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1. Scope

1.1 This guide presents briefly some generally accepted
methods of statistical analyses which are useful in the inter-
pretation of service life data. It is intended to produce a
common terminology as well as developing a common meth-
odology and quantitative expressions relating to service life
estimation.

1.2 This guide does not cover detailed derivations, or
special cases, but rather covers a range of approaches which
have found application in service life data analyses.

1.3 Only those statistical methods that have found wide
acceptance in service life data analyses have been considered
in this guide.

1.4 The Weibull life distribution model is emphasized in this
guide and example calculations of situations commonly en-
countered in analysis of service life data are covered in detail.

1.5 The choice and use of a particular life distribution model
should be based primarily on how well it fits the data and
whether it leads to reasonable projections when extrapolating
beyond the range of data. Further justification for selecting a
model should be based on theoretical considerations.

2. Referenced Documents

2.1 ASTM Standards:*
G169 Guide for Application of Basic Statistical Methods to
Weathering Tests

3. Terminology

3.1 Definitions:

3.1.1 material property—customarily, service life is consid-
ered to be the period of time during which a system meets
critical specifications. Correct measurements are essential to
producing meaningful and accurate service life estimates.

! This guide is under the jurisdiction of ASTM Committee GO3 on Weathering
and Durability and is the direct responsibility of Subcommittee G03.08 on Service
Life Prediction.

Current edition approved July 1, 2011. Published August 2011. Originally
approved in 2000. Last previous edition approved in 2005 as G166 — 00(2005).
DOI: 10.1520/G0166-00R11.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

3.1.1.1 Discussion—There exists many ASTM recognized
and standardized measurement procedures for determining
material properties. As these practices have been developed
within committees with appropriate expertise, no further elabo-
ration will be provided.

3.1.2 beginning of life—this is usually determined to be the
time of manufacture. Exceptions may include time of delivery
to the end user or installation into field service.

3.1.3 end of life—Occasionally this is simple and obvious
such as the breaking of a chain or burning out of a light bulb
filament. In other instances, the end of life may not be so
catastrophic and free from argument. Examples may include
fading, yellowing, cracking, crazing, etc. Such cases need
quantitative measurements and agreement between evaluator
and user as to the precise definition of failure. It is also possible
to model more than one failure mode for the same specimen.
(for example, The time to produce a given amount of yellowing
may be measured on the same specimen that is also tested for
cracking.)

3.1.4 F(t)—The probability that a random unit drawn from
the population will fail by time (¢). Also F(t) = the decimal
fraction of units in the population that will fail by time (z). The
decimal fraction multiplied by 100 is numerically equal to the
percent failure by time (7).

3.1.5 R(t)—The probability that a random unit drawn from
the population will survive at least until time (7). Also R(t) =
the fraction of units in the population that will survive at least
until time (1)

R(t)=1-F(1) (1)

3.1.6 pdf—the probability density function (pdf), denoted by
f(t), equals the probability of failure between any two points of

dr
time t(1) and t(2). Mathematically f(r)= % . For the normal

distribution, the pdf is the “bell shape” curve.

3.1.7 cdf—the cumulative distribution function (cdf), de-
noted by F(t), represents the probability of failure (or the
population fraction failing) by time = (t). See section 3.1.4.

3.1.8 weibull distribution—For the purposes of this guide,
the Weibull distribution is represented by the equation:

Fi)=1-¢-5)' 2)
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where:

F(t) = defined in paragraph 3.1.4

t = units of time used for service life
c = scale parameter

b = shape parameter

3.1.8.1 The shape parameter (b), section 3.1.6, is so called
because this parameter determines the overall shape of the
curve. Examples of the effect of this parameter on the distri-
bution curve are shown in Fig. 1, section 5.3.

3.1.8.2 The scale parameter (c), section 3.1.6, is so called
because it positions the distribution along the scale of the time
axis. It is equal to the time for 63.2 % failure.

Note 1—This is arrived at by allowing t to equal c in the above
expression. This then reduces to Failure Probability = 1-e~', which further
reduces to equal 1-0.368 or .632.

3.1.9 complete data—A complete data set is one where all of
the specimens placed on test fail by the end of the allocated test
time.

3.1.10 Incomplete data—An incomplete data set is one
where (a) there are some specimens that are still surviving at
the expiration of the allowed test time, () where one or more
specimens is removed from the test prior to expiration of the
allowed test time. The shape and scale parameters of the above
distributions may be estimated even if some of the test
specimens did not fail. There are three distinct cases where this
might occur.

3.1.10.1 Time censored—Specimens that were still surviv-
ing when the test was terminated after elapse of a set time are
considered to be time censored. This is also referred to as right
censored or type I censoring. Graphical solutions can still be
used for parameter estimation. At least ten observed failures
should be used for estimating parameters (for example slope
and intercept).

3.1.10.2 specimen censored—Specimens that were still sur-
viving when the test was terminated after a set number of

failures are considered to be specimen censored. This is
another case of right censored or type I censoring. See 3.1.10.1

3.1.10.3 Multiply Censored—Specimens that were removed
prior to the end of the test without failing are referred to as left
censored or type II censored. Examples would include speci-
mens that were lost, dropped, mishandled, damaged or broken
due to stresses not part of the test. Adjustments of failure order
can be made for those specimens actually failed.

4. Significance and Use

4.1 Service life test data often show different distribution
shapes than many other types of data. This is due to the effects
of measurement error (typically normally distributed), com-
bined with those unique effects which skew service life data
towards early failure (infant mortality failures) or late failure
times (aging or wear-out failures) Applications of the prin-
ciples in this guide can be helpful in allowing investigators to
interpret such data.

Note 2—Service life or reliability data analysis packages are becoming
more readily available in standard or common computer software pack-
ages. This puts data reduction and analyses more readily into the hands of
a growing number of investigators.

5. Data Analysis

5.1 In the determinations of service life, a variety of factors
act to produce deviations from the expected values. These
factors may be of a purely random nature and act to either
increase or decrease service life depending on the magnitude of
the factor. The purity of a lubricant is an example of one such
factor. An oil clean and free of abrasives and corrosive
materials would be expected to prolong the service life of a
moving part subject to wear. A fouled contaminated oil might
prove to be harmful and thereby shorten service life. Purely
random variation in an aging factor that can either help or harm
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FIG. 1 Effect of the Shape Parameter (b) on the Weibull Probability Density
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a service life might lead a normal, or gaussian, distribution.
Such distributions are symmetrical about a central tendency,
usually the mean.

5.1.1 Some non-random factors act to skew service life
distributions. Defects are generally thought of as factors that
can only decrease service life. Thin spots in protective
coatings, nicks in extruded wires, chemical contamination in
thin metallic films are examples of such defects that can cause
an overall failure even through the bulk of the material is far
from failure. These factors skew the service life distribution
towards early failure times.

5.1.2 Factors that skew service life towards the high side
also exist. Preventive maintenance, high quality raw materials,
reduced impurities, and inhibitors or other additives are such
factors. These factors produce life time distributions shifted
towards the long term and are those typically found in products
having been produced a relatively long period of time.

5.1.3 Establishing a description of the distribution of fre-
quency (or probability) of failure versus time in service is the
objective of this guide. Determination of the shape of this
distribution as well as its position along the time scale axis are
the principle criteria for estimating service life.

5.2 Normal (Gaussian) Distribution—The characteristic of
the normal, or Gaussian distribution is a symmetrical bell
shaped curve centered on the mean of this distribution. The
mean represents the time for 50 % failure. This may be defined
as either the time when one can expect 50 % of the entire
population to fail or the probability of an individual item to
fail. The “scale” of the normal curve is the mean value (X), and
the shape of this curve is established by the standard deviation
value (o).

5.2.1 The normal distribution has found widespread use in
describing many naturally occurring distributions. Its first
known description by Carl Gauss showed its applicability to
measurement error. Its applications are widely known and
numerous texts produce exhaustive tables and descriptions of
this function.

5.2.2 Widespread use should not be confused with justifi-
cation for its application to service life data. Use of analysis
techniques developed for normal distribution on data distrib-
uted in a non-normal manner can lead to grossly erroneous
conclusions. As described in Section 5, many service life
distributions are skewed towards either early life or late life.
The confinement to a symmetrical shape is the principal
shortcoming of the normal distribution for service life appli-
cations. This may lead to situations where even negative
lifetimes are predicted.

5.3 Lognormal Distribution—This distribution has shown
application when the specimen fails due to a multiplicative
process that degrades performance over time. Metal fatigue is
one example. Degradation is a function of the amount of
flexing, cracks, crack angle, number of flexes, etc. Performance
eventually degrades to the defined end of life.

3 Mann, N.R. et al, Methods for Statistical Analysis of Reliability and Life Data,
Wiley, New York 1974 and Gnedenko, B.V. et al, Mathematical Methods of
Reliability Theory, Academic Press, New York 1969.

5.3.1 There are several convenient features of the lognormal
distribution. First, there is essentially no new mathematics to
introduce into the analysis of this distribution beyond those of
the normal distribution. A simple logarithmic transformation of
data converts lognormal distributed data into a normal distri-
bution. All of the tables, graphs, analysis routines etc. may then
be used to describe the transformed function. One note of
caution is that the shape parameter ¢ is symmetrical in its
logarithmic form and non-symmetrical in its natural form. (for
example, ¥ = 1 = .2¢ in logarithmic form translates to 10 +5.8
and —3.7 in natural form)

5.3.2 As there is no symmetrical restriction, the shape of
this function may be a better fit than the normal distribution for
the service life distributions of the material being investigated.

5.4 Weibull Distribution—While the Swedish Professor
Waloddi Weibull was not the first to use this expression,* his
paper, A Statistical Distribution of Wide Applicability pub-
lished in 1951 did much to draw attention to this exponential
function. The simplicity of formula given in (1), hides its
extreme flexibility to model service life distributions.

5.4.1 The Weibull distribution owes its flexibility to the
“shape” parameter. The shape of this distribution is dependent
on the value of b. If b is less than 1, the Weibull distribution
models failure times having a decreasing failure rate. The times
between failures increase with exposure time. If b = 1, then the
Weibull models failure times having constant failure rate. If b
> 1 it models failure times having an increasing failure rate, if
b = 2, then Weibull exactly duplicates the Rayleigh
distribution, as b approaches 2.5 it very closely approximates
the lognormal distribution, as b approaches 3. the Weibull
expression models the normal distribution and as b grows
beyond 4, the Weibull expression models distributions skewed
towards long failure times. See Fig. 1 for examples of
distributions with different shape parameters.

5.4.2 The Weibull distribution is most appropriate when
there are many possible sites where failure might occur and the
system fails upon the occurrence of the first site failure. An
example commonly used for this type of situation is a chain
failing when only one link separates. All of the sites, or links,
are equally at risk, yet one is all that is required for total failure.

5.5 Exponential Distribution—This distribution is a special
case of the Weibull. It is useful to simplify calculations
involving periods of service life that are subject to random
failures. These would include random defects but not include
wear-out or burn-in periods.

6. Parameter Estimation

6.1 Weibull data analysis functions are not uncommon but
not yet found on all data analysis packages. Fortunately, the
expression is simple enough so that parameter estimation may
be made easily. What follows is a step-by-step example for
estimating the Weibull distribution parameters from experi-
mental data.

6.1.1 The Weibull distribution, (Eq 2) may be rearranged as
shown below: (Eq 3)

4 Weibull, W., “A statistical distribution of wide applicability ,” J. Appl. Mech.,
18, 1951, pp 293-297.
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1—F()=e (2 3)

and, by taking the natural logarithm of both sides twice, this
expression becomes

1
ln{ lnm} = bln(t) — binc (4)

Eq 4 is in the form of an equation describing a straight line
(y = mx + y,) with

ln[lnl_liF(t)] 5)

corresponding to Y, In(t) corresponding to x and the slope of
the line m equals the Weibull shape parameter b. Time to
failure, t, is the independent variable and is defined as the time
at which some measurable performance parameter falls below
a pre-defined critical value.

6.1.2 The failure probability, F(t), associated with each
failure time can be estimated using the median rank estimate
approximation shown below:

(t) :Jn-ﬁ-(())j (6)

where:
j = the failure order and
n = the total number of specimens on test.

See Tobias and Trindade, section 2.2 and Johnson, section
3.13

7. Service Life Estimation

7.1 Select the distribution model that best fits the observed
service life data. Often a simple graph will help not only in
choosing a model but in detecting outlier data. Further guid-
ance in selecting a distribution model can be obtained from
linear regression coefficients of lifetime versus probability.
Higher regression coefficients are an indication of a better
model fit.

7.1.1 Neither the Weibull distribution nor any other distri-
bution is a universal best choice for every situation or data set.
Each data set must be checked and the best fitting model
distribution selected for estimation purposes. See section 1.5.

7.2 Determine the shape and scale parameters of the distri-
bution. A minimum of 10 failures is required to properly
determine a distribution. The more the better, but there is a
point of diminishing returns. A reasonable range of failed
specimens is 10 to 50.

7.3 Calculate the probability of failure by a given time t or
alternatively, the time to reach a given failure probability. See
Example Calculations, section 8, for a step-by-step procedure
for this calculation.

8. Example Calculations

8.1 Simple case - complete data set.

8.1.1 Consider a hypothetical case where 20 incandescent
lamps are put on test. The lamps are labeled “A” through “T”
at the beginning of the test. Each lamp was found to operate
satisfactorily at the beginning of the test period. The lamps
were all left on and inspected each day to determine if they

were still burning. A data sheet was kept and the number of
days of operation for each of the 20 lamps was recorded. The
results are reported in Table 1.

8.1.2 The failure times were sorted from earliest (78 days)
to latest (818 days) and the median rank, F(t), calculated for
each lamp. When the median rank has been calculated for each
specimen, all of the information will be available that is needed
to solve the Weibull expression:

1= F(t)= e 5 7

8.1.3 Step by step example:

8.1.4 First, calculate F(t) from Eq 6, where j is the failure
order and n is the total number of specimens on test. For the
first failure j = 1 and n, the number of lamps used in this test,
is 20. Therefore

_j—03
() ="+0z

(8)

~1-03
T20+0.4

=0.034

Continuing this operation for all 20 failure times produces
Table 2.

8.1.5 Next, substitute the values for F(t) and t into Eq 4. The
value for the first failure is shown below.

1
ln[ lnm} = 3.355 (9)
—3.355 = b[In(78)] — b[In(c)].

8.1.6 Repeating this procedure for the remaining 19 lamps
produces a total of 20 such equations. A simple linear regres-
sion may now be used to determine the critical parameters b
and c.

The resulting regression equation produces the following:

Y = 1.62In(1) — 9.46 (10)
8.1.7 The value for the slope, 1.62, is equal to the Weibull

shape parameter. The scale parameter, c, can be determined by
the expression:

c=exp< *by“> (11)

=344 days

TABLE 1 Time to Failure (days of operation) for Incandescent

Lamps
Lamp ID Days of Operation Lamp ID Days of Operation
A 293 K 189
B 282 L 818
C 535 M 114
D 421 N 550
E 710 O 80
F 166 P 191
G 208 Q 402
H 155 R 210
| 456 S 101
J 203 T 78
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TABLE 2 Median Rank for Incandescent Lamps

Failure Life(Days) Median Failure Life(Days) Median

Order Rank F(t) Order Rank F(t)
1 78 0.034 11 210 0.525
2 80 0.083 12 282 0.574
3 101 0.132 13 293 0.623
4 114 0.181 14 402 0.672
5 155 0.230 15 421 0.721
6 166 0.279 16 456 0.770
7 189 0.328 17 535 0.819
8 191 0.377 18 550 0.868
9 203 0.426 19 710 0.917
10 208 0.475 20 818 0.966

Weibull Plot - ASTM Lamp Life Data

Complete Data Set Shape = 1.62  Scale = 344 Days
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Survival Plot - ASTM Lamp Life Data
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8.1.8 Substituting the values of shape and scale into the
Weibull expression (1) allows an accurate estimate of failure
probability at any time (t).

Weibull Plot - ASTM Lamp Life data
Test Suspended after 18 Failures
Type I Censoring Shape = 1.70 Scale = 336
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8.1.9 Graphical solutions to Weibull data are commonly
made using paper specially scaled for the Weibull equation.’

8.1.10 The time to failure is plotted on a log scale and the
probability of failure is plotted on a Weibull Scale. Such a plot
is shown in Fig. 2.

As the probability of surviving, R, is simply 1-F,, then a
probability of survival graph could also be made. It is custom-
ary to plot this in ordinary Cartesian coordinates with survival
probability on the y axis and time on the x axis. The probability
of survival graph for the above Weibull equation is shown in
Fig. 3. This type of graph will be referred to as a Survival Plot.

8.2 Incomplete Data - Type I Censoring

8.2.1 There are various reasons that a test may be inter-
rupted before all of the test specimens have failed. Using the
analysis approach shown above, useful results may be obtained
prior to the failure of the last specimens.

8.2.2 For this example, assume that the test was terminated
after 18 months (considered here to be 550 days). Of the 20
specimens put on test, 18 had failed by that time. It was
decided that sufficient failures had been obtained to reach a
reasonable service life estimate.

8.2.3 The data analysis for this case is exactly the same as
the example in section 8.1. The failure probability is calculated
exactly the same, still using n=20 as the number of test
specimens. After the 18 months have elapsed, the failure times
versus median rank are regressed according to the Weibull
equation.

8.2.4 The regression equation using this data set was found
to be:

Y = 1.70In(t) — 9.89 (12)

8.2.5 The new shape parameter estimate is 1.70 and the new
scale parameter estimate is 336 days. As can be seen, there is
a good agreement between the parameters using the censored
data and the complete data set. This data analysis is shown
graphically in Fig. 4.

> Nelson, W and Thomson, V. C., “Weibull Probability Papers,” Journal of
Quality Technology, Vol. 3, No. 3, 1971, pp 45-50.
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8.2.6 The corresponding survival plot for this data set is
shown in Fig. 5

8.3 Incomplete Data - Type Il Censoring:

8.3.1 Should a test specimen be removed from a test without
having failed, and before the test is complete, that specimen is
said to be Type II censored (also known as left censored).

8.3.2 For this example, we will consider the same data set
but assume that on the 421° day, lamp D was found to have
been broken by accidental contact. The lamp had been operat-
ing when checked earlier that day. All that can be said
regarding the failure order for this lamp is that it could have
been the 15", 16™, 17™, 18", 19" or the 20" failure.

8.3.3 There is now a degree of uncertainty regarding the
failure order of the remaining 5 lamps. When lamp I fails on
the 456™ day, it could have been the 15" or the 16th failure
depending on if lamp D would have failed before or after lamp
I. A similar uncertainty exists about the remaining unfailed
lamps.

8.3.4 Accounting for this uncertainty requires a small ad-
justment to reflect the probability of failure order. This adjust-
ment is shown in the equation below.

. (n+1) -0,
e (13
where:
i = The increment for the jth failure
n = Total number of specimens
O, = Failure Order of the Previous failure
n, = Total number of remaining specimens including the

current one.

8.3.5 For specimen I it was known that the failure order
before I was 14 (O,). Also, there are 5 specimens (including I)
to yet have failure orders assigned. The total number of
specimens remains at 20. Therefore, for specimen I, the failure
order increment is

(20+1) — 14

ij:T: 1.167 (14)

The failure order for specimen I is 14 + 1.167 or 15.167.

Survival Plot - ASTM Lamp Life Data
Test suspended after 18 Months
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FIG. 5 Probability of Survival Versus Time for Type | Censored
Data

8.3.6 For the next specimen to fail after I, (specimen C) the
calculation is repeated.

~ (n+1) = 15.167
=5 = 1167 (15)

Therefore the failure order for specimen Cis 15.167 + 1.167
or 16.334.

8.3.7 If we again terminate our test after 18 months making
specimen N the last failure observed, its failure order incre-
ment is also 1.167 giving it a failure order of 17.50

8.3.8 Performing the regression with this data set containing
17 failed specimens, 1 specimen type II censored and 2
specimens type I censored produces the following expression:

y = 1.68In(t) — 9.76 (16)

This indicates a shape of 1.68 and a scale of 333 days.
8.3.9 A graph of this data is shown in Fig. 6:

8.4 Comparison of Estimates for shape and Scale Param-
eters

8.4.1 A summary of three estimates obtained in this guide is
shown in Table 3.

It may be seen that there is excellent agreement among these
estimates.

9. Lifetime Estimates

9.1 Once the shape and scale parameters for the Weibull
distribution have been determined, the equation can be used for
life time estimates. Substitution of the shape and scale param-
eters into the Weibull calculation allows one to readily calcu-
late the percent failure at any given time (t) or conversely, to
calculate the time at which a certain percent failure will occur.
This is permitted over a wide range of service life distributions
and estimates may be made with complete or incomplete data.

9.2 Percent Failure at a given time.

9.2.1 As an example of this calculation, assume that one
wanted to establish a warranty period of 180 days. Substituting
into the Weibull equation:

1= F(t)=e &) (17)

Weibull Plot-ASTM Lamp Life Data
Type II censoring
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Survival Plot - ASTM Lamp Life Data
Lamp D - Type II Censored at 421 Days
Test suspended after 18 Months
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TABLE 3 Comparison of Weibull Parameters From Example Data

Treatments
Example Shape Scale
Complete Data set 1.62 344
Type | Censored 1.70 336
Type Il Censored 1.68 333

and using the values from the complete data set (section 8.1),
we have of 1.62 for shape (b), and 344 days for scale(c). The
time (t) for evaluation is 180 days. Substituting into the
equation produces:

180)I62

1—F(1) - (18)

which equals
1 = F(1) = ¢” 03232 o)
= B() = o0
1= F(1) =705
F(r) = 295 0r29.5%

This indicates that 29.5 percent of the lamps would be
expected to fail within the first 180 days. This value is in good
agreement with the graphical solution shown in Fig. 2.

9.3 If one wanted to find the time for 10 percent failure, use
the same equation but now rearrange as shown in Eq 20

1
ln{lnm} = bin(t) — binc (20)

9.3.1 Substitution 0.10 as the fraction for 10 % into this
equation for F(t), and again using the shape and scale values
from the complete data set, the equation becomes:

1

In[In(1.111)] = 1.62In(1) — 1.62In344
In[.1053] = 1.62In(1) — 1.62(5.841)

—2.2509

W = ln(t) — 5.841

~1.389 = In(1) — 5.841
4.452 = In(r)
t = e**? = 86 days

This is also in good agreement with the graphical solution
shown in the Fig. 1.

10. Summary

10.1 This guide has shown how to calculate the Weibull
shape and scale parameters from experimental data. This has
been shown in detail for situations where all of the specimens
have failed, (complete data set), where the test is terminated
before all of the specimens have failed (Type I censoring) and
where some of the specimens have been removed from test
without failure (Type II censoring).

10.2 It has also been shown in detail, how to utilize the
Weibull equation to calculate the percentage of failures that can
be expected to occur by a given time and also the time expected
for a given percentage to fail.

10.3 The Weibull distribution can be used for further
analysis, such as comparison of product service life at given
times. This method can also be used on samples stressed at
accelerated conditions as well as normal conditions. This
makes it a key element in estimating service life at usage
conditions from data collected at accelerated conditions.
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