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Foreword 

This publication, Dynamic Elastic Modulus Measurements in Materials, contains papers 
presented at the Symposium on Dynamic Modulus Measurements, which was held in Kansas 
City, Missouri, 25-26 May 1989. The symposium was sponsored by ASTM Committee E- 
28 on Mechanical Properties and its task group E28.03.05 on Dynamic Modulus Measure- 
ments. Alan Wolfenden, Texas A & M, presided as symposium chairman and was editor 
of this publication. 
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Overview 

STP1045-EB/May 1990 

This symposium was organized for the purpose of documenting 
theoretical and experimental techniques that are used for predicting, 
analyzing or measuring dynamic elastic modull in solid materials. 

The volume is comprised of fifteen papers which cover the 
spectrum of pertinent aspects from fundamental research to 

technological application. The invited overview paper by Berry 
illustrates the power of precise elastic modulus measurements in 
understanding the influence of mlcrostructural defects at the atomic 
level on the mechanical properties of materials, including the new 
superconductors with high critical temperatures. The other fourteen 
papers address various aspects of elastic modulus measurements, 
predictions and analyses. Examples of experimental data from high 
frequency (MHz) measurements are presented by Kinra and Dayal, and 
Blessing, and from low frequency (< 1 kHz) measurements by Wren and 
Kinra. The influence of temperature on dynamic elastic modulus is 
documented in the papers by Cook, Wolfenden and Ludtka, and Lemmens. 
Measurements and analyses of dynamic elastic moduli in composite 
materials are covered in the contributions by Heyliger, Ledbetter and 
Austin, Wolla and Wolfenden, and Datta and Ledbetter. The theory and 
modeling of elastic constants are studied in the papers by Ledbetter, 
and Datta and Ledbetter. Elegant technological use of dynamic 
elastic modulus measurements is displayed in the papers on crack 

monitoring by Carpenter, on bonded joints by Dickstein, Sinclair, 
Spelt, Segal, and Segal, and on cemented soils by Lovelady and 
Picornell. A comparison of three measurement techniques (including the 
well-known static technique) is presented by Wyriek, Poole, and Smith 
for mechanically alloyed materials. The use of computer interfacing 
for data processing of dynamic elastic modulus results forms the basis 
of the paper by Fowler. Lemmens shows in his paper that measurements 
can be made as rapidly as one per second. The volume has some details 
of the varied instrumentation necessary for dynamic elastic modulus 
measurements and the papers are well referenced. 

This volume offers guidance in the selection of appropriate 
methods of measuring dynamic elastic modulus where temperature, 
frequency and strain amplitude are of concern. It will be useful to 
materials scientists and engineers who are concerned with fundamental 
or practical aspects of dynamic elastic contants, including the 
effects of cracks. Some papers in the volume will be of interest to 
NDE and QC practitioners. 

Many existing (and future) problems in engineering and science 
are connected with the precise determination of dynamic elastic 
modulus. This book is therefore relevant in areas such as load- 
deflection, thermoelastic stresses, buckling, elastic instability, 
creep, fracture mechanics, interatomic potentials, thermodynamic 
equations of state, lattice defects and free energy. Knowledge of 
the dynamic elastic modulus of materials is of prime importance in 
the design of hlgh-speed turbines and components for the planned 
hypersonic vehicles. 
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2 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

As a major conclusion from this group of contributors, it can be 
seen that measurements of dynamic elastic modulus (and its complex 
counterpart damping) will provide both fundamental and technological 
information on the elastic (and anelastic) behavlour of solid 
materials. The measurements are particularly useful if they are 
carried out under the appropriate service conditions of frequency, 
temperature and strain amplitude. Although a wide range of 
frequencies (typically 50 Hz to 15 MHz), temperatures (approximately 

78 to 1800 K) and strain amplitudes (10 -8 to 10 -4 ) has been explored 
by the authors in this volume, there are obvious gaps remaining for 
future research. 

Alan Wolfenden 
CSIRO 
Division of Materials Science 

and Technology 
Locked Bag 33 
Clayton, Vic 3168 
AUSTRALIA 

on leave from 

Mechanical Engineering Department 
Texas A & M University 
College Station, TX 77843-3123 
USA 
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Brian S. Berry 

DYNAMIC MODULUS MEASUREMENTS AND MATERIALS RESEARCH 

REFERENCE: Berry, B. S., "Dynamic Modulus Measurements and Materials 
Research", Dynamic Elastic Modulus Measurements in Materials, ASTM STP 
1045, Alan Wolfenden, editor, American Society for Testing and Materials, 
Philadelphia 1990. 

ABSTRACT: Dynamic modulus measurements are of interest in materials re- 
search not only as a source of data on elastic behavior, but also for the insight 
they provide into structure-property relationships in general. A description is 
given of a vibrating-reed apparatus which has proved highly adaptable for studies 
of the elastic and damping behavior of thin-film and other thin-layer electronic 
materials. Results are reported for amorphous and crystalline ferromagnetic 
materials, for the high-T c superconducting oxide YlBa2Cu307_x , and for thin 
films of aluminum and silicon monoxide, to illustrate the important role which 
the dynamic modulus can play as a tool in materials research. 

KEYWORDS: elastic modulus, vibrating reed, internal friction, ferromagnetic 
materials, metallic glasses, superconductors, dielectrics. 

INTRODUCTION 

In addition to their basic significance in the description of mechanical stress-strain be- 
havior, the elastic moduli are important in materials science because they are intimately 
linked to the internal structure of solids at both the atomic and microstructural levels. For 
this reason, interest in elastic behavior is not confined to structural materials, but encom- 
passes materials of all types. In the present paper, we shall consider the application of dy- 
namic modulus measurements to amorphous and crystalline ferromagnetic materials, to a 
superconducting ceramic oxide, and to thin films. In some cases, we will see that the most 
useful information is obtained when the modulus measurements are combined with those of 
the complementary mechanical loss or internal friction, and are studied over a wide range 
of temperature or frequency for the detection of relaxation, transformation, or other phe- 
nomena caused by specific structural or defect rearrangements. 

Dr. Berry is a Research Staff Member at the IBM Research Division, T.J. Watson Re- 
search Center, P.O. Box 218, Yorktown Heights, New York, 10598. 
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4 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

With only minor variations in technique, all of the measurements reported below have 
been made with a vibrating-reed apparatus developed initially for the investigation of thin 
films of microelectronie materials supported by a high-Q substrate [1]. This apparatus has 
since proved adaptable to a wide variety of investigations, and the examples we shall consider 
below include the use of single and multilayer sample geometries. 

EXPERIMENTAL METHOD 

A simplified layout of the vibrating-reed apparatus is shown in Fig. 1. Each sample is 
secured, either by a mechanical clamp or some type of bond, to an individual pedestal base 
which in turn is clamped to the frame which carries the drive and detection electrodes. The 
electrodes are positioned around the sample with a typical gap distance of 0.5 mm to 1 mm, 
and are used in pairs to provide push-pull electrostatic drive and condenser microphone de- 
tection [1]. An electrostatic screen is placed between the two pairs of electrodes to minimize 
pickup of the drive signal. To avoid nodal positions, the drive electrodes are located at the 
free end of the sample, and the detection electrodes at about one-third of the sample length 
from the fixed end. This enables the frequency and damping measurements to be made in 
both the fundamental cantilever mode and a number of higher overtones. The measurements 
are performed in vacuum primarily to avoid atmospheric damping and to protect the sample 

ELECTROSTATIC 
SPECIMEN t N .~P .Rr162  

I 
I 
I 

I 
I 
I 

VACUUM MAGNETIZING 
CHAMBER COILS 

FIG. 1 Schematic layout of the vibrating-reed apparatus. 
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BERRY ON MATERIALS RESEARCH 5 

at elevated temperatures. The heater enables operation to 800K; with the provision of a 
conduction cooling arrangement measurements have also been made down to 40K. For 
measurements in a longitudinal magnetic field, the vacuum chamber (which has an external 
diameter of 15 cm) may be surrounded either by a pair of Helmholtz coils or by an 
electromagnet. A transverse field may also be obtained without reorienting the internal ar- 
rangement by placing coils concentrically around the vacuum chamber. 

For the study of supported thin films, it is necessary to employ a thin-reed substrate 
chosen for its intrinsically high-Q behavior, and to avoid the relatively lossy mechanical 
clamp in favor of an integral bond. Suitable pedestal-mounted reed substrates of 50#m 
thickness and with Q's approaching 106 can be prepared from fused silica and from single- 
crystal silicon. These and other experimental details have recently been reviewed elsewhere 
[2]. Because of differences in the manner of handling the data from single-layer and multi- 
layer samples, it is convenient to divide the presentation of results into two sections. We 
begin with the simpler geometry, where the test sample is wholly comprised of the material 
of interest. 

RESULTS FOR SINGLE-LAYER SAMPLES 

The dynamic Young's modulus E of a uniform reed of thickness a, length g and density 
P can be calculated from the resonant frequencies fn using the relation 

fn = (Cna/g2)(E/P)  1/z, (1) 

where C, is a mode parameter whose values are listed in standard texts [3]. Furthermore, to 
the extent that external losses are negligible, the internal friction of the material is repres- 
ented by the measured damping. This may be conveniently expressed either by the loga- 
rithmic decrement of free decay, 8, or by the inverse Q value. For small damping, these 
quantities are interrelated by the expression Q-1 = d/~r. 

The AE-effect in Ferromagnetic Materials 

The AE-effect (the dependence of E on magnetization M) is one of several interrelated 
magnetoelastic effects that can occur in ferromagnetic materials due to the tendency of an 
applied stress to induce changes in the domain structure [4]. Because these changes are ac- 
companied by a nonelastic (magnetostrictive) strain that adds to the normal elastic strain, 
the AE-effect corresponds to a reduction of the modulus to a value below that observed at 
saturation, E s, where the aligned domains are held fixed by the applied field. We may thus 
write 

A E / E  = (E~ - E ) / E  = (E -1 - E s l ) / E Z  1, (2) 

where the last expression is included because it is frequently more useful to think of the 
AE-effect in terms of changes in the compliance or reciprocal modulus E -1 rather than in 
terms of E itself [5, 6]. 

In recent years, an improved understanding of the AE-effect has emerged from studies 
of a relatively new class of materials, namely the ferromagnetic metallic glasses produced by 
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6 DYNAMIC ELASTIC MODULUS MEASUREMENTS 
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FIG. 2 The AE-effect shown by a strip of stress-relieved amorphous 
FeTsPxsC10 of 0.003 cm thickness, as determined by vibrating-reed meas- 
urements at approximately 400 Hz. The broken lines show the estimated 
contributions that, at higher frequencies, become rate-limited by macroscopic 
eddy-currents, microscopic eddy-currents, and hysteric domain movements. 
From reference [5]. 

rapid-solidification methods. Two factors have contributed to these advances. First, the 
magnitude of the AE-effect is frequently impressively large in these materials. For example, 
the magnitude of A E / E  shown in Fig. 2 for the stress-relieved a - FevsP15Ct0 alloy is two or- 
ders of magnitude larger than for crystalline Fe, or for the same sample after a crystallization 
anneal. The second important factor relates to the small sample thicknesses (typically _< 
50/~m) with which most metallic glasses are produced. For such thin samples, and for the 
relatively low vibration frequencies realized experimentally, the eddy-current skin depth is 
much greater than the sample thickness. The vibrating-reed experiments are thus not subject 
to the shielding which tends to inhibit a macroscopic stress-induced change in the bulk 
magnetization. As a consequence, vibrating-reed experiments permit the observation of a 
total, equilibrium, or fully-relaxed AE-effect which includes an important "macroscopic" 
contribution (Fig. 2) that is typically excluded from resonant-rod measurements on thicker 
samples. This exclusion is clearly demonstrated in Fig. 3 which shows, for a nickel reed of 
intermediate thickness, a progressive reduction in the AE-effect as the measurement fre- 
quency is raised by the use of the fundamental mode and a series of overtones. Before 
leaving Figs. 2 and 3, we may note that the macroscopic AE-effect characteristically vanishes 
for both the demagnetized and saturated conditions, and passes through a maximum value 
at M / M  s ~- 0.5. As a consequence, the low-frequency dynamic modulus of magnetically soft 
materials can be expected to exhibit a characteristic "modulus minimum" at intermediate 
magnetizations. Such minima have indeed been observed for a number of common magnetic 
materials [5]. 
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BERRY ON MATERIALS RESEARCH 7 
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FIG. 3 The AE-effect shown by a strip of polycrystailine nickel of 0.152 cm 
thickness, as measured at four different frequencies. The changes observed 
are due primarily to the exclusion of the macroscopic AE-effect. From ref- 
erence [7]. 

One of the earliest and most striking observations concerning the AE-effect is the pro- 
nounced maximum observed for nickel near 450K. This was first observed by Siegel and 
Quimby [8] more than 50 years ago, using an early form of the composite oscillator tech- 
nique. We have reinvestigated this behavior using the vibrating-reed method and annealed 
high-purity samples, and have observed a AE-effect three times larger than that reported by 
Siegel and Quimby. These results are shown in Fig. 4, together with literature values for the 
saturation magnetostriction k s and a term K c representing the magnetocrystalline anisotropy 
energy difference between the hard < 100> and the easy < 111 > directions. From the be- 
havior shown, we conclude that the rapid rise in AE/E  on heating above room temperature 
is primarily associated with the decline in K c, which enhances the contribution to AE/E from 
stress-induced domain rotation. At higher temperatures, where K c effectively vanishes, we 
may postulate a switch-over to a regime in which AE/E is controlled by a residual internal 
stress ai, and where the decline in AE/E is essentially controlled by the decrease in ~s that 
accompanies the approach to the Curie point. Combining earlier expressions [4] for these 
different regimes, we may express AE/E in the form 

= Es + ) ' ( 3 )  

where k~ and k 2 are constants that may be evaluated by pinning Eq. 3 to the data at two 
chosen temperatures (300K and 540K). As shown in Fig. 4, the calculated curve obtained 
by this procedure is an excellent fit to the experimental data. 

To conclude our discussion of magnetic materials, it is worth recalling that the most sig- 
nificant use of the AE-effect in recent years relates to the discovery of a reversible magnetic 
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8 DYNAMIC ELASTIC MODULUS MEASUREMENTS 
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FIG. 4 Temperature dependence of the bE-effect in a demagnetized reed 
of annealed high-purity nickel, compared with the curve calculated from Eq. 
3 using the magnetostriction and anisotropy parameters included above. 

annealing response in metallic glasses [9-11]. Magnetic annealing (i.e. annealing in a mag- 
netic field) provides a means of developing a uniaxial magnetic anisotropy in an amorphous 
alloy through the development of a state of directional short-range order. The technological 
importance of magnetic annealing is that it can produce improved magnetic properties along 
certain selected directions, and can thus enhance the performance of transformers and other 
non-rotating devices. Finally, we note that the bE-effect has also been applied in a novel 
manner to investigate the kinetics of the magnetic annealing process [10]. 

Anelastic Relaxation Behavior of a High-T e Superconducting Oxide 

Long before the discovery of high-temperature superconductivity in ceramics such as the 
now-famous "1-2-3" compound Y1Ba2CU3OT_x, dynamic modulus and damping measure- 
ments had already proved useful for the study of conventional metallic superconductors such 
as elemental tin [12] or the A15 intermetallic compounds [13]. It is therefore not surprising 
that similar measurements have been promptly applied to the new high-T e materials that are 
currently under intense worldwide investigation [14]. Rather than attempt a survey of this 
rapidly-moving field, we shall focus on one result which illustrates a quite general point; 
namely the importance that can sometimes attach to the joint measurement of both the 
modulus and the damping behavior. Figure 5 shows some of our internal friction results 
obtained by the vibrating-reed method on a thin strip of the 1-2-3 material. This sample was 
prepared from a polycrystalline sintered disc which had been annealed in oxygen to achieve 
a T~ near 90K. The data of Fig. 5 clearly indicate a strong damping effect in the vicinity of 
T o which immediately raises the possibility that the mechanism involved may relate directly 
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FIG. 5 The overlapping internal friction peaks exhibited in the vicinity of 
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conductor, tested at a nominal frequency of 380 Hz. 
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10 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

to the superconducting transition. On the other hand, a careful analysis of these results 
reveals that they can be fitted remarkably well by two overlapping and slightly broadened 
Debye peaks. Peaks of this shape are not usually associated with critical point phenomena, 
but instead are characteristic of a thermaUy-activated relaxation process involving the 
stress-induced ordering of asymmetric structural groups or defect centers [3, 15]. The basic 
question posed by Fig. 5 is therefore the following: Does the damping near T c correspond to 
an instability associated with a phase transition, or is it due to a relaxation process which by 
coincidence happens to be near T c ? To answer this question, we may consider first the evi- 
dence available from resonant frequency measurements that provide information on the 
complementary behavior of the dynamic modulus. Whereas phase transitions are typically 
associated with a dip or cusp in the modulus at T c, relaxation produces a monotonic variation 
in the modulus from a larger unrelaxed value on the low-temperature side of the peak to a 
lower relaxed value on the high-temperature side. Furthermore, the magnitude of the relax- 
ation strength given by the size of this change should agree with that computed independ- 
ently from the shape and size of the internal friction peak. As shown by Fig. 6, such a 
comparison clearly indicates that we are dealing with a relaxation process. This conclusion 
has also been confirmed by experiments in which the peak has been observed to shift to 
higher temperatures as the frequency of measurement is raised by the use of overtones. The 
activation energies so obtained for the component peaks of Fig. 5 are 17kJ/mol and 
21kJ/mol, in good agreement with the values estimated directly from the peak temperatures 
with the assumption of an attempt frequency of normal magnitude. Based on a systematic 
study involving progressive changes in the oxygen stoichiometry, an update of earlier con- 
clusions [16] concerning the relaxation behavior of the 1-2-3 superconductor can be sum- 
marized as follows: 

(i) The doublet peak of the type shown in Fig. 5 appears to be a characteristic of the fully- 
oxygenated material, and indicates that the 1-2-3-7 stoichiometric compound contains in- 
trinsic disorder involving two similar but distinct defects or structural groups of low 
symmetry. These are capable of reorientation with such low activation energies (~ 
19kJ/mol) that they are in motion at temperatures well below T c. It seems very unlikely that 
such low activation energies correspond to jumps producing long-range atomic motion, and 
they are believed instead to indicate the presence of localized crankshaft motions of "off- 
center" atoms, moving over distances corresponding to only a fraction of an interatomic 
spacing. 

(if) The peaks of Fig. 5 undergo a well-defined sequence of changes in response to a pro- 
gressive reduction in the oxygen content, and are ultimately replaced by a third strong peak 
at a lower temperature and with an activation energy of only 13kJ/mol. During these 
changes, the component peaks appear simply to change in magnitude while maintaining an 
approximately constant shape and location. The impression conveyed by this behavior is that 
deviations from stoichiometry are accommodated by changes in the relative proportions of 
a few distinct defect configurations which retain their basic identity over appreciable ranges 

of composition. 

(iii) Finally, while the family of low-temperature peaks referred to above appears to repre- 
sent the most intriguing aspect of the internal friction behavior, it should also be noted that 
another prominent peak occurs well above room temperature, in the region of 600K. This 
peak has an activation energy of about 125kJ/mol, which readily identifies it with the 
diffusive motion of oxygen atoms in the basal plane of the 1-2-3 structure, and also exhibits 
an interesting sequence of changes in position and strength as the oxygen deficit is varied. 
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BERRY ON MATERIALS RESEARCH 11 

RESULTS FOR SUPPORTED FILMS 

The use of a composite reed, prepared by deposition of the material of interest on one 
or both sides of a suitably chosen substrate, has found considerable application for the dy- 
namic mechanical analysis of thin-layer microelectronic materials [2]. Although developed 
independently and with widely different geometries and applications in mind, it is of interest 
to note a close parallel to standard testing methods that utilize an Oberst test bar [17]. For 
reasons of analytical simplicity and experimental convenience, the preferred configuration 
is that of a symmetrical trilayer, in which layers of equal thickness a L are added to each side 
of a substrate of thickness a s. For this configuration, a given mode frequency of the com- 
posite reedfc ,  is related to that of the blank substrate, f s ,  by the relation [2] 

/ 2 
(fc fs)  = (1 + 7sr) / (1 + XsT), (4) 

where "/ST -- { [1 + (2aL/as)] 3 _ 1 } E L / E s (5) 

and XST =- Is / IIS = 2aL PL/aSPS. (6) 

Here, E L, Is and PL denote the modulus, mass/unit length and density of the added layers, 
and E s, #s and Os are the corresponding quantities for the substrate. The damping of the 
composite reed, d c is given by 

( ) 1 8 s + 6L, (7) 
8c = 1 + YST 1 + "/ST 

where 8 s and d L denote the logarithmic decrements which would be exhibited by the 
substrate and layers, respectively, if tested individually under otherwise identical conditions. 
For the important special case aL<<a s which represents the "thin-film limit", Eq. 5 simpli- 
fies to 

YSr = 6aLEL/asEs, 

and Eqs. 4 and 7 can be put in this form 

(fc / fs)  2 - 1 = "L e s  

and 

PL t aL 
Os -~s  

aLEL ) 
dC -- 6S ffi 3nL ~ 6L, 

(8) 

(9) 

(lO) 
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12 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

where the coefficient n L is set equal to 2 for the situation in which both sides of the substrate 
carry a layer a L. For the thin-film limit, Eqs. 9 and 10 also apply, with n L = 1, to the case 
of a layer a L on only one side of the substrate. 

It is evident from Eq. l0 that, provided a substrate of sufficiently low damping is avail- 
able, the observed damping of the composite will be dominated by the behavior of 8L- On 
the other hand, the determination of the modulus E L by the use of Eq. 9 can present greater 
difficulty. One reason is that the difference between fc  and f s  is usually quite small. Sec- 
ondly, it is evident from Eq. 9 that this difference involves two factors; a positive contrib- 
ution from the stiffness term EL/E s and a negative contribution from the inertia term 
oL/Os. In favorable circumstances, such as those discussed below, the stiffness term is the 
dominant effect. However, this is not the case for films of the heavy metals, such as gold 
or lead. 

Measurements on Aluminum Films 

Because of its low density and a near absence of elastic anisotropy, aluminum provides 
a favorable material with which to test Eqs. 4 or 9. The results of Fig. 7 were obtained with 
high-purity evaporated aluminum films deposited in the symmetrical trilayer configuration 
on calibrated fused silica reeds of 50#m thickness. The increase observed in the reed fre- 
quencies is seen to agree satisfactorily with the behavior calculated with assumption that the 
films possess normal (bulk) values of density and Young's modulus. The lower calculated 
line in Fig. 7 is included to show the magnitude of the inertia loading term in relation to the 
stiffening effect provided by the modulus. 

0,1 

,,_u 

1.2 

I.I 

I.C 

0 . 9  

P ' I ' I ' I ' I ' I /  

A.t FILMS ON 50/~m SiO~ / , , f / &  

/ z~ AND ELASTIC TERMS 

THEORY WITH "~ "~.~ 
M A S S  T E R M  ONLY ~ ~  

, I , I , I , I , I 
0 0 . 5  I 1.5 2 2 . 5  

F I L M  T H I C K N E S S  ( / ~ m )  

FIG. 7 A test of Eq. 4 for the symmetrical trilayer configuration obtained 
by evaporating aluminum films of equal thickness on both sides of a thin reed 
substrate of fused-silica. 
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FIG. 8 The temperature coefficient of f ~  for symmetrical trilayer samples 
of aluminum on fused silica, demonstrating the null obtained near a film 
thickness of 2.5 #m. 

In an extension of these measurements, we have found that it is possible to fabricate a 
composite reed oscillator of remarkable temperature stability, as may be of interest for some 
electromechanical applications. This temperature-compensated condition is achieved with 
a reed geometry that leads to a cancellation of the opposing effects of temperature on the 
moduli of the fused silica substrate and the deposited films. Figure 8 shows that the com- 
pensated condition for 50 gm reeds of fused silica is obtained with aluminum films of ap- 
proximately 2.5 gm thickness on each face of the reed. 

Elasticity and Structural Relaxation of Silicon Monoxide Films 

As discussed earlier in this section, a determination of the Young's modulus of a thin film 
by the composite vibrating-reed method requires measurement of the reed frequencies be- 
fore and after deposition of the film. Although fused silica is often a desirable choice for a 
substrate, its electrically insulating character means that blank reeds cannot be measured by 
the normal electrostatic excitation and detection methods applied to conducting samples. 
Our initial approach to this problem was to excite the blank reed mechanically (simply by 
tapping the vacuum chamber), and to determine the frequency stroboscopically. A major 
limitation of this approach is its restriction to the fundamental mode. Fortunately, this dif- 
ficulty has been resolved by the discovery of a conditioning or activation treatment that 
produces frozen-in charges on the blank reed. This enables measurements to be made in a 
sequence of modes using essentially the same procedure as that employed for conducting 
samples [18]. An important additional advantage of this procedure is that it provides a means 
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14 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

for the study of dielectric films, as in the work of Lacombe and Greenblatt on various 
polymeric materials [19]. We shall consider here the inorganic thin-film dielectric silicon 
monoxide. Unlike its better known relative SiO v the vapor pressure of the monoxide SiO is 
high enough for films to be prepared in vacuum from a sublimation source. The measure- 
ments of Fig. 9 were made possible by the activation procedure mentioned above, and were 
obtained at the third overtone of the sample before and after deposition of the films. The 
increase in the frequency of the blank reed with temperature is a direct indication of the 
unusual temperature dependence shown by the Young's modulus of fused silica. This be- 
havior is also exhibited by the composite reed, due to the dominant effect of the substrate. 
Deposition of the films is seen to produce an increase of over 5% in the reed frequency, in- 
dicating that the stiffness term in Eq. 9 exceeds the inertia term. For the as-deposited con- 
dition, the modulus of SiO is found to be 92 GPa, which is significantly higher than that of 
fused silica (73 GPa). The temperature coefficient ( l / E )  dE/dT is also of considerable in- 
terest in view of the unusual positive coefficient ( + 1.7 x 10 - 4 / K )  exhibited by fused silica. 
It appears from the present measurements that SiO is almost at the crossover point to more 
normal behavior, with a small but negative coefficient of about -2 x 10 - 5 / K .  

The upper two curves of Fig. 9 illustrate that subsequent annealing treatments produced 
a significant increase in the modulus of the as-deposited films. Results for a sequence of 
isochronal anneals up to 1073K are shown in Fig. 10. It can be seen that the modulus in- 
creased by 17% in a smooth sigmoidal manner to a final value of 108 GPa. At the same time, 
large complementary changes occurred in the internal friction behavior [2]. Together, these 
changes are clear indicators of a structural relaxation to a denser and stiffer configuration 
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FIG. 9 Vibrating-reed data for SiO films deposited in the symmetrical 
trilayer configuration on a blank substrate of fused silica. The frequency in- 
crease produced by the post-deposition anneals reflects an increase in the 
film modulus due to structural relaxation. 
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FIG. 10 Comparison of the effect of l-hour isochronal anneals on the 
room-temperature modulus and internal stress of SiO films deposited on 
fused silica substrates. 

containing less free volume. To verify that densification occurred, sister samples have been 
studied by the bending-bilayer method to observe the effect of annealing on the film stress. 
As shown in Fig. 10, the tensile stress in the SiO films was found to increase by almost an 
order of magnitude before passing through a pronounced maximum near 673K due to the 
onset of stress relaxation by viscous flow. The increase of stress observed at lower temper- 
atures is a direct indication of densification with elastic accommodation of the shrinkage 
strain. The density change calculated from the maximum increase of stress in Fig. 10 is 
0.7~ from this we may estimate that the total increase of 17~ in the modulus is associated 
with a density increase of about 1.5%. 

CONCLUDING REMARKS 

The purpose of this article has been to show by the use of a few examples that the dy- 
namic modulus, particularly when combined with the dynamic loss or internal friction, is an 
important tool in materials research. The examples chosen have been taken from the au- 
thor's work primarily on the grounds of familiarity; without doubt other writers would have 
made an entirely different selection for much the same reason. The collective proceedings 
of this Symposium will therefore provide the reader with a broader and more balanced per- 
spective of the field as a whole than has been attempted here. 
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ABSTRACT: The current methods of ultrasonic modulus measurement 

make, implicitly or explicitly, the following key assumption: 

The front-surface and the back-surface reflections of an 

incident pulse are separable in the time-domain, i .e.,  the plate 

is several wavelengths thick. By combining standard ultrasonic 

methods with the theory of Fourier Transforms, a new technique 

has been developed which removes the preceding restriction. The 

theoretical and the experimental procedures are described in 

detail. The efficacy of the method is demonstrated for three 

disparate materials: (1) non-attenuative, non-dispersive; (2) 

weakly attenuative, non-dispersive; and (3) highly attenuative, 

highly dispersive. 
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Fourier transform of f ( t )  

Fourier transform of g(t) 

modulus of a complex number 

number of digit iz ing points 

Reflection coefficient in medium i from medium j 

Transmission coefficient for a wave incident in medium i and 

transmitted into medium j 

sampling interval in time domain, ns 

signal length, ~s 

a characteristic length of the microstructure, mm 

longitudinal phase velocity in specimen, mm/~s 

longitudinal and shear phase velocity in specimen, mm/~s 

longitudinal phase velocity of wave in water mm/~s 

group velocity in specimen, mm/~s 

frequency, MHz 

cut-off frequency, MHz 

frequency resolution, MHz 

plate thickness, mm 

/-1 

complex wavenumber, k I + ik2, mm -1 
- I  u/c, real part of wavenumber in specimen, mm 

attenuation coefficient, nepers/mm 

wavenumber in water, real, mm -I 

integer number of complete round trips taken by 

across the plate thickness 

time, ~s 

particle displacement 

distance 

standard deviation of a data sample 

normalized frequency, ~a/c I 

wavelength, mm 

normalized wavenumber, ~a/<cl> 

density of specimen, g/ml 

density of water, g/ml 

phase of a complex number 

circular frequency, rad/~s 

aggregate property of a composite 
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20 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

INTRODUCTION 

The elastic moduli of an isotropic material can be obtained by 

measuring the speed of longitudinal and shear waves, and density. 

The measurement of two wavespeeds is equivalent to measuring the two 

elastic moduli. The classical method of measuring the speed of sound 

in non-dispersive media is the t ime-of-f l ight method, see Reference 

[ I I  for example. We note that in a non-dispersive isotropic medium 

the phase velocity and the group velocity are identical [21. When 

the material is either dispersive (wavespeed depends upon frequency) 

or exhibits frequency - dependent attenuation this method breaks down 

and a suitable method then is the so-called toneburst method. Here, 

a burst of pure tone, typical ly about ten cycles in duration is used; 

this places a constraint on the specimen thickness. I t  must be thick 

enough so that the toneburst reflections from the two faces of the 

specimen can be clearly separated in time-domain i .e. i t  should be 

roughly five-wavelength thick. For example, in steel at, say, one 

MHz frequency, the required minimum thickness would be about 30 mm. 

There are many situations of practical importance where one must 

conduct an ultrasonic examination of specimens which are considerably 

thinner than 30 mm or f ive wavelengths. For example, aircraf t  and 

aerospace structures using graphite/epoxy or metal-matrix composites 

employ panels as thin as one mm. By combining standard FFT methods 

with conventional ultrasonics we have developed a method by which one 

can measure the dynamic modulus of thin specimens (sub-millimeter or 

sub-wavelength in thickness). A detailed description of this 

technique is the central objective of this paper. We w i l l  i l l us t ra te  

the use of this technique on three d is t inct ly  disparate materials: an 

aluminum, an epoxy, and a particulate composite. I t  w i l l  be 

demonstrated that this technique works equally well for thin or thick 

specimens, and for dispersive as well as non-dispersive media. 

THEORY 

Consider an in f in i te  elastic plate (whose dynamic modulus needs 

to be measured) immersed in an elastic f lu id (water). A Lagrangian 
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KINRA AND DAYAL ON SUB-WAVELENGTH SPECIMENS 21 

diagram indicating the space-time location of a wavefront which 

occupied the position x=O at time t=O is shown in Fig. 1. A plane- 

fronted, finite-duration pulse, ray 1, is normally incident on the 

plate. This results in an in f in i te  series of ref]ected and 

transmitted pulses. The expressions for the reflection and 

transmission coefficients of a displacement wave for perfectly 

elastic media may be found in Achenbach's book [3]. Let the 

displacement in the incident f ie ld be given by 

u inc = fo(mt - koX ) (i) 

WATER 

X X--ft 

SPECIMEN WATER 
20 

15 /7 ~ . ~ 1 6  

11 ~+ 8 
, ~ 1 2  

l 9 ~ q 

z=b  

FIG. 1 -- Various reflections and transmissions f rom a plate  
immersed  in water.  

where fo(S) z 0 for s<O. Here m is the circular frequency and k o is 

the wavenumber of a monochromatic harmonic wave in 

water; c o = ~/k o. The displacement f ie ld along the various 
reflected rays may be written as 
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22 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

u 2 = RI2fo(S-S2); s 2 = 2koa 

u 6 = TI2R21T21fo(S-S6); s 6 = 2koa + 2kh 

2 : 2koa + 4kh ulO = T12R21T21fo(S-S10); slO 

(2) 

: o  

Here, s = mt + koX, h = b-a is the plate thickness, Rij  is the 

ref lect ion coeff ic ient in medium i f rom medium j ,  T i j  is the 

transmission coeff ic ient for a wave incident in medium i and 

transmitted into medium j ,  k=m/c, c is the phase veloci ty in the 

plate, and 
PoCo - pC 

R12 = PoCo + pC = -R21' 

2PoC 0 
TI2 = PoCo + pc - 2 - T21 ' (3) 

where Po and p are, respectively, the density of water and the plate 

material. The entire reflected f i e l d ,  u r = u 2 + u 6 + uio + . . .u=, 

may be writ ten as 

u r Z R;llfo(S-Sm), = RI2f~ + TI2R21T21 m=l 

s m = 2 koa + m 2kh. 

(4) 

In an exactly analogous manner, one can write down the 

expressions for the transmitted pulses. With s = mt - k x 
o 

u 4 = Tl2T21fo(S-S4); s 4 = h(k-ko) 

u 8 = T12 R~I T21 fo(S-S8);  s 8 = h(3k-ko) C5) 

u12 = T12 R~I T21 fo(S-Sl2); s12 = h(Sk-ko) 

u 
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The total transmitted field may be written as 

2m 
= Z R21 fo(S-Sm ), ut T12 T21 m=O 

s m = h [(2m+i) k-k o] (6) 

23 

In eqs (4) and (6) m is the number of complete round trips taken by 

the wave across the plate thickness h. 

The Fourier transform of a function f ( t )  is defined as 

F*(~) =r189 f~f(t5 ei~tdt' - ~<~<~ (Ta) 
- : o  

with the associated inverse transform given by, 

i =: ~. �9 

f ( t )  =r ~ F (~) e]mtd~, - ~ < t < ~ (7b) 

Analysis for Thick Specimens 

We f i r s t  consider the case of a relatively thick specimen such 

that various pulses in Fig. 1 can be clearly separated from each 

other in the time-domain. Let f ( t )  be the signal corresponding to 

ray 2 and g(t) be the signal corresponding to rays 2 and 6 combined 

sensed by a transducer at x=O. (This is the so-called pulse-echo 

mode). Then 

f ( t )  = RI2 fo(wt - 2koa), (8) 

and g(t) = T12R21T21fo(~t - 2koa - 2kh) + f ( t ) .  (95 

Let F (~), G (w) and Fo(m ) be the Fourier transforms of f(tS, g(t) 

and fo( t ) ,  respectively. Then, a straightforward application of the 

shifting theorem for Fourier transforms yield 

-i2koa . 

F*(w) = R12 e F o (mS (105 

. . -i2koa T12T21~i2kh[ G (~) = RI2Fo(~) e [ i  - ( i i )  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  W e d  D e c  2 3  1 8 : 4 2 : 0 7  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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i 

T12T21~i2kh and G _ ~ =  I - (12) 
F (m) 

I t  is emphasized that in the foregoing i t  is assumed that the 

plate behaves in a perfectly elastic manner i.e. the wavenumber k is 

real and c=m/k is a constant. The key term in eqs (11) and (12) is 
~i2kh or ~i2hm/c. Thus, in eq (11) i f  one plots IG*(m)I vs m i t  

wi l l  be characterized by a series of resonance peaks whose spacing is 

given by a(2h~/c) = 2n, or in view of ~ = 2.f, by 

c = 2h af (13) 

Measurement of the longitudinal wavespeed c in aluminum using eq (13) 

is i l lustrated in Fig. 2. Here F(~) = IF*(~)I and G(~) = IG*(~)I. 

10.0 

7.5 

s.o 

2.5 

0 5 

S A M P L E  A L U M I N U M  
= 0 .502 M H z  

I | c = 6.375 mm/~s  

i �9 

lO 15 
Frequency, MHz 

20 

FIG. 2 -- Magnitudes of fourier transforms of f(t) and g(t) 
when pulses can be separated. 
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Note that G(m) consists of the transducer response, F(m), 

superimposed by an oscil lation due to e -i2h~/c term. 

A further improvement in the measurement method can be achieved 

by plotting (G (m)/F (m) - i ) ,  eq (12). This is i l lustrated in Fig. 

3. By taking out the shape of the transducer response we are le f t  

with oscillations due to the constructive and destructive 

interference between the front-surface (ray 2) and back-surface 

reflections (ray 6). 

Even though eq (12) is derived for an elastic material, by a 

straightforward application of the Correspondence Principle of the 

theory of Linear Viscoelasticity, i t  may be shown that i t  is 

rigorously valid for a linear viscoelastic material provided the 

damping is small i .e. in k=k1+ik2, k2/k1<<1 113). We rewrite eq (12) 

aS 

1 
W 
0 

i-- 

0 
Z 
L~ 

~r 

-I 

- 2  

2 

-i2kh (G* e = - (~)/F*(m) - 1)/TI2T21 = Met* (14a) 

i 

SAMPLE ALUMINUM 
r ~ 2  NMz 

= ' 6 .  375 m m / ~ c  
G ( ~ ) / F  ( ~ )  - I  

AA 
V-I 

   AAAAAAAA  
vvvvvv vvv V 

A AA 
V"V' iv 

FIG. 3 -- Magnitude of (G*-F*)/F* from fig. 2 i.e. fourier transform 
after deconvolution. Resonance spacing can be measured 
more accurately from the zero line crossing. 

I. I I 
7 lO 13  IB 

FREQUENCY. 1 ~ (MHz) 
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Then, by equating real and imaginary parts 

and 

where 

kl(~ ) = - r 

k2(~) = (an M)12h, 

M = I[(G (~)/F (~)) - 1]/TI2T211 

(14b) 

Since k1(~) = ~/C and ~ = 2,f 

c(~) 4.h 
= (~ -7~ '  (15a) 

and k2(~) = (~nM)12h. (15b) 

These are the desired equations for calculating the phase velocity 

and the attenuation. 

Now consider the transmitted f ie ld for a thick specimen. Two 

measurements are made. In the f i r s t ,  the specimen is removed from 

the water Dath i.e. the wave travels solely through water. Let the 
receiving transducer be located at some x = I > b. 

Then uinC(l,t) ~ f ( t )  = fo (~ t  - kol ) The specimen is now inserted 

in the wavepath and the signal due to ray 4 alone is recorded. Thus, 

u4(l , t )  ~ g(t) = TIzTzlfo(~t - kol _ 2koa _ kh). Then, 

I f  

* _i(kh+koh ) 
FG,(~)= T12T21 e 

. ik h 
G (~)e o 
, - is set equal to Me im then 
F (~)T12T21 

k1(~) = - r 

(16) 

(i7a) 

and k2(~) = (~nM)/h 

where M = --.b+-~I/TI2T21. 
F (~)I 

Substituting k I = 2~f/c, we get 

(17b) 

2~h 

t-~/t) (1~a) 
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and k2(~ ) = (i/h) gnM (18b) 

In the foregoing, since two independent measurements are 

necessary, the random errors are doubled. In the following, we 

propose a variation on this theme wherein k1+i k 2 can be deduced 

from a single experiment, resulting in an improved accuracy. 

With reference to eqns. (3) and (5), when the acoustic 

impedance of the plate is comparable to that of water the f i r s t  

transmitted signal (Ray 4) is very large but the successive 

transmissions (Ray 8, etc) are small and one is forced to use the 

method described above. Note that u8/u 4 = R~ I. I f  

pc >> PoCo then R~I is a significant fraction of unity and u 8 

remains comparable to u 4. (For example, for the case of aluminum in 

water, pC/PoC ~ = 11.43, R21 = 0.83 and R~I = 0.69). Under such 

circumstances u 4 may be viewed as the incident f ie ld and the 

following approach yields ~ re  accurate results. Let f ( t )  and g(t) 

be, respectively, the signals corresponding to rays 4 and 8, 

let F (~) and G (~) be their Fourier transforms, then 

G,(~) = R~ I ~i2kh (ig) 
F (~) 

As before, i f  we set G (~)/F (~) Rzl = Me1~ then, Eq. (15) can be 

used to calculate the wavespeed and attenuation. In the following 

for brevity, these methods wi l l  be referred to as Separable Pulse 

Method (SP). 

We note that this method is equally effective for dispersive 

media. From eq (14) one plots k I vs. ~. A secant to the curve 

yields inverse of the phase velocity (phase slowness). For 

dispersive media a quantity of interest is the group velocity. This 

is the speed with which energy propagates in a medium, 

Cg = B~/Bkl; this too can be computed from the phase plot, and eq 

(14b) yields frequency dependent attenuation. Finally, we introduce 

a normalized attenuation k2x. This is the attenuation of a wave over 

one wavelength. The motivation for this particular normalization is 

that for most engineering materials, such as epoxies and plastics, 

k2~ is independent of frequency. 
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Analysis for ]hin Specimens 

In this paper the qualifiers "thick" and "thin" are used in the 

following sense. When various reflections or transmissions 

corresponding to a short duration pulse can be separated in the time- 

domain, the specimen is considered thick. However, the duration (or 

length) of the pulse depends on the center-frequency of the 

transducer. Hence, with reference to the absolute dimensions of the 

specimen the use of the word "thick" is quite arbitrary. On the 

other hand, the word "thick" is not arbitrary with respect to the 

wavelength: a specimen is considered thick i f  h>3x. 

The total reflected field comprising rays 2, 6, 10, 14 

. . . . . .  at x=O is given by eq (12) as 

ur(o,t) ~ g(t) = R12fo(~t-2koa) + 

R~m-1)f ( oa-m2kh) (20) T12R21T21m=Z I 0 ~t-2k 

Note that ray 2 cannot be used as the reference signal because i t  

cannot be separated from the subsequent rays. One has to conduct a 

separate experiment as follows: the thin coupon is replaced by a 

thick coupon with the front surface precisely at x=a. Let the front 

surface reflection be labeled f ( t ) ,  then 

f ( t )  : Rl2fo(mt-2koa) 

-i2koa . 
F*(~) = Rl2e Fo~) 

* * ~ n2(m-1)c*z , ei[2ko a+m 2kh[ (21) 
G (~) = F (m) + T12R21T21mZI= "21 ro~WJ 

Let Z = R~I ~i2kh, IZI<I, (22) 

Then, G_. _ I = ~TI2T21 mZ__ Z m 
F R12R21 =I 

Observing that for (Z I < i ,  (I-Z) - I  = I+Z+Z 2 + . . . .  . and defining 

R R  * 
B = 12 2 1 ( G  (~} - i )  

TI2T21F*(~) 

we get Z = B (23) 
I+B 
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From Z one can readily calculate the complex-valued wavenumber k(m). 

For completeness we include here a variation of this method. 

Suppose a thick coupon to obtain a reference signal is not 

available. One can then use a thick specimen of some other material, 

for example, aluminum. Let the acoustic impedance of this material 

be p~c~. Let the front-surface reflection be f(t)=Rfo(wt-2koa) where 

the reflection coefficient R = (PoCo - plCl)/(PoC 0 + plCl), and g(t) 

is s t i l l  given by eq (18). As before with 

B : R12R21 jR___ G*(~) -1], 
T12T21 R12 F (~) 

(24) 

~ikh BI( I+B).  (25) Z = R  I = 

In the following, for brevity, these methods wi l l  be referred to 

as Non-Separable Pulse Method (NSP). 

We now consider the transmitted f ie ld.  Here a second transducer 

is used as a receiver at some x = l>b. To obtain a reference signal 

the specimen is removed and the signal through water is recorded. 

f i t )  = uinC(l,t) = fo(~t-kol) 

Let g(t) be the total transmitted f ie ld ,  rays 4, 8, 12 . . . .  ~ then 

from eq (6) 

2m fo[mt_kol_h{(2m+1)k_ko}] ' = Z R21 g(t) TI2T21 m=O (26) 

* T12T21~ih(k-ko) 
and G (~) = ~ (27) 

~i2kh 
F (~) 1-R~I 

We note one major difference between eqs (23) and (27). Unlike eq 

(23), eq (27) is a quadratic in Z = exp(-ikh). This presents some 

additional numerical problems. Equation (27) may be rewritten as 
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30 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

Z 2 + ZY - D o = O, 

where y T12T21F (m) (28) 
R21Zo G (~) 

Z o = exp(-ihko) , 

D o = 1/R~I, 

and k o is the wavenumber in water. Since the phase velocity in water 

is known, Z 0 is known a pr ior i .  I f  the acoustic impedance of the 

plate, pc, was known, one could calculate Ti j  and Rij. However, c is 

precisely the unknown we are seeking to measure. This problem could 

be solved by a simple iteration procedure. An approximate phase 

velocity was i n i t i a l l y  used in the algorithm to estimate Ti j  and 

Rij. The quadratic equation (28) is solved and two roots of Z are 

obtained. The correct root is chosen based on the fact that the 

phase of Z decreases as frequency increases (for the other root, the 

converse is true). This velocity is used for the next i teration 

cycle. This procedure converges very rapidly. When we purposely 

supplied an in i t ia l  phase velocity with a very large error (30%), the 

convergence was found to occur in about f ive iterations. More 

real is t ica l ly ,  the wavespeed can be estimated to within f ive 

percent. Here convergence to within 0.01 percent occurs within three 

or four iterations. When the value of c obtained by this procedure 

was substituted back into eq (28) to calculate attenuation, k2x was 

found to be an oscil latory function of frequency for a linear 

viscoelastic material, namely, an epoxy. Now, i t  is well-known that 

for such a material k2x is a constant. The osci l lat ing nature 

of k2x could, however, be readily explained as follows. A detailed 

numerical examination of eq (28) revealed that the calculation 

of k2x is very sensitive to small variation in the phase velocity 

c. The oscillations were due to the fact that the measured velocity 

was different from the true velocity. This problem could be resolved 

in the following manner. I f  one takes the absolute value of both 

sides, eq (25) can be re-written as follows: 

4xhf T12T21 F* cos ~ } ( )21 (,) i = �89 [R~leqf . I 
+ R21 G*(~) R~leqf ] (29) 
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where q = 2h k2~/c. 

The terms in eq (29) have been separated judiciously as follows. The 

le f t  hand side (LHS) is a function of wavespeed only while the r ight 

hand side (RHS) depends on both, the wavespeed as well as the 

attenuation. The RHS is a sum of two exponentials and, therefore, is 

not an oscil latory function of frequency f.  On the other hand, the 

LHS is the sum of a cosine function of frequency and the 

experimentally determined F (~)/G (w) which was found to be 

osci l latory. Now i f  the correct value of c is not used in eq (29) 

the periods of the two terms do not match exactly and the osci l latory 

parts do not cancel each other as they would for the correct value of 

c. With this in mind, the RHS is viewed as the reference curve and a 

numerical search is made around the value of c obtained by the 

i terat ive procedure described earl ier, to minimize the root-sum- 

square of the LHS. This fixes c. Now we view the LHS as the 

reference curve and conduct a numerical search over a range of k2x 

so as to minimize the root-sum-square between the LHS and the RHS. 

This fixes k 2. 

Finally, i t  is noted that the theoretical procedures developed 

in this section are equally valid for, and have been used for, both 

the longitudinal as well as the shear waves with a sl ight change in 

detai l :  For shear disturbances, water is replaced by polystyrene. 

For longitudinal waves c=c I and for shear waves c=c 2 in the 

foregoing. 

EXPERIMENTAL PROCEDURES 

A schematic of the apparatus is shown in Fig. 4. The heart of 

the system is a pair of accurately-matched, broad-band, water- 

immersion, piezoelectric transducers. An experiment is in i t iated at 

time t=O by a triggering pulse produced by a pulser/receiver; the 

pulse is used to trigger a digi t iz ing oscilloscope; simultaneously 

the pulser/receiver produces a short-duration (about 100 ns) large- 

amplitude (about 200 volts) spike which is applied to the 

transmitting transducer. In the reflection mode i t  also acts as a 

receiver. The received signal is post-amplified (to about one volt) 

and then digitized with maximum sampling rate of 100 MHz (or 10 

nanoseconds per point). To reduce the ubiquitous random errors, each 

measurement is averaged over a sample size of 64 (or 256). 
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| | i  

I COMPUTER 

RECEIVER -I OSCILLOSCOPE 

�9 �9 
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SPECIMEN 

TRANSMITT CE!MER 

VATER I3ATH 

FIG. 4 -- Block diagram of the experimental  set up. 

Consequently the precision in measuring time is • ns (or better). A 

laboratory computer controls all operations of the digi tal  

oscilloscope through an IEEE bus. The bui l t - in  signal processor of 

the oscilloscope performs FFT on the acquired signals and the 

relevant parts of the data are then transferred to the computer for 

further analysis. The measurement process is fully-automated; the 

final values of wavespeed and attenuation are computed without human 

intervention. 

RESULTS AND DISCUSSIONS 

From the measurement of the longitudinal wavespeed, c I, the 

shear wavespeed, c2, and the density, p, any desired pair of elastic 

constants can be calculated by the equations given below. 
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Young's Modulus E = p c22(3 c12- 4 c22)/(ci 2 - c22 ) 

2 Poisson's Ratio v = (c I - 2 c22)/2(ci 2 - c22) (30a) 

Lame' Constants x = P(Cl 2 - 2 c22) (30b) 

2 
~ = p c  2 

Bulk Modulus K = p (ci 2 - 4 c22/3) 

Shear Modulus G(or~) = p c22 (30c) 

The experimental procedures reported in this work were used to 

measure the elastic moduli of three rather disparate materials: 

I. Non-dispersive, non-attenuative (elastic) 

2. Non-dispersive, weakly-attenuative (viscoelastic) 

3. Highly-dispersive, highly attenuative 

The results are presented in the following. 

Dynamic Modulus of a Non-Dispersive t Non-attenuative Medium 

Aluminum is neither dispersive nor attenuative (within the error 

bounds of the present measurement). A "thick" 6061-T6 aluminum plate 

(2.807 _+ 0.025 mm) was f i r s t  tested using conventional toneburst 

method [8-10]. Then the thickness was gradually machined down to 

0.258 mm (about 10 mil, a very thin fo i l )  in five steps. In non- 

dimensional terms the thickness was reduced from about 4.4 to 0.4 

wavelengths; a frequency of 10 MHz was used. At each step c was 

measured. We could have used five different samples. Instead we 

adopted the foregoing elaborate procedure in order to ensure that we 

are always testing exactly the same material. The density was 

measured by the Archimedes principle to an accuracy of _+ 0.015%. The 

error analysis is given in the Appendix. The results are presented 

in Table I. Here, o is standard deviation of c. The f i r s t  

measurement was made using the conventional toneburst method [4,5J. 
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T A B L E  1 -- Test results for an a luminum sample. 

Material: Aluminum 
Wave Type: Longitudinal 
Mode: Transmission 
Frequency: 10 MHz 
Density: 2.8177 • 0.0004 g/ml (• 

h h/x c o/c Method Reference 
mm mm/~s % Figure 

2.807 4.4 6.3572 Toneburst 5a 

2.807 4.4 6 .3239  0 . 0 1 3  Separable Pulse 5b 

2.807 4.4 6 .3275  0 . 0 1 0  Non-Separable Pulse 5b 

1.686 2.7 6 .3461  0 . 0 4 0  Non-Separable Pulse 5c 

0.613 0.96 6 .3594 0 . 1 3 0  Non-Separable Pulse 5e 

0.258 0.4 6 .3231  0 . 1 4 0  Non-Separable Pulse 5f 

The time-domain signal is shown in Fig. 5(a). A particular peak (say 

the fourth peak) near the center of the toneburst is selected as the 

reference peak. The twice-transit-time, 2h/c could be measured to an 

accuracy of i n s .  The thickness varied by • 0.001 in (• 0.0254 

mm). The thickness variation is the major source of error in c. 

This explains a monotonic increase in error as thickness decreases 

(one-standard deviation, ~/c, column 4). In the second measurement 

the toneburst was reduced to about one cycle; see Fig. 5(b). Note 

that the pulses can be clearly separated. The Separable-Pulse 

Method, eq (15), was used to analyze this data. Since only the f i r s t  

two pulses are needed for data analysis, the remaining pulses are 

electronically gated out or nulled. In the third measurement, the 

data analysed remains the same i .e. Fig. 5(b). However, the Non- 

Separable Pulse Method, eq (27), is used. In other words, g(t) is 

now viewed as the sum of a l l  transmissions. For the remaining 

measurements the specimen was gradually machined down. Non-Separable 

Pulse Method was used to analyze the data. The pulses for h=1.686 mm 

are shown in Fig. 5(c). Note that the conventional toneburst method 

can no longer be used. Although both methods developed in this work 

can be used, we used the Non-Separable Pulse Method. The pulse for 
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FIG.  5 -- 10 M H z  signal through a luminum plates of  different  
thickness. (a) is for toneburs t .  Others  are for 
a single pulse. Plate  thickness given on each signal. 

the next three thicknesses, h=i.001, 0.613 and 0.258 mm are shown in 

Figs. 5d, 5e, 5f, respectively. Because of the reduced thickness the 

pulses cannot be separated in the time domain. Therefore, even the 

Separable-Pulse Method cannot be used; here we have to use the Non- 

Separable Pulse Method. For the thinnest specimen the round t r ip  

time is only 82 nS; the pulse duration is roughly 200 ns. With 

reference to Table 1, the average of al l  the measurements is 6.342 

mm/~sec • 0.25%. We conclude that the Non-Separable Pulse Method 

developed for ultra-thin (sub-wavelength) specimens and the 

Separable-Pulse Method for moderately thin (about one wavelength) 

specimens yield results which agree to 0.25% with the conventional 

toneburst method. (We hesitate to make absolute claims on accuracy 

because, for the given piece of aluminum, we do not know the true 

value of the phase velocity). 
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The ideal method for "calibrating" a new experimental technique 

is to use i t  to measure a quantity which is known with a ten times 

better accuracy. Unfortunately, the National Insti tute of Standards 

and Technology has not yet developed a standard for dynamic elastic 

moduli. Our laboratory did, however, participate in a six-laboratory 

ASTM round-robin led by Dr. Alan Wolfenden (Department of Mechanical 

Engineering, Texas A&M University, College Station, Texas 77843, 

(409) 845-4835). This allowed us an opportunity to compare our 

error-estimates with those of the others using different experimental 

procedures [7]. The material tested were two nickel-based alloys, 

see Table 2. S ince  these specimens are very "thick" (several 

wavelengths), the Separable Pulse Method, eq (15), was used. 

Furthermore, shear velocity also was measured. Here a shear (or Y 

cut) transducer was directly cemented onto the metal specimen using a 

shear couplant. Ignoring the "main bang," the remaining reflected 

signal was collected. From the measurements of the longitudinal and 

shear velocity, c I and c 2, and density p, the elastic constants E 

and v can be readily calculated; the associated error analysis is 

presented in the Appendix. The results of the round-robin test are 

presented in Tables 2 and 3. Reasonably good agreement (within 1.5%) 

is observed amongst the independent results obtained in six dif ferent 

laboratories using different techniques. 

Dynamic Modulus of a Non-Dispersive, WeakIx-Attenuative Medium 

Next, we tested our experimental method on a medium which is 

non-dispersive (velocity independent of frequency) and sl ight ly 

attenuative. An epoxy (EPON 828Z) was selected for this purpose. 

The results are presented in Table 4. Note that three frequencies, 

spanning nearly a decade, were used. The phase velocity measured by 

the toneburst method on a thick specimen is 2.915 mm/~sec and agrees 

very well with that measured with the Non-Separable Method. 

Hi~hly-Attenuative, Highly-Dispersive Medium 

Finally, we applied the new technique to a material which is 

highly dispersive as well as highly attenuative. We tested a random 

particulate composite consisting of lead spheres in an epoxy 

matrix. These composites have been described in [8,9J. Transducers 

with 0.25 MHz center-frequency were employed. Separable Pulse Method 

in through-transmission mode, eq (16), was used. 
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TABLE 3 -- Comparison of ASTM round robin for the Young's 
Modulus, E (GN/m2).  

SAMPLE i . i * *  1.2 1.3 1.4 2.1 2.2 2.3 
LAB 

1 218.0 216.9 218.5 
218.0 
218.1 

2 210.5 209.2 

3 218.8 216.0 

4 212.0 

5 215.6 

6 

7 203.0 

216.9 

161.5 159.9 157.2 

164.1 155.7 

217.5 162.0 
217.0 - 161.8 
216.2 160.8 
217.3 

205.0 

216.6 

214.2 

210.3 

158.4 

156.0 172.0 

156.0 - 162.0 

163.0 - - 

156.8 - 155.B 
158.0 

Techniques: LAB. 1, 2, 7 
LAB. 3 
LAB. 4 
LAB. 5 

LAB. 6 

Free-Free Beam 
Impulse Fourier Transform 
Pulse-Echo-Overlap Ultrasonic 
Piezoelectric Ultrasonic Composite Oscillator 

Technique (PUCOT) 
Ultrasonic Fourier Transform (this work) 

The f i r s t  d ig i t  (1 or 2) refers to the alloy while the second dig i t  
(1-4) is merely to identify different physical specimens. 

TABLE 4 -- Test results on Epon 828-Z Epoxy. 

Material: Epon 828-Z epoxy 
Wave Type: Longitudinal 
Mode: Transmission 
Thickness: 1.869 • 0.0025 mm 
Density: 1.2069 • 0.0004 g/ml 

Frequency Wavespeed o/c 
MHz mm/ps percent 

k2x Method 

1.0 2.874 0.1 0.1340 

5.0 2.884 0.14 0.0924 

10.0 2.915 0.08 0.0975 

10.0 2.915 0.24 0.0979 

1.4 

1.5 

1.0 

2.2 

Non-Separable 

Non-Separable 

Non-Separable 

Toneburst 
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Kinra 19) has shown that the wave propagation in these 

composites occurs along two separate branches: (1) The low-frequency, 

slower, acoustical branch along which the particle motion is 

essentially in phase with the excitation and; (2) The high-frequency, 

faster, optical branch along which the particle motion is essentially 

out of phase with the excitation. The two are separated by a cut-off 

frequency which corresponds to the excitation of the rigid-body- 

translational resonance of the heavy inclusions; this occurs when kla 

= 0(1), where a is the inclusion radius. Around the cut-off 

frequency both the phase velocity and the attenuation change 

dramatically with frequency. This is what makes this composite such 

an interesting material to study using our technique which was 

developed especially for dispersive media. 

The experimental results are presented in Figures 6 and 7. Here 

the normalized frequency ~ = kla = ~a/c 1, <c1> is the longitudinal 

wavespeed in the composite, and ~ is the volume fraction of spherical 

inclusions. In the past, each point on the curve had to be measured 

separately I8-10]. Thus each true value was shifted up or down by 

the random error; this affects the experimentally obtained shape of 

the dispersion curve. The present technique is tremendously faster; 

the entire dispersion curve is obtained in a single experiment. 

Further, the entire curve may be shifted up or down by the random 

errors but these errors cannot alter the shape of the dispersion 

curve. Thus the true shape becomes accessible. The dispersion curve 

is shown in Fig. 6. The arrow labeled HASHIN is the velocity 

calculated from the static modulii calculated by Hashin and Strikman 

1111. Intui t ively,  as frequency goes to zero, the dynamic modulus 

should asymptotically approach the static modulus; this is borne out 

by the experiments. As frequency increases, f i r s t  the velocity 

decreases i .e. the dynamic modulus decreases. Then the phase 

velocity increases very sharply. This phenomenon corresponds to the 

cut-off frequency of the individual lead spheres, ~c" A heuristic 

explanation is offered now. Consider a single sphere in an unbounded 

matrix. The sphere is displaced from its equilibrium position and 

let go. I t  wi l l  undergo damped oscillations l ike a mass on a 

viscoelastic spring. The "inert ia" term is due to the density of 

lead being very large compared to that of the matrix. The "spring" 

term is due to the restorative force applied by the matrix on the 
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1.00 

0 , 9 5  ~ 

0.90 

~ 0 . 8 5  

0.80 

0.75 

LEAD SPHERES IN EPOXY (V! = $.4%) 

Hashin 

0,70 I 

0,15 0.25 0,35 0,45 0.55 
Frequency, a 

FIG. 6 -- Normalized phase velocity versus frequency curve 
for the dispersive lead/epoxy specimen. 

inclusion. The "dashpot" term is due to radiation of waves carrying 

mechanical energy away from the sphere out to in f in i ty .  When the 

excitation frequency coincides with the resonant frequency, the 

particle undergoes large-amplitude vibrations thus scattering maximum 

amount of energy. This i s borne out i n Fig. 7 where 

attenuation, k2x, is plotted. Note that attenuation reaches maximum 

very near the calculated value of ~c = 0.33 [8]. (A second smaller 

peak to the le f t  of the main peak is most probably due to some 

art i fact of the measurement system. The low end of the useful 

frequency range of the 0.25 MHz transducer had previously been 

established to be about 0.17 MHz [81. Properly, the data below 0.17 

MHz should not be reported, but i t  is included here for completeness 

and to cover the possibi l i ty that the reader may offer another 

plausible explanation). 
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3,5 

.~% 2,5 

1,5 < 

0,5 
0,15 

LEAD SPHI~RES IN EPOXY 

�9 " l l l c  

I I 1 

0,25 0,35 0,45 0,~ 
Frequency, La 

FIG. 7 -- Normalized attenuation versus frequency curve. 
Note a very high attenuation (large energy absorption) 
due to resonant scattering at the cut-off frequency, ~c. 

Finally, returning to Fig. 6, the highest modulus is 100% larger 

than the lowest modulus. This is for the lowest volume fraction, 

= 5.4~. Similar measurement have been carried out 

for ~ = 15, 25, 35, 45 and 53 percent (nominal). At the high volume 

fractions the difference between the minimum and the maximum modulus 

is even more dramatic, namely, 250 percent. For materials with 

microstructure~ therefor% the concept of a single constant servin 9 

as "the dynamic elastic modulus" completely breaks down. For more 

details see Ref. {12]. 
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CONCLUSIONS 

From the measurement of two wavespeeds one can calculate a pair 

of dynamic elastic moduli. All the techniques reported in the 

l i terature in the past suffer from one limitation: the specimen 

thickness must exceed (roughly) five wavelengths. By the use of 

Fourier transforms we have devised a new technique which removes this 

restr ict ion. The new technique has been demonstrated to produce 

accurate results down to a thickness which is about one order of 

magnitude smaller than the wavelength (experiments are now underway 

where we are trying to extend the range to h/x = 0 (10-2)). 

For most engineering materials (isotropic, homogeneous, elastic 

or sl ight ly viscoelastic) the difference between the static and the 

dynamic modulus of elast ic i ty is generally very small. By 

considering a material with microstructure, and by varying the 

wavelength across the characteristic dimension of the microstructure, 

we have demonstrated that here the dynamic modulus of e last ic i ty  may 

d i f fer  from its true static value by as much as 100 percent. 

Consequently, for materials with microstructure, we have established 

that the static modulus of elast ic i ty and the dynamic modulus of 

e last ic i ty are altogether different ent i t i tes.  
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APPENDIX 

PROPAGATION OF ERRORS 

Wavespeed Measurements 

Let c be either c I or c 2. With reference to Figs. 5(a) and 5(b) 

c = 2h/(t2-t l) 

where t I and t 2 are arrival times of a point o~ constant phase in two 
success]ve arrivals of the toneburst, (t2-t 1) O, and 

d ! = d h _ dt2 - dt l  
c h (t 2 - t l ) "  

We identify dc, dh, dt l ,  and dtp with absolute errors in measuring 
the corresponding quantfties. FuYthermore, dt] = dt 2 = dt. In going 
from calculus to error analysis one must take- absolute value of all 
coefficients of independent variables on the right hand side 
(component errors always add, they never cancel each other out). 
Defining normalized error 
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e c = dc/c, e h = dh/h, and e t = d t / t ,  

e c = e h + 2 e t .  (AI) 

As a typical example of thick specimens, #h = 0.0254 mm, 4 h = I0 mm, 
dt = i n s ,  t = 3.165 us, e h = 2.54 x 10 -J, e t = 3.2 x 10- , then 

e c = 2.54 x 10 -3 + 0.64 x 10 -3 

or e c = 3.18 x 10 -3 

Note that the thickness was revealed as the major source of error. 
For measurements involving only one specime2, the precision is one- 
order-of-magnitude higher, namely e c = 3xI0 -~. 

Density Measurements 

The density was measured by the time-honored Archimedes 
Principle. F i rs t ,  a suspension wire is weighed in a i r  (M) .  Next, 
the specimen and the suspension wire together are weighed in a i r  
(MI), and then in water (M~)_ Let p, p~ be the density of specimen 

a6dV be the voTQme of the specimen then ano water, respectively, 

M 1 = pV + M w, 

M 2 = (p-po) V + M w, 

and p = Po(M1 - Mw)/(M I - M2). 

Now, ap + a_p__ dM I + a_~_ dM 2 . ap dp = aPo aM1 aM2 aTw dMw' 

dp = 1 @p dp ~ + 1 ap dM I + i ~ dM 2 + i ~ dMw, 
P ~ aPo ~ -~1  ~ aM2 ~ aMw 

dp dPo M2 dM1 dM2 I dMw, 
p = p~-+ M 1 -M  2 ( M-~--+M--~ - )  - M1 - M w 

and 
M 2 M w 

ep = epo + ~ M 1  - M2 ( eMl+ eM~ + M1 - Mw eMw" 

As an example consider specimen A2, 1.2, Table 2. 

= 10 -4 g,  = 3 .8  x 10 -6 M I = 26.2409 g, dM1 eM1 

M 2 = 23.1134 g, dM2 = 10 -4 g, eM2 = 4.3 x 10 -6 

M w -- 0.1718 g, d M = 10 -4 g. e M = 5.8 x 10 -4 
W W 

(A2) 
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For the high accuracies desired here the temperature dependence of 
the density of water must be taken into account. Room temperature 
was 23~ At 20~ p = 0.99862; at 25oC, p = 0.99707. Therefore, 
by interpolation, at ~176 Pn = 0.99769. ~ Since temperature was 
measured to the nearest ~ dp; = 3.1 x 10- . Substituting into eq 
(A2) 

e = 3.1 x 10 -4 + 0.6 x 10 -4 + 0.04 x 10 -4 p 

e = 3.74 x 10 -4 p 

I t  is i n te res t i ng  to note that  a major i t  X of the to ta l  e r ro r  is  due 
to the uncer ta in ty  in the water temperature and not in the weighing 
process. This is  the value of such e r ro r  analys is .  I t  ind icates 
c l ea r l y  tha t  i f  f u r t he r  improvements in accuracy are des i red ,  one 
must turn to more accurate measurements of  water temperature. I t  
also reveals the inherent aesthet ics of the Archimedes' P r i nc ip le  and 
explains i t s  surv iva l  f o r  two thousand years.  

Modulus Measurement 

In this section we will derive the equations for calculating the 
"resultant" errors in E, v, x, p(=G) and K from "component" errors 
in c I, c 2, and p. Recall 

E = p c22(3 Cl 2 - 4 c22)/(c12 - c22). 

aE aE aE 
dE = ~ dp + ~ dc I + B~2 dc2" 

dE dp + 2 c12c22 dCl 

-E : P [(c12 - c22 ) (3 c12 - 4 c22) I Cl + 

c12 c22 dc 2 

2 [1 - (c12 _ c22)(3ci  2 _ c22) I c2 

For mater ia ls  of  i n te res t  here, the c o e f f i c i e n t s  of 
dp/p, dc l / c  I and d c J c  2 are pos i t i ve  ( i f  they are negat ive one 

takes t h e i r  absolb~ce value) .  Let e e e I ,  and e 2 be, 
respec t i ve l y ,  the normalized errors in E, p~'c1~'and c 2 respec t i ve l y ,  
then 

c12c22 

e E = ep+ 2 [(c12 - c22) (3c12_4c22)] e I + 

c12c22 dc 2 
2 [ I  - c2 (A3) 

(c12 - c22)(3ci  2 - c22) I 

Next, we present similar calculations for other quantities. 
Poisson's Ratio 
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= (Cl 2 - 2 c22)/2 (c i  2 - c22), 

e 

2 c12c22 

(c12 - c22) (ci 2 - 2 c22 ) (el  + e2)" 

Lame' Constants 2 2 c2 2) x = p (c I 

e X = e + 
P 

2 c12 4 c22 
el + 2 e2" 

(ci  2 - 2 c22) c I - 2 c22 

Shear Modulus 
2 

or G = p c 2 , 

e or e~ = e + 2 eo 
p b P 

(A4) 

(A5) 

(A6) 

Bulk Modulus K = p (Cl 2 - (4 /3)  c22) 

6 c12 8 c22 
e K = e + 2 e l  + e 2 (A7) 

P (3 c I - 4 c22) (3 c i  2 - 4 c22) 

As an example, we compute the resultant errors for one 
part icular case, namely, Sample 1.4 in Table 2. For a ( s t a t i s t i ca l )  
population siz~ N=13, 

c I = 5.8723 • 0.0029 mm/~s (one standard deviation) 

e I = • 4.94x10 -4 

c 2 = 3.1615 • 0.0017 mm/~s (one standard deviation) 

e 2 = • 5.28xi0 -4 

p = 8.371 • 2.846xi0 -3 g/ms (one standard deviation) 

e = • 3.4x10 -4 
P 

From eq(A3) 

= + 0.444 e I § 1.557 e 2 e E ep 

I t  is instruct ive to note that the resultant error in E is almost 
four times more sensitive to error in the shear wavespeed compared to 
that in the longitudinal wavespeed. Final ly,  

e E = 1.4 x 10 -3 or 0.14% 
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THE PULSED ULTRASONIC VELOCITY METHOD FOR DETERMINING MATERIAL 
DYNAMIC ELASTIC MODULI 

REFERENCE: Blessing, G.V., "The Pulsed Ultrasonic Velocity 
Method for Determining Material Dynamic Elastic Moduli," 
Dynamic Elastic Modulus Measurements in Materials, ASTM STP 
1045, A. Wolfenden, Ed., American Society for Testing and 
Materials, Philadelphia, PA 1990. 

ABSTRACT: Material dynamic elastic moduli can be readily 
obtained from a knowledge of the material's sound 
velocity(s) and density. One well-established ultrasonic 
technique for making the velocity measurements is the 
pulsed-wave transit-time technique. It is a versatile and 
potentially very accurate technique that can also assess 
the material elastic homogeneity and anisotropy. Here the 
many measurement and material factors affecting the 
precision of the method are addressed. A specific example 
of the effect of grain size on measurements in steel is 
presented in some detail. 

KEYWORDS: ultrasonic moduli, ultrasonic velocity, elastic 
moduli, material dynamic elasticity 

INTRODUCTION 

The dynamic elastic moduli of a material can be determined 
from a knowledge of the material's sound velocity(s) and 
density. Both pulsed-wave transit-time and resonant frequency 
techniques have been extensively applied to the quantitative 
measurement of material sound velocities and moduli for many 
years. See, for example, texts by McMaster [i] and by Truell, 
Elbaum and Chick [2], and the ASTM document of standard practice 
[3]. In this paper the discussion will be on the ultrasonic 
pulsed technique, where the sound velocity is obtained from the 

Dr. G.V. Blessing is a physicist in the Ultrasonic Standards 
Group at the National Institute of Standards and Technology, 
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ratio of the ultrasonic path length to the pulse transit time in 
the material. Furthermore, this paper is not meant to be a 
comprehensive review of even that restricted methodology, but 
rather an introductory overview of both the capability and 
limitation of the technique. It can be applied to a wide 
variety of material types ranging from the homogeneous and 
isotroplc, to the inhomogeneous and highly anisotropic as for many 
reinforced composites. Here, the focus will be on relatively 
homogeneous and isotropic materials such as common structural 
metals. 

Some particular attention will be given to the frequent 
assumption that a randomly oriented grain structure, i.e., zero 
texture, in metals necessarily leads to ultrasonic elastic 
homogeneity. It is pointed out that this presumes a large 
number of grains in the ultrasonic path, a condition that may 
not apply for thin samples or large grains. In such cases, a 
statistical limitation applies to our knowledge of the material 
modulus based on a velocity measured at one position. An example 
of this limitation observed in stainless steel will be presented. 

It is noted that all dynamic elasticity measurement techniques 
require a knowledge of both the sample dimension(s) and the density 
[i-3]. The transit time or resonant frequency is only one of at 
least four (mass, volume, length, and time or frequency) 
independent measurands that are required in order to determine the 
material moduli. Thus the propagation of errors in the calculation 
of the modulus must be recognized. 

ULTRASONIC PULSE TECHNIQUE 

The ultrasonic pulsed-wave transit-time technique is a well- 
established method for measuring the sound velocity in materials, 
as demonstrated by the existent ASTM E-494 "Standard Practice for 
Measuring Ultrasonic Velocity in Materials" [3]. As the name 
implies, it involves the transit-time measurement of short wave 
pulses (by necessity less than sample propagation times) travelling 
over a known path through the bulk of the sample. The ratio of the 
path length to the transit time yields the velocity. Figure 1 
outlines the system components. The technique actually measures an 
average of the velocity over the path length taken by the pulse. 
Pulse durations on the order of or less than microseconds with 
megahertz carrier frequencies are typical. High rate repetitive 
pulse techniques on the order of kilohertz allow for both rapid and 
accurate translt-time measurements using tlme-averaglng techniques. 

One particularly powerful transit-tlme technique that is 
relatively simple to implement is the pulse-echo-overlap technique 
reviewed by Papadakis [4]. Lateral beam dimensions emanating from 
the transducer nominally range from millimeters to centimeters. As 
a result of the finite beam size and wave directivity, the 
technique also acts as a useful tool for assessing material 
inhomogeneity and anisotropy. Depending on the accuracy desired, 
the specific size and shape of samples need not be critical, 
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although flat and parallel sample faces for the wave pulse to echo 
between are necessary. (This requirement may be at least partially 
relaxed by point excltation/reception techniques described 
elsewhere in these conference proceedings by Hsu and Eitzen [5].) 

FIG. 1 -- Basic experimental arrangement for the ultrasonic pulsed- 
wave transit-tlme technique. A liquid coupling medium 
between the transducer and sample is assumed. 

Moduli Relationships 

For short duration wave pulses with wavelengths much less than 
the sample dimensions, two normal modes of bulk wave propagation 
pertain to extended isotropic media as described in [3] and by 
Kolsky [6]. They are the longitudinal and shear modes with 
respective velocities V L and V S. Longitudinal waves, sometimes 
referred to as compressional waves, alternately compress and dilate 
the material lattice (i.e., generate compressive and tensile 
strains) as they pass by. The resulting particle motion of the 
material is parallel to the direction of wave propagation. Shear 
waves, on the other hand, generate particle displacements 
perpendicular to the propagation direction, causing the material 
lattice to shear as the waves pass by. From these two wave speeds 
and the density (p), all the elastic parameters of an isotropic 
material can be calculated: the Young's, bulk, and shear moduli, 
and Polsson's ratio. Their relationships are: 

u modulus = PVs2(3VL 2 - 4Vs2)/(VL 2 - VS2 ) (i) 

Bulk modulus = P(VL 2 - (4/3) VS 2) (2) 

Shear modulus = PVs 2 (3) 

Poisson's ratio = (VL 2 - 2Vs2)/(2VL 2 - 2Vs 2) (4) 
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For anisotropic materials, single crystals and most composites 
for example, the equations are more complex. The number of 
independent elastic parameters is greater than two, requiring 
additional sound speed measurements in specific directions relative 
to the material symmetry axes. (See, e.g., the review treatise by 
Green [7] and extensive references therein.) 

Measurement Precision 

The precision of the velocity measurement, and therefore of 
the calculated modull, depends on many factors both intrinsic and 
extrinsic to the material itself. Many of the intrinsic material 
factors will be discussed in the next section. Some of the obvious 
extrinsic factors are the specimen dimensions (especially the path 
length and end-face parallelism), the transit-time measurement 
technique, and the ultrasonic coupling between transducer and 
sample. 

Electronic start/stop clock techniques exist, both manual and 
automated, that may readily provide transit-time precisions of 
better than 0.1% in a repetitive pulse arrangement. (Precisions 
that are orders of magnitude greater may be achieved on ideal 
samples in a laboratory setting [2]). This time precision would 
typically provide moduli precislons of better than 1% if the 
density and path length were well known. For example, if the 
transit time, path length, and density were each known to one part 
in a thousand, a quadrature addition of the individual 
uncertainties would result in an uncertainty of 3 to 5 parts per 
i000 for the elastic parameters described by eqs. (i) through (A) 
above. As a result, a 1% precision for the elastic moduli of 
engineering samples should be realizable, while a 0.1% precision 
would be difficult. 

MATERIAL FACTORS 

There are numerous material factors which affect velocity 
measurements and must be recognized especially for precise 
measurements. Assuming fully dense materials so that porosity is 
not a factor, they include texture, grain size, temperature, 
diffraction, residual stress and frequency dispersion. These will 
be briefly outlined here, with references cited for additional 
details. 

Polycrystalllne Materials 

Two principal factors affecting velocity measurements in 
polycrystalline metal samples are the texture (i.e., grain 
alignment) and the crystalline grain size. They respectively 
contribute to sample elastic anisotropy and inhomogeneity. The 
first arises when there is a non-random ordering of the 
crystallltes in the material due to rolling, extrusion etc. The 
second arises when the crystallltes are large (i.e., comprise a 
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statistically small number for averaging the single-crystal 
elasticity) relative to the ultrasonic path length. Obviously, both 
factors can be present simultaneously, but the point to note is 
that grain size effects can be present even when there is a 
completely random crystallite structure. A specific example of 
this with some quantitative details will be given in the next 
section. 

Both factors derive from the single crystal elastic anisotropy 
and may also affect the velocity measurement in other ways via 
refraction and diffraction. Much work, especially in recent years 
by Sayers, et al. [8], Thompson, et al. [9], and Hirao, et al. 
[i0], has been directed toward quantifying and isolating the 
contribution of texture to the material sound velocity. The 
statement of its contribution may be expressed in a simplified 
manner as follows: 

v 2 = Vo 2 + c f ( w a ~  v)  (5) 

where V o is the velocity without texture, C is a constant, and the 
W~7 are crystal orientation distribution coefficients which define 
sample texture in terms of the average crystal orientation. The 
three independent We~7 associated with a unidirectionally deformed 
aggregate of cubic crystals (the case for aluminum and steel rolled 
sheet) require the measurement of three wave modes in specific 
directions relative to the principal material axes. Using this 
model analysis, an example comparing ultrasonic results with the 
engineering texture parameter known as the formability may be found 
in Clark, et.al. [ii] for the case of rolled aluminum. 

Temperature 

The elasticity of materials is usually dependent on 
temperature [2]. (The thermal expansion, a second-order effect on 
the transit time relative to that of temperature on the intrinsic 
elasticity in common metals, should be accounted for by way of the 
sample dimension corresponding to the ultrasonic path length at the 
desired temperature.) For small changes of the temperature T, the 
following first-order linear relationship provides a sufficient 
description of the effect of temperature on velocity: 

V(T) = Vo(To) + 7AT (6) 

where AT = T-T o and 7 is a material dependent constant. For 
example, on a set of 304-stainless steel samples described in the 
next section, 7 was measured to be a negative 1.5x10 -3 mm/~s per ~ 
over a five degree range around room temperature. 

Beam Diffraction 

Ultrasonic diffraction (or beam spread) occurs in isotropic 
media and can become quite significant in anisotropic media, as 
pointed out by Papadakis [12]. The effect of a finite transducer 
aperture and therefore beam width is to lose, with increasing path 
length, the side lobe contributions to the integrated wave front 
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phase function. These contributions depend on the transducer 
aperture, the wavelength, the path length, and the material 
anisotropy. Assume, by example, a 1 cm aperture and a 0.i cm 
longitudinal wavelength generated by a circular transducer 
exhibiting piston-llke behavior. For an echo pair in the first I0 
em of material path, the phase correction may be on the order 0.05% 
in an isotropic medium and 0.2% in a highly anisotropic medium 
[12]. The correction is always an addition to the measured transit 
time, thereby reducing the apparent phase velocity. Diffraction 
effects may be minimized by working with echoes in the far field 
(distance > a2/A where a is the transducer radius and A is the 
wavelength). 

Dispersion and Residual Stress 

Two factors that are generally of lesser significance, at 
least in engineering metals for their effect on ultrasonically 
measured velocity values, are dispersion and residual stress. Here 
we are addressing material dispersion (as opposed to geometric 
dispersion due to sample boundaries), wherein the frequency 
dependence of the velocity is due to the intrinsic properties of 
the material medium. In this case, a nonlinear relationship 
between the ultrasonic frequency and the wave number k (2~/A) 
causes the phase velocity~/k to diverge from the group velocity 
dm/dk. The term ~ equals 2~f where f is the frequency. The moduli 
expressions given above in eqs. (1)-(4), representing solutions of 
the constitutive relationships for elastic wave propagation, are 
functions of the phase velocities, as is clearly pointed out by 
Ting and Sachse [13]. Since the pulsed-wave transit-tlme technique 
may yield a group velocity, we must be careful of the error that 
might incur using eqs. (1)-(4). On the other hand, in 
nondispersive media the phase velocity by definition equals the 
group velocity, since a linear relationship exists between the wave 
frequency and the wave number. While dispersion effects can become 
appreciable in composites and some other materials, structural 
metals are generally nondispersive at the ultrasonic frequencies of 
common use. 

Residual stress, which may occur due to the nonuniform 
contraction of molten metal upon cooling, can typically affect the 
material velocity on the order of parts per ten thousand in 
structural metals (Green [7] and references therein). However, 
even if its presence is suspect, it is difficult to assess without 
a reference standard of like material and is often masked by the 
material texture. (See the comparison papers by Hsu, Proctor, and 
Blessing [14], and by Blessing, Hsu, and Proctor [15].) To 
maximize the accuracy of modulus measurements where the residual 
stress may be of concern, stress relieving the sample by heat 
treatment prior to making the ultrasonic measurements may be 
considered. 

FINITE GRAIN SIZE EXAMPLE 

As pointed out above, a completely random polycrystalline 
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aggregate does not necessarily yield a homogeneous medium for 
ultrasonic velocity measurements. Relatively large grains or 
thin samples will result in a statistically limited number of 
crystallites in the path of the ultrasonic wave. This effect has 
been studied in some detail in stainless steel by Blessing et.al. 
[16], and will be summarized here. 

Experimental 

Four thin disk samples were sliced from a 75 mm diameter hot- 
rolled 304-stainless steel bar, to be evaluated for their elastic 
homogeneity. Two of the 1.5 mm samples were studied as received 
with ASTM No. 7 [17] grain structure (nominal grain dimensions of 
30 ~m). The other two samples were heat-treated to form a 
relatively coarse and varled-grain structure with ASTM No.'s 3 to 
5-1/2 (grain dimensions as large as 150 pm). 

A pulse-echo water immersion ultrasonic technique was applied 
for the velocity determination at eight equi-spaced positions 
across an arbitrarily chosen diameter of each sample. (Previous 
ultrasonic scattering experiments had shown that the samples' grain 
structures were circularly symmetric.) A frequency of i0 MHz 
provided optimum precision for the sample set, corresponding to a 
wavelength of 0.6 mm in the stainless steel material. The circular 
aperture of the transducer produced a nominal beam diameter of 2 
mm. A pulse-echo-overlap technique utilized the first six sample 
echoes to provide a precise (better than 0.i ns) transit-time 
average through the sample thickness. Thickness measurements were 
in turn made by Doiron [18] using an interferometer-based 
contacting comparator system to an accuracy of 0.i ~m. 
(Thicknesses were constant to about five percent across the sample 
diameters.) With this transit-time precision and path length 
accuracy, the velocity precision obtained was better than 0.05%. 

Theory 

Based on model developments by Mason and McSkimin [19] for 
longitudinal wave propagation in polycrystalline aggregates, Fisher 
and Johnson [20] have demonstrated the substantial velocity 
variations that can be expected due to a finite grain structure in 
metals. The model is based on the statistical stacking 
distribution of N randomly oriented crystallites (grains) in the 
ultrasonic path. It assumes the average aggregate velocity Vo, for 
an infinite number of randomly oriented crystallites, is equal to 
the average single crystal velocity measured in all directions. 
The model may be expressed as follows: 

V = V o • AV(N), (7) 

where AV is the measured velocities' statistical fluctuation which 
decreases as N increases. 

Applying the central limit theorem in statistics which states 
that for sufficiently large N, the velocity (as a function of 
position in the aggregate) is a random variable whose variance S 2 
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is proportional to the single crystal variance So 2 and inversely 
proportional to N: 

S 2 = So2/N. (8) 

For crystals of cubic structure the standard deviation for 
longitudinal waves, normalized to the average aggregate velocity, 
may be expressed in terms of the single crystal elastic 
coefficients Cij as [19]: 

S = 2 @ (9) 
o ~ C12+ 2C44- 2#/5 

where # = (CII - C12 - 2C44) is the single crystal anisotropy. (A 
similar relationship has been obtained for shear waves by Stanke 
[21].) It is seen that a lesser crystalline anistropy or smaller 
crystallites reduces the variance in a sample of given thickness. 

Results 

The variation in the velocity as a function of position was, 
in fact, observed to increase with increasing grain size. The four 
experimental points taken from the four disks are plotted as a 
function of grain size in Fig. 2, together with the finite-grain- 
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FIG. 2 -- Noramlized statistical longitudinal velocity variations 
experimentally observed (solid circles) on four samples, 
versus grain size; and model calculations (bold line) for 
the expected contribution of finite grain size to the 
velocity variation. 
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size model's contribution which is indicated by the solid boundary 
line proportional to I/JN. For the experimental points, the 
standard deviation of each sample disk's velocities taken across a 
diameter was calculated and normalized to the average velocity V o 
of all disks. 

The model contribution was obtained using eqs. (8) and (9), 
with 304-stainless steel Cij values taken from Ledbetter [22]. The 
intrinsic limitation to velocity homogeneity for the largest grain 
structure plotted is shown to be a quite significant 0.1%. The 
greater values experimentally observed for S may be attributed to 
other ultrasonic material variables. These include scattering as a 
function of grain size, density variations, texture, and residual 
stress. The increasing divergence with grain size of the 
experimental from the model values might be specific ally 
attributed to large grain scattering. As a result, the solid 
boundary may be considered the lower limit of velocity variation 
that may be expected in practice, and the shaded region to 
represent a dimensional accuracy regime inaccessible to the 
ultrasonic measurements. 

CONCLUSIONS 

The ultrasonic pulsed-wave transit-time technique is a 
powerful method for measuring not only a material's dynamic 
modulus, but also its anisotropy and in homogeneity. It is capable 
of great precision, exceeding 0.1% under certain conditions. For 
such precision, however, both the material and the ultrasonic path 
length must be well known, and the many factors affecting the 
precise measurement of the transit time recognized. 

A specific example of the intrinsic limitation of finite grain 
size on polycrystalline homogeneity and therefore sound velocity is 
demonstrated on a set of stainless steel specimens. It is shown 
that, even assuming a random crystal orientation, the inhomogeneity 
problem can become acute for relatively thin samples where there 
may be a statistically limited number of grains in the ultrasonic 
path length. 
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ABSTRACT: An overview of an experimental program for 
determining the dynamic flexural constitution of 
materials is presented. This program entails the 
development of a fully-automated flexural apparatus, its 
calibration, and studies of structural damping and 
dynamic flexural modulus of a variety of materials. 
Furthermore, graphite/aluminum laminates, [• with 0 
ranging from zero to ninety degrees in fifteen degree 
increments, were tested. Classical laminate theory and 
the work of Ni and Adams was found to adequately predict 
both the modulus and the damping. It is demonstrated 
that the attachment of an end-mass (to vary the resonant 
frequency) does not contribute to the measured damping. 

KEYWORDS: Damping, 
flexural, structural, 
decrement, vacuum. 

modulus, composite material, 
dynamic, experimental, logarithmic 

SYMBOLS USED 

A = cross sectional area of beam, amplitude 
Cp = specific heat per unit mass at constant pressure 

~ ij = components of the flexural modulus matrix for a laminate 
Young's modulus 

f = frequency (cycles/second) 
h ~ beam thickness 
I = second moment of area of beam 
k t = transverse thermal conductivity (in thickness direction) 
L ~ beam length 
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m = end-mass, cosine of ply (fiber) orientation 
n = sine of ply (fiber) orientation 
T = absolute temperature 
t = time 
w = beam width 
W = maximum elastic energy stored during a cycle 
AW = mechanical energy dissipated per cycle 
x = coordinate along the length of the beam 
y = amplitude of transverse vibration 

= linear coefficient of thermal expansion, eigenvalue 
= eigenvalue 

6 = logarithmic decrement 
~ = accuracy of experimental damping measurement 

= f = damping ratio 
= loss factor 

A = eigenvalue 
p = density per unit volume of beam material 

= relaxation time 

= phase angle by which the applied stress leads the resulting 
strain 

= frequency (radians/second), 2~f 
~o = resonant frequency of beam without an end-mass 

= damping = AW/W 
()' = real part of a complex quantity () 
()" = imaginary part of a complex quantity () 

INTRODUCTION 

The design of any structure requires the quantitative 
knowledge of many parameters pertaining to the material of which 
the structure is built. Two parameters of importance in the 
analysis of structures subject to dynamic loads are the dynamic 
modulus and damping capacity. The measure of these entities, 
particularly damping, depends on the type of dynamic loading 
applied. Intrinsic, or material damping, is defined herein as the 
dissipation of energy within a material through the excitation of 
internal defect phenomena by the application of a homogeneous 
strain field. Structural damping on the other hand is composed 
of both intrinsic (material) and extrinsic (structural) 
components, and is defined to be the dissipation of energy 
produced by the application of a non-homogeneous strain field 
which is determined by specimen shape and structural application. 
Hence, a specimen subject to uniaxial tensile or compressive 
loading deforms and dissipates energy under a homogeneous strain 
field and therefore yields a measurement of intrinsic material 
damping. However, the strain field in a beam of the same material 
subject to flexural oscillations varies in the thickness 
direction and with position along the beam, this variation 
depending on boundary conditions. Therefore, energy dissipation 
within the beam will also be a function of thickness and position 
along the length of the beam, and will give a measure of 
structural damping. An example of such damping is the transport 
of thermal currents across the thickness dimension of a beam 
(Zener or thermoelastic relaxation). 
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Many experimental techniques have been proposed and developed 
to measure the dynamic constitution of materials. The technique 
described herein determines the dynamic properties in flexure 
with speed, automation, and measures of accuracy and precision. 
The experimental apparatus consists of a beam specimen mounted 
under cantilevered boundary conditions and vibrated in first-mode 
flexural resonance. Data acquisition and reduction techniques 
entail accurate determination of the resonant frequency, and a 
measure of the rate of decay in free-vibrational amplitude using 
a logarithmic decrement method for ascertaining the dynamic 
flexural modulus and structural damping, respectively [I]. 

Results pertaining to the flexural modulus and structural 
damping of 6061 aluminum and a symmetric four-ply metal-matrix 
composite composed of pltch-55 graphite fibers in a 6061 aluminum 
matrix are presented. These results are compared with those 
predicted by Euler-Bernoulli, Zener (thermoelastic), and laminate 
theories and show good agreement. End-masses were used to vary 
the resonant frequency of the test specimens [2]. A brief 
overview of the end-massed beam analysis and experimental results 
is presented to show that the addition of an end-mass only alters 
the resonant frequency of the specimen and does not contribute to 
the measure of damping. Damping results are presented in the 
form ~=AW/W, where AW is the energy dissipated during each 
loading cycle and W is the maximum energy stored. Calibration of 
the cantilevered configuration for apparatus losses was carried 
out in two steps. First, the damping of fused quartz, a material 
possessing negligible damping, was measured in a free-free 
apparatus [i]. This yielded a determination of the free-free 
apparatus losses. Second, flexural damping data for annealed 6061 
aluminum obtained from both free-free and cantilevered 
configurations were compared. Results showed that, within the 
range of experimental scatter, both configurations provided the 
same measure of damping. This agreement of the data justified 
equating the cantilevered apparatus losses to those of the 
free-free configuration. Accuracy of the experimental dynamic 
flexural modulus values was dependent upon the measurement of the 
resonant frequency and specimen parameters. An estimate of 
accuracy was obtained by comparing the results of the present 
study with those of an experimental study using ultrasonic wave 
propagation [3]. These procedures determined accuracy of the 
modulus and damping values to be 0.I percent and ~$-3.0xI0 -4, 
respectively. It is noted that ~@ is a systematic error and ~>0. 
Statistical analysis of all experimental data ascertained the 
precision to be 0.i percent and 5xl0 -4 (one standard deviation), 
for modulus and damping, respectively. 

SPECIMENS 

A variety of specimens were tested including annealed 6061 
and 6061T6 aluminum alloys (6061AI), magnesium-0.6% zirconium 
alloy (Mg-O.6%Zr), magnesium-l% manganese alloy (Mg-l.O%Mn), 
leaded and lead-free brass, fused quartz, and three metal-matrix 
composite laminates comprising continuous pitch-55 graphite 
fibers (P55Gr) in a matrix of 6061 aluminum (P55Gr/6061AI), P55Gr 
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fibers in a matrix of magnesium with 0.6 percent zirconium 
(P55Gr/Mg-0.6%Zr), and P55Gr fibers in a matrix of magnesium with 
one percent manganese (P55Gr/Mg-I%Mn). The P55Gr/6061AI specimens 
were cut from a four-ply, balanced, symmetric, laminated plate at 
angles ranging from zero to ninety degrees in fifteen degree 
increments; in a zero degree specimen, the fibers are aligned 
along the length dimension of the beam. The P55Gr/Mg-0.6%Zr and 
P55Gr/Mg-I%Mn specimens were cut from a zero-degree, eight-ply 
laminate. 

The P55Gr/6061AI diffusion bonded laminated composite beam 
specimens were constructed of four orthotropic, unidirectional 
lamina oriented at specific angles to the longitudinal beam axis 
and symmetrically disposed to the midplane of the laminate. 
During the fabrication process Gr/AI precursor tows each 
containing 2000, I0 ~m diameter fibers were consolidated between 
0.089 mm thick 6061 aluminum face sheets at the angles 
appropriate to the particular laminate layup. The laminate was 
processed at 588~ and 24.1 MPa for 20 minutes, yielding a 
composite plate of 50% fiber volume. Two specimens of each 
laminate orientation were tested. The dimensions, density, 
flexural modulus, and flexural damping of the 6061 aluminum and 
metal-matrix laminate specimens tested are given in Table i. 

TABLE I - SPECIMEN PARAMETERS 

Specimen L w h p E L 
Type m m m kg/m 3 GPa AW/W 

xl02 xl02 xl02 xl0 s xl02 

6061AI Table 2 1.270 0.162 2.70 68.92 Figure 6 

P55Gr/6061AI: 
[04] T 13.10 1.214 0.211 2.41 157.90 0.35 
[04] T 13.08 1.212 0.208 2.41 160.65 0.40 

[• 13.18 1.089 0.208 2.43 124.38 1.03 
~• 13.23 1.146 0.203 2.41 125.48 0.90 
[• 13.03 0.955 0.208 2.43 74.39 2.00 
[• 13.20 1.143 0.211 2.41 72.81 1.80 
[• 15.21 1.217 0.208 2.41 47.09 2.35 
[• 15.24 1.212 0.208 2.38 45.78 2.10 
[• 13.13 0.957 0.211 2.41 36.13 2.60 
[• 13.51 0.955 0.211 2.41 35.51 2.70 
[• 15.47 1.212 0.203 2.43 37.37 2.25 
[• 13.59 1.214 0.203 2.43 36.82 2.35 
[904] T 13.18 1.146 0.203 2.43 36.68 1.60 
[904] T 13.30 1.140 0.203 2.43 36.47 1.55 
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EXPERIMENTAL APPARATUS 

A schematic diagram of the experimental apparatus utilized in 
this research is presented in Figure i. This equipment determines 
the dynamic properties in flexure with speed, automation and 
measures of accuracy and precision. The apparatus consists of a 
beam specimen supported under cantilevered boundary conditions 
and vibrated in first-mode flexural resonance, a Wavetek Model 
164 frequency generator, a Bruel and Kjaer electromagnetic 
transducer, a power amplifier for increasing the signal received 
by the transducer, a Micro-Measurements BAM-I strain bridge, a 
Data Precision Model 6000/611 waveform analyzer, and a Hewlett 
Packard 9000/217 computer connected to the Data 6000 by an IEEE 
488 interface. To isolate the system from the effects of air 
damping, the specimen was mounted in a vacuum chamber connected 
to a Cenco Hypervac 25 vacuum pump capable of drawing a hard 
vacuum of 0.013 Pa. 

Vacuum Chamber 

__J 

~ ~  speclmen 

transducer 

poWQrout r I Micro- ] [p Amplifle 
Measurements 
BAM-I Strain I --~ In 
Bridge 

Input 
o output ~ .... Y  out 

S~nc q 

~ a l o g i c  Da ta  6000 
Digital Acquisition 
System | 

Strain Input o~-- 
S~nc o I Hewlett Packard I 

| 9000/217 
o output I I EE., ,n.r.o. 10=ut.r 01 

Figure i - Experimental Configuration 

THEORETICAL BACKGROUND 

To preserve the succinct nature of the paper only the final 
results of the Euler-Bernoulli, logarithmic decrement, 
thermoelastic, and laminate theories entailed in these studies 
will be given here. 

Dynamic Flexural Modulus 

Let ~' be the frequency of a cantilevered beam made of an 
isotropic anelastie material, and E' be the real part of the 
Young's modulus. By the use of the Correspondence Principle of 
linear viscoelasticity [4], and the Euler-Bernoulli theory of 
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flexure, the relationship between E' and ~' is given by: 

~2 J E'I 
~' ='~" pA (I) 

where ()' denotes the real part of a complex quantity, a is the 
eigenvalue, which for the fundamental mode of a cantilevered beam 
has a value of 1.875, E is the Young's modulus, I is the second 
moment of area, p is the density per unit volume, and A is the 
cross-sectional area. This analysis assumes that the free 
vibrations of low-loss viscoelastic materials are approximately 
harmonic [5]. 

Logarithmic Decrement 

The logarithmic decrement technique entails measuring the 
rate at which the free-vibration amplitude decays with time. An 
expression for the damping is given by: 

&W 4~in[A(tl)/A(t211 
@ =-W = mr[t2-tl] (2) 

where ~r is the resonant frequency, and A(tl) and A(t2) are the 
peak displacements at times t I and t2, respectively. In 
accordance with equation (2), In[A(tl)/A(t2)] was plotted against 
(t2-tl), the least squares method was used to fit a straight 
line, and from the slope, m, of the straight line, the damping 
was calculated from: 

= 4~rm/~ r (3) 

Several other definitions' of damping currently appear in the 
literature. For the convenience of the reader, their 
inter-relationship is documented here: 

= 2~tan~ = 2~ - 4~'- 4~= 2~Q -I = 2~E"/E'= 4~"/~' = 26 

Thermoelastic (Zener) Damping 

of 
by: 

The variation of damping with frequency due to the transport 
thermal currents as determined from Zener theory [6] is given 

~- ~o [i +~2~2) (4) 

2~2ET h~pCp 
where @o = pCp and r = ~2kt 

Equation (4) describes the damping in a beam produced from the 
transport of thermal currents across the thickness dimension. 
This form of energy dissipation is dependent on the structural 
configuration and is produced by a non-homogeneous strain field. 
It is therefore a form of structural damping. This equation has 
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been used in calculating the curves in Figures 4, 6 and 7. 

Laminate Theory 

The following expressions for flexural modulus and damping 
for a balanced, symmetric, laminated composite beam were derived 
using general plate theory of laminated composites [7] and the 
studies of Ni and Adams [8], respectively. It is noted that this 
laminate theory is based on the theory of linear elasticity and 
does not include thermoelastic effects. The coordinate system of 
the lamina (on-axis, principal, [1,2,3]) and laminate (off-axis, 
[x,y,z]), and the laminate ply counting sequence are shown in 
Figures 2 and 3, respectively. The effective flexural modulus in 
free-flexure, where bendlng-twisting coupling is not constrained, 
is given by: 

12 
Ef = hSDi I (5) 

Although it is obvious that the boundary conditions used do 
not constrain bending-twisting coupling (except at the 
clamped-end), this constraint was investigated for confirmation 
and completeness. The constrained flexural modulus, termed 

[1,2,3] Lamina 
3,z [x,y,z] Laminate 

X 

Figure 2 - Laminate Coordinate System 

1 
2 

k 

n 

Figure 3 - Ply Counting Sequence 
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pure-flexure, is given by: 

12D' 
Ep = 66 (6) 

s , ' - ( D '  )~] 
h [DIID66 16 

where Dij' are components of the laminate flexural modulus 
matrix. 

The total flexural damping is given by: 

r = r + r + r <7) 

where 
AW AW 2 AWl2 

r = "-~1 r = W r " W 

r eL n _ 
= z m'(QIIDil + QI2Di2 + QI6Di6) 

3D' k=l 
, J 

ii (m,Dl I + mnDl6) (h i _ hi_l ) 

n 

r = CT Z n~(QIIDil + ql2Di2 + QI6Di6) 
3D' k=l 

ii (nSDil - mnDi6) (h~ - hSk-i ) 

n 

r = . CLT E mn(QllD{l + QI2DI2 + QI6DI6 ) 
3D' k-I 

ii (2mnDil - [m'-n']Di6 ) (h~ - h~_l) 

and m=cos@ k and n=sin8 k. The above relations were derived 
assuming negligible shear deformation and rotary inertia 
(Euler-Bernoulli beam theory) which holds for length-to-thickness 
ratios greater than approximately 30 [9]. The length-to-thickness 
ratio for the composite specimens tested was of the order of i00. 

EXPERIMENTAL PROCEDURE 

Vibrational motion of the beam specimen was induced using an 
electromagnetic transducer driven at the resonant frequency of 
the specimen. As the specimens were non-magnetic, a small, high 
permeability disc was attached to the end of the specimens to 
provide coupling with the transducer. The. cyclic signal 
representing the motion of the specimen was obtained via a strain 
gage attached near the root. This gage was connected to the 
direct-current strain bridge, whose analog voltage output was 
passed to the Data 6000 acquisition device. When the specimen 
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reached steady-state, forced vibrational motion, the resonant 
frequency was recorded by the computer. The current to the 
excitation transducer was then interrupted and the specimen went 
into free vibrational decay. The steady-state and the free-decay 
motion were recorded in digital form by the Data 6000 where the 
voltage of each positive peak of the waveform was determined and 
passed via the IEEE 488 bus to the computer. 

In order to study the variation of dynamic flexural modulus 
and structural damping with frequency, an end-mass was attached 
to the end of the specimen to facilitate the variation of its 
resonant frequency [2]. The dynamic flexural modulus was 
calculated using equation (i) and the experimental values of 
resonant frequency and specimen parameters. Structural damping 
was determined using equations (2) and (3). 

EXPERIMENTAL ERROR 

Calibration of the cantilevered configuration for apparatus 
losses was carried out in two steps. First, the damping of fused 
quartz, a material possessing negligible damping, was measured in 
a free-free apparatus [i]. A reported damping value for fused 
quartz is 1.2x10 -6 [i0] The value measured using the free-free 
vibrational apparatus was 3xlO -4. As the cited value is 
negligibly small, 3x10 "4 is determined to represent apparatus 
losses, and is denoted ~@. Therefore, the measured value of 
damping of any material using this apparatus can be decomposed 
into the thermoelastic (Zener) and intrinsic damping of the 
material plus apparatus losses: 

free-free free-free free-free 
#measured - @Zener + ~intrinsic + ~ (8) 

Because it is impractical to measure the damping of fused 
quartz using a cantilevered apparatus due to the required 
clamping pressures and the fragile nature of the material, a 
comparison between measured damping values for annealed 6061 
aluminum in both free-free and cantilevered configurations was 
carried out. As shown in Figure 4, results displayed a negligible 
difference in the mean damping values obtained from the two 
techniques. The standard error for the least squares curve fit of 
all the data was 5x10 -4. In an analogous manner to that used for 
the free-free apparatus, the measured damping value of a material 
can again be decomposed according to equation (8): 

cantilever cantilever cantilever 
~measured = #Zener + @intrinsic + ~ (9) 

As the intrinsic damping of a material is a constitutional 
property, and comparison of experimental data was made at the 
same frequency using specimens of the same dimensions, then: 
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free-free cantilever 
~Zener ~ ~Zener (I0) 

67 

Since the measured values of damping obtained from two different 
techniques agree over the range of frequencies and strain 
amplitudes studied, it follows from equations (8), (9) and (I0) 
that: 

free-free cantilever 
~ = ~ (II) 

Therefore, from equation (Ii) and the agreement between the 
experimental results shown in Figure 4, the apparatus losses of 

• 
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6061 Annealed Aluminum least Squares Curve Fit 
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o Free-Free 

�9 Cantilevered �9 o _ ~  
�9 o q 

o �9149 o 
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Strain x 106 

Figure 4 - Comparison of Flexural Damping Data from 
Free-Free and Cantilevered Configurations 

]00 

the cantilevered configuration can be equated to the measured 
value of extraneous losses in the free-free apparatus; that is, 
for both configurations, the accuracy in the measurement of 
damping, defined by c@, is 3.0x10 -4. An additional point of 
interest obtained from Figure 4 is that the value of Zener 
damping, which is strain amplitude independent, lies within the 
range of intercept of the least squares best-fit straight line 
and the lines specifying the standard error. This adds credence 
to the measured data, and also demonstrates that, for the 
particular material tested where intrinsic damping is very low, 
an accurate measure of the intrinsic damping cannot be determined 
from the flexural damping as it lies within the range of 
experimental scatter. However, one may put bounds on its 
magnitude; that is 0<~intrinsic<5xl0 -4. 

Accuracy of the experimental dynamic flexural modulus values 
is dependent upon the measurement of the resonant frequency and 
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specimen parameters. A measure of the accuracy and precision of 
the modulus data was determined by calculating the modulus from 
thirty independent tests in which the resonant frequency was 
disturbed by attaching different end-masses to the end of a 
specimen [2]; this will be discussed further in the next section. 
Evaluation of the dynamic flexural modulus from the thirty 
different experimental values of frequency, and the corresponding 
eigenvalues determined from the end-mass used, resulted in a mean 
value of 69.376 GPa • 0.1% (one standard deviation). This agrees 
within 0.1% with the value of 69.439 GPa • 0.1% obtained from an 
independent study using ultrasonic wave propagation [3]. 

Thus, the accuracy of the measured modulus and damping values 
presented herein are 0.i percent and 3.0xlO -4, respectively. 
Precision of the experimental data was ascertained to be 0.i 
percent and 5x10 -4 (one standard deviation), for modulus and 
damping, respectively. 

RESULTS AND DISCUSSION 

For continuity the essential results pertaining to the 
attachment of an end-mass to a beam specimen to facilitate the 
variation of resonant frequency are reproduced from [2]. This 
technique was used to determine the frequency dependence of 
dynamic flexural modulus and structural damping for the specimens 
tested. The data, covering almost two decades of frequency, were 
obtained using five different beam lengths and six different 
end-masses. The length, mass and frequency matrix is shown in 
Table 2. 

TABLE 2 -THEORETICAL VALUES OF RESONANT FREQUENCIES 
FOR DIFFERENT LENGTH/END-MASS COMBINATIONS 

beam 
length 
(cm) 

L 1 12.70 

L 2 16.51 

L 3 20.32 

L 4 24.13 

L 5 27.94 

end-mass (g) 
m 6 m 5 m 4 m3 m2 m I 

91.17 40.09 19.96 10.34 4.99 0.17 

11.19 16.68 23.15 31.10 41.70 78.46 

7.52 11.19 15.44 20.55 27.11 46.90 

5.49 8.15 11.19 14.76 19.20 31.15 

4.24 6.25 8.55 11.19 14.90 22,19 

3.39 4.99 6.79 8.82 11.19 16.96 

width=l.27 cm, thickness-0.162 cm 
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The relationship between the frequency and end-mass is given 
by equation (I) where now the eigenvalues, ~, are the solutions 
of the transcendental equation [2]: 

1 + cos~coshu m 
~(sin~cosh~ - cos~sinh~) = pAL (12) 

Figure 5 shows the normalized frequency as a function of 
normalized mass for annealed 6061 aluminum and justifies the 

1 . 0  

0 , 8  

0 . 6  

O.q 

0 ,2  

-- Beom Theory 

�9 E x p e r i m e n t o l  D a t o  m _ 1 +cosl3cosh ~ 
[3 mh~) 

] 2 3 4 5 6 7 8 g I0 

m/pA] 

Figure 5 - The Effect of End-Mass on the Resonant 
Frequency of a Cantilevered Beam 

applicability of Euler-Bernoulli beam theory in the analysis. 
Further, each experimental data point is an independent measure 
of the dynamic flexural modulus since the eigenvalues are 
specified by equation (12) and vibrational frequencies are 
experimentally determined. Thus, the modulus can be calculated 
via a rearrangement of equation (i). It is emphasized that each 
data point provides an independent determination of the modulus 
as all parameters in equation (I), except the eigenvalues, are 
experimentally measured. Evaluation of the dynamic flexural 
modulus from the thirty experimental data points resulted in a 
mean value of 69.376 GPa • 0.1% (one standard deviation). This 
agrees very well with the value of 69.439 GPa • 0.1% obtained 
from an independent study [3]. 

Figure 6 shows the normalized damping as a function of 
normalized frequency for 6061 aluminum. The vertical arrow points 
to the frequency common to five of the reference beam 
length/end-mass combinations (11.19 Hz). These five measurements 
lie in the range ~=0.81x10 -2 • 0.02x10 -2 (• It is important 
to note that this observation of precision agrees well with the 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



70 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

value of 5x10 "~ obtained from the independent study of 
comparative damping values for the free-free and cantilevered 
configurations. The experimental program was designed to cover a 
broad range of frequency values on either side of the Zener 
relaxation frequency ~z=l and, as shown, experimental results 
follow the Zener curve very well. Figure 7 displays the 
normalized damping as a function of normalized mass for four 
nominal frequencies, namely, 8, 11.19, 16, and 20 Hz. Clearly, 
within the bounds of experimental error, the damping is 
insensitive to the end-mass. 
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Figure 6 - Normalized Damping v�9 Normalized Frequency 
for 6061 Aluminum 

Five beam length�9 and �9 end-masses were cho�9 to 
produce the same re�9 frequency (marked by arrow). 
Within The error�9 of m�9149149 the mea�9 damping 

does not depend on end-mass. 

The variation of flexural modulus and damping with ply-angle 
for the P55Gr/6061AI metal-matrix composite laminate specimens 
was investigated at fixed values of frequency (35 Hz) and strain 
amplitude (55~E). Two specimens of each ply-angle were tested. 
The experimental flexural modulus results and the curves defined 
by equations (5) and (6) are shown in Figure 8. Locations where 
only one symbol is shown indicate that agreement of the 
experimental data was within the size of the graphing symbol. The 
variation of the unconstrained (free) dynamic flexural modulus 
with ply-angle, as defined by equation (5), is illustrated as the 
solid line in Figure 8. This semi-empirical curve was generated 
using experimental values of the longitudinal and transverse 
moduli, Poisson's ratio, and the resultant element value of the 
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Figure 8 - Flexural Modulus vs Ply-Angle for Symmetric 4-Ply PSSGr/6061Al Composite 

Two specimens of each ply angle were tested - the experimental data overlap 

laminate flexural modulus matrix, D'II , calculated from a 
laminate code. As the shear modulus was unavailable, this 
parameter was varied in the laminate code to give the 
least-squares best-fit curve through the experimental flexural 
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modulus data. From this routine a longitudinal shear modulus 
value of 16.5 GPa was obtained. The curve for the constrained 
(pure) flexural modulus, as defined by equation (6), is shown as 
the dashed line in Figure 8. Comparison of the two curves 
indicate that flexure is best modelled by assuming the twisting 
due to the bending-twisting coupling terms to be unconstrained, 
as expected. 

Prediction of laminate structural damping, as given by 
equation (7), was calculated from the laminate code using the 
experimentally determined value for GLT (from the flexural 
modulus curve-fit), measured values of ~L, ~T, obtained from 
flexural damping experiments on zero and 90 degree specimens, and 
curve-fitting for ~LT" The theoretical curve and experimental 
data are shown in Figure 9. The curve shown was generated using 
an analogous least-squares best-fit routine as that used to 
determine GLT. This resulted in a value of ~LT-0.039. 
Experimental results indicate that within experimental scatter, 
laminate theory predicts the flexural modulus and damping in 
graphite-aluminum metal-matrix laminates reasonably well. Tables 
3, 4 and 5 provide a summary of the mechanical properties of 
annealed 6061 aluminum, continuous Pitch 55 graphite fibers, and 
the P55Gr/6061AI metal-matrix composite specimens tested, 
respectively. 
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Figure .9 - Flexural Damping vs Ply-Angle for Symmetric 
A-Ply P55Gr/6061AI Composite 
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TABLE 3 - MECHANICAL PROPERTIES OF ANNEALED 6061 ALUMINUM 

E G v p a k C n 
GPa GPa kg/m s #m/m~ J/m~ J/kg~ 

xl0 s 

68.9 25.9 0.33 2.70 23.0 180.2 895.8 

TABLE 4 - MECHANICAL PROPERTIES OF CONTINUOUS PITCH 55 
CONTINUOUS GRAPHITE FIBERS 

E L E T GLT WLT p e k 
GPa GPa GPa kg/m s #m/m~ J/m~ 

xl0 s 

379.2 3.4 17.2 0.41 1.99 -1.25 120.9 

TABLE 5 - EXPERIMENTALLY DETERMINED MECHANICAL PROPERTIES 
OF P55Gr/6061AI METAL MATRIX COMPOSITE 

E L E T GLT VLT p Vf #L ~T ~LT 
GPa GPa GPa kg/m s xlO 2 xl0 ~ xl02 

xl03 

159.27 36.57 16.5 0.33 2.43 0.5 0.375 1.55 3.9 

Vf: volume fraction 
~: Aw/w 
EL' ET' ~L, and ~T are average values of the specimens 
tested (from Table i). 
GLT and ~LT were deduced from experimental results of 
flexural modulus and damping, respectively. 
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CONCLUSIONS 

The cantilevered flexural resonance apparatus discussed 
herein facilitates the measurement of the dynamic flexural 
modulus and structural damping capacity of a material. The 
attachment of an end-mass does not contribute to measured values 
of flexural modulus or damping. Experimental values obtained for 
the flexural modulus and structural damping of annealed 6061 
aluminum display good agreement with Euler-Bernoulli and Zener 
(thermoelastic) theories. Experimental results obtained from 
specimens cut from a four-ply, balanced, symmetric, P55Gr/6061AI 
metal-matrix composite laminate at angles ranging from zero to 
ninety degrees in increments of fifteen degrees indicated that 
the flexural modulus and structural damping varied with ply 
angle. The classical laminate theory of Ni and Adams [8] 
adequately predicts this variation. Accuracy of the modulus and 

values were determined to be 0.I percent and ~@~3.0xlO -4, damping 
respectively. Statistical analysis of all experimental data 
ascertained the precision to be 0.i percent and 5x10 -4 (one 
standard deviation), for modulus and damping, respectively. 
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ABSTRACT: The variation with temperature of dynamic Young's 
modulus in 4330V steel has been characterized using a longitudinal 
resonance method (the piezoelectric ultrasonic composite oscillator 
technique - PUCOT) and a flexural resonance method (the impulse 
excitation technique - lET). The PUCOT yielded an ambient temperature 
dynamic Young's modulus value of 206.3 GN/m 2 while values obtained 
from the IET ranged from 197.5-206.8 GN/m 2. Both techniques yielded a 
dE/dT value of -0.08 GN/(m 2 K). In addition, three numerical methods 
for the calculation of dynamic Yoang's modulus from flexural resonance 
frequencies of prismatic specimens have been evaluated. Experimental 
uncertainty at ambient temperature has been calculated for the PUCOT and 
the IET. 

KEY WORDS: elastic modulus, Young's modulus, dynamic, elevated 
temperature, 4330V steel, PUCOT, IET 

An understanding of how design parameters such as ultimate tensile strength, yield 
strength and stiffness vary with temperature is critical to the design of structures 
intended for service at elevated temperatures. In general, mechanical properties are 
functions of stress, temperature and time. As a result, strength properties are best 
characterized by creep or creep-rupture tests where the effects of each independent 
variable can be more fully understood. At sufficiently high temperatures, the standard 
tensile test becomes inappropriate for determining stiffness properties as well: Viscous 
effects associated with the weakening of grain boundaries contribute to test specimen 
deformation to the extent that the ratio of stress to strain can no longer be considered a 
tree measure of elastic behavior. 

Mr. Cook and Dr. Wolfenden are Graduate Research Assistant and Professor, respectively, with 
the Mechanical Engineering Department, Texas A&M University, College Station, TX 77843; Dr. 
Ludtka is a Research Metallurgist with the Oak Ridge Y-12 Plant, Oak Ridge TN 37831. 
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76 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

An alternative to the conventional tensile test, wherein the applied stress is both 
small enough to be well within the elastic range, and applied rapidly enough to minimize 
time-dependent viscous effects, is required. These requirements are met admirably by 
dynamic elastic modulus testing techniques. Resonance methods possess the additional 
advantages of small specimen sizes and the resulting ease of maintaining a constant 
specimen temperature [1]. 

ASTM task group E28.03.05 has recently evaluated many of the dynamic elastic 
modulus testing techniques at ambient temperature [2]. The present study is a 
comparison of results obtained using two of these techniques (impulse excitation and 
piezoelectric composite oscillation) to obtain Young's modulus values for a single 
material in the temperature range 296-873 K. A description of the specimen material and 
the presentation of theoretical background, experimental details and results, are 
included. The analysis of results contains an estimation of experimental uncertainty 
associated with the two techniques and a comparison of three numerical methods used to 
calculate dynamic elastic modulus values from flexural resonance frequencies obtained 
with the impulse excitation technique. Conclusions on the relative merits of the two 
techniques are enumerated. 

SPECIMEN MATERIAL 

The 4330V alloy steel was chosen for use in this study. Two criteria were used in 
selecting this material: In the normalized condition, it is metallurgically stable over the 
temerature range and exposure times encountered by the specimens. Also, it is one of 
several alloys for which the Oak Ridge Y-12 Plant has need of elevated temperature 
modulus data. These data are used as input for finite element codes currently being 
employed in a research and development program concerned with modeling the 
quenching process. The ultimate goal of the project is the capability to predict the 
microstructure and residual stresses developed in various alloys upon a quench. 

At Oak Ridge, test specimens were machined from a normalized forging blank. 
Dilatometry was performed at Oak Ridge as well. Results of the dilatometry were 
reported as linearized coefficients of thermal expansion (CTE) over the temperature 
ranges 296-473 K (CTE = 11.78x10 -6 K-I), 473-673 K (C'I'E = 11.32x10 -6 K-I), and 
673-873 K (CTE = 14.36x10 -6 K-l). For a given test temperature, a weighted average 
of the appropriate linearized CTE was used. Dilatometer accuracy is estimated to be 
about 1%. 

At Texas A&M, determination of specimen density was performed using 
Archimedes' principle. The density of the 4330V specimens was determined to be 7840 
4- 50 kg]m 3 (4- 0.64%). Mass determinations were performed using an analytic balance 
with a relatively high degree of accuracy; lack of repeatability (precision) was the 
dominant contributor to experimental uncertainty. 

THEORETICAL BACKGROUND 

The mechanical resonance frequencies of a linear elastic, homogeneous, isotropic 
body are dependent upon the dimensions, density and elastic moduli of the body. This 
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principle is the basis of  all resonance methods employed in dynamic modulus 
measurements. Differences among the various resonance methods include the mode of 
vibrations excited and the technique used to excite the vibrations. 

With respect to resonance methods, Young's  modulus E is most often calculated 
from the resonance frequencies o f  prismatic specimens. This section discusses the 
mathematical models typically used to calcuate Young's  modulus from data obtained 
experimentally using the piezoelectric ultrasonic composite oscillator technique 
(PUCOT) and the impulse excitation technique (IET). The first subsection deals with 
longitudinal vibrations and applies to the PUCOT; the remaining three subsections 
concem flexural vibrations and apply to the IET. 

Longitudinal Vibrations 

The equation of  motion for longitudinal resonance behavior in prisanatic specimens 
is the wave equation [3]: 

2u = C 202u 

3t 2 0x 2 
(1) 

where 
x = axial direction coordinate 
u = displacement along x-axis 
t = time 
c = a constant. 

A "shortcut" solution is obtained by noting that for a linear elastic, homogeneous, 
isotropic body, the constant c is equal to the bulk wave velocity and related to Young's 
modulus and density by 

c = ~ (2) 

where 
E = Young's modulus 

p = density. 

Wave velocity, frequency and wavelength are related by 

c = tX (3) 

where 
f = resonant frequency 

7L = wavelength. 

Resonance methods employing longitudinal vibrations most often use specimens one- 

half wavelength long. Setting specimen length equal to X/2 and combining Eqs. 2 and 3 
yield 

E = 4p12f 2 (4) 
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where 
1 = specimen length. 

Equation 4 is the equation used to calculate Young 's  modulus from parameters 
determined experimentally by the PUCOT. It should be noted that Eq. 4 is not an exact 
solution, but an approximation based on the assumption that cross-sections of  the 
specimen remain plane and that the particles in these sections perform only motion in the 
axial direction of  the specimen. It is general practice to accept this approximation for 
wavelength-to-diameter ratios of  ten-to-one or greater. 

Flexural Vibrations 

The analysis of  flexural resonance of prismatic specimens is not as straightforward 
as that of  longitudinal resonance. Several approaches have been taken. 

The. Bemoul l i -Euler  model:  The equation of  motion for flexural resonance 
behavior in prismatic specimens is [3] 

4 
32y + aaO.y = 0 
~t 2 ~x 4 

(5) 

where 
y = lateral direction coordinate 
a = a constant. 

The constant a has the physical significance 

a = -  f E l  (6) 
"V pA 

where 
I = second moment of  the cross-sectional area about the neutral axis 

A = cross-sectional area. 

This looks similar to the wave equation, but it is not. For nodally supported boundary 
conditions, Young's  modulus may be obtained using [4] 

E - 64n2p14~ (7) 

m4d 2 

where 
f .  
d 

mn 

= resonant frequency of  the nth mode of  vibration 
= diarnter of  specimen 
= nth root of  (cos m)(cosh m) = 1. 

This model  assumes that cross-sections of the specimen remain plane and normal 
to the neutral axis. The effects of  shear deformation and rotatory inertia are neglected. 

The Timoshenko Beam model: Lord Rayleigh [5] added a term to the equation of 
motion to account for the effects of  rotatory inertia. Timoshenko [6,7] added a term to 
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the equation to correct for the effects of  shear deformation. The resulting equations of  
motion are: 

EI02~+~x 2 - V  G - I p ~ = O  (8) 

p A ~  y 0 Y G 0 (9) 

where 
= bending slope 

Ic = numerical shape factor for cross-section 
G = shear modulus. 

These equations have been solved for various boundary conditions by Goens [4] and 
Huang [8]. 

Huang's  solution was chosen for use in this study because of the ease with which 
an incremental search computer code can be used to find a root to the frequency 
equation. For the nodally supported case, the frequency equation is 

2 - 2cosh(ba)cos(b~) + (1 -bzt2bs2)tf2 [bZr2(r2 - s2)2 + 32 " s2)]sinh(btz)sin(b~) = 0 (10) 

where 

b 2 PAI4(o2 (to = 2nf) 
=B- 

r2= 1 ~  
AI 2 

S 2 -- EI 
r, AGI 2 

l!_ [ 0~=j~_ (r 2 + s  2)+ (r 2+s2 )  2 t/2 1/2 

The shape factor n is a constant depending on the shape of  the cross-section. 
Values for several shapes have been tabulated [9]. For a cylinder, Ref. 9 gives r = 
0.847. Equation 10 is utilized by deeming the values of  all known parameters and 
substituting various values of  E (by computer) until a zero-crossing is reached. The 
increment of  change in E is decreased until a value for E within the desired tolerance is 
reached. 

Exact solutions: Pochhammer [10] and Chree [11] used the three-dimensional 
theory of  elasticity approach to arrive at a general solution for the propagation of elastic 
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waves in cylindrical rods. Bancroft [12] derived the frequency equation appropriate to 
flexural vibrations and Hudson [13], Pickett [14] and Teft [15] have each arrived at 
numerical solutions to these equations for the case of cylindrical rods. Using Teft's 
solution, Young's modulus is obtained by 

4 pl 2 
E = Kn~-f~Tn (11) 

where 
Kn 
Tn 

= constant, depending on mode number 
= constant, depending on mode number and function of (d/l) and G. 

Values for the constands Kn and Tn are tabulated in Ref. 15. Similar equations exist for 
prismatic specimens of rectangular cross-section [16]. 

EXPERIMENTAL TECHNIQUE 

The pertinent mathematical models having been developed, attention can now be 
focused on the techniques used to excite the vibrations. The PUCOT and the IET are 
described briefly, and the test procedure is given. 

The PUCOT 

The PUCOT uses two alpha quartz piezoelectric crystals (drive and gauge) to 
induce longitudinal ultrasonic resonant stress waves in the specimens to be tested. For 
room temperature measurements, the three component system (drive, gauge, specimen) 
is used; the four component system (drive, gauge, specimen, plus a fused quartz spacer 
rod) is used in order to isolate the piezoelectric crystals from fumace temperatures (Fig. 
1). The quartz spacer rod is tuned to resonance and glued between the gauge crystal 
(with a cyanoacrylate glue) and the specimen (with a ceramic cement). 

A closed-loop oscillator is used to drive the system at resonance. The resonant 
frequency of the three or four component oscillator is measured using an electronic 
frequency counter with an accuracy of about 0.5 Hz. The resonant frequency of the 
specimen may be extracted mathematically from the resonant frequency of the composite 
oscillator [17]. Specimen temperature is measured using a Pt/Pt-Rh thermocouple 
positioned about 5 mm from the specimen. The three-zone vertical tube furnace used 
with the PUCOT allows a spechnen temperature gradient of 1 K or less to be 
maintained. Equation 4 is used to calculate dynamic Young's modulus from 
experimentally determined parameters. Further details of the PUCOT apparatus can be 
found in Ref. 17. 

The IEr  

The IET uses a small steel impacter to excite flexural resonant vibrations in a 
nodally-supported specimen. An electronic circuit is used to extract the resonant 
frequency from the signal provided by an appropriate transducer [2]. Equations 7, 10 or 
11 may be used to calculate Young's modulus from the experimentally determined 
parameters. 
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82 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

The IET has been modified for elevated temperature use [18] by placing the 
specimen in a horizontal tube furnace, dropping the impacter from an upper vertical 
tube, and extracting an audio signal with a microphone placed at the opening of a lower 
vertical tube (Fig. 2). Specimen temperature is measured using a Chromel/Alumel 
thermocouple positioned about 5 mm from the specimen. The single-zone horizontal 
tube fumace used with the IET can show specimen temperature gradients of up to 25 K. 
In addition, center-of-specimen thermocouple readings can deviate from the controller- 
selected test temperature by as much as 35 K. 

Experimental Procedure 

Specimen dimensions were measured with a digital caliper. The accuracy of the 
caliper is given by the manufacturer as + 0.03 mm (1 + 0.1% for a typical 30 nun long 
specimen, d + 1% for a typical 30 mm long specimen). 

Using both the PUCOT and the IET, tests were performed at 296, 423, 573,723 
and 873 K. Experimental variables recorded were: specimen length, specimen diameter 
(for the IET only), specimen temperature, and resonant frequency of the specimen. 

RESULTS AND DISCUSSION 

Experimentally determined parameters are recorded in Table 1. Values of dynamic 
Young's modulus for 4330V steel calculated from these parameters are given in Table 2, 
and are presented graphically in Figure 3. Several features warrant timber evaluation. 

Room Temperature Results 

The excellent agreement between the PUCOT and the IET - Eq. 11 (about 0.05%) 
should be noted. The agreement between the PUCOT and the IET - Eq. 10 (about 
0.25%) is only slightly less impressive. The values obtained from the IET - Eq. 7 
deviate significantly from the other results (nearly 5%). This is due likely to violation 
by the specimen geometry of the simplifying assumptions of the model. Validity of the 
Bernoulli-Euler model is generally linked to the use of "long slender specimens" 
although there is no commonly employed criterion analogous to the previously 
mentioned "ten-to-one rule" used with the PUCOT. 

Experimental uncertainty in the calculated values of dynamic Young's modulus can 
be related to the uncertainty of the experimentally determined parameters used in the 
calculation by [19] 

w .  / (12) 

where 
R = R(xt, x2 . . . . .  xi) 
xi = independent variables 

wi = uncertainty in the ith variable. 
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Both techniques may be evaluated by performing the indicated partial derivatives on the 
appropriate equation and substituting the previously stated uncertainties associated with 
the measurement of the experimentally determined parameters. The PUCOT shows a 
total experimental uncertainty of about 0.5%, with imprecision in the determination of 
specimen density accounting for most of the uncertainty. The IET shows a total 
experimental uncertainty of about 2%, with accuracy of specimen diameter measurement 
accounting for most of the uncertainty. 

It should be mentioned that the difference in uncertainty between the two 
techniques is not due to any difference in the quality of the associated instrumentation, 
but instead reflects the inherent simplicity of the mathematics used with longitudinal 
vibrations in contrast to that used with flexural vibrations. For example, the same 
caliper is used to measure specimen dimensions for both techniques. However, a 
higher-order functional dependence of resonant frequency on specimen dimensions 
magnifies the error of the measurement for the IET. 

Elevated Temperature Results 

At elevated temperatures, the PUCOT shows a linear dependence of dynamic 
Young's modulus on temperature. The results from the lET are less linear, which may 
be explained partially by the previously mentioned problems with temperature control in 
the single-zone furnace used with the IET. In all cases however, a linear least-squares 
fit to the data yielded a dE/dT value of about -0.08 GN/(m 2 K). 

Another factor worth mentioning is the effect of uncertainty of coefficients of 
thermal expansion used to correct for changes in dimension with temperature. Such 
corrections are made for length, diameter, and thus density as well. These parameters 
are, as previously mentioned, primary sources of error in these types of measurements. 
The corrections are very small, however, and a dilatometer possessing 1% accuracy or 
better will give CTE values which may be used without affecting the total experimental 
uncertainty. 

CONCLUSIONS AND RECOMMENDATIONS 

Dynamic Young's modulus in 4330V steel is about 206 GN/m 2 at ambient 
temperature. The dynamic Young's modulus falls in a linear fashion with temperature at 
the rate of about -0.08 GN/(m 2 K). 

Assuming absolute accuracy of the mathematical models, the experimental 
uncertainty of the PUCOT is about 0.5% while that of the IET is about 2%. The 
measurement of specimen density is the primary source of imprecision in the PUCOT 
while the measurement of specimen diameter is the largest contributing factor to 
imprecision in the IET. 

The experimental results suggest that the lET is best used with an exact solution 
(such as Eq. 11) if possible. If an exact solution does not exist for the specimen 
geometry used, the Timoshenko Beam model will, with careful choice of shear 
correction factor r, yield results of only slightly less quality. The BemouUi-Euler model 
should be used with caution, keeping in mind the model's assumptions concerning 
specimen geometry. 
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IMPULSE EXCITATION : A TECHNIQUE FOR DYNAMIC MODULUS MEASUREMENT 
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ABSTRACT: The impulse excitation technique is a dynamic 
method of measurement based on the analysis of a transient 
vibration of the test object resulting from a mechanical 
impact. The result is a precise indication of the fundamen- 
tal natural frequency of this vibration. This information 
may be used as the basis for calculating the elastic modull 
of the material under test. The natural frequency reading 
by itself may be used as a relative measure for the purpose 
of comparative evaluation. The technique is characterised 
by the speed and ease of the measurements as well as by the 
wide range of its application. Because of this, the method 
is not confined to the laboratory environment but opens new 
perspectives in industrial quality control and performance 
improvement. 

KEYWORDS: Non-destructive testing, Elastic modulus, Transient 
vibration, Natural frequency 

THE BASIC PRINCIPLE 

As the name implies, the pulse excitation technique obtains its in- 
formation from the analysis of the transient vibration of the test 
object following a mechanical impact. The energy thus acquired by the 
sample is dissipated in a vibratory movement, the nature of which is 
dependent on the geometry of the test piece, as well as on the density 
and the elastic properties of the material. 
It is the purpose of the instrument to capture the mechanical vibra- 
tion, analyse it and give an accurate measure of the natural frequency. 
This information, together with the mass and the shape factor of the 
test object, will permit the calculation of the elastic moduli [1-2-3]. 

J.W.Lemmens is Managing Director of J.W.Lemmens-Elektronika N.V. 
Research Park, B-3030 Leuven, Belgium, and President of J.W.Lemmens, 
Inc. 10801 Pear Tree Lane, St Louis, Missouri 63074. 
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Generally, the vibration resulting from a mechanical impulse will be 
very complex in nature, a mixture of fundamental and higher order 
harmonics (fig. i). 

FIG. 1 -- Typical vibratory movement showing harmonic content. 

Hence, the instrument is programmed to perform a time analysis on the 
incoming signal in order to identify the fundamental component of the 
vibration. Then the zero-crossings are determined as accurately as 
possible and used as time markers for measuring the period of the 
vibration against a precise quarz-crystal controlled oscillator. The 
result is displayed on the front panel in numerical form. 

The oscillator serves as a reference element and ensures that the test 
instrument is inherently calibrated to a high degree of accuracy. 
Current specifications state a frequency stability of 0.005 percent, 
inclusive of calibration tolerance at 25 ~ operating temperature 
range of 0 to 70 ~ input voltage change of plus and minus i0 per- 
cent, aging, shock and vibration. 

The block diagram of the electronic instrument is shown in Fig. 2. 
The input signal is first amplified and then fed through two parallel 
logic channels. One will acknowledge receipt of an incoming signal and 
inltialise the rest of the circuitry for processing. It will eliminate 
the undesirable effect of test piece movement and only retain the 
signal coming from its vibration. It will further monitor the decay of 
the signal and indicate when it is in the linear range of the amplifier 
and at which moment processing should stop because the signal is about 
to fade in the background noise, etc. 
The other channel will determine the signal zero-crossing points, thus 
marking off the successive periods clearly. The time measurements are 
stored in memory and as soon as the minimum usable signal level has 
been reached, the processor will compute the result, output the data 
and activate the display. The result is given with a constant 4-digit 
resolution, in either frequency (Hz - kHz) or period (ms - ps). 
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FIG. 2 -- Block diagram of the instrument. 

THE MEASUREMENT METHOD 

In practice, the entire procedure is extremely simple and essentially 
consists of the following : 

The test object is placed on an appropriate support. 
The piezo-electric probe is held in contact with the test object. 
A light mechanical impulse is imparted to the test object. 
The result of the measurement is read from the front panel. 

It will hardly ever require more than a few seconds to perform the 
test. The result remains visible for 750 milliseconds, after which the 
display is cleared and the instrument is ready for the next measure- 
ment. It is interesting to note that the operator does not take part 
in the measurement itself. His role is limited to providing the 
initial energy required for initiating the vibration. From that moment 
onward, the response of the test object is passed directly on to the 
instrument for analysis, without any further operator interference. 

Vibration modes 

Most test pieces can readily be induced to vibrate in several modes, 
depending primarily upon the choice of the point of impact of the 
exciting impulse. As an example, elastic moduli are often determined 
using a prismatic specimen and obtaining the flexural (two directions), 
torsional and longitudinal resonances. Disc-shaped specimens are also 
very convenient for obtaining both flexural and torsional modes. 
Cylinders are often used but it is difficult to force them into their 
torsional mode of vibration. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



LEMMONS ON IMPULSE EXCITATION 93 

Supporting the test object 

A dynamic test will obviously require that the test object be allowed 
to vibrate as freely as possible. It must therefore be isolated from 
external vibrations and prevented from contacting other solid objects 
which could induce additional stiffness or cause disturbing contact 
resonances. Ideally, the test object should be supported in the nodal 
zones of the desired vibration pattern. Stretched wires or narrow 
strips of soft rubber can be used as supports. In many instances, it 
will be entirely satisfactory to simply place the test object on a flat 
sheet of plastic foam. In practice, the greater the length to thick- 
ness ratio of the test object, and the lower the elastic modulus, the 
more important the positioning of the supports becomes. 
Correctly positioning the supports will be helpful in discouraging 
unwanted vibration modes and avoiding excessive damping of the desired 
mode. 
It is interesting to note that one single set of four supporting points 
(the intersections of the nodal diameters and the nodal circle) will 
accommodate both flexural and torsional vibration modes of discs, 
making disc-shaped specimens a good choice when one wishes to determine 
both the modulus of elasticity and the shear modulus (Fig. 3). 

FIG. 3 -- Vibration patterns of a disc-shaped object. 

Pulse excitation 

The energy of the impulse is converted into the desired vibration mode 
most effectively when it is given in an antlnode of that specific mode. 
As with all other elements of the measuring technique, the method of 
excitation is not at all critical: a light and elastic tap is all that 
is required. Its purpose is to cause a short vibration of the test 
piece. The measurement is completely independent of the force of the 
impact but nothing can be gained from tapping violently. This will 
only make the test piece jump on its support, causing an unnecessarily 
distorted signal which is more difficult to analyse. Moreover, it is 
far easier to maintain steady contact between the detector and the test 
piece with gentle tapping. It is very important, however, that the 
impulse be elastic and that the impacting body be allowed to bounce 
away freely after making contact. This will again make sure that the 
vibrating body will be completely free during the relaxation. 
Many common objects can be used for initiating measurements. The most 
appropriate tapping object is made in the form of a sphere fixed at the 
end of a thin and flexible stem. Thus the centre of gravity is placed 
in the point of impact which makes elastic tapping quite easy. 
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The selection of a smaller or larger tapping hammer, or one made of hard 
or soft material, will depend on the mass, shape and material of the 
test object. A variety of simple ball hammers, measuring from 3 to 
about 25 mm in diameter and ranging from soft-rubber to steel, will be 
adequate to cover most applications. Generally, a stiff object (one 
having a low length to thickness ratio and/or a high modulus) will 
require the use of a hard hammer, and vice versa. 
The pulse excitation technique lends itself very well to automation. 
Electromagnetic and pneumatic devices have been developed for tapping 
test objects in the required balllstlcal manner and are installed in 
industrial measuring stations and in automated laboratory experiments. 

Signal capture 

Various types of transducers have been used to detect the mechanical 
vibration of the test object and convert it into an electric signal. 
Although capacitive, optical and electromagnetic sensing devices proved 
successful, in practice the greater part of the application range has 
been covered by a specially designed plezo-electrlc detector. It will 
cover a frequency range from about 20 Hertz up to 80 kilohertz. 
An acoustic sensor has also proven quite valuable although precautions 
are required to prevent perturbation from surrounding noises. Normally 
it is placed at a distance of a few millimeters from the test piece. 
Excellent results are obtained when the test object, the microphone and 
a mechanical tapping device are mounted inside a soundproof enclosure. 
Measurements have been performed up to about 50 kilohertz. Using a 
microphone reduces the loading of the test object significantly. This 
is quite a help when measuring thin foils (less than 0.3 mm thick). 
Measurements in vacuum or at elevated temperatures require some form of 
waveguide for transmitting the vibration outside of the conditioned 
chamber and feeding it to one of the above mentioned sensors. Solid 
waveguides in the form of a wire or rod have proven quite effective in 
conjunction with the plezo-electric detector. Microphones can best be 
used with stethoscope-type devices using a length of closed tubing as 
the coupling element. 
Some work is being carried out to investigate the potential of laser 
interferometric techniques for non-contact vibration sensing. The 
outlook thus far is quite promising [4]. 

MEASUREMENT CHARACTERISTICS 

Non-destructive 

The non-destructive nature of the method allows any number of repeat 
measurements to be made on a single test piece. Time related- or event 
related histories can be recorded easily. The example of Fig. 4 shows 
the room temperature relaxation of a CuZnAI alloy after heat treatment 
at 750 ~ (15 mins) and salt immersion at 155 ~ (30 mins), measured 
over a period of two hours. Fig. 5 shows the effect on refractory 
materials of successive exposures to thermal shock cycling (1200 ~ to 
25 ~ 
Non-destructive testing has another advantage, which is of particular 
interest to industrial users: there is no limit on the number of parts 
that may be tested. In fact, the pulse excitation method is being used 
increasingly to perform i00 percent testing of large volume production. 
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FIG. 4 -- Relaxation of CuZnAI after heat treatment. 
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High speed operation 

The measurements are of extremely short duration: most will require only 
a fraction of a second. Visual readout of the result takes about 750 
milliseconds, which will generally limit the measuring rate to one per 
second. If higher rates are required, the display function can be 
disabled and the results evacuated over the data link to an external 
recording device. 

Range of moduli 

The pulse excitation technique is capable of measuring a wide range of 
elastic materials. As the method is based on the analysis of transient 
vibrations, the limit is set by the amount of vibrational information 
provided by the material under test. In practice, at least two or 
three usable periods should be available for a reliable measurement. 
Of course it is impossible to measure critically damped materials with 
this method, which would exclude rubbers and generally all primarily 
vlsco-elastic materials. Nevertheless, materials which can be tested 
range from ultra-light fibrous insulators with E-modulus values of the 
order of 50 MPa to synthetic diamond with 750 GPa. This range includes 
polymers, resins, wood, cement, graphite, concrete, rocks, composites, 
metals, refractories, ceramics, abrasives, ultra-hard materials, etc. 

Range of specimen configurations 

Test piece geometries may vary greatly provided that the shape presents 
some minimum length to thickness ratio of 2 to i. This means that both 
cubes and spheres are notable exceptions which cannot, at the present 
time, be measured by this method. 
Absolute values of elastic moduli will generally be determined using 
specimens with simple shapes: cylinders, prisms and discs are mostly 
used. Shapes and dimensions are widely uncritical. Cylinders and 
prisms have been measured from the 2 to i aspect ratio, which is a 
common specimen in concrete testing practice, to more than i00 to i. 
Discs constitute very good specimens because of the ease with which 
both flexural and torsional vibrations can be measured, even in extreme 
geometries. Discs with diameter to thickness ratios from 2 to I to 
more than 250 to i have been measured. 
Specimen sizes have ranged from test bars 2 x 2 x 20 mm to concrete 
beams, 4 meters long and 50 by 20 cm cross section. 
Relative measurements, on the other hand, can be performed on an 
infinity of shapes and sizes as they do occur in industry. Objects as 
complex as turbine blades or automobile brake-pads or slide-gates and 
shrouds for the steel industry are measured easily. 

Range of temperatures 

Measuring at low and elevated temperatures is relatively easy with the 
pulse excitation technique. Using the devices described in earlier 
paragraphs, it has been possible to measure concrete specimens at tem- 
peratures as low as -180 ~ and ceramic specimens up to a temperature 
of +1500 ~ In both cases the experiments were limited rather by the 
capabilities of the equipment than by the measuring technique. 
Currently, an experiment is being set up for measuring metal specimens 
in vacuum, up to 600 ~ 
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SOME APPLICATIONS 

In all areas of materials technology, three levels of interest can be 
distinguished : 

- Materials research and product development 
- The process of manufacturing a product 
- Utillsation of a manufactured product 

The impulse excitation technique is useful in fundamental and applied 
materials research [5-6-7]. 

Manufacturers have a twofold interest: quality control of their product 
and information about their manufacturing process. One hundred percent 
testing of products and their classification will result in close 
adherence to specifications, meeting every customer's specific needs 
and ensuring satisfaction with the highest degree of certainty. 
The vast amount of statistical data which is gathered from high volume 
testing yields valuable information on various parameters of the manu- 
facturing process. 

The user of a product has a different point of view. He is primarily 
interested in the product performance. This is particularly true with 
critical parts, where the failure to perform may lead to very high 
consequential losses. Very often, there is no relation between the 
cost of a product and the economical task which it will be required to 
perform. Users therefore will test incoming products for confirmation 
of performance expectation prior to installation. Many will carry out 
a further classification, thus fine tuning the product application and 
realising substantial performance improvement. 

A first application has developed in the field of abrasive machining, a 
vital operation in metalworking industry. Pulse excitation is used to 
determine the elastic modulus of grinding and honing tools. Extensive 
research has shown that this property is closely related to the cost of 
abrasive machining and to the integrity of the machined part [8]. 
Grinding tool manufacturers use the test in product grading, industrial 
users check the abrasive tools at the manufacturing site. 

Refractory products are used in steel manufacturing, cement factories, 
glass production and oil refineries. They are invariably called to 
withstand heavy mechanical and thermal loading. The large numbers of 
parts installed present the usual variations corresponding to today's 
state of the manufacturing art (Fig. 5). Evidently, the performance of 
the system is limited by the weakest component [9]. Again, testing, 
classification and selective use lead to substantial economic savings 
by extending the service life of the installation significantly. 
Another application example has been discovered in the steel industry. 
Ceramic break rings are critical parts used in continuous steel casting 
installations. Pulse excitation is used for I00 percent testing and is 
now reported to have eliminated the breakdowns which previously used to 
lead to very costly production incidents [I0]. 
It is remarkable that product testing, as practiced by many users, is 
not a rigorous accept-reject decision, but rather a matter of applica- 
tion refinement. Often the advantages are secured by simple product 
re-arrangement, constituting homogenous rather than random sets. 
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FIG. 5 -- Typical distribution of refractory bricks 

Building materials are subject to various influences which cause their 
strength to degrade progressively: frost damage in cold climates and 
salt spray in marine environment are two common occurrences. 
Resistance to these factors are important specifications of roof tiles, 
bricks, cement and concrete. Pulse excitation is used as a test method 
in laboratories as well as manufacturing plants to assess damage from 
frost-thaw cycles. Curves are drawn from the measurement results of 
300 successive cycles and excellent correlations have been observed 
between the instrument readings and the strength of the specimens. 

In the design and specification of timber structures is the knowledge 
of the elastic moduli of prime importance. Until recently, there has 
not been a recognised and reliable method for their determination. The 
impulse excitation technique promises to fill this void and has been 
used for the characterisation and classification of timber [11-12]. Its 
potential in measuring hardboard products and bonded elements is being 
investigated by several timber research institutes. 

Researchers investigating new isotropic composite materials for dental 
restoration have found the impulse excitation technique to be very 
helpful. Using small specimens of 35 x 5 x 1.5 mm they have observed 
the effects of variable filler fraction, monitored postpolymerisatlon 
and measured the influence of water sorptlon. The result has been the 
development of a phenomenologlcal model for these composite materials 
which is used for predictive purposes [13-14]. 

Compressive strength and porosity of rocks are of interest not only to 
geologists but also to mining and tunnel building engineers as well as 
to oll prospecting companies. Pulse excitation can he applied in the 
field of rock characterlsation, monitoring and testing. The physical 
properties are measured as a function of temperature, weathering, 
degree of saturation and chemical alteration [15]. 
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SUMMARY 

Various methods of dynamic modulus measurement based on mechanical 
resonance methods have been in use for several decades and they have 
rendered excellent services. However, the complexity and delicacy of 
the instrumentation, the need for experienced handling and the rather 
high cost have prevented their more widespread use. 
The development of the impulse excitation technique has been undertaken 
to widen the potential of dynamic modulus measurement whilst retaining 
the merits of the earlier methods. The new system has proven to be a 
powerful research tool at the disposal of materials scientists and to 
allow industry to gain valuable information and realise substantial 
performance improvements. 
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ABSTRACT: Following studies by Demarest (1969) and by Ohno (1976), 
we describe measurements and analysis that yield, from a single 
cube-shape specimen, in a single measurement, the complete set of 
anisotropic elastic-stiffness constants, the Cij. Experimentally, 
we place a cubic specimen between two piezoelectric transducers, 
which excite and detect the cube's macroscopic free-vibration 
(fundamental-mode) frequencies, up to I0 MHz. From the specimen's 
shape, size, and mass, and from the measured resonance-frequency 
spectrum, we analyze for the Cij within a given tolerance El: 

!i(Cij) - ~i = ~i" (No sum on i.) 

Here ~i relates to the measured resonance frequencies, and ~i 
represents eigenvalues calculated by a Rayleigh-Ritz method using 
Legendre-polynomial approximating functions. Legendre-poiynomial 
orthogonality ensures a diagonal mass matrix [m], which simplifies 
the resulting eigenvalue problem: 

([k] - l[m]) { x ]  - {0}. 

For materials with certain symmetries, the coefficient matrix [k] 
reduces to a block-diagonal matrix, which reduces computational 
effort and simplifies vibration-mode identification. 

KEYWORDS: anisotropic media; elastic constants; Rayleigh-Ritz 
method; resonating-cube method; vibrational modes. 

Dr. Heyliger is assistant professor in the Civil Engineering 
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materials research engineer at NIST (formerly NBS), Boulder, 
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INTRODUCTION 

The present approach to elastic-constant measurements depends on 
exciting and detecting the natural-vibration frequencies of simple- 
geometry solids. This concept traces back at least to Lamb [i], who 
in 1882 analyzed the vibrations of an elastic sphere. 
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Here, we focus not on spheres but on cubes and their natural 
generalization, a rectangular parallelepiped. For expressive brevity, 
we say cube. A cube with orthotropic elastic symmetry is equivalent to 
a rectangular parallelepiped. 

Over conventional resonance and pulse methods, the vibrating- 
parallelepiped method offers many advantages: 

i. Simple specimen geometry: sphere, cylinder, cube, 
parallelepiped, others 

2. One specimen (instead of four* or more) 
3. Small specimen: down to 1 mm or less 
4. One measurement (instead of nine* or more) 
5. Simultaneous elastic-constant and internal-friction 

measurements 
6. No transducer-coupling correction 
7. Shorter measurement time 
8. For temperature measurements, one run (instead of nine); 

eliminates artifacts arising from temperature-measurement 
errors among various temperature runs; especially 
important or studying phase transitions 

9. Possible simultaneous frequency-dependence study 
i0. For relative values of principal elastic constants 

(versus temperature or pressure) no specimen-geometry 
requirement 

ii. For small specimen-to-specimen differences, possible 
complete automation 

12. Especially valuable for monocrystals: no need to cut and 
prepare various orientations. 

(* This number assumes orthotropic symmetry, or nine independent 
elastic constants.) 

NUMERICAL ANALYSIS 

To estimate the natural-vibration frequencies of orthotropic cubes, 
we follow a method originally applied to isotropic materials by 
Demarest [2] and extended to anisotropic materials by Ohno [3]. First, 
we consider a cube with dimensions 2Lx, 2Ly, 2L z as shown in Fig. 1 
with an anisotropic constitutive relationship being represented by the 
elastic stiffness components Cij. 

Hamilton's principle provides the starting point for obtaining the 
variational form of the equations of motion. This can be expressed as 
(Reddy [4]) 

I, 
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FIG. 1 -- Orthotropic-cube geometry. 

Here, K and U represent kinetic and potential energy; 6 the 
variational operator; p the mass density; u, v, and w displacements in 
the x, y, and z directions; �9 partial differentiation with respect to 
time; aij and ~ij components of the stress and linear-strain tensors; 
and V cube volume. Our objective is to find the natural-vibration 
frequencies of the cube under periodic motion. We assume that the 
three displacement components behave as 

A i (x,y,z,t) = Ai (x,y,z) e i~t (I) 

Here, ~ denotes the vibration frequency. Then we can write 

0 = h6fV {p~2[u2+v2+w2] - aij~ij}dV. 

Substituting in the appropriate expressions for the stress and 
strain components and using the constitutive relation yields 

0 = hSfV {p~2 [u2+v2+w =] 

[au] 2 av au 
- c~ [~j - 2c~2 ay ax 

- c [~]~ aw av a[a~}2 
22LayJ - 2C2s az ay ca3 

__ C44 [ rav] 2 [ow] 2 aW aV 
LazJ + LayJ + 2 ~y ~ ] 

aw au 
----- 2Cz30z ax 

(2) 
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- Cs5 + + 2 a~z 

[ } -- C s6 + lax) + 2 ~y ~x dV. 

Next, we select approximations for the three displadement 
components. These must be continuous, satisfy the homogeneous form of 
the essential boundary conditions, and be linearly independent and 
complete. These approximations take the form 

u(x,y,z) : i~l ai ~ (x,y,z) 

v(x,y,z) = i~ 1 b i ~[ (x,y,z) (3 )  

w(x,y,z) = i~ I d i ~ (x,y,z). 

Here, ai, bi, and d i denote constants and ~i functions that meet 
the appropriate requirements. At this point, it is useful to transform 
the domain of interest to a unit cube to simplify the necessary 
integration. To do this, we use the following transformations: 

x Y-- Z z 
X = ~, Y = Ly ' = e-z (4) 

a 1 a a 1 a a 1 a 
ax L x ax ' ay Ly @y ' az L z az (5) 

dV = dxdydz = LxLyLzdXdYdZ. (6) 

For convenience, we assume that these transformations have been 
made but we drop the upper-case nomenclature for the transformed 
coordinates. 

For the approximation functions in Eq 3, we select 

1 
#i (x,y,z) = ~ pf(x>pN(y)pf(z). (7) 

Here Pa denotes the a th normalized Legendre polynomial. As noted 
by Demarest, use of the normalized Legendre polynomials implies that 

Pn(X) = Pn(X)~ (8) 

and 

~ i w 2 
Pn(x) dx = i. (9) 

1 
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104 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

Since the Legendre polynomials are orthogonal, use of these terms 
results in a diagonal mass matrix. 

After substitution of the approximation functions from Eqs 3 and 4 
into Eq 2, we can take the first variation of the result with respect 
to the constants a, b, and d. Performing these operations and 
collecting like terms allows us to express the result in matrix form: 

r aq rtilEoltoJ1 ['a~ / rr 
[K2 , ] [K22 ] [K2S l{b} t _ p,,,2 [[o][I][O][ t {b}~" = l { 0 ) t  
[K31 ] [K32 ] [K  33 L { d } J  L [ 0 ] [ 0 ] [ T ] J  L { d } J  L { 0 } J  

(io) 

or 

([K] - p~2[l]){x} = {0). (li) 

Terms in Eq i0 are defined in the Appendix. 

Solving the eigenvalue problem, Eq ii, allows us to calculate the 
frequencies ~ of the cube. It is possible to increase the efficiency 
of solution of this equation and add some physical insight into the 
type of vibrational mode associated with a given frequency by grouping 
the terms in the Legendre polynomials according to known mode shapes. 
Although we included this procedure in our analysis, we omit the 
details. 

A discussion of this procedure occurs in Ohno [3]. For the 
analyses reported here, Legendre polynomials up to third order were 
assumed in the displacement approximations. Hence n = 4 in Eq 3. 

INVERSE PROBLEM 

The numerical technique discussed in the previous section provides 
a useful way to approximate the natural-vibration frequencies of 
anisotropic cubes. Quantities required to calculate these values are 
the cube dimensions and the material's elastic constants. Using these 
quantities in combination with the described numerical technique, 
frequencies for isotropic cubes are obtained that compare well with 
both analytical and numerical results. 

A more important, but more difficult, application of this numerical 
technique is to calculate the elastic constants of a material using 
measured natural frequencies. This strategy, typically called an 
inverse problem, involves specifying the natural frequencies and 
dimensions of the cube as the problem input, and the elastic 
stiffnesses as output. As an example, we consider determining the 
elastic constants C I and C e for an isotropic material such that 

XI(CI,C2) = ~I 

X2(CI,C2) = ~2. (12) 
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Here, %i (i=1,2) denote the numerically determined frequencies and 
~i (i=l, 2) the measured frequencies. This system of equations can then 
be solved for C I and C 2 using one of a number of existing routines (for 
example, see [5]). Ideally, we would expect accurate values for these 
constants if both the numerical and experimental techniques perform 
with equivalent accuracy. For example, consider calculating the 
frequencies for a cube with the following characteristics: 

mass = 0.0519 g 
Lx=Ly=L z - 0.2744 cm 
C11 = 324 GPa 
C12 = 130 GPa. 

This yields the first two distinct frequencies as 

~i = 1.0359 MHz 
~2 = 1.4313 MHz. 

Using these values as input along with the cube dimensions, we then 
attempt to calculate CIz and Cz2 using the logic of Eq 1 and the 
numerical technique in [5]. Using initial guesses of C{I = 260 GPa and 
C{2 = 160 GPa, the solution quickly converges to the original values. 

Unfortunately, the physical application of this method is less 
straightforward than the above example. Highly accurate measurements 
are required to determine the cube's natural-vibration frequencies 
because of the difficulty of identically satisfying Eq I. Small 
perturbations in the experimental frequencies can lead to difficulties 
in solving Eq i. Hence, a less restrictive approach for the general 
case of n elastic constants is to form the residual functions, Ri: 

A*(CI,C2 ..... Cn) - wl = R* 

A2(CI,C2 ..... Cn) - w2 = R2 

Am(CI,C2 ..... Cn) - Wm = Rm- 

(13) 

Here, m denotes the number of measured frequencies, and m~_n. The 
problem becomes one of minimizing the combined residuals to calculate 
accurate values of C i. Preliminary results have been obtained using 
the nonlinear least-squares algorithm in [6] and will be reported 
elsewhere. We hope to extend this method to shapes other than 
parallelepipeds. 

MEASUREMENTS 

Figure 2 shows a block diagram of the measurement electronics. We 
stepped the synthesizer under computer control between 50 kHz and 3 MHz 
in 50-kHz steps. At each step, we allowed the lock-in amplifier to 
settle, and we read by multimeter its in-phase and quadrature outputs. 

The 4-MHz PZT transducers contacted the cube-specimen corners as 
shown schematically in Fig. 3. To minimize leakage, we placed aluminum 
foil over each transducer. Below I00 kHz, we observed some highly 
damped resonances, which we attributed to the apparatus, and ignored. 
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106 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

Although we did not measure the clamping force, it is critical to the 
measurements. A low force fails to reveal all the resonances. A high 

force shifts the resonance frequencies. 

FIG. 2 -- Block diagram of measurement electronics. 

FIG. 3 -- Schematic of specimen holder. 
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RESULTS AND DISCUSSION 
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For an aluminum-alloy cube, Fig. 4 shows a graph of measured and 
predicted vibration frequencies. Table 1 gives the numerical 
comparisons. Predicted frequencies near 140 kHz were not observed. 

1 8 0  I I 1 I 

8 0  I I I I 
80 100 120 140 160 180 

PREDICTED FREQUENCY (kHz) 
FIG. 4 -- Comparison of measured and predicted vibration frequencies. 

TABLE 1 -- Predicted and measured vibration frequencies, in kHz 
Predicted Measured 

90.2 91.1 
90.3 91.4 
90.3 91.7 

121.8 122.3 
121.9 122.3 
121.9 122.6 
123.7 124.6 
123.7 124.6 
123.7 124.9 
140.3 
140.4 
140.4 
147.5 148.8 
147.6 148.8 
147.7 148.8 
152.9 153.5 
152.9 153.9 
153.0 154.4 
174.6 175.2 
174.7 175.7 
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108 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

In Fig. 4, each point contains three frequencies that arise from 
noncubicity and perhaps nonisotropic elastic constants. By a standard 
pulse-echo method, we measured the aluminum-alloy elastic constants. 
Table 2 shows these results together with those deduced from a 
vibrating-cube measurement. The cube weighed approximately ii g and 
measured approximately 1.57 cm. 

TABLE 2 -- Isotropic aluminum-alloy elastic constants determined by two 
methods. 

Method Bulk Shear Young Poisson 
Modulus, GPa Modulus, GPa Modulus, GPa Ratio 

pulse-echo 75.0 27.6 73.8 0.336 

resonant-cube 75.4 27.9 74.6 0.335 

The good agreement, obtained for the aluminum alloy, failed to 
emerge when we measured some practical nonisotropic materials: an 
SiC /AI composite and a graphite-fiber/Mg composite. The latter shows 

P 
especially strong elastic anisotropy. We continue to study why these 
materials defy exact analysis by the resonating-cube method. Our 
future studies will use blocks that depart from cubes. Noncubic blocks 
provide two advantages. First, a block with three lengths produces 
three-fold resonance frequencies, thus two extra measurements. Second, 
the cubic degeneracy produces errors that interfere with the 
frequencies-to-moduli inversion process. 

CONCLUSIONS 

I. For an aluminum alloy, using the resonating-cube method, we 
obtained almost the same elastic constants measured by a standard 
pulse-echo method. 

2. The resonating-cube method presents some formidable but solvable 
problems. First, getting an accurate, complete, nonspurious 
resonance spectrum. Second, handling the inverse problem, 
especially for the anisotropic case. 

3. Despite these obstacles, the resonant-cube method offers many 
advantages. 

4. The high promise of the resonating-cube method suggests several 
further studies: 

a. Cij temperature dependence 
b. Cij pressure dependence 
c. other specimen shapes: cylinders, discs, rods 
d. inverse problem (determine Cij from frequencies) 
e. internal friction (resonance-peak width). 
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APPENDIX 

We can write the submatrices in Eq i0 in mere explicit form: 

KU : a~i x ~ + c5, a~i* ~ + ~' 
V 8x ax Lz 2 az az ay ay ) 

lj $x ay LxLy By @xJ = K~[ 

13 = Lxe z ax az Lxe z az @x J = K~ :t 

z] V ay ay az az ax 

zj LyL z 8y az LyL z az ay j 

K~ = a~i z a~! + 5~ ~ + ~ 
z] V @z az ay ay ax ax j �9 
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ABSTRACT: This study addresses the need for dynamic mechanical 
properties of advanced materials which are available only in small 
quantities by evaluating the ability of the Piezoelectric Ultrasonic 
Composite Oscillator Technique (PUCOT) to measure the dynamic 
modulus of small specimens of fibrous and particulate metal matrix 
composites. This is accomplished by measuring the dynamic modulus of 
several small rod or bar-shaped specimens of 6061 aluminum reinforced 
with silicon carbide fibers or particles (AFSiC) at room temperature with 
the PUCOT. The fiber or particle volume fractions of the A1/SiC 
specimens vary from 8 to 56 percent and void volume fractions range from 
zero to 15 percent. The results are examined in terms of the dynamic 
modulus and specific dynamic modulus as a function of reinforcement 
volume fraction. Experimental results show that the modulus versus 
volume fraction for the fiber-reinforced composites deviates from the linear 
rule-of-mixtures due to the presence of voids and fiber damage. For the 
particulate composites, the modulus values fall within the bounds predicted 
by variational principles. A "strength of materials" approximation based 
on the assumption of cubic particles has limited success in predicting the 
particulate composite data. The results demonstrate the ability of the 
PUCOT to measure accurately the dynamic modulus of small specimens 
with minimal specimen preparation. 

KEY WORDS: dynamic modulus, resonance techniques, PUCOT, metal 
matrix composites, aluminum/silicon carbide composites 

The performance requirements of advanced structures are continually placing new 
demands on materials scientists to develop materials that are not only stronger, stiffer, 
and more resistant to extreme environments, but also lighter. As the new materials are 
being developed in the laboratory, a critical need arises for accurate characterization of 
the material properties in order to determine the capabilities of the new material and 
guide further development. In these situations, one is often dealing with small amounts 
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Washington, DC 20375; Professor Wolfenden is a professor in the Mechanical Engineering Department, 
Texas A&M University, College Station, "IX 77843. 
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of material and short deadlines. Therefore, accurate and reliable characterization 
techniques which can utilize small specimens and require little or no specimen 
machining, as these materials are often very hard to machine, will be highly desirable. 
For dynamic structural applications, the dynamic modulus (E) of the material will be of 
particular importance. In addition, verification of theoretical models requires large 
numbers of data points to adequately determine the ability of the models to predict 
material behavior. Again, small specimens will be advantageous in this regard as they 
will allow more data to be obtained from a given amount of material. This study 
addresses these concerns by evaluating the ability of the Piezoelectric Ultrasonic 
Composite Oscillator Technique (PUCOT) to measure accurately the dynamic modulus 
of small specimens of an advanced material; in this case, a metal matrix composite 
(MMC), 6061 aluminum reinforced with either silicon carbide fibers or particles 
(m/SiC). 

The PUCOT is a technique where a small specimen is set into ultrasonic, resonant 
vibration by piezoelectric crystals in such a way that the dynamic modulus and 
mechanical damping of the specimen at a known strain amplitude are measured. The 
theory and technique for the PUCOT were first described by Marx [1] and later refined 
by Robinson and Edgar [2]. The technique was extended to the torsional case by 
Robinson, et. al, [3] for determination of dynamic shear modulus, shear strain, and 
torsional mechanical damping of small specimens. The advantage of the PUCOT in the 
longitudinal vibration case is its ability to use small specimens with non-uniform cross- 
sections. The length of the specimen is critical but machining of the lateral sides to some 
standard configuration is not required. This allows the testing of rod, thin strip, or bar 
specimens. 

This paper will describe the details of the PUCOT and present results that examine 
the applicability of the PUCOT to testing of MMCs. In addition, the dependence of the 
dynamic modulus of Ai/SiC on the volume fraction of the SiC reinforcement will be 
analyzed and compared to some theoretical predictions. 

PUCOT 

General Technique 

The PUCOT measures the resonant period of vibration in a specimen. The basic 
setup for room temperature measurements, shown in Fig. l, consists of two 
piezoelectric quartz crystals, known as the drive (D) and the gage (G) crystals, and the 
specimen (S), glued in series. The drive crystal is excited with a suitable altemating 
voltage, and, when the specimen has been cut to the appropriate length for resonance, 
longitudinal, resonant, ultrasonic stress waves are produced in the specimen. The gage 
crystal acts as a strain gage in the system and outputs an alternating voltage that is 
proportional to the maximum strain in the system. The length of the matched pair of 
crystals determines the frequency of vibration. It is emphasized that the resulting stress 
waves are standing waves and the technique is not to be confused with the well known 
pulse-echo technique. Also, the wavelength is long compared to microstructural 
features and dimensions of the test specimen so significant dispersion and attenuation 
associated with material property discontinuities such as interfaces and voids will not 
occur. This is particularly important when composite materials, with their inherent 
material discontinuities, are considered. The discontinuities do not scatter the wave, 
but, however, they are oscillated by the wave and will, as a result, affect the bulk 
properties of the material that are measured. 
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112 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

Additional details for the PUCOT experimental setup are shown in Fig. 2. The 
wires that carry the input and output signals also serve as the crystal supports. The 
crystals are placed between the wires with the wires contacting the midpoint of the 
crystal, a vibration node, and held in place with a small amount of conductive silver 
paint. As shown in Fig. 3, the system is driven at resonance by a closed loop oscillator 
which controls the input drive voltage while maintaining a constant (user selectable) 
gage crystal voltage, and hence, a known constant maximum strain (or stress) amplitude 
in the specimen. Note that the ends of the specimen and the crystals are strain nodes 
where maximum displacement occurs while their midpoints are displacement nodes 
where maximum strain occurs. A phase shifter is used to locate and maximize the 
resonant vibration. The resonant period of vibration for the system, crystals alone (DG) 
or with specimen attached (DGS), is measured by a frequency counter. During typical 
tests, the values of the crystal voltages, and the resonant period are measured. These 
measured values, along with other system constants, such as crystal and specimen 
masses (m) and the specimen length (L), permit the calculation of the dynamic Yonng's 
modulus, mechanical damping, and maximum strain amplitude from standard PUCOT 
equations [2]. 

Test Procedure 

The test procedure involves an initial determination of the specimen density and 
estimation of the dynamic modulus of the specimen. The density may be determined by 

WIRES SUPPLYING 
DRIVE VOLTAGE 

GOLD PLATING 
(ON OPPOSING FACES _,= 

OF EACH CRYSTAL) 

WIRES RECEIVING - -  
GAGE VOLTAGE 

~~___ DRIVE CRYSTAL (D) 
GAGE CRYSTAL (G) 

l~ , SPECIMEN (S) 

FIG. 1 -- Schematic of crystal and specimen arrangement for room temperature 
measurements with the PUCOT. Longitudinal crystals are shown. 
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FIG. 2. -- Support fuxture and wire connections for longitudinal crystals. 
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FIG. 3 -- Schematic of  experimental setup for room temperature testing with the 
PUCOT. Displacement and strain (differential of  displacement with respect to distance) 
waves in crystals and specimen are also shown. 

suitable means, but accuracy is important as the density measurement will be a 
significant source of  error in the final value obtained for E. Using the estimated value 
for dynamic modulus, the proper specimen length for the vibrational frequency is 
obtained from 

L =  ( l / 2 f )  ~ / ~ / p )  = ~ / 2  (i) 

where 
L = specimen length, 
f = vibrational frequency, 
p = specimen density, and 

= wavelength. 

Note that at resonance the specimen will be one-half a wavelength long. This is shown 
in Fig. 3. I f  the available specimen material is too short, then a higher frequency 
(shorter quartz crystals) may be used. As mentioned previously, the cross section of  the 
specimen need not be uniform along its length, but the ratio of  the length to the 
maximum cross-sectional dimension should be greater than five. The masses of  the 
joined crystals and the specimen are measured. 

Next, the crystals are placed in the jig assembly and the resonant period is 
measured. The specimen is then glued to the crystals and the new resonant period is 
measured. Also, the crystal voltages are recorded if damping and strain amplitude 
results are desired. With this information, the resonant period in the specimen is 
determined by 

Xs = ,,/~s %o%c,s/A (2) 

where 
xl = resonant period in component or system i, 

mi = mass of component or system i 
i = S, DG, or DGS, and 

A = $/~o~moos-z~xT, smoG 
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Previous studies have shown that this result is considered valid if Xs is within five 
percent of %tin, or 

0.95 < R = Xs < 1.05. (3) 
"CDG 

where R is the ratio Xs/xlX3. If  Eq 3 is not satisfied, the length of the specimen must be 
changed and the test repeated. The new specimen length needs to be shorter if R is 
greater than 1.05 or longer if R is less than 0.95. It is advantageous, initially, to slightly 
overestimate the modulus of the specimen so that if Eq 3 is not satisfied, it will be due to 
the specimen being too long and the repeat test may be performed with the same 
specimen after it has been shortened. I f  the specimen is too short (modulus 
underestimated) a new specimen needs to be cut which may not be possible if the 
material is in short supply. Another altemative is to use a higher frequency (shorter 
crystals and specimen). 

Finally, once a valid result for xs has been obtained, Eq 4 is used to determine the 
specific dynamic modulus (E/p). This value may be multiplied by the density to yield 
the dynamic modulus of the material. Note that the specific dynamic modulus value is 
not affected by errors in the density measurement. 

2 2 
E / p = 4 L  / x  s (4) 

Additional Capabilities 

As mentioned previously, the PUCOT also measures mechanical damping and 
strain amplitude in the specimen (simultaneously with modulus measurement). Strain 
amplitude scans are performed by taking crystal voltage readings at several gage 
voltages (recall that gage voltage is proportional to the maximum strain in the specimen). 
The possible range of strain amplitudes is 10- 8 to 10 -3. Frequencies from 20 to 200 kHz 
can be obtained by using different lengths of quartz crystals (in matched pairs). Also, 
by using a fused quartz spacer rod between the crystals and the specimen, all the above 
measurements can be made while the specimen is suspended in a controlled thermal 
environment. 

MATERIAL 

The MMCs tested in this study consisted of 6061 aluminum reinforced with silicon 
carbide in the form of either continuous fibers (fibrous composite) or particles 
(particulate composite). The fibrous composites were unidirectionally reinforced 
cylindrical rods while the particulate composites were either cylindrical or rectangular in 
cross-section. All but one of the fibrous specimens contained 103 lira diameter fibers 
(SiC deposited on tungsten core) with a reported [4] fiber dynamic modulus of 419 GPa 
and a density of 3.38 g/cm 3. The remaining fibrous composite had 140 Ixm diameter 
fibers (SiC on carbon core) with 427 GPa and 3.3 g/cm 3 for the fiber modulus and fiber 
density, respectively [5]. The particles in the particulate composites were assumed to be 
distributed uniformly throughout the material and were assigned the properties of bulk ~- 
SiC [6]: 450 GPa for the modulus and 3.21 g/crn 3 for the density. Handbook values of 
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TABLE 1 -- Description of AI/SiC test specimens. 

Type 
Cross-section Reinforcement Void 

dimensions Volume Volume 
(mm) Fraction Fraction 

Particulate 
12.8 dia. rod a 0.078 0 

6.47 x 5.04 bar 0.245 0.007 
5.29 x 4.37 bar 0.239 0.003 
4.40 x 3.25 bar 0.239 0.007 

Fibrous 

10.4 dia. rod 0.200 0.019 
10.4 dia. rod 0.284 0.119 
8.00 dia. rod 0.449 0.027 

8.08 dia. rod b 0.422 0.023 
10.3 dia. rod 0.441 0.153 
10.3 dia. rod 0.560 0.059 

aSpecimen tested at 40 kHz due to large diameter. All others tested at 80 kHz. 
b140 Ixm diameter fibers. All other fibrous composites had 103 Ixrn diameter fibers. 

68.9 GPa and 2.7 g/cm 3 were used for the 6061 aluminum. The specimen dimensions 
and corresponding volume fractions are listed in Table 1. 

Note the small specimen sizes relative to those needed for other techniques such as 
mechanical testing in a universal testing machine. The cross-sectional dimensions for 
these specimens are actually larger than necessary and could be reduced by an order of 
magnitude and still work with the PUCOT. The simple specimen machining process 
consisted of cutting the specimen to length and sanding the ends with 600 grit paper. 

The reinforcement and void volume fractions were determined through a matrix 
removal process. First, the specimen mass and volume were measured. Then a 10% 
sodium hydroxide solution at 60"C to 70"C was used to dissolve the matrix and the 
mass of the fibers or particles was measured. These measurements, along with the fiber 
and matrix properties then were used to calculate the void fraction [7]. The void fraction 
was then used in determining the reinforcement volume fraction [8]. This procedure 
does not establish the void and reinforcement fractions independently as the Schoutens 
[8] technique would, but it provides excellent estimates of the volume fractions and is a 
significant improvement over the manufacturer's stated volume fractions. 

RESULTS AND DISCUSSION 

The results will be examined in terms of the dynamic modulus and specific 
dynamic modulus as a function of reinforcement volume fraction. Figure 4 shows that 
the dynamic modulus values measured by the PUCOT agreed very well with rule-of- 
mixture (ROM) predictions when void fraction is taken into account. The larger 
disagreement between measured and predicted values for the two cases near 0.45 fiber 
volume fraction can be attributed to significant fiber damage found in these two 
specimens. The fiber fragments collected when determining the fiber volume fraction 
were treated as if they were undamaged fibers in the ROM analysis. In actuality, these 
fragments will not contribute the full stiffness of continuous fibers and, therefore, the 
composite stiffness will be reduced relative to the ROM prediction. ROM predictions, 
assuming no voids, serve as an upper bound on the dynamic modulus for these 
materials. 
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FIG. 4 -- Plot of the dynamic modulus versus fiber volume fraction for the fibrous 
composites. Values measured by the PUCOT are shown along with values predicted by 
the rule-of-mixtures (ROM) with void fraction considered. The solid lines are ROM 
predictions for void-free composites. 
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FIG. 5 -- Plot of the specific dynamic modulus versus fiber volume fraction for 
the fibrous composites. Values measured by the PUCOT are shown along with values 
predicted by the rule-of-mixtures (ROM) with void fraction considered. 

The specifzc dynamic modulus of the fibrous composites is presented in Fig. 5. 
The deviations of the measured values from the predicted values appear larger than those 
for the dynamic modulus (Fig. 4), but the percentage deviations of the measured values 
from the predicted values are nearly equal. The uncertainty of the specific dynamic 
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modulus is less than the uncertainty of the dynamic modulus (the dynamic modulus has 
the additional uncertainty associated with the specimen density measurement), yet the 
results are not significantly better for the specific dynamic modulus. This indicates that 
the simple density measurements performed in this study (mass and volume 
measurements or buoyancy technique) are sufficiently accurate. In turn, the degree of 
confidence in the modulus measurements is not noticeably reduced by the density 
measurement. 

For the particulate composite case (Fig. 6), the measured values of the dynamic 
modulus fell within the bounds predicted by variational principles (Hashin and 
Shtrikman [9]). A "strength of materials" approximation based on a cubic inclusion 
assumption (Paul [10]) has limited success in predicting the dynamic modulus. As with 
the fibrous composites, the specific dynamic modulus measurements are not noticeably 
better than the dynamic modulus measurements (see Fig. 7). The measured void 
fractions were very low for the particulate composites and the modulus measurements 
were repeatable and accurate. Therefore, the disagreements between the measured and 
predicted values are attributed partly to incorrect assumptions of the mechanical 
properties of the particles and partly to the cubic particle assumption not being a true 
representation of the actual particle shape. The potential for improved agreement exists 
by comparing the measured dynamic modulus values to predictions from a model due to 
Ledbetter and Datta [12, 13] which permits a better description of the particle shape and 
non-homogeneous particle distribution. This comparison has yet to be attempted. 
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FIG. 6 -- Plot of the dynamic modulus versus particle volume fraction for the 
particulate composites. Values measured by the PUCOT are shown along with the 
prediction of an approximate solution based on a cubic inclusion assumption [10] and 
the Hashin-Shtrikman bounds [9]. 
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FIG. 7 - Plot of the specific dynamic modulus versus particle volume fraction for 
the particulate composites. Values measured by the PUCOT are shown along with 
values predicted by an approximate solution based on a cubic inclusion assumption [10]. 

SUMMARY 

The PUCOT is capable of measuring the dynamic modulus of small specimens, 
both accurately and quickly. A detailed uncertainty analysis of the PUCOT yields values 
of less than two percent uncertainty for the technique. It is a sensitive technique and 
detects small modulus changes caused by voids or fiber damage. Due to the long, 
resonant wavelength used in this technique, scattering, attenuation and dispersion effects 
are negligible and bulk properties can be measured on a variety of specimen shapes. 
The ability to work with small specimens with varying shapes should prove invaluable 
in analyzing the progress of material development programs and provide significant data 
for use in verification of theoretical models of material properties. 
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FIBER-REINFORCED COMPOSITES: MODELS FOR MACROSCOPIC ELASTIC 
CONSTANTS 

REFERENCE: Datta, S. K. and Ledbetter, H. M., "Fiber- 
Reinforced Composites: Models for Macroscopic Elastic 
Constants," in Dynamic Elastic Modulus Measurements in 
Materials, ASTM STP 1045, Alan Wolfenden, editor, American 
Society for Testing and Materials, Philadelphia, 1990. 

ABSTRACT: Considering uniaxial-fiber-reinforced composites, 
we review selected models for calculating macroscopic elastic 
constants from the constituent elastic constants (fiber and 
matrix) and the phase geometry. Especially, we focus on the 
transverse-isotropic case with five independent elastic- 
stiffness constants, Cij. Also, we focus on wave-scattering 
ensemble-average method~ developed by Bose and Mal (1974) and 
by Datta and Ledbetter (1983, 1984). We compare the model 
results with measurements made by pulse-echo dynamic (MHz) 
methods. As examples, we consider B/AI and Gr/Mg; the latter 
fibers possess high elastic anisotropy. 

KEYWORDS: composites, elastic constants, fiber-reinforced 
composites, physical properties, sound velocities, 
theoretical models, ultrasonic-velocity method. 

In recent years, both theory and observation of fiber- 
reinforced composites have advanced considerably. Reviews of 
this subject include those on theory by Hashin [I], Sendeckyj 
[3], Walpole [4], and Bert [5]. In an earlier study, Datta et al 
[6] also presented a review of the various model studies of 
aligned continuous fiber-reinforced composites. They also 
p~esented a multiple-scattering approach to obtain dispersion 
relationships for wave propagation perpendicular to the fibers. 
Such an approach was taken earlier by Bose and Mal [7, 8]. It 
was shown that three effective static anisotropic elastic 
constants (in-plane bulk and shear moduli and longitudinal shear 
modulus) can be obtained by this method in the limit of long 
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wavelength. The other two effective elastic constants, longitudinal 
Young's modulus, EL, and the Poisson's ratio, VLT, can then be found 
(see Datta et al [6], and Datta and Ledbetter [9]) by using Hill's 
relation [i0]. Thus, five effective elastic constants characterizing 
the transverse isotropy of the composite can be found using this 
approach. 

In this paper, we present the model equations that were derived in 
[6, i0], and apply them to predict the effective properties of a 
boron/aluminum, two graphite/magnesium and two graphite/aluminum 
composites. For boron/aluminum, we also compare the predictions with 
those obtained by two periodic models: a square array (Achenbach 
[ii]) and a hexagonal array (Hlavacek [12]). Comparison of model 
results with measurements is also presented. 

MATERIAL 

The studied boron/aluminum composite consisted of O.14-mm- 
diameter boron fibers in 6061-aluminum-alloy-matrix. The alloy was 
in F-tempered condition. The composite, containing 489 fibers by 
volume, was fabricated as a lOxlOxl.l-cm plate containing about 
seventy plies. Mass density of this material, measured 
hydrostatically, was 2.534 g/cm 3 . Figure i shows the microstructure 
of the material. 

FIG. 1 -- Optical photomicrograph showing distribution of 0.14-mm- 
diam boron filaments in aluminum matrix. Plane of photo is 
perpendicular to fibers, which are parallel to x 3 axis. Fiber 
volume fraction equals 0.48. 

We studied two graphite/magnesium and two graphite/aluminum 
materials produced from commercial fibers and alloys. The two fibers 
are categorized as high-strength/low-modulus and low-strength/high- 
modulus. The two matrices consisted of pure magnesium and 5056 
aluminum alloy. For the fibers, the manufacturer reported Young 
moduli of 235 and 392 CPa and mass densities of 1.76 and 1.81 g/cm 3, 
respectively. 

Composites were produced by a squeeze-casting method, where molten 
matrix metal infiltrates carbon-fiber bundles under high pressure. 
Carbon fibers were preformed with a polymer fugitive binder. Placed 
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122 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

in a mold, the preform was heated to slightly below the matrix-metal 
melting temperature. The binder was burned away and the carbon 
fibers were preheated. Molten matrix metal was poured into the mold 
and pressed at 98 MPa before solidification. This pressure caused 
the molten metal to infiltrate the fiber bundles. After 
solidification, the composite was removed from the mold. Further 
fabrication details occur elsewhere [13]. 

Figure 2 shows a typical microstructure. Focusing, for the 
moment, on the low-modulus magnesium-matrix material, by Archimedes's 
method, we found a mass density of 1.771 g/cm s. For a fiber volume 
fraction of 0.70, using 1.738 for magnesium, and 2.269 for graphite, 
we predict a mass density of 2.110 g/cm s. Probably, the discrepancy 
arises from nonperfectly graphitized fibers. Indeed, the 
manufacturer's reported fiber density, 1.76, leads to a prediction of 
1.753, within 1 percent of observed. If we assume a void-and-crack- 
free matrix, our results predict a fiber density of 1.79 g/cm 3, 
corresponding to a fiber-void fraction of 0.21. 

FIG. 2 -- Optical photomicrograph of transverse section of 
graphite-fiber-reinforced magnesium-matrix composite. The fibers, 
7 ~m in diameter, occupy 70 volume percent of the composite. 

For the magnesium-matrix material, a sample was prepared as 
described above. For the matrix material, we found an Archimedes- 
method mass density of 1.738 g/cm 3, close to the accepted value for 
pure magnesium: 1.737. Similarly, for the aluminum-alloy matrix 
materials, we found the mass densities to be 2.701 g/cm ~ and 2.652 
g/cm ~ for 6061 aluminum and 5056 aluminum alloys, respectively. 
Table 1 shows the measured elastic constants for these matrix 
materials. The notation is E = Young's modulus, G = shear modulus, B 
= bulk modulus, and v = Poisson's ratio. 
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TABLE 1 -- Elastic constants of matrix materials. 

123 

E G B v 

(GPa) (GPa) (Gea) 

Mg 45.34 17.72 34.26 0.279 

6061 aluminum 71.5 26.7 75.1 0.341 

5056 aluminum 70.39 26.22 74.45 0.342 

MEASUREMENTS 

We determined the nine Cii by measuring eighteen sound velocities 
on four specimen geometries ~escribed previously [14]. For brevity, 
we omit further description, except for a few salient details: 
bond---phenyl salicylate; transducers--quartz, x-cut and ac-cut; 
frequencies--5 to 6 MHz; specimen size--16-mm cube, or smaller 
depending on specimen geometry. Previously, we reported details of 
the measurement method [15]. Figure 3 shows an oscilloscope display. 

FIG. 3 -- Oscilloscope display of a pulse-echo pattern (top), 
expanded first echo (center), and expanded second echo (bottom). 
We measure transit time by superimposing the first nondistorted 
cycle of the first and second echoes. This example represents a 
longitudinal wave traveling parallel to the fibers. 

Results for boron-aluminum 

Results of theoretical calculations and observations for the 
boron-aluminum composite are shown in Table 3. Experimentally 
determined nine Cij's are based on a least-squares fit to eighteen 
separate wave-velocity directions and polarizations. For details, 
see [14]. Elastic constants of boron are shown in Table 2. It is 
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found by comparison with theory and measurement that boron is nearly 
isotropic. 

TABLE 2 -- Properties of boron fibers. 

p E G B 
(g/cm 8) (101*N/m 2) (101*N/m 2) (10,*iN/m 2) 

Boron 2.352 3.979 1.763 1.785 0.129 

TABLE 3 -- Observed and predicted Cij elastic stiffnesses of a 
boron-aluminum unidirectionally fiber-reinforced composite, 

in units of 1011N/m 2. 

Full 
ij Observed Square Hexagonal Random Random 

Model a Model b Model c Model 

Ii 1.852 1.856 

22 1.797 1.856 

33 2.450 2.480 

44 0.566 0.451 

55 0.569 0.451 

66 0.526 --- 

12 0.779 --- 

13 0.606 --- 

23 0.604 --- 

1.872 

1 872 

2 551 

0 561 

0 561 

0.606 

0 661 

0 578 

0 578 

1.790 1.790 

1.790 1.790 

--- 2.560 

0.559 0.559 

0.559 0.559 

0.523 0.523 

--- 0.745 

--- 0.583 

--- 0.583 

aAfter Achenbach [ii]. 
bAfter Hlavacek [12]. 
CAfter Bose and Mal [8]. 

Results for graphite-magnesium and graphite-aluminum 

Table 4 shows principal results for another material: low-modulus 
fiber, magnesium matrix. Column 1 lists various elastic constants 
described in the previous section. Column 2 gives a set of graphite- 
fiber elastic constants [16]. We chose these because E s agrees 
closely with the E 3 for the present fiber. Column 3 gives elastic 
constants predicted by a theoretical model using the column-2 
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Table 4. Measured and calculated elastic constants for graphite- 
magnesium composite and calculated elastic constants for graphite 
fiber. Except for dimensionless uij , units are GPa. 

125 

Fiber a Composite, Composite, Fiber, Composite, Ratio, 
Calculated Measured Calc. Recalc. Recalc./ 

Meas. 

CII 20.02 

C=2 20.02 

C33 234.77 

C44 24.00 

C6s 24.00 

Ce6 5.02 

C12 9.98 

C13 6.45 

C~3 6.45 

E 1 15.00 

E~ 15.00 

E s 232.00 

v12 0.494 

~13 0.014 

u2z 0.014 

u21 0.494 

v31 0.215 

~z2 0.215 

27.28 

27.28 

180.63 

21.90 

21 90 

7 38 

12 52 

9 56 

9 56 

21 38 

21 38 

176 04 

0.449 

0.029 

0.029 

0.449 

0.240 

0.240 

28.19 20.99 28.19 

27.08 20.99 28.19 

174.68 225.17 174.30 

17.91 17.99 17.91 

17.70 17.99 17.91 

8.76 6.51 8.76 

10.66 7.98 10.67 

12.41 9.77 12.20 

12.41 9.77 12.20 

23.65 17.79 23.81 

22.70 17.79 23.81 

166.64 218.58 166.64 

0.374 0.367 0.359 

0.045 0.027 0.045 

0.046 0.027 0.045 

0.358 0.367 0.359 

0.314 0.337 0.314 

0.335 0.337 0.314 

1.00 

1.04 

1.00 

1.00 

1.00 

1 00 

1.00 

0 98 

0 98 

1 01 

1.05 

1 O0 

0 96 

1 00 

0 98 

1 00 

1 00 

0.94 

aRef. 16. 
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graphite-fiber elastic constants and the measured magnesium elastic 
constants. 

Column 4 shows measured results: the nine orthotropic-symmetry 
Cij, the principal Young moduli El, and the principal Poisson ratios 

vii �9 

From the measured results and the above model, we calculated the 
graphite-fiber elastic constants, shown in column 5. We used the 
calculational sequence: cf44, cf66, C~I - C~6 , v~1, and E~. 

Column 6 shows the composite Cij recalculated using the deduced 
C~j. Finally, column 7 shows the ~atio of column 6 to column 4, the 
ratio of recalculated to measured. 

To calculate the predicted composite elastic constants shown in 
column 3, we used the model described in [6, 9]. 

Table 5 shows the deduced graphite-fiber elastic constants for all 
four cases. Table 5 also includes elastic constants for two useful 
reference cases: an aggregate of randomly oriented graphite crystals 
and a fiber where all the crystallite basal planes contain the fiber 
axis. For this latter case, we know only C~3 and E~ because the 
appropriate averaging problem remains unsolved. 

The estimate of the quasiisotropic-aggregate elastic constants in 
the final column of Table 5 deserves some description. These 
unpublished calculations were done with Dr. B. Gairola of the 
University of Stuttgart. They represent the first self-consistent- 
model calculations for such a highly anisotropic material. For usual 
materials, the upper and lower bounds usually converge within a few 
percent at either the second-order (Hashin-Shtrikman) or third-order 
(Kr6ner) bounds. However, graphite's extraordinary elastic 
anisotropy prevents such convergence. For graphite, for the shear 
modules, the upper and lower third-order bounds are 108.2 and 12.9 
GPa, respectively! 

After carrying the problem to approximately the thirtieth bound, 
we found convergence and the values shown in Table 5. We see that 
the quasiisotropic Young modulus equals approximately one-eighth of 
the maximum-possible value, 1020 GPa. (The average overall direction 
favors the lower values.) The predicted Poisson ratio, 0.26, 
indicates a typical material, and fails to show any symptoms of 
graphite's extreme elastic anisotropy. The Poisson ratios predicted 
for the fibers do manifest such anisotropy, ranging from 0.008 to 
0.613, well beyond the range observed for usual materials. 
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Table 5. Deduced graphite-fiber elastic constants. Except for 
dimensionless vij , units are GPa, 

Perfect 
FibeK 1 Fiber 2 Basal-plane 

AI Mg AI Mg Alignment 

Quasi- 
isotropic 
Aggregate 

Cli 

C22 

C3s 

C44 

C55 

C66 

C12 

C13 

C2s 

Ez 

E2 

E3 

V12 

V13 

1/23 

V21 

V31 

~'32 

19.09 

19.09 

234.99 

19.94 

19 94 

5 6O 

7.89 

I0 34 

i0 34 

15 66 

15 66 

227 07 

0 399 

0.026 

0.026 

0.399 

0.383 

0.383 

20.99 11.24 12.58 

20.99 11.24 12.58 

225.17 348.89 361.45 

17.99 14.80 14.54 

17.99 14.80 14.54 

6.51 2.53 3.10 

7.98 6.19 6.39 

9.77 6,36 11.62 

9.77 6.36 11.62 

17.79 7.81 9.25 

17.79 7,81 9.25 

218.58 344.25 347.22 

0.367 0.546 0,493 

0.027 0.008 0.016 

0.027 0.008 0.016 

0.367 0.546 0.493 

0.337 0.365 0.613 

0.337 0.365 0.613 

1060 

1020 

160 

160 

160 

52 

52 

52 

57 

57 

57 

130 

130 

130 

0.26 

O. 26 

0.26 

0.26 

0.26 

0.26 
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THEORY 

In Table 3, the experimental results are compared with results of 
four theories: 

i. that for a periodic square-lattice array of long, parallel, 
circular fibers derived by Achenbach [ii] using a homogeneous 
continuum model that predicts three elastic constants; 

2. similar to Achenbach's model, a hexagonal-array model derived 
by Hlavacek [i0] that provides five elastic constants; 

3. a random-distribution model due to Bose and Mal [7, 8], who 
derived expressions for three independent elastic constants; 

4. a full-random-distribution model derived here by combining the 
results of [7, 8] with those of Hill [i0]. This latter, present 
model predicts all five independent elastic constants of a matrix 
reinforced with long, parallel fibers distributed randomly in the 
transverse plane. The Achenbach, Hlavacek, and Bose-Mal models were 
described in [9]. The present model is described below. 

Here, we show that combining the Bose-Mal relationships with 
previously derived relationships for other elastic constants leads to 
a full set of five independent elastic constants for the random- 
distribution case. For this, a new notation [3] is useful, which 
will be described as it is introduced. 

Hashin and Rosen [17] derived relationships for the effective 
moduli of a continuous-fiber-reinforced composite where the fibers 
are distributed randomly and homogeneously. Hashin [18] gave these 
relationships in essentially the form 

c(kf - km)(k m + ~m) (i) 
kT = km - kf + #m - c(kf - km) 

and 

2c(# f  - #m)#m ( 2 )  
#LT = #m + #f + #m - C(#m - #m) 

Here, k denotes the two-dimensional, plane-strain bulk modulus, which 
is A + # in an isotropic material. Subscript T denotes deformation 
in the xl-x 2 plane, perpendicular to the fibers. Subscript LT 
denotes shear deformation in any plane containing the x 3 axis, that 
is, the fiber axis. Equations (i) and (2) were also derived by Hill 
[i0] for a single fiber placed concentrically in a cylindrical 
matrix. Hermans [19] obtained them also by considering Hill's 
assembly to be embedded in an unbounded solid having the effective 
elastic moduli of the composite. In this model, the fiber: matrix 
cylinder radius ratio is rl/r 2 = c*/=. 

Knowing kT, one can derive the Young modulus E L (along x3) and the 
Poisson's ratio VLT = -~1/~3, where uniaxial stress is along x s and 
denotes strain. This is done by using the relationship given by Hill 
[1o]: 
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1 1 

k T kf 

VLT - vf 

1 1 1 1 

= k T k m = kf k m 
VLT - v m vf -v m 

4vI~ -- v m -- c(vf--vm) 
E L -- E m - c(Ef - Em) 

(3) 

Solving for E L and VLT , using eqn (I), one finds 

E L = (i - c)E m + cEf + 
4c(i -- c)(vf -- vm)2 
(i -- c) c i 

kf +k-mm +-#m 
(4) 

and 

VLT = (i - c)v m + evf + 
c(l- c)(vf - Vm)[~m -- ~f ] 

(i - c) c 1 

kf +k--ram +-ju m 
(5) 

Of course, both of these relationships represent a simple, linear 
"rule of mixtures" plus a higher-order correction term. The 
advantages of eqns (1)-(2) are clear: they give simple, explicit 
relationships for four of the composite's elastic constants in terms 
of the isotropic elastic constants of the constituent materials, the 
fiber and the matrix. On the other hand, self-consistent approaches 
lead to implicit relationships. 

Bose and Mal [7, 8] also obtained Eqs (I) and (2), but by a 
different approach: by considering the effective velocity for long- 
wavelength plane waves propagating perpendicular to the fibers, for 
both a longitudinal wave and for a shear wave polarized along xs, the 
fiber axis. By a similar approach, examining a shear wave 
propagating and polarized in a plane transverse to the fibers, Bose 
and Mal [7] also derived an expression for the transverse shear 
modulus: 

2c(km + Pm)(#f - #m) 

~TT = #m + km + [~ + 21[C#m + (i- c)~f] 
(6) 

Previous studies [i0, 17] did not obtain this explicit expression, 
but bounds instead. In fact, Eq (6) corresponds to the lower bound. 
Equations (I), (2), (4) and (5) are also identical to the lower-bound 
results. Thus, the "quasi-crystalline" approximation used by Bose 
and Mal to derive Eqs (I), (2) and (5) leads to the lower-hound 
results. Equation (6) coincides also with Hermans' [19] result. 
From the above relationships, one obtains for the boron-aluminum 
composite, using results in Tables i and 2: 

E L = 2.292 �9 1011N/m 2, 
k T = 1.267 �9 1011N/m2, 

~LT = 0.559 �9 101*N/m 2, 
~TT = 0.523 - 10*iN/m =, 
VLT = 0.230. 
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Since the composite behaves transversely isotropic with the unique 
symmetry axis along x3, the Cij elastic-stiffness constants can be 
computed from 

C11 ~ C22 = kT + #TT, (7) 
Css = E L + 2ULTC13, (8) 
C44 = C55 = #LT, (9) 
Cs6 = �89 - C12) ~ ~TT, (i0) 
C12 = kT - ~TT, (ii) 
C1~ = C~ = 2ULTk T. (12) 

These results are given in the final column of Table 3. 

Turning now to the graphite fiber-reinforced composites, we note 
that the above model Eqs (i, 2, 4-6) can easily be generalized to the 
case when the transverse-isotropy properties of the graphite fibers 
are to be taken into account. This was presented in [6] (see also, 
[16] and [20]). If we solve these equations for the fiber elastic 
constants, we obtain 

C~ 4 = ~m + 2~m(c44 _ ~m) (13) 
2c~ m - (I - c)(C44 - ~m) , 

C~ s = #m + 2#m(css _ ~m)(km + #m) (14) 
2c~m(km + ~m) _ (i - c) (C66 _ ~m) (k TM + 2#m) , 

C~I - C~ = km + (k m + ~m)(K -- k m) 
c(K + ~m) _ (K -- k TM) ' 

(15) 

i,c+c+1]  ic 11 +1] m 
uf I = K f k m #m v31 K f #m 

(16) 

E~ = ! [Ea -- (i - c)E m] - 4(1 - c)(~l - um) = 
c 1 -c c 1 

K f + ~-~ +~ 

(17) 

DISCUSSION 

For the boron-aluminum composite, we consider the correspondence 
between observed Cij's and their counterparts predicted by three 
models: square-array, hexagonal-array, and random-distribution. 

C33 is predicted reasonably well by all three models, although all 
are slightly high, perhaps reflecting the slight uncertainty in 
Young's modulus of the boron fibers. 

C11 is predicted best by the lattice models, and C22 is predicted 
best by the random model. As shown in Fig. 2, this probably reflects 
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the different imperfections in fiber distributions along the x I and 
x 2 directions. 

C44 and Css, which represent shears with the force parallel to the 
fibers, are not predicted accurately by the square-array model; but 
they are predicted well by both the hexagonal-array and the random 
models. Thus, these elastic constants permit one to distinguish 
fiber arrays that are transversely anisotropic (tetragonal, 
orthorhombic) from those that are transversely isotropic (hexagonal, 
random). 

C68, which represents shears with a force perpendicular to the 
fibers, is predicted well only by the random model. Since C66 
represents also the velocity of a plane wave both propagated and 
polarized in the transverse plane, of all elastic constants it should 
be most sensitive to the fiber distribution. Thus, the different 
predictions for the hexagonal and random models, both of which are 
transversely isotropic, are not too surprising. Furthermore, Fig. 2 
shows little evidence of either three-fold or six-fold symmetry 
around the fiber axis. 

C12, Cz3, and C2~, the so-called off-diagonal elastic constants, 
are predicted surprisingly well by the random model. Since these 
constants are always determined indirectly, whether experimentally or 
theoretically, one expects larger errors than for the diagonal 
elastic constants, the Cii's discussed above. Absence of large 
discrepancies between observation and theory for these three elastic 
constants gives one simultaneous confidences in the experimental 
measurements and in the random-distribution model for this particular 
composite. 

The bulk modulus, 

1 3 
B = ~ i,~=1 Ciijj ' (18) 

predicted by either the hexagonal model (1.103) or the full-random 
model (1.107) agrees well with observation (1.120). Since the bulk 
modulus includes six out of nine of the Cij's, barring fortuitous 
error cancellations, this observation-theory agreement within I~ also 
tends to establish the simultaneous credibility of both measurements 
and theory. 

Results in column 4 of Table 4 show that the studied graphite 
fiber composites show orthotropic elastic symmetry, which is 
approximately transversely isotropic, which requires four Cij 
interrelationships: 

C11 = C22 ; C13 = C23 ; C44 = C55 ; C66 = (CII - C12)/2. (19) 

The microstructure in Fig. 2 also suggests transverse-isotropic 
symmetry. 

Concerning the first-guess graphite-fiber elastic-constant 
calculations, we see good agreement for C11 , C22 , and C33 ; fair 
agreement for C13 and C23 ; and poor agreement for C44 , C55, C68, and 
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C12. Thus. the criterion of choosing a graphite-elastic-constant set 
based on E~, the axial Young modulus, succeeds partially. 

One can obtain a better, complete graphite-fiber elastic-constant 
set by using Eqs (13)-(17). From these five equations, the graphite- 
fiber elastic-constant results in column 5 of Table 4 differ 
significantly from the first-guess values in column 2. E~ is 3 
percent lower than the first-guess value and 5 percent less than the 
fiber-manufacturer's estimate (235 GPa). Among all the calculated 
fiber-elastic-constant values, we have most confidence in E~, which 
is well known to follow a linear rule-of-mixture. For the fibers 
(columns 2 and 5 in Table 4), the notable differences occur in the 
shear moduli: C~4 and C~5 differ by 25 percent and C~e by 30 
percent. For transverse-isotropic symmetry, C44 is the torsional 
modulus T s around the x s axis--for fibers, an easily measured elastic 
constant. Thus, measuring T 3 and E 3 for fibers should provide useful 
information on fiber structure. That T s differs while Es is 
approximately the same suggests a structural difference not related 
to the orientation of hexagonal graphite unit cells in the fiber. We 
can compute the bulk modulus from Eq (18). For the first fiber we 
find 35.6 CPa, for the second 33.9 GPa. Reported graphite B values 
range from 34 to 210 GPa; and, from monocrystal measurements, theory 
predicts a possible range of 37 to 163 GPa [i0]. Probably, the low B 
values for the present fibers reflect porosity or cracks. 

After matching the graphite elastic constants to the measured 
composite elastic constants and recalculating the composite's 
properties, we should observe which composite Cij constants differ 
most from observation. From Table 2, we see three: C~2, C13 , and 
C23. C13 and C2s hardly surprise us because these indirect, off- 
diagonal elastic constants almost always present problems for both 
the experimentalist and theorist. The other off-diagonal elastic 
constant presents little problem in the transverse-isotropic-symmetry 
case because of the relationship C86 = (Cil - C12)/2 , where we can 
both measure and calculate C11 and C66 directly. The Ce2 
disagreement arises because we assumed that an orthotropic-symmetry 
material was approximately transversely isotropic. 

CONCLUSIONS 

Boron-aluminum 

i. The random-fiber-distribution model predicts successfully the 
elastic constants of a laminated material. For the six principal Cij 
(Ci~.=~ Cii, i = 1-6), theory and observation differ on average 2%. 

The C6e elastic shear stiffness provides the most 
discriminating test of various fiber-distribution models. 
Conversely, the observed C66 provides the best gage of fiber 
distribution (square, hexagonal, random). 

3. By applying of Eqs (13)-(17) we find that the boron fibers are 
nearly isotropic. 

Graphite-magnesium 

i. Graphite-fiber elastic constants chosen on the basis of the 
axial Young modulus, E3, the most measurable fiber elastic constant, 
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lead to wrong composite-elastic-constant predictions, especially for 
the shear moduli Cii (i = 4,5,6). 

2. Graphite fibers with the same axial Young modulus, Es, can 
possess different elastic constants, especially the torsional modulus 
T s = C44. 

3. For all considered fibers, the bulk modulus computed from the 
Cij lies near or below graphite's lower bound. 

It is also found from the model studies of both boron-fiber and 
graphite-fiber reinforced composites that by knowing the matrix and 
composite elastic constants, and by using the model inversely, we can 
calculate the anisotropic fiber elastic constants. 
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ABSTRACT: Considering only cubic symmetry (three independent 
monocrystal elastic-stiffness coefficients, Cij), we review 
various models for converting the Cij to the effective 
macroscopic quasiisotropic and homogeneous elastic constants, 
usually taken as B, the bulk modulus, and G, the shear 
modulus. To test the models, we consider a typical metal: 
copper, which possesses a moderate Zener elastic-anisotropy 
ratio, 3.19, and which was measured by pulse-echo dynamic 
(MHz) methods. We find that the Hershey-Kr6ner-Eshelby, and 
equivalent, models work best. We ignore models that lack a 
physical basis. Using the H-K-E model, we calculate the 
effective polycrystalline elastic constants of twenty-five 
cubic elements. 

KEYWORDS: bulk modulus, elastic constants, monocrystal- 
polycrystal relationships, physical properties, Poisson 
ratio, shear modulus, Young modulus. 

INTRODUCTION 

The problem of averaging monocrystal elastic coefficients Cij 
to obtain engineering elastic constants such as Young modulus, 
shear modulus, and Poisson ratio is important in science and in 
technology. Despite much work on the problem, no final solution 
exists. Historically, methods proposed by Voigt [i] and Reuss [2] 
are important. Practically, methods suggested by Hill [3] enjoy 
wide use because they offer computational simplicity and 
acceptable agreement with measurement. A 'best' averaging method 
is sought mainly because (i) we can calculate more reliable values 
of polycrystalline elastic constants from monocrystal results, and 
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136 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

(ii) we can better understand polycrystalline-aggregate stress-strain 
states. Some previous reviews on this subject include those by 
Hearmon [4], Watt and coworkers [5], and Hashin [6]. 

All the averaging methods described here share common 
assumptions: (i) small grain-to-specimen sizes; (ii) absence of 
voids, nonhomogeneities, and so on; (iii) cohesion of erystallites 
occurs through very thin grain-boundary regions that are deformed 
relative to the crystal interiors; (iv) randomly oriented grains; and 
(v) grains large enough so that interfaces remain nonimportant. In 
fact, for most purposes, these assumptions apply fairly well to many 
polycrystalline aggregates. 

Tensors provide a natural, elegant way to describe a crystal's 
physical properties. Here, we shall consider a fourth-rank tensor, 
which represents the elastic stiffness Cijkl , which relates a field 
tensor, stress oij , to a matter tensor, strain ekl , through a 
generalized Hookers law: 

aij = Cijkl ~kl. (i) 

Alternatively, we can invert Eq (i) to show the elastic- 
compliance tensor Sijkl: 

eij ~ Sijkl akl. (2) 

Depending on crystal symmetry, the Cijkl tensor contains up to 
twenty-one independent components. We shall limit the present 
discussion to cubic symmetry with only three independent components. 
Voigt [i] chose the following set: 

CI111 = Cll (3) 
C112 2 = C12 (4) 
C232S = C44. (5) 

Here, the two-index Cij represent the usual Voigt four-to-two 
contraction scheme, where the two-index Cij are not tensor components 
[7]. We can choose other sets of cubic-symmetry Cij. 

For example, Zener [8] chose the following three: 

C = C44 ( 6 )  
C' = 1/2  (C l l -C12)  (7) 
B = 1/3  (C11+2C12). (8) 

All of Zener's Cij relate to simple stress-strain combinations. 
C44 represents resistance to shear on a (i00) plane in a [I00] 
direction. Similarly, C' represents (II0) [TI0] shear resistance. B 
represents the bulk modulus, or reciprocal compressibility. We often 
define a dimensionless ratio 

A = C/C ' .  (9) 

This represents a cubic crystal's elastic-shear anisotropy. We 
can show that C and C' represent upper and lower bounds on a 
crystal's shear resistance. If a material is isotropic, the shea~ 
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resistance depends neither on shear plane nor on shear direction; 
thus A = I. For Zener's elastic constants, the stiffnesses and 
compliances are symmetrical: 

C44 ~ S44-* (I0) 

Cll -- C12 = (S11 - S12) -1 (11) 

C11 + 2C12 = (S** + 2S12)-*. (12) 

There arises the following question: how do the monocrystal Cij 
relate to the two independent elastic constants of a quasiisotropic 
material? The usual example is a nontextured polycrystal, which 
exhibits perfect disorder, as described by Kr6ner [9]. 

For cubic symmetry, Eqs 8 and 12 show that the bulk modulus is 
known unambiguously. All averaging methods must contain Eq 8 because 
B is a rotational invariant, independent of coordinate system. The 
remaining problem then is to estimate another quasiisotropic elastic 
constant, usually the shear modulus G(Cij). 

As emphasized first by Stokes [i0], the natural choice for two 
random-polycrystal elastic constants is the bulk modulus B and the 
shear modulus G, which represent extreme deformation cases: volume 
change without shape change and, conversely, shape change without 
volume change. For pure dilatation, Hooke's law becomes 

a = -P = B(AV/V). (13) 

Here, P denotes pressure and V volume. For pure shear, Hooke's 
law becomes 

~= G 7 . (14) 

Here, z denotes shear stress and 7 shear strain. For isotropic 
materials, the shear modulus equals the torsion modulus [ii]. 

Thus, the problem is clear, how do B and G depend on the three 
Cij: C11 , C12 , and C447 Many famous physicists addressed this 
seemingly simple question. Despite intense, varied efforts, this 
crystal-physics problem retains high interest. Herein, we shall 
describe some of the solutions and compare them with observation. We 
shall not consider all models, but altogether a sufficient number: 
nine. We shall omit any model that contains questionable physics or 
resorts purely to calculation-measurement agreement (lacks a physical 
basis). We begin with a chronological order. 

Voigt's Method 

Voigt [i] gave the first solution to the G(Cij) problem, and a 
good summary occurs in his famous Lehrbuch der Kri~tallphysik. Voigt 
assumed that in a polycrystal strain is constant and the effective 
stress is 

<aij> = i/8~ e I aij (~) d~. (15) 

And that the effective elastic stiffness is 
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<Cijkl > = i/8~ 2 I Cijkl(~ ) dO. (16) 

Here, ~ denotes the solid angle subtended by the Euler angles 8, 
~, ~ and ~dO = 8~ 2, From this view 

G = <C44> = <~ (C**-C,2)>. (17) 

And, we can calculate by using the usual coordinate transformation 
for a fourth-rank tensor: 

C' ijkl = aimajnakoalpCmnop (18) 

C ~ 2s2s = C44 + (C*1-C,2--2C44)(a2,2as12+a222as22+a2s2+ass 2) (19) 

Here, the aij denote direction cosines connecting "new" and "old" 
coordinate systems [12]. The aij relate to Euler coordinates 
according to 

a2, = -cosecos4sin~ - sin4cos~ (20) 
a22 = cos4cos# -- sin4sin~cos8 (21) 
a=s = sinSsin@ (22) 
asl = cos~sin8 (23) 
as2 : sin~sin8 (24> 
ass = cose. (25) 

Thus I 

G = <C44 > = <644~'> = ~ T~ 2 
0 

(26) 

= C44 + ( C l l - - C 1 2 )  + 3644 ( 2 7 )  
5 

C ( 1 )  = C V = ( 1 / 5 ) ( C l 1 - C I =  + 3C44,). ( 28 )  

This represents a simple linear combination of Zener's C' and C: 
h(C11-C12 ) and C44 , favoring the latter by a ratio of 3:2. Equation 
28 shows that for elastic isotropy 

G (1) = GV = C44 = (h)(C11-C12). (29) 

The notation G (I) means a first-order upper bound. This bound is 
correct to the first order of the anisotropy constant, C11-C12-2C44, 
which vanishes for isotropy. 

Reuss Method 

Voigt's solution remained unquestioned for forty years. In 1929, 
Reuss [2] suggested an obvious alternative: assume that stress is 
constant and effective strain is 

<~ij> = i/8~ 2 f ~ij(~) d~. 

And that the effective elastic compliance is 

( 30 )  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  W e d  D e c  2 3  1 8 : 4 2 : 0 7  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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<Sijkl > = i/8~ 2 I Sijkl(~ ) d~. 

Similar to Voigt's approach, this leads to 

(31) 

5 4 3 5 
+ (32) 

G R CI,-C,2 C44 G(1) 

The notation G(I ) means lower first-order bound. Also, this bound 
is correct to the first order of CI,-C,2-2C44. 

We call G v = G (I) and G R = G(I ) first-order bounds. They improve 
considerably the zeroeth-order bounds: C44 and h (C11-C12). 
Comparing the Voigt and Reuss methods shows that an averaging 
procedure produces different results depending on whether we average 
a tensor or its inverse. 

Huber-Schmid-Boas Method 

In the 1930s Huber and Schmid [13] proposed a method elaborated by 
Boas [14-17]. Subsequently, researchers frequently refer to the 
Huber-Schmid-Boas method, failing to distinguish them. The Huber- 
Sehmid method gives results between the Voigt and Reuss, in good 
agreement with observation for the few cases they considered. Owing 
probably to their computational complexity, and perhaps also to their 
limited access by English readers, these methods appear seldomly in 
recent research. Brief accounts of the Huber-Schmid method have been 
given in English by Schmid and Boas [18], Stadelmaier [19], and Hill 
[3]. The Boas method has been described briefly in English by Boas 
[18]. Kr6ner [20] commented on both these methods, among others. 

In addition to the five assumptions listed in the introduction, 
Huber and Schmid made two additional assumptions: (i) individual 
crystallites behave completely independently of neighboring 
crystallites (crystallites respond only to external macroscopic 
forces); and (ii) the averaging problem proceeds independently of 
macroscopic specimen geometry (to solve the problem, Huber and Schmid 
assumed a circular cylinder). 

Like Reuss, Huber and Schmid assumed constant stress, satisfying 
the mechanical-equilibrium conditions 

Oaij/ax j = 0. (33) 

Here, aij = stress tensor and x i = spatial coordinate. However, 
they proposed that the spatial integration should be carried out for 
reciprocal strains, or, equivalently, for reciprocal elastic 
compliances. Thus, 

i 1 ~C' 
G = <G> = ~ ~-~,N G'~ = ~0 ~(Sij' ~) d~ 

= ~-~ s~,--~ (sij, fl) ~. (34) 
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Here, the index a indicates one of many of N orientations. 
Equation 34 represents only an alternative averaging scheme for the 
elastic compliances Sij and possesses no unique physical basis. 

To solve Eq 34, Huber and Schmid assumed a circular-cylinder 
specimen with forces acting only on the base faces. They obtained a 
converging series solution for cubic symmetry and a closed-form 
solution for hexagonal symmetry. Boas [15] obtained a series 
solution for tetragonal symmetry and applied the results to tin. 
Each case of interest requires complicated calculations. 

As Hill [3] pointed out, the Huber-Schmid method amounts to 
assuming that within each crystallite the stress is pure tension or 
pure torsion acting along a direction fixed with respect to the 
specimen axis. One defines a general modulus for that direction, and 
averages that modulus over all possible crystal orientations. 

In comparisons made below, we obtained the effective shear modulus 
by numerically averaging the reciprocal torsion modulus [16]: 

1 1 (S$4 + S' h(S$4~ + S~se) (35) 
= 3 55) - s~3 

Equation 35 extends the Huber-Schmid approach by considering the 
restrained bending that tends to occur when we twist crystals along a 
general (nonsymmetry) direction. 

Hill Methods 

In 1952, Hill [3] published an important thermodynamic strain- 
energy study that established the Voigt and Reuss results as first- 
order bounds on the shear modulus. (Zeroeth-order bounds are C44 and 
C'.) 

G v > G > G R. 

Inequality 36 is valid for all symmetries. 
symmetry, 

(36) 

In the case of cubic 

GV _ GR = 3 [2C44 - (C,I-C12)] 2 3(A-I) 2 
[4C44 + 3(C11-C12)] 5A(2A+3) C44" (37) 

Here, A = 2C44/(C,1-C,2 ) denotes Zener anisotropy. Hill concluded 
that, without further information, we should proceed by assuming 
either an arithmetic mean 

G = (~) (G V + GR) (38) 

or a geometric mean 

G = (GVGR) h. (39) 

We can show that the arithmetic mean always exceeds the geometric. 
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Kr6ner Method 

In 1958, KrOner [20] reconsidered the averaging problem from the 
viewpoint of a self-consistent elastic-inclusion model. He used 
ideas developed by Eshelby [21] combined with the concept of elastic 
polarizability. Kr6ner obtained a quartic equation equivalent to the 
cubic equation: 

G s + ~G 2 -- ~G - 7 = 0 (4o) 

Here, 

= (45~ + 20v)/40 
- 3p (~ + 4v)/8 

~ C 4 4  

v = ( C i l - - C 1 2 ) / 2  - C '  

= (i/3)(C** + 2C,~) = B. 

(41) 
(42) 
(43) 
(44) 
(45) 

Later, Gairola and Kr6ner [22] showed that one can write the 
solution to Eq 40 as 

C = aeG~+~Go+7 
G~+aiC0+~i 

(46) 

Here, 

a i = ( 4 5 ~ + 2 4 p + 3 6 v ) / 4 0  ( 4 7 )  
a s = ( 2 v + 3 # ) / 5  = G V ( 4 8 )  
81 = 3~(2~+3v)/20 (49) 
Be = 3(6~v+9~p+20#v)/40 (50) 
T = 3~pv/4. (51) 

We can solve Eq 46 iteratively by starting with almost any guess 
for G o . Inserting G o = ~ yields G = G v. Inserting G o = 0 yields G = 

G R �9 

Eshelby [23] discussed the quartic-cubic-equation relationship and 
the equivalence of Kr6ner's result to one obtained by Hershey [24]. 
(Eshelby's Eq 6.15 needs a 2 inserted as a multiplier in the last 
term.) Below, we call this average the Hershey-Kr6ner-Eshelby 
average. 

Hashin-Shtrikman Method 

Using variational principles, Hashin and Shtrikman [25] derived 
upper and lower bounds that improve those of Voigt and Reuss. 
Following Gairola and Kr6ner [22], we write these bounds as (#>v) 

G2 ( u )  = C ~ )  # (48mv+27m~+76~v+24p2 )  
= 18mv+57~#+36#v+64#2  

(52) 

v(57~+18~v+84~u+16v 2 ) 
G2(1) = GHS(I ) - 12~+63~v+24#w+76w 2 (53) 
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If v>p, then the upper and lower bounds interchange. 

Kr6ner Bounds 

Using variational principles, Kr6ner and Koch [26] derived 
improved third-order bounds. Again using expressions given-by 
Gairola and Kr6ner [22], these bounds are 

G (3) = GK(U) ~v(258~+396@+264v)+81~@~+108~ s+36~v~+32v3 
252~v+195~+144~2+180~v+lO4v 2 

(54) 

#v(540~v2+945~v+1300pv2+390~2+1200#2v) 
G(a ) = GK(1) = ~-~(999~v+540v2+666~#+1720~v+240~)+48~s+162~a. (55) 

Higher-Order Bounds 

For most materials, for most practical purposes, bounds higher 
than third-order are unnecessary; third-order bounds are sufficiently 
close. For copper, for example, third-order shear moduli differ by 
only 48.54/47.61, or about 2%. (Using existing methods, we can 
measure shear moduli, with little difficulty, to about 0.2%.) For 
cubic symmetry, we can calculate bounds of arbitrarily high order by 
using the Gairola-Kr6ner formula [22]. 

Highly anisotropic materials can have very different third-order 
bounds. For example, Gairola and Ledbetter [27] calculated bounds 
for graphite. For the shear modulus, third-order bounds differ by 
108.2/12.9, a factor of 8! But, graphite represents an extreme case: 
the most anisotropic material ever measured. 

Aleksandrov Method 

Aleksandrov [28] focused on the Cijkl invariants. There exist two 
linear invariants: 

11 (I) = E Ciikk = 9B (i,k = 1,3) (56) 

and 

I, (~) = Z Ciiii + ~kCikik = 3(CI,+2C44 ). (i,k = 1,3) (57) 

The first linear invariant leads to the bulk modulus B, and the 
second linear invariant leads to the sum of the three pv 2 values, 
where p denotes mass density and v sound velocity. However, the 
second linear invariant fails to produce an unambiguous expression 
for G: (C11+2C44) gives the Voigt result while (811+2S44) gives the 
Reuss result, as noted by Leibfried [29]. 

Aleksandrov obtained an unambiguous solution by considering the 
sixth-order invariant obtained after converting the Cijkl to the 
Voigt Cij and finding the determinant: 
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16 = (C,l+2Cz~) C443 (C,i-C12) 2 

= 12B C443C '2 = 12BASC44 s. 

Here, C' and A are defined in Eqs 7 and 9. 

For a quasiisotropie material 

160 = 12BG s . 

(58) 

(59) 

(60) 

Thus, equating 16 and 16 o gives 

G - c,,~ c,~ ~ C,,A~. (61) 

Whereas the Voigt result averages C44 and C' arithmetically with 
the weights ~ and 5, Alexandrov's result represents a geometric 

5 5 
average with the same weights. 

Ledbetter-Naimon Method 

To obtain G, Ledbetter and Naimon [30] considered the acoustic 
Debye characteristic temperature 8 D. They assumed that 

8D(polycrystal ) = 8D(monocrystal ) . (62) 

This means that grain boundaries contribute nothing to elastic 
stiffness (softness) or to specific heat. We can calculate the 
acoustic Debye temperature from 

e - ~ 4-7~ a Vm. (63) 

Here, h and k denote the Planck and Boltzmann constants, 
volume, and v m mean sound velocity: 

V a atomic 

3 1 2 
Vm---~ = ~Fi3 + vt S . (64) 

For the monocrystal, we obtain v m from 

= i~-;~ i-~,3 vi 3 ~ (65) 

The v i (i = 1,2,3) represent the three roots of the Christoffel 
equations. Then we obtain G by solving iteratively the following 
equation: 

Vm-S = ! p~ [(B+~G)-~ + 2G-~]. (66) 
3 
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An Example Material: Copper 

We consider copper because it represents a typical metal, exhibits 
moderate Zener anisotropy (A = 3.19), and possesses well-known 
elastic constants, both polycrystal and monocrystal. At T = 295 K, 
Ledbetter [31] reported B - 138.9 and G = 47.9 GPa. From a survey of 
eighteen monocrystal measurements, Ledbetter and Naimon [30] 
recommended Cil = 169.6, Ci~ - 122.4, and C44 = 75.4 GPa. 

Table 1 shows the averaging results obtained by all the methods 
described above, including third-order bounds. We find a calculated 
bulk modulus of 138.1, within 0.6% of observation, not shown in the 
table. 

The averaging method giving closest agreement with observation is 
the Hershey-Kr6ner-Eshelby method: 48.3 versus 47.9 GPa observed, a 
difference of 0.8%. 

TABLE 1 -- Copper's polycrystalline shear modulus (G) 
calculated with various models, units i0 II N/m 2 . 

Method Shear Modulus 

Voigt 0.5468 
Hashin-Shtrikman (u) 0.4951 
Kr6ner (u) 0.4862 
Hershey-Kr6ner-Eshelby 0.4825 
Kr6ner(l ) 0.4770 
Hill (arithmetic) 0.4741 
Hill (geometric) 0.4738 
Aleksandrov 0.4682 
Hashin-Shtrikman(l ) 0.4606 
Huber-Schmid-Boas 0.4413 
Reuss 0.4015 

Observed 0.479 

Cubic Elements 

For twenty-five cubic elements, Table 2 gives elastic-constant- 
average results by the Hershey-Kr6ner-Eshelby method. The table 
includes the monocrystal elastic constants (Cij), mass density (p), 
Zener elastic anisotropy (A), bulk modulus (B)~ Young modulus (E), 
shear modulus (G), Poisson ratio (u), longitudinal sound velocity 
(Vl) , and transverse sound velocity (vt). At the far right, we show 
a source code for the Cij ; thus 66HG means that silver's Cij were 
measured in 1966 by Hiki-and Granato. Because the Cij sources occur 
in many handbooks, for example [32,33], we omitted the twenty-five 
references. 
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Summary 

I. The monocrystal--polycrystal physical-property problem remains of 
great interest in crystal physics. 

2. Being a fourth-rank tensor, Cijkl, the elastic stiffness presents 
a particularly difficult monocrystal-polycrystal problem. 

3. Because elastic coefficients relate to a wide variety of solid- 
state-physics problems and stress-strain phenomena, many various 
averaging methods exist. 

4. Among all methods considered, the Hershey-Kr6ner-Eshelby model 
agrees best with observation. 

! 5. For cubic symmetry, the bulk modulus is given by B = s 
(Cii+2Ci=) . Neither theory nor observation dispute this 
relationship, which arises because (C11+2C12) is a rotational 
invariant. 

6. Considering copper, a moderately anisotropic material, we find 
that third-order (Kr6ner) shear-modulus bounds differ by only about 
2%, while the zeroeth-order bounds differ by a factor of 3.2. 

7. For cubic symmetry, a simple formula given by Gairola and Kr6ner 
[22] allows us to calculate both even and odd bounds to any order, n. 
When n becomes large, the bounds converge to Kr6ner's [20] self- 
consistent solution. 

8. For perfectly disordered aggregates, Kr6ner proved that the self- 
consistent method is exact. For other aggregates, there exist 
formally exact solutions [34]. However, these solutions are too 
complicated, even for modern computers. 

Acknowledgments 

The author profited from interactions with B. Gairola and 
especially E. Kr6ner, both at the University of Stuttgart. M. Lei, 
visiting scientist from Institute of Metal Research (Shenyang), 
helped with calculations. 

References 

[la] 

[ib] 

[2] 

[3] 

Voigt, W., "Ueber die Beziehung zwischen den beiden 
Elasticit~tsconstanten isotroper K0rper," Annalen der Physik, 
Vol. 38, 1989, pp. 573-587. 
Voigt, W., Lehrbuch der Kristallphysik, Teubner, Leipzig, 
1928, pp. 954-964. 
Reuss, A., "Berechnung der Fliessgrenze yon Mischkristallen 
auf Grund der PlastizitAtsbedingung fur Einkristalle," 
Zeitschrift fur Angewandte und Mathematik und Mechanik, vol. 
9, 1929, pp. 49-58. 
Hill, R., "The Elastic Behavior of a Crystalline Aggregate," 
Proceedings of the Physical Society, vol. A65, 1952, pp. 
349-354. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



LEDBETTER ON ELASTIC-CONSTANT MODELS 147 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

[ii] 

[i2] 
[ i3] 

[14] 

[15] 

[16] 

[17] 

[18a] 

[18b] 

[19] 

[2o] 

[21] 

Hearmon, R.F.S., "The Elastic Constants of Polycrystalline 
Aggregates," in Physics of the Solid State, Academic, New 
York, 1969, pp. 401-414. 
Watt, J.P., Davies, G.F., and O'Connell, R.J., "The Elastic 
Properties of Composite Materials," Reviews of Geophysics and 
Space Physics, vol. 14, 1976, pp. 541--563. 
Hashin, Z., "Analysis of Composite Materials. A Survey", 
Transactions, American Society of Mechanical Engineers: 
Journal of Applied Mechanics, vol. 50, 1983, pp. 481-505. 
Nye, J.F., Physical Properties of Crystals: Their 
Representation by Tensors and Matrices, Oxford, London, 1960, 
p. 134. 
Zener, C., Elasticity and Anelasticity of Metals, U. Chicago 
Press, Chicago, 1948, p. 16. 
Kr6ner, E., "Self-consistent scheme and graded disorder in 
polycrystal elasticity," Journal of Physics F: Metal 
Physics, vol. 8, 1978, pp. 2261-2267. 
Stokes, G.G., Mathematical and Physical Papers, Volume I, 
Cambridge U.P., Cambridge, 1880, p. 120. Presented to 
Cambridge Philosophical Society in 1845. 
Hearmon, R.F.S., An Introduction to Applied Anisotropic 
ELasticity, Oxford U.P., London, 1961, p. 51. 
Reference [7], pp. 9-14. 
Huber, A. and Schmid, E., "Bestimmung der elastischen 
Eigenschaften quasiisotroper Vielkristalle durch Mittelung," 
Helvetica Physica Acta, vol. 7, 1934, pp. 620-627. 
Boas, W. and Schmid, E., "Zur Berechnung physikalischer 
Konstanten quasiisotroper Vielkristalle," Helvetica Physica 
Acta, vol. 7, 1934, pp. 628-632. 
Boas, W., "Zum elastischen Verhalten yon Zinn-Ein- und 
Vielkristallen," Helvetica Physica Acta, vol. 7, 1935, pp. 
878-883. 
Boas, W., "Zur Berechnung des Torsionmoduls quasiisotroper 
Vielkristalle aus den Einkristallkonstanten," Helvetica 
Physica Acta, vol. 8, 1935, pp. 674-681. 
Boas, W., "Die Berechnung yon Eigenschaften technischer 
Werkst~cke aus Einkristallkonstanten und Kristallitordnung," 
Schweizer Archiv f~r Angewandte Wissenschaft und Technik, 
vol. i, No. 12, 1935, pp. 257-264. 
Schmid, E. and Boas, W., Kristallplastizitat mit besonderer 
BerOcksichtiEung der Metalle, Springer, Berlin, 1935, section 
81. English translation: Plasticity of Crystals, Hughes, 
London, 1950. 
Boas, W., P~sics of Metals and Alloys, Melbourne U.P., 
Victoria, 1947, pp. 94-100. 
Stadelmaier, H.H., "Some Notes on the Relation Between the 
Elastic Moduli of Anisotropic Cristallites and Quasiisotropic 
Polycrystalline Aggregates," Zeitschrift f~r Angewandte 
Mathematik und Physik, vol. 6, 1955, pp. 246-252. 
Kr6ner, E., "Berechnung der elastischen Konstanten der 
Vielkristalls aus den Konstanten des Einkristalls," 
Zeitschrift for Physik, vol. 151, 1958, p. 504-518. 
Eshelby, J.D., "The determination of the elastic field of an 
ellipsoidal inclusion, and related problems," Proceedings of 
the Royal Society (London), vol. A241, 1957, pp. 376-388. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



148 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

[22] 

[23l 

[24] 

[25] 

[26] 

[27] 

[28] 

[29] 

[3o] 

[31] 

[32] 

[33] 

[34~ 

Gairola, B.K.D. and Kr6ner, E., "A Simple Formula for 
Calculating the Bounds and the Self-Consistent Value of the 
Shear Modulus of a Polycrystalline Aggregate of Cubic 
Crystals," International Journal of Engineering Science, vol. 
19, 1981, pp. 865-869. 
Eshelby, J.D., "Elastic Inclusions and Inhomogeneities," in 
Progress in Solid Mechanics, Volume 2, North-Holland, 
Amsterdam, pp. 130-133. 
Hershey, A.V., "The Elasticity of an Isotropic Aggregate of 
Anisotropic Cubic Crystals," Journal of Applied Mechanics, 
vol. 21, 1954, pp. 236-240. 
Hashin, Z. and Shtrikman, S., "On Some Variational Principles 
in Anisotropic and Nonhomogeneous Elasticity," Journal of the 
Mechanics and Physics of Solids, vol. i0, 1962, pp. 335-342. 
Kr6ner, E. and Koch, H., "Effective Properties of Disordered 
Materials," SM Archives, vol. i, 1976, pp. 183-238. 
Gairola, B.K.D. and Ledbetter, H.Mo, "Elastic constants of 
random polycrystalline graphite," nonpublished research, 
NIST, 1988. 
Aleksandrov, K.S., "Average Values of Tensor Quantities," 
Soviet Physics-Doklady, vol. I0, 1966, pp. 893-895. 
Leibfried, G., "Versetzungen in anisotropem Material," 
Zeitschrift f~r Physik, vol. 135, 1953, pp. 23-43. 
Ledbetter, H.M. and Naimon, E.R., "Relationship between 
single-crystal and polycrystal elastic constants," Journal of 
Applied Physics, vol. 45, 1974, pp. 66-69. 
Ledbetter, H.M., "Sound velocities and elastic-constant 
averaging for polycrystalline copper," Journal of Physics D: 
Applied Physics, vol. 13, 1980, pp. 1879-1884. 
Simmons, G. and Wang, H., Single Crystal Elastic Constants 
and Calculated Aggregate Properties: A Handbook, MIT Press, 
Cambridge, 1971. 
Hearmon, R.F.S., in Landolt-B6rnstein Numerical Data and 
Functional Relationships in Science and Technology, New 
Series, Group III, Volumes ii and 18, Springer, 1979. 
Dederichs, P.H. and Zeller, R., "Variational treatment of the 
elastic constants of disordered materials," Zeitschrift f~r 
Physik, vol. 259, 1973, pp. 103-116. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



Steve H. Carpenter 
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ABSTRACT: The use of precision, continuou s modulus 
measurements to detect the Initiation and growth of cracks 
in a number of experimental conditions will be reported 
on. The nucleation of cracks In a material wlll cause a 
decrease in the elastic modulus of that material. 
Correlation between the initiation and growth of cracking 
with a simultaneous decrease In modulus have been 
obtained. Modulus measurements have been carried out 
using a modified composite Marx oscillator with specially 
designed samples. The modulus was calculated from the 
resonant frequency of the composite oscillator. 
Comparisons of experimental data with theoretical 
treatments given in the literature will be provided. 

KEYWORDS: crack detectlon, crack growth, modulus 
measurements, stress corrosion cracking, cathodic 
charging, exfol lation 

The purpose of this paper is to present results from a number 
of experiments which have been carried out to demonstrate the 
viability of using continuous modulus measurements to detect and 
study the nucleation and growth of cracks In test samples. Results 
from three separate experiments will be presented. Some information 
on two of the experiments has been previously published [1,2,3]. 
The three experiments are: 

I.- The nucleation and growth of cracks In pure Iron 
due to cathodic charging with hydrogen [1,2], 

2.- The exfolIation of 7075 aluminum alloy, 
3.- The stress corrosion cracking of 304 stainless steel [3]. 

The bas i c  premise f o r  a l l  o f  the experiments is t h a t  a sample 
c o n t a l n l n g  c racks  shou ld  have a lower  e l a s t i c  modu lus  t h a n  an 
Iden t i ca l  sample of  the same mater ia l  con ta ln i ng  no cracks.  
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Brlstow [4] 
presence of 
contalnlng 
volume each 
modulus would be given by 

E c = Eo[ I - 16(1-v2)(10-3v)na3/45(2-v)] (I) 

u c = Uo[ I - 32(1-v)(5-v)na3/45(2-v)] (2) 

where 
E c = Young's modulus In the cracked material, 
u = the shear modulus In the cracked material, 
E c = Young's modulus In the non-cracked material, 
u ~ the shear modulus in the non-cracked materlal 
o �9 
v = Polsson's ratio. 

Investlgated the dependence of the elastlc modull on the 
cracks In some detall. He reported that for a material 
n randomly orientated penny-shaped mlcrocracks per unit 
having a radius of a�9 the Young's modulus and shear 

Analysis of these equations clearly predict a lowerlng of the 
elastic modull with the nucleation and increased growth of cracks 
within a material. 

In a l l  of the experiments reported on In th is  paper the modulus 
of  the t e s t  speclmens was con t lnuous ly  monitored by accu ra te l y  
measuring the resonant frequency of the specimen while dr iv ing I t  In 
a s t a n d i n g  wave c o n f i g u r a t i o n ,  S tand ing  waves In both the 
longitudinal and tors ional  mode were used depending on which best 
s u i t e d  the  e x p e r i m e n t a l  c o n d l t l o n s ,  Modi f ied Marx composite 
p iezoe lec t r ic  o s c l l l a t o r s  [ 5 � 9  were used to d r i v e  the d i f f e r e n t  
t es t  specimens at  t h e i r  resonant frequency, A resonant frequency of 
a p p r o x i m a t e l y  50 kHz was used f o r  l o n g i t u d i n a l  waves and 
approximately 40 kHz for  tors ional  waves, The resonant frequency 
was e a s i l y  measured to  w i t h i n  one her tz ,  The e las t i c  modull was 
eas i l y  calculated from the resonant frequency of  the sample. The 
samples and techniques used to cause crack nucleation and growth 
wh i le  s imu l taneous ly  moni tor ing  the resonant frequency w i l l  be 
discussed wlth the resu l ts  from each experiment, 

EXPERIMENTAL RESULTS 

Cathodic Charaina of Pure Iron 

The exper lmenta l  setup used to monitor crack i n i t i a t i o n  and growth 
In pure Iron due to ca thod lc  charging is shown schema t i ca l l y  In 
F lgure 1, C y l i n d r i c a l  samples were machlned from b i l l e t s  of pure 
Armco Iron to a dlameter of 0,476 = 0,003 cm and t o  a l eng th  
correspondlng to one -ha l f  wave length,  Since the assembly was 
driven In a standing wave pattern�9 the center of the quartz bars and 
the sample were displacement nodes�9 hence the necessary e l e c t r i c a l  
and support connections could be made, The system could be used for  
e i t h e r  t o r s i o n a l  or l o n g i t u d i n a l  qu.aortz bars,  The samples were 
annealed in a vacuum of bet ter  than 10- t o r r  fo r  6 hours at  500~ 
a f t e r  mach in ing  and b e f o r e  c a t h o d i c  charg ing,  Samples were 
electropol lshed in H3PO 4 at  a current density of 60 mA/cm pr io r  
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F igure 1 . -  Schematic of  the exper imental  se tup  used t o  measure 
t h e  r e s o n a n t  f r e q u e n c y  and i n t e r n a l  f r i c t i o n  d u r i n g  c a t h o d i c  
charg ing.  

to cathodic charging to provide uniform surface cond i t ions.  
Cathodic char~Ing was carried out at current densities ranging from 
10 to 90 mA/cm In a IN H^SO. solution wlth trace amounts of As20~ 
and CS 2 added to enhanc~ t4he hydrogen uptake. A 3/2 wavelengtI~ 
AI203 t~uffer rod was placed between the quartz bars and the sample 
to protect the si lver contacts on the quartz crystals from the acid 
solution. The solution was circulated around the sample and the 
temperature of the solution was maintained constant by a heat 
exchanger placed In the solution reservoir. The charging conditions 
used were known r produce cracking in pure Iron [7 ] ,  which Is 
Iocallzed to the surface. Figure 2 is a micrograph of a cross 
section of an iron sample after cathodic charging for 180 minutes at 
a current density of 30 mA_/~m , while being vibrated at a constant 
strain amplitude of 5 x 10 . 

The behavior  o f  the resonant frequency and In te rna l  f r i c t i o n  as 
a f unc t i on  of  ca thod ic  charg ing t ime fo r  the sample shown In F igure 
2 is  g iven in F igure 3. Not ice the decrease in r e s o n a n t  f r e q u e n c y  
w h i c h  c o r r e s p o n d s  t o  a d e c r e a s e  In t he  e l a s t i c  modulus.  To 
demonstrate t h a t  the loss of  f requency was due t o  t he  presence o f  
c racksp two samples were v ib ra ted  In a l o n g i t u d i n a l  mode ( to  remove 
t he  r a d l a l  dependence) d u r i n g  c a t h o d i c  c h a r g i n g  f o r  5 and 480 
m i n u t e s .  A l l  e x p e r i m e n t a l  c o n d i t i o n s  were the  same f o r  both  
samples. A f t e r  charg ing ,  the samples were removed from t he  b u f f e r  
rod and were c a r e f u l l y  machined to  remove the cracked outer  layer .  
The resonant f requency was measured: 
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Figure 2 . -  Mlcrograph of  a cross sec f lon  of an Iron sample 
a f f e ~ c a ? h o d l c  charging for 180 mlnutes at a curren? densl?y of 30 
mA/cm . 
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Flgure 3.- Typical resonant frequency and Internal friction da?a 
for  the sample shown In Figure 2. ( tors ional  v ib ra f lon)  

1.- before charglng, 
2 . -  a f fe r  charglng, 
3 . -  a f f e r  machining, 
4 . -  a f fe r  machining and reanneallng. 

The dafa are shown in Figure 4. As expecfed, ,he frequency loss 
is dependen? on ,he charging ?Ime, a larger loss is observed for 
longer charging ?Ime. However, In bofh cases ,he frequency loss 
(modulus) was recovered when the cracked oufer layer was removed. 
Clearly ?he decrease In the modulus was due ?o the cracked oufer 
layer of maferlal. The fallure ?o re?urn ?o exacfly fhe resonan? 
frequency before charging Is mos? probably due ?o the necessary 
removal and reglulng of ?he sample to the buffer rod. 

Since ?he cracking Is localized ?o ?he surface of fhe sample, 
one can model the sample as a composlfe wlfh a thin cracked outer 
layer and an unaffecfed Inner core. Using ?he effecflve modulus for 
a composl?e sample and Brlstow's expresslon for the cracked layer If 
Is posslble ?o predlc? fhat ?he change In frequency should be glven 
by ?he following expresslon C2]: 
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Flgure 4.- Plot of the resonant frequency for samples before 
and after the removal of the cracked outer layer. 

A f = - fo(C)na3Ad/d (3) 

where 
f = the frequency before charging begins, 

= a constant depending on the material 
and mode of vibration, 

Z~d = the depth of cracking, 
d = the dlameter of the sample. 

Since n, a and A d can be determined by metallography It is 
possible to experimentally determine the validity of equation 3. 
Figure 5 gives the results of thirteen separate experiments where 
A f Is plotted against naiad/ d. Equation 3 predicts a straight 
line, a fairly good agreement Is obtained (corr. coeff. 0.822). The 
good fit Indicates that measurement of the change In frequency 
during cathodic charging glves a fairly accurate measure of the 
size, density and depth of cracking produced by the cathodic 
charging. For a more detailed description and further results see 
references I and 2. 
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Figure  5 . -  P lo t  of  the quan l t y  na3Ad /d  versus the loss of  
resonant frequency for various experimental conditions. 
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ExfolIatlon of 7075 Aluminum Allov 

Exfollatlon corrosion, also known as layer or lamellar corrosion 
is a specific type of selective corrosion resulting from a rapid 
lateral attack along multlple narrow paths parallel to the metal 
surface. It is usually only observed in heavily rolled 
mlcrostructures. In the tests reported In this paper the 
exfollatlon was caused by the generatlon of corrosion products, 
originally from pitting, which forced the layers of metal apart 
along grain boundaries just below the surface causing the test 
specimen to swell and enlarge. The exfollatlon causes flakes of the 
metal to be pushed up and peeled back from the surface as shown in 
Figure 6. 

A system very similar to the one shown In Figure I was used to 
monitor the resonant frequency and internal friction during 
exfollatlon. The test material used was a commerlclally available 
2.54 cm thick plate of 7057-T651 aluminum alloy. Coupons 30.5 cm by 
30.5 cm were cut from the plate and were annealed at 163 C for I, 4, 
6, 8, 10, 16, 32 and 64 hours. After annealing, damping samples 6.4 
mm by 6.4 mm by 51 mm (one half-wavelength for e longitudinal wave 
at 50 kHz.) were machined from the coupons. The samples were 
symmetrical to the mid-plane of the plate wlth the long dimension In 
the rolling direction. All tests were conducted accordlng to the 
ASTM Standard Method of Testing for Exfollatlon, i.e. the EXCO test 
for the Exfollatlon Susceptibility of 7xxx Series of  Aluminum Alloys 
containing Copper [9] was used. The exfollation test consists of 
exposing the test coupon to a solution of 4 molar NaCI, 0.5 molar 
KN038, 0.1 molar HNO, In distilled water for 48 hours at room 
temperature. The solu~lon must be in sufficient quan~ty to provide 
a volume to surface area ratlo of at least 7.75 ml/cm ~. 

At present, the most common method used to assess the degree of 
exfol Iat lon Is to compare the exposed or corroded surfaces wi th a 
set of standard photographs. Figure 7 shows the corroded surfaces 
for a complete set of larger samples after the EXCO test. Careful 
analysis of the photographs indicate that the degree or amount of 
exfollatlon increases wlth prior annealing tlme up to the 8 hour 
anneal. Beyond the 8 hour anneal the amount of exfollatlon 
decreases with the samples annealed for 32 and 64 hours showing only 
pitting. 

Figures 8 and 9 glve the resonant frequency and internal 
f r i c t i o n  v e r s u s  exposure  t ime  in t he  EXCO s o l u t l o n  f o r  t he  as 
received samples and fo r  those annealed at  1, 4, 6 and 8 hours p r i o r  
to  t e s t i n g .  S im i l a r  data fo r  samples annealed a t  l onge r  t lmes  are 
shown in Figures 10 and 11. The test specimen was vibrated In the 
EXCO solution in a longitudinal standing wave at approximately 50 
kHz. g iv ing a continuous measurement of the resonant frequency and 
damping. The tests were5carrled out at a constant strain amplitude 
of approximately 5 x 10- . Analysis of the resonant frequency data 
reveals a gradual decrease over the f i r s t  6 hours to a seml-plateau 
a f te r  which there Is a sudden downturn. The time at which the 
downturn occurs decreases wlth the p r i o r  anneal tlme. A proposed 
exp la ina t lon ,  which is consistent with visual observations, of the 
frequency data Is as follows. 
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Figure 6.- Photograph of a corroded surface showing the 
characteristics of exfoliatlon. (x45) The sample was annealed for 8 
hours and exposed for 48 hours. 

Figure 7.- Photograph of corroded samples which were annealed 
for the times shown. All samples were exposed for 48 hours. 

The Inltlal drop of the frequency appears to be related to the 
bubbling of hydrogen from the surface of the test specimen. Both 
the amount of the decrease and the rate of decrease were nearly 
constant for all of the samples even those which did not show signs 
of exfoliation. The second drop in frequency is believed to mark 
the onset of exfoliation and is due to the formation and growth of 
cracks in the surface layers of the specimen. Notice that an 
ordering of the times at which the second turn down occurs Is 
consistent with the degree of exfollation as shown in Figure 7. The 
internal friction data is somewhat different, but provides an even 
clearer measure of the onset of the exfoliation corrosion process. 
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The internal friction is not sensitive to the hydrogen bubble 
formation and no corresponding change in internal friction is 
observed when the first drop In resonant frequency occurs. However, 
as exfoliatlon begins there is significant plastic deformation and a 
rapid increase In the internal friction Is observed. The rapid 
increase in damping correlates extremely well with the second drop 
in resonant frequency. Data for the sample annealed for 64 hours 
support the above explanation. The 64 hour sample showed only 
pitting with no exfollation. The data for this sample show neither 
a second drop in resonant frequency nor a sudden increase in the 
internal friction. Notice that the systematic movement of the time 
at which the rapid increase in internal frictlon occurs is in 
complete agreement with the severity of exfollation shown In Figure 
7. 
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F i g u r e  8 . -  Resonan t  f r equency  ve rsus  exposure  t ime  f o r  as 
received samples and those annealed fo r  1, 4, 6, and 8 hours. 

F i g u r e  9 . -  I n t e r n a l  F r i c t i o n  v e r s u s  e x p o s u r e  t i m e  f o r  as 
received samples and those annealed fo r  I ,  4, 6 and 8 hours. 
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Figure I0.- Resonant frequency versus exposure time for samples 
annealed for 8, 10, 16, 32 and 64 hours. 

EXPOSURE TIME (Hrs) 
F l g u r e  11 . -  I n t e r n a l  f r i c t i o n  versus exposure t ime fo r  samples 

annealed 8, 10, 16, 32 and 64 hours. 

Stress Corrosion Cracklna of 304 Stainless Steel 

In order to use resonant frequency (modulus) measurements to 
monitor stress corrosion cracking it is necessary to have a sample 
design which allows for the application of a stress without 
disturbing the wavetraln. The schematic of a sample which meets 
these conditions is Shown In Figure 12. The sample Is three half 
wavelengths long, the gripping nodes and solution cup being located 
at displacement nodes. The solution cup was 316 stainless steel and 
was silver soldered to the 304 stainless test specimen. A schematic 
of the loading grips with the sample is shown In Figure 13. The 
behavior of 304 stainless steel when exposed under applied stress to 
three test solutions was Investigated. 
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Figure 12.- Schematic of 
special sample used to meas- 
ure the resonant frequency. 

Figure 13.- Schematic of the 
experimental apparatus used to 
measure the resonant frequency. 

The test solutions were chosen in the following way: (I) solution 
one was chosen because It was known to cause stress corrosion 
cracking In 304 stainless steel for the experimental conditions used 
[3], (5N H,SO, + 0.5N NaCI); (2) solution two was chosen because it 
should no~; C~dUSe cracking, (SN Na2SO,) and (3) solution three was 
chosen because it was not known whether or not it would cause 
cracking, (5N Na2SO 4 + 5N H2S04). Experiments were conducted in the 
fol lowing manner: 

I.- Test samples were deformed In tension to 7% total strain. 
The samples were designed and fabricated such that the 7% 
deformation produced a length giving a resonant frequency which 
matched that of the quartz crystals. 

2.- After deformation, the samples were allowed to stress relax 
under load until there was no measureable change in either the load 
or resonant frequency during a time segment of one hour. 

3.- After complete relaxation, the test solution was added to 
the cup at the center of the sample and the resonant frequency was 
monitored for an extended period of time, usually several hours. 

4.- After a selected time perlod, the test solution was removed 
and the samples were examined for evidence of stress corrosion 
cracking. Some samples were simply unloaded and Inspected while 
others were pulled to failure and then examined. 

Experimental examination of samples exposed to so lut ions two and 
t h ree  gave no ev idence of  c rack ing  of any k ind .  As expected no 
s i gn i f i can t  changes in the resonant f requency dur ing t e s t i n g  w i th  
s o l u t i o n s  two and t h ree  were observed,  However, as expected,  
samples exposed to solut ion one showed ex tens i ve  s t ress  co r ros i on  
cracking. Figure 14 is a mlcrograph indicat ing the kind of cracking 
o b t a i n e d ,  L i t t l e  or  no change In the resonant  f requency was 
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observed for a short incubation time (approximately 104 sec.) ,  a f te r  
which there was an almost l inear  decrease In the resonant frequency. 
F igure 15 prov ides an example of  the e x p e r i m e n t a l  d a t a .  The 
magni tude of  the change in resonant frequency was found to be 
d i r e c t l y  related to the amount of cracking. While no model has been 
formulated to d i r e c t l y  express the frequency loss In terms of crack 
parameters a number of  t e s t s  were ca r r i ed  out where samples were 
tested un t i l  a predetermined frequency loss had occurred and then 
they were examined meta l lographica l ly .  Figure 16 shows the data for  
the change of resonant frequency as a function of the average depth 
of cracking. Figure 17 shows the change in resonant frequency as a 
function of the percentage of crack area to to ta l  area measured on a 
mid-plane longi tudinal  cross section. The data c lea r l y  demonstrate 
that  the change in resonant frequency (e las t i c  modulus) Is a r e s u l t  
of the cracking in the specimen. 

F igure 14.-  Micrograph of  s t ress  cor ros ion  crack ing in 304 
s ta in less s tee l .  Change of resonant frequency = -258 Hz. 

Flgure 15.-  Negat ive change in resonan t  f r equency  ve rsus  
exposure t ime fo r  a 304 s t a i n l e s s  s tee l  sample, s t ra ined 7% and 
exposed to 5N H2SO4/O,5N NaCI so lu t ion.  

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



160 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

m 

- r  

O .O2 

O 
> 
0 .01 

Z 
G') 

3 
3 

v 

m 

l 

m I I 

100 200 
NEG CHANGE IN RES FREQUENCY 

Figure 16.- Depth of cracklng versus the negatlve change in 
resonant frequency for different 304 stainless steel samples. 
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F i g u r e  1 7 . -  R a t i o  o f  t he  area cracked t o  t o t a l  area p lo t t ed  

versus the negat lve change In resonant f requency f o r  d i f f e r e n t  304 
stainless steel samples. 

CONCLUSIONS 

The results presented, for all three experiments, indicate that 
continuous precise modulus measurements can be used to detect and 
monitor the nucleation and growth of cracks. While In two of the 
experiments, no definitive relationship between the amount of 
cracking and the loss of resonant frequency have been developed, 
good correlation was obtained. 
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ABSTRACT: An investigation is made into acoustic resonance methods for 
measuring the dynamic elastic modulus of the adhesive layer in a bonded metal-to- 
metal joint. Empirical studies have indicated that this parameter may be used to 
infer the cohesive strength of the bond; in theory, an accurate measurement of two 
or more resonant frequencies should give both the elastic modulus and thickness of 
the adhesive layer. Verifying the accuracy of the technique was greatly hampered 
by the strong dependence of elastic properties in the adhesive on the test frequency. 
The resonant frequencies of aluminum-to-aluminum adhesive joints were deter- 
mined by both contact and immersion acoustic resonance techniques; receptance 
analysis was then used to determine the elastic modulus. Results were consistent 
with those achieved by time-of-flight measurements on bulk adhesive specimens. 
Based on these tests, inherent limitations of the Fokker Mark II Bondtester for 
assessing the cohesive strength of a bond were explored. 

KEi'WORDS: adhesives, elastic moduli, nondestructive evaluation, bondtester, 
ultrasonic testing, receptanee model, cohesive failure 

INTRODUCTION 

Adhesive bonding holds many potential advantages over more traditional methods of join- 
ing engineering structures and components. When properly applied, adhesives spread the load 
evenly over a large area, thereby avoiding large stress concentration factors that could cause 
premature failure. The risk of damaging the material in the joint area during manufacture, as 
could be the case in riveting or welding, is largely eliminated. Adhesives are particularly useful 
in situations that involve the linking of unlike materials together, or the fabrication of structures 
from fiber reinforced composites. Further advantages of adhesive bonding include increased 
stiffness of the joint area, reduced machining requirements, a smoother external surface, sealing 
of the joint area, and reduced cost. 

Drs. Sinclair and Spelt are assistant professors in the Mechanical Engineering Department, 
University of Toronto, Canada M5S 1A4; Dr. Dickstein is a research scientist in the same 
department. Drs. E. Segal and Y. Segal are professors in the Nuclear Engineering Department, 
Technlon, Haifa, Israel 32000. 
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Although not subject to many of the problems facing riveting or welding, adhesives do 
bring their own set of challenges in the areas of bond failure and bond inspection. Earlier works 
have noted that a nondestructive method for measuring the bulk elastic modulus of the adhesive 
material in a joint would aid in estimating the bond strength [1-5]. This paper will explore 
acoustic resonance methods of measuring elastic moduli of the bond line in aluminum-to- 
aluminum adhesive bonds, and assess their relative merits and limitations. The implications of 
the results will be used in a look at the Fokker Mark II bondtester [5], widely used for estimat- 
ing the cohesive strength of the adhesive material by correlations with the resonant frequencies 
of a bonded specimen. 

DEFECTS AND FAILURE MODES IN ADHESIVE BONDS 

Defects in adhesive joints can be categorized into three broad groups; for each group, 
efforts have been made to develop methods of nondestructive evaluation (NDE) to warn of 
inherent weakness or impending failure of the bond: 

Voids and Disbonds- A void or disbond is a localized area in which there is an unfilled gap 
between the two adherends. Such a defect may be a result of poor procedures in the spreading 
of the adhesive in the manufacturing stage; another possibility is stress-induced damage, ori- 
ginating either during the curing cycle or in service. Gasses released during the curing cycle 
may also lead to voids within the adhesive layer. 

Acoustic methods are the preferred nondestructive method for detecting such defects. The 
techniques take a number of different forms, depending on the accessibility of the specimen, 
expected geometry of the defect, and desired resolution. Pulse-echo, through-lransmission, 
mechanical impedance measurement, resonant frequency determinationt and attenuation 
methods have all been used with some degree of success [ 1,6,7]. This defect type is well-suited 
to automated inspection by a C-scan, provided geometry and acc, essibiIity will permit. 

Low Strength of the Bond-Adhesive Interface: Separation of the bulk adhesive from one of the 
adherends is normally termed an "adhesive" failure, as it is due to a lack of adhesion between 
the adhesive and adherend. Low adhesive strength is usually a result of improper prelrealment 
of the adberends, or environmental degradation [8-11]. It is more commonly encountered in 
metal-to-metal bonds rather than with eomposities. Proper prelrealment of a metal adherend 
such as aluminum calls for careful cleaning, degreasing, removal of any oxide by an etching 
process, and then an anodizing treatment to produce a new uniform oxide layer [12,13]. This 
oxide should link to the bonding agent by a complex mechanism involving both mechanical 
keying and chemical interaction; details of this linking phenomenon are not yet well- 
understood [ 14]. 

Nondestructive testing of the adhesive strength of a bonded joint remains a very elusive 
goal. The oxide layer on each adherend is on the order of 1 ~ thick, so that any direct method 
of characterizing the interface would need very fine resolution. Preliminary studies indicate 
that the reflection coefficient of sound from the adherend-bond interface could indicate condi- 
tions within the oxide layer, but this technique would require ultrasound frequencies on the 
order of tens of megahertz or even higher [1,15]. While such research continues, the industrial 
response is to guard against these failures by tight quality control checks of the surface pre- 
treatment of the adherends during the manufacturing stage, and indirect checks for environmen- 
tal damage of in-service components. 

Weak Cohesive Strength of the Bulk Adhesive Layer: Failures within the bulk adhesive are 
termed "cohesive" in nature. Cohesive failure may be precipitated by localized defects as dis- 
cussed earlier;, such defects can usually be detected nondestrucfively. Alternatively, environ- 
mental factors, inadequate curing or poor mixing may cause the bulk properties of the adhesive 
to be perturbed from their nominal state, and lead to failure of the specimen [4]. A combination 
of these two effects is also possible. Assuming proper pretreatment of the adherends and no 
environmental degradation, the cohesive failure mode is expected if an external load is 
increased to the point of destruction of the specimens. 

There is no direct method to nondestmctively measure the cohesive strength of bulk 
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adhesive material. However, factors that may cause a perturbation in cohesive strength can also 
lead to changes in Young's modulus E of the adhesive. Several studies have confirmed this 
connection, and semi-empirical relationships give cohesive strength as a function of E for cer- 
tain types of adhesives, geometry, and loading pattern [6,16-18]. 

There are still many challenges that must be addressed when estimating bond strength 
from a measurement of the elastic modulus: 

(a) Lateral Constraint: For most metal-to-metal adhesive bonds, the bond line is very thin 
(less than 0.3 ram), and the adherends typically have an elastic modulus far greater than 
that of the adhesive. Under these conditions, a tensile load exerted perpendicular to the 
bonded area puts the adhesive in an approximate state of uniaxial strain, i.e., there is a 
high degree of constraint in the plane of the bond. Assuming isotropic properties of the 
adhesive, Hooke's Law then gives the apparent modulus E, equal to the ratio of normal 
stress to strain: 

/~ _ r _ E ( 1 - v )  ( 1 )  

(l+v)(1-2v) 

It is the value of E, rather than Yotmg's modulus E, that is measured in a ultrasonic test of 
the bond. A second, independent measurement of elastic properties would be needed to 
determine individual values for E and v. 

(b) Variations in Bond Line Density or Thickness: Under some conditions, resonance tech- 
niques are incapable of distinguishing variations in E from variations in density or thick- 
ness of the bond. Studies have shown that the cohesive strength of a bond does depend on 
each of these parameters, but the form of the dependence is different for each [2,3]. This 
greatly complicates the use of resonance techniques for estimating cohesive strength via 
correlations with the apparent adhesive modulus. 

(c) Loading Mode: A high value of/~ combined with a low value of failure strain indicates 
that an adhesive will show a larger value of cohesive strength in a tensile test (e.g., a butt 
join0 than in a peel test. This is because a peel test is characterized by relatively large 
values of stress concentration factor kt at the edge of the bond; a high value of E would 
accentuate the stress concentration and thereby promote failure [19]. By contrast, a large 
value of elastic modulus in a butt joint would tend to bring elasticity values of the 
adhesive and adherend closer together. This reduces the stress concentration for this con- 
figuration, and thereby leads to an apparent increase in yield stress. Although empirical 
relationships have been developed between measured values of E and cohesive strength, it 
is seen that such relationships must be applied with caution, and observed trends cannot 
be readily extrapolated to bonds of a different configuration. 

(d) Modulus of Elasticity in a Viscoelastic Material: Several researchers have used acoustic 
techniques to estimate E for adhesive materials. In general, it was found that the result 
was highly dependent on the vibration frequency. This is due to the fact that the extent of 
material flow is frequency and amplitude dependent, and material flow affects the 
apparent modulus. In addition, Ramakrishnan et al [20] noted that the extent of depen- 
dence of E on frequency appears to be a function of thickness of the specimen. These fac- 
tors pose grave complications in the verification of any method for measuring E, as two 
measurement methods can be legitimately compared only if they use specimens of com- 
parable thickness, and stress the specimens at the same frequency. 

Dependence of/~ on Bond Thickness: The thickness of an adhesive bond can affect the 
apparent modulus in several ways [20]. First, there is the question of lateral constraint, 
discussed in Section (a) above. A very thick adhesive layer would have less lateral con- 
straint, and therefore a smaller value of E, than a thin layer. 

Second, a complex tri-axial stress state is often present near the bond perimeter, which is 
usually the failure initiation site in a peel or shear loading mode. The thickness of the 
bond will influence this stress pattern, and can lead to perturbations in stress concentration 
factors. This can clearly affect the magnitude of the failure load, but may also influence 
the apparent modulus. 

(e) 
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(f) 

Third, the curing cycle will affect a thin adhesive layer differently from a thick one. The 
thick adhesive will be more prone to ge.s entrapment, which can cause variations in den- 
sity and a drop in the measured value of E. The center of the thick adhesive layer is more 
insulated from the adherends than would be a thin layer; this will affect the temperature 
profile as a function of time. A complex temperature profile may also lead to residual 
stresses and stress concentrations that will distort E. Tests have shown deviations of 
several percent in values of elastic constants between samples of bulk adhesive, and 
adhesive material cured between two adherends [21]. 

Breaking Strength: Failure of a bond can occur at the adhesive/adherend interface; 
failure can be precipitated at a localized flaw; failure can be due to an applied stress 
(shear or normal) that is greater than the yield stress of the bulk adhesive. An accurate 
evaluation of E will give no indication of the possibility of the first failure mode, perhaps 
some information on the second (e.g., significant porosity would cause an apparent 
decrease in E), and perhaps some on the third (via correlations between bulk values of E 
and cohesive strength). Under these conditions, it is clear that determination of E alone 
will not serve as a universal indicator of bond strength. However, when combined with 
other tests and strict quality control standards on the pretrealment of adherend surfaces, 
the apparent modulus can be an important indicator of bond quality. 

V I B R A T I O N S  I N  L A Y E R E D  M E D I A  

Nondestructive inspection of the adhesive between two bonded metal components 
requires an inspection technique that can penetrate several millimeters through the adherend 
material. Limited access to the far side of the component often rules out the use of radiography; 
this leaves acoustic methods as the most popular method for characterizing the adhesive layer 
properties. Some of these, such as the low frequency impedance test, are suited to the detection 
of localized disbonds and voids. For evaluation of the elastic modulus, resonance techniques 
are the most appropriate. 

This paper will be confined to the study of two aluminum adherends of equal thickness, 
bonded together by a uniform layer of adhesive as shown in Figures 1 and 2. Each material 
layer is represented by the material parameter set {El, li, Pi }, designating the layer effective 
modulus, thickness, and density respectively for i = U (adherend), i = V (adhesive), and i = W 
(transducer crystal). It will be assumed that all waves are of compression mode (no shear com- 
ponent) and gavel perpendicular to the plane of the bond at a speed ci in material i: 

c i = ~[Ei/Pi (2) 
l 

For the hypothetical case where the adherends and adhesive have the same values of/~ and p, 
resonant frequencies ton of the isolated joint (Figure l) are easily shown to occur at: 

2( lu + Iv + lu ) 2rcn ct/ = - -  , n = 1,  2 . . . .  ( 3 )  
con 

Because adhesives typically have a far smaller modulus and density than metal adherends, the 
mathematics become somewhat more complicated. 

Two well-known methods for measuring the resonant frequencies of a bonded cOmponent 
with piezoelectric crystals are contact and immersion (non-contact) testing. In an immersion 
test, the specimen is placed underwater, and ultrasonic signals are beamed at the specimen 
through the fluid (Figure 1). If the sound is at a resonant frequency of the test sample, the 
round-trip path of sound passing through the specimen will contain an integral number of 
wavelengths. The sound beam returning to the probe will then be a composite of the beam 
reflected from the front face, and sound beams that have made one or more passes through the 
sample. The sound beams that passed through the sample will be 180 ~ degrees out of phase 
with the beam reflected from the front face, as the reflection coefficient is negative at the speci- 
men backwall. The resonant frequencies will therefore be marked in the frequency domain by a 
pronounced minimum in the magnitude spectrum, due to the effects of destructive interference. 

Strikingly different effects are found in contact measurements, illustrated in Figure 2. The 
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FIG. 1 -- Immersion ultrasonic test of adhesive bond. 
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FIG. 2 -- Contact ultrasonic test of adhesive bond. 
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probes are acoustically coupled to the specimen by means of a coupling oil. As a result, one 
must now consider resonances not of the specimen by itself, but of the entire probe-specimen- 
probe system. If the probe is excited by an alternating voltage at the system's resonant fre- 
quency, the electrical impedance of the transmitter will drop. The piezoelectric crystal's oscil- 
lations will become large, and the crystal will deposit more power into the specimen. Resonant 
frequencies in this case are therefore identified by a pronounced max/mum in the magnitude 
spectrum of both the transmitted and received waveform. 

Together with the elastic modulus, the damping coefficient of the adhesive may also be of 
interest when characterizing bonded joints [6,14,22]. Usually the damping coefficient of the 
adherends is so much lower than that of the adhesive that the former can be neglected. There- 
fore, the amount of damping is indicative of the strain in the adhesive, and its viscous charac- 
teristics. As such, it can be interpreted as an imaginary component of the elastic modulus of the 
adhesive. Its value is an indicator of the condition of the bond material. 

Damping manifests itself in many ways. For continuously forced excitation of a mode 
that involves appreciable strain in the adhesive, a large damping coefficient leads to relatively 
small amplitudes of vibration, appreciable energy loss, and a large phase difference between 
force and displacement. Measurement of any of these three parameters, then, can serve as an 
indicator of the damping coefficient [23,24]. 

RECEPTANCE MODEL 

The natural frequencies of vibration for a multi-layered system may be determined 
through receptance analysis. The receptance tz~, of a system "A" is defined as the steady-state 
amplitude of harmonic displacement V(A,m) at point m caused by a sinusoidaUy varying force 
of amplitude T(A,n) per unit area and frequency to at point n [25]. In general, the receptance of 
"A" will be a function of the forcing frequency to: 

o~,n(to ) = ~(A,m) (4) 
T(A,n) 

If m and n refer to the same point, then Eq 4 gives the direct receptance of "A"; for two dif- 
ferent points m and n, the cross receptance is defined. Note that for an undamped system, 
v(A,m) becomes infinite at resonant frequencies, indicating an infinite value for the system 
receptance. In practice, some damping is always present which tends to suppress the amplitude 
and broaden the width of the resonant peak. The magnitude of the damping coefficient is 
assumed to be sufficiently small that it does not cause a substantial shift in the frequencies of 
the resonances. 

In the application of the receptance model to the study of an adhesively bonded joint, it is 
convenient to separate the joint into its constituent layers, with labeled boundary points as 
shown in Figures 1 and 2. The individual receptances of each layer are easily measured or cal- 
culated [25]. From such building blocks, a compound system may be modeled. The method is 
mathematically equivalent to solving the wave equation in each of the homogeneous layers of 
the system [26]. 

Derivation of the equations pertinent to the simple adhesive joint configuration of Figure 
1, isolated from all other systems, was carried out by Adams and Coppendale [27]. They 
defined a parameter F in terms of the receptances of the individual joint components: 

U V 2 V )2 
F = (Ct2, 2-t-c~2, 2 )  - (0~2, 3 (5) 

where the direct and cross receptances of the joint components are given as functions of 
wavenumber ki = ~ci  in material i by: 

i --  COt ( k i l l ) l ( E i k i )  a n d  i -1 tZm,m = IXm,m+l - ~ (6) 
Ei ki sin (kill) 

for i = U, V, W, where component i has the boundaries [m, re+l]. Using receptance analysis, 
it has been shown that the resonant frequencies for acoustic waves traveling through an 
adhesively bonded joint correspond to values of ki for which F equals zero [27]: 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



168 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

F ( Ev, Ev, kv, ~v, lv, tv ) = o (7)  

Therefore, using Eqs 5-7, measurement of two natural frequencies of the bonded joint will give 
implicit expressions for the effective adhesive modulus Ev and thickness lv. Unfortunately, the 
solution of Ev and Iv must be iterative in nature, and the sensitivity of results to errors in exper- 
imental measurements are in general difficult to quantify. 

EXPERIMENT 

A number of single lap shear specimens were made, each consisting of two identical A1- 
6061 adherends with properties listed in Table 1. The adhesive was the single-part epoxy 
CYBOND 4535A [28] with a nominal thickness ranging from 0.05 mm up to 0.60 ram, con- 
trolled by side shims during the manufacturing process. The adherends were pretreated per 
ASTM Standard D2651-79, bonded and cured according to manufacturer's directions. 

TABLE 1 -- Bonded aluminum-to-aluminum test specimens. 

Adherend thickness 1.62 mm 
Adherend density 2700 kg Im 3 
Adherend effective modulus 109 GPa 
Adhesive density 1150 kg/m 3 
Crystal a thickness 0.288 mm 
Crystal density 7300 kg/m 3 
Crystal effective modulus 147.4 GPa 

a Parameters of lead zirconante titanate transducer crystals 

In order to obtain reference values of elastic constants against which the results of the 
resonance tests could be compared, static tension tests were performed on bulk samples of 
adhesive. Sample thickness ranged from 2.1 mm to 3.2 ram. Specimens were strain gauged in 
the loading and transverse directions. A value of Poisson's ratio of 0.36 was obtained from the 
samples. Consistent, repeatable values of Young's modulus could not be obtained; the reason 
is believed to be permanent deformation of the samples during the test. 

Due to the poor results of the static tension test, the sonic velocity in bulk adhesive speci- 
mens was measured in order to get reference values of E v  based on Eq 2. The results of these 
measurements, performed on samples of thickness 2.65 mm and 3.04 ram, are plotted in Figure 
3 as a function of frequency. At relatively high frequencies in the 15 MHz range, viscoelastic 
flow is inhibited, and therefore the apparent modulus approaches 9-10 GPa. The apparent 
modulus drops to about 5 GPa at low frequency. Note that this test method is well-suited to the 
characterization of relatively thick bulk specimens. However, extremely high ultrasonic fre- 
quencies would be required to achieve sufficient resolution for testing bonded specimens in this 
mariner, the amplitude of such signals would be insufficient for reliable measurements. In 
addition, it would be impossible to ascertain whether a change in sonic velocity in the adhesive 
were due to a perturbation in Ev, Pv, or both. 

Immersion Test 

In the first set of ultrasound measurements, an immersion pulse-echo configuration was used. 
Echo signals from the adhesive layer were measured using a highly damped transducer with a 
frequency band extending from 5 to 15 MHz. The echo signals were digitized and transformed 
to the frequency domain, where dips in the frequency spectrum (Figure 4(a)) or discontinuities 
in the derivative of the phase spectrum (Figure 4(b)) indicate resonances. Figures 4(a) and 4(b) 
correspond to specimens with/v=0.61 mm. Note that not all resonances are easily identified in 
Figure 4(a); the phase information in Figure 4(b) is useful in identifying some (but not aU) of 
them. In addition, some of the resonances may be due to wave modes not included in the model. 
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TABLE 2 -- Measured resonant frequencies of bonded aluminum-to-aluminum test specimens 

Resonant frequency # 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Imme~ionTest 
(MHz) 

5.90 
7.43 
8.10 
9.69 

10.00 
10.49 
11.81 
12.12 
12.95 
13.74 

Contact Test 
(MHz) 

4.90 
5.90 
6.15 
7.46 
8.50 
8.87 

10.55 
11.45 
12.39 
13.91 

lO 
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FIG. 3 -- E for CYBOND 4535A based on ultrasonic time-of-flight tests. 

Calculations were then made of the theoretical resonant frequencies by iterafive solution 
of Eq 7. For the adhesive layer, a wide range of values were used for E v and Iv, in order to 
study the sensitivity of resonant frequencies to these parameters. 

Figure 5 shows the calculated values of the first six resonances as a function of lv, for a 
fixed value of Ev equal to 7.2 GPa. Figure 6 shows the resonant frequencies for Iv fixed at 
0.3 mm, and variable Ev. The Figures show that the values of the resonant frequencies are not 
highly sensitive to Ev nor to le, for significant ranges of these parameters. It is preferable that 
use of Eq 7 to characterize the adhesive layer be confined to those resonances where the 
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FIG. 4(a) -- Magnitude spectrum of echo signal in immersion test. 
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FIG. 4(b) -- Phase spectnma of echo signal in immersion test. 
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sensitivity is high. This is not always practical, particularly for adhesive bonds used in the avia- 
tion industry which are typified by high elastic modulus and small bond thickness; the lower 
resonant modes in this case are not going to give an accurate indication of  the adhesive layer 
characteristics. 
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FIG. 5 -- Numerically calculated resonances in bonded specimens vs Iv. 
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FIG. 6 -- Numerically calculated resonances in bonded specimens vs Ev. 
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If the receptance model were a perfect representation of the system, and all experimental 
measurements were exact, the data of Table 2 could be correlated with contours such as those 
shown in Figures 5 and 6 to yield exact values of F,v and Iv. In the absence of such perfection, 
there is the potential for significant errors in calculated values of the adhesive parameters based 
on Eq 7 and measured values of two natural frequencies. Guyott and Cawley recognized this 
problem [16]; they suggested that a number q resonances, q > 2, be experimentally measured, 
and a decision function D (Ev, Iv) be defined as follows: 

[ "toi(Ev,lv)_ "2].] 

q [tOi(Ev,l_v) - O) i ] 
o([~v,  tv)  = Z _ (8) 

i=1 

where r are the experimentally measured natural frequencies listed in Table 1, and toi(Ev,lv) 
are the corresponding f-requeneies calculated from Eq 7. The value of D should approach zero 
for the true values of Ev and Iv. Limitations of the receptance model and the frequency depen- 
dence of Ev, however, prevent this zero value from being reached. Instead, the iteratively deter- 
mined set (Ev, lv) for which D is a minimum is assumed to characterize the adhesive layer. 
Limitations of this scheme are: 
(a) The normalization factor on the right hand side of Eq 8 tends to unduly weight the lower 
resonant modes in determining the minimum value of D. 
(b) The procedure demands a one-to-one match-up between each measured resonance and the 
corresponding harmonic calculated from F_.q 7. This match-up may be difficult if the measured 
spectrum of natural frequencies does not contain any of the lower harmonics. _ 
(c) The scheme cannot be used to find the precise frequency dependence of Ev, as the solution 
is dependent on data collected over a finite frequency range. 
(d) The  scheme requites a very large amount of computer time, in order to find the values of 
coi(Ev, Iv), i = 1, . .  q. 

For the specmam shown in Figure 4, it was not possible to match up each measured 
resonant frequency to~ with its numerically evaluated harmonic o.)i(Evlv). Equation 8 could 
therefore not be usedto determine adhesive layer parameters. A new algorithm was therefore 
devised to determine Ev and Iv via the parameter G, defined as follows: 

G (Ev, lv) = F ([~v, lv, Oi ) (9) 
i=I 

where the~q values of F are determined from Eq. (5). Values of Gwere calculated for a wide 
range of Ev and lv. A minimum in G is used to indicate values of Ev and lv for the test speci- 
mens. Note that this scheme can produce erroneous results if a measured resonant frequency 
does not have a corresponding value toi predicted by the receptance model; the presence of 
shear mode resonances could create such a problem. Confining one's attention to the most 
prominent resonances in Figure 4 will minimize this danger. 

The measured resonant frequencies listed in Table 2 were divided up into sets, and a 
minimum in G was sought for each set. Only two such sets were used for the immersion 
results; each set must contain resonances within a small frequency range~ as Ev is known to be 
frequency dependent. Results are given in Table 3. Calculated values of Ev were 7.04 GPa and 
8.99 GPa at average frequencies of 7.1 MHz and 10.1 MHz, respectively. Within experimental 
error, these results are not inconsistent with the ultrasonic time-of-flight data shown in Figure 3; 
deviations between the two measurement methods are on the order of 10-15%. As discussed 
earlier, the ultrasonic measurements were made on bulk samples of adhesive, whose properties 
may differ somewhat from bond material within an adhesive joint. 

Estimates of the bond thickness lv from Eq 9 were 0.64 and 0.47 mm. Compared to the 
destructively measured value of 0.61 mm, it is seen that the errors are substantial, up to 23%; it 
is possible that one or more of the observed resonances did not correspond to those predicted by 
the receptance model. 
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Contact Measurements 

A second set of measurements was taken for the same specimens, this time using a contact 
through-transmission technique with a matched pair of damped probes with a frequency band 
extending from 5 to 15 MHz. The two probes were mounted with a coupling oil on opposite 
sides of the joint, and held in place by a controlled, constant pressure. The transmitter was 
excited by a sweep generator, Wavetek model 166, sweeping from 4.5 MHz up to 15 MHz. The 
amplitude of the signal picked up by the receiver probe was measured and stored as a function 
of frequency. Any modulation of the amplitude-frequency relationship due to nonlinearity of 
the electronics was eliminated by deconvolution with a reference signal. 

The signal spectrum amplitude after this deconvolution process is shown in Figure 7. 
Peaks in the spectrum indicate resonances of the entire probe-joint-probe system. These fre- 
quencies are listed in Table 2. 

TABLE 3 -- Numerically estimated values of adhesive effective modulus and thickness 

Immersion: 

Resonance Average Ev Iv 
Designation = Frequency (MHz) (Gea) (ram) 

1,2,3 7.1 7.04 0.64 
4,5,6 10.1 8.99 0.47 

Contact: 
2,3,4 6.5 8.22 0.40 
5,6,7 9.3 8.97 0.54 

8,9,10 12.6 8.20 0.73 

Z 
< 

t~ 
> 

< 

aRefers to tabulated resonance designations of Table 1. Values of Ev and 
lv were calcualted using up to four adjacent resonances. 
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FIG. 7 -- Magnitude spectrum of ultrasonic signals in contact test 
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Because the contact testing configuration corresponds to a five-layer system (transmitter, 
adherend, adhesive, adherend, receiver), Eq 5 must be modified. The direct receptance of a 
five-layer system is derived in Appendix A under the assumption that the effects of damping 
can be neglected. This receptance, given by Eq A-5, must become infinite (i.e., its denominator 
F must go to zero) at the natural frequencies: 

~ ([~v, lv ) w u �9 o~2 (lO) = ~ 1 , 1  + ~ 2 , 2  - -  C3 , 

where c3 is defined by the recursive relation given in Eq A-6. Note that Eq. (10) has been 
somewhat simplified due to the symmetry of the system shown in Figure 2. The resonant fre- 
quencies for contact testing were divided into three groups, as was done for the immersion 
results. Application ofEqs 9 and 10 then gave values of Ev and lv, listed in Table 3. Values 
for the elastic modulus are seen to be close to those obtained with immersion testing. Values 
for lv again showed considerable spread, although their mean is within 10% of the destructively 
measured value of 0.61 ram. 

The principle behind the contact and immersion schemes is the same, although there are 
advantages to each method. For the immersion method, there is not the concem related to con- 
tact pressure of the probe. Automation of a test program by the use of C-scans is also more 
amenable to an immersion environment. However, contact testing is more practical in many 
industrial situations, where the structure is very large or where immersion of the joint could lead 
to water damage of the structure. Contact measurements may also be more practical in very 
com'~ned spaces, or where the surface is highly contoured. In addition, the resonant frequencies 
were easier to identify with contact testing. 

The results reported for the immersion and contact tests correspond to specimens with 
relatively thick adhesive layers - on the order of 0.6 mm. Tests were also conducted on speci- 
mens with adhesive layers with Iv as small as 0.05 mm. However, as noted by Guyott and Caw- 
ley [2,22] and Curtis [3], the resonant frequencies of such specimens are highly insensitive to 
the characteristics of the adhesive layer, particularly for the lower harmonics. This is a quan- 
dary that has plagued commercial instruments that rely on measurements of natural frequencies 
to infer properties of the adhesive; an illustration is provided in the next section. 

FOKKER BONDTESTER 

The Fokker Mark II bondtester has seen widespread use for the inspection of adhesive 
joints in the aviation industry [2,5,18,29]. The purpose of the instrument is to evaluate the 
cohesive strength of the adhesive, and detect the presence of disbonds through measurement of 
resonance parameters. The assessment of cohesive strength is based on empirical relationships 
between strength and the resonant frequencies and amplitudes. 

The instrument consists of a sweep frequency generator, which scans over a range of 
approximately 80 kHz, with a central frequency that can be set anywhere from 50 kHz to 500 
kHz. The generator output is fed to a contact piezoelectric probe, in a pulse-echo configuration. 
An internal circuit monitors the apparent impedance of the probe as a function of frequency; 
the impedance drops to a minimum whenever the frequency is at a natural resonance of the 
probe. If the probe is linked via a coupling fluid to a plate or adhesive joint, then the internal 
circuit will detect resonances of the entire probe-joint system. 

To start the test sequence, an initial signal is obtained by placing the bondtester on a sin- 
gle adherend; the bondtester stores the measured resonant frequency of the probe-adherend sys- 
tem as a reference. It has been demonstrated that the measured value of this resonant frequency 
corresponds well with that predicted by a 2-layer receptance model [2]. (Analysis has shown 
that there are actually several resonant modes and corresponding frequencies possible in the 
operating range of the instrument. In practice, only one of these modes is used, the selection 
depending on the thickness and stiffness of the adhesive.) 

When placed on an adhesively bonded joint, the system resonance will shift from the reso- 
nance value, and this shift Ato is indicated on the instrument readout. An assessment of the 
cohesive strength is then based on data charts supplied by the instrument manufacturer that 
correlate cohesive strength with Ae0. A different chart is required for each joint configuration 
and type of adhesive. 
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An estimate of/~e is never explicitly determined by the bondtester. In fact, for very thin 
(less than 0.2 mm thick), stiff adhesive layers, the sonically induced deformation takes place 
largely within the adherends. For such bonds, typical of those used in the aviation industry, 
there is little sensitivity of Aro to the adhesive modulus, thickness, or density. In the limit of 
vanlshingly small lv, the specimen behaves like two adherends coupled together with no inter- 
vening adhesive layer, and the resonant frequencies are determined from Eq 3 with lv set to 
zero. 

For adhesive layers ~at  are relatively thick and not so stiff, the adhesive acts as a spring 
with a stiffness constant Ev/lv, linking two non-deformable masses together. Note that this 
model can be valid only for the fundamental mode. The resonant frequency will drop if the 
stiffness constant drops, but this does not uniquely indicate the perturbations in Ev and Iv. 

The data charts supplied by the bondtester manufacturer correlating the resonant fre- 
quency shift to cohesive strength are actually based on the assumption that the elastic modulus 
of the adhesive is a constant, and that any perturbation of resonant frequency must be caused by 
a shift in lv. Several researchers have noted that, in general, the cohesive strength of a bond 
tends to drop if Iv is increased or Ev is decreased. In either case, a drop in the fundamental 
resonant frequency may indeed be an indication of decreasing bond strength. However, the 
dependence of strength on Ev is different from that on Iv so that the charts may not indicate the 
correct deviation in cohesive strength. 

To help resolve ambiguous readings, the instrument has a second indicator that shows the 
strength of the resonance, which in turn is dependent on the amount of damping. This is partic- 
ularly useful for the inspection of honeycomb structures, where the resonant frequency as meas- 
ured by the instrument is only very weakly dependent on the honeycomb structure and the con- 
dition of honeycomb-to-adherend bonding. In such a case, the measured damping coefficient is 
a good indicator of flaws. 

Experiment 

A series "A" of single lap shear specimens was manufactured following the ASTM 
D1002-72 Standard for the strength properties of adhesives in shear by tension loading of 
metal-to-metal specimens. The adherends were A1-2043 T3, each 1.62 mm thick, and pretreated 
by a chromic-acid anodization process according to the MIL-A-8625D Standard. The purpose 
of this pretreallnent is to place a uniform layer of oxide, approximately 1.5 wa thick, on the 
adherends to promote high adhesive strength across the adherend-bond interface. The adhesive 
was FM-73 [28]. Bondline thickness was controlled by side shims; a range of Iv from nominal 
0 up to 0.5 mm was used. The curing cycle recommended by the manufacturer was employed. 

For comparison, a second series "B" of specimens was made, but a chromic acid conver- 
sion process was used to pretreat the adherends. This treatment tends to leave a highly non- 
uniform oxide layer that is less well suited for adhesive bonding in this case than the anodiza- 
tion process. The curing cycle was identical to that for series "A". 

A third series "C" of specimens was made, identical to series "A" except that a much 
higher curing temperature was used, resulting in a scorching effect. For this series, all speci- 
mens had lv equal to 0.5 mm. 

All specimens were inspected using the Fokker bondtester; results are shown in Figure 8. 
Figure 9 shows the destructively measured breaking load for the specimens. The following 
trends are noted: 

(a) For series "A", which received the proper adherend pretreatment, failure was cohesive in 
nature. For lv < 0.3 mm, breaking load was largely independent of lv; breaking load 
dropped when Iv was raised beyond this limit. These results correlated well with those of 
the bondtester, except for Iv equal to nominal zero. This discrepancy may be due to a 
number of factors, but it is known that resonance techniques are highly insensitive to bond 
material characteristics for very thin bondiines. 

(b) The series "B" specimens failed adhesively due to the non-optimum pretreatment. 
Because the interface between each adherend and the adhesive is so thin, the system reso- 
nances are totally insensitive to the interracial condition. The bondtester is therefore seen 
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to be useless for identifying low interfacial strength. As expected, the bondtester indicates 
similar cohesive strength for series "A" and "B", as they had the same adhesive and curing 
process. 

(c) The scorched specimens of series "C" suffered damage to the bulk adhesive from the 
excessive curing temperature. The low cohesive strength predicted by the bondtester was 
confirmed by destructive testing. 

CONCLUSIONS 

Receptance analysis can be used to determine the remnant frequencies of an adhesive 
joint as a function of the adhesive density, elastic modulus, and thickness. The bond's cohesive 
strength is in turn dependent on many factors, including the elastic modulus and stress distribu- 
tion. Under certain conditions therefore, the bond strength can be inferred from a measurement 
of the resonant frequencies. There are, however, serious limitations to this scheme: 

(1) Failure of an adhesive joint may be either adhesive or cohesive in nature. Resonant fre- 
quencies give no information as to the adhesive (interfacial) strength. 

(2) Resonant frequencies of a bond are sensitive to the cohesive strength only for relatively 
thick bondlines. Such specimens are not representative of those required for certain high 
performance applications, such as the aircraft industry. 

(3) The strong frequency dependence of the adhesive's elastic modulus seriously complicates 
the processing of resonant frequency data, and contributes to an uncertainty in the final 
results. 

(4) The extent of lateral constraint on the adhesive affects the value of the apparent modulus 
Ev. This constraint is in turn dependent on the bondline thickness, specimen geometry 
and test frequency. These factors make it difficult to compare the results of two different 
methods for determining the apparent modulus of the adhesive. 

APPENDIX A: RECEPTANCE MODEL FOR A MULTI-LAYERED BODY 

Consider a one-dimensional body made up of N layers Yi, i = 1 . . . .  N in intimate contact, 
as shown in Figure A-1. 

T(Yi,i-1) T(Yi,i) T(YN,N ) 

0 I 2 

FIG. A-1 -- Model of mulri-layered system for receptance analysis 

The boundary to the right of Yi is labeled point i. Each layer Yi is subjected to two forces per 
unit area: T(Yi, i) acting on point i, and T (Yi, i - 1 )  acting at point i -1.  All forces are internal to 
the system except for T(yl,0) which is set to zero, and T(YN,N).  By Newton's third law of 
motion, 

T(Yi,i) + T(Y/+I,i) --- 0 (A-l) 

Continuity of displacement w(Yi,i) of point i in layer Yi can be expressed as: 

w(Yi,i) = w(Yi+bi) (A-2) 

From the definition of the receptance given in Eq 4, it is easily shown: 

~Yi§ . T(Yi+I, i+1),  i=0, . . .N-1 (A-3) ~(Yi+l i) = ~.Y/.+I . T(Yi+l" i) + ~i.i+l 
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ai "T (Y i ,  i - 1 ) ,  i=1 .... N (A-4) and ~g(Yi, i) = t~ A{ " T(Yi ,  i) + ai,i-1 

For the cases of the system for ultrasonic contact measurements shown in Figure 2, N = 5 and 
the system is symmetric: Y1 = Y5 = "W", Y2 = Y4 = "U", and Y3 = "V". Combination of Eqs 
A-1 to A-4 yields the direct receptance of the system w(W, 5)/TOV, 5): 

V(rs,  5) rs r5 (A-5) 
----" 0~5,5 - -  C 4  " ~ 5 , 4  

T ( Y s ,  5) 

where ci is defined by the recursive relation: 
~Yi+l 
~i,i+l i > 1 

aY( _r/+l ri ' 
l ,t  "t- ~ i + 1 , i + 1  - -  Ci-I "~ i - l , i  

Ci ---- Y2 (A-6) 
5 1 , 2  

] ' 1 -  T ~.r2 ' i=1 
tXl ,  1 - r  ~ 2 , 2  

r and Ctrm n are given Formulas for the direct and cross receptances of the individual layers, et,,~m 
in Eq 6. 

The system is in resonance when the receptance at point 5, as given by Eq A-5, goes to 
infinity; this occurs when the denominator of Eq A-5, designated by the symbol F, goes to zero. 
This expression for F is used in Eq 10 to calculate the natural frequencies of the five-component 
system shown in Figure 2. 
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ABSTRACT: Low-strain shear moduli of lightly cemented sand can 
be obtained by testing specimens in a resonant column. In the 
literature a variety of techniques have been suggested for 
coupling the sample to the base and cap of the device. These 
studies' results suggest that the shear modulus of cemented 
sand changes with confining pressure. In this study, the 
specimens were coupled to the end platens with epoxywhichwas 
allowed to harden before testing. The results indicate that 
the low strain shear modulus of lightly cemented sand is 
nearly independent of confining pressure for pressures up to 
500 kPa. The difference in the effect of confining pressure 
on the shear modulus, in this and other studies, is attributed 
to the different coupling techniques used. The results 
illustrate the need for a rigid connection between the 
specimen and the end platens. 

KEYWORDS: resonant column, soil tests, soil dynamics, shear 
modulus, cemented soils, sample coupling, sand 

INTRODUCTION 

The shear modulus of soils at low strain amplitudes is commonly 
determined in a resonant column device. A cylindrical soil specimen 
is placed between a base plate and a cap and a torsional sinusoidal 
force excitation is applied by electromagnetic oscillators. Several 
types of imposed boundary conditions on the ends of the specimen are 
in use to perform this type of test, but perhaps the most common type 
is the fixed-free conditions; where one end of the specimen is held 
rigidly fixed, while the other end is subject to the force function. 
The vibratory response of the free end of the specimen is used to 
backfigure the shear modulus of the specimen at the strain amplitude 
imposed. The test consists of increasing the frequency of the force 
function until resonance is achieved in the fundamental mode of 
vibration of the specimen. The resonant frequency is then used to 
calculate the apparent shear modulus of the specimen. 
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professor, are affiliated with the Department of Civil Engineering, 
University of Texas at E1 Paso, E1 Paso, Texas 79968-0516. 
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A very critical aspect of this test is the coupling between the 
specimen and end platens. In routine torsional soil testing, porous 
stones are rigidly attached to the end platens and the friction 
between the porous stones and the soil is enough to develop an 
adequate coupling at low strain amplitudes. The effectiveness of this 
coupling technique at higher strain amplitudes is limited by the 
effective axial stress across the specimen-platen contacts, the shear 
modulus of the specimen, and the friction coefficient between end 
platens and specimen [i]. The coupling between specimen and platens 
increases with increasing confining pressure. Alternative coupling 
techniques are in use to transmit the shear stresses induced by the 
torsional excitation. One alternative consists of attaching radial 
teeth to the end platens, that are sunk into the ends of the specimen 
[2]. 

Techniques similar to those described have been used by some 
researchers [3, and 4] for dynamic testing of artificially cemented 
soils. This study questions the effectiveness of these coupling 
techniques for cemented sands. In this study, resonant column tests 
were performed on artificially cemented sands with a coupling 
technique that ensures binding between the specimen and the end 
platens. The results of this study are compared to the results 
obtained with other coupling techniques. This comparison provides a 
basis on which the capabilities of the different coupling methods can 
be evaluated. 

ANTECEDENTS 

The shear modulus of cohesionless soils is known to be affected by 
a number of parameters. The most important factors are the effective 
confining pressure (or the mean principal stress in triaxial loading) 
and the strain amplitude imposed on the specimen. The shear modulus 
is the largest at low-strain amplitudes. The maximum shear modulus of 
cohesive and cohesionless soils has been found to depend on the mean 
principal effective stress [5, and 6] through the following empirical 
equation: 

Gma x = K (~o)0"5 ( i)  

where Gma x is the low-strain shear modulus, K is a function of void 

ratio and overconsolidation ratio, and ~o is the mean principal 

effective stress. The exponent, 0.5, of the confining pressure has 
been confirmed by the work of a number of researchers [2]. It has 
been suggested that this equation consistently predicts the variation 
of maximum shear modulus (of clean dry cohesionless soils) with void 
ratio and confining pressure within about ten percent [7]. Thus, 
there is overwhelming evidence that a log-log plot of the maximum 
shear modulus of clean dry cohesionless soils should be a straight 
line with a slope of 0.5. 

The non linearities of the stress-strain equation for granular 
soils has been explained with a theoretical model of perfect spheres 
[8]. The deformation of the skeleton of spheres is elastic only at 
the very first stages of loading. As the stress increases, slip 
begins to take place around the edges of the contact area between the 
spheres. After the shear force at the contact exceeds the friction 
developed between spheres, gross sliding of the spheres starts to take 
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place. In a real cohesionless soil, some contacts between grains are 
much less stable than others. Thus, gross sliding does not occur at 
all contact points at the same time but, rather, there is a gradual 
collapse of the structure. This results in a progressively more 
compact structure with an increase of the number of contact points per 
particle. 

These considerations suggest that the stiffening of the granular 
soil skeleton with confining pressure is the result of two phenomena. 
One is the gross sliding of particles that results in a more compact 
grain skeleton with a larger number of contact points per particle. 
The second is the increase of the normal interparticle forces 
resulting in a stiffer binding between grains. 

The relative importance of these effects has been illustrated in 
shear wave velocity measurements on a dry crushed quartz silt [9]. 
These measurements indicate that the exponent (power) of the confining 
pressure is 0.6 on first loading, which also causes a large change in 
void ratio of the specimen. Byway of contrast, upon reloading of the 
specimen, negligible changes of void ratio occur and the power of the 
confining pressure is only 0.17. 

These considerations helped to develop a working hypothesis of the 
behavior that is reasonable to expect from cemented sands. In this 
sense, the only modification to introduce in the sphere model 
discussed above is to include the effect of the cementation deposited 
at the contacts between particles. In a cemented granular soil, to 
cause gross sliding of the particles, it is necessary to exceed the 
friction between grains and the strength of the cement bond. Thus it 
seems reasonable to expect that the shear modulus of cemented sand 
will depend on a power of the confining pressure which should be small 
initially (ie., a flat slope of the maximum shear modulus log-log 
plot) until the cement bonds are broken, and, thereafter, would behave 
as uncemented sand. The magnitude of the change of the power of the 
confining pressure should be controlled by the extent of the 
cementation at the interparticle contacts and the strength of the 
cement itself. 

There is some evidence in the existing literature that support 
this hypothesis. The initial tangent modulus of elasticity of 
concrete mixes has been shown to be independent of confining pressure 
[i0]. Also, resonant column tests on frozen silts indicate that the 
shear modulus is independent of confining pressure [ii] in the range 
of confining pressures tested (90-500 kPa). Furthermore, these tests 
show that the shear modulus increases two fold when the temperature of 
the specimen is decreased from -l~ to -10~ thus indicating that the 
shear modulus is primarily determined by the rigidity of the 
cementation. These studies illustrate that, at low-strain amplitudes, 
the shear modulus of highly cemented granular media is determined by 
the cementation. Furthermore, the shear modulus is found to be 
independent of the applied effective confining pressure on the 
specimen. 

In su~m~ary, the shear modulus of uncemented soils is a function of 
the power of 0.5 of the confining pressure, and the shear modulus of 
highly cemented soils is independent of confining pressure. It seems 
reasonable that these two extremes should bound the behavior for 
intermediate degrees of cementation or for lower strength cements. 
This appears to be the case for lime treated expansive clays [12], 
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which exhibit a change in shear modulus to the 0.i power of the 
confining pressure. The shear modulus of unsaturated silts and sands 
has been shown to be affected by the additional effective stress 
caused by the pore water menisci [7]. The shear modulus is maximum at 
some intermediate degree of saturation. At this point, the gross 
sliding of individual grains would have to occur by destroying the 
menisci and, thus, the pore water would act as some sort of weak 
cement. The results of this study [7] suggest that the shear modulus 
of unsaturated silts and clays changes with the power of 0.37 of 
confining pressure. Therefore, it appears that even veryweak cements 
such as the pore water menisci can have a discernible effect on the 
power of the confining pressure. 

PREVIOUS INVESTIGATIONS 

Several researchers have published results of resonant column 
tests on cemented sand [3, 4, and 13]. In the first work known to the 
authors, [3], Type I Portland cement was used to stabilize a naturally 
occurring sand with particle sizes falling between sieves No. i0 and 
No. 200. The dry sand was mixed with the cement, and the appropriate 
amount of water to achieve the desired moisture content was added and 
mixed with the sand-cement. The specimens were formed by compacting 
the mix in five layers in a Harvard miniature compactor mold. After 
compaction, the specimens were extruded, wrapped in plastic, and cured 
for 28 days in a controlled environment at 21~ and at a relative 
humidity of 95%. 

The cured specimens were tested in a fixed-free resonant column to 
determine the shear modulus at low strain amplitudes. There is no 
report that any special precaution had been adopted to ensure the 
coupling of the specimens to the base and cap of the device. The 
specimens were prepared at the optimum conditions identified in 
previously performed compaction tests. Specimens with three degrees 
of cementation (2, 4, and 6%) were tested, and the confining pressures 
used ranged from 20 kPa to 240 kPa. 

The results reported by [3] on untreated sand specimens confirm 
the findings of earlier studies; that is, the shear modulus at low 
strain amplitudes changes with the power of 0.5 of the confining 
pressure. Regarding cemented specimens, the study's results indicate 
that the higher the cement content the higher the effect (the power) 
of confining pressure on the shear modulus of the specimen. While the 
shear modulus of uncemented sand increased with the 0.5 power, the 
shear modulus of the 6% cement specimens increased with the 0.86 power 
of confining pressure. 

In another study of the shear modulus of artificially cemented 
sand [4], Monterrey No. 0/30 sand was cemented with Type I-If Portland 
cement. The specimens were prepared in lucite cylinders. A portion 
of the sand was first shaken with the cement and then the desired 
amount of water was added. The rest of sand was then added to the 
mix. The sand-cement-water mixture was pluviated into the mold with 
intermitting tapping on the sides of the mold to achieve the desired 
density. The specimens inside the mold were placed inside a water 
bath and cured for 14 days. 

The specimens were removed from the mold by opening a lengthwise 
slit of the mold. This allowed the specimen to slide freely out of 
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the mold. The specimens were placed in a fixed-free resonant column 
device and the coupling to the end platens was entrusted to eight 
radial teeth embedded in each of the porous stones. The testing 
program included uncemented specimens, and specimens with i, 2, and 4% 
cement. The confining pressures used ranged from 10 kPa - 400 kPa. 

The results of [4] indicate that the shear modulus of uncemented 
Monterrey No. 0/30 increases with the 0.43 power of confining 
pressure. The cementation causes a general increase of the shear 
modulus of the specimen, but the shear modulus of the cemented 
specimens is found to increase with the same power (0.43) of confining 
pressure. 

In a third study [13], specimens of Monterrey No. 0 sand cemented 
with Type I Portland cement were tested in a longitudinal and 
torsional Drnevich resonant column device. The specimens were 
prepared by compacting a cement-sand-water mixture in eight layers in 
PVC molds. The mix for each layer was weighted and mixed separately. 
The specimens were cured underwater for variable lengths of time. 
Afterward, the specimens were extruded from the molds, and a gypsum 
cement was used to couple the specimen to the end platens. This 
cement prevented the saturation of the specimens in the resonant 
column. Specimens with cement contents of i, 2, 5, and 8% were 
tested, and the confining pressures used ranged from 49 kPa to 588 
kPa. 

The results of [13] were presented as the increase of the low- 
strain shear modulus of the cemented specimen above the shear modulus 
of the uncemented specimen. The results indicate that, at low degrees 
of cementation, the shear modulus of cemented sand changes with 
confining pressure with the same trend as for uncemented sand. As the 
cementation degree increases, the gain in shear modulus due to 
confining pressure is progressively reduced. 

All three of the previous studies agree that increasing the cement 
content results in an increase of the shear modulus of the mix. 
However, the rate of increase of the shear modulus at low-strain 
amplitudes with confining pressure is completely different for each 
study. The first study [3] found increasingly larger powers of 
confining pressure for increasing cement content in the specimen. The 
second study [4] found that the degree of cementation did not alter 
the power of the confining pressure. The third study [13] found that 
increasing cement contents causes a decrease in the power of confining 
pressure from a maximumvalue at low cement contents to a minimum 
value at large cement contents. 

The disagreement between the three studies as to the change in 
power of the confining pressure with the degree of cementation 
indicates that some of the testing techniques used might not have been 
appropriate. As a matter of fact, none of the three studies support 
the working hypothesis of the expected behavior of cemented soils 
described in the previous section. Although the reason is not 
apparent, the main difference between the three studies is the 
coupling of the specimen to the end platens. Thus, a potential cause 
of the disagreement is that the specimens were not coupled to the 
platens appropriately. Some of the results presented in the third 
study [13] also point in this direction. In this sense, the published 
dynamic moduli at low-strain amplitudes of 2% cement specimens at 
several confining pressures are presented in Table i. 
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TABLE 1 -- LOW strain dynamic moduli of cemented sands 

185 

Confining* Shear* Elastic* Poisson's 
Pressure Modulus Modulus Ratio 
(kPa) (GPa) (GPa) 

49 0.107 0.800 2.72 
98 0.166 0.867 1.61 

196 0.235 0.916 0.94 
392 0.341 1.034 0.52 
588 0.439 1.147 0.31 

* Values Taken from Figure 6 in [13]. 

Also shown in the Table 1 are the Poisson's ratio calculated using 
the following relationship: 

E 
1 (2) 

2G 

where E is the elastic modulus, G the shear modulus, and ~ is the 
Poisson's ratio. The high values of Poisson's ratio backfigured are 
clearly meaningless. It is relevant to note that for increasing 
confining pressure the backfigured Poisson's ratio decreases. At the 
highest pressure used in [13], the Poisson's ratio becomes more 
credible. If the shear modulus was underestimated while the elastic 
modulus was correctly determined, then Eq. 2 would yield Poisson's 
ratios larger than the actual ones. This is precisely what the 
results in Table 1 show. Thus the high Poisson's ratio at low 
confining pressure and the concurrent decrease of Poisson's ratio for 
increasing confining pressures suggest that the shear moduli were 
underestimated in this study, a very likely cause being a poor 
coupling between specimen and end platens. Similar data were not 
available for the other two studies; thus no such evaluation was 
possible. 

TESTING PROGRAM 

The discrepancies observed in the existing literature (described 
in the previous section) indicated the potential need of a better 
coupling of the specimen to the end platens. With this purpose in 
mind, a testing program on cemented sand specimens was undertaken with 
an alternative coupling technique to those used in previous studies. 

For this purpose, Ottawa sand was sieved and the size fraction 
passing sieve No. 40 and retained on sieve No. i00 was used for the 
preparation of the specimens. Type I-II Portland cement was used as 
the stabilizing agent. The amount of sand and cement needed for one 
specimen were first mixed together by shaking them together in a jar. 
Next, water was added to the sand-cement and mixed with a spatula in a 
bowl. The amount of water used was the same for all specimens; the 
amount was chosen to prevent the loss of water-cement during the 
compaction process. The mix was split into six equal amounts. Each 
amount was then compacted separately with the same number of blows 
from a heavy, large diameter cylinder in a teflon coated PVC mold slit 
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along its side and held together with hose clamps. The top of each 
layer was etched to loosen some of the mixture so that the next layer 
could adhere. The compacted specimens inside the molds were then left 
to cure for six days in a 100% relative humidity environment; 
afterward, they were placed underwater in an accelerated curing tank 
at 60 ~ C. After seven days, the specimens were removed from the tank 
and left to air dry for a week. Then, the hose clamps were removed, 
the slit opened, the specimen removed from the mold, and stored in an 
airtight plastic bag. 

The specimens were then tested in a torsional resonant column 
(Drnevich). The specimens were coupled to the end platens with epoxy 
(2-ton clear Epoxy, by Devcon). This entailed slight modifications of 
the device. The porous stones were substituted with solid aluminum 
discs, manufactured to the same sizes as the porous stones, and 
tightly screwed to the base and cap. The base of the device has two 
orifices provided to allow the saturation of the specimen. The lower 
aluminum disc was carved in such a way that two orifices on the base 
were connected to a single central pipe protruding above the disc. 
The pipe was intended to prevent the epoxy from clogging the opening. 
The presence of the pipe forced the need to carve into the specimen a 
depression to house it. Although, the specimen was not glued at the 
center, the shear strains are minimum in this area and, thus, did not 
affect significantly the stiffness of the connection. This pipe 
allowed the performance of tests on saturated specimens, and insured 
that the pore air was at atmospheric pressure in the tests on dry 
specimens. 

The test proceeded in the following steps: 

i. The membrane was rolled on the pedestal and secured with 
O-rings. 

2. The epoxy was spread on the base with a spatula. Prior to 
this the screw head slots were covered with talc. 

3. The specimen was cemented and aligned on the base. 
4. The epoxy was spread over the cap and the cap was then 

placed over the specimen. 
5. The driving magnets and coils were assembled and centered 

immediately and the epoxy was then allowed to harden 24 
hours. 

6. Prior to testing, the membrane was rolled over the 
specimen and secured to the cap. Next, the cell was 
assembled. 

7. Testing started at atmospheric pressure and at low-strain 
amplitudes. The cell pressure was then increased in 69 
kPa steps to a maximum of 483 kPa. 

8. Then the pressure was reduced to the desired value and 
testing proceeded to increasingly higher strain 
amplitudes. 

Specimens were prepared with cement contents of 2, 3, 4, and 5% 
and for various relative densities of the sand. For each combination 
of cement content and relative density, an average of seven specimens 
were tested. Most specimens were tested dry, but one batch of 5% 
cement specimens were saturated first, then consolidated under the 
confining pressure, and the torsional excitation was applied under 
undrained conditions. The saturation of the specimen was attempted 
with backpressure after a vacuum had been applied inside the specimen. 
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I~SULTS AND DISCUSSION 

The epoxy resin used for coupling has a setting time of thirty 
minutes and develops full strength in sixteen hours. Nevertheless, a 
resonant column test was performed on a specimen twenty four hours 
after gluing the specimen; the same specimenwas kept glued to the 
platens for a week and the dependence of maximum shear modulus on 
confining pressure redetermined. The results showed no discernible 
differences in shear modulus. Thus, there was no need to wait more 
than 24 hours. 

The sizes of a batch of specimens was monitored during the curing 
period, and it was observed that the specimens were experiencing some 
changes in length. These minor changes have, nevertheless, 
appreciable effect on the relative density of sand particles. In this 
sense, the relative densities of the specimens reported here were 
recalculated based on the unit weights of the specimens at the time of 
testing. This was accomplished by subtracting the weight of cement 
and moisture present. Control tests were performed to ensure that the 
cement was evenly distributed throughout the specimens. For this 
purpose, specimens were split into six discs and each individual disc 
was thoroughly ground with a mortar and pestle. The cement and the 
sand were separated by sieving the material through sieve No. 100. 
The weights of cement recovered were constant for all six discs, thus 
indicating that a fairly uniformdistribution of the cement was 
achieved throughout the specimens. Therefore, the sand relative 
densities backfigured from actual unit weights are thought to be more 
accurate than those attempted in the preparation of the specimens. 
Nevertheless, this resulted in slight variations (less than 5 
percentage points) of the relative density of the sand for the 
specimen of each degree of cementation. 

The low-strain shear moduli of each batch of specimens of the 
various degrees of cementation exhibited some scatter. This scatter 
is attributed to the slight variation of the relative density of the 
sand, and is illustrated in Figure i, where the average of seven tests 
for each degree of cementation (3% and 5%) are shown together with the 
extreme test results. Although some scatter is present, all the tests 
show that the shear modulus changes with confining pressure in a 
similar manner. 

The effects of confining pressure on the maximum shear modulus of 
cemented specimens are shown in Figure 2. The line shown for each 
degree of cementation is the average of seven determinations. Also 
shown as dots, out of scale, are the shear modulus of the specimens at 
atmospheric pressure. Shear modulus at atmospheric pressure were not 
attempted, or least reported, in previous studies. This fact had also 
suggested to the authors that specimen coupling was a potential 
problem in the previous works. 

These results indicate that cementation has a very significant 
effect on the slope of the line of maximum shear modulus vs. confining 
pressure, in the sense that even minor degrees of cementation 
significantly reduce the dependence of maximum shear modulus on 
confining pressure. The hypothesis advanced in the ANTECEDENTS 
section can explain these results; that is, with increasing 
cementation the slope of the line decreases from the slope 
corresponding to uncemented soil to a nearly horizontal line for 
highly cemented (5% in this study) sand. 
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The results of the tests performed on saturated 5% cement 
specimens under undrained conditions are very close to the results 
obtained on the dry specimens. At low confining pressure, the results 
on dry specimens exceed by 1% the results on saturated specimens. At 
high confining pressures, the shear modulus of the saturated specimens 
exceeds by 5% the modulus of the dry specimens. For both lines the 
slopes are nearly zero: 0.005 and 0.026 for the dry and saturated 
specimens, respectively. Thus, these results indicate that saturation 
and undrained conditions during resonant column testing do not have a 
significant effect on the low-strain shear modulus of strongly 
cemented sands. A similar conclusion has been reached for silts and 
sands [7]. 

At higher strain amplitudes the behavior is markedly different for 
saturated or dry conditions. A comparison of the shear modulus versus 
strain amplitude for two specimens, one dry and the other saturated, 
is presented in Figure 3. Both curves show a wide range of low 
strains where the shear-modulus is at the maximum. After reaching a 
threshold strain, the shear modulus drops abruptly for both specimens; 
however, the saturated specimen started to experience the drop at 
lower strain levels than the dry specimen. Thus, the saturation of 
the specimen did not affect the shear modulus at low strain 
amplitudes; however, at high strain amplitudes, saturation has the 
effect of significantly reducing the shear modulus. 

The degrees of cementation used in this study produce extremely 
fragile and brittle specimens. These specimens are very easily 
cracked at the time of placing them between the platens and of 
centering the oscillator. This required the assembly and centering of 
the driving mechanisms while the epoxy had not yet hardened. Almost 
invariably, if the centering was left until after the curing period of 
the epoxy, the specimens cracked just above the epoxy film on the 
pedestal. These were hairline cracks invisible to the naked eye, but 
were very apparent when the specimen was gently tilted. Specimens 
that had been cracked showed quite a different behavior: a much 
larger gain of shear modulus with confining pressure than for intact 
specimens. An example of two identical 2% cement specimens, one 
cracked and the other intact, are presented in Figure 4, which 
illustrates the large effect of the crack on the slope of the line 
(0.31). The large change in slope caused by a hairline crack of a 
very irregular surface clearly indicates that friction is not an 
effective coupling mechanism in cemented soils. If friction between 
portions of a cracked specimen is not effective in coupling the two 
portions of the specimen, the friction between the cemented sand and a 
metal surface, such as aluminum, cannot be relied on unless the 
confining pressures are very large. The epoxy resin used in this 
study adheres to metals and to the cemented sand, thus providing a 
coupling that does not allow relative displacements between platens 
and specimen. In this sense, for the removal of the specimen from the 
cell it was necessary to chisel the dried epoxy from the cap and the 
base. This technique, thus provides a stiff coupling and an efficient 
means of transmitting the torsional excitation to the specimen. 

A comparison of the results of this study to the results of 
previous studies is presented in Figures 5, 6, and 7. These figures 
show that the low-strain shear modulus of cemented sand was 
underestimated in the previous works and the effect of the confining 
pressure was overestimated. Some of the differences observed might 
be attributed to this study having used slightly different sand, 
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cement, specimen preparation and curing procedures. However, the 
differences are so large that they can only be explained by an 
imperfect coupling between the specimen and the end platens. This 
contention is clearly suggested by the observed effect of hairline 
cracks illustrated in Figure 4. 

When the coupling of the specimens is entrusted to friction or 
radial blades [3, 4], the results presented in Figures 5 and 6 
indicate that comparable shear moduli are measured, although the 
effect of confining pressure is different. The results shown in 
Figure 7 show that (at high degrees of cementation) the coupling of 
the specimens with hydrostone gypsum cement [13] yields somewhat 
larger shear moduli than coupling with friction or blades. However, 
gypsum cement does not adhere to the metal surfaces of the base and 
the cap [14]; thus, the coupling between the gypsum cement and the 
platens is entrusted to friction. The comparison of these results to 
the results of this study manifest the need of a coupling material 
that adheres to the metal surfaces of the end platens. 

CONCLUSIONS 

From the results of this study, it is possible to draw the 
following conclusions: 

i. TO test cemented soils in a torsional resonant column, it 
is necessary to provide a rigid coupling between the 
specimen and the platens. The coupling compound should 
adhere to the metal surfaces of the end platens. 
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2. Relying on friction, radial blades or a coupling compound 
that does not adhere to metal results in an overall 
underestimation of the low-strain shear modulus in the 
range of confining pressures used. The underestimation is 
larger for smallerconfining pressures. This causes a 
fictitious effect of showing large gains in shear modulus 
with confining pressure, which do not reflect the material 
behavior but rather the result of an increased coupling due 
to increased confining pressure. 

3. Contrary to the findings of previous work, even small 
degrees of cementation cause very large changes of shear 
modulus at low strain amplitudes and almost completely 
eliminate the dependence of low-strain shear modulus on the 
confining pressure in the range of pressures used. 

4. The maximum shear modulus of cemented sands is 
predominantly determined by the degree of cementation and 
the properties of the cementing agent. 

5. Saturation of the specimen and testing under undrained 
conditions have a negligible effect on the low strain shear 
modulus. But, at high strain amplitudes, the saturated 
specimens are less rigid than the dry specimens. 

ACKNOWLEDGEMENTS 

The work reported has been conducted as part of the research 
funded by the National Science Foundation Grant No. RII-8604132. This 
support is gratefully acknowledged. Special thanks are extended to 
Teresa Limon, Margarita Arriaga, Horacio Fernandez, Elizabeth 
Gonzalez, and Stephen Greaber, who assisted in the testing program. 

REFERENCES 

[i] Drnevich, V.P., "Resonant-Column Testing-Problems and 
Solutions," Dynamic Geotechnical Testing, ASTMSTP 654, American 
Society for Testing and Materials, 1978, pp. 384-398. 

[2] Peji Yu, and F.E. Richart, "Stress Ratio Effects on Shear 
Modulus of Dry Sand," Journal of Geotechnical Engineering, ASCE, 
Vol. ii0, No. 3, 1983, pp 331-345. 

[3] Chiang, Y.C., and Y.S. Chae, "Dynamic Properties of Cement- 
Treated Soils, Highway Research Record, No. 379, Highway 
Research Board, National Academy of Sciences, 1972, pp. 39-51. 

[4] Acar, Y.B., and E.A. Ei-Tahir, "Low Strain Dynamic Properties of 
Artificially Cemented Sand, "Journal of Geotechnical 
Engineering, ASCE, Vol. 112, No. ii, 1986, pp. 1001-1015. 

[5] Hardin, B.O., and W.L. Black, "Vibration Modulus of Normally 
Consolidated Clay," Journal of the Soil Mechanics and 
Foundations Division, ASCE, Vol. 94, No. SM2, 1968, pp. 353-369. 

[6] Hardin, B.O., and V.P. Drnevich, "Shear Modulus and Damping in 
Soils: Design Equations and Curves," Journal of the Soil 
Mechanics and Foundations Division, ASCE, Vol 98, No. SM7, 1972, 
pp. 667-692. 

[7] Wu, S., D.H. Gray, and F.E. Richart, "Capillary Effects on 
Dynamic Modulus of Sands and Silts" Journal of Geotechnical 
Engineering, ASCE, Vol. ii0, No. 9, 1984, pp. 1188-1203. 

[8] Whitman, R.V., E.T. Miller, and P.J. Moore, "Yielding and 
Locking of Confined Sand," Journal of the Soil Mechanics and 
Foundations Division, ASCE, Vol. 90, SM4, 1964, pp. 57-84. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



194 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

[9] 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

Hardin, B.O., and F.E. Richart, "Elastic Wave Velocities in 
Granular Soils," Journal of the Soil Mechanics and Foundations 
Division, ASCE, Vol. 89, No. SMI, 1963, pp.33-65. 
RIC--~t, F.E., A. Brandtzaeg, and R.L. Brown, "A Study of the 
Failure of Concrete Under Combined Compressive Stresses," 
University of Illinois Bulletin, University of Illinois, Urbana, 
Vol. 26, No. 12, 1928, pp. 42-67. 
Vinson, T.S., C.R., Wilson, and P. Bolander, "Dynamic Properties 
of Naturally Frozen Silt," Proceedings, Permafrost: Fifth 
International Conference, National Academy of Science, 1986, pp. 
1315-1320. 
Au, W.C., and Y.S. Chae, "Dynamic Shear Modulus of Treated 
Expansive Soils," Journal of the Geotechnical En~ineerin 9 
Division, ASCE, Vol. 106, No. GT3, 1980, pp. 255-273. 
Saxena, S.K., A.S Avramidis, and K.R. Reddy, "Dynamic Moduli and 
Da~ing Ratios for Cemented Sands at Low Strains," Canadian 
Geotechnical Journal, 25 (2), 1988, pp. 353-368. 
United States Gypsum, Tooling and Casting Division, Personal 
Colmnunication, Chicago, 1989. 
Avramidis, A.S., "Dynamic and Static Behavior of Cemented 
Sands," Ph.D. Dissertation, Illinois Institute of Technology, 
1985, p. 576. 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



John S. Smith, Michael D. Wyrick, Jon M. Poole 

AN EVALUATION OF THREE TECHNIQUES FOR DETERMINING THE YOUNG'S 
MODULUS OF MECHANICALLY ALLOYED MATERIALS 

REFERENCE: Smith, J. S., Wyrick, M. Do, and Poole, J. M., 
"An Evaluation of Three Techniques for Determining the 
Young's Modulus of Mechanically Alloyed Materials," 
Dynamic Elastic Modulus Measurements in Materials, ASTM 
STP 1045, Alan Wolfenden, editor, American Society for 
Testing and Materials, Philadelphia, 1990. 

ABSTRACT: Two dynamic and one static technique for deter- 
mining Young's modulus of mechanically alloyed (MA) 
materials were evaluated for their suitability for quality 
control testing and as a tool for development of new MA 
materials. The dynamic techniques included the commonly 
used continuously excited free - free beam technique 
tested in both longitudinal and flexural modes, and the 
relatively new impulse excitation technique tested in the 
flexural mode. The dynamic techniques showed a minor dif- 
ference between the impulse and continuous techniques but 
still yielded results agreeing within • 1%. The static 
technique yielded results differing from - 5% to + 7% of 
the dynamic results. The impulse excitation method is 
particularly well suited for quality control work, while 
the continuous method is best for elastic behavior charac- 
terization. It is conjectured that the static tensile 
method accuracy may be adversely affected if the tested 
material is non-isotropic. 

KEYWORDS: modulus of elasticity, anisotropy, mechanical 
alloying, testing, reproducibility, texture 

Oxide dispersion strengthened (ODS) alloys produced by the 
mechanical alloying process feature a high melting point, exceptional 
high temperature strength and microstructural stability. The pre- 
dominant commercial example is INCONEL TM alloy MA 754, a Ni-20%Cr 
alloy strengthened by a fine uniform yttrium oxide dispersoid. The 
alloy is typically specified for high performance gas turbine engine 
hot section parts, such as vanes, that utilize its excellent high 
temperature strength and thermal fatigue resistance [i]. 

J. S. Smith and J. M. Poole are Metallurgist-Advanced, and M. D. 
Wyrick is Project Specialist with Inco Alloys International, Inc., 
Research and Development, Huntington, ~rV 25720. rMINCONEL is a 
registered trademark of the Inco family of companies. 
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196 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

By design, MA superalloys have a preferred crystalline orienta- 
tion. INCONEL alloy MA 754 properties are attained by exacting ther- 
momechanical processes that simultaneously develop a high aspect 
ratio grain structure, strong <I00> rod texture (alloy MA 754 is face 
centered cubic), low modulus in the working direction (typically 
ranging from 145 to 170 GPa), with thermal fatigue resistance and 
high strength in the working direction. Young's modulus is an 
accurate indicator of the texture and thermal fatigue resistance [2]. 
Being a much simpler and more economical test, modulus testing not 
only became a primary tool in the development of MA/ODS alloys, but 
is now a routinely specified quality control test. 

The modulus determined here has been called the "free" or "com- 
plex" Young's modulus as opposed to the "pure" Young's modulus. The 
free modulus is determined from a specimen allowed to vibrate freely, 
and includes effects from bending and twisting. The pure modulus is 
determined when the specimen is prevented from twisting during vibra- 
tion or strain. For isotropic homogenous materials the free and pure 
Young's modulus are equivalent [3]. 

The purpose of this study was to evaluate three different test 
techniques for determining Young's modulus of textured alloys. The 
criterion in view was the usefulness of test methods for quality con- 
trol testing. The need is for rapid testing, good accuracy and 
reproducibility (within • 2%, for example), and simple testing pro- 
cedures and specimens. Many other good methods exist for elastic 
modulus testing [4,5], perhaps some with higher precision, but the 
three selected in this study seemed to offer the best probability of 
meeting the criterion. 

In addition, concern had been expressed that the elastic modulus 
of textured MA alloys may vary with the test technique. Interlabora- 
tory/technique reproducibility studies have been conducted on Iso- 
tropic materials [4,5], but no technique reproducibility study has 
been conducted on orthotropic metallic materials to the authors' 
knowledge. 

EXPERXI~NTAL PLAN/PROCEDURE 

Material and specimens. Thirteen cylindrical specimens were 
machined from hot rolled plates with varying thermomechanical process 
histories, which provided a fairly broad range of Young's elastic 
modulus. The plates were prepared from two heats with the composi- 
tions given in Table i. While commercial INCONEL alloy MA 754 bars 
typically have a <I00> rod texture, an analysis of some plates used 
in this study indicated the plate generally had a (ii0)[001] sheet 
texture. In general, the sharper the (ii0)[001] texture, the lower 
the modulus in the hot working direction. 

Dynamic elastic modulus specimen dimensions, listed in Table 2, 
were selected to provide a diameter/length ratio of 0.I0 to minimize 
Poisson's ratio effects due to the preferred orientations. After 
completion of the dynamic elastic tests, the specimens were machined 
into tensile bars with a nominal gage diameter of 6.35 mm and a gage 
length of 25.4 mm for static elastic modulus testing. The tensile 
bars were pulled to fracture after the static elastic modulus was 
determined. Table 3 gives the tensile properties at room 
temperature. 
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TABLE I --Composition, w% 

Heat No. C Ni Cr A1 Ti Y 0 

DTO616B 0.05 Bal 19.46 0.34 0.46 0.57 0.39 
DTO931B 0.05 Bal 19.53 0.32 0.46 0.60 0.38 

TABLE 2 -- Dimensions of dynamic elastic modulus test specimens 

Specimen d, mm i, mm d/L eccentricity, mm 

1 9.540 95.25 0.i00 0.002 
2 9.515 95.22 0.i00 0.033 
3 9.522 95.22 0.I00 0.020 
4 9.528 95.20 0.I00 0.020 
5 9.540 95.22 0.I00 0.008 
6 9.566 95.24 0.I00 0.010 
7 9.550 95.22 0.I00 0.020 
8 9.548 90.17 0.106 0.015 
9 9.550 95.22 0.i00 0.015 
i0 9.561 95.22 0.i00 0.008 
ii 9.614 95.25 0.i01 0.008 
12 9.520 95.24 0.I00 0.020 
13 9.525 95.22 0.I00 0.005 

TABLE 3 -- Mechanical properties at room temperature 

Specimen Proportional 0.2% Yield Tensile EL a RA 
Limit Strength Strength 
MPa MPa MPa % % 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
Ii 
12 
13 

379 590 967 18 28 
374 642 1003 20 24 
325 559 940 20 27 
334 614 998 21 25 
337 545 934 19 28 
290 545 914 18 18 
328 572 943 18 27 
398 614 969 19 25 
325 545 925 19 20 
371 548 909 16 18 
344 598 940 21 28 
381 547 897 16 15 
314 592 911 25 30 

(a Gage length = 25.4 mm) 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



198 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

Test Techniques. One static and two dynamic elastic modulus 
test techniques were reviewed. The terms static and dynamic loosely 
refer to the strain rate and amplitude. Generally, static testing 
involves relatively large elastic strains and slow strain rates, 
while dynamic testing involves small strains (on the order of 10 -6 ) 
and high strain rates. 

The static technique used here was conducted largely in accor- 
dance with ASTH El11-82. Tensile bars were tested on a 27000 kilo- 
gram Tinlus-Olsen screw-type tensile machine. Elongation was 
measured using a Class B-1 averaging extensometer and recorded on an 
autographic load-elongation recorder over a single loading cycle. 
The strain rate to yield was 0.005 mm/mm. Elastic modulus was meas- 
ured over strains less than 0.25Z. 

The two dynamic techniques may be described as continuous exci- 
tation (CE) and impulse excitation (IE), referring to the manner in 
which the specimens are vibrated or excited. The continuous excita- 
tion method has been described in detail in several references [6,7], 
and especially by Spinner and Tefft [8]. 

The cylindrical specimens were vibrated in both longitudinal and 
flexural modes. In the longitudinal mode, the specimens were driven 
sinusoidally on one end and the longitudinal wave was detected on the 
opposite end. Specimens were driven continuously using a scanning 
audio oscillator and Astatic model 12U phonograph cartridges. Dis- 
placement was detected using the same type cartridge connected to a 
sweep null detector, dual trace oscilloscope, and frequency counter. 
The fundamental resonant frequency was determined from resonant peaks 
on the null detector, oscilloscope Lissajou patterns, and nodal 
analysis of the specimen. 

In the longitudinal mode, Young's modulus is calculated from the 
longitudinal fundamental resonant frequency (fl), the specimen den- 
sity (0), diameter (d), length (L), and a shape correction factor (K) 
by the following equation: 

ECL = p(2Lfl)Z/K (i) 

where, K = i - O.125(~d/L) z, U = Poisson's ratio, 
and p = 8300 kg/m 3 for all specimens. 

The Young's modulus (E~F) for the CE flexural mode is determined 
from a specimen suspended ~ threads from the phonograph cartridges 
near its fundamental nodal points. One thread delivers the driving 
vibration to the specimen and the other thread returns the displace- 
ment to the detector cartridge. The looping suspension method 
described in [9] was used. The fundamental flexural resonant fre- 
quency is determined in a similar manner to that for the longitudinal 
resonance. Flexural Young's modulus is calculated from the flexural 
resonant frequency, specimen dimensions and density, and a shape cor- 
rection factor (T) by the following: 

ECF = 1.2619p(L2f/d)2T (2) 

The shape factor T is a function only of Poisson's ratio and d/L, and 
can be found in tables developed by Spinner and Tefft [8]. 
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Both the longitudinal and flexural formulas were derived assum- 
ing isotropic and homogeneous materials. However, these formulas can 
apply to non-isotropic materials so long as one remembers that the 
determined elastic modulus is appropriate for the tested orientation 
only. 

The impulse excitation technique is relatively new [5] and was 
accomplished here using an instrument called the GrindoSonic [I0]. 
Only the impulse flexural Young's modulus (EIF) was determined since 
the longitudinal period measurements of the s~ecimens fell below the 
recommended range of the instrument for good resolution. 

In the IE flexural method the specimen is supported at its fun- 
damental nodal points centered over an acoustic microphone. The 
specimen was lightly tapped by hand with a thin alumina rod to ini- 
tiate vibration which was detected by the microphone and transmitted 
to the instrument. The resultant transient vibration is electroni- 
cally analyzed to yield the digitally displayed natural period. The 
flexural resonant frequency is calculated from the period, from which 
E_ F is calculated using the formula for continuous flexural excita- 
tion. 

Polsson's ratio corrections. Ideally, the most accurate Young's 
modulus values will be obtained when Poisson's ratio is known so that 
more accurate shape correction factors can be determined. The best 
procedure is to determine also the shear modulus at the same time as 
the Young's modulus is determined. A value for Poisson's ratio can 
then be calculated which serves as a first estimate in an iterative 
process utilizing the basic equations relating E, G and ~. 

In this evaluation, however, the accepted quality control prac- 
tice for determining Young's modulus was followed which means the 
shear modulus was not determined and Poisson's ratio was assumed to 
be 0.30 in calculating the shape correction factors. The Polsson's 
ratio for INCONEL alloy MA 754 can range from 0.05 to 0.45, depending 
on the texture of the material and orientation of the specimen. 
Assessing the shape correction factors with a Poisson's ratio of 0.3 
and d/L of 0.I0, a maximum error of 0.2% for the longitudinal mode 
and 0.3% for the flexural mode may occur. 

TABLE 4 -- Calibration results, dynamic techniques 

Frequency, Hz Error 

Impulse 2044.4 + 0.05% 

Continuous 2044.6 + 0.06% 

NIST 2043.3 ... 

Copyright by ASTM Int'l (all rights reserved); Wed Dec 23 18:42:07 EST 2015
Downloaded/printed by
University of Washington (University of Washington) pursuant to License Agreement. No further reproductions authorized.



200 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

RESULTS 

C a l i b r a t i o n  o f  dynamic methods,  f l e x u r a l  mode. C a l i b r a t i o n  of  
both the  CE and IE f l e x u r a l  modes can be v e r i f i e d  u s ing  NIST s t a n -  
da rds .  Table  4 shows the r e s u l t s  of  the v e r i f i c a t i o n  t e s t s  us ing  
NIST Standard Reference Material 718, polycrystalline alumina refer- 
ence bar #CI [II]. The results show no significant difference 
between the CE and IE flexural resonant frequencies and error of less 
than 0.06% with respect to the reference bar. 

R o t a t i o n a l  v a r i a t i o n ,  dynamic f l e x u r a l  mode. Specimens t e s t e d  
in  the  dynamic f l e x u r a l  modes s i m u l t a n e o u s l y  v i b r a t e  in two d i r e c -  
t i o n s  o r i e n t e d  90 ~ from each o t h e r .  Thus i t  i s  n e c e s s a r y  to r o t a t e  
the specimen and de t e rmine  the h i g h e s t  and lowes t  f l e x u r a l  r e sonan t  
f r e q u e n c i e s ,  and c a l c u l a t e  the mean Young's  modulus from t h e s e .  

Table 5 gives the flexural Young's modulus results as a function 
of specimen rotation for both the continuous and impulse techniques. 
The d i f f e r e n c e s  w i t h i n  each t e s t  t e c h n i q u e  a re  t y p i c a l  when compared 
to the l i t e r a t u r e  [9] .  F igu re  1 shows t h a t  the r o t a t i o n a l  v a r i a t i o n  
measured by the two t e c h n i q u e s  i s  ve ry  s i m i l a r .  

Figure 2 shows there was no correlation of rotational variation 
in elastic modulus with the mean flexural Young's modulus. A compar- 
ison of the specimen diametral eccentricities in Table 2 with the 
rotational elastic modulus variation shows no correlation, suggesting 
that the variation may he partly due to texturing. 

The primary finding is that both the CE and IE methods will, for 
practical purposes, measure the same rotational elastic modulus 
variation in the flexural mode. 

TABLE 5 -- Rotational variation in flexural modulus 

Specimen 
Continuous Impulse 

ECFI ECF2 EIF 1 EIF2 

GPa GPa GPa GPa 

1 158.8 162.5 
2 166.2 167.1 
3 168.4 168.9 
4 167.1 167.9 
5 175.4 178.4 
6 178.7 185.9 
7 179.3 189.2 
8 179.6 184.7 
9 189.3 193.2 

I0 206.5 209.3 
ii 207.0 209.7 
12 213.5 215.3 
13 231.6 235.1 

158 9 
165 9 
167 6 
166 7 
175 3 
177 6 
179 1 
179.4 
189.1 
205.8 
206.4 
212.8 
231.2 

162.7 
167.3 
168.7 
168.0 
178.3 
185.9 
189.9 
184.5 
192.8 
208.9 
209.5 
214.9 
234.4 
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202 DYNAMIC ELASTIC MODULUS MEASUREMENTS 

TABLE 6 -- Young's modulus results, GPa 

Continuous Impulse 
Specimen Static Longitudinal Flexural Flexural 

1 158.0 159.3 160.7 160.8 
2 158.7 164.4 166.6 166.6 
3 162.9 166.4 168.7 168.2 
4 167.2 164.9 167.5 167.3 
5 172.0 177.1 176.9 176.8 
6 195.1 182.2 182.3 181.8 
7 188.3 184.6 184.3 184.5 
8 184.8 181.2 182.2 182.0 
9 198.2 192.2 191.3 191.0 

i0 209.8 207.7 207.9 207.4 
ii 222.2 208.5 208.4 207.9 
12 222.1 214.2 214.4 213.9 
13 231.9 233.3 233.4 232.8 

Young's modulus results. Table 6 gives the final Young's mod- 
ulus results for the four techniques/modes tested. The flexural mod- 
ulus was calculated from the mean of data presented in Table 5. The 
following difference plots are derived from this Table. 

F l e x u r a l  mode: ETE v e r s u s  E p.  F i g u r e  3 i l l u s t r a t e s  the  d i f -  
f e r e n c e  in the  flexura~impulse versus continuous e x c i t a t i o n  t e c h n i -  
ques .  ETF averaged about 0.2% higher than E~. This difference is 
less thaff that of the CE flexural versus longi~dinal modes. 

Cont inuous  t e c h n i q u e :  ECF v e r s u s  EC[. F i g u r e  4 shows the  con- 
t i n u o u s  f l e x u r a l  v e r s u s  con t i nuous  l o n g i t u d i n a l  e l a s t i c  modulus d i f -  
f e r e n c e s .  The mean d i f f e r e n c e  i s  about  0.4%, but  the  d i f f e r e n c e  i s  
greater below 180 GPa. 

EIF versus ECL. The difference plot in Figure 5 is nearly 
identical to the E_ F versus E L difference plot. The mean difference 
is 0.2%, slightly ~ess than tee continuous flexural versus longitudi- 
nal difference. The same variation of difference with elastic mod- 
ulus values exists for the IE flexural versus CE longitudinal 
techniques. 

S t a t i c  v e r s u s  dynamic.  The d i f f e r e n c e  p l o t s  between the  s t a t i c  
and dynamic modulus t e c h n i q u e s  a r e  a l l  v e r y  s i m i l a r ,  and on ly  the  E_ 
v e r s u s  ECL d i f f e r e n c e s  a r e  shown in  F i g u r e  6. Where the  dynamic 
t e c h n i q u e s  and modes v a r i e d  a t  most 1.5%, the  s t a t i c  e l a s t i c  modulus 
varies from - 5% to + 7% from the dynamic elastic modulus. 

P a i r e d  d i f f e r e n c e s  s t a t i s t i c a l  summary. Table 7 contains the 
results of a paired difference statistical analysis of the various 
methods. The only mean differences showing any significance (at the 
5% level) were the IE versus CE paired differences. The IE technique 
resulted in Young's modulus values about 0.3 GPa higher than those of 
the CE technique. While statistically significant, this is not 
considered significant in a practical sense. 
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TABLE 7 - -  Pa i red  d i f f e r e n c e s  ( i n  GPa) s t a t i s t i c a l  summary 

Es-EcL Ecp-EcL EIF-EcL Es-EcF Es-EIF EIF-EcF 

mean 2.7 0.6 0.4 2.1 2.3 -0.3 

standard dev. 6.2 i.I 1.2 6.8 7.0 0.3 

npcc a 0.98 0.95 0.93 0.99 0.99 0.96 

significant? b no no no no no yes 

a npcc = normal p r o b a b i l i t y  c o r r e l a t i o n  c o e f f i c i e n t  
b S i g n i f i c a n t  a t  the 5% l e v e l .  

The o the r  major i tem to no te  i s  the l a r g e  v a r i a n c e  of the d i f -  
f e r e n c e s  when comparing the s t a t i c a l l y  de te rmined  e l a s t i c  modulus 
wi th  the e l a s t i c  moduli from the dynamic methods. 

DISCUSSION 

Static methods. The static methods have been used successfully 
for decades. Some argue that these methods provide a more 
a p p r o p r i a t e  elastic modulus a t  e n g i n e e r i n g  s t r e s s  - s t r a i n  ampl i -  
tudes .  In  a d d i t i o n ,  one may o b t a i n  the p r o p o r t i o n a l  and e l a s t i c  
l i m i t s ,  d i r e c t l y  observe  a n e l a s t i c i t y ,  and i f  the t e s t  i s  con t inued  
to f r a c t u r e ,  de te rmine  the mechanica l  t e n s i l e  p r o p e r t i e s  of the 
specimen.  

The variability of the static versus dynamic Young's modulus 
results in this study are greater than expected. The primary sources 
of error include specimen and extensometer misalignment during load- 
ing, and a lack of precision in measuring the load - elongation slope 
from the autographic recorder chart. 

I t  i s  c o n j e c t u r e d  t ha t  the p r e f e r r e d  o r i e n t a t i o n  in  the s p e c i -  
mens exaggera ted  e r r o r s  i n t r o d u c e d  by the s t a t i c  t echn ique  problems 
of misa l ignment  and i m p r e c i s i o n ,  thus e x p l a i n i n g  the compara t ive ly  
l a r g e  v a r i a b i l i t y .  Specimens wi th  p r e f e r r e d  o r i e n t a t i o n s  w i l l  deform 
in  a non-un i fo rm manner under  load .  I f  t h i s  i s  the case ,  then i t  
seems tha t  s t a t i c  methods may be s u s c e p t i b l e  to e x c e s s i v e  e r r o r  when 
used for anisotropic materials. 

S t a t i c  t echn iques  have o the r  drawbacks. These t echn iques  are  
t ime consuming i n  c o n t r a s t  wi th  dynamic t echn iques  ( p a r t i c u l a r l y  the 
impulse  t e c h n i q u e ) ,  are  r e s t r i c t e d  by specimen c o n f i g u r a t i o n s  and 
s i z e s ,  and a re  d e s t r u c t i v e  in  n a t u r e .  Unless  s t r a i n  gaging i s  used,  
n e i t h e r  P o i s s o n ' s  r a t i o  nor  shear  modulus can be measured. At 
e l e v a t e d  t empera tu res  the s t a t i c  t echn iques  a re  very  d i f f i c u l t  to 
perform a c c u r a t e l y ,  e s p e c i a l l y  when the m a t e r i a l  i s  prone to creep .  
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Dynamic methods. For e n g i n e e r i n g  purposes ,  the CE and IE 
dynamic methods and modes produced e q u i v a l e n t  r e s u l t s  d e s p i t e  the 
t e x t u r e d  n a t u r e  of INCONEL a l l o y  HA 754. R e p r o d u c i b i l i t y  was good 
between the methods, ave rag ing  l e s s  than lZ d e v i a t i o n .  This  r ep ro -  
d u c t i o n  of Young's  modulus i s  impres s ive  c o n s i d e r i n g  the d i f f e r e n t  
modes of wave p ropaga t i on ,  the d i f f e r e n t  means of v i b r a t i o n a l  e x c i t a -  
t i o n ,  and the assumpt ion  of 0 .30 fo r  P o i s s o n ' s  r a t i o .  

These methods have many advantages for Young's modulus testing. 
They are non-destructive, utilize readily obtainable low cost 
instrumentation, are adaptable to environmental testing and to 
elevated temperatures, and accomodate a wide variety of specimen con- 
figurations and sizes. Testing by the impulse excitation technique 
is exceptionally simple and fast, does not require highly trained 
personnel for routine work, and is portable as well. 

An impor tan t  c o n s i d e r a t i o n  for  a n i s o t r o p i c  m a t e r i a l s  i s  tha t  
dynamic t e chn iques  can a l low e l a s t i c  moduli t e s t i n g  in  s e v e r a l  o r i e n -  
t a t i o n s ,  p rovide  shear  moduli and P o i s s o n ' s  r a t i o  e s t i m a t e s ,  and thus 
permi t  the development of d i r e c t i o n a l  e l a s t i c  s t i f f n e s s e s  and /o r  com- 
p l i a n c e s .  The e l a s t i c  behav io r  of a m a t e r i a l  can be d e f i n e d ,  even i f  
i t  i s  a n i s o t r o p i c .  

On the other hand, most dynamic methods operate only at 
micro-strain levels, a fact which occasionally draws criticism that 
these are not typical engineering strains, and may give overly high 
engineering moduli. Nevertheless, on balance, the dynamic methods, 
and especially the impulse method, appear best suited for elastic 
moduli determinations. 

SUMMARY 

The best Young's modulus test technique for routine quality con- 
trol work appears to be the impulse excitation technique, closely 
followed by the continuous excitation technique. The impulse excita- 
tion method combines rapid testing, high accuracy, and simplicity 
when using appropriate test specimens. A major advantage is that 
specimen nodal analysis is not required to identify the fundamental 
resonant frequencies if the specimen is configured, supported and 
tapped properly. 

The con t inuous  e x c i t a t i o n  method r e q u i r e s  more o p e r a t o r  s k i l l  
and knowledge, i s  a more time consuming t e s t ,  and r e q u i r e s  nodal  
a n a l y s i s  to de te rmine  the resonance  of a m a t e r i a l  wi th  unknown mod- 
u l u s .  However, t h i s  method can be used to de te rmine  the shear  f r e -  
quenc ie s  and ove r tones  i f  d e s i r e d .  For conduc t ing  complete e l a s t i c  
c h a r a c t e r i z a t i o n  s t u d i e s ,  the c o n t i n u o u s  e x c i t a t i o n  method i s  recom- 
mended. 

The static tensile loading method seems undesirable for quality 
control work. Improvements in accuracy can be achieved by using 
digital data collection that can be mathematically reduced instead of 
autographic charting with subjective analysis. Multiple load cycling 
in the elastic range would minimize the opportunity for gross errors. 
Careful attention to specimen machining and extensometer alignment 
would reduce mis-alignment errors. However, even when all this is 
done, the static test is still laborious and relatively time 
consuming. 
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ABSTRACT: A methodology for processing damping material com- 
plex modulus data and presenting it in a manner that is meaningful to 
the damping designer is discussed. Initial parameter values for charac- 
terization equations are derived. The use of a computer program for 
characterization of complex modulus data is described. 

KEYWORDS: complex modulus, characterization, viscoelastic materi- 
Ms, VEM, temperature shift function 

Successful design of passive damping treatments using viscoelastic materials 
(VEM's) such as elastomers depends upon several factors. One important factor 
is accurate knowledge of the sensitivity of VEM properties to variations in tem- 
perature and frequency. Since it is impossible to test a viscoelastic material at 
every combination of temperature and frequency, the material is tested at discrete 
temperatures and frequencies and a relationship is developed that characterizes 
the material at all other combinations of temperature and frequency. This process 
is referred to as characterization. 

The equations used in characterization are all of a parametric nature, often 
easily represented on computers. The hard part of characterization is to choose 
the equation parameters so that they accurately represent the VEM's properties. 
Interactive computer graphics have greatly improved the process of choosing and 
adjusting the correct parametric values. 

Mr. Fowler is an engineer at CSA Engineering, 560 San Antonio Road, Suite 
101, Palo Alto, CA 94306 
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This paper dicusses viscoelastic material characterization and provides a 
methodology for obtaining the parametric values used in the equations to rep- 
resent the complex modulus of VEM's analytically. 

THEORY 

Viscoelastic materials are generally more difficult to characterize than are struc- 
tural materials such as metals. This occurs for two basic reasons: 

1. When an elastomer is dynamically loaded, even at levels well within its linear 
range, it converts a much larger fraction of the input energy into heat than 
does a metal. It is therefore necessary to measure both the energy storage 
property (stiffness) and energy dissipation property (damping). 

2. Both stiffness and damping of elastomers tend to vary significantly with 
frequency and temperature. Generally, the more dissipative a material, the 
greater the variation. 

Both problems are accommodated by describing the mechanical properties of 
the material in terms of a frequency- and temperature-dependent complex modulus 
(G*). The stress-to-strain ratio for the material is treated as a complex quantity. 
Complex arithmetic provides a convenient means for keeping track of the phase 
angle by which an imposed cyclic stress leads the resulting cyclic strain. The 
complex shear modulus, for example, is usually expressed in the form 

G*(f,T) = Go(f,T)[1 + jy(f,T)] (1) 

The real and imaginary parts of the modulus, which are commonly called the 
storage modulus and loss modulus, are given by Go(f, T) and Go(f, T)rl(f, T), 
respectively. Fourier transform theory and the correspondence principle of vis- 
coelasticity allow complex moduli to be used for calculating response to arbitrary 
dynamic inputs. Material properties are most often specified and measured in 
terms of their complex shear modulus because it allows greater flexibility in choos- 
ing the size and shape of the test specimen. 

For infinitesimal strain and rate of strain, the time-dependent stress-strain 
relations for a viscoelastic material can be described by linear differential equations 
with constant coefficients. This linear behavior requires 

d log GM d log Gn d log GI 
- . . . .  , . o . -  d -i gf., . . . .  . , o o -  d- og , . . . .  ,.oo (2) 
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and 

where 

rlmax ~ t a n  

GM = magnitude of the complex modulus 

Gn = real (storage) part of the complex modulus 

Gz = imaginary (loss) part of the complex modulus 

fn = reduced frequency = f iaT (Ti) 

fi --- experimental frequency 

T~ = experimental temperature 

OCT = temperature shift function 

= GI /GR (also known as the loss factor or tan 6) 

( 3 )  

It has been shown by Rogers [1] that a solution to this requirement is given by 
the fractional complex modulus equation 

where 

G, + Gaz ~ 
G*(fR) = 1 + z~ (4) 

z = J fRf fno  

fro = reference reduced frequency 

G, = storage modulus rubbery asymptote 

Gg = storage modulus glassy asymptote 

The parameters G~, Gg and fn0 as well as parameters for OC T must be found 
such that the curve described by Eq 4 fits the data within the error bounds of the 
material test. Initial values for the parameters are first determined graphically and 
are then iterated and regressed for the best mathematical fit. 

INITIAL PARAMETERS 

Values for Ge and Gg may be obtained directly by drawing a plot of 7/ versus 
GM, as shown in Fig 1. Note that this plot is a useful indicator of data quality. 
Qualitative errors will often appear as data points that do not follow the overall 
inverted "U" shape from G~ to Gg. To evaluate fl, the equation 

a. 
,mo  = A = - -  

1 + 2 +  

C o p y r i g h t  b y  A S T M  I n t ' l  ( a l l  r i g h t s  r e s e r v e d ) ;  W e d  D e c  2 3  1 8 : 4 2 : 0 7  E S T  2 0 1 5
D o w n l o a d e d / p r i n t e d  b y
U n i v e r s i t y  o f  W a s h i n g t o n  ( U n i v e r s i t y  o f  W a s h i n g t o n )  p u r s u a n t  t o  L i c e n s e  A g r e e m e n t .  N o  f u r t h e r  r e p r o d u c t i o n s  a u t h o r i z e d .
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Figure 1. Obtain T/ . . . .  ~lr G~, and Gg 

is derived from Eq 4. A value for T/,~= is obtained from the plot in Fig 1. Iteration 
is then used to calculate/~. The transition region is defined by choosing an zlc~tol / 
value from the plot in Fig 1. The use of rl~to:f to define the transition region is 
shown in Fig 2. 

TEMPERATURE SHIFT FUNCTION 

In the typical explanation of frequency-temperature equivalence, the temperature 
shift function, a function of temperature only, is constructed. The real part, the 
imaginary part, and the material loss factor of the complex modulus data are plot- 
ted as functions of reduced frequency. Historically, the temperature shift function 
for a particular damping material has been defined empirically by the experimen- 
tal complex modulus data. The value of aT at each experimental temperature is 
selected such that it simultaneously shifts horizontally the three complex modulus 
data points (Gn,G1,rl) to define curves and minimize scatter. 

Computerized characterization and subsequent database storage has made it 
more efficient to represent the empirical temperature shift function as an analytic 
function. A widely used analytical representation for aT is the WLF [2] equation. 
Unfortunately, this equation has not always been able to shift viscoelastic material 
data correctly outside the transition region. Other equations for a T [3] have been 
formulated and have met with roughly equal success. A new approach is to use 
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Figure 2. Transition region defined 

a spline fit of the slopes of aT for a relatively small number of equally spaced 
temperature points (e.g., 5 points) to define aT. The reference temperature, Tz, 
is obtained by fitting a quadratic function through the data points of log r/versus 
T, solving for zero slope, and rounding to the nearest evenly spaced temperature 
point. 

Initial values for the reference slope, SAZ, and for the reference reduced fre- 
quency, fro, are obtained by solving Eq 4 for at~fRo 

* 1 

(r,) 1 ra;. -ao]  
= keg  - c ; j  (6) 

Since Eq 6 is valid in the transition region, a quadratic is fit through the data 
points defined within the transition by r/ > O~tofl for aT~fRO as a function of 
temperature. Defining aT -= 1.0 at Tz, fro is obtained from the reciprocal of the 
quadratic at Tz. SAZ is obtained as the slope of the quadratic at Tz multiplied by 
the initial fro. 

A modified version of the WLF equation is then used 

SAZ (T - Tz) (Tz - Too) 
log aT = (T - Too) (7) 

with Tr162 set equal to 10.0 to generate initial values of slope at all the other 
temperature-slope points. Finally, aT is calculated as the integral of the spline 
of the slopes where the constant of integration is given by OCT ~-" 1.0 at Tz. 
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The accuracy of the aT slope parameters is checked by looking at a plot of the 
complex modulus data versus the reduced frequency. The parameters (which rep- 
resent spline knots) must be adjusted iteratively to remove any isotherm "shingles" 
(Figs 3 and 4). 

COMPLEX MODULUS 

Improvements to Eq 4 which add adjustment factors to provide a better curve 
fit in the glassy and rubbery regions have been offered by Bagley [4], Rogers [5], 
Nashif [6], and others. All equations work for some damping materials. None can 
adequately fit all sets of VEM data. Present methods use a piecemeal approach. 
An equation that has successfully fit the type of material of interest (e.g., adhesive) 
in the past or that is the most general is used and parameters are adjusted using 
regression and trial-and-error to get the best fit. If the equation's best fit is not 
adequate (i.e., the generated curve does not approximate the data over the entire 
reduced frequency domain) a different equation is tried. This approach has been 
implemented on a computer [7] with nine different complex modulus equations 
available. 

Initial estimates of parameters vary for each model. For example, if the series 
fractional Maxwell equation, given by 

n Gk ( f R ~  (8) 
G *= G ~+ E l+zk- -ak+Akzk  -pk' z k = j \ f n O ] k  

k = l  

where 
G~ < Gk < Gg stepping logarithmically 
/~k = slope of storage modulus corresponding to Gk 

Ak = pole multiplier 
Pk -=- pole exponent 

is chosen, ~k is set equal to the previously calculated fl, Ak is the slope of the 
glassy intercept with the abscissa on a Cole-Cole plot [8] (i.e. Gz versus GR), and 
Pk is set to 0.1 for all k. 

The parameters are then adjusted iteratvely to give the best overall curve fit. 
Often, regression is used to somewhat automate these adjustments. 

GRAPHICAL PRESENTATION 

Jones [9] and, more recently, Jones and Rao [10] have developed methods to present 
complex modulus data graphically. These are the reduced-temperature nomogram 
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Figure 3. I so therm shingles indicate incorrect a T  

Figure 4. Correct aT with little or no shingling 
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Figure 5. Reduced-temperature nomogram (international plot) 

(also known as the international plot) and inverted "U" plot, respectively (Figs 5 
and 6). 

The international plot consists of the real and imaginary moduli displayed 
logarithmically on the left vertical axis along with the dimensionless loss factor. 
The horizontal scale is the reduced frequency defined in Eq 4. The right vertical 
axis is cyclic frequency displayed logarithmically in Hertz (Hz). Lines of constant 
temperature are superimposed on the plot from the relationship 

log fR = log fl + log aT (Ti) (9) 

These isotherm lines are usually calculated for steps of five degrees Kelvin and 
range from TL to Tn to preclude extrapolation of temperature for which viscoelastic 
materials are highly sensitive. The range of experimental frequency is indicated by 
the solid region of the isotherm lines. In the area of extrapolated frequency, the 
isotherms are dashed. The use of the international plot to read interpolated values 
of modulus and loss factor is demonstrated in Fig 5. To get modulus and loss 
factor values corresponding to 100 Hz and 300~ one reads the 100 Hz frequency 
on the right-hand scale and proceeds horizontally to the 300~ temperature line. 
Then proceed vertically to intersect the curves along a line of reduced frequency. 
Finally, proceed horizontally from these intersections to the left-hand scale to read 
the values of 54 MPa for the real modulus, 39 MPa for the imaginary modulus, 
and 0.73 for the loss factor. 

The inverted "U" plot utilizes similar methodology, but removes the reduced 
frequency scale and directly superimposes constant temperature lines onto a plot 
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Figure 6. Inverted "U" plot 

of loss factor versus the real part of the complex modulus with cyclic frequency 
still displayed on the right-hand axis. To follow the same example as above, start 
at the 100 Hz frequency value on the right-hand scale and move horizontally to 
the 300~ temperature line. Drop vertically downward to read 54 MPa off the 
horizontal axis, and proceed upward to the curve and then horizontally to read 
0.73 off the left-hand vertical scale for the loss factor. 

Other plots of interest include 

1. log aT, d log aT/dT, and the apparent activation energy versus temperature 

2. log f~ versus temperature 

3. real and imaginary components of G*, and 7/versus temperature 

SUMMARY 

Most viscoelastic materials data are for engineering applications and justifiably do 
not provide extensive coverage of temperature and frequency. The challenge of 
characterization is to make the data useful to the damping designer and simulta- 
neously indicate limitations. 

Using the methodology and graphical presentation outlined in this paper, this 
challenge can be met. Care must always be taken, however, to insure that the ap- 
propriate analytical representation of the complex modulus has been chosen. This 
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caution indicates the pressing need to find a representation for complex modulus 
that may be used to fit all VEM data. 
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resonance methods, 
7 5 - 8 9  

measurements and materials 
research, 3-17 
thin (sub-wavelength) 
specimens, 18-45 

pulsed ultrasonic velocity 
method, material 

determination, 47-56 
vs. static modulus, 18-45 
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E 

Elastic constants 
bulk modulus, 135-148 
fiber-relnforced composites, 

120-134 
resonating-orthotropic-cube 

method, 100-109 
theoretical models, 120-134 

Elastic modulus 
IET ( impulse excitation 

technique), 90-99 
longitudinal and flexural 

resonance methods, 75-89 
measurements and materials 

research, 3-17 
mechanically alloyed 
materials, 195-207 

ultrasonic velocity method, 
47-56 

End-mass, dynamic flexural 
study, 58-74 

Exfoliatlon, modulus 
measurements, 149-161 

F 

Ferromagnetic materials, 
dynamic modulus 
measurements and materials 
research, 3-17 

Fiber-reinforced composites, 
elastic constants, 120-134 

Flexural properties 
dynamic modulus, 58-74 
Young's modulus, 75-89 

Fourier Transforms, dynamic 
modulus measurement, 18-45 

Frequency dependence, dynamic 
modulus measurement, 18-45 

Internal friction, dynamic 
modulus measurements 
and materials 
research, 3-17 

L 

Laminate theory, dynamic 
flexural constitution, 
58-74 

Legendre-polynomlal 
approximating function, 
resonating-orthotropic-cube 
technique, 100-109 

Logarithmic decrement, dynamic 
flexural constitution, 
58-74 

Longitudinal resonance method, 
dynamic Young ' s modulus, 
75-89 

Material dynamic elasticity, 
ultrasonic velocity method, 
47-56 

Mechanically alloyed materials, 
dynamic and static 
determination techniques, 
195-207 

Metallic glass, dynamic modulus 
measurements and materials 
research, 3-17 

Metal matrix composites, 
dynamic modu 1us 
measurement, 110-119 

Monocrystal-polycrystal 
relationships, elastic 
constant models, 135-148 

G-I N 

Grain size, dynamic modulus 
measurement, ultrasonic 
velocity method, 47-56 

Hershey-Kroner-Eshelby models, 
elastic constants, 135-148 

IET ( impulse excitation 
technique ) dynamic modulus 
measurement, 90-99 
mechanically alloyed 
materials, 195-207 
Young's modulus, 75-89 

Natural frequency, IET (impulse 
excitation technique), 
90-99 

Nondestructive testing 
acoustic resonance methods, 

adhesive bonds, 
162-179 

IET (impulse excitation 
technique), 90-99 
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P 

Poisson ratio, elastic constant 
models, 135-148 

Polycrystalline elastic 
constants, 135-148 

PUCOT (piezoelectric ultrasonic 
composite oscillator 

technique ) dynamic 
modulus, 110-119 

u modulus, 75-89 
Pulsed-wave transit-time 

technique, dynamic 
modulus materlals, 47-56 

R 

Rayleigh-Ritz method, 
resonating-orthotropic-cube 
technique, 100-109 

Receptance model, dynamic 
elastic modulus, adhesive 
bonds, 162-179 

Reproducibility, u 
modulus, 195-207 

Resonance techniques, dynamic 
modulus adhesive bonds, 

162-179 
AI/SiC composite, 110-119 

Resonant column testing, 
cemented soils, 180-194 

Resonating-orthotropic-cube 
method, elastic 
constants, 100-109 

S 

Sample coupling, resonant 
column testing, 180-194 

Sand, resonant column testing, 
180-194 

Shear modulus 
elastic constant models, 

135-148 
resonant column testing, 

180-194 
Soil dynamics, resonant column 

testing, 180-194 
Soil testing, resonant column 

testing, 180-194 
Sound velocities , 

flber-reinforced composite 

INDEX 223 

elastic constants, 120-134 
Static modulus vs. dynamic 

modulus, 18-45 
Static tensile technique, 

Young' s modulus, 
mechanlcally alloyed 
materials, 195-207 

4330V Steel, dynamic Young's 
modulus, 75-89 

Stress corrosion cracking, 
modulus measurements, 
149-161 

structural damping, dynamic 
flexural constitution, 
5 8 - 7 4  

Sub-millimeter specimens, 
dynamic modulus 
measurement, 18-45 

Sub-wavelength specimens, 
dynamic modulus 
measurement, 18-45 

Superconductors, dynamic 
modulus measurements 
and materials research, 3-17 

Temperature shift function 
complex modulus data, 208-217 
dynamic Young ' s modulus, 
7 5 - 8 9  

Texture, Young ' s modulus, 
mechanically alloyed 
materials, 195-207 

Thin specimens, dynamic modulus 
measurement, 18-45 

Transient vibration, IET 
( impulse excitation 
technique), 90-99 

O 

Ultrasonic moduli 
dynamic elastic modulus, 

adhesive bonds, 
162-179 

pulsed ultrasonic velocity 
method, 47-56 

thin (sub-wavelength) 
specimens, 18-45 
velocity testing 

dynamic modulus, 
47-56 
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Ultrasonic moduli (cont'd) 
fiber-reinforced composites, 

120-134 

V-u 

Vacuum, dynamic flexural 
constitution, 58-74 

Vibrating reed, dynamic 
modulus measurements and 
materials research, 3-17 

Vibrational modes, 
resonating-orthotropic- 
cube measurement, 100-109 

Viscoelastic materials (VEM), 
complex modulus data, 
208-217 

Wave-scattering 
ensemble-average methods, 
flber-relnforced 
composites, 120-134 

u modulus 
elastic constant models, 

135-148 
longitudinal and flexural 
resonance methods, 75-89 

mechanically alloyed 
materials, 195-207 
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