nodal points on B 
N~ Number  of nodal points interior to B 
n~ Normal  to contour  C 

p(e~ Elementa l  consistent nodal force vector 
r Radial  distance from the crack tip 

RE Exter ior  region 
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R~ Interior region 
S (e) Elemental impedance matrix 
U (e) Elemental strain energy 

ui Displacement field (i = 1,3) 
W (e~ Elemental work potential 

x Horizontal coordinate 
z Vertical coordinate 

Greek 

I~/]. 

P 
O" 

T~ 

+i 
03 

Strain tensor 
Nondimensional frequency 
Lame's constant 
Lame's constant 
Wavenumber in the y-d i rec t ion  
Mass density 
Poisson's ratio 
Stress tensor 
Shape functions 
Circular frequency 
Stresses associated with the Green's  functions 

Subscripts 

1 Properties related to the layer 
2 Properties related to the half space 

Superscripts 

(f)  Denotes a quantity relative to the free-field 
(s) Denotes a quantity relative to the scattered field 

t Denotes transpose 
* Complex conjugate 

In the past 20 years, corrosion-resistant coating technology has received a lot of attention 
from a multidisciplinary engineering and scientific community because of its wide applica- 
tions. The selection of the coating material, its thickness, and the number of coats are based 
usually on the nature and the degree of aggressiveness of the environment to which the 
coated structure will be exposed. Also, coatings have to be compatible with the base material 
(substrate) in order to assure a good bonding. In the steel industry, the most commonly 
used processes for applying metal coatings are: hotdipping, electrodeposition, spraying, 
diffusion, and cladding. In all of these processes, it is not unusual to produce a coating with 
defects, such as cracks, debonding, or discontinuities. Moreover, these defects can also occur 
in situ due to fatigue or unusual stress levels applied to the material. The presence of these 
defects makes the structure vulnerable to failure due to propagation or growth of these 
defects. In this paper, we have examined the dynamic loading effects on the crack-opening 
displacements (COD) and the stress-intensity factors (SIF). 

Among the works reported during the last decade that deal with scattering by interface 
cracks is that of Neerhoff [1], who investigated the diffraction of incident bulk horizontally 
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polarized shear (SH) and Love waves by a crack of finite width at the interface of a layered 
medium. He solved the antiplane problem employing the integral equation method. Keer 
et al. [2] studied the resonance phenomena for a crack near the free surface of a homogeneous 
half space. The plane strain boundary value problem was reduced to that of finding solutions 
to a system of coupled singular integral equations. These integral equations were solved 
numerically for incident waves generated by uniform tension and shear applied at the free 
surface. The work done by Yang and Bogy [3] is the most relevant to our work. They 
considered a plane strain problem of a layered half space with a single interracial crack. 
The solution method was similar to that developed by Neerhoff [1] for the antiplane problem. 
The transient response of an interface crack in a two-layered plate subject to an antiplane 
stress field was studied by Kundu [4]. He also employed the integral equation method 
proposed by Neerhoff. Kundu and Hassan [5] solved the same problem for a layered plate 
of finite length, by discretizing the whole domain with finite elements. First, the discretized 
equation of motion was solved in the frequency domain, then a fast Fourier transform (FFT) 
technique was used to obtain the time response. More recently, the interaction between 
two cracks at the interface of a layered isotropic and anisotropic medium under antiplane 
loading was studied by Kundu [6] and Karim and Kundu [7]. 

In this paper, we present a different method of studying the plane strain dynamic response 
of a layered half space with interfacial cracks due to surface line loads. It is assumed that 
a long interracial crack lies at the interface between a layer and a substrate. The motivation 
for this particular choice comes from the need to understand the dynamic response of a 
fully open interracial crack, along with the resonances. The solution method used here was 
suggested by Zienkiewicz [8], and has been applied by Shah et al. [9] for the diffraction of 
SH waves in a half-space. Franssens and Lagasse [10] used a similar technique to study the 
two-dimensional scattering of both SH and longitudinal and vertically polarized shear 
(P-SV) waves by a cylindrical obstacle in a layered medium. The most recent work by Khair 
et al. [11] is a generalization to three-dimensional amplification of seismic waves by arbitrarily 
shaped alluvial valleys embedded in a homogeneous half-space. The advantage of this method 
resides in the fact that once the Green's  functions are obtained for a given frequency, the 
scattering due to any irregularity that fits inside the finite element region can be determined. 
In the next section, an outline of the method is given. 

Formulation 

The problem considered here is a single layer of thickness, H, bonded to a half-space, as 
illustrated in Fig. 1. The layer and half-space are made of linearly elastic, isotropic, and 
homogeneous materials. When necessary, a subscript or superscript (1,2) is used in describing 
properties related to the layer and substrate respectively, for example, Pl, Ix~, hi represent 
the mass density and the Lam6's constants of the layer. The dynamic response due to time 
harmonic line loads is investigated. We consider a large crack of length 3.8 H located at 
the interface of the single-layered structure. 

Let ui be the displacement component in the ith direction in the Cartesian coordinate 
system shown, and Tij the stress tensor having time harmonic behavior of the form e ;~' 
The equation of motion in the frequency domain is written as 

%., + poJ2ui = -f~, (i , j  = 1,2,3) (1) 

where p is the mass density, f, is the body force per unit volume, and to is the circular 
frequency. 
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FIG. 1--Layered hall:space with interfacial crack. Geometry and Contours B and C are shown. 

The total fields generated by the interaction of the free field with the cracked medium 
can be expressed as 

ui = u," + u( (2) 

. .  = .~sj + ,~ (3) 

where the symbols carrying the superscripts s and f are associated with the scattered and 
free fields, respectively. 

It is assumed that the upper surface of the layered medium is traction free and that the 
bonding between the layer and the substrate is perfect except at the cracked region (crack 
or delamination).  The crack surfaces are assumed to be traction free. The boundary  and 
continuity conditions are 

-~P = -~P = r i p  = o;  z = o; - ~  < x < ~ .  (4) 

U (1) = U(2) ,12  (1) = I~ '(2) ,W ( l )  = W ( 2 ) ;  Z = H; Ixl > 1 . 9 H  (5) 

"1 "(1) = "r (2)  T (1)  ~ T (2)  T (1 )  = T (2)"  Z = H; Ixt > 1 . 9 H .  
x z  x z  ~ y z  y z  ~ z z  z z  

(6) 

,r(~) = ,r = 'r(~p = 0; z = H; Ixl < 1.9H xz  yz  

T (2) = T (2) = T (2) = 0 ;  Z = H; Ix] < 1 . 9 H  xz  y z  zz  

(7) 

(8) 
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Moreover, the scattered field must satisfy the elastic radiation conditions at infinity. For 
the general three-dimensional formulation, we will consider the dependence of the displace- 
ment on the ),-coordinate to be taken as 

ui(x,y,z) = ui(x,z)e ie' (9) 

This represents a propagating wave in the y-direction with wavelength 2~r/~ and amplitude 
varying with x and z. This allows us to consider incident waves that are propagating at an 
arbitrary angle to the axis of the crack. For the plane strain problem, ~ = 0. The solution 
method will be discussed in the following section. 

Description o f  the Method 

The solution method combines the Green's  function boundary integral representation with 
the finite element equations. A simple fictitious contour, B, around the scatterer is intro- 
duced as shown in Fig. 1. We define the interior region, R~, to be bounded by B. This 
region is then discretized with finite elements having N = N~ + NB number of nodes, N~ 
being the number of nodes interior to B and NB the number of nodes on B. 

Let the element domain and the boundary be denoted by IY ~) and F ~), respectively. The 
displacement field is written in the usual way in terms of the shape functions and the nodal 
displacements in matrix form: 

( i}  I '' ~ ~ ~ 
{ n } =  = o +~ o . . .  o 4,. o 

0 0 +1 . . .  0 0 +, 

U 1 

!21 

U n  

Wn 

= [,I,] {u~}, (lO) 

in which n denotes the number of nodes per element and the superscript (e) is the element 
identifier. By using the strain-displacement relationship, we get 

{~} = [ l ) ] [ r  e} = [B]{u e} 

where E = {Gx, eyy, ezz, % ,  Gz, Gy}' and the 

Z 
Ox 
0 

D = 

0 

0 

0 

Oz 

derivative operator D is 
m 

0 0 

;~ o 

o 2_ 
Oz 

Oz 

o 2_ 
o~ 

2_ o 
Ox 

(11) 

(12) 
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400 FRACTURE MECHANICS: TWENTY-SECOND SYMPOSIUM 

The superscript, t, denotes transpose. 
The stresses are related to the strains via the constitutive law that may be written in matrix 

form as 

{w} = [C]{e} (13) 

where C is the (6 • 6) symmetric stiffness matrix. For an isotropic material, all the entries 
of C are in terms of the Lam6's constants, X and Ix. 

The total energy associated with each element  (e) is to be taken as 

E(+) = U(e) + K~,O _ W(~> (14) 

where U '~++) and K (+) are the strain and kinetic energies, respectively, and W (~) is the surface 
traction work potential;  these are defined as 

1 8(++ = ~ f~++{-~}'{EI*dxdz 05) 

( 

K (+) = | poF{u}'{u}*dxdz (16) 

W(~) = 1 (r ({u}'{t}* + {t}' {u}*)dF 
Z df'(e) 

(17) 

Here {t} is the traction vector on the boundary  and { }* represents the complex conjugate 
of the vector expressions. The integration in the y-direction is done over one wave length 
and the preceding expressions represent the energies per wave length in the same direction. 

By setting the first variation of the total energy, BE, to zero, we obtain the elemental  
equations of motion written in the following form 

S(~ u (+) = p(,') (18) 

where S (e) is the elemental  impedance matrix and p(e+ is the consistent nodal force vector, 
These are defined as 

and 

S (+) = f~ ([B*]'[C][B] - p~o2[~'l 'N'l)dxdz (19) 
"t(e) 

p(+) = ~.+/t}'[~] dr (20) 

The elemental  impedance matrices and load vectors are computed and assembled into a 
global impedance matrix and load vector. The global equations of motion are parti t ioned 
in such a way that the inside nodal displacements appear at the top and the boundary  
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displacements at the bottom. Therefore the discretized equations of motion in Region R~ 
become 

S I I  SIB 1 0 

For solution purposes, only a relationship between the inside nodal displacements and the 
boundary ones is needed, and this is given by 

{U,} = - [S n] -'[S,BI{UB} (22) 

The boundary integral representation is derived from the elastodynamic reciprocity theorem 
[12], written in the following form 

a({g}'{u} - {f}'{v}) dA = r - {q}'{u}) dC (23) 

where u and t are the displacement and traction on the boundary, C, of Region A associated 
with the body force, f, and v, q are those associated with g. We shall denote the region 
exterior to C as RE. Note that the region between Contour B and C is common to RE and 
Rz. We will apply the preceding theorem to Region RE, with the first field as the scattered 
field and the second field to be the line source Green's  function solution. For this purpose, 
we define the Green's  function and the scattered fields as solutions to the following equations 

Ekwi + P~~ = --Skig(X - x ' ) 8 ( z  - z ')e  ;( ,~,*o'~ (24) 

and 

"r;j,~ + p~2u~ = 0 (25) 

In Eqs 24 and 25, i denotes the displacement direction and k is the force direction. The 
Green's  function solution for a layered medium has been discussed by Bouden [13]. 

After direct substitution of these two fields in Eq 23, we get 

( 
s ~ r (13 uk(x ,z ) = ~'c'( i/G~i - Ekiju'i)nj dC T s (26) 

The contour integration is done in a clockwise manner. 
Applying the elastodynamic reciprocity theorem (Eq 23) to the region interior to C with 

the two fields as the Green's  solution and the free-field with no forcing terms, we get 

. . ( % G ,  - Y - : k , u D ( - ' O  d C  = 0 (27)  

This integral is evaluated in a counterclockwise manner. Combining Eqs 26 and 27, we 
obtain the integral representation of the total displacement at any point in Region RE as 

blk(X',Z' ) ~ U{(X',Z') + ~c( ' r i jGki-  ZkuUi)n~ dC (28) 
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Now, Eq 28 is evaluated for Points x' and z ' ,  coinciding with the nodes on Boundary B, 
This leads to an equation connecting the displacements at the nodes on B to those at the 
nodes on C in the form 

{UB} = {U{3} + [r - [~c]'[E]){n}dC]{Uc} 

+ [r - [~B]'[E]){n}dC]{UB} (29) 

where [Bc] = [D][~c] and [BB] = [D][~B]. 
Using Eq 29 and completing Uc with the remaining inside nodal displacements yields 

{UB} : [Am]{U,} + [A,B]{UB} + {U{3} (30) 

where rAm] is (3NB x 3N~) and [ABB] is (3NB x 3NB) and both are complex matrices. 
Substituting Eq 22 into Eq 30 and solving for {UB}, we get 

{UB} = {[I] + [Au,][S,,]  '[Sm] - [AB. ] } - '  {UtB} (31) 

The inside nodal displacements can then be determined by using Eq 22. The displacement 
at any point in Region RE can be found by applying Eq 28. 

Numerical Results and Discussion 

Numerical results were obtained for a nickel coating layer over an iron substrate. Single- 
layer coatings are usually of the order of microns topping base materials of several milli- 
metres. This contrast in the thickness justifies the single-layered half-space model. In our 
analysis, all of the material and geometric parameters were nondimensionalized. Lengths 
were normalized with respect to the layer thickness, H. The material constants and densities 
were normalized with the layer rigidity and density, respectively. Then, the layer thickness, 
rigidity, and density were set equal to unity. Finally, all of the wavenumbers were normalized 
with respect to the layer shear wavenumber k21 ( =  to/C20. Note that C~ and Czj (j  = 1,2) 
are the longitudinal and shear wave velocities, respectively, of the j,h medium. 

The material properties of nickel and iron are listed in Table 1. Here ~ is the Poisson's 
ratio and C~, C2, and CR are the longitudinal, shear, and Rayleigh wave velocities, respec- 
tively. This case can be classified as a "loading" case according to Farnell and Adler  [14], 
because the layer shear velocity is less than the half-space shear velocity (that is, C2~ < Cz2). 
For this case, multiple Rayleigh-like guided wave modes occur. The velocities of these modes, 
which are frequency-dependent, are higher than the layer Rayleigh velocity, CR1. The nu- 
merical integration of the semi-infinite wavenumber-type of integrals that arise in the eval- 

TABLE 1--Material properties. 

p,, Cli C2,, Cm 
Material, i ~ kg/m 3 m/s m/s m/s 

Nickel 0.31 8800 5240 2750 2550 
Iron 0.28 7700 5720 3160 2920 
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uation of the Green's  displacements and their associated stresses is discussed by Xu and 
Mal [15] and Bouden [13]. We define the nondimensional frequency, e, as k21H. A single 
Griffith crack at the interface of this layered material is considered. The length of the crack 
is a = 3.8H. 

The incident field is caused by a time-harmonic line load applied at the origin, O, of the 
coordinate system (Fig. 1). Both normal and tangential loads are considered. 

The internal region, R~, was discretized into finite elements. The mesh had 316 elements 
and 506 nodes. Regular isoparametric elements were used everywhere except at the crack 
tips, where eight six-node triangular quarter-point elements were used. Barsoum [16] showed 
that these singular elements could model crack tip singularity in a homogeneous medium. 
However, it has been shown that the stress singularity at the tip of an interfacial crack is 
oscillatory in general (see Williams [17] and Bogy [18]). However, for the material com- 
bination used, the singularity is square-root type and, thus, is identical to the case of a 
homogeneous material. 

The finite element discretization and the numerical evaluation of the contour integral are 
the only sources of inaccuracy in this method. The size of the elements and number of Gauss 
points per element were varied in order to keep the relative error less than 5%. It was 
found that ten elements per wavelength was the minimum required in order to capture the 
physics of the problem, and that three Gauss points per element for the contour integration 
were sufficient for the desired accuracy. A comparison with published results can be found 
in Bouden [13]. 

Crack Opening Displacements 

Crack opening and sliding displacements (COD) were computed at different nondimen- 
sional frequencies. Considering the geometric and loading symmetry, only the CODs on the 
right half are shown in Figs. 2 and 3 for e = 0.9. The dotted line represents the inplane 
sliding of the crack surfaces, while the solid line represents the opening of the crack. The 
arrow on top of the layer is the force direction. It is interesting to note from Fig. 2 that the 
normal crack opening displacement for the tangential load is quite a bit larger than the 
tangential COD over most of the crack length. It was found that as the frequency was 
increased the CODs decreased. Also, the sliding displacement amplitude became larger 
than the normal displacements. 

Figure 3 shows the results for normal line load. It is found that the normal COD is larger 
than the tangential one. At  high frequencies, it was found that the shapes of the CODs 
became oscillatory. 

Stress-Intensity Factors 

The stress-intensity factors, K~ and K2, can be extracted from the finite element solution 
by identification of the coefficients of the singular terms in the analytical expressions of the 
displacement fields in the vicinity of the crack tip with the interpolated expressions from 
the six-noded triangular quarter-point elements. 

The analytical expressions for the displacement fields in the vicinity of a crack tip along 
the bond line of two half-spaces of different materials shown in Fig. 4 can be derived in the 
same manner as for the homogeneous case. For details, the reader is referred to Bouden 
[13] and Sih and Rice [19]. 

For the finite element discretization, the collapsed quadrilateral quarterpoint element 
contains terms in the interpolated displacement fields proportional to the square root of the 
radial distance, r, emanating from the crack tip. For instance, the displacement field corn- 
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FIG. 2--Crack opening and sliding for  the right half  o f  the single crack. This result is for  a tangential 

time harmonic line load with a nondimensional frequency ~ = O. 9. 

ponents  along the edges containing Nodes A ,B ,C  and A ,D ,E ,  shown in Fig. 4 are given by 
Owen and Fawkes [20], that is 

/ 7  r 

ul UA + (4UB UC 3 U A ) . / 7  = -- -- ~ L  + (2Uc + 2UA -- 4UB)~ (32) 

/ /~- r r (33) 
V 1 = V A + ( 4 V  B - -  V C - -  3b'A)~- ~ + (2Vc + 2vA - 4vB) 

u2 = UA + (4UD -- UE -- 3UA) + (2U E + 2UA -- 4UD) ~ (34) 

•f• r (35) v2 = VA + (4% -- VE -- 3VA) + (2V E + 2V a -- 4%)  

The Mode I and Mode II stress-intensity factors presented in Figs. 5 and 6 are obtained by 
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FIG. 3--Crack opening and sliding for the right half of the single crack. This result is a normal time 
harmonic line load with a nondimensional frequency e = 0.9. 

equating the coefficients of ~ in Eqs 32 through 35 with corresponding expressions arising 
in the analytical expressions. After nondimensionalization, we have 

o r  

[ 2ix: 5(4v0_ VE_ 3VA)] (37) 
K ,  = lkll = ~LI(K 2 q- 1) 

and 

K2 =lkzl = ~ ~ ( 4 u B -  U c -  3uA) (38) 

o r  

] 2p~2 5(4Up_ UE__ 3UA)] (39) K2 = Ik2j = ~,(K2 + 1) 
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- - -  L - - - -  

FIG. 4--Geometry of an interface crack between bonded dissimilar half-spaces and crack-tip elements. 

Here, Kz = 3 - 4~i for the plane strain case. The numerical values of the stress-intensity 
factors presented here are the average of Eqs 36 and 37 for Mode I and Eqs 38 and 39 for 
Mode II. 

Figure 5 shows K~ and/(2 for the Crack Tip A versus the nondimensional frequency e = 
kz~H for a horizontal time harmonic line load, which is applied on the surface of the layer. 
It is observed that/(2 starts at a fairly high value for low frequencies, decreases, and then 
increases to a peak at about e --~ 0.9. Beyond this frequency, it gradually decreases. K~, on 
the other hand, starts at a low value, decreases slightly, and then increases to a fairly high 
value at the same frequency. Note that even though K2 is dominant, as would be anticipated 
from the nature of the loading, dynamic K~ is also quite high. Note that Mode I dynamic 
SIF is substantially higher than the static value in some range of frequency. Figure 6 shows 
K~ and K2 for a normal loading. In this case, the roles are reversed. The opening mode 
dominates. It is found now that K~ and K 2 increase with frequency reaching sharp peak 
values at a lower frequency, that is, e --~ 0.3. This lowering of the resonance frequency from 
the shear loading case to the normal one is in agreement with the results obtained by Keer 
et al. [2] for a horizontal crack buried near the surface of a half-space due to uniform shear 
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FIG. 5 - - M o d e  I and Mode H stress-intensity factors as a function of  nondimensional frequency at 

Crack Tip A of  the single crack for tangential load. 

and tension loadings. It is seen that the dynamic SIFs (both K1 and K2) are much higher 
than the static values at low frequencies. It can be shown that the frequency values at which 
K1 and K 2 have local maxima do not correspond to a cut-off frequency. However, when the 
frequencies at these peak values are compared to the natural frequencies of a Timoshenko 
plate of length 3.8 H (Table 2) with two different boundary conditions (simply supported 
or clamped), they show a good correlation. For the tangential loading, the peak occurs at 

= 0.9. This value is bounded by the two natural frequencies of the second mode (o~2~). 
With the lower and upper bounds corresponding to the simply supported (SS) and clamped 
(C) case, respectively. 

In the case of normal loading, the peak occurs at e = 0.3. This value is slightly lower 
than the natural frequency of the first mode (~1~) for the simply supported case. However, 
since the frequency increment is 0.3, the accuracy of these peak frequency values is within 
this increment. It is concluded from these figures that the dynamic effects are quite substantial 
and, in general, give higher K1 values for normal impact at low frequencies. 

Conclusion 

A combined finite element and integral representation technique to analyze scattering of 
waves by interracial cracks in a layered half-space has been presented. The advantage of 
the technique is that it allows consideration of arbitrary crack geometry. This can be done 
by merely changing some of the interior elements. Numerical results showing CODs and 
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FIG. 6--Mode I and Mode 11 stress-intensity factors as a function of nondimensional frequency at 
Crack Tip A of the single crack for normal load. 

TABLE 2--Natural frequencies for simply supported (SS) and 
clamped (C) Timoshenko plate and frequency values at peaks of 

stress-intensity factors. 

E = k 2 1 H  

Mode 1, can 2, ~= 

SS 0.34 0.40 
C 0.76 0.94 
Peak 0.3 0.9 

SIFs for a single interfacial crack due to normal and shear line loads have been presented. 
It is found that for both loading cases normal CODs are larger than the tangential one at 
low frequencies. Dynamic stress-intensity factors are found to attain high peak values at 
certain resonant frequencies, depending on the loading. Although results for a single crack 
have been presented here, multiple cracks can be considered with equal ease. This will be 
discussed in a later communication. 
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Probabilistic Fracture Models for Predicting 
the Strength of Notched Composites 

REFERENCE: Cheng, M.-C. and Lin, K. Y., "Probabilistic Fracture Models for Predicting 
the Strength of Notched Composites," Fracture Mechanics: Twenty-Second Symposium (Volume 
1I), ASTM STP 1131, S. N. Atluri, J. C. Newman, Jr., I. S. Raju, and J. S. Epstein, Eds., 
American Society for Testing and Materials, Philadelphia, 1992, pp. 410-420. 

ABSTRACT: This paper presents two probabilistic fracture models for predicting the tensile 
strength of filamentary composites containing geometric discontinuities such as holes or cracks. 
The statistical fracture model considers the case of a constant load while the stochastic model 
deals with monotonically increasing loads. Both models use the Weibull distribution of fiber 
strength and elastic fiber/matrix properties to calculate the number of broken fibers near the 
crack tip in the 0-plies as a function of applied loads for different probability levels. Using the 
probabilistic models, the notched strength of ( +- 45/02)2 boron/aluminum composites with var- 
ious crack sizes have been predicted. These results agree well with existing experimental data. 
In addition, the relationship between fracture stress and notch size is found to be governed 
by a power law, as previously suggested by Mar and Lin using a deterministic approach. 

KEY WORDS: filamentary composites, notch sensitivity, Markov process, Weibull distribution 
function, statistical fracture model, stochastic fracture model, boron/aluminum, fracture me- 
chanics, fatigue (materials) 

The notch sensitivity of fiber-reinforced composites has been a subject of extensive re- 
search during the past two decades. Numerous tests have been conducted to better under- 
stand the fracture behavior, and several fracture models have been proposed for predicting 
the notched composite strength. A pool of literature can be found in a review article by 
Awerbuch and Madhukar [I]. 

From the experimental study, it has been shown that the fracture stress is strongly de- 
pendent upon the notch size. To account for notch size effects, Waddoups, Eisenmann, and 
Kaminski [2] applied linear elastic fracture mechanics to composites with an assumed "intense 
energy region" ahead of the original notch. Whitney and Nuismer introduced stress fracture 
criteria along with the characteristic dimension for calculating the fracture stress [3]. Lin 
and Mar proposed a modified fracture mechanics formula for notched composites [4]. Al- 
though these methods are capable of predicting notched composite strength, the character- 
istic dimension of intense energy region in most laminates was found not to be a material 
constant. In addition, these fracture models cannot predict the large data scatter usually 
observed in strength tests nor the micromechanism that triggers the composite failure. Thus, 
a probabilistic approach to brittle fracture in composites seems more appropriate. 

Recently, the present authors proposed two probabilistic models; a statistical fracture 
model [5] and a stochastic fracture model [6], for the analysis of composite laminates with 
geometric discontinuities. These models were developed based on the statistical fiber strength 

1Graduate student and professor, respectively, Department of Aeronautics and Astronautics, Uni- 
versity of Washington, Seattle, WA 98195. 
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distribution and elastic constituent material properties. In this paper, these two fracture 
models will be reviewed and their relationship will be discussed in detail. In addition, the 
validity of each model will be assessed by comparing the predicted results with the exper- 
imental data. 

Model Assumptions 

The analytical model considered is a composite laminate containing a geometric discon- 
tinuity, such as a central slit or a circular hole as shown in Fig. 1. The length of the laminate 
is 2b, the width is w, and the initial crack size is 2ac,. The laminate is subjected to a uniaxial 
tensile stress, ~ ,  at the remote boundary y = -+b. In general, the rnicrofracture process 
near the tip of a discontinuity is extremely complex due to the inhomogeneity of the damage 
zone [7]. It is necessary to make certain assumptions so that the problem can become 
mathematically tractable. The assumptions used in the present probabiIistic models are 
summarized in the following paragraphs. 

0 q:~ 

y 

X 

~-- 2ao - ~  

lJJlJlJJl 

2b  

i_ W ..a I- l 

FIG. 1--Geometry of  a composite panel. 
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The Fiber Dominated Failure Mode 

It is assumed that the laminate shown in Fig. 1 comprises of a significant percentage of 
0-plies with fibers aligned in the loading direction so that failure of the laminate is controlled 
predominantly by the fiber rather than the matrix. The 0-ply is considered as the primary 
load carrying agent while the other angle plies are present to restrain the composite failure 
from longitudinal splitting to fiber fracture. Thus, in our probabilistic models, we assume 
that the primary failure mechanism is due to fiber fracture in the 0-plies. Effects of other 
failure modes such as matrix cracking, fiber-matrix debonding, and ply delamination on the 
notched strength are neglected. 

The Chain-of-Bundles-of-Links Assumption 

The 0-plies in a laminate are modeled as a series of bundles, each bundle consisting of 
identical "fiber links" arranged parallel to each other [8]. The fiber link is defined to be a 
basic element comprising the filaments in composites (see Fig. 2). The dimension of each 
link is taken to be the ineffective length, 5, which can be determined from either the shear- 

/1/ 
link length 

fiber breakage 

r 
FIG. 2--Fiber links in the chain-of-bundle-of-links model. 
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lag analysis or the finite element method. For simplicity, the following shear-lag analysis 
result by Rosen [8] is used for estimating the ineffective length, 

d y - ~ / 1  -~X/-VfEfcos h ,(1 + ( 1 -  +)-'~ 
~ ~/W-.G,, 2(1 - qb) ] 

(1) 

~'here 

d r = fiber diameter, 
V~ = fiber volume fraction, 
Ey = Young's modulus of the fiber, and 

G m = shear modulus of the matrix. 

The asymptotic value, +, is taken as 0.90, meaning that the fiber stress has recovered 90% 
at a distance, g, away from the broken end of a fiber. By the definition of g, Tamuzs [9] 
experimentally measured the distribution function of fiber fragment length from the failed 
samples of several polymeric composites and drew a conclusion that the physical length of 

can be correlated practically with the analytical formula given in Eq 1. Consequently, 
can be taken as a material property and assumed to remain constant throughout the fracture 
process. 

A Weibull Distribution for Fiber Strength 

It is assumed that the strength of a fiber link of length 8 can be described by a two- 
parameter Weibull distribution function, f((r) [I0] 

{ f(~) = ~rg\a~; / exp - ~-~ (2) 

where [3 is the shape parameter, and (r; is the scale parameter. Note that these Weibull 
parameters of fiber links are calculated from the distribution of single filaments by the 
weakest-link hypothesis. The hypothesis has been widely accepted, since it can explain 
successfully the well-known size effect in brittle fracture of fibers. The cumulative distribution 
function, F(cr), associated with Eq 2 is 

F(,,) = f(s)ds = : - exp - (3) 

The mean strength of the filament, denoted by ~, can be obtained by calculating the first 
moment 

~ =  f,;sf(s) d s = ~ ; r ( l  + ~) ( 4 )  

where F is the Gamma function. 

Sequential Failure of Fibers from the Hole Edge 

When loads are applied to a composite, the cross section on y = 0 has the highest 
probability to fail, since it is the minimum section on the plane of maximum longitudinal 
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stress, %. The bundle of fiber links on this plane is designated as the Bo bundle, as depicted 
in Fig. 3. It is assumed that the fiber links in the B0 bundle fail radially outward from the 
edge of the discontinuity along the axis, y = 0. This assumption of sequential failure is 
necessary in order to avoid a large number of permutations involved in calculating the failure 
probability of all possible failure paths. Although this assumption seems to be a limitation 
to the model, however, it has been justified from both the analysis of failure probability [5] 
and the experimental evidence [6]. 

Probabilisfic Fracture Models 

The Statistical Fracture Model  

We define xi (or) as a random variable to denote the state of fiber link, i, when the fiber 
link is under a stress, ~r. The subscript, i, is the index of the fiber numbered from the edge 
of the discontinuity to the edge of the plate, thus, i = 1, 2, 3 , . . .  , N, where N is the total 
number of fibers within the half uncut section. For each x ,  two outcomes; intact or broken, 
are possible, that is 

X i :  1 
X i =  0 

if the fiber link is broken 
if the fiber link is intact 

The state of the specimen, X(cr~), at a given remote stress level, a=, can be defined simply 
as the sum of all random variables, xi(~). Note that ~r is the axial stress induced in an 
individual fiber link when a remote stress, ~=, is applied along the boundaries of the panel, 
y = _ b .  That is, 

N 

x(,~ ~) = ~ x,(,~) (5) 
i = l  

Y 

l inks  fai l  in sequence,  f i rs t  i then  2 ... 

1 2 3 i i+1 

I- 

d, f iber  l ink  spac ing  

FIG. 3--Failure sequence in B o bundle. 
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where {X(a*), cr = >- 0} is a stochastic process denoting the number of broken fibers or a 
pointer of the crack front. The total flaw size, 2a, can be then calculated by 2(ao + X(~=)d) ,  
in which d is the spacing distance between the centers of any two adjacent fibers. The state 
space of the random variable, X(cr=), is {0, 1, 2, 3 . . . . .  N}. The state, X = 0, represents 
the original undamaged state while X = N means a complete failure of specimen. 

Now, consider a composite panel subjected to a constant tensile stress, cr =, as shown in 
Fig. 4. When the panel is in the undamaged state, X = 0, damage initiation depends solely 
upon the failure or survival of the fiber link located immediately adjacent to the discontinuity. 

ao 

I 

t . .  I 
1 -  I I 

a l  = a 0 + d  

1 2 3 4 5 

2 3 4 5 

Damage State X=O 
(undamaged) 

a x g = a ( a l ,  O;ao ) 

a ZO = a(a2, 0;ao ) 

Damage State X=I 

o'zl= o ' (au0;al  ) 

a 3 a = a ( a 3 , 0 ; a l  ) 

I #---.q 

I _  I 
I -  I I 

a i = a o + i  d 

i 

I 
I 
I 
I 

I 
! 

i+1 i+2 

Damage State X=i 

a i§ = a (ai§ ai ) 

(T i+2,i = (7 (ai+2, O,ai ) 

FIG. 4--Schematic description of  damage states in probabilistic .fracture models. 
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As the survival of all fiber links is governed by a Weibull  distribution, the transitional 
probability, Po,~, that is, the damage state increases from X = 0 to X = 1, can be obtained 
from the strength distribution of the first fiber link located next to the crack tip. Thus, when 
a constant  load, cr ~, is applied to the undamaged specimen, the first fiber link is stressed to 
(h.0 with a failure probability of F((yl.0). 

Po,,  = F(c*,.o) (6) 

In Eq 6, (ra.o denotes the axial (y-direction) stress in Fiber  Link 1 under  the 0th damage 
state. That  is, Crl.O = oy(a~,O;ao) ,  where the first two arguments in the % expression are the 
x and y coordinates of each fiber, and the third argument  indicates the instantaneous crack 
length. Because link failure is assumed to be sequential,  the transitional probabilities, Poj, 
associated with damage states increasing from X = 0 to X = j, where j = 2, 3, 4, . . . , 
N, are all zero. The panel must fail to state X = 1 before it can fail further. Once in state 
X = 1, the further damage is governed solely by the failure of the second link. A general 
formula for the probability, Pi,i+~, of the transition from X = i to X = i + 1 can be derived 
using the conditional probability 

P i , i + l  = Pr(link i + 1 fails at a stress between (r~+l.i_l and ~rg+l.i) 
Pr(link i + 1 survived the stress o'i+l,i_l) 

= F ( f f i + , , i )  - F ( f f i +  1,i-- 1), for i = 1, 2, 3 . . . .  (7) 
1 - F(cri+, ,  , 1) 

In Eq 7, (rij represents the (~y stress in Fiber Link i when the specimen is in the j th damage 
state. The a,j values can be calculated from either the shear-lag analysis or the finite e lement  
method. In this paper,  the result obtained by Hedgepeth [11] using the shear-lag model is 
used. The model bears the assumptions that fibers carry only axial stress while the matrix 
takes only the shear stress. Goree [12] has shown that the shear-lag model can provide an 
accurate solution for fiber stresses. 

Since the failure process occurs in sequence, the probability, P , ,  that at least n fibers fail 
can be found by direct multiplication of the precedent transitions 

n - 1  

P.  = [ I  P,,,+, (8) 
i = 0  

Thus,  the statistical parameters of fibers and matrix properties can be used to establish 
interrelationships among the failure probability, P, ,  the number  of fibers fractured, n,  and 
the applied stress level, (~. Once this relationship is obtained,  the failure stress in the 
0-ply fibers can be calculated from one of the following two methods: 

1. A two-dimensional  contour plot of n versus (r = for a specified probability value, for 
example, P ,  = 0.99, is first generated from the P, , -n-(y  = relationship. The failure stress, 
(rr,f, for fibers in the 0-ply is then obtained from the n versus (~  plot at the stress level 
under  which dn / dc r  ~ = 0% representing unstable failure of the specimen. 

2. The probability density function, f , ,  associated with the cumulative distribution func- 
tion, P, ,  is first obtained for each fixed n value. The most probable stress level, (y=, 
for n number  of fibers to fracture is found by setting df , , /d(r  ~ = 0. The failure stress, 
(x,~f, is then calculated from the n versus (r ~ plot at the point d n / d ( r  = = oo. 
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The failure stress of the 0-plies is determined from cr~f by multiplying the volume fraction, 
V I. The notched strength of a composite can be calculated from either the lamination theory 
or the stress-strain relationships of angle plies. Details of the computational procedures can 
be found in Ref 5. 

The Stochastic Fracture Model 

For a monotonically increasing load, the applied remote stress, cr =, is proportional to the 
chronological time, that is, crY(t) = L , t ,  where the constant, L, is the loading rate. Hence 
the applied load in the stochastic fracture model can be interpreted as the index "time," 
which is used commonly in the Markov process formulation [13,14]. By the sequential failure 
assumption, the transition from one state to a future state depends only on the present stress 
state in the fiber ahead of the crack tip and is independent of how the present damage state 
was reached. 

We recall that in the statistical fracture model, advancing of the crack front is caused by 
the fracture of fibers. Once a fiber has fractured, the local stress in other unbroken fibers 
near the crack front increases as a result of load redistribution. This fracture process continues 
under a constant applied load at remote boundaries. In contrast, in the stochastic fracture 
model, transition of a damage state is caused by an increasing applied load. If we assume 
that at most only one fiber can fail at an instant, it can be deduced that only P~.~ and P~,i+l 
do not vanish. For i = 0, P0.0 is the survival probability of the first fiber link and P0a is the 
failure probability of the first fiber link. The transitional probabilities, P~.i+ 1, can be obtained 
as follows 

Pi,,+~(a=,(r ~ + da ~) = Pr{link (i + 1) fails in (~r=,~ ~ + dcr ~] given that 

links 1,2 . . . .  i have sequentially failed in (0,g~]} 

f ( Ki  + 1,i or=) 
1 -- F----~-,.+~,: ~r ~) K,+ ~,~ dcr = = h(~,+ 1,~) K~+ 1,i d~= =- a~,~+l d~ ~ (9) 

In Eq 9, dg = is an infinitesimal stress increment. K,+ ~., is the stress enhancement factor 
and is defined as Ki+I., = cri+l,i/cr =. The function, h(cr), is the hazard function or the failure 
rate function. For fibers with a Weibull distribution, the associated failure rate is geometri- 
cally increasing as the fiber stress increases. 

A characterizing relationship among the unknown variables, P,j(~=), can be established 
by analyzing the possibilities that arise at the end of the previous transition instant. Using 
the Markov process formulation, the following Markov-Kolmogorov equation can be derived 
[6] 

dP(tr=) PA(cr ~) (10) 
dcr ~ 

In which, P = [Pi.j], and the components of the coefficient matrix, A, are 

Ai,i+ 1 = aid+l , 

A id  = - - A i d + l  , 

All other Ai.j = 0 (11) 
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The transitional probability, P, of the system is subjected to the initial condition P(0) = 
I, the identity matrix since the system remains unchanged in the "initial state" under zero 
loads. In Eq 10, the coefficient matrix, A, is a function of the fiber stress, and thus a function 
of the applied stress, H ~. The governing differential equation is a first order nonstationary 
system. It can be transformed into a stationary system by the change of variable [6] and a 
simple solution method can be applied to solve for the transitional probabilities, p~.i(H=). 

Among those transitional probabilities, P~.N(H ~) represents the probability of transition 
from the undamaged state, X = 0, to the totally damaged state, X = N, under an applied 
stress, H ~. After  finding the probability function, Po.N(H~), failure can be defined at a specific 
probability level, that is, we can choose PO.N(H ~) = p),  where 0 --< p --< 1. In this paper, the 
mean reference stress, that is, p = 0.5, is chosen in the following analysis. 

Prediction of Notched Strength 

The two probabilistic fracture models just described have been used to predict the strength 
of ( + 45/02)s boron/aluminum (B/A1) composites containing central slits. The boron filaments 
are 0.14 mm (5.6 rail) in diameter, with an average strength of ~ = 3474.8 MPa (504 ksi) 
and the shape par.ameter [3 = 8.0 for a gage length of 25.4 mm (1.0 in.). The constituent 
properties of B/A1 composites are E i = 400 GPa (58 x 106 psi), Em = 68.9 GPa (10 x 
106 psi), V I = 0.48, v,~ = 0.33, and 8 = 0.432 mm (0.017 in.). 

To use the statistical strength model, we first construct a three-dimensional plot relating 
the applied stress, H ~, to the number of broken fibers, n, for each probability level, P,. 
Taking a specific P~ value, for example, P,  = 0.99, the reference fiber stress, ~ref, is found 
from the contour plot of n versus H = at the stress level that makes dn/dH = infinity [5]. The 
reference stress is then multiplied by the volume fraction of fiber, V I, to yield the failure 
stress in the 0-plies. The stresses in the • 45 plies are then obtained from the nonlinear 
stress-strain relationship of the (45/-45)5 laminate [4], assuming the same strain through the 
laminate thickness. By adding the contributions from angle plies, the laminate failure stress, 
~I, can be estimated. Finally, the notched strength for an infinite panel, H i ,  was obtained 
by taking into account the finite width correction factor that is a function of 2ao/W.  

In using the stochastic model, the failure probability, Poj, which is a function of the 
applied stress, ~ ,  and the state number, j ,  is first constructed. The mean reference strength, 
H~f, of fibers in the 0-plies is determined from P..~,,(H ~) = 0.50, although other P0.N(H ~) 
values can also be used. Once H~ef is found, the remaining procedures are the same as those 
used in the statistical model. Results of the strength prediction for B/A1 composites both 
fracture models are shown in Fig. 5 on a log versus log plot. These predictions compare 
well with experimental data obtained in Ref 4. Additionally, the relationship between com- 
posite fracture stress, H} ~, and discontinuity size, 2a0, can be best described by the following 
power type equation as previously suggested by Mar and Lin [4] 

H i = He (2ao) m (13) 

where the parameter,/arc, is the material constant and m is the slope of the plot. 

Conclusion 

Two probabilistic fracture models: a statistical model and a stochastic model, for predicting 
the notched strength of laminated composites have been reviewed. The statistical fracture 
model treats the case of constant load while the stochastic fracture model deals with the 
effect of monotonically increasing loads. 
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FIG. 5--Comparison of  probabilistic model predictions with experimental data (1 in. = 25.4 ram, 

1 ksi = 6.89 MPa). 

The phenomenon of notch sensitivity in composites is studied. Employing the probabilistic 
approach, the notched strengths of boron/aluminum composites with various crack lengths 
have been predicted. The predicted results from both fracture models compare well with 
existing experimental data. The stochastic model is more accurate than the statistical model 
since it represents a more realistic loading situation. In addition, the present probabilistic 
approach predicts a power law type of relationship between fracture stress and notch size. 
This finding coincides with the previous results by Mar and Lin based on an entirely different 
approach. 
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Analysis of Unidirectional and Cross-Ply 
Laminates Under Torsion Loading 

REFERENCE: Li, J. and Armanios, E. A., "Analysis of Unidirectional and Cross-Ply Lam- 
inates Under Torsion Loading," Fracture Mechanics: Twenty-Second Symposium (Volume 11), 
ASTM STP 1131, S. N. Atluri, J. C. Newman, Jr., I. S. Raju, and J. S. Epstein, Eds., 
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ABSTRACT: A simple analytical method using a suhlaminate approach is introduced to analyze 
unidirectional and cross-ply laminates under torsion loading. Interlaminar stresses and total 
energy release rate are evaluated based upon a displacement field that includes shear defor- 
mation. Closed-form expressions for the interlaminar stresses and total strain energy release 
rate in terms of the laminate stiffness coefficients are provided. Two sublaminate models are 
used for the interlaminar stress analysis and for the delamination analysis. The method is 
applied to the analysis of [0]~6 and [0 /9014  s laminates made of IM6/3501-6 graphite/epoxy 
material. The interlaminar stress predictions are compared with a finite element simulation 
and an exact elasticity solution. 

KEY WORDS: laminates, interlaminar stress, strain energy release rate, torsion, fracture 
(materials), fracture mechanics, fatigue (materials) 

In rotorcraft structures, hingless and bearingless composite rotor hubs and flex beams 
currently used as a means of tailoring their response for specific performance requirements 
are subjected to axial, bending, and torsion loads. Delamination caused by interlaminar 
stresses can initiate at the free edges and ply terminations in these structures. An accurate 
knowledge of the interlaminar stresses and strain energy release rate is necessary in order 
to understand the behavior and design against such failures. 

Interlaminar stress and delamination analysis of laminated composites under extension 
has been studied extensively [1-8]. However, there has been very limited work on bending 
and torsion loadings. Salamon [9,10] predicted the interlaminar stresses in a four-layer [ -+ 45]s 
and [0,0]s laminate under uniform bending using a finite difference approach to solve the 
exact elasticity equations. He found that the interlaminar shear and normal stresses rise 
sharply near the free edges. Armanios and Rehfield [11] studied bending and combined 
bending and extension using a transverse shear deformation theory and a sublaminate ap- 
proach for laminate layups where Mode III is negligible such as [02,/90n]s and [04,/( +- 45),]s 
laminates. Interlaminar stresses and energy release rates were obtained in closed form. They 
concluded that the energy release rate in a combined bending-extension loading may be 
more critical than extension loading only. Ye and Yang [12] developed a quasi-three- 
dimensional finite element procedure to investigate the free edge effects in symmetric com- 
posite laminates of finite width under bending. Results were presented for angle-ply [ _+ 45]s 
and symmetric cross-ply laminates. Since the twisting effect induced by bending was not 
considered, their solution can be used only for those symmetric laminates where twisting 
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and bending coupling effects are negligible. Chart and Ochoa [13] calculated the inteflaminar 
stresses and energy release rates in symmetric laminates with various layups subjected to 
bending. They found that the total and Mode I strain energy release rate decrease as 
delamination size increases and reach a lower bound. They also obtained [14] the interlaminar 
stress distributions and energy release rates for laminates with a [0116, [452,-45l]2, and 
[451,-452,02,902]~ layups under torsion loading. Unlike the bending case, they found that 
the Mode III strain energy release rate increases steadily as a function of crack length and 
eventually reaches a plateau. 

Kurtz and Whitney [15] developed an exact elasticity solution for simple torsion of cross- 
ply laminates. Comparison of this solution with the existing elasticity theory for the torsion 
of homogeneous orthotropic bars [16] showed that the homogeneous solution is sufficiently 
rigorous for most practical applications. Murthy and Chamis [17] used a three-dimensional 
finite element analysis to investigate the width- and loading-condition effects on the free- 
edge stress fields in composite laminates. The analysis included a special free-edge region 
refinement or superelement with progressive substructuring. Various loading conditions 
were considered including out-of-plane twisting moment and inplane bending. The three- 
dimensional free edge stresses were determined using a cantilever geometry. They found 
that axial extension produces the smallest magnitude of interlarninar free edge stress com- 
pared to other loading conditions. Daniel and Vizzini [18] calculated the interlaminar stresses 
in a [0/90]s and [-+ 15]s laminate under torsion using the MSC/NASTRAN anisotropic solid 
elements. In contrast to the results of Ref 15, they reported nonzero interlaminar normal 
stress in [0/90]s laminate. 

The objective of this work is to extend the sublaminate approach developed in Ref 8 to 
the analysis of laminates under torsion loading. This work is directed primarily towards 
providing a simple analytical model for predicting interlaminar stresses and strain energy 
release rate, and performing parametric design-related studies. 

Mathematical Model 

The generic laminate shown in Fig. 1 is subjected to torsion on two opposite sides. The 
laminate considered as made of subtaminates or groups of plies that are conveniently treated 
as single laminated units. The assumed displacement field within each sublaminate may be 
written as 

Z I" 

Y 

T 
FIG. 1--Laminate configuration and loading. 
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u ( x , y , z )  = ~o " x  + K ' X "  (Z + 8)  + U ( y )  + z "  f3x(y ) 

v ( x , y , z )  = V ( y )  + z ' 1 3 y ( y )  + C ' x "  ( z  + 8) 

1 
w ( x , y , z )  = - -~ K "  x 2 - C " x " ( y  + p) + W ( y )  (1) 

Where u, v, and w denote  displacements relative to the x, y, and z axes, respectively. The 
relative angle of rotat ion about the x-axis is C. The arbitrary constants, 8 and p, are to be 
determined by enforcing continuity of displacements at the interface between sublaminates.  
Axial extension and bending curvature are denoted by eo and K. These result from the 
coupling effects associated with unsymmetrical  layups. Shear deformation is recognized 
through the rotations, 132 and 13,. 

The corresponding strains are 

= o + ZK v Ezz = 0 Exx ~ EOxx + ZK  x Eyy Eyy . 

7xy = 7~ + ZKxs 7y.. = 3',~ 7xz = 3'~ (2) 

The strain components  associated with the reference surface are denoted by superscript, ~ 
These are defined as 

o = V,. .yo = U y + C . 8  e~ = eo + K �9 8 e~.~ ,. . 

K x = K Ky = 6y,y  Kxy ~" ~x,y + C 

~o = ~ + w ~  v L = 1 3 . - C ( y + p )  (3) 

where partial differentiation is denoted by a comma. The constitutive relationship can be 
written using the force and moment  resultants in terms of strains and curvatures as follows [ZaZ12A6 l 12 16] ~ 

Ny A,2 A22 A26 B1. B22 B26 /E~ 
Nxy A16 A~6 A66 B16 B26 B66 ,J "/x~ 

"[ M x = B1, B-a2 B,6 Dll D,2 D,6 [ Kx 
My B12 B22 B26 D1, D22 D26 Ky 
mxy BI6 B26 B66 D16 D26 D66 Gy 

(4) 

A55J D L J  

For a sublaminate of thickness h, the stiffness coefficients are defined as 

fh/2 (Aiy,Bij,Dij) = Qq(1,z,z 2) �9 d z  
(h/x) 

Where Qij are the transformed reduced stiffnesses as defined in Ref 19.  

(5) 

(6) 
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The equilibrium equations can be written as 

Nxy,y Jr- t2~ - fix : 0 

N y  a, + t2y -- t b, = 0 

Qy,y + P2 - P] = 0 

h 
Mxy,y - Qx + ~ "  ( tz .  + fix) = o 

h 
My,y - Qy + ~" (tzy + tly) = 0 (7) 

The interlaminar shear and peel stresses at the sublaminate upper and lower surfaces are 
denoted by t2~, tev, P2 and tlx, q~, Pa, respectively, as shown in Fig. 2 

Equations 1 through 7 will be applied to unidirectional and cross-ply laminates under 
torsion loading. 

Interlaminar Stresses 

Due to symmetry, a minimum of two sublaminates through the thickness for half the 
laminate is needed in order to determine the interlaminar stresses at a given interface. These 
are referred to as Sublaminate 0 and Sublaminate 1 as shown in Fig. 3a. The continuity of 

Z Z 1 Z 0 

~k 

Cq 

J 
t:l 

I - - - - - .  

o �9 
/ / / / / / / / / / / ~ / / / / / / / / / / / /  

2B 

Z 

I ha 
i h o  ..~ y 

D,.Y 

FIG. 3 - - S u b l a m i n a t e  analysis models .  (a) interlaminate stress analysis model ,  and  (b) delaminat ion 
analysis model .  Copyright  by ASTM Int ' l  (a l l  r ights  reserved);  Wed Dec 23 18:55:23 EST 2015

Downloaded/printed by
Universi ty  of  Washington (Universi ty  of  Washington)  pursuant  to  License Agreement .  No fur ther  reproduct ions authorized.



426 FRACTURE MECHANICS: "I'WENTY-SECOND SYMPOSIUM 

displacements at the interface between these sublaminates are 

Uo x,y,--~ = ul x , y , - ~  

ho x,y,  - - ~  vo x , y , ~  = vl 

wo(x,y, ) = 

At the laminate central plane 

(8) 

The response associated with Sublaminates 0 and 1 is coupled through the interface 
continuity conditions. The upper surface of Sublaminate 1 is stress free. The shear and peel 
stresses at the bottom surface will be denoted by tx, (,, and p, respectively. From reciprocity 
of stresses at the interface between Sublaminates 1 and 0, the stresses at the upper surface 
of Sublaminate 0 are tx, ty, and p. From the antisymmetric condition at the sublaminate 
bottom surface, the peel stress is zero. The interlaminar shear stresses at the bottom surface 
are denoted by tl~ and t b, for Sublaminate 0. 

There are five boundary conditions at each sublaminate free edge, namely 

Nxy~ly= • = O, M~yily= • = O, Ny~ly= +_B = O, 

Myi[y=• = O, Qrily=*-B = 0 i = 0,1 (11) 

( h0) 
Uo x , y , - ~  = 0 

V o ( x , y , - - ~ )  = 0  (9) 

The subscripts in Eqs 8 and 9 refer to the respective sublaminate. Substitute Eq 1 into 
Eqs 8 and 9 to obtain 

ho 
Uo = 713xo 

Vo -- -~ ~,,o 

hi 
Ul = ho13~o + 7 13., 

h, (10) v, = ho~o + 7 ~'' 
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where i refers to the respective sublaminate. By using the principle of virtual work, the 
boundary conditions that are consistent with the kinematic relationships provided in Eq 10, 
take the following form 

hj ZVx,,l~+~ + M.~I,=+_. 
2 

hi NyxCy==n + Myl/y==n 
2 

ho N~,~Oly=+_B + M,,oiy=• = 0 = O, hoNxy, l y~•  "~ "~ . 

ho N • ~-s = o, &N.,I,=+_o + ~ ,,o1,= + Myoly= = 0 

Qraly=_+8 + Qyoly==a = 0 (12) 

For unidirectional and cross-ply layups, Eq 12 is equivalent to Eq 11 since the shear force 
vanishes, and Nxyi and Ny, are proportional to M.yi and Myi, respectively. Applying the 
equilibrium equation (Eq 7) to Sublaminates 1 and 0, and prescribing the boundary con- 
ditions (Eq 12) at the sublaminate free edges, the interlaminar stress, r~z (t~), can be expressed 
as 

' -- '  (13)  ~x = N.~ ,~  = h~A~Go.,., .  + B~?,x,,,.. 

The interlaminar shear stress %~ (ty) and peel stress ~r, (p) are zero for unidirectional and 
cross-ply constructions. The rotations, 13~o and 13x,, in Eq 13 are found to be 

fLa = Cy + 2C �9 H,  sinh(s,y) + 2C �9 H3 sinh(s~y) 

~.o = Cy + 2C �9 "q~H, sinh(s,y) + 2C �9 ~]2H~ sinh(s~y) (14a) 

Where s~ and s z are the characteristic roots defined as 

S, = I F e  + X / F ~ : - 4 '  F,"  F3 sz = I F :  X / F ~ 2 - 4 . F ; : .  F3 (14b) 
2 : F~ ~/ 2"  F, 

F, = (-d'6 +-ff T 

, --o + h o - -  +hZA~6 ) + A 5 5 ( D 6 6 + T  Fz=Ass(De  6 ~_ BO6 o - - ~  h, ~ )  

F 3 -  1 , o - As5 As5 

h 1 
-~1 = Da, + T Bs 

- -  h o 
D% = D ~ + T B ~  

hi  1 B~6 = B~6 + ~-A6~ 

ho o B ~ = B ~ + ~-A66 

(14c) 

(14d) 
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and Ha and H 3 a r e  integration constants given by 

H1 
1 - 112 1 

"q, - "q2 sl  c o s h ( s l B )  

H3 - m 
1 - r h  1 

111 -- "1"12 S2 c o s h ( s 2 B )  

h i  m 

/ =  1,2 (1,1e) 
= . 

The inplane stress, ~xy, is calculated from the constitutive relationship and can be expressed 
as 

"rm Qos o([3~o,y + (15) 

Where ~y, and Qk 6 are the inplane shear stress and the reduced stiffness in Sublaminate 1 
within the k 'h ply, respectively, and ? is measured from the midplane of Sublaminate 1. 
Superscripts 0 and 1 associated with the stiffness coefficients in Eq 14 refer to the respective 
sublaminate. 

A comparison of the interlaminar shear stress, ~xz, and inplane shear stress, % ,  predicted 
by the present approach, the finite element method (FEM) of Ref 14 ,  and the elasticity 
solution [16] is presented in Figs. 4 through 6. The laminate is [0]a6 unidirectional and the 
relative twisting angle is denoted by C. The material properties considered are those of 

0 

-2  

-8  

-10 
- 8  

/ P r e s e n t  

_ \ \  . . . . . . .  / /  

\ , ,  / 
',, Os-~/H--o.5 / /  

%% �9 
%%q. s s s  SS 

I I I I I l I , | i I 

- 6  - 4  - 2  0 2 4 6 8 

zIH 
FIG. 4 - - 1 n t e r l a m i n a r  shear stress dis tr ibut ion across the thickness o f  a [0]~6 laminate.  
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FIG. 5--1nplane shear stress distribution across the width o f  a [0116 laminate. 

Hercules IM6/3501-6 graphite/epoxy [14]. They are given in Table 1. Subscripts 1, 2, and 3 
in the table refer to the principal material directions. The laminate width, 2B, is 90-ply 
thickness. The ply thickness is denoted by H, and the laminate thickness is denoted by 2h. 

Figure 4 shows the interlaminar shear stress, ~xz, distribution through the thickness. The 
inplane shear stress, ~xy, distribution through the width appears in Fig. 5, while its distribution 
through the thickness is shown in Fig. 6. The distributions in Figs. 4 and 6 are for a section 

3 

P r e s e n t  
e # 

2 . . . . . . .  F E M  / 

1 S SS r 

~ 

~ o~~176 

SJ" 

-2 
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FIG. 6--1nplane shear stress distribution across the thickness o f  a [0116 laminate. 
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at a distance of 0.5 H from the free edges. The interlaminar shear stress, ~xz, and inplane 
shear stress, rxy, predicted by the present approach are closer to the elasticity solution than 
the FEM results as shown in Figs. 4 and 6. The present approach predicts a linear shear 
stress, Txy, distribution through the thickness as depicted in Fig. 5. This is a result of the 
simple shear deformation theory used. 

The effect of the thickness to width ratio on the accuracy of the interlaminar shear stress 
predictions is provided in Fig. 7. The error in "rxz relative to the elasticity solution [16] at 
the midplane is denoted by el, while e2 is associated with a plane located four plies above 
the midplane. Subscripts, pre. and el., represent the present and elasticity predictions, 
respectively. The maximum error in the interlaminar stress is less than 1 and 8% for el and 
e2, respectively. 

The stress distributions appearing in Figs. 4 through 6 show that the largest interlaminar 
shear stress at the free edges occurs at the midplane. Furthermore, the largest inplane shear 
stress occurs at the midpoints of the top and bottom surfaces. Moreover, the value of the 
maximum inplane shear stress is much higher than that of the maximum interlaminar shear 
stress. These observations indicate that the failure will be caused by inplane shear stress in 
the [0116 laminate, and by matrix cracking for [90116 laminate. This is in agreement with the 
test results of Ref 20. 

Similar comparisons between the present approach and the elasticity solution in a [0/9014s 
laminate are given in Figs. 8 and 9. The elasticity solution in Figs. 8 and 9 is based on a 
smeared shear modulus expressed as 

Gxy ~ G12 

! = 1_~ 11_._ + (16) 
Gxz 2\G,2 

This smeared approach was adopted in Ref 15. The comparisons show good agreement 
between the present approach and the elasticity solution. 

20 
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FIG. 7--Geometric  influence on the prediction o f  interlaminar shear stress ~xz for a [0116 laminate. 
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431 

Energy Release Rate 

Cross-ply laminates may develop free edge delaminafions. This possibility is investigated 
for a [0/9014 s laminate with two cracks initiating at the midplane free edges as shown in Fig. 
3b. Also appearing in the figure is the sublaminate modeling of the cracked laminate. 

The strain energy release rate is a global parameter and can be computed in terms of 
stress resultants. One sublaminate through the thickness is sufficient in order to determine 
the stress resultants in the cracked and uncracked regions. These are referred to as Sub- 
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FIG. 9--Interlaminar shear stress distribution across the width of  a [0/90]4, laminate. 
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laminates 1 and 0, respectively, in Fig. 3b. From symmetry, one quarter of the laminate is 
modeled. The crack length is denoted by a. 

For Sublaminate 1, the upper and lower surfaces are stress free. While only the upper 
surface is stress free for sublaminate 0. Following the methodology outlined in the previous 
section, and prescribing the following boundary condition at the free edge of Sublaminate 
1 and the continuity conditions between Sublaminates 0 and 1, 

M~yll>,~a = 0 (17a) 

ho N~oly=O + M~yoly=O = M~>.,l~=o, 13.o]>.=o = l~x,l>.=o (17b) 

the rotations, 13xl and [3x0, can be written as 

(3~ = 2 C . l o e  "~ + C(y  + B - a) 

f3xa = 2 C .  lle"Y + 2 C "  I2e - ' 'y + C ( y  + B - a) (18a) 

Where So and sl are the characteristic roots for Sublaminates 0 and 1, respectively. These 
are given by 

so = ~ s , - ~  ~ (18b) 
u ho ~/ hi 

Parameters, ko and kl, in Eq 18b are given as 

h 2 
ho = D66 + hB66 + --~ A66 

B2 (18c) 
hi = D66 - A---~ 

The integration constants Io, la, and 12 in Eq 18a are expressed in terms of the characteristic 
roots by 

11 = - 

1 
- - ( h o S o  + h l s l ) e  ~'~ + ho - hi 
$1 

hoSo - hlSl + (hoSo + hlsl)e ~1~ 

1 
12 = l~eZ,~. + ~ e~. 

S1 

1 
I0 = 11(1 + e z''o) + - -e""  (18d) 

S1 

The strain energy release rate that is a pure Mode III is calculated as 

G,,, = - 0U (19) 
0a 
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Where U is the strain energy associated with Sublaminate 1 and Sublaminate 0 and defined 
a s  

if U = ~ (Nxy% ~ + MxyKxy + Q~y~ 

= -~ (. ~) o + M~yo (f3~o.y + C) + Oxo[[3,,o - C(y + B - a " dy (20) 

Jr ~ {Mxyl(~xl,y + C) + Qx,[~xl - C(y + B - a)]}"  dy 

Since Sublaminates 0 and 1 have the same layup, Superscripts 0 and 1 associated with the 
stiffness coefficients are dropped for convenience. Substitute from Eq 20 into Eq 19 to get 
for the Mode III strain energy release rate the following expression 

GIII l ( h  2 B2~  
4C 2 - ~ \ -~  A66 + hB66 + - ~ ]  - G(a) (21) 

The first term in Eq 21 is independent of the crack length and depends on the stiffness 
coefficients, A66 and B66. The second term, G(a), in Eq 21 is an exponential function of the 
crack length and the characteristic roots and is given by 

A [/_0 dr0 ] G(a) = ,SLs ~ (1 - e 2so(B a)) -~a  _ iZe-Zso(B a) 
J 

+ } t ~  e - ' ~  dl~ soloe ,ow-a,)  

A [/1 (e 2 . . . .  1) dI1 i2e2Sl ~ 12 e_2,~ ) dl, t +  'Ls, ~ + + -sl (1 - -~a + I2e-2"'" / 

(22) 

dll ) 
+ k 1 (e . . . .  1) ~ a  + SlIlesla + (e . . . .  1) d/2 -~a -- slI2e ,la 

For a crack length larger than a few ply thickness, the contribution of G(a) is negligible. 
This is depicted in Fig. 10 where the strain energy release rate divided by 4C 2 is plotted 
against the crack length per unit ply thickness for a graphite/epoxy laminate whose properties 
are given in Table 1. The strain energy release rate reaches the constant value (1.083 Nm) 
provided by the first term in Eq 21 for a crack length larger than 10-ply thickness. 

Conclusion 

A simple shear deformation model for the analysis of unidirectional and cross-ply laminates 
subjected to torsion loading has been developed. The interlaminar stresses and energy release 
rate are obtained in closed form, and the parameters controlling the behavior are identified. 
Comparisons between the interlaminar stresses predicted by the present approach, a FEM 
solution, and an exact elasticity solution for unidirectional and cross-ply laminates have 
been performed. The results predicted by the present approach are in good agreement with 
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FIG. lO--Energy release rate as a function of crack length for a [0/90]4, laminate. 

TABLE 1--Material properties of IM6/3501-6 graphite epoxy. 

Eu = 24,8 Msi (170.97 GPa) 
E22 = E33 = 1.41 Msi (9.72 GPa) 
G12 = G13 = 0,90 Msi (6.20 GPa) 
G23 : 0.54 Msi (3.72 GPa) 
v12 = ul3 = 0.329 
v23 = 0.41 
Ply thickness H = 0.0055 in. (0.14 x 10 -3 m) 

the exact elasticity solution. The interlaminar stress distributions predicted by the present 
approach provide a plausible explanation of failure modes in previously tested laminates. 
The present approach is simple and useful in understanding the basic mechanics of  the 

problem and predicting trend information.  
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The Twenty-Second National Symposium on Fracture Mechanics was divided into two 
dual sessions. Session I concentrated on experimental and theoretical aspects of fracture 
mechanics, while Session II concentrated on numerical and computational aspects of fracture. 
In Session II, there were 44 presentations made at the Symposium. For  a variety of reasons, 
related to technical and time constraints in preparing a submission for publication, 26 papers 
appear in this volume. At  the Symposium and in this volume, the presentations and papers 
were divided into four categories: Elastic Fracture Mechanics and Applications, Nonlinear 
Fracture Mechanics and Applications, Novel Mathematical and Computational Methods, 
and Composite Materials. 

Elastic Fracture Mechanics and Applications 

The papers in this section are concerned with the application of linear elastic fracture 
mechanics concepts to the analysis of three-dimensional crack configurations, fatigue-crack 
growth and fracture, and to the development of efficient methods of analysis. 

Smith presented a review of two established optical methods to accurately measure the 
stress states for three-dimensional cracked bodies. In particular, he presented the results 
on several example problems: (1) stress-intensity factor distribution for a nozzle corner crack 
in a pressure vessel model, (2) a surface crack in a rocket motor propellant model, and 
(3) determination of the order of the singularity for a crack intersecting a free surface. 
Photoelastic results presented agreed well with numerical and analytical analyses from the 
literature. 

Raju, Newman, and Atluri presented closed-form equations for the crack-mouth-opening 
displacements for a surface crack in a flat plate subjected to remote tension and bending 
loads. They used both the finite element and finite element alternating methods to analyze 
a wide range in crack shapes and sizes. Their results agreed well with experiments conducted 
by McCabe for remote tension. Their results agreed well with equations developed by Fett 
for nearly semicircular surface cracks but gave substantially higher displacements for low 
aspects ratio (low a/c) and deep (large a/t) cracks. 

The finite element alternating method (FEAM) was also used by Stonesifer, Brush and 
Leis to analyze a surface crack located on the inside of a large pipe. The FEAM included 
the Vijayakumar-Nishioka-Atluri (VNA) analytical solution which allows for high-order 
traction variations on the crack surfaces, a deficiency found in earlier alternating solutions. 
Their results compared well with the results for Raju and Newman except where the crack 
intersected the wall of the pipe. Here the boundary-layer effect causes difficulties in obtaining 
accurate solutions. 

Dawicke, Shivakumar, Newman, and Grandt presented a hybrid experimental numerical 
method to determine fatigue crack-opening stresses along a crack front in middle-crack and 
compact specimens. The method combines experimental measurements of crack-growth rates 
and crack-front curvature with three-dimensional elastic finite element analyses to determine 
stress-intensity factor variations and, subsequently, crack-opening stresses. These calcula- 
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tions agreed fairly well with measured results from Sunder's fatigue striation technique and 
measurements from a remote displacement and near tip strain gages. The proposed method 
appears to offer a reliable method to study crack-closure effects for three-dimensional crack 
configurations. 

The ASTM Standard Test Method for Plane-Strain Fracture Toughness of Metals Using 
Chevron-Notched Specimens has been in existence for two years. The paper by Barker 
discusses the origins, significance, and usage of the toughness values that are measured by 
ASTM E 1304-89. 

Bittencourt, Barry, and Ingraffea presented results on the calculation of mixed-mode stress- 
intensity factors using three different methods (displacement, J-integral and modified crack- 
closure integral). The modified crack-closure integral showed very good performance for 
all the applied mixed-mode conditions analyzed. 

The last two papers in this section were concerned with the application of efficient methods 
to analyze three-dimensional crack configurations under complex loading and structures. 
Malik using a weight-function method based on crack-surface-opening displacements and 
the Newman-Raju stress-intensity factor solutions. He made an extensive comparisons be- 
tween the stress-intensity factor solutions of Raju and Newman for various crack configu- 
rations under remote bending to verify the method for application to general stress gradients. 
Rithie, Voermans, Bell, and deLange used the line-spring model to analyze surface cracks 
in complex welded structure. Comparisons made between predicted and measured fatigue 
crack growth patterns and lives agreed well. 

Nonlinear Fracture Mechanics and Applications 

The section on nonlinear fracture consisted of nine contributed papers on the subjects of 
experimental Hutchinson, Rice, and Rosengren (HRR) field analysis in homogeneous spec- 
imens, hybrid finite element studies of structures and fracture parameters, coupled problems 
of thermoelastic fracture, three dimensional fracture analysis of crack growth, fatigue crack 
growth with elastic and viscoelastic dynamic fracture. Specifically, two papers by Dadkhan, 
Kobayashi, and Morris, and Chiang, Li, and Wang utilized near tip optical methods to 
examine the extent and validity of HRR fields during crack initiation and growth. The paper 
by Tong, Greif, and Chen concerned the utilization of hybrid finite element techniques to 
study complex aircraft structures. The paper by Nishioka, Fujimoto, and Sakakura used a 
hybrid numerical and experimental scheme to combine the caustic experimental technique 
with the T* fracture parameter. The paper by Franco and Gilles employed three-dimensional 
finite element methods to study the changes in validity of various fracture parameters from 
linear elastic, to HRR under contained yield, and finally the Central Electricity Generating 
Board's (CEGB) two-criteria approaches. The paper by Brust, Ahmad, and Naboulsi studied 
the effects of cyclic fatigue damage and plasticity on crack-growth behavior in terms of the 
J and T* fracture parameters. The paper by Gu concerned the development of K-R curves 
for 2024-T531 aluminum alloy that are independent of specimen configuration. The work 
by Chen and Huang implemented a three-dimensional finite element method with path- 
independent integrals to study an embedded elliptical crack under thermal gradients. The 
final paper in this section by O'Donoghue, Kanninen, Popelar, and Popelar studied rate 
dependent fracture in polyethylene piping systems showing most notably a validity of linear 
elastic fracture mechanics (LEFM) provided the craze zone is small and contained. As a 
whole, this collection of papers represents an excellent cross section of the state of the art 
in nonlinear fracture research. 
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Novel Mathematical and Computational Methods 

This section describes computational and mathematical methods that are new, novel, and 
efficient to analyze two- and three-dimensional crack configurations made of brittle and 
ductile materials. 

Yagawa, Yoshimura, Yoshioka, and Pyo presented a study of a crack growing in a ductile 
material using hybrid experimental and numerical methods. A computer image process was 
used to measure the displacement field near a growing crack. The stress, strain, and near 
crack-tip (local) J-integral were evaluated from the measured displacement field. Their study 
on Type 304 stainless steel showed that the HRR field seems to exist outside a small nonlinear 
region where the crack tip is largely blunted and for a small amount of crack growth. The 
local J-integral showed good path independence outside the small nonlinear region and they 
agreed well with conventional J-integral evaluations for small amounts of crack extension. 
For large values of crack extension, the local J tended to approach a constant value while 
the conventional J estimates continued to rise. 

Cruse and Novati formulated a traction boundary integral equation (BIE) for application 
to nonplanar curved cracks and multiple cracks. The nonplanar curved cracks were modeled 
as piecewise fiat regions. These regions were modeled as triangular boundary elements. The 
implementation of the integral equations for these elements was presented. The new for- 
mulation was applied to several problems that are three-dimensional approximations to 
plane strain fracture problems. In all cases the piecewise flat traction BIE implementation 
agreed well with limited results from the literature. 

Barsourn and Chen studied three-dimensional singularity fields for interfacial surface and 
corner cracks by a finite element iterative method. Their results on the bimaterial free 
surface singularity suggests that the two-dimensional analyses at the interfaces are noncon- 
servative and three-dimensional analysis must be used. 

Kuo, Shvarts, and Stonesifer presented an alternating analytical procedure for the analysis 
of an elliptical or part elliptical crack in an infinite flat plate of finite thickness subjected 
to arbitrary crack surface loading. In this method, in contrast to the other alternating 
methods, the uncracked infinite flat plate was analyzed by decomposing the residual stresses 
on the plate bounding surfaces into double Fourier series and by using Fast Fourier Transform 
methods. With this approach, three-dimensional crack problems are solved with great ease 
because no finite element model needs to be prepared as in the finite element alternating 
method (FEAM).  However, this method appears to have limited applicability compared to 
the FEAM because it can only handle flat plate configurations. 

Sun, Kienzler, Voss, and Schrnitt studied the ductile fracture behavior of different spec- 
imens by continuum damage mechanics techniques. They used a modified Gurson model. 
The damage parameters used in the model were obtained from the tests on smooth bars. 
The critical distance over which void coalescence is active was determined by matching load 
against displacement from a cracked specimen. The model was then used to predict the 
deformation and fracture behavior of notched round bars and side-grooved compact spec- 
imens. In all cases, satisfactory agreement was obtained between the predictions and the 
test results. 

Composite Materials 

In the composite materials section, four papers were published. They are concerned with 
the analysis and prediction of strength and failure of laminated composite materials. 

Zhu and Achenbach presented a numerical technique to calculate microlevel stresses for 
transverse loading of a unidirectional fiber-reinforced composite with hexagonal packing. 
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The composite fiber-matrix interphases were modeled by the spring-layer model. The nu- 
merical technique presented should be useful in modeling failure scenarios of radial matrix 
cracking and interphase failure. 

Bouden and Datta used the finite element and integral representation technique to analyze 
scattering of waves by interfacial cracks in a layered half-space. With this technique, arbitrary 
crack configurations can be analyzed. An analysis of a interfacial crack subjected to both 
normal and shear loadings was demonstrated. For both loading cases, the normal crack- 
opening displacements (COD) are larger than the tangential COD's  at low frequencies. 
Dynamic stress:intensity factors were found to attain high peak values at certain resonant 
frequencies. 

Cheng and Lin presented two probabilistic fracture models--stat is t ical  and s tochast ic--  
for predicting the notched strength of laminated composites. The statistical model considered 
the case of constant load while the stochastic model dealt with the effect of monotonically 
increasing loads. The notched strength of boron/aluminum composites with various crack 
lengths was predicted using the statistical model. The predicted results agreed well with the 
experimental data. However, the stochastic model appears to be more accurate since it 
represents a more realistic loading situation and also this model provides upper and lower 
bound predictions. The probabilistic approach proposed appears to predict a power-law 
type relationship between fracture stress and notch size. 

Li and Armanios introduced a simple analytical method using a sublaminate approach to 
analyze unidirectional and cross-ply laminates under torsion loading. Interlaminar stresses 
and total strain energy release rates were evaluated based on a displacement field that 
included shear deformation. Closed form expressions for the interlaminar stresses and total 
strain energy release rates were obtained for unidirectional and cross-ply laminates in terms 
of the laminate stiffness coefficients. The interlaminar stresses for these laminates, predicted 
by this simple method agreed well with a finite element solution and an exact elasticity 
solution. 
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Viscoelasticity, 257 

Void coalescence, 368 
Void growth, 368 
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Weibull distribution function, 410 
Weight functions, 83 
Welds, 115 
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