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fracture mechanics activities. 
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Professor Swedlow was also a member of Committee D30 
on High Modulus Fibers and Their Composites from 1972 to 
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National Symposia. 
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ical contributions made by Professor Swedlow. In recogniza- 
tion of  these, A S T M  conferred upon Jerry the singular honor 
of Fellow of ASTM in 1984. Jerry was also this year named 
the firs't recipient of  the Committee E24 Fracture Mechanics 
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Foreword 

The symposium on Surface-Crack Growth: Models, Experiments, and Structures was 
held in Sparks, Nevada, 25 April 1988. The symposium was sponsored by ASTM Com- 
mittee E24 on Fracture Testing, Walter G. Reuter, Idaho National Engineering Laboratory, 
John H. Underwood, U.S. Army Benet Laboratories, and James C. Newman, Jr., NASA 
Langley Research Center, presided as symposium cochairmen and are editors of this 
publication. 
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STP1060-EB/Apr. 1990 

Overview 

Over the past 30 years, substantial effort has been devoted to developing techniques and 
standards for measuring fracture toughness and subcritical crack growth. These methods 
use specimens containing two-dimensional (2-D), through-the-thickness flaws because of 
their relative ease of fabrication and the availability of accepted analytical and numerical 
solutions. However, many defects observed in practice, and often responsible for failures 
or questions regarding structural integrity, are three-dimensional (3-D) surface flaws. The 
efficiency of data generated from standard specimens containing 2-D defects in predicting 
crack growth behavior of 3-D flaws, including crack initiation, subcritical crack growth, 
and unstable fracture, is a major concern. An important alternative is use of data obtained 
from surface flawed specimens. Resolving these issues is a goal of activities within Sub- 
committee E24.01 on Fracture Mechanics Test Methods, a subcommittee of ASTM E24 
on Fracture Testing. 

The first significant review of the status of research being conducted on surface cracks 
was the ASME symposium "The Surface Crack: Physical Problems and Computational 
Solutions" organized by Professor J. L. Swedlow in 1972. The review presented here is the 
culmination of a joint effort of ASTM E24 and SEM (Society for Experimental Mechanics), 
initiated in 1986, to identify the international state-of-the-art of research on surface flaws. 
The joint effort has resulted in two symposia. Papers from the first symposium, held at the 
Fall 1986 SEM meeting in Keystone, Colorado, were published in Experimental Mechan- 
ics, Vol. 28, No. 2, June, and No. 3, September 1988. The papers in this Special Technical 
Publication were presented at a symposium held at the Spring 1988 ASTM E24 meeting 
in Sparks, Nevada, and cover much of the state-of-the-art research being conducted on the 
behavior of  surface flaws. 

The papers included in this publication cover: (a) analytical and numerical models for 
stress-intensity factor solutions, stresses, and displacements around surface cracks; (b) 
experimental determination of stresses and displacements due to applied loads under 
either predominately elastic stress conditions or elastic-plastic conditions; and (c) experi- 
mental results related to fatigue crack growth. The subject matter is very broad, ranging 
from linear elastic fracture mechanics to nonlinear elastic fracture mechanics, and includes 
weldments and composites. Areas where additional research is needed are also identified. 
For example, considerable progress has been made on the comparison of fatigue crack 
growth rates, but a number of questions are still unanswered. Also, the ability to accurately 
predict behavior of a surface crack is generally limited to predominately elastic stress 
conditions; considerable research is required for surface cracks under elastic-plastic 
conditions. 

Some of the critical areas addressed in the volume are: (a) differences in constraint for 
2-D through-thickness cracks and 3-D surface cracks; (b) applicability of J~c, KKc, CTOD, 
and da/dN test data obtained from 2-D cracks to surface cracks; and (c) applicability of 
surface crack testing and analysis to composites, ceramics, and weldments. This overview 
describes the state of the art, as well as identifying the researchers presently pursuing spe- 
cific topics. The papers are grouped into two sections: Models and Experiments (Mono- 
tonic Loading) and Fatigue Crack Growth. 
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2 SURFACE-CRACK GROWTH 

Models and Experiments (Monotonic Loading) 

The first two papers are reviews of the important numerical analysis procedures that 
have been applied to the surface-crack problem. Parks describes a variety of surface-crack 
analysis methods, including crack-front variation of K for elastic conditions and J-integral 
for nonlinear conditions, and line-spring and plastic-hinge models of surface-cracked pipes. 
He identifies two areas in need of further study, crack-tip blunting and its effect on shear 
deformation through to the back surface, and free surface effects on the loss of  constraint 
for shallow cracks. Tan, Raju, Shivakumar, and Newman give an evaluation of finite-ele- 
ment methods and results for the common, and difficult, problem of a surface crack at a 
stress concentration, such as a hole. Values of K were calculated for a variety of  geometries 
using both nodal force and virtual crack-closure methods. A related configuration was also 
analyzed, that of a surface crack at a semicircular edge notch in a tensile loaded plate, for 
comparison with "benchmark" results obtained in the United States and abroad for this 
geometry. 

Three papers then continue the emphasis on numerical stress analysis of surface crack 
configurations to obtain crack front K values. Perez, Grant, and Saffuse a weight function 
method and finite-element results from prior work to obtain tabular results for a variety 
of configurations of  the comer crack at a hole. They describe a superposition method which 
can be used to analyze problems with very complex stress fields. Yingzhi uses a high order 
3-D finite-element method to calculate K for surface-crack configurations with tension and 
bending loads. The calculations require fewer degrees of freedom than prior work in the 
literature, and the results agree well with that work. Biota and Andersson use the p-version 
of the finite-element method to calculate the elastic stress field in surface cracked plates 
with different values of  Poisson's ratio. The emphasis is on the intersection of the surface 
crack with the free surface. Near the free surface and for Poisson's ratio near 0.5, the prob- 
lem becomes more complex. 

The next three papers involve aspects of optical stress analysis applied to the surface- 
crack problem. Smith, Rezvani, and Chang performed photoelastic stress freezing tests of 
naturally grown through-thickness and surface cracks in bending specimens. Their tests 
and associated analysis were used to study the difficult problem of free surface effects. As 
in Blom and Andersson's work, complexities arise, possibly because the photoelastic 
results were not "sufficiently close to the free surface." The paper by Olinkiewicz, Hareesh, 
and Chiang combines moir6 and finite-element methods to obtain the deformation fields 
of  a plastically deformed surface crack loaded in tension. The authors evaluate J from both 
experimental results and from finite elements and find that they are essentially equivalent. 
Dally, Sciammarella, and Shareef use holographic interferometry and Westergaard series 
analyses to determine stresses and displacements around a surface crack. The experimen- 
tally determined singularity of  the stress field (of K) at the free surface is found to be close 
to, but in excess of, 0.5, in agreement with some analytical results from the literature. 

Kirk and Hackett investigated dynamic loading of surface-cracked specimens. They 
compared results from drop-tower loaded, through-cracked, bend specimens containing 
deep and shallow cracks to results from dynamically-loaded, shallow, surface-cracked spec- 
imens, all of embrittled high strength steel. The critical J at failure for shallow through 
cracks gave good predictions of  surface crack behavior, whereas the critical J for deep 
through cracks underpredicted the surface crack results. 

Reuter and Lloyd performed a comprehensive experimental study of crack-tip-opening 
displacement (CTOD), crack-tip-opening angle (CTOA), and crack growth for tension- 
loaded A710 steel plates with surface cracks of various configurations. They compared 
their results to center-of-rotation models and numerical solutions of CTOD around the 
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OVERVIEW 3 

crack front. Good agreement between experimental and numerical CTOD values was dem- 
onstrated. Relationships between CTOD, and CTOA and between CTOA and crack 
growth were also described. 

The last two papers of the section on monotonic models and experiments involved sur- 
face cracks in composite materials. Chatterjee describes analysis of surface cracks in trans- 
versely isotropic and orthotropic composites and gives correction factors to obtain K for 
these types of composites from isotropic K results from the literature. He also compares 
the results from test data from the literature for thick laminated fiber composites with 
analytical predictions for failure. The outermost layers of many composites with surface 
cracks are observed to fail first, unlike similar configurations in metals. Poe, Harris, and 
Morris describe predictions of residual tensile strength of thick graphite/epoxy laminates 
using surface crack analysis. Impact damage in this material was represented by a semiel- 
liptical surface crack of the same width and depth as the damaged area of  broken fibers; 
the crack plane was nearly perpendicular to the fiber direction. Following a first stage of 
failure, well predicted by surface crack analysis, a second stage of failure occurred in which 
damaged layers delaminate from undamaged layers. The second stage failure was predicted 
using a maximum strain failure criteria. 

Fatigue Crack Growth 

Over the past decade, the stress-intensity factor concept (AK against crack-growth rate) 
has been shown to correlate quite well with fatigue-crack growth rates for three-dimen- 
sional crack configurations under constant-amplitude loading. In order to extend these 
concepts to more complex loadings and to other structural configurations, much more 
research is needed to characterize the behavior of surface cracks. The papers in this section 
extend the application of LEFM concepts to study of fatigue-crack growth of surface cracks 
in a wide variety of materials and in several structural configurations. The materials cov- 
ered include aluminum alloys, a titanium alloy, two superalloys, PMMA and a variety of 
steels. In several applications, the alternating current potential drop (ACPD) technique was 
used to monitor the growth of surface cracks and an interferometric-displacement tech- 
nique was used to monitor crack-surface profiles. The nature of the surface crack, however, 
is truly three dimensional. In through-thickness cracks, one may be able to use a single 
value of stress intensity and a single crack-opening stress to correlate fatigue-crack growth 
rates, but for surface cracks the three-dimensional variations around the crack front must 
be considered. Two numerical methods have been used in these papers to calculate stress- 
intensity factor variations. They are the finite-element and weight-function methods. A 
knowledge of the variation of stress-intensity factors and triaxial constraint conditions 
around the crack front is necessary to develop improved life and strength predictions for 
surface cracks. The papers in this section have been grouped into four topic areas, stress- 
intensity factor evaluations during fatigue-crack growth, three-dimensional crack closure 
and constraint, small-crack behavior, and applications. 

Several papers compared crack-growth rates for surface cracks and those of either com- 
pact or bend specimens. Carter, Canda, and Blind evaluated several stress-intensity factor 
solutions for surface cracks and correlated fatigue crack-growth rate data with compact 
specimen data on an aluminum alloy. For a given stress-intensity factor range, their rates 
were well within a factor of 2. The slope of their AK-rate curve from their surface-crack 
data, however, was different than the slope from the compact specimen data. The data 
agreed in magnitude around 12 MPa m t/2. Their surface cracks tended to show the presence 
of a "cusp" where the crack intersected the plate surface. They found, however, that the 
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4 SURFACE-CRACK GROWTH 

Raju-Newman stress-intensity factor equations predicted surface-crack growth and crack 
shape changes reasonably well compared with experimental results. Prodan and Radon, 
using a novel method of comparing surface-crack growth with compact specimen data, also 
made a similar conclusion on a fine-grain structural steel. Caspers, Mattheck, and Munz 
made stress-intensity factor calculations for surface cracks in cylindrical bars under tension 
and bending loads using a weight-function method. In contrast to point values of stress- 
intensity factors, they evaluated the "local average" technique proposed by Cruse and 
Besuner. Fatigue-crack growth rate measurements made on a Cr-Mo steel compared very 
well with rates measured on four-point notch bend specimens (rates generally within about 
30%). 

Jira, Nagy, and Nicholas found that crack-growth rate data measured on surface cracks 
and on compact specimens correlated well for a titanium alloy using a closure-based AK~ff. 
They determined crack-opening loads from compliance measurements made at the crack 
mouth using a laser-interferometry displacement gauge. The effective stress-intensity factor 
range correlated data quite well for the four types of load histories used to reach a threshold 
condition. Using a transparent polymer (PMMA), Troha, Nicholas, and Grandt observed 
three different closure behaviors for surface-cracked specimens. During loading, a surface 
crack would open first at the maximum depth location. At a slightly higher load, the crack 
mouth region would then open. This opening load produced the least amount of scatter on 
a AKoff-rate correlation compared to two other definitions of opening load. The crack-front 
region at the plate surface would be the last region to open. These distinct behaviors are 
in part caused by the three-dimensional constraint developed around the surface-crack 
front. Plane-strain conditions around the maximum depth location cause lower opening 
loads in comparison to the plane-stress regions where the crack intersects the plate surface. 
A discussion of these constraint variations around the crack front was presented by Hod- 
ulak. The triaxiality or constraint factor presented by Hodulak is defined as the ratio of the 
hydrostatic stress to the effective (von Mises) stress. A knowledge of this constraint factor, 
or other constraint factors with other definitions, as a function of crack size, crack shape 
and loading is needed to predict fatigue-crack closure behavior and subsequence crack 
growth, and to predict the location of fracture initiation around a three-dimensional crack 
configuration. 

Marchand, Dorner, and Ilschner used an advanced ACPD system to study crack initia- 
tion and growth under cyclic thermal histories in two superalloys. The initiation of micro- 
cracks, 10 to 50 um in length, could be detected. The specimen used in this study was a 
double-edge wedge specimen simulating the leading and trailing edges of a gas turbine air- 
foil. Ramulu studied the initiation and growth of small cracks in "keyhole" compact spec- 
imens of an aluminum alloy. This specimen is a standard compact specimen with a hole 
drilled at the end of the starter notch. Indents (about 250 um deep) were made at the center 
of  the notch root to act as crack starters. A scanning electron microscope was used to per- 
form fractographic analyses of striation spacings to determine the growth rates for small 
cracks. The classical "small" crack effect was observed, that is, the small cracks showed 
initial rapid growth with a minimum rate occurring at about 1 to 2 mm of crack growth. 

The remaining papers in this section are concerned with the application of surface-crack 
methodology to cracks in threaded connections and in welded joints made of steel. New- 
port and Glinka conducted tests and analyses on surface cracks in tubular threaded con- 
nections, while Niu and Glinka conducted tests and analyses on surface cracks in T-butt 
welded joints. The experimental and analytical approaches were nearly the same in these 
papers. An advanced ACPD technique was used to monitor the growth of surface cracks 
(both depth and length). A weight-function method proposed by Petroski and Achenbach 
was employed to calculate the stress-intensity factors for surface cracks in these structural 
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OVERVIEW 5 

configurations. A comparison was made between theoretical and experimentally deter- 
mined stress-intensity. Experimental stress intensities were determined from measured 
rates and a AK-rate curve for the material of  interest. For the butt-weld cracks the theoret- 
ical and experimental values compared quite well, but the values for the threaded connec- 
tion cracks showed some large differences. Several reasons were given for the large differ- 
ences: there is a lack of  suitable crack-growth rate data for the test specimen material, local 
stress concentrations at the thread root are strongly dependent upon thread load and pre- 
load on the cylinder, and the weight-function method was derived for a flat plate. 

~ymposium Cochairmen and Editors 
Walter G. Reuter 
Idaho National Engineering Labqratory 
Idaho Falls, ID 83415-2218 

John H. Underwood 
U.S. Army Benet Laboratories 
Watervliet, NY 12189 

James C. Newman, Jr. 
NASA Langley Research Center 
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Dav id  M.  Parks  I 

A Surface Crack Review: Elastic and Elastic- 
Plastic Behavior 

REFERENCE: Parks, D. M., "A Surface Crack Review: Elastic and Elastic-Plastic Behav- 
ior," Surface-Crack Growth: Models, Experiments, and Structures, ASTM STP 1060, W. G. 
Reuter, J. H. Underwood, and J. C. Newman, Jr., Eds., American Society for Testing and 
Materials, Philadelphia, 1990, pp. 9-33. 

ABSTRACT: The development and application of various analytical and computational 
procedures have provided important information regarding the crack-front fields, and asso- 
ciated cracking phenomena, in engineering structures typified by surface crack configurations. 
Major features of the formulation of several of these numerical approaches are discussed 
along with certain particular results which have been obtained by using them, with emphasis 
on surface crack applications. 

KEY WORDS: fracture mechanics, surface cracks, corner singularities, numerical methods, 
singular integral/finite-element hybrid methods, virtual crack extension, domain integral 
methods, line-spring model, linear-elastic fracture mechanics (LEFM), elastic-plastic fracture 
mechanics, J-integral, Hutchinson-Rice-Rosengren, (HRR) singularities, HRR dominance 

Just over 15 years have passed since the publication of  The Surface Crack: Physical Prob- 
lems and Computational Solutions [1], the proceedings of  what was perhaps the first frac- 
ture symposium devoted specifically to the physical and analytical complexities of  this 
practically important class of  crack configurations. Since then, the analytical and experi- 
mental understanding and characterization o f  part-through surface cracks and, indeed, of  
fracture mechanics have made significant progress. Nonetheless, the particular three- 
dimensional (3-D) challenges (still) offered by these special fracture problems have sub- 
stantially retarded progress toward rendering their treatment as "routine" fracture- 
mechanics applications. 

The scope of  mechanics and material behavior phenomena relevant to a discussion of  
fracture in general, or surface cracks in particular, is too broad to review in the current 
format. However, it is possible to survey major developments in both the analysis and the 
experimental characterization o f  surface flaws in order to understand both "where we are" 
as well as what remains to be achieved. Here we attempt such a survey, focused more on 
the analytical aspects, but also drawing upon experimental results. 

In discussing "analytical" aspects o f  the surface crack, we are immediately struck by the 
fact that the geometrical complexity of  three dimensions all but precludes closed-form con- 
t inuum analysis, so that computational/analytical tools become the means for constructing 
solutions. The array of  such tools, as well as their adaptability, power, and precision, has 
vastly expanded in recent years. 

' Associate professor, Department of Mechanical Engineering, Massachusetts Institute of Technol- 
ogy, Cambridge, MA 02139. 
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10 SURFACE-CRACK GROWTH 

The major use to which these tools have been put is the quantification of asymptotically 
dominant crack-front stress and deformation fields. In the context of the surface crack, this 
includes, for example, the variation of crack-front stress-intensity factors K~(s), Kn(s), and 
Kin(S) of  linear-elastic fracture mechanics (LEFM), and the J-variation, J(s), in nonlinear 
(elastic) fracture mechanics (NLEFM) for quasi-stationary crack fronts. I f  such single- 
parameter asymptotic characterizations actually dominate the complete near-crack front 
fields (including the zone of operative microfracture processes) in a surface-cracked geom- 
etry, then crack growth exhibited in the surface crack may be expected to be "similar" to 
that obtained in, for example, a through-cracked "two-dimensional" (2-D) laboratory spec- 
imen of the same material loaded to the same dominant asymptotic field strength. Indeed, 
such correlations form the practical basis of  nearly all fracture-mechanics approaches. 

At least three important caveats regarding the justification of dominant singularity-based 
cracking correlations between through-crack and surface-crack configurations should be 
noted. First, the notion of maintaining single-parameter "dominance" of the crack-tip 
fields driving microstructural fracture processes such as void growth and cleavage is some- 
what fuzzily defined. For example, it is difficult to answer precisely the question, "When 
is the plastic zone too large to use LEFM?" Careful interpretation of information generated 
by experimental and analytical studies of the surface crack can, however, provide guidance 
as to inherent parametric limits of applicability of dominant singularity approaches. Sec- 
ond, the gradients in deformation intensity along surface crack fronts are often substan- 
tially greater than in nominally 2-D through-crack geometries. This feature can stabilize 
the process of  cracking. Finally, it is implicitly assumed in fracture-mechanics-based cor- 
relations of  cracking that there are "similar" distributions of  operable fracture process sites 
along respective crack fronts. This assumption can be questioned in cases such as cleavage 
fracture of steel, where microstructural distribution statistics of coarse carbide cleavage 
nuclei can have important effects on, for example, scatter in fracture toughness. 

In the next section, several of the tools for fracture analysis of surface cracks are 
reviewed. In this sense, "tool" is broadly interpreted, including special results in linear 
elasticity, numerical implementations of domain or conservation integrals for J-analysis, 
and simplified models such as the line-spring and plastic hinge idealizations of part- 
through circumferentially cracked pipe sections. The author's choice of topics is subjective, 
but the intent is to address methods and results of greatest demonstrated or potential appli- 
cability to surface crack modeling and analysis. The third section reviews recent studies 
on the effects of crack geometry, material strain hardening level, and load magnitude on 
the degree of J-based asymptotic dominance in tensile-loaded surface-cracked plates 
loaded into the plastic regime. The conclusion addresses major developments needed to 
better deal with surface cracks in practice. 

Analytical/Computational Tools 

Three classes of  analytical/computational tools are seen as having major or potentially 
major impact on the understanding of the mechanics of  surface cracks. These are identified 
as dealing with linear elasticity, with virtual crack extension formulations for J evaluation, 
and with the development of simplified models. Each class of tool is reviewed. One of the 
most important mechanics tools of  all, the finite-element method per se, is too multifaceted 
to review here. 

Linear-Elastic Fracture Mechanics 

Many conceptual aspects of  fracture mechanics are common to linear elastic, as well as 
nonlinear material behavior, so analytical procedures based on them are likewise indepen- 
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dent of material behavior. On the other hand, special properties of solutions in linear elas- 
ticity, such as superposition, can be exploited effectively by specially tailored tools. In view 
of the overwhelming preponderance and relative importance of linear elastic behavior in 
engineering aspects of surface cracks, several specialized approaches have been developed. 

Background--For isotropic linear elastic response, the asymptotic crack tip fields at any 
point s along a 3-D crack front can be characterized by the variation with s of three stress- 
intensity factors, Ki(s), Kn(s), and Kin(s). Let the linear feature representing the crack front 
have a continuously turning tangent vector t(s) = e3, local crack plane normal n(s) = e2, 
and curve bi-normal b(s) = el. Let local cartesian coordinates emanating from the crack 
front be x~. For material points in the 1,2 plane located a distance r = ( ~  + ~),/2 from 
the origin at angle 0 = tan-~(XE/XO counterclockwise from the el axis, components of the 
asymptotic stress tensor, a0, are given by 

Ki(s)f]j(O ) .~_ el l  Ill K.(s) j  ~(0) + g, , l (s) f  ,j (0) 
aij(r, O; s) ~ (21rr),/2 (1) 

as r--- 0. 
Here the dimensionless tensor ~ 11 Ill components f0, f0,  and f0  are known functions of their 

argument [2]. Similarly, the near tip displacement vector u is given by 

u(r, o; s) - u~ --. r K,(s)g(O, ~) + K.(s)g"(O. ~) KH,(s)g~"(O, .)  ] 
E '  + 2G ] (2) 

as r --- 0, where the g-functions are also known. In Eq 2, u~ is a rigid translation of the 
crack tip, G is shear modulus, and E '  = El(1 - -u  z) is the plane-strain tensile modulus, 
where u is Poisson's ratio and E is Young's modulus. 

The task of engineering stress analysis in LEFM is to evaluate numerically Kl(s) [and 
Kn(s), Kin(s), if present] for a given body containing crack(s) of a given shape and size, 
subject to various loadings. There are many methods for obtaining such calibrations. While 
exact elasticity solutions have been obtained for many configurations, the complexity of 3- 
D surface crack geometries has required the use of numerical methods such as singular 
integral equations, boundary integral equations, finite differences, and the finite-element 
method. Subsequently, we discuss particular features of special analytical/numerical meth- 
ods in elastic fracture-mechanics analysis, with particular attention to applications in sur- 
face cracks. 

Singular Integral Formulations--A powerful tool for 2-D elastic crack analysis is based 
on the representation of a crack by a continuous distribution of dislocations. The technique 
can be notionally appreciated by considering the opening profile of a crack along the x~ 
axis as approximated by a finite number of opening (and closing) "steps." Each step is 
formally equivalent to an edge dislocation of Burger's vector  b(Xl). In the limit of an infi- 
nite number of infinitesimal steps, db(xO = u(xl) dxb the crack problem is described by 
the dislocation density, #(x0. Many 2-D crack problems have been solved in closed form 
by the use of  distributions of dislocations to formulate a singular integral equation. For 
more complicated problems, effective numerical techniques for solving the singular inte- 
gral equations have been developed by Erdogan and Gupta [3]. The density u(x0 has a 
square-root singularity at the ends of the cut, and the strength is proportional to K~ at the 
respective ends. Thus K~ can be directly determined from u- This procedure is readily gen- 
eralized to include mixed modes, curved or multiple cracks, etc. 

An important limitation of such techniques, however, has been the difficulty associated 
with finite boundaries (other than the cracks themselves). Recently, Annigeri and Cleary 
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12 SURFACE-CRACK GROWTH 

[4] (see also Refs 5-7) have developed an effective combination of dislocation and finite- 
element techniques for elastic analysis. Termed SIFEH (singular integral, finite-element 
hybrid), the method requires only a modestly refined finite-element grid, sufficient to 
model the "no-crack" fields and external boundary conditions, while the singular integral 
equation "substructure(s)" models the crack(s). The resulting set of  equations can be sym- 
bolically written as 

(3) 

where 

K, U FE, and F = stiffness matrix, nodal displacements, and forces of the finite-element 
portion of the model, respectively, 

D = set of discretized dislocation variables, 
C = collocation "self-stiffness" of  the dislocation substructure, 
T = discretized crack surface traction, if present, and 

S and G = interaction matrices between the finite-element and singular integral 
substructures, respectively. 

It is important to note that they connect only boundary nodes of the finite-element mesh 
to the dislocation array; thus the "finite-element substructure" could just as well be a no- 
crack boundary integral mesh. The key idea is that the total field quantities--displacement, 
strain, etc.--at  any point in the body are the superposition of those calculated from finite- 
element interpolation at that point, plus those due to the distribution of dislocations. 

For 2-D studies of  mixed-mode crack propagation, the method is ideally suited, since 
only the 1-D "cracked" substructure need be recomputed for the next configuration [4,6]. 
It is clear that this technique for analysis of mixed-mode crack growth has great advantages 
over more traditional techniques, such as finite-element rezoning. 

Related formulations have been recently extended to 3-D elastic crack configurations 
through use of  a distribution of dipole singularities in conjunction with a finite-element 
substructure [ 7]. The primary technical difference in the 2-D singular integral over the 
crack plane which arises in 3-D applications is the choice of the fundamental singular field. 
In 3-D, dipoles derived from Kelvin solutions of  opposing point forces initially separated 
by an infinitesimal distance are chosen. The infinite strains occurring within the dipoles 
are mathematically equivalent to the displacement discontinuity associated with relative 
motion of the crack faces, and near the crack front, K~(s), etc., are identified from u(r, ~r; 
s) - u(r, -Tr; s) by means of Eq 2. 

The integral equation is highly singular, and special procedures for numerical evaluation 
must be devised. Results to date are limited to planar crack geometry. Surface cracks have 
been successfully analyzed using this method [8], and it is likely that the relative efficiency 
of rezoning 2-D crack domains, as compared with 3-D finite-element or even standard 
boundary-element discretizations, will make this method particularly effective in para- 
metric studies of crack shape. Should suitable means for dealing with nonplanar crack sur- 
faces be devised, this could prove to be essentially the only practical way to follow general 
3-D mixed-mode crack growth. 

Another approach to 3-D singular integral crack formulations in bonded plane-layered 
media is based on approximate Green's functions [9]. Fares [9] demonstrated a general- 
ized image method for constructing convergent expansions of  Green's functions for prob- 
lems in planar media. Thus, these kernels automatically satisfy global boundary conditions 
(to the order of the expansion), and there is no need for a macrogeometric substructure to 
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"fix" the boundary conditions, as in Ref 7. Fares [9] obtained good agreement with the 
Raju and Newman [I0] surface-crack solutions for tension. Fares' method is limited to 
essentially infinite planar domains, so additional geometric complications such as holes 
and nearby edge boundaries cannot be handled. The SIFEH formulation of Keat [8] also 
made use of  the more sophisticated singular fields of dipoles in the interior of an isotropic 
linear elastic half-space bonded to a dissimilar elastic half-space. In the degenerate case of 
vanishing moduli, traction-free boundary conditions are automatically satisfied by the sin- 
gular fields, thereby reducing the burden placed on the regular boundary discretization in 
accurately enforcing (total) boundary conditions. Fares' singular fields carry this one step 
further by satisfying boundary conditions on two infinite parallel interfaces. 

Corner Singularities in L E F M - - T h e  nature of the elastic singularity at the intersection 
of a crack front with a traction-free surface changes to one of spherical coordinates centered 
at the intersection. This problem has been studied by a number of investigators [11-14], 
but even a moderately complete understanding of these singularities and their zones of 
dominance has yet to emerge. For Mode I loading of a crack making normal incidence 
with a free surface, it appears, however, that the order of the comer singularity is generally 
weaker than - ~ .  Thus a strict view of K~ as the strength of the square-root singularity 
indicates that, at such points, K, should vanish in a thin boundary layer. 

A recent examination of the linear-elastic comer singularity and its zone of dominance 
in a particular class of  problems has been made by Nakamura and Parks [15]. They con- 
sidered a large "thin" plate of thickness t containing a through-crack of length much greater 
than t, remotely loaded in plane stress by a (2-D) Mode I stress-intensity factor, K far. For 
several values of v, they obtained the local (3-D) variation of K~ (x3) through the plate 
thickness. Maximum local values of Kx occurred on the centerplane with a slow but mono- 
tone decrease as the free surface was approached, until reaching a distance of approxi- 
mately 0.02t from the free surface. Within this near surface region, K~ decreased rapidly 
with decreasing distance from the free surface. Benthem [12] formally showed that the 
order, ~,, of the comer singularity in spherical coordinate, p, (a oc p-A), can be asymptoti- 
cally consistent with a square-root singularity in cylindrical coordinate, r, providing the 
strength of the square-root singularity varies with distance, z beneath the free surface as 
K~(z) ~ z ~a-x. In general, ~ varies with ~, and Nakamura and Parks' computations, shown 
in Fig. 1, are in excellent agreement with such an interpretation. On the free surface, the 
angular dependence of in-plane stress components given by Benthem [11] is also in excel- 
lent agreement with that obtained in Ref 15. 

Asymptotic comer solutions for antisymmetric loading of perpendicularly intersecting 
cracks [13,14] show that ~, > �89 for v > 0, so the local strengths of K~,(z) and K.t(z) become 
unbounded as z ~ 0, and results consistent with this interpretation have been also found 
by Nakamura and Parks [16] when remote Mode II loading was applied. 

More general understanding of the details of the 3-D stress fields near crack-front/free 
surface intersections, or near points where a 3-D crack front crosses a hi-material boundary 
(for example, a reactor vessel cladding) is not shown. The order of the spherical singularity 
depends also on the angle of incidence between the free surface and the prolongation of 
the crack tangent [14]. 

Nakamura and Parks [15] noted that plate thickness t was the only geometric length 
scale in their problem and that the comer field dominated over ~0.03t, for nonnegative p. 
They conjectured that, if  the crack front radius of curvature, Pcr~c~ *o.,, at the free-surface 
intersection was the corresponding relevant length scale for surface cracks, then perhaps 
the comer singularity would dominate over 3% of this length. They also noted that, for 
semielliptical crack shapes, with depth a and total surface length 2c, the estimated region 
of dominance was only (a/t) �9 (a/c) �9 (t/33). The validity of this conjecture awaits suffi- 
ciently refined analysis. 
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FIG. l--Normalized K t~ variation across the thickness of a thin elastic plate, plotted for 

the various Poisson's ratios against distance from free surface (z) normalized by plate thick- 
ness (t) (log-log scale). Small circles represent midlocation of element layers along crack front. 
Benthem's singularity exponents are shown in inset. Slopes of straight lines correspond to 
corner singularity solutions [ 15]. 

Virtual Crack Extension and Domain Integrals 

One of the most broadly applicable and widely used computational tools in fracture- 
mechanics analysis is based on virtual perturbations of the crack front. This approach has 
permitted very accurate evaluations of d(s) to be obtained in 3-D configurations such as 
surface cracks while using relatively coarse discretizations. Early finite-element implemen- 
tations due to Parks [17], although effective, resorted to cumbersome numerical differenc- 
ing to perform calculations and were poorly suited to deal with thermal strain, deLorenzi 
[18] interpreted the method as a (virtual) mapping and obtained a compact expression for 
evaluating energy perturbations. Subsequently, thermal loads and kinetic energy have been 
rigorously incorporated into a crack energy flux by Shih and co-workers. In view of the 
historically central role of  quasi-static "potential energy differences" in fracture mechanics 
and of the importance of this method in surface crack analysis, the following simplified 
derivation of deLorenzi's results is presented. 

A Derivation--An assessment of the strength of the crack-tip singular fields in a wide 
variety of  material models can be made from appropriate "energetic" comparisons with 
respect to crack length. For stationary cracks in elastic and hyperelastic "equivalent" mod- 
els of rate independent elastic-#astic behavior, the fundamental energetic relation between 
two adjacent equilibrium solutions differing only by a small crack-front perturbation ~e(s) 
is 

~.~c J(s) ae(s) = - a , r  (4)  ds 
k front 

where the variation (with respect to crack front, l)  in the potential energy, ~-, of the system 
can be decomposed into that part due to stress working power, plus that due to the varia- 
tion of prescribed loadings. In certain instances, global potentials for each of these terms 
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may exist, but this is not necessarily the case. Nonetheless, the variations ~e( . . .  ) of  the 
quantities do exist. We will adopt this symbol as a formal operator in the derivation. The 
deformation work is 

where 

W --- f v ~  d V  (5) 

9k) = ~:d~,, (6) 

Here a and ~,, are work-conjugate stress and "mechanical" strain measures. The integral 
for 'W is understood to be evaluated along the actual load history in elastic-plastic mate- 
rials. The mechanical strain, ~m, is taken as the difference between "kinematic" strain 

E = ~(X7u + (~7u) r) (7) 

and the thermal strain, ~th. We take ~,h to depend upon the instantaneous temperature dis- 
tribution, T ( x ) ,  in a way decoupled from the mechanical action. For isotropic response 
with constant coefficient o f  linear thermal expansion, a, ~t, = a[ T ( x )  - To] 1, where To is 
a uniform reference temperature. 

The variation of  W is 

= + -w - W - )  a v  (s) 

Because o f  the symmetry o f  a, the first term in the integrand can be written as 

~t~l; = ~:~e(Vu - c,h) (9) 

deLorenzi [18] has interpreted the variation with respect to geometric parameters as a 
perturbation mapping of  reference coordinates x into new coordinates 2 = x + 6gq(x) .  
Here, for x = x ( s )  on the crack front, ~e(s)  = ~gq(x (s ) )  �9 b(s) ,  and q ( x )  is otherwise arbi- 
trary in the interior of  V. In the old coordinates, the gradient operator V is defined in terms 
of  field differentials, d ( . . .  ), by 

d ( . . .  ) = d x -  xT( . . . )  (10) 

for arbitrary fields ( . . . ) .  In the new coordinates, 

d 2  = d x  + ~ g d x  �9 V q  (11) 

and the perturbed gradient operator is 

x~ = V + 6eV (12) 

By requiring d ( . . .  ) = d~ �9 X)(...  ), we recover, to first order in ~g, 

~ , v ( . . .  ) = - r e v q  �9 v ( . . .  ) (13) 
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16 SURFACE-CRACK GROWTH 

Thus, 

6t~ll) = - -Sga:(Vu �9 Vq) -- o':~,,~th (14) 

and 

be(dV) 
d------~ = ~gV �9 q = ~gl: 'qq (15) 

The variation in the thermal strain is 

&'* " T = ~ ( V T  �9 6gq) 6e~th(T(x)) = - ~  Oe O l  (16) 

A second contribution to the energy perturbation is that due to prescribed loads 

6 t L = ~ t ' 6 e u d S + y v f .  6 e u d V  
t (17) 

where it is understood that tractions t are prescribed on the portion St of the boundary and 
body forcesf(per unit volume) are prescribed in V. On combining and rearranging terms, 
we obtain 

E )]) --gJt~r y v d V  (Vu �9 a -- ~l~l):Vq + ~ a . ~  V T - -  f . V u  �9 q 

6g = - f s  t �9 ~Tu q d S  

(18) 

This rather general result was first obtained (without thermal straining) by deLorenzi, 
and the thermal strain terms were first added by Bass et al. [19]. A simple derivation using 
the (virtual) crack tip energy flux has been given by Shih and co-workers, who note con- 
nections with prior implementations of the virtual crack extension (VCE) method. The 
present derivation limited attention at the outset to quasi-static conditions. However, Shih 
and co-workers [20,21] have demonstrated the theory and implementation of VCE-like 
calculations for dynamic crack problems. 

An infinity of crack-front perturbations can be considered by arbitrarily choosing differ- 
ent functions, q. In practice, it suffices to interpolate a finite number, R, of crack-front 
perturbations qR(x) in terms of nodal values 

qR(x) -- )--" N e ( x ) Q  "p (19) 
P 

where N e denotes nodal shape functions within the elements and QRe are nodal values (at 
node 'P ' )  o fq  R. Here R is the number of nodal locations along the crack front. Correspond- 
ing to each qR(x), there is an associated perturbation of the crack front ~gR(s) = qR(x(s)) �9 
b(s),  where b(s) = e~(s) is crack-front bi-normal vector (see text prior to Eq 1). From sep- 
arate evaluations of Eq 18 for each of the R-indpendent crack locations, R-independent 
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evaluations, --6e,r e, can be obtained. Corresponding to each of these values is the particular 
weighted average of Eq 1 

-~ , r  R = f ~  J(s)~eR(s) ds 
ck front 

(20) 

Finally, the (sought-for) distribution J(s) can be discretized by 1-D shape functions along 
the crack front as 

R 

J(s) = ~ N~(s)J M (21) 
M = I  

where jM is the local value of J at nodal location M on the crack front (crack-front coor- 
dinate sM). When Eqs 20 and 21 are inserted into Eq f for each R, and then equated with 
the evaluation of --fidrR'in Eq 18, there results the simple algebraic equation 

~-~ [ fr NM(s)Ne(s)(QRP" Be)ds] JM = --~eTre 
M =  1 rack front  

(22) 

It is understood in Eq 22 that Qee. B e = fig i fP  = R and is equal to zero otherwise. Thus, 
the magnitude 6g is truly virtual and can be symbolically factored from the left side of Eq 
18 for equating with the quotient form (Eq 18) which forms the right side of Eq 22. The 
matrix in Eq 22 is small, banded, symmetric, and positive definite, and can be easily solved 
for the consistent nodal arm values. Further discussion of the numerical details of imple- 
mentation of this domain integral version of the virtual crack extension method can be 
found in Ref 20. 

Simplified Models 

The geometric and parametric complexities of  surface crack problems remain as formi- 
dable obstacles for "exact" continuum solutions, even if they are obtained with the aid of 
powerful computers executing sophisticated computational algorithms. In engineering 
practice, there is great need for simplified mechanics models of surface crack behavior 
which approximately account for major observed features. However, the scope and quan- 
titative effects of  the assumptions made in constructing a simplified model may be difficult 
to determine a priori. There is also an element of "style" to modeling; one person's 
"model" may be another's "empirical correlation." 

I f  we bear these points in mind, attention is limited to two classes of simplified models 
which have had great impact on the understanding of surface crack behavior: the line- 
spring and the plastic hinge idealization of part through circumferentially cracked pipes in 
bending. 

Line-Spring Analysis of Surface-Cracked Shells--"Part-through" cracks in plates and 
shells are an important class of surface crack configurations encountered in engineering 
practice. Although detailed 3-D analysis of  these problems (using, for example, the VCE 
method) is possible, such detailed modeling generally requires extensive computational 
time and (equally important!) large amounts of data preparation in the form of mesh gen- 
eration and input deck creation. Some time ago, Rice and Levy [22] introduced a simpli- 
fied "line-spring" model for approximate analysis of such problems, which Parks and co- 
workers and others have recently applied and extended. In general, K and J results from 
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FIG. 2--Schematic cross section of a surface crack with varying depth a (x) and projected 
length 2c in a shell o f  thickness t. 

the solutions compare favorably (say, within ~ 10% or so) with results of detailed contin- 
uum solutions, but typically involve one to two orders o f  magnitude less computer and data 
preparation time. We briefly highlight the main features of the model. 

Consider the surface-cracked plate of thickness t shown schematically in Fig. 2. The pres- 
ence of the surface crack introduces an additional compliance into the structure which is 
accounted for in the model by introducing a distributed foundation along the cut of length 
equal to the surface projection, 2c, of the surface crack. In symmetric structures, the gen- 
eralized shell resultants which the foundation transmits are a moment M and a membrane 
force N per unit length. Work-conjugate variables are relative separation, 6, and relative 
rotation, O, of the two sides of the model through-crack. The compliance of the distributed 
foundation at any position s along the cut depends on local crack depth, a(s), at that point. 
More precisely, the foundation compliance at s is equated to the "cracked" compliance of 
a single-edge notched (SEN) specimen of the same material having thickness t and crack 
depth a equal to a(s), and subject to combined tension and bending. 

Let the force variables (N, M) be denoted by Q~, a = 1, 2 and work-conjugate displace- 
ments (6, 0) = q~. Total and incremental displacements are additively decomposed into 
elastic and plastic parts 

q. = ~ + ~ (23) 

and 

dq~ = d~  + d~  (24) 
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Elastic displacements, q f, are related to Qa via 

q[ = P~Qn (25) 

where the matrix P,a is obtained from K~ calibrations of the SEN specimen using energy/ 
compliance relations derived by Rice [23]. Normalized components of P~ are given by 

E'Pll = 2"XKll 

IE'Pi2 = tE'P21 --- 1271"/('12 (26) 

where 

fiE'P22 = 72rK22 

~0 a/t K,,o = ~- F,~(0 �9 Fa(0 d~ (27) 

and the assumed stress-intensity factor calibration of the SEN specimen under tension and 
bending is 

IN  6M J K~ = ~ • -7.  F.(a/t) + - T .  F2(a/t) (28) 

Approximate formulae for the functions Fo can be obtained, for example, from Tada et al. 
[241. 

For elastic response, the line-spring has been generalized to include mixed-mode loading 
on a surface-crack [24]. Within the context of the line-spring, Kt~ loading of a surface- 
cracked shell is due to the transverse shear force V, which is generally relatively small 
compared to typical membrane forces. Mode III loading of the line-spring is caused by 
both the membrane shear force Q and the twisting moment, T, in the shell. The respective 
work-conjugate displacements are the jump A, (across the spring) of in-plane displacement 
tangent to the cut and in relative rotation component, 6, in the tangent plane but orthog- 
onal to cut tangent vector. Energy analyses similar to those leading to the Mode I compli- 
ance components P~a would formally suggest that an off-diagonal coupling term, C4~, 
appear in the Mode III block compliance 

However, Desvaux [25] has demonstrated that inaccurate solutions can arise unless C4s is 
set to zero. "Physical" arguments in support of this procedure were also given. 

Two procedures have evolved for evaluating the plastic displacements, 6 ,  if they are 
present. The first method, initially suggested by Rice [26], is based on an incremental or 
flow theory of plasticity and has been developed and applied by Parks [27], Parks and 
White [28], and White et al. [29]. Recently Shawki et al. [30] used pure power-law defor- 
mation theory calibrations [31] of a semi-infinite crack approaching the boundary of a half- 
space with the remaining ligament subject to tension and bending to estimate ~ in mod- 
erately deeply cracked SEN and line-spring calculations. 
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20  SURFACE-CRACK GROWTH 

The calibrated spring compliances are embedded in a structural model of  the surround- 
ing shell, loads are applied, and the resulting statically indeterminate system of  equations 
is solved for kinematic variables, including q~(s). These variables, in conjunction with the 
spring compliances, provide the generalized forces Q ~(s). 

Finally, in either elastic-plastic model, the "payoff"  lies in the estimation of crack 
parameter  J(s)  along the crack front. In Mode I, the local J-integral is taken as the sum of  
elastic and plastic parts 

J(s) = y ' ( s )  + J . ( s )  (30) 

where 

j e  = KZI/E , = Q~k.kaQ#E'  (31) 

and k , (a(s ) / t )  are related to the SEN stress-intensity factor coefficients F, of  Eq 28. For 
incremental plasticity formulations, an evolution law for JP comes from 

dJ  p -- m �9 anow- d ~  (32) 

where m is a dimensionless scalar (ranging from roughly 1 to 2, depending on load ratio), 
Onow is the ligament-average tensile flow strength (in general dependent on strain harden- 
ing), and the plastic increment of  crack-tip opening displacement, d~,  is calculable from 
dq~ [28]. In the case of  deformation theory power-law models of  plasticity, JP is taken as 
an explicit function of  Q~, t - a and power-law material constants [31,30]. The latter 
authors show that some improvement  in the transitional loading regime, when je and JP 
are roughly equal, can be obtained by using a plasticity-adjusted "effective" crack length, 
ae >--- a, in the elastic compliances and in je. 

2.0 

v 

f 

LINE - SPRING . . . .  

0 o / C = . 2  
Q = 1.10 

NEWMAN 

O.  i t 
a .~ ,, .e .~ 

FIG. 3--Normalized stress-intensity distribution for semielliptical surface cracks in a ten- 
sile-loaded plate: line-spring, and continuum finite-element solutions. (Finite-element solu- 
tions are those of  Raju and Newman [ 10].) 
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PARKS ON REVIEW OF ELASTIC AND ELASTIC-PLASTIC BEHAVIOR 21 

Good agreement has been obtained between line-spring calculations and a number of 
continuum analyses. Figure 3 shows the distribution of K~ along a semielliptical crack front 
in a large plate subject to tension ~, at infinity. The deepest penetration of the ellipse is a0. 
The elliptic angle ~b parametrizes position along the crack front, with ~b ffi 0 at the center 
line and q~ -- ~r/2 at the free surface. Also shown are Raju and Newman's [10] 3-D finite- 
element results. 

Figure 4 [30] shows power-law line-spring and 3-D VCE calculations of centerplane J 
versus tensile load curves for a surface cracked plate. The power-law exponent (plastic 
strain a stress") was n = 10 (see also Eq 37). The agreement is excellent, as was the vari- 
ation along thecrack front at all points except very near the comer, a point where the line- 
spring model has no basis. 

Plastic Hinges in Circumferentially Cracked Pipe--The  operational definition of J as 
related to the difference between load/load-point-displacement curves of otherwise iden- 
tical bodies having slightly different crack profiles has played an important role in the 
development of  NLEFM. A generalization of Eq 4 provides, for imposed displacement, q 

f O qc ~ A  = [Q(~; g) - Q(~; g + fig(s))] d~  (33) 

where work-conjugate generalized force is Q, and the arguments indicate that it depends 
on both the "cracked" part of imposed displacement, q, and the crack front "shape," g(s). 
J i s  an "average" crackfront value for J over that portion of the front where the crack fronts 
differ by the infinitesimal amount Be(s). The difference in crack plane area is 

fh  --- femek front re(S) ds (34) 

20 ! t ' ;  

plate under tension, elliptical crack 

/ n l ine - spr ing  cont inuum ,,, 
15 3 . . . . . . . .  O / 

I0 x JO 

% / 

b 10 r 

o/" ~ h ~.~, ~ = o -  

.L L..~ ~ "  . ./t = o6 
~ . /c  = o.24 

.O" b / t  = 16 

h/t = 3a 

0.0 0.5 1.0 1.5 

T / T o  

FIG. 4--Normalized J versus normalized load for a tension-loaded plate of Ramherg- 
Osgood power law hardening material containing a part through semielliptical surface flaw. 
Continuum finite-element and power-law line-spring finite-element solutions are shown for 
hardening exponents n = 5 and 10 [30]. 
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22 SURFACE-CRACKGROWTH 

The right side of Eq 33 can formally be evaluated in the rigid/ideally plastic limit, where 
the integrands are the limit loads for each crack front and are independent of the magni- 
tude of imposed displacement. Thus 

3 ---- q~c Qlimit(•) - Qlimit(e -~ ~te) (35) 
~A 

Equations such as Eq 35 (first obtained in Ref 32) have been widely used in the fracture 
analysis of ductile fracture in nuclear piping [33-37]. For circumferentially cracked thin 
pipes of  radius R and thickness t subject to bending moment, M, it is elementary to obtain 
a lower bound estimate of  the section neutral axis and limit moment as functions of crack 
geometry, and the generalized displacement is hinge rotation. Using a perturbation tech- 
nique based on Eel 35, Pan [35,36] showed that in constant depth part through surface 
cracks of large angular extent, there was a marked trend for larger notional J values near 
midplane than at other locations around the crack front. The reason is geometrically clear; 
a ligament patch of area ~A carrying flow stress a0 is much more effective in reducing the 
limit-load bending moment if it is farther from the neutral axis. The J-variation inferred 
from this simple model is surprisingly realistic when the crack front spans 180 deg. 

Using assumed functional dependencies relating load to displacement, Pan [36] also 
extended this pertubation formalism to derive effective scaling laws for the plastic part of 
local J as 

-- ~alimit ~0 qg 
= 6AQ, m~, Qd~ (36) 

where t~alimit is the numerator in Eq 35. 
Finally, Pan has shown how this technique, along with an assumed material resistance 

curve in the form of a J" versus Aa relation, qualitatively predicts the initially stable, then 
abruptly unstable penetration of the surface crack in these geometries, as observed exper- 
imentally by Wilkowski and reported in Ref 37. 

The predictive capabilities of this model are at least partly fortuitous; for example, the 
shape of the J" curve and attendant crack advance along the crack front would not be cor- 
rect in tensile loaded plates. On the other hand, the qualitative features of  this extremely 
simple model are at once both remarkably realistic and comprehensible. 

HRR Dominance in Tensile-Loaded Surface Cracks 

Dominant singularity correlations of cracking have inherent parametric limits of appli- 
cability. For J-based applications in largely yielded plane strain geometries, these are fairly 
well understood, but for applications to 3-D geometries such as surface cracks, much less 
is known. Here we review recent work on understanding of the establishment and loss of  
J-based asymptotic dominance along tensile-loaded surface crack fronts. 

Background 

In the analysis of monotonically loaded bodies undergoing significant nonlinear (plastic) 
deformation, it is convenient to consider an "equivalent" nonlinear elastic material model 
which coincides with the plastic response of the material under conditions of proportional 
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stressing. A fairly general phenomenological power law model of nonlinear uniaxial behav- 
ior is 

c = a~0" (a/a0)" (37) 

Here ~ a n d ,  are strain and stress, respectively, and material parameters are a0, an effective 
yield stress; ~0 = ao/E ( E  is Young's modulus), a reference yield strain; n, the strain hard- 
ening exponent; and ~, a dimensionless factor. This relation is tensorially generalized using 
-/2 deformation theory plasticity to provide the (plastic) strain, % as 

~,~ = ~co " Y~(~,/~o)"-' s,j/~o (38) 

where s o is the stress deviator, and ae = V~0s~/2 is the Mises equivalent tensile stress. 
Small geometry change asymptotic analysis of a symmetrically loaded, mathematically 
sharp crack front in such a material leads, as r ~ 0, to the crack tip fields 

a,j(r, O; s) ~ ~o �9 [ J ( s ) / ( a ~ r d ,  r)] '/"+' �9 ?to(O, n) =-- ffHRR (39) 

~o(r, O; s) ---, aeo �9 [J(s)/(aeo~oI, r)] "/"+l �9 "~o(0, n)  =-- ~ijURR (40) 

Here 8ij and ~ij are dimensionless functions of their arguments, and I , (n )  is a normalizing 
factor. These fields were determined by Hutchinson [38] and Rice and Rosengren [39] and 
are collectively referred to as the HRR singular fields. For fixed material properties, the 
magnitude of these fields is given solely by the value of the parameter J(s).  When the HRR 
fields truly dominate the complete crack-tip fields over distances large compared to crack- 
tip blunting and fracture process zone, it is a natural and continuous extension of LEFM 
methodology to correlate crack extension with J. For a recent review of this approach, see 
Ref 40. 

The asymptotic fields (Eqs 39 to 40) do not apply too close to the crack tip, since effects 
of finite geometry change (blunting) have been neglected. An effective crack-tip opening 
displacement, ~,, can be defined from the HRR fields as the crack separation where + 45- 
deg lines emanating from the crack tip intercept the crack faces (Shih [41]) 

J 
~, = d . ( a ~ o ,  n )  �9 - -  (41) 

O" 0 

This estimate of crack tip blunting is in good agreement with finite deformation numerical 
solutions (McMeeking [42]). The length scale 8, measures the finitely deforming region not 
accounted for in Eqs 39 and 40. Furthermore, since ductile void growth is inherently a 
finite strain fracture process, this scale implicitly defines the fracture process zone as well. 
Under conditions of small-scale yielding (SSY) in plane strain, finite deformation studies 
[42,43] show that the asymptotic fields (Eqs 39 to 40) do exist at distances near the tip but 
greater than -- 56,. 

Finite-element studies [43,44] provided quantitative insight into conditions under 
which the asymptotic fields (Eqs 39 to 40) likely dominate the crack-tip region for plane- 
strain geometries such as center-cracked tension, and edge-cracked bend and tension spec- 
imens. This work provided guidance as to minimum specimen dimensions (analogous to 
those assuring well-contained yielding in standard fracture toughness testing) so that crit- 
ical experimentally determined material properties such as Jlc and JR (Aa), would be both 
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24 SURFACE-CRACK GROWTH 

conservative and relatively insensitive to other features of testing procedure. In large-scale 
yielding, these size restrictions have been formalized by requiring that the ratio of  ligament 
size, g, to the crack tip similarity length, J/ao, satisfies 

e 

where u~r is a "critical" lower limit. For low hardening materials, ta, --~ 25 for bending, 
while for predominant ligament tension, u,, ~ 200. Shih [45] has shown that for suffi- 
ciently deep edge cracks, #c, varies smoothly, with the ratio of  tension to bending, between 
these limits. 

HRR Dominance in Surface Cracks 

Understanding of corresponding necessary conditions for HRR.dominance in largely 
yielded surface crack configurations remains slight. Broeks and Olschewski [46] provided 
nonlinear finite-element studies of  3-D crack configurations along with certain assessments 
of  HRR-dominance, but the mesh fineness used was far less than in the 2-D studies cited. 
Broeks and Noack [47] have further emphasized the loss of HRR dominance under fully 
plastic conditions for an interior axial surface crack in a pressurized cylinder. 

Recently, Parks and Wang [48] analyzed wide plates under remote uniaxial tension of 
magnitude a = normal to a centrally located part-through surface crack. The plates had 
thickness t, total width 2b, and total length 2h. The surface cracks considered were semi- 
elliptical in shape, with maximum penetration a and total surface length 2c. Figure 5a 
shows one quarter of  the structural geometry, including the global coordinates (X, Y,Z). In 
the post-processing of the data obtained near the crack front, local coordinates (x,y,z), indi- 
cated in Fig. 5b, were used. The parametric angle 4~ locating positions along the semiellip- 
tical crack front given by (X/c) 2 + (Z/a) a = 1 is also shown. The local z-axis is tangent to 
the crack front, and the local y-axis, which coincides with the global Y-axis, is normal to 
the crack plane. 

Plate geometrical ratios were b/t --- 8 and h/t = 16. The crack depths considered were 
moderately deep; a semicircular crack front (denoted SC) had a/t = 0.5 and a/c = 1, while 

\ \ \ \ \ \ \  

h 

Y~N,{ Z 
N ]  

v 

FIG. 5a--Sckematic view of one-fourth of surface-cracked plate, showing global coordi- 
n a l e  axes .  
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f Z 

lllll llll 
FIG. 5b---Global view of local coordinate system, along semielliptical crack front. 

a semielliptical crack front (denoted SE) had a/t = 0.6 and a/c = 0.24. These ratios match 
the experimental geometries of Epstein et al. [49]. Loading was imparted to the body by 
imposing uniform displacements Ur at the remote boundary, Y -- h, along with the sym- 
metry conditions. Overall loading was characterized by the average remote stress, 0o ~ p~ 
2bt, where P was the total load applied to the complete specimen. The constitutive model 
used was J2 deformation theory plasticity based on the Ramberg-Osgood power law form. 
Calculations were performed for strain-hardening exponents of both n = 5 (high harden- 
ing) and n = 10 (moderately low hardening). 

J(s) values were determined using the VCE method as modified in version 4-6 of the 
ABAQUS [50] finite-element program following the work ofLi, Shih, and Needleman [51] 
and Shih et al. [20,21] on domain integral methods (see also the subsection on Virtual 
Crack Extension and Domain Integrals [p. 14]). Domain independence in the computed 
J-values can be an indicator of the overall accuracy of VCE calculations. In all cases, J(s) 
values obtained from six domains agreed to within 4%. Local stress values were sampled 
at both the reduced Gauss points and (from extrapolations) the nodal points. 

Figure 6 (semielliptical [SE], top, and semicircular [SC], bottom) shows normalized cen- 
ter plane (4~ = 0) J values versus a~/~0- Each figure contains results for both strain-hard- 
ening exponents. At low stress, a~/o0 __< ~0.5, the two curves coincide, and J is essentially 
the elastic value K~/E'. Linear elastic J calculations (not shown) were typically within 5% 
of those given by Raju and Newman [10]. At intermediate stress levels, 0.5 --< ~/cr0 --< 
0.9, J-values for n = 5 were slightly greater than for n = 10. At higher load, the trend 
reversed due to the rapid increase of J in the n = 10 material. 

Figure 7 shows that the shape of the distribution of Jalong the crack front in these prob- 
lems is relatively insensitive to stress level and degree of strain hardening. Three curves of 
J(q~), normalized by centerplane (J,=0) values of Fig. 6 are shown versus r for both the SE 
and SC geometries. At the lowest load level shown for each geometry, the shape of the 
distribution is essentially the same as the linear elastic case. Even at fully plastic condi- 
tions, a~/tr0 ~ I, the shape of each geometry's normalized J-distribution has changed very 
little. Distributions at intermediate load levels (not shown for purposes of clarity) essen- 
tially interpolate the small distance between elastic and fully plastic curves. Presumably, 
elastic-plastic J,=0 versus load curves, in conjunction with LEFM profiles of K 2 versus 
(for example, Ref 10), would permit accurate evaluation of J at any point along such crack 
fronts at any load level. 

The degree to which the complete local crack-front fields agree with the asymptotic sin- 
gular fields (Eqs 39 to 40) is a measure of the dominance of the latter. Parks and Wang 
presented detailed comparisons for the normal stress component ~yy directly ahead of the 
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FIG. 6--Normalized center plane (r = 0 deg) J versus remote stress: (top) semielliptical 
crack; (bottom) semicircular crack [48]. 

crack front, 0 = 0, as in Refs 43 to 45, to illustrate the existence and subsequent loss of  
HRR dominance in plane strain geometries. 

Figure 8 shows arv(r,O -- 0; @ --- 0), normalized by the corresponding HRR value of  Eq 
39 versus r, normalized by J/aao%, for the SE geometry with n -- 10. The normalizing stress 
field gHRR(r) was determined from Eq 39 using J,=0. Curves are shown for seven levels of  
remote stress, as well as a curve obtained from mathematical small-scale yielding (SSY). 
The latter curve was obtained from a 2-D plane strain analysis of  a large circular domain, 
remotely loaded by the linear elastic K~ field. Details o f  this procedure can be found, for 
example, in Rice and Tracey [52]. Returning to the figure, it is seen that, at lower loads, 
the local stress profile is near, but slightly beneath the SSY results, which in turn, fall 
slightly below the precise HRR fields corresponding to the abscissa value of  unity. At 
higher applied stress, the normalized stress profiles decay steadily, then rapidly, from H R R  
dominance. 

The data of  Fig. 8 have been replotted in Fig. 9 as stress, normalized by SSY stress, 
versus r normalized by ~, as calculated from Eq 41. The magnitudes of  the normalized 
stress are closer to unity, and the closeness of  the data points to the (neglected) crack tip 
blunting zone is evident. At the highest load levels, the stress at points nearest the tip is 
within 85% of  the SSY Value; this agreement occurs deep within the blunting zone and 
must be disregarded. A more realistic assessment of  asymptotic dominance can be made 
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FIG. 7--Crack front J, normalized by center-plane values, for both semielliptical and 
semicircular crack fronts at various stress levels [48]. 

by examining the agreement at a few multiples of 6,, just outside the region affected by 
large geometry change. 

For the centerplane data, this is done as Fig. 10, which shows the local &y normalized 
by the SSY value, versus a~ 0. Curves are shown for material points at varying multiples 
ofr ,  from the crack tip. In the load range 0.4 < a=/~o < ~0.75, a~/assy decreases linearly. 
Indeed, this portion of the respective curves extrapolates back to unity at vanishing applied 
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FIG. 8--Center plane (~ = 0 deg) normal stress ahead of  crack tip, normalized by corre- 
sponding plane strain HRR values, versus normalized distance from crack tip. Curves are 
shown for a semielliptical crack front loaded to various applied stress levels [48]. 
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FIG. 9--Center plane (~ = 0 deg) normal stress ahead of crack tip, normalized by small- 

scale yielding (SSY) values, versus distance from crack tip normalized by crack-tip opening 
displacement (CTOD) as obtained from HRR fields, at various remote stress levels [48]. 

stress--that is, under small-scale yielding! At higher applied load, near ~~ = 0.8, the 
divergence from dominance becomes rapid. Points furthest from the crack tip are the first 
to feel the effects of  the impinging fully plastic flow fields. Regardless of  the distance cho- 
sen, it is clear that substantial deviation from SSY (and, implicitly, HRR) dominance is 
felt at 4~ = 0 in this problem near oo = 0.9a0. 

Parks and Wang illustrated the effects of  other variables on both the gradual and ultimate 
loss of  H R R  dominance. Figure 11 compares the decrease of  ay~/assy with a=/ao at various 
locations along the SE and SC crack fronts, for the case of  n -- 10. The curve is arbitrarily 
drawn for points 6~, from the tip. The SC geometry is more resistant to abrupt loss of  
dominance in the fully plastic regime than the SE configuration. The decrease from SSY 
dominance continues to be linear along the SC crack front up to a ~176 = 1.04o0. The trend 
of  decreasing dominance with decreasing 4~ is also followed in this crack geometry. 

The marked difference in fully plastic dominance displayed by these two crack geome- 
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FIG. lO--Center Plane ($ = 0 deg) normal stress, normalized by SSY values, versus nor- 
malized remote stress, at various normalized distances from crack tip [48]. 
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FIG. I l--Normalized stress at 6 CTOD ahead of crack tip, normalized by SSY values, 
versus normalized remote stress for semielliptical (SE) and semicircular (SC) surface cracked 
geometries, at various locations (@) along the crack front [48]. 

tries is due to the relative ease with which deformation can focus into plane strain-like 
behavior. Once the surrounding material reaches flow conditions, the long, relatively con- 
stant depth ligament near the center of  the SE readily accommodates the lightly con- 
strained in-plane flow typical of a single-edge crack under tension. In contrast, the mini- 
mum ligament depth and crack-front radius of curvature are equal in the SC geometry, 
and no such planar modes of flow are available. Hence, relative HRR dominance is 
retained to higher stress levels in the SC geometry. Indeed, experimental evidence consis- 
tent with this conclusion has been provided by Epstein et al. [49]. 

A related point concerns the effect of  crack-front position on loss of  dominance. At larger 
r values in the SE specimen, the ability of deformation to focus into low constraint planar 
deformation bands is less than at @ --- 0. Brocks and Noack [47] have noted this feature 
in a fully plastic axially cracked cylinder and suggested that the relatively higher constraint 
near @ ~-- 75 deg could be in part responsible for "canoe-shaped" ductile crack growth 
patterns often observed on surface crack fronts, this despite the fact that the (now) notional 
J~=0 exceeded J~=75 d~ in the fully plastic regime. The calculations of  Parks and Wang are 
in agreement with this suggestion, though additional effects such as anisotropy of initiation 
and tearing toughness in rolled plate material may also be important. 

Summary 

We have reviewed progress in analysis and modeling of surface crack configurations. 
Mathematical tools of varying degrees of sophistication have been developed and applied 
to surface crack problems. Which major issues remain to be addressed? 

The main challenge in linear elastic analysis is following general mixed-mode cracking 
in 3D. It was suggested that this class of problems can be effectively attacked only with 
singular integral boundary element hybrid schemes, but further development is required 
in performing the delicate integrations over nonplanar 2D domains. A secondary topic in 
LEFM is the further clarification of the fields where crack fronts intersect free surfaces or 
bi-material interfaces. 

In the small-scale yielding regime, when LEFM nominally dominates crack front behav- 
ior, there nonetheless remain issues of concern. Fracture toughness values inferred from 
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tests of surface-cracked specimens are sometimes higher than those obtained from through- 
cracked (CT) specimens. This seems especially so for cases where the maximum K~ value 
along the surface crack front occurs on (near) the free surface, and the value there is appre- 
ciably greater than at maximum penetration. In such cases, it is likely that crack-front 
plastic constraint is being relieved by the presence of the nearby free surface, so higher 
loads must be applied to achieve "critical" conditions. 

At higher loads, the J distributions of NLEFM can characterize crack-front fields, but 
this approach also fails to provide a single dominant crack loading parameter in the fully 
plastic regime. When dominance is lost, it will be necessary to consider the effects of the 
complete local stress and deformation fields in driving local processes of fracture. The level 
of detail and sophistication which such an approach may involve could vary, ranging from 
detailed continuum damage mechanics based on approximate void growth kinetics, to sim- 
plified line-spring or hinge models including constraint-dependent crack growth models 
based on crack opening angle, crack opening displacement, and so on. 

Comer fields in plastic material are virtually unexplored. The relaxed near surface con- 
straint leads to prominent crack tip blunting at the free surface intersection, and often the 
crack locally branches into a forked configuration. This shear localization at the comer 
often "sets up" the crack trajectory for lateral growth as a full slant through-crack after 
back surface penetration has occurred. 

Near free surface effects are expected to be important in characterizing loss of HRR dom- 
inance for the practically important case of shallow surface cracks loaded to general 
yielding. 

Finally, aspects of material inhomogeneity due to, for example, welding have not been 
adequately treated in fracture-mechanics theory, including surface-crack geometries, yet 
these features are likely sites for fracture. 

Given both the technological impetus to better understand these and other features of 
surface-crack behavior and the collective body of fracture expertise, the pace of progress is 
likely to be sufficiently rapid that another major symposium devoted to this topic will not 
wait 15 more years to occur. 
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ABSTRACT: This paper presents an evaluation of the three-dimensional finite-element 
models and methods used to analyze surface cracks at stress concentrations. Previous finite- 
element models used by Raju and Newman for surface and comer cracks at holes were shown 
to have "ill-shaped" elements at the intersection of the hole and crack boundaries. These ill- 
shaped elements tended to make the model too stiff and, hence, gave lower stress-intensity 
factors near the hole-crack intersection than models without these elements. Improved mod- 
els, without these ill-shaped elements, were developed for a surface crack at a circular hole 
and at a semicircular edge notch. Stress-intensity factors were calculated by both the nodal- 
force and virtual-crack-closure methods. Both methods and different models gave essentially 
the same results, Comparisons made between the previously developed stress-intensity factor 
equations and the results from the improved models agreed well except for configurations 
with large notch-radii-to-plate-thickness ratios. 

Stress-intensity factors for a semi-elliptical surface crack located at the center of a semicir- 
cular edge notch in a plate subjected to remote tensile loadings were calculated using the 
improved models. A wide range in configuration parameters was considered. The ratio of 
crack depth to crack length ranged from 0.4 to 2; of crack depth to plate thickness from 0.2 
to 0.8; and of notch radius to plate thickness from 1 to 3. The finite-element or nonsingular 
elements models employed in the parametric study had singularity elements all along the 
crack front and linear-strain (eight-noded) elements elsewhere. The models had about 15 000 
degrees of freedom. Stress-intensity factors were calculated by using the nodal-force or vir- 
tual-crack-closure method. 

KEY WORDS: crack, surface cracks, crack propagation, fracture, stress analysis, fatigue 
(materials), stress-intensity factors, finite elements, boundary-layer region 
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Surface and corner cracks can occur in many structural components. These cracks can 
cause premature failure of  landing gear of aircraft, spars, stiffeners, and other reinforce- 
ments. Accurate stress analyses of these crack components are needed for reliable predic- 
tion of crack-growth rates and fracture strengths. 

Surface and corner cracks in plates have received considerable attention in the literature 
in the past 16 years [1-20]. Various methods: finite-element method with singularity ele- 
ments [3,4,8,10,12,13,17,19], finite-element method with displacement hybrid elements 
[5,6], alternating method [ 1,2, 7,9], finite-element-alternating method [ 14,15,18,20], and 
boundary-integral equation method [lI], were used to obtain stress-intensity factors 
for these cracked components. Stress-intensity factor equations were obtained by fitting 
empirical equations to the stress-intensity factors obtained from numerical analyses 
[16,17]. 

Surface and corner cracks at holes have received much less attention than surface cracks 
in plates. Smith and Kullgren [9] and Raju and Newman [12] analyzed corner cracks from 
a circular hole by the alternating method and the finite-element method (with singularity 
elements), respectively. Nishioka and Atluri [15,18] analyzed corner cracks from a circular 
hole and corner cracks in a lug by the finite-element-alternating method. The stress-inten- 
sity factors by all of  the previously mentioned methods agreed well with one another 
[12,15], except in the region where the crack intersected the hole boundary. In this region, 
the stress-intensity factors from Raju and Newman [12,16] showed a precipitous "drop- 
off." The stress-intensity factors calculated by other investigators (see Refs 9 and 15) did 
not show the large drop-off near the hole-crack intersection. Thus, the primary purpose of 
this paper is to investigate the reasons for the large drop in the stress-intensity factors 
where a surface crack meets a hole or notch boundary. In this investigation, an evaluation 
of the previously developed finite-element models used by Raju and Newman [ 12,16] and 
of the methods used to determine the stress-intensity factors was performed. 

The second purpose of this paper is to present stress-intensity factors for a semielliptical 
surface crack located at the center of  a semicircular edge notch in a finite thickness plate. 
This crack configuration has not been analyzed in the literature. The plates were subjected 
to remote tension loads and a wide range in configuration parameters were considered. 
The ratio of  crack depth along the notch root to crack length away from the notch root (a/ 
c) ranged from 0.4 to 2; the ratio of crack depth to plate thickness (a/t) ranged from 0.2 to 
0.8; and the ratio of  notch radius to plate thickness (r/t) ranged from 1 to 3. The r/t ratio 
of  3 was chosen because this particular configuration was tested in an Advisory Group for 
Aerospace Research and Development (AGARD) study on short-crack growth behavior 
[211. 
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Three-Dimensional Finite-Element Analysis 

A three-dimensional finite-element analysis was used to calculate the Mode I stress- 
intensity factor variations along the crack front for a surface crack emanating from the 
center of  a semicircular edge notch (or a circular hole) in a plate subjected to tensile load- 
ing, as shown in Fig. 1. In these analyses, Poisson's ratio was assumed to be 0.3. 

Due to symmetry, only one quarter of the specimen was modeled for the notch config- 
uration. Symmetry conditions on the x = 0 plane were used to model the circular hole 
configuration. A typical model is shown in Fig. 2. This model has eight wedges on the crack 
plane and four layers on the hole. Six-noded pentahedral singularity elements or eight- 
noded nonsingular elements were used along the crack front and eight-noded hexahedral 
elements were used elsewhere. The finite-element models were subjected to remote tensile 
loading on the y -- h plane. Stress-intensity factors were calculated using the nodal-force 
method or the virtual crack-closure technique (VCCT). Details of the formulation of these 
types of elements, the nodal-force method, and the VCCT are given in Refs 8, 10, 12, 22, 
and 23. Details on the development of  the finite-element models will be discussed later. 

Stress-Intensity Factor 

The remote tensile loads cause only Mode I deformations. The Mode I stress-intensity 
factor K for any location along the crack front was taken to be 

K = S(~ra/Q) ~/2 F,,(a/t, a/c, r/t, ep) (1) 

The half-height of  the plate, h, and width, b, were chosen large enough to have a negligible 
effect on stress-intensity factors (h/b >_ 2 and r/b ~ 0.05). Values of F~,, the boundary- 
correction factor, were calculated along the crack front for various combinations of param- 
eters (a/t, a/c, r/t, and r The crack dimensions and parametric angle, r are defined in 
Fig. 1. The shape factor for an ellipse, Q, is given by the square of the complete elliptic 
integral of the second kind. Empirical expressions for Q (taken from Ref 10) were 

Q = 1 + 1.464(a/c) ~65 for a/c _< 1 (2a) 
Q--- 1 + 1.464(c/a) TM  for a/c > 1 (2b) 

:':1 J_ 

SECTION A-A 

FIG. l--Specirnen configuration and loading. 
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FIG. 2--Typical finite-element model. 

Evaluation of  Finite-Element Models and Methods 

Stress-intensity factor distributions in Refs 12 and 16 for surface and corner cracks at a 
hole showed a precipitous "drop-off' near the region where the crack meets the hole 
boundary. This drop-offwas believed to have been caused by the "boundary-layer" effect. 
However, comparisons (see Refs 9 and 15) with other solutions in the literature showed 
that the stress-intensity factors calculated by other investigators did not exhibit this large 
drop-off near the boundary-layer region. Therefore, a study was carded out to determine 
whether this drop-off is an artifact of the modeling or is a real behavior. The models used 
in Refs 12 and 16 were reexamined. This examination revealed that the procedures used 
to generate the solids produced models with some "ill-shaped" elements in the region 
where the crack intersects the hole boundary. These ill-shaped elements were produced 
when the "wedge" region along the crack plane was connected directly to the "layer" region 
to model the hole or notch. For r/t = 1, the elements in the region where the crack meets 
the hole boundary had aspect ratios (ratio of largest to smallest dimension) of about 150. 
The aspect ratio of these elements increased linearly as the r/t ratio increased, that is, for 
r/t = 3 the aspect ratio was 450! 

The "ill-shaped" elements do not have any influence on the results if they are in regions 
of small stress gradients. However, they tend to produce a stiffer model if they are located 
in regions of large stress gradients. Because these elements were found in the region where 
the crack intersects the hole boundary, an investigation was undertaken to study the influ- 
ence of these ill-shaped elements on the stress-intensity factor solutions. Three different 
finite-element models were developed and two different methods were used to extract the 
stress-intensity factors from the finite-element solutions. 

Models--Model A used finite-element patterns that were similar to those used in Refs 
12 and 16 with the "ill-shaped" elements near the hole-crack intersection. Model B was a 
newly developed finite-element model similar to Model A but without ill-shaped elements 
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Both Models A and B used a polar mesh and singularity elements around the crack front, 
as shown in Fig. 2. Model C, on the other hand, used a rectangular mesh and nonsingular 
elements around the crack front. Also, Model C did not have any ill-shaped elements near 
the hole-crack intersection. In Models B and C, the ill-shaped elements were avoided by 
not directly connecting the wedge region to the layer region near the hole-crack intersec- 
tion. A small offset (between 0.03r and 0.1r) was used before the layers were added to 
model the hole or notch configuration (Fig. 2). The x-coordinates of the nodes in the "off- 
set" region were adjusted so that they lie on the circular boundary. 

Two different in-house (National Aeronautics and Space Administration [NASA], Lang- 
ley) computer programs, discussed in Refs 12 and 22, were used to analyze the various 
models. The different computer programs were used to verify the consistency of the results 
and to determine whether any undetected errors existed in the computer codes and 
analyses. 

In Models A and B, pentahedron singularity elements were used all along the crack front 
and eight-noded hexahedron elements were used to model the rest of the solid. Further- 
more, a 3 by 3 by 3 Gaussian integration scheme was used to form the element stiffness 
matrices. In Model C, nonsingular eight-noded hexahedron elements were used every- 
where to model the solid. A 2 by 2 by 2 Gaussian integration scheme and reduced integra- 
tion for the shear terms [22] were used in conjunction with Model C. In contrast to Models 
A and B, where the models had a polar-mesh pattern around the crack front, Model C had 
a rectangular-mesh pattern around the crack front. 

Methods--Two methods for extracting stress-intensity factors from the solutions were 
also studied. The methods were the nodal-force method [8,10,12] and the virtual-crack- 
closure technique (VCCT) [23]. In the nodal-force method, the forces normal to the crack 
plane and ahead of the crack front were used to calculate the stress-intensity factors. This 
method does not require the assumption of either plane stress or plane strain to obtain the 
stress-intensity factor. The VCCT calculates the strain-energy release rate using the forces 
normal to the crack plane and ahead of the crack front and the relative displacements of 
the crack faces behind the crack front. The stress-intensity factor is then obtained from the 
calculated strain-energy release rate by assuming either plane-strain or plane-stress condi- 
tions. Plane-strain conditions were used everywhere along the crack front except where the 
crack meets the notch surface (~ -- 90 deg). At this location, plane-stress conditions were 
used. These types of assumptions along the crack front are widely used in the literature 
[4,11,13,23,24]. 

Comparison of  Stress-Intensity Factors--Three specimen configurations with r/t = 1 or 
3 were chosen in the evaluation study. All configurations had a semicircular (a/c = 1) 
crack with an a/t ratio of 0.2. One configuration had a surface crack emanating from a 
circular hole (r/t = 1), while the other configurations had a surface crack emanating from 
a semicircular edge notch (r/t = 1 and 3). All models had 14 wedges to model the crack 
plane and 10 layers to model the notch. Models A and B had about 15 000 degrees of 
freedom (dof) while Model C had about 18 000 dof. 

Figure 3 presents the stress-intensity factor distributions along the crack front from Mod- 
els A, B, and C for a surface crack located at the center of a circular hole with r/t = 1. The 
results from Models B and C agreed well (within 1.5%) with each other all along the crack 
front. Model A, with the "ill-shaped" elements (circular symbols [16]), gave stress-inten- 
sity factors that were lower than the results from the other models. The discrepancy was 
quite large for r > 60 deg. The results from Models B and C do not show the large drop- 
off exhibited by Model A. 

The solid curve is an empirical equation for a surface crack at a circular hole that was 
based on previous finite-element results [16]. Comparison with the present finite-element 
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FIG. 3--Comparison of results for a surface crack emanating from the center of a circular 

hole, using various models and methods for r/t = 1. 

results suggests that the equation is still accurate (within 5%) for this crack configuration, 
although a slight modification would be necessary near the hole-crack intersection. 

Figures 4 and 5 present stress-intensity factors for the same crack shape and size as 
shown in Fig. 3 (a/c - 1; a/t -- 0.2) but for a surface crack at a semicircular edge notch 
with r/t ratios of  I and 3, respectively. The nodal-force results from models with and with- 
out ill-shaped elements (Models A and B, respectively) differed all along the crack front for 
r/t = 1 (Fig. 4). Again, the largest discrepancies occurred for 4~ > 60 deg. However, the 
nodal-force results (Model B) were in good agreement with results from Model C using the 
VCCT for r/t ratios o f  1 and 3. The maximum difference between these two sets of  results 
was only about 2%. 

Again, the solid curves in these figures show stress-intensity factors calculated from an 
empirical equation [25]. This equation was previously fitted to finite-element results for a 
surface crack at a hole [16] but adjusted for the stress concentration differences between a 
hole and a notch. Comparison with the present finite-element results (Fig. 4) suggests that 
the equation is still accurate for this crack configuration although a slight modification 
would, again, be necessary near the hole-crack intersection (maximum difference at this 
location was about 5%). However, for r/t = 3, the equation consistently underestimated 
the stress-intensity factors (3 to 13%), as shown in Fig. 5. A reason for the lower estimate 
is probably because the equation was Extrapolated to r/t values beyond those used in fitting 
the equation (0.5 _< r/t <_ 1). Thus, a modification to the equations is required for crack 
configurations with the r/t ratios greater than unity. 

Discussion--Recall that the nodal-force method was used to extract the stress-intensity 
factors from the models with and without the ill-shaped elements (Model A and B, respec- 
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FIG. 4--Cornparison of results for a surface crack emanating from the center of  a semi- 

circular notch, using various models and methods for r/t = 1. 

tively). On the other hand, the VCCT was used in conjunction with Model C. All models 
without the ill-shaped elements gave nearly the same stress-intensity factors all along the 
crack front. This suggests that the two methods of extracting stress-intensity factors are 
reliable, provided that the models are well behaved. The models with the "ill-shaped" ele- 
ments tended to make the model too stiff and, hence, gave lower stress-intensity factors 
than models without these elements. Therefore, improved finite-element models that were 
similar to those used in Refs 12 and 16 but did not contain any ill-shaped elements were 
developed for a wide range in configuration parameters. These new models, in conjunction 
with the nodal-force method or the VCCT, were used to analyze a surface crack at a semi- 
circular edge notch herein. These models had about 15 000 dof. The results obtained with 
these models are discussed in the following section. 

Stress-Intensity Factor Solutions for Surface Crack at Semicircular Edge Notch 

A surface crack emanating from a semicircular edge notch in a plate subjected to remote 
tensile loading was considered herein. A wide range in crack sizes (a/t), crack shapes (a/ 
c), and notch sizes (r/t)  were analyzed. The ranges in crack and notch parameters were 

a/t  = 0.2, 0.5, and 0.8 
a/c = 0.4, 1, and 2 
r/t = 1, 2, and 3 
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FIG. 5--Comparison of results for a surface crack emanating from the center of a semi- 

circular notch, using various models and methods for r/t = 3. 

These particular crack configurations were chosen to cover the range of  crack shapes and 
sizes that have been observed to grow in experiments. Note that the r/t = 3 configuration 
corresponds to a specimen used in an AGARD study on short cracks (see Refs 21 or 25). 
For each combination of  parameters, stress-intensity factors were obtained all along the 
crack front. 

The normalized stress-intensity factors obtained with the three-dimensional finite-ele- 
ment analyses are presented in Tables 1-3. Typical results are shown and discussed herein. 

The normalized stress-intensity factor variations all along the crack front for the 
A G A R D  short-crack specimen with r/t = 3 are shown in Figs. 6 and 7 for various crack 
shapes (ale = 0.4 and 1, respectively). In these figures, the inserts show part of  the crack 
plane with the relative size of  the notch, half-thickness o f  the plate, and the various crack 
shapes and sizes considered. For both crack shapes, the maximum normalized stress-inten- 
sity factors occurred near the intersection of  the crack front and the notch boundary (~ = 
90 deg). This trend is expected because the crack front lies in a region that is influenced by 
the notch. Hence, surface cracks would be expected to grow more along the bore of  the 
notch than away from the notch and approach an a/c ratio greater than unity. Experiments 
on surface cracks at notches [21,25] tend to support this observation. 

Figure 8 shows the normalized stress-intensity factor variations along the crack front for 
a semielliptical surface crack with an a/c ratio o f  2 and r/t = 1. In this case, the normalized 
stress-intensity factors are largest at the maximum crack length from the notch root (~ = 
0 deg). For deep cracks (a/t = 0.8), the normalized stress-intensity factors are nearly con- 
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TABLE 1 --Boundary-correction factors, Fs,, for semielliptical surface crack emanating fi'om center of  
a semicircular notch in a plate under tension (r/t -- I; F~, = K/[S(ra/Q)I/2]). 

a/t 

a/c r deg 0.2 0.5 0.8 

0.4 a 

1 a 

0.0 1.113 0.869 0.833 
22.5 1.284 0.997 0.967 
45.0 1.678 1.296 1.274 
67.5 2.190 1.733 1.774 
78.8 2.567 2.129 2.232 
84.9 2.809 2.445 2.631 
88.0 2.938 2.655 2.951 
90.0 2.727 2.548 2.944 

0.0 2.402 1.865 1.697 
22.5 2.442 1.904 1.716 
45.0 2.574 2.046 1.841 
67.5 2.826 2.355 2.211 
78.8 3.043 2.646 2.599 
84.9 3.192 2.858 2.898 
88.0 3.263 2.975 3.089 
90.0 2.858 2.656 2.826 

a Nodal-force method and Model B. 
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90 

FIG. 6--Boundary correction-factor d&tributions along crack front for semielliptical sur- 
face crack (a/c = 0.4) at the center of  the notch root. 
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TABLE 2--Boundary-correction factors, Fs., for semielliptical surface crack emanating from center 
of  a semicircular notch in a plate under tension (r/t = 2; Fs, = K/[S(~ra/Q)m]). 

a/t 

a/c 4~, deg 0.2 0.5 0.8 

0.4 a 

1 a 

0.0 1.405 1.081 0.989 
22.5 1.613 1.245 1.156 
45.0 2.070 1.634 1.553 
67.5 2.596 2.174 2.207 
78.8 2.943 2.595 2.764 
84.9 3.151 2.880 3.182 
88.0 3.252 3.044 3.469 
90.0 2.982 2.844 3.347 

0.0 2.789 2.316 2.128 
22.5 2.822 2.357 2.152 
45.0 2.929 2.497 2.303 
67.5 3.138 2.780 2.715 
78.8 3.323 3.028 3.105 
84.9 3,454 3.201 3.378 
88.0 3.509 3.285 3.533 
90.0 3.052 2.885 3.161 

a Nodal-force method and Model B.  

TABLE 3--Boundary-correction factors, F,., for semielliptical surface crack emanating from center 
of  a semicircular notch in a plate under tension (r/t = 3; F,. = K/[S(~ra/Q) I/: ]). 

a/t 

a/c ~, deg 0.2 0.5 0.8 

0.4 a 0.0 1.603 1.253 1.131 
22.5 1.831 1.442 1.325 
45.0 2.318 1.882 1.788 
67.5 2.839 2.460 2.534 
78.8 3.167 2.878 3.135 
84.9 3.361 3.145 3.559 
88.0 3.452 3.290 3.834 
90.0 3.151 3.044 3.655 

I a 0.0 3.017 2.592 2.429 
22.5 3.045 2.630 2.454 
45.0 3.138 2.761 2.610 
67.5 3.328 3.022 3.032 
78.8 3.503 3.251 3.421 
84.9 3.629 3.411 3.685 
88.0 3.679 3.482 3.829 
90.0 3.192 3.040 3.398 

2.0 b 4.5 2.229 2.115 2.031 
22.5 2.154 2.057 2.004 
45.0 1.960 1.909 1.928 
67.5 1.773 1.776 1.851 
80.0 1.745 1.765 1.854 
84.0 1.762 1.788 1.884 
87.0 1.825 1.819 1.920 
89.0 1.808 1.823 1.929 

a Nodal-force method and Model B. 
b Virtual crack-closure technique and Model C. 
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FIG. 7--Boundary-correction factor distributions along crack front for semicircular sur- 
face crack (a /c  = 1.0) at the center of  the notch root. 
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FIG. 8--Boundary-correction factor distributions along crack front for semielliptical sur- 

face crack (a /c  = 2.0) at the center of  the notch root. 
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FIG. 9--Effect of r/t on the distribution of boundary-correction factors for a deep semiel- 

liptical surface crack at the center of the notch root. 

K 

S9~a/O 

3 

2 

I 

%%,% 

r/t=3 
a/c=0.4 

0 = I i 

0.0 0.5 1.0 

a/t 
FIG. lO--Effect of crack size on bounda~-correction factors at the end of the major and 

near the end of the minor axes (~ = 0 deg and 80 deg). 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



SURFACE-CRACK GROWTH 46 

Sdrra/0 2 

/ 
J 0.8 

l 0 ~ 

a/c=0.4 
0 -- t 

1.0 2.0  

r/t 
3.0 

FIG. 11--Effect of notch size on boundary-correction factors for a semielliptical surface 
crack at the end of the major and near the end of the minor axes (~b = 0 deg and 80 deg). 

stant all along the crack front. (Note that the results presented herein for a/c = 2 were 
obtained from Model C and the VCCT [23].) 

The variation of  normalized stress-intensity factors all along the crack front for various 
r/t ratios with a/c = 0.4 and a/t = 0.8 is shown in Fig. 9. As expected, larger values of  
notch radii (higher r/t ratios) gave higher values of  normalized stress-intensity factors for 
the same crack shape and size. This trend is expected because the crack surfaces are sub- 
jected to a higher normal stress component  for the larger r/t values. Similar trends were 
observed for all crack shapes and sizes analyzed and, hence, the results are not shown. 

Figure 10 presents the normalized stress-intensity factors at two locations along the crack 
front as a function of  a/t for two different crack configurations. The stress-intensity factors 
at r = 0 deg and near the end of  the other axis (~ = 80 deg) are presented. The 80-deg 
location was selected to avoid the boundary-layer region. Finite-element results were 
obtained for a/t ratios o f  0.2, 0.5, and 0.8. The limiting solutions for a surface crack at a 
notch as a/t approaches zero were estimated from stress-intensity factor equations for a 
surface crack in a plate [16] and a stress concentration factor of  3.17 [25]. 

The normalized stress-intensity factors at ~ = 0 and 80 deg are shown in Fig. 11 as a 
function o f  notch size (r/t) for an a/c ratio o f  0.4. The results for the shallow crack (a/t = 
0.2) are shown as solid curves, whereas the results for a deep crack (a/t -- 0.8) are shown 
as dashed curves. These figures show that larger size notches (higher r/t ratios) tend to give 
higher normalized stress-intensity factor at both ends of  the crack. 

Concluding Remarks 

An evaluation of  the finite-element models and methods used to extract stress-intensity 
factors from finite-element solutions for surface cracks at stress concentrations was per- 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



TAN ET AL. ON CRACKS FROM STRESS CONCENTRATIONS 47 

formed. Previous finite-element models used by Raju and Newman for surface and corner 
cracks at holes were shown to have "ill-shaped" elements at the intersection of  the hole 
and crack boundaries. These ill-shaped elements tended to make the models too stiff and, 
hence, gave lower stress-intensity factors near the hole-crack intersection than models 
without these elements. The improved models employed eight-noded elements and stress- 
intensity factors were calculated by both the nodal-force and virtual crack-closure methods. 
Both methods and different models, without the ill-shaped elements, gave essentially the 
same results. 

Comparisons made between the previously developed stress-intensity factor equations 
and the results from the improved models agreed well (within 5%) for configurations with 
notch-radii-to-plate-thickness (r/t) ratios less than 2. Larger discrepancies were shown for 
an r/t ratio of  3. Here, the stress-intensity factor equations gave results that were 3 to 13% 
lower than the results from the improved models for a semielliptical surface crack at a 
semicircular edge notch. 

Stress-intensity factors for semielliptical surface cracks emanating from the center o f  a 
semicircular edge notch in a plate subjected to remote tensile loading were obtained by 
three-dimensional finite-element analyses. A wide range of  crack shapes, crack sizes, and 
notch-radius-to-plate-thickness ratios was considered. The range of  crack sizes, defined by 
crack-depth-to-plate-thickness (a/t), considered was 0.2 to 0.8. The range o f  crack shapes, 
defined by the ratio o f  crack length along the notch to the crack length away from the notch 
root (a/c), considered was 0.4 to 2. The range of  notch sizes, defined by the notch-radius- 
to-plate-thickness (r/t), considered was 1 to 3. The configuration with r/t = 3 was chosen 
because this is the configuration that was tested in an AGARD cooperative test program 
on growth of  short cracks at notches. 
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ABSTRACT: The objective of this paper is to present stress-intensity factors, K, for comer 
cracks at holes in a tabulated format which can be used to calculate K for general stress fields. 
Stress-intensity factors were obtained with the weight function method for various stress gra- 
dients and crack sizes. The paper also describes a superposition procedure to generate K for 
general stress distributions by using the data presented. This tabulated information is 
intended to expand the existing database of reference stress-intensity factors. Results were 
compared with other published solutions in order to evaluate the analysis procedure. In gen- 
eral, the difference between solutions was within 10%. 

KEY WORDS: stress-intensity factor, comer crack, weight function, stress gradients 

The computat ion of  stress-intensity factors (K) for the corner crack at the hole illustrated 
in Fig. 1 is a difficult three-dimensional  problem. The stress-intensity factor not  only 
depends on the flaw shape and size, but  also varies along the crack perimeter. In addition, 
K is a function of  the load condit ion and the resulting stress distr ibution on the x-y plane. 
When a plate with a hole is loaded in tension, the resulting unflawed stress field varies 
mainly in the direction away from the hole. In plate bending, the stress field displays sig- 
nificant gradients away from the hole and through the thickness. More complex stress dis- 
t r ibutions involve thermal  gradients and residual stresses. This paper is intended to fulfill 
the need for K solutions in the case of  specialized load conditions. 

The weight function method was used to generate stress-intensity factors for different 
crack sizes under basic stress gradients. Results for the basic gradients can be combined by 
superposition to obtain K for more complex load situations. 

Weight Function Method 

Bueckner [1] and Rice [2] have developed a technique in which information from a 
reference load case determines stress-intensity factors for an alternate load situation of  
interest. The desired K is calculated with the following weight function relation for a 
through the thickness crack of  length a 

H fo a Ou,(x,a) K = ~ ~(x)--gU-a ax ( l )  

1 Lead engineer and section chief, respectively, McDonnell Aircraft Company, St. Louis, MO 
63166. 

2 Professor and head, School of Aeronautics and Astronautics, Purdue University, West Lafayette, 
IN 47907. 
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Hole I ~  
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(a) (b) 

FIG. 1--Schematic representation of corner cracked hole. 

~ x  

where 

K, -- stress-intensity factor for the reference case, 
ur --- crack opening displacement for the reference case, 

a(x) -- unflawed stress distr ibution acting on the crack plane for the new load situation, 
x --- coordinate in the direction of  crack growth, and 

H = elastic modulus  E for plane stress; El(1 - v 2) for plane strain. 

For  three-dimensional  problems such as comer  cracks, these relations need to be mod- 
ified to consider changes in crack area, rather than length. Weight function relations were 
derived for surface flaws by Mattheck et al. [3]. Similar equations were derived for comer  
cracks at holes in Ref  4. The change in crack surface area due to growing an amount  dc or 
da is illustrated in Fig. 2 for a comer  flawed hole. For  this geometry, the surface area incre- 
ments are 

71" 

dSx = -~ a dc (2) 

dSy = ~ cda (3) 

The effective stress-intensity factors/~x and Ry associated with the x and y directions are 
defined in Ref  3 by 

H Ou~ 

H f Ou, 

(4) 

(5) 
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FIG. 2--Two-degree-of-freedom corner crack at a hole model. 

Combining Eqs 2 to 5 give 

Kx - K,,x ra  Jy=o Jx=O a(x,y) ~c  dx  dy (6) 

H 4 f a  f x~y~ ~gU, 
K'r = ~ 7r--c ~,y~o ~,~=o a(x,y) -~a dx dy (7) 

These relations represent a two-degree-of-freedom model since stress-intensity factors 
are associated with two directions, x and y. Thus, the stress-intensity factor along the crack 
front is calculated in the region near the bore of the hole and at the free surface. 

The weight functions in Eqs 6 and 7 are composed of three main parts. First, the crack 
opening displacement ur for the reference load case is required. A model was formulated 
by Mattheck et al. [3] in which a three-dimensional surface flaw is assumed to behave as 
a series of compatible through-the-thickness cracks. The crack opening displacement of 
each through-the-thickness crack is then obtained from its known K solutions as demon- 
strated by Petroski and Achenbach [5]. These models were adapted to the corner crack at 
a hole geometry of interest here. 

The second component in the weight function calculation involves defining the reference 
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52 SURFACE-CRACK GROWTH 

stress-intensity factors h',x and K,r. Cruse and Besuner [6] formulated the root-mean-square 
relations 

1 fasx K2(4, ) dI(ASx(,I,)] (8) ~ = a s ~  

&'Zry = A-~y yas K~(O) d[ASy(O) ] (9) 

The changing stress-intensity factor K,(O) is obtained from the Newman and Raju [ 7] solu- 
tions for comer cracks at holes under remote tension. In Eqs 8 and 9, &Sx and ASy are 
numerical equivalents to dSx and dSy in Eqs 2 and 3, and �9 is the parametric angle which 
defines the location of points along the crack front as defined in Fig. 1. 

The final piece of information necessary in the weight function method is the unflawed 
stress distribution a(x,y) acting perpendicular to the crack plane for the load situation of 
interest. The following section presents stress-intensity factors obtained with the weight 
function for various basic stress gradients. The section also describes how these results can 
be combined to solve for K in complex load situations. 

Stress-Intensity Factor Calculations 

Stress-intensity factors were computed with the weight function for comer cracks under 
each of the following basic stress gradients a(x,y) 

s 

s(x/R) s(y/T) 
s(x/R) 2 s(x/R)(y/T) s(y/T) 2 

s(x/R) 3 s(x/R)2(y/T) s(x/R)(y/T) 2 s ( y / T )  3 

where 

s = coefficient of each stress term, 
R = hole radius, and 
T = plate thickness. 

Stress-intensity factors due to each term s(x/R)m( y/T)" are identified as 

K~ 
~10 ~, 

K2o K|l 7Ko2 
~0 ~2, x-,2 ~03 

The factors Kin. were nondimensionalized in the form 

(lO) 

(11) 

gmn 
Mm. = (12) 

s v ~  

where a is the crack length along the hole. Factors Mm, can be used to solve for K in the 
case of  complex stress gradients. To illustrate this, consider a general stress distribution 
represented by the polynomial 
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a(x,y) = Aoo + A,o(x[R) + Ao,(y]T) + A2o(X/R) 2 
+ A,(x]R)(y]T) + AozO,[T) 2 + . . .  

(13) 

where Am, are the polynomial coefficients for the general case. Superimposing the stress- 
intensity factors XTm*, due to each polynomial term A,,,,(x/R)'(y/T) ~ results in 

K =  E K e .  (14) 

where m = 0, 1, 2, 3 and n = 0, 1, 2, 3. Each term K*, can be determined from the 
tabulated factors defined by Eq 12 and the coefficients of  Eq 13 as 

Substituting Eq 15 into Eq 14 gives 

K =  V ~ E M r n n a m n  (16) 

Factors ~r are presented in Tables 1-3 for cracks with ratios a/c = 1.1, 1.5, 2.0, and 
lengths a/T  = 0.2, 0.4, 0.6, 0.8, 1.0. Mm,~ and Mm,y correspond to Kx and Ky. Each table 
contains information for a different hole diameter to plate thickness ratios D/T; D/T  = 
1.0, 1.5, and 2.0, respectively. Factors M,~,~ and ~rm, r may be used to calculate stress-inten- 
sity factors for any load case if the unflawed hoop stress is expressed as the polynomial in 
Eq 13. This hoop stress can be determined by finite elements or some other stress analysis 
technique. 

With the procedure just mentioned, a list of  stress-intensity factors for various crack 
sizes under a complex load can be generated. This list can be used to obtain K for inter- 
mediate cracks by interpolation. In Ref  4, this interpolation procedure was used to calcu- 
late K repeatedly during crack growth calculations. 

Example Problem 

This example illustrates how the information in Tables 1-3 can be used to calculate 
stress-intensity factors for a crack under a complex load situation. Consider a comer  crack 
with dimensions a/T -- 0.4 and a/c = 1.5 emanating from a hole in a plate with a hole 
diameter to thickness ratio D/T  = 1.0. The plate has a width to diameter ratio W/D = 5 
and is subjected to pure bending. The unflawed stress distribution caused by the bending 
load was determined by finite elements and is expressed as the polynomial 

a(x,y) = a.om [2.19 -- 2.3334 (x/R) + 1.4369 (x/R) 2 
- 4.38 (y/T) + 4.6669 (x/R)(y/T) 
-- 2.8737 (x/R)2(y/T)] 

(17) 

where 

~,o, = nominal bending stress on the surface = M(T/2)/!, 
M = bending moment,  

T/2 = distance from the neutral axis to the surface, and 
I = moment  of  inertia. 
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54 SURFACE-CRACK GROWTH 

TABLE l--Nondimensional stress-intensity factors Mmm = K~,mm/S k / ~  for corner crack 
at holes (D/T = 1.0) loaded with a crack face pressure s(x/R)m(y/T) ". 

arr a/c Moo x Mooy Mlo x Mloy Mol x 

0.2 1.1 0.63169 0.71057 0.14424 0.09098 0.04952 
0.4 0.66222 0.72093 0.29986 0.18235 0.10300 
0.6 0.70407 0.75056 0.46971 0.28179 0.16251 
0.8 0.75698 0.80140 0.65893 0.39715 0.23026 
1.0 0.81952 0.87680 0.86840 0.53083 0.30798 
0.2 1.5 0.61347 0.63555 0.09738 0.05960 0.04731 
0.4 0.62768 0.64286 0.19976 0.11952 0.09650 
0.6 0.65226 0.66469 0.30835 0.18360 0.14937 
0.8 0.68552 0.70334 0.42582 0.25679 0.20762 
1.0 0.72755 0.76171 0.55508 0.34455 0.27311 
0.2 2.0 0.58577 0.56531 0.06745 0.03995 0.04468 
0.4 0.59031 0.56984 0.13617 0.07955 0.09001 
0.6 0.60394 0.58420 0.20824 0.12131 0.13754 
0.8 0.62500 0.61027 0.28493 0.16774 0.18869 
1.0 0.65300 0.64968 0.36738 0.22150 0.24486 

art alc Moly M2o x M2oy Mll x Mlly 

0.2 1.1 0.08586 0.03866 0.01705 0.01027 0.01011 
0.4 0.17484 0.15981 0.06788 0.04236 0.04060 
0.6 0.27204 0.37202 0.15644 0.09845 0.09368 
0.8 0.38350 0.68999 0.29270 0.18186 0.17423 
1.0 0.51754 1.12535 0.48892 0.29567 0.28950 
0.2 1.5 0.07899 0.01874 0.00818 0.00683 0.00679 
0.4 0.16031 0.07698 0.03269 0.02792 0.02727 
0.6 0.24797 0.17722 0.07491 0.06416 0.06259 
0.8 0.34683 0.32411 0.13909 0.11707 0.11557 
1.0 0.46300 0.52471 0.23243 0.18888 0.19093 
0.2 2.0 0.07224 0.00963 0.00413 0.00468 0.00467 
0.4 0.14608 0.03884 0.01632 0.01888 0.01862 
0.6 0.22428 0.08887 0.03717 0.04311 0.04249 
0.8 0.31034 0.16147 0.06829 0.07813 0.07772 
t.0 0.40822 0.25880 0.11231 0.12497 0.12665 

In  order  for A'x to be determined,  the factors ~r ( found in  Table  1 for D / T  = 1, a / T  = 
0.4, and  a/c  = 1.5) and  the coefficients Am, (from Eq 17) are subst i tuted into Eq 16 as 

= a,om V ' ~  [(0.62768)(2.1900) -- (0.19976)(2.3334) 

+ (0.07698)(1.4369) -- (0.09650)(4.3800) 
+ (0.02792)(4.6669) -- (0.00995)(2.8737)] 

A'x -- 0.6982 a.o~ V ' ~  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  W e d  D e c  2 3  1 8 : 4 5 : 1 1  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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m . . . .  

a/T alc Mo2 x Mo2y M3o x M3oy M21 x 

0.2 1.1 0.00542 0.01262 0.01115 0.00380 0.00254 
0.4 0.02244 0.05149 0.09177 0.03011 0,02086 
0.6 0.05280 0.11997 0.31851 0.10369 0.07206 
0.8 0.09912 0.22451 0.78435 0.25822 0.17595 
1.0 0.16466 0.37641 1.59132 0.53698 0.35384 

0.2 1.5 0.00512 0.01172 0.00392 0.00133 0.00122 
0.4 0.02086 0.04767 0.03222 0,01065 0.00995 
0.6 0.04825 0.11049 0.11079 0.03648 0.03410 
0.8 0.08902 0.20532 0.26911 0.09009 0.08239 
1.0 0.14572 0.34057 0.54306 0.18795 0.16501 

0.2 2.0 0.00480 0.01082 0.00150 0.00051 0.00062 
0,4 0.01934 0.04386 0.01210 0.00399 0.00499 
0.6 0.04423 0.10098 0.04147 0.01359 0.01703 
0.8 0.08066 0.18583 0.10023 0.03322 0.04097 
1.0 0.13040 0.30413 0.20020 0.06817 0.08143 

aft  alc M21y M12 x M12y M03 x Mo3y 

0.2 1.1 0.00175 0.00103 0.00138 0.00069 0.00201 
0.4 0.01398 0.00849 0.01113 0.00570 0.01640 
0.6 0.04809 0~2943 0.03842 0.02003 0.05726 
0.8 0.11874 0.07197 0.09480 0.04994 0.14251 
1.0 0.34485 0.14519 0.19565 0.10328 0.29764 

0.2 1.5 0.00086 0.00068 0.00093 0.00065 0.00187 
0.4 0.00689 0.00555 0,00752 0.00527 0.01524 
0.6 0.02358 0.01906 0.02586 0.01823 0.05298 
0.8 0.05777 0.04614 0,06338 0.04471 0.13102 
1.0 0.11881 0.09255 0.13002 0.09121 0.27078 

0.2 2.0 0.00045 0.00046 0.00065 0.00060 0.00174 
0.4 0.00353 0.00373 0.00518 0.00486 0.01409 
0.6 0.01202 0.01275 0.01771 0.01665 0.04865 
0.8 0.02919 0.03070 0.04305 0.04041 0.11923 
1.0 0.05919 0.06113 0.08722 0.08147 0.24334 

In  a similar manner, X'y is found by substituting factors M,..r and the coefficients Am. into 
Eq 16 

= 0 . 5 8 1 3   r.om 

I f  stress-intensity factors for a different crack are needed, another set of factors M,.,~ and 
Mm.y is obtained from Table 1 for the new crack dimensions a/T and a/c. In addition, an 
alternate load condition will result in a different set of stress gradient coefficients A.,, in Eq 
17. 
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TABLE 2--Nondimensional stress-intensity factors i m m  = Kmnuls ~/'~ f Or corner cracks 
at holes (D/T = 1.5) loaded with a crack face pressure s(x/R)m(y/T) ". 

a/T alc Moo x Mooy Mlo x Mloy MOl x 

0.2 1.1 0 .63958  0 .73112  0 .09686  0 .06244  0.05007 
0.4 0.66956 0 .74516  0 .20083  0 .12526  0.10425 
0.6 0.71578 0 .77869  0 .31576  0 .19347  0.16547 
0.8 0.77604 0 .83505  0 .44580  0 .27290  0.23644 
1.0 0.84686 0 .91731 0 .59139  0 .36817  0.31884 

0.2 1.5 0 .62475  0 .65380  0 .06569  0 .04088  0.04808 
0.4 0.63919 0 .66722  0 .13451 0 .08251 0.09826 
0.6 0.66533 0 .69361 0 .20779  0 .12697  0.15252 
0.8 0.70238 0 .73717  0 .28796  0 .17775  0.21305 
1.0 0.74955 0 .80108  0 .37716  0 .23865  0.28188 
0.2 2.0 0 .59793  0 .58013  0 .04560  0 .02733  0.04551 
0.4 0.60452 0 .59164  0 .09211 0 .05496  0.09208 
0.6 0.61927 0 .61141 0 .14087  0 .08425  0:14107 
0.8 0.64235 0 .64253  0 .19306  0 .11682  0.19414 
1.0 0.67334 0 .68706  0 .24965  0 .15449  0.25288 

arr alc Moly M2o x M2oy Mll x M11y 

0.2 1.1 0 .08780  0 .01728  0 .00781 0 .00689  0.00690 
0.4 0.17929 0 .07121 0 .03103  0 .02840  0.02770 
0.6 0.27972 0 .16619  0 .07129  0 .06628  0.06382 
0.8 0.39613 0 .30977  0 .13317  0 .12324  0.11883 
1.0 0.53743 0 .50797  0 .22249  0 .20174  0.19801 
0.2 1.5 0 .08081 0 .00841 0 .00374  0 .00460  0.00463 
0.4 0.16503 0 .03446  0 .01503  0 .01879  0.01869 
0.6 0.25621 0 .07933  0 .03442  0 .04328  0.04291 
0.8 0.35973 0 .14548  0 .06382  0 .07928  0.07928 
1.0 0.48218 0 .23643  0 .10652  0 .12857  0.13116 
0.2 2.0 0 .07378  0 .00433  0 .00188  0 .00316  0.00318 
0.4 0.15047 0 .01745  0 .00751 0 .01276  0.01277 
0.6 0.23233 0 .03991 0 .01717  0 .02916  0.02924 
0.8 0.32295 0 .07259  0 .03156  0 .05299  0.05358 
1.0 0.42660 0 .11661 0 .05188  0 .08505  0.08744 

Evaluation 

Stress-intensity factors obtained by using the tables were compared with calculations 
based on solutions by Newman and Raju [ 7] and the slice synthesis technique developed 
by Saffand Sanger [8]. Figure 3 illustrates one set of comparisons involving plates in bend- 
ing with the stress distribution represented by Eq 17. The nondimensional stress-intensity 
factors K,x/a,om ~ and F'y/a.om ~ are graphed versus crack length a / T  for an ale ratio 
of 1.5 and D / T  = 1. Although all three solutions display similar trends, there are differ- 
ences between results based on the weight function and the other solutions. 
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. . . .  m 

arr alc M02 x Mo2y M3o x M3oy M21 x 

0.2 1.1 0.00547 0.01287 0.00332 0.00116 0.00113 
0.4 0.02273 0.05261 0.02724 0.00917 0.00930 
0.6 0.05383 0.12289 0.09469 0.03141 0.03223 
0.8 0.10191 0.23104 0.23412 0.07796 0.07911 
1.0 0.17069 0.38963 0.47716 0.16195 0.16000 

0.2 1.5 0.00520 0.01196 0.00117 0.00041 0.00054 
0.4 0.02124 0.04889 0.00960 0.00326 0.00445 
0.6 0.04931 0.11370 0.03300 0.01115 0,01528 
0.8 0.09146 0.21204 0.08032 0.02745 0.03703 
1.0 0.15060 0.35325 0.16261 0.05712 0.07447 

0,2 2.0 0.00488 0.01103 0.00045 0.00015 0.00028 
0.4 0.01977 0.04502 0~0362 0.00122 0.00224 
0.6 0.04538 0.10415 0.01239 0.00418 0.00765 
0.8 0.08306 0.19247 0.02996 0.01020 0.01843 
1.0 0.13484 0.31631 0.05995 0.02090 0.03674 

afT alc M 21y M 12x M 12y M 03x M 03y 

0.2 1.1 0.00080 0.00069 0.00094 0.00070 0.00204 
0.4 0.00635 0,00570 0.00757 0.00578 0.01672 
0,6 0.02176 0.01984 0.02609 0.02044 0.05853 
0.8 0,05367 0.04884 0.06447 0.05140 0.14637 
1.0 0.11078 0.09921 0.13348 0.10717 0.30757 
0.2 1.5 0.00039 0.00046 0.00064 0.00066 0.00191 
0.4 0.00315 0.00374 0.00514 0.00536 0.01560 
0.8 0.01075 0.01287 0.01767 0.01864 0.05440 
0.8 0.02629 0.03129 0.04333 0.04598 O. 13500 
1.0 0.05404 0.06309 0.08903 0.09437 0.28026 
0.2 2.0 0.00020 0.00031 0.00044 0.00061 0.00177 
0.4 0.00161 0.00252 0.00354 0.00496 0.01443 
0.6 0.00550 0.00863 0.01214 0.01708 0.05006 
0.8 0.01336 0.02084 0.02956 0.04163 0.12318 
1.0 0.02709 0.04165 0.05998 0.08432 0.25245 

All of the solutions used to generate the curves in Fig. 3 involve approximations which 
are a primary cause of  the difference in results. The components in the weight function 
which include approximations are the crack-opening displacement model and the unflawed 
stress distribution of the load case being analyzed. In general, the difference between the 
weight function solution and the references was within 20%. There is a larger percentage 
difference in Fig. 3b for a/T greater than 0.7, but this is attributed to the lower values of 
Kr for these larger cracks. 

The data presented on the tables were also compared with results obtained by Grandt 
and Kullgren [9] using the finite-element alternating method. They determined K's for 
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TABLE 3--Nondimensional stress-intensity factors Mmm = Kmm/S k /~  for corner cracks 
at holes (D/T = 2.0) loaded with a crack face pressure s(x/R)m(y/T) ". 

an" alc Moo, Moo~ M~ox M~ov Mo~x 
0.2 1.1 0.64902 0.74954 0.07338 0.04797 0.05073 
0.4 0.68027 0.77018 0.15204 0.09683 0.10589 
0.6 0.72943 0.80972 0.23943 0.15006 0.16871 
0.8 0.79507 0.87334 0.33935 0.21233 0.24246 
1.0 0.87326 0.96481 0.45250 0.28754 0.32917 
0.2 1.5 0.63571 0.66960 0.04987 0.03136 0.04884 
0.4 0.65261 0.69042 0.10223 0.06386 0.10022 
0.6 0.68098 0.72339 0.15810 0.09884 0.15610 
0.8 0.72133 0.77397 0.21960 0.13896 0.21892 
1.0 0.77309 0.84599 0.28862 0.18726 0.29102 
0.2 2,0 0.60885 0.59300 0.03464 0.02092 0.04626 
0.4 0.61885 0.61149 0.07017 0.04249 0.09413 
0.6 0.63612 0.63784 0.10750 0.06563 0.14481 
0.8 0.66187 0.67574 0.14760 0.09155 0.20004 
1.0 0.69613 0.72763 0.19134 0.12166 0.26159 

a/T alc Moly M20 x M20y Mll x J11y 

0.2 1.1 0.08962 0.00981 0.00450 0.00521 0.00528 
0.4 0.18411 0.04033 0.01797 0.02149 0.02128 
0.6 0.28856 0.09421 0.04132 0.05028 0.04915 
0.8 0.41064 0.17611 0.07733 0.09390 0.09173 
1.0 0.56014 0.28999 0.12948 0.15454 0.15336 
0.2 1.5 0.08245 0.00478 0.00215 0.00348 0.00354 
0.4 0.16969 0.01958 0.00871 0.01427 0.01438 
0.6 0.26500 0.04510 0.02004 0.03292 0.03315 
0.8 0.37405 0.08284 0.03726 0.06049 0.06144 
1.0 0.50398 0.13499 0.06232 0.09848 0.10196 
0.2 2.0 0.07517 0.00246 0.00108 0.00239 0.00242 
0.4 0.15459 0.00994 0.00435 0.00970 0.00982 
0.6 0.24036 0.02275 0.01001 0.02224 0.02260 
0.8 0.33619 0.04142 0.01848 0.04050 0.04160 
1.0 0.44666 0.06667 0.03048 0.06521 0.06815 

~ ( x )  = s 

~(x)  = s ( x / R )  

~(x) = s ( x / R )  2 
a(x)  = s ( x / R )  3 

Figure 4 presents a comparison in the case of  a(x) = s(x/R). Stress-intensity factors were 
nondimensional ized on this figure as K x / s V ~  and K y / s V ~  where D is the hole diameter. 
The difference between the weight-function solution and Ref  9 was within 5%. Similar 
agreement was observed for other gradients a(x) = s(x /R)  m. 
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TABLE 3--Continued. 

59 

m m ~ m 

arr alc Mo2 x Mo2y M3o x M3oy M21 x 

0.2 1.1 0.00554 0.01310 0.00141 0.00050 0.00064 
0.4 0.02309 0.05386 0.01156 0.00398 0.00527 
0.6 0.05491 0.12632 0.04019 0.01363 0.01828 
0.8 0.10458 0.23856 0.09959 0.03384 0.04501 
1.0 0.17638 0.40442 0.20366 0.07037 0.09144 

0.2 1.5 0.00527 0.01218 0.00050 0.00018 0.00031 
0.4 0.02165 0.05013 0.00408 0.00142 0.00253 
0.6 0.05047 0.11716 0.01404 0.00486 0.00868 
0.8 0.09402 0.21955 0.03422 0.01199 0.02109 
1.0 0.15559 0.36755 0.06942 0.02496 0.04255 
0.2 2.0 0.00495 0.01122 0.00019 0.00007 0.00016 
0.4 0.02019 0.04613 0.00154 0.00053 0.00127 
0.6 0.04656 0.10736 0.00528 0.00182 0.00435 
0.8 0.08559 0.19949 0.01279 0.00447 0.01052 
1.0 0.13954 0.32959 0.02562 0.00918 0.02101 

a/T alc M21y M12 x M12y M03 x Mo3y 

0.2 1.1 0.00046 0.00052 0.00072 0.00070 0.00208 
0.4 0.00366 0.00431 0.00580 0.00587 0.01709 
0.6 0.01254 0.01505 0.02003 0.02086 0.06004 
0.8 0.03093 0.03724 0.04959 0.05278 0.15080 
1.0 0.06397 0.07608 0.10300 0.11082 0.31851 
0.2 1.5 0.00022 0.00035 0.00049 0.00066 0.00194 
0.4 0.00181 0.00283 0.00394 0.00546 0.01597 
0.6 0.00622 0.00979 0.01360 0.01908 0.05594 
0.8 0.01523 0.02388 0.03345 0.04729 0.13945 
1.0 0.03135 0.04836 0.06894 0.09756 0.29088 
0.2 2.0 0.00012 0.00024 0.00033 0.00062 0.00179 
0.4 0.00093 0.00191 0.00271 0.00507 0.01476 
0.6 0.00318 0.00657 0.00935 0.01752 0.05150 
0.8 0.00776 0.01593 0.02286 0.04290 0.12737 
1.0 0.01577 0.03195 0.04655 0.08729 0.26235 

An experimental evaluation of the weight function method is documented in Ref 4. 
Stress-intensity factors generated with the weight function were used successfully to predict 
corner crack growth at holes. The comparisons described in Ref. 4 involved plates under 
cyclic bending loads. 

Conclusion 

Tabulated stress-intensity factors for comer cracks at holes were generated with the 
weight function method. The crack sizes analyzed were a/T = 0.2, 0.4, 0.6, 0.8, and 1.0 
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FIG. 3--Comparison of  corner crack stress-intensity factors for a plate in bending (a/c = 
1.5). 

with shape ratios a/c = I. I, 1.5, and 2.0. Hole diameter  to plate thickness ratios D/Twere  
l ,  1.5, and 2. Solutions were obtained for basic stress gradients of  the form 

o(x,y)  = s(x/R)m( .v/T)" 

A method of  superposit ion can be used for combining the tabulated data in order to ana- 
lyze problems with more complex stress fields. There is favorable agreement between the 
results presented here and other published solutions. The tabulated results are intended to 
increase the available solutions for comer  cracks at holes under complex load conditions. 
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R) computed for various corner crack sizes. 

I 
a/c 

~ - 1 . 5 - -  

1.0  

Acknowledgments 

Portions of this research were sponsored by the U.S. Air Force Office of Scientific 
Research, Air Force Systems Command under Grant No. AFOSR-85-0106. The authors 
wish to thank Professor B. M. Hillberry of Purdue University for providing the finite-ele- 
ment software. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



62 SURFACE-CRACK GROWTH 

References 

[1] Bueckner, H. F., "A Novel Principle for the Computation of Stress-Intensity Factors," Zeitschrift 
fiir Angewandte Mathematik und Mechanik, Vol. 50, 1970, pp. 529-546. 

[2] Rice, J. R., "Some Remarks on Elastic Crack-Tip Stress Fields," International Journal of Solids 
Structures, Vol. 8, 1972, pp. 751-758. 

[3] Mattheck, C., Morawietz, P., and Munz, D., "Stress-Intensity Factors at the Surface and at the 
Deepest Point of a Semi-Elliptic Surface Crack in Plates Under Stress Gradients," International 
Journal of Fracture, Vol. 23, 1983, pp. 201-212. 

[4] Perez, R., Ray, S. K., and Grandt, A. F., Jr., "Application of a Weight Function Method to Predict 
the Fatigue Life of Comer Cracked Holes Loaded in Bending," Engineering Fracture Mechanics, 
Vol. 28, No. 3, 1987, pp. 283-291. 

[5] Petroski, H. J. and Achenbach, J. D., "Computation of the Weight Function from a Stress-lnten- 
sity Factor," Engineering Fracture Mechanics, Vol. 10, 1978, pp. 257-266. 

[6] Cruse, T. A. and Besuner, P. M., "Residual Life Prediction for Surface Cracks in Complex Struc- 
tural Details," Journal of Aircraft, Vol. 12, No. 4, 1975. 

[ 7] Newman, J. C., Jr., and Raju, I. S., "Stress-Intensity Factor Equations for Cracks in Three Dimen- 
sional Finite Bodies Subjected to Tension and Bending," NASA Technical Memorandum 85793, 
National Aeronautics and Space Administration, Washington, DC, April 1984. 

[8] Saff, C. R. and Sanger, K. B., "Part-Through Flaw Stress-Intensity Factors Developed by a Slice 
Synthesis Technique," Fracture Mechanics: Fifteenth Symposium, ASTM STP 833, R. J. Sanford, 
Ed., American Society for Testing and Materials, Philadelphia, 1984, pp. 23-43. 

[9] Grandt, A. F., Jr., and Kullgren, T. E., "Tabulated Stress-Intensity Factor Solutions for Flawed 
Fastener Holes," Engineering Fracture Mechanics, Vol. 18, No. 2, 1983, pp. 435-451. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



Li  Yingzhi ~ 

Fracture Analysis for Three-Dimensional Bodies 
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ABSTRACT: This paper deals with fracture analyses in three-dimensional bodies containing 
a surface crack. A general solution of stress-strain fields at the crack tip is proposed. Based 
on the stress-strain fields obtained, a high-order, three-dimensional special element is estab- 
lished to calculate the stress-intensity factors in a plate with surface crack. The variation of 
stress-intensity factors with geometric parameters is investigated. 

KEY WORDS: three-dimensional, surface crack, fracture, local-global analysis, eigenfunc- 
tion expansion, stress-strain field 

Since Irwin first proposed an approximate solution of  surface crack problems in 1962 
[1], various methods have been proposed to improve Irwin's solution. Many researchers 
have used the alternating method [2-9], Rice and Levy proposed the line spring model 
concept [10], Marcal used the three-dimensional finite-element method [11], and Nisitani 
and other researchers have developed the body-force method [12,13]. Many research 
results before 1972 have been collected in Ref 14. 

In 1979, Newman and Raju collected the results of  13 investigators' research work and 
published their results o f  three-dimensional finite-element analysis by using nearly 7000 
degrees of  freedom [15,18]. Their formulas have been adopted by the American Society 
for Testing and Materials (ASTM) [19]. Meanwhile, many Chinese investigators studied 
this subject and also achieved significant gains [20,21]. Folias, Benthem et al. [22-24] have 
obtained significant results by studying the singularity at the vertex of  surface crack. 

To sum up, in the past 20 years, many investigators have made great progress in this 
area. In spite of  the progress noted above, there are still many aspects which should be 
improved. As far as I know, the research on stress-strain fields along the crack tip is insuf- 
ficient. Only the first term of  stress-strain fields was found; the whole fields are elusive. 
Therefore, it is important to seek the stress-strain fields along the crack tip: it can provide 
a foundation for numerical analyses. 

In this paper, the so-called "local-global analysis" is used to deal with three-dimensional 
body fracture analyses. The strategy can be expressed as follows: 

1. Introduce a special coordinate transformation with parameters r,O,ck. In this way, the 
semi-ellipse boundary condition can be simplified as 0 = _+ ~r. 

Academic visitor, Department of Engineering Science, Oxford University, Oxford, OX 1 3P J, U.K. 
On leave from Institute of Mechanics, Chinese Academy of Sciences, Beijing, China. 
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64 SURFACE-CRACK GROWTH 

2. Establish the governing equations in curvil inear coordinates. Use the eigenexpan- 
sion method to find a set o f  eigenfunctions which satisfy the crack boundary condi- 
tion. 

3. Based on the stress strain fields at crack tip, a high-order three-dimensional special 
element is established to determine the unknown coefficients of  expansion. 

Governing Equations in Curvilinear Coordinates 

Coordinate Transformation 

Consider a half  space containing a semi-elliptical crack, with its normal in the y-direc- 
tion. It has semi-axes a and b in the x ,z  direction respectively (Fig. 1). Introduce a special 
transformation with parameters r,0,q~, the crack boundary condit ion can be specified as 0 

The new coordinate system can be established in the following way: Let axis y '  parallel 
to axis y, and the new origin o '  moves  along the crack front, Axes o 'x '  and o 'z '  are the 
normal  and tangent of  the ellipse, respectively. Denote ~ as the angle between axes o 'x '  
and ox and introduce a polar  coordinate r,O in plane x 'o 'y ' .  The relation between new and 
old coordinate systems can be expressed in the form 

x = 
acos~ 

(1 -- e2sin2~) ta + rcos0cos~ 

y = rsinO (1) 

z = 
b~sin~ 

a(1 - e2sin2~) m + rcos0sin~ 

where e 2 = (a 2 - b2)/a 2 and e denotes the centrifugal ratio ofeUipse. 
From Eq 1 the gage coefficients and Christoffel coefficients can be calculated. Hence, the 

three-dimensional  equations in curvil inear coordinate are established. 

A--A 
FIG. 1--Coordinate transformation. 
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Governing Equation in Curvilinear Coordinates 

The equil ibrium equations in curvil inear coordinates are 

O(Fr O(~rO (~r - -  (T8 

Or + - ~  + r 
+ ~ [ 04, + (~' - a.)cosO - .~sinO = 0 

Oa~o Oao 2cr,o 1 [ Oao, ] 
0---~ + ~ + ~ r  + ~ [04,  + .,0cosO + (~, -- r ] = 0 

"Or + ~ + --r + r [04, + 2(a.,cosO - ~e, sinO)] = 0 

where 

a( l  -- e2sin24,) m + rcosO 

denotes the Lame coefficient in the 4,-direction. 
The geometric equations are obtained in the form 

OUr 
Or 

OUo Ur 
e~ = r"~ + -  r 

lC~ ) 
e, = ~ \ 04, + u~cosO - uosinO 

Our Ou_ 2 _ u~ 
e,, = - ~  + Or r 

OUr 0U, Ur COSO 
er, = ~ -~  + Or r 

Ouo Ou, ~ sinO e~, = ~ + -;~ + 

The Hooke 's  law can be written as 

Ee~ = (1 + v)a, --  vO 

Eeo = (1 + v )ao-  vO 

(2) 

(3) 

Ee,  = (1 + v)** - vO (4) 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



66 SURFACE-CRACK GROWTH 

Ger~ = O'ro 

Ger~ = ~rrr 

G~;o, -'~ O'oo 

By substituting Eqs 3 and 4 into Eq 2, we can establish the governing equations 

(02Ur OU r ~)  02Ur 02Uo OU 0 
2(1 - v) ~-ff~- + rOr  + (1 - 2v) ~ + rdrO----~ - (3 - 4v) ? 0 0  

, i o uo our ou. /ou, ] + ~ LOr04> + 2(1 - v ) ~  c o s O -  -~r s i n O -  (1 - 2v) sinO \ rO0 
l [ o2u,] 

+ ~-i - (3 --  4~,)~Oq~ c o s O -  2(1 - v)(u,cosO - uosinO)cosO + (1 - 2v)~--~j 

1 3(1 -- 2v)ffe2sin~cos0 {Our ) 
r a-6 - -  ~ ( ~  - u,coso = o (5a) 

rdrdO + (3 -- 4v) ~ + (1 - 2v) \ - ~ -  + ra--~ -- + 2(1 - v) ?002 

+ ~ L rOOar + -~  cosO - 2(1 - v) \~-~-~ + sin0 - - r  cos0 + (1 - 2 v ) ~  cos0 

1 [ _.02no . ,On, ] 
+ ~5 (1 -- 2v)-~-~- + (3 -- ,+v)-~-sinO + 2(1 -- v)(u,cosO -- uosinO)sinO 

1 3(1 -- 2v)bZeZsin4~co~ {Ouo ) 

l [ ,  o uo ou, l 
O-'-F + ~ r  + ~ + ~ (1 - 2v) \Or04> + ~ + rOOJ + ~ cosO -- ~ sinO 

1 [2(l--v)O2u, 3--4yOu, 3-4vOuo 1 
- ~  cosO sinO -- u, 

1 6(1 - v)e2/~sinq~cos0 (du, ) 
- r a6  "-'-2.)(i -- ~ 5 , 2  \ o, + uxosO - uosinO = 0 (5c) 

The boundary  condi t ion  at the crack edge are 

o0 = O, o-~ = O, a0~ = 0 (6) 

T h e  E i g e n f u n c t i o n  E x p a n s i o n  

The governing Eqs 5a to 5c are partial-differential equations with variable coefficients 
which are very difficult to solve directly. Since only the stress-strain fields at crack tip are 
o f  interest, the asymptot ic  technique can be usefully introduced. That  is, when r ~ 0, 1/~ 
can be expanded in the form 
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1 1 

b ~ 
a(1 - e2sinZO) ~/2 + rcosO 

= (1 -- e2sinZq~) m 1 -- rcosO., (1 -- e2sin2q~) 3/2 + (7) 

Define the dimensionless parameters to be 

r ur uo R~ o=p,  o0=p, 
a a a a 

and introduce a new sign ,I, = (1 - e-'sinZ~) 3a, the governing equations can be expanded 
and handled readily. 

Eigenfunct ion Expans ion  

First, we expand dimensionless displacements v, re, v, in double eigenexpansion series 

or = ~ ~ o~+"a,(O,4,;X) = ~ o~[a0(0,O;X) + oa,(O,ev;X) + . . .  ] 
n 

o, - )--" ~ oX+"b,(0,~9,) -- ~ pX[bo(0,r + pb,(O,r + . . . 1  (8) 
n 

oo = E Y'. r  = + + . . .  l 
n ~, 

By substitution of  Eq 8 into the governing Eq 5a to 5c and the boundary conditions 6, the 
asymptotic governing equations and boundary conditions can be found, according to the 
terms which have the same order of  p. The eigenvalue can be found from the governing 
equations and boundary conditions of  zero order. These give 

X--  +-n  (n = 0 ,1 ,2 ,  . . )  (9) 
- 2 

From the condition of  finite strain energy, the negative value should be disregarded. There- 
fore, the double eigenexpansion series can be reduced into a single eigenexpansion series 

or = pn/2an(O,dp) uo = pn/2b,(O,~p) ur = ~ p"/u (1 O) 
n=O .=0 n=O 

If  one substitutes Eq 10 into the governing Eq 5 and the boundary Eq 6, the asymptotic 
equations can be found. From the asymptotic expression, the asymptotic solution of  v, o,, 
o, can be obtained term by term. 
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Solution of Dimensionless Displacements 

The asymptotic solution can be derived by summing up the infinite series. However, the 
first few terms usually suffice to yield satisfactory results. We find 

(a) Zero order (n -- 0) 

ao = K0cos0 + LosinO 

bo = -Kosin0 + Locos0 (11) 

c o = P o  

where K0, L0, P0 denote the translational motion along o'x' direction, o'y' direction, and 
o'z' direction, respectively. It should be noted that K0, Lo, and P0 are all functions of coor- 
dinate 4~. 

(b) First order (n = 1) 

( ~] [ 3 1 0]  
a~= K~ c o s 3 0 - ( 5 -  8v)cos + L i  s in~0- - -~ (5 - -8v)s in  

bl = --Ki sin 3 0 - ( 7 - 8 v ) s i n ~  + L l  cos-~0-- (7--8v)cos 02)  

0 
el = Qlsin 

(c) Second order (n = 2) 

a2 = Kz(I -- 2v + cos20) -- vq(P~ + Ko) 

b2 = -K2sin20 + N~ (13) 

c2 = P2cos0 - ~I, L6sin0 

(d) Third order (n = 3) 

a3 = K3 c o s ~ 0 + ( 3 - -  8v)cos + L3  s i n ~ 0 +  ( 3 -  8g)sin~ 

+ ,I~ ~K, (3 - 8v)cos~0 -- -~(13 -- 96v + 128~)cos-~ 

[ 0/ 
1 3 1 ( 1 0 7  96v 128v2)sin 2 (1 + 4v)Q~sin~ + ] ~ L l  (3--  8v)sin~0-- + -- -- 

I I ' ~ ,,,, ~3---~ ~o~0-~9-~. io + ~, ~o,~0 ~9_  ~.o,~ 

I , ,  0] + xI, - -~ K, (5 - 8v)sin -~ 0 + -~ (55 - 192v + 128v )sin 

1 3 - 1 ( 7 9  1 9 2 v  128v2)cos 2 ] 4 ( 1  2v)Qfcos 2} + -~ Li [(5 -- 8v)cos ~ 0 -- + -- -- 
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[ 2  , 3 ( 0 1 0 )  4 0 ]  c3= Q 3 s i n 3 0 + *  - ~ ( 7 - 8 v ) K ~ c o s ~ 0 + 2  K~cos~+~L~sin + Q~sin 

(e) Fourth order (n = 4) 

o. : . .  [r 4.o,0] + L [,i.,O+,l ..io,] + [ 
+ *~N2V + --a'2 ~'~0]v r,t ] sin0 + gr*/3(K6 -- Po) - - ~  e2sin25 -- * P~' 

+ ] ( l  - v ) ( 2 + v ) K 2  +,1, 2 (1 + v ) ( 2 + v ) K o -  (l--v)K'~ 

+ ~ (3 + 2v + v2)P6 cos0 

1 - 4v)sin0] L4 [cos30 - (5 4v)cosO] (15) b4 = -K4 [sin30 - ~ (5 + - 

_ _xv~ n 3 ve2sin25/~ + .  2 N2 + .I, ~ L~ cos0 - ,t,4/3(K6 - Po) ~ #sin25 

- - *  e 6 + ~ ( 1 - - v ) ( 2 - - v ) r 2  +-1-  2 (1 + v ) ( 2 - - v ) K 0 - - ~ ( 1  + v ) K ~  

+ g (3 + 2v - v2)p~ sin0 

"/3 3 c4 = PaCOS20 + (--*N~ + *2L6)sin20 + xIr ~ e2sin2$(Po + Ko) 

-- ~ * ( ~ P 2  + l - ~ P o +  + 

where( ) ' - - 0 (  )/05, and(  )" = 02( )/252 . 

With the asymptotic solution of displacements v,  vg, v,  known, the stress-strain fields at 
crack tip can be derived using Eqs 3 and 4. 

Calculation of  the Stress-Intensity Factors in Plate with a Surface Crack 

Finite-element method has found wide application in engineering. It has been proved to 
be a very powerful method. However, it is expensive to tackle three-dimensional fracture 
analysis. In this paper, three means are used to improve its ability: 

1. Based on the stress-strain fields above, a high-order special element is established. 
This not only improves the accuracy of results, but also reduces the number of 
degrees of freedom. 

2. Apart from the region connecting the special element, thick-shell isoparametric ele- 
ments are used to substitute three-dimensional elements. 

3. A condensation technique is adopted to solve the large linear algebraic equations. 
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FIG. 2--Plate containing surface crack. 

Finite-Element Mesh and Special Element 

Consider a plate with a semi-elliptical surface crack (Fig. 2); the finite-element mesh is 
shown in Fig. 3. 

The number of degrees of freedom we adopted is equal to 838 and almost equals one 
tenth of that Newman and Raju adopted. 

A series expansion of the displacements in the neighborhood of the crack is used to 
establish the stiffness matrix of a special element having the correct asymptotic behavior. 
The coefficients of expansion are used as the generalized displacement vector of the special 
element. It should be emphasized that the coefficients of expansion K0, Kt, K2, �9 �9 in Eqs 
11 to 15 are still functions of coordinate ~, and they must be discreted first. Second, the 
special element is incorporated into standard elements by satisfying the condition requir- 
ing that both the special element and the standard elements have same displacements at 
each common node. Furthermore, the stress-intensity factors can be determined directly 
from the coefficients of the special element. 

Numerical Examples 

In order to check the manipulation and validate the code, we reevaluated Newman and 
Raju's results. In Ref 17, they proposed an expression of stress-intensity factors for a plate 
containing a surface crack (Fig. 2) 

KI = ai i ~ , a , L , 4  ~ (i = 1, 2) (16) 

where F~(b/h, b/a, a/L, ~) denotes dimensionless stress-intensity factor and i = 1 denotes 
tension case, while i = 2 denotes bending case. 

The value for Fi(0.6, 0.6, 0.2, ~) is calculated and compared with that of Newman and 
Raju's (Table I and Fig. 4). In Figs. 4a and 4b, it can be seen that, at the deepest Point A, 
the error for tension is 0.37O/o and for bending 1.81%. Meanwhile, according to our results, 
the stress-intensity factors dropped dramatically near the plane surface. This means that 
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TABLE l--Dimensionless stress-intensity factors Fi = K----------L~ in plate with surface crack 

w a -~ 0.6, p 0.3 . 

73 

Tension Bending 
24~ 
~r This Paper Ref 17 This Paper Ref 17 

0.000 0.253 1.172 0.151 0.862 
0.125 1.148 1.149 0.764 0.779 
0.250 1.150 1.142 0.640 0.676 
0.375 1.159 1.160 0.570 0.587 
0.500 1.160 1.182 0.486 0. 504 
0.625 1.162 1.202 0.410 0.430 
0.750 1.178 1.218 0.364 0.370 
0.875 1.198 1.227 0.334 0.331 
1.000 1.225 1.230 0.322 0.317 

there is a boundary  layer near  the plane surface. O u r  results compare  favorably with the 
exper imenta l  data  g iven  by Ruiz  et al. [25]. 

The  var ia t ions  o f  stress-intensity factors wi th  geometr ic  parameters  are investigated.  
C o m p a r e  the results in Table  2_(Fig. 5) and the formula  for finite width correct ion given 
in R e f  17, that  is 

(17) 

it can be seen that  Eq 17 gives a reasonable  va lue  when  a / L  < 0.25 and the error  is less 
than  5%. However ,  when  a / L  > 0.25, Eq  17 gives a smal ler  value,  especially for bending 
case. It  is necessary that  ano ther  m o r e  reasonable  formula  be proposed  for finite width  

TABLE 2--Variation of  the dimensionless stress-intensity factors with plate width 

= 0 . 2 ,  -~ -- 0 . 6 ,  - = 0 . 6 ,  ~, = 0 . 3 .  
a 

a a a a a 
-- = 0.15 -- = 0.20 -- = 0.25 -- = 0.30 -- = 0.40 
L L L L L 

2~ 

r Tension Bending Tension Bending Tension Bending Tension Bending Tension Bending 

0.000 0.250 0.151 0.253 0.151 0.265 0.160 0.283 0.171 0.304 0.187 
0.125 L134 0.760 1.148 0.764 1.184 0.788 1.244 0.810 1.344 0.840 
0.250 1.136 0.620 1.150 0.640 1.188 0.662 1.240 0.682 1.324 0.740 
0.375 1.148 0.562 1.159 0.570 1.198 0.604 1.254 0.640 1.332 0.684 
0.500 1.148 0.474 1.160 0.486 1.196 0.508 1.244 0.548 1.320 0.592 
0.625 1.150 0.400 1.162 0.410 1.192 0.430 1.236 0.468 1.312 0.524 
0.750 1.152 0.356 1.178 0.364 1.192 0.386 1.248 0.428 1.322 0.483 
0.875 1.168 0.330 1.198 0.334 1.210 0.360 1.264 0.400 1.340 0.448 
1.000 1.215 0.320 1.225 0.322 1.255 0.342 1.304 0.377 1.383 0.427 
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FIG. 5--(a) Variation ofF m with plate width (tension, at Point .4), and (b) variation of 
Ft8) with plate width (bending, at Point A). 

correction. In Table 3 and Fig. 6, the variation of stress-intensity factors is shown for a 
range of value of (2O)&. It may be seen that these values decrease with increasing b/h for 
the bending case, and increase with increasing b/h for the tension case. 

Conclusion 

I. In  this paper  the so-called local-global analysis is used to deal  with three-d imensional  
f racture-mechanics  problems.  A general solut ion o f  stress-strain fields at crack tip, includ- 
ing M o d e  I, If, HI, is proposed.  

2. A special coord ina te  t ransformat ion  is proposed  to seek the general solution. This  
m e t h o d  is suitable no t  o n l y  for the semi-ell iptical  crack, but  also for arbitrary 
configuration.  

3. Based on the stress-strain fields obtained,  a high-order,  three-d imensional  special ele- 
m e n t  is established. It improves  the accuracy o f  calculat ion and reduces the n u m b e r  o f  

TABLE 3--Variation of dimensionless stress-intensity factors with plate thickness 

) = - -  = 0 . 2 ,  - = 0 . 6 ,  v = 0 . 3  . 
W a 

b b b b 
- = 0.2 - = 0.4 - = 0.6 - = 0.75 
h h h h 

2r 
�9 - Tension Bending Tension Bending Tension Bending Tension Bending 

0.000 0.215 0.153 0.241 0.153 0.253 0.161 0.264 0.148 
0.125 0.944 0.766 1.080 0.764 1.148 0.764 1.192 0.742 
0.250 0.976 0.732 1.098 0.680 1.150 0.640 1.184 0.560 
0.375 1.010 0.750 1.120 0.676 1.159 0.570 1.200 0.496 
0.500 1.036 0.756 1.130 0.632 1.160 0.486 1.192 0.396 
0.625 1.062 0.744 1.140 0.584 1.162 0.410 1.180 0.260 
0.750 1.086 0.748 1.160 0.572 1.178 0.364 1.200 0.212 
0.875 1.104 0.764 1.194 0.570 1.198 0.334 1.220 0.170 
1.000 1.130 0.792 1.212 0.568 1.225 0.322 1.243 0.128 
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76 SURFACE-CRACK GROWTH 

degree o f  freedom by a big margin. The number  of  degrees o f  freedom we adopted is only 
one tenth that  adopted by Newman and Raju. 

4. The stress-intensity factors in a finite-size plate with surface crack are calculated. Com- 
pared with Newman and Raju 's  results, the error is less than 5%. In the near-surface area, 
the results we obtained also agree with the experimental  data very well. 
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On the Semi-Elliptical Surface Crack Problem: 
Detailed Numerical Solutions for Complete 
Elastic Stress Fields 

REFERENCE: Blom, A. F. and Andersson, B., "On the Semi-Elliptical Surface Crack Prob- 
lem: Detailed Numerical Solutions for Complete Elastic Stress Fields," Surface-Crack 
Growth: Models, Experiments, and Structures, ASTM STP 1060, W. G. Reuter, J. H. Under- 
wood, and J. C. Newman, Jr., Eds., American Society for Testing and Materials, Philadel- 
phia, 1990, pp. 77-98. 

ABSTRACT: The p-version of the finite-element method together with carefully designed 
meshes is used to obtain accurate numerical solutions for complete elastic stress fields in a 
linearly elastic plate containing a semi-elliptical surface crack for two materials having a Pois- 
son's ratio of 0.3 and 0.499, respectively. A priori known convergence properties are used to 
estimate bounds for the error in the numerical solutions. The calculated displacements are 
believed to be accurate at all points located not closer than 0.001a, a being the crack size, 
from the crack front. 

It is demonstrated that pointwise values for the traditional edge stress-intensity factors KI 
are readily obtained with very high accuracy even when a very simple mesh and a modest 
computational effort are used. So-called vertex and vertex-edge intensity factors are derived 
which together with numerically determined eigenfunctions fully characterize the complete 
solution in the vicinity of the vertex where the crack front intersects with the stress-free 
surface. 

For the nearly incompressible material, the second-order vertex intensity factor strongly 
influences the solution close to the vertex. In fact, the first-order vertex intensity factor, under 
different boundary conditions, may be of negligible importance (except for extremely small 
distances from the vertex). The size of the domain where the vertex singularity strongly influ- 
ences the solution is of the order 0.02a. 

KEY WORDS: fracture mechanics, p-version finite-element method (FEM), surface crack, 
elastic stress fields, edge stress-intensity factor, vertex intensity factor, vertex-edge intensity 
factor, incompressibility, boundary layers 

The problem of determining stress-intensity factors for elliptical surface cracks in struc- 
tural members has, due to its technical importance, received considerable attention. Due 
to the complexity of the problem, numerical methods have generally been used. Displace- 
ment  and hybrid formulations of the finite-element method and the boundary element 
method are numerical  methods often employed for the purpose of determining stress- 
intensity factors. 

The accuracy in computed edge stress-intensity factors generally attainable is, at best, in 
the order of a few percent [1]. Exhaustive reviews describing computational procedures [2] 
and handbooks summarizing computed data [3,4] are available. 

1 Head, Fatigue and Fracture, and head, Computational Mechanics, respectively, Structures Depart- 
ment, The Aeronautical Research Institute of Sweden, P.O. Box 11021, S-161 11 Bromma, Sweden. 

Copyright �9 1990 by ASTM International 

77 

www.astm.org 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



78 SURFACE-CRACK GROWTH 

Despite considerable effort, the elliptical surface crack problem has not been satisfactor- 
ily solved from either a theoretical or a practical point of view. It is well known that close 
to vertices of the domain (for example, close to the point where the elliptical crack front 
intersects with the stress-free surface), the standard square-root stress singularity does not 
apply. Based on experimental data available [5,6], it is believed that the size of the domain 
where standard linear elastic fracture mechanics (LEFM) does not apply is strongly depen- 
dent on the Poisson's ratio. 

The sizes of such domains and the principal behavior of the exact solutions close to a 
vertex have not been clarified; consequently, suitable intensity factors have neither been 
defined nor computed. 

The objective of the present paper is to discuss briefly the behavior of the exact solution 
close to vertices and, further, to compute a few accurate numerical solutions for the com- 
plete elastic stress fields close to edges and vertices for the problem of a plate with a semi- 
elliptical surface crack subject to tensile loading. Linearly elastic small strain and small 
displacement conditions are assumed. 

The accuracy and reliability in computed data are questions of primary importance in 
any computation. In the present paper, the p-version of the finite-element method has been 
used to derive solutions for increasing orders of approximation p [7]. The reliability 
in computed data then, in our case, can be judged by comparing the set of solutions gen- 
erated. 

Behavior of Exact Solutions 

The plate with the symmetrically located semi-elliptical surface crack shown in Fig. 1 is 
considered. Plate properties are assumed isotropic and linearly elastic. 

A uniform tensile stress *0 is applied on the faces z = + h. According to regularity the- 
ories developed in Ref8, the exact solution to this elastomechanical problem may be found 
in the sum of smooth functions and functions which have singular derivatives at edges and 
comers of the domain. 

In the case of the Laplace equation, the properties of these functions are well character- 
ized within the framework of functional analysis. For the equations of elastomechanics, 
properties of the solution are not known in such detail. The general character of the solu- 

.______2 w 

r 

FIG. 1--Plate of  width 2W, height 2H, and thickness t with semi-elliptical surface crack. 
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tion will be assumed to have the same character as has the Laplace equation [8,9], since 
detailed mathematical proofs are lacking. 

Consider first the behavior of  the solution near the crack front but not too close to Vertex 
A (Fig. 1). 

The leading term in the expansion of  the displacements ui close to the crack front can 
then be written as [10] 

ui = Ki(x3) �9 r'/2fi(r + 0(r) (1) 

where (r, r x3) defines a curvilinear coordinate system with the x3-axis coinciding with the 
ellipitical crack front and (r, ~) being polar coordinates. The function Kt(x3) is the Mode I 
edge stress-intensity function to be determined andf,(~) are known functions. 

Consider now the behavior of  the solution on the surface of  a small spherical subdomain 
with radius p having its origin at Vertex A (Fig. 2). The solution close to Vertex A is of  the 
type 

ui = pX~wi(r O) + smoother terms (2) 

where the eigenvalue X~ > - � 8 9  (for finite strain energy) can be obtained by solving the 
eigenvalue problem discussed in Refs 11 and 12. The three edges with origin at Vertex A 
are defined by (p, 0, ~r/2), (p, 2~r, ~r/2) and (p, 4~, 0) in the spherical coordinate system (p, $, 
0). These edges are geometrical discontinuities close to which the functions wi($, 0) are less 
smooth. The strongest singularity is at the edge (p, ~, 0) (the crack front) where the stresses 
exhibit the well-known square-root singularity. 

In order for one to characterize the solution near a vertex, knowledge about h~ and the 
functions w~(4~, 0) would be needed. While the functions w,(r 0) have to be determined 
numerically, it is advantageous to split the functions w,(r 0) into their regular and non- 
regular parts. The functions w~($, 0) may then be characterized, for example for fracture- 
mechanics purposes, by a few constants. 

As an example, we consider, since an analytical solution is available, the solution of  the 
Laplace equation, Eq 3, on the spherical domain shown in Fig. 2 with boundary conditions 
u = 0 on crack faces and u = 0 on the surface y = 0. 

Au = 0 (3)  

2 

Y 

FIG. 2--Spherical subdomain with radius p having origin at Vertex A. (p, ~, O) are spher- 
ical coordinates. 
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The leading term in the analytical solution is [13] 

u = Co x .  w(~, O) (4) 

where 

w(q~, 0) -- (sin0) 1/2 cos0 sin(~/2) 

Close to the edge (0, ~, 0), that is, for small 0, the solution u exhibits a square-root sin- 
gularity (as in elastomechanics), while close to the edges (o, 0, 7r/2) and (o, 2r, ~r/2) the 
solution u is proportional to o~ ox being the distance to the edge considered [9,13]. The 
solution given by Eq 4 may then be written in its regular and nonregular parts as 2 [9] 

u = D t . # ' - v , ( r  
+ 92 - xy(oy) �9 y~, -x2 ,  o~2. re(C) 
+D3 �9 X~(px) �9 x h-x3 " 013 " v3(r 0) 

(5) 

Here px and py are distances to the x- and y-axes, respectively, x~ and xy are cut-offfunctions 
infinitely smooth and with function values 1 at the edges and 0 at a distance from the edges. 
The eigenvalues are 

X, = 3/2, X2 = 1/2, h3 = 2 (6) 

and the smooth functions v2($), v3($, 0) defining the angular behavior close to the edges 
are 

v2(r = sin (r 

v3(4~, 0) = sin 2~b 
(7) 

where sin 2~k -- sin 20 �9 sin ~/(cos20 + sin20 sin2~). 
The function v,(r 0) is identical to w(~, O) (Eq 4) except in the neighborhood of  the three 

edges. 
The advantage of  replacing Eq 4 with Eq 5 is that the singular character of  the exact 

solution is explicitly defined in Eq 5. Close to the crack front, gradients of  u are infinite 
and 

(D2 �9 yh-X2) 

is the intensity function defining the variation of  the solution u close to the crack front 
near Vertex A. 

Close to the two edges (p, 0, w/2) and (p, 2~r, 7r/2) gradients o f  u are finite since X3 = 2 
and thus of  less interest from an engineering point of  view. It is, however, interesting to 
note that the intensity function (D3 x -v2) goes to infinity close to the vertex. Obviously, 
the constant D3 being an "intensity factor of  the intensity function" could be used to char- 
acterize the solution u near Vertex A. 

2 Babugka, I., private communication, December 1987. 
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Now, returning to our elastomechanical problem, the displacements u, can also in this 
case be written 

u, = D , .  p , .  w ,  (~, 0) 
-J- D2 �9 Xy(Py) �9 Y xl-x2 " P x2 �9 w2i(~b) 
+ D3 �9 Xx(px) �9 xh-X3 . p~3 . w3t(cb, O) + higher-order terms 

(8) 

The functions wji are smooth. The eigenvalues ~,i which depend on the Poisson's ratio 
are given in the section on Determination of  Eigenvalues X,. The eigenvalue ~,3 is 1 (for all 
v-values), implying that there is no stress singularity close to the edges (p, 0, ~r/2) and (p, 
2~r, a'/2). Hence the determination of  the constants D~ and D2 close to the vertex will 
suffice. 

The p-Version of the Finite-Element Method 

In the standard version o f  the finite-clement method, the/:-version, the degree p of  the 
interpolation polynomials is fixed to a low value (normally p = 1 or p = 2). By increasing 
the number of  finite elements used, the desired solution accuracy can be obtained. In the 
p-version of  the finite-element method, a fixed mesh is used and convergence is obtained 
by increasing the degree p of  the interpolation polynomials used [ 7]. 

The finite-element program STRIPE [14], which is based on a p-version of  the finite- 
element method, has been used for the present computations. Finite-element models used 
are built up of  brick dements  and prismatic dements.  

The interpolation polynomials used are minimally conforming and correspond to 
piecewise complete polynomials of  order p together with a few monomial  terms of  degree 
higher than p. Finite-element-approximations o f  order 1 _< p ~ 15 are allowed. The order 
of  approximation p in each element may be the same (uniform p-extensions) or may be 
assigned automatically in a self-adaptive way. 

The number o f  interpolation functions in brick and prismatic finite elements are for 
uniform p-extensions given in Table 1. The number of  degrees of  freedom are three times 
the number of  interpolation functions used. 

Domains of  complex shape may be modeled with a few elements by use o f  so-called 
blended function mapping [15]. This type o f  geometrical transformations is rejected when 

TABLE l --Number o f  interpolation functions used in the STRIPE-code for different orders of  
approximation p in case of  uniform p-extensions. 

Order of 
Approximation, p 

Number of Functions 

Brick Element Prismatic Element 

1 8 6 
2 20 15 
3 32 26 
4 50 42 
5 72 64 
6 105 93 
7 144 130 
8 192 176 
9 250 232 

10 319 299 
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the h-version of the finite-element method is employed, since rigid-body rotations and 
translations cannot be exactly modeled. When blended function mapping is applied in 
combination with the p-version, this error decreases exponentially with increasing order 
or approximation p. 

So-called locking effects, a notorius problem when one uses the h-version, do not exist 
in the p-version of the finite-element method. In the case of near incompressibility, a rig- 
orous proof of this property of the p-version of the finite-element method is given in Ref 
16. 

Finally, it shoud be noted that no a priori knowledge of the behavior of the solution 
close to edges and vertices has been introduced into the finite-element interpolation func- 
tions used. 

Convergence Properties of the p-Version of the Finite-Element Method 

Questions concerning convergence properties of the discretization scheme used are of  
vital importance when one is judging the reliability of  the computed data. In Refs 9, 17, 
and 18, error bounds are given for the p-version of the finite-element method. The error e 
in elastic energy in the solution is bounded by 

Ilell~ ~ C .  p - ~  (9) 

where 

( '  ) a = min ~,l + ~ ,  X2 (10) 

It is important to note that asymptotically, the convergence properties of the finite-ele- 
ment method depend on the strength of the edge or the vertex singularity. For domains of 
isotropic material and with crack-like defects (~,2 = ~), as studied in the present research, 
it seems that the line singularity will govern the solution since ~,~ most likely is greater than 
zero. 

The constant C in Eq 9 depends on the exact solution u, the domain investigated, and 
the mesh used, but is independent of  the order of  the approximation p. 

For large values of p, the asymptotic rate of  convergence is entered and the error e is 
given approximately by 

IlellZE = C P  -z~ (11) 

The p-level for which Eq 11 approximately applies is mesh dependent. Numerical expe- 
rience from solutions of two- and three-dimensional problems in linear elasto-mechanics 
[14,18] has indicated that when fairly uniform meshes are used, the asymptotic rate of 
convergence is entered at low p-levels (p > 3). 

Optimal meshes for the p-version of the finite-element method, that is, meshes giving 
the highest accuracy for a given computational effort, should be graded near point and line 
singularities [ 14,18,19]. Grading of the elements should be such that the element sizes are 
in geometric progression (factor about 6) with the smallest elements where the stress gra- 
dients are largest. The pre-asymptotic rate of  convergence is exponential when such meshes 
are used, which leads to high accuracy for a given computational effort. 

In the section on Determination of Eigenvalues hi, the determination of the vertex eigen- 
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value ~,~ is briefly discussed. We will be interested in an estimate of the error in hi when 
solving a generalized eigenvalue problem of the type 

[ K ] x  = X,[B]x + [B12]x (12) 

where matrices [K], [B], and [Bl2] are derived using the p-version of the finite-dement 
method) 

In Ref20 it has been shown that the error Ak~ in calculated eigenvalues, when employing 
the p-version of the finite-element method, is bounded by 

I~ , t l  <- C p  -'~ (13) 

This rate of convergence is exactly twice that given by Eq 9. For large p-values, the follow- 
ing equation approximately applies 

I~,1 - -  C p  - ' ~  (14) 

Equations 11 and 14 may be used to estimate the error in the computed values, provided 
that three solutions for different orders of approximation p are available. By solving the 
set of  three nonlinear equations, we may determine the unknowns A,k,, C, and ~ where AX~ 
is the estimate for the error in the eigenvalue Xi. 

Calculation of Stress-Intensity Factors 

The technique developed in Ref 14 will be used for the calculation of pointwise values 
of the edge stress-intensity factors. This method is a generalization of the contour integral 
method [21] used for solution of two-dimensional problems in dastomechanics. 

An infinitely thin slice perpendicular to the crack front is considered (Fig. 3). By using 
the Maxwell-Betti reciprocity theorem, knowledge about the principal character of the near 
crack-tip stress distribution (equations above), and a suitable choice of an additional load 
system, one arrives at the following expression for the Mode I stress intensity factor 

r (or, E. oui  K'= f (r 'ur ' -  rrxui)dr+..,s   - r, (15) 

In Eq 15, u~ x and T~ x are displacements and tractions for an arbitrarily selected load sys- 
tem [14,21]. By substituting displacements and tractions obtained from the finite-element 
solution for ui and Ti in Eq 15, we can obtain an estimate for the true stress-intensity factor. 

The first integral on the right-hand side ofEq 15 is that obtained when using the contour 
integral method in two-dimensional elastomechanics, while the second integral considers 
the variation of field quantities along the crack front. 

The term 0 Ti/Ox3 occurring in the surface integral implies that second-order derivatives 
of the finite-element solution have to be calculated. Since the exact solution is smooth 
along a (smooth) curved crack front (for smooth load distributions) and the p-version of 
the finite-dement method converges rapidly for such cases, the error in the numerical solu- 
tion will, for higher p-levels, still be dominated by the square-root singularity. 

3 See footnote 2. 
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Crack front 

@ Boundary r 

FIG. 3--Slice perpendicular to crack front used for determination of Mode ! stress-inten- 
sity factors. 

Determination of Eigenvalues X~ 

The eigenvalues Xi used to characterize the solution close to the vertex A (X~) and the 
edges (~,2 and ~,3) may be determined from local three- and two-dimensional analyses, 
respectively. The two-dimensional  problem has been treated in Ref  22, while the three- 
dimensional  problem has been treated in Refs 11 and 12. In Table 2, eigenvalues Xi 
reported in these references are summarized.  

For  materials having a Poisson's ratio u of  0.3, there are several independent  investiga- 
tions arriving at the value 0.548 for the eigenvalue ~,l. For  the incompressible material  (v 
= 0.5), the solution Xl = 0.668 by Benthem [11] seems to be the only one available. 

The numerical  determinat ion of  the fundamental  eigenvalue h~ may be formulated as a 
s tandard eigenvalue problem of  the form given by Eq 12. 4 The finite-element program [14] 
has been modified and used to compute the eigenvalue ~ for the cases u = 0.3 and v -- 
0.499. Table 3 summarizes data  for ?~ obtained using an eight-element finite-element mesh 
and different orders o f  approximat ion p. 

Results shown in Table 3 for u = 0.3 are in good agreement with data reported in Refs 
11 and 12. For the nearly incompressible material, however, the present estimation of  ~,~ 
is larger than that given by Benthem [11]. By using a 32-element mesh, eigenvalues ~,~ were 
est imated to 0.547 and 0.681 for a Poisson's  ratio o f  0.3 and 0.499, respectively (uniform 
p = 7 was used). We conclude that the value ~,~ = 0.668 given in Ref  11 for the case ~ = 
�89 seems to be somewhat low. 

A Model Problem 

The principal character o f  the exact solution close to Vertex A has been discussed above 
and characteristic eigenvalues ~,t have been determined.  In order to quantify explicitly the 
influence o f  the vertex singularity on the overall solution, we have singled out a model  
problem for investigation. 

As the model  problem, the domain  ( - h  < x < h, 0 < y < 2h, - h  < z < h) shown in 
Fig. 4 is considered. Uniform traction loading Tz -- a0 and Tz = -~0  on the faces z = h 
and z = - h ,  respectively, is used. Two isotropic materials with modulus of  elasticity E 
and Poisson's  ratios of  0.3 and 0.499 are considered, respectively. The finite-element mesh 
used is graded towards the crack front and the point  where the crack front intersects with 
the stress-free surface [23]. The mesh has 14 elements in four layers along the y-axes (in 

4 See footnote 2. 
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TABLE 2--Eigenvalues ~ characterizing solution close to Vertex A. 

85 

Poisson ' s  Rat io  

0 0.3 0.5 

Xt 0.5 0.548 0.668 
~2 0.5 0.5 0.5 
~3 1.0 1.0 1.0 

2 h  

J 

f f  

,,~Z ^ 

J X 
J 

J 

2 h  
2 h  

FIG.  4--Cube-shaped domain with symmetrically located crack. 

TABLE 3--Computed etgenvalues Xt using different orders of  approximation p and an eight-element 
mesh. Error estimate Ah] is computed from Eq 14. 

u = 0.3 J, -- 0.499 

P ~'l hi + Z~l hi  hi ''[- H I  

4 0 . 5 8 0  . . . 0.768 . .  �9 
5 0.570 0.716 
6 0.565 0~549 0.701 0~690 
7 0.561 0.544 0.695 0.688 
8 0.558 0.546 0.689 0.679 
9 0.556 0.547 . . . . . .  

10 0.555 0.547 . . . . . .  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  W e d  D e c  2 3  1 8 : 4 5 : 1 1  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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all 56 elements). The four layers are at sections y = 0.003375 h, y = 0.0225 h, y --- 0.15 
h and y -- h, respectively (due to symmetry, only one quarter of  the domain needs to be 
modeled in the analysis). The grading towards Vertex A thus is about 6. This grading is 
used towards the crack-tip in the xz-planes, too. Solutions have been derived for p = 2 to 
p = 8 using uniform p-extensions. The largest finite-element model has about 15 000 deg 
of  freedom. 

In Fig. 5, the z-displacements u3/x/pp at the crack face (4~ = 0) are plotted in a ~~ - 
~~ scale, for the case p = 0.499, as function of  the distance p to Vertex A for different 
angles O. For small values o f  the radius p, where the exact solution is well approximated 
by the leading term in the expansion of  ui (F_x] 2), a straight line with slope (X~ - ~) should 
be obtained. The set of  curves shown in Fig. 5 are nearly parallel and straight lines in the 
range 0 < p/h < 0.15 with slopes 0.177 + 0.001 (at least for O > 10 deg). The numerical 
results shown in Fig. 5 are in agreement with the assumption that the leading term of  the 
exact solution is that given by Eq 2. The value k~ = 0.677 _+ 0.001 obtained from the Fig. 
5 differs only slightly from the value k~ --- 0.679 given in Table 3. In the following, the 
value h~ = 0.677 will be used when evaluating data obtained from the analyses of  the 
surface crack problem. 

i 
. /  B = 60 o 

7 g = 90 o , / /  
\~.. ,~__/// f .  O = q5 o 

, o. , ,o \ .  > . / /  
y ; / /  .." o=3o ~ 

oo<,,: , S ? ) ' /  . . . '" ~176 

. . # ' . /  / / / I  / 
i / i "  / 10,177 / 

$ - . / / . . /  i I / - -  / ,  o : I o  ~ 
/ "  / i ~ I i i I l i  
/ 1 1,0 / .// /1 / 

. /  / / "  
/ / / ///./I 

p / h  = 0.15 

./" / 

1 I I I ,_ 

0.001 0,01 0,i 1,0 

p/h 

FIG. 5--Calculated z-displacement u3 at crack face for cube-shaped domain with edge 
crack having linear elastic material properties with modulus E and with Poisson's ratio 0.499. 
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E(u3/h)  

Oo.(p/h) ~ 

~ I  = 

i0  

9 

8 

7 
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i 

- / o / /  
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- 8  = 90 ~ 
. . . . .  -.----':'.~'~"-'O : 750 
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- -  O = 300 
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FIG. 6--Calculated z-displacement obtained using 56-element mesh and uniform p-dis- 
tribution p = 8for nearly incompressible material with u = 0.499. 

Note that no assumption whatsoever about the behavior of the solution close to Vertex 
A and the crack front has been made in the finite-element analyses. 

The reliability in computed data has been judged to be good by comparing different 
solutions of different orders of approximation p [23]. Results in Figs. 5 and 6 indicate that 
the numerical solution available is accurate over a length scale covering almost three 
orders of magnitude. 

The size of the domain where the vertex singularity governs the solution, and where 
standard LEFM does not apply, is of special interest. The size of this domain will in the 
present paper be estimated from graphs showing half the crack-opening displacement u3 
versus a function of the distance to the vertex. By a proper choice of this function, a set o f  
straight lines will be obtained in the p-interval where the leading term ofEq 2 well approx- 
imates the displacements. The size of the domain of interest will be determined visually 
by inspection of the graphs included in the present paper. A slight deviation from a straight 
line will be interpreted as if the leading term of Eq 2 no longer well approximates the 
displacements. 

Figure 6 clearly shows that this domain is relatively large (0 < p/h < 0.15) for this load 
case and the nearly incompressible material considered. In case of materials having v = 
0.3, however, this domain is considerably smaller, as indicated in Figs. 7 and 8. In fact, 
the size of the domain, which is of the order p/h < 0.03, is so small that the numerical 
accuracy is not completely satisfactory even with the finite-element model having about 
15 000 deg of freedom. 

The eigenvalue X~ can from Fig. 7 be estimated to 0.560-0.565, which differs consider- 
ably from the value 0.548 [11,12] given in Table 2. 
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plh = 0.03 

l 0 = 90 ~ Q~ 
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FIG. 7--Computed z-displacement on crack surface for cube-shaped domain with edge 
crack for material with v -- 0.3. 

The variation of the stress-intensity factor along the crack front has been calculated using 
the technique described in the previous section. Table 4 summarizes the data obtained. 
For the case ofv = 0.3, the calculated stress-intensity factors exhibit a satisfactory conver- 
gence with increasing order of  approximation p. For the nearly incompressible material 
the convergence is poorer. The reason for this behavior is that a special technique is needed 
to extract accurate values for the normal stresses (but not the shear stresses, the deviatoric 
stresses, or the displacements) in the case of nearly incompressible material properties. 
This technique has not been used in the present analyses. 

In Eq 8, the constant D2 was used to characterize the solution close to the crack front 
near Vertex A. We now define the vertex-edge intensity factor Se for the edge (p, 4~, 0) as 

lira 1(1(y/h) (16) 
Se = y---,O ( y/h)X,-x2 

where ~ = 0.548 and 0.677 for v = 0.3 and 0.499, respectively, and ~,2 = ~. 
Figure 9 shows the variation of the stress-intensity factor close to Vertex A for the two 

materials considered. The vertex-edge intensity factor, Se/(Oo V ~ ) ,  can from this figure 
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FIG. 8--Computed z-displacements on crack surface plotted as function of  distance p to 
Vertex A for case u --- 0.30. 

TABLE 4--Calculated stress-intensity factors Kl(y/h)/(a0 k/-h) for two materials and different orders 
of approximation p. 

Coordinates, y/ h 

p 1.7 • 10 -3 11.2 • 10 -3 86.3 X 10 -3 0.575 1.0 

PO]SSON'S RATIO 0.3 
2 3.54 3.87 4.29 4.75 4.74 
3 3.83 4.30 4.81 5.35 5.36 
4 3.89 4.32 4.82 5.35 5.44 
5 3.98 4.47 4.99 5.54 5.60 
6 4.00 4.47 4.99 5.54 5.60 
7 4.03 4.48 5.02 5.57 5.63 
8 4.03 4.48 5.02 5.57 5.63 

Po~sso~'s RATIO 0.499 
2 0.37 --1.27 --6.39 --13.72 --16.85 
3 --0.74 0.60 5.80 0.96 1.44 
4 2.25 2.63 1.63 --0.39 2.88 
5 1.71 3.66 3.71 4.14 3.93 
6 2.35 3.37 3.17 4.10 4.73 
7 2.22 3.51 4.38 5.62 5.56 
8 2.39 3.36 4.36 5.50 5.78 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



90 

m 

v= 0/,99 
_..._., �9 ~ ~  ~, ~ - - ,  ~ ' " ' %  �9 

' % " / ~ . ~ o I  . . . . .  

~ v=0.3 

o I r I 
o,OOl O.Ol o.1 1,o 

( y / h )  

FIG,. 9--Calculated stress-intensity factor K~ as function of distance y to Vertex A. Finite- 
element solution is obtained using uniform p-distribution p = 8. 

be estimated to 3.1 and 4.1 units for p = 0.3 and 0.499, respectively. The stress-intensity 
factors obtained for u = 0.499 are less accurate of  reasons discussed above. For the case p 
= 0.3, however, the results seem reliable. For this case the edge stress-intensity factor KI(y/ 
h) close to Vertex A is approximately given by 

KI(y/h) = 3.1 V r ~  ( y / h )  x'-x2, y /h  < O. 1 (17) 

with X~ = 0.548 and X2 = �89 

The Semi-Elliptical Surface Crack Model 

The domain shown in Fig. 1 with a/b = 2, h /w  = 2, t/b = 4, and w/a = 4 is considered. 
Due to symmetry, only one quarter of  the plate needs to be analyzed. Two finite-element 
meshes have been used to study this problem. The first mesh, shown in Fig. 10a, has 80 
elements and is graded close to the vertex where the crack front intersects with the stress- 
free surface. Solutions obtained with this mesh give accurate information about the solu- 
tion close to the vertex. 

A second mesh having 22 elements (Fig. 10b) is used to demonstrate the simplicity of  
mesh design and the accuracy obtainable by employing the p-version of  the finite-element 
method in a practical situation. 

The two meshes have three cylindrical layers of  elements located at distances of  about 
0.003a, O.02a, and 0.10a, respectively, from the crack front. Thus, elements located at the 
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FIG. lO--Finite-element models for analysis of plate with semi-elliptical surface crack: (a) 
80-element mesh; (b) 22-element mesh. 

crack front in the two meshes have aspect ratios of the order 1000, which is perfectly 
acceptable with the p-version of the finite-element method. 

For the coarse mesh, only one element edge is used to model the entire crack-front! So- 
called blended function mapping [15] is used to model the elliptical shape of the crack 
front exactly. 

Edge stress-intensity factors have been computed along the elliptical crack front from Eq 
15. The section (Fig. 3) used when evaluating the line and surface integral is perfectly per- 
pendicular to the crack front and of size 0.02a by 0.01a. 

Calculated stress-intensity factors are presented in form of engineering magnification 
factors M($), defined for a/b = 2 as 

1 . 2 1 1  
M(ff) -- - -  K,(~b) (18) 

ao V ' ~  

where ff is the so-called elliptical angle [24]. Table 5 summarizes data obtained using the 
two meshes for different orders of approximation p = 2, 3 , . . .7 .  

In Fig. 11, data from Table 5b are compared with a "best estimate" of the stress-intensity 
variation along the flaw border [24]. The bands shown above and below the curve give an 
estimate of the uncertainty which was believed in Ref 24 to be about 3%. 

Calculated stress-intensity factors obtained for p = 7 with the 22-element mesh and the 
80-element mesh are in close agreement in the interval 0 deg < ff < 75 deg. Close to the 
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TABLE 5a--Calculated magnification factor M(~k) obtained with 80-element mesh for Poisson's ratio 
0.499. 

Elliptical Angle if, degrees 

p 0.0 9.6 19.1 28.7 38.3 47.8 57.4 66.9 76.5 80.8 85.1 88.6 

2 0.84 --1.37 --1.55 --0.82 --0.08 0.09 --0.39 --0.83 --0.26 --0.50 0.73 1.13 
3 2.03 1.89 2.05 2.09 2.02 1.98 2.09 2.29 --0.04 2.18 2.24 1.36 
4 2.61 0.87 0.84 1.06 1.06 0.89 0.84 1.05 0.33 0.58 0.77 0.79 
5 2.06 1.64 1.54 1.46 1.42 1.49 1.60 1.52 1.22 1.19 1.24 0.97 
6 1.28 1.08 0.99 0.98 0.99 0.99 0.98 0.85 0.92 0.73 0.72 0.73 
7 1.36 1.35 1.33 1.27 1.19 1.19 1.18 1.08 1.03 0.99 0.96 0.88 

TABLE 5b---Calculated magnification factor M(r obtained with 80-element mesh for Poisson's ratio 
0.3. 

Elliptical Angle if, degrees 

p 0.0 9.6 19.1 28.7 38.3 47.8 57.4 66.9 76.5 80.8 85.1 88.6 

2 0.93 0.87 0.85 0.85 0.84 0.83 0.79 0.75 0.74 0.75 0.75 0.76 
3 1.08 1.05 1.04 1.02 0.99 0.95 0.91 0.87 0.86 0.87 0.88 0.89 
4 1.08 1.05 1.03 1.01 0.98 0.94 0.90 0.87 0.84 0.85 0.86 0.87 
5 1.12 1.10 1.08 1.06 1.03 0.99 0.94 0.90 0.87 0.88 0.89 0.90 
6 1.11 1.10 1.08 1.06 1.02 0.98 0.94 0.90 0.88 0.87 0.88 0.90 
7 1.12 1.11 1.09 1.07 1.03 0.99 0.95 0.91 0.88 0.88 0.89 0.91 

TABLE 5c--Calculated magnification factor Milk) obtained with 22-element mesh for Poisson's ratio 
0.3. 

Elliptical Angle if, degrees 

p 0.0 9.0 18.0 27.0 36.0 49.5 58.5 67.5 76.5 81.0 85.5 90.0 

2 0.99 0.86 0.80 0.77 0.77 0.77 0.78 0.77 0.76 0.76 0.76 0.78 
3 1.10 1.06 1.03 0.99 0.96 0.91 0.89 0.88 0.89 0.91 0.93 0.98 
4 1.12 1.05 1.02 1.00 0.98 0.93 0.89 0.86 0.86 0.87 0.89 0.92 
5 1.13 1.10 1.07 1.05 1.03 0.98 0.94 0.90 0.88 0.89 0.90 0.93 
6 1.12 1.10 1.08 1.06 1.03 0.98 0.94 0.89 0.88 0.89 0.91 0.93 
7 1.12 1.11 1.09 1.07 1.04 0.99 0.95 0.91 0.88 0.89 0.91 0.93 

vertex, however, only the 80-element mesh give reliable results. Both solutions are in close 
agreement with data reported in Re f  24. 

For a Poisson's ratio of  0.3, the calculated edge intensity factors converge rapidly with 
increasing p-levels, leading to virtually identical results for p > 4. For the case of  the nearly 
incompressible material, however, the convergence behavior is less good. By using a dif- 
ferent technique for computing edge intensity factors, one can avoid the problem of  the 
low quality of  the normal stresses in case of  incompressibility? Such a technique 6 is cur- 
rently being implemented in the finite-element system described in Ref  14. 

See footnote 2. 
6 See footnote 2. 
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FIG. I l - -Calculated magnification factor M for p = 7 and u = 0.3. 

We next consider the behavior  of  the solution close to Vertex A (Fig. l). 
In order to characterize the solution over what may be a microstructurally significant 

distance from Vertex A (Fig. 1), we found it necessary to consider not only the leading 
term in the expansion of  u~. I f  the two leading terms are considered, and the crack front is 
straight, the displacements ui may be written [9] 

bo- o 
ui = - -~  (S(')(p/b)X(t~) w~)(4,, O) + S(2)(p/b)X(~) w~2)(r 0)) + smoother terms (19) 

The function WI 2) has the same characteristics as has w~ ~) (see the section on Behavior of  
Exact Solutions). The eigenvalues X? ) have been est imated by solving Eq 12, to 1.218 and 
1.000 for v = 0.3 and v = 0.499, respectively. There are (independently of  v) two addit ional 
eigenvalues X?) = 1 and X~4) = 1 corresponding to a rigid body rotation around the z-axis 
and a uniform stress ax = constant, respectively. The corresponding two eigenfunctions 
do not contribute to the z-displacement used here to estimate the size of  the domain  of  
interest. Consequently, these two functions have not been specifically defined in Eq 19. 

We are not aware o f  any theoretical justification that the expansion given by Eq 19 
should apply also for the curved crack front studied in the present paper. While mathe- 
matical proofs are lacking, we will assume that Eq 19 applies also to a curved crack front 
for distances p from the vertex which are small compared to the radius of  curvature of  the 
crack front. For  the cases studied, the results given below support this hypothesis. 

By plotting 

u3/pX(l ~ versus pr 

one expects a straight line in the o-interval where the z-displacement is well approximated 
by the first two  terms in the expansion of  u3. Figure 12 shows such a plot for the surface 
crack problem in case of  the material  withw = 0.3. The set of  curves corresponding to 
different angles 0 are straight lines in the region p/b  < 0.08, at least for 0 >_ 30 deg, indi- 
cating that the solution close to the vertex could be well approximated by the two leading 
terms in the expansion of  u~. 
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FIG. 12--Calculated z-displacements obtained using 80-element mesh and uniform p-dis- 
tribution p = 7for v = 0.30. 

The vertex-edge intensity factor SEao ~ has been determined graphically from F-Xl 16, 
using h = b, to 0.95 units. The edge stress-intensity factor K, is then (for ~ = 0.3) close to 
Vertex A approximately given by 

/<i(y) = 0.95 ao V ' ~  (y /b)  ~-~2 for y /b  < 0.01 (20) 

with ~,~ and ~2 as in Eq 17. 
For  the nearly incompressible material, the domain where the solution u~ is well approx- 

imated by the leading term in Eq 19 is extremely small (Fig. 13). This result seems to 
contradict those obtained in the model study described in the previous section, where it 
was found that the higher the Poisson's ratio, the larger is this domain. 

The reason for this apparent contradiction is that the size of  this domain is very strongly 
dependent on the boundary conditions. This conclusion has been arrived at by applying 
different simple load systems on the structure shown in Fig. 4. For example, by applying a 
linearly varying traction force Tx = (2z - h) ~o/h and Tx = - ( 2 z  - h) ~o/h on the faces 
x = - h  and z > 0 and z < 0, respectively, one will find that the leading term of  Eq 19 
approximates the solution ui well only in a spherical domain with radius p less than 0.1 X 
10 -3 h! I f  we apply the simple tensile loading discussed in the previous section, the size of  
this domain is about 0.15 h. 

Our assumption that Eq 19 should apply also for a curved crack front is tentative 
because the influence of  the crack front curvature on higher-order terms in the expansion 
of  u3 near the vertex is not theoretically known. The numerical data shown in Fig. 13, 
however, c/early indicate that for 0 >_ 30 and p < 0.03 the curves are straight lines. For 
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FIG. 13--Calculated z-displacements obtained using 80-element mesh and uniform p - 
distribution p = 7 for  nearly incompressible material with u = 0.499. For p/b < 0.01, 
solutions are obtained with 30-element mesh with uniform p = 9. Dashed lines are extrap- 
olated values�9 

angles 0 < 30 deg and p < 0.01, rays 0 = constant are located very close to the curved 
crack front leading to errors of  unknown magnitude. In order for us to verify the reliability 
of  the computed  data, a box-shaped domain  1.85 _< x / b  <_ 2.15, 0. <-- y /b  <-- 0.15, and 0 
<_ z / b  _< 0.15 was studied with a 30-element mesh, using displacement boundary condi- 
t ions from the solution for p -- 7 obtained with the 80-element mesh (Fig. 10a). 

The solution for uniform p --- 9 (each finite element has 250 nodes) was, for 0.01 < p/  
b < 0.15 and 90 deg >--- 0 _> 15 deg, found to be indistinguishable from that shown in Fig. 
13. For  p /b  < 0.01, the results obtained support  the hypothesis that  the solution u, is well 
approximated by the two leading terms in the expansion of  u. 

By extrapolating the straight lines to p = 0 (Fig. 13), we obtain an estimate for S~)w(31)(0, 
0) (compare Eq 19). Since the function w(31)(0, 0) is available, we can estimate the constant 
S it) [the constant S (2) can be est imated from the slopes of  the straight lines with known 
values of  w~2~(0, 0)]. The eigenfunction wgt)(r 0) is obtained, except from an arbitrary con- 
stant, from Eq 12. We select this constant such that 

w~') (0, ~/2) = l (21) 
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TABLE 6--Estimated value of  parameter S(f) from Fig. 13 for semi-elliptical surface flaw problem for 
the case ~ = 0.499. 

Angle O, deg w~ l) (0, 0) Estimated Value for S ~ 

90 1.000 3.89 
75 0.982 3.90 
60 0.926 3.91 
45 0.828 3.91 
30 0.685 3.96 

The estimated value for S ") obtained in this way should be independent of  the curve (that 
is 0-angle) used in Fig. 13, provided that our numerical solution is accurate and that the 
near-vertex solution is well approximated by the two terms on the right-hand side of  Eq 
19. Data given in Table 6 show that the estimated value o f S  (~ indeed with good approx- 
imation is independent of  the 0-angle used in Fig. 13 for estimation of  S "), The values for 
the eigenfunction w~~162 0) have been determined from Eqs 12 and 21 using an eight-ele- 
ment mesh and uniform p -- 8. 

For the model problem studied in the previous section, the parameter S (l) can be esti- 
mated to 9.5 units using data from Fig. 6. Also in this case, the value for S ~ is virtually 
independent of  the 0-angle used for the estimation of  S (t). 

To this end, the results shown in Figs. 12 and 13 appear to be accurate and reliable and 
consistent with the assumption that the near-vertex solution is well approximated by the 
two first terms on the right-hand side o f  Eq 19 in case o f  the semi-elliptical surface crack 
problem. 

Concluding Remarks 

The objective of  the present paper is twofold. The first objective is to demonstrate the 
simplicity, reliability, efficiency, and accuracy obtainable when the p-version of  the finite- 
element method is employed to solve three-dimensional fracture-mechanics problems. 

1. The simplicity o f  mesh design is exemplified in Fig. 10b. In fact the total time needed 
to manually prepare the mesh, boundary condition data, etc., was only 2 h. 

7. The reliability in computed data can be judged from the sequence of  solutions 
obtained. Since there are no locking effects, nearly incompressible materials may be 
analyzed. Some care has to be taken when evaluating stress-intensity factors for the 
nearly incompressible material. 7 This was, as discussed previously, not done in the 
present study. 

3. The p-version is very economic if both computer costs and costs for input data prep- 
aration are considered. For example, the six solutions given in Table 5c needed only 
five CPU-hours on an Apollo 4000 work station. The three solutions for p = 5, 6, 
and 7 are virtually the same and have been derived only in order to demonstrate the 
reliability in computed data. In a practical situation, only the solution for p = 5 
would be needed. Such a computation requires only one CPU-hour on an Apollo 
4000 work station. 

4. A very high accuracy is obtainable in practical situations when the p-version of  the 
finite-element method is employed in combination with a properly graded mesh. For 

7 See footnote 2. 
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the problems studied here, it seems as if it has been possible to obtain accurate solu- 
tions over a length scale covering almost three orders of magnitude. 

The second objective is to give detailed numerical solutions for the complete elastic 
stress fields for the semi-elliptical surface crack problem, Our interest is focused on the 
behavior of the solution close to the crack front. As in standard LEFM, we have tried to 
characterize the solution in terms of stress-intensity factors. The calculated values of the 
edge stress-intensity factor K~, not too close to Vertex A, were found to be in good agree- 
ment with benchmark data reported in the literature [24]. The set of solutions obtained 
with the two meshes and the different orders of approximation p (for p > 4) verifies the 
data given in Ref 24. 

Close to Vertex A, the edge stress-intensity factor K~ does not characterize the solution. 
The size of the domain where standard fracture mechanics methodology is not applicable 
is of course of greatest interest. In the present paper we have used simple graphical meth- 
ods to visualize the behavior of the solution close to Vertex A and, further, to estimate the 
size of the domain where the vertex singularity dominates the solution. 

For a material with a Poisson's ratio of 0.3, our results indicates that the displacements 
at Vertex A are well approximated by an expression of the type 

b*0 So ) M'} 0) u~ = ~ (o/b) xCp (r (22) 

only in a very small region p/b < 0.01 (Fig. 12). The value for X~ obtained in this study for 
u --- 0.3 is in good agreement with that given in Ref 11. A vertex-edge intensity factor SE 
used to characterize the edge intensity factor close to Vertex A has been defined and its 
value was estimated. 

Another intensity parameter S characterizing the general behavior of the solution at the 
vertex (Eq 20) was estimated from Fig. 13 for the nearly incompressible material. General 
methods for extraction of vertex S, vertex-edge SE, and edge K~ intensity factors are cur- 
rently being implemented in the STRIPE-code [ 14]. This project is part of a joint project 
with Professor Ivo Babu~ka at the University of Maryland. 

For the nearly incompressible material the situation is more complex. We have found 
that for certain simple load systems the domain where the leading term of the vertex sin- 
gularity governs the solution is very large (for example, p/h < 0.15 for the model problem 
studied in the previous section), while for other equally simple load systems this domain 
seems to be extremely small. 

For the semi-elliptical surface crack problem, the size of this domain is very small as 
compared to the crack size. This is not to say that the influence of the vertex is confined 
to a vanishingly small region. Instead, the first and second vertex eigenfunctions seem to 
characterize the solution well over a distance of the order 0.03b from the vertex. 

The experimental data reported in Refs 5 and 6 indicate that for nearly incompressible 
materials, the vertex singularity strongly influences the overall solution. This is in agree- 
ment with our findings. An important addition, however, is that the leading term of the 
expansion might--depending on boundary conditions--be of negligible importance for the 
overall behavior of the solution close to the vertex (but not very close to the vertex). 

From a fracture mechanics point of view, the highly stressed region may be confined to 
a volume so small that in many cases it might be smaller than microstructurally charac- 
teristic lengths (the second eigenfunction discussed above corresponds to an almost uni- 
form stress distribution, since X? ) = 1.000). The establishment of a mechanistic design 
philosophy applicable for crack initiation and crack growth close to a vertex in incom- 
pressible materials may thus turn out to be difficult. 
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ABSTRACT: After briefly reviewing the algorithms used to convert experimental data into 
fracture parameters, experimental results are presented from experimental studies conducted 
on both compact bending specimens containing mutually grown "thumbnailed" cracks 
through the thickness and naturally grown surface flaws in wide plates. Results are compared 
with analytical results and are used to explain certain phenomena observed with both thumb- 
nailing of cracks in compact bending specimen and in the analyzing of surface flaws. 

KEY WORDS: fracture mechanics, optical stress analysis, crack border-free surface intersec- 
tion effects, experimental stress-intensity factors, dominant eigenvalues 

It has been established, both analytically [1,2] and experimentally [3,4], that, when 
cracks intersect free surfaces at right angles, the inverse square-root stress singularity is lost 
and that this effect is most  significant in nearly incompressible materials. Using compact  2 
bending experiments,  the first author and his colleagues have validated two optical meth- 
ods, frozen stress photoelasticity, and high-density moir6 interferometry for measuring the 
order of  the dominant  singularity near the free surface in nearly incompressible materials 
[5]. When applied to straight through cracks in polyurethane, moir6 interferometric mea- 
surements suggest a strong effect at the free surface accompanied by a severe constriction 
o f  the zone controlled by the dominant  singularity [6]. However, when data are averaged 
through the plate thickness photoelastically, the linear-elastic fracture-mechanics result is 
recovered. Moreover,  when applied to surface flaws, although reasonable values of  the sin- 
gularity order are obtained photoelastically, efforts to introduce a "corresponding" stress- 
intensity factor appear  to yield ultraconservative results [ 7]. 

This paper  at tempts to present an overview of  results of  experimental  studies to date as 
well as new studies conducted on both compact  bending specimens containing naturally 
extended " thumbnai led"  cracks through the thickness and naturally grown surface flaws 
in wide plates. Also, where appropriate,  results will be compared with analytical results 
and will be used to suggest explanations for certain phenomena observed with both thumb- 
nailing o f  cracks in compact  bending specimens and in the analyzing of  surface flaws. 

I Alumni professor, graduate research assistant, and graduate research assistant, respectively, 
Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State Univer- 
sity, Blacksburg, VA 24061. 

2 The word "compact" refers to a single edge cracked specimen thick enough to induce plane strain 
in a compact specimen. 
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Prior Studies 

Prior experimental studies have dealt almost exclusively with crack fronts which inter- 
sected free surfaces at right angles. Most experiments were conducted on either "artificial" 
straight front cracks in compact bending specimens under four-point loading [8-11] or 
naturally grown surface flaws in large fiat plates of finite thickness [5,11]. In both cases, 
the crack border-free surface intersection angle was always 90 deg. The methods of analysis 
employed, frozen stress and moir6 interferometry, yield measurements of the maximum 
in-plane shearing stress, and the in-plane displacement field, respectively. The methods 
themselves are well established, but when employed to obtain near tip data for fracture 
parameter evaluation, they require some refinements in order to achieve good results. 
These experimental details are briefly described in the Appendix. 

Once the measurements are made, it is necessary to develop algorithms for converting 
the measurements into fracture parameters. For the right-angle intersection studies, Ben- 
them [2] has provided variables separable eigenfunction series expansions for both the 
stresses and displacements near the crack front-free surface intersection point in the free 
surface. This solution, together with algorithms developed for linear-elastic fracture 
mechanics (LEFM) analysis were used as guides in developing the algorithms for use near 
the free surface. The LEFM algorithms are used in the interior of the body where the lowest 
eigenvalue, or order of the stress singularity, X~ = K. Near the free surface where X, changes, 
a "variable eigenvatue" algorithm is used. Since these same algorithms will be employed 
in the present study, they will be briefly reviewed before proceeding further. 

Analytical Considerations 

LEFM Algorithms 

By choosing a data zone sufficiently close to the crack tip that a Taylor Series Expansion 
of the nonsingular stresses can be truncated to the leading terms, one may write, for a 
straight front crack [12] (Fig. 1 where t direction is constant) 

K, , o .~(o), 
~ = (27rr),/2fj() - 

i j  = 1,2 (1) 

where 

% = stress components in the x,x2 plane normal to the crack border, 
KI = Mode I stress-intensity factor, and 

r, 0 = polar coordinates with origin at the crack tip. 

Along 0 = 7r/2, the stress fringes spread under Mode I load (Fig. 2) and one has, for the 
case where (a0)2 is small relative to 8r~ax (see Ref 12) (where ~0 is proportional to the con- 
tribution of the nonsingular stress to the maximum shear stress, rmax in the xlx2 plane) 

g l  o~ 
Tmax -- (87rr) I / ~  71- V~ (2) 

Now defining an "apparent" stress-intensity factor (SIF), 

K~e = rmax(87rr) '/2 (3) 
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(b) 
FIG. !--Near-tip problem geometry and notation. 

and normalizing with respect to -d(~ra) 1/2 where ~ represents the remote stress and a the 
crack length, one has 

~(lra) m - ~(Tra)l/----- 2 + ff  (4) 

FIG. 2--Near-tip Mode I stress fringe pattern. 
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which suggests an elastic linear zone (ELZ) in a plot of  

K~. 
-JOra) 'a 

versus (r /a)  '/2 with a slope ofa~ Experience shows this zone to lie between (r /a)  l/z values 
of  approximately 0.2 to 0.4 (or above) in two-dimensional problems. By extracting optical 
data from this zone and extrapolating across a near tip nonlinear zone, one can obtain an 
accurate estimate OfKl/-~(Tra) '/2. This is illustrated in Fig. 3 for two slices at different loca- 
tions in a compact bending specimen. This approach may be directly extended to three- 
dimensional (3-D) problems involving curved crack fronts by replacing i,j values of  1,2 by 
n,z  where the n z  plane is normal to the crack border at each point along the flaw border 
and the nzt  coordinate system is a local cartesian system which follows the crack border 
(Fig. 1). In 3-D problems, the outer boundary o f  the data zone is usually restricted to (r /  
a)  ~/2 .~ 0.4 or less. 

In the frozen stress algorithm, the effect o f  the nonsingular stress was included since it 
was independent of  r. However, one may, for sufficiently small values o f  r, neglect the effect 
of  the a0 terms in the displacement field equations. Thus, along 0 = ~r/2, for a 3-D problem, 
one may write 

u= = C ' ( K J A y / 2  (5) 

and extrapolate the linear part of  u g C ' r  ~/2 versus r 1/2 to the origin as before. 
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V a r i a b l e  X A l g o r i t h m s  

Using Benthems analysis and the LEFM results as a guide, one can construct the follow- 
ing functional forms for the near tip ~0 and u~ 

F,j(X.,O) a ~  = n , z )  (6) 

where a,~ = ~0 for i , j  = n and zero for all other values of  i , j  

ui = D,(O)r x" (7) 

where X, and X,, represent the lowest dominant  eigenvalues in the local stress and displace- 
ment  field equations, respectively, and X. = I 1 - X, I- Here similar functional forms are 
implied near the crack tip for ~0 and u~ as in LEFM, but  X is undetermined. From Eq 7, 
one may, along 0 = ~-/2, write 

u~ = D~r ~. 

log uz = log Dz + h, log r 
(all logs are natural) 

(8) 

and determine X, from a plot of  log us versus log r in the linear range. 
Independent  determinat ion of  X, may also be carried out, but  the procedure is not  as 

straightforward due to the presence of  the second term in Eq 6 and the highly 3-D nature 
of  the near-tip stress state at the free surface. I f  one evaluates rmax from Eq 6 along 0 = ~r/ 
2 as done in LEFM, one obtains 

,~ XoKxo a ~ 7r = X ( K x ) A p  
r~ax = ~ + ~ sin(h. + 1) ~ ~ k / ~ ?  ~ (9) 

where Kxo may be designated a stress eigenfactor. Defining r0 = (or~ sin(X. + l)(r /2) ,  one 
obtains 

I ~ l -- X,{log r} log(r~,  -- to) = log [ X/ '~)  (10) 

Thus, i f  one can determine ~'0, one can plot 1og(T"m~ -- r0) versus log r and obtain X. as the 
slope of  the linear range. Since LEFM is expected to prevail away from the free surface, 
one may conjecture that the value of  r0 as determined from LEFM away from the free 
surface should suffice as an adequate correction for the nonsingular field effect except near 
the free surface. Data  for such a determinat ion ofro  is shown in Fig. 4 for an interior slice 
from a surface flaw where Xo ~ 0.5. 

F rom Eq 2, one sees that, in LEFM, z0 = a0] V~. Thus r0 can be determined from the 
slope o f  the normalized KAp versus r '/2 graph. 

E x p e r i m e n t a l  R e s u l t s  

In addi t ion to the prior studies on straight front cracks and surface flaws described 
above, experiments were conducted on " thumbnai l"  shaped natural cracks grown in corn- 
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FIG. 4--Determination of nonsingular effect in LEFM. 

pact bending specimens. Crack front shapes and free-surface intersection angles are given 
for these tests in Fig. 5. 

Frozen stress slices removed from one side of the centerline of the crack front were ori- 
ented parallel to the free surface, and those on the other side (except for the surface slice) 
were oriented normal to the crack border. The difference in the resulting values of X, 
obtained using Eq 10 due to slice orientation for the interior slices appeared to be insig- 
nificant. The average value of X, obtained from the two surface slices was 0.315, which 
compares favorably with Benthem's value of 0.33 for a 90 deg intersection angle. The aver- 
age boundary intersection angle here was 104 deg. 

Takukada [13] used a boundary integral approach to extract the singularity orders from 
surface flaws in a half space intersecting the free surface at arbitrary angles. A comparison 
of moir6 results at the free surfaces of compact bending specimens containing "thumb- 
nailed" cracks with Takukada's results is given in Table 1. 
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FIG. 5--Shape of  "'thumbnail'" crack in compact bending specimen with boundary inter- 
section angles. 

In his analysis, Benthem obtained a value ofX, = 0.67 at the free surface for the case a 
= 90 deg. Clearly, Takakuda 's  analysis suggests that increasing a above 90 deg will result 
in a decreasing value of  h,. The algorithm used for obtaining experimental  values of  X, 
was based upon a = 90 deg and led to experimental  values of  ~, which were higher than 
predicted by Takakuda.  However, i f  one introduces as a simple modification factor cos(a 
= 90 deg) into the algorithm, results are found to be much closer to Takakuda 's  results, 
as shown in Table 1. 

It ha s  been suggested, that, when a crack thumbnails,  it is at tempting to restore the 
LEFM condit ion Q,, = �89 along its border. I f  true, then ;% should have a physical lower 
l imit  of  0.5. The preceding experimental  data would seem to support  this conjecture. 

However,  the authors feel that further collaborative experiments would be necessary to 
verify this conjecture. 

TABLE 1--Values at h.. 

Test No. a deg X, (Analysis) X, (Experiment) X, (Experiment) cos(a - 90 deg) 

1 Sp.A 111 0.49 0.57 0.53 
2 Sp.A 115 0.47 0.54 0.49 
3 Sp.B 12_..66 0.4.._._0 0.6____00 0.4_~9 

AVG 117 0.45 0.57 0.50 
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I.O 

A summary of  all of  the results obtained to date on X determinat ion is presented in Fig. 
6. A study of  Fig. 6 leads one to the following observations: 

l .  Benthem's solution appears very accurate for the 90 deg crack front free surface inter- 
section angle for both straight front and surface flaws. 

2. A transit ion zone in X occurs near the boundary.  
3. Thumbnai l ing apparently alters the value of  X at the free surface and may be doing 

so in such a way as to restore the LEFM condition. 

Practical Application 

In order to adapt  measured variations in X, at the free surface to the framework of  
LEFM, we have suggested in prior  work the use of  a quanti ty Kcor, the "corresponding" 
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stress-intensity factor, which replaces the quantity (Kx~)Jr x, by (gcor)Ap/r 1/2 so that the 
dimensions of the SIF are restored. Kcor becomes the SIF which would exist if the free- 
surface effect were not present and the above dimensional substitution leads to [ 7] 

K 
Kr176  __2X-- (11) 

Using only thickness averaged photoelastic data through a surface slice, we can compare 
SIF distributions from photoelastic data with finite-element results and Kcor distributions 
in Fig. 7 for a surface flaw. Since the use of Kcor should eliminate the effect of the free 
surface, we would expect a smooth distribution with near zero slope at the free surface, 
since elimination of the free surface effect should produce an SIF curve which should be 
symmetric with respect to the ordinate. This obviously does not occur. A possible expla- 
nation may be that neither the finite-element results nor the photoelastic result are sufli- 
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ciently close to the free surface to capture a sharp downturn in the SIF distribution sug- 
gested by some analysts. 

The photoelastic result is obtained from shear stresses reduced somewhat by the free- 
surface effect but using the LEFM algorithm (k, --- �89 The finite-element result ignores any 
change in ko from a value o f  one half. 

In view of  these results, it would appear more practical to use the photoelastic result at 
the free surface unless and until accurate moir6 data are obtained for the free surface itself. 

Finally, thumbnailing o f  straight front cracks seems to reduce k, from its value for a = 
7r/2 toward the LEFM result. This latter effect needs further study. 
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APPENDIX 

Optical Methods of Analysis 

When optical methods are applied to cracked body problems, some equipment modifi- 
cations may be anticipated in order to enhance near-tip measurement. They will now be 
briefly described. 

Frozen Stress Analysis 

This method of  analysis was introduced by Oppel [14] in 1936. It involves the use of  a 
transparent plastic which exhibits, in simplest concept, diphase mechanical and optical 
properties. That is, at room temperature, its mechanical response is viscoelastic. However, 
above its "critical" temperature, its viscous coefficient vanishes, and its behavior becomes 
purely elastic, exhibiting a modulus of  elasticity o f  about 0.2% of  its room temperature 
value and a stress fringe sensitivity of  20 times its room temperature value. Thus, if the 
photoelastic models are loaded above critical temperature, cooled under load, and then the 
load is removed, only negligible elastic recovery occurs at room temperature and the stress 
fringes and deformations produced above critical temperature are retained. Moreover, the 
"frozen model" may be sliced without altering its condition. 

In order to determine useful optical data from frozen stress analysis, one needs to sup- 
press deformations near the crack tip in the photoelastic material in its rubbery state above 
critical temperature and to be able to produce the same crack shape and size produced in 
the prototype. In order for one to accomplish the first objective, applied loads are kept 
very small, and a polariscope modified to accommodate the tandem application of  partial 
mirror fringe multiplication and Tardy compensation is employed. Such a polariscope is 
pictured in Fig. 8. Normally, fifth multiples of  fringe patterns are read to a tenth of  a fringe, 
thus providing adequate data within about 1 mm of  the crack tip to two hundredths of  a 
fringe order. 

Natural crack shapes are obtained by introducing a starter crack at the desired location 
in the photoelastic model of  the structure before stress freezing by striking a sharp blade 
held normal to the crack surface with a hammer. The starter crack will emanate from the 
blade tip and propagate dynamically a short distance into the model and then arrest. Fur- 
ther growth to the desired size is produced when loaded monotonically above critical tem- 
perature. The shape of  the crack is controlled by the body geometry and loads. By com- 
paring crack shapes grown in photoelastic models by this process to those grown under 
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FIG. 8--Refined polariscope. 

tension-tension fatigue loads in steel, researchers [ 15] have obtained excellent correlation 
even when some crack closure was present on the free surface of  the latter. It appears that 
the cracked body geometry and loads control the crack shape in thick, isotropic bodies and 
that the stress ratio R (as long as it is positive) and plasticity or closure effects are of  see- 
ondary importance. 

Artificial cracks are made by machining into the body a desired shape, maintaining a V- 
notch tip with an included angle not exceeding 30 deg. With this angle, near-tip stress fields 
are essentially the same as for branch cuts. 

Removal of  thin slices of  material which are oriented mutually orthogonal to the crack 
front and the crack plane locally and analysis of  these slices will yield the distribution of  
the maximum shear stress in the nz plane of  Fig. 1. Then, by computing this stress from 
the near-tip Mode I singular stress field equations, including the contribution of  the regular 
stresses in the near tip zone as constants, one can arrive at an algorithm for extracting the 
SIF for each slice. 
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MoirO Interferometry 

This method of  analysis was introduced by Weller et al. [ 16] in 1948. As was the case 
with the frozen stress method,  some modification of  the usual approach is desirable in 
order  to obtain accurate near t ip data. In the present case, a "vir tual"  grating was con- 
structed optically by reflecting part of  an expanded laser beam from a mirror  so as to inter- 
sect the unreflected part  o f  the beam, forming walls of  constructive and destructive inter- 
ference which serve as the master grating (Fig. 9). The specimen grating, a reflective-phase 
grating, is viewed through the virtual  grating as i t  (the former) deforms in order to see the 
moir6 fringes proport ional  to the in-plane displacement normal to the grating. By photo- 
graphing the moir~ fringe patterns produced on the surface of  a frozen slice after it has 
been annealed to its stress free state, one can measure the inverse o f  the displacement fields 
produced in the plane of  the slice by stress freezing. Since our interest here focuses heavily 
upon surface effects, note that the photoelastic data yield information which is aver- 
aged through the thickness o f  a single slice which is usually of  the order of  0.50 mm, 
while the moir6 data yield data from the surface itself upon which the moir6 grating was 
placed. 

It follows that frozen stress data  from a surface slice will closely represent free-surface 
information only i f  there is little change in this information through the slice thickness. 

Details o f  the above methods are found in Refs 12 and 17. 
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ABSTRACT: A combined tapir6 method has been used to experimentally obtain three- 
dimensional surface deformations in a plastically deformed tensile strip containing a surface 
flaw. A finite-element approach using experimentally obtained displacements as boundary 
conditions is followed to investigate the interior deformation fields and to study several 
parameters of interests such as J, crack-tip singularity and J, crack-mouth opening displace- 
ment equivalence for a chosen specimen geometry. 

KEY WORDS: surface flaw, plasticity, optical methods, finite-element analysis, work hard- 
ening, J-integral, singularity 

Much of  the previous research on surface flaws has been in the area of  elastic analysis 
of  surface crack configurations under different types of  loading. Early works of  Irwin [1 ], 
Kobayashi and Moss [2], Rice and Levy [3], Newman and Raju [4,5], Smith and Sorensen 
[6], and Smith et al. [ 7], have aimed at describing stress-intensity factor distribution along 
semielliptical crack fronts with some consideration given to crack-tip plasticity. Elastic- 
plastic analysis of  such crack configurations has also been undertaken by several investi- 
gators [8-14]. The main thrust in all these has been to characterize fracture parameters 
such as K or J, growth of  plastic zone and deformation fields, using either experimental or 
numerical approaches. 

The present work employs a combined optical and numerical scheme for analyzing fully 
plastic deformation fields ahead of  a part circular surface notch in a hardening alloy (Al 
5052-H32) under tension. Whole-field three-dimensional (3-D) deformations were mea- 
sured on the surfaces o f  a tension specimen using combined moir6 method [15]. Experi- 
mental results have been used as boundary conditions in a nonlinear finite-element (FE) 
analysis to study the interior deformation fields. Approximate J values have been calcu- 
lated using experimental as well as experimental FE results. Equivalence of  J and crack- 
mouth opening displacement (CMOD) is considered. The crack-tip singularity is empiri- 
cally described by simple polynomial functions. 
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Experimental Method 

A combined grating method is used to study the problem of a part-circular surface notch 
in an aluminum plate under tension. The technique incorporates a combination of in-plane 
and projection moir~ methods to simultaneously obtain all three displacement compo- 
nents (u, v, and w) on both the front (crack) and back surfaces. In order to measure in- 
plane displacements, a 20 lpmm ( l /p ,  p = pitch) cross grating is photoprinted on the front 
and back surfaces of  the specimen. In addition, a line grating of approximately 4 to 8 lpmm 
(1 ]p') is projected onto both of the surfaces to obtain the out-of-plane displacements. The 
optical arrangement used for this purpose is shown schematically in Fig. la. Collimated 
light impinges on a line grating to produce regular and diffracted wavefronts, which are 
collected by a field lens. A diffraction spectrum in the form of equally spaced bright dots 
or diffraction orders is formed at its focal plane where a mask blocks out all but the + 1 
diffraction orders. These diffraction orders are collected by a third-field lens to form two 
nearly collimated beams with an angle 2a between them. Within the intersecting beams 
there exists a standing wave of pitch [~,/(2 sin a)] where ~ is the wavelength of light. Due 
to the angular parameter t3 of  the projection system, the pitch of the grating on the sped- 
men surface is 

X p, = (1) 
2 sin a cos/3 

All these gratings are recorded by single exposures prior to loading (master or reference 
grating) as well as at various load levels (deformed gratings). Figure I b shows a typical 
recorded grating in which the fine dots correspond to the photoprinted cross grating whose 
intensity is modulated by the low-frequency projected grating. 

Optical spatial filtering [15,16] is used to separate the u, v, and w displacement fields for 
each applied load. The set up used for this purpose is schematically shown in Fig. 2a. When 
a matched pair of deformed and undeformed gratings is placed in a converging beam of 
light a diffraction spectrum such as the one shown in Fig. 2b is produced at the focal plane 
of the transform lens. A mask is placed in this plane to block all but the appropriate dif- 
fraction order such that the corresponding displacement field (u, v, or w) is displayed at 
the image plane of the reconstruction lens. The displacements are governed by 

u = Nip (2) 

v = NzP (3) 

N3P' 
w - (4) 

tan/3 

N~, N2, and N3 --- 0, + 1, + 2 . . . . .  where N ,  N2, N3 are the fringe orders. 

Experimental Results and Discussion 

Three crack configurations have been studied using the above method. Specimens 50.8 
mm wide by 6.35 mm thick (Fig. 3) were machined from aluminum 5052-H32 sheet stock 
such that the roiling direction is transverse to the loading axis. Material characteristics (Fig. 
3b) were obtained from a uniaxial tension test (Young's modulus E -- 6700 kg/mm 2, yield 
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FIG. l--(a) Optical arrangement for combined moirO method; (b) enlarged recorded 
grating. 

stress *0 = 14.3 kg/mm 2, and hardening exponent n = 6.4). The surface flaws were created 
using a 25.4-ram-diameter, 0.20-mm-thick saw blade, resulting in a square notch tip pro- 
file. Three different surface notch depths, namely, a = 4, 3, and 2 mm, have been studied. 
These crack depths correspond to the ratios (a/t) -- 0.63, 0.47, 0.31 and (a/c) -- 0.43, 0.36, 
0.29 where c and t are the half surface crack length and the thickness of the specimen, 
respectively. The specimens were subjected to monotonically increasing far-field stress lev- 
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els well beyond the yield stress of the material. Contours of constant displacement corre- 
sponding to far-field stress (a=) = 1.12ao, 1.28a0, and 1.36a0 for the 4, 3, and 2-mm-deep 
cracks, respectively, are shown in Figs. 4a and 4b. Displacement fields are shown for only 
one half of the plate due to the symmetry of the problem. Fringe sensitivity for u and v 
fields is 0.0508 mm/fringe, while for w field it varies from 0.0365 mm/fringe to 0.0742 
mm/fringe, as noted in the figure. 

Numerical differentiation, using one-dimensional smoothed cubic splines, is performed 
on the experimental displacement data to obtain displacement gradients and hence strain 
components. Representative plot of contours of err are shown in Fig. 5a for the front and 
back surfaces of the specimen having a crack depth a = 4 mm at far field stress a= = 
1.12a0, Higher magnitudes of strain are noted at a distance away from the crack plane on 
the back surface which is consistent with results reported in-other investigations [8,9]. Dis- 
placement and strains for the three geometries are compared in Figs. 5b and 5c, along the 
line (x = O, y,z = - t ) .  In Fig. 5b, back surface out-of-plane displacement w normalized 
with CMOD has been plotted. CMOD values are calculated from fringe orders experimen- 
tally obtained at the crack mouth. As one would expect, deeper back surface dimples were 
observed for crack configurations with larger (a/t) at lower far-field applied stress levels. 
In Fig. 5c, variation of (err/coo)with respect to y is shown for each of the geometries. Also, 
the location of maximum opening strain on the back surface is closer to the crack 
plane for deeper notches, as might be anticipated because of the decreased ligament 
lengths. 

Using the method followed by King et al. [12], values of J for a contour on the ( y - z) 
plane enclosing the deepest point of the crack were calculated for each of the specimen 
geometries. The contour considered is path #(1) shown in Fig. 6a. J is given by 

and an additional area term 

f~ Ou--2 ds J = W d y -  Tk Ox3 (5) 

o [ Ou~ ] 
(6) 

for strain energy density W, traction vector Tk, displacement vector uk, the arc length s 
measured along contour c, and A the area enclosed by the line contour. Assuming that the 
contribution to J is predominantly due to the components of displacement u2 (or v), stress 
ayr and strain ey r terms, only the following two terms were considered in calculating J: 

W -- a~/~yy (7) 

Ou2 8v 
T2 ~z  = ~yy ~z (8) 

where ay~ is determined from the average strain for the front and back surfaces and the 
displacement gradient is considered constant through the thickness. 

Using the experimental measurements, values of J have been calculated for different 
load levels. Equivalence of J and CMOD is considered. J and CMOD have been plotted 
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FIG. 4a--Experimental displacement fields on front surface. 
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FIG. 4b--Experimental displacement fields on back surface. 
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FIG. 6--(a) Integration paths considered to calculate approximate J; (b), (c) J - CMOD 
equivalence curves. 

against  normal ized  far field stress in  Figs. 6b and  6c. Definite s imilari ty in trends have been 
observed in  each case where fitted curves are of  the same form given by 

\ a o /  -~o + A3(a~]2"  (9) \ O o /  

: CMOD -- B, + B2 + ~ 3 / - - <  (10) 
\ ao / 
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where n is the hardening exponent of  the material and the coefficients A, Bi depend on the 
crack configuration. Also, as noted earlier by Parks et al. [11], in his line-spring models, as 
(a/t) increases, curves o f  J versus (~r~/~ro) move to the left. A similar trend is obvious in 
the (CMOD) plots as well. 

Finite-Element Model 

An integrated experimental-finite element technique, developed successfully by Hareesh 
and Chiang [ 17] for elastoplastic crack-tip analysis, has been applied to probe the interior 
of  this three-dimensional (3-D) crack geometry. Experimentally obtained displacements 
are used as boundary conditions in a nonlinear finite-element model. The material nonli- 
nearity is incorporated into the calculations using experimentally obtained uniaxial tensile 
stress-strain data. The 3-D FE model is based on small strain approximation and defor- 
mation theory of  plasticity. The initial stress method is used to account for the material 
nonlinearity. Eight-node linear brick elements with three degrees of  freedom per node cor- 
responding to displacement components in the x, y, and z directions are used. Numerical 
integration is performed at eight gaussian locations in each element. 

The specimen with a = 4-mm-deep crack and deformations corresponding to far field 
applied stress ao~ --- 1.12a0 is chosen for FE analysis. Due to the symmetry of  the problem, 
only one quarter of  the plate is analyzed. The model considered extends to the boundary 
of  the plate in the x-direction, to a distance 17.5 m m  in the y-direction and through-the- 
thickness of  the material. It is made up of  twelve identical layers of  nodes, unequally 
spaced in the y-direction. The overall model consists of  1518 elements and 6012 degrees 
of  freedom. Symmetry boundary conditions are applied to the (x - z) and ( y - z) planes 
of  the model. Experimentally obtained displacements are applied as boundary conditions 
for nodes on (x,y = 17.5 mm, z) plane. It was assumed that all three displacement fields 
vary linearly through the thickness. 

Finite-Element Results and Discussion 

In Fig. 7, the calculated v displacement and ~r strains are plotted as contours on the 
front and back surfaces of  the model. When these are compared with their experimental 
counterparts (Figs. 4 and 5), good correlation between the two results becomes evident. 
Experimental and numerical front and back surface w displacements are plotted along the 
slice (x = 0,y) in Figs. 8a and 8b. Trends are similar in both sets of  results although the 
out-of-plane displacements obtained by the finite-element method are somewhat higher in 
magnitude. Also, in Fig. 8c, the variation of  opening strain ~yy with respect to distance from 
the crack plane is shown. Higher maximum values of  strain are observed for experimental 
results than for finite-element analysis, although maximum strains are noted at a distance 
of  approximately 3 mm from the crack plane in both cases. The discrepancies between the 
two could be attributed to the size of  the elements in the y-direction. 

Since finite-element results on the surface compare well with experimental results, inves- 
tigation is continued into the interior of  the material. Figure 9 shows contours of  constant 
displacement w and strain ~yy on the crack plane (x,y --- 0,z) along with the undeformed 
and deformed finite element mesh used in the study. Similarly, in Fig. 10, contours of  o 
displacement and strain ~ry are shown for the plane (x,y = 0,z) as well as the undeformed 
and deformed mesh on the midplane of  the specimen. Strain contours on this plane may 
be compared with the results of  Ayres [8] and Levy et al. [9], who plotted the progression 
of  plastic zone for increasing far field loads below the limit load of  the material. In an effort 
to characterize the singularity ahead of  the crack tip, effective stress a~ and effective strain 
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FIG. 9 - - D e f o r m a t i o n  f ie lds  on (x -- z) plane,  a = 4 ram. 

~egare plotted against distance from the crack tip r in Fig. 11, for various angles to the crack 
plane, 0. In each case, the fitted curve was o f  the form 

i=2 

(7~ = ~ ~,r "-~/" (1 l) 
(7oo i~O 

i = 2  

~ = ~ 6,~' ~ (12) 
E~  i=O 
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d i s t r ibu t ion  on (y - z) plane ,  a = 4 ram.  

where the constants  F~ and  G~ are different for different 0 and the exponent  b ( =  0.2 for a 
= 4 ram)  may  be a cons tant  dependen t  on the hardening index n o f  the mater ial  and crack 
geometry.  In  the above  polynomials ,  the first t e rm denotes  the strength o f  the associated 
singulari ty while the rest o f  the terms account  for the far field stresses and strains. In  addi-  
t ion,  J- integral  is calculated f rom the f ini te-element  results by the previously described 
m e t h o d  for two different contours  (paths Nos.  1 and 2 in Fig. 6a) for compar i son  to the 
values  ob ta ined  f rom the exper imenta l  results. Approx ima te  J- integral  eva lua ted  f rom 
exper imenta l  results for a = 4 m m  and  a~ = 1.12~0 is 89.0 N / r a m .  Corresponding  J f rom 
f ini te-e lement  results are 88.2 N / r a m  and  89.3 N / r a m  for integrat ion paths  Nos.  1 and 2, 
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respectively. By using plane strain H R R  equations for v displacement, J-integral was esti- 
mated from 

i q(n+l)]n 
aao~oI, r J as r --- 0 (13) 

Extrapolated values of  J for various 0 range from 80 to 125 N/mm.  This approach is sim- 
ilar to the one followed by Levy et al. [9] to determine stress-intensity factor K for a similar 
surface flaw configuration. 

Conclusions 

We have optically measured 3-D surface deformations in a plastically deformed sheet 
containing a part circular surface flaw when subjected to tension. Measured displacements 
were then used as boundary conditions in a finite-element model  to obtain the interior 
deformations ahead of  the crack front. Approximate  J values have been calculated using 
the experimental  measurements as well as FE results. J -CMOD equivalence is considered 
based on the similari ty in their variations for different load levels. Effective stress and 
strain distr ibutions along various angles in the interior of  the material  on the (x = O,y,z) 
plane are described by polynomial  functions containing one singular term in an effort to 
empirically describe the crack-tip singularity in terms of  hardening index and crack 
configuration. 
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ABSTRACT: Utilizing the well-known Westergaard approach in conjunction with Goursat- 
Kolosov series stress functions, suitable series solutions are developed for stresses and dis- 
placements around the crack tip. In-plane displacement data from the entire field near the 
crack tip are obtained by holographic interferometry. Measurement errors in the experimen- 
tal data are minimized by the least-squares method. Series solution of displacements together 
with experimental data is used to establish the loss of inverse square-root singularity at the 
free surface-crack border intersection. Experimental results are compared with the analytical 
results from recent studies, and a good correlation is found between analytical and experi- 
mental values. 

KEY WORDS: holographic interferometry, in-plane displacements, surface stress-intensity 
factor, free surface-crack border intersection, holographic moir6, stress singularity, 
eigenvalue 

Several investigators have made considerable progress [1-5] toward determining the 
stress-intensity factor Kt from photoelastic measurements by utilizing isochromatic data in 
the field adjacent  to the crack tip. The advantage o f  this approach is that  measurements 
can be made away from the crack tip, where errors resulting from imperfections in crack 
tip geometry, nonlinearities, mixed plane-stress plane-strain, and gradient effects are min- 
imized. Because the measurements are made in the adjacent field, it is necessary to account 
for the total stress or displacement field and to utilize a representation of  the stress or 
displacement  field which contains several terms in addi t ion to the singularity term. 

However, the photoelastic methods are severely l imited when it becomes necessary to 
determine the stress-intensity factors in metals or other opaque materials. In such cases, 
the experimentalist  has l imited options, one of  which is the use of  in-plane displacement 
data obtained by coherent optical methods such as moir6 [6-9], speckle [10,11[, or holo- 
graphic interferometry [12,13]. It is possible to determine K~ from these measurements 
with a m in imum of  error by extending the methods already established for photoelasticity. 
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The goal of this paper is to develop a series solution to the stresses and displacements 
around the crack tip and utilize them to find the stress-intensity factor along the flaw bor- 
der in the interior. The paper also demonstrates how in-plane displacement data from the 
entire field, obtained by holographic interferometry, can be used with series solution to 
establish the loss of inverse square-root crack tip stress singularity at the free surface-crack 
border intersection. 

Analytical Technique 

Muskhelishvili [14] has shown that the stresses and displacements in a plane body can 
be represented in terms of Goursat-Kolosov stress functions as 

~ = 2Re~'(z) -- xRe~"(z) - ylm~"(z) - R e X " ( z )  ( la)  

~y = 2RecI,'(z) + xRe~"(z) + ylm~"(z) + ReX"(z) (lb) 

rxy = x l m , ~ " ( z )  - y R e , b " ( z )  + l m X " ( z )  (lc) 

'[() ] u = ~-~ K Re~(z) -- xRe~'(z) -- y l m ~ ' ( z )  - ReX'(z) (ld) 

1[( ) 1 v = ~-~ . = 3 -- 4p ImP(z) + x l m u  -- yRe~'(z) + lmX'(z) (le) 

where 4~ and X are functions of z = x + iy  

d d ~I,' (I,' = ~ �9 and ~" = 

Further 

and 

K = 3 - 4u for plane strain (2a) 

3 - -  I t  

= ~ for plane stress 
l - - u  

where p is the Poisson's ratio. 
The Goursat Stress functions are expressed as power series in terms of z as 

and 

(2b) 

oo 

= ~ R.z a" (3a) 
n z 0  

oo 

x ,  = ~ (x. + 1)s .z  ~. 
n ~ 0  

3b 
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Sih and Liebowitz [15] have determined the displacement field corresponding to the first 
two terms of  the power series expansion (that is, n = 0 and 1). First, in this approach, two 
terms are not sufficient for extracting accurate information from adjacent field. Second, 
even if suitable series equations for u and v displacements are developed by following the 
method of  Sih and Liebowitz, yet they would be limited because Goursat-Kolosov stress 
functions are not well known to the experimental community. 

Therefore, in the current investigation, the well-known Westergaard [16] approach for 
determination of  stresses and displacements will be applied, in conjunction with Sanford's 
[ 17] method. In the study by Sanford, the Goursat-Kolosov stress functions were replaced 
by Z and another stress function n, both functions of  z, where 

2 ~ ' =  Z - n  (4a) 

n -- 2,I," + X" (4b) 

where 

N 

Z = .~=o= nA~-" 1A- z " - 'n  with n = Q, 1, 2 ,3  . . . .  (5a) 

and 

M 

= ~ a,,,z" with m = 0, 1, 2, 3 . . . .  (5b) 
m ~ 0  

The integers N and M are selected so that a sufficient number of  terms are included to 
adequately describe the stresses and displacements in the adjacent field. 

Substituting Eqs 4 into Eqs 1, the stresses and displacements are obtained as 

a ~ =  R e Z - 2 R e n - y l m Z ' + y l m t t '  

a y = R e Z + y l m Z ' - y l m n '  

~-~= l m n - y R e Z ' + y R e n '  

u = ~ ,, Re(2 - ~ )  - x R e ( Z  - -  n )  - -  y l m ( Z  - n )  

-- 2Re ~ + Re f z(Z' -- n') dz] 

v = ~  K l m ( Z - - ~ ) + x l m ( Z - n ) - - y R e ( Z - n )  

+ 2lm ~ - lm f z(Z" - n') dz] 

(6a) 

(6b) 

(6c) 

(6d) 

(6e) 
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where 

f f d d n' Z =  Z dz, ~ = n dz, --~z Z = Z ", and ~zz n =  (6J) 

It is evident from a comparison of  Eqs l with Eqs 6 that the substitution of  the functions 
Z and ~ for the functions ,I~ and X has simplified slightly the expressions for the stresses 
and greatly complicated the expressions for the displacements. 

Substituting Eqs 5 into Eqs 6 and using the Moivre relationship 

z p = r~ pO + i sinpO) 

gives the stresses and displacements in a form convenient for use in analysis of  adjacent 
field data as 

crx = ~ A .r  "-'/2 cos(n -- �89 - sin 0 sin(n -- ~)0 
n=O 

M 

- ~ a , .~  {2cosmO -- rosin 0 sin(m - 1)0} 
,'n=O 

(7a) 

~rv = ~ A . r  "-4/2 2 cos(n -- �89 + sin 0 sin(n -- ~)0 
n=O 

M 

- -  ~.. a, .r  ~ msin 0 sin(m - 1)0 
m=O 

(7b) 

N 

r v = ~ - A.r  "- '2 sin O cos(n -- ~)O 
n=0 

M 

+ ~ a,~r ~ {sin m8 + m sin 0 cos(m - 1)0} 
m=O 

(7c) 

2 cos, n_ ,0t u = - - ~  .~oA"r"+V2 \ ~nn 2 - ~ i  c o s ( n +  ~)0 2 n - -  1 

+ ~a , , , r . .+  j _ K +  m +  2 c o s ( m +  l ) 8 + c o s ( m - -  1)0 
,.=o m + 1 

(7d) 

v = "-~ A . r  "+'/2 sin(n + �89 + 2n -- 1 \. ~n i ~  ]- - -  s i n ( n  - %)0 

71- Z ~ m r m + l  K - -  m - -  2 
, . = o  - -  m ~ -  i s i n ( m  + 1 ) 0  - -  s i n ( m  - -  1 ) 0  

(7e) 

It must be noted that in the foregoing Eq 7, the truncated power series for Z utilizes 
inverse square-foot singularity, which is the eigenvalue required to insure that the upper 
and lower surface of  a semi-infinite crack occupying the negative x-axis are free of  
tractions. 
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134 SURFACE-CRACKGROWTH 

Although the inverse square-root crack tip singularity form was noted by several inves- 
tigators including Williams [18], Irwin [19], and Kassir and Sih [20]; it was recognized in 
early 1970s by Sih [21] that the square-root singularity existed only in the interior and it 
vanishes gradually as the flaw surface-crack border is reached. Folias [22] investigated the 
transition zone from interior to free surface and noted the loss of  inverse square-root sin- 
gularity and its dependence on Poisson's Ratio. These results were further confirmed by 
Bazant and Estenssoro [23] and Benthem [24,25]. Benthem, in his excellent work involv- 
ing three-dimensional separation of  variables for a quarter infinite crack, noted a loss of  
inverse square-root singularity and found the eigenvalue of  the distance from the crack tip 
to be Poisson ratio dependent. Smith and Epstein [26], in a recent experimental study 
involving three-dimensional photoelasticity and high-density moirr, observed a three- 
dimensional boundary-layer effect near a free surface crack border intersection, indicating 
a divergence from classical a stress-intensity factor (SIF) with its inverse square-root 
singularity. 

In the present investigation, since holographic interferometric technique was used to 
measure the in-plane displacements on the free surface near the crack tip, it would be more 
meaningful to modify Eq 5a by replacing �89 by a variable X and seek the value of  lambda 
which best satisfies the experimentally measured displacements. The substitution of  mod- 
ified Eqs 5 in Eqs 7 leads to the stresses and displacements being expressed as 

O" x ~ 

T x y  ~-~ 

U = 

A.r._ Icos(,, - X)0 
.=o [ n 25~ sinO sin(n - ~ - 1)0 

M 

- ~ c~r m {2cosmO - msinO sin(m - 1)0} 
m ~ O  

F.  l - x)o .=o [ n L S ~  + sin0 sin(n - X - 1)0 

M 

-- ~ a,.r ~ msinO sin(m - 1)0 
m ~ O  

N 

~ -- A . f  -x sinO cos(n -- X - 1)0 
n = 0  

+ ~ a.,r m sin 
m ~ 0  

(8a) 

(8b) 

mO + m sin0 cos(m - 1)0} (8c) 

1 [~-~.a"f-x+t[(n+--n--~) ) 
4-G L.=o n - ~ "  ~, ~ c o s ( n  - A + 1)0 - c o s ( n  - h - 1)0 

+ ~a , , r , .+~  _ K +  r n + 2  c o s ( m +  1 ) 0 + c o s ( m - -  1)0 (8d) 
,.=0 m + l  

I_.=o n--~X" ~ n x +  + s i n ( n  - -  X + 1)0 + s i n ( n  - ~, - -  1)0 

+ ~ a m r , . +  ~ _ r -  r n - - 2  s i n ( m +  l ) 0 - s i n ( m - -  1)0 (8e) 
m -i 

L e a s t - S q u a r e s  M e t h o d  

For a certain fixed value of  ~,, the equations for the displacements are linear in terms of  
the unknown coefficients A, and O~m. The number P of  unknowns which are to be deter- 
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mined are N + M + 2, and it is possible to select P data points and to directly solve 
the system of  linear equations for the unknown coefficients. However, it is more appro- 
priate to employ Q data points (where Q >> P) and to minimize measurement 
errors. 

I f  we consider a moir6 pattern either obtained by a conventional procedure or by holo- 
graphic moir6, the v component  of  the displacement field can be expressed as 

vXrq, Oq) = pNq(rq, 09) (9) 

where p is the pitch o f  the grid and rq and 09 are radial and angular position of  the Moir6 
fringe order Nq at the data point q. 

Next, consider the square of  the difference S, 

Q 
S = ~ (v -- re) z (10) 

q=l  

where v and ve denote the theoretical and experimental displacements, respectively, over 
the adjacent field with some preference for the regions above and below the crack where 
ve is the largest. 

Equation 8e for analytically computed displacement v can be conveniently expressed as 

v = ~ A, f . (r ,  O, h) + amgm(r, O) 
m=O 

( l l a )  

where 

f . ( r ,  O, A) = n ~- ~ -X + (1 lb) 

and 

m + 1 sin(m + 1)0 -- sin(m -- 1)0 (1 lc) 

Substituting Eqs 9 and 11 into Eq 10 yields 

S = ~ Aor~(r, O, X) + ~ g ~ ( r ,  0 - pN(r,  0 
q=l t n ~ O  m~O 

(12) 

To minimize the error in determining A., a,., and ~, the least-squares procedure requires 
that 

0S 
O(A,, 06,, X) 

= 0 (13)  

Differentiating Eq 12 and using Eq 13 gives a system of  P + 1 equations, where the first P 
equations are linear in terms of  unknown Coefficients A.~ and am for a particular value of  
X and the (P + l)th equation obtained by differentiating S with respect to X is nonlinear. 
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136 SURFACE-CRACK GROWTH 

In order to solve the system of P + 1 equations, the P linear equations obtained by 
differentiating S with respect to A. and am are expressed as 

lul{x} = ( y} (14) 

where the matrix [ul is given by 

Z f20 r ' foA . . . . . .  ZfofN Zfogo 
ZAfo  E f ,  2 . . . . . .  Z L f N  XAgo 

E fNfo Y" f lvf ,  . . . . . .  Z f ~  Z f~,go 

E fog, . . . . . .  EfogM-- 
X f ig,  . . . . . .  ~ f l g u  

5". fNg, . . . . . .  ~ fNgM 

r.gofo ~.gof, . . . . . .  r gofN x ~  Zgog, . . . . . .  r.gogM 
P'g, fo Eg, f~ . . . . . .  Xg, fN Xg, go ~ . . . . . .  Xg,gM 

EgMfo Y"gMT~ . . . . . .  P 'gnfN ll2gugo 7".gMgl . . . . . .  7"-g2M 

(15) 

and the matrices {x} and {y} are given by 

{x} = 

Ao-  

A, 

AN 
and 

Ot 0 

Or, 

0/M 

{y}  = 4 G  , 

rzv,fo-~ 
~Vefl| 

, ~V<S,< 

EVego 
E Eveg, 

~'vegM j 

(left) (16) 
(right) (17) 

where 

z--Z 
q~l 

is the summation over the data field�9 
For a suitably chosen initial value of X. the solution for the unknown coefficients A. and 

am is given by 

{ x} = [u]- l {  y} (18) 
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Then the computed coefficients {x} are substituted in the (P + l)th equation to satisfy 

aS = A . f . ( r ,  O, X) + amg.~(r, 0) 
0 h  q=l t n=O m ~ O  

-- pN(r ,  O) ~"  A.f ' . (r ,  O, X) = 0 
n=O 

(19) 

If  Eq 19 is not satisfied with the initial guess of ~, and the corresponding computed coeffi- 
cients {x}, then a new value of X is appropriately chosen and a new set of coefficients {x} 
are obtained to be used in satisfying Eq 19. This process of selection of suitable X and the 
computation of the corresponding coefficients {x} is continued until Eq 19 is completely 
satisfied. 

Experimental Technique 
The double-beam illumination technique has been used to obtain the displacement field 

on the surface of a polyvinyl chloride (PVC) pipe. The pipe properties are Young's mod- 
ulus E = 2964 MPa, Poisson's ratio u = 0.35, outer diameter do = 48.514 mm, inner 
diameter di = 40.640 ram. 

The sensitivity of the optical setup for the double-beam illumination is given by ~ = X/ 
2sina, where laser wave length ~ is equal to 6328 A and the angle of incidence a is equal 
to 17.5 deg. 

The displacement field is projected on the tangent plane to the cylinder along a genera- 
trix that coincides with the crack line as shown in Fig. 1. The crack length 2C is 18.5 mm 
and its depth a is 0.5 mm. 

The state of stress of the surface crack in the pipe is three-dimensional (3-D), and there 
are no rigorous solutions known for such cracks. For an infinitely long and shallow crack, 
one can apply the stress-intensity factor corresponding to the single-edge notched plate. 
Kobayashi [27] has shown that for the infinitely long and shallow crack, the normalized 
stress-intensity factor for the cylinder coincides with the values corresponding to the single- 
edge notched plate. 

X 

t 

J 

X 

t 

FIG. l--Coordinate system of  a crack in PVC pipe. 
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138 SURFACE-CRACK GROWTH 

A double-exposure hologram was taken of the PVC pipe subjected to internal pressure 
of 348.5 kPa. The displacement pattern corresponding to the fringes projected in the y-axis 
direction is shown in Fig. 2. The crack tip location can be easily recognized by analyzing 
the geometry of the moir6 field. Due to internal pressure in the pipe and in the absence of 
a flaw, moir6 fringes are formed parallel to the pipe generatrix. However, the presence of 

FIG. 2--Moir~ fringes obtained by double-exposure holography. 
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a crack introduces a perturbation and the fringes lose their linearity, as vividly seen in Fig. 
2. 

One of  the rules of  interpretation of  moir6 patterns, as a consequence of  continuity of  
displacements, is that the Moir6 fringes of  different order do not intersect. Consequently, 
one must assume that the two intersecting fringes belong to the same order and therefere 
the region that they enclose will have a line of  zero strain along the line of  symmetry (there- 
fore, crack-tip regions have very high strains in the y-direction), the fringes belong to dif- 
ferent order, and they are only joining in appearance. Truly, the field of  displacement is 
discontinuous at the crack tip, and since the strains become infinite, the moir6 fringes show 
a singularity at the corresponding point. The fact that two different order fringes seem to 
join indicate presence of  an extremely high strain. 

Results 

Following the procedure described in the least-squares technique, a general-purpose 
computer code is produced for simultaneous solution of  Eqs 18 and 19. Apart from mate- 
rial properties, the program seeks values of  M, N, and Q. In the case of  PVC pipe, M and 
N were taken to be 7, and Q was equal to 27. 

The simultaneous solution of  Eqs 18 and 19 provides a value of  X equal to 0.5515, as 
distinct from ~, = 0.5. This establishes the loss of  inverse square-root singularity on the 
surface and reconfirms the work of  several investigators [21-26]. Benthem [24,25], Bazant 
and Estenssoro [23], and Smith and Epstein [26] obtained the values o f  k as shown in 
Table 1. 

This establishes that the series solution technique developed in this present work could 
complement the experimental results in accurate calculation of  the loss of  inverse square- 
root singularity at the crack front free surface intersection point. 

Discussion 

The results given in Table 1 correspond to the eigenvalues of  the displacement field ~,, 
which are related to the eigenvalues of  the stress field through the relationship he = 1 - 
~k u . 

Furthermore, the values in Table 1 correspond to the crack fronts free surface intersec- 
tion angle a = 90 deg between the crack front and the free surface, while the results of  this 
investigation correspond to an angle a = 6 deg. Takakuda [28], applying the boundary 
integral approach, gets the singularity orders from surface flaw in a half space intersecting 
the surface at arbitrary angles. Figure 3 shows Takakuda's results for a surface crack sub- 
jected to internal pressure, as a function of  the intersection angle of  the crack front with 
the free surface, and for different Poisson's ratios. It is evident that these results do not 

TABLE l--Values of X obtained by various investigators. 

Poisson's Ratio, Benthem Bazant Smith Present 
v (Theory) (Theory) (Experimental) (Experimental) 

0.15 0.5164 0.516 . . . . . .  
0.30 0.5481 0.546 . . .  
0.35 
0.40 0.'5871 015fi7 ().58 . . .  
0.48 . . .  0.63 �9 
0.50 0.6;'19 . . . . . . . . .  
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FIG. 3--  Variation of stress singularity h with crack front free surface intersection angle a 
as per Takakuda [28]. 

agree with the experimental  value found in the present investigation. Independently of  the 
form of  the algorithm used to obtain the value of  the singularity, the experimental results 
give values of  the singularity close but  in excess of  0.5, whereas Takakuda 's  results predict 
a singularity close to 1 for an angle a tending to zero. In view of  the complexity of  the 
solution of  a surface crack problem, it is not easy to find the reason of  this discrepancy. I f  
one considers the value of  Benthem for a = 1I/2 as a correct value and one takes the 
experimental  value as a good Value, the singularity appears not to be greatly influenced by 
the angle a. 
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ABSTRACT: The feasibility of predicting the fracture behavior of surface cracks from shal- 
low cracked bend specimens was investigated. The material studied was a high-strength steel 
stress reliefembrittled to various levels of Charpy-V notch impact toughness. Material tough- 
ness was quantified in terms of the J-intergral at total specimen failure (J~t), using both 
deeply notched and shallow-notched bend bars (single-edge notch bend ) [SE(B)] dynamically 
loaded in a drop tower impact testing machine. These data were compared with the fracture 
behavior of rapidly pressure loaded part-through surface cracked bend [PS(B)] specimens, 
which had a shallow surface flaw introduced at the specimen midspan. For highly embrittled 
material (Charpy V-notch energy (CVE) between 10 J and 24 J), J~t values measured using 
shallow crack SE(B) specimens were consistently higher than deep crack J~t values due to 
the shorter crack size, as well as increased plastic energy dissipation within the specimen. 
These higher Jmt values served as better predictors of the PS(B) fracture performance than 
did comparable deep crack values. Even though J~, cannot be considered a geometry inde- 
pendent measure of fracture toughness for shallow through cracks, values of this parameter 
determined using test specimens containing them appear to have considerable engineering 
utility for predicting the fracture behavior of part-through surface flaws. 

KEY WORDS: J-integral, dynamic loading, fracture mechanics, elastic-plastic fracture, short 
crack, surface crack 

The value o f  the J-integral at or  near the onset o f  ductile crack growth has been recog- 
nized for some t ime to be an appropriate  single-parameter measurement  of  upper-shelf 
fracture toughness, provided certain criteria are satisfied. These cr i ter ia--associated with 
maintenance of  a Hutchinson-Rice-Rosengren (HRR) singularity at the crack t i p - - a r e  typ- 
ically satisfied in laboratory experiments by testing deeply cracked (a! W between 0.50 and 
0.75) specimens loaded primari ly in bending. In this case, the H R R  singularity continues 
to exist past  net section yield due to a high-stress triaxiality at the crack tip [I] .  Using slip 
line field analysis, Matsoukas, Cotterell, and Mai  [2] have determined that the crack tip 
stress triaxiality decreases with decreasing crack size. This reduction manifests itself exper- 
imental ly as an increase in the observed fracture toughness with decreasing initial crack 
depth [3-5]. 

You and Knot t  [6] experimentally demonstrated that, for a given max imum crack 
depth, fracture init iat ion toughness measured using bend specimens containing shallow 
through flaws compares well with that measured at the maximum depth of  semielliptical 

i Mechanical engineer and materials engineer, respectively, David Taylor Research Center, Annap- 
olis, MD 21402. 
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surface flaws. This observation may be used to advantage during fracture safety analyses 
of  structures containing shallow surface flaws by using the techniques of Sumpter [ 7]. 
Sumpter has suggested thattoughness levels for surface cracks may be quantified in terms 
of the J-integral by testing bend specimens with through flaws of similar depth. Sumpter 
derived J formulas for specimens of this type which compare well with elastic-plastic finite- 
element results. This approach sacrifices the specimen independent properties of J~c values 
determined with deeply cracked specimens in favor of  a more accurate engineering approx- 
imation to the fracture resistance of surface flaws typically encountered in service. 

In this investigation, the feasibility of  using this approach for a high-strength steel alloy 
stress relief embrittled to various levels of Charpy V-notch impact toughness was investi- 
gated. Material toughness was quantified in terms of the J-integral at total specimen failure 
(Jc,t), using both deeply notched and shallow-notched bendbars dynamically loaded in a 
drop tower impact testing machine. These data were compared to the fracture behavior of 
rapidly pressure loaded part-through surface cracked bend specimens, which had a shallow 
surface flaw introduced at the specimen midspan. 

Material Investigated 

Typical chemical composition and strength properties for high-strength steel are given 
in Table 1. The subject of this investigation was the fracture tolerance of this alloy in a 
stress reliefembrittled condition. In high-strength steel, stress reliefembrittlement changes 
the typical high-energy dissipation upper shelf fracture mode (transgranular fracture by 
microvoid coalescence) to a low-energy dissipation intergranular fracture mode. This 
change reduces the material fracture resistance, as illustrated by the reduction of the 
Charpy V-notch energy (CVE) with time held at the embrittling temperature, as shown in 
Fig. 1. For purpose of correlation of Jm, values, the average CVE will be used as a quali- 
tative index of the degree of material embrittlement. This use of CVE is only appropriate 
when the fracture mode does not vary with specimen size or type, as was the case for this 
material. 

TABLE 1--Typical chemical composition and strength properties ~ of  high-strength steel. 

Element Weight % 

C 0.08 
Mn 0.67 
Si 0.31 
P 0.02 
S 0.014 
Cr 1.52 
Ni 3.1 
Mo 0.43 
Cu 0.2 
V 0.003 
Ti 0.001 

0.2% Offset yield strength, MPa 574 
Ultimate tensile strength, MPa 674 

Elongation, % 24 
Reduction in area, % 66 

aStrength properties measured using round tensile specimens of 50.8-mm gage length and 12.8-mm 
diameter. 
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FIG. 1--Stress relief embrittlement of high-strength steel as evidenced by reduction of CVE 
with time held at the embrittling temperature. 

Experimental Approach and J-Integral Formulas 

Deep Cracked Single-Edge Notch Bend [SE(B)] 

Three-point bend specimens (Fig. 2a) having initial precrack depths between 0.66 and 
0.70 a / W  and nominal thicknesses of 25.4 mm and 50.8 mm were tested. All specimens 
were dynamically loaded in a drop tower using the procedures developed by Hackett and 
Joyce [8]. Load was measured during the test using strain gages attached at the quarter 
span points of the specimen and wired to form a full bridge. The relation between the 
bridge output and the applied load was established prior to each test by statically loading 
the specimen in the elastic regime. Hackett, Joyce, and Shih [9] have determined that loads 
determined in this manner compare well with those measured with a load cell, even in the 
post-yield regime. Crack opening displacement was also measured using a capacitance 
transducer placed in the notch. The Jcn, value was calculated using the formula due to Rice 
[I01 

Jc,t = 2 �9 A/B.e, �9 bo (1) 
where 

A - area under the load versus load line displacement curve, 
B,e, = minimum specimen thickness, and 

b0 -- remaining ligament. 

Load line displacement was calculated from the measured crack opening displacement 
(COD) by multiplying by the factor 1.16, determined by Kirk and Hackett [11] to relate 
these two quantities for wrought high-strength steel specimens having the same initial 
crack length. It should be noted that the stress-strain properties of this material are quite 
similar to those of the material considered herein. 
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FIG. 2--SE(B) specimens; (a) deep crack; (b) shallow crack. 

Shallow Cracked SE(B) 

The shallow-cracked three-point bend specimen (Fig. 2b) was designed consistent with 
the criteria forwarded for the subsidiary bend specimen in British Standard Methods for 
COD Testing (BS 5762). The specimen thickness (50.8 mm) was the same as the structure 
whose fracture behavior was to be predicted, while the precrack depth (a/W = 0.20 to 
0.23) was slightly deeper than the surface crack of interest. In this case, the "structure" 
referred to is the part-through surface cracked bend specimen described in the next section. 

All shallow cracked SE(B)s were tested in a manner similar to that described previously 
for the deeply cracked specimens. For these specimens, load line displacement was calcu- 
lated from the displacement measured using a noncontacting eddy-current transducer posi- 
tioned 50.8 mm from the loading point. AS with the load, the relation between the output 
of these transducers and the actual load line displacement was determined by statically 
loading each specimen in the elastic region prior to testing. For these specimens, the load 
line displacement was approximately 1.8 times larger than that recorded by the eddy cur- 
rent transducer. 

The formula proposed by Sumpter [ 7] was used to calculate Jr for specimens of this type. 
This formula is 

K 2"(1 - v  2) np. Up 
J~ = + - -  (2) 

E B �9 bo 
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where 

K =  

E - -  
B =  
b0 = 
up= 

linear elastic stress-intensity factor calculated from maximum applied load, 
Poisson's ratio, 
Young's modulus, 
specimen thickness, 
initial remaining ligament 
plastic component  of  the area under the load versus load line displacement trace, 
and 
0.32 + 12.0(a/W) - 49.5(a/W) 2 

+ 99.8(a/W) 3 for a~ W < 0.282 
= 2.0 for a~ W >__ 0.282. 

Sumpter demonstrated that J values thus calculated lie within 10% of  J values computed 
using a numerical contour integration in a homogeneous specimen having normalized 
crack lengths ranging from 0.1 to 0.5. 

Part-Through Surface Cracked Bend Specimens, PS(B) 

Figure 3 shows the part-through surface cracked bend, PS(B), specimen employed in this 
investigation. A semieUiptical surface flaw of  approximately 16.5-mm (0.65 in.) surface 
extent and 6.35-mm (0.25 in.) depth was introduced at the midspan of  each specimen by 
fatigue extension from an electro-discharge machined notch. Subsequent to fatigue crack- 
ing, the beams were welded into carrier plates o f  high-strength steel. Strain gages were 
placed along the specimen midspan on the cracked side to record the development of  strain 
during the test. Specimens were then bolted into a test die, which left only the test section 
free to deform. Loading was accomplished by rapidly applying a pressure pulse to the 
uncracked surface. The maximum J value applied to the specimen was calculated from the 
maximum recorded strain using Turner's Engineering-J approach [12], which expresses J 
as a function of  applied strain as follows 

J--- (e/ey) 2 �9 [1 + 0.5 �9 (e/ey) 2] �9 Gfore /er  ~ 1.2 (3a) 

--- 2.5 �9 [(e/er) - 0.2] �9 G for e/ey > 1.2 (3b) 

where 

G = },2. Sy~.  (a/E), 
e -- maximum applied strain, 
a --- maximum crack depth, 
E -- Young's modulus, 

S~a = dynamic yield stress, 
ey = Syd/E, and 
Y = K/(S  �9 aVE), linear elastic shape factor. 

The solution of  Newman and Raju [13] for a semielliptical surface crack in a plate sub- 
jected to combined tension and bending loads was used to determine the appropriate Y 
values. When the specimen failed across the remaining ligament, strain data were some- 
times lost. In these cases, the maximum applied strain was calculated from the severity of  
the applied pressure pulse based on data obtained from similar specimens for which all 
data were recorded. 
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FIG. 3--PS(B) specimen: (a) plan view; (b) detail of  precrack at centerline midspan inter- 
section (oriented along midspan). Specimen thickness is 50.8 mm (all dimensions in ram). 

Results and Discussion 

Figure 4 compares the typical variation of load, or strain, with time for each of the three 
specimen types tested. These data indicate that all specimens were loaded at approximately 
the same rate. The small loading rate variations between the different specimens is not 
expected to influence the properties measured because the material is not very rate sensi- 
tive. As indicated in Fig. 5, the 0.2% offset yield strength and ultimate tensile strength only 
increase by 12% over a four-order of magnitude increase in loading rate. The yield strength 
value at the highest loading rate (3.5/s)--675 MPa--was employed in the calculation of G 
in Eq 3. 

In Fig. 6, the results of the SE(B) fracture tests are presented. The average CVE values 
shown were determined by testing CVN specimens cut from the fractured SE(B) specimen 
halves. Here, average values were used for clarity of presentation; data scatter would have 
to be accounted for prior to engineering use of  these, or similar, data. The ordinate values 
show the total J absorbed by the specimen prior to section failure (Jcn,)- Due to the inter- 
granular fracture mode exhibited by this material, failure was catastrophic for both fully 
elastic and elastic-plastic loading records. 

The data in Fig. 6 indicate that there is no systematic dependence of J•t on specimen 
thickness for the deeply cracked SE(B)s. A comparison of the shallow and deep crack SE(B) 
data indicates that the shallow cracks have considerably more resistance to fracture over 
the CVE range examined. Moreover, the shallow cracked SE(B)s showed greater sensitivity 
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FIG. 5--Variation of 0.2% offset yield strength and ultimate tensile strength with loading 
rate for embrittled high-strength steel. 

to changes in CVE than the more deeply cracked specimens. At an average CVE of  27 J, 
where the load-displacement behavior was predominantly linear, only a modest increase 
of  Jcn, was observed with decreasing crack length. However, at higher CVE (54 J), where 
elastic-plastic load-displacement behavior was observed, considerably greater increases in 
Jcn, occurred. It is therefore suspected that elevation o f  J=, at low CVE is mostly due to a 
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FIG. 6--Variation of the critical J at fracture with the CVE for deep and shallow crack 
SE(B) specimens of  embrittled high-strength steel. 
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FIG. 7--Comparison of observed PS(B) fracture response to predictions based on data 
from shallow-crack and deep-crack SE(B) specimens of embrittled high-strength steel. 

short crack effect, while the elevation at higher CVE is also attributable to increased plastic 
energy dissipation. 

While the variations of Jcnt with CVE and initial crack depth shown in Fig. 6 appear 
reasonable based on physical considerations, the engineering utility of either data set (shal- 
low crack or deep crack) can only be judged by how well the fracture behavior of  a surface 
crack is predicted. To this end, several PS(B) specimens were tested. The results of these 
experiments are compared to trend lines drawn through the SE(B) data (Fig. 6) in Fig. 7. 
The shallow crack SE(B) data predicted the results of all PS(B) experiments correctly, while 
the deep crack SE(B) data predicted one PS(B) specimen, which actually passed, to fail. (A 
pass is a specimen for which no crack extension was observed, while a fail is a specimen 
in which crack propagation completely severed the remaining ligament.) Deep crack SE(B) 
data predicted PS(B) fracture behavior correctly only when mid span strains in the PS(B) 
specimens remained below yield level. Thus, while the deep crack SE(B) data provide a 
conservative assessment of the PS(B) fracture behavior, fracture behavior predictions 
based on shallow crack SE(B) data were seen to be correct for all PS(B) specimens tested. 
While this approach lacks the geometry independent qualities of a J~c criteria, there seems 
to be considerable engineering merit in testing a laboratory specimen designed to model a 
surface flaw. 

Conclusions 

For the steel used in this investigation, embrittled to an average Charpy V-notch energy 
(CVE) between 10 J and 24 J, the following conclusions follow from the data presented 
herein: 

1. Use of the value of the J-integral at complete specimen separation (Jc,,), measured 
using deep crack ( a / W  = 0.65) bend specimens, to predict the fracture behavior of part- 
through surface crack bend [PS(B)] specimens provides conservative results. 
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2. Jc,, values measured using shallow crack bend specimens were consistently higher 
than deep crack values due to the shorter crack size as well as to increased plastic energy 
dissipation within the specimen. These higher Jc,, values served as better predictors of the 
PS(B) fracture performance than did comparable deep crack values. 

3. Even though Jc,, cannot be considered a geometry independent measure of fracture 
toughness for shallow through cracks, values of this parameter determined using test spec- 
imens containing them appear to have considerable engineering utility for predicr~ng the 
fracture behavior of part-through surface flaws. 
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Measurements of CTOD and CTOA Around 
Surface-Crack Perimeters and Relationships 
Between Elastic and Elastic-Plastic CTOD 
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ABSTRACT: A difftculty associated with predicting structural integrity is that the surface 
cracks found in structural components are three-dimensional whereas the crack-tip opening 
displacement (CTOD) and J-integral analytical techniques were derived from two-dimen- 
sional theory. This paper provides data from specimens containing surface cracks (aspect 
ratio either 0.1 or 0.5 and crack depth-to-thickness ratio 0.6); presents measured values of 
CTOD, crack-tip opening angle (CTOA), and Aa; provides experimental results relative to 
the center of rotation and the use of the Newman-Raju solutions for predicting the variation 
in CTOD around the crack perimeter; and evaluates possible correlations between CTOD, 
CTOA, and Aa. 

KEY WORDS: fracture toughness (KI~, K~,, CTOD, CTOA), surface cracks 

N o m e n c l a t u r e  

a 

Aa 

a r 

ao 
a/2c 

2c 
CMOD 
CTOA 
CTOD 

Crack depth, measured normal from cracked plate surface to point of 
maximum penetration 
Generally, crack growth at maximum depth, but used here to include 
crack growth normal to crack border 
Crack depth, measured normal from cracked plate surface to intersection 
with crack border 
Original crack depth 
Aspect ratio for semielliptical surface cracks 
Crack length 
Crack-mouth opening displacement 
Crack-tip opening angle 
Crack-tip opening displacement 

l Principal engineer and senior engineer, respectively, Idaho National Engineering Laboratory, 
EG&G Idaho, Inc., P. O. Box 1625, Idaho Falls, ID 83415-2210. 

2 See the American Society for Testing and Materials (ASTM) Test Method for Plane-Strain Frac- 
ture Toughness of Metallic Materials (E 399) and Test Method for J~c, a Measure of Fracture Tough- 
ness (E 813). 
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CTOD (90) 

CTOD (90') 

CTOD (CT) 
CVN 
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O" 

O'y s 
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CTOD measured at intersection of 90-deg included angle with 
extrapolated extension of original crack planes in their final position (Fig. 
8b) 
CTOD measured at intersection of 90-deg included angle with actual crack 
front (Fig. 8a) 
CTOD measured at tip of  fatigue crack (Fig. 8b) 
Charpy V-notch impact 
Young's modulus 
J-integral 
Applied stress-intensity factor 
Liquid nitrogen 
Applied load 
Distance from crack mouth to center of rotation; measurements are made 
perpendicular to cracked plate surface 
Specimen thickness 
Specimen width 
Crack-tip opening displacement, used interchangeably with CTOD 
Elastic component of b 
Plastic component of  

Crosshead displacement 
Angular position of a point on crack border; see Fig. 9 
Remote applied stress 
Yield strength 
Ultimate tensile strength 

A numerical approach based on either the J-integral or crack-tip opening displacement 
(CTOD) is frequently used in predicting the behavior (initiatign of crack growth, crack 
growth, and instability) of a structural component containing a defect and loaded into the 
elastic-plastic or fully plastic region. The defects actually found in structural components, 
partial penetrating or completely embedded flaws, are three-dimensional (3-D), whereas 
the J-integral and CTOD concepts (theory, test procedures, and data) are derived from 
two-dimensional (2-D) theories. 

There is also a substantial difference between estimating a safe condition and predicting 
the actual failure conditions. For example, it is easier to predict that a structural compo- 
nent will not fail when exposed to a specific set of conditions than it is to predict the critical 
values of CTOD, crack-tip opening angle (CTOA), or J-integral associated with initiation 
of crack growth, crack growth, and instability. An associated difficulty is identifying the 
value of CTOD or J at a specific location around the circumference of a surface crack as a 
function of load. 

Another major problem is the lack of applicable data from flawed structures for com- 
parison with predictions. This may be overcome by assuming that experimental data gen- 
erated from plate specimens containing surface cracks are applicable for comparison with 
predictions. This paper (1) provides experimental measurements of CTOD and CTOA 
around the circumference of a surface crack as a function of load, (2) provides experimen- 
tal measurements of  distance from crack mouth to center of rotation (R) and identifies the 
limits of applicability for using the Newman-Raju stress-intensity factor equation [1] to 
predict CTOD distributions for two surface crack configurations, and (3) evaluates possible 
correlations between applied load (P), CTOA, and increment of crack growth (Aa). 
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M a t e r i a l s  a n d  T e s t  P r o c e d u r e s  

The specimens were fabricated from as-rolled American Society for Testing and Mate- 
rials (ASTM) A710 Grade A steel. The significant mechanical and physical properties of 
this material, at 297 K, are yield strength (ays) = 470 MPa, ultimate tensile strength (a,~s) 
= 636 MPa, Young's modulus (E) = 208.4 GPa, and Poisson's ratio = 0.256. The mate- 
rial chemistry is: 0.05 carbon, 0.47 manganese, 0.010 phosphorus, 0.004 sulfur, 0.25 sili- 
con, 0.74 chromium, 0.85 nickel, 0.21 molybdenum, 1.20 copper, 0.038 columbium, and 
the balance iron. Figure I shows engineering stress-strain and true stress-true strain plots 
obtained at 297 K. When tested in the lower region of the ductile-brittle transition zone 
(297 K), as defined by results from Charpy V-notch impact tests (CVN), the A710 generally 
displays elastic or elastic-plastic behavior. Replicate specimens containing surface cracks 
in the T-S orientation were fabricated with the configuration shown in Fig. 2. The speci- 
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FIG. 1--Stress-strain plot for ASTM A 710 steel at 295 K. 
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FIG. 2--Configuration of specirnens containing surface cracks. 

men and fatigue precrack dimensions are presented in Table 1. The specimens had either 
a crack depth to plate thickness ratio (a/t) = 0.63 for a/2c = 0.12 where 2c is crack length 
or a/t = 0.57 for a/2c = 0.47. These specimens were tested under monotonic loading at 
297 K, which corresponds to about 40% of the way up the ductile-to-brittle transition 
curve, as defined by CVN impact test results. A similar statement is possible based on 
static tests of standard 2 fracture toughness specimens, though the database is not as com- 
plete as the CVN results. 

Replicate specimens were tested to varying load-crosshead displacement values. Figures 
3 and 4 are typical load-displacement curves (~) for a/2c = 0.1 and 0.5, respectively. It was 
possible to separate the load-displacement plots into the three shown in Fig. 3 and the two 
shown in Fig. 4. Observe the consistency of these plots, which confirms that the specimens 

TABLE 1--Specimen and defect sizes. 

m m  

Specimen 
Number t W ao 2c a/2c a/t 

E-I 6.325 101.62 3 .785  32.944 0 .115  0.60 
E-2 6.325 101.60 3 .810  32.995 0.115 0.60 
E-4 6.350 101.60 . . .  32.995 
E-5 6.312 101.62 4 .216  33.680 01iJ5 0.67 
E-8 6.312 101.60 4 .115  33.147 0.124 0.65 
E-9 6.337 101.62 4 .191 32.995 0.127 0.66 
E-12 6.375 101.60 3 .886  33.020 0 .118  0.61 
E-16 6.414 101.60 3 . 2 0 0  7 . 7 2 2  0.414 0.50 
E-20 6.325 101.62 . . .  7.620 
E-22 6.350 101.60 3 . 5 5 6  7 . 5 6 9  01,i70 0.56 
E-24 6.312 101.62 3 . 8 3 5  8 . 1 7 9  0.469 0.61 
E-25 6.312 101.65 7.696 
E-26 6.350 101.60 316J8 7.620 01480 6.;8 
E-27 6.325 101.62 3 . 6 3 2  7 . 5 4 4  0.481 0.57 
E-28 6.312 101.58 3 .861  7 . 7 2 2  0.500 0.61 
E-29 6.452 101.60 . . . 8.230 . . . . . .  
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U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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were indeed uniform. The points indicated by the arrows identify where the test was ter- 
minated for that specific specimen. Symbols in Fig. 4 identify specific locations on the load- 
displacement plot for the identified specimen; symbols were used because these data were 
collected using different scales and it was easier to transfer specific points instead of the 
total curve to the general plot. 

Many of these specimens were examined metallographically, after loading, to determine 
Aa, crack-mouth opening displacement (CMOD), CTOD, CTOA, and the crack tip and 
back surface configurations as a function of location around the perimeter of the surface 
crack. The specimens were sliced perpendicular to the plane of the crack and either per- 
pendicular to the cracked plate surface or perpendicular to the crack border. (This is illus- 
trated in Fig. 9 and is discussed later.) 

Additionally, microtopographic techniques were used to develop elevation contours, 
similar to topographic maps, of the fracture surfaces. Detailed explanation of this technol- 
ogy is provided in Kobayashi et al. [2] and Zhang et al. [3]. The first approach used for 
the microtopographic measurements consisted of loading the specimen to the desired (P,~) 
region, unloading, cooling the specimen in liquid nitrogen (LN2, a temperature associated 
with the lower shelf) and loading to failure by cleavage. The second approach consisted of 
applying fatigue cycles after partial unloading to 0.85 P .... cooling the specimen in LN2, 
and testing to failure. The two approaches provided either cleavage fracture or fatigue 
crack extension as a boundary outlining the extent of subcritical crack growth that occurred 
during application of the initial load. These techniques were used to determine if addi- 
tional plastic deformation occurred during the final loading to failure in LN2. No discern- 
ible differences in the extent of plastic deformation were observed. 

The metallographic sectioning and microtopographic techniques provided that part of 
CMOD, CTOA, CTOD, etc., associated with plastic deformation. It is assumed that elastic 
unloading local to the crack tip during specimen unloading is of negligible concern. This 
will be evaluated in the future. 

Test Results 

~pecimens with a/2c = O. 1 

Specimens E-5, E-9, and E-12 were examined by microtopographic techniques; mea- 
surements were made perpendicular to the crack front. The load-crosshead displacement 
records are provided in Fig. 3, and the configuration of the original fatigue crack, the extent 
of subcritical crack growth, CTOD, and CTOA are presented in Figs. 5 through 7 for these 
three specimens. The load, crosshead displacement, CMOD, and Aa values are given in 
Table 2. Three different CTOD terms are used in this paper; these are defined in Fig. 8 and 
in the Nomenclature. CTOD (CT) and CTOD (90') are standard definitions frequently 
used. CTOD (90) is an extrapolation method added because it is sometimes difficult to 
determine the location of the fatigue crack tip on specimens sliced for metallographic 
examination, and, as suggested in Fig. 8b, the crack front is not applicable for measuring 
CTOD (90'). In Fig. 8a, CTOD (90) and CTOD (90') are equivalent, but in Fig. 8b, CTOD 
(90') does not exist, which is why CTOD (90) has been added. The CTOD (CT) term in 
Figs. 8a and 8b are based on using the separation of the fatigue crack tip. 

Specimens E-I, E-2, and E-8 were tested to the P,u conditions shown in Fig. 3 and Table 
2. These specimens were examined metallographically; the slicing was performed normal 
to the cracked plate surface. The specimens were examined at specified increments ranging 
from adjacent to the intersection of the crack with the free surface to the region adjacent 
to the center of the crack, that is, 0 ranging from 0 to r /2  (Fig. 9). The extent of subcritical 
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FIG. 5--Results from topographic measurements for Specimen E-9, a/2c = O. 1: (a) Crack 
front configuration and ~a; (b) CTOD versus O; (c) CTOA versus O. 
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FIG. 6--Results from topographic measurements for Specimen E-12 a/ 2c = 0. L" (a) Crack 
front configuration and Aa; (b) CTOD versus O; (c) CTOA versus O. 
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162 SURFACE-CRACK GROWTH 

TABLE 2--Summary of load, displacement, and crack parameters for specimens with a/2c = 0.1. 

End of Test, mm 
Applied Remote 

Stress, MPa Maximum CMOD, mm 
Crosshead Residual 

Specimen End of Displacement, Displacement, End of Aa b, 
Number Maximum Test v v Test Residual mm 

E-9 c 447.8 447.8 2.941 0.610 0.645 0.526 0.152 
E-12 c'a 484.8 477.5 4.097 1.9663 1.595 1.501 1.168 
E-5 c 480.9 460.9 4.440 2.032 2.027 1.933 1.372 
E-V 459.5 459.5 3.556 0.635 0.038 
E-8 e 484.4 472.6 4.369 1.880 11885 11679 >1.168 
E-2 e~r 487.1 487.1 3.785 1.092 0.178 
E-4 331.9 331.9 1.857 0.152 0[i96 016"10 0.000 

a These specimens were each subjected to a single loading-unloading cycle. 
b At maximum crack depth, where 0 -- *r/2. 
c Microtopographic technique. 
d Fatigue cracked to outline Aa due to test. 
e Sliced perpendicular to free surface. 
fSliced perpendicular to crack front. 

crack growth and magnitudes of CTOD and CTOA for these specimens are summarized 
in Table 3. Some values obtained from Specimen E-8 are also presented in Fig. 7b, along 
with the microtopographic results for Specimen E-5. Specimens E-5 and E-8 were replicates 
loaded to nearly the same conditions (Table 2); good agreement was obtained with the two 
examination techniques. 

Representative 
metallographic 
slicing planes 

L = ligament length 

~r - tan.l(c tan O) ~ = ~ -  

a = crack depth 

c = crack half length z 
Back ~ t = plate thickness surface - - ~  

! 

-- LI LI 1 Crack ~1 
L~I i ~ _ ~ ~ r d e r /  L T 

• L A 

FIG. 9--Schematic showing orientation for metallographic slicing. 
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TABLE 3--Summary of crack growth and crack tip data. 

163 

Crack Growth Aa, mm CTOD, mm CTOA, radians 

Specimen 0 ~ = 0 = 0 - -  0 =  0 =  0- -  0 = 0 = 0 = 
Identification 0.175 0�9 1 . 5 7 1  0.175 0�9 1.571 0.175 0.785 1.571 

E-1 0.010 0.025 0.076 0.112 b 0.142 b 0.180 b 1.86 1.78 1.66 
0.117 c 0.147 c 0.160 c 

E-2 0.127 0.272 0.152 0.23 lb 0.279 b 0.358 b 1.74 1.80 1.80 
0.343 c 0.445 c 0.445 

�9  0.226 d 0.203 d 

E-8 0.508 1.118 . . .e  0.711 c 1.138 c . . .e  1.28 0.73 20.7 

E-26 0.076 0.066 0.000 0.041 b 0.056 b 1.07 1.22 2.00 
0.05V 0~(J7"9 c 0.069 e 

E-27 0.051 0.010 0.025 0.114 b 0.163 b 0.188 b 1.55 1.85 1.9 
0.102 c 0.257 c 0.196 c 

E-28 0.000 0.023 0.020 0.091 b 0.104 b . . .  1.43 1.80 1.19 
0o 157 ~ 0.213 c 0.206 ~ 

a 0 is identified in terms of radians. 
b CTOD (90'). 
c CTOD (90). 
d CTOD (CT). 
e Not available. 

Specimens with a/2c = 0.5 

Spec imens  E-16, E-22, and E-24 were also examined  by micro topographic  techniques,  
measu remen t s  were m a d e  perpendicular  to the crack front. The  load-crosshead displace- 
m e n t  records are p rov ided  in Fig. 4, and  the conf igurat ion o f  the original  fatigue crack, the 
extent  o f  subcrit ical  crack growth,  C T O D ,  and C T O A  are presented in Figs. 10 through 12 
for these three specimens.  The  load, crosshead displacement ,  C M O D ,  and Aa values  are 
g iven in Table  4. 

Spec imens  E-26, E-27, and  E-28, were tested to the P,u condi t ions  shown in Fig. 4 and 
Table  4. These  spec imens  were e x a m i n e d  metaUographical ly;  the slicing was pe r fo rmed  
perpendicular  to the cracked plate surface. The  specimens  were examined  at specified 
inc rements  ranging f rom 0 = 0 to ~r/2. The  extent  o f  subcrit ical crack growth and magni-  
tudes o f  C T O D  and C T O A  for Spec imens  E-26, E-27, and E-28 are summar ized  in Table  
3. 

Discuss ion  

Results  ob ta ined  f rom these replicate spec imens  can be used to show crack configura- 
t ion,  the extent  o f  carck growth, C T O A ,  and C T O D  as a funct ion o f  load. (Data  shown in 
Figs. 3 and 4 and Tables  2 and  4 demons t ra te  that, in general, replicate specimens  were 
fabricated and  tested.) However ,  it is first necessary to eva lua te  data  generated by the 
mic ro topograph ic  t echn ique  before  establishing possible correlat ions.  

Evaluation of  Microtopographic Measurements 

This  t echn ique  can be used to measure  displacement ,  Uy, and  crack growth, Aa, at any 
desi red or ien ta t ion  re la t ive  to the  crack front�9 In  this work  the measuremen t s  were made  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  W e d  D e c  2 3  1 8 : 4 5 : 1 1  E S T  2 0 1 5
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U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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TABLE 4--Summary of load, displacement, and crack parameters for specimens with a/2c ~ 0.5. 

End of Test, mm 
Applied Remote 

Stress, MPa Maximum CMOD, mm 
Crosshead Residual 

Specimen End of Displacemen,, Displacement, End of 
Number Maximum Test v v Test Residual ~a ~ 

E-16 b.c 623.8 623.8 15.215 12.192 2.205 2.141 0.762 
E-22 c.d 624.4 624.4 14.707 11.709 . . .  0.381 
E-20 345.0 345.0 1.956 i.'143 . . .  0.0000 
E-24 c,~ 569.9 569.9 8.230 0.584 . . .  0.127 
E-25 615.5 615.5 1.577 1.275 2.588 . . .  
E-26 fg 516.1 516.1 4.013 1.473 . . .  0.()()() 
E-27 r 553.4 553.4 6.731 3.785 ().564 0.025 
E-28 f 546.5 546.5 NA NA 0.409 ().351 0.025 
E-29 544.4 544.4 5.080 2.261 . . . . . . . . .  

a At maximum crack depth, where 0 = ~r/2. 
b Microtopographic technique. 
"Fatigue cracked after monotonic loading to outline Aa due to test. 
d Loaded three times: Pj = 355.8 kN and vj = 5.715 mm, P2 = 370.1 kN and v2 = 5.385 ram, and 

P3 = 406.5 kN and v3 = 9.322 mm. 
e Loaded two times: P~ = 333.6 kN and v~ = 4.267 mm and P2 = 367.4 kN and v2 = 8.230 mm. 
fSliced perpendicular to free surface. 
g Sliced perpendicular to crack front. 

perpendicular  to the crack front  and taken with respect to a reference plane. It was assumed 
that  the fatigue precrack plane is a c o m m o n  zero e levat ion poin t  for each measure-  
m e n t  line. The  micro topographic  technique  may  be also used to measure  the extent  
o f  the out-of-plane d impl ing  at the back surface. This  was not  done  for these speci- 
mens.  

Figures 5 through 7 show that  both  Aa and the configurat ion o f  the surface cracks are 
generally symmetr ica l  for specimens  where a/2c = 0.1; Figs. 10 through 12 show less sym- 
metry  but  not  an appreciable  difference for specimens  where a/2c = 0.5. The  C T O D  mea-  
surements  were observed  to be symmetr ica l  and relat ively constant  for both crack geom- 
etries studied, a l though Spec imen E-12 (Fig. 6b) and Spec imen E-22 (Fig. 10b) showed 
some  nonsymmet r i ca l  and erratic behavior .  A compar i son  was made  between C T O D  val- 
ues based on measu remen t s  o f  C T O D  (90), C T O D  (90'), and  C T O D  (CT). For  a/2c = 0.1, 
at low loads, the C T O D  values  were the same for the C T O D  (90) and C T O D  (CT) mea-  
surement  techniques  as shown in Fig. 5b for Spec imen E-9. At higher  loads, the C T O D  
values  were generally the same, but  the C T O D  (90) values are more  symmetr ica l  and less 
erratic, as shown in Figs. 6b and 7b for Specimens  E-12 and E-5, respectively. It was pos- 
sible to measure  C T O D  (90') at only  a few posi t ions for Specimens  E-9, E-12, and E-5, and 
there was generally good agreement  between C T O D  (90') and C T O D  (CT) except  for Spec- 
imen  E-5 (Fig. 7b). There  was no definite t rend regarding the magni tude  o f  the numbers  
relat ive to each m e a s u r e m e n t  technique.  

For  a/2c -- 0.5 at the lower  loads, the t rends o f  C T O D  values with respect to posi t ion 
were the same. Values obta ined  using C T O D  (90) and C T O D  (90') were always equal  to 
or  larger than C T O D  (CT), as shown in Fig. 11 b for Spec imen E-24. At higher loads, the 
two sets o f  data  [ C T O D  (90) and C T O D  (90')] were in nomina l  agreement,  as shown in 
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168 SURFACE-CRACK GROWTH 

Fig. 12b; however, some disparity can occur as shown in Fig. 10b. In both cases, CTOD 
(90) and CTOD (90') values were generally larger than CTOD (CT). 

The preceding suggests that CTOD measurements based on using a 90 deg included 
angle [CTOD (90) and CTOD (90')] will be accurate for a/2c = 0.1 at low and high loads, 
but will not be reliable for a/2c = 0.5. For a/2c = 0.5, the ratio of  CTOD (90") to CTOD 
(CT) is nominally 1.1 for both low and high loads. The ratio of  CTOD (90) to CTOD (CT) 
is nominally 1.15 at low loads and 1.25 at high loads. The large difference between CTOD 
(90) and CTOD (CT) at high loads is not a significant problem since CTOD measurements 
are generally used only to the point o f  crack initiation. Crack initiation occurred at or, rang- 
ing from 447.8 to 459.5 MPa and from 516.1 to 546.9 MPa for a/2c = 0.1 and 0.5, respec- 
tively (Tables 2 and 4). 

The CTOA measurements were observed to be generally symmetrical with respect to O 
= ~-/2, normal bisector o f  crack length, and relatively constant for a/2c = 0.1, but showed 
substantial nonsymmetrical and erratic results for a/2c = 0.5. A comparison between these 
two configurations suggests that the nonsymmetrical and erratic results occur for a/2c = 
0.5 because o f  the high degree o f  crack curvature and because the maximum constraint 
occurs at O of  approximately 7r/3 and 2~r/3. For a/2c = 0.1, the longer crack front 
approaches a 2-D crack (with substantially less curvature) and the maximum constraint 
occurs at about 6 --- r /10  and 9 ~r/10. The latter observation is supported in Figs. 5c, 6c, 
and 7c, where there are considerable changes in CTOA near the surface of  the specimen. 

Determination of R 

The distance from the crack mouth to the center of  rotation, R, is used to estimate 
CTOD based on measured values o f  CMOD. For a surface-flawed specimen exposed to a 
tensile load, a simplified approach is to assume that R is a constant for all O. This assump- 
tion is appropriate if it can be shown that the portion of  the surface crack where R is essen- 
tially constant controls the conditions for initiation of  crack growth and subsequent crack 
extension. Figure 13 shows the approach, based on assuming that similar triangles exist, 
used to experimentally determine R from photographs or to calculate R based on CMOD 
and CTOD. Figure 14 shows the relationship between R, normalized by dividing by a ' ,  
and crack perimeter location for each aspect ratio at different applied loads. For those spec- 
imens with a/2c = 0.1, there is a general trend of R/a" decreasing with increasing 0 and 
then remaining constant for 0 >_ 0.4 tad. The ratio R/a" has a reasonably constant value 
o f  2.20 for Specimens E-I and E-2 where a/ay~ = 0.99 and 1.05, respectively, but increases 
substantially to 3.0 for Specimen E-8 where a /a ,  > 1.04. The comparison between Speci- 
mens E-2 and E-8 suggests that a/ay, is not completely adequate as the independent vari- 
able, since Specimen E-8 experienced maximum load and then a decreasing load before 
the test was terminated. A better comparison is made by noting that Specimens E-1 and 
E-2 were subjected to v = 3.56 and 3.78 mm, respectively, whereas Specimen E-8 experi- 
enced substantially more displacement with v --- 4.37 mm. An alternate approach using 
measured values of  CTOD and CMOD was also used to calculate R/a'. These values were 
somewhat less than the measured values (see the open circles in Fig. 14a). 

For those specimens with a/2c -- 0.5, there is also a trend of  R/a' decreasing as 0 
increases to about 1.6 tad (Fig. 14b). The ratio R/a' is reasonably constant at 1.6 for only 
a short range of  0 near 1.7 rad. The results in Fig. 14b suggest no significant differences in 
Rla' for specimens loaded to a/ay, ranging from 1.11 to 1.19. In fact, Specimens E-26 and 
E-27 experienced substantial differences in applied crosshead displacement since v = 4.01 
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FIG. 13--Schematic showing method for experimental measurement of R. 

and 6.73 mm, respectively. This suggests that R/a" is not very sensitive to a/ay, < 1.19 or 
v < 6.73 m m  for a/2c -- 0.5. 

There is general agreement between the results shown in Figs. 14a and 14b since R/a" 
decreased to a nominally constant value. But there are substantial differences in the range 
of  0 corresponding to constant R[a', as well as in the magnitude of  the constant values 
themselves. The former is related to the length of  the crack front having the same size of  
remaining ligament. This length is longer for Specimen E-8 than for Specimens E-1 and E- 
2. The longer length also identifies why 0, corresponding to a constant R/a', was larger for 
specimens where a/2c = 0.1 than for specimens where a/2c -- 0.5. The increase in the 
constant value of  R[a' associated with Specimen E-8 shows the effective reduction of  out- 
of-plane bending with increased plasticity. 

Relationship Between 6,t and 6el 

I f  it is possible to predict a constant value of  R as a function of  applied load and flaw 
configuration in the vicinity of  maximum crack depth, it will be possible to predict CTOD 
at 0 = 7r/2 based on a measure of  CMOD (measured on the specimen surface along the 
normal bisector of  the crack length). Therefore, it is desired to identify methods for pre- 
dicting CTOD (rpt) around the crack perimeter based on knowing CTOD only in the central 
region. 

The approach evaluated here uses the Newman-Raju equation to calculate K around the 
crack perimeter. These values of  K are then used to calculate ~e~ for the same positions 
where 6p~ was measured to obtain the ratio 6t/~e~. This ratio is plotted versus position around 
the surface crack perimeter in Fig. 15. I f  5,/~ remains constant as a function of  0, then the 
plastic CTOD (bp~) follows the same trend as predicted by the Newman-Raju solutions for 
~e~. This provides a basis, when used with 60~ at 0 --- ~-/2, for predicting 6p~ or 6, around the 
circumference of  a surface crack. When the ratio deviates from a constant, then the New- 
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man-Raju solutions can no longer be used for this purpose, that is, it will no longer be 
possible to predict 6pj around the circumference of  a surface crack having only ~ot in the 
central region. From Fig. 15a it is apparent that fipj follows the prediction of Newman-Raju 
up to about gross section yielding, that is, a/a~s = 0.96. As the applied stress exceeds gross 
section yielding, there is an increase in fi,/fiot in the central region as well as larger increases 
near the free surface, indicating the limit of  applicability of  this approach for the low-aspect 
ratio semielliptical flaws has been exceeded. This is true only for this specimen configura- 
tion since the loss of  constraint, which is related to specimen and defect configuration, will 
affect the limit. Specimens E-5 and E-12 that were loaded to a/oys = 1.03 and 1.04, respec- 
tively, showed a varying ~,/~e~, but reasonably good reproducibility between the two 
specimens. 

In Fig. 15b it can be seen that ~,/~o~ increases slightly with increasing stress for a/ay, up to 
1.22 for the semicircular flaws. For these conditions, the distribution of  ~,/~o~ with respect 
to 0 remains essentially constant. When ,/oy, >_ 1.3, a substantial increase in fi,/bo~ occurs, 
particularly near max imum depth. This latter observation is probably due to loss of  con- 
straint. Parks and Wang [4], using a finite-element technique, predict loss of  constraint 
(loss of  Hutchinson-Rice-Rosengren [HRR] field dominance) to occur at about ~r/~ry, = 
0.85 and 1.04 for a/2c = 0.1 and 0.5, respectively. For specimens with a/2c = 0.5, the 
limit of  applicability for using the Newman-Raju solution to predict b, is ~/ays --< 1.22. This 
limit is applicable only for this specimen configuration, since the loss of  constraint will 
affect the limit. The effect of  a loss of  constraint at the free surface is evident in both Figs. 
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FIG. 15--Continued. 

15a and 15b by the decrease in ~t/~e~ at each end of the figures for six of the eight speci- 
mens. Because of the scatter for Specimen E-22, it is not certain if the same trend 
occurs. The results for Specimen E-24 are questionable if attempting to identify a specific 
trend. 

Relationship Between Loading Conditions and Aa, CTOD, and CTOA 

The previous two subsections provided experimental data regarding the distance to the 
center of rotation R, and the limits of applicability for using the Newman-Raju stress- 
intensity factor solutions for calculating C T O D  around the perimeter of  the surface crack. 
The relationships between P and u are shown in Figs. 3 and 4 for specimens with aspect 
ratios of 0. l and 0.5, respectively. The crosshead displacement provides a useful qualita- 
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tive parameter since replicate specimens were tested in the same machine. The compliance 
for the test machine and associated fixtures is nominally 1.96 pm/kN. 

Figure 16a shows good reproducibility, for plots of P versus CMOD, for Specimens E- 
5, E-8, E-4, and E-9, but Specimen E-12 differs considerably. This is understandable since 
the crack depth, a, is 3.86 mm for Specimen E-12 and is nominally 4.2 mrn for Specimens 
E-5, E-9, and E-8. There is more variation in Fig. 16b because of the large difference in 
crack depth. At this time, it is not known why the plot for Specimen E-27 falls below that 
for Specimen E-28, since the latter had the larger initial crack size. 

Figure l? provides plots of CTOA versus Aa for a / 2 c  = 0.1 and 0.5. In Fig. 17a, there 
is a clear trend of decreasing CTOA with increasing crack growth. This was observed at 
both 0 = 7r/4 and ~r/2, which is reasonable for specimens with a /2c  = 0.1 since, as was 
noted earlier, the significant Aa Occurs in the central region of the crack border. There is a 
tendency for CTOA to approach a constant value of 0.7 rad with increasing crack exten- 
sion. Figure 17b shows considerable scatter, but it is obvious that CTOA is decreasing with 
increased Aa, and it also appears to be approaching a constant value. Since Aa _> 0.5 mm 
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FIG. 16--Plot o f  load versus CMOD." (a) a/2c -- 0.1; (b) a/2c = 0.5. 
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before CTOA decreased to the minimum values, it is expected that loss of  constraint 
affected either the lower limit of  CTOA or the amount  o f  Aa, or both. This is hypothesized 
due to the work of  Parks and Wang [4], who have used numerical techniques to predict 
loss of  H R R  dominance at ~/ays = 0.85 and 1.04 for a/2c - 0.1 and 0.5, respectively. Their 
predictions were based on the same test specimen geometries, but did not allow for any 
subcritical crack growth. 

Summary and Conclusions 

Experimental measurements o f  CTOD, CTOA, and Aa around the circumference of  sur- 
face cracks at different values of  P,v for semielliptical and semicircular aspect ratios have 
been provided. A comparison between CTOD values based on measurements of  CTOD 
(90), CTOD (90'), and CTOD (CT) showed that using the 90-deg included angle concepts 
provides values comparable with CTOD (CT), for a/'2c -- 0.1 but not for a/2c = 0.5. For 
a/2c -- 0.5, the ratio of  CTOD (90') to CTOD (CT) is nominally I. 1 for both low and high 
loads, and the ratio o f  CTOD (90) to CTOA (CT) is nominally 1.15 at low loads and 1.25 
at high loads. The above illustrates the need to define either a standardized method for 
measuring CTOD, or minimally, the actual method used in each measurement. 
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Measurements of  CMOD and CTOD were used to show that the distance to the center 
of  rotat ion (R) var ied as a function of  load, defect geometry, and location around the cir- 
cumference o f  the surface crack. For  the two aspect ratios studied, a constant R/a'  value 
may be used for condit ions associated with crack init iation regardless of  0 since the signif- 
icant Aa occurred in the central region of  the crack border. 

The Newman-Raju  equation may be used to provide useful estimates ofrp~ and bt as long 
as a < 0.96 ays for a/2c --- 0.1. For  specimens with a/2c --- 0.5, the Newman-Raju equations 
are adequate for predicting 6p, and ~, as long as a < 1.22 ays. These two limits correspond 
to net section stresses of  1.40 ay~ and 1.31 O-y s for a/2c -- 0.1 and 0.5, respectively. These 
l imits are associated with the specific specimen and defect sizes, which affect constraint. 

Up  to the load associated with crack initiation, it is possible to relate CMOD to CTOD 
in the max imum depth region of  the crack. It is also possible to predict the CTOD around 
the crack perimeter  using the Newman-Raju equation for a/ays < 0.94 and a/ays < 1.22 for 
a/2c = 0.1 and 0.5, respectively. It will be necessary to relate CTOD to constraint before 
it is possible to predict 6c,, for crack initiation. 

A relationship of  decreasing CTOA with increasing Aa has been demonstrated. Cur- 
rently, it is uncertain how much crack growth is required before at tainment of  the mini- 
mum value o f  CTOA or how much effect the loss of  constraint has on the CTOA. 
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ABSTRACT: Application of fracture mechanics to through cracks in thin laminated com- 
posite plates does not yield good correlation with test data because of large zones of surface 
damage near the crack tips. However, for thick laminates with through or surface cracks of 
moderate sizes (of the order of several ply thicknesses), influence of damage zones is usually 
small and stress analyses based on homogenization assumption and fracture mechanics 
approach should yield reliable estimates of failure loads. In this paper, stress-intensity factors 
for elliptic cracks in transversely isotropic (in planes perpendicular to the cracks) and ortho- 
tropic media obtained from numerical solutions are reported. In addition, appropriate cor- 
rection factors to obtain stress-intensity factors for surface cracks of semielliptic shapes are 
estimated using a limited number of finite-element results. Test data available in literature 
are correlated with analytical predictions for failure of critical ligaments. Other relevant fail- 
ure mechanisms are also discussed. 

KEY WORDS: composite laminates, surface cracks, surface cuts, fracture mechanics, elliptic 
cracks, semielliptic cracks, homogenization, surface damage 

Fracture-mechanics-based methods are not directly applicable for predicting fracture 
due to through cracks in thin laminates because of  considerable surface damage. Semi- 
empirical  corrections are often employed [1]. However, for moderately thick laminates, 
surface damages are usually l imited and direct use of  fracture-mechanics-based methods 
should yield reliable results. Methods to obtain stress-intensity factors for surface cracks 
in isotropic plates employ various approximate,  iterative or finite-element schemes to 
compute  correction factors due to finite thickness and width effects which are applied to 
the results for elliptic cracks in an infinite medium [2]. Laminated composite plates con- 
taining a repeating arrangement of  layers can be assumed to be orthotropic (or transversely 
isotropic with plane of  isotropy parallel to laminations),  when sizes of  cracks are greater 
than several ply thicknesses. Even with this assumption,  the stress field is quite different 
from that in the isotropic case, although at tempts  have been made to use the results for 
isotropic plates to correlate test data  for first l igament failure (near the surface) in com- 
posite laminates [3-5]. In this study such first l igament failures will be called initial dam- 
age or initial failure to distinguish them from final failure, which results in complete loss 
in load-carrying capacity of  the specimen. It  should be noted that sometimes initial damage 
or failure may coincide with final failure. This may happen when load cannot be increased 
beyond that required to cause initial damage. 

t Staffscientist, Materials Sciences Corporation, Gwynedd Plaza II, Bethlehem Pike, Spring House, 
PA 19477. 
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General approaches for calculation of  stress-intensity factors for an elliptic flaw in an 
anisotropic medium have been suggested in Refs 6 and 7. In this study, we specifically 
consider transversely isotropic and onhotropic media (with properties of"homogenized"  
laminates) representative of  those used in practice. The crack planes are perpendicular to 
critical loading directions (0-deg fibers) so that only Mode I effects are present. An explicit 
expression is given for the transversely isotropic case (plane of  isotropy parallel to lami- 
nations), where it is necessary to evaluate one definite integral by numerical scheme. 
Results for orthotropic plates are found to be close to those for transversely isotropic case. 
It is observed that the stress-intensity factors at the points which correspond to those on 
the free surface, when one wishes to use these results for the case of  semielliptic surface 
crack (with corrections, as discussed in Re f2  for isotropic plates), are closer to the through- 
crack solution as compared to the results in the isotropic case. For obvious reasons, 
through-crack solutions yield upperbound estimates of  intensity factors at the free surface 
for a surface crack in isotropic as well as orthotropic media and therefore, correction fac- 
tors (needed to obtain surface-crack solution from that for a crack in infinite medium) 
estimated from a limited number of  three-dimensional finite-element solutions for trans- 
versely isotropic plates are found to be smaller than those for surface cracks in isotropic 
plates. This is a consequence of  the fact that the through-the-thickness shear moduli o f  
plates under consideration are extremely low. For the same reason, back surface effects are 
also found to be small. 

The results obtained indicate that failure is expected to occur near the free surface in 
almost all of  the semielliptic flaws considered in Refs 3, 4, and 5, where failure at deepest 
points are sometimes predicted by the use of  isotropic plate results. The correlation of  test 
data with the present solution appears to be much better than that using isotropic plate 
solution [3]. It is also shown that use of  through-crack solution yields reasonable lower- 
bound estimates in some cases. For some semielliptic flaws, final-failure loads are often 
higher than those for first-ligament failure (this phenomenon is called "two-part failure" 
in Ref4), and sometimes these are found to be lower than the strength o f  ligaments remain- 
ing after initial fracture o f  layers near the surface. Possible reasons for this phenomenon 
are also discussed. 

Elliptic Cracks in Orthotropic Media 

A review of  work on part-through flaws in isotropic plates may be found in Ref  2. It is 
common to obtain the stress-intensity factors for such flaws by multiplying the known 
solution o f  an elliptic crack in an infinite medium by correction factors accounting for front 
surface, back surface, and finite width effects. The general approach for calculation of  
stress-intensity factors for an elliptic crack in an infinite anisotropic medium can be found 
in Refs 6 and 7, and the variation can be expressed by the following formula 

svffa f(,7,, ,1~) K(x,, x2) = ./2 0/~ + r/2z) -'/4 (1) 

fo f(n~, ,fi)d4,' 

where 

Xl = 8 sinq~, 
X2 = C COSq~, 
nl = sin~, and 
n2 = a c o s ~ / c .  
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Primed quantities are functions of  ~' instead of  ~. Integration with respect to ~' is required 
to evaluate the definite integral in the denominator. 

Note that x~ and x2 are coordinates o f  points on the elliptic crack boundary and a and 
c are semi-axes of  the ellipse in x, (~ --- 90 deg) and x2 (~ = 0 deg) directions (Fig. 1). For 
isotropic materials f = G(n~ + ~)~/2/(1 - ~), G and ~ being the shear modulus and Pois- 
son's ratio, respectively. No explicit expression of  the function f i s  available in literature 
except for isotropic materials. In the Appendix, the method of  numerical calculation o f f  
for orthotropic media and an explicit expression for the transversely isotropic case are 
given. In what follows, results are given for three specific materials. These results are uti- 
lized later for prediction of  failure of  surface layers (initial damage). In many cases this 
may also yield the final failure load (except for medium depth flaws in laminated plate 
specimens with fixed grips). The averaged properties used for calculation of  stress-intensity 
factors are listed in Table 1. The first two materials have been utilized in Refs 3-5. The 
layup for Material 2 is a bit more complicated than that indicated in the table. However, 
it is representative of  the arrangement near the crack, and it will be seen later from the 
results that minor differences in properties do not influence the results too much. As shown 
in Table 1, all materials have high in-plane moduli (2, 3 directions, Fig. 1) but low through- 
the-thickness modulus (1 direction). They also have low through-the-thickness shear mod- 
uli, which have significant influence on the variation of  stress-intensity factors for flaws 
with a/c -- 1, 0.5 and 2 shown in Figs. 2, 3, and 4, respectively. For a circular flaw, for 
example, the solution for isotropic materials indicates that the stress-intensity factor is con- 
stant along the periphery (Fig. 2). For the materials under consideration, however, the 
maximum value is at ~ = 0 deg (corresponding to free surface in part-through flaws), and 
it is about twice that at ~ = 90 deg, which corresponds to the deepest point in surface 
flaws. It is clear that more load transfer is occurring in the direction x2 as compared to the 
direction x~ because of  low through-the-thickness shear moduli. The same trend follows 
for the other two values ofa/c .  It should be emphasized that even for a/c = 0.5, the max- 
imum value occurs at r = 0 deg, although for isotropic materials the stress-intensity factor 
at 4~ = 0 deg is two thirds that at q~ = 90 deg. This appears to imply that in a majority of  

o 

/ ~ 

FIG. 1--Part-through f law in a plate. 
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TABLE l - -Proper t i e s  used for calculations and data correlations. 

Material a 

Young's Moduli, Fracture 

GPa Poisson's Ratios Shear Moduli, GPa Toughness, 
KQ, MPa 

E2 E3 E2 1'23, v21, v3t G23, Gi2, GI3 Vm 

Unnotched 
Strength, 
a0, MPa 

No. 1, transversely 56.7, 56.7, 11.7 0.3, 0.35, 0.35 21.8, 3.67, 3.67 
isotropic-quasi- 
isotropic (0/+ 
45/90) layup 
T300/epoxy 

No. 2, orthotropic 38.2, 29.0, 6.90 0.49, 0.17, 0.21 20.0, 3.59, 3.36 
(+ 56.5/0) layup 
AS4/epoxy 

No. 3, orthotropic 93.8, 66.1, 12.5 0.21, 0.31, 0.31 17.2, 5.92, 5.49 
(_+ 70/0) layup 
T40/epoxy 

32.9 538 

30.0 379 

a O-deg direction coincides with x3-axis, which is perpendicular to the crack plane. All layups are of repeating type. 

cases failure will occur first near the surface. This is not in agreement with the results 
obtained in Refs 3 and 4 where failure near deepest points are predicted for a/c < 1. This 
phenomenon also implies that back-surface effects are likely to be small in the materials 
under consideration. 

Also shown in Figs. 2-4  are the limits for through cracks in a plate which is the same 
for isotropic and anisotropic materials. It can be seen that the stress-intensity factors at 
= 0 deg for elliptic flaws in orthotropic or transversely isotropic materials are closer to 
these values than the isotropic solutions. Since these through-crack solutions are the lim- 
iting values of  stress-intensity factor (SIF) for part-through cracks (at ~ = 0 deg) as a/t is 
increased (t being the thickness), it is expected that the correction factors for obtaining the 
part-through crack solution near the surface will be smaller than that for isotropic mate- 
rials. For  this reason, only a l imited number  of  finite-element runs were necessary to obtain 
estimates of  the correction factors to consider front- and back-surface effects as discussed 
in the next section. 

Correction Factors for Surface Flaws 

Since the results in the previous section indicate that initial damage (and sometimes final 
failure as discussed in the introduction section) will occur due to failure of  surface layers 
in a majori ty  of  cases, at tempts were made in this task to estimate the corrections necessary 
to obtain the value of  SIF at ~ = 0 deg for surface flaws from the solutions in the previous 
subsection by the scheme 

K, = K~Fc(a/c, a/t)Fw(c/w, a/t) 

where 

Ks = SIF near surface for elliptic surface flaw in a plate, 
K~ = SIF at $ = 0 deg (see Figs. 2-4) for infinite medium, 
Fc = correction factor for finite thickness and geometry of  the ellipse, 
a = semimajor  axis in depth direction, 
c = semimajor  axis on surface, 
t = thickness, and 

F~ = correction for finite width = (sec ~rc/w a/t) j/2. 

(2) 
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TABLE 2--Correction factor Fc determined from finite-element analysis for a/c = I compared with 
isotropic plate result. 

Limit for 
Through 

Material a/t ~ 0 a/t = 0.333 a/t = 0.667 Crack 

Transversely isotropic, Material 1 . . .  1.09 1.15 1.18 
(see Table 1) 

Isotropic [2] 1.14 1.2 1.4 1.57 

The correction is taken as the product  of  a width correction factor Fw and another factor 
Fc to consider front and back surface effects. The factor Fw is likely to be close to one for 
small 2c/w ratios, and therefore this factor is taken to be the same as what is usually chosen 
for isotropic plates [2]. To determine Fo we made some three-dimensional finite-element 
runs for the transversely isotropic material (Material 1) with a semicircular surface flaw. 
The finite-element code used is an inhouse code employing brick elements with constant 
strain fields. Since no singular element is utilized, the stress-intensity factors could not be 
directly calculated. Energy release rate G~ at any point  on the crack periphery was calcu- 
lated using the well-established procedure of  multiplying the concentrated line force at the 
crack periphery by half  o f  the crack opening displacement gradient in the radial direction 
at the same location. The line forces were obtained from nodal reaction forces by distrib- 
uting evenly over the nodal spacing. The intensity factors were obtained from the relation- 
ship between K and G~ obtained from infinite medium solution (Appendix). 

To check the accuracy, the results for a/t = ~6 for an embedded crack (see insert at left 
in Fig. 5) are compared with the closed-form solution for a/t  = 0 (infinite medium) in Fig. 
5. I t  can be seen that the two results are very close to each other, indicating that back- 
surface influence is negligible for embedded flaws. This is also true for surface flaws (near 
r = 90 deg) as it  appears from the comparison of  surface flaw solutions for a/t = ~ and 
~, shown in the same figure. These results also indicate that as a/t  is increased the SIF at 
4~ = 0 deg approach the through-crack solution. The rate of  increase, however, is slower 
than that for the isotropic case, since the solution for a/t  = 0 for isotropic medium is much 
lower than that in the transversely isotropic case. The correction factors are shown in Table 
2. The factors for transversely isotropic case are not very sensitive to a/t  ratios, and for a/ 
t <0.667 these are very close to 1.1, a value which is commonly considered as the front- 
surface correction factor (aft  ---- 0) for isotropic plates. Accordingly, for moderate a/t ratios 
the correction factors may possibly be est imated from the relation given in Table 3. These 
relations are chosen to match the correction factors (in the isotropic case) for the two lim- 
iting cases a/c ---" 0 and c/a --" 0 as well as for a/c = 1 (for transversely isotropic case) 

TABLE 3--Values of Fc used for correlation in transversely isotropic and orthotropic materials (see 
Table l) for moderate a/t ratios:for a/c < I, Fc ~ 1.24 - 0.14 a/c; for a/c >1,  Fc ~ I + 0.I c/a. 

Limit for Through 
a/c Fc Crack, Material 1 

0.2 1.21 2.72 
0.5 1.17 1.51 
1 1.1 1.18 
2 1.05 1.06 
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186 SURFACE-CRACK GROWTH 

when a/t is small. For physical reasons it appears that the two limiting values should also 
hold for transversely isotropic case. Since the stress-intensity factors for elliptic cracks in 
infinite media for the two orthotropic materials are close to those for the transversely iso- 
tropic case, the correction factors are also expected to be almost identical. Accordingly, the 
relations in Table 3 may be assumed to hold. The factors for some a/c ratios are listed in 
Table 3 along with the limiting values for through crack. As can be seen for a/c _> l, the 
correction factors are close to these limiting values. These values were utilized for data 
correlation studies reported in the next section. 

Correlation with Available Data for Failure of Layers Near the Surface 

Tests on quasi-isotropic T300-5208 laminates with (0/+ 45/90)~0~ layup are reported in 
Ref  3. This material can be considered to be transversely isotropic with elastic properties 
listed in Table 1 (Material 1). Fracture toughness K e measured from tests with through 
cracks is also given in Table 1. Predicted values of  the ratios of  notched strength to 
unnotched strength to cause fracture of  surface layers (close to ~ = 0 deg) obtained by 
equating the value o f K a t  ~ = 0 deg (reported in the previous subsection) to K e are plotted 
in Fig. 6 along with test data. For calculation, the width is taken to be 25.4 mm (1 in.). For 
closed symbols the width of  test specimens was 19 mm (0.75 in.), but for such specimens, 
values of  c/w are not large enough to cause any significant influence on the results. Test 
data appear to be in good correlation with predictions except for very small crack sizes 
where the scatter appears to be greater. For these cases the disagreement may possibly be 
attributed to the nonhomogeneity in laminated construction, but it should be pointed out 
that for s~all  c/t ratios, t being the laminate thickness, similar deviations from linear- 
elastic fracture mechanics may be observed even in metal plates because of  dominance of  
inelastic regions near crack tips. Although the material under consideration behaves elas- 
tically under extension, some inelastic response may be expected because o f  the presence 
of  + 45-deg layers, which are subjected to inplane shear, and existence of  interlaminar 
shear stresses. For all practical purposes, the agreement is reasonable and is much better 
than those based on isotropic plate solutions [3]. Also shown in Fig. 6 are the results 
obtained on the assumption that the part-through cracks can be replaced by a through crack 
of  length 2c. Because of  the possibility of  creation ofinterlaminar delaminations, this solu- 
tion might possibly be taken as a good lower-bound estimate except for small c/t ratios. 

Similar comparisons for some tests reported in Ref  4 are shown in Fig. 7. The calcula- 
tions are based on properties listed in Table 1 (Material 2) and the procedure outlined in 
the previous subsection. It should be noted that the value of  K o (Table 1 and Ref 4) was 
never measured but was estimated in Ref 4 by the procedure outlined there. The differ- 
ences between test data and predictions for initial damage may possibly be attributed to 
this fact. However, the differences do not appear to be too large. Also shown in the figure 
are the predictions obtained by replacing the surface crack by a through crack with the 
same value of  c, which again provides a lower-bound estimate. In a number of  cases for 
medium a/t ratios, two-part failures (final failure at a higher load after surface fracture) are 
reported in Ref  4, and the final failure loads are also plotted in Fig. 7. In some cases these 
loads are much higher than those to cause fracture of  surface layers; an attempt to explain 
this phenomenon was made in Ref  4. This was investigated in some detail in this study 
and is described in the next section. 

Delamination Growth after Failure of Surface Layers 

In two-part failures suggested in Refs 3 and 4, delaminations are generated separating 
the fractured surface layers from the remaining layers which remain intact, although the 
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FIG. 7--Test data and predictions of initial damage or fracture of surface layers near the 
surface for a/c = 1.0. 

0 . 7  

delamination depth is not always the same as the cut depth. Sometimes  more than one 
delamination are created. Whatever be the case, if  the delaminations extend to the grips 
and the grips can be considered to be rigid, the final failure loads can be estimated from 
those o f  the remaining ligaments subjected to constant axial displacement at the grips. 
These estimates have been made in Ref  4. However, actual failure loads for two-part fail- 
ures are somet imes  lower than these estimates. An attempt was made in this study to deter- 
mine the possibility that the delamination could be arrested before they reached the grips 
and cause failure at loads below those o f  the remaining ligaments. 

Possibilities of  delamination growth were examined by the model  described in Ref  8. 
The problem was assumed to be quasi-three-dimensional (all quantities are independent 
ofx2  coordinate), and a finite-element analysis was utilized to calculate Mode I and Mode 
II energy-release rate at the tips of  delaminations of  varying length e. The layup modeled 
was the same as that used in Ref  4. The cut depth was chosen as 9.91 m m  (0.39 in.) and 
the thickness of  the laminate was equal to 35.6 m m  (1.4 in.). The stress-analysis method 
(based on sublaminate assemblage model  described in Ref8)  made use of  six sublaminates, 
two above and four below the delamination plane. Specimen lengths (between rigid grips 
which are pulled apart) of  101.6 m m  (4 in. as used in Ref  4) and 406.4 m m  (16 in.) were 
considered. Results showed that the energy-release rates at delamination tip as well as the 
max im u m stresses in the 0-deg layers (average over an element) reduce as the delamination 
length e increases. For 101.6-mm-long specimens and e = 35.6 m m  G] = 175 N /m,  G.  
= 2450 N / m ,  and the max imum stress in 0-deg layer is equal to 1282 MPa (186 ksi). This 
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later value is close to the failure stress of the 0-deg layers. It appears, however, that the 
energy-release rates are too high (a critical value ofG[i ~ 1000 N/m for delamination frac- 
ture is possibly appropriate for standard epoxy matrices, see Ref 9) for arresting of delam- 
inations. Moreover, the maximum stress in the 0-deg layers occurs in the elements near 
the delamination tips, whereas failure of specimens have been reported under the surface 
cuts [3,4]. It appears, therefore, that if the delaminations do not allow any stress transfer 
they will grow to the grips. For longer specimens (406.4 mm) the energy-release rates are 
much higher. It is suggested in Ref 4 that failure occurs (after the delaminations grow to 
the grips) at loads less than that for remaining ligament failure because the grips are not 
perfectly rigid. It is most likely, however, that the delaminations created after failure of 
surface layers do not have smooth surfaces thus allowing transfer of  shear stresses. Alter- 
natively, it is possible that instead ofdelaminations, a highly strained shear transfer region 
is created where the material (the resin) yields and behaves in a nonlinear fashion. Such 
damage zones (perpendicular main cracks) are quite common in many epoxy matrix com- 
posites as discussed in Refs 10 and 11, and use of such models may yield better correlation 
with test data for such two-part failures. 

Discussion 

Initial damage in the form of fracture of surface layers near part-through semielliptic 
flaws can be predicted with reasonable accuracy using (a) homogenization assumptions, 
(b) orthotropic or transversely isotropic elasticity solution for infinite media, (c) correction 
factors for finite thickness, anti (d) fracture mechanics. Loads required to cause initial dam- 
age can be much lower than the strengths of the ligaments below the crack for medium- 
depth flaws (not too shallow or deep). For shallow or deep flaws, failure will occur suddenly 
and the strength is expected to be higher than that of remaining ligaments. Fracture- 
mechanics predictions will yield a conservative estimate of the load-carrying capacity for 
medium-depth flaws. Assumption of through cracks of the same width as the exposed 
length of the part-through surface flaw can be used to obtain simple but more conservative 
estimates. 

For medium-depth flaws, a two-part failure may occur. Final-failure load is expected to 
be higher than that for initial damage or fracture of surface layers but may be lower than 
the strength of the remaining ligaments. Further analytical and experimental studies are 
required for a better understanding of such two-part failures. 

Conclusions 

The results obtained here demonstrate that stress-intensity factors for a majority of 
semiclliptic surface cracks in laminated composites modeled as homogeneous orthotropic 
plates usually show a maximum value near the surface. This is not observed in isotropic 
plates when a/c < 1. Therefore, failure of surface layers (called initial damage) will occur 
first for a majority of crack configurations in laminates. Because of this fact and because 
of the crack blunting effect due to creation of damage zones or delaminations below the 
failed-surface layers, the load-carrying capacity of laminates containing medium-depth 
flaws is usually greater than the load causing initial damage. Simple formulas for calcula- 
tion of stress-intensity factors for elliptic flaws in infinite transversely isotropic and ortho- 
tropic media as well as estimates of correction factors to consider finite thickness, geometry 
of the ellipse, and finite width are given. These results can be used to predict failure loads 
for shallow or deep flaws and obtain conservative estimates of  strength of laminates with 
medium-depth flaws. The predictions will be accurate provided a repeating arrangement 
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of layers exists and laminate thickness is not small compared to the crack size. This is 
confirmed by the correlation of analytical predictions with test data reported in the liter- 
ature. Further studies on two-part failures are, however, required as discussed earlier. It is 
hoped that the results of this study will be useful for obtaining (1) design guidelines for 
damage tolerance, (2) accept/reject criteria for manufactured components, and (3) repair/ 
replace criteria for damaged parts in laminated composite structures, which are being used 
in an increasing number of applications. 
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APPENDIX 

Stress-Intensity Factors for an Elliptic Crack in an Orthotropic Medium 

The governing equations for three-dimensional elasticity problem of an anisotropic 
medium are given by 

~j,.k = 0 (3) 

~jk = Gk,mU,,~ (4) 

where a, U, and C denote stresses, displacements, and stiffnesses, respectively, and 
repeated index indicates summation. Substitution ofEq 4 in Eq 3 yields three second-order 
partial differential equations in terms of the displacement variables. Taking multiple Fou- 
rier transforms of these equations and denoting 

1 
~-~l(~, x3)= ~ Y?oo Y-~176 Ug(x_, x3)e/~~ dxldX 2 (5) 

where ~ = (~, ~2), x -- (x~, x2) are vectors, and i '  = Vr-Z-l, one obtains three second-order 
ordinary differenfffil equations. In what follows we will consider an elliptic crack (with 
semi-axes a~ and a2 oriented in the directions x~ and x2, respectively) in an orthotropic 
medium subjected to equal and opposite pressure on the crack faces and seek solutions for 
the half space x~ > 0. We introduce the following transformations 

xj = aixi and ~, = ~" L, 
x~ --- r sin 0 ~'~ = sin ~/a~ 
x~ = r cos 0 ~'2 = cos 4~/a2 

i = 1,2 
(6) 

and write the transformed displacements as 

3 

Ui = ~..  otikCke -~xkx3 (7) 
k = l  

where the characteristic roots Xk (with positive real parts) and the eigenvectors aik may be 
evaluated from the following equations obtained by substituting Eq 5 into the differential 
equations. 
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( G d ~  + G z ~  - C~X~)(-ik~2((C23 + C44)) a2k 
C ~ ( .~, + c ~  c . x D  , ~  

= o (8 )  

In Eq 8, C 0 are the stiffnesses in contracted notation. For  the transversely isotropic case, 
X~'s are real and we will give a closed form solution of  the problem later. For  generally 
orthotropic case, hk are not always real and must  be evaluated for each value o f~  by solving 
the cubic equation involving X] numerically and taking hk as their square roots with posi- 
tive real parts. For  all values of  4~ between 0 deg and 90 deg (except for 4~ = 0 deg and 90 
deg), one may choose a3k = - i ' ,  k = 1,2,3 and evaluate ink, azk from the first two equations 
Eq 8. One should note that  these two equations may become singular at ~ = 0 deg or 90 
deg or both for certain values of  Xk- However, one may obtain a good estimate of  ark, a2k 
by choosing ~ close to 0 deg or 90 deg or evaluate them from another pair of  equations. 
We have made use of  the first approach by choosing 4~ about 0.5 deg off from 0 and 90 ~ 
To evaluate Ck, we utilize the following conditions at x3 -- 0 

~ = ~-y~ = O, U3 = I ~  (9) 

where W* is the displacement U3 at the plane x3 -- 0 +. Note that W* = Q outside the 
cracked surface. The result (for the choice of  a3~ = - i ' )  is given by Ck = i '  IV* C~ 

C ~  = (--(X<~2~o - -  XmO~2m)~" l - -  (Xm~9/lm - -  XL~9/IL')~" 2 ( 10 )  
+ x<x,,,(,~,,,~,. - ~,,,,o<~D)/.', 

where g = 2, m = 3 f o r k  = 1;g = 3, m = 1 f o r k  = 2 a n d g  = 1, m --- 2 f o r k  = 3, and 
A = X i X 2 ( a , l o t 2 2  - -  a120/21) --~ )k2~.3(a12a23 - -  a 1 3 a 2 2  ) + X3~l(oq30t2!  - -  allO~23).  

The transform of  a33 as x3 --" 0 § can then be evaluated as 

where 

a331x,:o+ = - s  I'/I* (11)  

3 

f (4J) = ~ :  ( C33Xk -- Clsalk ~'l - -  C230~2k ~2)G (12) 
k = l  

It may be noted that since the procedure is numerical, it is not possible to keep track of  
how a~k or Xk for each k change with ~. However, the final result (Eq l 1) is not affected 
since it is obtained by summing over k. 

For  transversely isotropic case ~,k's can be expressed in the following form 

where 

"y] = C .d  C . 

"/~,2 = ~[~'  + ,, /~n _ 4C2gCH] (13) 

~' = ( c . c 2 2  - c~2 - 2 c , d c . ) / c . G ~  

and f ( ~ )  in Eq 1 1 can be expressed as 
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f ( 0 )  -- 2~2C44 [ C,s + C 5 5  h~(2 -- A, - A2) -- ~2(2 + A, + A2) 

)k3~2 ] 
"~- ~ (k3kl + )k3)~ 2 -- 2)kl)~2) 

(14) 

where Ak = (Cl2 + C55)/(C55 - C2ffy~); k = 1,2. 
It should be noted that for ~'1 = 0, the limiting form of  the second term in Eq 12 must 

be used: 

~1k2 
(15) 

Inverse transform of  Eq 1 1 yields the following integral equation for evaluation of  W* 
within the crack boundaries (or rather over the circle 0 < r < 1 onto which the crack is 
mapped by the transformation 4) for given pressure distribution 0"33(~, )6) over the unit 
circle 

, r -r  Z,s --0"33(Y') = 471 ' ' ' ~  JO ,dO ~ f ( 0 )  rW*(x')ei(x'-r)rdOdrdOd~ (16) 

For constantpressure distribution -a33(y ' )  = S, it can be shown (the details are omitted 
here for brevity) that Eq 14 is satisfied by 

~0 f/2 IV* = S(1 - r2)m/ riO) do  (17) 

Equation 14 is also valid outside the circle, and the singular stress field near but greater 
than r = 1 can be expressed as 

aa3(r, O) = K(O____~) = Sf(O)(r ~ - 1) -'/2 (18) 
(,,r/2 

27rr' Jo f (O)  do 

where K is the stress-intensity factor and r '  is the distance measured from and normal to 
the elliptic crack boundary. It follows that 

s ~ a ,  h(O) 
K =  c,/2 g(O) -1/4 (19) 

Jo h(O)dO 

where g(O) = sin20 + a21cos2O/a~ and h(0) -- a f ( o )  = af(~'~,~-2). Therefore, 

h(~) = f(n~, n2) = f(sinO, a,co~/az) ,  n, = ~ �9 a, (2o) 

One should note that we have replaced a~ by a and a2 by c in Eq 1 of  the text. These are 
the common notations used in the literature for surface cracks. The integral in Eq 1 9 has 
to be evaluated by numerical methods, and Simpson's rule has been utilized in this study. 
Energy-release rate at any point on the crack boundary may be evaluated, if desired, from 
the expression 

g 2 
G, = ~ g(O) ':~ (21) 
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It may be noted that the function h for the isotropic case is given by 

h(~) = Gg(ep)'/2/(l - v) 

193 

(22) 

which can be obtained from Eq 14 by an appropriate limiting process and substitution of  
Eq 22 into Eq 19 yields the well-known result [2]. 
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ABSTRACT: The residual tensile strength of a thick graphite/epoxy composite with impact 
damage was predicted using surface crack analysis. The damage was localized to a region 
directly beneath the impact site and extended only part way through the laminate. The dam- 
aged region contained broken fibers, and the locus of breaks in each layer resembled a crack 
that was nearly perpendicular to the direction of the fibers. In some cases, the impacts broke 
fibers without making a visible crater. The damage was represented as a semielliptical surface 
crack of the same width and depth as the cross section of the damage. The maximum length 
and depth of the damage were predicted using the Theory of Elasticity and a maximum shear 
stress criterion. The predictions and measurements of strength were in good agreement. 

KEY WORDS: graphite/epoxy, composite, filament winding, motor case, impact damage, 
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Nomenclature 

a 

c 

E 
E~, 

F(a/t, a/c, c/W, ~,) 
G 
K 

KQ 
no 
P 
Pc 
P 
Q 
r~ 

Ri 

Depth o f  surface crack or  impact  damage, m (in.) 
Half-length o f  surface crack or  impact  damage, m (in.) 
Young's  modulus,  Pa (psi) 
Young's modulus  of  remaining ligament in hoop direction, Pa (psi) 
Functional  in Fxts 6 and 7 
Shear modulus, Pa (psi) 
Stress-intensity factor, P a V m  ( p s i V ~ . )  
Fracture toughness, Pa V m  (psi V ~ . )  
Factor  in the Hertz law, Pa (psi) 
Contact pressure distribution, Pa (psi) 
Average contact pressure, Pa (psi) 
Peak impact  force, N (lbf) 
Shape factor for an elliptical crack 
Contact  radius, m (in.) 
Radius  of  indenter, m (in.) 
Gross stress for failure o f  first ligament, Pa (psi) 
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So, Gross stress for failure of remaining ligament, Pa (psi) 
t Laminate thickness, m (in.) 

W Width of specimen in test section, m (in.) 
z0 Depth from surface where damage initiates 
~,, Ultimate tensile failing strain of undamaged laminate 
~" Ratio of damage depth to contact radius, a/rc 

~0 Ratio of depth to contact radius where damage initiates, zo/rc 
p Poisson's ratio 

r, Shear strength, Pa (psi) 
~b Parametric angle of ellipse (~ = 0 deg and 90 deg correspond to 

where surface crack intersects free surface and to location of 
maximum depth, respectively) 

Subscripts 

l, 2 principal coordinates of the layers (the 1-direction is the fiber direction) 
x, y Cartesian coordinates (x-direction is hoop direction of FWC laminate) 

r, 0, z Cylindrical coordinates (z-direction is normal to plane of laminate) 

Lightweight composite cases were developed for the solid-rocket motors of the Space 
Shuttle. The cases are made of graphite/epoxy using a wet filament-winding process, hence 
the name filament-wound cases (FWC). Each 3.66-m-diameter (12-f t )  3 m o t o r  consists of 
four cases--a forward case, two center cases, and an aft case--that are joined to short steel 
rings with pins. The forward and center cases are approximately 7.62 m (25 ft) in length, 
and the aft case is somewhat shorter. The FWC's are 3.6 cm (1.4 in) thick except very near 
the ends, where they are thicker to withstand the concentrated pin loads. 

Tests [1-4] revealed that impacts by dropped objects such as tools and equipment can 
reduce the uniaxial tension strength of the FWC laminate, sometimes without even making 
a visible crater. The damage was localized to a region directly beneath the impact site and 
extended only partway through the laminate. The damaged region contained broken fibers, 
and the locus of breaks in each layer resembled a crack perpendicular to the direction of 
the fibers. Impacts usually cause thin composite laminates to delaminate over a relatively 
large region. However, the thick FWC did not delaminate extensively, making the damage 
difficult to detect except with special ultrasonic techniques [5-8]. 

In the present paper, the impact damage in the FWC laminate is represented as an equiv- 
alent surface crack, and the residual strengths are predicted using a surface crack analysis. 
The stress-intensity factor for a semielliptical surface crack in a homogeneous, isotropic 
plate is used for the composite plate. The value of fracture toughness was predicted using 
a general fracture toughness parameter for composite materials. The size of the damage or 
equivalent surface crack was predicted with the analysis of Ref 9. The analysis uses a max- 
imum shear stress criterion and stresses calculated with Love's solution for pressure 
applied on part of the boundary of a semi-infinite body. The pressure was calculated using 
Hertz's law. The predicted strengths are compared with experimental values. 

Material 

For the impact investigations []-4], a O.76-m-diameter (30-in.), 2.13-m-long (7-ft) full- 
thickness cylinder was made to represent the region of an FWC away from the ends. The 

3 Original measurements were made in English units and converted to SI units. 
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196 SURFACE-CRACK GROWTH 

cylinder was wound by Hercules Inc. using a wet process and AS4W-12K graphite fiber 
and HBRF-55A epoxy resin except for the hoop layers, which were hand-laid using prepreg 
tape. From outside to inside, the orientations of the layers were {(+33.5 deg)2/90 
deg/[(+ 33.5 deg)d90 deg]3/[(_ 33.5 deg)d90 deg]7/(+ 33.5 deg/90 deg2)d(-+ 33.5 deg)d 
cloth}, where the 90-deg layers are the hoops and the +33.5-deg layers are the helicals. 
(The layer angles are measured from the hoop direction of the cylinder and from the lon- 
gitudinal axis of the FWC.) The underlined + 33.5 deg helical layers are about 1.6 times 
as thick as the other helical layers. The cloth layer at the inner surface has an equal number 
of  fibers in the warp and weave directions. The layup is balanced (equal numbers of + 33.5 
and -33 .5  deg layers) but not symmetrical about the midplane. Most of the hoop layers 
are closer to the inner surface than the outer surface. 

None of the specimens from the rings were left for the deply investigation in Ref 9. 
Consequently, a 30- by 30-ram (12- by 12-in.) plate that had been cut from an actual FWC 
was used. Because the cylinder was made to represent the FWC, the materials of the plate 
and cylinder were basically the same. Of  course all of the layers of  the plate were wound 
with AS4W-12K graphite fiber and HBRF-55A epoxy, and the radius of  curvature of  the 
plates was 1.8 m (6 It). The layer orientations were also slightly different because the plate 
came from a FWC with an earlier design. From outside to inside, the layup of the plate 
was {(+ 33.5 deg)2/90 deg/[(+ 33.5 deg)d90 deg]d[(+ 33.5 deg)d90 deg]7/(+ 33.5 deg/90 
deg2)2/+ 33.5 deg/90 deg4/__- 33.5 deg/90 degd( +- 33.5 deg)dcloth}. The FWC plate has two 
more hoop layers than the rings, but the outer 55 layers are the same. These differences 
should not affect the results in Ref 9. 

Test Apparatus and Procedure 

The experiments to measure the effect of impact damage on the residual strength of the 
FWC are described in detail elsewhere [1-4]. Nevertheless, the apparatus and procedure 
are briefly described here for the convenience of the reader. 

Impact Tests 

The free-falling impacters consisted of a 5-cm-diameter (2-in.) steel rod with a 2.54-cm- 
diameter (1.00-in.) indenter on the end. Four rods of different lengths were used to give 
masses of 2.8, 5.0, 9.0, and 18.6 kg (6.1, 11.1, 19.9, and 41.1 lbm), including the indenter. 
The impacter was instrumented to determine the maximum impact force. Drop heights 
were varied from 38 to 305 cm (15 to 120 in.) to give kinetic energies from 38 to 446 J (28 
to 329 ft-lbf). 

The free-falling impacters consisted of a 5-cm-diameter (2-in.) steel rod with a 2.54-cm- 
diameter (1.00-in.) indenter on the end. Four rods of different lengths were used to give 
masses of 2.8, 5.0, 9.0, and 18.6 kg (6.1, 11.1, 19.9, and 41.1 Ibm), including the indenter. 
The impacter was instrumented to determine the maximum impact force. Drop heights 
were varied from 38 to 305 cm (15 to 120 in.) to give kinetic energies from 38 to 446 J (28 
to 329 ft-lbf). 

Hertz law [10] was used to calculate contact pressures from the impact forces. The pres- 
sure between a hemispherical indenter of radius R, and a semi-infinite, transversely isotro- 
pic body is given by 

3 ( ,~],2 
P--- 5Pc 1 - - ~ j  (1) 
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FIG. l--Impact lesls of  FWC-like ring. 

where 

r = radius measured from the center o f  the contact site, 
rc = the contact radius, and 

Pc --- average pressure given by 

P 
p~ = - -  (2) 

where P is the peak or max imum impact  force and 

\ n o /  
(3) 

The value of  no can be calculated [ 10] from the elastic constants of  the composite. How- 
ever, because the transverse Young's modulus of  the FWC laminate was not accurately 
known, no was determined experimentally [9] to be 4.52 GPa  (656 ksi). 

Residual Strength Tests 

After the two rings were impacted, each one was cut into 44 specimens that were 30.5 
cm (12 in.) long and 5.1 cm (2.0 in.) wide. Circular arcs were ground into the specimens' 
edges to reduce the width in the test section to 3.3 or 3.8 cm (1.3 or 1.5 in.), Fig. 2. The 
specimens were uniaxially loaded to failure in tension with a 445-kN-capacity (100-kips) 
hydraulic testing machine. Stroke was programed to increase linearly and slowly with time. 
Hydraulically actuated grips that simulate fixed-end condit ions were used. Otherwise, uni- 
axial loading would cause bending because the FWC laminate is not symmetrical.  Bending 
does not  develop in the pressurized motor  case. 
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FIG. 2--Sketch of tensile specimen with impact damage. 

Deply Tests 

The experiments in Ref 9 were conducted to measure the extent of impact damage by a 
destructive deply technique. The impacts to the rings could not be directly reproduced with 
the FWC plate because the stiffness and mass of the plate and rings were different. Thus, 
we simulated the impacts by statically loading the plate normal to its surface with the 
indenter. The plate was continuously supported on the opposite surface, and the indenter 
was applied at the center of each of 36 test squares, where the sides of each square were 
3.8 cm (1.5 in.) long. Indenters with diameters of 1.27 and 5.08 cm (0.50 and 2.00 in.) were 
used in addition to that with a diameter of 2.54 cm (1.00 in.). Contact pressures were cal- 
culated from the forces using Eqs 2 and 3. The square specimens were cut from the plate, 
and the layers were separated using pyrolysis. Damage in contiguous specimens did not 
overlap. For such a thick laminate, it is believed that the damage (as well as the value of 
no) is the same for a simulated impact and an actual impact of low velocity. 

Results and Analysis 

This section is divided into two subsections. In the first subsection, the actual impact 
damage and analysis to predict the size of the damage are described. This analysis is only 
summarized here; a more detailed description with experimental verification is given in 
Ref 9. In the second subsection, strengths predicted with the surface crack analysis are 
presented for both semielliptical surface cuts and impact damage. The surface cut experi- 
ments were originally presented in Ref 12 but are summarized here to verify the surface 
crack analysis and to show how very shallow surface cracks and impact damage were 
treated. 

Equivalent Surface Crack for Impact Damage 

Damage Size Measurements--Radiographs and through-transmission ultrasonic C- 
scans [5-8] gave no evidence that the impacts caused delaminations. All damage was local- 
ized to a region directly beneath the impact site. An example of the type of fiber damage 
caused by the simulated impacts [9] is shown in Fig. 3. The peak applied force was 66.7 
kN (15.0 kips). Photographs of the eight outermost layers of fibers are shown. (There were 
76 layers in the laminate.) The contact area is approximately at the center of the first layer. 
An indentation was readily visible on the surface of the specimen before pyrolysis. Broken 
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FIG. 3--Fiber damage caused by simulated impact force 0.['66. 7 kN with 2.54-cm-diam- 
eter indenter. 

fibers are visible in the center of the first seven layers; Layers 8 and below were not dam- 
aged. The locus of breaks in each layer resembles a crack, sometimes several closely spaced 
cracks (barely visible in Layer 4). Sometimes the cracks have a jog, such as in Layer 7. The 
cracks in each layer are oriented between 56.5 and 90 deg relative to the fiber direction, 
indicating that the formation of the cracks may be related to the direction of both hoop 
and helical layers. Thus, the cracks in the various layers are not coplanar and do not make 
a single surface crack. 

Photomicrographs of a highly magnified crack caused by an actual impact [2-4] are 
shown in Fig. 4. The crack was in Layer 7; Layers 8 and below were not damaged. This 
specimen was impacted with a 2.54-cm-diameter (1.00-in.) indenter, producing a contact 
force of 54.3 kN (12.2 kips). Figure 4a shows the entire crack, and Fig. 4b shows a small 
portion of the crack at an even higher magnification. The fiber breaks caused by the impact 
resemble those caused by the simulated impact in Fig. 3. 

Damage Size Predictions--For ad hoc assessments of impact damage, it would be suf- 
ficient to determine the size with some nondestructive method. However, in order to do 
sensitivity studies and to design for damage tolerance requirements, an analytical capabil- 
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ity to predict damage size is necessary. Such a capability was demonstrated in Ref 9 for 
simulated impacts to an FWC plate. The internal stresses due to the simulated impacts 
were calculated using Love's solution for a semi-infinite body with pressure on part of the 
boundary [ I 1 ]. The pressure distribution is that given by Eq 1. For convenience, the body 
was assumed to be homogeneous and isotropic. Some discrepancy is expected because the 
composite plate is layered and nearly transversely isotropic. Even so, it was found that the 
analysis correctly represented the effect of contact force and indenter radius, which are 
the important parameters. The extent of the fiber damage was predicted using the maxi- 
mum shear stress criterion. Except very near the surface, the calculated tension and com- 
pression stresses in the fibers were too small to cause the observed fiber damage. It is 
believed that the fibers away from the surface were broken as a result of shear failures in 
the epoxy matrix. These shear failures would result in matrix cracks parallel to the fibers, 
which would be at 56.5 deg to the fibers in the contiguous layers and nearly coincide with 
the locus of fiber breaks. 

Predicted damage contours from Ref 9 are plotted in Fig. 5 using a Poisson's ratio of 0.3 
for the FWC laminate. The distance from the surface and from the center of contact are 
normalized by the contact radius re. The contours are shown for various ratios of the aver- 
age contact pressure Pc to the shear strength r,. Damage initiates below the surface at a 
distance of 0.482 when the average contact pressure is 2.15 r,. As the pressure increases, 
the contour increases radially in size until it reaches the surface for p</~, ~ 5. The contours 
are somewhat elliptical in cross section initially, but become more semielliptical as they 
approach the surface. Thus, the damage region resembles an ellipsoid or "truncated" 
ellipsoid. 

Crack lengths from two of the 20 deply tests in Ref 9 are plotted against depth in Fig. 6 
for simulated impacts. The average contact pressures were 648 and 742 MPa (94.0 and 108 
ksi). The corresponding forces were 66.7 and 99.6 kN (15.0 and 22.4 kips), respectively. 
Note that the crack lengths are not projected onto a single plane (Fig. 6a). The cracks were 
measured only on the outer side of a layer. In drawing the graph, crack length was assumed 
to be constant across a layer. The graph shows that the depth and length of the cracks 

o , . . o , .  

i '  . . . .  ' '  

0 t 2 

Distance from center of  pressure, r / r c 

FIG. 5--Damage contours according to Love's solation (Poisson's ratio = 0.3). 
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202 SURFACE-CRACK GROWTH 

increase with increasing contact pressure. Similar results were obtained for other pressures 
and indenter diameters. 

Damage profiles predicted with the maximum shear stress failure criterion are also plot- 
ted in Fig. 6. A value of r, = 276 MPa (40 ksi), which gave a good fit to damage depth for 
these two deply tests, was used to calculate the maximum shear stress with Love's equa- 
tions. The maximum length of the cracks in Fig. 6 is somewhat larger than predicted. For 
the damage contours in Fig. 5, the ratio of half-length to depth c/a is approximately 0.8, 
where values for the 20 deply tests were typically between 0.8 and 1.4. The predicted dam- 
age profile circumscribes the crack lengths fairly well except near the surface, where no 
damage is predicted. The damage is predicted to initiate at a depth of 0.482rc and grow 
toward the surface as pressure is increased. In the deply tests, on the other hand, damage 
was always found to extend from the first layer down. The damage in the outer layers was 
probably caused by large inplane compressive stresses a, and a0 that diminish rapidly with 
distance from the surface. The state of stress near the surface is somewhat hydrostatic, 
causing the maximum shear stress to be relatively small. Away from the surface, ar and ae 
are small and Zmax ~ 0.5O= much like the compression test of the disks. 

For the 20 deply tests, values of damage depth predicted with r, = 228 and 310 MPa 
(33 and 45 ksi) gave upper and lower bounds. The tests included three indenter diameters 
and six values of average contact pressure. Compression tests were conducted on disks 
taken from the FWC plate, where the load was applied normal to the plane of the laminate. 

Indenter 

I Half-length of cracks, r turn 
0 2 4 6 8 10 12 14 16 

0 I I I i ! I ! I I I I ! I I I ! 

--Test Hoop 
, . ~  crack 

'rOo~~ ". i .- T p"  
. -  .- --. ~ 2C 

~ , ~  ! - - - \  
" ~  Predicted I ~ 

I~ \ 
a 

~ ~ I I I I I I I I I I I I 

E ((3) Average contact pressure of 648 MPa. 
o 

l l -  O I I I I I I  
O o I 

~ t 0 . . . . . . . . . . . . . . . . . . .  . 
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�89 
J ~ ,o, 
.... ~176176176176 
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(b) Average contact pressure of 742 MPa. 

FIG. 6--Comparison of measured and predicted (r. = 276 MPa) damage profiles: (a) 
average contact pressure of  648 MPa; (b) Average contact pressure of 742 MPa. 
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The average compression strength was 621 MPa (90 ksi), which corresponds to a maxi- 
mum shear stress of 310 MPa (45 ksi). Thus, the results of the simulated impacts and the 
compression tests are in fair agreement. The discrepancy could be caused by the assump- 
tion of homogeneity and isotropy in Love's solution. 

In the prediction of residual strength, the impact damage was represented as a surface 
crack oriented normal to the applied load. The depth and length of the crack were taken 
as those of the damaged region predicted with the maximum shear stress criterion. Thus, 
the outline of the crack approximately matches the cross section of the damaged region 
(Fig. 7). It may seem inappropriate at first to assume that the impact damage is equivalent 
to a surface crack when the cracks in the helical layers do not lie in the plane of the surface 
crack. However, the stiffness of the helical layers and the stress in the helical layers normal 
to the surface of the equivalent crack are small compared to the hoop layers. Thus, the 
helical layers are relatively stress free and ineffective in carrying load across the crack, 
much as if they were cracked. 

The maximum depth of the damage contours in Fig. 5 is given by 

- ~,, ( l  + ~-2)-t + ( I  + ~, , ) [~Tan- '  _ ~-2(i + ~-2)-,] _ 3p--~ = 0 (4)  

where ~" = a/rc. The depth ~'0 = zo/r,., where damage initiates, is given by 

0 = 3 ~ 0 - ( 1  +v,)(1 +~'20)((1 + ~'2)tan-'(~o)--~'o] (5) 

which corresponds to the location of r . . . .  The depth of the damaged region or equivalent 
surface crack was calculated with Eq 4, and the contact pressure Pc was calculated from the 
impact force with Eqs 2 and 3 and no = 4.52 GPa (656 ksi). A value o f t ,  = 228 MPa (33 
ksi) was assumed because it best represents the minimum contact pressure for damage 
initiation as well as an upper bound for the damage depth. For convenience, it was 
assumed that the impact damage has a constant aspect ratio of c/a --- 1.0. As noted pre- 
viously, the experimental values of c/a had considerable variation. 

o E 
E 

8 t6 
8 
~ 2o 

Equivalent 
surface crack/ 

J ~ op / 
crocks ~ 

I r i i i i i i i l /  
r. . . . . . . . .  

I I I 

0 5 1o 15 20 
Half-length of cracks, rnm 

SECTION A-A 

Predicted with Applied 
f Love's solution hoop 

stress 

" ~  33"5~ , _ ~ A  
~ Helicdi ~ - -~  

crocks l . 

�9 ~ . . . ' " / " - . . . .  
I " ""  ! ! I 

! Heliodia / ~-m"'~ l 
cracks / L . ~  

, . . . . .  / /  . . . . . . . . . . . . . .  J 
~- Equivalent surface crack 

and hoop crocks 

FIG. 7--Equivalent surface crack for impact damage. 
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Strength Predictions 

Except for very shallow surface cuts or impact damage, the composite laminates failed 
in two stages: first, the cut or damaged layers broke and delaminated from the undamaged 
layers; and then, with additional load, the undamaged layers broke (Fig. 8). The two stages 
of  failure are referred to as first- and remaining-ligament failure. For shallow damage, the 
laminate failed catastrophically in one stage. Specimens with semielliptic surface cuts 
failed similarly [12]. For quasi-isotropic T300/5208 plates containing surface cuts with c/ 
a = 3.8, radiographs [13] did reveal delaminations at the maximum depth or bottom of  
the surface cut prior to failure o f  the first ligament, but not for specimens with c/a < 3.8. 
Radiographs of  the FWC specimens were not made prior to failure of  the first ligament. 
But, for specimens with impact damage and surface cuts, there was no visual evidence, nor 
did load-displacement measurements indicate that delaminations were present prior to 
when the first ligament failed. 

Surface Crack Analysis for First-Ligament Failure--Failure of  the first ligament was 
assumed to occur when the maximum stress-intensity factor along the front of  the equiv- 
alent surface crack exceeded the fracture toughness K e. For an isotropic, homogeneous 
material, the stress-intensity factor is given [14] by 

/ \ 1/2 

where 

S = remote stress, 
a = crack depth, 

2c = crack length, 
t = plate thickness, 

W = plate width, 
Q = shape factor, and 

= elliptical angle that specifies the location on the crack border. 

Surface cut or Remoining-  i:mo,. -,- Oom., 

Load 

W I 
BEFORE FAILURE Displacement 

Delamination 

FIRST-LIGAMENT FAILURE REMAINING-LIGAMENT FAILURE 

FIG. 8--Two-part failure with surface cut or impact damage. 
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Where the surface cut intersects the free surface, ~ = 0 deg and, where the depth of  the 
surface cut is a maximum, q~ = 90 deg. The equations for Q and F(a/t, a/c, c~ W, 49) are 
given in Ref  14. Replacing K with K e in Eq 6 yields the following equation for the failing 
stress of  the first ligament 

ro 
Sc l  ~ / \1/2 (7) 

No fracture tests with through-the-thickness cuts were conducted to determine K o for the 
FWC laminate. Instead, a value o f K  e --- 0.949 GPa ~ (27.3 ksi Vq-n.) was predicted 
with a general fracture toughness parameter [1-3,151. 

Maximum Strain Criterion for Remaining-Ligament Strength--The hoop strain was 
assumed to be uniform over the remaining ligament, and failure was assumed to be gov- 
erned by failure of  the hoop layers. Thus, the failing strain of  the remaining ligament e,, is 
independent of  remaining-ligament thickness and is equal to the failing strain of  the hoop 
fibers. Accordingly, the gross stress at failure S ,  is given by 

where Exr is Young's modulus of  the remaining ligament in the loading or hoop direction. 
Values of  E~, which vary with remaining-ligament thickness, were calculated [1-4] with 
lamination theory. A value of~,, = 0.0124 was derived from unnotched tensile data. 

Strengths with Surface Cuts--The investigation in Ref 12 was conducted first to study 
the failure modes of  the FWC laminate with part-through cuts and to determine how well 
strengths could be predicted using Eqs 7 and 8. The specimens that contained the surface 
cuts were taken from one of  the other FWC-like rings that was not impacted. The stress 
for first- and remaining-ligament failures is plotted against cut depth in Figs. 9a-9d for 
c/a -- 0.5, 1.0, 2.0, and 5.7. The stresses were divided by an undamaged strength of  379 
MPa (55.0 ksi). The plane of  the surface cuts was normal to the hoop direction, and the 
specimens were loaded in the hoop direction. The location and width of  the hoop layers 
are shown on the abscissa to aid in interpreting the results. In most cases, each symbol 
represents an average of  two values. Circular symbols represent 2.5-cm-wide (1.0-in.) spec- 
imens, and square symbols represent 5. l-cm-wide (2.0-in.) specimens. The widest speci- 
mens were required for the deepest cuts. The open symbols represent first-ligament failure, 
and the solid symbols represent remaining-ligament failures. For shallow cuts, the first fail- 
ures were catastrophic and no remaining-ligament strengths are shown. For some of  the 
deeper cuts, remaining-ligament strengths are not shown because the specimens were not 
reloaded after the first ligament failed. Instead, they were saved for other purposes. 

The lines in Figs. 9a-9d represent predictions with Eqs 5 and 6. For first-ligament fail- 
ure, the dashed lines represent 2.5-cm-wide (1.0-in.) specimens, and the solid lines repre- 
sent 5.1-cm-wide (2.0-in.) specimens. Except for shallow cuts and c/a = 2.0 with W -- 2.5 
cm (1.0 in.), the test and predicted values of  first-ligament strength are in good agreement. 
For shallow cuts, the predicted strengths are too large. However, the lines that are drawn 
tangent to the surface crack equation represent the test values quite well. Notice that the 
tangent lines were not drawn through the undamaged strength at a -- 0, but through a = 
1.7 mm (0.067 in.), which corresponds to the outer surface of  the first hoop layer. It was 
assumed that cuts more shallow than the outer hoop layer would not reduce the strength 
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FIG. 9--Average strengths for FWC laminate with surface cuts: (a) c /a  = 0.5; (b) c /a  = 
1.0; (c) c /a  = 2.0; (d) c /a  = 5.7. 

since the outer helical layers contribute very little to the stiffness of  the laminate. These 
lines correct the surface crack analysis for shallow cracks and are very convenient to con- 
struct. For  c/a = 5.7, no tangent line is shown because it virtually coincides with the sur- 
face crack equation. Notice in Fig. 9c for c/a --- 2.0 that the values o f  first-ligament strength 
for W -- 2.5 cm (1.0 in.) and the deepest crack are significantly less than the predicted 
value. These test values seem inconsistent with those for W = 5.1 cm (2.0). 
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FIG. 9--Continued. 

The predicted curve for the remaining ligament in Figs. 9a-9d has a stair-stepped shape 
because the stiffnesses of the hoop and helical layers are very different. The large drops in 
stress correspond to removal of the stiff hoop layers, and the small drops correspond to 
removal of the more flexible helical layers. The curve is convex in the overall sense because 
most of the hoop layers are closer to the bottom of the laminate. The predictions of remain- 
ing-ligament strengths are 5% to 10% larger than the test values. After the first ligament 
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fails, the load path in the specimens is eccentric. Although the grips are very stiff, they may 
allow enough bending to cause the test values to be less than the predictions. 

Harris and Morris [13] had equal success in using the surface crack analysis to predict 
the strength of a 1.0-cm-thick (0.40-in.) T300/5208 graphite/epoxy composite containing 
semielliptical surface cuts. Strengths of specimens with through-the-thickness cuts were 
also predicted accurately [16]. The same value of fracture toughness, which was also pre- 
dicted with a general fracture toughness parameter, was used for the surface cuts and the 
through-the-thickness cuts. 

Recently, Wu and Erdogan [17] and Chatterjee [ 18] calculated the stress-intensity factor 
for an orthotropic homogeneous plate with a semielliptical surface crack using a line-spring 
model and a finite-element model, respectively. In both cases, the isotropic and orthotropic 
results differ significantly. The agreement between the experiments and isotropic analysis 
and the discrepancy between the isotropic and anisotropic analyses cannot be resolved at 
this time. In any event, the experiments validate the use of the isotropic surface crack 
equations to predict strengths. 

Strengths with Impact Damage--The measured and predicted stresses for first- and 
remaining-ligament failures are plotted against impact force in Figs. 10a-10b, respectively. 
The stresses were divided by an undamaged strength of 345 MPa (50.1 ksi). The top axis, 
which is not linear, gives the depth of the damage that is associated with the predictions. 
Circular symbols were used for the ring filled with inert propellant and square symbols for 
the empty ring. The specimens had widths of 3.3 and 3.8 cm (1.3 and 1.5 in.). Differences 
between predictions for the two widths can hardly be discerned. Thus, no distinction is 
made between predictions for the two widths. Two predicted curves are shown for the first- 
ligament failures in Fig. 10a: one for the surface crack analysis given by Eq 5 and one for 
tangent lines like those shown in Figs. 9a-9c. The difference between the tangent line and 
the surface crack analysis line is significant for the smaller impact forces and damage 
depths. Damage is predicted to initiate at an impact force of 28.6 kN (6.43 kips) and at a 
depth of 2.1 mm (0.082 in.), which is below the outer hoop layer. The damage is predicted 
to be relatively shallow, even for the largest impact forces. For this reason, the strengths 
were reduced less than 40%. The tangent line agrees with the strengths quite well. The 
predicted and measured remaining-ligament strengths in Fig. 10b also agree well. The 
remaining-ligament strengths are significantly larger than the first-ligament strengths for 
the larger impact forces. Thus, the thick composite laminate affords some degree of damage 
tolerance not given by conventional metals. 

Vertical lines are drawn in Figs. 10a and 10b to indicate that impact forces below 75.2 
kN (16.9 kips) caused only slight surface indentations that were barely visible. At this 
threshold, hoop stresses required to fail the first ligament were less than 80% of the 
undamaged strength. This impact force corresponds to an average contact pressure of 640 
MPa (93 ksi). Recall that a pressure between 408 and 514 MPa (59.2 and 74.6 ksi) was 
required to initiate fiber damage. Sharper indenters [1] caused more visible surface dam- 
age, but the reductions in strength were not much more than those in Figs. 10a and 10b. 
The analysis used here is capable of predicting the effect of indenter shape on residual 
strength and contact pressures. Therefore, the analysis can be used for preliminary design 
and for parametric studies to determine worst conditions and the best materials. 

In Figs. 10a and 10b, strengths for the empty ring were about 10% below those for the 
filled ring. The propellant increased the effective mass of the ring by more than a factor of  
seven, causing the impact forces for the filled ring to be considerably larger than those for 
the empty ring. Because the FWC laminate is very thick, the impact damage should be 
equal in the filled and empty rings for the same impact force. Thus, the difference in 
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FIG. lO--Measured and predicted strengths for FWC laminate with impact damage: (a) 
first-ligament failure; (b) remaining-ligament failure. 

strengths between the filled and empty rings cannot be explained by the presence of  the 
inert propellant. 

Conclusions 

A surface crack analysis was used to predict the residual strength of  a thick graphite/ 
epoxy composite after low-velocity impact. The specimens were impacted with a rod that 
had a 2.54-cm-diameter (1.00-in.) hemispherical indenter mounted on one end. The 
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impacters were dropped from various heights to give various amounts of damage. The 
damage was localized to a region directly beneath the impact site. It extended only part 
way through the laminate. The damaged region contained broken fibers, and the locus of 
breaks in each layer resembled a crack that was nearly perpendicular to the direction of 
the fibers. This orientation also nearly coincided with the direction of fibers in contiguous 
layers. Thus, cracks in layers of different orientations were in different directions. No sig- 
nificant delaminations were detected. The specimens were uniaxially loaded to failure in 
tension. They failed in two stages--first the damaged layers (first ligament) and then, with 
increasing load, the remaining undamaged layers (remaining ligament). When the damaged 
layers failed, they delaminated from the undamaged layers. An analysis was developed to 
predict the size of damage using Hertz's contact law and the maximum shear stress cal- 
culated with Love's solution for pressure applied to part of a semi-infinite body. The anal- 
ysis was verified by deplying specimens and measuring the size of the impact damage. The 
damage was represented as a semielliptical surface crack of the same width and depth as 
the cross section of the damage. The stress to fail the first ligament was predicted with a 
surface crack analysis. The stress to fail the remaining ligament was predicted using a max- 
imum strain failure criterion. The measured and predicted stresses to fail the first ligament 
of the impacted specimens were in good agreement. The failing stresses of the remaining 
ligament were a little below the predicted values, perhaps due to bending that was not 
taken into account. 

The analysis, which takes into account the radius of the impacter and the mechanical 
properties of the composite, can be used for preliminary design and for parametric studies 
to determine worst conditions and the best materials. 

APPENDIX 

TABLE l--Properties of constituents of composite. 

Broadgoods 
Helical Fiber Fiber Matrix 

Tensile modulus, GPa (Msi) 228 (33) 228 (33) 2.85 (0.414) 
Poisson's ratio . . . . . .  0.35 
Tensile strength, GPa (ksi) 3.96 (574) .75 (544) - �9 - 
Elongation at failure 0.0 167 . . . . . .  
Density, kg/m 3 (lbm/in. 3) 1790 (0.0648) 1780 (0.0642) 1230 

TABLE 2--Physical properties of composite. 

Composite density, kg/m 3 (Ibm/in)) 
Resin mass fraction 
Resin volume fraction 
Fiber volume fraction 
Void content 

1490 (0.05397) 
0.3459 
0.3845 
0.5449 
0.07062 
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TABLE 3--Composite lamina properties. 

211 

Cut 
Unidirectional Helical Hdical 

Broadgoods Layers Layers Cloth 

Ell, GPa (Msi) 1.06 111 111 59.3 
( 15.4) (16.2) (16.2) (8.60) 

E22, GPa (Msi) 6.39 1.92 1.92 59.3 
(0.927) (0.278) (0.278) (8.60) 

G~2, GPa (Msi) 4.47 4.28 4.28 3.68 
(0.649) (0.621) (0.533) (0.533) 

~t2 0.275 0.267 0.267 0.0348 
Thickness per layer, mm (in.) 0.427 a 0.427 0.711 0.427 

(0.0168) (0.0168) (0.0280) (0.0168) 

= Equal to three plies of broadgoods. 
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ABSTRACT: This combined experimental and analytical study was directed at determining 
the growth and shape change of surface flaws under axial loading as compared with crack 
growth data obtained from simple compact tension specimens. The experimental effort 
aimed at measuring surface flaw crack growth rates for 2219-T851 aluminum specimens. 
Tests were conducted using constant-amplitude loading with marker bands to measure crack 
front shape changes. 

The analytical effort evaluated available crack growth models and stress-intensity solutions 
and their ability to predict the growth and shape change of surface flaws. The characterization 
of surface flaws as semiellipses and the independence of crack growth rate and direction were 
addressed. The resulting model was successful in predicting growth and shape changes under 
most conditions. However, due to the variation between surface and depth crack growth rates 
for surface flaws, it was determined that crack growth data from compact tension specimens 
could not generally be used to characterize the growth of surface flaws. 

KEY WORDS: fracture mechanics, fatigue crack growth, surface flaw, aluminum, stress- 
intensity factor 

The most common flaw types observed in aircraft structures are those which have com- 
plex shapes such as the bolthole corner flaw or the surface flaw. However, for very practical 
reasons, most fracture and crack growth data have been generated on simple compact  ten- 
sion (CT) type specimens. Therefore, the ability to predict the growth of  cracks of  complex 
shapes, such as surface flaws, from CT crack growth data is of  considerable importance. 
Several authors have addressed this problem [ 1,2], employing different constraints, stress- 
intensity solutions, and growth integration techniques. 

To conveniently use CT specimen crack growth data for predicting the growth of  surface 
flaws, investigators typically make one or more of  the following assumptions: 

(a) the surface flaw assumes a semielliptical shape, 
(b) the flaw shape stays constant at either the initial shape or some arbitrary shape (for 

example, semicircular), 
(c) the crack growth rate is independent  of  crack growth direction, 
(d) the crack growth rate is independent  of  the state of  stress (that is, plane stress or 

plane strain), and 
(e) surface flaw stress-intensity solutions can be used through the entire plate thickness. 
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These assumptions have proven quite convenient and reasonably accurate in those cases 
in which the crack dimensions are small compared to the thickness of the structure. How- 
ever, these assumptions can introduce significant error for larger surface flaws or when 
trying to model the transition from surface flaws to through flaws. Engle [2] reported pre- 
dicted lives that were determined from crack growth data to vary from 50 to 250% of actual 
life using different combinations of  these assumptions. Engle also reported that the least 
variability was obtained with surface flaw growth models which accounted for changing 
flaw shapes. 

The analysis of surface flaw growth is further complicated by the large number of stress 
intensity formulations reported in the literature. Newman [3] reviewed several available 
formulations and compared their ability to predict fracture in a brittle epoxy material. He 
found that the available stress-intensity formulations agreed fairly well for small flaws, but 
that there was considerable disagreement (up to 80%) for larger flaws. Since small errors 
in stress intensity can have a considerable impact on predicted crack growth life, the selec- 
tion of stress-intensity formulation is an important element in a surface flaw growth model. 

Methods and Procedures 

Objective 

The purpose of this study was to develop and test a model that could accurately predict 
the growth and shape change of surface flaws under constant-amplitude cyclic tensile loads 
using the crack growth data obtained from simple CT specimens. In the development of 
this model, the following questions were addressed: 

(a) Can surface flaws be adequately characterized as semiellipses? 
(b) Is the crack growth rate relatively independent of crack growth direction and state 

of stress? 
(c) Which of the available stress-intensity formulations results in the most accurate pre- 

diction of shape change and crack growth? 

Summary of Approach 

Because we intended to relate surface flaw growth to CT test results, we selected a mate- 
rial which was characterized in the literature and which had a fairly large amount of con- 
sistent CT crack growth data available. 2219-T851 aluminum plate was selected as a mate- 
rial that met these criteria. Surface flaw specimen were designed and precracking 
procedures were developed to allow constant amplitude fatigue testing of various shape 
surface flaws. Experimental techniques were develol~d using marker bands so that both 
shape change and growth rate of the surface flaws could be monitored. Standard data- 
reduction techniques were employed with the exception that a number of different stress- 
intensity solutions were available in the data-reduction program. The program also 
employed a least-squares-fit routine to extract Paris crack growth constants for growth 
along the surface (dC/dN) and into the specimen (da/dN). 

A surface-flaw crack growth model was then used to predict both growth rate and shape 
change. Different stress-intensity solutions were evaluated for their ability to reproduce 
both shape change and flaw growth rates using CT crack growth rate data from the 
literature. 
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Material Characterization 

An aluminum alloy 2219-T851 was used throughout this study. The nominal composi- 
tion of 2219 is as follows: 6.3% copper; 0.3% manganese; 0.18% zirconium; 0.1% vana- 
dium; 0.06% titanium; and aluminum balance. The rolled plate (3.66 by 1.22 by 0.0254 m) 
was supplied by Reynolds Aluminum, and all specimens were machined from the same 
plate. 

Extensive testing was done to ensure that the test material was typical of 2219-T851 
aluminum. Details of this portion of the study are available elsewhere [4]. Table 1 sum- 
marizes the results of the mechanical properties of the as-tested 2219-T851 A1. 

Experimental Procedure 

Experimental procedures were developed to verify our predictions of the growth rates 
and shape change of surface flaws. A summary of the experimental techniques is given 
below; details of those procedures may be found in Ref 4. Axially loaded surface flaw spec- 
imens were machined from the 25.4-mm-thick aluminum plate. The specimens were ori- 
ented to allow the growth of two flaws perpendicular to the loading]rolling direction (Fig. 
1). The preflaws for crack initiation were introduced by two methods: electro-discharge 
machining (EDM) and a thin (0.152 mm) circular saw blade. 

Cracks were initiated from the preflaws using a Ling Model 390 variable frequency 
shaker with the specimens mounted such that the first bending mode of vibration caused 
Mode I crack opening. Final precracking was done in the Monterey servo-hydraulic testing 
machine in accordance with the work of Hudak et al. [5]. The precracking sequence was 
terminated with a marker band (30% reduction in load for 5000 cycles) in order to establish 
initial flaw shape and size by means of post-test fractography. 

After precracking, the fatigue crack growth rate testing was initiated at 1 Hz under con- 
stant amplitude loading. Various stress ratios and load ranges were tested. Each load range 
was preceded by a marker band sequence where the maximum and mean loads were 
decreased by 30% for 3000 to 10 000 cycles (the number of cycles was based on flaw size). 
The load and resulting stress-intensity range (AK) sequence are shown in Fig. 2. 

Two systems for crack length measurement were employed. Surface crack width (2C) 
was monitored with a • 30 traveling microscope. Also, a compliance technique using dis- 
placement gages across the crack mouth was attempted. 

The crack growth tests were continued until the largest of the two flaws on each specimen 
fractured. The smaller flaw was then broken open, and both crack surfaces were photo- 

TABLE l--Summary of mechanical properties testing of 2219-T851 aluminum. 

Property Value 

Young's modulus 
Yield strength (0.2%) 
Ultimate tensile strength 
Strain hardening exponent 
Strength coefficient 
Plane strain fracture toughness (LT) a 
Charpy impact energy (LS) b 

74.9 GPa 
344 MPa 
430 PMa 
0.10 
611 MPa 
33.7 MPa 
12.2 N-m 

a LT -- longitudinal loading, transverse crack growth. 
b LS = longitudinal loading, short crack growth. 
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graphed to obtain a permanent  record of  the marker  bands. From enlargements, a visual 
measurement  of  marker  band depth and a digitized record of  flaw shape were made (Fig. 
3). 

Data Reduction 

A computer  program was developed to take the raw data from the Automatic  Test Con- 
trol program and reduce them to standard da/dN versus AK curves. Since the objective of  
the study was to develop a model  to predict surface flaw growth and shape change using 
CT test data, a "model ing"  mode was also developed for the data-reduction program. 
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TIME 

1) INITIAL MARKER LOAD (20% BELOW TEST LOAD) 
2) INCREASE LOAD 20% (MEASURE CRACK GROWTH 

AT INCREMENTS OF 2C = .01  - . 0 2  INCH) 
3) WHEN CRACK HAS GROWN TO THE POINT THAT AK 

IS 30% GREATER THAN AT THE BEGINNING OF THE 
LOAD RANGE, START 2ND MARKER LOAD 

4)  DECREASE MAX AND MEAN LOAD 30% FOR 2ND 
MARKER BAND 

5) INCREASE LOAD TO 90% OF THE PREVIOUS LOAD 
RANGE; GROW CRACK UNTIL A K  INCREASES 30% 
AGAIN 

6)  REPEAT MARKER BAND 

FIG. 2--Load and stress-intensity range sequences. 

The basic premise employed in the modeling mode was that crack growth rate as a func- 
t ion of  stress-intensity range should be the same at the surface as it  is at the deepest point  
for a surface flaw. If  this premise is accurate, then the crack growth rate curves for the 
surface and depth of  a surface flaw should fall on the same line. The modeling mode ana- 
lyzed different combinat ions  of  crack growth rate methods, shape characterization meth- 
ods, and stress-intensity formulations to find the model  which best fit surface flaw data to 
compact  tension results. The best model  was later used in the surface flaw growth predic- 
t ion program. 

Calculation o f  Crack Growth Rate (dC/dN) 

The raw data for crack growth rate calculations were taken from visual flaw width (2C) 
measurements after a known number  of  cycles (N) of  constant ampli tude cyclic stress. An 
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FIG. 3--Typical fracture surface and digitized record. 

option to use flaw widths generated from compliance measurements was also developed. 
However, this option was never employed due to difficulties in calibrating the crack width 
versus compliance relationship. To determine crack growth rate (d(2C)/dN), we initially 
employed both modified secant and five-point polynomial methods [5]. Since the five- 
point polynomial method resulted in significantly less scatter, it was used exclusively to 
calculate crack surface length (2C). Therefore, d(2C)/dN was obtained from the slope of 
the least-squares fit of a second-order polynomial to five consecutive data points. 

To exclude retardation effects resulting from the use of marker bands, we did not use 
the first data point following the marker band in calculating crack growth rate. 

Calculation of Flaw Shape and Growth Rate at Depth (da/dN) 

Since marker bands were produced only after stress intensity increases of 25 to 30%, the 
number of marker bands per specimen was only five to eight, depending on the initial flaw 
size. These bands were used to determine the flaw shape from post-test fractography. 
Although several methods of shape characterization were investigated, the parameter used 
for final data reduction was (a/2C), where (a) is the distance from the surface to the deepest 
point and (2C) is the width at the surface of the specimen (Fig. 4). A linear interpolation 
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based on measured width (2C) was used to get the shape (a/2C) for points between marker 
bands. This method gave consistent results for all but large flaws under high-stress ratio 
conditions, which resulted in rapid shape changes immediately after marker band place- 
ment that prevented accurate interpolation of flaw shapes (Fig. 5). 

Once the interpolation of flaw shape (a/2C) and the calculation of surface crack growth 
rate (d(2C)/dN) were completed, the crack growth rate at depth (da/dN) was calculated as 
follows 

da/dN-- a/2C. d(2C)/dN (1) 

This equation results from assuming that the surface flaw has reached an "equilibrium" 
shape, that is, 

a/2C ~ Aa/A2C (2) 

FIG. 5--Example of shape change following marker band placement. 
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If  this is true, then 

2xa ~-- (a/2C)A2C (3) 

or 

da/dN ~ (a/2C)(d(2C)/dN) (4) 

Since the crack growth rate at the depth (da/dN) had to be calculated indirectly using 
interpolated values for (a/2C), the accuracy is likely to be less than for d(2C)/dN values. 

Stress-Intensity Solutions 

Many surface-flaw Stress-intensity solutions are now published in the literature [5-12]. 
However, these solutions are not in close agreement (Fig. 6). Several were either usable 
only over a small range of crack growth or did not allow calculation of stress intensity at 
both surface and depth. These were eliminated from our study. The four that were finally 
employed in our data reduction program are shown below. 

Classical Irwin Solution [6]--(with front and back face corrections) 

K, = a ~  O �9 f(O) . F -  Mx .  f ( W )  (5) 

where 

F -- 1.0 + 0.12(1 - a/2C) 2 [7], 
~r = applied stress, 
a = crack depth, 
Q = shape factor = q~2 _ 0.212 (a/aye)2, 
~2 = 1 + 1.464 (a/C) L65 for a/C _< I [9], 

f(O) = (a2/C z cos 2 0 + sin 2 0) '/4, 
f ( W )  = width correction = ( sec  7rC/W) u2, and 

Mr  = back surface correction factor [8]. 

See Table 2 for Mx values. 

(6) 

(7) 
(8) 
(9) 

(10) 

TABLE 2--MK, back surface correction factor [2,8]. 

a/2C 

0.05 0.10 0.20 0.30 0.40 0.50 

a/t ME 

0.0 1.00 1.00 1.00 1.00 1.00 1.00 
0.1 1.01 1.01 1.01 1.01 1.01 1.00 
0.2 1.03 1.03 1.02 1.02 1.01 1.00 
0.3 1.06 1.06 1.04 1.03 1.02 1.00 
0.4 1.12 1.12 1.08 1.05 1.02 1.00 
0.5 1.22 1.18 1.14 1.08 1.03 1.0l 
0.6 1.34 1.30 1.22 1.13 1.06 1.01 
0.7 1.48 1.42 1.31 1.20 1.08 1.02 
0.8 1.64 1.57 1.41 1.26 1.13 1.04 
0.9 1.77 1.68 1.50 1.32 1.18 1.08 
1.0 1.84 1.75 1.59 1.38 1.22 1.10 
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Slice Synthesis Finite-Element Model [ 1 0 ] - -Th i s  solut ion was available in  the form of  
a po lynomia l  fit to the original f ini te-element results. 

3 3 

1(o = trVr~ ~ ~ Ao(C/a)i/2(a/t)J (11) 
i~0 j = 0  

3 3 

Ks = a~/-~--C ~ ~.. Bo(C/a)i/Z(a/t) j (12) 
i=O j=O 

where 

Ko = stress in tens i ty  at depth (0 = 90 deg), 
Ks = stress in tens i ty  at surface (0 -- 0 deg), 
Ai; = regression coefficients for 0 = 90 deg, a n d  
B,j = regression coefficients for 0 = 0 deg. 

See Table  3 for coefficient values. 
Newman-Raju Solution [ l l ] - - T h i s  solut ion was der ived from Raju  and  N e w m a n ' s  

three-d imensional  f ini te-element analysis o f  semielliptical  surface cracks and  from the 
work of  Gross and  Srawley on  a single-edge crack. 

K, = aV~r-ralQ �9 f(O) - F .  f ( W )  (13) 

where 

F = [M, + (v~QC/a - M,)(a/t)  v + ~ (M2 -- 1)(a/t)2v], 

p =  v/-~, 
M~ = front face correct ion = 1.13 -- 0 .1(a/C)  for a/C < 1, 
M2 = ~ / r /4  for a/C < 1, 

f ( W )  = (sec OrC/W" Y r ~ ) )  m, and  

f(O) = (aZ/c2/cos 2 0 + sin z 0) "4. 

(14) 

(15) 
(16) 
(17) 

(18) 

TABLE 3--Polynomial coefficients for evaluating surface flaw stress intensities. 

J 

A B 

i 0 1 2 3 0 1 2 3 

a<_C 
0 --0.333 -1 .047 4.618 -3 .547 0.426 0.044 -2.109 1.889 
1 1.516 1.735 -9 .740 8.120 0.654 0.090 3.329 -3.108 
2 -0.581 -0 .590 5.441 -4 .824 -0.385 -0.121 - 1.089 1.273 
3 0.076 0.026 -0.669 0.669 0.054 0.027 0.096 -0.150 

a > C  
0 0.0955 -0.0892 0.358 -0 .28  0.000788 0.0154 0.00607 0.0177 
1 0.634 0.511 -1.875 1.232 0.956 -0.0992 -0.0396 -0.116 
2 0.624 -0.681 1.698 -0.1787 0.281 0.167 -0.0356 0.258 
3 -0.676 0.385 -0 .55  -0.341 -0.494 -0.0426 0.314 -0.268 
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Newman-Raju Solution [12]--This solution is also a fit to earlier finite-element work 
but is formulated to apply over a larger range o f  conditions (Eq 13) 

K~ = aV'-~IQ . f(o) �9 F .  ~ W) 

where 

F = [ml + Mda/ t )  2 + M3(a/t)'] �9 g (19) 
M ,  = 1 . 1 3  - 0.09(a/C), (20) 
M2 = - 0 . 5 4  + 0.89/(0.2 + a/C), (21) 
M3 = 0 . 5  - -  1.0/(0.65 + a/C) + 14(1.0 -- a/C) 24, (22) 

g = 1 + [0.1 + 0.35(a/t)2](1 - sin0) 2, (23) 
0 = 90 deg at depth and 0 = 0 deg at surface, 

f(O) = (a2/C 2 cos 2 0 + sin 2 0) 1/4, and 
f ( W )  = (sec (TrC/W . V ~ t ) )  '/2 

For comparison purposes, the different stress-intensity solution correction factors were 
calculated for different shapes (a/2C ratios) and plotted as a function of  fraction of  growth 
through the thickness (a/t). 

The correction factors used were normalized by dividing the surface flaw stress intensity 
(K3 by the stress intensity for an equivalent embedded elliptical flaw (K~e) (Fig. 7) 

K~e = ak/~]-Q [a2/C 2 c o s  2 0 + sin 2 0] '/4 (24) 

For the a/2C = 0.25 case (Fig. 8), the results are compared to the Society of  Experimen- 
tal Stress Analysis (SESA) Fracture Committee's consensus solution [13]. This comparison 
illustrates the following points: 

(a) Solutions vary significantly for deep flaws (a/t  approaching 1.0). 
(b) Surface stress intensities are less well behaved than the stress intensity at the deepest 

point. (The normalized Irwin and Newman-Raju solutions for the surface are not 
shown because o f  a problem in the graphing program.) 

(c) The Newman-Raju solution [12] agrees fairly well with the SESA consensus solution 
at the surface. The Slice Synthesis approach best agrees with the SESA consensus 
solution at the crack depth. 

Width Correction 

Specimen width was fixed at 152 ram. At this width, some form of  finite width correction 
was necessary, at least for the final portions of  each test where the flaw width (2C) exceeded 
20% of  the specimen width (W). For this purpose, the width correction developed by New- 
man [14] was used (Eq 18) 

f ( W )  -- width correction = [sec OrC/W" V ~ ) ]  '/2 

During reduction of  the surface flaw crack data, we found that the use of  a width correc- 
tion had little effect on the slope of  dC/dN versus &Kcurves and the resulting crack growth 
rate "constants." 

This effect is illustrated in Fig. 9. Although it was not really necessary due to the speci- 
men dimensions, the Newman width correction factor was employed in the final model to 
make it applicable to a wide range of  finite width cases. 
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Extraction of Paris Constants 

To compare the surface flaw crack growth rate data to CT data from the literature, we 
included a provision in the data-reduction program to allow extraction of Paris constants. 
The Paris equations for crack growth rate were 

dC/dN = CsAK~ (for growth at the surface), and 

da/dN = CoAK"o (for growth at the depth) 

The constants were extracted by applying a least-squares linear regression of log growth 
rate versus log stress-intensity range data. To eliminate the effects of threshold on the Paris 
constants, the regression did not include data points with AK less than 6.6 MPa k/m. Data 
on the upper end were not included when AK exceeded 22.0 MPa k/m or a/t exceeded 
0.95. 

Results and Discussion 

Surface Flaw Shape Characterization 

Since one of the objectives of this study was to predict the shape change in surface flaws, 
the question of surface flaw shape characterization had to be addressed. Typical 
approaches in the literature are to assume either a semicircular or semielliptical shape. The 
former assumption can produce adequate results for very small flaws, whereas the latter 
must be used for most larger surface flaws. To test the applicability of these assumptions, 
we conducted tests on specimens with shapes of (a/2C) from 0.25 to 0.65. The use of 
marker bands allowed for the measurement of shape changes as the flaws progressed 
through the specimens. 

It was apparent from the literature that most surface flaws being reported were not true 
semiellipses. This was also true in this investigation, since most flaws rapidly assumed a 
shape that might be described as a partially embedded ellipse with the major axis offset a 
small distance into the specimen. To quantify this effect, we digitized fractograph marker 
bands and fitted a true elliptical shape to the digitized points (Fig. 10). To define the flaw 
shapes more accurately, we employed the following definitions (Fig. 11): 

a = total depth (from surface to deepest point), 
b = offset (from surface to major axis of ellipse), 

2C = maximum width (at major axis), and 
2C' = visually measured width at the specimen surface. 

For each specimen, these dimensions were determined for each marker band. Because 
certain conditions (for example, high load level or high stress ratio) caused significant 
shape changes to occur during the marker band, the above dimensions were measured for 
the beginning and end of each marker band. The offset (b) is plotted as a function of frac- 
tion of distance through the thickness (aft) in Fig. 12. In spite of the wide range of flaw 
shapes (a/2C from 0.25 to 0.65), the offset appeared to be very consistent. The offset is 
independent of (a/2C) and shows a slight tendency to increase as the flaw progresses 
through the thickness of the specimen. 

The data points in Fig. 12 which are very large offsets [nominally 8.9 to 10.2 mm (0.35 
to 0.40 in.)] occurred due to overload effects in the formation of marker bands in the high- 
stress ratio (R = 0.7) specimens. 
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To determine the best method of shape characterization, we used different techniques to 
fit elliptical shapes to the digitized marker bands. The two most accurate methods are dis- 
cussed below. 

Partially Embedded Ellipse with a Minor Axis Equal to 2(a-b) and the Major Axis Equal 
to the Maximum Width (2C) (see Fig. lO)--This method accurately portrays the maximum 
flaw width, the ellipse offset, and the curling back observed at the surface of most flaws. 
However, this technique tends to overestimate the total area of the flaw and has two prac- 
tical drawbacks: 

(a) the maximum flaw width (2C) cannot be visually monitored during a test, and 
(b) no existing stress intensity solutions can account for a partially embedded ellipse 

whose major axis is offset from the specimen surface. 

Semiellipse with Minor Axis Equal to Total Depth (a) and Major Axis Equal to the Visu- 
ally Measured Width at the Surface of the Specimen (2C') (see Fig. 13)--This method has 
several practical advantages: it is widely used in the literature, it is easy to experimentally 
measure 2C', and it is consistent with the assumption of available stress intensity solu- 
tions. Since it fails to account for the curling back at the specimen surface (the majority of 
work reported in the literature) this method tends to underestimate the cracked area. To 
be consistent with most work in the literature, this method of shape characterization was 
employed throughout the remainder of this study. 

Compar&on of Surface Flaw and CT Crack Growth Rate Data 

When a model for surface flaw growth was being developed, the assumption was made 
that L-T orientation compact tension crack growth rate data could be used to predict sur- 
face flaw growth in both depth (L-S) and width (L-T) directions. This implies that crack 
growth rate differences due to anisotropy and state of stress (plane-stress or plane-strain) 
are minimal. To check this assumption, we plotted crack growth rate versus stress-intensity 
range curves comparing surface crack growth rate (dC/dN) and depth crack growth rate 
(da/dN). This was done using each of the surface flaw stress-intensity solutions discussed 
earlier. Typical plots for one of the baseline specimens are illustrated in Fig. 14 using the 
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FIG. 14--Surface and depth crack growth rate curves using Raju-Newman [ 12] K solution 
=0.1). 

Raju-Newman [12] K solution. In spite of the significant differences among the stress- 
intensity solutions employed, they provided the following results: 

(a) The slopes of the crack growth rate curves for surface growth were consistently 
higher than for growth at the depth. 

(b) Over most of the range investigated, the crack growth rate at the surface was higher 
than at the deepest point for equivalent stress intensity ranges. 

(c) The slopes of the crack growth rate curves for both surface and depth are lower than 
most L-T compact tension rate data reported in the literature [15]. 

These results indicate that the use of CT crack growth rate data to predict the growth 
and shape change of surface flaws will result in some error. It has not been determined 
whether the source of this error is due to fundamentally different crack growth rates at 
surface and depth or due to inaccurate stress-intensity solutions. 

Surface Flaw Growth Prediction 

In order to account for flaw shape change, we developed a two-dimensional growth inte- 
gration routine for use with CT data from the literature. The model is based on the follow- 
ing premises: 

(a) crack growth rates a t  the surface and depth are equal for a given value of stress- 
intensity range and 

(b) shape changes are gradual. 

Plots of flaw shapes (a/2C) versus a/t for two initial flaw shapes (a/2C of 0.2 and 0.6) 
were prepared for each of the stress-intensity solutions under study (Fig. 15). These were 
then compared to the actual shape changes observed in the baseline (R = 0.1) specimens 
(Fig. 16). It was noted that the trend of decreasing a/2C as a/t increased toward 1.0 was 
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FIG. 19--Predicted equilibriurn flaw shape as a function of  a/t and n. 

similar to the shape of the Raju-Newman [12] solution in Fig. 15. When the initial shapes 
and sizes of the baseline flaws were used as input-to the surface flaw growth model (using 
the Raju-Newman [12] solution), the predicted shape changes generally agreed with the 
actual changes (Fig. 17). The major discrepancy was that actual flaws did not reach equi- 
librium shapes as early as predicted. 

Whether or not a flaw will ever reach its "equilibrium" shape is a function of the initial 
size and shape of the flaw. Smaller flaws tended to reach their equilibrium shape much 
sooner, as shown in Fig. 18. However, equilibrium shape is really a misnomer since the 
shape is a function of both a/t  and n (from da/dN = CAK "). This dependency is illustrated 
in Fig. 19. 

Conclusions 

Several conclusions may be drawn from this study concerning the prediction of surface 
flaw growth in plates of finite thickness and width: 

1. Most surface flaws resemble a partially embedded ellipse with the major axis offset 
into the specimen an amount that increases slightly as the flaw grows. 

2. The use of  the Raju-Newman [12] stress-intensity formulation to calculate crack 
growth at surface and depth allowed prediction of surface flaw growth and shape change 
consistent with those experimentally observed. 

3. Crack growth rate data obtained from surface flaws differ from data obtained from 
compact tension specimens. Furthermore, surface crack growth rate usually exceeded the 
crack growth rate at the deepest portion of surface flaws. We do not know whether this is 
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236 SURFACE-CRACKGROWTH 

due to fundamental ly different growth rates or to inaccuracies in the stress-intensity solu- 
tions. Thus, the validi ty of  using standard compact  tension specimen growth rate data to 
predict surface flaw growth is uncertain. 
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ABSTRACT: An induction heating procedure coupled with an advanced alternating-current 
potential drop (ACPD) system to study thermal fatigue crack initiation and growth is pre- 
sented. This technique can be adapted for various specimen geometries and is well suited for 
studying isotropic as well as anisotropic alloys. Details of the experimental apparatus and 
ACPD system are given. To illustrate the procedure, the effect of three cyclic thermal histo- 
ries on the number of cycles to crack initiation of double-edge wedge specimens of IN-100 
and MA-6000 superalloys was studied in air. The thermoelasto plastic finite-element analyses 
(FEA) to determine the critical locations and their respective stress-strain histories are pre- 
sented. For this particular geometry of specimen, the initiation of microcracks about 10 to 
20/*m in length could be detected and crack growth rates lower than 1/,m/cycle were mea- 
sured. The experimental results combined with the FEA showed that the peak compressive 
strains encountered on specimen heat-up are more critical to crack initiation and surface 
degradation than total stress or strain ranges. 

KEY WORDS: thermal fatigue, induction heating, crack initiation, crack growth, superalloy, 
IN-100, finite element, A-C potential drop (ACPD) 

The drive toward better performance and fuel economy for aircraft gas turbine engines 
has resulted in higher turbine inlet temperatures. Currently, the leading and trailing edges 
of  first-stage blades and vanes can rise from 450 to 1100~ in 4 to 10 s during takeoff. 
During turbine shutdown, after landing and thrust reverse, the airfoil temperature can 
decrease from 1080 to 450~ in under 15 s [1]. As a result of  high metal temperatures and 
the thermal  strains due to temperature transients and internal blade cooling, thermal 
fatigue, which is a combinat ion of  ductil i ty l imitat ions in mechanical behavior and effects 
of  surface degradations, has become the life-limiting phenomenon for gas turbine blades 
and vanes [2,3]. In this scenario, the abili ty to detect and analytically predict surface crack 
init iat ion and growth is a key technology [3,4]. 

As reviewed by Holmes et al. [5,6] there are several techniques available for studying 
thermal fatigue crack initiation. These include gas-burner rigs [ 7-9] and fluidized beds 
[ 10,11 ]. Gas-burner  rigs suffer from high costs and require complex heat-transfer analysis, 
which makes it difficult to correlate surface degradation with the stress-strain history of  
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238 SURFACE-CRACK GROWTH 

test specimens. It should be noted that although burner rigs can simulate the combustion 
gas composition existing in a turbine, their use has come under considerable debate lately 
due to the wide differences in test results obtained by different laboratories [8]. The prin- 
cipal reason for the variation in test results, which occurs among rigs which burn the same 
fuel, is generally attributed to the variation in specimen stress-strain history resulting from 
the use of various geometries (wedges, squares, circular pins, etc.) and burner-rig velocities. 
Due to the complex coupled heat-transfer analysis required for the determination of stress- 
strain history, the stress-strain history of the test specimens is rarely determined except for 
few exceptions [9]. This makes the transfer of test results to actual gas turbines empirical 
at best. 

The fluidized bed technique has at least two serious drawbacks. First, it is incompatible 
with corrosive atmosphere testing. Second, it lacks versatility in studying arbitrary tem- 
perature histories or mission profiles due to lack of easy control over specimen heating and 
cooling rates. Further, the potential erosive effect of the alumina particles used in fluidized 
bed furnaces is now under consideration because it has been shown that oxidation rates 
are greatly enhanced by impact of hard particles even with moderate velocities [ 12,13]. 

Induction heating of a stepped-disk has been shown to be a very efficient alternative to 
the use of burner-rigs and fluidized beds in thermal fatigue studies [5,6,14]. The induction 
heating technique [14,15] allows one to subject test specimens to a variety of temperatures 
and strain histories typical of  those encountered by leading and trailing edges of gas turbine 
blades and vanes. The technique can also be easily modified to allow fatigue testing in inert 
or corrosive gas atmospheres [5,6]. 

The purpose of this paper is to describe a computerized testing system capable of detect- 
ing surface crack initiation (--~50 pm) and surface microcrack growth during thermal 
fatigue. While the main point here is an advanced alternating-current potential drop 
(ACPD) technique, it will be demonstrated by using it to study the effect of various strain 
histories on the number of cycles to crack initiation in IN-100 and MA-6000 nickel-based 
superalloys. 

Experimental Procedure 

Test Specimen and Testing Apparatus 

For the present study, double-edge wedge specimens were used with edge radii typical 
of trailing and leading edges of a gas turbine airfoil (Fig. 1). This allowed modeling of the 

~ . ~ m i d c h o r d  
6.4 

32 _j 

-I 

plane 

_1_ _1_ .J 
- I -  - r  -i 8.5 14 9.5 

FIG. 1--Geometry of specimen used for testing (in ram). 
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TABLE 1--Chemical composition of alloys. 

239 

Elements, Weight % 

Alloy Ni Cr Co Mo AI Ti W C B Zr Ta Y203 

IN-100 Balance l0 15 3.0 5.5 4.7 1.0 0.18 0.014 0.001 . . .  
MA-6000 Balance 15 . . .  2.0 4.5 2.5 4.0 0.05 0.01 0.15 2.0 "lli 

TABLE 2--Alloys' mechanical properties (monotonic). 

Ultimate 0.02% Yield 0.2% Yield 
Temperature, Strength, Strength, Strength, Reduction 

~ N/mm 2 N/mm 2 N/mm 2 in Area, 96 

1N-100 
21 986 614 765 14 

850 765 607 731 8 
925 565 345 462 12 

1000 386 200 296 20 

MA-6000 a 
21 1294 1284 3.5 3.0 

538 1156 1011 5.5 4.0 
760 976 781 5.5 12.5 
982 407 344 12.5 35.0 

a Longitudinal tensile properties. 

5 to 8 s heating and 6 to 30 s cooling experienced by the edges o f  internally cooled gas 
turbine airfoils. The specimens were machined from a cast plate (IN-100) about  15 mm in 
thickness and from an isothermally forged plate (MA-6000) also 15 mm of  final thickness. 
The chemical composi t ion of  both alloys is given in Table 1, The tensile properties at room 
and elevated temperatures are shown in Table 2. 

The apparatus which was used consists of  a high-frequency oscillator for induction heat- 
ing, an air  compressor for cooling, a programmable high-resolution voltmeter (DVM), an 
ACPD crack growth monitor,  and a mainframe computer  [16]. Figure 2 shows the control 
block diagram for this system. 

Thermal fatigue was achieved by inductively heating the double-edge wedge specimens 
using a Hiittinger 4 solid-state 6.0 kW (200 kHz) induction generator coupled to a special 
concentrator coil (Figs. 3 and 4). This technique relies on the skin effect obtained with high- 
frequency induction heating of  metals. The skin depth, the depth at which the strength of  
the magnetic field falls to 0.3679 of  its surface value, is given by [17] 

= (p/47r 2 • 10 -7 �9 ~o �9 t~r) I/2 

where 

p = resistivity (in ~2-m), 
~0 = frequency (in Hz), 

and #r = relative permeabil i ty ( 2 1  for nonmagnetic materials like IN-100 and MA- 
600). 

4 Hiittinger GmbH, Model IG 5/200 Hy-A 21-206 B/f-BA 1-8240-10, supplied with a Programmable 
Eurotherm Temperature Controller, Model 818P. 
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FIG. 2--Block diagram showing control system. 

At 200 kHz the skin depth of IN-100 and MA-6000 nickel-base alloys is approximately 
1.25 mm [17]. The concentrator coil was machined as to maintain constant coil-to-speci- 
men spacing. This was achieved by using a mold having oversized dimensions of the spec- 
imen and 3.0-mm-diameter copper tubing. The air gap between the concentrator coil and 
specimen surface was 2 mm. 

The specimens were positioned in the load coil using two nickel rods (Ni-200) 4 mm in 
diameter. The bottom one was fixed to an electrically insulated positioner, whereas the top 
rod was spring-loaded against a central polymeric crossbar (Fig. 3b) to allow free thermal 
expansion of the rods in the longitudinal direction. Two aluminum forced-air cooling man- 
ifolds (Figs. 3 and 4) with center holes to allow the support rods to pass through were used. 
The cooling manifolds were designed such that high-velocity air, exiting from a 0.5-mm 
gap about 2 mm from the specimen top (and bottom) surface, impinge and flow along the 
longitudinal surfaces of the specimen. Varying the airflow through an air valve, and thus 
through the two manifolds, controls the tensile strains encountered during the cool-down 
part of the cycle. The air flow is best controlled by the temperature controller, which opens 
or closes a solid-state relay that drives the power to the air valve. With this technique, the 
air flow is always synchronized to the temperature cycle and is repeatable. The cooling rate 
is controlled by the heater ballasting the air blast cooling. 

Because of the rapid temperature transients and of the dependence on measured tem- 
peratures in the specimen stress-strain histories, extreme care in using thermocouples for 
temperature measurement and control is required in thermal fatigue testing. Several pro- 
cedures were used in an effort to increase the accuracy and response time of thermocouple 
measurements. 

To improve the reproducibility of the temperature history from one specimen to another 
and to increase the contact area between the junction and specimen, we drilled ~ 0.5-mm- 
diameter by 0.25-mm-deep holes along the specimen at locations shown in Fig. 5. Tern- 

Drilled using thin (0.4-mm) electro-discharged-machining (EDM) electrodes. 
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FIG. 3--(a) Overall view of experimental system: l. induction unit, 2. thermal fatigue 
apparatus, 3. crack growth monitor, 4. DVM, 5. data acquisition system. (b) Top view of 
thermal fatigue apparatus. 

perature disturbances at the thermocouple mass in the field were also minimized by using 
fine-gage chromel-alumel thermocouples (0.2-ram wire diameter) with 0.3-mm-diameter 
ball-junction which were spot-welded into the positioning holes. For calibration of the 
transients temperature loading, 18 chromel-alumel thermocouples (0.2-ram diameter) were 
used--their positions are shown in Fig. 5a. The actual tests were performed using six ther- 
mocouples positioned along the midspan plane (Fig. 5b). Due to the severity of the tem- 
perature range of interest (300 to 1050~ the 0.2-mm-diameter chromel-alumel thermo- 
couples could be used only for about 24 h before oxidation led to reading errors and 
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FIG. 4--Schematic of test apparatus for studying thermal fatigue in air. 

embrittlement. Thus, for long-time feedback to the temperature controller, Pt/Pt-10% Rh 
thermocouples (0.2-mm-diameter wire) were used along with 0.3-mm-diameter chromel- 
alumel thermocouples. 

The locations of  the thermocouples on the specimen (Fig. 5) were chosen to ensure that 
the specimen midspan was heated uniformly. The specimens were assumed properly posi- 
tioned in the focusing inductive coil when the maximum difference in thermocouple out- 
puts located symmetrically about the midchord plane was less than 5~ Spanwise center- 
ing (that is, vertical centering) was also accomplished by comparing the outputs of the 
thermocouples positioned symmetrically about the midspan plane and by adjusting the 
height of the specimen such that the maximum difference of outputs was less than 5~ By 
comparing the outputs of the thermocouples positioned symmetrically along the midspan, 
we found that the specimens could be positioned vertically with + 0.25-mm accuracy with 
respect to the midspan plane. 

For the particular specimen geometry and control system used, the testing apparatus was 
tuned to allow heating from 400 to 1000~ in 5 s with less than 2% overshoot in temper- 
ature and cooling from 1000 to 400~ in 15 s with no overshoot in temperature. The ther- 
mocouple outputs were digitized (both for calibration and testing) using a ten-channels 
programmable scanning-DVM (digital voltmeter) set to 10 ~V resolution and sampling 
rate 6 of 120 rdg/s. This results in a response time of the thermocouple/data acquisition 
system (used to record temperature history) better than 0.01 s. 

Crack Initiation and Growth Measurements 

Crack initiation and growth measurements during thermal fatigue have been performed 
mostly by optical measurements [9,10,18,19], either on double-edge wedge or tapered-disc 
specimens. The resolution claimed for optical measurements is in the range of 100 to 150 
#m, depending on the crack tips resolution under the thick oxide layer. Further, the mea- 
surements of  number of cycle to initiate a crack and to grow to a certain size are always 

6 The maximum sampling rate is set by the maximum switching speed of the scanner, which is 
about 300/s. 
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FIG. 5--Position of thermocouples and potential probes: (a) for temperature calibration," 
(b) for testing. 

approximated since optical measurements are performed according to an inspection sched- 
ule [ 18] with a limited number of inspections (normally <20). 

There have been a few attempts to measure crack initiation and growth in isothermal 
and thermal-mechanical fatigue conditions using the potential drop (PD) technique 
[4,15,20,21]. Although both direct current (d-c) and a-c versions of the PD method have 
been investigated, the former has found widespread acceptance because of its apparent 
simplicity. However, the d-c potential drop (DCPD) has several shortcomings with respect 
to detecting small surface cracks at high temperature [21-24]. The most significant prob- 
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lem with applying PD methods to thermal fatigue is caused by the temperature coefficient 
of  resistance of  nickel-base alloys, which is about 5 • l0 -3 ~/~-K. This results in a 250% 
change in potential with a change in temperature of  500 K. In the following, a stable ACPD 
system with temperature changes is briefly described. 7 The full description of  the system is 
presented elsewhere [25]. 

For the PD to give a direct measure of  the impedance of  the specimen, both current and 
frequency have to be maintained constant to a high degree. Whereas keeping the frequency 
constant is not a serious problem, the design of  a constant a-c current source is far more 
complex than its d-c counterpart. Further, even if a constant current source can be 
obtained, variations in #r and 0 with temperature are still present. To overcome the above 
problem, a compensation technique was employed. Potential drops across the specimen 
edge (V~ge) and a reference (V~f), connected at a region of  the specimen where the potential 
is less affected by crack growth, are measured separately. The two signals are electronically 
subtracted and the resulting signal (V~dge -- V~f) can be correlated with crack length. The 
block diagram of  the ACPD system is shown in Fig. 6. 

The current source is provided by an a-c power amplifier (B) capable of  supplying 2 A 
at frequencies up to 100 kHz with a voltage gain greater than 105. A Wien bridge oscillator 
(A) provides the controlling input voltage (Vi,) for the power amplifier which is applied to 
its noninverting input. The frequency range of  the oscillator can be selected from one of  
six preset values of  0.3, l, 3, 10, 30, and 100 kHz, and can be maintained stable to better 
than 0.02%. The specimen is connected in series with a high-stability resistor (Rs) across 
the output of  the power amplifier. The voltage drop VI( V i = R s �9 I)  is used as the feedback 
voltage which is applied to the inverting input of  the power amplifier. The amplifier thus 
amplifies the voltage difference between the two inputs (that is, Vi, - Vi). Since the ampli- 
fication (that is, the gain) is very high, this voltage is very small and can be neglected. Thus 
/, the current through the specimen which also flows through the feedback resistor R~ is 
proportional to the voltage input V~~ from the oscillator. Since R I used is 0.1 ~, Vi. can be 
varied from 0 to 200 mV to give a constant current of  0 to 2 A. An important advantage 
of  the current feedback technique i~ that the magnitude of  the current I is maintained 
constant to better than 0.1% irrespective of  the impedance of  the test specimen which can 
change during the test period. Further, it maximizes the high main frequency rejection (50 
Hz) and low third-harmonic distorsion and these two characteristics have been shown to 
be highly desirable for ACPD applications [24]. 

The output signals from the specimen are fed into a dual-inputs, low-impedance, single- 
winding 8 matching transformer in series with an a-c coupled signal amplifier. The resulting 
output (subtracted signals) from the transformer is fed into a differential a-c amplifier with 
adjustable gain between 1 and 1000. The first amplification stage is a-c coupled to a non- 
inverting amplifier with a gain of  ~ 7 through a 10-uF capacitor. Because high linearity at 
high frequencies and a high dynamic reserve [defined as DR - log~0 (Vnoise/Vsignal)] 
are essential for detecting small surface cracks, synchronous switching was used for 
rectification. 

Rectification by synchronous switching was achieved using two analog complementary 
metal-oxide semiconductor (CMOS) switches. The output of  the oscillator (A) is fed into 
a phase-locked loop (PLL) system and a voltage-controlled phase shifter to produce two 
switching signals ,1,2 and '1'2 + 90~ as shown in Fig. 6. These two signals drive the identical 
CMOS switches. The output from Switch 2, after amplification and smoothing, is fed into 

7 The ACPD system described here is a modified CGM5 crack growth monitor and is a trademark 
of MATELECT Ltd., 33 Bedford Gardens, London W8-7EF, U.K. 

s It was later found that a dual-input, double-winding matching transformer provides better long- 
time stability than that of the single-winding transformer used in this study. 
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the phase-shifter control input. This feedback loop shifts the phases of the switching signals 
to make the output of Switch 2 almost zero, that is, exactly in quadrature with the phase 
of the incoming ACPD signal (~0- The output of Switch 1 is, therefore, in phase with ~l. 
Finally, this output is amplified, smoothed by a variable stepped filter, and digitized by a 
programmable scanning DVM set to 10-#V resolution and sampling rate of 120 rdg/s. 

For the initial calibration, a double-edge wedge specimen of Nimonic 80 was used. Saw- 
cuts of 0.5 and 1 mm deep and 0.075 mm wide were used to simulate crack extension. The 
current and sensing leads were connected as shown in Fig. 5. The current and frequency 
were varied between 0.5 to 2 A and 10 to 100 kHz. The gain was adjusted to provide 
sufficient dynamic range and reserve. For the actual specimen geometry and testing con- 
ditions it was found that the optimum operating parameters were 1.2 A, 30 kHz, and 70 
dB of gain. With these parameters the output for a 1-mm crack is about 700 mV, which 
results in a resolution better than 10 um (that is, total crack length). Further, the output 
was found to increase linearly with increasing crack depth. 

Thermal Fatigue Histories 

To measure the performance of the ACPD system in detecting crack initiation and 
growth, the system was used to study the effect of strain histories on surface oxidation and 
cracking. Two thermal histories were extensively studied both with minimum and maxi- 
mum temperatures of 400 and 1000*C, and a 60 s hold at 1000~ A limited number of 
tests of a third thermal history, denoted FHS (5 s heating, 60 s hold time, and 15 s cooling) 
were also performed. Figure 7 shows the three cycle types which are labeled FHF (5 s heat- 
ing, 60 s hold time, and 15 s cooling), SHF (60 s heating, 60 s hold time, and 15 s cooling), 
and FHS. Here, the temperature histories of the midspan plane (Curve 0) and at two loca- 
tions (Curves 6 and 7) taken on both sides of the midspan plane (Fig. 5b) are shown. The 
rapid heating of FHF and slow heating of SHF were included to examine how the magni- 
tude of the compressive edge strains encountered during specimen heat-up affect crack 
initiation. The fast cooling of FHF and the slow cooling of FHS histories were included to 
show the effect of tensile strains on thermal fatigue cracking. 

All three thermal histories were investigated using IN-100, whereas only FHF was stud- 
ied using MA-6000. The latter alloy was tested to study the effect of transverse and longi- 
tudinal cracking on the ACPD responses, with fibers (grain structure) either parallel or 
perpendicular to the midspan plane. 

The elastic and elasto-plastic stress-strain histories of the test specimens were deter- 
mined using the finite-element program ABAQUS [26]. Because of the symmetry, only 
one-half of the wedge specimen was modeled. The element-type was a 20-node brick ele- 
ment with 27 Gaussian integration points. The model consists of 60 elements (Fig. 8), with 
a total of 428 nodes and 279 suppressed degrees of freedom for the thermal analyses (out 
of 428) and 257 suppressed degrees of freedom for the stress-strain analyses (out of 2568). 

The calculations were carried out only for IN-100 because the directional properties 
(elastic modulus and tensile properties) of MA-6000 were not all available. The mechanical 
and physical properties of the alloy were obtained from Refs 27 and 289 and are reproduced 
in Tables 2 and 3. The transient temperature loadings were determined from thermocouple 

9 The third source of this information was M. Nazmy of Brown, Boveri & Company (BBC), private 
communication, 1987. 

FIG. 7--Temperature histories of double-edge wedge specimens. Position of thermocou- 
pies is shown in Fig. 5. 
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FIG. 8--Finite-element model of the double-edge wedge specimen. 

data according to the procedure described in a previous section. The temperature distri- 
butions over the entire surface of the specimen were obtained by cross-plotting the ther- 
mocouple outputs (and by using interpolated least-squares best-fit parabola between them) 
and by using the fact that the temperature distributions were almost symmetrical with 
respect to midchord and midspan planes. All the details concerning the finite-element 
model, the methods of analysis, and the inputs for the analyses, are given elsewhere [29]. 

The results of the elastic and elasto-plastic analyses are shown in Figs. 9 and 10, where 
the stress-strain histories at critical locations for FHF, SHF, and FHS are presented, respec- 
tively. Note that for the elastic analyses, the loops are caused by the changing thermal 
strains in the bulk relative to the periphery and not by the material hysteresis. The strain 
ranges and mean stress levels for the elastic analyses are about 0.50%, 0.40%, and 0.38%, 
and -270 ,  + 150, and - 3 0 5  MPa for FHF, SHF, and FHS, respectively. Figure 10 shows 
the hysteresis loops for the elastic-plastic analyses. As can be seen, ratchetting plastic strain 
caused the hysteresis loops to shift under cycling, with FHF experiencing the greatest and 
SHF the least shifting. The long arrows indicate the shifting direction of the hysteresis 
loops. Comparisons of Figs. 9a with 10a and 9b with 10b show that the stress and strain 
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TABLE 3--IN-lO0 physical properties. 

249 

Modulus 
of 

Temperature, Elasticity, 
~ N/mm 2 

Mean 
Coefficient 
of Thermal Specific Thermal 
Expansion s Heat, Conductivity, 

m/m~ J/kg W/m. K 
Poisson 

Ratio 

25 215 X 103 
260 203 • 103 13.0"X'10 -6 
316 199 • 103 13.1 X 10 -6 
371 197 X 103 13.3 X 10 -6 
427 194 X 103 13.5 • 10 -6 
482 t91 • 103 t3.7 • 10 -6 
538 187 • 103 13.9 X 10 -6 
593 184 X 103 14.0 X 10 -6 
649 180 X 103 14.4 X 10 -6 
704 177 X 10 3 14.6 X 10 -6 
760 173 X 103 14.9 X 10 -6 
846 168 X 103 15.4 X 10 -6 
871 162 X 103 15.8 X 10 -6 
927 157 X 103 16.4 X 10 -6 
962 151 X 103 16.7 X 10 -6 

1038 145 • 103 17.5 X 10 -6 
1093 139 X 103 18.2 • 10 -6 

380 

ago 
18.9 

25.2 

28.8 

0.314 
0.317 
0.318 

03i2 
O.ii4 

O.ii9 

o.ii3 
o.i41 
o.i51 
0.i(~2 

a From room temperature to indicated temperature. 

ranges from the elastic analyses are within 10% of  those computed from the elastic-plastic 
analyses. However,  the mean effective stresses and strains are significantly different. It is 
important  to note that the peak compressive strains ranked (in increasing order) as FHF,  
FHS, SHF, whereas the peak tensile strains ranked as SHF, FI-IF, and FHS. 

Resu l t s  and D i s c u s s i o n  

Figure 11 shows examples of  temperature and potential  histories which took place 
within one cycle for FHF,  SHF, and FHS, respectively. As can be seen, the potential and 
temperature histories look similar, that is, they show a decrease, a plateau (hold time), and 
an increase. It thus seems that the dual inputs transformer is not capable of  eliminating all 
the effect o f  changing temperatures. However,  a close look at the changes of  potential with 
t ime shows that  the peaks in the potential  histories coincide with the peaks in the stress- 
strain histories rather than with the temperature. This can be illustrated for F H F  for exam- 
ple, by noting that the stress-strain peak in compression occurred after about 4.2 s and that 
the peak potential  also took place after 4.2 s. Recalling that  the peak temperature is reached 
after 5 s (Figs. 7 and 11), one concludes that the ACPD system does fully compensate the 
changes in temperature and provides a sensitive indication of  the strain histories experi- 
enced by the specimen. 

The performance of  the ACPD system in monitoring crack init iat ion was assessed by 
plotting the peak potential,  the potential  after 30-s hold t ime at 1000~ (mid-hold), and 
the average value of  the plateau, as a function of  the number  of  cycles. Figure 12 plots the 
average value of  the plateau with number  of  cycles for FHF,  SHF, and FHS cycling, respec- 
tively. Changes of  peak potential  and potential at mid-hold are not presented because they 
show essentially the same information as their corresponding ones in Fig. 12. 
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The following comments can be made concerning the results displayed in Fig. 12. First, 
it can be seen that there are three regions (or stages) in the potential versus N curves: An 
initial stage which corresponds to the thermal shake-down of  the specimen (that is, a period 
in which the specimen, the connecting rods, and the potential probes achieved thermal 
stability); a second stage during which the potential shows a continuous and smooth 
increase (or decrease), and a third stage in which the potential significantly departs from 
Stage II. The final stage characterizes crack growth, whereas the transition between Stages 
II and III  corresponds to the initiation o f  one or more microcracks. This conclusion was 
substantiated by microscopic observations which showed microcracking when Stage III 
was present and no crack if this stage was not observed on the potential versus N curves. 
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As indicated in Fig. 12, Stage II can either continuously decrease (SHF and FHS of IN- 
100, FHF of MA-6000) or increase (FHF of IN- 100) with increasing number of cycles. This 
implies that the changes of the reference probes (V~f) can be greater or lower than the 
changes of the active probes (V~e). The explanation to these respective changes in poten- 
tial were again found through microscopic observations. It was observed that when Stage 
II showed continuous decrease with increasing number of cycles, cracks were only found 
along the 1.0-mm edge radius (leading edge), whereas cracks at the 0.7-mm edge (trailing 
edge) were observed if the potential continuously increases. This illustrates that the use of 
two sets of probes does compensate for the changing temperatures, and allows the sensing 
of cracks along the opposite edge. 

It is worth noting that the observed microcracks in IN-100 were subsurface ones (Fig. 
13) with final length (after 3000 cycles) of  about 100 to 150 #m. This is in agreement with 
the finite-element analyses which indicate that the stresses and strains were higher below 
the surface than at the surface [29]. Further, this observation clearly demonstrates that the 
ACPD system provides a much more reliable measurement of number of cycles to crack 
initiation than conventional optical inspections, which obviously fail to pick up the pres- 
ence of subsurface cracks. 

Given the fact that the transition between Stages II and III (the initiation life) occurred 
near 2000 cycles, it appears that the average crack growth rate can be estimated l~ to be of 
the order of 1.0 • 10 -4 mm/cycle ('-~ 0.1 urn/cycle). This is two orders of magnitude lower 
than the capability of  optical measurements [18] in thermal fatigue testing. Of course, for 
MA-6000, a more brittle material, faster crack growth rates were measured [16]. 

It is important to emphasize that the ACPD response is very sensitive to the type of 
microcracks. Hence, for a given thermal history (for example, FHF), transverse cracking 
led to a sharp but steady decrease in potential (produced by numerous microcracks on the 
1.0-mm edge radius), whereas longitudinal microcracks gave rise to a sharp but fluctuating 
increase of potential (Fig. 12d). These differences in ACPD responses can be attributed to 
the fact that transverse microcracks add resistances in series with the actual resistance (that 
is, the resistivity of the material) to the passage of current through the specimen. Thus the 
total resistance of the 1.0-mm edge radius increases and the net potential (Ve~go - Vrof) 
decreases. On the other hand, longitudinal cracks add parallel resistances to the current 
with the net result that the total resistance at the 1.0-mm edge radius decreases, leading to 
an overall increase of the potential. In spite of these results, more work is required to quan- 
tify further the changes of potential with types of microcrack. In particular, the problem of 
cracks at both edges (although not observed in this study) needs to be addressed. In this 
respect, the use of two sets of probes (working and references probes), one at each edge of 
the specimen, should provide valuable information. 

Figures 12a-12c show that the number of cycle to crack initiation in IN-100 increases 
in the following order: FHF, FHS, and SHF. This does not agree with the intuitive argu- 
ment that the higher the peak tensile stress, the faster should be crack initiation and 
growth. In fact, this ranking is matched with the ranking of the peak compressive strains. 
In other words, the lower the peak compressive strain, the shorter the crack initiation life. 
Thus, it can be concluded that although the peak tensile stresses are likely to be important 
for crack growth, it is the peak compressive strains encountered during heat-up (and the 
associated high-temperature damage) that determined the crack initiation life. Holmes and 
McClintock [5,6,30] also reached a similar conclusion in thermal fatigue testing of mon- 
ocrystaUine Ren6 N4. 

~0 This is true, assuming that the changes in potential with increasing crack lengths are linear and 
that the cracks grow parallel to the midspan plane. 
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FIG. 13--Subsurface cracks observed in IN-IO0 (FHF and 3000 cycles). 

After completing the tests (that is, after 3000 cycles), the specimens were nickel-plated 
and then polished parallel to the edge faces down to the midspan plane. Photographs of 
the surface were taken every 150 to 200 urn. The compressive strains encountered during 
specimen heat-up produced degradation of the surface in the form of scalloping (Fig. 13). 
Scalloping was found to increase with increasing peak compressive strain. The slow heat- 
up (60 s) of  SHF produced little surface degradation, and a thick but uniform layer of oxide 
was formed [31]. Obviously, the oxidation behavior of  IN-100 is greatly affected by strain- 
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ing, which is consistent with other reported data [12,13,30]. The synergistic effect of  ther- 
mal cycling and oxidation is discussed in detail elsewhere [31]. 

Conclusions 

Based on a compensation technique, an ACPD system for monitoring crack initiation 
and growth has been developed and used in thermal fatigue testing o f  double-edge wedge 
specimens. The digital output provided an accurate measurement of  number of  cycles to 
crack initiation and was unaffected by specimen current and changing temperatures. The 
ACPD response was also shown to be highly sensitive to the type of  microcracks. The 
inherent sensitivity and stability of  the ACPD system could not be fully exploited because 
the PD output is affected by strain and by the presence of  cracks at both edges. Neverthe- 
less, it is believed that the use of  two sets of  probes, one at each edge of  the specimen, will 
lead to an even better characterization o f  crack growth in thermal fatigue testing. Finally, 
the experimental results on IN-100 alloy showed that peak compressive strains encoun- 
tered on specimen heat-up are more critical to crack initiation and surface degradation 
than total stress or strain ranges. 
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ABSTRACT: A series of fatigue crack growth experiments was conducted on a transparent 
polymer (PMMA) using a surface flaw geometry in bending. A Newton interferometric tech- 
nique was used to measure crack opening displacements and closure for four different loading 
histories. Results are presented for conditions of constant applied stress-intensity factor along 
the crack face free surface, at the crack tip in the depth direction, for constant applied load 
range, and for a block loading sequence. 

Three distinct crack geometries are identified and are found to be a function of crack size. 
The crack opening displacement patterns are found to be strongly influenced by the forma- 
tion of a void internal to the crack. Three distinct closure loads are identified and measured 
for surface flaws of various crack depths and aspect ratios. The various closure loads are used 
to define effective stress-intensity ranges. Life predictions, crack growth rates, and aspect 
ratios are used to evaluate the applicability of the various closure loads at different locations. 
It is found that the same closure load does not determine the best value of effective stress 
intensity at all points along the crack tip in the surface flaw geometry. 

KEY WORDS: fatigue crack closure, fracture mechanics, surface flaw, polymethylmethac- 
rylate, Newton interferometer, crack opening displacement, life prediction, effective stress- 
intensity range 

Closure measurements have been used to consolidate fatigue crack growth data by 
numerous investigators [ 1,2] since the introduction of the crack closure concept by Elber 
[3] in the early 1970s. The basis of the closure concept is the recognition that the crack 
remains closed during a portion of the load cycle. This leads to an "effective" stress-inten- 
sity range which governs crack growth behavior. The effective stress-intensity range is 
lower than the applied range when the load at which closure occurs is above the min imum 
load in the fatigue cycle. In trying to apply the closure concept to experimental data, it has 
become evident that lack of a definitive definition of crack closure load level has caused 
inconsistencies in evaluating experimental results. In a recent investigation by the authors 
[4], closure load levels were found to vary with the location around a surface flaw in a 
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transparent material. Further, crack closure at one location does not always significantly 
affect the stress intensity at another location. Conversely, closure at a distant location could 
shield the crack at a second location, even though the latter location did not experience 
closure. This investigation was undertaken to shed further light on the development of 
closure in surface flaws under a variety of loading conditions and to evaluate the applica- 
bility of the closure concept to fatigue crack growth data. 

The surface flaw (part-through-crack) was selected to investigate the effect of closure on 
fatigue crack growth rate because of its occurrence in many engineering applications. 
Although a common crack type, the amount of crack closure information available on 
surface flaws in comparison to through-thickness cracks is relatively small. This is due to 
the three-dimensional complexities of surface flaw crack opening displacement and stress- 
intensity factor solutions around the crack boundary, as well as the difficulties in measuring 
these quantities experimentally. To address questions concerning crack opening displace- 
ments, we used an optical interference method with transparent polymer specimens to map 
the fatigue crack opening displacement contours of surface flaws. Crack closure loads at 
different locations and crack growth rates were determined experimentally. An analytical 
approach for predicting crack growth rate and aspect ratio using the three closure load 
definitions was used in a life prediction scheme. The analysis is presented only as an exam- 
ple since the data generated in this investigation are not independent. 

Experimental Approach 

Experiments were conducted using a transparent polymethylmethacrylate (PMMA) 
material in bending using a laser interferometry system to measure crack opening displace- 
ments. The experimental procedure is described in detail in a prior publication [4]. The 
polymeric PMMA material was selected because of its transparent qualities and its dem- 
onstrated fracture-mechanics characteristics [5-7]. Experiments were conducted using 
both constant load (P) and constant stress-intensity factor (K) load cycles as well as a block 
loading sequence. The experiments were performed on a closed-loop MTS fatigue machine 
with a 22.2-kN (5000-1b) load cell and four-point bending fixture. An x-y directional trav- 
eling microscope was used to make visual measurements of the surface flaw depth a and 
the surface crack length 2c (Fig. 1). Visual observations of optical interference fringes pro- 
duced by the crack opening profile were used to determine closure/opening load levels. 
Although opening and closure loads are used interchangeably here, a small amount of hys- 
teresis was noted in the crack displacements when the load was increased (opening) versus 
a decreasing load (closure). The measurements reported in this paper will all be crack open- 
ing load levels. 

Tests were conducted with 19 by 76 by 178 mm (0.75 by 3 by 7 in.) specimens at a cyclic 
frequency of 4 Hz at a stress ratio, R, of 0.035. This relatively slow cyclic fatigue rate was 
chosen to minimize crack tip heating, and thus avoid introduction of potential time-depen- 
dent phenomena. A crack initiation site (0.13 mrn deep by 1.5 mm long) was scribed on 
the specimen surface using a knife edge. Precracking followed American Society for Testing 
and Materials (ASTM) standard load-shed practices for a through-thickness crack using a 
load level below 80% of material yield strength. Four types of tests were conducted. Two 
tests maintained a constant value of stress intensity at a specific location. One involved 
keeping Ka constant, while the other maintained Kc constant, where a is the location of the 
crack tip in the depth direction, normal to the surface and c is at the crack tip along the 
free surface. The fatigue load was reduced throughout the two constant-K tests in order to 
maintain a constant stress-intensity factor of 659.3 kPa. m v2 (600 psi-in. '/2) at the given 
locations. The amount of load shedding was determined by measuring a and c with a tray- 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



262 SURFACE-CRACK GROWTH 

m| 
D,d [ 

I" i 
i l l  '~ 
L--L 

I 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



TROHA ET AL. ON 3-D SURFACE FLAW GEOMETRIES 263 

eling microscope and calculating stress-intensity factors using the Newman-Raju K solu- 
tions [8]. A third test was conducted using a constant value of  maximum moment of  72.7 
N. m (644 in. lb). The fourth test involved a block loading sequence as illustrated in Fig. 
2. 

The PMMA specimens were annealed at 100*C for 24 h prior to precracking and sealed 
with a desiccating material at the crack face to minimize humidity effects during the test. 
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Crack dimensions were calibrated using known reference marks on the specimen. Surface 
flaw crack opening displacement (COD) measurements were made on crack shapes (aspect 
ratios) and sizes in the range of 0.97 > a/c > 0.50 and 0.05 < a/t  < 0.43 (where t is the 
plate thickness). A laser interferometer system and camera were used to record optical 
interference fringe patterns under various applied loads during fatigue cycling. By counting 
the interference fringe order n, displacement changes of 3.16 • 10 -4 mm (1.25 • 10 -5 in.) 
could be resolved. 

COD Profiles 

The experimental investigation identified three primary crack types which were 
observed to be consistent for all tests. Four crack tip locations identified in Fig. 1 will be 
referred to extensively throughout this report. Location A defines the maximum crack 
depth location, Location B the midpoint of the crack free-surface, Location C is approxi- 
mately 12 deg from the crack tip free-surface, and Location D is located at the crack tip 
free-surface. Crack lengths along the free surface (BD) are referred to as being in the c 
direction, consistent with standard nomenclature. The three crack types are shown sche- 
matically in Fig. 3 for a zero applied load. The figure is divided into two parts to describe 
the differences between "crack geometry" and observed "fringes" patterns. The cross- 
hatched area illustrates that the two mating crack surfaces are closed (in contact). The clear 
area (not cross-hatched) illustrates that the crack surfaces are separated, and is referred to 
in this report as a geometric "void." The dotted "fringe order" lines represent contours of 
constant crack opening displacement (COD) patterns. The terminology "void" is used in 
the remainder of this paper to describe a displacement hump which is internal to the crack 
mating surfaces. This internal void displacement is always open once formed, even under 
zero load. 

A Type I crack (Fig. 3a) is defined as the crack geometry where the two mating surfaces 
are fully closed under zero load. This crack type is typically modeled as an elastic COD 
pattern. The Type I crack was observed in all four tests for smaller cracks having an a/t  
value less than 0.095. As the crack grew in size due to fatigue cycling, a Type II crack was 
formed (Fig. 3b). This change in crack geometry occurs when the crack internal surfaces 
separate and form a displacement "void" close to the crack tip at Location A. The pattern 

CRACK GEOMETRY CRACK FRINGES 

B "D CRACK .FRINGE ORDER 

CLOSZO . .)  

b. TYPE I1 

SURFACES 
OPENEO 

c. TYPE III 

FIG. 3--Schematic of  COD patterns under zero load for the three crack types--Types I, 
II, and III. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



TROHA ET AL. ON 3-D SURFACE FLAW GEOMETRIES 265 

is distinguished by the interference fringe order contours under zero load. The uniqueness 
of a Type II crack is that under zero load the crack tip boundary is fully closed, while there 
is an internal nonzero displacement void area separating the two crack surfaces. In the four 
tests, a Type II crack formed at an a/t ratio ranging from 0.068 to 0.095. As the crack 
continues to grow due to fatigue cycling, the void area and height also increase, forcing the 
crack tip at Location A to separate and remain open even under zero applied load. This 
characteristic crack tip opening is defined as a Type III crack (Fig. 3c). In the four tests, a 
Type III crack was formed when the a/t range was between 0.139 and 0.189 for all tests. 

Another means of visualizing the three void types is by slicing the crack between Loca- 
tions A and B (Fig. 1) as schematically depicted in Fig. 4. For a Type I crack (Fig. 4a), the 
crack mating surfaces are completely closed under zero load. With increased crack growth, 
a Type II crack develops when the crack surfaces separate (forming an internal void area) 
while the crack tip boundary remains dosed (Fig. 4b). As the crack continues to grow, a 
Type III crack is formed when the void size is sufficiently large to open the crack tip at 
Location A (Fig. 4c). The percent of crack tip boundary AD which is open for a Type III 
crack at zero load depends on the crack size. For example, the crack tip boundary between 
Locations A and D is open 17% for a newly formed Type III crack (a/t = 0.156 and a/c 
= 0.652 from the constant AKd test). When the crack reached the size ofa/ t  = 0.180 and 
a/c = 0.677, 30% of the AD boundary is open. With continued fatigue cycling, 65% of the 
AD boundary is open for a crack size ofa/ t  = 0.260 and a/c ---- 0.650. This opening of the 
crack tip boundary between Locations A and D results from an increase in void surface 
area and internal displacement with crack growth. Table 1 lists the measured crack lengths 
when transition occurred between crack Types I and II and between Types II and III. The 
crack transition size was found to correlate most favorably with a/t. 

A general trend in crack aspect ratio (a/c) was noted in the experimental results, where 
a/c for a Type I crack is higher than for a Type II, and a/c for a Type II crack is higher 
than for a Type III. Although it can be speculated that this trend is caused by the stress 
being larger at the crack free-surface than at the depth position due to the bending, the 
stress-intensity solutions do not bear out this concept, especially for small cracks. The 
experimental aspect ratio data are summarized in Fig. 5, which plots the data as a function 
of (dimensionless) crack depth. It can be seen that, for all four tests, a/c is continually 
decreasing. The only exception to this is the block loading test, where overload consider- 
ations and resultant crack growth retardation along the free surface become important. The 

a. TYPE I 

A B 
ICRACK TIP} (CRACK FREE-SURFACE) 

b. TYPE II 

,<2;> 
c. TYPE Iil ,C>----, 

FIG. 4---Schematic of COD patterns under zero load along a cross section between A and 
B for the three crack types. 
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TABLE 1--Crack dimensions when transition occurs from a Type I and II, and from a Type II and 
IlI crack. 

Transition to a c a/c a/t 

TYPE II CRACK 
constant AKa 0.051 0.058 0.872 0.068 
constant AKa 0.060 0.075 0.840 0.084 
constant load 0.071 0.084 0.845 0.095 
block load 0.052 0.075 0.693 0.069 

TYPE III CRACK 
constant AK a 0.117 0.180 0.652 0.156 
constant AKa 0.127 0.153 0.833 0.169 
constant load 0.104 0.149 0.698 0.139 
block load 0.142 0.202 0.705 0.189 

circled region in Fig. 5 is a region of  common crack size which is used in comparisons later 
on. 

Another feature of  the crack profile is the size and location of  the internal void which is 
typical of  a Type II or Type III crack. It was noted that for low load levels, the void max- 
imum displacement is located internal to the crack surfaces and is closer to the crack tip 
(Location A) than the crack free-surface (Location B). With an applied load, the void max- 
imum displacement moves away from the Location A crack tip and toward the crack free- 
surface at Location B. It was also observed that as the crack increases in size the void 
maximum displacement point increases in height and moves away from the crack tip and 
toward the crack free-surface. Three primary observations can be made about the void 
maximum displacement point from the experimental data: 

(1) the void is closer to the crack tip (Location A) for smaller cracks, 
(2) the void height is lower for smaller cracks than for larger cracks at an equivalent 

applied load, and 
(3) as load is applied, the void height increases and moves away from the crack tip and 

toward the crack free-surface. 

To compare the void displacement patterns for all tests, a common crack aspect ratio 
(a/c) and a/t value was chosen as shown in Fig. 5. The common point selected from this 
figure was a/c = 0.69 and a/t -- 0.19. Comparison of  the void displacement patterns, 
showing both maximum displacement and location, is shown in Fig. 6. The data are shown 
for different values of  applied load for all four tests. The reference line segment is drawn 
for the constant AKd data and is found to fit the other data sets quite well. It can be seen 
from this plot that the void movement  toward the crack free-surface with applied load is 
consistent for various load histories. However, the applied moment  required to achieve a 
given displacement (shown in parentheses) varies with load history. That is, to achieve a 
void maximum displacement of  13 fringe orders requires an applied moment  at 15 
N - m  (132 in, .lb) for the constant AKa test, but only 8.2 N . m  (73 in..lb) for the constant 
AK a test. In all the tests, three primary observations o f  the void COD pattern were noted: 

(1) under zero load, the void maximum displacement is a direct function of  crack size, 
(2) under zero load, the void maximum displacement location relative to the crack tip 

(Location A) is a direct function of  crack size, and 
(3) with applied load, the void maximum displacement increases, and moves away from 

the crack tip and toward the crack free-surface (Location B). 
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FIG. 6--Magnitude and location of void maximum displacement at several load levels for 
three tests. Numbers in parentheses represent applied bending moment. 

Crack Closure/Opening Loads 

This experimental investigation identified three primary closure loads which are consid- 
ered important for the understanding of fatigue crack growth. How these closure loads 
correlate with the three crack types described previously forms the basis for the eventual 
development of  a life prediction scheme. The identification of three distinct closure loads 
raises several questions concerning their relationship to the standard definition of  closure 
load (defined from a load versus displacement plot). In reality, the potential for having 
more than one closure load for the same crack size is not hypothetical. Several closure load 
values can be generated using the standard definition of closure if different measurement 
locations are used. This sensitivity to measurement location has been discussed by several 
investigators using clip gages, back face strain, and interferometry techniques [9-11]. 
These considerations will be evaluated more fully in the next section when the definitions 
of  AK, fr are considered. 

Three primary closure loads (aPop, bPoo, and cPop) are defined in this investigation. The 
aPop, bPop, and cPop closure loads are defined here as the loads needed to open the crack 
surfaces (Pop) at the A, B, and C locations, respectively, as shown in Fig. 1. Location C is 
the last portion of the crack surface to completely open under an applied load, and is typ- 
ically located 12 to 15 deg into the specimen thickness from the crack free-surface. Figure 
7 schematically illustrates the relationships between the three closure loads (aPop, bPop, and 
cPoo) and the three crack opening displacement types (Types I, II, and III). For a Type I 
crack (Fig. 7a), the crack surfaces are closed under zero load. As load is applied the crack 
remains closed until a load level of  bPop is reached, and the crack begins to open at the 
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FIG. 7--Schematic of COD profiles between A and B for the three crack types at zero load 
and at each of the defined opening load levels (aPoo, bPoo, and cPofl. (NOTE." Numbers in 
parentheses indicate sequence of crack opening.) 

crack free-surface (Location B). With increased load, the crack opens symmetrically inward 
and is fully open at Locations A and C at the same load level (aPop = cPop). For a Type II 
crack, a void formation has developed internal to the crack surfaces as shown for zero load 
in Fig. 7b. The crack boundary and free-surface are closed (Locations A, B, and C) under 
zero load. With load application, Location A opens at a load level of  aPop. At the bPop load 
level, the crack free-surface begins to open at Location B and is completely open between 
A and B; however, the crack tip is closed at Location C. At the cPop load level, the crack 
surfaces are completely open. For a Type II crack, cPop > bPop > aPop. For a Type III 
crack, Location A is always open, while Locations B and C are closed under zero load. 
Therefore, the aPop load level is zero for a Type III crack. Location B begins to open at the 
bPop load level, and at cPop the crack is completely open. Thus, APor, = 0 and cPop > bPop. 

Closure loads were obtained at the three Locations A, B, and C for each of  the four tests. 
A typical set of  data which illustrates the trends discussed in the preceding paragraph, 
shown for the case of  the constant AKa test, is presented in Fig. 8. A feature which was 
apparent in most of  the data is illustrated in this figure whereby the trend in closure load 
changes in progressing from a Type II crack to a Type III crack. The trend of  a generally 
decreasing value of  the closure loadwith increase in crack depth is also apparent in Fig. 8. 

The absolute value of  one of  the closure loads (cPop) is presented for all four tests in Fig. 
9. Similar results were obtained for the aPop and bPop closure loads. From these data, sev- 
eral observations were made. First, closure load absolute values decrease with increasing 
crack size. Second, the bPop and cPop load levels are higher for the constant load and block 
loading tests than for the constant stress-intensity factor tests. In comparing trends from 
the constant AKa test with the constant AKa tests, it was noted that bPop and cPo~ are higher 
for the constant AKa tests than for the constant ~dfa tests. When comparing the constant 
load test (continually increasing AK) with the constant AKa test, it was found that the con- 
slant load test closure loads are consistently higher than the constant AKe levels. This is to 
be expected since the plastic zone size is continually increasing while the constant AKa 
plastic zone remains constant after precracking. It was also found that aPop and bPop closure 
loads follow the same slope once a Type II crack is formed. Further, when comparing the 
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constant load test with the block loading test, it was noted that cPo~ values for the block 
loading test are only slightly higher than the constant load test during the Types I and II 
crack formation. Once a Type III crack is formed, the closure loads are the same. Finally, 
cPop is relatively constant for the constant load test until a Type III crack is formed. For 
the block loading test, abrupt increases in applied load cause cPop to increase, whereas 
decreases in applied load cause CPop to decrease. 
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Comparison of the closure load ratio (cPop/Pmax) for all four tests is shown in Fig. 10. In 
three of the four tests (constant AKc, constant load, and block loading) average closure load 
ratio values of approximately 0.28 are obtained for 0.0 < a/t < 0.20 (during transition 
between crack Types I and II). The constant AKa test is at a level of approximately 0.14. 
This result is somewhat surprising, considering that the precracking procedure in the four 
tests were nominally the same. It appears that the closure which developed during pre- 
cracking had a major influence in the subsequent closure load ratio. The only exception to 
the relative constancy of closure load ratio in any given test was for the case of the block 
loading test. Here, with a major P,,~x load reduction of 50% at a/t = 0.25, an abrupt change 
in CPop/Pm~x occurs. Since K~ is assumed to be a continuous function, the sudden jump in 
closure load ratio is expected. However, this ratio does not return to the original level for 
an amount of crack extension of approximately a/t = 0.2. This corresponds to at least 20 
plastic zone sizes. This is similar to observations by Ashbaugh [12] when testing through- 
thickness CT specimens of Inconel 718 material. He observed that with a 60% reduction 
in load level for a test at R = 0.1, the crack was required to grow twice its length or many 
plastic zone sizes in order to return to the original closure load ratio. 

The closure load data can also be presented in the form of stress intensity at a closure 
load level. Such a plot, as a function of crack depth, is presented in Fig. 11. The stress 
intensity at the free surface, Location C, is calculated from the value of cPop. The dotted 
lines shown through the various data sets were polynomial fits to the data which were used 
later in life-prediction calculations. 

Effective Stress-Intensity Factors 

The complexity of defining stress-intensity factor as a function of applied load and the 
difficulties of using the opening loads to calculate the actual K are illustrated schematically 
for a Type IlI crack in Fig. 12. Starting at maximum load, the stress intensity at Location 
A (the crack tip in the depth direction) is calculated using the solution for a surface flaw 
based on the applied load and the crack dimensions. As load is decreased, the K versus P 
plot is linear, based on that same K solution, as shown in the figure. Geometrically, when 
the load decreases to cPop, the crack tip at Location C just starts to close, while the crack 
at A remains open. As load continues to decrease, the amount of crack face which is closed 
in the vicinity of Location C continues to increase. At any time, the slope of the K versus 
P curve depends on the K solution corresponding to the instantaneous geometry of the 
portion of the crack that remains open. As more and more of the crack closes, the stress 
intensity at A per unit applied load decreases since Location A is now shielded more by 
the partially closed crack. The actual stress-intensity solution is not known since this is 
now a complex geometry. When the unloading reaches the value bPop, the entire crack free- 
surface is closed, but the interior is open. The stress intensity per unit load is further 
decreased due to shielding of the crack from the applied load, and the slope of the Kversus 
P curve is even lower. Finally, further unloading results in more of the crack interior 
becoming closed, with a corresponding decrease in the slope of the curve as depicted in 
Fig. 12. When the load finally reaches Pmin, the crack tip at A is still open and K remains 
nonzero. The effective stress intensity at A at each of the three opening loads is shown 
pictorially in Fig. 12, but K solutions are not available to calculate the exact values as 
shown by the dashed line. 

It is apparent from the foregoing discussion that the calculation of an effective stress 
intensity for the surface flaw, given the closure load data at the three Locations A, B, and 
C, is a formidable task. There are four primary considerations in defining an effective 
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FIG. 12--Schematic representation of  stress intensity at A as a function of  applied load. 

Effective stress-intensity ranges due to the three closure loads are shown. 

stress-intensity range, AKen; which must be addressed in order to develop a life prediction 
methodology: 

1. The closure load range (emax - -  Pc,), where Pc, is one o f  the three measured closure 
loads (aPoo, bPop, or cPop). 

2. The location at which K is being calculated (that is, crack tip Location A or D). (Note 
that the closure load is measured at Location C, away from the surface, while the 
crack length along the surface is measured at Location D.) 

3. The COD associated with a particular crack tip location and crack size (that is, crack 
Types I, II, and III). 

4. The stress-intensity factor solution used to calculate K. 

Addressing the previously mentioned four areas in a systematic manner requires a con- 
cise set o f  definitions. The first two points can be addressed by organizing the data in a 
matrix of  closure load and crack tip location. This format requires a set o f  definitions 
which will be used extensively throughout the remainder o f  this report. The closure load 
used in the calculation is denoted by a superscript, the crack tip location by a subscript, 
thus AK and AKeff are defined as follows: 

Applied Stress-Intensity Factor (AK): 
z ~ k g  a = applied AK at Location A due to (Pm~ -- Pro,,) 
AKc = applied AK at Location C due to (P,~ -- Pm~,) 
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Effective Stress-Intensity Factor (AKa): 
AK~ err = effective &K at Location A due to (Pm~ - aPop) 
AKa b err = effective AK at Location A due to (P~ax - bPJ  
AK~ ,fr = effective AK at Location A due to (P~ax - CPop) 
AK~ ,fr = effective AK at Location C due to (P=a. - CPop) 

o r  

AKj ~fr = effective AK at Location j due to (Pm~ -- iPop) 

where i = a, b or c to define the closure load, a n d j  = a or c to define the crack tip Location 
A or C, respectively. 

The third and fourth considerations are interrelated in that the COD profile will provide 
guidance as to the stress-intensity factor which best fits the situation. This point can best 
be illustrated by considering one o f  the crack types and the associated stress intensity solu- 
tion for a specific point. We choose a Type II crack and consider the stress intensity at the 
depth, A. A Type II crack is distinguished by the formation of  a "void" internal to the 
crack surfaces while the crack tip boundary is closed under zero load. This "void" forma- 
tion complicates the definition of  K around the crack tip boundary because the load 
required to open the crack tip at Location A (aPop) is different from the load required to 
open Location C (CPop). Therefore, for applied loads between aPop and cPop, the crack tip 
is open at Location A while it is dosed at Location C. This forms a crack tip boundary 
which is "partially open" and "partially closed" (as opposed to "fully open"), for which 
there are no K-solutions known to be available. 

The COD process for a Type II crack is shown schematically in Fig. 13, where/Ca is 
plotted as a function o f  applied load. The opening process is separated into four regions 
such that: Region (1) is between a load of  zero and aPop, Region (2) between aPop and bPop, 
Region (3) between bPop and CPop, and Region (4) between CPop and P .... The hypothesized 
"partially open" K-level experienced by the crack tip in the closure load regions (1) to (3) 
is identified on the plot by the heavy dotted and dashed line, respectively. The solid line 
(Region 4) represents available "fully open" K-solutions when the crack is completely 
open, that is, for loads greater than cPop. 

In Region 1, the crack tip boundary is closed at zero load. Upon load application, the 
internal void increases in size and initially opens the crack tip at Location A at a load level 
ofaPo~. Since the crack tip is closed below aPop, Ko is undefined and remains unchanged. 
The/Ca variation with load is depicted by a dotted line. As load is increased above aPop, 
the void increases in size until it reaches the crack free-surface (Location B) at the bPop 
load level. Below bPop, the crack free-surface is closed while the crack tip boundary is open 
between Locations A and C, and results in the specimen geometry being relatively stiff 
Therefore, changes in/Ca with increased load are very small, as well as being nonlinear 
because of  the continual change in crack geometry between aPo~ and bPop (Region 2). As 
load is increased above bPop, changes in Ka are expected to be much greater with applied 
load since the geometry is more compliant due to the crack free-surface being open. 
Between bPop and cPop (Region 3), the crack surfaces and tip boundary continue to open 
until the cPop load is reached and the crack is fully open. Between aPop and cPop, Ka vari- 
ations with load are not known to be available for partially-open cracks as shown by a 
heavy dashed line. Between CPoo and Pm~ (Region 4),/Ca (solid line) is linear with applied 
load since the crack is fully open and the geometry remains constant. That is, the slope o f  
the linear portion of  the Ka versus applied load curve is proportional to the geometry factor 
corresponding to a fully open surface flaw, and K~ can be defined using available K-solu- 
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at A. Significance of the three definitions of ~I~ ,.~ is shown. 

tions. In summary, changes in actual Ka are nonlinear with respect to applied load between 
zero and cPop because of  the continually changing crack geometry with increasing load. Ka 
is hypothesized to remain constant between a load of  zero and aPop (Region 1), and to 
continue along a nonlinear path (Regions 2 and 3) until it reaches the cPop load. It then 
becomes linear (Region 4) up to and including the maximum applied load. 

Referring to Fig. 12 again, the effective stress-intensity ranges at Location A are shown 
corresponding to each of  the measured closure loads. As pointed out earlier, these ranges 
are not readily calculated except for AK~. The quantities which can be calculated readily 
are the linear values ofAK'a ofras defined above, with i = a, b or c. The relationship between 
the actual K'~ experienced by the crack tip at Location A (Fig. 12) and the calculated 
A/Ca elf can be seen in Fig. 13. Here, the three separate AK'~ en definitions are shown. These 
quantities are based on calculations using available fully open K-solutions and measured 
closure loads (aPoo, bPop, and cPo~). It would appear from Fig. 13 that the "best" value to 
represent the effective value o f  AK at Location A would be AKb= ~fr which is based on the 
use o f  the bPop closure load at Location B. Note that all three of  the AK~ err definitions 
provide values which are less than the applied AK= values defined by Kma~ -- Kmi,. 

In comparison, AKc e~ at Location C is much simpler to evaluate than aKa elf. Here, the 
crack is closed at Location C until the cPoo load level is reached (defined as the last portion 
of  the crack surfaces to open). Thereafter, the crack is fully open and AK~ err is calculated 
from available formulae using an effective load range of  Pmax - cPop. This analysis is valid 
for all three crack types. 
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Fatigue Crack Growth Rates 

Recognition of the three crack types, and their influence on COD, closure loads, and 
effective stress-intensity factor, raises a number of questions concerning the prediction of 
fatigue crack growth rate (FCGR). One of the more significant questions deals with select- 
ing the load range which "best" defines an effective stress-intensity factor using fully open 
K-solutions. The approach for selecting this "best" effective load range is based on corre- 
lating experimental FCGR data. The evaluation is conducted using experimental FCGR 
data along with the effective stress-intensity factor definitions discussed previously. Avail- 
able K-solutions will be used to bound the crack growth rate predictions by evaluating 
various effective load ranges. 

Selecting the optimum closure load ( P J  can be accomplished by evaluating the ability 
of several AKefr definitions to correlate FCGR data into the specimen depth (da/dN) and 
along the crack free-surface (dc/dN). The selection of the most representative closure load 
range to match the experimental data is based on the correlation of predicted da/dN and 
dc/dN from all test conditions using several definitions of/XKefr. The matrix of AKeff defi- 
nitions is based on the use of the bPop and CPop closure loads at Locations A and C. From 
the discussion in the previous section, the logical selection for correlating da/dN data is 
/XK]a elf, and for dc/dN is/x/(~ ~ err. 

The FCGR data, da/dN, are plotted in Fig. 14 as a function of applied AK for the four 
tests. Crack growth rates are calculated using a modified incremental polynomial smooth- 
ing routine developed by Larsen [13]. The average growth rates are approximately a factor 
of two lower than data generated by Perez [14] using through-thickness CT specimens from 
the same sheet of PMMA as was used in these experiments. A fair amount of scatter is 
seen in the data from the four different test conditions. For two of the tests,/XK remained 
fairly constant for portions of the test although the growth rates under those conditions are 
seen to vary by well over a factor of two. 

The same data are plotted in Fig. 15 as a function of effective stress intensity, using 
A/t'~ d as the correlating parameter. That is using the bPop closure load to define Kr at Loca- 
tion A where AK~ o~ = K, m a x  - -  /~a cl, discussed above. The use of an effective stress-inten- 
sity factor which accounts for crack closure is seen to consolidate the data slightly better. 
In particular, the growth rates obtained under nominally constant AK conditions are no 
longer as scattered. The through-thickness CT results are also plotted on this figure for 
reference (dashed line). Although the through-thickness CT data appear to agree well with 
the surface flaw data, the CT data are not corrected for closure (since no closure measure- 
ments were obtained on the CT tests) and thus are plotted as a function of applied/XK. 
Any closure in the CT tests would tend to move the curve to the left in Fig. 15. Most of 
the surface flaw data would then lie below the CT data, an observation consistent with that 
made from the data based on applied/XK in Fig. 14. Similar plots were made of da/dN 
against AKefr using the other closure load CPop. Although the data are not presented here, it 
can be stated that the correlation of da/dN data from the four tests was not as good when 
using the cPop closure load. 

The FCGR data along the free surface, dc/dN, are presented in Fig. 16 as a function of 
applied AK for all four tests. There is a small amount of scatter in these results. Using the 
reasoning that CPop should be used to obtain the "best" value of an effective stress-intensity 
range, Fig. 17 is presented to illustrate the consolidation of the data. The scatter from test 
to test is seen to be minimized significantly. The reference CT curve is also shown. Com- 
parison of the results of da/dN in Fig. 15 with those of dc/dN in Fig. 17 shows that the 
growth rates in the depth and surface directions are approximately equal when plotted 
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FIG. 14--Crack growth rate at Location A as a function of applied stress-intensity range 
for all four tests. 

against the appropriate AKeff. A similar plot of  dc/dN was made using bPop as the closure 
load in the AKeff calculation. The correlation of  the data from the four tests was even better 
than in Fig. 17, although the physical significance of  using bPop as the effective closure load 
at Location C is totally lacking. 

Crack Growth Predictions 

The usefulness o f  the preceding correlations for predicting fatigue crack growth (FCG) 
can be evaluated by comparing experimental measurements with analytical predictions of  
crack aspect ratio and the number of  cycles to reach a given crack length. The computa- 
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FIG. 15--Crack growth rate at Location A as a function of  effective stress-intensity range 
based on AK~ a for all four tests. 

tions are carried out using a numerical integration of  crack growth rates, the Newman-Raju 
stress-intensity solution for a surface flaw, and a straight line fit to the experimental FCGR 
data; that is, a Paris law representation. The numerical comparisons are made for two cases 
using applied AK and for three cases using corrected constants derived from AKefr defini- 
tions described in the previous section. Since the closure load corrected constants (fits of  
data plotted against AKefr) are derived from this investigation and are not independent, the 
calculations are presented as an illustration of  the approach rather than as a true 
prediction. 

The analytical program calculates stress-intensity factors in the a and c directions using 
the Newman-Raju boundary correction factors at ~, = 90 and 0 deg, respectively. The 
model uses either the applied stress-intensity factor range of  (K~ax -- Kmi,), or effective 
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for all four tests. 

stress-intensity factor range of (Kmax -- Kd)- The crack growth rates are represented as 

dc/dN = Cc (AK~ .n) "~ (1) 

da/dN = Ca (AK~ en) "a (2) 

where i = a, b or c, Cc and nc are Paris law constants generated from FCGR data along 
the crack free-surface, and Ca and n~ from data in the depth direction. The constants can 
be generated independently when da/dN and dc/dN data are available as in Figs. 14 and 
16. Although the analytical formulation was set up to recognize these potential differences 
in growth rates in the two directions, this investigation used Ca -- C~ and na = nc since 
they were approximately equal. 
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FIG. 17--Crack growth rate at Location C as a function of effective stress-intensity range 

based on AK~ c/for all four tests. 

Calculations were made using five different combinations of Paris law constants (C and 
n) and closure load, which were then compared with experimental results. Two of these 
combinations included "uncorrected" constants developed for applied loads, and three 
using closure "corrected" constants generated from AKe, plots. The uncorrected constants 
are from through-thickness data [14], and surface flaw data from this investigation. The 
corrected constants were from fits to both da/dN and dc/dN data using bPop and cPop sep- 
arately; that is, one calculation used AK~ and AKin, and the other AK~ and/XK~. The final 
calculation used bPop for the da/dN and cPop for the dc/dN calculations, or AK~ and/XK~ as 
discussed above. The constant AKd test results were used for these sample calculations after 
eliminating precracking effects. 

The analytical results for aspect ratio (a/c) and cycles to achieve a given crack length 
(N) are compared in Table 2 at several crack depths (a/t). The results are presented as a 
ratio of the predicted quantity (subscript p) to the experimental quantity (subscript e). 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



TROHA ET AL. ON 3-D SURFACE FLAW GEOMETRIES 283 

TABLE 2--Comparison of experimental and predicted aspect ratios and cycles to a given crack depth 
using applied and effective stress intensities to obtain Paris law constants. 

Condition a/t (a/c)J(a/c)e N /N .  

APPLIED LOAD (UNCORRECTED CONSTANTS) 
Through-thickness 0.1 1.10 0. l 6 

0.2 1.00 0.24 
0.4 0.87 0.23 

Surface flaw 0.1 1.09 0.53 
0.2 0.99 0.77 
0.4 0.84 0.77 

CLOSURE LOAD (CORRECTED CONSTANTS) 
bPop 0.1 1.09 0.70 

0.2 1.01 0.97 
0.4 0.91 0.89 

cPop 0.1 1.09 0.50 
0.2 1.01 0.79 
0.4 0.92 O.95 

bPop and CPoo 0.1 1.02 0.56 
0.2 0.97 0.82 
0.4 0.98 0.87 

EXPERIMENTAL RESULTS 
a/ t ( a/ c )e Ne(cycles) 

0.1 0.72 57 000 
0.2 0.68 140 000 
0.4 0.54 480 000 

Here, cycle prediction improvements  due to the use of  correlated Paris law constants for 
an effective load range versus an applied load range (uncorrected constants) are readily 
apparent. However,  the abili ty to predict aspect ratio is not as apparent. The aspect ratio 
predictions are better shown in Fig. 18, which illustrates that several of  the calculation 
results are equivalent: (1) the two calculations using the nominal  applied AK uncorrected 
constants for "through-thickness" and "surface flaws," and (2) the two calculations using 
the corrected constants of  "bPop" (AK~ and A/~) or "CPop" (AK~ and AK~) for both da/dN 
and dc/dN. Although all of  these combinat ions are quite good, using "bPop and cPoo" for 
da/dN (AK b) and "cPoo" for dc/dN (AK~), respectively, provided the "best" overall crack 
growth match. In general, all o f  the analytical results using an effective load range provided 
a better match with experimental  data than the nominal  applied load range. 

The results presented in Fig. 18 indicate that the fully open K-solutions are adequate to 
provide quite good crack growth predictions for various combinations of  Paris law con- 
stants based on detailed closure load measurements.  The questions then arise as to how 
good are the predictions i f  only Paris law constants are available and an assumed constant 
(not a function of  crack length) closure load ratio (PJPmax) is used in the FCGR calcula- 
tions. Results o f  this approach are presented in Table 3 using corrected Paris law constants 
from through-thickness and surface flaw tests. Two combinations of  constant closure load 
ratios were considered: (1) 30% for both da/dNand  dc/dN, and (2) 20% for da/dNand 30% 
for dc/dN, which represents a best average for the experimental data. It would appear  from 
these results that either approach (1) or (2) mentioned previously are equivalent for pre- 
dicting FCGR of  surface flaws in bending when an assumed closure load is used with cor- 
rected Paris law constants. 
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TABLE 3--Comparison of experimental and predicted aspect ratios and cycles to a given crack depth 
using,a constant Pct,/P,,~ value. 

Condition a/t (a/c)p/(a/c)e Nv/Ne 

SURFACE FLAW 

Pd/Pmax = 0.3 0.1 1.07 0.42 
0.2 0.98 0.68 
O.4 0.87 O.89 

Pet/Pma x = 0.2 and 0.3 0.1 1.09 0.52 
0.2 0.99 0.76 
0.4 0.85 0.77 

THROUGH-THICKNESS 

PdPma x = 0.3 0.1 1.10 0. t9  
0.2 1.00 0.28 
0.4 0.87 0.28 

PJPmax = 0.2 and 0.3 0.1 1.10 0.19 
0.2 1.00 0.28 
O.4 O.87 0.28 

Conclusions 

Experimentally measured COD profiles identified three patterns (referred to here as 
crack Types I, lI, and III) which directly influence closure load level and crack tip stress- 
intensity factor in the nonlinear closure region. The COD patterns (that is, crack types) 
were found to be a function of  crack depth (a/t) and not load history. The Types II and 
III  COD patterns are identified by a "vo id"  area which separates the crack interior surfaces 
while the crack free-surface is closed under zero load. Upon  loading, the crack Types II 
and III  open from the internal crack tip outward toward the crack free-surface. The middle 
of  the crack free-surface opens first, with the last port ion of  the crack internal surfaces 
opening at 12 to 15 deg from the crack free-surface. This crack tip boundary opening pat- 
tern is referred to as "part ial ly open" in the closure load region since the crack tip is open 
at certain locations while it is closed at other locations. 

Closure load measurements were made at three crack surface locations. One closure load 
corresponds to complete opening of  the crack surface. The other two correspond to com- 
plete opening of  the deepest port ion of  the crack tip and opening at the crack middle free- 
surface. The closure load ratios (PJPm~), and inherent closure load stress-intensity factor 
(Kd) levels, were found to be a function of  crack size and load history. As the crack grows 
in size, the "vo id"  area increases in size, causing a decrease in closure/opening load level 
and an increase in crack displacement. These COD patterns have a direct impact on crack 
tip stress-intensity factor in the closure load region. 

Correlation of  closure load measurements with the three crack types is essential to the 
development  of  a AKo~ definition. The correlation of  FCGR with several definitions o f  
AK~f (using closure load measurements  and available fully open K-solutions) found the 
crack middle  free-surface closure load measurement  (bPop) produced the least scatter when 
compared with experimental  results. The closure load corresponding to complete opening 
of  the crack surfaces (cPop) also produced good correlation. Evaluation of  FCG using sev- 
eral AKef~ definitions found that use of  a different closure load at two different crack tip 
locations provided the best prediction. That is, da/dN = f(Pma, -- bPop), and dc/dN = 
f(Pmax -- c P J .  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  W e d  D e c  2 3  1 8 : 4 5 : 1 1  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .



286 SURFACE-CRACK GROWTH 

References 

[1] Mechanics of  Fatigue Crack Closure. ASTM STP 982, J. C. Newman, Jr., and W. Elber, Eds., 
American Society for Testing and Materials, Philadelphia, 1988. 

[2] Suresh, S. and Ritchie, R. O., "Near-Threshold Fatigue Crack Propagation: A Perspective on the 
Role of Crack Closure," Fatigue Crack Growth Threshold Concepts, D. L. Davidson and S. 
Suresh, Eds., The Metallurgical Society of the American Institute of Mining, Metallurgical, and 
Petroleum Engineers, Warrendale, PA, 1984, pp. 263-279. 

[3] Elber, W., "Fatigue Crack Closure Under Cyclic Tension," Engineering Fracture Mechanics, 
Vol. 2, 1970, pp. 37-45. 

[4] Troha, W. A., Nicholas, T., and Grandt, A. F., Jr., "Three-Dimensional Aspects of Fatigue Crack 
Closure in Surface Flaws in Polymethylmethacrylate Material," Mechanics of Fatigue Crack Clo- 
sure, ASTM STP 982, J. C. Newman, Jr., and W. Elber, Eds., American Society for Testing and 
Materials, Philadelphia, 1988, pp. 598-616. 

[5] Grandt, A. F., Jr., and Sinclair, G. M. "Stress Intensity Factor for Surface Cracks in Bending," 
Elevated Analysis and Growth of Cracks, ASTM STP 513, American Society for Testing and 
Materials, Philadelphia, 1972, pp. 37-58. 

[6] Hertzberg, R. W., Manson, J. A., and Wu, W. C., "Structure of Polymers and Fatigue Crack 
Propagation," Progress in Flow Growth and Fracture Toughness Testing, ASTM STP 536, Amer- 
ican Society for Testing and Materials, Philadelphia, 1973, pp. 391-403. 

[7] Hertzberg, R. W. and Manson, J. A., Fatigue of Engineering Plastics, Academic Press, New 
York, 1980. 

[8] Newman, J. C. and Raju, I. S., "An Empirical Stress-Intensity Factor Equation for the Surface 
Crack," Engineering Fracture Mechanics, Vol. 15, 1981, pp. 185-192. 

[9] Elber, W., "The Signficance of Fatigue Crack Closure," Damage Tolerance in Aircraft Structures, 
ASTM STP 486, American Society for Testing and Materials, Philadelphia, 1971, pp. 230-242. 

[10] Sharp, W. N., Jr., and Grandt, A. F., Jr., "A Laser Interferometric Technique for Crack Surface 
Displacement Measurements," Proceedings of  the 20th International Instrumentation Sympo- 
sium of  the Instrument Society of  America, Albuquerque, NM, May 1974. 

[11] Newman, J. C., Jr., "A Finite Element Analysis of Fatigue Crack Closure," Mechanics of  Crack 
Growth, ASTM STP 590, American Society for Testing and Materials,, Philadelphia, 1976, pp. 
291-301. 

[12] Ashbaugh, N. E., "Evaluation ofCrack Closure," presented at American InstituteofAstronautics 
and Aeronautics Mini-Symposium, Wright-Patterson Air Force Base, OH, March 1984. 

[13] Larsen, J. M., "An Automated Photomicroscopic System for Monitoring the Growth of Small 
Fatigue Cracks," Fracture Mechanics; Seventeenth Volume, ASTM STP 905, American Society 
for Testing and Materials, Philadelphia, 1986, pp. 226-238. 

[ 14] Perez, R., "Initiation, Growth and Coalescence of Fatigue Cracks," M.S. thesis, School of Aero- 
nautics and Astronautics, Purdue University, West Lafayette, IN, Aug. 1983. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



Miklos Prodan ~ and John C. Radon 2 

Some Special Computations and Experiments 
on Surface Crack Growth 

REFERENCE: Prodan, M. and Radon, J. C., "Some Special Computations and Experiments 
on Surface Crack Growth," Surface-Crack Growth: Models, Experiments, and Structures, 
ASTM STP 1060, W. G. Renter, J. H. Underwood, and J. C. Newman, Jr., Eds., American 
Society for Testing and Materials, Philadelphia, 1990, pp. 287-302. 

ABSTRACT: The new method of surface crack growth calculation under linear elastic frac- 
ture mechanics (LEFM) conditions facilitates the use of stress-intensity factor K (and in par- 
ticular its AK range) as a tool to estimate the fatigue life of cracked plates under tensile loads. 
This is made possible by determining a set of parameters in order to obtain equal AK values 
and analogous crack propagation rates in two widely different specimen geometries, a plate 
and a standard compact type (C(T)) specimen. A comparison of fatigue lives with equivalent 
crack growth for both types of specimen suggests that in using the proposed procedure, the 
significance of AK values in a part-through crack is closely related to that of a through crack 
in a C(T) specimen. 

In analyzing the surface crack growth under elastic-plastic conditions, it should be neces- 
sary to use J values in a different way than in LEFM. Appropriate references to both prob- 
lems are quoted. 

KEY WORDS: three-dimensional crack problems, fatigue, specimen-to-structure correla- 
tion, stress-intensity factor K, energy integral J, surface crack, pressure vessels, pipes 

Nomenclature 

a,ai 

C~Ci 
AF 

h 
K 

AK, AK~ 
i 
t 

W 

Aa 
C(T) 

LEFM 

Depth of part-through surface crack (plate); length of through-thickness crack 
(C(T) specimen) 
Half-length of part-through surface crack (plate) 
Cyclic load (force) 
Half-length of plate 
Stress-intensity factor 
Stress-intensity factor range 
Index (counter) 
Thickness 
Width of C(T) specimen; half-width of plate 
Load per unit  thickness of C(T) specimen 
Stress range 
Compact type (ASTM E 399-8 l) 
Parametric angle of ellipse 
Linear elastic fracture mechanics 
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ASME 
J 

COD 

American Society of Mechanical Engineers 
Path-independent line integral; energy rate 
Crack opening displacement 

Interest in part-through cracks has a long, well-documented history. The most common 
flaws in structural components are part-through surface cracks and internal cracks of more 
or less elliptical shape. The importance of such cracks has been recognized for many years, 
not only in the context of elastic and plastic fracture, but also in fatigue and creep crack 
growth. This paper deals with semielliptical surface cracks in plates subjected to monotonic 
and cyclic tension. 

The evaluation of the stress-intensity factor K or the energy integral J along the crack 
front of a part-through crack is a complex, three-dimensional problem. Several reference 
solutions may be found in the literature; those of Raju and Newman [1] for the K factor 
and Yagawa and Ueda [2] 3 for the J-integral are particularly well known and extensively 
applied. Raju and Newman's solution [I] has been used in the present work. It has been 
assumed that the stress-intensity range AK plays a dominant role in the fatigue growth of 
surface cracks. 

Computations of Fatigue Crack Growth 

Figure 1 shows a cross section of a specimen in the plane of the crack and illustrates the 
local application of the crack propagation law in the form 

dl(r 
- f[AK(~o)] (1) dN 

on the assumption that AK plays a dominant role in describing crack growth, thus pre- 
dicting fatigue life. 

Several calculation methods for stress-intensity factors are available in the literature. 
The theoretical-experimental procedure presented here uses the readily available solutions 
of Raju and Newman [I] and Irwin [3]. 

An iteratiVe scheme with equidistant steps in the direction of the crack depth is used to 
calculate the growth of a crack. The following two operations are necessary to proceed in 
the calculation of crack length c (paragraph a) and AK (paragraph b) from state (i - l) to 
state (i): 

(a) Calculation of the Crack Half Length ci 

c,= ci-z + (a'-- a~-~)(a~-' ) ran\c,_, (2) 

from the known crack depth ai and the results of the previous step, ci l and ai-,, using a 
material-dependent exponent m/2 (2 < m < 5, for example, m = 3). Equation 2 was 
deduced from equations established by Irwin [3] and Paris [4] in the following way: Irwin's 
equation [3] is 

l K = ~ cos2~ - sin2~ (3) 

3 Yagawa, G. and Ueda, H., private communication, 1987. 
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FIG. 1--Fatigue crack growth of a surface crack in isotropic material (resistance to crack 
propagation is considered to be independent of direction). 

where ~ is a complete elliptic integral of  the second kind 

For the crack in the c-direction and ~, = 0, the K-value is 

K0 = - - - T - -  �9 

Similarly, for the crack in the a-direction and ~ = 7r/2, 

~vTd K:a - <~ 

Using the Paris equation [4] we obtain 

Ac 
- -  = C -  A K ~ '  
AN 

Aa 
AN C AKin2 

Dividing the previously mentioned expressions we have 

Ac ( AKo l 'n 

-~a -- \ AK./2 ] 

and since from Eq 3 

(a 7 

(4) 
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therefore 

(a T ~ =  

as shown rearranged in Eq 2 with quoted indices. 
(b) Calculation o f  AKjfrom Aa, Ci and aj Using the Finite-Element Solution [1] or Irwin "s 

Equation [3]--This  calculation is performed in the following simplified manner: Fig. 2 
shows the surface crack in a tension plate with the relevant notation. In contrast with Fig. 
1, ~ is now not the polar coordinate, but the parametric angle; see inset in Fig. 2. 

The application of  the finite-element solution [I]  is preferable because of a wider validity 
range than the closed analytical solution [3]. 

According to Raju and Newman, the stress-intensity factor K is 

K = g \ c '  ~' (5) 

where c / W  <_ 0.25 and c/h <--- 0.25. The correction factors 

, ~, ~-~/-~ (6) 

are given in Table 1. 

T 
2 h  

1 
Z 

/)-- 

~-------- 2 W - - - - - ~  

f 
f 

r 

FIG. 2--Surface crack in a tension plate. 
c 
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, ~o, om R e f  1. 

291 

a/c a/t ~o [~ 

0.00 1 1 . 2 5  22.50 33.75 45.00 5 6 . 2 5  67.50 78.75 90.00 

0.20 0.20 0.617 0.650 0.754 0.882 0.990 1 . 0 7 2  1 . 1 2 8  1 . 1 6 1  1.173 
0.40 0.20 0.767 0 . 7 8 1  0.842 0.923 0.998 1 . 0 5 8  1 . 1 0 3  1 . 1 2 9  1.138 
0.60 0.20 0.916 0.919 0.942 0.982 1 . 0 2 4  1 . 0 5 9  1 . 0 8 7  1 . 1 0 4  1.110 
1.00 0.20 1 . 1 7 4  1 . 1 4 5  1 . 1 0 5  1 . 0 8 2  1 . 0 6 7  1 . 0 5 8  1 . 0 5 3  1 . 0 5 0  1.049 
2.00 0.20 0 . 8 2 1  0.749 0.740 0.692 0.646 0.599 0.552 0.512 0.495 
0.20 0.40 0.724 0.775 0.883 1 . 0 0 9  1 . 1 2 2  1 . 2 2 2  1 . 2 9 7  1 . 3 4 4  1.359 
0.40 0.40 0.896 0.902 0.946 1 . 0 1 0  1 . 0 7 5  1 . 1 3 6  1 . 1 8 4  1 . 2 1 4  1.225 
0.60 0.40 1 . 0 1 5  1 . 0 0 4  1 . 0 0 9  1 . 0 3 3  1 . 0 6 2  1.093 1.121 1 . 1 3 9  1.145 
1.00 0.40 1 . 2 2 9  1 . 2 0 6  1 . 1 5 7  1 . 1 2 6  1 . 1 0 4  1 . 0 8 8  1 . 0 7 5  1 . 0 6 6  1.062 
2.00 0.40 0.848 0.818 0.759 0.708 0.659 0.609 0.560 0.519 0.501 
0.20 0.60 0.899 0.953 1 . 0 8 0  1 . 2 3 7  1.384 1.501 1.581 1 . 6 2 7  1.642 
0.40 0.60 1 . 0 8 0  1 . 0 7 5  1 . 1 1 3  1 . 1 7 9  1 . 2 4 7  1 . 3 0 2  1 . 3 4 1  1 . 3 6 3  1.370 
0.60 0.60 1 . 1 7 2  1 . 1 4 9  1 . 1 4 2  1 . 1 6 0  1 . 1 8 2  1 . 2 0 2  1 . 2 1 8  1 . 2 2 7  1.230 
1.00 0.60 1.355 1.321 1 . 2 5 6  1 . 2 1 4  1.181 1.153 1 . 1 2 9  1 . 1 1 3  1.107 
2.00 0.60 0.866 0.833 0 . 7 7 1  0.716 0.664 0.610 0.560 0.519 0.501 
0.20 0.80 1 . 1 9 0  1 . 2 1 7  1 . 3 4 5  1 . 5 0 4  1 . 6 5 7  1 . 7 5 9  1 . 8 2 4  1.846 1.851 
0.40 0.80 1 . 3 1 8  1 . 2 8 5  1 . 2 9 7  1 . 3 2 7  1 . 3 7 4  1 . 4 0 8  1 . 4 3 7  1 . 4 4 6  1.447 
0.60 0.80 1 . 3 5 3  1 . 3 0 4  1 . 2 6 5  1 . 2 4 0  1 . 2 4 3  1 . 2 4 5  1 . 2 6 0  1 . 2 6 4  1.264 
1.00 0.80 1 . 4 6 4  1 . 4 1 0  1 . 3 1 4  1 . 2 3 4  1 . 1 9 3  1 . 1 5 0  1 . 1 3 4  1 . 1 1 8  1.112 
2.00 0.80 0.876 0.839 0.775 0.717 0 . 6 6 1  0.607 0.554 0.513 0.496 

In a part icular case for gmin = O, the cyclic stress-intensity factor AK can be written as 

A K  = Kma~ - -  Kin,.  = /('max = K ( 7 )  

Optimization Method 

A sufficient number  of  pairs (AK, a~) being determined,  the parameters  of  the equation 

A F  _[ a 
(8) 

(currently used for compact  type (C(T)) specimens, see ASTM Test Method for Plane- 
Strain Fracture Toughness o f  Metallic Materials [E 399-81 ]) can be adjusted to fit this set 
o f  information.  AF, t, a, and Ware  the notations for the load range, thickness, crack length, 
and width of  the C(T) specimen, respectively. The expression 

f ( w )  = (2  + W)(0"886 + 4"64 ( W )  -- 1 3 " 3 2 ( W ) 2 + 1 4 " 7 2 ( W ) 3 - 5 " 6 ( W ) 4 )  

is specified in ASTM E 399-81 (where 0.2 __< a / W  <_ 0.8). 

(9) 
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By combining the two purely multiplicative factors in Eq 8 and transforming the coor- 
dinate origin, we obtain 

,  (ao + . ' l  (10) 

where 

AF 
r/ = - ~ - ,  

a0 + a '  = a, 

a~ = S Aai, and 

Aai ---- a i - -  a i -  i. 

Thus the parameters W, a0, and n can be used to reproduce the two key values for a plate 
geometry, namely a and AK, in the C(T) specimen. For optimization of the process, the 
steepest descent method and a modified Newton-Raphson minimizat ion scheme were used 
in the following way. The growing crack shapes and the respective K-values can be com- 
puted for the plate using Eqs 2 and 5. A typical example is shown in Fig. 3 (full-line curve). 
Here the crack starter (spark-eroded notch) was a0 = 2 mm and 2c0 = 14 mm for a plate 
150 m m  wide, 20 mm thick, and 800 mm long. The crack growth was divided into nine 
steps from a, = 4 mm to a~,d = 20 m m  when the crack reached the other side of the plate. 
All the steps are plotted in Fig. 3 as a full line. 

In the next step, the initial values for the C(T) specimen were chosen as follows 

5 5 
W>_-_t3 = 3 "  2 0 ~ 3 3 m m  

Say W = 50 mm. Then a0 --> 0,2 W = 10 mm. 
Say a0 = 10 mm. Then 

A~r(W- ao) z 2 5 0 ( 5 0 -  10) 2 N 
= 2(2W + ao) 2(100 + 10) ~ 1800--mm 

Using these results, we computed AK-values for all appropriate values of a from a = a~ 
= 4 m m u p t o a  = ao,d= 2 0 m m ,  Aa = 2 m m  for the plate and a -- a0 = a~- -  l0 = 4 
m m u p t o a - -  a0 = ae,d-- l0 = 2 0 m m o r a l  = 14 mm up to ae,d = 3 0 m m ,  Aa = 2 
m m  for the C(T) specimen. The differences [AKp~ate -- AKc(T)] were then computed and the 
expression 

~ .  [(aK,,,,o -- AKc(T~)/aKo,~,J 2 
1 

compared with an originally chosen value of 0.015 for the illustrated example. 
Since the differences were very high, higher than this prescribed value of 0.015 for the 

relative error squares, the iterative computation followed using the modified initial values 
of W, a0, and n. After an appropriate number  of iteration steps, the most suitable values 
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FIG. 3--Calculated AK values of  a growing surface crack in a plate at its deepest point 
(Fig. 2) and of an optimally adjusted C(T) specimen. 

for the C(T) specimen were 

W =  8 0 m m ,  a~ = 16mm,  ae.a = 3 2 m m ,  A a =  2 m m ,  ao - -  1 2 m m  

and 

n = 1660 - - . N  ~ [(AKpt,,~ -- AKccr))/AKpL,,<] 2 = 0.012 
m m  l 

See also Table 2. 
Addi t ional  specific details of  the above procedure may be obtained in Refs 5 and 6. The 

influence of  each independent  variable may be specified as follows: 

(a) W influences the function 

v ~  f 
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TABLE 2--Tabulated results illustrated in Fig. 3. 

AK, N mm -3/2 
(a - a0) C(T) Specimen, mm 

a Plate, mm Plate C(T) Specimen 

4 752 797 
6 833 857 
8 898 919 

10 982 983 
12 1079 1050 
14 1174 1120 
16 1254 1195 
18 1304 1275 
20 1308 1362 

in both the vertical and the horizontal directions. This function is given by Eq 10 and 
illustrated in Fig. 3 4 where AK is represented in the vertical direction, and (a) or (a - a0) 
in the horizontal direction. 

(b) n influences only the vertical scale. 
(c) Referring to Eqs 8 to 10 it will be observed that the value ofao will influence all 

three factors, namely, a~ W, j~a/W),  and AK. Consequently, it will also influence the slope 
of the AK versus (a - a0) of the C(T) specimen. The section of the Curves AK versus (a 
- -  a0) and AK versus a shown in Fig. 3 suggests that their slopes are nearly equal. 

In order to obtain the initial estimates of W, 

a0, and )/, we can use the following values: 
(a) Equal thickness for C(T) specimen and plate is recommended. Then W _  5/3 t will 

be valid. 
(b) a0 ~ 0,2 W 

(c) A~.  ( w -  a0) 2 
n = 2 ( 2 W +  ao) 

where Aa is the stress range in the uncracked region of the plate. This expression is derived 
from an elementary mechanics consideration of the stress distribution in the C(T) 
specimen. 

Using the process described in detail in Refs 5 and 6 and previously, we start with the 
initial values of W, a0, and )) thus obtained. The optimization algorithms are repeatedly 
applied until either a chosen local sum of the squares of the deviations 

~ .  [(mKplate - -  ~T~c(T))//mKplate] 2 
I 

4 Editorial comment: The example results summarized in Fig. 3 illustrate the central idea of the 
investigation, that is, an experimental evaluation on the hypothesis that three-dimensional surface 
crack growth is controlled by AK in the same way as two-dimensional straight-fronted crack growth. 
The generally good agreement of AK versus a curves for the two types of specimens supports this 
hypothesis. The use of an appropriate, only at first sight arbitrary value of a - a 0  in plotting the com- 
pact tension results has an emphasizing effect on the important comparison of the slopes of the two 
curves and on the conclusion that crack growth is controlled by AK. 
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is obtained or a predetermined number of iteration steps accomplished. In this expression, 
AK values are those used in fatigue cycling and will be replaced by the values of K in static 
applications. 

The above method of iteration will reduce substantially the error of the inappropriate 
choice of the initial values'of W, a0, and n and the squares of the deviations 

~-~ [(~XKp,,,o - ,~Kc~)laKp,a,o] 2 
I 

It should be remembered that only the change in the values IV, ao, and n in the C(T) equa- 
tion (Eq 8) is necessary because the plate values are those given in the actual engineering 
part investigated (designed). 

Computational and Experimental Results 

To illustrate the preceding procedure, we present an example in Fig. 3 and Table 2. The 
material used was a fine-grain structural steel BH 43W (German Standard (DIN) (St E 43 
or USA equivalent steel ASTM A 572 Grade 60). The AK-values of the growing part- 
through crack in the plate were calculated using the finite-element solution [1]. 

The present aim was to establish a one-to-one correspondence between the fatigue 
growth rates of a part-through crack in a plate and a through crack in a C(T) specimen. As 
far as the crack shape was concerned, good agreement was obtained on the basis of  the 
local Paris law [4] (Fig. 1). However, the comparison of the cyclic tests performed on a 
plate and optimally corresponding C(T) specimen revealed a substantial discrepancy (Fig. 
4a). This may be attributed to various causes, including locally varying stresses and mate- 
rial properties, incomplete crack propagation algorithms, and insufficient control of exper- 
imental conditions, for example, unwanted bending effects. 

Figure 3 illustrates experimental evaluation of the hypothesis that three-dimensional 
surface crack growth is controlled by AK in the same way as two-dimensional straight- 
fronted crack growth. The generally good agreement between the C(T) specimen and the 
surface-cracked specimen results in Figs. 4a and 4b supports this hypothesis. As explained 
next, the error in Fig. 4b is reduced by the omission of data associated with crack initiation 
and the early stages of crack growth. 

With reference to the incomplete crack propagation algorithms, it will be observed that 
when the experimental values of a and c in Table 3 are compared with computations using 
Eq 2, substantial discrepancies may occur. Relatively small differences in the crack shape 
could produce larger differences in AK and N. A new computation for Fig. 3 using the 
experimental a and c values would provide a scatter band for this geometry. 

In an earlier work [7], fatigue growth rates of through cracks were studied in a center- 
cracked tension specimen M(T) and a C(T) specimen, while avoiding bending by anti- 
buckling plates. It was found that in the whole length of Paris's regime the C(T) tests 
showed lower crack growth rates than the M(T) tests. A similar result, caused however by 
different reasons, was found in the present study, Figs. 4a and 4b. One of the experimental 
problems in these tests is the measurement of  the crack depth. Here a crack-measuring 
system based on potential technique was applied. Although a potential measurements 
method has been used for many years, the present application was described in detail in 
Ref 9 and was used for all the tests reported here. This technique is particularly suitable 
for the depth of crack measurement since the disturbances of the electrical field are dras- 
tically reduced [9]. Also, on-line strain-gage measurements helped to reduce undesirable 
bending effects in the loaded plates. 
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TABLE 3--Tension plates experimental results (Fig. 4). 

c, c, 
a, mm N mm a, mm N mm 

PLATE SPECIMEN NO. 1 PLATE SPECIMEN NO. 3 

1.79 0 7.0 1.61 0 7.0 
2.24 10 000 7.0 1.73 3 000 7.0 
2.84 20 000 7.0 2.01 10 000 7.0 
3.57 30 000 7.15 2.43 20 000 7.0 
4.49 40 000 7.5 2.91 30 000 7.0 
4.93 45 000 7.7 3.33 40 000 7.0 
6.79 60 000 9.1 3.62 50 000 7.0 
7.48 65 000 9.85 3.92 60 000 7.05 
8.68 70 000 10.55 4.35 70 000 7.20 

10.03 75 000 11.95 5.20 80 000 7.45 
11.62 80 000 13.35 6.86 90 000 8.25 
13.50 85 000 15.20 9.51 100 000 9.90 
14.18 87 000 16.60 13.48 110 000 13.30 
14.58 88 000 17.80 16.21 115 000 16.20 
15.53 90 000 18.80 17.49 117 000 17.35 
16.36 91 400 19.45 18.85 119 000 19.60 
17.07 92 500 20.80 19.56 120 000 20.95 

18.32 94 300 22.70 PLATE SPECIMEN NO. 4 

PLATE SPECIMEN NO. 2 1.95 0 7.0 
2.13 0 7.0 2.14 10 000 7.0 
2.31 10 000 7.0 2.58 20 000 7.0 
2.83 20 000 7.0 3.28 30 000 7.0 
3.68 30 000 7.0 4.34 40 000 7.0 
4.74 40 000 7.05 5.10 50 000 7.2 
6.33 50 000 7.45 6.20 60 000 7.6 
8.33 60 000 8.70 8.04 70 000 9.2 

10.99 70 000 10.65 10.68 80 000 11.4 
14.87 80 000 14.25 15.28 90 000 15.5 
16.69 84 000 16.95 15.65 90 500 16.8 
17.86 86 000 17.75 16.70 92 500 17.6 
18.78 87 500 18.80 18.42 94 000 18.4 
20.08 89 500 20.95 18.34 95 000 18.95 

18.48 96 000 19.6 
18.79 97 000 20.4 
18.94 97 500 20.8 
19.23 98 500 21.5 
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For the loading and geometry conditions in these experiments, see Fig. 3. The scatter 
bands of  the a = f ( N )  diagrams are illustrated in Fig. 4a and show a great similarity for 
all four plates and three C(T) tests. The scatter bands of  the (a - ao) -- f ( N )  diagrams are 
illustrated in Fig. 4a. 

In another earlier work [8] the notch opening displacement at seven positions was mea- 
sured in notched and surface precracked tension plates, using a specially developed mini- 
ature COD meter. 

A total of  five COD tests with tension plate specimens were performed in air at room 
temperature. Afterwards C(T) specimens were taken from the tested plates, two samples 
from each plate specimen. Similarly to K and AK, generally good agreement of  COD was 
found for the two types of  specimen "plate" and C(T). The COD tests belonged to the same 
experimental program as the fatigue crack growth tests with plates and C(T) specimens for 
investigating some additional particular problems. 

Further application of  this method might help to clarify the influence of  a locally varying 
crack resistance along the crack front mentioned earlier. Figure 4a shows, however, that 
by using C(T) specimen data for the prediction of  fatigue growth of  surface cracks, the 
results will be on the safe side. 

TABLE 4--Experimental results for three adjusted C(T) specimens (see also Figs. 3 and 4a). 

N 

(a -- a0), mm No. 1 No. 2 No. 3 

3.0 24 000 24 000 24 000 
3.5 28 470 30 575 30 475 
4.0 29 510 35 550 35 175 
4.5 31 950 40 300 39 250 
5.0 35 640 43 825 43 175 
5.5 40 775 47 275 46 775 
6.0 42 050 50 375 50 150 
6.5 45 020 53 500 53 550 
7.0 47 500 56 700 56 175 
7.5 51 955 59 150 59 025 
8.0 53 235 61 875 61 825 
8.5 56 705 64 275 64 475 
9.0 57 875 66 875 66 975 
9.5 60 390 69 150 69 450 

10.0 61 855 71 225 71 675 
10.5 65 045 73 625 73 725 
11.0 66 150 75 575 75 850 
11.5 68 790 77 600 77 700 
12.0 70 200 79 500 79 200 
12.5 72 755 81 275 81 225 
13.0 73 830 82 950 82 800 
13.5 76 035 84 800 84 625 
14.0 77 670 86 275 86 300 
14.5 79 205 87 800 87 725 
15.0 79 935 89 350 89 175 
15.5 81 230 90 900 90 625 
16.0 82 175 92 275 91 925 
16.5 84 010 93 575 93 300 
17.0 84 800 94 850 94 625 
17.5 86 240 96 000 95 800 
18.0 87 320 . . .  96 900 
18.5 88 370 . . .  98 025 
19.0 89 305 . . . . . .  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  W e d  D e c  2 3  1 8 : 4 5 : 1 1  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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Referring again to Fig. 4a, it will be noted that by starting the count of  load-cycles N at 
the moment  when both cracks have a depth of  4 mm (a for the plate, a -- a0 for the C(T) 
specimen), we obtain a substantial reduction in scatter. This manipulation, though some- 
what arbitrary at first sight, makes clear that the congruence between the two types of  
experiments is remarkably good when neglecting their initial phases (Fig. 4b). 

Figure 5 shows a comparison of  the observed crack growth with an engineering proposal 
assuming a constant a/c ratio as postulated in the American Society of  Mechanical Engi- 
neers (ASME) Boiler and Pressure Vessel Code, Section XI. This assumption may some- 
times be very far from correct, depending on the crack depth-to-length ratio and the geom- 
etry of  the plate. Consequently, the number of  cycles between the observed position of  the 
crack and its critical state may be dramatically overestimated. 

Figure 6 compares the detectable and critical crack size for two cases of  semi-elliptical 
and semi-circular crack, K,~ --- 4000 N / m m  3/2, o = 350 N / m m  :, and t = 100 mm. In con- 
trast to those in Fig. 5, the crack sizes in Fig. 6 were computed on the assumption of  a 
constant a/c ratio as suggested in the ASME Code. 

Figures 7 and 8 illustrate the experimental setup and four macrofractographs of  tension 
plate specimens, respectively. The initial geometries of  the plate specimens, Fig. 8, were 
identical (20 by 150 by 800 mm); they contained a starter notch a0 -- 2 mm and 2c0 = 14 
mm, growing under identical testing conditions (for details see also Fig. 3). The cyclic fre- 
quency was 6 Hz, the stress ratio R = Om~,/amax was 0.06. Note that the fatigue crack growth 
behavior was reproduced to a high degree of  accuracy. 
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FIG. 5--Fatigue growth of surface cracks towards critical size. Comparison of experimen- 
tal results with ASME Code, Section XI. 
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FIG. 7--Experimental setup for tests with tension plates. 
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FIG, 8--Fracture surfaces of four tension plates specimens. 
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Conclusions 

A procedure described in this paper determines a set of  parameters necessary to obtain 
equal AK values and analogous crack propagation rates in a plate and a standard C(T) 
specimen. A comparison of  the number  of  cycles obtained for the equivalent crack growth 
in both types of  specimens suggests that the significance of  AK values in a part-through 
crack is closely related to that in a C(T) specimen. The experimental  results obtained in 
the fatigue tests performed with the plates and appropriately adjusted C(T) specimens indi- 
cate that this hypothesis may be correct. 

It is a common practice to use a C(T) specimen geometry to investigate a very large part 
of  da/dN versus AK curve. However, the crack growth in a real structure may occur only 
in a l imited section of  this curve. The method described here enables a more precise inves- 
tigation of  a specific part of  the da/dN versus AK curve together with an improvement  in 
the accuracy of  the respective results. 

Although these observations were made under idealized circumstances (air environ- 
ment, room temperature, constant-ampli tude loading), the transferability of  the results 
obtained using this approach should be valid also for more complicated service conditions, 
such as in a water reactor environment  (300~ 140 bar) and at variable-amplitude loadings 
[5,81. 

As already shown by others, the fatigue experiments with the tension plates may be also 
regarded as a suitable experimental  verification of  the linear elastic K-solution of  Raju and 
Newman [1]. Other solutions are being analyzed at present, also for surface cracks under 
pure bending [9]. 

It is intended that for elasto-plastic application, a similar computer  program will be 
developed using J-integral s [2]. 
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ABSTRACT: Fatigue crack growth threshold tests are conducted on a high-strength titanium 
alloy using a surface flaw specimen geometry. A laser interferometer is used to monitor crack- 
mouth opening displacements, from which compliance determined crack length is computed. 
Four types of loading history involving both increasing- and decreasing-AK are used to reach 
a threshold condition. Two of the test conditions maintain constant Km~ under computer 
control. Crack closure is obtained from the load-displacement plots and used to determine 
an effective stress-intensity range, AKefr. Results from all four test types indicate that a single 
value of an effective stress-intensity range is obtained which is independent of stress ratio, 
R, or load history. Crack growth rate data in the near-threshold regime, on the other hand, 
appear to have a dependence on R even when AKefr is used as a correlating parameter. 

KEY WORDS: fatigue crack growth, threshold, surface flaw, crack closure, effective stress 
intensity 

The determination of near-threshold crack growth behavior in structural materials is 
important  in damage-tolerant-based life predictions of high-cycle fatigue limited compo- 
nents in aircraft and turbine engine applications. Since a large portion of the life of a com- 
ponent  may be spent at very low crack growth rates, accurate knowledge of the near-thresh- 
old growth rate behavior is important for life prediction. Further, for very high-frequency 
loading applications, such as turbine blades which may see vibratory stresses in the kilo- 
hertz regime, knowledge of a true threshold stress intensity (AKlh) below which a defect or 
crack will not propagate to failure is necessary. 

The threshold stress-intensity factor range, AKIh, defines a condition below which a crack 
will not propagate or, alternately, propagates at an arbitrarily slow growth rate defined as 
10 -~~ m/cycle. The standard method of determining AK,h is to conduct a decreasing AK 
test on a specimen at a constant value of stress ratio, R, following a history of maximum 
K in the form 

K = K0 exp[C(a -- a0)] (1) 
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where Ko and a0 are the initial values o f  the stress intensity and crack length, respectively, 
and C is a load-shedding constant which is supposed to be no less than C = -0 .08 / rnm 
[ASTM Standard Test Method for Measurements o f  Fatigue Crack Growth Rates (E 647- 
86A)]. When such a test is performed, a crack is grown at an ever decreasing growth rate 
until sufficient data are obtained to either determine or extrapolate to the threshold value 
which is commonly defined as a growth rate of  10 -~~ m/cycle. The crack also continues to 
grow at an ever decreasing growth rate through,  region of  previously deformed material. 
A wake of  plastically deformed material is left behind the crack, leading to crack closure 
in the near-threshold regime [1]. The extrapolation o f  data obtained under such conditions 
to a condition of  the incipient growth of  an initial defect which has not been previously 
propagating is certainly a question. The load-history effects and any subsequent closure 
development in a load-shedding test can generally be expected to be different than what 
might be found in a nonpropagating, preexisting flaw. One concept which has been pro- 
posed is that the effective stress-intensity range, AKefr, approaches zero as the threshold is 
approached. I f  this is the case, the incipient growth of  an initial defect which has not pre- 
viously propagated could occur at an arbitrarily low load since such a crack will not yet 
have developed any closure. This, in fact, is the basis for much of  the reasoning used to 
explain the anomalous high growth rates o f  small cracks and the observations that small 
cracks propagate at stress intensities below the long crack threshold value [2-4]. 

Another question to be raised in the determination of  threshold values is the uniqueness 
of  such values based on a standard load-shedding test. Thus, it would be important to 
know at which AK levels a crack would start to propagate if the load were gradually 
increased from below threshold and how those values compare with ones obtained from a 
standard decreasing AK test. It is also of  interest to see if threshold values obtained from 
that type of  loading were dependent on the history of  the increasing load or the method by 
which the initial flaw was obtained. 

There have been a number of  investigations which have addressed the question of  the 
effect of  loading history on the determination of  a threshold below which cracks will not 
propagate. Cadman et al. [5] found that the threshold values obtained in a decreasing AK 
test depended on the K-reduction rate (the constant C in Eq 1) and recommended that 
such rate should be reported as part of  the test procedure. They suggested that the threshold 
value was not a material property since it depended on the history of  loading. Doker et al. 
[6] found in a conventional decreasing AK threshold test that the threshold depended on 
stress ratio, R. They suggested that this dependence on R is, in reality, a presentation o f  
the closure behavior of  the material. They introduced a test technique in which Kmax was 
maintained constant while Kmi, was increased. In this increasing R type of  test, it was sug- 
gested that a true material threshold can be obtained only when the Kmax-values were high 
enough to avoid closure (load history) effects. This same test procedure was used later by 
Doker and Peters [ 7] to extend the data base to a number of  other materials. Herman et 
al. [8] also noted that the conventional decreasing AK threshold test, when conducted at 
low R, could lead to nonconservative estimates of  the materials inherent fatigue resistance. 
This was attributed to crack closure which is observed to increase during a standard 
(decreasing AK, constant R) threshold test, leading to a decrease in AKerf and a correspond- 
ing reduction in growth rate. They also proposed the use of  a constant Kraal, increasing R 
test, pointing out that a further advantage of  such a test is that the stress-intensity reduction 
rate can assume large values without introducing false conditions. Their stress gradient 
followed the form 

AK = AKo exp[C(a - ao)] (2) 
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Values of C between --0.06 and - 0 . 4  mm -3 were used without any noticeable difference 
in growth rate. This test technique was also suggested as a method for obtaining data from 
conventional long crack specimens which closely simulate the fatigue crack growth behav- 
ior of small cracks [9]. Castro et al. [10] defined a "fatigue tolerance range" similar to a 
conventional threshold (10 -1~ m/cycle), which represents conditions for the nonpropaga- 
tion of a fatigue crack. Using four different loading histories, they found that this tolerance 
range depends on the amplitude of the cyclic plastic zone from the prior loading history. 
The differences in their results were explained by the differences in damage states due to 
both the Kma, and AK from the prior fatigue cycles. 

In a prior investigation, an increasing AKtest was used to determine thresholds in a high- 
strength titanium alloy [11]. The results of that study indicated that the use of an effective 
stress-intensity factor, AKo~r, which accounts for crack closure effects, enabled consolidation 
of threshold values from both increasing and decreasing AK tests into a single value. In 
those experiments, the stress ratio, R, was maintained constant at a value of 0.1. The vari- 
ation of threshold AK with R was not addressed. Further, the possible influences of loading 
history, including that of the precracking procedure for the increasing AK tests, was not 
determined. 

To address the question of the influences of prior loading history and stress ratio on 
threshold, we conducted a series of experiments on surface flaws in a high-strength tita- 
nium alloy, Ti-6A1-2Sn-4Zr-6Mo. Four different load histories were examined which 
included both increasing and decreasing AK test types. The influence of crack closure was 
examined through the use of an effective stress-intensity factor. 

Experimental Approach 

All testing was performed on the alloy Ti-6AI-2Sn-4Zr-6Mo. The material and heat treat- 
ment were the same as those used in previous studies [12,13] Threshold testing was per- 
formed using two specimen geometries, a small and a large surface-flaw specimen. Both 
specimens have rectangular cross sections. The small surface-flaw specimen [12] employs 
a mild notch to facilitate natural initiation of surface cracks. This geometry allows cracks 
of surface lengths as small as 0.075 mm to be studied. The large surface-flaw specimen [13] 
utilizes a semicircular electro-discharge machined (EDM) notch approximately 0.1 mm 
deep by 0.2 mm wide and having a height of 0.07 mm for crack initiation. Surface-crack 
sizes ranging from 0.4 mm to as large as 8 mm were studied using this geometry. The gage 
sections of all specimens of both geometries were electropolished to a depth of at least 0.20 
mm to eliminate surface residual stresses. 

Most of the tests reported in this investigation were conducted on the large rectangular 
specimens unless otherwise noted. Precracking for both specimen geometries was accom- 
plished using fully reversed axial loading (R = - 1.0) at am,x = 0.6 a r (ay = yield stress --- 
1158 MPa) for the small-crack specimens and am~ = 0.3 ae for the large-crack specimens. 
The specimens were tested under full computer control using a laser interferometric dis- 
placement gage (IDG) to measure crack-mouth opening displacement (CMOD) [14,15]. 
For the small-crack specimens, natural crack initiation was detected by periodic visual 
inspection during the constant amplitude precracking. For the large-crack specimens, 
abrupt changes in compliance across the EDM starter notch indicated crack initiation 
which was verified by visual inspection. Crack length was determined from compliance 
measurements of Ioad-CMOD by fitting a straight line to the linear portion of the curve. 
Crack closure loads were determined as the load at which the load-CMOD curve displayed 
the first deviation from linearity on unloading. The extremely high resolution of the IDG, 
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which allowed displacements to be measured to an accuracy of  0.01 zm, enabled accurate 
determinat ion of  the closure loads and provided crack length measurements that were 
accurate to within approximately 1 zm. 

Four  types of  loading histories were employed; the first two were constant R tests and 
the second two were variable R. The four test types are shown schematically in Fig. 1 and 
summarized in Table 1. The first (Type I) test was the standard decreasing AK test 
described by Eq 1. The load was shed at a constant value of  R until the growth rate dropped 
to below 10 - '~ m/cycle. The load was then maintained constant while the crack continued 
to grow under increasing AK to complete the test. Data were obtained under this test con- 
di t ion for values of  R of  0.1, 0.5, and 0.8. The second (Type II) constant R test was an 
increasing AK test. In this case, the specimen was precracked at negative R and then tested 
at a positive value of  R of  either 0.1 or 0.5. The initial AK was chosen to be below threshold 

.A  l D i C : CRACK LENGTH 
K ,~KTH 
I 
N 
G 

m 

TYPE I 

A AKTH CYCLES 

TYPE II 

P l  COI~TANT KMAX 
R I INCREASING K I ~ N ]  
E i  
O !  
R I  

'A I ' : 

AKTH 

N I  
G I  

CONSTANT PMAX 
CONSTANT R 

CRACK LENGTH 

T Y P E  III 

K 
CONSTANT KMAX ] 
DECREA~NG KImN CONSTANT PMAX 

p CONSTANT R 

E I 

R 1 
'A E et~  
C AKTH CY 
K 
! 
N 
G 

T Y P E  I V  

FIG. 1--Schematic of  loading history used in four test types in experimental investigation. 

TABLE l--Test conditions for the four types of  threshold tests. 

Type AK Kma x R 

I decreasing decreasing constant 
II increasing increasing constant 

III decreasing constant increasing 
IV increasing constant decreasing 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



JIRA El" AL. ON INFLUENCES OF CLOSURE AND LOAD HISTORY 307 

and sufficient cycles were applied to validate that the crack was not growing above a rate 
o f  5 • 10-1] m/cycle. The AK value was then increased slightly and the procedure repeated. 
When crack growth was finally detected, the test was continued under constant load ampli-  
tude to obtain near-threshold growth rate data. The last two types of  tests were conducted 
under variable R condit ions using a condit ion of  constant Kmax [16,17]. In the Type III 
decreasing AK test, Kmi, was increased linearly with crack length until threshold was 
reached. The test was then continued at the threshold R under constant load range. In the 
Type IV increasing AK test, Kmi, was decreased linearly with crack length until the crack 
started to grow. As in the Type II test, init iation of  crack growth was defined as when the 
growth rate reached a value o f  5 • 10-"  m/cycle. After this point, the load range was 
mainta ined constant. In all of  the tests, closure loads were measured continuously. The 
data obtained include AKth, AKefr.l,, and da/dN as a function of  both AK and AKin. 

In  both the Type 1I and Type IV increasing-AK threshold tests, the initial maximum 
loading was such that the applied AK was well below the threshold as determined in com- 
pact type (C(T)) tests. Thirty crack length measurements were made using the IDG system 
with a min imum of  addit ional  fatigue cycling. A linear regression and standard deviat ion 
calculation on these 30 points supplied a measure of  the reproducibili ty of  the crack length 
measurements for a given crack and experimental  setup. A value for the number  of  cycles, 
N, necessary to establish a growth rate above threshold, was then determined. The test 
proceeded by applying blocks of  N cycles with crack length measurements every N/30 
cycles. After each block o f  N cycles, a linear regression on the preceding 30 a:N points was 
made. I f  the slope of  the data indicated a negative growth rate or a growth rate below 
threshold, the load was incremented to increase the applied AK and the process was 
repeated. I f a  growth rate above threshold was indicated, the crack was grown at the current 
max imum load under constant ampl i tude  conditions. 

Results and Discussion 

Data from the load-shedding port ion o f  a Type I test are presented in Fig. 2 as a function 
o f  AKeff as determined from the closure measurements.  The solid line in the figure repre- 
sents the trend for data obtained from C(T) specimens in an earlier investigation on the 
same material  for the same value o f R  = 0.1 [13]. It can be seen that both the growth rates 
over the entire range of  zkK as well as the value for the threshold effective stress intensity 
are nearly the same for the two different specimen geometries. Similar results were 
obtained for tests conducted at R = 0.5 and R -- 0.8. In these latter tests, no closure was 
observed, thus applied and effective stress-intensity values were identical. These data com- 
pared well with C(T) data obtained at R = 0.5 where there was also no closure observed. 
The data for the values o f  AK at threshold, defined as a growth rate of  10 -1~ m/cycle, are 
summarized for all of  the Type I tests in Fig. 3. For  reference purposes, the effective and 
applied stress-intensity values from C(T) tests are also shown. It can be seen that the use 
of  AKefr consolidates all the data into a single value for the threshold stress intensity, con- 
sistent with the C(T) data. Use o f  AK, without consideration for crack closure, does not 
provide a single value for threshold stress intensity. 

The results for the value of  the threshold stress intensity from the Type II increasing AK 
tests are summarized in Fig. 4. Values using both applied AK and effective AK based on 
closure measurements are shown for the seven tests performed along with the reference 
C(T) data. All of  these tests, with the exception o f  one, were conducted on small, naturally 
init iated cracks without the use of  a starter notch [ 11]. For  these tests, both AK and AKe~ 
appear  to be equally good correlating parameters to obtain a single threshold value which 
is consistent for both surface flaws and C(T) specimens. All tests were run at R = 0.1 and, 
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FIG. 2--Crack-growth-rate data for Type I test at R = 0.1 as a function of /XKey~ 

in all cases, closure developed after the precracking at R = - 1 . 0 .  Data for two of the 
specimens in Fig. 4 show lower bounds on the threshold value. In both cases, the specimen 
failed prematurely at another crack so that a threshold value had not yet been established 
for the crack under observation. 
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The Types III  and IV tests were conducted to evaluate the role of  prior loading history 
on the threshold under  both decreasing and increasing AK test conditions. In a Type I test, 
the crack is growing into a region with a plastic zone size, dependent  on maximum K, 
which is larger than that created by new growth at a lower value of  Kmax. Although gttide- 
lines have been developed to minimize the prior  loading history effect by controlling the 
rate of  load shedding, the history effect cannot be el iminated completely. In the Type II 
test, in most  cases, the initial crack growth occurred at a value of  Kmax which was below 
that appl ied during the reversed loading precracking procedure. Thus, the crack started to 
grow into a plastic zone which was larger than that which would be developed by the grow- 
ing crack. In the Type III  tests, the plastic zone ahead of  the crack was kept constant as 
the crack grew at a decreasing rate, while in the Type IV test, the plastic zone due to pre- 
cracking was smaller than that due to the first increment of  crack extension as threshold is 
approached with increasing AK loading. 

Typical growth rate data from a Type III test are presented in Fig. 5 for a specimen which 
was grown initially at R --- 0.3 and reached threshold at R = 0.44. The constant load, 
increasing AK, part o f  the test was carried out at a constant value of  R --- 0.44. The data 
in Fig. 5 are corrected for closure and plotted against AKe~. It can be seen that the decreas- 
ing and increasing AK growth rate data near threshold collapse into a single curve which 
falls on the C(T) trend line for R -- 0.5 where there was no closure. At the initial higher 
growth rates during the decreasing AK portion of  the test, the growth rate data do not fall 
on a single curve. These data  represent a condit ion of  negative R for the initial port ion of  
the test and an increasing R as the test proceeds at decreasing growth rates. The lack of  
consolidation of  the data into a single curve may be due to the inabili ty to determine the 
true closure load from load-CMOD data on a surface flaw geometry, or the influence of  R 
or mean load on the growth rate, even when corrected for closure. It is of  importance to 
note that the only case where crack growth rate data could not be consolidated into a single 
curve using AKefr to account for crack closure occurred at negative values of  R. The data 
for threshold from all of  the decreasing AK tests, Types I and III, are summarized in Fig. 
6 along with the relevant C(T) data. Threshold stress intensity is plotted against R to exam- 
ine any effect due to mean load. It can be seen that a single value o f  threshold o f  approx- 
imately 2.3 MPa ~ is obtained from all of  the tests when using an effective stress inten- 
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sity which accounts for closure effects. If  closure is not considered, then the threshold value 
appears to increase with decrease in R below R = 0.4. Above this value of R there is no 
closure so that applied and effective stress intensity are identical and there is no variation 
with R. 
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The last type of  test, Type IV, involved an increase in AK while maintaining Km~x con- 
stant until the crack reached a growth rate in excess of  5 X 10-" m/cycle. The extreme 
precision of  the IDG allowed these very low growth rates to be observed without having 
to apply an unreasonably large number  of  cycles at each load condition. Each subsequent 
loading block was applied at a lower value of  R as shown in Fig. 1. Results of  crack growth 
rate from a typical test o f  this type are shown in Fig. 7 as a function o f  R. The initial block 
o f  cycles was applied at  R = 0.70, from which it was determined that the crack was not 
growing above the established threshold level. Seven more blocks of  cycles were applied, 
each one at a slightly lower value of  R or slightly higher AK. Although the crack was appar- 
ently growing during this entire procedure, the data obtained in real t ime during the test 
established only that the crack growth rate had not exceeded a value of  10-'~ m/cycle. After 
the test had been completed, plots such as that of  Fig. 7 were constructed to interpolate 
the value of  R (and AK) for threshold. These same data, plotted as a function of  growth 
rate using incremental polynomial  fitting, are shown in Fig. 8 as a function of  AK. Since 
there was no observed closure, effective and applied stress intensities are identical. It can 
be seen that the growth rate data above threshold follow the C(T) trend line quite closely. 
The values for threshold as a function of  R for all of  the increasing AK tests are summa- 
rized in Fig. 9. With the exception of  one test at R = 0.2, the effective stress intensity 
appears to consolidate all of  the data into a single value for threshold. The anomalous test 
showed very little closure and thus an unexpectedly high value for AKefr. The growth rate 
data for this test did not consolidate with the C(T) data at R = 0.5 [16], again indicating 
that closure should have been expected. In fact, i f  a closure level of  approximately ! MPa 
V m  were present, both the effective threshold value and the growth rate data would have 
been consistent with the remaining data when using an effective stress intensity factor. This 
would lead one to believe that closure may not be easily detected in surface flaws for stress 
ratios in the vicinity of  0.2. For  larger values of  R, there is no apparent  closure. For  smaller 
values of  R, closure is readily detected. In this intermediate region, the extent of  closure 
may be inadequate to detect with a mouth-opening displacement gage, no matter how pre- 
cise it is. 

Finally, all o f  the threshold values are summarized in Fig. 10 as a function o f  R. Again, 
with the exception o f  a single data point, all o f  the data indicate a unique value o f  an 
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effective stress-intensity factor o f  approximately 2.30 MPa V ~ .  These data are obtained 
from the four types of  tests and indicate that loading history can be completely accounted 
for when determining threshold if crack closure is taken into account. 

Summary and Conclusions 

The threshold stress intensity can be determined from tests which involve either 
decreases in AK through a load-shedding procedure or the incipient growth from a precrack 
in which AK is gradually increased until crack growth is detected. The use of  an effective 
stress-intensity factor, which accounts for crack closure, allows the determination of  a 
threshold value which appears to be independent o f  stress ratio, loading history, and test 
type. 

Crack growth rate data are consolidated reasonably well into a single curve in the near- 
threshold regime using &Kerr as the correlating parameter. At growth rates above threshold, 
in the vicinity of  10 -9 m/cycle, the use of  AK~ does not consolidate the data into a single 
curve. This may be either a mean load effect or a reflection o f  the inability to accurately 
determine crack closure loads using CMOD measurements in a surface flow geometry. 

Crack growth rate data in the near-threshold regime and values of  the threshold stress- 
intensity factor obtained from surface flaw geometries are consistent with similar data 
obtained from experiments using C(T) specimens. The threshold values and growth rates 
can be consolidated through the use of  the effective stress intensity factor for both specimen 
geometries. 
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Growth of Surface Cracks Under Fatigue and 
Monotonic Increasing Load 
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Increasing Load," Surface-Crack Growth: Models, Experiments, and Structures, ASTM STP 
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Testing and Materials, Philadelphia, 1990, pp. 315-332. 

ABSTRACT: An engineering assessment of the life time and failure conditions for compo- 
nents with surface cracks can be easily done using a personal computer program. The meth- 
ods, assumptions and the modeling of surface crack growth used in the program are briefly 
described. 

A more detailed comparison of calculated and observed growth of surface cracks under 
fatigue and monotonic increasing load shows some phenomena, which are not completely 
understood as yet. They are discussed in connection with the constraint variation along the 
crack front. Some results on constraint at the front of surface cracks and on the J-R curves 
for surface cracks in tension plates are given. 

KEY WORDS: surface crack, failure assessment, constraint, fatigue, J-R curves 

In assessing life t ime and failure condit ions of  components  with defects we usually have 
to deal with small part-through-wall defects. Therefore methods for the prediction of  sub- 
critical and critical growth of  surface cracks are required. In this paper some aspects of  
surface crack behavior  are summarized.  

The first part  of  this paper deals with the quick and easy estimation scheme for fracture 
behavior  o f  components  with surface cracks, using a computer  program based on approx- 
imate methods. Calculational results are shown with the example of  a cracked steel valve 
casing. In the second part, the crack shape development  of  surface cracks under fatigue is 
discussed in connection with constraint, and some results on the stress state ahead of  sur- 
face crack fronts are given. The third part  of  the paper deals with the measurement  of  the 
tearing resistance for surface cracks in plates and with the geometry dependence of  J-R 
curves. 

Assessment  of Components with Surface Cracks 

For  the failure assessment of  cracked components  of  metallic materials, concepts and 
calculation methods o f  elastic and elastic-plastic fracture mechanics are available. In par- 
ticular, the stress-intensity factor K and the J-integral may be used as parameters describ- 
ing the loading and the material  resistance in the fracture process. For specific geometries 
with surface cracks there are tabulated values or equations fitting finite element results for 
these loading parameters (for example, [I]). 

~Senior scientist, Fraunhofer-Institut fiir Werkstoffmechanik, Freiburg, Federal Republic of 
Germany. 
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316 SURFACE-CRACK GROWTH 

Published methods and solutions are used in the personal computer program "IWM- 
VERB," which provides a tool for fast failure assessments of cracked components [2]. 
Before demonstrating performance of the program by comparing calculations and experi- 
mental results for a component with a surface crack, the underlying assumptions and ide- 
alizations will be briefly described and their justification will be discussed. 

Calculation Program and Methods Used 

Geometry of Surface Crack--Both real defects found during nondestruCtive evaluation 
and hypothetical cracks are modeled as planar, having semielliptic contours and being 
loaded normal to the crack plane. 

For a best estimate the dimensions of the semielliptical crack may be determined accord- 
ing to Fig. 1. The length 2c is the mean value of the maximum crack extension in the length 
direction and the crack extension at the surface of the body; the crack depth a is the max- 
imum depth of the smoothened contour of the real crack. For a conservative estimate, well 
known procedures according to Refs 3,4 can be used. 

The shape of real cracks usually deviates little from a semiellipse as long as plastic defor- 
mations in the crack vicinity are small. In case of large deviations, the modeling by an 
ellipse according to Fig. 1 is a possible rough approximation. 

Evaluation of Loading Parameters--The stress-intensity factor Ka,p~ is evaluated for the 
apex and the surface points of the crack as a function of geometry end loading based mainly 
on results from Refs 1,5,6. The elastic-plastic loading parameter Japp~ is approximately eval- 
uated for the depth direction, using a failure assessment diagram with assessment lines 
according to Refs 7,8. Limit load formulae from Refs 9,10 are used. 

Instead of using just local values a more substantiated procedure would be the evalua- 
tion of an average value of Kapp~ or J, pp~ in the surroundings of q~ -- 0 and ~-/2 (as in Ref 
1 I), because there is an interaction of the adjacent parts of the crack front. The differences 
in the fatigue crack shape development, due to the use of local or averaged stress-intensity 
values shown on an example in Fig. 2, are, however, rather small. Surprisingly, the ten- 
dency of the crack shape development agrees better with the calculation using local values. 
In these calculations, no modifications of stress-intensity factors as in Eq 1 have been done. 

Although the calculation program was designed to make best estimates, the J, ppj values 
are overestimated by the program due to conservative assessment lines from Refs 6, 7 and 
the conservative limit load solutions used. "Conservative" means here shifting the results 
towards a safe assessment, for example, underestimating critical loads or critical crack 
sizes. 

Evaluation of the Fatigue Crack Growth--The crack growth is stepwise evaluated along 
two specific directions (length and depth) only using the Paris law. These simplifying 
assumptions have to be justified by a good agreement of calculations with experimental 
results. 

Evaluation of Critical Conditions--Critical conditions are assessed in the depth direc- 
tion only. The evaluation is based on elastic-plastic fracture mechanics using two-criteria 
approach. The fracture toughness is characterized by K~c or J, and J resistance curve (J-R 

I. 2c .1 
FIG. l--Idealization of surface crack contour. 
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FIG. 2--Calculated and observed crack shape development in tension plates under fatigue 
with load ratio R = 0.1. Calculation with local (Program "'IWM-VERB") and averaged 
stress-intensity factor (SIF) values. In both cases SIF is calculated with equations from Ref  1 
and Paris" relation for the crack growth is used. 

curve). When calculating stable crack growth a constant crack length, or a constant crack 
aspect ratio a/c is assumed. 

Omitting the analysis for the surface points of  the crack is justified for geometries avail- 
able in the present version of  the calculation program (no bending loads or significant 
stress gradients) and for a/c < 1 (which can be assumed at the absence of  stress gradients). 
The somewhat higher loading parameters for the length direction as for the depth direction 
at a/c ~ 1 are compensated by fracture resistance, being higher at the surface of  the body, 
than for the depth direction, as a result of  different stress state. 

Failure Assessment o f  a Valve Casing 

The possibilities and limitations of  the computer program-based fracture-mechanics fail- 
ure assessment were tested by comparing pre- and post-test calculations, with the experi- 
mentally observed fracture behavior of  a cast steel valve case with a surface crack [12]. 
Detailed material characterization and accompanying model experiments on a plate and a 
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318 SURFACE-CRACK GROWTH 

FIG. 3--  Valve casing (wall thickness 12.5 mm) of cast steel, with an external surface crack 
and modeling of  the cracked part of  it (encircled) [ 12]. 

pipe of  the same material, with the same thickness and initial crack have been performed 
to promote understanding of  differences between calculations and experimental results. 

The valve and simple geometries used to model the critical part of  the valve with a crack 
(in the figure encircled) can be seen in Fig. 3. For a very conservative assessment, an axial 
crack in an cylindrical shell can be used. A cracked spherical shell as a model with over- 
estimate failure pressure. For a realistic calculation therefore an elliptical shell of  revolu- 
tion with a meridional crack was used. 

The results o f  pre-test calculations are compared with the experimental results in Table 
1. Despite the complicated geometry of  the valve, realistic predictions were obtained for 
the fatigue crack extension, the failure loads of  the surface crack, and the through crack. 
The through crack has been tested after sealing the leak. 

The lead-before-break behavior of  the cracked valve casing was very close-to conditions 
at which the failure mode changes. It means that a relatively small inaccuracy in the pre- 
dicted crack shape development would result in the prediction of  break instead of  leak. 
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FIG. 3--Continued. 

Crack Shape Development Under Fatigue Loading 

Correction for Variation of Stress State 

It has been shown that  the development  of  the crack shape aspect ratio a/c in tension 
plates under fatigue loading not only depends on initial geometry, but  also on the load 
level [13], or on the stress ratio R = ~,,~,/g~,x [14]. This was explained as a result of  the 
different stress states along the crack front [13] and in terms of  crack closure [14]. 
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TABLE 1--Fatigue crack extension and failure pressure for a valve with a surface crack. Comparison 
of pre-test calculations with experimental results. 

Calculation Experiment 

Ratio 
Calculation/ 
Experiment 

INITIAL CRACK: a = 3 r n m  
c= 15rnm 

Crack after 172 630 cycles 
a [mm] 6.6 9.3 
c [mm] 16.9 18.2 
da [mm] 3.6 6.3 
dc [mm] 1.9 3.2 

SURFACE CRACK: a = 9.3 mm c 
= 18.2 mm 

Failure pressure [MPa] 30.4 42.0 
Failure mode leak leak 

THROUGH CRACK: C = 17.1 mm 
Failure pressure 35.7 44.5 

0.57 
0.59 

0.72 

0.80 

According to the crack closure model, an R-dependent correction of the crack growth 
rate at the specimen surface was proposed in [15]: the stress-intensity factor range A Kc at 
specimen surface is multiplied by the crack-closure factor ratio/3R, 

fiR = 0.9 + 0.2"R 2 -- 0.1 .R 4 (1) 

when inserted in a crack growth equation. 

Comparison with the Experiment 

The growth of surface cracks under uniform fatigue loading in high strength 12% chro- 
mium steel (German designed X20 CrMoV 12) (yield stress ~y -- 510 MPa), was measured 
on plates with thickness of 20 m m  and width of 120 ram. The same starter cracks a = 3.5 
ram, 2c -- 18 mm, and the same amplitude 0 " m a  x - -  O'min, but different load ratios, R = 0.1 
and R = 0.6, were used. The maximum nominal  stresses were 0.5-ay and 0 .9 .a ,  respec- 
tively. The crack growth rates in stress-intensity factor region used can be described by 

da/dN = C.Ms (2) 

where C = 6.37- 1 0  -9 ,  n = 2.90, and C = 7.17- 1 0  -9 ,  n = 3.11 for R = 0.1 and R 
- 0.6, respectively, from tests on CT-specimens. 

A comparison of the crack shape development calculated using r and observed in 
experiments in Fig. 4 shows an excellent agreement for low R values and some deviations 
for high R values. A possible reason for these deviations is the fact that the differences of 
the stress state for crack depth and length depend not only on R, but on the maximum 
stress as well. 

In the theoretical approach for the derivation of relation (Eq 1) crack growth directions 
a and c are associated with the limiting conditions of plane strain and plane stress, respec- 
tively. This can be regarded as a first approximation. The actual situation at the crack front 
may be obtained from finite-element calculations. 
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culations and experiment. 

Constraint  Variation Along  Crack Front 

Stresses obtained in linear elastic three-dimensional finite-element calculations for plates 
with surface cracks were evaluated to quantify constraint along the crack front. As an 
example principal stresses a~, a2, and a3 ahead of the crack front in the crack plane (actual 
evaluation points were gaussian points located very closely to the crack plane), were eval- 
uated in terms of hydrostatic stress aM = a~ + a2 + a3, and yon Mises' stress a~t = 
\/((a~ -- a2) 2 + (a3 -- a~) 2 + (or2 -- a3) z) for a surface crack a = 15 ram, 2c = 44 mm in a 
plate 25 m m  thick and 150 m m  wide of(22 NiMoCr 37 steel). The evaluations are shown 
in Fig. 5 (top). The stress state at the distance of 0.3 and 1 mm from the crack front is 
plotted as a function of elliptic angle ~, between plate surface (~ = 0) and crack apex (~ = 
�9 -/2). In this plot, all points on the straight line from the origin have the same state of stress 
(the inverse value of the slope of this line is the factor of tri-axiality h = a,/aM introduced 
in Ref 16). It can be seen that the stress state shifts its position between plane strain and 
plane stress, as the angle 4~ decreases. This shift is smaller and stress states are nearer to 
plane strain if the distance from the crack front is smaller. The effect is more pronounced 
for the same crack in a pipe (bottom of Fig. 5). 
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pipe (bottom). Results for varying crack front location r and distance from the crack front r. 
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For the use of  the tri-axiality factor h (also called constraint parameter in this paper) as 
an additional parameter influencing fracture process, the mean value of  this parameter in 
the process zone has to be considered. The process zone size will again depend on the 
degree of  plastification, that is, on the load level during the subcritical crack growth and at 
the onset of  fracture. For low load levels there will be only small variation of  the constraint 
along the crack front, with h-values differing very little from the plane strain h value. With 
increasing load, the constraint variation along the crack front will increase and the h values 
will shift towards the plane stress h value (recall Fig. 5). 

Regarding crack shape development during fatigue, it can be expected that the crack 
closure effects, which depend on the constraint distribution along the crack front, will 
depend not only on the stress ratio R, but on the maximum stress as well. 

The variation o f  the constraint along the crack front and its dependence on the geometry 
and loading of  the cracked component is illustrated in Fig. 6 in terms of  the normalized 
constraint parameter h., defined as h. = h/hoj~, e s.~i. = (aufiru)/(~ . . . . .  ~.. The increase 
o f  the constraint in the sequence--plate, pipe, CT-specimen, large vessel--can be 
explained in the following way: 

The plate under tension and the pressurized pipe, have the same geometry in the crack plane, 
but different loading: two-axial tension in the pipe increases constraint parameter, compared to 
uniaxial tension in the plate. This effect becomes stronger with increasing distance from the crack 
front. Still higher constraint in the CT-specimen is most probably caused by the straight crack 
front and the bending type of loading. In the case of the pressure vessel, there is a long part of 
the crack front with very small curvature and two-axial loading. 

The effect o f  the crack shape on the constraint at the crack front can be seen in Fig. 7. 
Constraint evaluation from finite element calculation of  a surface crack with irregular 
shape in a nozzle under internal pressure and thermal shock loading [17] shows the same 
dependence on crack front shape as stress-intensity factor does: a local minimum at the 
convex part o f  the crack front with minimum radius of  curvature (Positions 8-9 in Fig. 7) 
and a local maximum at the part of  the crack front, which is slightly concave (Position 5). 
From the two loading caseshinternal  pressure and thermal shock-- the higher constraint 
is obtained for the latter case with higher biaxiality of  loading. Since the evaluations have 
been done some distance from the crack front (0.4 mm), where the singular type of  stress 
distribution is less dominant, the biaxial loading rises the values of  the constraint param- 
eter to exceed the plane strain value. 

The influence of  the crack shape and loading on constraint increases with increasing 
distance from the crack front. Thus, the effects on crack growth and fracture will be larger 
in cases with larger process zones (for example, at extended plastic deformations). Some 
evidence of  it is given by comparison of  fracture resistance curves, measured on cracks 
with different shapes. One of  these experiments was re-evaluated in Ref 18  by means of  
three-dimensional elastic-plastic finite-element calculations and the application of  a model, 
utilizing the triaxiality factor h, for a constraint dependent evaluation of  the stable crack 
growth. 

Fracture Resistance Curves of Surface Cracks 

Differences in the state of  stress at the crack front are also considered as a reason for the 
geometry dependency of  the J resistance curves ( J - R  curves) and for the ductile crack 
growth under monotonically increasing load. J - R  curves are used as a material character- 
ization in the upper shelf toughness region. Experiments show that lower bound J resist- 
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I 
14 

ance curves can be measured on deeply notched side-grooved CT-specimens. The J-R 
curves measured according to the requirements of the ASTM Test Method for Determin- 
ing J-R curves (E-1152) are not geometry dependent and characterize the J resistance for 
the plane strain conditions. The knowledge on J resistance curves describing adequately 
fracture behavior of components with surface cracks is very limited. 
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FIG. 8--Geometry and instrumentation of plates with surface cracks for measurement of  
J-R curves. 

Using two approximate methods [19,20], J resistance curves have been measured for 
tension plates with surface cracks. The plate geometry and instrumentation with strain 
gages and with a CMOD gage is shown in Fig 8. The dimensions of the surface cracks can 
be found later in Fig. 11. The material investigated at RT was a high toughness pressure 
vessel steel, German designation 22 NiMoCr 3 7. 

Determination o f  J-Integral 

Garwood Method--Approximate  equations for determination of the J-integral of surface 
cracks in plates from force-displacement curve were derived by Garwood [19]. In the 
expression of J-integral in terms of ~-functions 

J = ('TeUe + ,pU~) / ( B W  -- A) (3) 
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it was assumed ~e = np and pp was approximate calculated from a postulated force-displace- 
ment curve (see Fig. 9 also for symbols used). In the calculation of np, we replaced the 
relation for an extended surface crack of length a 

Jp =-(OUJOa) /qB (4) 

by the relation for a surface crack with finite length and crack area A 

J~ = - ( o u d o A )  [ (5) 
I qp 

and obtained 

J = (p. �9 q./( WB - ,rac/2) + %. qp)/2 (6) 

qp = q . - -  qe (7) 

the elastic part qe was calculated from measured elastic compliance. 

Read Method--The J-integral is calculated as contour integral 

J = f s ( W .  d y -  T .  (Ov/Ox)ds) (8) 

along S = S~ + $2 + $3 (Fig. 9) and the strain energy density w is approximately deter- 
mined from strain components cy measured along the integration path S~ + S~ with strain 
gages [20]. The second term in Eq 8 is approximately calculated from strains e~ eb, and 
displacements vy, Vb at the front and back side of the plate, at the end and at the beginning 
of the path Sz as 

f s  T'(Ov/Ox)ds = (or+ Co).E. (Vb-  Vf) 
2 

(9) 

The strain energy density was calculated using Eq 10 

C 
w = 3 a  r �9 de r 

with stress component in y direction a ,  obtained from the stress-strain relation. 

(lO) 

Experiments and Results 

In the experiments, the load was increased slowly under CMOD control and partial 
unloadings were done as in the standard unloading-compliance method, following the 
ASTM test proposal [21]. Smooth and side grooved CT-specimens 20 mm thick of the 
same material were tested in order to get a baseline for comparison. 

which we used for evaluation of J-integral. 
The displacement q, was determined from strains measured along lines S~, $3 (Fig. 9) 

and CMOD. It was corrected by the subtraction of displacement of the plate without a 
crack at the same gage length. To determine the plastic part of displacement qp 
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For each of  the two crack geometries investigated, two experiments were done. On prints 
of  fracture surfaces in Fig. 10, spark-eroded notches, fatigue crack extensions, and crack 
extensions during monotonic increasing load (dark areas) can be seen. 

The J resistance for the surface cracked plates determined by two methods is shown in 
Fig. I I. The J values are plotted only for crack extensions measured on the fracture sur- 

FIG. I O~Fracture surfaces ~f lensitm plates with sut?face c~'ac/,.~. 
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faces, as the crack extensions measured by the method of  unloading compliance were not 
reliable, due to large plastic deformations of  the ligament. 

The J values obtained by the Garwood method are systematically lower than the values 
obtained by the Read method. Independent on the method, the two results show the same 
tendency: decrease o f  J-R values on the apex of  surface cracks with decreasing aspect ratio 
a/c. For  the crack front at the plate surface, this tendency is reversed. These phenomena 
can be explained by the dependence of  the constraint on the local radius of  curvature of  
the crack front: with a decreasing local radius of  curvature, the constraint parameter  
decreases (recall Fig. 7). 

A comparison with J-R curves generated on smooth and side-grooved compact  tension 
specimens is somewhat questionable, since different methods of  evaluation have been 
used. Therefore, the Garwood method and the Read method were tested on finite-element 
results for a similar plate with a surface crack. It was found [22], that the Read method 
overest imated and the Garwood method underest imated the J-integral. The results of  this 
comparison and of  Fig. 11 indicate that the J resistance for surface cracks investigated is 
higher than J resistance measured on side-grooved CT-specimens. This is in agreement 
also with the constraint  arguments in Fig. 7. 

Conclusions 

An engineering assessment of fatigue crack growth and failure conditions, of  components  
with surface cracks can easily be done using a personal computer  program, if an appropri-  
ate model  of  the cracked part of  the component  has been chosen. 

The dependence o f  the crack shape development  under fatigue on the ratio R = CrmJ 
~rma, can be better understood, analyzing the actual variation of  the stress state in the pro- 
cess zone along the crack front. Following this approach the crack shape development  
depends not only on R, but on the load level (for example, am = (~rmm + ~m,x)/2) as well. 

F rom testing of  tension plates with surface cracks, higher J resistance curves have been 
obtained than those measured on standard side-grooved CT-specimens. The J-R curves 
depend on the crack aspect ratio a/c. 
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ABSTRACT: The early stage of initiated fatigue crack propagation from a notch root is 
investigated. The fatigue crack initiation and dependency of growth rates on initial flaw sizes 
were tested by using compact-type specimens with a keyhole notch in 7075-T6 aluminum 
alloy. Each of the specimen keyhole notches was indented with a probe with the included 
angle at the tip of 30, 45, or 60 deg, machined out of a tempered drill rod. Special attention 
is given to the transition crack length where small crack growth merges into a long crack 
growth under constant load control at room temperature. Measurements from scanning elec- 
tron microscopy and macroscopic measurements made by a traveling microscope showed 
that the short crack growth is dependent on the initial flaw size, load ratio, and the material 
characteristics. The transition crack length between short crack and long crack behavior is 
found to be about 1 to 2 mm. 

KEY WORDS: fatigue, fatigue crack growth rates, notches, flaws, small cracks, indents, tran- 
sition crack length, linear-elastic fracture mechanics, load ratio 

It has been observed that fatigue cracks are initiated at geometric stress raisers charac- 
terized by sudden changes in member cross sections such as notches and holes. The cracks 
propagate from these highly stressed regions and continue through the specimen cross sec- 
tion until  final fracture occurs. However, physically small cracks whose length was less 
than 1 mm were found to exhibit growth rates far in excess of those of larger cracks (>--5 
mm) subjected to the same stress-intensity factor range AK [1-25]. Short cracks which 
initiate at discontinuities such as notches may not continue to grow across the specimen if 
the notch is very sharp and the nominal  stress range is sufficiently small [6-8]. Recent 
experimental studies [4-13] on the initiation and growth of fatigue cracks in a wide range 
of materials have revealed that cracks of length less than 3 mm, initiated near regions of 
surface roughening caused by dislocations or at inclusions and grain boundaries, propagate 
at rates which are different from those of equivalent long cracks when characterized in 
terms of linear elastic fracture mechanics concepts. This variation in growth rate, however, 
is seen to occur at stress-intensity ranges well below the fatigue threshold stress-intensity 
range. The initial higher growth rate of the short cracks reduces progressively and finally 
merges with the growth rates above the threshold values. A similar observation was made 
by the authors [26-29] in blunt notched compact specimens of a luminum alloy. This phe- 
nomenon  appeared to be caused by the plastic field at the notch and the control condition 
local to the crack tip. Lankford [9,13] reported recently the influence of microstructure on 
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the initiation and growth of  small cracks. An excellent review and bibliography on the 
subject can be found in Refs 1-3, 11, 12, and 16. From the reviews, the range of  materials 
and test conditions studied in individual investigations was generally too limited to derive 
consistent conclusions. Moreover, most engineering structures have superficial flaws on the 
surface and these are a consequence of  material processing techniques [2]. It has been ver- 
ified that such inherent flaws can cause the initiation and propagation of  fatigue cracks. In 
the investigation related to the growth rate o f  such flaws, no information is available that 
describes the precise effects of  flaw size on crack propagation. It appears at the present time 
that there are problems in defining the unique characteristics and controlling parameters 
for short cracks propagating in the stress field at the root of  a notch. 

This paper presents and discusses experimental results on the nucleation and continued 
growth of  short cracks from notches in 7075-T6 aluminum alloy. One of  the objectives of  
this research is to elucidate the dependency of  minimum crack growth rate, da/dN, on the 
shape and size of  small cracks. Specimens and test conditions were chosen to examine two 
aspects considered significant with regard to microcrack growth and the observed non- 
unique correlation of  AK and da/dN. In order for us to have a better understanding of  the 
growth phenomena for short surface fatigue cracks, an experimental study has been con- 
ducted to examine the microscopic events which occur during the growth of  a small surface 
crack. This study then addresses two questions, namely, what are the controlling parame- 
ters which affect the growth of  short cracks and at what length does the short crack make 
the transition where the linear-elastic fracture mechanics (LEFM) approach can predict the 
fatigue life of  the structure? 

Experimental Procedure 

A single plate of  commercially obtained 7075-T6 aluminum alloy plate provided the 
compact type tension specimens used in the experiments. Specimen thickness was chosen 
as 6.35 m m  to ensure propagation under plane-strain conditions. Table 1 gives the material 
properties of  the testing material 7075-T6 aluminum alloy. The compact specimens were 
fabricated from 7075-T6 aluminum and contained a keyhole notch. The hole was reamed 
and electropolished to minimize residual stresses. 

In order to study dependency of  crack growth rates on initial flaw sizes, the specimens 
had to be configured to introduce the initial indents. For this, a hole was machined in each 
specimen, the diameter o f  which was equal to that of  the probe used to introduce the 
indents. Figure 1 details the specimen configuration; Fig. 2 shows the shape and configu- 
ration of  a probe and the location of  the indent. The probe shown in Fig. 2a was machined 
out of  a tempered drill rod which had a conical point, the included angle at the tip being 
30, 45, and 60 deg. The probe was inserted in a slot machined into the specimen and a 
compressive force applied to introduce an indent into the surface of  the "keyhole notch" 
as shown in Fig. 2b. The indent size is a function o f  the compressive force applied to the 
probe. Three indent sizes were introduced for each probe angle by applying loads of  223 
N, 334 N, and 445 N. The indent provided a stress concentration at the center of  the cir- 
cular notch. This ensured that the crack would start from the mid-thickness of  the hole 

TABLE l--Material properties of 7075-T6 aluminum alloy. 

Young's modulus E = 72 GPa 
Yield strength Sy = 480 MPa 
Poisson's ratio v = 0.33 
Fracture toughness Kxc = 27 MPa 
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instead of  one of  the comers of  the specimen or any other asymmetric location in the 
keyhole notch. 

All specimens were polished using 320- and 400-grit emery papers perpendicular and 
parallel to the crack direction, respectively. This was followed by final polishing with 600- 
grit emery paper perpendicular to the crack direction. The direction of  the final polish lines 
helped to identify the crack tip while making measurements at larger values of  crack length. 
After preparation, the specimens were mounted in the MTS servo-hydraulic machine, in 
air, at room temperature, 21~ A constant loading was applied in all cases. The loading 
in each case was sinusoidal with the stress ratio R maintained positive at all times. Fre- 
quency of  all tests was 15 Hz. A total of  eleven tests were conducted with variable flaw 
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sizes generated by the indents. For  30- and 60-deg indent flawed specimens, the stress ratio 
R was held constant at 0.33, and for the 45-deg indent  specimens the R was 0.50. The mean 
force applied was 5.34 kN, and force ampli tudes maintained at 1.78 kN and 2.67 kN, 
respectively. The crack length was measured with a Gaertner horizontally traveling micro- 
scope of  X 100 magnification, which has a least reading of  0.025 mm. Crack measurements 
were taken on both sides o f  the specimen; therefore, the tests were stopped in order to take 
the required dual measurements.  A tension load, exceeding not more than 60 to 70% of  
max imum load, was applied during the crack length measurements,  in order to minimize 
any hold t ime effects and for better observation of  crack tip position. Each of  these speci- 
mens was fatigued in laboratory air to determine the influence o f  the respective indent size 
on the initial growth rate of  cracks. The effect of  an initial flaw size on the resulting crack 
propagation rate has been observed and the growth rate is correlated With the crack length. 

Scanning electron microscopy (SEM) has been used to observe the microscopic crack 
growth mechanisms of  specimens of  varying initial flaw sizes. Fractographic features of  
fracture surfaces and microcrack growth rates were evaluated by measuring striations near 
the t ip o f  an indent. Micromeasurements  from SEM are correlated with those of  the macro- 
measurements made from a traveling microscope. 

Results 

Table 2 gives a summary of  test condit ions and the load cycles at a detectable crack 
length of  >0 .05  m m  and the final fracture. The short crack, which emanated radially from 
the indent, penetrated through the thickness and exhibited typical fan morphology. The 
results of  fatigue crack growth presented in the following section were used only when the 
cracks grew larger than 0.05 m m  on the front and back side surface of  the specimen. This 
arbitrary criterion was adopted to minimize the error in crack length measurement  as well 
as to account for the through-the-thickness crack profile. Instantaneous growth rates were 
computed  for very small crack lengths using data obtained from SEM. 

Fatigue Crack Growth Rate 

Figure 3 shows the normalized crack length, a/ai, versus normalized number  of  load 
cycles, N / N  I, to failure in an indented keyhole-notched compact-type specimen, where a is 

TABLE 2--Summary of test conditions and initiation-fracture results. 

N 
Specimen Probe Angle, Indent Mean Force Initiation, a Fracture, 

No. deg Load, N Force, kN Amplitude, kN Cycles Cycles 

1 60 334 5.34 notconsmnt 8 470 14 490 
2 60 445 5.34 2.67 8 350 8 460 
3 60 445 5.34 1.78 21 100 22 610 
4 45 223 5.34 1.78 22 470 23 730 
5 45 334 5.34 1.78 22 210 24 050 
6 45 223 5.34 1.78 21 540 23 300 
7 45 445 5.34 2.67 19 910 20 980 
8 30 223 5.34 2.67 21 910 23 460 
9 30 334 5.34 2.67 18 450 20 070 

10 30 445 5.34 2.67 16 770 17 850 
11 60 223 5.34 2.67 15 910 16 640 

aThe term initiation denotes first-time observed crack length, a >-- 0.05 mm. 
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the crack length, N is the elapsed load cycles, and the subscript f is used to identify the 
crack length and the corresponding load cycles at final fracture. Three or four tests were 
conducted for each indent generated by using 30, 45, and 60-deg probes and the results of  
each one plotted in Figs. 3a-3c, respectively, identifying different initial indent loads with 
different symbols. Note that most of  the fatigue life is spent in initiating the crack irre- 
spective of  the initial size of  the defect. The term "crack initiation" herein denotes the 
formation of a crack about 0.05 mm. Regardless of  the initial indent size, a distinct slope 
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in the crack growth is observed immediately upon crack initiation. The slope was very 
large initially; that is, the crack grew very quickly as soon as it was initiated, then the crack 
growth slowed down and flattened out. As the crack length increased, the slope of  the 
curves again increased until the final fracture occurred. 

Figure 4 shows the propagation rates, calculated from the raw data, presented as the 
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variation in crack growth rate as a function of the square root of crack length from the 
indent tip. The decrease in crack growth rates after crack initiation is obvious in all the 
cases. The minimum crack growth rate appears to be at a point where the "short crack" 
and "long crack" growth data intersect. The growth rate of cracks initiated from the notch 
root, initially high, 6 X 10 -7 m/cycle, then decreases toward a minimum 1 X l0 -7 m/ 
cycle, and finally increases. The defects generated by the indents in the keyhole notch did 
depict its influence on the growth rate, as seen in Figs. 4a-4c for 30, 45, and 60 deg, respec- 
tively. From these figures, it is seen that deceleration in crack growth rate is a function of 
the initial indent load. Note also that the crack length from the tip of the indent at which 
the growth rate is a minimum is seen to decrease with increasing initial indent size. The 
crack extension at which the short crack growth rate reaches minimum seems to vary prior 
to merging into a long crack growth rate. However, this variation is not large but appears 
to be between 1 to 2 mm. 

There is a large scatter in the crack growth data for physically short cracks (that is, < 1 
mm), and the scatter is diminished when the crack length exceeded about 5 mm. The mag- 
nitude of minimum crack growth rate is varied with respect to the nature of the flaw gen- 
erated by initial indent loads. In order to extrapolate the effect of initial indent severity on 
the growth rate curves, the indent loads were compared with corresponding crack lengths 
at which growth rates were a minimum. This dependence may be observed in Fig. 4 and 
is found to be approximately linear in nature. This indicates that within a certain limiting 
indent size, "small crack" growth rate data approach those of "long cracks" sooner if the 
initial indent load or the initial defect size is larger. 

Fractography 

In order to assess the validity of the macromeasurements, we examined the fatigued 
surfaces fractographicaUy. Representative fractographic results are shown in the following 
paragraphs for 30, 45, and 60-deg indent flaws. Depending on the stress level and defect 
size, almost all of the fractured components possessed varying amounts of fiat and slant 
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fracture. Consequently, a fatigue crack started out at 90 deg to the plate surface but com- 
pleted its propagation at 45 deg to the surface. A typical fatigue crack surface with an indent 
and without an indent is shown in Fig. 5. A short crack which emanates from an unin- 
dented keyhole notch, shown in Fig. 5a, spread in a radial or fan-like morphology and 
mingled at steps in the fracture surface, whereas the crack generated from an indent on the 
keyhole notch spread initially in a conical shape and reaches in steps a semielliptical to 
through-the-thickness crack. 

Fractographic analysis of the striation spacings was performed using SEM. All fracto- 
graphs were taken using either a 20- or 25-deg tilt to limit possible distortions of striation 
spacings used to calculate fatigue crack propagation rates. Micrographs obtained from SEM 
were used to compute growth rates at very small crack lengths. Essentially, it was observed 
that fatigue crack growth occurred mainly by the mechanisms of striation formation. The 
spacing of the striations was in reasonable agreement with the growth rates obtained from 
the Gaertner horizontally traveling microscope at larger crack lengths. 

Figure 6 presents a good visual comparison of the difference on the fatigue crack growth 
rates at different crack lengths for Specimen 8 with an initial indent load of 223 N in 30- 
deg indent flaws. Fatigue striations are well defined near the tip of the indent and as close 
as 1.38 mm from the notch or 0.92 mm from the indent tip. The locations of micrographs, 
Figs. 6b-6f, are shown on the fatigue surface of the photomicrograph Fig. 6a. Figure 7 
shows typical fatigue striations at various locations in a 45-deg indent flaw with an initial 
indent load of 334 N in Specimen 5. Figure 7a shows the observed striations locations 
presented in Figs. 7b-7e. The crack growth rates computed from these striations range 
from 9.9 • 10 -s m/cycle to 1.8 X 10 -7 m/cycle, corresponding to small crack, a, values. 
The da/dN versus V~ obtained from the micrographs agreed reasonably well with the cor- 
responding macro measurements made since the striations locations are around the tran- 
sition region. Figure 8a shows the locations where scanning electron micrographs of the 
fatigue surface of Specimen 11 were taken. Specimen 11 was subjected to an initial indent 
load of 223 N, as shown in Table 2. Figures 8b-8c show the typical striations observed at 
the transitional zone located in Fig. 8a. Crack length and corresponding microscopic crack 
growth rates have good agreement with the data of Fig. 4c. 

Figure 9 is presented for the visual comparison of crack growth rates calculated by the 
macromeasurements and micromeasurements observed in a 60-deg indent with an initial 
indent load of 334 N in Specimen 1. Within the permitted experimental conditions, there 
is an excellent agreement between the SEM measurements and the measurements made 
by traveling microscope. It is indeed the crack growth decelerated to a minimum value at 
a crack length of 1.7 or 1.4 mm from the tip of the indent. Crack propagation is found to 
be due to the striation mechanism. Striation measurements consistently showed slightly 
lower growth rates for short cracks of less than 450 ~m in length, but there was no notice- 
able change observed for long cracks of length greater than 2.5 mm. The low growth rates 
for physically small cracks are possible because striations are influenced by grain orienta- 
tion, presence ofinhomogeneity, and the severe strain field experienced by the short crack. 

Discussion 

The basic data for this study are shown in Fig. 3 and were obtained by measuring the 
crack extension after a selected number of load cycles. The microscopic crack extension 
obtained from SEM measurements coincided with the macroscopic values, and, therefore, 
the extension of the curves into a very small crack range could be undertaken with confi- 
dence. In order to assess the influence of plastic zones on the crack lengths, the plastic zone 
size was calculated and compared. The depth of indented flaws was measured optically 
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FIG. 7--Typical fractographic observations in 7075-T6 aluminum alloy. Initial flaw was 
introduced by 45-deg probe with a load of 334 N. 
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FIG. 9--Fatigue crack growth rate, da/dN, versus crack length, a. Specimen No. 1, 60-deg 
indent, with an initial indent load of  334 N. 

and varied between 0.156 to 0.6 mm. Using the highest stress-intensity factor K value of 
19 M P a v ~  for the physically short cracks with the yield strength Sr --- 480 MPa, the 
plane-stress plastic zone radius, r r when 

r~=~ 

was 0.2 mm. This is sufficiently less than the crack lengths encountered in this study. 
The crack extension, a, at which the growth rate reaches a minimum, seems to depend 

on the material and load ratio [7,9,15]. From the nature of physically short cracks, as out- 
lined by previous investigations, it was expected that a characteristic crack length could 
exist for a given material and load conditions. The da/dN versus V~ data shown in Fig. 4 
indeed show not only the influence of load ratio but also the initial flaw size on minimum 
crack growth. SEM measurements of microcrack growth, shown in Figs. 6-9, agreed very 
well with that of Fig. 4. The transition from short crack to long crack does not occur at a 
unique crack length, but exists over a small range of crack lengths of 1 to 2.5 mm and 
agrees with the SEM measurements shown in Fig. 9. As a first estimation, the transition 
crack length may be obtained as the average of the observed transition lengths; approxi- 
mately 1.5 • 10-3m. A calculation based on Smith and Miller [6,7], the theoretical pre- 
dictions yield a transition length of 1.38 mm for the specimen configuration and loading 
conditions employed in this study. These estimates are close to the observed value for the 
transition crack length. It is clear from these data, and our previous investigations on key- 
hole-notched compact specimens [26,27,29], that the transition distance from small crack 
behavior to long crack behavior varies; it appears to depend on the stress ratio and the 
initial flow size. This indeed implies that in aluminum alloys, small cracks seem to lack a 
threshold altogether, so that no such simple determination in terms of AK is possible. The 
reasons could be use due to the strain field experienced by the short cracks. This strain field 
is determined by the grain boundary population along the crack front in addition to the 
slip processes that are activated in the crystal ahead of the crack. It is important to point 
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out here that there was no attempt made to correlate the growth rate of  short and long 
fatigue cracks by stress-intensity factor because the flaws were initially of  a three-dimen- 
sional nature. Studying the nature of  crack propagation by fractography indeed shows that 
the early stage o f  crack growth has depicted the conical crack profile from the indent. The 
surface defects generated by the indents are three-dimensional in nature, and, therefore, 
the analysis must be done on a three-dimensional basis, as suggested in Ref 12. This will 
enhance our understanding about the nature of  short fatigue crack growth. The study is in 
progress and will be reported in the future. 

Conclusions 

1. Experimental data show that when characterized in terms of  the same linear-elastic 
fracture mechanics parameter, short fatigue cracks grow at rates faster than long cracks. 
The growth rates then decrease to a minimum before converging with long crack data. 

2. The crack growth rate appears to be a minimum at a point where the "short crack" 
and "long crack" growth data intersect. The minimum value of  crack growth rate decreases 
with increasing initial indent severity. 

3. Scanning electron microscopy indicates that fatigue cracks in air propagate by a 
mechanism involving the formation of  microstriations on the fatigue surface. 

4. The results of  this research suggest that an initial flaw has an effect on the behavior 
of  short fatigue cracks in 7075-T6 aluminum alloy. The variation in crack growth rates is 
found to be a function of  initial indent severity. 
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ABSTRACT: The results from fatigue tests on large-scale, hollow-threaded connections are 
presented. The fatigue crack depths and profiles were monitored during the tests using the 
alternating-current (a-c) field measurement technique. The crack growth data have been used 
to validate the weight function approach used in conjunction with a through-thickness stress 
distribution to calculate suitable stress-intensity factors for threaded connections. 
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Nomenclature 

A 
Ai 
a 

C 
C 

K 
K, 
K, 

Ktmin 
gtm~, 

Ke 
N 
m 

s, 

s, 
Strain 
St,,~, 

t 
X 

Crack area 
Pin cross-sectional area at Tooth i 
Crack depth 
Paris 's  equation parameter  
Hal f  crack length measured on the surface 
Stress-intensity factor 
Stress concentration factor in a notch 
Stress concentration factor at Tooth i 
Stress concentration factor at min imum applied load 
Stress concentration factor at max imum applied load 
Stress-intensity factor at Point  Q'  for embedded elliptical crack 

Number  o f  cycles 
Paris 's  equation exponent 
Nomina l  stress at Tooth i 
Mean nominal  stress at Tooth i 
Nomina l  stress in a notch tip 
Nomina l  stress under m in imum applied load 
Nominal  stress under  max imum applied load 
Pin wall thickness 
Distance from notch tip 
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Y 

~mi 

fix, O'y 

O'ymin 
O'ymax 

~s~ 

p 

Geometric correction factor for stress intensity 
Maximum local stress at Tooth i 
Mean local stress at Tooth i 
Stress components 
Notch stress under minimum applied load 
Notch stress under maximum applied load 
Stress-intensity factor range 
Nominal stress range at Tooth i 
Sum of  tooth loads from Tooth 1 to Tooth i 

Notch root radius 

Tubular threaded connections, such as those used in drilling pipes, the end closure of 
pressure vessels, and the tension legs of  floating offshore structures, experience high local 
stress concentrations in the fillet radius at the base of:the loaded tooth flank [1,2]. Conse- 
quently, when such a connection is subjected to cyclic loading, high local stress ranges may 
occur in the fillet radius. It is also known that the tooth loads are not uniformly distributed, 
the largest load occurring on the tooth farthest from the free end of the male portion of the 
connection [3]. The largest local stress range occurs at this tooth [1,2], and it is in the fillet 
radius of this pitch that fatigue cracks usually initiate [4]. 

The traditional approach to predicting the fatigue life of threaded connections is to use 
empirically derived S/N curves. However, due to the extensive variety of shapes of these 
tubular connections, and also due to their large scale and different levels of initial pre- 
torque (preload), obtaining a comprehensive set of these curves can prove expensive. An 
alternative is to use the local strain approach to predict the fatigue life to crack initiation 
and a fracture-mechanics approach to predict the crack propagation life. 

The aim of this paper is to present a model for fatigue crack growth analysis making it 
possible to predict crack growth periods for given initial and critical crack sizes. The model 
includes a brief description of a hybrid stress calculation technique and the calculation of 
stress-intensity factor for surface cracks using a "weight function." The calculated stress- 
intensity factors are validated against experimental data obtained from fatigue tests on full- 
scale, threaded connections. The experimental data were obtained by monitoring crack 
sizes and crack shape evolution throughout the tests using the alternating-current (a-c) field 
measurement technique [5]. 

Stress Distribution 

Because of the local nature of fatigue the first step in any fatigue life analysis must be 
the determination of the local stress range to which the critical section of the component 
is subjected. In the present analysis this is undertaken in two stages. In the first stage, a 
hybrid finite-element-analogue technique is used to determine the distribution of maxi- 
mum local stress in the fillet radius of the threaded connection. In the second stage, the 
analysis is extended to calculate the through-thickness stress distribution on the expected 
crack plane. The through-thickness stress distribution is used later in the study to calculate 
appropriate stress-intensity factors. 

Surface Stress Distribution 

The local surface stress distribution along the thread is determined using a hybrid finite- 
element-analogue technique [6], which has been previously validated against results from 
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a three-dimensional (3-D) photoelastic model. References 6 and 7 contain a full description 
o f  the analogue load distribution model. 

In the hybrid stress analysis technique, the analogue model allows the tooth load distri- 
bution to be determined. The connection is assumed to be axisymmetric, and the thread 
is represented as a mechanical system composed of  rigid levers joined by springs. The 
springs represent the stiffness of  the elements of  pin, box, and teeth. The stiffnesses of  the 
individual elements are modeled as a single spring. The distribution of  load on the teeth 
is determined by an analogy of  this system with an electrical network. The finite-element 
analysis is used to derive stress concentration factors only, and, consequently, i t  is not 
necessary to model the whole threaded coupling. An axisymrnetric analysis of  three teeth 
is used in the analysis, and stress concentration factors are calculated for different ratios of  
axial load )--~P~ to tooth load P~ because stress concentration factor is dependent on this 

ratio [6]. The stress concentration factor K, is defined as the ratio of  the maximum local 
stress near Tooth i to the nominal stress & in the pin body at tooth i (Fig. 1). 

K .  = ,7__t (1) 
Si 

where 

S,. = - -  (2) 
Ai 

Once the tooth load distribution is known, the nominal stress at each tooth can be deter- 
mined as can the ratio o f  axial load to tooth load. The peak local stress at each tooth can 
then be calculated as the product of  the stress concentration factor for the appropriate ratio 
o f  axial load to tooth load and the nominal stress at that tooth: 

o-~ = K . "  & (3) 

The finite-element mesh for the thread tested as part o f  the study reported here is shown 
in Fig. 2. 

~ J  

FIG. 2---Finite-element mesh. 
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Through- Thickness Stress Distribution 

The stress field ahead of a tooth fillet can be described by equations that were derived 
to describe the stress field ahead of a notch [8]. For Kt < 4.5 

a x = - ~ [ ( ~ +  1 ) - 2 - - ( ~ +  1) -4 ] (4a) 

o r K ,  > 4.5, 

a x = f f - ~  - ~ + 2 )  4 ~  + -  + ~  + 1 - -~  + 1 (5a) 

~ = T  + + ~ - ~  + (Sb) 

The equations give a maximum error of 10% over a distance of 30 from the notch tip. 
Figure 3 shows a comparison oftbe stress field ahead oftbe tooth fillet calculated from Eqs 
5a and 5b and by the finite-element technique. It will be noted that good agreement occurs 

3.0 

o 2.0 

�9 Finite element caLcuLations 
- - -  Equation 
- -  Equation 

1"0 �9 ~ -  

oh.O'Ot01-.,o_ 1 

I I I q .... T ---'-~--I 
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FIG. 3--Through-thickness stress field ahead of  a tooth fillet, normalized with respect to 
nominal stress S. 
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between the two. The stress distribution beyond the region influenced by the fillet radius p 
(that is, for distances x > 3p) can be assumed to be either uniform or linear depending on 
the ratio of axial load ~.P~ to tooth load P~. 

Stress-Intensity Factor Calculation 

There is no general closed solution for the formulation of stress-intensity factors under 
nonuniform stress fields, and consequently a numerical technique must be used. One such 
technique based on the weight function method [9] is used in this study. The weight func- 
tion can be regarded as the stress-intensity factor for a pair of unit-splitting forces acting 
on the crack surfaces and may be used in the derivation of stress-intensity factors for any 
other stress system acting on the crack surfaces by integrating over the crack area provided 
the stress system on the potential crack plane is known. 

K = ~ Wea(x, y)dA (6) 

A general weight function for an embedded flaw in a flat plate was proposed by Oore 
and Burns [10] based on an examination of the structure of known weight functions for 
various crack shapes and is of the form 

V~ l 
(7) 

where, as shown in Fig. 4, Q' is the point on the crack front at which K e, must be computed, 
and Q is the point on the crack surface at which P, a pair of symmetric opening forces, act. 
The gee, and Pe denote, respectively, the distances between Q and Q', and between Q and 
the point S at the centroid of the elemental length ds of the crack front. The resulting stress- 
intensity factor K e, at Q' is given by 

KQ, = P WQo, (8) 
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FIG. 4mNotation for the elliptical crack weight function. 
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Therefore, for an arbitrary normal stress field, aQ(x,y) Oore and Burns [10] argued that an 
estimate of the stress-intensity factor Kr at the point Q' should be given by the integral 

=o,-]L ds ] la (9) 

In order to determine the stress-intensity factor for a surface semi-elliptical crack, Oore 
and Burns [10] proposed the following modification to the results for the embedded flaw 

K= = MKe (10) 

where 

K= = stress-intensity factor for a surface crack, 
M = boundary correction factor due to the free surface and finite specimen dimensions, 

and 
Ke = stress-intensity factor of the embedded crack with the same half geometry and 

loading. 

in this study, M was estimated from the stress-intensity formulation proposed by Newman 
and Raju [11] for a surface semi-elliptical crack under uniform tensile stresses. 

The stress-intensity, factors for the fatigue cracks in the threads were calculated using the 
generalized weight function (9) in combination with the through-thickness stress field given 
by Eq 5b. The stress was assumed to be the nominal stress once it had decayed to this 
value. Stress-intensity factors were calculated for a range of crack depths using aspect ratios 
which were taken from an empirical relationship obtained from the test results reported in 
the next section. 

Assuming the stress-intensity factors to be of the form 

values of the geometric correction factor Y were calculated as a function of aft. These 
values can be used to assess the accuracy of the technique by a comparison with experi- 
mental values. 

Experimental Study 

In order to verify the theoretical predictions of stress-intensity factor, we conducted 
three fatigue tests on large-scale tubular connections and the crack shape evolution moni- 
tored. The connections used were vinyl acetate monomer (VAM) joints, which are thin- 
walled connections incorporating an external coupling. These connections are commonly 
used in piping applications, and a joint of the VAM type is shown in Fig. 5. All joints were 
manufactured from API C75 steel. Each specimen was pre-loaded to a different level. The 
initial preload was achieved by applying a torque to the joint. The preload was the highest 
in Specimen No. 1 and the lowest in Specimen No. 3. The cyclic axial loading was applied 
to the specimens using a 1000-kN capacity servohydraulic test machine. Table 1 gives 
details of the stresses in each joint calculated by the hybrid finite element-analogue tech- 
nique described in the Surface Stress Distribution subsection. It is worth noting that the 
stress concentration calculated as the ratio of stress ranges Aai/AS, is 4.1, while the stress 
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FIG. 5- -VAM threaded connection. 

concentration based on mean stress ~r,,.~/S,,.~ is 19.5. The smaller value of  cyclic stress con- 
centration factor A~rtASi is due to the beneficial effect of  the preload. More detail discus- 
sion regarding the preload effect is given in Ref  12. It is apparent  that the local cyclic stress 
range of  700 MPa is entirely within the linear-elastic stress range for the API C75 steel, 
noting that the yield strength a~, under cyclic loading is twice the monotonic value. How- 
ever, the first stress excursion experienced by the material  in the critical tooth fillet of  Spec- 
imen 1 was theoretically from 0 to 2380 MPa and from 0 to 2095 MPa in the case of  
Specimen 3. Therefore, localized plastic yielding will have occurred in the critical tooth 
fillet during this first load reversal. 

The specimens were periodically removed from the test machine, opened, and inspected 
using a system based on the alternating-current (a-c) field measurement  technique. A sche- 
matic drawing of  the inspection system is shown in Fig. 6. The section of  jo int  is rotated 

TABLE l--Details of applied nominal and local cyclic stresses in tested VAM joints, a 

Specimen Nominal Stress Nominal Mean Local Stress Local Mean Stress 
No. Range, ASi, MPa Stress, Smi, MPa Range, Act,, MPa cr,,~, MPa 

1 170 104 700 2030 
2 170 104 700 1905 
3 170 104 700 1745 

a Material: Steel API C75: %s = 517-621 MPa; (rut ~ = 655 MPa. 
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FIG. 6--Schematic of  the a-c fieM measurement inspection rig. 

by a stepper motor under computer control, and the a-c field voltage is measured by a 
probe contacting on the top surfaces of the threads. The probe setup is shown in Fig. 7. 
The field voltage is induced in the connection by a high-frequency current passing through 
wires set in the probe housing. The probe is machined with a mating thread profile and is 
constructed so that the probe contacts are on adjacent thread crowns. In this way, rotation 
of the joint causes the probe to traverse along the thread, recording the variation of mea- 
sured voltage. The reading of voltage and position is stored automatically on a PDP11/02 
computer. 

On completion of testing, the joints were destructively sectioned and the measured crack 
profiles were compared with the final predictions from the a-c field measurements. Agree- 
ment was good for crack length, but the a-c field measurement technique had slightly 
underpredicted the depth. The error in predicted depth is thought to be due to the use of  

PROBE F A 
6UIDE 

LA 

• 
SPOflGE 

FIELD ~ ~ ~ PADDING 
~ PROBES 

SECTION A-A 
FIG. 7--A-c field measurement probe. 
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an induced electric field voltage. Consequently, a calibration curve of actual depth versus 
measured depth was produced and the measured crack profiles corrected. Figure 8 shows 
the set of crack evolution profiles obtained from the a-c field measurement results for Spec- 
imen 2. It will be noted that three cracks were present but that one dominated. It was 
characteristic for all specimens that the fatigue crack initiation occurred almost simulta- 
neously at several locations, resulting in relatively long cracks with aspects ratios 0.06 < 
a/c < 0.40. From the crack profiles it was possible to derive curves of maximum crack 
depth versus number of cycles; these are shown in Figs. 9 to 11. This fatigue crack growth 
data can be interpreted to give the experimental stress-intensity factor range which is 
assumed to be of the form 

A K  = YASv~-d (12) 

therefore 

AK 
Y = V~-aAS ~ (13) 

Using the Paris [13] crack growth equation 

da ~-~ = c ( ~ ) "  (14) 

_ 3 . 0 - -  
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E 
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FIG. 8--Crack evolution profiles. 
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FIG. 9--Crack depth versus number of cycles for Specimen I. 

% 

- -  0.5 

- -  0-25 

I 
1"6 

we obtain the expression 

(l(da ) 
Y = AS Vr~-- ~ (15) 

The material  constants C and m are not known for the API C75 steel from which the 
VAM joints  were manufactured. Therefore, it was decided to use the mean value of  the 
data produced by Barsom [14] for high-strength steels, that is, C = 9.51 • 10-" and m 
--- 2.25 for AK measured in M P a k / m  and da/dN in m/cycle. 

To calculate a value of  Y using the weight function, it  is necessary to know the value of  
aspect ratio a/c corresponding to the crack depth a. The values of  aspect ratio used in this 
study were those obtained experimentally from the crack evolution profiles. Aspect ratio 
a/c is shown as a function of  crack depth for all three specimens in Fig. 12. 
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The theoretically obtained Y values from the weight function technique are compared 
with the experimentally obtained Y values in Figs. 13 to 15, where they are plotted as a 
function of a/t. 

It is apparent that both the calculated and experimentally obtained geometric correction 
factors Y showed similar features and trends. The geometric factor Y decreases initially as 
the crack depth increases and then increases slightly as the crack approaches the opposite 
free surface, that is, the inner surface of the tube. The initial decay of the Y factor was due 
to the sharp decreases in sbesses away from the tooth fillet in which region high-stress 
concentrations occurred. It should also be noted that the crack was probably propagated 
through a monotonic plastic zone caused by the first load reversal as mentioned earlier. 
On the other hand, the increase in the geometric factor Y for cracks deeper than 50% of 
the wall thickness was slightly higher than in the case of surface semi-elliptical cracks in 
smooth pipes [15] under tensile load. It is also felt that the bending stress component 
resulting from the bending of the tooth as a cantilever may change with the crack depth 
because of changes in the tooth stiffness. Additionally, the decreasing tooth stiffness may 
change the preload effect. Therefore, it is worth emphasising that the three specimens 
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under discussion were tested under different preloads, with the lowest and highest preload 
applied to the third and first specimens, respectively. 

Nevertheless, the calculation of stress intensity for cracks in threaded connections seem 
to be possible by using the weight function (7), but the input data regarding stress level and 
stress distribution require detailed studies. The weight function can be used satisfactorily 
for calculating stress intensity factors despite the inaccuracies indicated lately by Desjar- 
dins et al. [16]. 

Discussion 

The theoretical calculations consisted of calculations of surface stress using a hybrid ana- 
logue-finite-element model followed by the calculation of the through-thickness stress dis- 
tribution in the critical section. The stress analysis was further complicated by the fact that 
the stress concentration factor at the critical location was found to be dependent on the 
applied load level and the preload. Thus the local stress in the tooth fillet had to be cal- 
culated for maximum and minimum load level for each particular level of preload. 

It should be also noted that the weight function used above is of an approximate nature 
and may underestimate stress-intensity factors for deep semi-elliptical cracks under bend- 
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FIG. 12--Aspect ratio as a function of crack depth. 

ing loading as reported in Ref 16. Furthermore, the weight function was derived for cracks 
in smooth flat plates only. The analysis of  fatigue crack growth in threaded connections is 
also complicated by the intricate stress analysis that is required to calculate the surface 
stress at the critical location. A further complication in this particular study was the lack 
of suitable material data for the test specimen steel. 

Nevertheless, despite these obvious approximations, the calculated stress-intensity fac- 
tors showed the same trends as the experimental results, and even quantitative agreement 
was reasonable. Therefore, the technique described above may be used in the optimization 
of threaded connections and also for comparative studies. However, it should be noted 
that in certain cases the technique underestimates the geometric correction factor Y. Con- 
sequently, further refinement of the method may be useful before using it in a predictive 
capacity. The advantage of the presented methodology lies in the cheap and fast calculation 
of tooth load distribution and through-the-thickness stresses and relatively simple stress- 
intensity calculations based on the weight function 
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sity calibration factor for Specimen 3. 

Conclusions 
1. The stress distributions in the critical sections can be satisfactorily calculated using 

the hybrid analogue-finite-element model. 
2. Fatigue crack profiles in large threaded connections can be satisfactorily measured 

using the a-c field measurement technique. Several small cracks initiated almost simulta- 
neously in the critical tooth fillet, resulting in a relatively long macrocrack with aspect 
ratios a/c varying from 0.06 up to 0.40. 

3. The weight function technique used in conjunction with a through-thickness stress 
field description can be satisfactorily applied to the prediction of stress-intensity factors for 
threaded connections. However, in certain cases the stress-intensity factor is underesti- 
mated, which will lead to overestimates of fatigue life. 
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ABSTRACT: Stress-intensity factors for surface cracks in cylindrical bars have been calcu- 
lated applying the method of weight functions. The weight function was obtained from the 
crack opening displacement of a reference load using the finite-element method. The results 
can be used for the prediction of growth rates and the shapes of the developing crack front 
for cracks in notched and unnotched cylindrical bars under arbitrary loading conditions. The 
predictions have been compared with experimental results. 

KEY WORDS: surface cracks, fatigue crack growth, stress-intensity factors 

Failures caused by fatigue crack propagation are often found in components  with cir- 
cular cross sections such as shafts, bolts, screws, or wires. These may be unnotched cylin- 
drical rods or rods with circumferential notches. Different crack shapes have been observed 
[I] ,  which are dependent  on the geometry of  the component  (for example, type of  notch) 
and on the type of  loading (for example, uniaxial tension or bending). Considering all pos- 
sible crack shapes, two main classes can be defined as shown in Fig. 1. Cracks with a con- 
cave crack front are called "a lmond"-shaped cracks; those with a convex crack front are 
called "sickle"-shaped cracks. The limiting case between both types is the straight fronted 
crack. 

To predict the remaining life of  a component  with an initial crack it is necessary to 
calculate the crack growth rate of  the two-dimensional cracks from the basic material 
behavior  obtained from tests with standard specimens. This requires the knowledge of  the 
stress-intensity factors o f  the cracks as a function of  their geometries. 

For  specific geometries, results can be found in the literature [2-13]. In this paper, results 
are presented for a great variety of  geometries applying the method of  weight functions. 
Thus, stress-intensity factors can be calculated for arbitrary stress distributions, also 
including notch stresses or thermal stresses. From these results, crack growth rate predic- 
tions have been made and compared with experimental  results. 

Weight-Function Method for the Calculation of Stress-Intensity Factors 

The weight-function method for the calculation of  stress-intensity factors was developed 
by Btickner [14] and Rice [15]. Cruse and Besuner [16,17] applied the method to two- 
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Y 

B g 

FIG. l--Almond- and sickle-shaped crack. 

dimensional cracks (3D-problem). Further results on the problem of weight function for 
3D-problems are discussed by Rice [18], Sham [19], and Vainshtok and Varfolomeyev 
[201. 

For a 2 D-problem, the Mode I stress-intensity factor for an arbitrary loading is given 
by 

H fo e Our(x,a) = ~ ,~(x) T dx (1) 

with H = El(1 - v 2) for plane strain and H = E for plane stress. 
K~, and ur(x,a) are the stress-intensity factor and the crack opening displacement, respec- 

tively, for a reference loading for which usually a constant stress is chosen, c~(x) is the stress 
distribution at the location of the crack in the uncracked body. The integration is per- 
formed over the crack length. The stress-intensity factor K~, can be obtained from the ur 
field if in Eq 1, K~ is replaced by K~r. Then ~(x) is the reference stress distribution at(x). 
For cr,(x) = go = const. Kl, is given by 

f a  Our dx K2~ = H*o Jo -~a (2) 

This relation enables the calculation of glr from the displacement field u. 
For a 3-D problem, a two-dimensional crack is considered. The stress-intensity factor 

usually varies along the crack front. For the cracks in the cylinders, two special locations 
are considered here, the surface Points B and Point A of the center of the crack with the 
local values of the stress-intensity factors KA and Ks. Instead of using these local values for 
the prediction of the crack growth behavior, Cruse and Besuner used the "local averaged" 
values K* and K*. 
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FIG. 2--Virtual crack extension for calculation of energy release rate. 

367 

The derivation o f  these values is best explained with the energy release rate. In Fig. 2, 
two virtual crack extensions are considered. In one the crack is fixed at the Points B and 
extended in depth at Point A. The energy release rate then is given by 

G,, = ~ ~(x,y) ~ dS (3) 

where 

S = crack area, 
OSA = virtual crack growth increment, and 

u(x,y) = crack opening displacement caused by stress cr(x,y). 

For the second virtual crack extension, the crack is fixed at Point A and extended along 
the surface of  the cylinder at the Points B. Then 

G,. = f s , r ( x , y ) ~  dS (4) 

Equations 3 and 4 correspond to Eq 2 for a 2 D-problem. From GIA, a stress-intensity factor 
K~A can be calculated 

K~tA = (GtA" H) '/2 (S) 

It can be shown [16] that K~A defined in this way can be also obtained from 

, f  ~ = ~ Kf (s) daSA for K, > 0 (6) 

where K~(s) is the stress-intensity factor along the crack front and ASA is the virtual crack 
extension. Similar relations can be written for K~B. 

The weight function concept in terms of  energy release rate reads 

G,A" G,A,.>--- [ f ~ . C x , y )  aS] 2 (7) 

It can be shown that in Eq 7, the sign of  equality can be used with only a small error [21]. 
Then Eq 7 reads in terms of  K 

H 
(8a) 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



368 SURFACE-CRACK GROWTH 

and for Point B 

H ~" ~ f " "o~.~ = a(x,y) - - 7 7 - ,  d S  (8b) 

Stress-Intensity Factors 

All cracks are described by a circular crack front in fairly good agreement with experi- 
mental  findings. The cracks are characterized (Fig. 1) by either the crack depth a and the 
crack angle a or the crack radius R~ and the coordinate YM of  the center M of  the crack 
radius. For  sickle-shaped cracks YM < 0 and for a lmond cracks YM > 0. For  sickle cracks, 
an angle/3 is also introduced (Fig. 1), which is related to a and  a by 

= tan_ l 1 -- a i R  -- cos a (9) 
sin a 

where R is the radius o f  the cylinder. For  a lmond-shaped cracks, the crack depth a is writ- 
ten as 

a =  a ~ + a ~ =  R ( l - c o s a ) + a ~  (10) 

where as is the depth of  the straight fronted crack corresponding to the crack angle a. 
For  a given crack angle a, sickle-shaped cracks have a crack depth in the range 

a 
0 < ~ <  1 -- COSCt 

The calculations for the a lmond-shaped cracks have been performed in the range 

a 
l - - c o s a < - - _  < s i n a +  1 - - c o s a  

R 

The upper l imit  is given by the semi-circular crack front. 
A point  of  the crack area is characterized by the polar  coordinates r, ~ with the center 

M. Alternatively to r, the coordinate 

x* = R i - -  r (11) 

is introduced, which starts from the crack front and is directed perpendicular to the crack 
front. Alternatively to ~ ,  and angle �9 as shown in Fig. 1 can be used, with 0 _< �9 _< a. 

As a reference loading case, uniaxial tension was chosen. The loading condit ion was a 
constant  force acting at the cylinder ends, which induces a bending moment  because o f  the 
eccentric posit ion of  the crack. The length-to-diameter ratio was chosen to be high enough 
to avoid any influence on the crack opening displacement. 

To obtain an analytical relation between the crack opening displacement u(x ,y )  and the 
crack parameters first 3D-finite-element-method calculations were carried out for a set o f  
different values of  a and a. In Fig. 3, u, -- Uro at the surface o f  the cylinder (x* = a*) is 
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FIG. 3--Crack opening displacement at surface of  cyfindrical rod for cracks with a/R = 

0.4 and different crack angles a and tension loading. 

plotted versus ~. The finite-element results could be described by 

(12a) 

for the almond-shaped cracks and by 

2 1/2 
c o s a + c o s ~ .  C ] (12b) 

l - cos ct 

where 

114 

C = [ / a - as (12c) 
LOre - -  o t s j  

and ae is equal to II for fully opened cracks and to ac for cracks under compression (see 
below) for the sickle-shaped cracks, a, is given by cos as = 1 - a/R. 

Urea, is the displacement for x = 0 and y = R. Figure 3 also contains the analytical 
relations o f  Eq 12. 

Figure 4 shows the displacement along the normal to the crack front (x*-coordinate). 
This displacement could be described by 

(x*~ 'n 
u, = Uo k ~ ]  (13) 

Special problems resulting from application of  this relation for deep almond-shaped cracks 
are discussed in Ref  22. After these relations had been set up, only Urn,, was calculated for 
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all possible geometries, and polynomial expressions were fitted to the results 

aR C;j J (14a) 
Umax ~ ~ i~0 j=l 

for almond-shaped cracks 

- j~O 

for sickle-shaped cracks. The coefficients C;j are given in Table 1. 
For sickle-shaped cracks with large crack angles, the crack is under compression at Point 

B. The critical angle o~c beyond which a compressive region occurs is shown in Fig. 5. 
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FIG. 5--Critical crack angle ac for compression at Point B under tension loading. 
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TABLE l--Coefficients Cij = C(ij) for crack opening displacement. 

371 

Almond Crack Sickle Crack 

C(0,1) = 2.7948 C( 1,0) = 2.15958 
C(0,2) = -37 .9847  C( I , I )  - 2.38033 
C(0,3) = 323.733 C(1,2) = - 10.4227 
C(0,4) = -964 .272  C(1,3) = 29.1113 
C(0,5) = 1 137.37 C(1,4) = -28 .7039  
C(I, 1) = 50.6964 C(2,0) = 13.4394 
C(1,2) = -434 .276  C(2,1) = 1.50796 
C(1,3) = 1 746.73 C(2,2) -- 9.16937 
C(1,4) = - 3  457.44 C(2,3) = -22.8641 
C(1,5) = 3 161.96 C(2,4) = 91.3211 
C(2,1) = - 173.246 C(3,0) = - 112.586 
C(2,2) = 1 847.97 C(3,1) = 61.3479 
C(2,3) = - 7  245.92 C(3,2) = 10.5490 
C(2,4) -- 12 340.9 C(3,3) = -262 .417  
C(2,5) = - 7  051.4 C(3,4) = 1 320.29 
C(3,1) -- 459.276 C(4,0) -- - 2  900.30 
C(3,2) = - 5  622.2 C(4,1) = 2 884.80 
C(3,3) = 26001.0 C(4,2) = - 1  074.37 
C(3,4) = - 5 3  898.0 C(4,3) = -40 .2488  
C(3,5) = 42 182.4 C(4.4) = 844.926 
C(4,1) = -438 .504  C(5,0) = - 4  564.65 
C(4,2) = 5 529.6 C(5,1) = l0 292.2 
C(4,3) = - 2 6  102.6 C(5,2) = - l0 485.2 
C(4,4) = 54 794.0 C(5,3) = 3 935.03 
C(4,5) = - 4 2  918.0 C(5.4) = 37.7223 

C(6,0) = - 788.763 
C(6,1) = 4 455.96 
C(6.2) = - 10 388.3 
C(6,3) = l0 844.5 
C(6,4) = - 4  148.12 

F o r  all c racks ,  s t r e s s - i n t ens i t y  f ac to r s  a s soc i a t ed  to  P o i n t s  A a n d  B were  ca lcu la ted  app ly -  

ing  Eq  3 fo r  t e n s i o n  l oad i ng  a n d  Eq  8 fo r  bend i ng .  T h e y  are  p r e s e n t e d  in d i m e n s i o n l e s s  

f o r m  as  

K*m (15) 

T h e  resu l t s  o b t a i n e d  for  i n d i v i d u a l  c racks  were  curve- f i t t ed  by  p o l y n o m i a l  exp res s ions :  

A l m o n d - s h a p e d  c racks  

F =fc  "fo +rE (16) 

i 

i=O 

iffiO 

•177 f E = E , , +  E o H -R 
i=l  j = l  

(18) 

(19) 
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Sickle-shaped cracks 

F = fc" fo + fE (20) 
f~ 

• fc = G (21) 
i = 0  

' ( t '  D a f o - - E  , X  
i ~ 0  \ / 

(22) 

i ~ l  j = l  

(23) 

i 

i ~ 0  

The coefficients are given in Tables 2 and 3. 
In Figs. 6-9, the coefficients F~ and FB are plotted versus the crack depth aiR for differ- 

ent crack angles for tension and bending loading. The lower bound curve for a/R for the 
almond-shaped cracks (dashed curve) corresponds to the crack with a straight crack front. 
In case of tension loading, the curves are dashed where the crack at Point B is under com- 

TABLE 21Coefficients for stress-intensity factor of almond-shaped crack. 

Tension Bending 

FA FB F~ F~ 

C(0) 0.284891 -0.174778 -1.27178 0.534850 
C(i) -2.29584 0.171504 - 1.76705 -1.80967 
C(2) 4.20991 6.18611 0.109108 0.978850 
C(3) - 1.03836 - 10.6026 3.21155 -1.83945 
C(4) - 15.9721 -39.8776 30.0692 - 1.97111 
C(5) 30.4747 80.7728 74.3460 7.53119 
D(0) -0.057374 2.32806 -0.398249 -0.706977 
D(1) -12.0294 -15.9156 1.31880 6.28759 
D(2) 13.4820 44.0288 -2.50969 -25.0751 
D(3) --6.70042 --36.7323 2.52467 42.7418 
D(4) 4.98501 --13.9354 --1.57768 -32.1517 
D(5) --1.97201 15.4674 0.369476 7.84860 
E(0) 1.08053 0.791439 -0.239241 0.740317 
E(1,1) --4.63021 --0.253200 3.07184 --0.048047 
E(I,2) 2.39022 2.81767 - 1.32857 1.77526 
E(1,3) 0.0 0.0 0.0 0.0 
E(2,1) --3.33244 --0.420148 4.70852 --6.46038 
E(2,2) 4.95148 1.25604 -13.5632 3.71890 
E(2,3) 0.0 0.0 0.0 0.0 
E(3,1) 15.8171 7.80674 16.5175 2.35524 
E(3,2) 16.0412 -15.5394 1.36243 8.38177 
E(3,3) - 12.9077 11.2836 9.22057 - 12.6500 
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TABLE 3--Coefficients of stress-intensity factor of sickle-shaped crack. 

373 

Tension Bending 

F~ Fe F~ FB 

C(0) 0.196093 3.90271 1.00593 0,651468 
C( 1 ) 0.017962 - 4.76498 0.139264 0.398816 
C(2) 5.72210 0.271554 - 6.70529 - 6.76962 
C(3) - 21.8804 - 39.1609 9.81534 5.44538 
C(4) 87.6494 173.342 -0.829499 15.0154 
C(5) - 63.7666 5,64194 - 1.27203 - 16.9295 
D(0) 0.023081 - 0.0017082 1.67224 1.43102 
D(I) 0.158383 -0.0356006 0.918626 -0.398409 
D(2) 2.29000 2.52726 0.303356 1.41702 
D(3) 1.94650 -3.93215 2.38413 -0.767647 
D(4) 4.91535 4.63433 - 1.32019 - 0.043943 
D(5) -0.763835 0.0 0.0 0.386336 
E(0) 0.959233 0.784279 0.759813 - 0.245881 
E(I, 1) 3.03306 - 5.43769 11.1843 - 2.56652 
E(1,2) 1.69247 8.60220 2.89672 - 1.12218 
E(1,3) 0.0 15.7460 - 4.19099 0.0 
E(2, l ) -- 6.03316 27.5570 - 30. 5130 2.04720 
E(2,2) 4.96290 26.9794 -- 14.3987 17.8284 
E(2,3) 0.0 -- 61.3896 56.4413 0.0 
E(3, l ) - 9.61249 -- 47.9063 19.4660 2.29894 
E(3,2) 7.36898 -- 54.4771 39.7278 -- 21.1347 
E(3,3) -- 153.724 - 104.485 -- 88.8442 - 4.24542 
N(0) 1.0 1.04043 2.51162 1.0 
N(1) 0.0 0.834666 3.17928 0.0 
N(2) 0.0 2.58231 0.086776 0.0 
N(3) 0.0 0.812281 - 1.64956 0.0 

pression. For  this s i tuation,  the applicabil i ty o f  the weight  funct ion m e t h o d  is doubtful.  
Therefore,  also the results for bending loading with large crack angles, where the crack tip 
is under  compress ion,  m a y  not  be exact. 

For  componen t s  with c i rcumferent ia l  notches,  stress-intensity factors can be calculated 
applying Eqs 3 and 8, i f  the stress d is t r ibut ion in the uncracked c o m p o n e n t  is known.  As 
an example ,  results are presented for the notch geomet ry  shown in Fig. 10. The  stress dis- 
t r ibut ion obta ined  f rom f ini te-element  analysis is g iven in Fig. 10. With  these stresses the 
stress-intensity factors have  been calculated. The  results are shown in Figs. I l -14 .  

Prediction of Crack Growth Rate and Developing Crack Shape 

The  change o f  the crack geometry  starting f rom an init ial  crack was calculated applying 
the fol lowing procedure  and  assumpt ions  [23]: 

(a)  The  crack front  can be descr ibed as a circle. 
(b) The  mater ia l  is homogeneous  and isotropic.  
(c) N o  effect is exer ted by the stress state (plane stress/plane strain). Assumpt ions  b and 

c result  in a da/dN-AK-relation independen t  o f  the locat ion o f  the crack front  and 
the d i rec t ion  o f  crack growth. 

(d) The  crack extens ion is calculated for the deepest  Poin t  A and the surface Points  B 
only. Starting f rom an init ial  crack o f  the size g iven by ai and  b~ (or ai), the  crack 
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FIG. 6--Stress-intensity factor coefficient for almond-shaped cracks under tension 
loading. 
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FIG. 7~Stress-intensity factor coefjicient for almond-shaped cracks under bending 
loading. 
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FIG. 13--Stress-intensity factor coefficient for sickle-shaped cracks in notched bar under 
tension loading. 
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extensions Aa and Ab are calculated for the first load cycle applying the da/dN-AK 
relation for the material and for AKa and AKB calculated with ai and bi. The new AKA 
and AKB are calculated with a = a~ + Aa and b = b~ + Ab, and then the crack 
extensions for the next cycles are obtained. 

The predicted change in the shape of the crack depends on the type of loading and of 
the crack growth relation. If  the da/dN-AK-relation can be described by the Paris relation 

da 
- ~  = C(AK)" 

the crack shape is independent of the parameter C and weakly dependent on the parameter 
m, as can be seen from Fig. 15. In this figure, the ratio a/b is plotted versus the relative 
crack depth for different initial crack geometries for the unnotched rod under cyclic tensile 
and bending loading. 

Experimental Results 

Material, Specimens, and Testing Procedure 

Specimens were machined from rods of 35 mm diameter of a chromium-molybdenum 
steel (German designation 42CrMo4). Metallographic examinations and hardness mea- 
surements showed that the material was very homogeneous. 

To determine the da/dN-AK-relation for the chromium-molybdenum steel, we 
machined specimens with length 50 mm, height 30 mm, and thickness 30 mm. Fatigue 
tests were performed with R = 0.5 in four-point-bending. Crack growth rates were mea- 
sured applying the electrical potential method in combination with beach marks, which 
were obtained by periodic increase in R-ratio. In the range of 20 MPa V ~  < AK < 80 
MPa k/-m, the Paris relation could be applied with C = 6.10 -~, m = 2.18 (units: MN 
and m). 

The cylindrical bars were 30 mm in diameter. The notched specimens had a notch diam- 
eter of 25.6 mm; the notch geometry is shown in Fig. 10. They were tested under cyclic 
tension with R = 0.5 and in cyclic bending. The high R-value was chosen in order to 
exclude crack closure effects. 

The specimens for tensile cycling had a total length of 600 mm and free length between 
the grips of 400 mm. The four-point bending was performed with a lower span of 350 mm 
and an upper span of 150 mm. 

Electroerosive starter notches of different shapes were introduced. Also for these speci- 
mens the electrical potential method and beach marks were used for crack growth 
measurements. 

Crack Geometry and Crack Growth Rate 

The developing crack geometry for the unnotched bars is shown in Fig. 16. Figure 17 
shows the measured a/b-ratio plotted versus the crack depth for the unnotched specimens. 
A good agreement with the predicted curves of Fig. 15 can be seen. The first open symbol 
characterizes the erosive notch; the first filled symbol characterizes the first beach mark. 

In Fig. 18, the measured crack growth rates da/dN (center of the specimen) and db/dN 
(surface) are plotted versus AK. The diagrams also show the curve for the four-point-bend 
specimens with the straight crack front. Again, an excellent agreement can be found. 
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FIG. 15--Predicted change in crack geometry for unnotched rods for Paris relation. 
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FIG. 19--Crack growth rates for notched specimens under bending loading (straight lines 
as in Fig. 18). 

For the notched bars the measured crack growth rate for bending loading is shown in 
Fig. 19. Whereas for the central part of  the specimen the agreement with the curve from 
the straight cracks is good at the surface, a faster crack growth rate is observed. This may 
be due to crack initiations at the root of  the sharp notches. 

Conclusions 

Weight functions have been calculated for two-dimensional surface cracks in cylindrical 
bars with circular cross sections for a great variety of  crack shapes. The calculations are 
based on approximate crack opening displacement fields obtained by finite-element results. 
The method was applied for the calculation of  energy release rates or stress-intensity fac- 
tors at the surface and in the midsection o f  the crack. Predictions of  the crack growth rate 
and the development of  the shape of  fatigue cracks have been compared with experimental 
results and found to be in good agreement. 
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ABSTRACT: The stress-intensity factor for a semi-elliptical surface crack in T-butt welded 
joints has been studied by using the weight function approach. The weight functions for 
cracks in welded joints have been derived by employing the method proposed by Petroski- 
Achenbach. The calculated stress-intensity factors were compared with those obtained from 
the variable-amplitude fatigue tests conducted on a series of T-butt welded joints. It has been 
shown that the weight functions provided sufficiently accurate solutions, in terms of the 
agreement between the calculated and measured stress-intensity factors and fatigue crack 
propagation lives. The method proved to be useful in studying weld plate thickness and weld 
geometry effects on fatigue crack growth in welded joints. 

KEY WORDS: fatigue, welded joints, crack growth, semi-elliptical surface cracks, weight 
function, stress-intensity factor, variable loading history 

Nomenclature 

a 

ao 
d a / d N  

C 
c 

E 
En 
F: 

F~ 

h 
hk 
hs 
H 

Crack depth for a semi-elliptical surface crack 
Initial crack depth 
Crack growth rate 
Paris equation parameter  
Hal f  crack length o f  a semi-elliptical surface crack 
Modulus  o f  elasticity 
Euler number  
Geometr ic  stress-intensity correction factor for a crack emanating from 
an angular comer  a in a semifinite plate with a step 
Geometr ic  stress-intensity correction factor for a crack emanating from 
right-angle comer  in a semifinite plate with a step (~ = 90 ~ 
Weld leg length 
Stress-intensity factor due to stress rise h, 
Individual  rise in stress history or stress cycle 
General ized modulus  of  elasticity: 

H = E - - f o r  plane strain 
H = El(1 - v2)--for plane strain 
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gh: 
AKh 

AK~a, 
AKo,,,, 

m(x,a) 
mT(x,a,a) 

m~(x,a) 
mT(x,a,a) 

mf(x,a) 

N 
No 

n 

R = Smin/Sma x 
S 

Sh 
ash 

ASrm, 
Snaax 

t 
Ur(X,a) 

Y 
Ot 

~b = 7r2/4 
P 

p 
"now(X) 

Stress-intensity factor due to nominal average stress Sh 
Range of  stress-intensity factor due to nominal average stress range ASh 
Stress-intensity factor range calculated using the weight function m7 
Experimental stress-intensity factor range obtained from fatigue crack 
growth data 

K~ Stress-intensity factor for an edge crack in a long strip 
K7 Stress-intensity factor for an edge crack emanating from weld toe 

K..w Stress-intensity factor corresponding to local stress system a.~w(X) 
Kr Reference stress-intensity factor corresponding to local reference stress 

'~r(X) 
Kf Stress-intensity factor for a semi-clliptical surface crack in a finite- 

thickness plate 
K7 Stress-intensity factor for a semi-elliptical surface crack emanating from 

weld toe 
Weight function 
Weight function for an edge crack emanating from an angular corner a 
in a long strip with a step 
Weight function for an edge crack in a long strip 
Weight function for a semi-elliptical surface crack emanating from an 
angular corner a in a long strip with a step and finite thickness t 
Weight function for a semi-elliptical surface crack in a finite-thickness 
plate 
Number  of  load cycles 
Number  of  reference load cycles 
Paris's equation exponent 
Nominal load-stress ratio 
Nominal  stress 
Nominal weighted average stress 
Nominal weighted stress range 
Root mean square stress value of  stress ranges 
Maximum peak stress in the stress history 
Joint thickness 
Crack-opening displacement function corresponding to reference stress- 
intensity factor K, 
Geometric stress-intensity correction factor 
Weld angle or angular comer angle 
Value of  elliptical integral of  second and for a circular crack 
Poisson's coefficient 
Weld toe radius 
New distribution o f  stresses normal to prospective crack plane and 
corresponding to stress-intensity factor Knew 

a0 Characteristic stress or nominal stress at weld toe 

It has been recognized that a large proportion of  the total fatigue life of  a welded struc- 
ture is usually spent on propagation of  a crack [1,2] initiated at the weld toe. Therefore the 
prediction of  fatigue life of  a welded joint has to be based on accurate analysis of  fatigue 
crack growth in the highly stressed region near the weld. Fracture-mechanics models are 
often used for such analyses, which require calculations of  stress-intensity factors for rele- 
vant crack-load configurations. Such calculations are difficult due to the fact that three- 
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dimensional stress analysis has to be employed since semi-elliptical surface cracks are very 
often encountered in engineering practice. 

It is known that the stress-intensity factor for a crack in a welded joint depends on the 
global geometry of the joint, the weld profile, and the type of loading. Therefore, calcula- 
tion of stress-intensity factors even for one type of weldment such as the T-butt welded 
joint requires detailed analysis of several parameters, including plate thickness, weld thick- 
ness, weld angle, weld toe radius, and loading system. In addition, it is often necessary to 
include residual stresses into the analysis for they may significantly influence both the 
fatigue crack growth rate [3] and the critical crack size [4]. For these reasons it is necessary 
to derive appropriate formulae which enable the stress-intensity factors to be calculated 
for a variety of loading systems and geometric parameters. Derivation of such formulae 
can be approached by using the weight function method [5,6]. 

The weight functions for cracks in welded joints have been derived by the authors and 
are discussed in the paper. The weight functions were used for calculating stress-intensity 
factors necessary for fracture mechanics modeling of fatigue crack growth behavior. 

The theoretical crack growth analysis was carried out by numerical integration of Eq 1 
proposed by Paris [7] 

da 
- - ~  = C ( A K )  m (1) 

The experimental investigation of "surface crack growth" required complex crack mea- 
surement techniques to be employed because the crack shape evolution had to be moni- 
tored with sufficient accuracy. Because the crack front was not visible to optical devices, 
some alternative nondestructive methods had to be employed. In the investigation under 
discussion, the Alternating Current Potential Drop (ACPD) method [8,9] was used taking 
advantage of the "skin effect." This method made it possible to monitor crack initiation 
and crack shape evolution due to cyclic loading and subsequently to validate the theoret- 
ical results. 

Calculation of Stress-Intensity Factors for Semi-Elliptical Surface Cracks in T-Butt 
Welded Joints 

The T-butt ~welded joint is one of configurations very often used in welded structures 
and therefore it can be applied for modeling of a variety of welded joints encountered in 
practice. It is known that fatigue cracks usually initiate at the weld toe (Fig. 1) and prop- 
agate through the thickness under the dominant effect of the Mode I stress system. 

Although a number of stress-intensity factor handbooks have been published, appropri- 
ate formulae are still not available for many welded configurations. For this reason it was 
necessary to derive formulae which enabled the stress-intensity factor to be calculated for 
a variety of loading and geometric parameters. This was achieved by first deriving appro- 
priate weight functions [5,6] defined in a general form 

H OUr(X,a) 
m(x,a) = (2) 

K r Oa 

In order for the weight function 2 to be derived, a reference stress-intensity factor K, for 
a given geometry under simple stress system S needs to be known (Fig. 2) together with 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



NIU AND GLINKA ON ANALYSES OF CRACKS IN WELDMENTS 393  

~,/e = ! 
h/~ =1 

FIG. l--Geometry of a T-butt welded with a surface semi-elliptical crack. 

a) 
~ 7  

or L 

9 

FIG. 2--Stress system S, a,-(x) and displacement ur necessary for the derivation of the 
weight function m(x,a); (a) reference stress ar in the uncracked body; (b) notation and quan- 
tities necessary for calculating the stress-intensity factor. 

the corresponding crack-opening displacement field u,(x,a). Even though the stress-inten- 
sity factors are known for many crack geometries and load cases, the displacements are 
only available for a very few special cases. Therefore, the method developed by Petroski 
and Achenbach [I0] was used to calculate the crack opening displacement from the known 
reference stress-intensity factor K,. The stress-intensity factor for a given stress field ~.ew(X) 
could then be calculated from Eq 3 

K.ew = f g . ~ x ) m ( x , a ) d x  (3) 
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394 SURFACE-CRACK GROWTH 

Stress-Intensity Factors for Edge Cracks Emanating from the Weld Toe in a T-Butt Joint 

It was shown [11,12] that the Petroski-Achenbach method can be successfully applied 
to a variety of problems despite its limitations discussed in Refs 12 and 13. Therefore this 
method was employed [ 14] for deriviation of the weight function for an edge crack in a T- 
butt welded joints as shown in Fig. 3. The final version of the derived weight function was 
given in the form (4). 

The weight function for an edge crack emanating from an angular corner in a finite thick- 
ness plate 

F~ 
mT(x,a,a) = ~ M(x,a,90) (4) 

where 

M(x,a,90) = ~/2w(a - x) 1 + Me~ + M~2 

1.5 3.0 4.5 

Me~=0.6643--12.7438(~) +397.8081(~) --3285.1810(~) 

6.0 7.5 9.0 

+ 14162.5870(~) --30127.1580(~) +25119.5351(~) 

1.5 3,0 4.5 

Me~=0.1117+3.8570(~) -47.1626(~) +285.4393(~) 

--646.6118(~)6'~247 9~ 

(5) 

0.5 1.0 1.5 

f ( h )  = 1-0355- 3 . 3 3 2 4 ( h ) +  21.5999(h ) - 58-8513(h ) 

+ 81.6246 (h) 2 ~  56.9396 (h)Z' + 15.8784 (h) 3~ 

Since the stress-intensity factor can be written in the form 

K =  a0 ~ (7) 

it is sufficient to present only the geometric factor Y. 
The stress-intensity factors for edge cracks in T-butt weldments calculated by using the 

weight function (4) were validated [14] against known finite-element data. It was also dem- 
onstrated [14] that the weight function (4) can be used for estimation of the weld angle a 
and the weld toe radius p effects on stress-intensity factors. Examples of such effects are 
Shown in Figs. 4 and 5. 
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�9 h / ~  =1 

i ) 

FIG. 3--Geometry of the T-butt welded joint with an edge crack. 

It was found that only the short crack stress-intensity factors were affected by the weld 
toe radius. The effect was negligible for cracks of the relative depth a/t > 0.05. However, 
the effect was more apparent for cracks in welds with the larger weld angle a = 60 deg. 
Thus, the weld toe radius effect can be neglected for cracks of relative depth a/t > 0.05. 
On the contrary, the weld angle a effect was noticeable for cracks up to a/t --- 0.3 deep 
(Fig. 5). Therefore, one could expect that the final effect of the weld angle on the fatigue 
crack growth life of welded joints would be more significant than the weld toe radius effect. 

Stress-Intensity Factors for a Surface Semi-Elliptical Crack Emanating from the Weld 
Toe in a T-Butt Joint 

Although the general form of the weight function 2 has been derived for the plane prob- 
lem and one dimensional crack, it has been shown by Mattheck [I1] that the Petroski- 
Achenbach method can also be applied to two-dimensional semi-elliptical surface cracks 
in fiat plates. The study reported by Niu and Glinka [15] indicated that this approach can 
be applied to surface cracks in T-butt weldments and that it provided a sufficiently accurate 
solution in comparison with the finite-element data [16]. It was initially found that the 
stress-intensity factor at the deepest point of the surface semi-elliptical crack in a T-butt 
joint can be calculated by using correction factors obtained for corresponding edge and 
surface cracks in fiat plates which are under the effect of the same stress systems. 

K~' -- K~' K~ (8) 
K~ 

Relation 8 can also be expressed in terms of weight functions, in the form 

foo ~ ~(x)mT(x,a,a)dx 

KT = fo ~ ,Kx)m'[(x,a,a)dx= fo ~ ~(x)mPe(X,a,a)dx fo ~ ,Kx)m~(x,a)dx (9) 
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FIG. 5--Effect of  the weM toe angle a on the stress-intensity factor for an edge crack in a 
T-butt joint under bending load;for p/t = 1/25. 

Consequently, the calculation of the stress intensity factor K7 requires three weight func- 
tions to be known, that is, roT, m~, and m(. Whereas the weight function m7 for a semi- 
elliptical crack in a T-butt joint is not needed. The weight function m7 for an edge crack 
in a T-butt joint is given by relation 4. The weight function me for an edge crack in a plate 
has been derived earlier by Bueckner [1 7]. 

The weight function for  an edge crack in a finite-thickness plate 

2 

m~(x,a) -- ~/2~-(a -- x) 1 + M~, + M~2 (10) 

where 

2 6 

~ __ 0 6147 + ,7,844 ( ~ ) + ,  7822 (~) 

2 6 

~ _ _  02,02 + 32 ,99 (~ )+  70 0444 (~) 
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The method of deriving the weight function mf(x,a) for a surface crack in a flat plate 
has been described in Ref 15. The closed form expression for this weight function is given 
as follows: 

The weight function for a semi-elliptical surface crack in a finite thickness plate 

2 

m~(x,a) = ~/2~r(a - x) 1 + M~, + Mfz (11) 

where 

M~, = A  + 3 B - - 4 ,  

3 B ,  

A = 0.5 tg --~ + 4  

2n 

(a)" 
dl -k- d2 -k-d, 7 

a) 2re+n-2 
c.  (7] ' 

2 m + n  

(a) 0,9 
d~ --- 1.13 - 0.09 ; dE ----- --0.54 + 0.2 + (a/c)'  

1.0 (c - -  a~ 24 
d3 = 0.5 0.65 + a/c + 14 \ - - - - ~ ]  , 

Q = 1.0 + 1.464 (a/c)I6s; for a __< c, 

C~ = d]; Cz = 2d, d2; C3 = d~ + 2 d, d3; C, = 2 d2 d3; C~ = d~, and 

E, - Euler numbers, Eo = 1; E2 = --1, E4 = 5, E6 = --61, Es = 1385, 

Elo = --50521 . . . .  

Finally, the expression for the weight function mT(x,a,a) has also been derived in a 
closed form 1 la  [18]. 

The weight function for a semi-elliptical surface crack emanating from an angle in a finite 
thickness plate 

2 [  
mT(x,a,a) - ~/21r(a - x) 1 + M~ + M,~ ( l l a )  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  W e d  D e c  2 3  1 8 : 4 5 : 1 1  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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where 

M~I = A , +  3 B , - 4 ,  

A , -  1 B, ] 
3 J 

(a) a 
A , =  F, ( t )  ' where ~ p(a/') '  

( t )  2V'2, F~ 15 + 5Me~ + 3M~(I  5 
F~ = 15~r F ~  15 + 5M~ + 3M~2" - + 5M~ + 3M~2). 

Comparison of stress-intensity factors calculated from the weight function and finite-ele- 
ment data [16] showed excellent agreement (Figs. 6a and 6b). 

It is also found that the weld toe angle a effect on the stress intensity factor was notice- 
able for cracks of  relative depth of a/t < 0.35. The effect was more significant for long 
surface cracks with low aspect ratio a/c = 0.2. The effect of the weld toe radius p (Figs. 7a 
and 7b) was similar to that of edge crack and negligible for cracks of relative depth a/t > 
0.05. The effect in general was independent of the crack aspect ratio a/c. 

The correction factor Y in Figs. 6a to 7b was multiplied by parameter V~ in order to 
compare the calculated stress-intensity factors with the finite-element data by Bell [16], 
who normalized his results in respect to the circular "penny-shape" crack under tension. 

It is very often assumed that the stress-intensity factor for a crack in a notched element 
such as the T-butt joint can be calculated using the flat plate weight function m~ and the 
stress distribution a(x) derived from the uncracked notched body. However, one has to 
bear in mind that the stress-intensity factor is a quantity which is dependent on both stress 
and geometry. Therefore, using the weight functions derived for plates may lead to notice- 
able errors in spite of the fact that the notched body stress field is taken into account. The 
differences in stress-intensity factors calculated on the basis of weight functions mf and 
m7 are shown in Fig. 8. It is apparent that application of the "flat plate weight function" 
m~ would lead, in general, to an overestimation of the stress-intensity factor for a crack in 
the T-butt joint. 

Experiments 

Specimens and Material 

The specimens tested were T-butt welded plate joints made of British Standards Insti- 
tution, Low Alloy Steels, (BS 4360: 50D, 1984.) The material properties and the standard 
chemical composition are given in Tables 1 and 2, respectively. The specimens were 1000 
mm long and 100 mm wide, with the "T"  attachment welded at the center (Fig. 1). A series 
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X19-1 
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A Finite element calculation [1G] 
weight Function m" 

. . . . .  weight Function m~ 

FIG. 8--Effect o f  the weight function type on the calculated stress-intensity factor at the 
deepest point of  semi-elliptical crack in a T-butt joint under tension load, in relation to the 
finite-element data [16];for a = 45 deg, c/a = 0.33, pit = 1/25. 

of  spec imens  o f  plate thickness varying f rom t = 30 m m  up to t = 70 m m  was tested. The  
spec imens  were welded manua l ly  wi th  full weld root  penetrat ion.  Three  types o f  welds 
were p roduced  with  nomina l  weld angles o f  a --- 30 deg, a = 45 deg, and a --- 60 deg. The  
spec imens  were tested under  var iable  ampl i tude  four-point  bending with the load rat io R 
>~ 0. The  welds on one  side o f  the jo in t s  were ground at toe areas in order  to avo id  s imul-  
t aneous  crack in i t ia t ion  on  bo th  sides o f  the  a t tachment ,  so that  the measur ing device  only 
needed  to be m o u n t e d  on one side o f  the specimen.  All specimens  were post-weld heat  

TABLE l--Mechanical  properties of  BS 4360:50 D steel. 

Yield strength 
Ultimate strength 
Reduction of cross section area 
Paris Equation parameter ~ 
Paris Equation exponent 

av = 345 MPa 
auxs = 450/620 MPa 
A = 18% 
C = 8.02 • 10 -a2 
m = 2.96 

a For da/dN in m/cycle and AK in MPa k/--mm. 
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TABLE 2--Chemical composition. 

403 

Chemical Component Content, Weight % 

Carbon 0.18 max 
Silicon O. 1/0.5 
Manganese 1.5 max 
Niobium O. 1 max 
Vanadium 0.1 max 
Sulfur 0.04 max 
Phosphorus 0.04 max 

treated to release the residual stresses due to welding. The specimens were kept in a furnace 
for about 6 h at the temperature o f  approximately 620~ Weld toe radii  and weld angles 
were measured for each specimen. 

Test Conditions and Test Rig 

All specimens were tested in air  under variable-ampli tude loading defined by the power 
spectrum density function shown in Fig. 9. The magnitude of  the nominal  mean bending 
stress was Sm = 150 MPa. The root mean square nominal  stress was S~,  = 65 MPa, with 
a clipping ratio o f  S ~ / S ~ s  = 2.87. All tests were conducted in load control mode using 
computer-controlled actuator. The frequency varied from 0 to 2.5 Hz. A computer  package 
[19] was used for the signal generation and data acquisition. The software was linked with 
a specially built  Alternative Current Potential Drop System [9] for detection, measure- 
ment, and monitor ing of  crack shape evolution. The standard crack microgage [9] has been 
used for the generation and measurement  of  the alternating-current (a-c) field. As shown 
in Fig. 10, a special double probe head (three contact points) with sliding spring contacts 
has been constructed and this was attached to a lead screw driven by a computer-controlled 
stepping motor. The probe head contained a flat coil which was used to induce the a-c field 
in the specimen. The switching unit  controlled by the computer  made it possible to mea- 

0~ 1.8 2.5 
FREQUENCY (Hzl 

FIG. 9--Power spectrum density function for the stress history used in testing. 
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FIG. l O--Automatic system for two-dimensional fatigue crack shape evolution monitor- 
ing." 1-computer PDP-11; 2-interface; 3-servohydraulic controller," 4-piston; 5-specimen; 6- 
probe; 7-stepping motor; 8-stepping motor driver; 9-switching unit; lO-microgage. 

sure the cross crack and off crack a-c voltage probe using the same crack microgage at 
required positions. The probe head was periodically driven across the specimen in steps of  
1 m m  during the fatigue test so that the a-c field along the weld toe could be measured and 
monitored. The data from each scan, corresponding to one pass over the specimen width 
(100 mm), were stored on a disk and subsequently analyzed. The final output from the 
computer was in the form of  a graph showing the crack depth against the distance along 
the weld toe. 

Several successive scans taken periodically allowed the fatigue crack shape evolution to 
be examined during test ;atypical  example o f  the results is shown in Fig. 11. The accuracy 
of  the system [9] was of  the order o f  10% for cracks deeper than 2 ram. 

Analysis of Variable-Amplitude Stress History: The Weighted Average Stress Range 

Because there is no general approach for all types of  variable-amplitude loading, it is 
necessary to identify the main features of  each particular case. It was shown [20,21] that 
in the case of  loading histories for offshore structures, such as the one under consideration, 
some simplifications can be made by using so called "weighted average stress range." It is 
considered in this theory that each rise or cycle will cause a small crack increment. 

da = C(hk) m (12) 

where 

hk = hsv~d Y and 
da 
dn C(hk)m 
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FIG. 11--Crack shape evolution recorded with the ACPD system; T-butt welded joint 
under variable-amplitude bending load, t = 30 mm, a = 36 deg. 

The average over M cycles will be 

M 

C(h~)F 

M 
-- C("h~ (13) 

This average stress-intensity range h-~ can be reinterpreted as an average effective stress- 
intensity factor Kh 

AKh = ~ = ~ V ' ~  Y = A S h - V ' ~  Y (14) 
M 

where 

/ = ~  (AS,)= 

= ash = 05)  
M 

The fatigue analysis can therefore be based on the single stress range AS~ weighted by 
the material property m while the individual stress ranges are calculated according to the 
"rainflow counting procedure" [22]. The average weighted stress range used in this study 
was Sh = 175 MPa calculated for m = 2.96. 

It was shown [20-22] that this technique successfully correlated fatigue crack growth 
data for several variable amplitude loading spectra. Therefore, the weighted stress range 
ASh and the stress-intensity factor AKh were used for further theoretical calculations. 
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Experimental Data 

The successive crack shape contours (Fig. 11) monitored periodically throughout the 
tests made it possible to derive empirical relations between the maximum crack depth 
versus the number of applied loading cycles. The same curves were also used to determine 
the fatigue life of a specimen after the crack had penetrated a half of the plate thickness. 
The example sets of "a versus N" data shown in Fig. 12a were obtained from specimens 
made of three different plate thicknesses. Similar curves were also constructed for speci- 
mens with different weld angles a, as shown in Fig. 12b. Additional data obtained from 
welds with the angle a = 50 deg is shown in Fig. 12c. 

It should be noted that the weld toe angle a and the weld toe radius p varied along the 
weld. Therefore, the nominal values quoted here represent average values based on several 
measurements over the specimen width of 100 mm. 

The a-N diagrams shown in Figs. 12a and 12b were subsequently used for calculating 
the experimental crack growth rate da/dN and the experimental stress-intensity range AKexp 

AKexp = ~ m ~  (16) 

V 

The data shown in Fig. 12a illustrate the detrimental effect of increasing plate thickness. 
All three specimens were tested under the same stress history and all of them were pro- 
portionally scaled regarding the plate thickness and weld dimensions. 

The weld angle effect on fatigue crack growth in 70-mm-thick T-butt joint is shown in 
Fig. 12b. The welds in both specimens had the same leg lengths but obviously different 
weld heights measured along the T-attachment. 

However, it should also be noted that at early stages of fatigue crack growth, several 
small cracks initiated almost simultaneously along the weld toe. Therefore, the experimen- 
tally determined stress-intensity factor ranges should be considered as stress-intensity fac- 
tor ranges for the deepest cracks subject to possible influence of the colinear smaller cracks. 
As the cracks grew deeper, a single crack of approximately semi-elliptical shape was finally 
developed. Therefore, the fracture mechanics modeling based on a single crack analysis 
seems to be more appropriate for deep cracks. 

The calculated stress-intensity ranges AKo,p versus experimental data AKo,p are shown in 
Fig. 13. The agreement was within 30% for all specimens and crack depths. The + 30% 
scatter could result from a number t~f sources such as errors in measuring the weld geom- 
etry and crack depth, the difference between the idealized semi-elliptical crack and real 
crack shape, etc. Nevertheless, such scatter can be considered to be small taking into 
account the number of geometric parameters and the variable amplitude loading. 

Calculations Versus Experiment 

Calculations of fatigue lives were executed by integration ofParis's Eq 1 using the stress- 
intensity factor range AKh given by Eq 14. The calculations were conducted assuming the 
initial crack length and depth c = 0.2 mm and c = 0.2 mm, respectively, which were the 
crack size and shape of the smallest detectable crack. All calculations were carried out until 
the crack depth was a half of the plate thickness, that is, up to a = t/2. However, in most 
cases several small cracks initiated almost simultaneously along the weld toe. Therefore, 
the analysis based on a growth of a single crack did not seem to be adequate because sub- 
sequent crack coalescence resulted in sudden change in the aspect ratio c/a that could not 
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FIG. 13--Comparisons of calculated and experimental (fatigue crack growth based) stress- 
intensity factor ranges for T-butt welded joints under variable-amplitude bending. 

be characterized correctly by the single crack model. In order to account for this effect the 
experimentally derived [24] aspect ratio versus crack depth (17) was used. 

a /  c = e -*~ (17) 

where k = 2.915 • 10 -6 (ASh) 2 �9 V q  for a and t in mitlimetres and ASh in MPa. 
Thus, the stress-intensity factor for the deepest crack point was calculated using the 

weight function 11 a, the empirical Eq 17, and the average weighted stress range. The com- 
parison of calculated and experimental fatigue crack growth lives is shown in Fig. 14. In 
general, less than + 30% error was found for all specimens used in the study. One of the 
important factors leading to this correlation was the empirical support of the theoretical 
analysis by implementation of Eq 17. 
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FIG. 14--Comparisons of calculated and experimental fatigue crack growth lives of T- 
butt welded joints under variable-amplitude bending load. 

It was also shown in Fig. 8 that application of the "flat plate" weight function Mf led to 
an overestimation of the stress-intensity factor K. Data shown in Fig. 15 demonstrate this 
effect in terms of the fatigue crack growth life of T-butt specimens tested under constant 
amplitude bending load. It is worth noting that a few percent error ili estimation of the 
stress-intensity factor may accumulate to result in 20% to 50% difference in predicted lives. 
The predictions based on the weight function rn7 derived for a surface crack in a weldment 
resulted in a better correlation with the experimental data for both constant and variable 
amplitude loading. Finally, the weight function rn7 was used for analysis of the weld angle 
and weld toe effects on fatigue crack growth lives. The data shown in Figs. 14 and 15 were 
obtained for the whole range of weld angles a = 30 to 60 deg and plate thickness t = 30 
to 70 mm. It is apparent that application of the weight function m7 (Eq 1 la) led to a more 
accurate estimation of fatigue lives for constant amplitude loading. 

Despite the visible scatter, the theoretical analysis led to a reasonably good estimation 
of geometrical effects on fatigue crack growth lives both in qualitative and quantitative 
terms. Thus the technique can be used for estimation of the weld profile effect on fatigue 
lives of welded joints consisting of fillet welds. Also, the same approach can be used for 
studying thickness effect [23] on fatigue life of welded joints. 
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Discussion 

Fatigue crack growth analysis requires several input data such as material properties, 
stress-intensity factor, initial crack size, and critical crack size or fracture toughness to be 
known. The quality o f  the final result depends on the quality of  each of  them. The material 
crack growth data and the stress-intensity factor seem to be understood well and may be 
the most reliable parameters in the whole model. Unfortunately, the important data 
regarding the initial crack size are rather arbitrarily chosen and subjective depending upon 
the investigator. The whole problem is even more complex in welded structures because 
o f  the simultaneous initiation, growth, and subsequent coalescence of  multiple cracks. 
Therefore, the most frequently used single-crack fracture-mechanics approach needs to be 
complemented by additional experimental data such as Eq 17. The alternative approach 
is to use multiple-crack fracture-mechanics models [25], but the complexity o f  such anal- 
yses does not make them sufficiently attractive for engineering practice at present. An addi- 
tional difficulty is that one does not know how many cracks are to be initiated along a 
given weld toe. Therefore, more experimental data on initiation and growth of  surface 
cracks in weldments are required. This indicates that the emphasis should be put on further 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:45:11 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



412 SURFACE-CRACK GROWTH 

development  of  nondestructive testing techniques necessary to support  such investigations 
and fracture-mechanics analyses. 

Conclusions 

It has been shown that the weight functions derived herein lead to a sufficiently accurate, 
for engineering applications, est imation of  stress-intensity factors for surface cracks in 
weldments. These functions allow the stress-intensity factor to be analyzed with respect to 
several geometrical and loading parameters such as weld toe, radius, weld angle, plate 
thickness, and combinat ions of  tension and bending loads. 

It was found that the weld angle had a more significant effect on the fatigue life than the 
weld toe radius. 

The variable-ampli tude crack growth due to offshore loading histories, such as the one 
used in the paper, can be analyzed by means o f  the average weighted stress range excluding 
the load interaction and mean stress effects. 

The init iat ion and growth o f  multiple surface cracks in a weldment makes it difficult to 
predict crack growth and crack shape evolution by using the single-crack fracture-mechan- 
ics model. Therefore, the single-crack model  requires complementary experimental data 
such as the crack aspect ratio versus crack depth. 
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Correction factors 

stress-intensity solutions, 226-227 
surface flaws, 180, 185-186 
tubular threaded connections, 359-360 

Crack aspect ratio, 265-268 
Crack border-free surface intersection 

effects, 99-108 
Crack closure/opening loads, 268-273 
Crack closure threshold testing, 303-314 
Crack geometry, 383-388 
Crack growth 

crack-tip opening displacement values, 
162-163 

dC/dN calculation, 219-220 
predictions, 279-285, 373-383 
surface crack testing of cylindrical rods, 

383-388 
thermal fatigue testing, 237-258, 242- 

246 
Crack half length calculation, 288-290 
Crack initiation, 237-258 
Crack-mouth opening displacement 

(CMOD) 
load history and closure, 305-306 
surface flaw analysis, 112, 117-120 

Crack shape 
almond and sickle-shaped, 365-366 
crack front constraint variation, 323- 

324 
fatigue loading, 319-323 
prediction, 373-383 
stress-intensity factors, 40-46 

Crack size, 40-46 

Crack-tip-opening angle (CTOA), 3-4, 
152-176 

Crack-tip opening displacement (COD) 
effective stress-intensity factors, 272-277 
measurement, 3-4, 152-176 
surface flaw geometries, 264-265 
testing parameters, 298-302 

. values, 162-163 
Critical conditions, failure assessment, 316- 

317 
Curvilinear coordinates, 64-66 
Cylindrical bars, surface crack growth, 365- 

388 

D 

Damage size measurements, 198-200 
Damage size predictions, 199-203 
Delamination growth, 186-189 
Deply tests, filament wound cases, 198 
Depth crack growth rate (da/dN), 231-232 
Dimensionless displacement solution, 68- 

69 
Dimensionless stress-intensity factors, 73- 

74 
Direct current (D-C) potential drop, 243- 

244 
Domain integrals, 14-17 
Double-beam illumination technique, 137- 

139 
Double-edge wedge specimen, 247-248 
Double-exposure holography, 138-139 
Dynamic loading, 142-150 

E 

Edge stress-intensity factor, 86-96 
Effective stress distribution, 123, 125, 127 
Eigenfunction expansion, 66-69 
Eigenvalues 

algorithm for linear-elastic fracture 
mechanics, 103 

in-plane displacement measurement, 
133-134 

least-squares in-plane displacement 
measurement, 139 

semi-elliptical surface crack analysis, 84- 
85 

Elastic behavior 
crack-tip opening displacement, 152-176 
surface crack analysis, 9-30 
thermal fatigue testing, 246-253 

Elastic-plastic analysis 
crack-tip opening displacement values, 

152-176 
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rapidly-loaded surface crack specimens, 
142-150 

surface crack review, 9-30 
thermal fatigue testing, 246-253 

Elastic stress fields, 77-97 
Electro-discharge machining (EDM), 217- 

218 
Elliptical cracks 

composite laminates, 177-193 
orthotropic media, 178-180 
stress-intensity factors, in orthotropic 

medium, 190-193 
weight function, 353-354 

Embedded elliptical crack geometry, 226- 
227 

Energy release rate, 367 
Equilibrium equations, 65-66 
Equivalent surface crack, 198-203 
Exact solutions behavior, 78-81 

Failure assessment 
calculation programs, 316-317 
valve casing, 317-319 

Fatigue crack closure, 260-285 
Fatigue crack growth 

aluminum plate surface flaw analysis, 
217-218 

computations and experiments, 3-4, 
287-302 

crack length, 338-339, 345-346 
failure assessment, 316 
maximum crack versus number of cycles, 

357-360 
plates, 215-236 
predictability, 278-285 
subcritical surface flaw growth, 333-339, 

346 
three-dimensional surface flaw 

geometries, 260-285 
threshold tests, 303-314 

Fatigue crack initiation, 340-341 
Fatigue loading, 319-323 
Fatigue testing 

subcritical surface flaw growth, 334-336 
surface crack growth, 315-331 
tubular threaded connections, 348-363 
vinyl acetate monomer (VAM) joints, 

354-360 
Fiber damage, 198-200 
Filament-wound cases (FWC) 

damage size and prediction tests, 199- 
203 

deply tests, 198 

impact testing, 195-211 
residual strength tests, 197-198 

Finite-element analysis 
convergence properties of p-version, 82- 

83 
correction factor, 185 
crack-tip opening displacement values, 

171-172 
HRR dominance in tensile-loaded 

surface cracks, 23-24 
plastically deformed surface flaw, 112-128 
p-version, 81-82 
slice synthesis, 225 
spe~:ial computations, 290-291 
stress-intensity factors, 57-58 
surface flaw, 34-47, 112-128 
thermal fatigue testing, 237-258 
three-dimensional, 36-40, 122-128 

Finite-element mesh 
stress-intensity factors, 70-71 
tubular threaded connections, 351-352 

First-ligament failure, 204-205 
Flat plate weight function, 399, 402, 410 
Flow theory of plasticity, 19-20. 
Fluidized bed technique, 237-238 
Fractography, 339-344 
Fracture analysis 

dimensionless stress-intensity factors, 70- 
74 

eigenfunction expansion, 67-69 
finite-element mesh and special element, 

70 
governing equations in curvilinear 

coordinates, 64-66 
monotonic loading, 329-330 
rapidly loaded surface-cracked specimens, 

142-150 
stress-intensity factors in surface cracks, 

69-74 
three-dimensional bodies with surface 

crack, 63-76 
Fracture mechanics 

composite laminates, 177-193 
linear-elastic, 10-14 
near-surface layer failure, 186-189 
optical stress analysis, 99-110 
prediction for rapidly-loaded surface 

crack specimens, 142-150 
semi-elliptical surface crack analysis, 77- 

97 
three-dimensional geometries, 260-285 

Fracture resistance curves, 323-324 
Free surface-crack border intersection, 134 
Frozen stress algorithm, 102 
Frozen stress analysis, 108-110 
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G 

Garwood J-integral equation, 326-328 
Geometry 

failure assessment, 316 
tubular threaded connections, 350-351 

Goursat-Kolosov stress functions, 131- 
134 

Graphite/epoxy composite 
constituent properties, 210 
impact damage, 194-211 
physical properties, 210 
strength predictions, 204-209 

H 

Hertz's law, 195 
Holes, surface and comer cracks, 35 
Holographic interferometry, 130-140 
Homogenization assumption, 178-193 
Hooke's law, 65-66 
HRR dominance, 171-172 
Hybrid analogue-finite-element model. 

360-361 
Hybrid stress analysis, 350-351 
Hydrostatic stress, 321-323 

"Ill-shaped" elements, 37-38 
Impact damage 

equivalent surface crack, 198-203 
filament-wound cases, 196-197 
strength predictions, 208-209 
surface crack analysis, 194-211 

Incompressibility, 86-94 
Indent notch, 333-346 
Induction heating, thermal fatigue crack, 

237-258 
Initiation-fracture testing 

smooth and indent notch, 340-34 l 
subcritical surface flaw growth, 336-338 

In-plane displacements, 130-140 
Interferometric displacement gage (IDG), 

305 
Inverse square-root singularity, 133-134 
Irwin stress-intensity solution, 223-225 
Isotropic alloys, thermal fatigue testing, 

237-238 

J 

Jc.~ value. 146-150 
J-integral 

crack-tip opening displacement values, 
152-176 

Garwood method, 326-328 
rapidly loaded surface-cracked specimens. 

142-150 
Read method, 327 
surface crack growth computations, 20- 

22, 287-302 
surface flaw analysis, 112, 117-122 

J-R curve 
geometry and instrumentation, 326 
J curve comparison, 329-331 
monotonic increasing load, 323-33 l 

J resistance curve, J-R curve comparison, 
329-331 

L 

Lam6 coefficient, curvilinear coordinates, 
65-66 

Laplace equations, 78-81 
Lead-before-break behavior, 318-319 
Least squares, in-plane displacement 

measurement, 134-137 
Ligament failure 

composite laminate surface cracks, 177- 
178 

surface cuts, 205-208 
Linear elastic fracture mechanics 

algorithms, 100-103 
nonsingular effect, 103-104 
semi-elliptical surface crack analysis, 78 
subcritical surface flaw growth, 333-346 
surface crack growth computations, 10- 

14, 287-302 
Line-sPring analysis, 17-21 
Load displacement curves, 156-157 
Loading history 

CTOD and CTOA values, 172-176 
surface crack growth and. 304-314 

Loading parameters, 316 
Load ratio, 333-346 
Local-global analysis, 63-76 
Locking effects, 82 
Love's solution, 201-202 

M 

Magnification factors, 92-93 
Maximum strain criterion. 205 
Maxwell-Betti reciprocity theorem, 83-84 
Metallographic slicing, 157, 162 
Microcrack initiation, 254-257 
Microtopographic techniques, 157-161, 

163-167 
Moir6 interferometry 

in-plane displacement measurement, 
134-137 
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optical analysis, 110 
surface flaw analysis, 113-114 

Monotonic loading 
models and experiments, 2-3 
surface crack growth, 315-331 

Motor cases, impact damage analysis, 195- 
211 

M(T) crack specimens, 295-296 

N 

Near free surface effects, 30 
Near-surface layer failure, 186-189 
Near-threshold crack growth behavior, 303- 

314 
Near-tip problem geometry and notation, 

100-101 
Newman-Raju solution 

crack-tip opening displacement values, 
169-172 

fatigue crack growth rate prediction, 280- 
282 

stress-intensity analysis, 225-226 
Newman width correction factor, 226, 228 
Newton interferometry, 260-285 
Newton-Raphson minimization, 292-293 
Nodal-force method, 38-40 
Nondimensional stress-intensity factors, 

54-61 
Nonsingular effect, linear elastic fracture 

mechanics, 103-104 
Notched rods, surface crack growth, 365-388 
Notches 

subcritical surface flaw growth, 333-346 
size, stress-intensity factors, 40-46 

Numerical differentiation, 117 

O 

Optical analysis 
free-surface effects on cracks, 99-110 
frozen stress analysis, 108-110 
plastically deformed surface flaw, 112- 128 

Optical spatial filtering, 113-115 
Optimization, special computations, 291- 

295 
Orthotropic media 

elliptic cracks, 178-180 
stress-intensity factors, 190-193 

P 

Paris equations 
failure assessment, 316 
fatigue crack growth rate prediction, 282- 

284 

surface flaw crack growth, 229 
tubular threaded connections, 357-358 
unnotched rods, 383-384 
weldment surface crack analysis, 408- 

411 
Partially embedded ellipse, 230-231 
Part-through cracks 

fracture behavior predictions, 146-148 
line-spring analysis, 17-21 
orthotropic media, 179-180 

Phase-locked loop (PLLP) system, 244-246 
Plasticity, surface flaw analysis, 112-128 
Plates 

dimensionless stress-intensity factors, 73 
surface and comer cracks, 35, 215-236 

PMMA polymer surface crack growth 
geometries, 260-285 

Poisson's ratio 
eigenvalues, 84-85 
magnification factor, 92 
semi-elliptical surface crack analysis, 78 

Polynomial coefficients, 225-226 
Potential drop technique, 243-244 
Power-law deformation theory, 19-20 
Power spectrum density function, 403-404 
Pressure vessels, 287-302 
p-version finite element method 

convergence properties, 82-83 
reliability, 96-97 

R 

Raju-Newman solution 
surface and depth crack growth rate 

curves, 232 
surface crack shape change, 234-235 

Read J-integral equation, 327 
Refined polariscop schematic, 109 
Remaining-ligament strength criterion, 205 
Residual tensile strength 

filament-wound cases, 197-198 
graphite/epoxy composite, 194-211 

Root-mean-square relations, 52 

Scanning electron microscopy, 334-346 
Semicircular crack fronts, 25-29 
Semicircular edge notch, 40-46 
Semi-elliptical cracks 

composite laminates, 177-193 
convergence properties, 82-83 
eigenvalue determination, 84 
exact solutions behavior, 78-81 
finite-element mesh models, 90-96 
HRR dominance, 25-29 
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Semi-elliptical cracks--continued 
model problem, 84-90 
numerical solutions, 77-97 
p-version of finite-element method, 81- 

82 
stress-intensity factors, 41-46, 83-84 
surface flaw shape characterization, 229- 

231 
T-butt welded joints, 392-399 
weight function stress-intensity factor, 

354 
welded joints, 390-412 

Sickle-shaped cracks 
bending loading, 377 
stress-intensity factor coefficients, 366, 

368-373 
tension loading, 376 

Simplified models, surface crack analysis, 
17-22 

Single-edge notch bend (SEB) 
deep cracked, 144-148 
shallow cracked, 145-148 

Single-edge notched (SEN), 18-19 
Singular integral, finite-element hybrid 

(SIFEH), 12 
linear-elastic fracture mechanics, 11-13 

Slice synthesis technique 
comer crack stress-intensity factors, 56- 

59 
finite-element model, 225 
stress-intensity factors, 56-59 

Society of Experimental Stress Analysis 
consensus solution, 226-228 

Special element properties, finite-element 
mesh and, 70-71 

Specimen geometry 
surface flaw analysis, 113-114, 116 
thermal fatigue testing, 238-239 

Specimen-to-structure correlations, 287- 
302 

Square-root singularity, 79-81 
Strength predictions, 208-209 
Stress analysis 

surface crack, 2 
tubular threaded connections, 348-363 

Stress distribution, 349-353 
Stress gradients, 49-61 
Stress-intensity factor 

calculations, 52-53 
circular crack, 180-181 
closure-load data, 272-277 
computations and experiments, 287-302 
contour integral calculat!on, 83-84 
comer cracks, 49-61 
distribution, 107-108 

edge cracks, 394-395 
elliptic and semi-elliptic flaws, 178, 180, 

182-183, 190-193 
high-order special element, 69-70 
infinite media, 180-183 
in-plane displacement measurement, 

130-140 
loading parameter evaluation, 316-317 
nondimensional, 54-59 
notched and unnotched rods, 365-388 
orthotropic medium, 190-193 
plates, 215-236 
semicircular edge notch, 40-46 
subcritical surface flaw growth, 345-346 
surface crack, 34-47 
T-butt welded joints, 392-399 
three-dimensional finite-element analysis, 

36-38, 36-37 
transversely isotropic media, 180, 184 
threshold testing of crack closure and 

load, 303-314 
tubular threaded connections, 348-363 
weight-function calculation method, 

365-368 
weldment fatigue cracks, 390-412 

Stress-intensity solutions 
Irwin solution, 223-225 
Newman-Raju solution, 225-226 
surface flaw analysis, 223-226 

Stress ratio (R) 
crack closure behavior, 304-314 
crack shape development under fatigue 

loading, 320-321 
Stress state variation correction, 319- 

320 
STRIPE program, 81-82 
Subcritical growth, surface flaw, 333-346 
SuperaUoys, thermal fatigue testing, 237- 

238 
Surface crack growth 

computational and experimental results, 
295-302 

elastic and elastic-plastic behavior, 9-30 
failure assessment, 315-319 
fatigue crack growth computations, 288- 

291 
fracture analysis of three-dimensional 

bodies, 63-76 
HRR dominance, 24-29 
line-spring analysis, 17-21 
monotonic increasing load, 315-331 
optimization method, 291-295 
plastic hinges, 21-22 

Surface cuts, strength predictions, 205- 
208 
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Surface flaw, 112-128 
correction factors, 180, 185-186 
CT crack growth rate data, 231-232 
growth predictions, 232-235 
plates, 215-236 
shape and growth rate at depth (da/dN), 

220-223 
subcritical growth, 333-346 
shape characterization, 229-231 
size and subcritical growth, 333-346 
three-dimensional geometries, 260-285 
threshold testing of crack closure and 

load, 303-314 
Surface layer failure, 186-189 
Surface stress distribution, 349-351 

T 

T-butt welded joint 
edge crack, 394-395 
semi-elliptical surface cracks, 392-399 

Tensile-loaded surface cracks, 22-29 
Tension loading 

almond-shaped cracks, 374 
notched bar almond-shaped cracks, 379 
notched bar sickle-shaped cracks, 381 
plastically deformed surface flaw, 112- 

128 
sickle-shaped cracks, 376 
surface cracks in cylindrical rods, 370- 

372 
uncracked notched bar, 378 

Thermal fatigue testing, 237-258 
Thick-shell isoparametric elements, 69-70 
Threaded connections, surface cracks, 348- 

363 
Three-dimensional crack problems 

computations and experiments, 287-302 
evaluation of, 37-40 
fracture analysis, 63-76 
geometries, 260-285 
singular integral formulations, 12 
stress-intensity factor, 36-37 
surface flaws, 12, 36-40, 112 

Threshold testing, fatigue crack growth, 
303-314 

Through-thickness stress distribution, 352- 
353 

"Thumbnail" cracks, 100-106 
Transition crack length, subcritical surface 

flaw growth, 333-346 

Tri-axiality factor, crack front constraint 
variation, 323 

Tubular threaded connections, 348-363 
Turner's Engineering J approach, 146-147 
Two-part failure 

elliptic and semi-elliptic flaws, 178 
medium-depth flaws, 189 

U 

Unnotched rods, surface crack growth, 
365-388 

V 

Valve casing failure assessment, 317-320 
Variable-amplitude stress history, 405-408 
Variable eigenvalue algorithm, 100 
Variable loading history, 390-412 
Vertex-edge intensity factor, 88-96 
Vertex intensity factor, 86-90 
Vinyl acetate monomer (VAM) joints, 354- 

360 
Virtual-crack-closure technique (VCCT), 

38-40 
Virtual crack extension, 14-17 
Virtual grating schematic, 110 
Von Mises' stress, crack front constraint 

variation, 321-323 

W 

Weighted average stress range, 405-408 
Weight function 

comer crack, 49-52 
edge crack, 394-395, 397-398 
fiat plate, 399, 402, 410 
notched and unnotched rods, 365-388 
semi-elliptical surface crack, 398-399 
stress-intensity factors, 58-59, 365-368 
tubular threaded connections, 348-363 
welded joints, 390-412 

Weld angle, stress-intensity factor, 400 
Weldments, surface fatigue cracks, 390-412 
Weld toe radius, stress-intensity factor, 401 
Westergaard approach, in-plane 

displacement measurement, 130-134 
Width correction, stress-intensity solutions, 

226-228 
Wien bridge oscillator, thermal fatigue 

testing, 244-245 
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