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Structure and Use of Just-About-Right Scales

Lori Rothman' and Merry Jo Parker?
Introduction

Just-about-right (JAR) scales are commonly used in con-
sumer research to identify whether product attributes are
perceived at levels that are too high, too low, or just about
right for that product. While at first glance this type of scal-
ing may appear simplistic, the process of developing and
analyzing JAR scales is complex. In this manual, the history
of JAR scale usage, the mechanics of JAR scale construction,
inappropriate and appropriate uses of JAR scales, benefits
and risks of use, and case studies that illustrate the many
methods for data analysis of these scales are reviewed. Alter-
natives to JAR scales are also included. Finally, a summary
and conclusions are presented.

This manual covers the application, construction,
analysis, and interpretation of just-about-right (JAR) scales
for use in testing with consumers. Defined as bipolar labeled
attributes scales, JAR scales measure levels of a product’s at-
tribute relative to a respondent’s theoretical ideal level.
These scales have an anchored midpoint of “just about right”
or “just right” and endpoints anchored to represent intensity
levels of the attribute that are higher and lower than ideal.
The ideal point model [1] will serve as the conceptual base
for JAR scale interpretation.

This model is one of several available; however, it is not
practical to cover all aspects of ideal point modeling nor to
consider other conceptual frameworks, such as preference
unfolding [2]in this manual.

This manual was developed by members of Task Group
E18.04.26, which is part of the ASTM Committee E18 on
Sensory Evaluation and is intended for sensory and market
research professionals responsible for consumer testing and
interpretation of consumer data. The scope of the task group
was to develop a practical manual that covers the execu-
tional aspects of JAR scales (construction, placement, and
analysis) and identifies and discusses issues of validity and
interpretation.

This manual does not discuss in detail psychological or
psychophysical processes related to scaling, basic practices
in consumer testing, or general statistical principles.

Terminology

For definitions of terms relating to sensory analysis, see Ter-
minology E253, and for terms relating to statistics, see Ter-
minology E456.

Definitions of Terms Specific to this Manual:

e bipolar scale, n—a scale where the end anchors are se-
mantic opposites, for example, “not nearly sweet
enough” to “much too sweet,” and there is an implied or
anchored neutral mid-point.

o just-about-right scale, n—bipolar scale used to measure
the level of an attribute relative to an assessor’s ideal
level, having a midpoint labeled “just about right” or
“justright.”

! Kraft Foods, 801 Waukegan Road, Glenview, IL 60025.

e optimum, n—amount or degree of something that is
most favorable to some end.

Significance and Use

Quantitative data obtained from consumers are often used
to aid product development. Types of quantitative data col-
lected may include hedonic or acceptability measures, pref-
erence measures, attribute intensity or strength measures,
and just-about-right (JAR) measures.

While hedonic and attribute intensity scales provide dis-
tinct classes of information, JAR scales are intended to com-
bine intensity and acceptability to relate the perceived
strength of specific attributes to the respondent’s theoretical
optimum.

Market researchers have used JAR scales routinely since
the 1960s [3,4], although they were not always referred to as
JAR scales. More recently [5], JAR scales have been used in
conjunction with preference or acceptance measures as a di-
agnostic tool to understand the basis for these hedonic re-
sponses, with the aim of providing information concerning
which product attributes to adjust and in which direction
(increase or decrease). In this way, JAR scales provide guid-
ance to the product developer.

Because JAR scales combine attribute strength and ap-
propriateness in one scale, questionnaire length can be mini-
mized. JAR scales should be easily interpretable by respon-
dents when the attributes themselves are easy to understand
(salty, dark, tight, and so forth).

JAR scales are not without controversy as to their use-
fulness and validity in market and product development
guidance research. As with all other types of quantitative
scales, JAR scales have issues and limitations regarding their
usefulness and interpretability: the ability of respondents to
understand the attribute endpoint and interval labels, num-
ber of scale points, physical representation of the scale on
the questionnaire (horizontal or vertical orientation), and
the psychological issues common to scaling tasks in general
[6].

In addition, JAR scale data collection may be specifi-
cally hampered by the researcher’s ability to construct bipo-
lar scales for the attributes of interest and demand charac-
teristics of the task (decoding and recording an attribute’s
strength and acceptability at the same time), which may
prove difficult for some respondents.

Another important limitation concerns the validity of
data obtained using JAR scales when it is suspected that the
responses are a result of cognitive rather than sensory pro-
cessing within the respondent. For example, a respondent
may like a dessert’s flavor profile “as is,” but when asked, she
may rate it as “too sweet” because she believes that sweet
foods are “bad.”

A number of statistical techniques are available for ana-
lyzing data from JAR scales; they range from simple to very
complex. The statistical analysis of JAR scale data should be

2 Food Perspectives, 2880 Vicksburg Lane North, Plymouth, MN 55447.
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Category Scale

L] L L]

Not Nearly
Shiny Enough

Not Quite
Shiny Enough

Continuous Scale

Not Nearly
Shiny Enough

Just About
Right

Just About
Right

[

Somewhat
Too Shiny

L]
Much Too
Shiny

Much Too
Shiny

Fig. 1—Examples of Scale Types

chosen to match the objective of the portion of the research
that concerns the JAR scales. Examples of objectives are
listed in Table 1.

History of Jar Scale Usage

The genesis of JAR scaling is not well documented in pub-
lished marketing or sensory research literature. A probable
origin can be found in the attitude-measurement scaling
methodologies developed by L. L. Thurstone and Rensis Lik-
ert in the 1920s and 1930s[7,8]. Thurstone contributed a dif-
ferentiated attitude scale along a continuum, and Likert at-
tached numbers to the levels of meaning to that scale. The
Likert scale (five-point scale from “strongly agree” to
“strongly disagree” with a “neutral” center point) is still
widely used today.

It was not until the 1950s with the advent of Osgood’s
concept of “semantic space” and the development of “se-
mantic differential scaling” that semantic opposites (bipolar
scales such as “good-bad,” “weak-strong,” “soft-hard,” or
“rough-smooth”) began to appear in measurement scales.
These scales add three components of judgment: evaluative,
potency, and activity that are used to measure attitudes and
certain aspects of a product. In 1957, Osgood published his
findings on the quantification of connotative semantic
meaning in The Measurement of Meaning [9]. Semantic dif-
ferential scales, however, are continuous and, unlike JAR
scales, do not identify the “ideal point” for an individual.

Itis unclear as to when and who began using the unique
middle anchor of “just about right.” Early references to dis-
cussions regarding the middle “ideal point” category date as
far back as the 1950s [3,10-12]. In 1972, Moskowitz pre-
sented the idea of using JAR scales and self-designed ideals
in the optimization of perceptual dimensions in food [13]. By
the early 1980s, the use of scales with the center anchored
with “just right” were reported by others [14-16].

From the 1980s to the present, sensory research on the
use of JAR scaling continues. Of particular interest has been
the relationship between JAR scales and hedonic and inten-
sity scales, preferences, and consumption patterns. A num-
ber of authors have proposed the use of JAR scales as an al-
ternative to hedonic scaling for determining the ideal level of
an ingredient [16-20]. Others, however, either did not find
agreement between JAR and hedonic scores [21] or found

cause to question the order effect of one upon the other[22].
By 1999, JAR scales were reported to be widely used for
product guidance.® However, their use and interpretation re-
mains a controversial topic in sensory science [23], partly be-
cause of the type of judgments the respondents must make.

Mechanics of JAR Scale Construction

Questionnaire Development Using JAR Scales—When devel-
oping a questionnaire that will contain JAR scales, the re-
searcher should consider what other scale types to include
and their relative locations on the questionnaire. These will
depend on the overall test objective and how the data will be
used. A typical questionnaire for a consumer test may in-
clude hedonic as well as JAR responses. While it is possible
to construct a questionnaire consisting solely of JAR scales,
without a concomitant collection of hedonic information
the researcher will be unable to relate JAR scale data to he-
donic ratings. If the researcher wishes to understand respon-
dent ratings of attribute strength, intensity scales may be in-
cluded on the questionnaire along with JAR scales.
Alternatively, descriptive data from a trained panel may be
collected separately and examined with the JAR scale rat-
ings.

Issues Related to Scaling

Scale Type-Sometimes known as “directionals,” JAR scales
are constructed as bipolar category or continuous line
scales, with a midpoint labeled Just Right or Just About
Right. In the case of a category scale, responses are limited to
the number of points chosen for the scale; responses for con-
tinuous scales are theoretically infinite (see Fig. 1).

Number of Scale Points-If used as a category scale, the
minimum number of scale points for a JAR is three. Because
the center point of the scale is the respondent’s optimum
(ideal) point, the number of scale points is always odd. The
scale is “balanced” in that there are an equal number of
points on either side of the midpoint anchor. While there is
no absolute maximum, in practice, the number of scale
points is rarely greater than nine, unless a continuous line
scale is used. There may be a law of diminishing returns as-
sociated with large numbers of scale points [24]. Although
three is the minimum number of points, many researchers
are uncomfortable with only three points because of “end

3 Moskowitz H. R., “On the Analysis of Product Test Results: The Relation Among Liking, Sensory and Directional Attributes,” unpublished, http:/www.mji-

designlab.com/articles/lang6htm



3 pt. JAR 5 pt. JAR

Too Weak Much Too Weak

Just About Right Somewhat Too Weak

Too Strong Just About Right
Somewhat Too Strong
Much Too Strong
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7pt. JAR
Much Too Weak

Moderately Too Weak
Slightly Too Weak
Just About Right
Slightly Too Strong
Moderately Too Strong
Much Too Strong

9 pt. JAR

Extremely Too Weak
Much Too Weak
Moderately Too Weak
Slightly Too Weak
Just About Right
Slightly Too Strong
Moderately Too Strong

Much Too Strong
Extremely Too Strong

Fig. 2—Examples of Number of Scale Points

avoidance” [24], which can force respondents to the center of
the scale. A 1999 ASTM International survey* of sensory pro-
fessionals revealed that 52 % of those responding use a five-
point JAR scale exclusively and 32 % use more than one type
of JAR scale depending on the respondents and test objec-
tives. Respondent qualifications may lead one toward a spe-
cific number of points, for example, when testing with young
children, researchers may use three-point JAR scales to sim-
plify the task [24] (see Fig. 2).

Anchors—-The midpoint of a JAR scale is reserved for the
rating Just About Right or Just Right. Some researchers feel
that the midpoint should be labeled Just Right, which im-
plies that any deviation from “ideal” should be captured by a
point outside of the center; other researchers feel that Just
Right entails too strong a commitment on the part of the re-
spondent [24], so the center choice is rephrased Just About
Right. The scale end points are anchored in either direction
from the scale midpoint with additional labeling of points as
desired by the researcher. One side of the scale is the “less
than just right” side, while the other is the “greater than just
right” side. Some researchers have demonstrated greater
scale reliability as a function of additional anchoring [25],
while others suggest that word anchors may not represent
equal spacing between points and avoid anchoring all but

Sweetness

Not Sweet Enough

OR

Too Weak

Sourness

Not Sour Enough

OR

Too Weak

Just Right

Just Right

ust Right
g

ust Right
g

the end and center points [23]. When presented as a category
scale, the scale points are presented as being equidistant
from each other, although this may not be true psychologi-
cally. For example, the psychological distance between
“somewhat too salty” and “much too salty” may be perceived
as greater than the distance between “just right” and
“slightly too salty.” Scales that incorporate true equal inter-
val spacing can be developed using Thurstonian methods
[26]. When selecting the appropriate scale anchors, several
approaches may be used. One approach is to use terms with
clearly defined and understood semantic opposites that are
consistent with the makeup of the product and general con-
sumer recognition. When dealing with the fit of a garment,
for example, “too tight” and “too loose” are generally ac-
cepted as semantic opposites, as are “too thin” and “too
thick” when dealing with food texture. “Too sweet” and “too
sour,” on the other hand, would not be considered semantic
opposites. The lack of opposites occurs for the chemical
senses of olfaction, taste, and trigeminal, where zero or no
intensity is a common occurrence for some products. Where
no semantic opposite exists, one approach is to use the same
attribute term on both sides of “just about right” (“not sweet
enough,” “too sweet,” see Fig. 3). Another approach is to use
generic terms as scale anchors, such as “too weak” and “too

Too Sweet

Too Strong

Too Sour

Too Strong

Fig. 3—Attribute Examples

4 This survey was conducted in 1999 by the E18.04.26 Just About Right task group Vice Chair Merry Jo Parker. The survey was sent to all E18 members and was

posted on Sensory.org. There were 77 responses to this survey.
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strong,” and “not enough” and “too much/many.” The spe-
cific attribute would be positioned above the scale, as illus-
trated in Fig. 3.

Degree-of-Change Scale-The degree-of-change scale uses
alternate instructions to the respondent and different an-
chors from the typical JAR scale to change the scale from be-
ing evaluative to action oriented. Instead of being instructed
to provide an opinion as to the degree of saltiness (“not
nearly salty enough” to “much too salty”), the respondent is
asked how he would change the saltiness of the product. An
example of a nine-point degree-of-change scale would in-
clude the question:

How would you change the saltiness of this product?
The responses are:

e Decreaseitextremely

e Decrease it very much
e Decrease it moderately
e Decreaseitslightly

e Leaveitthesame

e Increaseitslightly

e Increaseitmoderately
e Increaseitvery much
e Increaseitextremely

Pokorny and Davidek [27] present a similar scale for at-
tribute optimization. It has been suggested that this scale
may be easier for the respondent to understand than a typi-
cal JAR scale as it is action oriented.> While the modes of
analysis for these scales do not differ from those for JAR
scales, the psychological processes involved with use of such
scales are not known and have not been thoroughly re-
searched. Therefore, researchers are encouraged to proceed
with caution.

Issues Related to Attributes
Attribute Selection—Attributes for questionnaire inclusion
should be easily understood by respondents (common lan-
guage); technical or industrial jargon should be avoided
(“too rheopectic”). Terms should be as specific as possible to
avoid confusion; for example, the attribute “amount of
chocolate” in chocolate ice cream that contains chocolate
chips may confuse the respondent as to whether the re-
searcher is asking about the strength of chocolate flavor in
the base ice cream, the number of chocolate chips, or some
combination of the two. Other terms that connote multiple
meanings or sensory modalities such as “hot” or “spicy”
should be avoided or explained further on the questionnaire
(“heat/burn felt in the mouth,” “strength of spice flavor”).
Source of Attributes—The proper selection of attributes is
central to obtaining usable results. Users of JAR scales de-
velop a list of product attributes that are of interest to the re-
searcher. The source of these attributes may include those
that have been shown to be important based on prior prod-
uct testing (including information obtained from descriptive
panels), perceived characteristics of key ingredients, at-
tributes that are suspected of interacting with other ingredi-
ents, or attributes taken from product advertising or claims.
Additionally, qualitative research or other techniques (focus
groups [28] repertory grid [29], or free choice profiling [30]
may be used to elicit attributes from respondents before test-
ing.

> Private communication.

Single Attributes-Single attributes refers to scales with
the same adjective on both end points (“too sweet,” “not
sweet enough”). The research aim is to select attributes
whose intensity increases on one continuum, avoiding com-
plex terms that relate to multiple sensory properties of the
product or that may have more than one meaning to respon-
dents. Such terms include “creamy,” “rich,” and “chewy.”
“Creamy” can relate to product appearance (color, opacity),
flavor (cream, dairy), feel in mouth (smooth, thick), or some
combination. One exception would be when the research
goal is to understand consumer use of a complex term com-
pared to terms used by a trained panel for descriptive analy-
sis, or if prior studies have confirmed consumer use of the
term, in which case use of the complex term is acceptable.
Another exception may be to use the term in more than one
location on the questionnaire with a specific modifier, such
as “creamy appearance” or “creaminess in the mouth.” If
complex attribute scales are included, additional simpler
terms may be included on the questionnaire to understand,
during analysis, whether and how the simpler terms relate to
the more complex terms. An example would be to include
“cloudiness,” “dairy flavor,” “thickness,” and “smoothness”
along with “creaminess” to understand how the former
terms contribute to the latter. Keep in mind that such re-
search necessitates an increase in questionnaire length.
There are other ways to understand complex attribute terms,
including combining results of descriptive analysis with the
data from the complex term JAR scale.

Combined Attribute Scales—-Combined attribute scales
denote scales whose endpoint anchors differ. These are prob-
lematic in JAR scale construction and should be avoided, ex-
cept in cases in which there is a clearly defined semantic op-
posite (“too loose”/“too tight”). Combined attribute scales
require assumptions about the relationship between those
attributes that may or may not be true and eliminate the pos-
sibility that both qualities vary independently from “just
about right.” Consider the following combined attribute
scales:
¢ Toosour-JAR-Too sweet
¢ Toosoft-JAR-Too rough
¢ Toodry-JAR-Too greasy

A literal reading of these attribute scales reveals the fol-
lowing assumptions:

e Aproductthatis “notsourenough” is “too sweet,”
e Aproduct thatis “not soft enough” is “toorough,” and
e Aproductthatis “toodry” cannot also be “too greasy.”

Although these relationships may be true for a given
product, they are not recommended for use in JAR scales ex-
cept in situations in which the assumption is true. An ex-
ample of such a scale would be “too loose” to “too tight,”
where, in fact, something that is not “too loose” or “just
right” is “too tight.” An alternative to combined JAR scales
would be the use of two scales; in the first example, one scale
ranging from “too sweet” to “not sweet enough” and a second
scale ranging from “too sour” to “not sour enough.” While
this procedure will increase the length of the questionnaire,
it is far better to have additional questions than to collect
data that are not interpretable.



Attributes with Negative or Positive Connotations—
Attributes with inherent negative connotations should be
used with caution. Respondents may find it difficult to rate
coffee or chocolate as “not bitter enough” or salad dressing
as “not sour enough” because of a perception that “less is bet-
ter,” and the JAR scale may lose its usefulness. Alternative
procedures exist for handling inherently negative attributes.
These include respondents rating attribute intensity levels
with subsequent analysis to determine impact on overall lik-
ing, relating descriptive data to acceptability, or direct he-
donic comparison of products with differences in the at-
tribute of interest. Similarly, attributes with positive
connotations (natural, blended), particularly those with no
clear or direct association with specific sensory attributes of
the product, should not be used with JAR scales.

Number of Attributes-In most cases, several attributes
are studied in a single test for a variety of reasons: to provide
direction for multi-attribute products, to identify attributes
that have an impact on acceptability if their intensities are
not “just right,” to avoid using combined attribute scales,
and to ensure all of the key attributes are included to avoid
misattribution of perceptions (see p. 7, Misattribution of Per-
ceptions). The overall length of the questionnaire and the
number of attributes to be included should be considered to
avoid issues of respondent psychological and sensory fa-
tigue. Redundant attributes should not be included (such as
scales “not thin enough” to “too thin” and “not thick enough”
to “too thick,” for example, where “thick” and “thin” could be
considered as semantic opposites) unless one purpose of the
research is to identify redundant attributes.

Location of JAR Scales on the Questionnaire

JAR scales are typically located on the questionnaire after
hedonic ratings such as overall liking or liking of specific
product attributes. Some researchers, however, place the
overall liking subsequent to the liking ratings of specific
product attributes; in these cases, the JAR attributes would
precede the overall liking question. Gacula et al. [31] found
JAR data to be statistically uncorrelated with liking data,
suggesting that JAR scales can be placed prior to overall lik-
ing on the consumer ballot. It is common practice to have the
order of the JAR scales roughly coincide with respondents’
sensory experience of the product: for example, in the case of
food items, appearance attributes, then aroma attributes,
then flavor attributes, then oral texture attributes. In the case
of nonfood (for example, facial tissue), the order might be
appearance, feel by hand, aroma, and feel in use, followed by
specific usage attributes. If intensity and JAR scales are in-
cluded on the same questionnaire, it is common practice
that respondents answer all questions relating to the same
attribute, whether intensity or JAR, before moving to the
next attribute, to ensure respondent focus and avoid confu-
sion or fatigue. For example, it would be better to have the
attributes ordered such as sweet flavor strength, sweet flavor
JAR, salty flavor strength, and salty flavor JAR as opposed to
sweet flavor strength, salty flavor strength, sweet flavor JAR,
and salty flavor JAR. Some researchers additionally include
specific attribute liking questions. In this case, a commonly
used question order would be attribute liking; attribute
strength; attribute JAR, for example sweetness liking; sweet-
ness strength; and sweetness JAR. There are, however, some
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researchers who group all attribute liking questions together
before any intensities or JAR scales.

Appropriate/Inappropriate Use of JAR Scales

JAR scales are appropriately used when the objective is to
understand the respondents’ reactions to the intensity or
strength of specific attributes, compared to the level that
they believe would be “ideal.” These scales are particularly
useful when product component levels have not been varied
systematically, when testing competitive products or for
single prototype evaluation. In these cases, respondents can-
not respond directly to changing component levels via their
hedonic responses. When samples are varied in an experi-
mental design [43], JAR scales may not be necessary. In these
systematic studies, the researcher is often interested in di-
rect intensity or strength measurements by respondents to
demonstrate the impact of the variable ranges on the prod-
uct. The “optimal” product will be inferred from modeling
overall liking (see p. 8, Designed Experiments), and JAR
scales may provide no additional benefit. It has recently been
demonstrated, however, that JAR data may be used to pre-
dict optimal ingredient levels within the sensory space of a
designed experiment and thus may be a useful tool in this re-
gard[32].

JAR scales are not intended for use with trained panels
because the trained panel is used as an unbiased instrument
for scaling attribute intensities, not for judging whether the
intensities are too high or too low.

Benefits of Use

JAR Scales Provide Formulation Guidance

JAR scales are particularly useful in situations in which
product attributes cannot be varied systematically. JAR
scales will provide guidance as to which product attributes
are atan “ideal” level and which are not. When an attribute is
not JAR, the JAR scale can provide information as to the di-
rection of possible change.

Through the use of JAR scales, one response can repre-
sent the combination of attribute strength and hedonic judg-
ment that can be combined to provide directional informa-
tion for product formulation or optimization [24]. If, for
example, a tested product received a low hedonic score and
was rated “too salty” by 50 % of respondents (and it had been
inferred or determined that salt level impacted the hedonic
score), the researcher would most likely lower the salt level
prior to subsequent testing. In this way, information from
JAR scales provides actionable guidance for product
development.

JAR Scales Are Easily Understood

Another benefit is that respondents easily understand the
scale itself, assuming that the JAR scale has been designed
correctly and the attributes are properly chosen. The scale is
also generally understood by other stakeholders in or clients
of the organization conducting the research, making results
easy tocommunicate.

Additional Benefits of Using JAR Scales
JAR scales may also assist in defining or identifying con-
sumer segments in which segmentation is based on a prod-

) s

uct’s “ideal” sensory profile. If JAR scale data are bimodal (a



6 JUST-ABOUT-RIGHT SCALES N

product is rated both “too cheesy” and “not cheesy enough”),
one hypothesis is that respondents differ in their ideal at-
tribute levels indicating the possibility of sensory-based con-
sumer segments. Bimodal responses could also point to an
issue with the specific type or character of the attribute
(Swiss versus cheddar cheese, for example) and the need for
subsequent reformulation. Issues associated with bimodal
responses may be more easily identified with JAR scales than
with other scale types, such as intensity scales.

JARS Aid in Understanding Which Attributes
Impact Liking

When used in conjunction with liking scales, JAR scales have
the potential to aid in understanding which attributes have
the greatest impact on liking; additional information on
which end of the JAR scale to avoid (too strong or too weak)
can also be determined. Researchers can use this informa-
tion to prioritize which attributes to adjust during reformu-
lation, and how to adjust them. Additionally, attributes that
are not JAR but which have no impact on product accep-
tance can be ignored.

JAR Scale Data Analyses Range from Simple to
Complex

With a variety of methods available to analyze JAR scales,
ranging from simple graphical representation to complex
statistical methods, researchers can customize the analysis
depending upon project objectives, level of expertise, the
amount of statistical resources available, and objectives of
the project.

Risks of Use

Risks Common to All Scales

Attribute scaling involves the assignment of numbers to
quantify sensory experience [24]. The following serves as a
brief review and reminder that many of the risks associated
with JAR scale usage are common to all scaling techniques.
Potential remedies are also mentioned for each risk. See
Lawless and Heymann [24] for a more thorough discussion
of scaling risks.

Halo/Horns—-With this risk, the respondent assumes that
an overall positive or negative impression extends to the rat-
ing of subsequent attributes, whereby high product accept-
ability may lead to false ratings of “just about right.” In this
case, the respondent may wish to avoid the cognitive disso-
nance that may result from seemingly disparate ratings.
Similarly, if the respondent does not like the product overall,
assigning a positive rating on any attribute may be difficult.
While we assume that respondents separate liking of a prod-
uct from attribute evaluations, the inherent nature of JAR
scales implies a degree of affective response that may make
halo/horns a bigger risk for JAR scales than for other types of
scales. Analyzing JAR scales in conjunction with liking data
can aid in differentiating the halo/horns effect from attribute
imbalances that affect liking.

Relevance-An attribute that has low relevance in the re-
spondent’s evaluation criteria set may receive a rating of
“just about right” simply because it is unimportant, a way
out of needing to make a determination. Prior knowledge or
research can help to minimize the inclusion of irrelevant at-
tributes.

Expectation Errors—A respondent may react to an at-
tribute based on expectations, as opposed to perception. An
example would be a rating of “not salty enough” to a hot dog
that contained less than average salt. The level of salt may
actually be “just right” for the respondent, but she may rate it
as “not salty enough” because her expectation is for a saltier
hot dog. Depending upon the test objective, the addition of a
concept or positioning statement to the test may reduce this
effect (“Now hot dogs with less salt!”).

Contrast Effects—A contrast effect occurs when a respon-
dent rates an attribute based on prior products evaluated,
thereby exaggerating differences between products. For ex-
ample, arespondent may receive an extremely large product,
followed by a moderately large product. The first product
might be rated “too large,” with the second product being
rated as “too small,” because of the contrast between the first
and second products received. Served monadically, the sec-
ond product might be rated “just about right.” This could
lead to an inappropriate “fix” of the product by the developer.
Combating contrast effects typically involves rotating the or-
der of product evaluations. However, this presupposes that
the contrast effects “balance out” over evaluation order;
which may or may not be true. A total avoidance of contrast
effect would involve pure monadic product evaluation,
which is generally not a cost-effective option. However, ex-
amination of data by position served could aid in interpreta-
tion. Additionally, having the samples spaced equally apart
in terms of expected attribute strength is desirable. For ex-
ample, in a set of low-sodium samples, including one sample
at a more typical sodium level will tend to lessen the rated
saltiness differences among the lower sodium samples and
thus should be avoided.

Context Effects-Similar to contrast effects, context ef-
fects refer to the influence of the specific set of samples in-
cluded within the evaluation framework, even when balanc-
ing the sample serving orders. This effect typically occurs
after evaluating several samples that are of similar attribute
strength; while the respondent may not experience sensory
specific fatigue, the attribute level in question may seem
more “normal” or “average” than it would if experienced in a
different set of samples. Consider a set of reduced salt prod-
ucts; samples rated earlier in the evaluation may be rated as
“not salty enough,” while samples served later in the order
may be rated more “just about right,” as the respondents
frame of reference shifts more towards less salty products as
being “typical” within the set. This would occur regardless of
the evaluation order, as all of the samples would have re-
duced salt. Similarly, if a set of samples all with very high
sugar content were evaluated, after a number of sample
evaluations, the sweetness might not “stand out” as much as
it had in the prior samples. Potential remedies for this risk
include limiting the number of product evaluations in one
session or including a wide range of attribute levels so that
the context for the attribute encompasses “all” reasonable
levels. This last remedy, however, may not be practical for
most research studies.

Range/Frequency-The relative spacing and frequency of
stimulus/attribute levels within a product test may result in
context effects that produce biases in category scales [33].
Models for these biases have been described [34]. Centering
bias may occur when products with different intensities of



an attribute are evaluated in one test [14]. “Just about right”
scales are not exempt from centering and frequency biases.
When this occurs, the respondent may rate the intermediate
strength product as “just about right,” misrepresenting the
true optimum strength. Alternately, within a given stimulus
range, bias in determining the “just right” stimulus or at-
tribute level may occur when more samples are presented on
one side of the stimulus range [35]. In that case, the bias
would have respondents rate as “just right” samples at the
more heavily represented end of the range. Parducci and Per-
rett[33] also discuss the tendency among respondents to use
different parts of the scale with equal frequency. Johnson
and Vickers [36] have confirmed methods suggested by Poul-
ton [34] and McBride [14] to avoid the centering bias. When
possible, common sense would dictate that attribute intensi-
ties be equally spaced, in an attempt to counteract the fre-
quency bias. While “just about right” scales are not exempt
from biases common to all attribute scales, careful attention
to the range and frequency of attribute intensities in the pro-
spective products, coupled with a prior awareness of the pos-
sibility of such biases, will assist in robust data collection
and evaluation.

Attribute Interpretation-It is assumed that the respon-
dent interprets the attribute as the researcher intends. Mis-
understanding of the attribute by the respondent may lead to
false conclusions concerning the acceptability of attribute
intensities or a bimodal distribution of responses. For ex-
ample, a product may be rated as “too bitter” because re-
spondents may confuse bitterness with sourness or astrin-
gency. This could lead to unnecessary reformulation. Or
respondents may not like a particular flavor character, even
though the flavor level may be appropriate. Consider a prod-
uct with a bimodal distribution of “not fruity enough” and
“too fruity” because the fruit note, while moderate in
strength, is “unpleasant.” In this case, some respondents
would rate the fruity note as “too strong” because of its un-
pleasantness, while others would rate it as “too weak” be-
cause there is not enough “pleasant fruity taste.” In fact, a
bimodal response distribution in JAR scales may be an indi-
cation of misinterpretation of an attribute. Care should be
used in reaching this conclusion, however, because a bimo-
dal response distribution may also indicate the presence of
consumer segments (see p. 8, Consumer Segments and JAR
Ratings). A bimodal response distribution may also indicate
differential sensitivity in attribute detection among respon-
dents.

Misattribution of Perceptions—The lack of opportunity to
rate an attribute that is important to the respondent can lead
to misattribution, whereby perceptions not explicitly mea-
sured result in perceptions being expressed in one or more
unintended attributes. An example of this may occur if a re-
spondent perceives a product as being too sweet and too sour
in which the only relevant attribute on the ballot is sweetness
JAR. In this case, the respondent may be confused; if she
rates the product “too sweet” she might be afraid that the
product will be inferred to be “not sour enough.” To combat
this, she rates the product as being “too salty” to capture the
sourness strength, making this rating subconsciously or per-
haps second guessing her perception. Although this may be
an extreme example, it illustrates the necessity of thoroughly
understanding the perceptible attributes of the product un-
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der study and deciding which attributes need to be included
on the questionnaire.

Risks Unique to JAR Scales

Because JAR scales are intended to combine intensity and
acceptability to relate the perceived strengths of specific at-
tributes to the respondents’ theoretical optimum, there are
additional risks unique to JAR scales that researchers should
consider. Potential remedies for each risk are included.

Cognition Versus Perception-Respondent confusion of
perception with cognition can happen when an attribute car-
ries negative connotations. Examples may include attributes
such as “salty” or “sweet,” which may have negative health
connotations. A respondent may rate a product as “too salty”
or “too sweet” because the respondent believes that ingredi-
ents that cause sweet and salty tastes are “unhealthy;” how-
ever, this product may in actuality be preferred to a less
sweet or salty product by the same respondent. In this case,
the JAR scale would not have provided valid direction for
product development. Understanding the relationship be-
tween attribute skews and overall liking would be helpful in
teasing out this misperception, as there may be no impact on
overall liking associated with the attribute skew. Another ex-
ample occurs when nonsensory judgments are considered
along with the attribute in question. For example, a respon-
dent may rate the tongue burn of a mouthwash as “too
strong;” however, that level of burn may be associated with
efficacy. In this case, a reduction in burn may result in a re-
duction in perceived efficacy. The inclusion of efficacy rat-
ings would be appropriate in helping to understand this
trend.

Never Enough “Just About Right” Attributes-There are
some attributes that respondents typically rate as “not
enough” on JAR scales, such as inclusions like nuts in choco-
late bars or ice cream, toppings like pepperoni on a pizza, or
characterizing flavors such as “cheesy.” This may lead to an
effect, similar to that discussed previously, in which JAR rat-
ings are given based on cognition versus perception. Increas-
ing the component in question may, in fact, decrease product
acceptability, as the increased component may lead to flavor
or texture imbalance. Linking the JAR ratings with hedonic
measures may help identify attributes in which this effect ex-
ists.

Respondent Biases—Respondents may assume that at
least one product under evaluation is “just about right” or
that it is unlikely that all products are “too strong” or “too
weak” on some attribute, when in reality, that may be the
case. They may assume that a product that is well liked is
“just about right” on all attributes. Or, a respondent may as-
sume that if she rates a product as “just about right” on all
attributes, then he/she shall like it more than a product that
she rated as “too high” or “too low” on one or more at-
tributes. Including a sufficient number of respondents in the
research will lessen the impact of this effect.

Attribute Interdependence-For JAR data to be action-
able, the researcher should understand how formulation ele-
ments interact to influence attribute ratings. For example, a
researcher may have several alternative solutions to the
problem of a “too sweet” product, including adjusting the
sweetness, sourness, saltiness, texture, or flavor system as a
whole. Not understanding these interactions may limit the
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developer’s ability to respond appropriately to data obtained
from JAR scales. Additionally, making changes to one at-
tribute to move it closer to “just about right” may move an-
other attribute away from optimum. Moskowitz [37] created
models for product optimization using liking scores gener-
ated from an array of products that constituted an experi-
mental design. The predicted optimal product did not gener-
ate estimated mid-point JAR scale values (“just about right”)
for many product attributes. Similarly, when the data were
reverse engineered to set JAR scales to scale midpoints (opti-
mal attribute levels), the estimated product profile was not
that of the optimal product. Apart from the fact that these
results were derived from mathematical formulas (although
the original data were obtained via experimentation), it is
possible that the disparities in reaching optimal overall ac-
ceptability versus optimal individual attribute levels is due
to what Moskowitz et al. [23] referred to as “Contradictions
and Trade-offs.” When respondents rate a product on a num-
ber of JAR scale attributes, each attribute is considered sepa-
rately. However, when altering the formulas in response to
respondent input, there are often trade-offs between respon-
dents’ desires and formulation constraints. The result is that
some attributes may not be delivered at the target level. A
thorough understanding of the interactions between the
product components and anticipated changes during refor-
mulation will aid in lessening the number of off-target at-
tributes.

Respondents May Not Know Their Ideal Attribute Level-
Some researchers question if the respondent really knows
his or her ideal level of an attribute. It is possible that a re-
spondent may think that he would prefer a darker product,
but if such a product were delivered, it might be “too dark”
even if the other product attributes remain unchanged. One
remedy for this risk is to understand, through prior con-
sumer testing history, which attributes are prone to these ef-
fects.

Relating Responses to Level of Change Desired—A devel-
oper may incorrectly assume that a large number of “too
much” responses suggests a larger decrease in an ingredient
than a smaller number of “too much” responses, or that a
larger number of “too much” responses suggests a larger im-
pact on overall liking or preference than a smaller number of
“too much” responses. It is difficult, if not impossible, to re-
late the level of adjustment to the distance of the attribute
from “justright” [38].

Temporal Aspects of Product Testing-The amount of
product evaluated and the time period over which a product
is evaluated may influence the JAR scale ratings. An attribute
may be “just right” when consuming a small amount of prod-
uct, but may prove to be “too strong” or “too weak” when
consuming a full serving or with continued exposure. Or, a
product may have a strong initial impact, but be more bal-
anced over a typical consumption pattern. These aspects of
product testing should be considered when examining the
data from JAR scales. Additionally, products that are not well
blended (such as fat-free or reduced fat products) may have
flavor “spikes” causing responses on both sides of “just
right.” These aspects of product testing should be considered
when examining data from JAR scales.

Effect of Product Reformulation on Subsequent Respon-
dent Ratings-Based on JAR scale data, products may be re-

formulated to satisfy respondents who found the product
not “just about right.” These reformulations may not take
into account the effect of the reformulations on those re-
spondents who originally rated the attribute as “just about
right” or who liked the attribute strength in earlier evalua-
tions. There are statistical methods of accounting for this po-
tential issue (see Appendix P and Appendix Q case studies).

Consumer Segments and JAR Ratings—Lawless and Hey-
mann [24] suggest that JAR scale ratings may mislead prod-
uct developers to conclude that a homogeneous population
exists where one does not. Consider the case in which two
groups of respondents rate a product as “just about right;”
one of the groups thinks the product is strong and the other
group thinks the product is mild, although both believe the
level is just about right. The solution for this risk would be to
include intensity or strength evaluation along with the JAR
scale ratings. However, knowing that there are consumer
segments that vary in perception as opposed to acceptability
would likely not affect a decision concerning the product. It
is true, however, that without the inclusion of intensity or
strength ratings, respondents’ perceptions of attribute levels
are not known.

Effect of JAR Scale Inclusion on Hedonic Ratings—There
is some evidence [22,39] that the inclusion of JAR scales on
the same questionnaire with hedonic scales may alter overall
liking ratings compared to those ratings generated in the ab-
sence of JAR scales. This effect did not appear when intensity
scales were included (as opposed to JAR scales), using the
same attributes. Subsequent researchers [40,41] did not find
this same effect consistently. The effect of JAR scale inclu-
sion on hedonic scaling needs further study.

Remedies for the Risks—While the prior sections on risks
may make a researcher cautious in using JAR scales, these
risks can be minimized through judicious ballot construc-
tion, data analysis and interpretation, and taking the steps
recommended in each risk section.

Alternatives to JAR Scales

Even with cautious questionnaire construction, careful data
analysis, and interpretation, not all researchers will feel
comfortable using JAR scales for product testing; alterna-
tives exist that obviate the need for JAR scales. Examples of
analysis of data sets that use alternatives to JAR scales are
included in Appendixes X, Y, and Z.

Collecting Intensity and Hedonic Information as Separate
Scales-The information obtained from JAR scales can be ap-
proximated by collecting data from a series of products in
which attribute strength levels and attribute liking are col-
lected for each product. The attribute intensities can be re-
gressed on the attribute (or overall) liking scores. In this way,
the attribute intensity level that is associated with the high-
est attribute (or overall) liking can be determined [42]

Designed Experiments—Designed experiments may be
used to optimize a single product attribute or to optimize si-
multaneously multiple product attributes that may interact
with one another. For a single attribute, a series of products
is prepared that systematically varies a formulation or pro-
cessing variable that would be expected to vary the perceived
intensity of the attribute. At a minimum, overall liking is col-
lected, although many researchers also collect attribute
strength and attribute liking ratings. Data are analyzed to



identify optimal attribute strength and formulation variable.
There are a number of experimental designs that are used
from a simple design with four samples to very complex de-
signs with a large number of samples[43].

Ideal Scaling—In place of attempting to gauge attribute
intensity and acceptability in one scale, ideal point modeling
involves separating out the hedonic component of the re-
sponse from the intensity evaluation [41]. In essence, the re-
spondent is asked how strong the attribute is on an intensity
scale, followed by how strong they would like that attribute
to be. The flow of questions would therefore be:
¢ Howsweet is this product? (intensity scale of choice)

e How sweet is your ideal product? (intensity scale of
choice)

Mean product attribute ratings are then compared to
the mean “ideal” product attribute ratings, which serve as
product benchmarks and provide product developers with
direction. A comparison of the responses to these two ques-
tions gives an indication of the direction in which the at-
tribute should be moved and, to some extent, the magnitude
of the desired shift. It is postulated that the greater the dis-
tance between the perceived and ideal intensities, the greater
the change that must be made to adjust the attribute.

Asking liking of the strength of the attribute may pre-
cede these questions. In this case, the flow of questions
would be:

e  How much do you like or dislike the “attribute” of this
product?

e How “attribute” is this product?

e How “attribute” should this product be?

Response to the prior liking question, if asked, may sug-
gest the significance of the discrepancy between the per-
ceived and ideal intensities with respect to product accep-
tance and may provide product developers with a broader
picture of product performance. When using this technique,
it is possible that respondents may rate the ideal level of cer-
tain attributes as unrealistically high or low, which may lead
to erroneous reformulation.

Data Analysis Techniques

There are a number of methods available to the researcher
for analysis of JAR scale data and several for analyzing data
with alternatives to JAR scales. As with any scaling tech-
nique, proper analysis is critical for drawing appropriate
conclusions from the data. While analysis of JAR scale data
ranges from simple to very complex, the interpretation of
such data should be considered carefully.

Data Analysis of JAR Scales—-When choosing a method
for JAR scale analysis, it is important to consider what spe-
cific question(s) the researcher wants to answer. As a first
step, the researcher should consider whether the question(s)
to be answered involves only the JAR data or whether the
question is based on relationships between JAR and other
data, such as product acceptability. Table 1 lists commonly
used methods for JAR scale data analysis in two columns de-
pending upon whether the question and subsequent analysis
method involves only JAR data or the relationship between
JAR and other data. The specific question that each method
of analysis intends to answer is also included. Each method
for analysis is presented in the same format: an introduction
and objective section, which gives background for the analy-
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sis as well as what the method purports to determine; a re-
quirements section, which specifies the type of data needed;
a “how to” section, which describes the mechanics of the
analysis; a results and conclusions section, which discusses
the results of the analysis when applied to the case study
data; a pros and cons section, which underscores benefits
and caveats associated with the analysis; and finally, a rec-
ommendation section, which discusses when the method
should be used (if at all).

Description of the Dataset Parameters
These data are from a five-sample sequential monadic test
with N=119. The data from three samples were used for the
analyses. Sample 170 is bimodally distributed for overall lik-
ing, Sample 896 is normally distributed, and Sample 914 is
not fully bimodal but is also not normal.
The samples are variations of the same type of product.
Attribute descriptions were changed to generalize the
product, but the liking and JAR data are related to the same
attributes. Figure 4 outlines the dataset attributes and scale
anchors.

Methods of Analysis Involving Only the JAR Scales

Graphical Methods—These methods involve visual examina-

tion only:

¢ Graphical data display (see Appendix A).

e Graphical scaling (see Appendix B).

Nongraphical Methods-These methods require computa-

tion:

e Percent difference from norm and percent difference
from just right (see Appendix C).

¢ Themean (see Appendix D).

e Mean directional and mean absolute deviation (see Ap-
pendix E).

e Mean versus scale midpoint (see Appendix F).

¢ Cochram-Mantel-Haenszel (CMH), Stuart Maxwell, Mc-
Nemar, and Chi-square (see Appendix G).

¢ Proportional odds/hazards model (see Appendix H).

e f-tests (see AppendixI).

e Analysis of variance (ANOVA) (see Appendix J).

¢ Thurstonian ideal point modeling (see Appendix K).

Methods of Analysis Involving Data

Relationships

The following methods relate JAR to data obtained from
other scale types, most commonly liking measures.

e  Penalty ormean drop analysis (see Appendix L).

e Adding significance measures to penalty analysis (see

Appendixesdevand O).

The case studies, Appendix N and Appendix O, provide
several methods for testing the significance of an observed
mean drop (in other words, they determine whether the dif-
ference in mean scores among those rating the product “just
about right”” and those rating the product “too weak” (for ex-
ample) is statistically significant). Neither case study re-
quires that the response data be normally distributed be-
cause they directly approximate the variability of the mean
drops; however, interval level data is required.

The first case study, Appendix N, transforms the JAR
variable to dummy variables, and then creates a regression
model for each variable. The regression coefficients from
these models are taken to be unweighted penalties. The case
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TABLE 1—Methods for analysis of JAR Scale Data.

Questions Involving Only JAR Data

Questions Involving Data Relationships

What does the JAR Distribution Look like?
¢ Graphical Data Display (Appendix A)?
e Graphical Scaling (Appendix B)?

Are there enough JAR Responses compared to what is
expected?

¢ % Difference From Norm (Appendix C)?

* % Difference From Just Right (Appendix C)?

Are there an equal number of responses on either side of just
right?

e Graphical Scaling (Appendix B)?

¢ Mean (Appendix D)?

¢ Mean Directional (Appendix E)?

¢ Mean Absolute Deviation (Appendix E)?

¢ Mean vs. Scale Midpoint (Appendix F)?

Are the distributions of JAR scores similar between products?
¢ Cochran-Mantel-Haenszel (CMH) (Appendix G)°

e Stuart Maxwell (Appendix G)°

e McNemar (Appendix G)°

e Chi-square (Appendix G)?

¢ Proportional Odds/Hazards Model (POM/PHM) (Appendix H)°

Do the JAR score means differ between products?
e T-Tests (Appendix 1)
¢ Analysis of Variance (ANOVA) (Appendix J)?

How do the JAR scale distributions compare to those of the
theoretical ideal distribution?
¢ Thurstonian Ideal Point Modeling (Appendix K)°

How did liking change among those not finding the product
JAR?

e Penalty or Mean Drop Analysis (Appendix L)°

¢ Significance of Penalties (Appendix N)°

¢ Bootstrapping Penalty Analysis (Appendix O)°

What is the potential effect of attribute adjustment on at-
tribute likers?
¢ Opportunity Analysis (Appendix P)°

What is the predicted effect on the entire distribution of JAR
scores if the non-JAR attribute skews are reduced?
¢ Product Improvement Analysis (PRIMO)

(Appendix Q)°

Did the people who don’t find the product JAR rate it lower?
e Chi Square (Appendix R)?

What are the spatial relationships between JAR and other
attributes?

¢ Biplots (Appendix S)°

* Correspondence Analysis (Appendix S)°

¢ Principle Components Analysis (Appendix S)°

What is the linear relationship between the JAR rating and
liking?
e Correlation (Appendix T)?

Can the relationship between JAR and other data be mod-

eled?

¢ Linear Regression (Appendix U)®

¢ Multivariate Adaptive Regression Splines (MARS) (Appendix V)¢
¢ Partial Least Squares Dummy (PLS) (Appendix W)°

aBasic statistical skills needed, most statistics packages include
bAdvanced statistical skills or special software needed
°Advanced statistical skills and specialized software needed

study then provides four methods of significance testing of
these coefficients. Three of the four methods use a 7-test on
the coefficient, calculating the coefficient standard error ei-
ther directly from the model or using a jackknife or boot-
strap procedure. The method based directly on the model is
termed “parametric.” The other two methods are termed
“semi-parametric” and derive from leave-one-out cross-
validation (jackknife) or bootstrap resampling of the data.
The fourth method presented is the percentile bootstrap,
which is nonparametric and produces a confidence interval
that is used to determine significance.

The second case study, Appendix O, provides a single
method of significance testing. This method is similar to the
semi-parametric bootstrapping method in the first case
study; however, it uses bootstrap resampling directly on the
mean drops and not on the regression coefficients. Both the
jackknife and bootstrap require some programming skill to
implement, but the results are straightforward to use. All the
presented methods of estimating the variance are well
grounded in modern statistical theory and should be of inter-
est to researchers interested in adding significance tests to
their penalty analyses.

e  Opportunity analysis (see Appendix P).

e Product improvement analysis (PRIMO) (see Appendix

0).
e Chisquare (see Appendix R).
e Factoranalysis and biplots (see Appendix S).

Methods of Analysis Involving Correlation and
Regression
The following case studies use correlation or regression
analysis to relate the consumers’ JAR ratings to overall lik-
ing. Although all of the case studies (except the case study
that only covers correlation) share regression analysis as
their data analysis technique, the approaches are very differ-
ent from each other. They differ in the assumptions they
make concerning the statistical properties of the JAR data
and, more basically, in the questions they answer concerning
the relationship of the JAR ratings to overall liking. The
methods cannot be used interchangeably. The objective of
each analysis shall be considered to select an approach that
meets the needs of the researcher.

The first case study uses correlation analysis to relate
the JAR data to overall liking. Correlation is a widely used



Fig. 4—Date Set Attributes and Scale Anchors
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Sample ID | JUST ABOUT JAR ANCHORS LIKING LIKING
n=119 RIGHT (JAR) (5 point scale) ATTRIBUTES | ANCHORS
ATTRIBUTES (9 point
hedonic scale)
170 Size Much too Small Liking of Size Dislike
Slightly Too Small Extremely
Just About Right
Slightly Too Large
Much too Large
896 Color Much too Light Liking of Color Dislike Very
Slightly Too Light Much
Just About Right
Slightly Too Dark
Much too Dark
914 Flavor Much too Weak Liking of Flavor Dislike
Slightly Too Weak Moderately
Just About Right
Slightly Too Strong
Much too Strong
Thickness Much too Thin Liking of Texture | Dislike Slightly
Slightly Too Thin
Just About Right
Slightly Too Thick
Much too Thick
Stickiness Not Nearly Sticky Enough Overall Liking Neither Like
Slightly Not Sticky Enough nor Dislike
Just About Right
Slightly Too Sticky
Much too Sticky
Like Slightly
Like Moderately
Like Very Much
Like Extremely

and familiar statistical technique. It is, however, limited in
the depth of information it can provide concerning the rela-
tionship of JAR data to overall liking, and it is among the
most restrictive in terms of the assumptions it makes about
the nature of JAR scale data. Correlation analysis assumes
that JAR ratings are interval scale data arising from, at a
minimum, a unimodal, symmetric probability distribution.
Further, correlation assumes that the relationship between
the JAR ratings and overall liking can be adequately summa-
rized using a straight line. All of these assumptions are sus-
pect. However, the wide availability of software that can per-
form correlation analysis and its ease of use and
interpretation make it a seemingly desirable technique.
When using correlation analysis, each JAR scale is analyzed
separately. Correlation analysis does not reveal how impor-
tant it is to be JAR. However, correlation analysis reveals if it
is worse to be above JAR than it is to be below JAR or vice
versa. If the correlation is positive then it is worse to be “Not
Enough”. If the correlation is negative it is worse to be “Too
Much”. If that is the only goal of the analysis, correlation

analysis may be a solution. However, there exist other widely
available, easy-to-use techniques that can reveal more about
the nature of the JAR/liking relationship.

The second case study uses standard regression analysis
to relate the JAR data to overall liking. Like correlation
analysis, regression analysis is a familiar and widely avail-
able technique. Regression makes the same assumptions
concerning the nature of JAR data as correlation. However,
regression has several advantages over correlation. It pro-
vides predicted liking ratings based on the JAR scale ratings
and all of the JAR scales can be analyzed simultaneously.
More importantly, the simple linear regression model can be
extended to fit curvilinear relationships between the JAR rat-
ings and overall liking. These curvilinear relationships come
closer to the expectation that overall liking should be higher
at the middle of a JAR scale and they are capable of revealing
ifitis better to be on one side of JAR than the other.

Other, more sophisticated, regression techniques avoid
the assumptions that JAR scales produce data that are inter-
val scale, unimodal, and symmetric. For example, the third
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case study uses multivariate adaptive regression splines
(MARS) analysis to relate JAR ratings to overall liking.
MARS selects the JAR variables that are significantly related
to overall liking and determines the cost associated with be-
ing above or below the JAR level for specific attributes. Un-
like penalty analysis that uses a collapsed three-point JAR
scale, MARS uses the information from all of the JAR scale
categories. Beyond determining if it is better to be on one
side of JAR than the other, MARS estimates how much over-
all liking is decreased by not being JAR. One drawback to
MARS is that the software required to perform the analysis is
not widely available.

Another limitation of MARS (and all of the other tech-
niques discussed thus far) is that they assume the JAR rat-
ings are independent of each other. This is seldom the case.
In almost all product categories, many sensory attributes
rise and fall either together or opposite each other and,
therefore, are intercorrelated. The fourth case study over-
comes this limitation. Partial least squares (PLS) regression
with dummy variables possesses all of the advantages of
MARS but does not require that the JAR attributes be inde-
pendent of each other. Although the output of a PLS regres-
sion can be difficult to interpret, the approach provides as
much, if not more, information about the relationship be-
tween the JAR ratings and overall liking while making the
fewest assumptions about the nature of the JAR data.

A previously mentioned regression case study presents
two related techniques: proportional odds model (POM) and
proportional hazards model (PHM). Although both are a
type of regression analysis, they deliver results more similar
to ANOVA than standard regression. Rather than focusing
on predicting overall liking, POM and PHM provide overall
tests for differences among the test samples and pair-wise
comparisons to determine which samples are significantly
different from each other. Both approaches take into ac-
count the ordinal nature of JAR scale data, but neither gives
any special treatment to the middle “JAR” category on the
scale. If statistical comparisons of the test products are the
primary objective of the analysis, POM and PHM could be
considered. While these methods are regression based, their
objective of differentiating products’ JAR distributions
places them in Table 1 under “Questions Involving Only JAR
Data,” specifically under the question, “Are the distributions
of JAR scores similar between products?”

e Correlation (see Appendix T)

e Regression (see Appendix U)

e MARS (see Appendix V)

e Partial least squares dummy (PLS) (see Appendix W).

Data Analysis for Methods Alternative to JAR

Scales

e Collecting intensity and hedonic information separately
(see Appendix X).

e Designed experiment (See Appendix Y).

e Ideal pointscaling (see Appendix Z).

Summary and Conclusions

This manual has provided an in-depth look at JAR scales, in-
cluding their application, construction, and analysis. After
an introductory section, a brief history of the origin and evo-
lution of JAR scale usage was presented. This was followed

by a practical discussion covering JAR scale construction in-
cluding number of scale points, identification and place-
ment of scale anchors, attribute selection, and location on
the ballot. A section on appropriate and inappropriate uses
of JAR scales followed. An extensive review of benefits and
risks was then presented, including risks that are common to
all scales as well as those risks that are unique to JAR scale
usage. Alternatives to JAR scales were included for the re-
searcher that chooses other means of obtaining product di-
agnostic information. Finally, over 25 methods for analysis
of JAR scale data were presented in the form of case studies
using raw data from a common dataset. The case studies, all
in similar format, described the objective, requirements,
computations, output, and interpretation of each method,
followed by a section on pros and cons with a final recom-
mendation on usage. These case study analyses ranged from
simple graphical representations to complex computations
that required advanced statistical knowledge or specialized
software or both. Case studies for alternatives to JAR scales
were presented as well, although these are based on unique
datasets.

The case studies demonstrated that, with proper analy-
sis and interpretation, JAR scales provide actionable guid-
ance for product development.
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Appendix A: Graphical Data Display

Colleen Conley'

Introduction and Objectives

The graphical data display method provides a visual com-
parison of JAR data across products and attributes, or both.
The objective of this method is to provide a method to visu-
ally assess the distribution of JAR data. This is a descriptive/
summarization method, not an inferential one.

Requirements

This method requires the frequency distributions for each
attribute for each product, and an application with bar
graph capabilities.

“How to”

Summarize the distribution of the data in a frequency table
for each product by attribute combination. Graph these
summaries using either bar charts or cumulative bar charts
of the frequencies. Both can be grouped either by scale cat-
egory or by product as shown in the two examples below. The
bar charts can also be displayed in a product X attribute grid.

Case Study Data Examples

The examples below use the flavor attribute for products
170, 896, and 914. Figures 1(a) and 1(b) display the fre-
quency distribution grouped by scale category and by prod-
uct, respectively. Figure 2 displays a cumulative bar chart.

Results and Conclusions

Example 1(a) Graph of Frequency Distributions (grouped by
JAR scale category) comparing response patterns for three
products.

From the graphics above 82 % (84/102) of the assessors
scored flavor of Product 896 “About Right,” whereas only 62
% (63/102) scored flavor of Product “About Right” and only
449 (45/102) scored Product 914 “About Right.”

Alternatively, bar graphs can be used as illustrated be-
low, showing actual number of responses given in each cat-
egory for all three products on the same graphic. It is easy to
see in the graphic below that product 896 was considered
“About Right” in flavor by the most assessors (N =84), while
product 914 was thought to have “Not Enough” flavor by 48
assessors and “About Right” by 45 assessors.

Pros and Cons

This method provides a succinct visual summary, and is in-
tended for use as a summary method comparing multiple
products/attributes. It is not a formal technique for testing
hypotheses.

Recommendation

This method is recommended for all JAR scale data as an ini-
tial evaluation tool.

! Director, Sensory Science, Flavor Technology R&D, Solae Company, LLC, P.O. Box 88940, St. Louis, MO 63188.
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Appendix B: Graphical Scaling

Anne Goldman' and Jagoda Mazur'

Introduction and Objective

Graphical scaling is a technique for presenting the results for
a JAR scale analysis that graphically illustrates any imbal-
ance around the “Just Right” scale point.

Requirements

The percentage of respondents on both the “Not Enough”
and “Too Much” sides of “Just Right” are summed up, for
each product and attribute.

“How to”

Subtract the proportion of responses on the “Not Enough”
side of the scale from the proportion on the “Too Much” side
of the scale. The difference (the Net Effect) indicates the
magnitude and direction of differences among test samples,
and can be graphed for illustration of the product differ-
ences.

Case Study Data Example

This example uses the Size, Color, Flavor, Texture, and
Stickiness ratings for products 170, 896, and 914. The data
have been collapsed to a three-category scale, as illustrated
in Table 1, and the differences plotted in the right hand col-
umn of Graph 1.1 This discussion assumes that the a priori

TABLE 1—Distribution of responses (% of re-

spondents) for the three products.

% Sample 170 Sample 896 Sample 914
Size “Too Small” 24 22 28
"Just Right” 36 39 31
“Too Large” 40 39 41
Color “Not Enough” 11 1 21
"Just Right” 83 96 79
“Too Much” 6 3 0
Flavor “Not Enough” 16 5 53
“Just Right” 62 82 44
“Too Much” 23 13 3
Texture “Too Thin" 13 9 4
“Just Right” 82 88 75
“Too Thick” 5 3 21
Stickiness “Not Enough” 4 1 11
"Just Right” 79 85 80
“Too Much” 17 14 9

criteria included a requirement for a “Just Right” of =70 %
and a Net Effect (Difference) <20 %.

Results and Conclusions

The ratings show that all three products scored below the
70 % “Just Right” criterion for size, and products 170 and
914 did not meet that criteria for flavor. The Net Effects plot
clearly shows that sample 914 lacks flavor. Although Product
914 met the 70 % hurdle for color, the Net Effects suggest
that there may be room for improvement by making the
product a bit darker.

The actual ratings also reveal polarization of responses
for Size for all three products and may suggest existence of
more than one consumer segment in the sample. Due to po-
larization, the Net Effects do not provide clear direction for
product changes for Size, as they are located below the 20 %
Net Effect criterion in this example. Sample 170 scored
slightly below the 70 % criterion for Flavor; however, the
“Not Just Right” responses are similar for each end of the
scale, again not giving obvious guidance for improvement.

Pros and Cons

The benefits of using this method include ease of calculation,
visual presentation, and the simplicity of examination and
interpretation of one summary statistic. In cases where the
data on each side of “Just Right” are aggregated, the Net Ef-
fects may not be representative of the magnitude of differ-
ences among products, because information on the degree
of “Not Enough” or “Too Much” are lost. Other disadvan-
tages of this method are that if the JAR data are bimodally
distributed owing to consumer segments (which may have
different expectations concerning product intensities), the
results may be misleading in that Net Effects may be artifi-
cially low. Another caveat revolves around the assumption
that if a product is reformulated to address the skew on one
side of “Just Right” that this would not cause a skew on the
other side of “Just Right.” In color for product 914, for ex-
ample, if the color were reformulated to be darker, would
some of the respondents currently rating the product “Just
Right” now rate the color too dark?

Recommendation
The graphical scaling for JAR scale data is recommended as

a presentation component of a JAR analysis, but is not rec-
ommended as a stand-alone method of analysis.

1Applied Consumer and Clinical Evaluations, 2575 B. Dunwin Dr., Mississauga, ON L5L3N9.
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Appendix C: Percent Difference from Norm
and Percent Difference from Just Right

Gloria A. Gaskin' and Joni L. Keith'

Introduction and Objective

The Percent Difference from Norm analysis determines if
the % JAR responses meet or exceed an established norm. If
they do not, it also determines the direction of the imbal-
ances of the JAR scale responses. The Percent Difference
from “Just Right” analysis does not rely on an established
norm, but compares the non-JAR responses to those in the
“Just About Right” category. If a significant difference is
found, the non-JAR responses are compared to each other.
The analysis is conducted on one product-attribute combi-
nation at a time, but there is no limit as to how many prod-
ucts or attributes may be analyzed.

Requirement

These analyses require the base size (1) and marginal fre-
quency distribution for each JAR scale attribute and product
to be analyzed.

“"How to”

There are two approaches to utilizing this technique depend-
ing upon whether a normative value for the desired “Percent
Just Right” has been established.

Analysis A: Percent Difference from Norm used
when a normative value for percent just right has
been established

1. Determine the “norm” JAR% responses to be used in the
analysis, e.g., 70 %;

2. Is the actual JAR% equal to or greater than the estab-
lished norm?

3. a. If yes, no further analysis is required; if the JAR% is
less than the established norm, continue with the
analysis.

b. Sum the number of responses at each end of the JAR
scale (e.g., 1+2 and 4 +5, when using a centered 5-point

category scale) and perform a significance test to deter-
mine if the number of response at the two ends are sig-
nificantly different using a binomial or chi-square test
against an expected value of 50 %. The total sample size
is the number of observations that are not “Just About
Right.” The confidence level of the test will commonly
be a value such as 90 % or 95 %. The critical value can be
determined using a binomial table, or a statistical func-
tion. Excel offers the CRITBINOM function.

If a difference is found between the extremes on the
“Just About Right” scale, the product should be changed
towards the end which has the fewer responses.

Example from Case Study Data

The following tables (Tables 1-3) demonstrate the method

for the Flavor, Color, and Size attributes from products 170,

896, and 914 from the case study data. In each case, the norm

is assumed to be 70 % “Just About Right” or better. The col-

umns in each table include

1. theproduct code,

2. theobserved JAR value,

3. doesthe observed JAR meet the criterion,

4. the number of ratings below the “Just About Right”
value,

5. the number of ratings above the “Just About Right”
value,

6. thesumofcolumns5andé6,

7. thelarger of columns 5 and 6,

8. the binomial critical value (the 95 % confidence level in
this example),

9. theresult of the comparison of columns 7 and 8,

10. the conclusion from that comparison.

Results and Conclusions from the Percent
Difference from Norm analysis

Results of the case study using the Percent Difference from
Norm analysis indicate that Product 914 does not have

TABLE 1—Attribute: Flavor, option A.

1 2 3 4 5 6 7 8 9 10
Are 1 and 2
0.05 different
Product JAR Is JAR>= Critical than 4 and 5
Code (n, %) 70 %? 1and 2 4 and 5 Sum (or n) Max? Value at p=0.05? Conclusions
170 63 No 16 23 39 23 27 No
Percent 61.76 15.69 22.55 Product 914
896 84 Yes 5 13 18 13 14 N/A, JAR>= does not
70 % have enough
Percent 82.35 4.90 12.75 _ flavor;
increase the
914 45 No 54 3 57 54 37 Yes flavor of
Percent 44.12 52.94 2.94 Product 914

dLarger of 1+2 or 4+5

' Bush Brothers and Company, 1016 E. Weisgarber Road, Knoxville, TN 37909.
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TABLE 2—Attribute: Flavor, option A.

1 2 3 4 5 6 7 8 9 10
Are 1 and 2
0.05 different
Product JAR Is JAR>= Critical than 4 and 5
Code (n, %) 70 %? 1and 2 4 and 5 Sum (or n) Max? Value at p=0.05? Conclusions
170 85 Yes 11 6 17 11 14 N/A, JAR>= All products
70 % considered
Percent 83.33 10.78 5.88 JAR; no
896 98 Yes 1 3 4 3 N/A N/A, JAR>= action
70 % necessary
Percent 96.08 0.98 2.94
914 81 Yes 21 0 21 21 16 N/A, JAR>=
70 %
Percent 79.41 20.59 0.00

dLarger of 1+2 or 4+5

enough flavor (p =0.05, 1 =57 [54 (not enough flavor) versus 3
(too much flavor)]. For the attribute Color, all of the products
were considered just about right in color based on a JAR% of
70% or more. For the attribute Size, Product 170 was found
to be much too large (p=0.05, n=65 [24(“Not Large
Enough”) versus. 41 (“Much Too Large”)]. Product 896 also
was found to be much too large in size (p=0.05, n=62
[22(“Not Large Enough”) versus 40 (“Much Too Large
style”)].

Analysis B: Percent Difference from “Just Right”

used when a normative percent “Just Right”

has not been established

This analysis determines if the non-JAR responses on the

“Just About Right” scale (1, 2, 4, 5 on a centered 5-point cat-

egory scale) are significantly different from the number of re-

sponses in the JAR category, for a given attribute and prod-

uct,.

1 Determine n, the base size, which is the total of all re-
sponses.

2. Total the number of responses in the non-JAR categories
of the “Just About Right” scale (1 +2 +4 +5).

Compare the number of responses in the non-JAR categories

to the number expected in a binomial distribution of the

same total size having a binomial proportion of 0.5. Use a

table of the binomial distribution to look up the critical value

for the alpha=0.05 level when # is equal to the base size cal-

culated in step1, and p, the binomial proportion, is 0.5. The

critical value may also be determined by using the following

function in Excel: CRITBINOM(trials, probability s, alpha)

where trials is equal to 1, as above, probability s is 0.5 and
alphais 0.05.

If a difference is found between the total of the extreme
categories and the number of JAR responses and if the num-
ber of JAR responses is less than or equal to the total of all
other responses, proceed to Analysis A, Step 3b, to assess if
the extreme categories are different from one another and if
so, in which direction.

Example from Case Study Data

The following tables (Tables 4-6) demonstrate the method
for the Flavor, Color, and Size attributes from products 170,
896, and 914 from the case study data. The columns in each
table include

the product code,

the number of non-JAR ratings,

the observed JAR value,

the base size,

the binomial critical value (the 95% confidence level in
this example),

6. theresult of the comparison of columns 2 and 3,

7. thelogical conclusion from that comparison,

8. atextual summary of the conclusion.

Results and Conclusions from Option B

Uk W=

Results of the case study using Analysis B, indicate
that Product 914 does not have significantly more JAR
responses than the combined data from the combined
extreme categories (p=0.05, n=102 [57 (“Not
Enough” flavor) versus 45 (“Just About Right” in fla-

TABLE 3—Attribute: Size, option A.

1 2 3 4 5 6 7 8 9 10
Are 1 and 2
0.05 different

Product JAR Is JAR>= Critical than 4 and 5

Code (n, %) 70 %? 1and 2 4 and 5 Sum (or n) Max? Value at p=0.05? Conclusions

170 37 No 24 11 65 11 41 Yes Reduce the
Percent 36.27 23.53 40.20 size of

896 40 No 22 40 62 40 39 Yes Products 170
Percent 39.22 21.57 39.22 and 914

914 32 No 28 42 70 42 44 No
Percent 31.37 27.45 41.18

dLarger of 1+2 or 4+5
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TABLE 4—Attribute: Flavor, option B.

1 2 3 4 5 6 7 8
0.05 Are 1,2,4,5 different Is JAR>than
Product Sum Critical than JAR at all others at
Code 1,2,4,5 JAR (or n) Value p=0.05? p=0.05? Conclusions
170 16+23 63 102 62 Yes Yes
=39
Percent 38.24 61.76 But not large Same conclusion
enough. Go to as in Option A
Option A
896 5+13= 84 102 62 Yes Yes Same conclusion
18 as in Option A; No
Percent 17.65 82.35 No further adjustments in
analysis flavor necessary
914 54+3= 45 102 62 No No Same conclusion
57 as in Option A
Percent 55.88 44.12 Go to Option A

vor)]. Consequently, further analysis was necessary.
Proceed to Step 3b in Option A. Utilizing Option A, it
is discovered that Product 914 does not have enough
flavor (p=0.05, n=57 [54 (“Not Enough Flavor”) ver-
sus 3 (“Too Much Flavor”)].

For the attribute Color, all of the products were con-
sidered just about right in color based on their JAR %
which in all cases was significantly larger than the to-
tal of the combined extreme categories (p =0.05). For
the attribute Size, the JAR % was significantly differ-

ent from the total of the combined extreme categories
for all of the products (p=0.05). Additionally, the
number of JAR responses for all products was less
than the total of all other responses. This necessitates fol-
lowing with Option A. Hence, the results are consistent
with using Option A only. Product 170 was found to be
much toolarge (p=0.05,7=65[24 (“Not Large Enough”)
versus 41 (“Much Too Large”)]. Product 896 also was
found to be much too large in Size (p=0.05, n=62 [22
(“Not Large Enough”) versus 40 (“Much Too Large”)].

TABLE 5—Attribute: Color, option B.

1 2 3 4 5 6 7 8
0.05 Are 1,2,4,5 different Is JAR>than
Product Sum Critical than JAR at all others at
Code 1,2,4,5 JAR (or n) Value p=0.05? p=0.05? Conclusions
170 11+6= 85 102 62 Yes Yes In all cases, same
17 conclusions as in
Percent 16.67 83.33 No further Option A.
analysis
896 1+3+4 98 102 62 Yes Yes
Percent 3.92 96.08 No further
analysis
914 21+40= 81 102 62 Yes Yes
21
Percent 20.59 79.41 No further
analysis

TABLE 6—Attribute: Size, option B.

1 2 3 4 5 6 7 8
0.05 Are 1,2,4,5 different Is JAR>than
Product Sum Critical than JAR at all others at
Code 1,2,4,5 JAR (or n) Value p=0.05? p=0.05? Conclusions
170 21+M4 37 102 62 Yes No In all cases, same
=65 conclusions as in
Percent 63.73 36.27 Go to Option A Option A.
896 22+40 40 102 62 No No
Percent 60.78 39.22 Go to Option A
914 28+42 32 102 62 Yes No
=70
Percent 68.63 31.37 Go to Option A
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Large-Scale Consumer Testing Data is

available having three to five categories for
Just About Right (JAR) responses.

[Not recommended for sensory tests.]

OPTION A OPTION B

Determine n, the
total number of all
responses.

|

Has a "norm" or
"minimum" JAR response
percentage been
established?

NO

Sum the number of
responses in the
extreme categories.

A reasonable
number may be
70% just about

Has the minimum YES Ignore the
JAR response other
been achieved? responses. Using p=0.5, is there a
significant difference

between the number of
JAR responses and the
combined extreme
responses?

I

Sum the responses in the "low"
extremes with the responses in
the "high" extremes.

Calculat‘_e Fhe base size (n) by Calculate the base size (n) by
combining 'the number of combining the number of responses
responses in the extreme in the extreme categories.

categories.

Using a table for p=0.5,
Using a table for p=0.5, compare the compare the number "low"
number of "low" responses to the responses to the number of
number of "high" responses.

I§ th.ere a NO NO I§ th.ere a
significant significant
difference? difference?
YES YES
Determine which group has the Determine which group has the
most responses and is, most responses and is,
therefore, significantly higher. therefore, significantly higher.

Report any significant
learnings and indicate
which direction, if any, the
product should be changed
based on these results.

Fig. 1—Just about right scale: Percent difference from norm (flowchart for options A and B).

Pros and Cons mine the direction for optimization. (See Fig. 1.)

This techni d t, by itself, indicate h h of
These analyses cover two situations. If a norm is established, .1s e mqu? 0es no., y1 .se s ndica f_: ow much o
Analysis A may be utilized. When a norm JAR % has not es- a physical change in an attribute is necessary in order to op-

tablished, Analysis B may be used. When the responses are
imbalanced, this analysis enables the researcher to deter- fect that other attribute, including Overall Liking, may have

timize the product. Neither does this analysis include the ef-
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on a particular attribute. These analyses will also suffer
when the JAR values are multi-model in the target popula-
tion.

Recommendation
These methods are recommended when the goal is to under-

stand the JAR ratings for a particular product/attribute com-
bination. When a norm has been established, it will deter-

mine if it meets that norm and how the product should be
modified to meet that norm. When a norm has not been es-
tablished, the second method can be used to evaluate the de-
viation from the “Just About Right” value and suggest how
the product can be modified to improve the “Just About
Right” score. Neither method is designed to compare prod-
ucts.



Appendix D: The Mean

Lori Rothman'

Introduction and Objectives

The objective of the mean analysis is to determine if, on aver-
age, the product scores “Just About Right,” or whether there
is a skew of “Too Much” or “Not Enough” of an attribute.
This method of analysis uses only the JAR data. While calcu-
lation of the JAR means is completed individually for each
product, these means can be compared (see Appendixes I
and J). Determining whether the mean is statistically differ-
ent from the scale midpoint is discussed in Appendix F.

Requirements

To conduct an analysis of the mean, the raw data scores for
each respondent and product for the attributes of interest
are needed.

“How to”

Each mean score is calculated by summing up the raw data
values for each attribute/product combination, and then di-
viding the sum by number of responses for that attribute/
product combination. The mean is then compared to the
“Just About Right” value. For example on a symmetric
5-point scale, ranging from 1 to 5, the sample mean would be
compared to the “Just About Right” value of 3.

Example From Case Study Data

Figure 1 displays the frequency distribution and mean of the
JAR ratings for five attributes on product code 458.

Results and Conclusions

The JAR score means for sample 458 for the attributes Size,
Color, Amount of Flavor, Thin/Thick, and Stickiness were
calculated and are given below. Interpreting the sample
mean for each attribute, a mean of 3.0 for Size implies that
the average rating for Size is “Just About Right.” A mean of

MNL63-EB/Feb. 2009

2.93 for Thin/Thick appears to be close enough to 3.0 to indi-
cate that the thickness is “Just About Right.” At a mean of
3.36, the Flavor appears to be “Too Strong,” while a mean of
3.13 for Stickiness may indicate that the product is “Too
Sticky.” The mean of 2.87 for Color probably indicates that
the product is “Too Light.”

Pros and Cons

The benefits of using the scale means include ease of calcula-
tion and the simplicity of examination and interpretation of
one summary statistic.

The benefits of this analysis are outweighed by the
flawed conclusions that can result from this simplistic ap-
proach. Consider the scale mean of 3.0 for size, which im-
plies that the size is “Just Right.” Examination of the distri-
bution of scores for this attribute indicates a large degree of
bimodality, with 32 % of respondents rating the sample as
“Too Large” and 31 % rating the sample as “Too Small.” How
can the sample be considered “Just Right” for size, when
nearly two thirds of respondents rate it otherwise? It is this
failure to account for the distribution of responses that make
use of the mean unsuitable for JAR scale analysis.

Another limitation is the use of “eyeball” judgments
about whether the mean is “close enough” to the scale mid-
point when concluding that the attribute is “Just About
Right.” These judgments often neglect the variability and
skewness about the mean. While the mean of 3.36 appears to
be solidly in the “Too Strong” area, how confident is the re-
searcher that the mean of 2.87 clearly indicates that the
sample is “Too Light.”

A third caveat revolves around the finding of a skew in
the data, for example, in the case of the Flavor of sample 458
having a mean of “Too Strong.” If the researcher makes the
Flavor less strong in response to this finding, what will hap-
pen to the respondents who rated the product initially as

[sample=a58

[ Distributions
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Level Count Prob Level Count Prob Level Count Prob Level Count Prob Level Count Prob
1 6 0.05882 1 1 0.00980 2 6 0.05882 2 16 0.15842 1 1 0.00980
2 26 0.25490 2 12 011785 3 63 0.61765 3 76 0.75248 2 6 0.05882
3 37 0.36275 3 88 0.86275 4 23 0.22549 4 9 0.08911 3 75 0.73529
4 28 0.27451 4 1 0.00980 5 10 0.09804 Total 101 1.00000 4 19 0.18627
5 5 0.04902 Total 102 1.00000 Total 102 1.00000 3 Levels 5 1 0.00980
Mean 3.00 Mean 2.87 Mean 3.36 Mean 2.93 Mean 3.13

Fig. 1—Frequency distributions and JAR score means for sample 458.

1 Kraft Foods, 801 Waukegan Rd., Glenview IL 60025.
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“Just Right?” Will they then rate it “Too Weak” after the refor-
mulation? Thus, examination of the mean alone does not
consider what happens after the skew is adjusted.

Yet a fourth limitation is that the finding of a difference
from the “Just About Right” value does not, by itself, indicate
that the product was not well liked, nor does it indicate the
effect that the difference has on Overall Liking. Finally, using
only the mean implies an assumption of normality with a
known variance, i.e., a bell shaped curve on the responses. If

the data are bimodal, this assumption is violated, making
this an inappropriate analysis. JAR data can be bimodal, in
the presence of consumer segments, which may have differ-
ent expectations concerning product attribute intensities.

Recommendation
The use of the mean rating for JAR scale data is recom-

mended only when combined with additional information
such as examination of the data distribution.
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Appendix E: Mean Direction and Mean

Absolute Deviation

Veronika Jones'

Introduction and Objectives

The mean directional and mean absolute deviations are sta-
tistics that can be used to summarize and check the balance
of JAR data. The JAR data are analyzed separately for each
product and each attribute.

The mean directional deviation is the average signed dif-
ference of the ratings from the “Just About Right” value. On a
5-point JAR scale, the mean directional ranges from -2 to +2
(“Just Right” =0). Scores that are closer to -2 indicate that
respondents thought that attribute was “Too Low.” Scores
that are closer to +2 indicate that respondents thought that
the attribute was “Too High.” The mean direction deviation
is a simple shift of the mean, covered in Appendix D.

The mean absolute deviation summarizes the spread of
the ratings about the “Just About Right” value. On a 5-point
scale, the mean absolute deviation ranges from 0, when all
judgments are “Just About Right” to+2, when all judgments
are at one or the other extreme end of the scale. Unlike per-
cent “Just-Right” scores, absolute deviations can be calcu-
lated for each individual and the mean absolute deviation
analyzed by any of the standard parametric statistical proce-
dures.

The mean absolute deviation summarizes the average
distance to the “Just About Right” value while the mean di-
rectional deviation summarizes the average direction the at-
tribute is from the “Just About Right” value (i.e., “Too Low or
Too High”).

Requirements

To calculate the mean directional and absolute values you
must have the distribution of the JAR scores for each
product/attribute combination.

“How to”

Mean Directional Deviation
1) Compute the mean score.
2) Subtract the “Just About Right” value for the scale.

Mean Absolute Deviation

1) Subtract the “Just About Right” value from each score.
2) Compute the absolute value of each difference

3) Average the absolute values over assessors.

Example from Case Study Data

Table 1 provides a detailed example of the computations for
Flavor ratings for Code 170 by subjects 49-52. Column 4 of
that table displays the ratings, Column 5 subtracts 3, the
“Just About Right” value for that scale, and Column 6 dis-
plays the absolute value of that difference. Table 2 summa-
rizes the calculations for the Size, Color, Flavor, Thin/Thick,
and Stickiness attributes for products 170, 896, and 914.

Results and Conclusions

From the mean scores shown in Table 2, we can draw the fol-

lowing conclusions.

e Size: There was not much difference between the
samples and they were close to “Just Right,” though they
may all be slightly too large.

e Color: Sample 896 was closer to “Just Right” than the
other samples. Sample 914 was too light.

e Flavor: Sample 896 was closer to just right than the
other samples; sample 914 was the farthest from “Just
Right.” Sample 914 did not have enough flavor.

e Thin/Thick: Sample 896 was the closest to Just Right;
sample 914 was the farthest from “Just Right.” Sample
914 was too thick and the other two samples were
slightly too thin.

e Stickiness: There was not much difference between the
samples; sample 896 was slightly closer to just right than
the other two samples. Sample 914 was slightly not
sticky enough and samples 170 and 896 were slightly too
sticky.

¢ Product Comparisons

e Sample 896 was the closest to just right for all of the
attributes compared to the other two samples.

e Sample 914 was the farthest from just right for most
attributes. It was too light, it did not have enough fla-
vor, it was too thick and it was not sticky enough.

e Sample 170 was nearly “Just Right” but it was not as
satisfactory to respondents as sample was 896.

Pros and Cons

This analysis provides a measure of the spread around the
“Just About Right” value and the direction of the average de-

TABLE 1—Example of directional deviation and absolute deviation scores for respondents 49-52

for Amount of Flavor JAR.

Resp. # Serve Code # Amount of Flavor Directional dewv. Absolute dev.
49 4 170 1 1
50 4 170 -1 1
51 4 170 0 0
52 4 170 2 2

! Fonterra Reserch Center, Private Bag 11 029, Dairy Farm Road, Palmerston North, New Zealand.
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TABLE 2—Mean directional and mean absolute scores for example data set.

Size Color Flavor Thin/Thick Stickiness
Sample Directional Absolute Directional Absolute Directional Absolute Directional Absolute Directional Absolute
170 0.22 0.75 -0.05 0.17 0.42 -0.08 0.18 0.14 0.22
896 0.24 0.73 0.02 0.04 0.19 -0.07 0.13 0.14 0.16
914 0.10 0.82 -0.21 0.21 -0.56 0.62 0.17 0.25 -0.03 0.21

viation from that value. The latter can be used to suggest di-
rections for improvements.

A potential limitation of the deviation statistic is the
two-step computation required for the deviation statistic.
While that may be trivial in packages such as SAS, SPSS, R,
and JMP, it requires extra programming in systems such as
Excel. This analysis could be improved by a graphical dis-

play.

Recommendation

This analysis is useful in summarizing the average shift and
spread from the “Just About Right” value on a JAR scale.,
However, it does not provide any statistical means to judge
the differences among products or the inherent variability in
the measures.
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Appendix F: Mean versus Scale Mid-Point

Sandra Pitts'

Introduction and Objective

This method describes a statistical procedure to compare a
single mean to its JAR scale mid-point. It will determine if a
product attribute is perceived to be significantly different
from the ideal. When an attribute is significantly different
from the mid-point, conclusions can also be made about the
direction of the difference.

This analysis is designed to compare a single product/
attribute combination to its center-point, and is not appro-
priate for the comparisons across products or attributes.
Comparisons among multiple products in the same test are
limited to statements as to how they each relate to the JAR
scale mid-point or “Ideal” value. Note that the “Ideal” value
refers to the JAR scale mid-point, and is not related to a spe-
cific gold standard product.

Requirements

The method requires the individual JAR ratings of each as-
sessor. It is assumed that the scale values are coded as con-
secutive integers (e.g., 1 through 5 for the commonly used
symmetrical 5-point JAR scale).

“How to”

First, examine the frequencies of distribution of the raw JAR
data for each product. If the data appear approximately uni-
modal for each product, proceed with the analysis. Other-
wise, when the data appear bimodal, consider an alternate
analysis.

Subtract the scale mid-point value from the raw data
(e.g., 3.0 on a 5-point 1-5 scale). Analyze these data using a
one-sample, two-tailed ¢-test at the desired confidence level
(e.g., 95 %). The analysis may be performed using Excel,
SAS, MiniTab, SPSS, or another general statistical software
package with ¢-test capabilities.

Case Study Data Examples

The tables below summarize the mean scores and the -p val-
ues from a one-sample z-test for all of the attributes and
products in the Case Study. For each attribute-product com-
bination, the individual ratings were compared to the JAR
mid-point of 3.0. Recall that lack of significance does not
prove equivalence, only that the data are not sufficient to re-
ject the hypothesis of equivalence.

Results and Conclusions

See Tables 1 and 2. Product 170 could be considered “Just
About Right” for Amount of Color, Amount of Flavor and
Thickness, and was perceived to be “Too Large” in Size and
“Too Sticky” as compared to the “Ideal.”

Product 458 could be considered “Just About Right” for
Size and Thickness, and was perceived to be “Too Low” in
Color, “Too High” in Flavor Intensity, and “Too Sticky” as
compared to the “Ideal.”

TABLE 1—Mean Scores for five products for
five JAR attributes. N=102. Mean scores in

bold are significantly different from the mid-
scale point of 3.0, at #=0.05.

Amount of Thickness
Product Code Size Color Flavor Thin/Thick Stickiness

170 3.2 3.0 3.1 2.9 3.1
458 3.0 29 3.4 2.9 3.1
523 3.2 2.9 3.2 2.9 3.1
896 3.2 3.0 3.1 2.9 3.1
914 3.1 2.8 2.4 3.2 3.0

TABLE 2—t-test comparison of JAR mean
scores versus scale mid-point for five prod-
attributes (p-values by

ucts for five
attribute).

Amount of Thickness
Product Code Size Color Flavor Thin/Thick Stickiness

170 0.026 0.227 0.329 0.059 0.004
458 1.000 0.001 0.000 0.163 0.023
523 0.106 0.134 0.001 0.004 0.001
896 0.015 0.320 0.049 0.070 0.001
914 0.347 0.000 0.000 0.001 0.551

Product 523 could be considered “Just About Right” for
Size and Amount of Color, and was perceived to be “Too
High” in Flavor Intensity, and “Too Thin” and “Too Sticky” as
compared to the “Ideal.”

Product 896 could be considered “Just About Right” for
Amount of Color and Thickness, and was perceived as “Too
Large,” “Too High” in Flavor Intensity, and “Too Sticky” as
compared to the “Ideal.”

Product 914 could be considered “Just About Right” for
Size and Stickiness, and was considered Too Low in Color,
“Too Low” in Flavor Intensity, and “Too Thick” as compared
to the “Ideal.”

Pros and Cons

This is a simple analysis to perform, and can provide guid-
ance to product development on how directional changes to
a product attribute might increase its acceptability. This
method is reasonable to use when there is no established
norm for the expected percentage of “Just About Right” re-
sponses.

This method assumes a normal distribution of re-
sponses. Distribution of responses should be examined be-
fore performing this procedure (i.e., review the frequencies
of distributions either as a table of numerical values or as a
histogram); if there is a bimodal distribution, then a simple
test of the mean is generally not appropriate (see Appendix
D).

Comparison of the means to the scale mid-point pro-

1 Compusense Inc., 679 Southgate Drive, Guelph ON, Canada N1 G 4S2.
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vides directional guidance on product changes; additional
data are required to draw conclusions about the absolute
amount of change for the specified attribute to increase con-
sumer acceptability.

This method does not allow direct comparisons among
samples; additional analyses (see Appendix J) would be re-

quired in order to compare two or more products.
Recommendation
This method of analysis is recommended when there is only

JAR data available from a unimodal population, to allow
comparison of individual product attributes to the “Ideal.”
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Appendix G: Methods for Determining
Whether JAR Distributions are Similar Among
Products (Chi-Square, Cochran-Mantel-
Haenszel (CMH), Stuart-Maxwell, McNemar)

Carl Fritz!
General Introduction and Objectives

The following methods can each be used to determine
whether JAR score distributions are similar among a set of
products:

e  Chi-square method

e  Cochran-Mantel-Haenszel (CMH) method [1],[2]

e Stuart-Maxwell method [3]

e  McNemar method[4]

The chi-square method and CMH method are the most
general of the four methods listed above. Both methods can
be used for comparing JAR score distributions among any
number of products for any number of JAR scale categories.
The chi-square method differs from the other three methods
with respect to the design of the consumer test for which it
can be used. The use of the chi-square method requires inde-
pendence among the assessors’ responses. This limits the
use of the chi-square method to situations where different
groups of assessors evaluate each product.

The CMH, Stuart-Maxwell, and McNemar methods are
all appropriate when the assessors evaluate all of the prod-
ucts. These methods provide an increased level of power
over the chi-square method by taking advantage of the posi-
tive correlation that typically exists among an individual as-
sessor’s ratings on two or more products evaluated during
the same consumer test.

The CMH method can be used to test the equality of JAR
score distributions for multiple products using JAR scales
with mulitple categories. The Stuart-Maxwell method is a
special case of the CMH method and is used to compare JAR
score distributions of two products for JAR scale with mul-
tiple categories. The McNemar method is a special case of

the CMH and Stuart-Maxwell methods that is used for two
products and exactly two response categories (e.g. “Just
Right” and “Not Just Right” or “Too Thick” and “Not Too
Thick”). The test statistics for the CMH, Stuart-Maxwell, and
McNemar tests are identical for the situation where there are
two products and two scale categories.

These methods are appropriate for either complete
block designs, where each assessor evaluates a sample of
each product or for unblocked designs where each assessor
evaluates a sample(s) of a single product. The hypothesis be-
ing tested are, for the most part, general. More powerful
techniques, such as ordinal logistic regression, may be ap-
propriate for specific hypotheses; see Table 1.

Requirements
All four of the methods require that the distributions of re-
sponses by category be available.

Cochran-Mantel-Haenszel (CMH) Method

The Cochran-Mantel-Haenszel (CMH) method can be used
for determining whether there are statistically significant
differences in JAR score distributions among two or more
products when each product has been evaluated by each as-
sessor. It tests the homogeneity of the JAR scale across prod-
ucts, after controlling (blocking) for the differences among
the assessors.

Objectives of the Analysis

The CMH method tests either the null hypothesis that there
are no differences in the distributions of JAR scores across
the products or the null hypothesis that there is no difference
in mean JAR scores across the products.

TABLE 1—Summary of methods for comparing JAR distributions

among products.

2 Products 3 or More Products
3 or More 3 or More
2 JAR Scale JAR Scale 2 JAR Scale JAR Scale
Test format Method Categories  Caterories Categories Caterories
Each assessor CMR X X X X
evaluates all products  Stuart-Maxwell X X
McNemar X
Different assessors Chi-square X X X X

evaluate each product

! Statistical Consultant, 15 Crammer Lane, Hillsborough, NJ 08844.
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Hypothesis 1: General Association

This form of the CMH tests the null hypothesis that the dis-
trubtion of JAR scores is the same across all products after
adjusting for differences between raters. It treats the JAR
scale as an unordered (nominal) scale. The alternative hy-
pothesis of general association is that at least one of the
products differs on at least one of the JAR scale categories.
This form of the test should be used when the researcher
wants to determine whether the distributions of JAR scores
differ among the products without stating the specific pat-
tern of differences. The null hypothesis will be rejected if the
distribution of responses for one product is sufficiently dif-
ferent than the distribution of responses for another product
regardless of whether the mean responses for the products
are different.

Hypothesis 2: Different Mean Responses
This form of the CMH tests the null hypothesis that the mean
JAR scores are constant across the products. The alternative
hypothesis is that at least one of the products has a different
mean score from the rest. This form of the test is used when
the researcher wishes to test the equality of the weighted or
unweighted means.

Either one or both of the alternative hypotheses could
be of interest to the researcher in a particular study. It is ap-
propriate to test both alternative hypotheses in the same
study if the researcheris interested in both hypotheses.

The following examples may help the researcher under-
stand the distinction between the two alternative hypoth-
eses. In both examples, the “Not Enough,” “Just Right,” and
“Too Much” categories of a 3-point JAR scale are coded as 1,
2, and 3, respectively. Example 1 illustrates a situation where
there are differences among the products in the number of
responses in each of the JAR scale categories, but there are
no differences in mean responses among the products.

Example 1

Frequency of responses

“Not Enough” “JustRight” “Too Much”

1) (2) (3) Mean
Product A 10 80 10 2.0
Product B 15 70 15 2.0
Product C 20 60 20 2.0

In Example 1, the null hypothesis of identical frequency
distributions would be rejected. There are statistically sig-
nificant differences among the products in the distribution
of responses across the JAR scale categories (» <0.0001), but
there are no significant differences among products in the
mean responses. For details on how to perform the CMH
test, see the case study examples on the following pages.

Example 2 illustrates a situation where there are statisti-
cally significant differences in both the mean responses
among the products and in the number of responses in each
of the scale categories.

Example 2

Frequency of responses

“Not Enough” “JustRight” “Too Much”

(1) (2) (3) Mean
Product A 5 60 35 2.3
Product B 20 60 20 2.0
Product C 35 60 5 1.7

Requirements for the Analysis

To use the CMH method for analyzing data from JAR scales,
the individual JAR scores from each assessor for each prod-
uct must be available. Each product included in the analysis
must have been evaluated by each assessor. Additionally, like
its continuous counterpart, the Randomized Complete
Block design, the validity of this analysis requires that cer-
tain additivity or homogeneity requirements are met.

Details of the Analysis

Several commercially available statistical computer pro-
grams such as SAS [5] and JMP can be used to perform the
analysis for the CMH methods. There are no simple formu-
las for hand calculation available for computing the CMH
statistics, and the use of a computer program is recom-
mended. The mathematical details that are necessary to ex-
plain the formulas that are used in the CMH methods can be
foundinRefs.[1],[2],and [5].

To conduct the CMH tests, assign a numerical code to
each category of the JAR scale. If the scale contains more
than three categories, the analyses can be performed one of
two ways: 1) using all of the original scale categories, or 2) by
combining the categories on each side of the midpoint to cre-
ate a three-category scale (e.g., “Too Little,” “Just Right,”
“Too Much”).

When testing the null hypothesis of no general associa-
tion, the analysis treats the JAR categories as nominal data
values, so any numerical or text codes can be used for the cat-
egories aslong as each category is assigned a different code.

When testing the null hypothesis of common means
across the products, the numerical values assigned to the
scale levels are used to order the levels. Additionally, for
simple means, the values are used to form the means them-
selves. Often the values are assigned as ordered integers. For
a 3-point JAR scale, two common approaches are to assign
codes of {1, 2, 3} or {-1,0,1} to the “Not Enough,” “Just
Right,” and “Too Much” categories, respectively. For a
5-point JAR scale, a researcher could use either{1,2,3,4,5} or
{-2,-1,0,1,2} as codes for the categories. Optionally, other
forms of optimal weights (e.g., ridit weights) may be avail-
able in the statistical analysis program. Details of these scor-
ing methods are beyond the scope of this document.

The assessors’ responses can be summarized in anr by ¢
contingency table where = number of products (rows) and ¢
=number of scale categories (columns). The body of the con-
tingency table shows the frequency of responses for each
scale category for each product (see below).



¢ =3 columns

“Not Enough” “JustRight” “Too Much”

(1) 2) A3)

Product A 5 60 35
r=3 rows Product B 20 60 20
Product C 35 60 5

The CMH statistic for testing the hypothesis of general
association follows a chi-square distribution with degrees of
freedom = (products-1) X (columns-1). The CMH statistic for
testing the hypothesis of differences in mean responses be-
tween the products follows a chi-square distribution with
degrees of freedom = products-1.

Case Study Data Examples
For analysis of the case study data, the 5-point JAR scale was
collapsed to three categories by combining the two catego-
ries on the “Not Enough” side of the midpoint and by com-
bining the two categories on the “Too Much” side of the mid-
point.

The following program statements can be used in the
SAS software program to perform the CMH methods:

proc freq;

by attribute;

tables product * category / norow
nocol nopercent;

tables assessor * product *
category/ cmh noprint;

run;

The first “tables” statement creates a summary table
that shows the frequency of responses in each category for
each product. The second “tables” statement performs the
CMH tests for general association and for differences in
mean responses.

Results
Attribute = JAR Size Frequency

Product 1 2 3 Total
170 24 37 41 102
896 22 40 40 102
914 28 32 42 102

CMH

Alternative Hypothesis DF Value p-value
Row Mean Scores Differ 2 0.174 0.916
General Association 4 1.691 0.792

Attribute=JAR Color Frequency

Product 1 2 3 Total
170 11 85 6 102
896 1 98 3 102
914 21 81 0 102
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CMH
Alternative Hypothesis DF Value p-value
Row Mean Scores Differ 2 24.53 <0.0001
General Association 4 29.94 <0.0001
Attribute =JAR Amt. Frequency
Product 1 2 3 Total
170 16 63 23 102
896 5 84 13 102
914 54 45 3 102
CMH
Alternative Hypothesis DF Value p-value
Row Mean Scores Differ 2 63.98 <0.0001
General Association 4 77.77 <0.0001

Attribute=JAR Thin/Thick Frequency

Product 1 2 3 Total
170 13 84 5 102
896 9 90 3 102
914 4 77 21 102
CMH

Alternative Hypothesis DF Value p-value
Row Mean Scores Differ 2 23.73 <0.0001
General Association 4 29.70 <0.0001

Attribute=JAR Stickiness Frequency

Product 1 2 3 Total
170 4 81 17 102
896 1 87 14 102
914 10 82 9 102
CMH

Alternative Hypothesis DF Value p-value
Row Mean Scores Differ 2 7.51 0.023
General Association 4 11.13 0.025

The CMH analysis can also be done with the JMP soft-
ware program by requesting a contingency table analysis
within the “Fit Y By X” platform. Variables that represent the
products and the JAR attributes should be defined as either
nominal or ordinal variables in order for the analysis to pro-
duce the correct test.

Conclusions from the Analysis

There are no statistically significant differences among the
three products in the distributions of the assessors’ scores on
the JAR scale for the size attribute. For the color, amount of
flavor, thickness, and stickiness attributes there are statisti-
cally significant differences between at least two of the prod-
ucts in the distributions of JAR scores and in the mean re-
sponses. For the four attributes where significant differences
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were found, a recommended follow-up analysis would be to
repeat the CMH method for subsets of two products at a time
to determine which pairs of products have significantly dif-
ferent distributions of scores. This approach is equivalent to
using the Stuart-Maxwell method as a follow-up procedure
to the CMH method for determining whether the distribu-
tions of scores differ between two products.

Benefits of the Analysis

The CMH method allows the researcher to determine
whether there are significant differences in JAR score distri-
butions among two or more products. Other approaches
such as the McNemar test and the Stuart-Maxwell test are
only suitable for testing for differences in distributions be-
tween two products. The CMH method allows the researcher
to analyze data from JAR scales having more than three cat-
egories. The McNemar test requires that the data be com-
bined into two categories. The CMH method provides more
power (i.e., a higher probability that a statistically significant
difference is found when one of the alternative hypotheses
are true) than the chi-square method when the same asses-
sors evaluate all products by taking advantage of the positive
correlation that typically occurs when individual assessor’s
rate two or more products during the same test session.

Caveats

The CMH method is not available in some statistical analysis
computer programs. If the CMH method is not available, an
alternative approach is to use the Stuart-Maxwell test to ana-
lyze two products at a time. Use of the CMH method is lim-
ited to complete block test designs where each assessor
evaluates all of the products in the test.

Recommendations
The CMH method is appropriate for determining whether
there are differences in JAR score distributions among two

Rating on Product B

or more products when the products are all evaluated by the
same group of assessors. If each product is evaluated by a
different group of assessors, then this method is not appro-
priate and a chi-square method or more general technique,
such as an ordinal regression should be used.

Stuart-Maxwell Method

The Stuart-Maxwell method can be used to compare the dis-
tribution of JAR scores from two products when each asses-
sor evaluates each product. For example, the researcher may
want to know whether there is a difference between two
products in the proportion of scores in the “Too Much” cat-
egory or in the “Just Right” category. The Stuart-Maxwell
method is a special form of the more general CMH method
discussed above [b].

Objectives of the Analysis

The null hypothesis of the Stuart-Maxwell method is that the
JAR score distributions for two products are identical. The
alternative hypothesis is that there is a difference in the dis-
tribution of JAR scores between two products. If there are
more than two products, the Stuart-Maxwell method can be
used as a follow-up test after the Cochran-Mantel-Haenszel
(CMH) method has determined that there are differences in
the JAR score distributions among the products. In this situ-
ation, the Stuart-Maxwell method is used to determine
which pairs of products have significantly different JAR
score distributions.

Requirements for the Analysis

To use the Stuart-Maxwell method, both products must have
been evaluated by the same assessors. The data must first be
arranged in a table that lists the number of assessors that
gave the same rating on the JAR scale to Product A and Prod-
uct B and the number of assessors that gave different ratings
to Product A and Product B as shown below.

Row
Rating on Product A “Too Little” “Just Right” “Too Much” Totals
“Too Little” niy nyy 113 ny
“Just Right” 151 M) 133 1
“Too Much” n3q n3p 133 13
Column Totals n ny ns
where:

n1; = number of assessors that gave the rating “Too Little” to both products,

number of assessors that gave a rating of “Too Little” to Product A and a rating of “Just Right” to Product

iy =

B
n;. = number of assessors that gave the rating “Too Little” to Product A
n 1 = number of assessors that gave the rating “Too Little” to Product B

Details of the Analysis

First, calculate the difference in the number of ratings in each scale category (e.g., “Too Little,” JAR, “Too Much”) between the

two products as follows:

di=ny-ny dy=n, -n, dy=nz-nj

Next, compute the test statistic:
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0.5(”12 + 1’121)6{% + 0.5(7113 + l’l31)d% + 0.5(7123 + Vl32)d%

XZ

T 2{0.25( 13 + 1) (1113 + 1131) + 0.25(1 1 + 1191) (g3 + 1133) + 0.25(r 3 + 123,) (193 + 1137)}

Then, compare ¥ to a value from the chi-square table with 2 degrees of freedom (df) at the desired significance level.

Note: The above formula for y? is specific to the situation where the JAR scale contains three categories. If the JAR scale
contains more than three categories, computation of the test statistic requires inversion of a matrix. The formula for computing
the test statistic in this case is given in the reference for Stuart (1955). Since the Stuart-Maxwell method is a special case of the
CMH method, an alternative approach is to use a statistical computer program that performs the CMH method.

Case Study Data Example
Attribute=JAR Amt. Flavor

Rating on Product 896
Row
Rating on Product 170 “Too Little” “Just Right” “Too Much” Totals
“Too Little” 3 11 2 16
“Just Right” 1 60 2 63
“Too Much” 1 13 9 23
Column Totals 5 84 13

dy=16-5=11 dy=63-84=-21 d;3=23-13=10

2

(1/2)(11 + 1)10% + (1/2)(2 + 1)(= 21)2 + (1/2)(2 + 13)112

X

The test statistic 16.62 is greater than the critical value of
13.82 from a chi-square distribution table with 2 degrees of
freedom at the 0.001 significance level. This indicates that
there is a statistically significant difference between prod-
ucts 170 and 896 in the JAR scale distributions for amount of
flavor.

Conclusion from the Analysis

The conclusion that there is a statistically significant differ-
ence in JAR score distributions for amount of flavor between
Product 170 and Product 896 does not tell the researcher
how the JAR score distributions differ. The researcher can
often determine how the distributions differ simply by look-
ing at the table of frequencies. In this example, product 896
received more scores than product 170 in the “Just Right”
category (84 versus 63). A follow-up analysis that may be of
interest to the researcher is to combine the responses in the
“Too Little” and “Too Much” categories and use the
McNemar method to determine whether there is a difference
in the number of “Just Right” and “Not Just Right” responses
between the two products. This follow-up analysis will tell
the researcher whether or not a significantly higher propor-
tion of assessors gave ratings of “Just Right” to one product
than the other.

Benefits of the Analysis

The Stuart-Maxwell method allows the researcher to deter-
mine whether there is a significant difference in JAR score
distributions between two products in the situation where
the JAR scale contains three or more categories and each as-
sessor evaluated both products. Another approach, the Mc-
Nemar test, requires that the data be combined into two cat-
egories. The Stuart-Maxwell method provides more
precision than the chi-square method for testing situations
where the same assessors evaluate all products. When the
JAR scale contains three categories, formulas are available

- 2{1/4) 11+ D2+ 1)+ (1/4)(11+ D2+ 13) + (1/4)(2 + 1)(2 + 13)} -

16.62

for computing the test statistic without the use of a com-
puter.

Caveats

The Stuart-Maxwell method is not available by name in most
common statistical analysis computer programs. However,
since the Stuart-Maxwell method is a special case of the
CMH method, any software program that performs the
CMH method will provide the Stuart-Maxwell method as
well. As with the CMH method, this method also requires
certain homogeneity assumptions to be valid.

Recommendations

The Stuart-Maxwell method can be used to compare the JAR
score distributions of two products when the products are all
evaluated by the same group of assessors. If each product is
evaluated by a different group of assessors, then this method
is not appropriate and a chi-square method or more general
technique such as an ordinal regression should be used.

McNemar Method

The McNemar method can be used for determining whether
there are differences in JAR score distributions between two
products when data from the JAR scale have been combined
into two categories. The McNemar method is appropriate
when both products have been evaluated by the same asses-
Sors.

Objectives of the Analysis

The null hypothesis tested by the McNemar method is that
the proportions of JAR scores in the two categories are equal
for the two products being compared. The alternate hypoth-
esis is that the proportions for the two products are different.
The McNemar method is typically used to determine
whether there are differences in the JAR score distributions
between two products when ratings on the JAR scale have
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been combined into two categories in one of the following

ways:

e “Too Little” and “Too Much” ratings combined to create
the categories “Just Right” and “Not Just Right”

e “Too Little” and “Just Right” ratings combined to create
the categories “Too Little or Just Right” and “Too Much”

e “Just Right” and “Too Much” ratings combined to create
the categories “Too Little” and “Just Right or Too Much”
The McNemar test can be used as a follow-up test after a
statistically significant outcome from either the Cochran
Mantel Haenszel (CMH) method or the Stuart-Maxwell
method in order to determine how the distributions of
JAR scores differ between two products.

Requirements for the Analysis

To use the McNemar method, both products must have been
evaluated by the same assessors. The data must first be ar-
ranged in a table that lists the number of assessors that gave
the same rating on the JAR scale to Product A and Product B
and the number of assessors that gave different ratings to
Product A and Product B as shown below. The example be-
low shows the data arrangement when the scale values have
been combined to create the two categories “Just Right” and
“Not Just Right.”

Rating on Product B
Rating on Product A “Just Right” “Not Just Right”
“Just Right” 1y nyy
“Not Just Right” M1 2y
where:
n1; = number of assessors that gave the rating

“Just Right” to both products

11, = number of assessors that gave the rating
“Just Right” to Product A and the rating
“Not Just Right” to Product B

1,7 = numberof assessors that gave the rating
“Just Right” to Product B and the rating
“Not Just Right” to Product A

1,5, = number of assessors that gave the rating
“Not Just Right” to both products

Details of the Analysis

To determine whether the number of responses in the two
categories differs significantly between the two products,
first calculate the McNemar test statistic:

5 (|"112—”21|—1)2
X =" -

M1+ M2

Then, compare y? to a table of the chi-square distribution
with 1 df at the desired significance level.

Note: When 721, and/or 1, are small (say, 12, +1,;<10),
then the McNemar test statistic y? is not well approximated
by the chi-square distribution. A two-tailed exact test based
on the cumulative binomial distribution is recommended in-
stead (see SAS code below).

The following program statements can be used in the
SAS software program to perform the McNemar method:

proc freq;
by attribute;
tables product * category /
agree;
exact mcnem;

run;

The “agree” option provides the McNemar test. The
“mcnem” keyword in the “exact” statement provides the ex-
act test based on the cumulative binomial distribution.

Since the McNemar method is a special case of the CMH
method, the McNemar test can also be done with the JMP
software program by requesting a contingency table analysis
within the “Fit Y By X” platform. Variables that represent the
products and the JAR attributes should be defined as either
nominal or ordinal variables in order for the analysis to pro-
duce the correct test. In the output window, refer to the re-
sults for the CMH test[7].

The McNemar method can also be performed with the
SPSS software program by choosing either of the following
two menu paths:

e Analyze/Descriptive Statistics/ Crosstabs/click the “Sta-
tistics” button and choose “McNemar” or

e Analyze / Nonparametric Tests / 2 Related Samples / se-
lect the box labeled “McNemar”

Case Study Data Example

In the following example, the McNemar test is used as a
follow-up test to the Stuart-Maxwell method for the at-
tribute “JAR Amt. Flavor” to determine whether there is a
difference between Products 170 and 896 in the distribution
of JAR ratings when the ratings are combined into the two
categories “Just Right” and “Not Just Right.” Please refer to
the section of this document that describes the Stuart-
Maxwell method for details on the Stuart-Maxwell method.

Attribute =JAR Amt. Flavor

Rating on Product 896
Rating on Product 170 “JustRight” “Not Just Right”
“Just Right” 60 3
“Not Just Right” 24 15
(13 -24] - 1)
=————=14.381
X 3+24

The test statistic 14.81 is greater than the tabled value of
10.83 from the chi-square distribution with 1 df at the 0.001
significance level.

Conclusion from the Analysis

There is a statistically significant difference between Prod-
uct 170 and Product 896 in the proportion of assessors that
rated the products “Just Right” for Amount of Flavor.

Benefits of the Analysis

The McNemar method allows the researcher to determine
whether there is a significant difference in JAR score distri-
butions between two products when JAR scale values have
been combined into two categories and each assessor has
evaluated both products. The McNemar method provides



more precision than the chi-square method for testing situa-
tions where the same assessors evaluate all products. The
computation of the McNemar test statistic is easily done
without a computer.

Caveats

One disadvantage of the McNemar method is that the analy-
sis accommodates only two scale categories per product. As
with the CMH method, this method also requires certain ho-
mogeneity assumptions to be valid.

Recommendations

The McNemar method is recommended for use when two
products are being compared, the JAR scale have been col-
lapsed to two categores and each assessor has evaluated a
sample from both products. If each product is evaluated by a
different group of assessors, then this method is not appro-
priate and a chi-square method or more general technique
such as an ordinal regression should be used.

Chi-square Method

The chi-square method is appropriate when each assessor
evaluates only one product and the researcher wishes to
compare the distribution of JAR scores across two or more
products.

Objectives of the Analysis

The chi-square method can be used to test the null hypoth-
esis that there are no differences in the distributions of JAR
scores among the products. The alternative hypothesis is
that at least one product is different from the others on this
JAR scale. For example, one product may have a higher pro-
portion of scores in the “Just Right” category than another
product.

Requirements for the Analysis

This analysis method requires that the assessors’ ratings are
independent. This usually implies that a different group of
assessors evaluates each product. Note that it may be pos-
sible to structure the testing so that assessors’ ratings of mul-
tiple products behave as if they are independent (for in-
stance, by separating the evaluations of products by a long
enough period of time that assessors will not recall their
prior evaluations).

To use the chi-square method it is not necessary to have
the assessors’ individual responses available. It is only neces-
sary to know the total number of responses in each category
of the JAR scale for each product as shown below.
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JAR scale category Row

“Too Little” “JustRight” “Too Much” Totals
Product A nyy nyy ni3 ny,
Product B 171 122 M3 ny,
Product C 13y 13 Mn33 ns,
Column Totals n no ns n.

where n;;=number of assessors that gave the rating
“Too Little” to Product A #; = number of assessors that
rated Product A 7 ;=sum of the number of ratings of
“Too Little” for all products n_=sum of the number of
ratings in all JAR categories for all products

Details of the Analysis

Most statistical software programs have the capability of

performing the chi-square test. If the appropriate computer

software is not available, the calculations needed to perform

the chi-square test can easily be done by hand as follows

1. Compute the expected number of responses in each JAR
scale category for each product:

ALY
n..

e;j=expected number of responses in category j for the
ith product

2. Compute the test statistic by using the observed number
of responses and expected number in each JAR scale
category for each product as shown below. The sum is
taken over all products and all scale categories:

- (observed - expected)? _s (ny - eil-)2

expected ejj

3. Compare x? to the critical value from a table of the chi-
square distribution at the desired significance level with
degrees of freedom equal to (number of products-1)
X (number of scale categories- 1) (for chi-square table,
see Appendix B of Ref. [8]).

Case Study Data Examples
Attribute = JAR Amt. Flavor

Number of responses in each category
(expected values in parentheses)

Product  Too Little Just Right TooMuch  Totals

170 16 63 23 102
(25) (64) (13)

896 5 84 13 102
(25) (64) (13)

914 54 45 3 102
(25) (64) (13)

Totals 75 192 39 306

(16 -25)% (63-64)> (23-13)2
25 1 64 13
(23 - 13)?
L2 o)
13

Test statistic =

=80.17
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Next, compare the test statistic to the critical value
from a table of the chi-square distribution at the
desired level of significance with  degrees
of  freedom equal to (No. of products-1)

X (No. of JAR scale categories used in the analysis-1).

The test statistic 80.17 above is greater than the tabled
value of 18.47 from the chi-square distribution with
(three products- 1) X (three scale categories—1)
=4 degrees of freedom at the 0.001 significance level.
(for chi-square table, see Appendix B of Ref. [8].
Since this test indicates that there is a statistically sig-
nificant difference in the JAR score distributions among the
three products, the researcher may then want to do a
follow-up test to determine whether there is a significant dif-
ference in the JAR score distributions between products 170
and 896. The first step is to create a subtable for Products 170
and 896. Then compute the expected number of responses
foreach product in each JAR scale category.

Number of responses in each category
(expected values in parentheses)

Product “TooLittle” “JustRight” “TooMuch” Totals

170 16 63 23 102
(10.5) (73.5) (18)

896 5 84 13 102
(10.5) (73.5) (18)

Totals 21 147 36 204

(16-10.52 (63-73.5?2 (23— 18)>
105 735 18
(13-18)?
13

Test statistic =

=11.54

The test statistic 11.54 is greater than the tabled value

of 10.60 from the chi-square distribution with 2 df

(2 products-1) X (3 scale categories—1) at the 0.005

significance level.

Finally, suppose the researcher wants to determine
whether the proportion of responses in the “Just Right” cat-
egory is the same for Products 170 and 896. First, create a
subtable for Products 170 and 896 with the responses for the
“Too Little” and “Too Much” categories combined (see be-
low). Then compute the expected number of responses for
each product in each cateogory.

Number of responses in each category
(expected values in parentheses)

Product “Just Right” “Not Just Right” Totals

170 63 39 102
(73.5) (28.5)

896 84 18 102
(73.5) (28.5)

Totals 147 57 204

(63-73.5)%> (39-28.5)?% (84-73.5)?
+ +
73.5 28.5 73.5

(18 - 28.5)?
28.5

=10.74

Test statistic =

The test statistic 10.74 is greater than the tabled value
of 7.88 from the chi-square distribution with 1 df
(2 products-1) X (2 scale categories—1) at the 0.005
significance level.

Conclusions from the Analysis

There is a statistically significant difference in JAR scale dis-
tributions for Amount of Flavor among the three products (p
<0.001).

Based on the first follow-up analysis, the JAR scale dis-
tributions for Products 170 and 896 are significantly differ-
ent (p<0.005).

Based on the second follow-up analysis where JAR scale
categories were combined, there is a statistically significant
difference in the proportion of “Just Right” ratings between
products 170 and 896.

Benefits of the Analysis

The chi-square method allows the researcher to determine
whether there are significant differences in JAR score distri-
butions between any number of products for any number of
JAR scale categories in situations where assessors’ ratings of
the products are independent. When significant differences
in JAR scale distributions are found, follow-up analyses can
be done using the chi-square method to explore those differ-
ences further. The chi-square method is available in most
statistical software programs, but the computations needed
to carry out the method can easily be done without the use of
acomputer if the appropriate software is not available.

Caveats

Some researchers use the chi-square method instead of the
CMH, Stuart-Maxwell, or McNemar methods to test for dif-
ferences in JAR score distributions between two or more
products, regardless of whether the assessors each evaluate
only one product or all of the products. This is generally in-
valid. The chi-square test requires that the assessors’ ratings of
the products be independent. In studies where the same asses-
sor evaluates more than one product, individual assessor re-
sponses on multiple products are often positively correlated.
The CMH, Stuart-Maxwell and McNemar methods take this
correlation into account, but the chi-square method does
not. For this reason, the CMH, Stuart-Maxwell, or McNemar
methods are more sensitive than the chi-square method
when the responses for each assessor are positively corre-
lated. If assessors’ ratings of the products are positively cor-
related, then the p-values from the chi-square method are
higher than p-values from the CMH, Stuart-Maxwell, or Mc-
Nemar tests. Therefore, when the chi-square test is used in a
situation where each assessor evaluates two or more of the
products in the study, there is a possibility that differences in
the distributions of JAR ratings among products will be de-
clared as non-significant when statistically significant differ-
encesreally do exist.



Recommendations

The chi-square method is recommended for comparing JAR
score distributions among two or more products in situa-
tions when different groups of assessors evaluate each prod-
uct. In situations when the products are all evaluated by the
same group of assessors, then the CMH, Stuart-Maxwell, or
McNemar methods are recommended instead.
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Appendix H: A Proportional Odds/Hazards

Approach to JAR Data

Rui Xiong' and Jean-Francois Meullenet'
Introduction and Background

t-tests, ANOVA, and linear regression all assume that the re-
sponse is measured on an interval scale, so that the differ-
ences between adjacent values have the same meaning
across the scale. This assumption is often violated in prac-
tice, which can lead to inaccurate conclusions. The propor-
tional odds and proportional hazards models are ordinal re-
gression models that are only sensitive to the order of the
observations, not the specific values assigned to the catego-
ries. They are used to compare the distributions of JAR
scores among products and are performed simultaneously.
The proportional odds model (POM) is skew-symmetric, so
that reversing the order of the scale simply changes the sign
of the mean, while the proportional hazards model (PHM) is
asymmetric, so that reversing the order of the scale changes
both the order and the sign of the estimate.

Requirements

Raw data of respondent/product/attribute combinations are
required for the analysis. These techniques are compute-
intensive and require specialized programs, such as SAS/
STAT, SPSS, or R. Additionally, the JAR ratings are assumed
to be independent; however, this practice in often violated.

“How to”

The proportional odds and hazards models are widely used
in medicine and life science survey studies. Recently, both
models have been applied to the sensory field for preference
map [ 1] and shelf-life studies [2], respectively. These articles
or the book by Agresti [3] should be consulted for technical
details. The proportional odds and hazards models have the
same underlying assumption, but they use different link
functions to model ordinal response data. The comparison
of POM and PHM is presented in Table 1. The goodness of fit
for both POM and PHM is assessed by the likelihood ratio or
deviance G2.

Proportional Odds Model (POM)

The proportional odds model [3] models the odds of being at
or below each scale point across the products (the cumula-

tive odds), and determines an average ratio of those cumula-
tive odds between products. Since the model works with
odds and ratios of odds, it is traditional to express the model
in terms of logits (log-odds). The model is fit using maximum
likelihood and produces estimates of the average log-odds
for each scale point as well as for each product included in
the analysis. By default, one product, the control, is always
setto zero.

The SAS implementation of this model includes a test to
determine if the same rating scale was used across the prod-
ucts, and, if included, panelists in the study. It is referred to
as a test of equal slopes or of parallelism. This is a generaliza-
tion of a test for homogeneity of variances in a ¢-test. When
this is significant, the data do not meet the assumptions for
this analysis.

Proportional Hazards Model (PHM)

The proportion hazards model, also known as a Cox regres-
sion model, also considers the odds, but looks at the odds of
being in each category, given that the observation is not in
the categories below it, and again estimates the average ratio
of those odds across products. As with the POM, it is tradi-
tional to use logarithms and to express the results on that
scale. The analysis does not treat the data symmetrically; the
results depend on the order in which the scale points are
coded. This analysis is most appropriate when the rating can
be viewed as the result of a progression, as in life data where
the model originated.

The SAS implementation of this uses the same proce-
dure as does the POM and similarly includes a parallelism
test.

Example from Case Study Data

The data from the case study were analyzed using PROC Lo-
gistic in SAS/STAT. The following code was used to fit a POM
to the Flavor attribute:

TABLE 1—Comparison of the proportional odds and hazards models.

Proportional Odds Model

Proportional Hazards Model

Assumption
variable

Model Py =k]= 1

Link function Logit

Equal slopes across levels of a response

1+e-(@+B'x)

Equal slopes across levels of a
response variable

PlY<k]=1-e-"*"**

Complementary log-log

! Department of Food Science, University of Arkansas, Fayetteville, AR 72704.
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TABLE 2—Parameter estimates from the proportional odds model for size.

Parameter Estimate Standard Error Chi-square p-value
Intercept1 -3.048 0.2597 137.769 <0.0001
Intercept2 -1.181 0.1916 37.990 <0.0001
Intercept3 0.359 0.1843 3.799 0.0513
Intercept4 2.564 0.2397 114.426 <0.0001
Sample 458 0.382 0.2544 2.255 0.1332
Sample 523 0.081 0.2543 0.102 0.7495
Sample 896 -0.026 0.2544 0.010 0.9197
Sample 914 0.138 0.2542 0.296 0.5866

Proc logistic data=CaseStudy;
Class Sample (ref=“170")/param=ref;
Model Flavor=Sample/link=logit scale=none aggregate;
Title “Proportional odds model for Flavor;”

Contrast “Samples 458” vs “170” Sample 1 0 0 0 /estimate=Dboth;
Contrast “Samples 523” vs “170” Sample 0 1 0 0 /estimate=Dboth;
Contrast “Samples 896” vs “170” Sample 0 0 1 0 /estimate=Dboth;
Contrast “Samples 914” vs “170” Sample 0 0 0 1 /estimate=Dboth;
Contrast “Samples 523” vs “458” Sample -1 1 0 0 /estimate =both;
Contrast “Samples 896” vs “458” Sample -1 0 1 0 /estimate =both;
Contrast “Samples 914” vs “458” Sample -1 0 0 1 /estimate =both;
Contrast “Samples 896” vs “523” Sample 0 -1 1 0 /estimate=both;
Contrast “Samples 914” vs “523” Sample 0 -1 0 1 /estimate=both;
Contrast “Samples 914” vs “896” Sample 0 0 -1 1 /estimate=both;

Run;quit;

This code both fits the model (the “model” statement) and performs pairwise comparisons of the products (the “Contrast”
statements). A similar program was used for the other attributes compared in the results sections.

The code for the PHM is quite similar to the code given above, with the only difference being the “link="specification in the
model statement. Note that the link specification becomes “link = cloglog,” highlighted below:

Proc logistic data=CaseStudy;
Class Sample (ref=“170")/param=ref;

Model Flavor=Sample/link=cloglog scale=none aggregate;

Title “Proportional hazards model for Flavor;”

Contrast “Samples 458” vs “170” Sample 1 0 0 0 /estimate=both;
Contrast “Samples 523” vs “170” Sample 0 1 0 0 /estimate=both;
Contrast “Samples 896” vs “170” Sample 0 0 1 0 /estimate=both;
Contrast “Samples 914” vs “170” Sample 0 0 0 1 /estimate=both;
Contrast “Samples 523” vs “458” Sample -1 1 0 0 /estimate=both;
Contrast “Samples 896” vs “458” Sample -1 0 1 0 /estimate=both;
Contrast “Samples 914” vs “458” Sample -1 0 0 1 /estimate=both;
Contrast “Samples 896” vs “523” Sample 0 -1 1 0 /estimate =both;
Contrast “Samples 914” vs “523” Sample 0 -1 0 1 /estimate =both;
Contrast “Samples 914” vs “896” Sample 0 0 -1 1 /estimate=Dboth;

Run;quit;

Results and Conclusions

For the JAR attribute Size, the chi-square (x?) for testing the
equal slopes assumption was 7.6 with p-value of 0.814,
which was not significant with respect to a chi-square distri-
bution with 12 degrees of freedom (DF) at a significance
level (a) of 0.05. This suggested that the parallelism assump-
tion was satisfied. The likelihood ratio (deviance) G? was

7.132 (DF=12) with p=0.849, indicating that the propor-
tional odds model adequately fitted the data. The parameter-
ization used in the SAS system is one that leaves out the pa-
rameter for the baseline (Sample 170 in this case) with which
each sample is compared. Hence, a positive parameter esti-
mate (B) in Table 2 means that Sample 170 was “larger” in
size than the compared sample, while a negative estimate



40 JUST-ABOUT-RIGHT SCALES N

TABLE 3—Estimates of parameters and odds ratios from the proportional odds model for Color.

Standard Odds Wald Chi-
Effect Estimate Error Ratio square p-value
Intercept1 -6.629 1.0450 40.246 <0.0001
Intercept2 -2.431 0.3266 55.393 <0.0001
Intercept3 3.458 0.3926 77.568 <0.0001
Sample 458 vs 170 0.575 0.4208 1.777 1.867 0.1718
Sample 523 vs 170 0.091 0.4408 1.095 0.043 0.8363
Sample 896 vs 170 -0.713 0.4653 0.490 2.347 0.1255
Sample 914 vs 170 1.124 0.4008 3.078 7.869 0.0050
Sample 523 vs 458 -0.484 0.4156 0.6164 1.355 0.2444
Sample 896 vs 458 -1.288 0.4547 0.276 8.020 0.0046
Sample 914 vs 458 0.549 0.3639 1.732 2.279 0.1311
Sample 896 vs 523 -0.804 0.4642 0.448 2.999 0.0833
Sample 914 vs 523 1.033 0.3947 2.810 6.850 0.0089
Sample 914 vs 896 1.837 0.4415 6.278 17.311 <0.0001

means that Sample 170 was “smaller” in size. The p-value for
the chi-square statistic is used to test whether the difference
between the compared sample and the baseline sample is
significant. Since all the p-values were much greater than «
=0.05 (Table 2), all the Samples were not significantly differ-
ent in size from sample 170. Overall, the effect of products
was not significant (y*=3.273, DF=4, p-value=0.513) at «
=0.05. This suggested that all the products had a similar dis-
tribution of Size scores.

For the JAR attribute color, the parallelism (equal
slopes) assumption was not met for POM (x*=15.900, DF =8,
p-value=0.044) at =0.05, but was met at a=0.01. This typi-
cally can occur when one or more of the products is more
variable than the remaining products. The overall effect of
products was then significant (y*=19.944, DF=4, p-value
=0.0005), implying that some of the products have different
mean log-odds. The products which were significantly differ-
ent in color can be identified using the included contrasts.
We used a Bonferroni correction to account for the 10 mul-
tiple tests, testing each pairwise comparison at «=0.05/10
=0.005.

The parameter estimates and odds ratios between all
pairs of the samples were obtained from contrasts and are
presented in Table 3. The p-values in Table 3 were used to test
if a pair of samples was significantly different at o’ =0.005.
For example, the p-value for the pair of Samples 458 and 170
was 0.1718>a’ =0.005, indicating that the two samples were
not significantly different in color (i.e., meaning the JAR
score distributions were similar not that the products were
identical in color). The p-values for the pairs of Samples 896
versus 458 and 914 versus 896 were 0.0046 and <0.0001, re-
spectively, which indicated that Sample 896 was signifi-
cantly different in color from Samples 458 and 914. As men-
tioned above, the signs of parameter estimates can be used to
determine the directional difference between two products.
Sample 896 was overall significantly darker in color than
Sample 458 because of the negative parameter estimate of
-1.288, while Sample 914 was significantly lighter in color
than Sample 896 because of the positive estimate of 1.837. As
result, sample 896 was significantly darker in color than
Samples 458 and 914, and other pairs of samples were not
significantly different in color. The contrasting method pro-
vided for the POM in the SAS LOGISTIC procedure is an-
other advantage over the two-stage test procedure like the

chi-square/McNemar tests. The interpretation of param-
eters is usually done using odds ratios. For example, the odds
ratio of 6.278 (=e!#37, 1.873 was the parameter estimate) for
Samples 914 versus 896 (Table 3) means that the odds of con-
sumer rating sample 914 as “Too Light” in color was 6.278
times the odds for Sample 896, so consumers rated sample
914 lighter in color than Sample 896.

When the parallelism test is significant, this means that
there is differences between the codes beyond a simple mean
shift. This suggests that the analyst consider alternative
models to determine if the same conclusions hold. In this
case the parallelism assumption was not significant for PHM
(x?=14.014, DF =8, p-value=0.081) at «=0.05. The overall ef-
fect of products was significant (y*=16.875, DF=4, p-value
=0.002) at the significance level of 0.05, suggesting that some
products have different distributions for Color JAR scores.
The parameter estimates for PHM are provided in Table 4.
Like POM, a positive parameter estimate for PHM (Table 4)
means that Sample 170 was “Darker” in color than the com-
pared sample, while a negative estimate means that sample
170 was “Lighter” in color. The p-values show that Samples
914 versus 170, 914 versus 523, and 914 versus 896 were sig-
nificantly different from each other (a’ =0.005), respectively.
Sample 914 had “Lighter Color” JAR scores than Samples
170, 523, and 896. By comparing Tables 3 and 4, the results

TABLE 4—Parameter estimates from the pro-
portional hazards model for Color.

Standard Wald Chi-

Effect Estimate Error square p-value
Intercept1 -6.654 1.0138 43.078 <0.0001
Intercept2 -2.539 0.2106 145.381 <0.0001
Intercept3 1.099 0.1384 62.957 <0.0001
Sample 458 vs 170 0.477 0.2323 4.213 0.0401
Sample 523 vs 170 0.059 0.1960 0.092 0.7618
Sample 896 vs 170 0.011 0.1937 0.003 0.9569
Sample 914 vs 170 1.076 0.2943 13.377 0.0003
Sample 523 vs 458  -0.417 0.2339 3.185 0.0743
Sample 896 vs 458  -0.466 0.2326 4.021 0.0449
Sample 914 vs 458 0.599 0.2979 4.050 0.0442
Sample 896 vs 523 -0.049 0.1964 0.062 0.8032
Sample 914 vs 523 1.017 0.2944 11.928 0.0006
Sample 914 vs 896 1.066 0.294 13.115 0.0003




from both POM and PHM were different. In this case, we
trusted the results from PHM because the parallelism as-
sumption was met at a=0.05 for PHM but not for POM. A
disadvantage of PHM is that it does not provide odds ratios
for the interpretation of parameters

For the JAR attribute flavor, the parallelism assumption
was satisfied for POM (y?=20.425, DF =12, p-value=0.06) at
a=0.05. The overall effect of products was significant (y*
=105.198, DF =4, p-value=0.0001), indicating that the prod-
ucts were not from the same population for flavor. The
p-values show that Sample 914 had significantly lower JAR
flavor scores than all other samples because of the positive
estimates, while Sample 458 had significantly higher JAR
flavor than Samples 170, 896, and 914.

For the JAR attribute Thin/Thick, the equal slopes as-
sumption was met for POM (x*=13.171, DF=8, p-value
=0.106) at @=0.05. The overall effect of products was signifi-
cant (y?=27.096, DF =4, p-value < 0.0001) at the significance
level of 0.05, suggesting that not all products had similar dis-
tributions of their respective thin/thick scores. The p-values
together with the signs of the parameter estimates show that
only sample 914 had significantly higher JAR thickness
scores than all other Samples and other samples were not
significantly different from each other.

For the JAR attribute Stickiness, the parallelism as-
sumption was met for POM (x*=10.129, DF=12, p-value
=0.605) at «=0.05, but the overall effect of products was not
significant (y*=8.511, DF=4, p-value=0.075) at the signifi-
cance level of 0.05. There was no sufficient evidence to con-
clude that all the products did not come from the same distri-
bution of stickiness scores.

Conclusions from the Analysis

For both size and stickiness, there was no evidence that the
distributions of the JAR scores for the various products were
different.

For Color, Flavor, and Thin/Thick attributes, there were
significant differences among the samples. Sample 914 had
significantly lower JAR Color scores than Samples 170, 523,
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and 896. Sample 914 had significantly lower JAR flavor
scores than other samples, while Sample 458 had signifi-
cantly higher flavor scores than Samples 170 and 914. For
the JAR attribute Thin/Thick, only Sample 914 had signifi-
cantly higher JAR scores than all other samples.

Pros and Cons

The primary benefit of these models is that normal distribu-
tions of data are not required. A secondary benefit in the SAS
implementation is the built-in test of the equal slopes (paral-
lelism) assumptions. If the parallelism assumption is met,
the overall product effect can be assessed; if this is signifi-
cant, differences between product pairs can be assessed.

When the parallelism assumptions are not met, the
analysis can be compromised. This is on the level of failing
the homogeneity test in an ANOVA. When this occurs, the
analyst should either try an alternate model or identify and
correct the offending codes. When the parallelism assump-
tion for POM fails, it is recommended to use the propor-
tional hazards model. When neither model is appropriate,
the general multinomial logistic model should be consid-
ered.

Recommendations

These analyses are recommended as a means to determine
whether similar JAR distributions exist between products
when the data are not normally distributed.
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Appendix I: Student’s t-Test—Analysis of
Variance of Two Samples

Merry Jo Parker'

Introduction and Objectives

The Student’s ¢-test is a statistical method for comparing the
mean JAR scores of two product samples. The results of the
t-test determine whether or not the means of two samples of
data are significantly different.

Requirements

To conduct a z-test analysis, the distribution of data from
each panelist for each product is needed. Data are required
to be normally distributed with homogeneous variance.

“How to”

When each panelist has rated both samples on the same JAR
scale, the test is a typical paired ¢-test, discussed in most in-
troductory statistics texts. When different groups of respon-
dents rate the two products, the appropriate test is the two-
sample z-test. It is recommended that the data be tested for
normality before applying this test. If that test fails, a sign-
test or Wilcoxin-Mann-Whitney test should be used in place
of the paired ¢-test and two-sample z-test, respectively. The
Student’s ¢ test is meant to be used when there are only two
samples. If there are more, then the analyst should perform a
Randomized Complete Block (RCB) Analysis of Variance
(paired data) or a one-way ANOVA (independent samples),
followed by pairwise comparisons between the codes. In the
RCB analysis, the subjects would be the blocks, and the
products would be the treatments.

Example

In the example below, Samples 170 and 194 are compared on
the Size, Color, Flavor, Thick/Thin, and Stickiness scales.
Table 1 displays the marginal counts and means for both
samples on each attribute. Note that the individual differ-
ences are required. In this example, tests of normality are
not included.

Results and Conclusions

The ¢-tests suggest that there are significant differences in
color, amount of flavor, viscosity, and stickiness between

Sample 914 and Sample 170. There were no significant dif-
ferences among the samples in size. The mean score ratings
for 914 suggest that it is too light in color, too weak in flavor,
and too thick. For stickiness, the mean score ratings for 170
is higher than 914, suggesting that 170 may be too sticky.
(See Table 2.)

Pros and Cons

The scales of size, stickiness, color, and thickness are repre-
sentative of why caution should be exercised when using the
Student’s ¢ test to analyze JAR scales. Student’s ¢ test analysis
assumes that the data are normal in distribution and are ho-
mogeneous in variance. The distribution of scores for size is
not normal; it is bimodal, indicating a varied range of opin-
ions on the ideal size of the product resulting in no clear di-
rection for change. Likewise, Student’s ¢-test analysis indi-
cated a significant difference between Sample 914 and 170
for stickiness, thickness, flavor, and color. If the researcher is
only using Student’s ¢ test to analyze the JAR scores, the con-
clusion would be that Sample 914 should have a darker color
and thinner consistency. The JAR distribution of scores indi-
cates that Samples 170 and 914 both have high “Just About
Right” ratings, i.e., 75 % and higher, for each of these at-
tributes. The question is, even though these samples are sta-
tistically significantly different, i.e., the JAR scores for
Sample 914 are high, should these attributes really be
changed?

Recommendation

T test analysis can be an effective method for evaluating the
mean differences between two samples using JAR scales.
However, it should always be used in combination with an
evaluation of the score distributions. A bimodal distribution
may indicate subgroups within the population that is being
tested, or it may indicate panelist inability/confusion with a
scale.

TABLE 1—Marginal data and means.

Size Color Flavor Amt Thick/Thin Stickiness
Size 170 914 170 914 170 914 170 914 170 914
1="Too Low" 3 9 0 0 2 6 0 0 0 2
2="Somewhat Too Low" 21 19 11 21 14 49 12 4 5 8
3="Just About Right” 37 32 85 81 63 44 85 77 80 83
4="Somewhat Too High” 33 37 6 0 21 3 5 21 16 9
5="Too High” 8 5 0 0 2 0 0 0 1 0
Means 3.22 3.10 2.95 2.79 3.07 2.43 2.93 3.17 3.13 2.97

! Food Perspectives, 2880 Vicksburg Lane, Plymouth, MN 55447.
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TABLE 2—Summary of paired t-test calcula-
tions and results.

3Sd  3d*> Meand S tgse10n  p-value
Size 12 170 0.12 1.29 0.92 <0.05
Color 16 28 0.16 0.50 3.15 <0.01
Flavor amt. 64 128 0.63 0.93 6.79 <0.01
Thick/Thin -25 37 0.25 0.55 4.48 <0.01
Stickiness 17 49 0.17 0.68 2.45 <0.05
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Appendix J: Analysis of Variance (ANOVA)

Merry Jo Parker!
Introduction and Objectives

Analysis of Variance (ANOVA) is a statistical method for
studying differences between the mean scores of samples.
ANOVA takes into account variance from different sources.
When used to analyze “Just About Right” (JAR) scales, the
source of variance is most often treatments and judges, so a
two-way ANOVA is used.

Requirements

To conduct an ANOVA analysis, the distribution of data from
each panelist for each product is needed. Data should be nor-
mally distributed with homogeneous variance.

“How to”

When the data are from dependent samples (e.g., each panel-
ist judges two or more of the products on the attributes) the
data should be analyzed using a Randomized Complete
Blocks (RCB) ANOVA. When the data are from independent
samples (e.g., each panelist judges only one sample) the data
can be analyzed using a one-way ANOVA. Additional covari-
ates (day of testing, order of presentation, etc.) can also be
included in the analysis.

The computational details are beyond the scope of this
document and will not be covered here. Please consult a sta-
tistical textbook for details. Likewise, the data preparation
tends to be dependent on the particular statistical package
being used for the analysis and will not be considered here.
Generally these analyses require individual level data.

Example

Five JAR attributes for samples 170, 896, and 914 have been
analyzed. The marginal data and analysis summaries are
presented in the Appendix, while the conclusions are given
below.

Results and Conclusions

The ANOVA results indicate that there were significant dif-
ferences in color, amount of flavor, thickness, and stickiness
between Sample 914 and the other two samples (170 and
896). There were no significant differences among the
samples in size. Samples 170 and 896 were similar to each
other for all five attributes. The mean score ratings for 914
suggest that it is too light in color, too weak in flavor, and too
thick. For stickiness, the mean score ratings for 170 and 896
are higher than 914, suggesting that they may be too sticky.

Pros and Cons

The scales of size, stickiness, color; flavor, and thickness are
representative of why caution should be exercised when us-
ing ANOVA to analyze JAR scales. ANOVA analysis assumes
that the data are normal in distribution and are homoge-
neous in variance. The distribution of scores for size is not
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normal; it is bimodal, indicating a range of opinions on the
ideal size of the product, resulting in no clear direction for
change. Likewise, ANOVA analysis indicated a significant
difference between Sample 914 and both 170 and 896, which
were at parity, for stickiness, thickness, flavor, and color. If
the researcher is only using ANOVA to analyze the JAR
scores, the conclusion would be that the Overall Liking for
Sample 914 could be improved if it were to have a darker
color, stronger flavor, and be thinner. Note, however, that all
these products had high (>75 %) “Just About Right” scores
for these attributes. The business question then becomes, “Is
it worth the cost to improve Product 914?”

Recommendation

ANOVA analysis can be an effective method for evaluating
mean JAR scale differences; however, the distribution of the
JAR responses should always be evaluated prior to interpret-
ing the ANOVA. A bimodal distribution may indicate sub-
groups within the population that is being tested, or it may
indicate panelist inability/confusion with a scale. Appendix
Raw Data (condensed) followed by ANOVA tables.

Size 170 914 896
1="“Much Too Small” 3 9 3
2="“Too Small” 21 19 19
3="“Just About Right” 37 32 41
4="“Too Large” 33 37 30
5=“Much Too Large” 8 5 9

Means 3.22 3.10 3.23

Sum of Mean of
D.F. Squares Squares F-value p-value

Samples 2 1.026 0.513 0.66 0.5178
Judges 101 139.114 1.377 1.77 0.0003
Error 202  156.974 0.777

Total 305 297.114 0.974

Std. Error  0.087

(SEM)

Tukey’s HSD 5 % =0.293+
No Significant Differences

“Tukey’s HSD is the difference needed between the means
of 170, 914, and 896 for a sample to be significantly
different from another sample for this attribute.

Color 170 914 896
1="“Much Too Light” 0 0 0
2="“Too Light” 11 21 1
3= “Just About Right” 85 81 98
4="“Too Dark” 6 0 3
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Color 170 914 896
5= “Much Too Dark” 0 0 0
Means 2.95 2.79 3.02

Sum of Mean of

D.F. Squares Squares F-value p-value
Samples 2 2.725 1.363 13.8 0.000
Judges 101 17.451 0.173 1.75 0.0004
Error 202 19.941 0.099
Total 305  40.118 0.132
Std. Error  0.031
(SEM)

Tukey’s HSD 5 % =0.105*

Significant Differences=170 versus 914 and 896 versus
914

“Tukey’s HSD is the difference needed between the means
of 170, 914, and 896 for a sample to be significantly
different from another sample for this attribute.

Sum of Mean of

Amount of Flavor 170 914 896
1=“Much Too Weak” 2 6 0
2 =“Too Weak” 14 49 6
3=“Just About Right” 63 44 83
4="“Too Strong” 21 3 12
5=“Much Too Strong” 2 0 1

Means 3.07 2.43 3.08
Sum of Mean of
D.F. Squares Squares F-value p-value
Samples 2 28.046 14.023 43.83 0.000
Judges 101 50.291 0.498 1.56 0.0042
Error 202 202 64.621 0.320
Total 305 305 142.958
Std. Error 0.056
(SEM)

Tukey’s HSD 5 % =0.188*

Significant Differences=170 versus 914 and 896 versus
914

“Tukey’s HSD is the difference needed between the means
of 170, 914, and 896 for a sample to be significantly
different from another sample for this attribute.

Thinness/Thickness 170 914 896
1=“Much Too Thin” 0 0 1
2=“Too Thin” 12 4 8
3=“Just About Right” 85 77 90
4="“Too Thick” 5 21 3
5=“Much Too Thick” 0 0 0

Means 2.93 3.17 2.93

D.F. Squares Squares F-value p-value
Samples 2 3.765 1.882 13.79 0.000
Judges 101 25.637 0.254 1.86  0.0001
Error 202 27.569 0.136
Total 305 56.971 0.187
Std. Error  0.036
(SEM)

Tukey’s HSD 5 % =0.123*

Significant Differences=170 versus 914 and 896 versus
914

“Tukey’s HSD is the difference needed between the means
of 170, 914, and 896 for a

sample to be significantly different from another sample
for this attribute.

Stickiness 170 914 896
1=“Not Nearly Sticky Enough” 0 2 0
2 = “Not Sticky Enough” 5 8 1
3="“Just About Right” 80 83 88
4="“Too Sticky” 16 9 12
5=“Much Too Sticky” 1 0 1
Means 3.13 2.97 3.13

Sum of Mean of

D.F. Squares Squares F-value p-value
Samples 2 1.673 0.837 4.33 0.0144
Judges 101 24.605 0.244 1.26  0.0833
Error 202 38.993 0.193
Total 305  65.271 0.214
Std. Error  0.043
(SEM)

Tukey’s HSD 5 % =0.146*

Significant Differences=170 versus 914 and 896 versus
914

“Tukey’s HSD is the difference needed between the means
of 170, 914, and 896 for a

sample to be significantly different from another sample
for this attribute.
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Appendix K: Thurstonian Ideal Point

Modeling

Jeannine Delwiche'
Introduction and Objectives

Thurstonian ideal point modeling allows one to compare the
JAR ratings of multiple products to a theoretical ideal prod-
uct. It compares the probabilistic distribution of a product
against the probabilistic distribution of the ideal.

Background

When thinking about the ratings of an ideal product, re-
searchers tend to conceptualize an ideal product as always
receiving a rating of “Just Right” (Fig. 1).

However, a respondent’s product perceptions as well as
his definition of the ideal product may vary over time. Even
in the absence of product variation, JAR scale ratings for a
truly “ideal” product would therefore approximate a normal
distribution (Fig. 2).

Considering JAR ratings as distributions rather than ab-
solute points can lead to the following situations: A product
could have a distribution similar to that of the ideal product,
but with a mean that deviates significantly from the ideal (as
in Fig. 3). Chi-square analysis reveals that the two distribu-
tions below are significantly different.

On the other hand, a highly variable product could have
a mean “Just Right” rating, and yet not be ideal because of
“heavy tails” (Fig. 4—notice the mean is greatly depressed).
Chi-square analysis again reveals a significant difference be-
tween the two distributions.

Thurstonian ideal point modeling allows one to com-
pare multiple products to a theoretical ideal product. It com-
pares the probabilistic distribution of a product against the
probabilistic distribution of the ideal. IFPrograms™ pro-
vides the estimation of scale means relative to the ideal mean
for each scale. These means are in units of d’, measured from
the ideal point. In addition, the program gives relative scale
boundaries, ideal product proportions for each category for
each scale, and the variance-covariance matrix of the scale
means.

Itis necessary to elaborate on what is meant by the “esti-
mation of scale means” and “relative scale boundaries.”
While rating scales are generally assumed to have equal in-
terval spacing, (Fig. 5, top), respondents often use the scales
as though they were unequally spaced (Fig. 5, bottom), spe-
cifically, the end categories of the scale are used less often
than the other points. The ratings, therefore, are more ordi-
nal than interval in nature, which is a violation of parametric
statistics [1]. Thurstonian ideal point modeling is able to ac-
count for these psychological effects, and converts the rating
values that are based upon a number system without equal
intervals to true scale values that are based upon a number
system with equal intervals. These scale values are given in
terms of d’ and can be determined not only for the ideal dis-
tribution, but also for the rated product(s).

1 Firmenich, Inc., PO Box 5880, Princeton, NJ 08543.
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Requirements

The only requirement for analysis is that data be categorical.
To minimize data distortion due to transformation, it is rec-
ommended that ratings be collected on categorical scales.

“How to”

To conduct this analysis, the response frequencies for each
category by product and scale are determined. One typically
looks at one scale at a time for more than one product, but it
is also possible to look at several scales for one product. One
inputs the frequency data (how often each category of the
scale was selected for each product for a given scale), and a
few other details (number of scales, number of products, and
number of scale categories).

Results and Conclusions

The output for “size” is shown below in Fig. 6.

First listed is the “Relative Boundaries” of the scale,
which indicates the actual size of the intervals subjects are
using. Beneath this is the “Ratings Means,” which is simply
the mean value of the ratings. This is followed by the “Scale
Means,” which are, as mentioned earlier, means in units of
d', measured from the ideal point. Next is the “Variance-
covariance matrix for scale means,” and the values on the di-
agonal are the variance associated with each product (for
that scale). From the scale means (ind’) and their associated
variance, one can use another function of the IFPrograms™,
“Comparing d’ values,” to see if products differ from one an-
other significantly. The results from this analysis are sum-
marized in Table 1.

The final line gives the “Ideal (or Reference) Proportions
for Each Category.” These values can be subsequently used
in chi-square analyses, comparing each product distribution
relative to the ideal product distribution. For the “Expected
Values,” one uses the ideal proportions multiplied by the
number of observations. The output from these analyses is
summarized in Table 2.

The first step is to compare the d’ values of the samples
(Table 1). Samples 170 and 896 are not significantly different
from one another, based upon chi-Square analysis per-
formed by IFPrograms™ of d’ and their corresponding vari-
ance. However, compared to samples 170 and 896, sample
914 is significantly lower in amount of flavor and stickiness,
and significantly higher in amount of salt and thickness.
However, the samples show no significant difference in size.

The next step is to compare the JAR distributions of
each sample to the JAR distribution for the “ideal” sample
(Table 2). None of the samples differs significantly from the
ideal size; only sample 914 differs significantly from the ideal
for amount of flavor and salt, both samples 896 and 914 dif-
fer significantly from the ideal for thin/thickness, and both

wWww.astm.org
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Just Right

Too much Much too
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Fig. 1—JAR distribution for a constant ideal product.
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Fig. 2—JAR distribution for an ideal product distribution.

samples 170 and 896 differ significantly from the ideal for
stickiness. Overall, it is sample 914 that deviates the most
from the ideal, tending towards too large a size, and too
much flavor, salt, and thickness. Sample 170 is closest to the
ideal, tending towards too much flavor and having some-
what too much stickiness, but not differing from the ideal
size, amount of salt, and thickness. Sample 896 shows inter-
mediate results, not differing from the ideal in size and
amount of salt, but tending towards too much flavor and

100
80
60
40
20

Percent

MTL TL JAR ™

H"Too Much" Oldeal

MTM

Fig. 3—Comparisons of JAR distribution for ideal vs too much.

having too much stickiness and not enough thickness.

Pros and Cons

The benefit of this analysis is that by using probabilistic
modeling, the variant nature of the ideal product is ac-
counted for. The determination of the ideal distribution pro-
vides a way to determine reasonably the expected values of
the ideal product category frequencies and the ability to per-
form chi-square analyses. It allows differentiation between
samples that do not differ from the distribution of the ideal

100
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Percent

MTL  TL JAR ™

MTM

vEI“Heavy Tailed" Oldeal

Fig. 4—Comparisons of JAR distribution for ideal vs heavy tailed.
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Much too Too much Just Too little Muph too
much . little
right
Much too Too much Just Too little MU.Ch too
much right little

Fig. 5—Equal and unequal interval scale boundaries.

* Analysis of Relative-to-Reference, Rated 2-AC or Just About Right Scale Data

Scale: 1

Relative Boundaries
2.238
.669

Reference, Alternative or Ideal Mean: 0.000

Rating Means
3.216
3.235
3.098

Scale Means
.323
.354
133

Variance-covariance matrix for scale means
.022 .000 .000
.000 .022 .000
.000 .000 .022

Ideal (or Reference) Proportions for Each Category
.057 .261 .364 .261 .057

Fig. 6—Output of IFProgram™ JAR scale analysis (Thurstonian ideal point modeling) for “size” attribute.

TABLE 1—Comparison of d’ values of samples’ JAR ratings.

Attribute 170 896 914 Chi-square p-value
Size 0.3232 (0.022) 0.3542 (0.022) 0.1332 (0.022) 1.30 0.52
Amount of Flavor 0.1922 (0.027) 0.2572 (0.029) -1.473% (0.033) 61.23 <0.01
Amount of Salt -0.0572 (0.022) 0.0012 (0.023) 0.491° (0.023) 7.96 0.02
Thin/Thickness -0.3732 (0.037) -0.3312 (0.039) 0.750P (0.040) 20.63 <0.01
Stickiness 0.5882 (0.042) 0.6132 (0.039) -0.100° (0.038) 8.45 0.01

In each row, means with the same superscript are not significantly different from one another (p <0.05)



TABLE 2—Comparison of JAR distributions to “Ideal” sample JAR distributions.
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Size
Chi-sq=4.90 Chi-sq=6.23 Chi-sq=8.80
Product vs Ideal p<0.298 p<0.182 p <0.066
170 896 914 Ideal
Too little 3 3 9 5.8
Somewhat too little 21 19 19 26.6
Just Right 37 40 32 371
Somewhat too much 33 31 37 26.6
Too much 8 9 5 5.8
Amount of Flavor
Product vs Ideal Chi-sq=9.07 Chi-sq=9.06 Chi-sq=139.54
p <0.059 p <0.060 p<1x10"
170° 896° 914° Ideal
Too little 2 0 6 0.7
Somewhat too little 14 5 48 14.2
Just Right 63 84 45 72.1
Somewhat too much 21 12 3 14.2
Too much 2 1 0 0.7
Amount of Salt
Product vs Ideal Chi-sq=3.34 Chi-sq=6.25 Chi-sq=16.33
p<0.502 p<0.181 p<0.003
170 896 914 Ideal
Too little 16 15 14 17.2
Somewhat too little 26 25 10 21.6
Just Right 27 19 25 24.3
Somewhat too much 15 30 22 21.6
Too much 18 13 30 17.2
Thin/Thick
Product vs Ideal Chi-sq=4.94 Chi-sq=10.99 Chi-sq=26.29
p<0.294 p<0.027 p <0.00002
170 896 914 Ideal
Too little 0 1 0 0.1
Somewhat too little 13 8 4 7.7
Just Right 84 90 77 86.5
Somewhat too much 5 3 21 7.7
Too much 0 0 0 0.1
Stickiness
Product vs Ideal Chi-sq=13.00 Chi-sq=11.00 Chi-sq=7.19
p<0.011 p<0.027 p<0.126
170° 896° 914° Ideal
Too little 0 0 2 0.4
Somewhat too little 4 1 8 7.4
Just Right 81 87 82 86.2
Somewhat too much 16 13 9 7.4
Too much 1 1 0 0.4

dUnequal sums of observed & expected frequencies. Significant p-values are in bold.

product from those that only have a similar mean. One draw-
back of this technique is that Thurstonian ideal point model-
ing cannot be conducted by hand or with the use of a simple
spreadsheet. Another is the somewhat difficult framework
involved in presenting this approach.

Recommendation

This method is recommended for JAR scale analysis when-
ever one wishes to compare a product(s) to the ideal product

for targeted consumer segments. It is especially effective
when there is extensive historical JAR data on a product and
consumer segment(s) that can be used to determine the ideal
distribution.

References

[1] O’Mahony, M., Sensory Evaluation of Food, Marcel Dekker,
Inc., New York, 1986.
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Appendix L: Penalty Analysis or Mean Drop

Analysis

Mary Schraidt’
Introduction and Objectives

Penalty analysis or Mean drop analysis is a method for deter-
mining if respondents’ “Just About Right” ratings for a spe-
cific attribute are associated with a drop in some hedonic or
choice measure, most commonly Overall Liking. Penalty/
Mean drop analysis is conducted on “Just About Right” data
to determine if those who do not find a particular attribute
“Just About Right” rate it lower for Overall Liking on that at-
tribute than those who find the same attribute JAR. Penalty/
Mean drop analysis is not a formal method for determining
drivers of liking, but is an effective tool for linking attribute
performance to Overall Liking.

Requirements

In order to conduct penalty analysis, the respondent’s indi-
vidual Overall Liking rating and ratings on the JAR at-
tributes of interest are required; the analysis is typically per-
formed for each product X attribute combination. Typically
the data are collapsed into three categories “Too High,” “Just
About Right,” and “Too Low,” irrespective of the number of
scale points.

“How to”

The following example illustrates the use of penalty analysis
of a single JAR rating on Overall Liking. First, ratings are
grouped into “above JAR,” “at JAR,” and “below JAR.” Then
the mean Overall Liking rating is calculated for each group.
The following table presents hypothetical results:

Percentage of
Overall Flavor Strength Respondents Overall Liking Mean
“Too Weak” 21% 6.0
“Just About Right” 55% 7.6
“Too Strong” 24% 4.8

The penalties (mean drops) are calculated as the differ-
ences between the mean liking of each non-JAR group and
the mean of the JAR group.

“Too Weak” 6.0 “Too Strong” 4.8
“Just About Right” 7.6 “Just About Right” 7.6
Drop -1.6 Drop -2.8

These values (-1.6/-2.8) are plotted versus the percent-
age giving each response (21 % and 24 %, respectively). Note
that for the “Overall Liking Mean” in the above table, it is rec-
ommended to use the Overall Liking mean of those respon-
dents that rated the attribute “Just About Right” and not the
Overall Liking sample mean. Using the overall liking sample

1 Peryam and Kroll, 6323 N. Avondale, Chicago, IL.
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mean would result in “double counting” the impact on some
of the respondents. (See Fig. 1.)

A minimum percentage skew for “Not Just Right” is of-
ten employed as a means of eliminating smaller, less impact-
ful attributes from consideration. This cutoff may depend on
the consumer base size, but is typically around 20 %. When
the base size is larger, percentages less than 20 % may well be
reliable and can be plotted. Some researchers suggest a
minimum criterion for the overall base size X percentage of
the skew as 20.

The following is a guideline for interpreting the magni-
tude of a particular penalty for Overall Liking.

Attributes which a large percentage of consumers are
critical of and which have large penalties can be found in the
upper right quadrant of a plot, providing a quick summary of
the most concerning diagnostic problems for that product.

Examples

Sample 170: This sample receives a very slightly con-
cerning penalty for Too Much Flavor.

Implication—slightly reduce flavor. The too large skew
was a very slightly concerning penalty as it received a —-0.02.

Although there is a skew for being Too Small, the pen-
alty analysis shows this imbalance is positive. (See Fig. 2.)

Sample 458: This sample receives slightly concerning
penalties for Too Much Flavor and Too Sticky.

Implication—slightly reduce flavor and stickiness.

Although there are skews for being Too Large and Too
Small, the penalty analysis shows these imbalances are posi-
tive. (See Fig. 3.)

Sample 914: This sample receives concerning penalties
for Too Thick and Not Enough Flavor, and a very slightly
concerning penalty for Not Enough Color.

Implication—reduce thickness and increase flavor.

Although there are skews for being Too Large and Too
Small, the penalty analysis shows these imbalances are posi-
tive. (See Fig. 4.)

Sample 896: This sample has no concerning penalties.
(seeFig.5.)

Implication—no further refinement for this product.

Sample 523: This sample receives a slightly concerning
penalty for Too Much Flavor. (see Fig. 6.)

Implication—slightly reduce flavor.

Although there are skews for being Too Large and Too
Small, the penalty analysis shows these imbalances are posi-
tive.

Additions to Penalty Analysis

The total penalties may also be included along with penalty
analysis. This involves multiplying the percent skew by the
penalty for each JAR attribute. A simple ranking of these to-
tal penalties may help the researcher prioritize which at-
tributes to consider adjusting.

www.astm.org
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-2.0 or greater (very concerning)

| eToo thick

-1.5t0-1.99 (conceming){

eNot enough flavor

-1.0 to -1.49 (slightly conceming){

0 -.99 (very slightly concerning)

i @ Not enough color

Mean Drop on 9 pt. Overall Liking Scale

Positive Drop (Increase)

eToo small

eToo large

Fig.

Pros and Cons

Benefits of penalty analysis include easily interpretable data
or graphs that link specific product attributes in need of ad-
justment with the impact their being not “just right.” Penalty
analysis also separates attributes into those that appear to
have impacted Overall Liking from those that have gener-
ated “complaints,” those attributes that consumers say are
not just right, but whose current level has in reality, not im-
pacted liking.

Caveats associated with penalty analysis include un-

30% 40%

50% 60%

PERCENTAGE OF SUBJECTS

1—Penalty plot with negative and positive penalties.

clear action to be taken in the case of equal bimodal data and
associated penalties (such as equal penalties for “opposite”
findings of “too salty” and “not salty enough”). Penalty analy-
sis does not provide the level of adjustment that needs to be
undertaken to correct an attribute, thus the guidance is ap-
proximate. Another caveat associated with penalty analysis
is that the penalties ignore the potential impact on future at-
tribute adjustment among respondents originally rating the
product “just right” for the specified attributes. Finally, al-
though the penalties and subsequent product improvement

®Too much flavor

Mean Drop on 9 pt. Overall Liking Scale

pToo large

o

eT00 small

30%

40%

50% 60%

PERCENTAGE OF SUBJECTS

Fig. 2—ASTM mean drop analysis-total. #170.
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Fig. 3—ASTM mean drop analysis-total. #458.
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Fig. 4—ASTM mean drop analysis-total. #914.
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Fig. 5—ASTM mean drop analysis-total. #896.
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Fig. 6—ASTM mean drop analysis-total. #523.

recommendations are considered individually, product at-
tributes may not change in isolation; altering the level of
some attributes may change the perception of other at-
tributes not under consideration.

Recommendation

Penalty analysis is recommended when the researcher wants
to understand which attribute skews were associated with
lower Overall Liking and in what direction to adjust them.
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Appendix M: Using Grand Mean versus
Mean of the Proportion of Respondents Who

Scored the Product JAR

Dave Plaehn,' Gregory Stucky, David Lundahl, and John Horne

Introduction

The object of traditional penalty analysis is to try to deter-
mine the effect “Too Much” or “Too Little” of a product at-
tribute has on overall product liking. These product at-
tributes have been called “Just-About-Right” or JAR
variables, they are discrete and the middle value corre-
sponds to a consumer response of “Just About Right.” There
are two different approaches in determining the so-called
penalties. Both are examined here.

Conclusion

Calculate the penalty from the JAR subgroup rather than the
Grand Mean. There is a mathematical evidence that shows
that calculating from the Grand Mean may cause the re-
searcher to make erroneous conclusions in some situations.

Reasons

The objective of penalty analysis is to identify those product
attributes that are contributing to a lower product liking
score (or purchase intent score). The critical assumption of
the JAR scale is that respondents should score the attribute
JAR when the attribute is at a point where improving it won't
improve the product liking score. With that assumption in
place the liking mean score for the respondents who scored
JAR will be higher than the liking score for the respondents
who do not score the product JAR. Thus it is expected that
the mean score of the respondents in JAR will be higher than
the mean score of all respondents combined (Grand Mean).
Penalty analysis results show the researcher the relative
amount that the product score is being reduced by the re-
spondents who think an attribute is not just about right.
Therefore if you calculate the penalty based on the grand

mean you will be using a target that is lower than the actual
product potential. Additionally when there is high skewness
in mean scores, it is possible that the grand mean will be
lower than the mean of one of the two subgroups (scale
ends). In these cases using the grand mean will show the re-
searcher a positive penalty score which would lead them to
an erroneous conclusion.

Figure 1 shows when using the grand mean when the
properties of respondents are in a typical distribution, that it
may be likely to conclude that having more respondents in
“too low” would improve the product score. Although it
would improve the grand mean, it would only improve it to
the mean of the subgroup. At that point a calculation of the
weighted penalty would begin to show negative penalty.
Thus you would end up optimizing towards the mean of the
“too low” subgroup rather than the mean of the JAR sub-
group, thus not adhering to the assumptions of the scale.

In most cases where the scale is being used “normally”
by consumers, the two methods will give extremely similar
results. However, as more skewness in subgroup means oc-
cur and the Grand Mean scores become increasingly lower
than the JAR mean, the Grand Mean method has a greater
potential to show results that would make the researcher
draw an erroneous conclusion.

In those situations then where the Grand Mean is higher
than the JAR mean, calculating the penalty from the grand
mean may be a viable option, however in these cases there is
clear evidence that the JAR scale is being misinterpreted or
misused by the respondents (see section on caveats). Thus in
these situations, although statistically one could say the
grand mean is a more appropriate option, from a psychology
and scale usage standpoint, the validity of the data for “typi-
cal” interpretation is very low.

Means of Proportions of Grand Weighted Penalty for Weighted Penalty for
Subgroups Respondents Mean Grand Mean Method JAR Mean Method

lo jar hi lo jar hi lo hi lo hi
4.0 6.0 20 | 025 025 050 3.50 0.500 -3.000 -0.500 -2.000
4.0 6.0 20 | 040 020 040 3.60 0.800 -3.200 -0.800 -1.600
4.0 6.0 20 | 017 0.33 050 3.67 0.167 -2.500 -0.333 -2.000
4.0 6.0 20 [ 050 017 0.33 3.67 1.000 -3.333 -1.000 -1.333
4.0 6.0 20 | 033 033 033 4.00 0.000 -2.000 -0.667 -1.333
4.0 6.0 20 | 040 040 020 4.40 -0.400 -1.200 -0.800 -0.800
4.0 6.0 20 [ 025 050 025 4.50 -0.250 -1.250 -0.500 -1.000
4.0 6.0 20 | 033 050 017 4.67 -0.444 -0.889 -0.667 -0.667

Fig. 1—Most common means distributions with possible proportion distributions. Comparison of Grand Mean and JAR mean weighted

penalties.

1InsightsNow, Inc., Corvallis, OR 97333.
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Mathematics

This section details the exact mathematics to allow those
who want to conduct a detailed review of their methods.

Let N be the total number of respondents, Y be a N X 1
respondent “Liking” vector, and X be a N X 1 vector of JAR
responses. Assume X has ¢ categories, 1,2, ...,c, where ¢ is
odd, and the middle (JAR) level (¢/2+1) is the “Just-About-
Right” level. Let n; be the number of occurrences of the re-
sponse i in X. Thus, N =2n;. Let 13, be the number of people
giving the JAR response below the JAR level, #;,; be the num-
ber of people giving the JAR response above the JAR level
and nppr=N0¢,12.  Then, n=Zic<ppn; and  ny
=2 (c+1)2<i=ch;. Let u be the mean of Y, the so-called “grand
mean.” Let B; be the mean liking for those respondents hav-
ing a JAR response i(X=i) fori=1,2,...,c. Ina similar man-
ner, define B, Bhi, and Byar. Then note that the grand mean,
u, is aweighted average of sub-means. Specifically,

1 (o}
LAY (1a)
and
1
M= N(”lo * Blo + MyaR * BIaR + Mhi * Bhi) (1b)

Let p;=n;/N, fori=1,2,...,c, and pj,=11o/N, pni=npni/N and
Piar="1jar/N. Let p be the vector whose elements are p; and
B be the vector whose elements are B;, then the above equa-
tions can be rewritten as

c

pw=2pi*Bi=p B (2a)

i=1

(where - stands for vector dot product or matrix multiplica-
tion) and

M =Dlo * Bio + Pyar * Biar + Phi * Phi (2b)

There are two different ways of determining penalties. In
one method the penalties are calculated by subtracting the
grand mean (u) from the “group” means. In the other ap-
proach the JAR mean (#y5R) is subtracted from the group
means. Let penGrand; = ;- . and penJAR, = B; - 7ag, for all
i, be the respective types of penalties for the two approaches
associated with the X response i. Similarly, define
penGrand,,, penGrandjag, penGrandy;, penJAR),, penJARaR,
and penJARy,;. Let penGrand be the vector whose elements
are penGrand,. Similarly, define penJAR. If u is subtracted
from the above equations, using the fact that =,p;=1 and p},
+psar+Phi=1, then

M—/L=O=<Epi*ﬂi)—M=2Pi*(ﬁi_ﬂ)

i=1 i=1
c

= E p; * penGrand, = p’ - penGrand (3a)
i=1

and
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w = p=0=p*penGrand, + pyag * penGrandyag
+ pi * penGrandy; (3b)

On the other hand, subtracting 7y,g from both sides of Eqs
(2a) and (2b), and noting that penJARjzg =penJAR ., 1), =0,
gives

c c
M~ MJAR = (E p; * 771') — MIAR = E pi * (19, = 7jaR)

i=1 i=1

Y, pi*penJAR;
i#(c/2+1)

c
= 2 p; * penJAR; =
i=1
=p’-penJAR (4a)
and
M= MsAR = Plo * PENJAR, + PyaR * PeNJAR AR + P * penJ ARy,
=Plo * penJARy, + py,; * penJARy; (4b)

Let the “weighted penalties” for the latter approach be de-
fined as pen wtJAR;=p penJAR; Similarly define
pen_wtJAR), and pen_wtJARy,;. Then from Eqgs (4a) and (4b),

pw=mar+ > pen_wtJAR, (5a)
i#(c/2+1)
and
W= Nyar + pen _wWtJAR,, + pen _wWtJARy; (5b)

To get equations similar to those of Egs (5a) and (5b) for the
case where the penalties are determined by subtracting the
grand mean, it is necessary to define the weighted penalties
as pen_wtGrand,;=p;*penGrand;/pjr. Similarly define
pen_wtGrand,, and pen_wtGrandy,;. Then, from Egs (3a) and
(3D).

c

0= E p; * penGrand, = - penGrand,,,,
i-1
= 2 p;*penGrand,= Pt * (= Benan)
i#(c/2+1)
= > pi+penGrand, = pyg * (1 - 71ar)
i#(c/2+1)
= 2 p; * penGrand; = u = 7y
i#(c/2+1)
1
o E p; * penGrand, = 1 = g
PIAR i+ (cr2+1)
+ E pen _wtGrand; (6a)
i#(c/2+1)
Similarly,

M= mar + (pen _wtGrand,, + pen _wtGrandy;)  (6b)
Comparing Egs (6a) and (6b) with Egs (5a) and (5b), it must
be that

E pen_wtGrand; (7a)
i#(c/2+1)

2 pen_wtJAR, =
i#(c/2+1)

and
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pen _wtJAR,, + pen _wWtJARy; = pen _wtGrand,,
+pen _wtGrandy; (7b)

For Further Consideration

Based on the assumptions of JAR scale use, the following
“rules” should be carefully considered.

If the % of respondents in a single tail is higher than the
% of respondents in the JAR, a penalty analysis will not give
“predictable” values. For example if 70 % of the respondents
said a product was too hard, then the action a company
would take would be to make it softer to such a substantial

degree that the respondents who thought that the extremely
hard product was just right, would be expected to greatly
change their opinion.

If there is bimodal distribution of the % of respondents,
there is clearly segmentation and it is possible that the prod-
uct will not succeed unless altered to one extreme or the
other.

If the mean scores are highly skewed or are bimodal the
attribute is suspect that the interpretation and use of the
scale should be brought into question. When this occurs
penalties of zero or positive penalties will occur.
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Appendix N: A Regression-Based Approach
for Testing Significance of JAR Variable

Penalties

Dave Plachn! and John Horne!

Introduction and Objectives

Traditional penalty analysis attempts to relate JAR variable
responses to overall liking or some other “reference” vari-
able. No variance estimates are calculated around the penal-
ties or mean drops, and as a result, significance testing is not
done. Consequently, this method does not give any gauge of
reliability or importance of the results. Focus is often placed
on large penalties that are also associated with a large pro-
portion of respondents; 20 % of respondents on a given side
of a “Just About Right” point (e.g., “Too Much” or “Too
Little”) is frequently used as a minimum standard of impor-
tance.

We propose a regression-based approach to better un-
derstand which penalties are important for a given product.
This approach recodes JAR variable scores into indicator
(dummy) variables in order to address the non-linear nature
of the typical JAR variable scale (the middle category as “Just
About Right” and the other categories as some degree of “Too
Much” or “Too Little”). Regression coefficients resulting
from the indicator variables are analogous to mean drops of
the reference variable. Significance testing can be done on
these coefficients parametrically by using the standard error
estimates from the regression model itself; semi-
parametrically by using standard error estimates from
methods such as jackknife and bootstrap; or non-
parametrically, for example, by forming “confidence inter-
vals” from the distribution of a large number of bootstrap
samples. All of these methods are presented below. While
some parts of this approach can be used to test multiple
products and attributes simultaneously, we will consider
only one JAR variable/product combination at a time. Along
the way we will prove that the regression coefficients from
ordinary least-squares (OLS) regression are identical to the
traditional penalties assuming the so-called JAR mean is
used to determine the penalties.

Requirements for the Analysis

The analysis requires the individual raw liking (or other ref-
erence variable) scores and the individual JAR variable
scores for each variable/product combination. JAR variable
scores must be transformed to indicator variables. A statisti-
cal package that implements regression models is required.
A package that also implements cross-validation, jackknife,
and bootstrap is useful.

"How to”
Notation
Let vectors and matrices be represented by bold lower and

upper case letters, respectively. If a is a vector, denote the ith

1InsightsNow, Inc., Corvallis, OR 97333.

Copyright© 2009 by ASTM International

element of a by a; or a(i). For a matrix, A, let the element of
the ith row and jth column be represented by A(i, ) or A;;. Let
A(:,j) or A;be thejth column of Aand let A(i, :) be the ith row
of A. Assume all vectors are column vectors and that the in-
ner or dot product of two vectors a and b is given by a’b,
where “1” represents vector or matrix transpose, and it is as-
sumed that a and b have the same number of elements. Simi-
larly denote the regular matrix product by “adjacency.” Let

“="mean “is defined as.”

JAR Variable Score Recoding

To create a “sensible” regression model between a JAR vari-
able and a reference variable such as liking, the JAR variable
must be somehow transformed. A simple approach is to
change the JAR variable categories, or a combination of
those categories, into dummy or indicator variables. For-
mally, let y be a column vector of the reference variable and
let x be an associated vector of JAR variable responses. As-
sume x has ¢ categories where ¢ is odd and that the category
(c+1)/2 is the “just about right” category. Transform x ac-
cording to

X(i,j)=1ox({) =] elseX(i,j)=0 (1)

The columns of X are linearly dependent (if you know all but
1 of the columns of X you can calculate the remaining col-

umn) and, consequently, X cannot be used for ordinary least-
squares regression (OLS). To remedy this, remove the “Just

About Right” column from X and call the new array X:

X(:,j)=X(j), l<j<(c+12

X(,)=X(j+1), (c+DR2<j<c 2)

The effect of removing the “Just About Right” column is that
the regression model intercept becomes an estimate of the
mean of the reference variable for those respondents giving
the “Just About Right” response (the “JAR mean”).

Make the Model

One can now create the regression model. The regression
equation is given by

c-1

y=Bo+XB+e=PBo+ 2 X(,j)B+¢ 3)

j=1

where By is the model intercept, B is a vector of regression
coefficients and & is a vector of model errors. Taking the
mean of Eq. (3) gives

57
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c-1

1y =Bo+ 2 Pib; @)
]

where uy is the mean of y and p; is the mean of X(:,j), the
proportion of respondents giving the JAR variable responsej
orj+1 as the case may be (see Eq. (2)). It is further assumed
that this is a “least squares” type of model and that, conse-
quently, X¢;=0. As mentioned above, B, is the model esti-

1

mate of the so-called JAR mean, the reference variable mean
of those respondents rating the product “Just About Right.”
The other coefficients, B;, are typically negative and are
thought of as “penalties” (mean drops). In fact, an equation
analogous to Eq. (4) holds for traditional or count-based
penalty analysis. Let y; be the reference variable mean for
those respondents giving the JAR variable response j and let
P; be the proportion of respondents giving that response. So,

p;= mean(X(:,j)) and M= vy X(: ,]')/2 X(i,f) (5)

1

First note that u is just the weighted average of the w;, i.e.,
c
My = 2 f’ij (6)
j=1

Let uyar = tc+1)2 and Bi= p;— uyar, the “penalty” from the
JAR mean. By subtracting ujar from both sides of Eq. (6),
making substitutions, etc., one can show

My = MJAR + E f’jﬂ;’ (7)
j#(e+1)2

Note that the elements of p and p are the same except p has
no element corresponding to the “Just About Right” category
(see Eqg. (2)). If OLS is the regression approach then it can be
shown that By= ujar and ,B,:[%j if1<j<(c+1)2, Bj=,l~3,-+1 if (¢
+1)/2<j<c (see Appendix).

Significance Testing for Regression
Coefficients

Conducting a “model-based” penalty analysis as given above
allows for significance testing of the regression coefficients
and, consequently, gives a measure of the reliability and vari-
ability (via confidence intervals) of the results. Four different
approaches to significance testing are provided below. They
are divided into three groups: parametric, semi-parametric,
and non-parametric. The hypothesis being tested in each
case is whether or not a given coefficient differs from 0 (Hy).

Parametric Method: Standard Error Estimates from
a Regression Model

If the errors g; are independent and normally distributed
with variance o2, then the model coefficients are normally
distributed and may be tested for statistical significance us-
ing the standard error estimate (STDERR(-)) from OLS re-
gression and a ¢-test. These have the following form:

STDERR(8) = VMSE(X'X);! (8)

where MSE =mean squared error=(1/ N)Esi2 is an estimate

i
of 0% and the number of respondents is N and

=P ©)
STDERR(S;)

Because the columns of X are orthogonal (X;X;=0 for i #/)
an “ANOVA-like” approach could also be taken since the
model sums of squares can be partitioned among the
dummy variables.

Semi-parametric Method 1: Standard Error
Estimates from Jackknife

Another approach to calculating coefficient standard erroris
to use model cross-validation [1] in conjunction with the
jackknife procedure. Cross-validation is a model validation
technique that attempts to estimate how well a model will
predict “new” samples. The data are partitioned into M seg-
ments of equal or nearly equal size according to some user-
defined scheme. For each segment, a regression sub-model
is calculated based on all the data except that of the given
segment. Consequently, M sub-models are made providing
M sets of regression coefficients.

The variance that these coefficients form around the ap-
plicable coefficient from the same model on the original
dataset is used to form the standard errors. However, be-
cause the number of data rows in each sub-model is smaller
than the total number of data rows, a correction factor is
used that adjusts the variance up based on the number of
cross-validation segments. The standard error estimate for
B; using this approach, assuming equal partition sizes [2], is
given by

M
M-1
STDERR(B]) = \/T 2 (B/'(m) - B/’)z (10)

m=1

where: §;is the coefficient for the jth indicator variable from
the original data, Bj,, is the coefficient for the jth variable
from the mth cross-validation sub-model, and M is the num-
ber of sub-models. Hypothesis testing for this approach uses
the same ¢-statistic described in Eq. (9) above. Only the
method for arriving at the standard error estimate differs.

Semi-parametric Method 2: Standard Error
Estimates from Bootstrap
Still another approach for estimating standard errors
around regression coefficients is bootstrap re-sampling. The
bootstrap method re-samples the original data with replace-
ment. All bootstrap samples will have the same size as the
original data. By generating a large number of bootstrap
samples, each observation is about as likely to contribute to
the final variance as is each other observation.

The estimated standard error for the bootstrap ap-
proachis as follows:

STDERR(B)) =
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where: g is the coefficient for the jth indicator variable from
the original data, B;() is the coefficient for the jth variable
from the bth bootstrap sample, and B is the number of boot-
strap models or samples. Again, this is an alternative method
for estimating standard errors and once we have those, we
can proceed with hypothesis testing using the ¢-statistic in
Eq.(9).

Nonparametric Method: Confidence Intervals from
Bootstrap Sample Distributions

All of the above approaches have a parametric component.
They rely on the assumption that the individual errors, &;
from the model are independent and normally distributed.
When this assumption is violated, non-parametric ap-
proaches should be substituted. An example of a non-
parametric approach to significance testing of regression co-
efficients is the percentile bootstrap (see, for example,
Wilcox, [3]). In this approach, confidence intervals around
the coefficients from the regression model are determined by
rank-ordering the bootstrap coefficients and finding the ap-
propriate percentiles in these distributions. These intervals
are bounded by the B(a/2)+1 and the B-B(a/2) rank-
ordered bootstrap regression coefficients. As with other con-
fidence interval approaches, if this interval does not include
zero, the coefficient is concluded to be significantly different
from zero. Because this approach does not rely on any other
distributions of random variables (e.g., 7) to do hypothesis
testing, it operates completely independent of any assump-
tions of normality.

Examples from Case Study Data

There were five products and five JAR variables in the case
study data set. JAR variables were transformed to two indi-
cator variables each, with “Too Little” (categories “1” and
“2”) represented in one of the indicators and “Too Much”
(categories “4” and “5”) represented in the other.

OLS was used as the regression approach on each JAR
variable independently. Overall Liking was the reference
variable. No respondents rated the color of Product #914 as
“Too Dark.” As a result, there was no variation in the indica-
tor variable for this side of this JAR variable and only 49 re-
gression coefficients were calculated from 25 (5 products
X 5 JAR variables) separate models. Of these coefficients, 16
were associated with JAR variables where more than 20 % of
respondents rated a particular product as having “Too
Much” or “Too Little” of the respective attribute. Diagnostics
from traditional penalty analysis and all four of the above-
described methods are shown in Table 1 for these 16 coeffi-
cients. Identical conclusions were drawn from all four meth-
ods. Penalties associated with “Flavor Too Strong” in
Products #458 and #523 along with “Flavor Too Weak” and
“Too Much Thickness” in Product #914 were consistently
significant across methods (p <0.05, boldface in Table 1).
“Flavor Too Strong” in Product #170 was likewise significant
atp <0.1 across all four methods (90 % bootstrap confidence
interval -1.75t0 -0.01).

Standard errors, for the three methods that utilized
them, were likewise in similar ranges and followed nearly
identical distributions across all 49 coefficients tested (Fig.
1). Most of the variance that did exist between the standard
errors calculated by the various methods was found among

those JAR attributes with very few respondents on one side
or the other. The outlier standard error from the jackknife
approach in Fig. 1(A) was associated with a single respon-
dent rating Product #896 as too light in color. There was no
evidence from these analyses that one or another of these
methods leads to systematically larger or smaller standard
errors.

Conclusions

Benefits and Risks of the Analysis

The model-based approach presented here can be seen as a
natural extension of traditional penalty analysis. As the case
study shows, the penalties and penalty-weights are identical
when OLS is used as the regression approach (see Appen-
dix). The benefit of the model-based approach is that it pro-
vides the analyst with significance testing and confidence in-
tervals for the penalties.

A further benefit of the dummy variable approach in
combination with analyzing one JAR-variable-product com-
bination at a time is that the columns of the dummy variable
array (X) are orthogonal. Consequently, there are no issues
of collinearity and ill-conditioning. Thus, one need not be
concerned with using OLS regression, which is commonly
available in statistical packages.

Each of the four methods used to test the significance of
JAR variable penalties has some associated benefits and
risks in their own right. The parametric approach is the sim-
plest to use from a computational standpoint, but is not ap-
propriate if the individual errors from the model are not nor-
mally distributed. The jackknife and bootstrap approaches
are computationally similar, although the bootstrap may re-
quire more computing resources as it generates more
samples. A possible benefit of the bootstrap approach is that
because of the larger number of samples, the coefficients
may be more likely to follow normal distributions than the
smaller number of coefficients generated from the jackknife
approach. Further, when full cross-validation is used in the
jackknife approach, the likelihood that a single sub-sample
will be replicated multiple times is quite high. This leads to a
more non-continuous distribution of coefficients. Both of
these characteristics can be seen in Fig. 2. Both sets of coeffi-
cients do not differ significantly from normal, but the boot-
strap coefficients conform to the normal distribution better
than the much smaller number of jackknife coefficients. The
jackknife coefficients also follow a non-continuous distribu-
tion. While there are 102 coefficients generated in the ex-
ample shown in Fig. 2, there are only 15 unigue coefficients
(i.e., only 15 unigue sub-samples were generated from the
leave-one-out cross-validation approach). The problem of
having a non-continuous distribution of jackknife coeffi-
cients can be remedied by increasing the size of the cross-
validation segments (i.e., leave-d-out, where d > 1). However,
increasing the size of the cross-validation segments also re-
duces the number of sub-models, and consequently reduces
the number of coefficients that the jackknifed estimates of
standard errors are based upon.

When neither the jackknife nor the bootstrap coeffi-
cients follow a normal distribution, the non-parametric ap-
proach should be used as it avoids any distributional as-
sumptions. The percentile bootstrap approach presented
here is but a single example of the nonparametric ap-
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TABLE 1—Diagnostics from model-based penalty analysis on case study data.

Traditional Model-based 5% Boot
Penalty (OLS) . . confidence
Normal deviate Jackknife Bootstrap
Attribute % resp JAR Mean Mean Drop S, B; SE (p-value) SE (p-value) SE (p-value) LL UL
Product 170
Too Small Size 23.5% 5.541 0.251 5.541 0.251 0.580 (0.666)  0.579 (0.665)  0.571 (0.661) -0.859 1.374
Too Large Size 40.2% 5.541 -0.199  5.541 -0.199  0.502 0.692 0.516 (0.700)  0.509 (0.696) -1.198 0.810

Too Strong Flavor 22.5% 5.952
Product 458

Too Small Size 31.4% 5.297 0.234 5.297 0.234  0.421 (0.580) 0.443 (0.599) 0.439 (0.595) -0.647 1.076

Too Large Size 32.4% 5.297 0.339 5.297 0.339 0.418 (0.419) 0.402 (0.401) 0.394 (0.391) -0.442 1.106

Too Strong Flavor 32.4% 5.984 -1.348 5.984 -1.348 0.349 (<0.001) 0.362 (<0.001) 0.347 (<0.001) -2.028 -0.668
Product 523

-0.909 5.952 -0.909 0.522 (0.085) 0.513 (0.079)  0.504 (0.074) -1.910 0.067

Too Small Size 24.5% 5.811 0.229 5.811 0.229 0.458 (0.618) 0.487 (0.639) 0.476 (0.631) -0.710 1.151

Too Large Size 39.2% 5.811 0.339 5.811 0.339  0.403 (0.403) 0.393 (0.390) 0.384 (0.379) -0.415 1.097

Too Strong Flavor 21.6% 6.333 -1.561 6.333 -1.561 0.400 (<0.001) 0.402 (<0.001) 0.395 (<0.001) -2.335 -0.786
Product 896

Too Small Size 21.6% 6.500 -0.182 6.500 -0.182 0.512 (0.723) 0.469 (0.699) 0.457 (0.692) -1.082 0.718

Too Large Size 39.2% 6.500 -0.400 6.500 -0.400 0.431 (0.356) 0.446 (0.372)  0.441 (0.367) -1.267 0.459
Product 914

Too Small Size 27.5% 6.438 0.134 6.438 0.134  0.546 (0.807) 0.548 (0.807)  0.543 (0.806) -0.927 1.219

Too Large Size 41.2% 6.438 0.086 6.438 0.086  0.495 (0.862) 0.525 (0.870)  0.520 (0.869) -0.922 1.111

Too Light Color 20.6% 6.531 -0.102 6.531 -0.102 0.514 (0.843) 0.567 (0.857)  0.556 (0.854) -1.247 0.931

Too Weak Flavor 52.9% 7.556
Too Much Thickness 20.8% 7.091

-1.796  7.556 -1.796 0.378 (<0.001) 0.367 (<0.001) 0.364 (<0.001) -2.491 —1.082
-2.139  7.091 -2.139 0.448 (<0.001) 0.433 (<0.001) 0.422 (<0.001) -2.964 -1.314

Key

Traditional Penalty %resp (percentage of respondents rating a product on a given side of JAR scale)

JAR Mean (mean OAL of respondents who rated a product as JAR on a given attribute)

Mean Drop (difference between JAR mean and mean OAL of respondents who related a product on a given side of
JAR scale)

Bo (intercept, analogous to JAR mean); j3; (tested coefficient (analogous to mean drop)

SE (standard error estimate from OLS model); p-value (based on two tailed t-test, approx. 100 degrees of freedom)

Model-based OLS
Normal deviate

Jackknife SE (standard error estimate from jackknife with full crossvalidation); p-value (based on two-tailed t-test, approx.
100 degrees of freedom)
Booststrap SE (standard error estimate from bootstrap, B=10,000); p-value (based on two-tailed t-test, approx. 100 degrees of

freedom)
LL (lower bound of 95 % Cl, associated with 251st rank ordered bootstrap sample)
UL (upper bound of 95 % Cl, associated with 9,750th rank ordered bootstrap sample)

5% boot confidence

indicators are better if the overall model error is the only
consideration, fewer indicators may be better from an inter-
pretative standpoint.

proaches available. Other approaches are described by
MacKinnon [4] and Wilcox [3].

How Many Indicator Variables?

Some questions remain regarding the number of indicator
variables (/) that should be formed from a single JAR vari-
able. As described above, when a JAR variable has ¢ catego-

Limits of the Analysis
With the exception of parametric approach, there are no
easy-to-use mechanisms to conduct the analytic methods

ries, J has a maximum of ¢ - 1. Overall model error will often
be lower (i.e., the model will have higher predictive ability)
asJ approachesc - 1. However, there may be some benefits to
interpretation if fewer indicator variables are used. “Tradi-
tional” penalty analysis divides “non-just-About-Right” re-
sponses into two categories. If the incidence in either cat-
egory is less than a certain threshold (often 20 % of
respondents), the penalty associated with that category is
deemed unimportant. Similar conclusions can be drawn,
from this regression-based approach if each JAR variable is
transformed into two indicators, rather than four or more.
Additionally, indicator variables within JAR variables and
respondents must be mutually exclusive from one another.
The more indicator variables a single JAR variable is trans-
formed into, the more sparse the data and the greater the op-
portunity to conclude that potentially important attributes
are not statistically significant. Therefore, even though more

described here. The analyst must either have access to ad-
vanced statistical or mathematical software and know how
to use it to produce the appropriate jackknife or bootstrap
estimates, or have access to a programmer versed in these
methods. Additionally, if there are many products and/or
JAR variables, the method could be time consuming, unless
a program was made to “loop” through the various combina-
tions.

Lastly, the method considers only one JAR variable per
product at a time, as opposed to “in concert.” Relative impor-
tance of JAR variables can thus only be assessed indirectly.

Appendix: Proof of the Equivalence of
Traditional Penalties (Relative to the JAR
Mean) and OLS Regression Coefficients

As stated above, it can be shown that Egs. (4) and (7) are
equivalent when OLS is the regression method. Let X and y
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Fig. 1—Cumulative distributions of standard errors calculated by the standard normal deviate jackknife and bootstrapping methods. (A)
Cumulative distributions of all 49 standard errors from the analysis of 5 products and 5 JAR variables; (B) Cumulative distributions of 28

standard errors where the percentage of respondents exceeded 10% on one side of a JAR variable.

be as above. It is customary in OLS to add a column of ones
to the regressor matrix so as to “capture” the model inter-
cept. So let X;=[1,X] where is a NX 1 column vector of 1
and N is the number of respondents. Then the OLS model

coefficients are given by

[,30
B
Let ni:Efi 15((1', j) be the number of respondents giving the
JAR variable response j and let 1., 1), =rjar, where ¢ is the
number of JAR variable categories. It follows then that N

=37 n;. Breaking Eq. (12) into “piece” one can show forc=5
(5-point JAR variable scale):

] = (X{X) Xy (12)

(A)
*

Probit
o

*

0.35 0.4 0.45

Jackknife coefficients

0.2 0.25 03

0.5

N n; n, ng4 ns Nuy
nyny 0 0 O i
XiX;=[n, 0 n, 0 0 and X{y = | nou,
ng 0 0 ny O [y

| 75 0 0 0 ns ] | nspus |

(13)

In general, XX is symmetric, with the first column and the

diagonal both equal to

(8)

0 0.5
Bootstrap coefficients

-0.5

1

25

Fig. 2—Normal probability plots of coefficients for a selected indicator variable in the case study data. (A) coefficients from jackknife
samples (M-102); (B) coefficients from bootstrap samples (B=10,000).
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!
[N 1y 1y - eanyont Resyaer = Mel

and with the remaining entries (excepting, of course, the first
row) being 0, due to the orthogonality of X. X{y extends,
similarly. It turns out then that

1 -1 -1 -1 -1
-1 My + 1jAR 1 1 1
ny
1 ]-1 1 My + MjAR 1 1
(xx,)™! = 1y
R M4 + MjAR
-1 1 1 —_ 1
1y
_1 1 1 1 s + 1jAR
ns

(14)

In general, (X|X;)~! is symmetric and, setting A= (X X;)"!

A“:_ f0r1<i$c

MjAR
1 .. c+1

A11=Ai]*=_ f0r1<l,]<_
njAR 2

N-2is i ni+n c+1
Ajj= i#],(c+1)/2 P_n JAR for 1 <j<cj#
(15)

Calculating the coefficients, then

1
ﬁo=A<1,:>Xiy=—(Nuy— > nm,-)
MjAR

i#(c+1)/2
= 1 (Nzini'ui - 2 ”i#i)
MjAR N i#(c+1)/2
= UJAR (16)
andforl1<j<(c+1)/2
. , 1
Bi=A(, )Xy = _(— Nupy+ 2 nw
"jAR i#j,(c+1)12
n; + MjaR
22
n;
1
= —— (= njaARMIAR — i
"jAR
+ Mj(”JAR + ”,‘))
= M — MJAR- (17)
Similarly, ifj > (c+1)/2, then
ﬁ;;] =M — MJAR: (18)
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Appendix O: Bootstrapping Penalty Analysis

Rui Xiong' and Jean-Francois Meullenet'

Introduction and Objectives

Bootstrapping penalty analysis is a method that allows you
to perform statistical testing on the results of a penalty
analysis, using a technique called bootstrapping to estimate
variances and covariances. Recall that the purpose of pen-
alty analysis is to identify attributes that appear to have a
strong impact on Overall Liking, on a product-by-product
basis.. However, there are no significance procedures to test
the significance of each attribute’s effect on Overall Liking.
The bootstrap method, is a well-established computer-based
Monte Carlo technique for determining an estimate for the
standard errors, confidence intervals, biases, and prediction
€errors.

Requirements for the Analysis

This technique requires the raw data on the JAR and overall
attributes for each product. It additionally requires special-

ized statistical software, which can be written in statistical
packages such as SASand R.

“How to”

A bootstrap analysis generates hundreds of samples from
the original data, performs the penalty analysis on each
sample, and then aggregates the results of the individual
penalty analyses to assess the variability of the estimates in
the original complete data. Each bootstrap sample is a ran-
dom sample of size N, with replacement, from the original
sample of size N. In large samples, that mean each observa-
tion will only occur in about 2/3 of the bootstrap samples.

The process of estimating the standard error of a mean
dropisillustrated in Fig. 1. The data set in Fig. 1 contains ten
pairs of overall liking scores and JAR flavor scores. Mean
drops for “Too Little” and “Too Much” categories were calcu-
lated according to penalty analysis for each bootstrap
sample.

For “Too Little”, t=-4.15/1.63=-2.546, p value=0.0314

For “Too Much”, t=0.13/0.72=0.181,

p value=0.8604

For “Too Little”, adjusted bootstrap mean=2*(-4.17)-(-4.19)=-4.15
For “Too Much”, adjusted bootstrap mean=2%(0.13)-0.13=0.13

T

For “Too Little”, bootstrap mean=-4.19, bootstrap standard error=1.63
For “Too Much”, bootstrap mean= 0.13, bootstrap standard error=0.72

T

MeanDroprooLine=-5.3
MeanDropreomuch=-0.47

MeanDroprooLine=-4.4
MeanDropremuch=-0.07

MeanDroprooLime=-4.2
MeanDropreemuci=1.05

MeanDroprooLine=-4.17
MeanDropreomus=-0.17

[

I

]

(9,3),09,3), (7,3), 5, 3), (3,2),8,3), (7,3),(7,3),
(5,3), (8, 4), (5,3), (7, 4), (8,3),9,3), (3,2),(7.4),
7,4,(7,3), (8,4, (7,3), (8,4),(7,3), (7,3), (7, 4),
(3,2),3,2), 2. 1),(,3), (7,3), @2, 1), 9,3),3,2),
(7,3),(7,4) (7,4),(7,4) (7,4),(7,4) (5,3),(8,3)

I

MeanDroprooLinie=-4.7

,3),(7,3),(8,4),(7,4), (7, 4), — MeanDroproowus=0.13

(5,3),(8,3),(2,1),(7,3),(3,2)

Original Data Set

Fig. 1—Scheme for bootstrapping penalty analysis with bootstrap replications of B=10,000.

! Department of Food Science, University of Arkansas, Fayetteville, AR 72704.
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Fig. 2—Histogram of the mean drops for “Too Much” flavor for sample 170 with bootstrap replications of 10,000.

The boostrap estimate of variance of the mean drop is
estimated by the variance of the mean drop across the boot-
strap samples. When there are B bootstrap samples, the
mean drop and its standard error are computed using the
following formula:

B *
28,

B

Bootstrap estimate of mean: 5, =

and

S(sh-5,)?
. . i b
Bootstrap estimate of standard error: sg, = 51

where s’ is the mean drop for the ith bootstrap sample, B is
the number of bootstrap samples or replications, 5, is the
bootstrap estimate of the mean, and sey, is the standard error
of the mean. The bootstrap estimate of the mean is some-
what biased. The bias can be removed using the following
adjustment:

§[;= 2514—51,

where s, is the estimate of the mean from the original data
set, and §;, is the adjusted bootstrap estimate of the mean.
The number of bootstrap samples (B) is at least 100 and of-
ten several thousands. In practice, B is either chosen based

25
g =2
x
3
=
5 15
>
o)
=
s -
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Fig. 3—Penalty analysis for sample 170.
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Fig. &—Comparison of penalty and bootstrapping penalty
analyses.
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TABLE 1—Penalty and bootstrapping penalty analyses for Sample 170.

Penalty Analysis Bootstrapping Penalty Analysis
% of Mean % of Adj. Mean Standard
Panelists Drop Panelists Drop Error t-value p-value®
“Too small” Size 23.53 0.25 23.76 0.25 0.57 0.44 0.6586
“Too large” Size 40.20 -0.20 40.59 -0.2 0.51 -0.39 0.6994
“Too strong” Flavor 22.55 -0.91 22.77 -0.92 0.5 -1.82 0.0711

“Two-tailed test was used for p-value (n=101)

TABLE 2—Penalty and bootstrapping penalty analyses for Sample 458.

Penalty Analysis Bootstrapping Penalty Analysis
% of Mean % of Adj. Mean Standard
Attribute Panelists Drop Panelists Drop Error t-value p-value®
“Too small” Size 31.37 0.23 31.37 0.24 0.44 0.54 0.5895
“Too large” Size 32.35 0.34 32.35 0.34 0.39 0.87 0.3853
“Too strong” Flavor 32.35 -1.35 32.35 -1.34 0.35 -3.87 0.0002

*Two-tailed test was used for p-value (n=101)

TABLE 3—Penalty and bootstrapping penalty analyses for Sample 523.

Penalty Analysis Bootstrapping Penalty Analysis
% of Mean % of Adj. Mean Standard
Attribute Panelists Drop Panelists Drop Error t-value p-value®
“Too small” Size 24.51 0.23 24.51 0.23 0.48 0.48 0.6357
“Too large” Size 39.22 0.34 39.22 0.34 0.39 0.87 0.3876
“Too strong” Flavor 21.57 -1.56 21.57 -1.57 0.39 -3.98 0.0001

*Two-tailed test was used for p-value (n=102)

TABLE 4—Penalty and bootstrapping penalty analyses for Sample 896.

Penalty Analysis Bootstrapping Penalty Analysis
% of Mean % of Adj. Mean Standard
Attribute Panelists Drop Panelists Drop Error t-value p-value®
“Too small” Size 21.57 -0.18 21.57 -0.19 0.46 -0.4 0.6891
“Too large” Size 39.22 -0.40 39.22 -0.40 0.44 -0.91 0.3629

*Two-tailed test was used for p-value (n=102)

TABLE 5—Penalty and bootstrapping penalty analyses for Sample 914.

Penalty Analysis Bootstrapping Penalty Analysis
% of Mean % of Adj. Mean Standard
Attribute Panelists Drop Panelists Drop Error t-value p-value?
“Too small” Size 27.45 0.13 27.45 0.14 0.54 0.26 0.79294
“Too large” Size 41.18 0.09 41.18 0.09 0.52 0.16 0.86934
“Too light” Color 20.59 -0.10 20.59 -0.11 0.55 -0.2 0.83873
“Too weak” Flavor 52.94 -1.80 52.94 -1.79 0.37 -4.87 <0.00001
“Too much” Thickness 20.59 -2.14 20.59 -2.14 0.42 -5.05 <0.00001

*Two-tailed test was used for p-value (n=100)

on prior experience, or a moderate B is selected and B is in- Results and Conclusions

creased until the distribution of mean drops stabilizes. ) o
In this case study, the bootstrap distributions for each mean

Example using Case Study Data drop were approximately normally distributed, so a z-test
This example uses the mean drops in overall liking for the was used to test the significance of each of the mean drops..
JAR attributes which had more than 20 % in the non-Jar cat- Figure 2 display an example histogram of the bootstrap val-
egory in that code. 10,000 bootstrap samples were selected, ues for the “Too Much” mean drop on the flavor attribute for

although 1000 would have been sufficient. Sample 170 The results from bootstrapping penalty analysis
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TABLE 6—Comparison of five samples.

Observed OAL

Sample Size Color Flavor Thin/Thick Stickiness Mean
170 O O O O O 5.52
458 O O X O O 5.47
523 O O X O O 6.00
896 O O O O O 6.30
914 O O X X O 6.56

[J stands for being JAR or no significant effect on OAL
X stands for not being JAR and having a significant effect on OAL

are presented in Table 1. Figure 3 summaries the penalty
analysis of three mean drops for code 170. It is apparent
from Table 1 that the mean drops were not statistically sig-
nificant at a significance level of 0.05, so the data are insuffi-
cient to conclude that these drops have a strong effect on on
Overall Liking (OAL).

Table 2 summarizes the penalty and bootstrapping pen-
alty analyses for Sample 458. Similar to Sample 170, more
than 20 % of panelists rated size and flavor as not being JAR.
Only the “Too Strong” flavor rating had a decreased mean
drop. The other attributes had mean increases. Since they
are less than JAR, one would have expected a decrease in
Overall Liking associated with these attributes not being
JAR. The statistical tests confirm that only “Flavor Too
Strong” had a significant impact on Overall Liking, while the
other two are not significant.

Table 3 presents the analyses for Sample 523, P-values
for “Too Small” and “Too Large” size were 0.64 and 0.39, re-
spectively, indicating that the mean drops did not signifi-
cantly differ from zero. As with sample 458, Overall Liking
decreases significantly (»p <0.001) when the assessors judged
the flavor to be “Too Strong.”

Table 4 summarizes the analysis for Sample 896. None
of the attributes have a significant effect on Overall Liking.

Finally Table 5 presents the analyses for Sample 914. A
“Too Weak” flavor rating was associated with a significant
mean drop as was the “Too Thick” rating (»p <0.0001).

Table 6 summarizes the individual product analyses re-
ported above.. Size, color, and stickiness were either at a JAR
level or simply had no significantly negative impact on Over-
all Liking for all samples. The inappropriateness of Flavor

and Thin/Thick reported for Samples 896 and 914 had a sig-
nificantimpact on OAL.

Conclusions from the Analysis

e According to the bootstrapping penalty analysis, none of
the five attributes (Size, Color, Flavor, Thin/Thick, Sticki-
ness) had a significant impact on liking scores. The re-
sults imply that the JAR attributes evaluated did not cap-
ture the sensory weaknesses of this product.

e For Sample 458, a significant proportion of consumers
found the flavor to be too strong and this was detrimen-
tal to OAL for these consumers.

e For Sample 523, the flavor was also found by some con-
sumers to be too strong and this had a significant nega-
tive impact on OAL.

e None of the JAR attribute scores were found to signifi-
cantly affect the OAL scores for Sample 896.

e The Thin/Thick and Flavor attributes were not found to
be JAR for Sample 914. Being too thick and too weak in
flavor had a significant negative impact on OAL. This
sample was, however, the most liked product.

Pros and Cons

Bootstrapping penalty analysis determines the influence of
JAR attributes on overall liking by identifying the attributes
for which the mean drops on overall liking are significant.
The precision of a bootstrap analysis estimate depends on
how many times the data the original data are randomly
bootstrapped.

This technique requires specialized software or pro-
gramming skill and may require a statistical consultant.

Recommendations

This method is recommended as an enhancement to penalty
analysis for JAR scales when the analyst wishes to have the
capability to test the significance of an observed mean drop.

References
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Appendix P: Opportunity Analysis

Tony Gualtieri'

Introduction and Objectives

Typical penalty analysis (see Appendix M) assesses the asso-
ciation between JAR scale attributes and Overall Liking. It
does not account for the relationship between attribute lik-
ing and Overall Liking. Opportunity analysis remedies that
lack with an additional computation to address the potential
effect of changing an attribute on consumers who already
like the product. The analysis provides simple summaries of
the relationship between overall and attribute liking for that
product. This summary scatter plot illustrates the possible
risks (defined as a decrease in the proportion of product lik-
ers) and opportunities (defined as an increase in the propor-
tion of product likers) associated with changing a product’s
attribute liking.

Requirements

This analysis requires individual respondents’ scores for
each JAR scale, attribute liking scale, and Overall Liking.

Risk =

Count of respondents who are both product and attribute likers

The analysis can be completed only when both JAR data and
attribute liking data are available for the attributes of inter-
est.

“How to”

Dichotomize the liking scales into two groups: “likers” and
“dislikers.” As the results are most useful when the two
groups are of equal size, the break-point on a 9-point he-
donic scale may fall close to 7, and will differ based on prod-
uct category. The same division is used to define attribute lik-
ing.

Each hedonic attribute (e.g., “liking of salt”) receives a
risk and opportunity score. “Risk” is the percentage of prod-
uct likers who also like the attribute (the risk being that they
may like the product because they like the attribute) and “Op-
portunity” is the percentage of product dislikers who also
dislike the attribute (the opportunity being that they may
dislike the product because of their dislike of the attribute).
These responses are defined as:

X 100

Count of all product likers

Count of respondents who are both product and attribute dislikers

Opportunity =

A change in a high-risk attribute may result in decreased lik-
ing, while an improvement in a high opportunity attribute
may increase liking.

The Venn diagram in Fig. 1 illustrates the conceptual
framework of opportunity analysis. The solid circle repre-
sents the set of product likers and the dotted circle repre-
sents the set of the specific attribute acceptors. The intersec-
tion and compliment of these two sets define four classes of
respondents:

A. Product Likers/ Attribute Dislikers

B. Product and Attribute Likers

C. Product Dislikers/ Attribute Likers

D. Product and Attribute Dislikers

Improving the penalized attribute directionally based on in-
dications from penalty analysis may induce members of
class D, the “opportunity group,” to become members of
class B. That is, the people in class D may dislike the product
because of the attribute and fixing the attribute could cause
them to like the product. At the same time, class B, the “risk
group,” may no longer like the product if the attribute, which
they currently like, is changed. They could become members
of class D. Note that classes A and C are assumed to be unaf-
fected by changes in this particular attribute because their
product acceptance does not appear to be based on attribute
liking. A statistical comparison between risk scores can be
made based on McNemar's test (see Appendix G); however,
because of small sample sizes and multiple-comparison is-
sues, only large differences tend to be significant.

100

Count of all product dislikers

Example from Case Study Data

This example summarizes an opportunity analysis of the
Products 170, 896, and 914. Table 1 displays the mean rat-
ings for each product and indicates the statistical grouping
of the product within an attribute. Table 2 displays the re-
sults of an accompanying penalty analysis. Figures 2—4 de-
pict the Risk and Opportunity scores for each product.
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Fig. 1—Opportunity analysis.
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TABLE 1—Hedonic liking.

Overall Color Flavor Texture

Product Liking Size Liking Liking Liking Liking
170 55b 7.1b 7.1a 5.6 ¢ 6.5Db
896 6.3 a 75a 74 a 6.1b 7.0 a
914 6.5a 55¢ 58b 6.5 a 6.5b

Products within a column with different letters are significantly
different (p <0.20).

Results and Conclusions

Product 170 has inconclusive results (see Fig. 2). Flavor, the
only attribute to receive a penalty, is important both to prod-
uct likers and dislikers and is therefore considered both high
risk and high opportunity. Since this product is least liked,
the risk group is probably less important than the opportu-
nity group. This implies that reducing the flavor strength is a
promising strategy.

For Product 896, flavor has the highest opportunity and
the lowest risk (Fig. 3). If improvement is needed, this is the
area to focus on, even though it does not have a penalty for
flavor. It may be that consumers fault the character of the fla-
vorrather than its intensity.

Product 914 has highest opportunity and lowest risk for

appearance attributes; flavor is both high risk and high op-
portunity, and texture is high risk and low opportunity (Fig.
4). Based on penalty analysis results, reducing the thickness
of this product will likely improve liking. There is nothing in
the opportunity analysis to suggest that altering the thick-
ness is risky, as long as thickness is related to size and not to
texture. On the other hand, making the flavor stronger may
improve liking—the penalty analysis certainly suggests it;
however, caution is advised: the position of this attribute in
the opportunity analysis chart implies high risk along with
the high opportunity. Unlike Product 170, the risk group
here is important since the product received the highest
Overall Liking score and a change in flavor could result in a
lower proportion of product acceptors.

Summary of Diagnostics

Product 170: Reduce flavor strength (risk is negated by op-
portunity).

Product 896: Don’t change unless needed; flavor is safer
to change than appearance or size.

Product 914: Don’t change unless needed: a flavor
change is risky and probably not warranted; change the ap-
pearance instead.

TABLE 2—Penalty analysis summary.

Mean Drop in
Overall Liking

Product Penalty

Percent in Not

Right Group Penalty Score

170
896
914

“Flavor Too Strong”
No Major Penalties
“Flavor Too Mild”
"Too Thick”

0.91
N/A
1.80
2.14

23
N/A
53
21

20
N/A
95
45
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Fig. 2—Opportunity Analysis. ASTM sample data-Product 170. (Likers 40 %-top 3 box.)
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OPPORTUNITY (% of Product Rejectors

75 80 85 90 95
RISK (% of Product Acceptors)

Fig. 3—Opportunity analysis. ASTM sample data-Product 896. (Likers 60 %-top 3 box.)

OPPORTUNITY (% of Product Rejectors

60 65 70 75 80 85 90 95
RISK (% of Product Acceptors)

Fig. 4—Opportunity analysis. ASTM sample data-Product 914. (Likers 60 %-top 3 box.)

69



70 JUST-ABOUT-RIGHT SCALES N

Pros and Cons

The analysis gives researchers a view of the relationships be-
tween attributes and their relative impact on Overall Liking.
Opportunity analysis alone does not provide direction for
improvement. Instead, it assesses the consequences of mak-
ing attribute changes on overall liking. Therefore, it should
always be run in conjunction with penalty analysis. One dis-
advantage of this method is that for every attribute JAR scale
included in the questionnaire, a scale for liking of the at-

tribute must also be included. This increases the question-
naire length and negates a key benefit of JAR scale usage (see
Appendix J), that attribute intensity and hedonic judgment
can be combined into one scale.

Recommendation

Opportunity analysis is recommended in combination with
penalty analysis when the researcher is amenable to includ-
ing attribute liking scales as well as JAR scales in the ques-
tionnaire.
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Appendix Q: PRIMO Analysis

Efim Shvartsburg'

Introduction and Objectives

PRIMO (Product Improvement Opportunity) analysis is a
method whose initial step is penalty analysis (see Appendix
C), followed by the application of Bayesian theory to identify
desired changes in JAR attribute ratings in order to maxi-
mize the probability of potential product improvement, ac-
cording to a given criterion. The criterion can be either cat-
egorical, such as Top or Top Two Box scale ratings, or
continuous, such as mean Overall Liking. For each attribute,
this analysis provides a confidence level that the product can
be significantly improved with respect to the chosen crite-
rion, by altering the current level of the attribute. The result-
ing output is a list of JAR attributes and their respective con-
fidence levels, in descending order, corresponding to the
potential product improvement. As a result of PRIMO analy-
sis, researchers gain an understanding on how to alter the
product on the attributes that promise a high confidence

level for improvement. This procedure puts PRIMO Analysis
in the class of Bayesian choice models.

Requirements

To conduct PRIMO analysis, raw data for the criterion to be
improved (for example, overall liking) as well as the JAR at-
tributes are required.

“How to”

The analysis includes three steps:

1) estimating parameters of the Bayesian model for each
JAR attribute for the product

2) finding the optimal attribute decision for each model

3) rank ordering the optimal decision confidence levels for
each model

To estimate parameters of the Bayesian model, the following
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Fig. 1—PRIMO analysis for SALTINESS attribute. The dashed line represents the trajectory of possible product movements in decision space.
The solid line represents criterion change along the product trajectory. The dotted line represents “Just About Right” rating change along

product trajectory.
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two assumptions about the consumer population are uti-

lized:

1) For each JAR attribute, there exists an underlying psy-
chophysical continuous measure (not necessarily ex-
plicitly specified or known to experimenter).

2) Bayesian utility for this hypothetical measure has a nor-
mal distribution.

In other words, each consumer has a utility for a correspond-

ing JAR attribute on this underlying psychophysical con-

tinuum. The value of the consumer’s utility for each possible
level of an attribute depends on his or her perception of the
attribute, and is independent of the tested product. When the
attribute level is changed, the perception of what is “Just

Right” or “Too Low” or “Too High” for the consumer remains

the same. Additionally, the proportions of consumers who

find some level of an attribute to be “Too Low” through “Just

Right” through “Too High” are normally distributed.

After the parameters of a Bayesian model and the prod-
uct positioning in consumer space are simultaneously esti-
mated, ratings for any possible product repositioning can be
predicted. This allows finding the optimal product position-
ing on any attribute for the specified criterion.

As an example, Fig. 1 illustrates the Bayesian decision
space for a hypothetical product for a Saltiness attribute [1].

Itis important to emphasize that decision space for each
JAR attribute is one-dimensional, so each product position-
ing uniquely defines all related measures: “% Too Low,” “%
Too High,” “% Just About Right,” and expected criterion
value. Any of these measures can be used as the independent
variable that uniquely defines all other variables. In Fig. 1,

“9% Too Low” is shown as the independent variable that de-
fines all other measures of product performance: “% Too
High,” “% Just About Right,” and expected criterion value.

Due to the fact that the penalty for being “Too Low” (51.8
%) is much greater than the penalty for being “Too High”
(18.8 %), optimal product positioning is skewed toward “Too
High” dimension. The projected optimal (in this case, maxi-
mizing Top Two Box Overall Liking rating) product would
have 58.8% “Just About Right” rating, 34.3% “Too High” and
only 6.9 % “Too Low.” The maximum possible value of the
criterion (Top Two Box Overall Liking rating) is 63.3 %.

The balanced product is the one that has equal propor-
tions of “Too High” and “Too Low” ratings and maximum
possible value of “Just About Right” rating. In this case, the
projected balanced product has 65.5 % “Just About Right”
rating and equal 17.3 % of “Too High” and “Too Low” ratings.
At the same time, the balanced product has suboptimal crite-
rion level of 61.2 % only.

The optimal product after consequential adjustment of
Saltiness attribute would represent potential improvement
over the current product with 98 % confidence. This is a con-
fidence level for a one-tailed hypothesis that the projected
criterion level (63.3 %) exceeds the current criterion level
(54.6 %) based on the current sample of 152 respondents.

Results and Conclusions

Application of PRIMO Analysis, using a Mean Overall Liking
criterion, to the data in the case study yielded the following
results and recommendations:

PRIMO ANALYSIS FOR PRODUCT 170
CRITERION—MEAN OVERALL RATING

DISTRIBUTION AFTER IMPROVEMENT

IMPROVEMENT POST-
OPPORTUNITY CONFIDENCE IMPROVEMENT % IN JUST % IN TOO HIGH % IN TOO LOW IMPROVEMENT BY
RANK LEVEL ATTRIBUTES MEAN RIGHT GROUP GROUP GROUP REDUCING
1 (70%) JAR-Size 5.58 100.0 0.0 0.0 TOO HIGH GROUP
2 (68%) JAR-Stickiness 5.58 82.5 7.1 10.4 TOO HIGH GROUP
3 (52%) JAR-Amt. Flavor 5.52 60.3 27.3 12.4 TOO LOW GROUP
4 (51%) JAR-Thin/Thick 5.52 83.5 6.6 9.9 TOO LOW GROUP
5 (50%) JAR-Color 5.52 83.6 6.5 9.9 TOO LOW GROUP
PRIMO ANALYSIS FOR PRODUCT 458
CRITERION—MEAN OVERALL RATING
DISTRIBUTION AFTER IMPROVEMENT
IMPROVEMENT POST-
OPPORTUNITY CONFIDENCE IMPROVEMENT % IN JUST % IN TOO HIGH % IN TOO LOW IMPROVEMENT BY
RANK LEVEL ATTRIBUTES MEAN RIGHT GROUP GROUP GROUP REDUCING
1 (86%) JAR-Amt. Flavor 5.60 68.6 13.4 18.0 TOO HIGH GROUP
2 (67%) JAR-Stickiness 5.53 75.4 9.6 15.0 TOO HIGH GROUP
3 (55%) JAR-Color 5.47 79.5 0.4 20.1 TOO HIGH GROUP
4 (52%) JAR-Thin/Thick 5.47 75.9 11.6 12.5 TOO LOW GROUP
5 (50%) JAR-Size 5.30 36.3 32.4 31.4 TOO HIGH GROUP
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PRIMO ANALYSIS FOR PRODUCT 914
CRITERION—MEAN OVERALL RATING

DISTRIBUTION AFTER IMPROVEMENT

IMPROVEMENT POST-
OPPORTUNITY CONFIDENCE IMPROVEMENT % IN JUST % IN TOO HIGH % IN TOO LOW  IMPROVEMENT
RANK LEVEL ATTRIBUTES MEAN RIGHT GROUP GROUP GROUP BY REDUCING
1 (97%) JAR-Amt. Flavor 6.70 61.0 10.8 28.2 TOO LOW GROUP
2 (64%) JAR-Thin/Thick 6.55 79.2 14.2 6.6 TOO HIGH GROUP
3 (57%) JAR-Stickiness 6.58 80.1 13.6 6.2 TOO LOW GROUP
4 (56%) JAR-Color 6.53 100.0 0.0 0.0 TOO LOW GROUP
5 (50%) JAR-Size 6.44 31.4 41.2 275 TOO HIGH GROUP
PRIMO ANALYSIS FOR PRODUCT 896
CRITERION—MEAN OVERALL RATING
DISTRIBUTION AFTER IMPROVEMENT

IMPROVEMENT POST-
OPPORTUNITY CONFIDENCE IMPROVEMENT % IN JUST % IN TOO HIGH % IN TOO LOW IMPROVEMENT
RANK LEVEL ATTRIBUTES MEAN RIGHT GROUP GROUP GROUP BY REDUCING
1 (75%) JAR-Amt. Flavor 6.36 100.0 0.0 0.0 TOO HIGH GROUP
2 (68%) JAR-Size 6.35 31.4 10.1 58.4 TOO HIGH GROUP
3 (56%) JAR-Stickiness 6.25 88.6 9.8 1.6 TOO HIGH GROUP
4 (51%) JAR-Thin/Thick 6.31 89.2 4.1 6.7 TOO LOW GROUP
5 (50%) JAR-Color 6.23 96.1 2.9 1.0 TOO HIGH GROUP

PRIMO ANALYSIS FOR PRODUCT 458
CRITERION—MEAN OVERALL RATING
DISTRIBUTION AFTER IMPROVEMENT

IMPROVEMENT POST-
OPPORTUNITY CONFIDENCE IMPROVEMENT % IN JUST RIGHT % IN TOO HIGH % IN TOO LOW  IMPROVEMENT
RANK LEVEL ATTRIBUTES MEAN GROUP GROUP GROUP BY REDUCING
1 (100%) JAR-Amt. Flavor 6.33 100.0 0.0 0.0 TOO HIGH GROUP
2 (75%) JAR-Stickiness 6.08 87.5 6.6 5.9 TOO HIGH GROUP
3 (59%) JAR-Thin/Thick 6.03 85.5 5.6 8.9 TOO LOW GROUP
4 (56%) JAR-Color 6.02 79.0 2.3 18.7 TOO HIGH GROUP
5 (50%) JAR-Size 5.81 36.3 39.2 24.5 TOO HIGH GROUP

Product 914 is recommended as the best prototype. It is
further recommended to increase the strength of flavor. The
resulting product could achieve a Mean Overall Liking score
of 6.70 that is better than the current Overall Liking level
with 97 % confidence. Although Product 523 can be im-
proved with more than 99.5 % confidence by reducing
strength of flavor, the resulting product will not achieve an
Overall Liking score comparable with Product 914.

Pros and Cons

PRIMO analysis allows researchers to find optimal product
improvement decisions in regard to any product perfor-
mance criterion for which there exists a JAR attribute. It pro-
vides researchers with quantifiable recommendations re-
garding the attributes that can be improved, the direction of
improvement for each attribute, the potential improvement
in terms of criterion of product performance, and the confi-
dence level that statistically significant product improve-
ment could be achieved.

The universal nature of the PRIMO analysis Bayesian
choice model allows comparisons and optimal choice not
only between JAR attributes, but also between various prod-
ucts and criteria. PRIMO analysis is especially useful when
dealing with several product prototypes, aiding in the identi-
fication of the prototype with the most potential for improve-
ment. Also, PRIMO analysis provides a natural segue into
risk analysis by providing confidence levels of successful
product improvement.

The limitation of PRIMO analysis is an unspoken as-
sumption that attributes are mutually independent and that
altering one product attribute would not affect other at-
tributes’ ratings. This assumption is frequently violated in
practice. PRIMO analysis evaluates one attribute at a time.
The version of the analysis that simultaneously analyzes all
pairs of attributes requires a very large sample size for high
confidence inferences, which makes it too expensive to
implement for practical purposes.
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Also, PRIMO analysis requires a special software pro-
gram, which can be developed using SAS or Excel macros or
purchased from the author.

Recommendation

PRIMO analysis is recommended for JAR scale analysis
whenever the researcher wishes to determine the attributes

of a product having the most potential for improvement.
References

(1]

The theory behind the decision space is explained in Decision
Space: Multidimensional Utility Analysis (Cambridge Studies
in Probability, Induction and Decision Theory), Cambridge
University Press, 2007.



Appendix R: Chi-Square

Lynn Templeton'

Introduction and Objectives

The chi-square approach looks at the relationship between
“Just Right” and hedonic ratings for each product, using
only the data from the “Not Just Right” sections of the scale.
The objective of using a chi-square analysis is to determine if
there are significant differences in liking between respon-
dents that have rated the product differently on the JAR
scales, i.e., to test the null hypothesis that there is no associa-
tion between the JAR group and overall liking. For example,
one could use the chi-square approach to determine whether
respondents that rated the product as “Not Sweet Enough”
differed from those respondents who rated the product as
“Too Sweet.”

Requirements

To use the chi-square analysis, you must have Overall Liking
and JAR ratings for each respondent.

“How to”

Since this technique compares only the non-JAR groups for
each attribute, the JAR values are discarded, and the remain-
ing data are transformed for each judge. The JAR frequency
data are first collapsed into two categories: 1. “Not Enough”
and 2. “Too Much,” omitting the “Just Right” scores. Like-
wise, the hedonic frequency data are collapsed into two cat-
egories: 1. “Dislike” and 2. “Like,” omitting the “Neither Like
nor Dislike” responses.

Then a record for each judge is created, showing into
which JAR and hedonic categories he or she falls.

Example

JAR frequency: 1. “Not enough” and 2. “Too Much”
Hedonic frequency: 1. “Dislike” and 2. “Like”

Judge JAR Hedonic
1 1 1
2 1 2
3 2 2
4 1 1
5 1 2
N 1 1

TABLE 1—Example 1.

Row
Like Dislike Totals
Frequencies, “Not 20 7 27
Enough”
Frequencies, “Too 33 9 42
Much”
Column totals 53 16 69

MNL63-EB/Feb. 2009

TABLE 2—Example 2.

Row
Like Dislike Totals
Frequencies, “Not 23 22 45
Enough”
Frequencies, “Too Much” 16 2 18
Column totals 39 24 63

The following step is to construct a 2 by 2 contingency
table of these four categories. That table might look
like Table 1.

The formula to calculate the chi-square is as follows:

X X,
n o p n o p X"—#l
[X; - EX)T < X )
2 _ 4 L _ ++
X _2; E(le) _;; Xi+X+'
X

++

where
= chi-square value,
X;: = observed value,
expected values,
Xy = is the element in the first row and
first column of the table,
X, and X,; = are the corresponding marginal sums,
and
X,, = is the global sum
The chi-square statistic should be compared against the
appropriate critical value from the chi-square table. For the
test described here, that critical value for a test at the 95%
level of confidence is 3.84 [1]. If the test statistic is above
that critical value, the difference between the two groups is
significant. Otherwise there is insufficient evidence to reject
that hypothesis. The degrees of freedom are calculated as
follows: (n-1) (p-1), with n=number of rows and p
=number of columns. For, Table 1, the degrees of freedom
is(2-1) 2-1)=1.

e (20 -[(27%53)/69) (7 -[(27 *16)/69)]

>
I

o
&
I

(27 % 53)/69 (27 % 16)/69
(33 -[(42%53)/69) (9 -[(42%16)/69) 019
(42 % 53)/69 (42+16)/69

Conclusion: Because 0.19 < 3.84, which is the critical value
at 95% confidence with 1 degree of freedom (df), we
conclude that there is no relationship between Overall
Liking and the JAR attribute ratings. For Table 1, the
computed chi-square value is 0.19(df=1).

For, Table 2, the computed chi-square value is of 7.78(df
=1). The critical value of Chi-Square at 5% level of signifi-
cance for 1 degree of freedomis 3.84[1].

Conclusion: Because the computed chi-square value of
7.78>3.84, at 95% level of confidence and 1 degree of free-
dom, we can conclude that overall liking and the JAR at-
tribute rating are not independent. Examining the table

1'S.C. Johnson & Son, Inc., 1525 Howard Street, Racine, WI 53403-2236.
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TABLE 3—Chi-square, Yates’ corrected chi-square, phi-square, and Fisher’s exact tests summary

results for Size and Color, for samples 170, 458, 523, 896, and 914 of the ASTM data set for JAR
scales, including frequencies.

Overall Liking Overall Liking
Sample Row Row
S#170 Size Like Dislike Totals Color Like Dislike Totals
Frequencies, 14 10 24 Frequencies, 3 5 8
“Not Enough” “Not Enough”
Percent of total 22.95% 16.39% 39.34% Percent of total 21.43% 35.71% 57.14%
Frequencies, 23 14 37 Frequencies, 2 4 6
“Too Much” “Too Much”
Percent of total 37.71% 22.95% 60.66%  Percent of total 14.29% 28.57% 42.86%
Column totals 37 24 61 Column totals 5 9 14
Percent of total 60.66% 39.34% Percent of total 35.71% 64.29%
Chi-square 0.09 p=0.7649 Chi-square 0.03 p=0.8721
(df=1) (df=1)
Yates corrected 0 p=0.9754 Yates corrected 0.16 p=0.6873
Chi-square Chi-square
Phi-square 0.00147 Phi-square 0.00185
Fisher exact p, p=0.4861 Fisher exact p, p=0.6573
one-tailed one-tailed
two-tailed p=0.7940 two-tailed p=1.0000
Row Row
S#458 Like Dislike Totals Like Dislike Totals
Frequencies, 19 10 29 Frequencies, 7 4 11
“Not Enough” “Not Enough”
Percent of total 32.76% 17.24% 50.00%  Percent of total 58.33% 33.33% 91.67%
Frequencies, 20 9 29 Frequencies, 0 1 1
“Too Much” “Too Much”
Percent of total 34.48% 15.52% 50.00%  Percent of total 0.00% 8.33% 8.33%
Column totals 39 19 58 Column totals 7 5 12
Percent of total 67.24% 32.76% Percent of total 58.33% 41.67%
Chi-square 0.08 p=0.7797 Chi-square 1.53 p=0.2165
(df=1) (df=1)
Yates corrected 0 p=1.0000 Yates corrected 0.03 p=0.8599
Chi-square Chi-square
Phi-square 0.00135 Phi-square 0.12727
Fisher exact p, p=0.5000 Fisher exact p, p=0.4167
one-tailed one-tailed
two-tailed p=1.0000 two-tailed p=0.4167
Row Row
S#523 Like Dislike Totals Like Dislike Totals
Frequencies, 17 5 22 Frequencies, 7 3 10
“Not Enough” “Not Enough”
Percent of total 28.81% 8.48% 37.29%  Percent of total 46.67% 20.00% 66.67%
Frequencies, 28 9 37 Frequencies, 2 3 5
“Too Much” “Too Much”
Percent of total 47.46% 15.25% 62.71%  Percent of total 13.33% 20.00% 33.33%
Column totals 45 14 59 Column totals 9 6 15
Percent of total 76.27% 23.73% Percent of total 60.00% 40.00%
Chi-square 0.02 p=0.8891 Chi-square 1.25 p=0.2636
(df=1) (df=1)
Yates corrected 0.03 p=0.8595 Yates corrected 0.31 p=0.5762
Chi-square Chi-square
Phi-square 0.00033 Phi-square 0.08333
Fisher exact p, p=0.5755 Fisher exact p, p=0.2867
one-tailed one-tailed
two-tailed p=1.0000 two-tailed p=0.3287
Row Row
S#896 Like Dislike Totals Like Dislike Totals
Frequencies, 17 4 21 Frequencies, 1 0 1
“Not Enough” “Not Enough”
Percent of total 28.81% 6.78% 35.59%  Percent of total 25.00% 0.00% 25.00%
Frequencies, 28 10 38 Frequencies, 1 2 3
“Too much” “Too Much”
Percent of total 47.46% 16.95% 64.41% Percent of total 25.00% 50.00% 75.00%
Column totals 45 14 59 Column totals 2 2 4
Percent of total 76.27% 23.73% Percent of total 50.00% 50.00%
Chi-square 0.39 p=0.5298 Chi-square 1.33 p=0.2482
(df=1) (df=1)




B APPENDIX R: CHI-SQUARE 77

TABLE 3— (Continued.)

Overall Liking Overall Liking
Sample Row Row
S#170 Size Like Dislike Totals Color Like Dislike Totals
Yates corrected 0.1 p=0.7575 Yates corrected 0 p=1.0000
Chi-square Chi-square
Phi-square 0.00669 Phi-square 0.33333
Fisher exact p, p=0.3851 Fisher exact p, p=0.5000
one-tailed one-tailed
two-tailed p=0.7506 two-tailed p=1.0000
Row Row
S#914 Like Dislike Totals Like Dislike Totals
Frequencies, 20 7 27 Frequencies, 15 6 21
“Not Enough” “Not Enough”
Percent of total 28.99% 10.15% 39.13% Percent of total 71.43% 28.57%
Frequencies, 33 9 42 Frequencies, 0 0 0
“Too Much” “Too Much”
Percent of total 47.83% 13.04% 60.87% Percent of total 0% 0%
Column totals 53 16 69 Column totals 15 6 21
Percent of total 76.81% 23.19% Percent of total 71.43% 28.57%
Chi-square 0.19 p=0.6657 Chi-square na na
(df=1) (df=1)
Yates corrected 0.02 p=0.8888 Yates corrected na na
Chi-square Chi-square
Phi-square 0.0027 Phi-square na
Fisher exact p, p=0.4401 Fisher exact p, na
one-tailed one-tailed
two-tailed p=0.7723 two-tailed na

would lead to the conclusion that the “Too Much” group
liked the product more than the “Not Enough” group and the
recommendation would be to increase the level of that at-
tribute.

The chi-square statistic is an approximation and is not
recommended when any of the cells in the table are <5. In
that case, Fisher’s exact test should be used. The exact test
confirms the results discussed above.

Results and Conclusions

Based on the results shown in Tables 3-6, there are no sig-
nificant differences in liking between the “Not Enough” and
“Too Much” for size, color, amount of flavor, thin/thick, and
stickiness, and the Overall Liking using the following analy-
ses: chi-square analysis, Yates' corrected chi-square, and
Fisher’s exact test. The first recommendation would be to
run this data through Fisher’s exact test because chi-square
is not an appropriate tool when you have cells <5. After run-
ning the Fisher (see Table 6), there is no significant differ-
ence. The recommendation would be not to change any at-
tributes based on the JAR ratings.

Pros and Cons

Pros

The chi-square test is easy test to execute and interpret. Un-
like other statistical tests, the chi-2 square is a non-
parametric test which makes no assumptions concerning
the form of the original population distribution from which
the test data are drawn.

Cons

The chi-square test suffers from limitations of small cell
sizes (<5). If small cell sizes (<5) or near-zero cell frequen-
cies, Fisher’s test is required, but Fisher’s test requires that all
marginal totals be fixed, an assumption that is rarely met in

practice. Additionally, in collapsing the scale from 5 points
to 2 points, there is aloss of data.

Recommendation

The chi-square approach is recommended for determining
whether liking differs among respondents rating the product
“Not Enough” versus “Too Much.”

Appendix

The chi-square tests give probability values for the relation-
ship between two dichotomous variables. They calculate the
difference between the data observed and the data expected,
considering the given marginals and the assumptions of the
model of independence. The chi-square tests give only an es-
timate of the true chi-square and associated probability
value, an estimate which might not be very good in the case
of the marginals being very uneven or with a small
value (~<5) in one of the cells. In that -case,
Fisher’s exact test is a good alternative for the chi-square.
However, with a large number of cases the chi-square is pre-
ferred, as the Fisher test is difficult to calculate.

Aslong as all of the cells (frequencies per quadrant) have
at least a count of 5, then the use of the Pearson chi-square
for the significance level is appropriate. This requires having
a big enough base so that you will get at least five per
quadrant; the marginal totals have to be fixed. It is appropri-
ate to use Fisher’s exact test to compute when a table that
does not result from missing rows or columns in a larger
table has a cell with an expected frequency of less than 5.
Yates, corrected chi-square is especially recommended
when the same size is small. (Table 6 shows these various
approaches.)
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TABLE 4—Chi-Square, Yates’ corrected chi-square, phi-square, and Fisher's exact tests summary

results for Amount of Flavor and Thin/Thick, for samples 170, 458, 523, 896, and 914 of the ASTM
data set for JAR scales, including frequencies.

Overall Liking Overall Liking
Sample  Amount Row Row
S#170 Flavor Like Dislike Totals Thin/Thick Like Dislike Totals
Frequencies, 7 9 16 Frequencies, 7 6 13
“Not Enough” “Not Enough”
Percent of total 18.92% 24.32% 43.24% Percent of total 41.18% 35.29% 76.47%
Frequencies, 12 9 21 Frequencies, 2 2 4
“Too Much” “Too Much”
Percent of total 32.43% 24.32% 56.76%  Percent of total 11.77% 11.77% 23.53%
Column totals 19 18 37 Column totals 9 8 17
Percent of total 51.35% 48.65% Percent of total 52.94% 47.06%
Chi-square 0.65 p=0.4194 Chi-square 0.02 p=0.8928
(df=1) (df=1)
Yates corrected 0.23 p=0.6344 Yates corrected 0.19 p=0.6614
Chi-square Chi-square
Phi-square 0.01762 Phi-square 0.00107
Fisher exact p, p=0.3175 Fisher exact p, p=0.6647
one-tailed one-tailed
two-tailed p=0.5148 two-tailed p=1.0000
Row Row
S#458 Like Dislike Totals Like Dislike Totals
Frequencies, 2 4 6 Frequencies, 6 9 15
“Not Enough” “Not Enough”
Percent of total 5.71% 11.43% 17.14% Percent of total 25.00% 37.50% 62.50%
Frequencies, 14 15 29 Frequencies, 4 5 9
“Too Much” “Too Much”
Percent of total 40.00% 42.86% 82.86% Percent of total 16.67% 20.83% 37.50%
Column totals 16 19 35 Column totals 10 14 24
Percent of total 45.71% 54.29% Percent of total 41.67% 58.33%
Chi-square 0.45 p=0.5036 Chi-square 0.05 p=0.8307
(df=1) (df=1)
Yates corrected 0.05 p=0.8269 Yates corrected 0.05 p=0.8307
Chi-square Chi-square
Phi-square 0.01278 Phi-square 0.0019
Fisher exact p, p=0.4179 Fisher exact p, p=0.5818
one-tailed one-tailed
two-tailed p=0.6657 two-tailed p=1.0000
Row Row
S#523 Like Dislike Totals Like Dislike Totals
Frequencies, 3 1 4 Frequencies, 7 7 14
“Not Enough” “Not Enough”
Percent of total 11.54% 3.85% 15.39% Percent of total 41.18% 41.18% 82.35%
Frequencies, 10 12 22 Frequencies, 1 2 3
“Too Much” “Too Much”
Percent of total 38.46% 46.15% 84.62%  Percent of total 5.88% 11.77% 17.65%
Column totals 13 13 26 Column totals 8 9 17
Percent of total 50.00% 50.00% Percent of total 47.06% 52.94%
Chi-square 1.18 p=0.2770 Chi-square 0.28 p=0.5997
(df=1) (df=1)
Yates corrected 0.3 p=0.5867 Yates corrected 0.01 p=0.9105
Chi-square Chi-square
Phi-square 0.04545 Phi-square 0.0162
Fisher exact p, p=0.2965 Fisher exact p, p=0.5471
one-tailed one-tailed
two-tailed p=0.5930 two-tailed p=1.0000
Row Row
S#896 Like Dislike Totals Like Dislike Totals
Frequencies, 5 0 5 Frequencies, 5 3 8
“Not Enough” “Not Enough”
Percent of total 29.41% 0.00% 29.41%  Percent of total 45.46% 27.27% 72.73%
Frequencies, 8 4 12 Frequencies, 2 1 3
“Too Much” “Too Much”
Percent of total 47.06% 23.53% 70.59% Percent of total 18.18% 9.09% 27.27%
Column totals 13 4 17 Column totals 7 4 11
Percent of total 76.47% 23.53% Percent of total 63.64% 36.36%
Chi-square 2.18 p=0.1399 Chi-square 0.02 p=0.8982
(df=1) (df=1)
Yates corrected 0.72 p=0.3960 Yates corrected 0.33 p=0.5648
Chi-square Chi-square
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TABLE 4— (Continued.)

Overall Liking Overall Liking
Sample Amount Row Row
S#170 Flavor Like Dislike Totals Thin/Thick Like Dislike Totals
Phi-square 0.12821 Phi-square 0.00149
Fisher exact p, p=0.2080 Fisher exact p, p=0.7212
one-tailed one-tailed
two-tailed p=0.2605 two-tailed p=1.0000
Row Row
S#914 Like Dislike Totals Like Dislike Totals
Frequencies, 33 19 52 Frequencies, 1 3 4
“Not Enough” “Not Enough”
Percent of total 60.00% 34.55% 94.55% Percent of total 4.17% 12.50% 16.67%
Frequencies, 1 2 3 Frequencies, 10 10 20
"Too Much” "Too Much”
Percent of total 1.82% 3.64% 5.46% Percent of total 41.67% 41.67% 83.33%
Column totals 34 21 55 Column totals 1 13 24
Percent of total 61.82% 38.18% Percent of total 45.83% 54.17%
Chi-square 1.09 p=0.2963 Chi-square 0.84 p=0.3596
(df=1) (df=1)
Yates corrected 0.19 p=0.6648 Yates corrected 0.13 p=0.7141
Chi-square Chi-square
Phi-square 0.01983 Phi-square 0.03497
Fisher exact p, p=0.3229 Fisher exact p, p=0.3634
one-tailed one-tailed
two-tailed p=0.5509 two-tailed p=0.5963
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TABLE 5—Chi-Square, Yates’ corrected chi-square, phi-square, and Fisher's exact tests summary

results for Stickiness, for samples 170, 458, 523, 896, and 914 of the ASTM data set for JAR scales,
including frequencies.

Sample Stickiness Overall Liking
Row
S#170 Like Dislike Totals
Frequencies, “Not 1 2 3
Enough”
Percent of total 5.00% 10.00% 15.00%
Frequencies, “Too Much” 8 9 17
Percent of total 40.00% 45.00% 85.00%
Column totals 9 11 20
Percent of total 45.00% 55.00%
Chi-square (df=1) 0.19 p=0.6595
Yates corrected 0.04 p=0.8502
Chi-square
Phi-square 0.0097
Fisher exact p, p=0.5789
one-tailed
two-tailed p=1.0000
Row
S#458 Like Dislike Totals
Frequencies, “Not 4 3 7
Enough”
Percent of total 15.39% 11.54% 26.92%
Frequencies, “Too Much” 8 11 19
Percent of total 30.77% 42.31% 73.08%
Column totals 12 14 26
Percent of total 46.15% 53.85%
Chi-square (df=1) 0.47 p=0.4951
Yates corrected 0.06 p=0.8113
Chi-square
Phi-square 0.0179
Fisher exact p, p=0.4043
one-tailed
two-tailed p=0.6652
Row
S#523 Like Dislike Totals
Frequencies, “Not 1 1 2
Enough”
Percent of total 6.25% 6.25% 12.50%
Frequencies, “Too Much” 5 9 14
Percent of total 31.25% 56.25% 87.50%
Column totals 6 10 16
Percent of total 37.50% 62.50%
Chi-square (df=1) 0.15 p=0.6963
Yates corrected 0.15 p=0.6963
Chi-square
Phi-square 0.00952
Fisher exact p, p=0.6250
one-tailed
two-tailed p=1.0000
Row
S#896 Like Dislike Totals
Frequencies, “Not Enough” 1 0 1
Percent of total 7.69% 0.00% 7.69%
Frequencies, “Too Much” 6 6 12
Percent of total 46.15% 46.15% 92.31%
Column totals 7 6 13
Percent of total 53.85% 46.15%
Chi-square (df=1) 0.93 p=0.3352
Yates corrected 0.01 p=0.9360
Chi-square
Phi-square 0.07143
Fisher exact p, p=0.5385
one-tailed
two-tailed p=1.0000
Row
S#914 Like Dislike Totals
Frequencies, “Not 3 7 10
Enough”

Percent of total 15.79% 36.84% 52.63%
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TABLE 5— (Continued.)

Sample Stickiness Overall Liking
Frequencies, “Too Much” 6 3 9
Percent of total 31.58% 15.79% 47.37%
Column totals 9 10 19
Percent of total 47.37% 52.63%
Chi-square (df=1) 2.55 p=0.1100
Yates corrected 1.3 p=0.2551
Chi-square
Phi-square 0.13444
Fisher exact p, p=0.1276
one-tailed
two-tailed p=0.1789

TABLE 6—Chi-Square, Yates’ corrected chi-square, phi-square, and Fisher's exact tests summary

results for Size, Color, Amount of Flavor, Thin/Thick, and Stickiness, for samples 170, 458, 523, 896,
and 914 of the ASTM data set for JAR scales.

Amount
Size Color Flavor Thin/Thick Stickiness
Analysis Sample # Value p Value p Value p Value p Value p

Chi-square (df=1) #170 0.09 0.7649 0.03 0.8721 0.65 0.4194 0.02 0.8928 0.19 0.6595
Yates’ corrected #170 0 0.9754 0.16 0.6873 0.23 0.6344 0.19 0.6614 0.04 0.8502
Chi-square

Phi-square #170 0.00147 0.00185 0.01762 0.00107 0.0097

Fisher exact p, #170 0.4861 0.6573 0.3175 0.6647 0.5789
one-tailed

two-tailed #170 0.7940 1.0000 0.5148 1.0000 1.0000
Chi-square (df=1) #458 0.08 0.7797 1.53 0.2165 0.45 0.5036 0.05 0.8307 0.47 0.4951
Yates’ corrected #458 0 1.0000 0.03 0.8599 0.05 0.8269 0.05 0.8307 0.06 0.8113
Chi-square

Phi-square #458 0.00135 0.12727 0.01278 0.0019 0.0179

Fisher exact p, #458 0.5000 0.4167 0.4179 0.5818 0.4043
one-tailed

two-tailed #458 1.0000 0.4167 0.6657 1.0000 0.6652
Chi-square (df=1) #523 0.02 0.8891 1.25 0.2636 1.18 0.2770 0.28 0.5997 0.15 0.6963
Yates’ corrected #523 0.03 0.8595 0.31 0.5762 0.3 0.5867 0.01 0.9105 0.15 0.6963
Chi-square

Phi-square #523 0.00033 0.08333 0.04545 0.0162 0.00952

Fisher exact p, #523 0.5755 0.2867 0.2965 0.5471 0.6250
one-tailed

two-tailed #523 1.0000 0.3287 0.5930 1.0000 1.0000
Chi-square (df=1) #896 0.39 0.5298 1.33 0.2482 2.18 0.1399 0.02 0.8982 0.93 0.3352
Yates’ corrected #896 0.1 0.7575 0 1.0000 0.72 0.3960 0.33 0.5648 0.01 0.9360
Chi-square

Phi-square #896 0.00669 0.33333 0.12821 0.00149 0.07143

Fisher exact p, #896 0.3851 0.5000 0.2080 0.7212 0.5385
one-tailed

two-tailed #896 0.7506 1.0000 0.2605 1.0000 1.0000
Chi-square (df=1) #914 0.19 0.6657 na na 1.09 0.2963 0.84 0.3596 2.55 0.1100
Yates' corrected #914 0.02 0.8888 na na 0.19 0.6648 0.13 0.7141 1.3 0.2551
Chi-square

Phi-square #914 0.0027 na 0.01983 0.03497 0.13444

Fisher exact p, #914 0.4401 na 0.3229 0.3634 0.1276
one-tailed

two-tailed #914 0.7723 na 0.5509 0.5963 0.1789

Note: None of the samples shows a significant association between rows and columns.
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Appendix S: Biplots, Correspondence
Analysis, and Principal Components Analysis

Elizabeth Horn! and Cindy Ford?

Introduction and Objectives

Multivariate graphical displays, also known as biplots, de-
scribe relationships among “Just About Right” attributes
across samples. Biplots are a visual means to show multidi-
mensional data relationships. There are many techniques
that can be used to generate the necessary data for biplots,
such as principal components analysis, multidimensional
scaling, correspondence analysis, and discriminant analy-
sis. Two of these methods, correspondence analysis (CA) and
principal components analysis (PCA), were considered in
this case study

Requirements

To develop a biplot using CA requires count data (frequen-
cies) as input, whereas PCA requires interval data. The biplot
of the CA results shows the samples and attributes plotted
together. The first two components (or groups of highly cor-
related attributes) serve as the axes in the biplot. Research-
ers then can make interpretations on how attributes relate to
one another and how sample formulations relate to one an-
other.

"How to”

CA describes the relationships between two categorical vari-
ablesin a correspondence table (i.e., a raw crosstabulation of
the variables commonly containing frequency counts) in a
low-dimensional space, while simultaneously describing the
relationships between the categories for each variable. The
analysis yields coordinates (x-values and y-values) for each
attribute and sample. These coordinates are then plotted in a
two-dimensional space.

PCA functions in much the same manner as CA. The ob-
jective for PCA is to extract two or more underlying compo-
nents or “themes” from the data. PCA also yields coordinates
for each attribute and sample that are then plotted in a two-
dimensional space. PCA uses means of interval-scaled data
to construct the biplot.

Most biplots allow the researcher to determine:

! Decision Analyst, Inc. 604 Avenue H East, Arlington, TX 76011.

¢ the relationships among the samples in multidimen-
sional space

e the relationships among the attributes in multidimen-
sional space

e the degree to which the attributes differentiate the
products
These interpretation hints can be used with most bi-
plots:

e Many points clustering around the origin (intersection
of the axes) suggest slight differentiation among the per-
ceptions of the samples and their attributes. Conversely,
the further away the attributes and samples are from the
origin, the more one or more samples and attributes are
differentiated from one another.

e The attribute vectors indicate the strength of the rela-
tionship between that attribute and the underlying
factor/component.

¢ Thelonger the vector, the stronger the attribute’s rela-
tionship with the underlying factor/component.

e Attributes close to one another may be seen as more
substitutable by consumers.

e Attributes that point in the same direction are seen as
more similar.

e Products that are closer together are seen as more simi-
lar to one another on the attributes.

e A product located in the same direction as an attribute

vector is characterized by that attribute. This relation-
ship is stronger for those products positioned away from
the center of the biplot space.
Analyses contained in this case study considered three
samples—labeled 170, 896, and 914—and five JAR
attributes—Size, Color, Flavor, Thin/Thick (Thickness),
and Stickiness (Texture).

Biplots via Correspondence Analysis

Before the correspondence analysis can be performed,
crosstabs resulting in the counts for the JAR attributes were
obtained for the categories of “Too Much,” “Not Enough,”
and “About Right.” For example, the Color JAR data were the
number of respondents that thought the particular sample
had “Too Much Color,” the number that thought there was
“Not Enough Color,” and the number that thought the color
was “About Right.”

» o«

2 The Modellers, LLC 4505 Wasatch Blvd., Salt Lake City, UT 84124.
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The count data for each of the three sample formulations are shown below:

Size Thickness Color Flavor Texture
Sample (1 About About About Too About Not About
foreach Too Right To Too Right Too Too Right Too Much  Right Enough Too Right Too
sample=102) Large Size Small Thick Thickness Thin Colorful Color Drab Flavor Flavor Flavor Sticky ~ Texture = Smooth
170 41 37 24 5 84 13 85 11 23 63 16 17 81 4
896 40 40 22 3 90 9 98 1 13 84 5 14 87 1
914 42 32 28 21 77 4 81 21 3 45 54 9 82 10

Note: There were missing data such that the “Too Much,” “Not Enough,” and “Just About Right” counts for a particular attribute may not
add to the total sample size of 102. The original JAR scales were 5-point, fully anchored scales. Scales were recoded into three variables for
each JAR attribute. “Not Enough” was created by collapsing the responses for scale point 1 (“Not Enough”) and scale point 2 (“Somewhat
Not Enough”). “Just About Right” was scale point 3 (“Just About Right”). “Too Much” was created by collapsing the responses for scale
point 4 (“Somewhat Too Much”) and scale point 5 (“Too Much"”). Data sets with many cells that contain zero counts may cause unintended
bias in the biplot results. Using this technique with small sample sizes (less than 100 respondents) is not recommended

Results

The following figure shows a biplot with the 15 attributes
(five JAR attributes [size, color, amount of flavor, thickness,
and texture] by three variables [“Too Much,” “Not Enough,”
and “Just About Right”]). This biplot was generated using the
singular value decomposition and biplot macros for Excel,
available from http://www.stat.vt.edu/facstaff/epsmith.html
[1]. Other software packages, such as SPSS® or SAS®, can
also produce correspondence analyses and biplots.

The percent variance explained by the first component
(“Too Drab,” “Too Smooth,” “Not Enough Flavor,” and “Too
Thick”) was 88.8 %; the variance explained by the second
component (“Too Colorful,” and “Too Much Flavor”) was
11.2 %. The second component added little to the interpreta-
tion of the map. The attributes and products may more ap-
propriately occupy a one-dimensional space. Still, the map
may yield insights that are unavailable using other relational
methods.

Examining the map, the attribute vectors for “Too Color-
ful,” “Too Much Flavor,” “Too Thin,” and “Too Sticky” project
in the same direction and are thus considered to be related to
one another. Sample 170 is associated with being too thin,
having “Too Much Flavor,” and “Too Much Color.” Concern-
ing the positions of the three samples in the map, Sample
914 is perceived to be different from the other two samples,
while Sample 896 and Sample 170 are more similar.

Biplots via Principal Components Analysis

Similar to CA, PCA yields coordinates (x-values and y-values)
for each attribute and each sample. These coordinates are
then plotted in a two-dimensional space.

The means used in the PCA procedure are below:

Sample (1 for
eachsample=102) Size Color Flavor Thickness Texture

170 322 295 3.07 2.92 3.14
896 324 3.02 3.09 2.93 3.14
914 3.10 2.79 2.44 3.17 2.97

Note: The original JAR scales were 5-point, fully anchored scales
that ranged from 1 (“Not Enough”) to 5 (“Too Much”).

Results

The PCA was conducted using five attributes (Size, Color,
Amount of Flavor, Thickness, and Texture). The analysis was

performed using the singular value decomposition macro in
Excel. The loadings, which are measures of the relationship
of each attribute to each of the two principal components,
are shown below:

Attribute Component 1 Component 2
Flavor 0.739 -0.188
Thickness -0.669 -0.159
Color 0.024 0.858
Texture -0.016 -0.447
Size -0.079 -0.063

The higher the magnitude of the loading for an

attribute, the more that attribute describes the

component. The sign (+/—) indicates the direction of
the relationship of the attribute to the component. The
first component is described primarily by Flavor and

Thickness. The second component is described

primarily by Color and Texture. The percent variance

explained by the first principal component was 99.0 %

(1.0 % for the second component). Thus, the samples

are most differentiated on the first component, which

is described most by the concepts of Flavor and

Thickness working in opposition to one another.

Using the results from the PCA, a biplot was generated
via the biplot macro for Excel.

The importance of Flavor and Thickness in discriminat-
ing among the three samples can be seen in the biplot. After
examining the mean values for the Flavor attribute, we can
determine that Samples 170 and 896 have “Too Much Fla-
vor.” Based on the high mean value for the thickness at-
tribute, we can conclude that Sample 914 is “Too Thick”
compared to Samples 170 and 896.

In this case study, CA and PCA generate biplots that are
different from one another, owing mostly to the type of data
used in the analyses. PCA relies on interval data (means). Al-
though the mean describes the distribution of interval data
completely, it may mask subtleties in the JAR data (which
may not be truly interval) for reasons outlined in Appendix
D. However, the PCA map is fairly uncluttered and broad dif-
ferences among the samples may be easily observed.

In contrast, CA uses contingency table data that can
completely describe the nuances of JAR data (“Not Enough,”
“Just About Right,” “Too Much”). This creates three times
the number of JAR attributes to be plotted on a map. Inter-
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pretation of relationships in the map becomes more chal-
lenging as the number of JAR attributes increases. Plotting
only the “Too Much” variables, only the “Not Enough” vari-
ables or only the “Just About Right” variables is an alterna-
tive to plotting all three variables on one map.

Pros and Cons

The chief benefit to biplots is that each product can be evalu-
ated within the context of other product. In contrast to the
results produced by other single or bivariate techniques
(e.g., mean, correlation), results yielded by biplot analyses
allow researchers to identify products that are perceived
similarly and attributes that are more associated with one
another. Although most biplot methods yield similar in-
sights, the choice of analytic method often depends on the
scaling of the data (PCA for interval data and CA for
frequency/contingency table data) and the advantages/
disadvantages associated with the particular technique. For
example, one of the disadvantages of CA is that the axes do
not have a clear meaning. Interpreting axes in PCA biplots
can be difficult as well. There also is some disagreement
among experts as to whether the relationships among at-
tributes and objects (or samples) are interpretable in CA bi-
plots.
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The interpretation of the biplots is limited to the
samples and attributes that are included. In other words, the
spatial relationships might change as different samples or
attributes are involved or even if a different scale is used. An-
other limitation associated with biplots is legibility. Inclu-
sion of numerous points creates a cluttered plot that can
hinder interpretation. Also, the traditional biplot technique
is purely descriptive in that it only forms a picture of percep-
tions and does not attempt to incorporate preferences or
causality (i.e., consumers may think that Sample 170 is “Too
Colorful,” but is it worth reformulating if Sample 170 has a
low preference or purchase intent among consumers?)

Recommendation

The use of biplots, especially those based on CA, is recom-
mended as a descriptive tool to understand the relationships
between attributes and samples.

References

[1]  Lipkovich, I., and Smith, E. P., “Biplot and Singular Value De-
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Appendix T: Correlation

Amy Takkunen'
Introduction and Objectives

Correlation analyses can be used to measure the linear asso-
ciation of JAR scale data to data measured using other types
of scales, e.g., liking scales. The goal of these analyses is to
assess the strength and direction of the relationship between
the JAR scale and the other scale(s) of interest for each prod-
uctand, possibly, across products.

Requirements

This analysis requires the raw data, arranged in a table with
one line per assessor by product combination. The assessors
must have evaluated the sample(s) using both the JAR
scale(s) and the other scale(s) of interest.

"How to”

The formula for the correlation coefficient r is given below,
where SXY =the corrected sum of cross products, SXX=the
corrected sum of squares for the Xs (here, the JAR scale
scores), and SYY =the corrected sum of squares for the Ys
(here, the other scale scores):

L SxY

Most statistics programs, as well as Microsoft Excel, include
procedures to calculate this statistic. This statistic has n
-2 degrees of freedom, where # is the number of assessors.
If the calculated r-value is larger than the correlation table
r-value for the chosen alpha level, the correlation between
scales is considered to be statistically significant. Correla-
tion coefficients range -1 and +1. Positive values of » indi-
cate that as the JAR score goes up, so does the score on the
other scale. Negative r-values indicate that as the JAR score
goes up, the score on the other scale goes down. An r close to
0 means that there is no relationship between the scales. The
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closeranristo -1 or +1, the stronger the linear relationship
between the scales.

Case Study Example

This example uses the JAR scale and the liking scales for
Products 170, 896, and 914. Table 1 displays the correlation
and p-value of each JAR scale with its corresponding liking
scale within each product. Table 2 repeats that analysis,
pooling across products.

Results and Conclusions

Data in Table 1 indicate that, for Product 170, there are no
significant linear relationships between JAR scales and lik-
ing scales. For Product 896, there is a weak but significant
negative linear relationship between JAR color and overall
liking, and JAR flavor and Overall Liking. For Product 914,
there is a weak but significant positive relationship between
JAR color and color liking, and between JAR flavor and fla-
vor liking. There is also a somewhat stronger significant
positive relationship between JAR flavor and Overall Liking.

Data in Table 2 indicate that, across products, there is a
significant positive relationship between JAR size and size
liking, and between JAR color and color liking.

Pros and Cons

Calculating correlation coefficients allows the researcher to
evaluate the strength of a linear relationship between a JAR
scale and other scales used by the same assessors on the
same products.

Alimitation of this analysis is its use of a linear relation-
ship when the relationship between the JAR scale and the
Liking scale is expected to be highest in the middle of the
scale and lowest at the ends. It is not hard to demonstrate
that there can be a perfect association between the JAR and
liking that has a correlation of zero. This problem can be cir-
cumvented by alternate encodings of the JAR scale (e.g.,
change {1,2,3,4,5} to {-2,-1,0,-1,-2}) or by breaking the
JAR scale up into two scales, each of which is unidirectional
(i.e., “Too Weak” to “Just About Right” and “Just About

TABLE 1—Correlation of JAR scales with other scales by product.

Product
170 896 914

Scales Compared r p r p r P
JAR Size, Liking Size -0.15 NS -0.06 NS -0.04 NS
JAR Color, Liking Color 0.04 NS 0.09 NS 0.23 0.02
JAR Flavor, Liking Flavor 0.07 NS -0.12 NS 0.23 0.02
JAR Size, Liking Overall -0.04 NS -0.03 NS -0.03 NS
JAR Color, Liking Overall 0.02 NS -0.22 0.02 0.02 NS
JAR Flavor, Liking Overall 0.05 NS -0.19 0.05 0.33 0.001

NS=Not significant

U General Mills, 9000 Plymouth Avenue North, Minneapolis, MN 55427.
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TABLE 2—Correlation of JAR scales with other
scales.

Scales Compared r p
JAR Size, Liking Size 0.99 <0.01
JAR Color, Liking Color 0.99 <0.01
JAR Flavor, Liking Flavor -0.78 NS
JAR Size, Liking Overall -0.56 NS
JAR Color, Liking Overall -0.41 NS
JAR Flavor, Liking Overall -0.64 NS

NS=Not significant
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Right” to “Too Strong,” but these should be considered care-
fully.

Recommendation

Correlation analysis is not recommended unless it has been
demonstrated (via graphical examination of liking versus
JAR data or other analysis) that the relationship between the
JAR scale and liking is linear). Where such data are not avail-
able, it is recommended to re-code the scale, as discussed
above.
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Appendix U: Regression

Joseph E. Herskovic!
Background and Introduction

Many of the other techniques in this guideline treat the effect
of JAR scales on the overall rating one scale at a time. Regres-
sion analysis allows the researcher to evaluate the joint ef-
fects of the scales levels on overall response. The stronger the
relationship between a JAR scale and the overall response,
the more important that “Just-Right” attribute is in explain-
ing the liking attribute, even after controlling for the other
attributes.

The regression can be either non-parametric (ordinal)
or parametric (ordinary regression) and the JAR scales can
have either a linear or non-linear effect on the response. The
examples below use linear regression because of ease of use
and widespread availability in many statistical packages.
The more general approaches require more statistical so-
phistication.

Regression analysis can be done for the entire data set
(all samples combined) or for each individual sample. Con-
ducting the analysis on all samples combined gives a general
overview of how the “Just Right” attributes work together to
explain liking. This analysis can be conducted using either
the individual respondent data or product mean scores.

Requirements

These approaches generally require the individual level data
for the overall rating scale and the attributes of interest.

Example Analysis

All data from example data set were used in these analyses.
Both an overall model and single sample analyses were fit-
ted. For simplicity, the examples did not include terms to ad-
just for the repeated measures on each panelist. This means
that the significance tests are rather conservative, and may
miss some significant effects. In each case a stepwise linear
regression approach was used to select the terms to be in-
cluded in the models.

Results and Conclusions

All Samples Combined

For the current data set, the regression of Overall Liking on
the five attributes of Size, Color, Amount of Flavor, Thick/
Thin, and Stickiness was fit. Note that Overall Liking is a
9-point scale and all scales on the right side of the equation

are 5-point “Just About Right” scales. The input contains
main effects only and is based on the raw data (not means).
The output is summarized in the following printout:

=== Stepwise Regression ***

Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 8.8216 0.6614  13.3372  0.0000
JAR.Flavor -0.3615 0.1235 -2.9278 0.0036
JAR.Stickiness -0.5656 0.1814 -3.1173 0.0019

Residual standard error: 1.946 on 505 degrees of freedom
Multiple R-Squared: 0.03731

F-statistic: 9.785 on 2 and 505 degrees of freedom, the
p-value is 0.00006771

Of the five attributes entered into the equation, only two
had a significant effect on overall liking: Flavor (negative)
and Stickiness (negative). Thus, it is recommended that the
researcher further investigate these attributes and pay less
attention to the other three (Size, Color, and Thickness).
Note that the sign (positive or negative) yields clues as to how
to reformulate. If the sign is positive, then in these product
samples more is better (up to a certain point, of course).
Likewise, If the sign is negative, then less is better.

Individual Product Models

The above analysis was done without segmenting by sample.
Often the researcher wants to know the importance of sen-
sory attributes on specific test samples. This involves the
same stepwise regression analysis separately for each
sample of interest.

Sample 170
Coefficients:
Value Std.Error t value Pr(>[t|)
(Intercept) 8.1163 1.4669 5.5328 0.0000
JAR.Stickiness -0.8277 0.4625 -1.7895 0.0766

Residual standard error: 2.173 on 100 degrees of freedom
Multiple R-Squared: 0.03103

F-statistic: 3.202 on 1 and 100 degrees of freedom, the
p-value is 0.07656

Comments: Only Stickness has a significant (negative)
effect on overall liking Note that the coefficient (-0.8) is both
larger and less reliable than that Stickiness coefficient in the
overall regression.

! Sensory ConAgra Foods, Inc. Six ConAgra Drive Omaha, NE 68102-5094.
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Sample 458
Coefficients:
Value Std. Error t value Pr(>|[t|)
(Intercept) 9.6205 1.2640 7.6114 0.0000
JAR.Flavor -0.7467 0.2229 -3.3497 0.0011
JAR.Stickiness  -0.5270 0.2958 -1.7815 0.0779

Residual standard error: 1.645 on 98 degrees of freedom
Multiple R-Squared: 0.1189

F-statistic: 6.614 on 2 and 98 degrees of freedom, the
p-value is 0.00202

Comments: As with the joint model, only Flavor and
Stickiness have significant effects on Overall Liking. As with
the previous example, the coefficients are both larger and
less reliable than the joint regression.

The researcher can continue conducting this analysis
for each of the samples to determine the most important sen-
sory attributes to investigate.

From the regression data, we can determine that prod-
uct liking is most sensitive to the amount of flavor and the
stickiness of the products. The other attributes, Size, Color,
and Thickness, did not have a strong effect after controlling
for Flavor and Stickiness (within the range tested here) and
should be of secondary importance in product development
efforts.

Discussion

As was demonstrated here, it can be the case that only a few
of the attributes have a direct effect on the output, while the
rest of the attributes have little impact once the direct at-
tributes have been accounted for. This implies that the ef-
fects of these other attributes may be indirect and may be re-
alized through their impact on the other attributes.
Untangling “what causes what” requires some substantive
understanding of the attributes and product use in the field.
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Two ways of analyzing the data were demonstrated here:
the entire data set and each individual sample, both using
raw data. A more thorough analysis would include a test for
product X attribute interactions to determine if there is any
benefit in evaluating individual product models. This analy-
sis also treats the center point of a JAR scale (the “Just-
About-Right” point) as another point on the intensity con-
tinuum, affording it no special significance.

There are other ways to analyze these data. For example,
one can use “indicator” variables to evaluate the joint effect
of deviating from the JAR values. Additionally, as mentioned
earlier, a more careful analysis could include dummy vari-
ables to capture some of the individual variability in using
the scales. Further, the response can be treated as an ordinal
response, dropping the requirement that the panelist have
an interval-level response.

Pros and Cons

Regression measures provide the benefit of simultaneous
analysis of all product attributes, resulting in an understand-
ing of those that have the most impact on overall liking. Re-
gression analysis provides predicted overall liking ratings
based on JAR scale ratings. Curvilinear relationships can be
modeled using these techniques, a distinct over correlational
analysis. Regression techniques are widely available in most
software packages.

Regression techniques assume that the data are unimo-
dal and provide interval-level information; in practice, these
assumptions may not be true. While widely available, these
analyses require some statistical sophistication on the part
of the analyst.

Recommendation

It is recommended that regression analysis be considered
when there are multiple attributes that can affect the overall
response and the research is interested in untangling which
attributes have direct effects on the response and which do
not.
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Appendix V: Preference Mapping from JAR
Data Using Tree-Based Regressions

Jean-Francois Meullenet' and Rui Xiong'

Background and Objectives

Penalty analysis offers a method to consider the individual
effects of JAR ratings on Overall Liking (OAL), but does not
provide a way to assess the impacts of simultaneous changes
in JAR ratings on Overall Liking. Standard multiple regres-
sion is of limited use in this situation because of its strong
assumptions of linearity.

A form of non-parametric regression, which we will re-
fer to as “tree-based” regression, removes that assumption
and allows you to determine the combinations of the JAR
ratings that have the strongest impact on Overall Liking.

There are wide variety of “tree-based” regressions pack-
ages available, such as CART, MARS, KnowledgeSeeger, and
SPSS AnswerTree, as well as free implementations such as
part in R. This example will use MARS (multivariate adap-
tive regression splines) as its example [1]. This is commercial
software, sold by Salford Systems (http://www.salford-
systems.com/) [2].

Requirements for the Analysis

This analysis requires raw data arranged in a table, with one
row for each rater by product combination. Each row should
have both the liking and JAR ratings for a particular product
evaluation.

“How to”

This is a computer intensive procedure and we will only give
an overview of the method. Tree-based functions typically
proceed by examing each of the predictors in the whole set in
turn. For each variable it will use each of its levels to find a
split that will make the resulting subgroups most different. It
keeps the best split overall of the variables and recursively
repeats the process on each of the subgroups until the result-
ing subgroups are too small. Many of the tree programs fit
each subgroup with a simple mean, but MARS goes further
and fits a linear regression on the splitting variable within
the subgroups.

A general MARS model for a single response and a vec-
tor of predictors may take the following form:

Y=o+ B1BF(X) + BoBF,(X) + -+ + ByBFy(X) + &
where Y'is the response variable (e.g., Overall Liking) X is the
vector of predictors (such as Size, Color, Flavor, Salt, Thin/
Thick, Stickiness, etc), BF; denotes the kth basis function, a
function of all of the splits that lead to one of the final sub-
groups, and M is the number of basis functions included in
the final model. The regression coefficients B are estimated
by minimizing the sum of squared residuals e. This can be
used on either individual products or on multiple products.

Example From Case Study Data

In this example, MARS was applied to each of the Products
170,458,596, 823, and 914 individually. This provides an op-
timum regression for each product’s Overall Liking (OAL) in-
dividually

Results and Conclusions

For Sample 170, the “best fit” MARS regression equation was
as follows:

OAL=5515 (R?=0,n=101)

The coefficient of determination R?=0 means that there was
no predictive relationship between the JAR variables and
OAL, indicating that the JAR attributes (Color, Size, Flavor,
Thin/Thick, Stickiness) in this case did not significantly af-
fect the OAL. The predicted OAL mean was 5.5150, which
was actually identical to the observed mean (OAL=5.5149).
This sample was the second least preferred product, imply-
ing that the JAR attributes tested were unable to explain the
low OAL scores obtained for this product.

For Sample 458, MARS gave the following “best fit” re-
gression equation:

OAL = 6.048 - 0.946BF, - 1.197BF, (R?>=0.2,n=101)

where the two basis functions were BF; =max(0, Flavor-3.0)
and BF,=max(0, 3.0-Thin/Thick) (max(x;,x,) is interpreted
as the maximum value of the two elements x; and x,). BF;
=max(0, Flavor-3.0) split the flavor JAR scale at 3 (the JAR
score) into two scale regions: region of 1 to 3 and region of 3
to 5. BF| is constant over the region of 1 to 3, but linearly in-
creased over the region of 3 to 5. Since the regression coeffi-
cient (-0.946) is negative OAL score decreased by 0.946 per
unit change in BF;. This relationship between the flavor and
OAL is shown in Fig. 1(a). This indicates that a “Too Strong”
flavor was more detrimental to the OAL than a “Too Weak”
flavor. Similarly, BF,=max(0,3.0-Thin/Thick) split the JAR
scale into two regions (Fig. 1()). Over the region of 3to 5, the
effect of Thin/Thick on OAL is roughly constant, but the OAL
scores decreased at arate of 1.197 (-1.197 was the regression
coefficient for BF,) as the Thin/Thick scores increased from
1 to 3. This meant that being “Too Thin” was more detrimen-
tal to OAL than being “Too Thick.” Other JAR attributes
(Color, Size, and Stickiness) had no predictive effects on
OAL. The observed and predicted means of Overall Liking
scores were 5.4653 and 5.4650, respectively. Since the re-
gression intercept (6.048) could be interpreted as the poten-
tial maximum OAL mean score if all the attributes were JAR,
the difference (0.583) between the regression intercept
(6.048) and the predicted mean (5.4650) of the OAL scores
can be explained as the average potential improvement in
OAL scores if the thin/thick and flavor were adjusted to be
“Just About Right.”

! Department of Food Science, University of Arkansas, Fayetteville, AR 72704.
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Fig. 1—Contribution to overall liking from flavor (a) and thin/thick (b).

For sample 523, MARS estimated the best regression
equation to be:

OAL = 6.445 - 1.024BF, - 1.1587BF, (R*=0.22,n=102)

where the two standard basis functions were BF,
=max(0,Flavor-3.0) and BF,=max(0, Stickiness-3.0). The
predicted relationships between OAL and Flavor/Stickiness
are displayed in Fig. 2. It is evident from the figure that both
flavor and stickiness significantly decreased OAL over the re-
gion of 3 to 5 in the rates of 1.024 and 1.159, respectively, but
did not have a significant influence on OAL over the region of
1 to 3. This suggested that reducing the intensity of flavor
and stickiness from being “Too High” to being JAR would in-
crease average consumer OAL score up to 6.445. The ob-
served and predicted means of Overall Liking scores were 6.0
and 5.991, respectively.

For Sample 896, the “best fit” MARS regression equa-
tion was as follows:

OAL = 7.949 - 1.446BF, (R?=0.01,n =102)

where one standard basis functions was BF,
=max(0, Stickiness-2.0). The relationship between OAL and
Stickiness is presented in Figure 3(a). The figure shows that
BF; split the Stickiness scale at the point of 2. This means
that the OAL mean score was lower at the JAR score of 3 than
at the score of 2, which was not expected. This deviation
from the JAR score of 3 could be due to the noise in data, so
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two MARS models were fitted separately over the regions of
1 to 3 and the region of 3 to 5 for stickiness. It was found that
stickiness had no predictive value for OAL over the region of
1 to 3, but had a significantly negative impact on OAL over
the region of 3 to 5. By combining these two models, the fol-
lowing regression equation was obtained:

OAL =6.523 - 1.52BF; (R?>=0.01,n=102)

where the only standard basis functions was BF;
=max(0, Stickiness-3.0). The relationship between OAL and
the JAR variable is illustrated in Fig. 3(b). The observed and
predicted means of overall liking scores were 6.3039 and
6.3144, respectively. Results like those in Fig. 3(a) could oc-
cur if there is significant noise in the data; consumer scoring
of the sample is not consistent and/or the JAR variables are
highly correlated.

For sample 914, the “best fit” MARS regression equation
was as follows:

OAL = 7.730 - 1.638BF, - 2.928BF, - 2.305BF;
- 1.202BF, (R?=0.35,n=100)

where the four standard basis functions were BF,
=max(0, Thin/Thick-3.0), BF,=max(0,3.0-Thin/Thick),
BF;=max(0,Flavor-3.0) and BF;=max(0,3.0-Flavor). The
observed and predicted means of Overall Liking scores were
6.5600 and 6.5603, respectively. The relationships between
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Fig. 2—Contribution to overall liking from flavor (a) and stickiness (b).
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Fig. 3—Contribution to overall liking from stickiness: (a) with one model fit and (b) with two-models fit.

OAL and thin/thick and flavor are given in Fig. 4. The OAL
mean was the highest at the JAR score of 3 and decreased
over either side of the JAR score. This figure suggests that
there was a disagreement between two segments of consum-
ers. Some consumers found the product to be too thin while
others found it to too thick. However, being too thick seemed
slightly more detrimental to OAL than being too thin. Simi-
larly for Flavor, one group of consumers found the flavor to
be too strong while another group found the flavor to be too
weak. Overall, a weak flavor had a more negative impact on
OAL than a too strong flavor.

A comparison of all the samples was done by tabulating
the results from the above data analysis for each individual
product (Table 1). The table clearly shows that size and color
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did not significantly contribute to OAL scores. To compare
consumer preference to the samples, the plot of observed
means versus predicted means of OAL scores for all the
samples are presented in Fig. 5. The predicted means were
nearly identical to the observed mean with R>=0.99. It was
apparent that the overall acceptance order of the samples
was 914=896=523=170=458. Of the five samples, Sample
914 was the most liked sample, whereas Sample 458 was the
least liked. However, no useful information was contained in
the JAR data to explain the weaknesses of Sample 170. The
potential improvements varied from sample to sample.
Sample 914 had the largest potential improvement of 1.170,
which means that the OAL mean score could be potential im-
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Fig. 4—Contribution to overall liking from think/thick (a) and flavor (b).

TABLE 1—Comparison of the samples.

Observed Predicted Potential
Sample Size Color Flavor Thin/Thick Stickiness OAL Mean OAL Mean Improvement
170 O O O O O 5.5149 5.5150 0
458 O (@) X X @) 5.4653 5.4650 0.583
523 O @) X (@) X 6.0000 5.9909 0.454
896 O O (@] (@) X 6.3039 6.3144 0.209
914 O O X X O 6.5600 6.5603 1.170

O stands for no predictive effect on OAL
X stands for detrimental effect on OAL due to not being JAR

Potential improvement is the potential improvement in OAL mean score by adjusting contributing JAR attributes to JAR levels
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Fig. 5—Comparison of observed and predicted means of overall
liking scores.

proved by 1.170 by improving flavor and stickiness to JAR
levels.

Conclusions from the Analysis

e According to MARS, the JAR attributes (Size, Color, Fla-
vor, Thin/Thick, Stickiness) evaluated for sample 170 did
not seem to explain the OAL scores. This sample had the
second lowest OAL mean score of all the five samples
tested.

e Sample 458 was found to have only two attributes (Fla-
vor and Thin/Thick) not being JAR that contributed to
determining OAL. Too strong flavor and being too thin
were detrimental to OAL. It was the least preferred
sample.

e Sample 523 had only two attributes (Flavor and Sticki-
ness) not being JAR that contributed to determining
OAL. A “Too Strong Flavor” and being “Too Sticky” had
negative impacts on OAL.

e Sample 896 had only one attribute (Stickiness) not being
JAR that contributed to lowering OAL and it was the sec-
ond most preferred sample. Being too sticky decreased
OAL.

e Sample 914 had two out of five attributes (Thin/Thick
and Flavor) not being JAR and it was the most liked
sample. Consumers tended to disagree about the prod-
uct weaknesses.

Pros and Cons

The tree-based regression approaches, such as MARS analy-
sis, allows the researcher to examine the joint effect of the
JAR ratings on Overall Liking. The MARS regression inter-
cept estimates the maximum OAL mean that a sample could
achieve if the attributes were adjusted to JAR levels.

The limitations of these approaches are three-fold.
These include conceptual complexity of the results, the re-
quirement for specialist software, often expensive, and the
need for larger sample sizes. Additionally, as presented, the
program treats the JAR scales as being continuous, rather
than ordinal.

Recommendation

This method is recommended for JAR scale regression
analysis when the researcher wishes to understand the joint
action of multiple attributes on “Overall Liking” under con-
ditions that the independent variables are not correlated
with each other and the number of independent variables is
larger than the number of observations. Additionally, it is
recommended to analyze the products individually.
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Appendix W: Application of JAR Data to
Preference Mapping Using Dummy Variables

Rui Xiong' and Jean-Francois Meullenet'
Objectives

The dummy variable approach is a regression method that
can be applied to map relationships between JAR and liking
scores. The approach models the relationship between JAR
and liking variables, estimates the mean drop of Overall Lik-
ing (OL) as a function of JAR scores and determines the driv-
ers of liking. The dummy variable approach is a very flexible
method that can be performed either for individual products
or for all products to determine the effects of JAR attribute
scores on Overall Liking.

Requirements for the Analysis

Individual respondent data for each attribute/product com-
bination are required and the number of observation must
be at least twice as large as the number of predictive vari-
ables. A statistical package that implements regression and
partial least-squares (PLS) models is required.

“How to”

Penalty analysis is a graphical technique that provides a list
of critical product characteristics that most negatively im-
pact product liking. However, penalty analysis has many pit-
falls. It is not a regression-based method, ignores correla-
tions among product characteristics, and cannot be used to
predict consumer overall acceptance from JAR data. In addi-
tion, the mean drop estimated by penalty analysis for a spe-
cific attribute is not an estimate of the “true” mean drop on
overall liking. A dummy variable approach with two models
(analysis of covariance or partial least-squares regression) is
proposed as an extension to penalty analysis.

Regression Analysis with Dummy Variables

Regression analysis with dummy variables is a method that
subsumes both ordinary regression and analysis of variance.
It does this by transforming the each JAR rating, with, say, k
categories into up to k indicator or dummy variables, prefer-
ably independent. As an example, consider the following en-
coding forak =3 JAR scale (see Table 1).

This example converts a three-level JAR scale into three
nominally independent (uncorrelated) variables (Z,-Z3).
The dummy variable Z; captures the usual mean. The
dummy variable Z, compares the JAR value with the average
of the non-JARs. If this variable is used to predict a liking
variable, It would measure the difference between liking
when the attribute is at the JAR value and liking is not at the
JAR value (the average penalty). Finally Z; compares the lik-
ing when the attribute is “Too High” with the liking when the
attribute is “Too Low.” When used as a response in a regres-
sion model comparing several products or attributes, the
first column is constant and non-informative, the second

column compares the drops, and the third column compares
the asymmetry.

To use this technique, the analyst needs to recode the
data to explode each of the JAR variables into a larger set of
dummy variables. This typically requires some program-
ming to perform. These dummy variables are subsequently
supplied to a regression program. As mentioned earlier, we
are using regression in the general sense, which can include
ordinary least-squares, partial least-squares, multivariate
least-squares, and ordinal regression (proportional odds,
probit, and proportional hazards).

It is used to assess the statistical significance of mean
differences among treatment groups with an adjustment
made for initial differences on one or more covariates. When
analysis of covariance applies to relating Overall Liking to
JAR variables, the covariance analysis model is expressed as

P
Yij:lL‘l‘i+EﬁikXiik+ 7]l'l'+8il' (l: 1,2...,t;j: 1,2...,m)
k=1

(1)

where the response variable Y;; is the Overall Liking score
given by the jth consumer for the ith product; y; is the mean
of the response variable for the ith product; independent
variable X;;; is the JAR score given by the jth consumer for
the kth JAR variable of the ith product; ¢, m2, and p are the
numbers of products, consumers, and JAR variables used in
the test, respectively; By is the regression coefficient for the
kth JAR variable and the ith product; 7; and &;; are the ran-
dom effect term and residual for the jth consumer and the ith
product, respectively. This model (Eq (1)) is unable to cor-
rectly describe the non-linear relationship between the re-
sponse variable (Yj;) and covariates (X;;1,Xjj, ...,Xjj,) be-
cause the JAR scale has its “best/ideal” score in the middle
(Fig. 1(a)) of the scale. Take a 5-point JAR scale (1 to 5) as an
example. The best/ideal score, also called the JAR score, is 3.
As the scores of a JAR variable (X;;;) are away from the JAR
score over both sides/regions (“Too Little” region and “Too
Much” region), consumer acceptance scores (Y;;) would be
expected to drop or stay constant (Fig. 1). It is possible that
the drop rates over both regions of the JAR score may be dif-
ferent. To describe this phenomenon, two dummy variables
(Zijk1 and Z;j;.,) are introduced to represent each original JAR
variable (Xj;.). The presentation scheme is provided in Table
1. Over the region (1 to 3) of X, Z;j; changes from -2 to 0,
and Z;;; is 0 over the region (3 to 5). In contrast, Z;j is 0 over
the region (1 to 3) and changes from 0 to 2 over the region (3
to 5). If the drop rates over the two regions are the same, Z;;
and Z;;, are combined into a single dummy variable Zj;
=Ziji1 — Zijko torepresent Xy

Using dummy variables instead of the original JAR vari-
ables, the new model is given by

! Department of Food Science, University of Arkansas, Fayetteville, AR 72704.
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TABLE 1—Example dummy variables for a
3-point JAR scale.

Response Z, Z, Z3
“Too Low" 1/3 -1/2 -1
“Just About Right” 1/3 1 0
“Too High” 1/3 -1/2 1

P

Y=+ 2 (i Zign + auaZiga) + 0 + &5
k=1

(i=12...,t;=1,2...,m) (2)

where the pair (Z;;1, Z;j») are dummy variables for the origi-
nal JAR variable X;;; a;r; and ., are regression coefficients
for the kth pair of dummy variables, respectively. For each
pair of regression coefficients (a;;1, jr»), the sign (+) of a4
must be opposite to the sign (—) of a;», as shown in Fig. 1(b).
The same signs of a;;; and a;y, indicate that the original JAR
variables (Xjj1,Xjj,...,Xjj,) are highly correlated with one
another or there is noise in the data. As such, this covariance
analysis model (2) is appropriate for mapping relationships
between JAR and liking variables only if the original JAR
variables (Xjj1,Xjj, ...,Xjj,) are independent of each other
(Fig. 1(b)). Correlation coefficients can be used to check the
independence between JAR variables. A stepwise method
(such as backward elimination) can apply to this model for
selection of important variables. If Eq (2) is appropriate, the
term (1 Z;jk1 + ij2Zijk2) is always either zero or negative. A
zero mean of the terms (wj;Zijki + ajpZij2) (=1,2,...,m)
across all consumers indicates that there is no significant re-
lationship between the kth JAR variable and the response
(OL), whereas a negative mean can be explained as the esti-
mate of the mean drop on Overall Liking due to the kth JAR
variable not being JAR for the ith product. Since Eq (2) in-
cludes all dummy variables involved, it is usually called the
full model. Based on the full model, many hypotheses can be
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formed and tested using an F-test. For example, if it is as-
sumed that the effect of each dummy variable on the re-
sponse is the same (common slope) for all products, then the
model (Eq (2)) becomes

P
Yij=mi+ > (1 Zijir + 2 Zijid) + i + €55
1
i=1,2...,t;5=1,2...,m) (3)

This model (Eq (3)) is called the reduced model because it
contains only a subset of the variables used in the full model.
The F-test is used to determine which model (full model or
reduced model) fits the data. The testing hypotheses are
given below:

H,: the reduced model (Eq (3) in this case) fits

H,: the full model (Eq (2) in this case) fits

Reject Hy if the calculated F>F,,_| y_;, where the F-value is
calculated by

(SSEj - SSE)/(DFg - DFy)

F =
SSE/DF;

“4)

where SSER and SSE are the sum of squares of errors for
the reduced and full models, respectively; DF; and DFy are
the degrees of freedom for the reduced and full models, re-
spectively. Similarly, an F-test can be used to test if a pair or
some pairs of dummy variables have the same effect on the
response for all products.

For a JAR scale, it is usually important to determine if
the drop rates over two JAR regions (“Too Little” region and
“Too Much” region) are the same, which forms the following
testing hypotheses:

(b)

Overall L

1 2 3 4 5
JAR Attribute

Fig. 1—Examples of linear regression models using the original variable (a) and dummy variables (b) to map relationships between JAR and

hedonic scores.
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Ho: ajq = — ajra, OF o]

= |a,| for all pairs of dummy variables

H,: @iy # - aiia, OF |ag]
# |ayi| for at least some pairs of dummy variables

Under the null hypothesis (Hg), the model (Eq (2)) can be
simplified as

P P
Yij= i+ E aikl(ziikl - Zijkz) + Wt &= Mt E i1 Zij +
k=1 k=1
+g; (=12....t5=12...,m) (5)

where Z;;.=Z;j11 - Z;j (see Table 1). By using the above F-test
(Eq (4)), the full (Eq (2)) and reduced (Eq (5)) models can be
compared to determine if the two drop rates over the two
JAR regions are the same for all pairs of dummy variables
simultaneously. Similarly, an F-test can be used to test if the
drop rates are the same only for a pair or some pairs of
dummy variables or if all products have the same means. If
other factors (such as gender, age, etc.) are of interest, they
can be added to the models. Once the final model is deter-
mined, the mean score of Overall Liking for each individual
product can be predicted by

P

i/i =M+ E (aiklzikl + aikZZikZ) (i=1,2...,0) (6)
k=1

where Y; is the predicted mean score of Overall Liking for the
ith product; Z;;; and Z;;, are the means of dummy variables
Zijt1 and Z;j;, across consumers for the ith product and the
kth JAR variable, respectively; a;i1Z; ; and a;z,Z;, are de-
fined as the estimates of the mean drop on Overall Liking due
to the kth JAR variable being “Too Little” and being “Too
Much,” respectively. As was pointed out previously,
SP_ (@1 Zier + @iraZira) < 0 is always true if the model fits the
data appropriately. For the ith product, =P_,(ajZi;
+ aikzzikz) =0 holds only if Zikl :Zik2: 0 for all & (k
=1,2,...,q), which means that all attributes of the ith prod-
uctare JAR.

Partial Least-Squares Regression with
Dummy Variables

In sensory evaluation, it is often found that some variables
are highly correlated with each other. This correlation or de-
pendence between variables violates the independence as-
sumption for covariance analysis models, so analysis of co-
variance is no longer valid. Partial least-squares (PLS)
regression or principal component regression (PCR) are of-
ten used to handle this kind of collinearity problems. For a
single response, PLS regression models for each individual
product can be expressed as

Yvi = BO + ,Bchll + BZPCIZ + ...+ BS‘PC]S‘ + &
(G=1,2,...,m;s<p) (7)

where the response variable Y; is the OL score given by the
jth consumer for this product; PCy is the score of the kth
principal component for the jth consumer; s is the number of

principal components and is less than or equal to p number
of the original variables; B, is the regression intercept; By is
the regression coefficient for the kth PC; & is the residual for
the jth consumer. If the original JAR variables are used for
preference mapping of Overall Liking for each product (not
all products), principal components (PCs) are calculated as

follows

PC,-k = ale,-l + ak2‘X/2 + ...

+akpX,-p
G=1,2,....m;k=1,2,...,s) (8)

where ay; (k=1,2,...,s;1=1,2,...,p) is the loading for the
kth PC and the /th original JAR variable (X)); Xj; is the score
given by the jth consumer for the /th JAR variable. As dis-
cussed previously, non-linear relationships between the
original JAR variables and the response (OL) cannot be ap-
propriately described by a linear regression model (such as
PLS or PCR) using the original variables. Dummy variables
can be used in PLS or PCR models to estimate these non-
linear relationships, and principal components (PCs) using
dummy variables are calculated as

chk = (bkllzjll + bklZZjlz) + (kaIZjZI + bk222j22) + ...
+ (bkplzl'pl + bkpzzipz) (] = 1,2, e ,m;k = 1,2, e ,S)
%)

where the pair (b1, bipp) (k=1,2,...,s;1=1,2,...,p) repre-
sents the loadings for the kth PC and the /th pair of dummy
variables (Z;1, Z;;) which represents the /th JAR variable (X;).
By substituting PC;;. in Eq (9) into the PLS model (Eq (7)), we
obtain the following PLS model using p pairs of dummy vari-
ables:

Yj =%+ (71121'11 + 71zzi12) + (72121'21 + 72zzi22) + ...
+ (V1 Zipr + Vp2Zipa) + & (G=1,2,...,m) (10)

where 1y is the regression intercept which can be interpreted
as the estimated mean of Overall Liking for the product if all
JAR attributes are JAR; (v}, vp2) are regression coefficients
for the [th pair of dummy variables (Z;;, Z;,), respectively. If
the scheme in Table 1 is used for each pair of dummy vari-
ables, regression coefficient y;; should be positive, while y;,
should be negative, which means that the response (OL) has
its maximum at the JAR score. Since not all variables in Eq
(9) have equal influences on the response (OL), those unim-
portant or insignificant variables to the response need to be
removed from the PLS model. The jackknife optimization
method is one of popular methods to remove unimportant
variables from PLS models or select important variables for
PLS models. The PLS models using g (g <p) important pairs
of dummy variables are given by

Yi= v+ (v1iZin + v12Zj12) + (YnZjy + ¥22Z1))
+ o+ Zig + YpZip) e (1=1,2,...,m) (11)

where ;) is the regression intercept, the pair (y;;, y},) are re-
gression coefficients for the /th important pair of dummy
variables (Z},, Z;,). A pair of dummy variables is defined to be
important or significant if at least one of a pair of dummy
variables is selected into the PLS model by the jackknife or
other optimization method. Important pairs of dummy vari-
ables imply that the intensities of the corresponding JAR at-
tributes are not “Just About Right,” while unimportant pairs
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TABLE 2—Example dummy variables for a 5-point JAR scale.

JAR Rating Z Z, Zs Zs Zs
1 (“Too Low") 1/5 -1/4 -1/2 1 0
2 ("Slightly Low") 1/5 -1/4 -1/2 -1 0
3 ("Just About Right") 1/5 1 0 0 0
4 ("Slightly High”) 1/5 -1/4 1/2 0 -1
5 (“Too High”) 1/5 -1/4 1/2 0 1
Dummy
Variable Interpretation
Z, Average rating
Z, Average difference between JAR and non-JAR values
Z5 Average difference between “High” and “Low” values
Z, Difference between “Too Low” and “Slightly Low” values
Zs Difference between “Too High” and “Slightly High” values

of dummy variables can be interpreted as having no signifi-
cant effect on Overall Liking or as the attribute to be at a JAR
level. When the paired regression coefficients (y;;, ;) are
not equal for an important pair of dummy variables, the JAR
attribute is more detrimental to OL over one JAR region than
another. The PLS model (Eq (11)) is called the F-model (or
pseudo full model) because it includes all important pairs of
dummy variables. Based on this F-model, various null hy-
potheses can be formed and tested just as for the covariance
analysis models. For example, if the null hypothesis is that
the two drop rates (in absolute values) over the two JAR re-
gions are the same for all important pairs of dummy vari-
ables in Eq (11) simultaneously (i.e., Hy: v}, = -7}, = ¢}, for all
important pairs, [=1,2,...,q; see Eq (5)), then a pair of two
dummy variables can be combined into one single dummy
variable (Z;,=Z], - Z],) and Eq (11) becomes

Y]-:tp(’)+qoiZl-’1+go§Z/-’2+ +¢;Z]-’q+s]» G=1,2,...,m)
(12)

where ¢g, 01,05, ... ,cp(; are regression coefficients for Eq
(12). This PLS model (Eq (12)) is called the R-model (pseudo
reduced model) because it contains only a subset of the all
dummy variables used in the above F-model (Eq (11)). Simi-
larly, if the null hypothesis of interest is that the two drop
rates are the same only for the first important pair of dummy
variables (Z/;, Z), the PLS model is given by

Y= b0+ ¢’iZj'1 + (45212,‘,21 + 45222,‘,22) oot (¢z;IZj,q1 + ¢z;ZZj,q2)
+8i (j:1,2,...,m) (13)

where &g, 1, b3, .- ,d){; are regression coefficients for Eq
(13). The PLS model ((13)) is another R-model. Unlike the
above analysis of covariance, however, there is no F-test
available for testing the F-model and R-model. The root
mean square error (RMSE) statistic can be used to assess
which model is more appropriate. If RMSE values are “sub-
stantially” different between F- and R-models, the F-model is
more appropriate. Otherwise, the R-model is more appropri-
ate. Because F- and R-models fit the same data, the residuals
from the two models are correlated with each other. In addi-
tion, RMSE; (RMSE for R-model) is at least equal to or
greater than RMSE; (RMSE for F-model) because the
R-model uses fewer dummy variables than the F-model. A

paired t-test described by Snedecor and Cochran [1] for com-
paring two correlated variances can be used to test if RMSEp
and RMSE are significantly different at a significance level
a. The t value for the paired t-test is computed as

N-2
t—T'FR 1_r12:R
F-1

where rup = —_—
R JF+1)? —472F

Sk DFR<RMSER>2 ”
" 52 DFy\RMSE; (14)
N is the number of observations; r is the correlation coeffi-
cient between the residuals for F- and R-models; S% and S2
are standard deviations of the residuals for R- and F-models,
respectively; DFg and DFj are the degrees of freedom for the
R- and F-models, respectively, and they are calculated as the
difference between the number of observations and the
number of principal components in the PLS model. If com-
puted z-value is equal to or greater than the table z-value
(one-tailed test, degree of freedom DF=N -2) at @, RMSEj, is
significantly larger than RMSEy, suggesting that F-model
fits the data best. If the computed z-value is less than the table
t-value at @, RMSEg, is not significantly larger than RMSE,
suggesting that the R-model fits the data equally as well as
the F-model. Once the final PLS model is determined, the
mean score of overall liking for the product can be predicted
by

Y=+ (Y Ziy + ViaZi) + (Y1 Zay + ¥32Z3,)
+ot (71;1qu1 + 7,;22132) (15)

where Y is the predicted mean score of overall liking; Z,,
and Zi’kz are the means of dummy variables Zj; and Zj, for
the kth JAR variable, respectively; a;;1Z;x; and a2, are
defined as the estimates of the mean drop on Overall Liking
due to the kth JAR variable being “Too Little” and being “Too
Much,” respectively. When all attributes of the product are
JAR, the intercept 7y, is equal to the predicted mean score of
overall liking. When at least one or some attributes are not
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TABLE 3—Example dummy variables for a 7-point JAR scale.

Jar Rating Z, Z, Zs Z, Zs Zg Z;
1 ("Too Low™) 1/7 -1/6 -1/3 1 0 -1/2 0
2 ("Low") 1/7 -1/6 -1/3 0 0 1 0
3 (“Slightly Low™) 1/7 -1/6 -1/3 -1 0 -1/2 0
4 ("Just About Right”) 1/7 1 0 0 0 0 0
5 (“Slightly High") 1/7 -1/6 1/3 0 -1 0 -1/2
6 (“Low™) 1/7 -1/6 1/3 0 0 0 1
7 ("Too Low") 1/7 -1/6 1/3 0 1 0 -1/2
Dummy
Variable Interpretation
Z, Average rating
Z, Average difference between JAR and non-JAR values
Z3 Average difference between “High” and “Low"” values
Z, Linear Trend over “Too Low” and “Slightly Low" values
Zs Linear Trend over “Too High” and “Slightly High” values
Zg Curvature in the “Low"” values (Deviation from a linear trend)
Zy Curvature in the “High” values (Deviation from a linear trend)

JAR, the intercept is larger than the predicted OL mean
score. The difference between the intercept and the pre-
dicted OL mean score can be interpreted as the total/overall
mean drop due to not being JAR or as the maximum poten-
tial improvement margin on OL if the attributes that are not
JAR are modified to be JAR.

Similarly to penalty analysis, important dummy vari-
ables in a PLS model can initially be selected according to
the pre-specified percent of consumers (e.g., 20 %) who rate
the attribute not to be JAR and then the jackknife optimiza-
tion method applied to select the final important dummy
variables. To compare with penalty analysis, it is recom-
mended that dummy variables with 20 % or more consumers
scored be used in the PLS model.

The results of the Analysis

Correlation Analysis

Correlation analysis is important for determining which
model (covariance analysis or PLS model) is appropriate for
preference mapping between JAR and hedonic scores. This
is because covariance analysis requires the independence as-
sumption on JAR variables. Correlation coefficients among
the five original JAR variables (Size, Color, Flavor, Thin/
Thick, and Stickiness) are presented in Table 2. The maxi-
mum correlation coefficient was -0.4043 between Thin/

Thick and Stickiness, which was highly significantly
different from zero with » <0.0001, and the remaining cor-
relation coefficients were less than +0.12. Since some of the
five JAR variables were correlated with each other, the inde-
pendence assumption for analysis of covariance was some-
what violated. In this case, it is more appropriate to use a
PLS model than a covariance analysis model. The following
section will focus only on use of PLS models with dummy
variables to map relationships between JAR and liking vari-
ables for each individual sample.

Partial Least-Squares Regression With Dummy
Variables

Five pairs of dummy variables for the five original JAR vari-
ables were created using the scheme for a 5-point JAR scale
in Table 1. PLS regression models using the five pairs of
dummy variables were separately fitted by the Unscrambler
software program (Unscrambler, version 7.5, CAMO, Nor-
way) to the data for each individual product. The jackknife
optimization method was applied to the PLS models to iden-
tify important pairs of dummy variables to Overall Liking.
The fitted PLS models with significant dummy variables are
presented in Table 3. For Sample 170, the jackknife method
found that only one important pair of dummy variables (Zs;,
Zs,) representing Stickiness significantly affected OL. For

TABLE 4—Scheme for using two dummy variables (Z; and Z,) or one dummy variable (Z) to rep-

resent one JAR variable (X) on a 5-point or 7-point JAR scale.

5-Point JAR Scale

7-Point JAR Scale

X Z, Z, z X Z, Z, z
1 -2 0 -2 1 -3 0 -3
2 -1 0 -1 2 -2 0 -2
3 0 0 0 3 -1 0 -1
4 0 1 -1 4 0 0 0
5 0 2 -2 5 0 1 -1

6 0 2 -2

7 0 3 -3
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TABLE 5—Correlation coefficients between JAR variables.

Size Color Flavor Thin/Thick Stickiness
Size 1 0.0004 -0.0040 -0.0039 0.0947°
Color 1 0.0255 -0.1115% 0.0163
Flavor 1 -0.0280 0.0648
Thin/Thick 1 -0.4043°
Stickiness 1

aSignificant at p<0.05;
bSignificant at p<0.0001 (n=102).

the pair (Zsy, Zs,), regression coefficient of 1.2692 (it stands
for the absolute value hereafter) for Zs, means that the OL
mean score decreased in the rate of 1.2692 per unit increase
in stickiness over the region of 3 to 5, whereas regression co-
efficient for Zs; was zero, indicating that the OL mean score
was not affected by Zs;. The combined effects of the pair of
dummy variables (Zs;, Zs,) for stickiness on OL are graphi-
cally presented in Fig. 2. The figure shows that the OL mean
score was constant at 5.7436 (regression intercept) over the
JAR region of 1 to 3 for stickiness, and dropped linearly over
the JAR region of 3 to 5, implying that “Too Sticky” was more
detrimental to OL than “Not Sticky Enough.” The estimated
mean drop on OL for this sample was 0.224 (=1.2692+0.1765,
where 0.1765 was the mean of Zs,; see Eq (15)) due to the
product being “Too Sticky.” The regression intercept was
5.7436, indicating that the potential maximum mean score
was 5.7436 if all JAR attributes were overall “Just About
Right.” Although the PLS model did not give very good pre-
diction to the OL scores for individual consumers (low R
value in Table 3), it predicted well the observed OL mean
score (Table 3) for sample 170. As far as consumers were con-
cerned, 17 % of consumers rated this product “Too Sticky”
and 1 % of consumers “Not Sticky Enough.” Like penalty
analysis, if only attributes for which 20 % or more consum-
ers found the attribute intensity not to be JAR were initially
selected into the PLS model, no attributes would be found by
the jackknife method to have significant effects on OL.

For Sample 458, three important pairs of dummy vari-
ables (Z31, Z3,) for Flavor, (Z41, Z45) for Thin/Thick, and (Z5;,
Zs,) for Stickiness significantly affected OL (Table 3) because
at least one of two paired regression coefficients was not
zero. For the Flavor attribute, regression coefficients for the
pair (Z3;, Z3,) were 0 and 0.6716, respectively, suggesting
that “Too Strong” flavor had a negative impact on OL, while
“Too Weak” had no impact. “Too Strong” flavor was rated by
32 % of consumers, whereas “Too Weak” flavor by only 6 %.
The estimated mean drop on OL was 0.283 (=0.6716*0.4216,
where 0.4216 was the mean of Z3,) due to the “Too Strong”
flavor. For the Stickiness attribute, 4 % and 14 % of consum-
ers rated the sample “Not Sticky Enough” and “Too Sticky,”
respectively. The PLS model shows that only dummy vari-
able Zs, for Stickiness significantly decreased the OL mean
score, suggesting that “Too Sticky” texture was detrimental
to OL. The estimated mean drop on OL was 0.161
(=0.7837+0.2059, where 0.2059 was the mean of Zs,). For the
Thin/Thick attribute, the two regression coefficients (0.8586
and 0.8737) for Z4, and Z,, were significantly different from
zero. Since the regression coefficient of 0.8737 for Z,, was
slightly larger than the regression coefficient of 0.8586 for
Z41, the paired t-test (Eq (14)) was conducted to test whether
the two regression coefficients were the same or not. It was
found that there was no significant difference in RMSE value
between F-model (containing Zs,, Z41, Z4,, Z5,) and R-model

TABLE 6—Results from PLS models using dummy variables for the five samples.

170 458 523 896 914
% of % of % of % of % of
JAR Attribute Panelists Estimate Panelists Estimate Panelists Estimate Panelists Estimate Panelists Estimate
Intercept 5.7436 6.1246 6.4828 6.5282 7.4183
Size Z 24 0 32 0 25 0 22 0 27 0
Z4; 40 0 32 0 39 0 39 0 41 0
Color Z 11 0 13 0 11 0 1 0 21 0
Z5 6 0 1 0 5 0 3 0 0 0
Flavor Z3 16 0 6 0 5 0 5 0 53 0.8151
Z3 23 0 32 -0.6716 22 -0.8067 13 0 3 0
Thin/Thick Zy 13 0 16 0.8586 15 0.7670 9 0 4 0
Zs; 5 0 9 -0.8737 3 0 3 0 21 -1.2391
Stickiness Zs, 4 0 7 0 2 0 1 0 10 1.1624
Zs, 17 -1.2692 20 -0.7837 16 -0.9864 14 -1.5249 9 0
R 0.24 0.47 0.46 0.30 0.53
RMSE 2.13 1.52 1.54 1.82 1.77
N 102 101 102 102 101
Observed OL mean 5.52 5.48 6.00 6.30 6.51
Predicted OL mean 5.52 5.47 6.00 6.30 6.55
Rank of preference 4 5 3 2 1
Potential Improvement 0.224 0.655 0.483 0.228 0.868
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Fig. 2—Effect of stickiness on overall liking for sample 170.
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(containing Zsj, Z4=Z41-Z4,, and Zs;) at @=0.05, suggesting
no significant difference between the two regression coeffi-
cients. It was concluded that “Too Thin” and “Too Thick” tex-
tures statistically decreased OL at the same rate and that the
R-model was more appropriate for sample 458 than the
F-model. The results from the R-model are presented in Fig.
3(a), which was made to look like the graphical presentation
of the results from penalty analysis. The figure is the plot of
the mean drop on OL versus percent of consumers who rated
the product not to be JAR. For a dummy variable, overall
mean drop on Overall Liking is the product of the regression
coefficient by the mean of the dummy variable across con-
sumers. Figure 3(a) shows that “Too Strong” flavor caused
the most mean drop on OL, while “Too Thick” texture the
least mean drop for this sample. Although the drop rates for
“Too Thin” and “Too Thick” were the same, “Too Thick” tex-
ture dropped more OL mean score than “Too Thin” texture
because more consumers scored the product “Too Thick”
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Fig. 3—The results from the final PLS models: (a) for sample 458, (b) for sample 523, (c) for sample 896 and (d) for sample 914.



than “Too Thin.” This sample was the least liked product in
terms of the predicted OL mean scores.

For sample 523, the jackknife method selected three im-
portant pairs of dummy variables (Z3, Z3,) for Flavor, (Z4,,
Z4,) for Thin/Thick, and (Zs;, Zs,) for Stickiness (Table 3).
The regression coefficients suggested that “Too Strong” fla-
vor had more negative influence on OL than “Too Weak” fla-
vor, “Too Thick” texture was more detrimental to OL than
“Too Thin” texture, and “Too Sticky” texture was also more
detrimental to OL than “Not Sticky Enough” texture. The
mean drop plot (Fig. 3(b)) shows that more consumers rated
“Too Strong” flavor for this sample and “Too Strong” flavor
resulted in a greater drop of OL than “Too Thick” or “Too
Sticky” texture.

For Sample 896, only one important pairs of dummy
variables (Zs;, Zs,) was found by the jackknife method for
Stickiness (Table 3). Dummy variable Zs; had no significant
effect on OL, but dummy variable Zs, significantly decreased
OL (Table 3). This implies that “Too Thick” texture was detri-
mental to OL. The mean drop plot (Fig. 3(c)) shows that 14 %
of consumers rated the product “Too Sticky,” which dropped
the OL mean score by 0.224.

For Sample 914, the jackknife method determined three
important pairs of dummy variables (Z3;, Z3,) for Flavor,
(Z41, Z45) for Thin/Thick, and (Zs;, Zs,) for Stickiness (Table
3). By comparing the regression coefficients for each pair of
dummy variables, it was found that “Too Weak” flavor had
more negative influence on OL than “Too Strong” flavor,
“Too Thick” texture was more detrimental to OL than “Too
Thin” texture, and “Not Sticky Enough” texture was also
more detrimental to OL than “Too Sticky” texture. The mean
drop plot (Fig. 3(d)) shows that 53 % of consumers rated the
flavor of this sample “Too Strong” and “Too Strong” flavor
dropped the OL mean score by 0.479, 21 % of consumers
scored the texture of the product “Too Thick” with an esti-
mated mean drop of 0.255, and 10 % of consumers scored
the texture to “Not Sticky Enough” with an estimated mean
drop of 0.138. Figure 3 also shows the trends that the mean
drops on OL increased as the percent of consumers in-
creased because the means of dummy variables are depen-
dent on the number of consumers who rated the variables
not to be JAR. It is evident from Table 3 that sample 914 had
the highest regression intercept (7.4183) and predicted OL
mean score (6.55). This sample was the most liked product,
with the actual OL mean score of 6.51.

Conclu5|ons from the Analysis
Sample 170 was found to have only one attribute (Sticki-

ness) not being JAR. Being “Too Sticky” significantly
dropped the OL mean score, while being “Not Sticky
Enough” had no significant effect on OL. This sample
was the least liked product of the five samples tested.

e Sample 458 had three attributes (Flavor, Thin/Thick and
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Stickiness) significantly affecting OL. “Too Strong” fla-
vor and “Too Sticky” texture were more detrimental to
OL than “Too Weak” flavor and “Not Sticky Enough” tex-
ture, respectively. Although the drop rates for “Too Thin”
and “Too Thick” were the same, “Too Thick” texture re-
sulted in a greater drop in OL than “Too Thin” texture.

e For Sample 523, Flavor, Thin/Thick, and Stickiness sig-
nificantly decreased the OL mean score. “Too Strong”
flavor, “Too Thin,” and “Sticky” textures had more nega-
tive impact on OL.

e “Too Sticky” texture had significantly negative contribu-
tion to overall liking of Sample 896.

e “Too Strong” flavor of Sample 914 was more detrimental
to OL than “Too Weak” flavor. Being “Too Thin” and “Not
Sticky Enough” significantly decreased the OL mean
score. This sample was the most liked product.

Benefits from the Analysis

¢ The dummy variable method is flexible in that it can be
used with many regression models. If the JAR variables
are independent of each other, dummy variables are
used with covariance analysis models. If JAR variables
are correlated with each other, dummy variables are
used with PCR or PLS regression models for mapping
relationships between JAR and liking variables.

¢ The method also provides a tool to perform various hy-
pothesis tests.

e Like penalty analysis, it uses a similar graphical presen-
tation of relationships between JAR and liking variables,
but unlike penalty analysis it is a regression method,
which can estimate the “true” mean drop of OL.

e The difference between the regression intercept and ac-
tual OL mean score indicates the average potential im-
provement margin if the product is modified to be JAR.

Caveats from the Analysis

The drawback of this method is that there is no single soft-
ware program to implement it.

Recommendations

Correlation analysis of JAR variables is recommended be-
fore selecting a model to determine whether the indepen-
dency assumption is met. If the assumption is met, it is rec-
ommended to use covariance analysis model with dummy
variables because the effects of treatments/products, con-
sumer panelists and other factors on OL can be tested simul-
taneously. Otherwise, principal components-based regres-
sion models (such as PLS or PCR models) with dummy
variables are recommended.
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Appendix X: Collecting Intensity and
Hedonic Information Separately

Gloria A. Gaskin' and Joni L. Keith'

This example utilizes attribute intensity data rather
than “Just About Right” data in conjunction with Overall
Liking in order to determine attribute intensities that
maximize Overall Liking. For this example, previously pub-
lished data were utilized [1].

By relating Overall Liking to attribute intensities on an
attribute-by-attribute basis and on a product-by-product
basis, information is gained regarding the drivers of Over-
all Liking. Simple linear regression can be used to deter-
mine an equation relating Overall Liking to attribute inten-
sity (Overall Liking=b,+b Attribute Intensity).

The slope b; measures importance. High values of b
indicate an important attribute, while low values of b, in-
dicate an attribute that is less important in predicting Over-
all Liking [2].

From Table 1 below for Product C the attribute
Roasted Garlic Intensity (Int) significantly affects Overall
Liking (p <0.05). The regression model shows that a one-
point increase in Roasted Garlic Intensity corresponds to
an increase of 0.293 points in Overall Liking. In contrast,
Flavor Strength Intensity (Int) for Product C is insignificant
(p>0.05). A one-point increase in Flavor Strength Intensity

corresponds to an increase of only 0.048 points in Overall

Liking.
A visual representation of the relationship
between Overall Liking (1=“Dislike Extremely”,

9=“Like Extremely”) and Roasted Garlic Intensity (Int)
(1=“Not at All”, 9= “Extremely”) for Product C (Code 998)
is shown in the frequency scatterplot in Figure 1. As
Roasted Garlic Intensity (Int) increases, Overall Liking in-
creases.

To further utilize this method, a multiple regression
model may be built using the significant intensity at-
tributes generated by the simple regression analysis (Table
1). Significant parameters from multiple regression may be
plotted on a 3D contour plot to determine the locations
where Overall Liking is maximized.

Both Roasted Garlic Intensity (Int) (1= “Not at All”, 9
= “Extremely”) and Chunkiness Intensity (Int) (1=not at
all, 9=extremely) significantly impacted Overall Liking as
shown in Table 1 and were selected for inclusion in a mul-
tiple regression model. A plot of the model is shown in
Figure 2. Overall Liking for Product C is maximized by
keeping Chunkiness Intensity (Int) low while increasing
Roasted Garlic Intensity (Int).

TABLE 1—Product Example (Product C, Code 998).

Significant at

Attribute Slope: b, p=<0.05
Q#21. ROASTED GARLIC INT 0.29265 Yes
Q#19. TOMATO FLAVOR INT 0.28156 Yes
Q#9. COLOR INT 0.24536 Yes
Q#34. THICKNESS (IN THE MOUTH) INT 0.21578 Yes
Q#6. THICK APPEARANCE INT 0.12699 No
Q#23. HERB FLAVOR INT 0.11060 No
Q#25. SWEETNESS INT 0.10147 No
Q#38. FIRMNESS OF VEGETABLE PIECES INT 0.06854 No
Q#31. HEAT (SPICE) INT 0.06557 No
Q#14. AROMA STRENGTH INT 0.05260 No
Q#17. FLAVOR STRENGTH INT 0.04784 No
Q#27. SALTINESS INT -0.00365 No
Q#29. SOURNESS/TANGINESS INT -0.01357 No
Q#36. CHUNKINESS INT -0.43286 Yes

' Bush Brothers and Company, 1016 E. Weisgarber Road, Knoxville, TN 37909.
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Fig. 1—Frequency scatterplot (Pangborn JAR workshop data 46v*1727c). Include condition: v5=998. Q#1. Overall liking=5.7167+0.2927*x.
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Fig. 2—3D contour plot (Pangborn JAR Workshop Data 46v*1727¢). Include condition: v5=998. Q#1. Overall liking=4.7118+0.2311*x

+0.9367*y-0.0354*x*x-0.0589*x*y-0.0485*y*y.

Recommendation

This technique is appropriate when multiple products are
being evaluated outside of a design of experiments; i.e.,
where variables have not been systematically varied.
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Appendix Y: Designed Experiments

Merry Jo Parker' and B. Thomas Carr®
Objective

The objective of a designed experiment is to determine the
optimal level of a variable or combination of variables within
the experimental range tested. Designed experiments obvi-
ate the need for JAR scales because there is a direct link be-
tween the experimental variables and consumer response.
Experimental variables are generally product ingredients or
components.

Requirements

One or more experimental variables are chosen and prod-
ucts are produced in accordance with the appropriate statis-
tical design. For analysis, only the mean liking scores for
each product are required along with the associated variable
levels.

"How to”

e Test products are defined by systematic variations in in-
gredients and/or process settings.

e Theresults are valid within the experimental ranges cho-
sen in advance of a study.

e Experimental design is typically used when the number
of potential variables is small or when one knows which
factors affect product characteristics that are important
to consumers.

e This method can assist R&D in optimizing levels of in-
gredients and process settings.

Example

Aresearcher wants to determine the optimum levels of sugar
and citric acid in a product being developed. An experimen-
tal design is being utilized to determine the optimum levels
of each attribute. High, medium, and low levels of each at-
tribute have been provided.

Attribute

Levels Sugar Acid
High 50¢g 45¢
Medium 22¢ 2g
Low 6¢g 05¢g

The following is an example of a two-variable,
three-level factorial design that could be used for the
consumer research.

! Food Perspectives, 2880 Vicksburg lane, Plymouth, MN 55443.

SUGAR LEVEL —

ACID LEVEL | 50 g 28 ¢ 6g
45¢ Sample 1 Sample 2 Sample 3
25¢g Sample 4  Sample 5  Sample 6
05¢g Sample 7  Sample 8  Sample 9

All other product attributes levels are held constant.
Only the above attributes are varied per the design. The
analysis of the data from this design would identify the
optimum levels of each attribute tested.

Results

Average Overall Liking ratings of the test products are pre-
sented in the table below.

SUGARLEVEL —
ACIDLEVEL | 50 G 28 G 6 G
45G 6.2 6.4 5.2
25G 6.5 6.7 5.1
05G 5.8 5.3 4.4

A second-order polynomial response-surface model
was fit to the data. Overall Liking is the dependent,
response variable. Sugar Level and Acid Level are the
independent, predictor variables. The form of the
regression equation is:

Liking = By + B;(Sugar) + B,(Acid) + B;;(Sugar)2
+ By,(Acid)2 + By,(Sugar)(Acid),

where “Liking” = Overall Liking, “Sugar” = Sugar Level,
“Acid” =Acid Level and the B;s are the regression
coefficients whose values are estimated using
regression analysis.

The resulting regression model is:

Liking = 3.38 + 0.10(Sugar) + 0.88(Acid) - 0.00124(Sugar)?
- 0.138(Acid)?

(the (Sugar) (Acid) cross-product term was not statistically
significant). The model explains 95 % of the variability in
Overall Liking. A graphical representation of the results,
called a contour plot, is presented below. The plot illustrates
the location of the optimal levels of sugar (42 gm) and acid
(3 gm). The plot also illustrates how sensitive consumers are
to deviations from the optimal levels. Note that because the
optimal variable levels are predicted based on the products’
hedonic ratings, the use of JAR scales is obviated. (See Fig.
1.)

For more information on design and analysis of experi-
mental design see Gacula et al. [1], Meilgaard et al. [2], and
Myers and Montgomery[3].

2 Carr Consulting, 1215 Washington Ave., Suite 203, Wilmette, IL 60091.
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Fig. 1—Contour plot of overall liking by sugar and acid levels.
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Appendix Z: Ideal Scaling

Anne Goldman' and Jagoda Mazur'

Background

The objective of this research was to measure the com-
petitive performance of Product A against three other choco-
late brownie brands (B, C, and D). The four products were
rated on structural intensity scales for appearance, texture,
and flavor attributes for the icing and the cake components
of this product. In addition, they were rated for hedonic
questions using a 9-point hedonic scale (“Dislike
Extremely”—“Like Extremely”). At the very end of the test-
ing session (this can also be done before product ratings),

Objective

In place of attempting to gauge attribute intensity and ac-
ceptability in one scale, ideal point modeling involves sepa-
rating out the hedonic component of the response from the
intensity evaluation. The “Ideal” product ratings are com-
pared to the actual ratings. Attribute liking can be used to
supplement findings from this technique.

“How to”

In using this method, mean attribute data and “Ideal” at-
tribute data are required for each product/attribute combi-
nation of interest. Attribute liking data may also be collected.
Itis postulated that the greater the distance between the per-
ceived and ideal intensities, the greater the change that must
be made to “fix” the attribute. Response to the prior liking
question, if asked, may suggest the significance of the dis-
crepancy between the perceived and ideal intensities with re-
spect to product acceptance.

consumers completed an “Ideal” questionnaire for an
“Ideal” brownie.

Below is an example of the “Ideal” question related to
overall flavor:

1. The overall flavor of this chocolate brownie is...

Example 1 2 3 4 5 6 71 8 9
Ve Ve
The following is an example of using the “Ideal” rating tech- w e;}l; str orr}llg

nique for evaluating the product diagnostics of four brands
of chocolate brownies A, B, C, and D.

TABLE 1—Diagnostic ratings for the four products.

Product A Product B Product C Product D Ideal
Appearance
Size 6.0a 6.5a 5.4b 5.1b 6.0a
Amount of surface nuts 5.5a 4.7b 4.4b 4.3b 5.7a
Amount of chocolate icing 5.9a 5.7a 4.2c 5.0b 5.8a
Color of chocolate icing 6.8ab 7.1a 4.9c 6.5b 7.2a
Smoothness of chocolate icing 7.5a 7.0ab 4.4d 6.4c 7.4a
Shininess of chocolate icing 5.0b 5.0b 2.6d 4.0c 6.1a
Color of the cake 7.5a 6.6b 4.5¢ 4.8c 6.9b
Texture of the Chocolate Icing
Firmness 4.8c 5.8b 6.7a 5.6b 4.3c
Smoothness 6.9a 6.5ab 4.6¢ 6.2b 7.6a
Meltability 5.3a 4.7b 3.7¢ 4.5b 5.8a
Texture of Cake
Moistness 7.0b 6.0c 4.0d 6.1c 7.6a
Crumbliness 3.3a 2.8a 2.9a 3.0a 3.3a
Chewiness 5.5¢ 6.3b 6.9a 6.1b 5.3c
Stickiness while chewing 3.9¢c 5.0b 5.9a 5.3b 3.7c
Flavor of Cake
Overall sweetness 5.4b 5.4b 5.6b 6.1a 4.9c
Overall chocolate flavor 6.2a 5.8ab 4.5¢ 5.6b 7.2a
Nut flavor 4.7b 3.6¢ 3.2¢ 3.4c 5.3a
Overall flavor (naturalness) 5.8a 5.1b 3.3¢ 5.0b 8.3a
Overall flavor balance 6.2a 5.8b 4.1c 5.4b 7.9a
Freshness 7.4a 6.6b 4.5¢c 6.4b 8.7a

Note: Average scores in a row per flavor set followed by different letters are significantly different (p <0.05). (Suggested color scheme:
Green=parity to Ideal, within row, Blue=score significantly lower than Ideal, Red=score significantly higher than Ideal.)

1Applied Consumer & Clinical Evaluations, 2575 B. Dunwin Dr., Mississauga, ON L5L3N9.
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59 5.8
5.7
5.5
5.0
i ]
4.4
| 4.3
ABCD ABCD ABCD
Size Amount of Amount Colour Smoothness Shininess Colour of
Nuts of chocolate of Chocolate of Chocolate of Chocolate the cake
Icing Icing Icing Icing

B Parity to the IDEAL
@ Significantly higher than IDEAL
B Significantly lower than IDEAL

Fig. 1—Meeting the ideal for appearance dimensions.

2. The overall flavor of the “Ideal” chocolate brownie
should be...

1 2 3 4 5 6 7 8 9
Very Very
weak strong
Results

Results are presented in Table 1 and in Figs. 1-3. They show
that Product A performed better than the other three prod-
ucts based on hedonic scores and as shown by a number of
product ratings that satisfied the consumer’s “Ideal” ratings

for this product. Product A met the “Ideal” for the appear-
ance of size, amounts of surface nuts and chocolate icing,
smoothness, firmness, and meltability of the chocolate icing,
as well as crumbliness, chewiness, and stickiness of the cake.
However, product A was rated too low for shininess of choco-
late icing, moistness of the cake, and the majority of flavor
dimensions. Product A was also perceived as being too sweet
and too dark for color relative to the “Ideal.” The superior
performance of Product A for product diagnostics, relative
to the other three brands, was also reflected by the highest
scores for overall opinion and liking of appearance.

The only other brand which was rated above 6.0 for
“Overall Opinion” was Product B. This product met the
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chewing

Chewiness Stickiness while
of Cake

of Cake

Crumbliness
level of an attribute. It further assumes that reformulation

tionship between the difference from “Ideal” and overall lik-
This technique assumes that consumers know their ideal
will improve the Overall Liking of the product. However,

Obtaining attribute liking may assist in postulating the rela-
ing.

ideal intensity and the actual intensity are scaled separately.

processing for the respondent than JAR scales because the
Disadvantages

without a link between the attribute and Overall Liking, this

Moistness
of Cake

Fig. 2—Meeting the ideal for texture flavor.

of Icing
color of chocolate icing,

Of Icing

Smoothness
B Significantly lower than IDEAL

B Parity to the IDEAL
@ Significantly higher than IDEAL

The other two products both performed

Of Icing

Firmness

«

meet the “Ideal” for all attributes except for the crumbl-

Ideal” for a series of appearance attributes including
iness.

size, amount of chocolate icing,
and the product attribute ratings. It may require less mental

smoothness of chocolate icing, color of the cake, and

crumbliness.
very poorly based on hedonic ratings and failed to

“«

This method allows for easy visual assessment of the “Ideal”

Benefits



ABCD ABCD ABCD

LLL1] I Ll
Overall Overall

Sweetness Chocolate Nut Flavour
Flavour

@ Parity to the IDEAL
B Significantly higher than IDEAL
B Significantly lower than IDEAL
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8.3 7.9 87
7.4

Fig. 3—Meeting the ideal for flavor dimensions.

may be a false assumption. The method does not provide the
amount of the proposed attribute change, other than using
the difference between ideal and actual intensity as a gauge.
Similar to data obtained from JAR scales, the data may show
evidence of bimodality as responses may suggest both lower
and higher than “Ideal” direction.

ABCD ABCD ABCD
I | I I |
Naturalness of Overall Freshness
Overall Nut Flavour
Flavour Balance
Recommendation

This is a good alternative method to JAR scales in that the
mental work of simultaneously judging the ideal and actual
attribute intensities are separated. However, it suffers from
many of the same pitfalls as other methods of JAR scale
analysis,
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