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Standard Practice for
Use of Statistics in the Evaluation of Spectrometric Data 1

This standard is issued under the fixed designation E 876; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

e1 NOTE—Section 7 was added editorially in January 1995.

1. Scope

1.1 This practice provides for the statistical evaluation of
data obtained from spectrometrical methods of analysis. In-
cluded are definitions used in statistics, methods to determine
variance and standard deviation of data, and calculations for
(1) estimate of variance and pooling estimates of variance, (2)
standard deviation and relative standard deviation, (3) testing
for outliers, (4) testing for bias, (5) establishing limits of
detection, and (6) testing for drift.

2. Referenced Documents

2.1 ASTM Standards:
E 135 Terminology Relating to Analytical Chemistry for

Metals, Ores, and Related Materials2

E 177 Practice for Use of the Terms Precision and Bias in
ASTM Test Methods3

E 178 Practice for Dealing with Outlying Observations3

E 305 Practice for Establishing and Controlling Spectro-
chemical Analytical Curves2

E 456 Terminology Relating to Quality and Statistics3

3. Terminology

3.1 Definitions:
3.1.1 For definitions of terms used in this practice, refer to

Terminologies E 135 and E 456.
3.1.2 All quantities computed from limited data are defined

as estimates of the parameters that are properties of the system
(population) from which the data were obtained.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 average measurement ( x¯)—the arithmetic mean ob-

tained by dividing the sum of the measurements by the number
of measurements. It is an estimate of µ, the value of the
population that the average would become if the number of
measurements were infinite. Eitherx̄ or µ may include a
systematic error if there is a bias in the measurement.

3.2.2 bias—a systematic displacement of all or most deter-

minations from the assumed true value. An acceptable bias
should be agreed upon prior to testing a method.Accuracy,
often used to qualify a method, is a measurement which
includes both imprecision and bias.

NOTE 1—Precisionandbiasare discussed in detail in Practice E 177. In
analytical methods,precisionrefers to the distribution of repeat determi-
nations about the average. All analyses are presumed to have been made
under the same set of conditions. Standard deviation provides a measure
of this distribution.

NOTE 2—An evaluation of a method will be sample-dependent. Mul-
tiple samples should be tested for homogeneity since even certified
reference materials may exhibit significantly different degrees of inhomo-
geneity. A measure of both sample and method precision may be made by
replicating determinations on specific portions of the sample specimens.

3.2.3 confidence to be placed on the estimate of mu (µ)—the
average,x̄, is expected to be close toµ and should be very close
if the number of determinations is large, no significant bias
exists and the standard deviation,s, is small. The degree of
closeness is expressed as a probability (confidence level) that µ
is in a specified interval (confidence interval) centered atx̄.
With a certain probability, limits are placed on the quantityx̄
which may include the unknown quantity µ. A probability
level, p %, can be selected so that µ will be within the limits
placed aboutx̄. See 3.2.1

3.2.4 degrees of freedom (df)—the number of contributors
to the deviations of a measurement. Since a deviation can be
implied only when there are at least two members of a group,
the degrees of freedom of a set of measurements is generally
one less than the number of measurements. It is the sample size
less the number of parameters estimated. If the group is a
listing of a series of differences of measurements or a series of
determinations of variance, the degrees of freedom is the
number of these differences or the total of the degrees of
freedom of each series of determinations.

3.2.5 detection limit—paraphrasing the definition in Termi-
nology E 135, it is the lowest estimated concentration that
permits a confident decision that an element is present. The
actual concentration being measured falls within a confidence
interval that encompasses the estimated concentration. The
lowest estimate has a confidence interval that reaches to zero
concentration, but not below. It cannot be assumed that the
estimated concentration is an actual concentration. Neither can
it be assumed that an actual concentration that equals the

1 This practice is under the jurisdiction of ASTM Committee E-1 on Analytical
Chemistry for Metals, Ores and Related Materials and is the direct responsibility of
Subcommittee E01.22 on Statistics and Quality Control.
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detection limit will always give a positive detection. The
definition in Terminology E 135 properly characterizes this
detection as being a limiting value. See alsodetermination
limit which follows.

3.2.6 determination limit—the estimated low concentration
where the range of the encompassing confidence interval bears
some specified maximum ratio to that concentration. The ratio
would depend upon what is acceptable in a specific application.

3.2.7 drift—a gradual, systematic change in measurements
(either increasing or decreasing) from start to completion of a
set of replicate determinations of the same material.

3.2.8 estimate of standard deviation (s)—the square root of
the estimate of variance. It is a measure of the variability of a
set of values representing the whole population. It is an
estimate ofs, the actual standard deviation of an infinite
number of measurements. With normal distribution, 68 % of
the values in a population will fall within6s of the true value,
µ; 95 % within62 s of µ; and 99.7 % within63 s of µ.

3.2.9 estimate of variance (s2)—a measure of precision of a
measurement based on summing the squares of the deviations
of individual determinations from the average and dividing by
the degrees of freedom.

3.2.10 outlier—a measurement that, for a specific degree of
confidence, is not part of the population.

3.2.11 pooled estimate of variance (sp
2)—the combined

estimate of variance calculated from two or more estimates
under the same or similar conditions. Pooling estimates in-
creases the degrees of freedom and improves the quality of the
estimate if the variance is approximately the same for each
measurement.

NOTE 3—If the concentration level varies considerably within the
pooled data, the pooled variance may be inaccurate. It may be possible in
such cases, however, to determine a valid estimate by pooling relative
standard deviations.

3.2.12 precision—the agreement among repeat measure-
ments, usually expressed as either repeatability or reproduc-
ibility as defined in Terminology E 456 (see Note 1 and Note
2).

3.2.13 range (w)—the difference between the highest and
lowest measurements for a series of values obtained under
identical conditions. Range is useful for estimating standard
deviation and for determining if certain values are outliers.

3.2.14 relative standard deviation (RSD)—the standard de-
viation as a percentage of the average analysis or reading. By
providing a means of expressing the precision in relative rather
than absolute terms, it may serve to show a more consistent
measure of precision for widely different values ofx̄.

3.2.15 standard error—a term sometimes used synony-
mously with standard deviation but which will be used here to
measure how consistently the accepted true concentrations of a
series of reference materials compare to the apparent concen-
trations determined from a calibration. It is an estimate that is
similar to standard deviation except for the degrees of freedom
used. When the measurement is used to define the effectiveness
of the calibration established by these reference materials, the
degrees of freedom is the number of data points minus the
number of constants in the calibration (the sample size less the
number of parameters estimated). If correction is made for

spectral interference, the number of constants used in the
correction should be counted as being calibration constants.
This would be true whether correction was made to readings or
to final concentrations. When the measurement is made with
new data and applied to a previously determined calibration,
the degrees of freedom is the number of references used to
make the test. In either case, the significance of the measure-
ment is limited to the range of concentration in the reference
materials and implies that concentrations will be fairly well
spread within that range.

4. Significance and Use

4.1 The data obtained in spectrometrical analyses may be
evaluated as statistical measurements. Use of the various
determinations of precision which follow permits a consistent
basis for comparing methods of analysis or for monitoring their
performance.

4.2 Some explanations are included to clarify the function
of the statistical calculations being made.

4.3 Examples of all calculations are given in the appen-
dixes.

5. Calculation

5.1 Average ( x̄):

x̄ 5 (x/n (1)

where:
(x = the sum of all measurements, and
n = the number of measurements.

NOTE 4—Where all items of a category are included in a summation,
the simple summation symbol( will be used. However, the strict
mathematical statement of Eq 1 is:

x̄ 5 (
i 5 1

n

~xi!/n

wherex1, x2, ... xn is the population of alln determinations which were
made. Since no other constrictions are being made on the summation, the
simpler statement of Eq 1 clearly shows the required operation.

5.2 Variance (s2):
5.2.1 Following directly from the definition of 3.2.9 (see

Note 4 and Note 5):

s2 5 (~xi 2 x̄!2/~n 2 1! (2)

where:
xi = an individual determination, and
n = the number of determinations.

5.2.2 An alternative determination that can be readily
handled with a calculator without first determiningx̄ is (see
Note 4):

s2 5 @(~x2! 2 ~(x!2/n#/~n 2 1! (3)

NOTE 5—To prevent significant errors in calculatings2 do not round the
sum of the squares of differences,((xi − x̄ )2 in Eq 2, nor the sum of the
squares of the measurement,((x2), and the square of the sum, ((x)2, of Eq
3. Although these equations are algebraically identical, they may give
slightly different results with large numbers or large summations on a
computer because of greater round off errors from using Eq 3 instead of
Eq 2.
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NOTE 6—The numerators of Eq 2 and Eq 3 are often referred to as the
“sum of squares,” meaning the sum of the squares of deviation. Using Eq
3, its effectiveness in being a measure of the degree of deviation of a series
of values from each other can be seen by considering some simple lists.
For example, 2, 3, 4 totals up to 9 for an average of 3. Summing the
squares of the three values yields4 + 9 + 16 = 29. Thesquare of the sum
divided by the number of values is 92/3 = 81/3 = 27. The sum of squares
becomes 29 − 27 = 2. If the list were 1, 3, 5, the sum would still be 9 and
the term ((x)2/n would remain as 27. The summing of the squares of the
three values, however, would yield1 + 9 + 25 = 35, and the sum of
squares would now become 35 − 27 = 8, giving a quantitative statement as
to how much more deviation there is in the second set than the first. The
sum of squares is insensitive to the level of the readings. Thus, if the list
were 3, 4, 5, the summing would yield 9 + 16 + 25 − 122/3 = 50 − 48 = 2,
resulting in the same difference as the first set as it should since the
deviations are the same. If the list were 3, 3, 3, the((x2) term would
become 27 and the sum of squares would properly be zero since the
((x)2/n would also be 27 and the list shows no deviation.

5.2.3 Estimate from Duplicate Determinations—The differ-
ence between duplicate determinations can be used to estimate
variance froms2 = D2/2 whereD is the difference. It is a special
case of Eq 3, for then, if the two measurements arex1 andx2:

s2 5 @x1
2 1 x2

2 2 ~x1 1 x2!
2/2#/~2 2 1! (4)

5 @2~x1
2 1 x2

2! 2 ~x1
2 1 2x1x2 1 x2

2!#/2

5 |n$ ~x1
2 2 2x1x2 1 x2

2! 5 |n$ ~x1 2 x2!
2.

When there areK duplicates, the pooling of the individual
estimates, as in 5.2.4, becomes (see Note 4):

s2 5 (D2/2K (5)

If many duplicates are used, the degrees of freedom in-
creases and the quality of the estimate ofs2 improves.

NOTE 7—The estimate from duplicates is particularly useful in produc-
tion laboratories where routinely analyzed samples can be analyzed a
second time to obtain a measure of precision under practical conditions.

5.2.4 Pooled Estimate of Variance—Where there is more
than one set of similar repeat determinations, an improved
overall estimate of variance may be made by pooling the
individual estimates. Weight each individual variance,si

2, by
its degrees of freedom, sum the weighted variances, and divide
by the total degrees of freedom:

sp
2 5 @~n1 2 1!s1

2 1 ~n2 2 1!s2
2 (6)

1 ... 1 ~nk 2 1!sk
2#/@~n1 2 1!

1 ~n2 2 1! 1 ... 1 ~nk 2 1!#

where:
ni = the number of measurements in each set, and

therefore
(ni − 1) = each degrees of freedom, and
k = the number of sets.

5.2.4.1 In the special case of Eq 4, all of the (ni − 1) values
are one, allowing for the summation of theD2/2 values with no
weighting. If individual variances were not determined previ-
ously, the pooled estimate of variance can take the following
form (see Note 4):

sp
2 5 $(~xi

2! 2 @~(x1!
2/n1 1 ~(x2!

2/n2 (7)

1 ... 1 ~(xk!
2/nk#%/~N 2 k!

where:
xi represents all readings, and
N = the total number of readings.

NOTE 8—Pooling two or more estimates of variance is valid only if
each set of analyses was obtained under similar or identical conditions
with samples of similar composition and history. The pooling is valid only
if variabilities are statistically the same.

5.3 Standard Deviation(s)—The estimate of standard de-
viation follows directly from variance as:

s5 =s2 (8)

5.3.1 A close estimate ofscan be determined from the value
of range,w, as defined in 3.2.13:

sr 5 w/=n8 5 ~xh 2 xl!/=n8 (9)

where:
xh = the highest measurement in a set,
xl = the lowest measurement in a set, and
n8 = number of measurements, limited from 4 through 12.

Reliable estimates from range by Eq 8 can be made only for
sets of measurements from four through twelve. If extended
beyond twelve measurements, the estimate will be low.

5.3.2 Repeat measurements, even when made on different
days, might be biased because the second and subsequent
values are expected to agree with the initial value. In coopera-
tive analyses, a laboratory might make extra determinations
and report only those that show good agreement. To overcome
the possibility of such prejudiced results, an estimate of
standard deviation may be calculated from single determina-
tions made on pairs of samples having similar composition in
a number of different laboratories or by a number of different
analysts. For a single pair, determine the differences in mea-
surement and pool as a special set (see Note 4):

sd 5 =@(~D2! 2 ~(D!2/T#/2~T 2 1! (10)

where:
D = difference between values reported, and
T = number of laboratories or analysts.

5.4 Relative Standard Deviation(RSD):

RSD5 100s/x̄ (11)

where:
s = standard deviation estimate, and
x̄ = average.

5.4.1 A pooling of relative standard deviation can be done in
the manner of Eq 5 after squaring the RSD values. The
precaution of Note 8 applies with the exception that the
concentration of the element being measured may vary, but
only to the extent that there is no pattern of RSD varying with
concentration. For example, low concentrations might show
higher RSD values than high concentrations, making it inap-
propriate to pool RSD values over such a wide range of
concentration. Usingn to represent RSD, the pooled estimate
would be:

n 5Œ ~n1 2 1!n1
2 1 ~n2 2 1!n2

2 1 ... 1 ~nk 2 1!nk
2

~n1 2 1! 1 ~n2 2 1! 1 ... 1 ~nk 2 1!
(12)
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5.5 Standard Error—Determine from the differences be-
tween the assumed true concentrations of reference materials
and the concentrations calculated from a calibration using (see
Note 4):

SE5 =(~cd 2 ct!
2/f (13)

where:
cd = a concentration determined from a calibration,
ct = an accepted true concentration of the same material,

and
f = the degrees of freedom in the observations.

If SE is calculated to determine how well the reference
materials fit the curve they have defined,f is the number of
observations minus the number of constants in the calibration
curve. If SE is calculated with an independent set of reference
materials,f equals the number of observations.

5.6 Confidence Interval—As discussed in 3.2.3, limits may
be set by adding and subtracting fromx̄ the quantityks =n for
x̄ − ks/ =n # µ # x̄ + ks/ =n where the value ofk depends
upon the confidence level desired. Specifically, for a 95 %
confidence level,k = 1.960; for 99 %,k = 2.576; and for 90 %,
k = 1.645. These are the “t” values which appear in Table 1 for
infinite degrees of freedom which is used when the variability
is not estimated but known.

5.6.1 In practice, the estimate,s, is known rather thans. To
reflect the uncertainty of substitutings for s, a larger factor is
used to determine the likely interval straddling µ. The practical
limit is then calculated by usingts/ =n for ks/ =n permitting
the statement of confidence interval as:

x̄ 2 ts/=n # µ # x̄ 1 ts/=n (14)

where the multiplier,t, is taken from a Student’st-table, an
extract of which is shown in Table 1. The square root ofn takes
into account that the limits apply to the average ofn determi-
nations. The “t” values have been computed on the assumption
that the errors follow the normal error distribution curve and
that the measurements are independent.

5.6.2 Eq 13 can be restated asx̄ − µ # ts/ =n and µ − x̄ #
ts/ =n . When the “t” values become critical these expressions
become equalities,x̄ − µ = ts/ =n and µ − x̄ = ts/ =n ,
making the critical “t” value become:

t 5 |x̄ 2 µ| =n/s (15)

NOTE 9—The t and F tables show the probability, decimally, for
measurements not to exceed certain values (see Tables 1-3 ). These
translate directly to the confidence level by subtracting the probability
from 1 and multiplying by 100. Thus, if the probability for a measurement
not to exceed a certain value is 0.05, the confidence level that the
measurement will fall within the range indicated by the critical value is
(1 − 0.05)100 = 95 %.

5.7 Tests for Outliers—A detailed test for outliers is de-
scribed in Practice E 178. Some commonly used procedures
are given below:

NOTE 10—An apparent outlying value may be merely an extreme
example of random variability, in which case it should be retained with
other data, or it may be the result of gross deviation from the prescribed
analytical procedure, or an error in calculating or recording the analysis.
The reason for aberrant values may warrant investigation.

5.7.1 For four or more determinations, estimate the standard
deviation and then repeat the calculation with the suspect value
eliminated. If the second estimate is smaller by a factor of two
or more, the suspect value may be excluded. For this test, it
may be particularly useful to use the estimate ofsr by range of
Eq 8.

5.7.2 For triplicate determinations, list the values in increas-
ing or decreasing order asR1, R2, and R3, with R1 being the
suspect value. Calculate as follows:

Test ratio5 ~R1 2 R2!/~R1 2 R3!, providedR2 fi R3 (16)

If the test ratio is larger than 0.941, the suspect value may be
rejected with a 95 % confidence that it is an outlier. When the
readings are not precise enough to show a difference between
R2 and R3, the test may still be done by making one reading
higher by 5 in the next decimal place and the other lower by
that amount. For example, if the two readings are 1.23, one can
be made 1.235, and the other 1.225.

NOTE 11—The test in 5.7.2 is a special case of the Dixon Criteria.
Practice E 178 shows how the Dixon test can be applied to up to 30
observations and lists significant test values for 90 %, 95 %, and 99 %
confidence levels.

5.7.3 A more reliable test can be made if there is a good
record of the standard deviation or relative standard deviation
expected for the level of readings or determinations being
made. If pooling was used to make the estimate ofs or RSD it
should represent an estimation based on a relatively high
degrees of freedom, permitting a favorable use of a Student’s
t-Table (see Table 1). Calculate the average reading and use Eq
13 to determine a confidence interval that encompasses that
average. If a suspect value does not fit within these limits,
exclude it.

TABLE 1 Student’s t-TableA

Degrees of
Freedom

Probability LevelB

0.10 0.05 0.01

1 6.314 12.706 63.657
2 2.920 4.303 9.925
3 2.353 3.182 5.841
4 2.132 2.776 4.604
5 2.015 2.571 4.032
6 1.943 2.447 3.707
7 1.895 2.365 3.499
8 1.860 2.306 3.355
9 1.833 2.262 3.250

10 1.812 2.228 3.169
12 1.782 2.179 3.055
14 1.761 2.145 2.977
16 1.746 2.120 2.921
18 1.734 2.101 2.878
20 1.725 2.086 2.845
25 1.708 2.060 2.787
30 1.696 2.042 2.750
` 1.6448 1.9600 2.5758

A Table available in any standard publication of statistical tables, usually entitled
the t-Test for Significance or Distribution of t (Two-Tailed Test). Credit usually given
to Fisher, R. A., Statistical Methods for Research Workers, published by Oliver and
Boyd, Edinburgh, Scotland, 1925–1950.

B Probability, p, stated decimally, that values will exceed a mean by the stated
“t ” factor times the standard deviation which was estimated at the listed degrees
of freedom. For the probability, or confidence level, that a measurement will not
exceed this quantity, use (1 − p) 100. Thus, for a value for p of 0.05, the confidence
level is (1 − 0.05) 100 = 95 %. The table can be converted to a One-tail Test by
dividing the probability level by 2, such as is required for determining detection as
described in 6.2.2.
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5.7.4 For duplicate determinations, if the values seem to be
far apart and an estimate of standard deviation has already been
established, a third value should be obtained if the difference
between the two readings is greater than 2.8s. Subsequent
testing, as in 5.7.2 or 5.7.3, would be appropriate to determine
if one reading should be rejected.

6. Applications

6.1 Testing for Bias—Bias can be detected in various ways.
6.1.1 Analysis of Variance—A series of single measure-

ments on a suite of samples can be subjected to an analysis of
variance to determine the precision of the method and to detect
bias in different sets of the running of the suite of samples. The
sets may be the results determined by different methods,
different laboratories, or different analysts. It is required that
any one grouping of samples be close in composition. Details
on the analysis of variance appear in Snedecor and Cochran.4

6.1.1.1 Obtain the differences between actual measurements
and the assumed correct values in order to put the values into
a common population. Call the differences remainders or “r”

values. Prepare a table of “r” values with samples in lines and
sets in columns. Table 4 contains a general example of a
tabulation of “r” values for n samples andm sets with
summations under each column for(r, ((r)2 and ((r 2) and
with the grand totals of these.

6.1.1.2 Set up a table of comparisons of variance as shown
in Table 5.

NOTE 12—The sum of squares for within samples could also be
obtained by pooling the variances of the individual sets. TheB/n − G 2/mn
used for the sum of squares between sets is equivalent to using the
averages of each set,(( x̄)2 − (( x̄)2/m, when that sum is multiplied by the
number of samples,n, to reflect that this measure of deviation is for an
average ofn readings instead of for single readings.

6.1.1.3 Use a table of critical values ofF, extracts of which
appear in Tables 2 and 3, to test the significance of the
comparison ofsb

2 andsw
2 by obtaining the ratio:

F 5 sb
2/sw

2 (17)

If the calculation forF is larger than the value listed for the
combination of degrees of freedom values involved, as shown
in Table 2 or Table 3, there is evidence that a bias exists
between laboratories, methods, or analysts at the confidence
level of that table.

4 Snedecor, G. W., and Cochran, W. G.,Statistical Methods, The Iowa State
University Press, Ames, IA, Sixth Edition, 1967, pp. 258–298.

TABLE 2 F Test for Equality of Variances, 0.05 Probability A

Degrees of
Freedom

Denominator

Degrees of Freedom of Numerator, the Greater Mean Square

1 2 3 4 5 6 7 8 10 12 16 20 30

3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.78 8.74 8.69 8.66 8.62
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.96 5.91 5.84 5.80 5.74
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.74 4.68 4.60 4.56 4.50
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.06 4.00 3.92 3.87 3.81
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.63 3.57 3.49 3.44 3.38
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.34 3.28 3.20 3.15 3.08

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.97 2.91 2.82 2.77 2.70
12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.76 2.69 2.60 2.54 2.46
14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.60 2.53 2.44 2.39 2.31
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.49 2.42 2.33 2.28 2.20
20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.35 2.28 2.18 2.12 2.04
25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.24 2.16 2.06 2.00 1.92
30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.16 2.09 1.99 1.93 1.84

A Extract of tables for the F test which are available in any standard publication of statistical tables. This specific extract is from Snedecor, G. W., and Cochran, W. G.,
Statistical Methods, The Iowa State University Press, Ames, IA, Sixth Edition, 1967. The first column shows the degrees of freedom of the denominator, which would be
the lesser of the mean squares being compared.

TABLE 3 F Test for Equality of Variances, 0.01 Probability A

Degrees of
Freedom

Denominator

Degrees of Freedom of Numerator, the Greater Mean Square

1 2 3 4 5 6 7 8 10 12 16 20 30

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.23 27.05 26.83 26.69 26.50
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.54 14.37 14.15 14.02 13.83
5 16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.29 10.05 9.89 9.68 9.55 9.38
6 13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.87 7.72 7.52 7.39 7.23
7 12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.62 6.47 6.27 6.15 5.98
8 11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.82 5.67 5.48 5.36 5.20

10 10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.85 4.71 4.52 4.41 4.25
12 9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.30 4.16 3.98 3.86 3.70
14 8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 3.94 3.80 3.62 3.51 3.34
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.69 3.55 3.37 3.25 3.10
20 8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.37 3.23 3.05 2.94 2.77
25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.13 2.99 2.81 2.70 2.54
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 2.98 2.84 2.66 2.55 2.38

A Extract of tables for the F test which are available in any standard publication of statistical tables. This specific extract is from Snedecor, G. W., and Cochran, W. G.,
Statistical Methods, The Iowa State University Press, Ames, IA, Sixth Edition, 1967. The first column shows the degrees of freedom of the denominator, which would be
the lesser of the mean squares being compared.
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NOTE 13—In looking at the twoF tables, it may be noted that a
calculatedF ratio might fail in the 0.05 probability table, equivalent to the
95 % confidence level, and yet pass in the 0.01 probability table, 99 %
confidence level (see Note 9). This should not be interpreted that there is
a 99 % confidence that there is no bias even though there appears to be a
95 % confidence that bias does exist. The broader acceptance of the 0.01
probability of Table 3 merely means that the range of acceptable values of
a normal distribution excludes values greater than about6 2.6s, whereas,
the acceptance level of 0.05 excludes greater than only about62.0 s.

6.1.2 Bias Between Paired Observations—A series of
measurements on a suite of samples can be subjected to at-test
to determine if these measurements differ significantly from
assumed correct values. Observing sign, obtain the differences
between the measured and the assumed values. Calculate the
average difference and standard deviation of these differences.
Calculatet using Eq 14 and compare with at value in Table 1
where the degrees of freedom are the same as those used to
determine standard deviation. If the calculated value exceeds
the tabulated value, a significant difference exists. This is a
two-tailed test. The test will be improved if the standard
deviation is pooled from several similar suites of samples.

6.1.3 Using Standard Error—Bias can be tested by deter-
mining the standard error (see 3.2.15) for the calibration fit and
comparing to another standard error obtained with additional
reference materials or with some or all of the original reference
materials run at a later date. Bias will be detected if the latter
error is appreciably larger than the former.

6.1.4 Using Plotting—A plotting of determined concentra-
tions against assumed correct concentrations will show a fixed
bias if the data points form a 45° line that does not go through
the origin of the plot. If the data points form a straight line
which is not at 45°, it will show a bias that changes as the
concentration changes.

6.2 Detection Limit—Determination that an element is
present requires observing a spectral response that is signifi-
cantly greater than spectral background. Multiple analyses of
several specimens containing residual amounts of the elements

and only insignificant amounts of any interfering elements are
needed to establish this limit. These elements should be
homogeneously distributed in each specimen. If possible,
primary reference materials and high-purity materials, such as
zone-refined metals, shall be used. Analyzed samples that
appear to be consistent may be used. If the elements are not
homogeneously distributed, the determined detection limit will
be higher than for homogeneous specimens. This higher
detection limit, however, will have to be accepted if practical
samples are not expected to be any more homogeneous.

6.2.1 Calculate the averages of the readings of spectral
response for each specimen and obtain an overall estimate of
standard deviation from a pooling of estimates of variance.

NOTE 14—Use of the precision measurement of background should
generally be avoided since the measurement of an actual element signal
may show a greater random scatter than the background itself. On the
other hand, in photographic photometry, the relative intensity of back-
ground may not be able to be measured as precisely as a discrete spectral
line image. Background may be used only if it appears to have a standard
deviation that is consistent with that shown by low concentrations.

6.2.2 The confidence interval discussed in 5.6 considers the
probability that µ falls within a range of measurements
centered about the average,x̄. For detection, concern is that, at
a certain confidence level, zero concentration is not in this
range of measurement. The probability that µ may be higher
than x̄ does not deny that an element has been detected. Only
the probability that µ may be lower thanx̄ is significant in
establishing detection. Therefore, use Table 1 to determine the
multiplier, t, applicable for an acceptable probability and the
overall degrees of freedom used for obtaining the estimate of
standard deviation, but divide the table probability levels by 2.
For example, to calculate detection with a 95 % confidence,
use the column headed with the probability of 0.10.

NOTE 15—The detections which are defined here are in terms of the
apparent concentrations of a calibration assuming no error in the calibra-
tion nor in the standardization procedure used to maintain it. Practice

TABLE 4 General Example of Tabulation of “ r” Values

Sample Set A B ... M Totals

1 r1a r1b ... r1m ...
2 r2a r2b ... r2m ...
... ... ... ... ... ...
n rna rnb ... rnm ...

(rij (
i 5 1

n

ria (
i 5 1

n

rib
...

(
i 5 1

n

rim (
j 5 a

m

(
i 5 1

n

rij
5 G A

((rij)
2 ~ (

i 5 1

n

ria!2 ~ (
i 5 1

n

rib!2 ...
~ (
i 5 1

n

rim!2 (
j 5 a

m

~ (
i 5 1

n

! rij
5 B A

(~rij!
2

(
i 5 1

n

~ria!2 (
i 5 1

n

~rib!2 ...
(

i 5 1

n

~rim!2 (
j 5 a

m

(
i 5 1

n

rij
5 W A

A G = grand total,
B = deviations between sets, and
W = deviations within one laboratory.

TABLE 5 Comparisons of Variance

Source of Variation Degrees of Freedom Sum of Squares Variance

Total mn − 1 W − G 2/mn st
2

Between sets m − 1 B/n − G 2/mn sb
2 } = sum of squares/degrees of freedom

Within samples m (n − 1) W − B/n sw
2

Note—W − B/n may be obtained by difference of the other two sums of squares.
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E 305 discusses the confidence limits of the slope and intercept of a
calibration.

6.2.2.1 If the data are plotted as a straight line of concen-
tration on the ordinate and relative readings or intensity ratios
on the abscissa of the graph, the slope of the line will directly
relate to detection from:

c 5 mts/=n (18)

where:
m = slope of curve in terms of concentration (percent or

parts per million) division per reading division,
t = the multiplier determined in 6.2.2,
s = the overall estimate of standard deviation, and
n = the number of replicates.

NOTE 16—Readings from samples having much more than detectable
concentrations can be included in the establishment of the curve only if
they are consistent with the linear relationship. Practice E 305 deals with
establishing linear analytical curves.

6.2.2.2 If readings are on a logarithmic basis, and a curve
has been established for low concentrations that is linear in
terms of log concentration and log readings, a detection limit
can be determined from how much a concentration changes for
a significant change in reading. To realize whatever detection is
achievable, limited only by the precision of reading, back-
ground correction would likely be necessary. A general state-
ment of such a concentration curve, for common base logs,
might be:

c 5 a~10kR 2 B! (19)

where:
a = calibration constant,
k = constant which would be other than 1.0 if the function

of log reading did not make an ideal 45° calibration
line with log concentration,

R = log reading, and
B = correction for background. (Background correction is

discussed in Practice E 305.)
Determine the concentration for the lowest reading observed

in the system and repeat the calculation after adding the
product “ts/ =n ” to this reading. The detection will be the
difference in concentration calculations, stating it generally as
(see Note 15):

Dc 5 a@10k~R1 ts/=n! 2 10kR# (20)

NOTE 17—Nonlinear relationships may be used if the curvature is not
severe. An acceptable estimate of detection will be made, however, only
if the low reading is close to the limit of detection. As was done for Eq 19,
the detection will be the difference between the calculation of the
concentration for the low reading and the calculation when the low
reading is increased by the productts/ =n .

6.3 Determination Limit—Practical spectrometric calibra-
tion equations are usually stated with the observed measure-
ment as the independent variable,x̄, and the concentration as
the dependent variable,ŷ. The confidence interval shown in Eq
13 can be restated in terms of concentration as:

ŷ 2 tsc /=n # c # ŷ 1 tsc /=n (21)

where:

ŷ = the calculated, apparent concentration,
t = a multiplier from a Student’st-table,
sc = the standard deviation in terms of concentration,
n = the number of replicates burned, and
c = the average population concentration.

6.3.1 A standard deviation determined for observations
(readings) may be converted to concentration terms bysc = ms,
wherem is the slope of the calibration curve in the area of
interest. When the left hand inequality of Eq 20 is subtracted
from the right hand inequality, the difference, 2tsc/ =n , is the
range of the interval. The ratio of this range to the apparent
concentration is:

r 5 2tsc /=nŷ (22)

Therefore the limit of determination is (see Note 15):

ŷ 5 2tsc /=nr (23)

If the analyst wishes to work at a level where the ratio of
range to apparent concentration is less than 1 (one), the
determination limit becomes higher. Thus if the specified ratio,
r, is set at 0.5, the determination limit becomes 4tsc / =n .

6.4 Test for Drift—The test for drift is designed to determine
statistically if analyses from an instrument or procedure are
changing systematically in relation to time in either an increas-
ing or decreasing manner. The concern is that repeat determi-
nations may not be distributed normally about the mean value.
One of the following three approaches can be taken.

6.4.1 In calibrating a spectrometric method it is advisable to
bracket a series of excitations by running a particular specimen
or group of specimens before and after running the series. The
same precaution might be taken with a set of critical analyses.
Assuming that an estimate of standard deviation has been made
for the method or can be made by pooling the precision of the
measurements just run, there would be evidence of drift at
somewhat less than a 95 % confidence level if the change in
average readings was:

D 5 |x̄1 2 x̄2| . 2s=~n1 1 n2!/n1n2, or ~a! (24)

|D| . 2s=2/n if n1 5 n2 ~b!

where:
s = established or pooled estimate of standard deviation,
n1 = number of multiplets in first average, and
n2 = number of multiplets in second average.

NOTE 18—In multiplet excitations on a single specimen, the effective
standard deviation of the average issn = s/ =n wheren is the number of
multiplets. When two sets of readings are taken on the same specimen, it
is expected that their averages will not deviate by more than the root mean
square of their standard deviations:D = | x1 − x2| # =s1

2 1 s2
2 . If the

two s values are the same, as would be true if the same number of
multiplets was run for each average, then |D| # s =2 . For different levels
of multiplets in the two averages, |D| # =s2/n1 1 s2/n2 or s
=~n1 1 n2!/n1n2 . These are stated at the 68 % confidence level. A more
practical criterion would be at the 95 % confidence level with 2s replacing
s . Furthermore, at some reduction in the 95 % confidence level, thes
should be replaced bys leading to Eq 24(a) and Eq 24(b).

6.4.2 Drift can be detected by making many runs on the
same specimen in a short sequence of time. The greater the
number of runs, the smaller will be the detectable level of drift.
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Frequent excitation, however, may cause overheating. Unless
drift from heating is being studied, it would be appropriate to
run at least two specimens in an alternate sequence or allow a
reasonable cooling period between excitations. To analyze for
drift, list each reading in the order taken along with its
sequence position, 1, 2, 3,··· . Call the readingsy and the
sequence positionsx, and determine the apparent shift iny for
changes inx by calculating a slope,m, from:

m5 @n(~xy! 2 (x(y#/@n(~x2! 2 ~(x!2# (25)

which is the formula for slope in a linear regression ofn
pairs of x and y values. There will be approximately a 95 %
confidence level that drift occurred if the slope is:

|m| . 2s=2/~n 2 1! (26)

wheren is the number of readings used to define the slope.
If a sequence of twenty readings is taken, drift per time interval
as small as 0.2 of the standard deviation can be detected; for
ten readings, drifts of 0.5s; and for six readings, drifts of 1.0
s can be detected.

6.4.2.1 If a value fors was not previously established, it
could be estimated from the data at hand. Use of Eq 2 or Eq 3
would be inappropriate since these would be affected by drift.

The general approach of Eq 4 is better. Eq 4 can be used with
a larger degree of freedom by using each successive difference
in the sequence of readings rather than just working with
isolated pairs of readings. With readings arranged in chrono-
logical order,x1, x2, x3, ··· xn, a sum of the squares of successive
differences can be defined as:

(Ds
2 5 (

i 5 1

n21

~xi 1 1 2 xi!
2 (27)

Use of (Ds
2 imposes a small distortion on the degree of

freedom because all but the first and last readings are used
twice. As compensation, to keep the estimate unbiased, the
standard deviation from a sequence can be stated as:

ss 5 =(Ds
2/2~P 2 1 / 2! (28)

whereP is the number of pairs.
6.4.3 A method for detecting drift that is insensitive to the

apparent standard deviation involves a comparison of a mean
successive difference with the standard variance.5 Using the
designation of the squares of successive differences which was
used in Eq 25, a variance,d2, is defined as:

d2 5 (Ds
2/~n 2 1! (29)

wheren is the number of measurements, and therefore,
(n − 1) is the number of differences used in the calculation. For
the same set of data,s2 is calculated as prescribed by Eq 2 or
Eq 3 and a ratio,h, determined from:

h 5 d2/s2 (30)

Refer to Table 6 which lists critical values forh for both a
95 % probability and a 99 % probability. In either case, if the
calculatedh is less than the value listed in the table for the
number of measurements made, there is evidence of drift at the
probability level stated.

7. Keywords

7.1 data; evaluation; laboratory; spectrometric; statistics

APPENDIXES

(Nonmandatory Information)

X1. MEASUREMENT DATA

X1.1 A consistent set of measurements is used to give
examples of how to apply the various equations of statistical
evaluation. The set which appears in Table X1.1 is a random
sampling of measurements fitting a population having µ = 50
ands = 2.

5 Bennett, C. A., “Application of Tests for Randomness,”Industrial and
Engineering Chemistry, Vol 43, No. 9, September 1951, pp. 2063–2067.

TABLE 6 Critical Values of h for Drift Indication

Sample Size
Confidence Level

95 % 99 %

4 0.78 0.63
5 0.82 0.54
6 0.89 0.56
7 0.94 0.61
8 0.98 0.66
9 1.02 0.71

10 1.06 0.75
11 1.10 0.79
12 1.13 0.83
15 1.21 0.92
20 1.30 1.04
25 1.37 1.13

TABLE X1.1 Measurement Data

A B C D

1 49.7 49.5 50.3 47.4
2 51.2 50.9 49.5 47.4
3 52.1 46.0 51.1 52.2
4 51.4 49.8 46.7 52.4
5 53.0 47.2 48.9 48.6
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X2. AVERAGE AND VARIANCE

X2.1 Calculations from a Series of Readings

X2.1.1 Average Measurement—Arrange the measurement
data from Table X1.1 as in Column 1 of Table X2.1. Add the
first column to obtain the sum of 995.3. The total number of
measurements,n, is 20. Calculate average,x̄, from Eq 1:

x̄ 5 995.3/205 49.76 (X2.1)

Note that the average was taken to one decimal point more
than the original data to avoid rounding errors in further
calculations. Election was made to round to an even digit since
the calculation to three decimal points came to 49.765.

X2.1.2 Estimate of Variance, First Method—Using the x̄
obtained in X2.1.1, subtractx̄ from each reading as done in
Column 2 of Table X2.1. Square each difference and list as
done in Column 3. Note that the number of decimal points in
Column 3 has been increased to four decimal places to fully
reflect the two decimal points in the unsquared differences of
Column 2. Add Columns 2 and 3 obtaining the sums 0.10 and
80.4660 respectively. If no errors had been made in the
differences in Column 2, the sum would be zero or close to
zero. The discrepancy in Table X2.1 is due to the fact that
49.76 was used forx̄ instead of 49.765. The degrees of freedom
are one less than the number of measurements or 20 − 1 = 19.
Calculate variance,s2, from Eq 2:

s2 5 80.4660/195 4.2351 (X2.2)

X2.1.3 Estimate of Variance, Second Method—Obtain the
sum of the readings of Column 1, 995.3 as shown in Table
X2.1. Calculate the square of each reading as shown in Column
4 and the sum of these squares, 49611.57. Since the total
number of measurements was 20, calculate the variance,s2,
from Eq 3:

s2 5
49611.572 ~995.3! 2/20

202 1 (X2.3)

5
49611.572 990622.09/20

19

5 ~49611.572 49531.1045!/19

5 80.4655/195 4.2350

X2.1.4 Estimate of Variance from Duplicate
Determinations—Take the measurement data of Columns A
and B in Table X1.1 as duplicate readings and do the same with
Columns C and D to form a series of duplicate readings as
shown in Table X2.2. Obtain the differences in the duplicate
readings as shown in Column 3 and the squares of these
differences as shown in Column 4. Obtain the sum of the
squares, 120.15, as shown in Column 4. Calculate the variance,
s2, from Eq 4 usingK = 10 for the ten pairs of readings:

s2 5 120.15/2~10! 5 6.0075 or 6.008 (X2.4)

X2.1.5 Pooled Estimate of Variance—Rearrange the mea-
surement data from Table X1.1 in an arbitrary way to represent
five sets of repeat determinations done with varied multiplici-
ties, as shown in Table X2.3. Treat the data in two different
ways: first, as if individual variances had been determined on
each set, and then, as if these variances had not been previously
determined.

X2.1.5.1 The column headedsi
2 shows individual calcula-

tions of variance as determined by either Eq 2 or Eq 3,
followed by the degrees of freedom ofni − 1. Weight each
variance by multiplying by the degrees of freedom as shown in
the column headed (ni − 1)si

2. Obtain the sum of this column,
53.715, and also obtain the sum of the preceding degrees of
freedom values, 15. Calculate the pooled estimate of variance,
sp

2, from Eq 5, noting the sums obtained in Table X2.3 are the
numerator and denominator, respectively, of Eq 5:

sp
2 5 53.715/155 3.581 (X2.5)

X2.1.5.2 If individual variances were not determined previ-
ously, obtain the sums of readings as shown in the column
headed(xi in Table X2.3. Square these sums in the next
column headed ((xi)

2 and show total number of readings in the
column headedn. Obtain the sum of then column, 20, which
is N, the total of individual measurements. Divide each ((xi)

2

value by n to obtain the next column and obtain its sum,
49557.854 as shown. Make a final column of the sums of the

TABLE X2.1 Summations for Average and Variance

xi xi − X̄ (xi − X̄)2 (xi)
2

49.7 −0.06 0.0036 2470.09
51.2 1.44 2.0736 2621.44
52.1 2.34 5.4756 2714.41
51.4 1.64 2.6896 2641.96
53.0 3.24 10.4976 2809.00
49.5 −0.26 0.0676 2450.25
50.9 1.14 1.2996 2590.81
46.0 −3.76 14.1376 2116.00
49.8 0.04 0.0016 2480.04
47.2 −2.56 6.5536 2227.84
50.3 0.54 0.2916 2530.09
49.5 −0.26 0.0676 2450.25
51.1 1.34 1.7956 2611.21
46.7 −3.06 9.3636 2180.89
48.9 −0.86 0.7396 2391.21
47.4 −2.36 5.5696 2246.76
47.4 −2.36 5.5696 2246.76
52.2 2.44 5.9536 2724.84
52.4 2.64 6.9696 2745.76
48.6 −1.16 1.3456 2361.96

Sums 995.3 0.10 80.4660 49611.57

TABLE X2.2 Calculations from Duplicates

x1 x2 Dx (Dx)2 x̄

49.7 49.5 0.2 0.04 49.6
51.2 50.9 0.3 0.09 51.05
52.1 46.0 6.1 37.21 49.05
51.4 49.8 1.6 2.56 50.6
53.0 47.2 5.8 33.64 50.1
50.3 47.4 2.9 8.41 48.85
49.5 47.4 2.1 4.41 48.45
51.1 52.2 −1.1 1.21 51.65
46.7 52.4 −5.7 32.49 49.55
48.9 48.6 0.3 0.09 48.75

Sum 120.15
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squares of each reading as shown under the heading((xi
2) and

obtain the sum of this column, 49611.57. Noting thatk = 5 for
the number of sets of measurements, obtainsp

2 from Eq 6:

sp
2 5 ~49611.572 49557.854!/~202 5! (X2.6)

5 53.716/155 3.581

X3. STANDARD DEVIATION AND RELATIVE STANDARD DEVIATION

X3.1 Estimation from Variance—Summarize the calcula-
tions of variance obtained in Appendix X2 in Table X3.1. The
estimate of standard deviation,s, follows directly from the
square root operation of Eq 7. Obtain the values shown under
n from Eq 10 usingx̄ = 49.76 as it was determined in X2.1.1.
Show the degrees of freedom for each method in the final
column. From the known population of the measurement data
of Table X1.1, the relative standard deviation isn = 100s/
µ = 100(2)/50 = 4.

X3.1.1 Pooling Relative Standard Deviation—Use the val-
ues under Columnsn and degrees of freedom in Table X3.1 to
calculatenp in Eq 11:

np 5 =@19~4.14!2 1 10~4.92!2 1 15~3.80!2#/~191 101 15!
(X3.1)

5 =~325.65241 242.06401 216.6000!/44

5 =17.82545 4.22 %

X3.2 Estimation of Standard Deviation from Range—Look
at the measurement data in Table X1.1 in various ways to apply

the estimation ofs from range using Eq 8. In the first set,
consider five cases of four runs A, B, C, and D. In the second
set, consider four cases of five runs 1, 2, 3, 4, and 5. In the third
set, let A and B be a case of ten runs, and C and D be another
case of ten runs. Finally, look at the whole set of twenty
readings as one overall case. Summarize as in Table X3.2.
Include a pooling of variance in order to determine an overall
estimate ofs in each set. Note that the last case exceeded the
number of twelve measurements in an overextension of the
estimate and that a low estimate ofs resulted as predicted in
5.3.1.

X3.3 Estimation of Standard Deviation Using Single De-
terminations of Similar Specimens—Use the measurement data
in Columns A and B of Table X1.1 as if they were two different
specimens run on five different days or in five different
laboratories. Furthermore, in order that Specimen B be some-
what different than Specimen A, let the values under Column B
be reduced by 2 to represent a µ of 48.Show these as specimen
readings in Table X3.3. Show the difference between readings
in the column underd and the square of these values under the
columnd2. Obtain the sum of the values ford andd2 which are
24.0 and 149.54 respectively. Estimates from Eq 9:

s5 =@149.542 ~24.0!2/5#/2~5 2 1! (X3.2)

5 =~149.542 115.20!/2~4!

5 =34.34/85 =4.295 2.07

TABLE X2.3 Calculations with Different Multiplicates of Measurement

Measurements si
2 ni − 1 (ni − 1) si

2 (xi ((xi)
2 n ((xi)

2/n ((xi)
2

49.7 51.2 52.1 51.4 1.020 3 3.060 204.4 41779.36 4 10444.840 10447.90
53.0 49.5 50.9 3.103 2 6.206 153.4 23531.56 3 7843.853 7850.06
46.0 49.8 47.2 50.3 49.5 3.463 4 13.852 242.8 58951.84 5 11790.368 11804.22
51.1 46.7 48.9 47.4 3.789 3 11.367 194.1 37674.81 4 9418.703 9430.07
47.4 52.2 52.4 48.6 6.410 3 19.230 200.6 40240.36 4 10060.090 10079.32

Sums 15 53.715 20 49557.854 49611.57

TABLE X3.1 Calculation from Variance

Method s2 s y
Degrees of
Freedom

Eq 2 or Eq 3 4.235 2.06 4.14 19
Eq 4 6.008 2.45 4.92 10
Eq 5 or Eq 6 3.581 1.89 3.80 15

E 876 – 89 (Reapproved 1994) e1

10



X4. CONFIDENCE FOR ESTIMATION OF MU

X4.1 Interval Around x̄ Including µ—The estimate ofs
from the determination of duplicate determinations in X2.1.4
was 2.45 at a degrees of freedom of 10. To determine, at the
95 % confidence level, what range of values around the
duplicate average will encompass µ, refer to Table 1 and note
that thet multiplier for the 95 % confidence level and a degree
of freedom of 10 is 2.228. Use Eq 13 to determine that µ will
be included in the range:

x̄ 6 2.228~2.45!/=2 5 x̄ 6 3.86 (X4.1)

When applied to the first duplicate reading of Table X2.2, the
confidence interval that will include the µ of the population is
49.66 3.86. In other words, there is a confidence level of 95 %
that µ will fall within the interval of 45.74 to 53.46.

X4.2 Determination of Minimum Number of Measurements
to Achieve Some Limited Confidence Interval—Use Eq 14 to
determine the minimum number of readings needed to have µ
fall within some acceptable limits ofx̄. For example, consider

that a value ofx̄ must be found which is within 2 divisions of
µ with a 95 % confidence level. If the measurement of
precision of the method, as determined in the case of duplicate
readings of X2.1.4, iss = 2.45 based on a degrees of freedom
of 10, and thet multiplier found in Table 1, as discussed in
X4.1, is 2.228,Eq 14 states:

2.2285 2=n/2.45 or=n 5 1 / 2 ~2.228!~2.45! 5 2.73
(X4.2)

Now n = (2.73)2 = 7.45 which indicates that a minimim of 8
readings should be taken. If only a 90 % confidence level is
needed for µ to fall within62 divisions ofx̄ under the same
conditions, thet multiplier from Table 1 is now found to be
only 1.812 and, from Eq 14:

1.8125 2=n/2.45 or=n 5 1 / 2 ~1812!~2.45! 5 2.22
(X4.3)

Now n = (2.22)2 = 4.93, indicating that only 5 readings
would be needed.

TABLE X3.2 Estimation Standard Deviation from Range

Set Case Range, w sr sr
2 sp

First Set: 1 50.3–47.4 = 2.9 1.45 2.1025 31.8550
5 5 6.3710

n = 4 2 51.2–47.4 = 3.8 1.90 3.6100 sp 5 =6.3710 5 2.52
=n = 2.000 3 52.2–46.0 = 6.2 3.10 9.6100

4 52.4–46.7 = 5.7 2.85 8.1225
5 53.0–47.2 = 5.8 2.90 8.4100

Sum 31.8550

Second Set: A 53.0–49.7 = 3.3 1.48 2.1904 15.8850
4 5 3.9713

n = 5 B 50.9–46.0 = 4.9 2.19 4.7961 sp 5 =3.9713 5 1.99
=n = 2.236 C 51.1–46.7 = 4.4 1.97 3.8809

D 52.4–47.4 = 5.0 2.24 5.0176
Sum 15.8850

Third Set: A, B 53.0–46.0 = 7.0 2.21 4.8841 8.1341
2 5 4.0621

n = 10 C, D 52.4–46.7 = 5.7 1.80 3.2400
=n = 3.162 Sum 8.1241 sp 5 =4.0621 5 2.02

Fourth Set:
n = 20
=n = 4.472

53.0–46.0 = 7.0 1.57

TABLE X3.3 Estimation of Standard Deviation from Pairs of
Similar Specimens

Case Specimen A Specimen B d d2

1 49.7 47.5 2.2 4.84
2 51.2 48.9 2.3 5.29
3 52.1 44.0 8.1 65.61
4 51.4 47.8 3.6 12.96
5 53.0 45.2 7.8 60.84

Sums 24.0 149.54
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X5. TESTING FOR BIAS

X5.1 Let the measurement data in Table X1.1 represent five
samples (1–5) analyzed in four different laboratories (A–D).
Furthermore, in order that the readings might represent differ-
ent samples, let the readings for Sample 2 be two divisions
higher than shown in the list of basic values. Similarly, let
Sample 3 read two divisions lower, let Sample 4 read four
divisions higher, and let Sample 5 read four divisions lower.
The revised series of readings appears in Table X5.1 which also
shows the assumed correct values.

X5.2 Revise the data as described in 6.1.1.1 to be a display
of “ r” values, remainders, which are differences to the assumed
values (see Table X5.2 and Note X5.1). Following the direc-
tions of the equations designated in Table 4, add the columns
for the(x values and show their total as −4.70 =G. Square the
(x values and show their total as 114.57 =B. For each column,
square each “r” value and show the sum of these squares as
((x2), followed by the total of these as 81.57 =W.

NOTE X5.1—The same list of “r” values would have been obtained if
the original measurement data had not been changed and all samples
assumed to have correct readings of 50.0.

X5.3 Set up a comparison of variances as described in
6.1.1.2 after making the calculations labeled in Table 5. Note
that for the four laboratories,m = 4, and with each running five
samples,n = 5.

X5.3.1 The calculations for degrees of freedom values will
be:

mn2 1 5 4~5! 2 1 5 19 (X5.1)

m2 1 5 4 2 1 5 3

m~n 2 1! 5 4~5 2 1! 5 16

X5.3.2 The calculations for the sums of squares will be:

W2 G 2/mn5 81.572 ~24.7!2/4~5! (X5.2)

5 81.572 1.10 5 80.47

B/n 2 G 2/mn5 114.57/52 1.105 21.81

By difference,W2 B/n 5 58.66

X5.3.3 The final values for variance will be each sum of
squares divided by its respective degrees of freedom. See Table
X5.3.

X5.4 Test the significance of the comparison ofsb
2 andsw

2

by calculating theF ratio of Eq 16:

F 5 7.27/3.675 1.98 (X5.3)

where the degrees of freedom of the numerator are 3 and the
degrees of freedom of the denominator are 16. For these
degrees of freedom, theF ratio for 0.05 probability from Table
2 is 3.24. Since theF ratio that was calculated is well below
3.24, there is a 95 % confidence level that there was no
significant bias among laboratories. It may also be noted that
the variance for the total system, 4.24, agrees well with
s2 = 4.0 for the random numbers used.

X5.5 Retest for bias after altering the data to have Labo-
ratory D read 2 divisions low:

X5.5.1 The column marked D in Table X5.4 would then
appear as:

Sample r

1 −4.6
2 −4.6
3 0.2
4 0.4
5 −3.4

X5.5.2 The sums from Column D and the totals calculated
as shown in Table X5.2 would now appear as:

D Totals

(x −12.0 −14.7 = G
((x)2 144.0 254.57 = B
((x2) 54.08 109.57 = W

X5.5.3 The calculations for the sums of squares then be-
come:

W2 G 2/mn5 109.572 ~214.7!2/20 (X5.4)TABLE X5.1 Single Readings of a Suite of Samples

Sample

Laboratory
A B C D

Assumed
Correct
Value

1 49.7 49.5 50.3 47.4 50.0
2 53.2 52.9 51.5 49.4 52.0
3 50.1 44.0 49.1 50.2 48.0
4 55.4 53.8 50.7 56.4 54.0
5 49.0 43.2 44.9 44.6 46.0

TABLE X5.2 Summations for Comparison of Variance

Sample

Laboratory Differences, r
Totals

A B C D

1 −0.3 −0.5 −0.3 −2.6
2 1.2 0.9 −0.5 −2.6
3 2.1 −4.0 1.1 2.2
4 1.4 −0.2 −3.3 2.4
5 3.0 −2.8 −1.1 −1.4

(x 7.4 −6.6 −3.5 −2.0 −4.7 = G
((x)2 54.76 43.56 12.25 4.00 114.57 = B
((x2) 16.90 24.94 13.65 26.08 81.57 = W

TABLE X5.3 Final Values for Variance

Source of Variation
Degrees of
Freedom

Sum of
Squares

Variance

Total 19 80.47 4.24 = st
2

Between sets 3 21.81 7.27 = sb
2

Within samples 16 58.66 3.67 = sw
2

TABLE X5.4 Comparison of Variances

Source of Variation
Degrees of
Freedom

Sum of
Squares

Variance

Total 19 98.77 5.20 = st
2

Between sets 3 40.11 13.37 = sb
2

Within samples 16 58.66 3.67 = sw
2
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5 109.572 10.805 98.77

B/n 2 G 2/mn5 254.57/52 10.805 40.11

W2 B/n 5 58.66

X5.5.4 The comparison of variances is shown in Table
X5.4.

X5.5.5 The calculation of theF ratio then becomes:

F 5 13.37/3.675 3.64 (X5.5)

This exceeds the 0.05 probability forF which, as previously
determined, is 3.24, indicating, at the 95 % confidence level,
that there is a bias among laboratories.

X5.6 Using data from Table X5.1, test for bias between
readings for Laboratory A and the assumed values by applying
the procedure described in 6.1.2. Differences are listed in Table
X5.2. For Laboratory A, the average difference is 1.48 and Eq
3 can be used with the sums shown to determine the standard
deviation at 4 df as being 1.219. The calculation oft from Eq
14 is:

t 5 1.48~=5!/1.2195 2.714 (X5.6)

Since this is less than the 2.776 value fort in Table 1 for 4
df and the probability level of 0.05, there is a 95 % confidence
that there is no bias. The calculations for other laboratories
show even lower calculations fort, namely 1.465, 0.935, and
0.356 respectively for B, C, and D, supporting the test of X5.4
which showed no significant bias among laboratories.

X5.6.1 If the previous test is applied to the case of X5.5.1 in
which the readings of Laboratory D were given a − 2.0 bias,
the average difference becomes −2.4 while the standard devia-
tion remains high at 2.514, and the calculation oft is as
follows:

t 5 |22.4|~=5!/2.5145 2.315 (X5.7)

This does not indicate any bias at the 95 % confidence level.
Although its readings were biased, the criticalt value calcu-
lated for Laboratory D is lower than thet value calculated for

the unbiased readings of Laboratory A. A misleading conclu-
sion is made because the test used a standard deviation based
on only 4 df. See the following section.

X5.6.2 The test for bias between paired observations is
improved if a pooling is made with the standard deviations of
differences calculated for all four laboratories involved. The
individual values fors are 1.219, 2.014, 1.673, and 2.514. The
pooled estimate of standard deviation at 16 df becomes
sp = 1.915. When this is used for the biased readings of
Laboratory D,

t 5 |22.4|~=5!/1.9155 2.802 (X5.8)

This now does not indicate a significant bias when compared
to thet value of 2.120 from Table 1 for 16 df. Using the pooled
estimate of standard deviation, Laboratory A still does not
show a bias since itst value now calculates as being only
1.728.

X5.7 Table X5.5 shows a series of average readings of
reference materials employed for the calibration of copper in
aluminum alloys. Since matrix dilution was used, the values for
the copper content are in terms of relative percent copper. The
calibration equation appears at the bottom of the table as a
function of a second degree equation, withx representing
readings.

X5.7.1 From the original data, calculations of apparent
relative concentrations are compared to assumed correct val-
ues. Differences and the squares of differences are shown. The
square of the standard error of the fit to the calibration curve is
obtained by summing the squares of the differences and
dividing, in this case, by 12, the degrees of freedom of 15 data
points reduced by 3 for the number of coefficients in the
calibration equation. Using Eq 12, as shown in Table X5.5, the
resulting standard error of the fit is 0.0679 relative percent
copper.

X5.7.2 At a later date, the same suite of reference materials
was analyzed as if they were unknown specimens. The
resulting readings are shown in the column headed “New

TABLE X5.5 Calibration of Copper in Aluminum

Original
Reading

Relative
% Cu

Calculation
Value

Difference Difference
Squared

New Reading Calculation
Value

Difference Difference
Squared

4459 7.81 7.797 −0.013 0.000171 4448 7.775 −0.035 0.001250
2815 4.59 4.573 −0.017 0.000283 2839 4.619 0.029 0.000826
2692 4.34 4.340 0.000 0.000000 2763 4.475 0.135 0.018124
2722 4.34 4.397 0.057 0.003257 2717 4.388 0.048 0.002268
2678 4.42 4.314 −0.106 0.011240 2713 4.380 −0.040 0.001595
2655 4.22 4.271 0.051 0.002561 2681 4.320 0.100 0.009928
2635 4.13 4.233 0.103 0.010593 2645 4.252 0.122 0.014826
2495 4.01 3.970 −0.040 0.001599 2504 3.987 −0.023 0.000535
2566 4.00 4.103 0.103 0.010641 2457 3.899 −0.101 0.010219
2410 3.91 3.811 −0.099 0.009775 2394 3.781 −0.129 0.016568
2305 3.61 3.616 0.006 0.000032 2318 3.640 0.030 0.000887
2321 3.70 3.645 −0.055 0.002985 2295 3.597 −0.103 0.010597
2344 3.66 3.688 0.028 0.000792 2294 3.595 −0.065 0.004199
1617 2.39 2.356 −0.034 0.001171 1657 2.428 0.038 0.001446
282 0.00 0.016 0.016 0.000245 273 0.000 0.000 0.000000

sum 0.055347 sum 0.093267
SE =

2 2 . =0.055347/~15 2 3!
SE = 2 2 . =0.093267/15

= 0.0679 = 0.0789
where:
Relative % Cu = −0.461 + 0.0016794x + 0.0000000387x2
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Reading” in Table X5.5. As in X5.7.1, comparisons are made
between apparent and assumed concentrations. In this case,
although the sum of the squares of differences is higher, the
degrees of freedom, the full number of 15 data points, is also

higher and leads to a standard error of 0.0789. Since there is
little difference between this standard error and the one
calculated in X5.7.1, the existing calibration remains valid.

X6. ESTABLISHING DETECTION LIMIT

X6.1 Using a Linear Plot—Revise the measurement data in
Table X1.1 to have it represent readings for four different
samples (A–D) having concentrations of 0.010, 0.020, 0.030,
and 0.040. For each successive sample, have the readings
increase 5.0 for each increase in concentration of 0.010. This
will make the display shown in Table X6.1.

X6.1.1 From the summations in Table X6.1, calculate a
pooled estimate of standard deviation by first estimating
variance, using Eq 6:

sp
2 5 $66165.572 @~257.4!2 1 ~268.4!2 1 ~296.5!2

1 ~323.0!2#/5%/~202 4! (X6.1)

5 3.666

Now:

sp 5 1.91 (X6.2)

X6.1.2 If the four analyzed samples are used to define the
analytical curve for the low-level concentrations, a linear
regression to determine the curve would yield:

%c 5 0.002161~reading! 2 0.0988 (X6.3)

X6.1.3 Refer to Table 1. The pooled estimate of standard
deviation, 1.91, was made with a total degrees of freedom of
16. To make a determination of detection limit at the 95 %
confidence level, refer to the column under the probability of
0.100 and read at value of 1.746 for 16 df. Since the slope of
the analytical curve is 0.002161 % per division, the detection
limit is determined from Eq 17:

c 5 0.002161~1.746!~1.91! 5 0.007 % (X6.4)

This is the detection limit of a single excitation of a sample.
The detection limit would be lower for replicate analyses. For
a replication of five,c is divided by=5 , yielding a detection
limit of 0.003 %.

X6.2 Using a Logarithmic Plot—Relist the values from
Table X6.1 by showing their logarithmic values in Table X6.2.
To make the reading values realistic, divide them by 100 before
taking logarithms.

X6.2.1 Using Eq 6:

sp
2 5 $1.223235482 @~21.4422!2 1 ~21.3521!2

1 ~21.1355!2 1 ~20.9500!2#/5%/~202 4! (X6.5)

5 0.00020252

Now:

sp 5 0.0142 (X6.6)

X6.2.2 A straight line working curve can be made for this
data by making a background correction in the form of Eq 18:

c 5 0.2125~10R 2 0.457! (X6.7)

whereR is the log reading.
X6.2.3 As was done in X6.1.3, use at value of 1.746. Since

s = sp = 0.0142, the productts = 0.0248. Use this in Eq 19 with
the average lowest reading,R= −0.2884. The detection limit is
calculated as a change in concentration:

Dc 5 0.2125@10~20.28841 0.0248! 2 1020.2884# (X6.8)

5 0.2125~0.545002 0.51475! 5 0.006 %

This is the detection limit of a single excitation when the
procedure includes a background correction. For replicate
analyses, such as the replication of five used in X6.1.3, the
product, ts, in the exponent of Eq 19 is divided by=5 ,
yielding:

Dc 5 0.2125@10~20.28841 0.0111! 2 1020.2884# (X6.9)

5 0.2125~0.528082 0.51475! 5 0.003 %

TABLE X6.1 Suite of Samples in Linear Readout

Concentration 0.010 0.020 0.030 0.040

Readings: 49.7 54.5 60.3 62.4
51.2 55.9 59.5 62.4
52.1 51.0 61.1 67.2
51.4 54.8 56.7 67.4
53.0 52.2 58.9 63.6

Sums 257.4 268.4 296.5 323.0
Average 51.5 53.7 59.3 64.6
( (Reading)2 13256.90 14423.94 17593.65 20891.08
Overall ( (Reading)2 66165.57
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X7. ESTABLISHING DETERMINATION LIMIT

X7.1 Determination Limit—If a determination has signifi-
cance only if the confidence interval containing the apparent
concentration is half of that concentration, Eq 21 can be used
wherer is equal to 0.5. The standard deviation of measurement
in X6.1 converts to a standard deviation of concentration by
multiplying by the slope of the calibration line in X6.1.2, or
sc = 1.91(0.00216) = 0.00413. A different value fort than that

used in X6.1.3 will be needed since the concern is now for
deviations on either side of the apparent concentration. At a
95 % confidence level for 16 df , Table 1 shows that the factor
2.120 should be used. The determination limit for a replication
of five burns then becomes:

ŷ 5 2~2.120!~0.00413!/0.5=5 5 0.016 % (X7.1)

X8. TESTING FOR DRIFT

X8.1 Detection After a Time Lapse—Consider that the
measurements in Table X2.3 represent reanalyses of the same
specimen at some time intervals to detect drift. Obtain the
average of each set of measurements and relist in Table X8.1,
including a second column to list the number of measurements
in each average. Show the differences between averages in the
third column, labeled Obs |D|. In the final column, labeled
Critical |D|, show the calculation for the critical difference as
designated in Eq 22a and Eq 22b. In none of the cases shown
does the observed difference exceed the critical difference, and
therefore, infers that there was no significant drift. For the
calculation of critical |D|, the value fors was taken as 2.0.

X8.2 Detection of Drift in a Sequence, First Method—List
the series of measurement data from Table X1.1, including the
number of the sequence position asx and showing the reading
asy, as shown in Table X8.2. Follow with columns labeledx2

andxy and determine the sums of all four columns for use in
Eq 23. In this case,n is 20. Calculate the slope as follows:

m 5 @20~10390.8! 2 210~995.3!#/@20~2870! 2 ~210! 2#

5 ~207816.02 209013.0!/~574002 44100! (X8.1)

5 21197.0/133005 20.0900 (X8.1)

Determine the critical value for the slope from Eq 24, using
s as 2.0:

|m| 5 2~2.0!=2/~202 1! 5 0.30 (X8.2)

Since the actual slope is less than the critical slope, there is
no significant drift indicated.

X8.2.1 As discussed in 6.4.2.1, an estimate fors could have
been made from the sequence that would not be affected by
drift by observing the differences between successive readings.
Expand Table X8.2 by adding a column to show the differences

TABLE X6.2 Suite of Samples in Logarithm Readout

Log concentration −2.0000 −1.6990 −1.5229 −1.3979

Log Readings: −0.3036 −0.2636 −0.2197 −0.2048
−0.2907 −0.2526 −0.2255 −0.2048
−0.2832 −0.2924 −0.2140 −0.1726
−0.2890 −0.2612 −0.2464 −0.1713
−0.2757 −0.2823 −0.2299 −0.1965

Sums −1.4422 −1.3521 −1.1355 −0.9500
Average −0.2884 −0.2704 −0.2271 −0.1900
( (Reading)2 0.41641318 0.36670821 0.25848131 0.18163278
Overall ( (Reading)2 1.22323548

TABLE X8.1 Detection of Drift After a Time Lapse

Average
Measurement

n Obs |D| Critical |D|

51.1 4
0.0

2(2.0)Œ4 1 3
4~3!

5 4.0 =7/12 5 3.06
51.1 3

2.5
2 (2.0)Œ3 1 5

3~5!
5 4.0 =8/15 5 2.92

48.6 5
0.1

2 (2.0)Œ5 1 4
~5~4!

5 4.0 =9/20 5 2.68
48.5 4

1.65 2 (2.0) =2/4 = 4.0 =0.5 = 2.83
50.15 4

TABLE X8.2 Detection of Drift in a Sequence, First Data

Sequence, x Reading, y x2 xy D D2

1 49.7 1 49.7 −1.5 2.25
2 51.2 4 102.4 −0.9 0.81
3 52.1 9 156.3 0.7 0.49
4 51.4 16 205.6 −1.6 2.56
5 53.0 25 265.0 3.5 12.25
6 49.5 36 297.0 −1.4 1.96
7 50.9 49 356.3 4.9 24.01
8 46.0 64 368.0 −3.8 14.44
9 49.8 81 448.2 2.6 6.76

10 47.2 100 472.0 −3.1 9.61
11 50.3 121 553.3 0.8 0.64
12 49.5 144 594.0 −1.6 2.56
13 51.1 169 664.3 4.4 19.36
14 46.7 196 653.8 −2.2 4.84
15 48.9 225 733.5 1.5 2.25
16 47.4 256 758.4 0.0 0.00
17 47.4 289 805.8 −4.8 23.04
18 52.2 324 939.6 −0.2 0.04
19 52.4 361 995.6 3.8 14.44
20 48.6 400 972.0

Sums 210 995.3 2870 10390.8 142.31
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between readings,D, and another for the square of these
differences,D2. Obtain the sum of ColumnD2, and apply Eq 26
whereP is 19 for the number of pairs used:

ss 5 =142.31/2~192 1/2! 5 =142.31/375 1.96 (X8.3)

X8.2.2 The test can be repeated for a case in which drift is
known to be present by having each successive reading in
Table X8.2 reduced 0.2 divisions progressively, that is, no
change in reading 1, − 0.2 in reading 2, − 0.4 in reading 3, etc.
This list appears in Table X8.3. Proceed with the listing ofx2,
xy, D, andD2 as was done for Table X8.2. Calculate the slope
from Eq 23 as follows:

m 5 @20~9858.8! 2 210~957.3!#/@20~2870! 2 ~210! 2#
5 ~197176.02 201033.0!/~574002 44100!
5 23857.0/133005 20.2900 (X8.4)

This barely meets the no drift criterion, calculated previously
for Eq 24, that the critical |m| = 0.30.

X8.3 Detection of Drift in a Sequence, Second Method—
The data in Table X8.2 and Table X8.3 can be used to
determine the average square of successive differences,d2, of
Eq 27:

d2 5 142.31/~202 1! 5 7.490 from TableX8.2, and (X8.5)

d2 5 143.51/195 7.553 from TableX8.3

Comparison must also be made with an estimate of standard
deviation done by using either Eq 2 or Eq 3. This was
demonstrated in X2.1.2 and X2.1.3 on the same data used for
Table X8.2 with the calculation thats2 = 4.235. For the case in
Table X8.2, calculate the ratioh, from Eq 28:

h 5 7.490/4.2355 1.77 (X8.6)

Observe that the critical value in Table 6 for a sample size of
20 and a probability of 95 % is 1.30. Since the calculation ofh
is greater than the critical value, there is no evidence of drift.
In the case in Table X8.3, calculate thes2 by either Eq 2 or Eq
3 as 6.895. Now:

h 5 7.553/6.8955 1.095 (X8.7)

Since this is less than the critical value of 1.30, there is
evidence at the 95 % probability level that there was drift. Note
that Table 6 shows the critical value of 1.04 for a sample size
of 20 at the 99 % probability level, therefore, the test does not
quite show evidence of drift at that confidence level.

TABLE X8.3 Detection of Drift in a Sequence, Second Data

Sequence, x Reading, y x2 xy D D2

1 49.7 1 49.7 −1.3 1.69
2 51.0 4 102.0 −0.7 0.49
3 51.7 9 155.1 0.9 0.81
4 50.8 16 203.2 −1.4 1.96
5 52.2 25 261.0 3.7 13.69
6 48.5 36 291.0 −1.2 1.44
7 49.7 49 347.9 5.1 26.01
8 44.6 64 356.8 −3.6 12.96
9 48.2 81 433.8 2.8 7.84

10 45.4 100 454.0 −2.9 8.41
11 48.3 121 531.3 1.0 1.00
12 47.3 144 567.6 −1.4 1.96
13 48.7 169 633.1 4.6 21.16
14 44.1 196 617.4 −2.0 4.00
15 46.1 225 691.5 1.7 2.89
16 44.4 256 710.4 0.2 0.04
17 44.2 289 751.4 −4.6 21.16
18 48.8 324 878.4 0.0 0.00
19 48.8 361 927.2 4.0 16.00
20 44.8 400 896.0

Sums 210 957.3 2870 9858.8 143.51
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