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INTERNATIONAL

Standard Practice for

Use of Statistics in the Evaluation of Spectrometric Data 1

This standard is issued under the fixed designation E 876; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilonef indicates an editorial change since the last revision or reapproval.

€' Note—Section 7 was added editorially in January 1995.

1. Scope minations from the assumed true value. An acceptable bias

1.1 This practice provides for the statistical evaluation ofShould be agreed upon prior to testing a methdccuracy
data obtained from spectrometrical methods of analysis. Ineften used to qualify a method, is a measurement which
cluded are definitions used in statistics, methods to determini@cludes both imprecision and bias.
variance and standard deviation of data, and calculations for Nore 1—Precisionandbiasare discussed in detail in Practice E 177. In
(1) estimate of variance and pooling estimates of variare, ( analytical methodsprecisionrefers to the distribution of repeat determi-
standard deviation and relative standard deviatiBntdsting  nations about the average. All analyses are presumed to have been made
for outliers, @) testing for bias, §) establishing limits of under the same set of conditions. Standard deviation provides a measure

ion, an ina for drift. of this distribution.
detection, andq) testing for drift Note 2—An evaluation of a method will be sample-dependent. Mul-

2. Referenced Documents tiple samples should be tested for homogeneity since even certified
reference materials may exhibit significantly different degrees of inhomo-
2.1 ASTM S.tandardSI _ . _ geneity. A measure of both sample and method precision may be made by
E 135 Terminology Relating to Analytical Chemistry for replicating determinations on specific portions of the sample specimens.
Metals, Ores, and Related Materfals 3.2.3 confidence to be placed on the estimate of mu-ghp

E 177 Practice for Use of the Terms Precision and Bias i
ASTM Test Method$

E 178 Practice for Dealing with Outlying Observatidns

E 305 Practice for Establishing and Controlling Spectro-
chemical Analytical Curves

E 456 Terminology Relating to Quality and Statistics

Thveragey, is expected to be close top and should be very close

if the number of determinations is large, no significant bias

exists and the standard deviatia®),is small. The degree of

closeness is expressed as a probabitionidence levgkhat p

is in a specified intervalcpnfidence intervalcentered ak.

With a certain probability, limits are placed on the quankty

which may include the unknown quantity p. A probability

level, p %, can be selected so that p will be within the limits

placed abouk. See 3.2.1

0 324 degrees of freedom (dfthe number of contributors

to the deviations of a measurement. Since a deviation can be

implied only when there are at least two members of a group,

degrees of freedom of a set of measurements is generally

one less than the number of measurements. It is the sample size

e . : less the number of parameters estimated. If the group is a
3.2.1 average measurement (xthe arithmetic mean ob- yiging of 5 series of differences of measurements or a series of

tained by dividing the sum of the measurements by the numbe{eio minations of variance, the degrees of freedom is the

of measurements. It is an estimate of y, t_he value of th‘ﬁumber of these differences or the total of the degrees of
population that the average would become if the number Ofreedom of each series of determinations
me?suretments vnetrr? |nf'|n|te.b'Elthartﬁr H may mclu?e a 3.2.5 detection limit—paraphrasing the definition in Termi-
sy; gn;a;)!c error | teretl_s 3_ '?S In etm?ailalurement.d ror.M0logy E 135, it is the lowest estimated concentration that
.2 blas—a systemalic displacement of all or most deterna mits 5 confident decision that an element is present. The
_ actual concentration being measured falls within a confidence
* This practice is under the jurisdiction of ASTM Committee E-1 on Analytical jnterval that encompasses the estimated concentration. The
Chemistry for Metals, Ores and Related Materials and is the direct responsibility OIOWGSI' estimate has a confidence interval that reaches to zero
Subcommittee E01.22 on Statistics and Quality Control. .
Current edition approved Nov. 20, 1989. Published January 1990. Originall)poncemrauon’ but n(_)t b_eIOW- It cannot be aSS_umed _that the
published as E 876 — 82. Last previous edition E 876 — 89. estimated concentration is an actual concentration. Neither can

2 Annual Book of ASTM Standardsol 03.05. it be assumed that an actual concentration that equals the
2 Annual Book of ASTM Standardgol 14.02.

3. Terminology

3.1 Definitions:

3.1.1 For definitions of terms used in this practice, refer t
Terminologies E 135 and E 456.

3.1.2 All quantities computed from limited data are defined
as estimates of the parameters that are properties of the syst
(population) from which the data were obtained.

3.2 Definitions of Terms Specific to This Standard:

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
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detection limit will always give a positive detection. The spectral interference, the number of constants used in the
definition in Terminology E 135 properly characterizes thiscorrection should be counted as being calibration constants.
detection as being a limiting value. See al$etermination This would be true whether correction was made to readings or
limit which follows. to final concentrations. When the measurement is made with
3.2.6 determination limi—the estimated low concentration new data and applied to a previously determined calibration,
where the range of the encompassing confidence interval bedise degrees of freedom is the number of references used to
some specified maximum ratio to that concentration. The rationake the test. In either case, the significance of the measure-
would depend upon what is acceptable in a specific applicationment is limited to the range of concentration in the reference
3.2.7 drift—a gradual, systematic change in measurementgaterials and implies that concentrations will be fairly well
(either increasing or decreasing) from start to completion of spread within that range.
set of replicate determinations of the same material. N
3.2.8 estimate of standard deviation){sthe square root of 4 Significance and Use
the estimate of variance. It is a measure of the variability of a 4.1 The data obtained in spectrometrical analyses may be
set of values representing the whole population. It is arevaluated as statistical measurements. Use of the various
estimate ofo, the actual standard deviation of an infinite determinations of precision which follow permits a consistent
number of measurements. With normal distribution, 68 % ofbasis for comparing methods of analysis or for monitoring their
the values in a population will fall withirt o of the true value, —performance.
U; 95 % within =2 o of y; and 99.7 % withint3 o of . 4.2 Some explanations are included to clarify the function
3.2.9 estimate of variance f5—a measure of precision of a 0f the statistical calculations being made.
measurement based on summing the squares of the deviationg#.3 Examples of all calculations are given in the appen-
of individual determinations from the average and dividing bydixes.
the degrees of freedom.
3.2.10 outlie—a measurement that, for a specific degree o
confidence, is not part of the population. 5.1 Average (%
3.2.11 pooled estimate of variance ,3—the combined X = 3x/n 1)
estimate of variance calculated from two or more estimates
under the same or similar conditions. Pooling estimates in-Where:
creases the degrees of freedom and improves the quality of the* = the sum of all measurements, and
estimate if the variance is approximately the same for eac = the number of measurements.

measurement. Note 4—Where all items of a category are included in a summation,

. ) . . the simple summation symbat will be used. However, the strict
Note 3—If the concentration level varies considerably within the - omatical statement of Eqlis:

pooled data, the pooled variance may be inaccurate. It may be possible in
such cases, however, to determine a valid estimate by pooling relative
standard deviations.

f‘5. Calculation

\ZE]

X =2 09n
3.2.12 precision—the agreement among repeat measure- wherexy, %, ... %, is the population of alh determinations which were

ments, Usua}”y e>_<presse_d as either repeatability or reprodugsade. Since no other constrictions are being made on the summation, the
ibility as defined in Terminology E 456 (see Note 1 and Notesimpler statement of Eq 1 clearly shows the required operation.

2)- _ , 5.2 Variance (5°):
3.2.13range (W—the difference between the highest and 55 1 Following directly from the definition of 3.2.9 (see
lowest measurements for a series of values obtained undgjste 4 and Note 5):
identical conditions. Range is useful for estimating standard
deviation and for determining if certain values are outliers. & =3 - Xn-1 @)
3.2.14 relative standard deviation (RSBjthe standard de-
viation as a percentage of the average analysis or reading. Byhere:
providing a means of expressing the precision in relative ratherxi = an individual determination, and
than absolute terms, it may serve to show a more consistent = the number of determinations.
measure of precision for widely different valuesof 5.2.2 An alternative determination that can be readily
3.2.15 standard error—a term sometimes used synony- handled with a calculator without first determinings (see
mously with standard deviation but which will be used here toNote 4):
measure how consistently the accepted true concentrations of a
series of reference materials compare to the apparent concen-
trations determined from a calibration. It is an estimate that is
similar to standard deviation except for the degrees of freedom Note 5—To prevent significant errors in calculatisgdo not round the
used. When the measurement is used to define the effectiven%%”a:’gstg‘?tfg“ﬁfssafrgggz(”g?;‘a;h ;‘ Z&Ea'fg ff’tﬂzrstfre@féjzmo?fgﬁe
of the calibration eStaZb“Shed by these referenc? mate.”als’ thﬁ Although these equations a’re algebraically identical, the;/ may give
degrees of freedom is the number of data points minus th9ightly different results with large numbers or large summations on a

number of constants in the calibration (the sample size less th@&mputer because of greater round off errors from using Eq 3 instead of
number of parameters estimated). If correction is made fokq 2.

& =[20A) — (EX)¥n)(n — 1) ©)
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Note 6—The numerators of Eq 2 and Eq 3 are often referred to as theyhere:
“sum of squares,” meaning the sum of the squares of deviation. Using Eck represents all readings, and
3, its effectiveness in being a measure of the degree of deviation of a serieR'I = the total number of’readings
of values from each other can be seen by considering some simple lists. '
For example, 2, 3, 4 totals up to 9 for an average of 3. Summing the Nore 8—Pooling two or more estimates of variance is valid only if
squares of the three values yieltis- 9 + 16 = 29. Thesquare of the sum  each set of analyses was obtained under similar or identical conditions
divided by the number of values i$/8 = 81/3 = 27. The sum of squares with samples of similar composition and history. The pooling is valid only
becomes 29 - 27 = 2. If the list were 1, 3, 5, the sum would still be 9 andf variabilities are statistically the same.
the term Ex)%n would remain as 27. The summing of the squares of the . .
three values, however, would yielti + 9 + 25 =35, and the sum of 5.3 Standard Deviation(s)—The estimate of standard de-

squares would now become 35 — 27 = 8, giving a quantitative statement adation follows directly from variance as:

to how much more deviation there is in the second set than the first. The _ \/; 8
sum of squares is insensitive to the level of the readings. Thus, if the list S= ®)
were 3, 4, 5, the summing would yield 9 + 16 + 25 -/B2= 50 - 48 = 2, 5.3.1 Aclose estimate afcan be determined from the value

resulting in the same difference as the first set as it should since thgf range,w, as defined in 3.2.13:
deviations are the same. If the list were 3, 3, 3, B(@®) term would i i
become 27 and the sum of squares would properly be zero since the s = wh/M" = (x, = )/ ©)

(=x)?/n would also be 27 and the list shows no deviation.
where:

5.2.3 Estimate from Duplicate DeterminationsThe differ- X
ence between duplicate determinations can be used to estimakg
variance froms® = A%2 whereA is the difference. Itis a special N’
case of Eq 3, for then, if the two measurementsxgrand x,:

the highest measurement in a set,
the lowest measurement in a set, and
number of measurements, limited from 4 through 12.

Reliable estimates from range by Eq 8 can be made only for

_ 2 2 2 _
$=Da®+ %" — 00+ %722 - 1) ) sets of measurements from four through twelve. If extended
=[2(x° + %2 — (%2 + 2X% + X,D)]/2 beyond twelve measurements, the estimate will be low.

— BN <2 — 2% + %2 = LN % — %)% 5.3.2 Repeat measurements, even when made on different

days, might be biased because the second and subsequent
When there ar& duplicates, the pooling of the individual values are expected to agree with the initial value. In coopera-
estimates, as in 5.2.4, becomes (see Note 4): tive analyses, a laboratory might make extra determinations
2 = SAZK 5)  andreport only those that show good agreement. To overcome
] _the possibility of such prejudiced results, an estimate of
If many duplicates are used, the degrees of freedom ingtandard deviation may be calculated from single determina-
creases and the quality of the estimatesoimproves. tions made on pairs of samples having similar composition in
Note 7—The estimate from duplicates is particularly useful in produc-a number of dlﬁe_rent Iabo.ratones or by a nu.mber of dl.fferent
tion laboratories where routinely analyzed samples can be analyzed %nalysts. For a single pair, dgtermlne the differences in mea-
second time to obtain a measure of precision under practical condition$urement and pool as a special set (see Note 4):

5.2.4 Pooled Estimate of VarianeeWhere there is more s = VI2(D? — (SD)FTY2T - 1) (10)

than one set of similar repeat determinations, an improvedwhere_

overall estimate of variance may be made by pooling theD = difference between values reported, and
individual estimates. Weight each individual variangé, by = number of laboratories or analysts.,

its degrees of freedom, sum the weighted variances, and divide 5.4 Relative Standard DeviatiofRSD):
by the total degrees of freedom:

RSD= 1005/X (11)
s> = [, = Ds? + (n, — s, (6)
) where:
+ .+ (= D — 1) s = standard deviation estimate, and
=1+ ..+ (n— 1] X = average.

5.4.1 Apooling of relative standard deviation can be done in

\r/1\_lhere. = the number of measurements in each set andthe manner of Eq 5 after_squaring the RSD_vaIues. The
' therefore ' precautlon. of Note 8 applies Wlth the exception that the
(n-1) = each degrees of freedom, and concentration of the element being measured may vary, but
K ' = the number of sets. only to the extent that there is no pattern of RSD varying with

concentration. For example, low concentrations might show

. . : higher RSD values than high concentrations, making it inap-
are one, allowing for the summation of thé/2 values with no propriate to pool RSD values over such a wide range of

weighting. If individuql variances were not determined pre\./i'concentration. Using to represent RSD, the pooled estimate
ously, the pooled estimate of variance can take the foIIowmgNoulol be: '

form (see Note 4):

— D+ (ny,— D2 + ... + (0, — D2
§2 = {20¢) — [(2x)%In, + (Sx,)%In, % v= \/ "y ( nl)zll) Jfrzznz & )f)z — rfknk_ 5 M (1)
+ o+ (XN = K)

5.2.4.1 In the special case of Eq 4, all of time 1) values
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5.5 Standard Error—Determine from the differences be-  where the multipliert, is taken from a Student'stable, an
tween the assumed true concentrations of reference materiastract of which is shown in Table 1. The square roat tdkes
and the concentrations calculated from a calibration using (seiato account that the limits apply to the averagenafetermi-

Note 4): nations. The t” values have been computed on the assumption

SE=\/S(cs— o (13) that the errors follow the normal error distribution curve and
4 G that the measurements are independent.

where: 5.6.2 Eq 13 can be restatedyas p < tg \/ﬁ and p-X =

cqy = a concentration determined from a calibration, ts/ 4/n. When the t’ values become critical these expressions

¢, = an accepted true concentration of the same materialpecome equalitiesx — p=ts \/n and p- x =ts/ \/n,

and making the critical t” value become:
f = the degrees of freedom in the observations. t= K- /s (15)

If SE is calculated to determine how well the reference Note 9—The t and F tables show the probability, decimally, for
materials fit the curve they have defindds the number of ~Measurements not to exceed certain values (see Tables 1-3 ). These
b fi : th b f tants in th librati translate directly to the confidence level by subtracting the probability
observa lons’_ minus the num er 0 constants in the calibratiof, ., 1 gng multiplying by 100. Thus, if the probability for a measurement
curve. If SE is calculated with an independent set of referencgot 1o exceed a certain value is 0.05, the confidence level that the
materialsf equals the number of observations. measurement will fall within the range indicated by the critical value is

5.6 Confidence Interval-As discussed in 3.2.3, limits may (1 - 0.05)100 = 95 %.

be set by adding and subtracting frarthe quantityko \/ﬁfor 5.7 Tests for Outliers-A detailed test for outliers is de-

X~ kol \/n = H= X + kol \/ﬁw'here the ve'll'ue ok depends scribed in Practice E 178. Some commonly used procedures
upon the confidence level desired. Specifically, for a 959

/oa : .

. re given below:

confidence levelk = 1.960; for 99 %k = 2.576; and for 90 %, g

k=1.645. These are thd"‘values which appear in Table 1 for =~ Note 10—An apparent outlying value may be merely an extreme

infinite degrees of freedom which is used when the Variab”ityexample of random variability, in which case it should be retained with

. - other data, or it may be the result of gross deviation from the prescribed

Is not fsltlmated. but E”OWW' is k her th T analytical procedure, or an error in calculating or recording the analysis.
5.6.1 In praCt'Ce_’ the estlmafue,l_s nown rather thaw. 0 The reason for aberrant values may warrant investigation.

reflect the uncertainty of substitutirefor o, a larger factor is o )

used to determine the likely interval straddling . The practical °-7-1 For four or more determinations, estimate the standard

limit is then calculated by usinty/ \/n for ka/ \/n permitting deviation and then repeat the calculation with the suspect value

_ _ or more, the suspect value may be excluded. For this test, it
X—thy/n=p=x+tgy/n (14 may be particularly useful to use the estimate,dfy range of
Eq 8.

5.7.2 For triplicate determinations, list the values in increas-

y s A
TABLE 1 Students tTable ing or decreasing order &8, R,, and R;, with R, being the

— =
Degrees of Probability Level suspect value. Calculate as follows:
Freedom 0.10 0.05 0.01 _ )
Test ratio= (R, — Ry)/(R; — Ry), providedR, # R, (16)
1 6.314 12.706 63.657 o
2 2.920 4.303 9.925 If the test ratio is larger than 0.941, the suspect value may be
i gfgg 3%32 2-23‘11 rejected with a 95 % confidence that it is an outlier. When the
5 5015 5571 4032 readings are not precise enough to show a difference between
6 1.943 2.447 3.707 R, and R;, the test may still be done by making one reading
7 1.895 2.365 3.499 higher by 5 in the next decimal place and the other lower by
S 1859 2300 3355 that amount. For example, if the two readings are 1.23, one can
9 1.833 2.262 3.250 - ple, g .29,
10 1.812 2.228 3.169 be made 1.235, and the other 1.225.
12 1.782 2.179 3.055 ) ) ) _ o
14 1.761 2.145 2.977 Note 11—The test in 5.7.2 is a special case of the Dixon Criteria.
16 1.746 2.120 2.921 Practice E 178 shows how the Dixon test can be applied to up to 30
;g i;gg ;-égé ;-gzg observations and lists significant test values for 90 %, 95 %, and 99 %
25 1.708 2.060 2.787 confidence levels.
30 1.696 2,042 2.750 5.7.3 A more reliable test can be made if there is a good
] 1.6448 1.9600 2.5758

- record of the standard deviation or relative standard deviation
Table available in any standard publication of statistical tables, usually entitled : i : :
the t-Test for Significance or Distribution of ¢ (Two-Tailed Test). Credit usually given eXpeCtEd fOfl the level of readlngs or de_termmatlons ,bemg
to Fisher, R. A., Statistical Methods for Research Workers, published by Oliver and made. If pooling was used to make the estimats @f RSD it
Bogc;, Egirgliyrgh, Scotlznéi ;925;|—19r?0- | " ] - ] should represent an estimation based on a relatively high
robability, p, stated decimally, that values will exceed a mean by the state e ’
“t” factor times the standard deviation which was estimated at the listed degrees degrees of freedom, permitting a favorable use (_)f a Student's
of freedom. For the probability, or confidence level, that a measurement will not t-Table (see Table 1). Calculate the average reading and use Eq
exceed this quantity, use (1 - p) 100. Thus, for a value for p of 0.05, the confidence 13 to determine a confidence interval that encompasses that
level is (1 — 0.05) 100 = 95 %. The table can be converted to a One-tail Test by 3 i L.
dividing the probability level by 2, such as is required for determining detection as average'_ If a suspect value does not fit within these |ImItS,
described in 6.2.2. exclude it.
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TABLE 2 F Test for Equality of Variances, 0.05 Probability A

Degrees of Degrees of Freedom of Numerator, the Greater Mean Square
Freedom
Denominator 1 2 3 4 5 6 7 8 10 12 16 20 30
3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.78 8.74 8.69 8.66 8.62
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.96 5.91 5.84 5.80 5.74
5 6.61 5.79 541 5.19 5.05 4.95 4.88 4.82 4.74 4.68 4.60 4.56 4.50
6 5.99 5.14 4.76 4.53 4.39 4.28 421 4.15 4.06 4.00 3.92 3.87 3.81
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.63 3.57 3.49 3.44 3.38
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.34 3.28 3.20 3.15 3.08
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.97 291 2.82 2.77 2.70
12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.76 2.69 2.60 2.54 2.46
14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.60 2.53 2.44 2.39 2.31
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.49 2.42 2.33 2.28 2.20
20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.35 2.28 2.18 2.12 2.04
25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.24 2.16 2.06 2.00 1.92
30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.16 2.09 1.99 1.93 1.84

A Extract of tables for the F test which are available in any standard publication of statistical tables. This specific extract is from Snedecor, G. W., and Cochran, W. G.,
Statistical Methods, The lowa State University Press, Ames, IA, Sixth Edition, 1967. The first column shows the degrees of freedom of the denominator, which would be
the lesser of the mean squares being compared.

TABLE 3 F Test for Equality of Variances, 0.01 Probability —#

Degrees of Degrees of Freedom of Numerator, the Greater Mean Square
Freedom
Denominator 1 2 3 4 5 6 7 8 10 12 16 20 30
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.23 27.05 26.83 26.69 26.50
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.54 14.37 14.15 14.02 13.83
5 16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.29 10.05 9.89 9.68 9.55 9.38
6 13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.87 7.72 7.52 7.39 7.23
7 12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.62 6.47 6.27 6.15 5.98
8 11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.82 5.67 5.48 5.36 5.20
10 10.04 7.56 6.55 5.99 5.64 5.39 521 5.06 4.85 4.71 4.52 4.41 4.25
12 9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.30 4.16 3.98 3.86 3.70
14 8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 3.94 3.80 3.62 351 3.34
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.69 3.55 3.37 3.25 3.10
20 8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.37 3.23 3.05 2.94 2.77
25 7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.13 2.99 2.81 2.70 2.54
30 7.56 5.39 451 4.02 3.70 3.47 3.30 3.17 2.98 2.84 2.66 2.55 2.38

A Extract of tables for the F test which are available in any standard publication of statistical tables. This specific extract is from Snedecor, G. W., and Cochran, W. G.,
Statistical Methods, The lowa State University Press, Ames, IA, Sixth Edition, 1967. The first column shows the degrees of freedom of the denominator, which would be
the lesser of the mean squares being compared.

5.7.4 For duplicate determinations, if the values seem to bealues. Prepare a table af"“values with samples in lines and
far apart and an estimate of standard deviation has already besets in columns. Table 4 contains a general example of a
established, a third value should be obtained if the differenceabulation of t" values for n samples andm sets with
between the two readings is greater thans2Bubsequent summations under each column fBr, (=r)? and =(r ) and
testing, as in 5.7.2 or 5.7.3, would be appropriate to determingith the grand totals of these.

if one reading should be rejected. 6.1.1.2 Set up a table of comparisons of variance as shown

6. Applications in Table 5.

6.1 Testing for Bias—Bias can be detected in various ways. Note 12—The sum of squares for within samples could also be

611 Analys|s Of Vananc_e_A Serles Of Slngle measure- obtained by pOOIlng the variances of the |nd|V|dUa| Sets Bime- G Z/mn
ments on a suite of samples can be subjected to an analysis ‘dﬁg?a;‘érs g}ee:é’hms étoz Sgﬂi’;%gﬁ:"vﬁﬁ;‘n?ﬁ; slinf?suxillttaiglti;g bl;st'ﬂg the
\t/)%r;air:]cgi ftf(; r(ierffsr?tlsngftthheeprLencr:?A%no?ft ;Zesrl:}?ého?dsgr?]dpltgsd('al'tﬁgﬁmber of samples), to reflect that this measure of deviation is for an

. ’ : verage of readings instead of for single readings.

sets may be the results determined by different methods, N )
different laboratories, or different analysts. It is required that 6.1.1.3 Use a table of critical values If extracts of which
any one grouping of samples be close in composition. DetaildPpear in Tables 2 and 3, to test the significance of the
on the analysis of variance appear in Snedecor and Coéhraromparison of, ands,? by obtaining the ratio:

6.1.1.1 Obtain the differences between actual measurements F = s2s.2 17)
and the assumed correct values in order to put the values into

a common population. Call the differences remaindersroor «  If the calculation forF is larger than the value listed for the
combination of degrees of freedom values involved, as shown

in Table 2 or Table 3, there is evidence that a bias exists
“Snedecor, G. W., and Cochran, W. Gitatistical MethodsThe lowa State  P€tween laboratories, methods, or analysts at the confidence
University Press, Ames, IA, Sixth Edition, 1967, pp. 258-298. level of that table.
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TABLE 4 General Example of Tabulation of “*  r” Values

Sample Set A B M Totals
1 Na Nnp m
2 N2a I2p I2m
n I'na I'nb T'nm
Er/] n n n m n — G A
I I I I
121 a 2:1 ib 1:21 m [Zalzl y
n n n m n — BA
2 2 2
I I, I I
CEry? (2, ) (2, (2, fm) j:Ea(i;l) v
> rﬂ)Z n n n m n — WA
Ui 3 ()’ = (1) 2 () > 3
i=1 = i=1 j=ai=1

A G = grand total,
B = deviations between sets, and
W = deviations within one laboratory.

TABLE 5 Comparisons of Variance

Source of Variation Degrees of Freedom Sum of Squares Variance

Total mn -1 W -G 2?/mn s?

Between sets m-1 B/n - G %mn s,2 } = sum of squares/degrees of freedom
Within samples m(n-1) W - B/n Su?2

Note—W - B/n may be obtained by difference of the other two sums of squares.

Note 13—In looking at the twoF tables, it may be noted that a and only insignificant amounts of any interfering elements are
calculated ratio might fail in the 0.05 probability table, equivalent to the needed to establish this limit. These elements should be
95 % confidence level, and yet pass in the 0.01 probability table, 99 O/homogeneously distributed in each specimen. If possible

confidence level (see Note 9). This should not be interpreted that there |s . - . . .
a 99 % confidence that there is no bias even though there appears to b gmary reference materials and high-purity materials, such as

95 % confidence that bias does exist. The broader acceptance of the o.gene-refined meta!s- shall be used. Analyzed samples that
probability of Table 3 merely means that the range of acceptable values GPpear to be consistent may be used. If the elements are not
a normal distribution excludes values greater than ab&@i6o, whereas, homogeneously distributed, the determined detection limit will
the acceptance level of 0.05 excludes greater than only ab2iit . be higher than for homogeneous specimens. This higher

6.1.2 Bias Between Paired Observaticr®\ series of detection limit, however, will have to be accepted if practical
measurements on a suite of samples can be subjectaetésta Samples are not expected to be any more homogeneous.
to determine if these measurements differ significantly from 6.2.1 Calculate the averages of the readings of spectral
assumed correct values. Observing sign, obtain the differencégsponse for each specimen and obtain an overall estimate of
between the measured and the assumed values. Calculate fi@ndard deviation from a pooling of estimates of variance.
average difference and standard deviation of these differencesoe 14— Use of the precision measurement of background should
Calculatet using Eq 14 and compare withtaalue in Table 1 generally be avoided since the measurement of an actual element signal
where the degrees of freedom are the same as those usedntay show a greater random scatter than the background itself. On the
determine standard deviation. If the calculated value exceedgher hand, in photographic photometry, the relative intensity of back-
the tabulated value, a significant difference exists. This is @roqnd may not be able to be measured as precisely as a discrete spectral
two-tailed test. The test will be improved if the standard!"® Image. Background may be used only if it appears to have a standard

L - . deviation that is consistent with that shown by low concentrations.
deviation is pooled from several similar suites of samples.

6.1.3 Using Standard Error—Bias can be tested by deter- 6.2.2 The confidence interval discussed in 5.6 considers the
mining the standard error (see 3.2.15) for the calibration fit andProbability that p falls within a range of measurements
comparing to another standard error obtained with additionatentered about the averageFor detection, concern is that, at
reference materials or with some or all of the original referencé certain confidence level, zero concentration is not in this
materials run at a later date. Bias will be detected if the lattefange of measurement. The probability that u may be higher
error is appreciably larger than the former. thanX does not deny that an element has been detected. Only

6.1.4 Using Plotting—A plotting of determined concentra- the probability that B may be lower thanis significant in
tions against assumed correct concentrations will show a fixe@stablishing detection. Therefore, use Table 1 to determine the
bias if the data points form a 45° line that does not go througtinultiplier, t, applicable for an acceptable probability and the
the origin of the plot. If the data points form a straight line overall degrees of freedom used for obtaining the estimate of
which is not at 45°, it will show a bias that changes as thestandard deviation, but divide the table probability levels by 2.
concentration changes. For example, to calculate detection with a 95 % confidence,

6.2 Detection Limit—Determination that an element is Use the column headed with the probability of 0.10.

present requires observing a spectral responge that is Signiﬁ'NOTE 15—The detections which are defined here are in terms of the
cantly greater than spectral background. Multiple analyses ofpparent concentrations of a calibration assuming no error in the calibra-
several specimens containing residual amounts of the elementsn nor in the standardization procedure used to maintain it. Practice
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E 305 discusses the confidence limits of the slope and intercept of Y

U € the calculated, apparent concentration,
calibration. t

a multiplier from a Student's-table,

the standard deviation in terms of concentration,
the number of replicates burned, and

the average population concentration.

6.2.2.1 If the data are plotted as a straight line of concen-
tration on the ordinate and relative readings or intensity ratios"
on the abscissa of the graph, the slope of the line will directly©

relate to detection from: 6.3.1 A standard deviation determined for observations
(readings) may be converted to concentration terms, byms
¢ = mtg\/n (18 Wwherem is the slope of the calibration curve in the area of

where: interest. When the left hand inequality of Eq 20 is subtracted
m = slope of curve in terms of concentration (percent or from the right hand inequality, the differences2 /n , is the

parts per million) division per reading division, range of the i|_1terval. The ratio of this range to the apparent
t = the multiplier determined in 6.2.2, concentration is:
s = the overall estimate of standard deviation, and _ N
n = the number of replicates. p=2s\/ny (22)

Note 16—Readings from samples having much more than detectable Therefore the limit of determination is (see Note 15):
concentrations can be included in the establishment of the curve only if

they are consistent with the linear relationship. Practice E 305 deals with 9= 2ts,/\/np (23)

establishing linear analytical curves. If the analyst wishes to work at a level where the ratio of
6.2.2.2 If readings are on a logarithmic basis, and a curvéange to apparent concentration is less than 1 (one), the

has been established for low concentrations that is linear idetermination limit becomes higher. Thus if the specified ratio,

terms of log concentration and log readings, a detection limip, is set at 0.5, the determination limit becomés. 4+/n .

can be determined from how much a concentration changes for 6.4 Test for Drift—The test for drift is designed to determine

a significant change in reading. To realize whatever detection istatistically if analyses from an instrument or procedure are

achievable, limited only by the precision of reading, back-changing systematically in relation to time in either an increas-

ground correction would likely be necessary. A general stateing or decreasing manner. The concern is that repeat determi-

ment of such a concentration curve, for common base logsiations may not be distributed normally about the mean value.

might be: One of the following three approaches can be taken.
¢ = a(10® - B) (19) 6.4.1 In ca_librating gsp_ectrometric _method it.is advisabl_e to
bracket a series of excitations by running a particular specimen
where: or group of specimens before and after running the series. The
a = calibration constant, same precaution might be taken with a set of critical analyses.
k = constant which would be other than 1.0 if the function Assuming that an estimate of standard deviation has been made
of log reading did not make an ideal 45° calibration for the method or can be made by pooling the precision of the
line with log concentration, measurements just run, there would be evidence of drift at
R = log reading, and .. somewhat less than a 95 % confidence level if the change in
B = correction for background. (Background correction is average readings was:
discussed in Practice E 305.) -
Determine the concentration for the lowest reading observed A= =Xl > 25\ + iy, or (a) (24)
in the system and repeat the calculation after adding the [A|>2s/2l if n=n, (b

product ‘ts/ \/n " to this reading. The detection will be the
difference in concentration calculations, stating it generally as‘év
(see Note 15):

here:

established or pooled estimate of standard deviation,
number of multiplets in first average, and

number of multiplets in second average.

n;
Ac = a[10R+ VI _ 1R 00 M

Note 17—Nonlinear relationships may be used if the curvature is not Note 18—In multiplet excitations on a single specimen, the effective
severe. An acceptable estimate of detection will be made, however, onlgtandard deviation of the averagesis= o/ \/n wheren is the number of
if the low reading is close to the limit of detection. As was done for Eq 19, multiplets. When two sets of readings are taken on the same specimen, it
the detection will be the difference between the calculation of theis expected that their averages will not deviate by more than the root mean
concentration for the low reading and the calculation when the lowsquare of their standard deviatiods= | x; — Xo| = "\ /012 + (;22, If the
reading is increased by the prodm#t\/ﬁ . two o values are the same, as would be true if the same number of
multiplets was run for each average, thah< o /2 . For different levels

f multiplets in the two averagesA| = \/o%n, +¢?n, or o

6.3 Determination Limi—Practical spectrometric calibra-
tion equatrllon.s dare usdua”y Stgted Wltg trf:e observed '.T]easurx_/(n1 + ny)/nn, . These are stated at the 68 % confidence level. A more
ment as the independent variabke and the concentration as i, iical criterion would be at the 95 % confidence level withéplacing
the dependent variablg, The confidence interval shown in Eq . Furthermore, at some reduction in the 95 % confidence levelg the
13 can be restated in terms of concentration as: should be replaced byleading to Eq 24(a) and Eq 24(b).

y—ts\/N=c=9+ts/A\/n (21) 6.4.2 Drift can be detected by making many runs on the
same specimen in a short sequence of time. The greater the

where: number of runs, the smaller will be the detectable level of drift.
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Frequent excitation, however, may cause overheating. Unlesghe general approach of Eq 4 is better. Eq 4 can be used with
drift from heating is being studied, it would be appropriate toa larger degree of freedom by using each successive difference
run at least two specimens in an alternate sequence or allowia the sequence of readings rather than just working with
reasonable cooling period between excitations. To analyze fasolated pairs of readings. With readings arranged in chrono-
drift, list each reading in the order taken along with itslogical orderx,, X, X3, **+ %, @ sum of the squares of successive

sequence position, 1, 2, 3,--- . Call the readipgand the differences can be defined as:

sequence positions and determine the apparent shiftyifior -1

changes inx by calculating a slopen, from: SAS = 3 (61— %) (27)
m = [NZ(xy) — SXSYY[NZ(E) — (£x)°] (25)

which is the formula for slope in a linear regressionrof ~ Use of ZAZ imposes a small distortion on the degree of

pairs ofx andy values. There will be approximately a 95 % freedom because all but the first and last readings are used
confidence level that drift occurred if the slope is: twice. As compensation, to keep the estimate unbiased, the

standard deviation from a sequence can be stated as:
Im| > 2s~/2/(n — 1) (26)
s=VIAT2P-1/2) (28)
wheren is the number of readings used to define the slope. whereP is the number of pairs.
If a sequence of twenty readings is taken, drift per time interval 6.4.3 A method for detecting drift that is insensitive to the

as small as 0.2 of the standard deviation can be detected; fapparent standard deviation involves a comparison of a mean
ten readings, drifts of 0.5; and for six readings, drifts of 1.0 successive difference with the standard varightising the

s can be detected. designation of the squares of successive differences which was
used in Eq 25, a variancé?, is defined as:
TABLE 6 Critical Values of v for Drift Indication 82 =3A2I(n— 1) (29)
Sample Size Confidence Level wheren is the number of measurements, and therefore,
95 % 99 % (n - 1) is the number of differences used in the calculation. For
4 0.78 0.63 the same set of dat&’ is calculated as prescribed by Eq 2 or
5 0.82 0.54 Eq 3 and a ratioy, determined from:
6 0.89 0.56
7 0.94 0.61 M = 84S (30)
8 0.98 0.66 o .
9 1.02 0.71 Refer to Table 6 which lists critical values forfor both a
10 1.06 0.75 95 % probability and a 99 % probability. In either case, if the
11 1.10 0.79 . . .
12 113 083 calculatedn is less than the value listed in the table for the
15 1.21 0.92 number of measurements made, there is evidence of drift at the
20 1.30 1.04 probability level stated.
25 1.37 1.13
7. Keywords

7.1 data; evaluation; laboratory; spectrometric; statistics
6.4.2.1 If a value fors was not previously established, it
could be gsumated _from _the data at hand. Use of Eq 2 or Eq 3 °Bennett, C. A., “Application of Tests for Randomnessiidustrial and
would be inappropriate since these would be affected by driftengineering Chemistryvol 43, No. 9, September 1951, pp. 2063-2067.

APPENDIXES
(Nonmandatory Information)

X1. MEASUREMENT DATA

X1.1 A consistent set of measurements is used to give TABLE X1.1 Measurement Data
examples of how to apply the various equations of statistical A B C D
evaluation. The set which appears in Table X1.1 is a random 1 49.7 49.5 50.3 47.4
i g : : — 2 51.2 50.9 49.5 47.4
sampling of measurements fitting a population having p=50 % 01 260 et oo
ando = 2. 4 514 49.8 46.7 52.4
5 53.0 47.2 48.9 48.6
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X2. AVERAGE AND VARIANCE

X2.1 Calculations from a Series of Readings _ 49611.57— 990622.09/20
X2.1.1 Average MeasurementArrange the measurement 19
data from Table X1.1 as in Column 1 of Table X2.1. Add the = (49611.57— 49531.104519
first column to obtain the sum of 995.3. The total number of = 80.4655/19= 4.2350
measurements), is 20. Calculate averagg, from Eq 1:
X = 995.3/20= 49.76 (X2.1) X2.1.4 Estimate of Variance from Duplicate

Determinations—Take the measurement data of Columns A

Note that the average was taken to one decimal point morand B in Table X1.1 as duplicate readings and do the same with
than the original data to avoid rounding errors in furtherColumns C and D to form a series of duplicate readings as
calculations. Election was made to round to an even digit sinc8hown in Table X2.2. Obtain the differences in the duplicate

the calculation to three decimal points came to 49.765. readings as shown in Column 3 and the squares of these
X2.1.2 Estimate of Variance, First MethedUsing thex  differences as shown in Column 4. Obtain the sum of the

obtained in X2.1.1, subtract from each reading as done in squares, 120.15, as shown in Column 4. Calculate the variance,

Column 2 of Table X2.1. Square each difference and list a§’» from Eq 4 usingk = 10 for the ten pairs of readings:

done in Column 3. Note that the number of decimal points in & = 120.15/210) = 6.0075 or 6.008 (X2.4)
Column 3 has been increased to four decimal places to fully
reflect the two decimal points in the unsquared differences of
Column 2. Add Columns 2 and 3 obtaining the sums 0.10 ang

2%4660 re;peé:tilvely. sz nho errors halg geen madel in th‘ﬁve sets of repeat determinations done with varied multiplici-
liferences in Column 2, the sum would be zero or close 1q;aq a5 shown in Table X2.3. Treat the data in two different

zero. The discrepancy in Table X2.1 is due to the fact tha;N . PP : -

iy ays: first, as if individual variances had been determined on
49.76 was used forinstead of 49.765. The degrees of freedomeach set, and then, as if these variances had not been previously
are one less than the number of measurement® er 2= 19.

X2.1.5 Pooled Estimate of VarianeeRearrange the mea-
urement data from Table X1.1 in an arbitrary way to represent

Calculat iance?, f Eq 2- determined.
ajculate varances, from £q 2. X2.1.5.1 The column headesf shows individual calcula-
& = 80.4660/19= 4.2351 (x2.2) tions of variance as determined by either Eq 2 or Eq 3,

followed by the degrees of freedom of - 1. Weight each

X2.1.3 Estimate of Variance, Second Metho®btain the Variance by multiplying by the degrees of freedom as shown in
sum of the readings of Column 1, 995.3 as shown in Tabléhe column headedy(— 1)s° Obtain the sum of this column,
X2.1. Calculate the square of each reading as shown in Colun®3-715, and also obtain the sum of the preceding degrees of
4 and the sum of these squares, 49611.57. Since the toftieedom values, 15. Calculate the pooled estimate of variance,
number of measurements was 20, calculate the variafice, S»» from Eq 5, noting the sums obtained in Table X2.3 are the

from Eq 3: numerator and denominator, respectively, of Eq 5:
,  49611.57— (995.3 %20 o3 s = 53.715/15= 3.581 (X2.5)
s = 20-1 (X2:3) X2.1.5.2 If individual variances were not determined previ-
TABLE X2.1 Summations for Average and Variance ously, obtain the sums of readings as shown in the column

headedXx, in Table X2.3. Square these sums in the next

Xi Xi—= X X = X)? x)? . .
el a column headed¥x;)? and show total number of readings in the
49.7 -0.06 0.0036 2470.09 . )
512 144 20736 2621.44 column headed. Obtain the sum of tha column, 20, which
52.1 2.34 5.4756 2714.41 is N, the total of individual measurements. Divide eaZlx ?
514 1.64 2.6896 2641.96 value by n to obtain the next column and obtain its sum,
53.0 3.24 10.4976 2809.00 :
195 _0.26 0.0676 2450.25 49557.854 as shown. Make a final column of the sums of the
50.9 1.14 1.2996 2590.81
46.0 -3.76 14.1376 2116.00
49.8 0.04 0.0016 2480.04 TABLE X2.2 Calculations from Duplicates
472 -2.56 6.5536 2227.84 - - ™ o e
50.3 0.54 0.2916 2530.09 1 2
49.5 -0.26 0.0676 2450.25 49.7 49.5 0.2 0.04 49.6
51.1 1.34 1.7956 2611.21 51.2 50.9 0.3 0.09 51.05
46.7 -3.06 9.3636 2180.89 52.1 46.0 6.1 37.21 49.05
48.9 -0.86 0.7396 2391.21 51.4 49.8 1.6 2.56 50.6
47.4 -2.36 5.5696 2246.76 53.0 47.2 5.8 33.64 50.1
47.4 -2.36 5.5696 2246.76 50.3 47.4 2.9 8.41 48.85
52.2 2.44 5.9536 2724.84 49.5 47.4 2.1 4.41 48.45
52.4 2.64 6.9696 2745.76 51.1 52.2 -1.1 1.21 51.65
48.6 -1.16 1.3456 2361.96 46.7 52.4 -5.7 32.49 49.55
48.9 48.6 0.3 0.09 48.75
Sums 995.3 0.10 80.4660 49611.57 Sum 120.15
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TABLE X2.3 Calculations with Different Multiplicates of Measurement

Measurements s? n-1 (n,-1) s? X, (=x)? n (=x)%In 3(x)?
49.7 51.252.1 51.4 1.020 3 3.060 204.4 41779.36 4 10444.840 10447.90
53.0 49.5 50.9 3.103 2 6.206 153.4 23531.56 3 7843.853 7850.06
46.0 49.8 47.2 50.3 49.5 3.463 4 13.852 242.8 58951.84 5 11790.368 11804.22
51.1 46.7 48.9 47.4 3.789 3 11.367 194.1 37674.81 4 9418.703 9430.07
47.452.2 52.4 48.6 6.410 3 19.230 200.6 40240.36 4 10060.090 10079.32
Sums 15 53.715 20 49557.854 49611.57
squares of each reading as shown under the he&{ig9 and s> = (49611.57— 49557.854(20 — 5) (X2.6)
obtain the sum of this column, 49611.57. Noting tkat5 for — 53.716/15= 3.581

the number of sets of measurements, ob@?rfrom Eq 6:

X3. STANDARD DEVIATION AND RELATIVE STANDARD DEVIATION

X3.1 Estimation from Variance-Summarize the calcula- the estimation ofs from range using Eq 8. In the first set,
tions of variance obtained in Appendix X2 in Table X3.1. Theconsider five cases of four runs A, B, C, and D. In the second
estimate of standard deviatios, follows directly from the set, consider four cases of five runs 1, 2, 3, 4, and 5. In the third
square root operation of Eq 7. Obtain the values shown undeset, let A and B be a case of ten runs, and C and D be another
v from Eq 10 using =49.76 as it was determined in X2.1.1. case of ten runs. Finally, look at the whole set of twenty
Show the degrees of freedom for each method in the finaleadings as one overall case. Summarize as in Table X3.2.
column. From the known population of the measurement daténclude a pooling of variance in order to determine an overall
of Table X1.1, the relative standard deviationiis 10Qs/ estimate ofs in each set. Note that the last case exceeded the
K =100(2)/50 = 4. number of twelve measurements in an overextension of the

X3.1.1 Pooling Relative Standard DeviatieaUse the val- ~ €Stimate and that a low estimate ofesulted as predicted in
ues under Columns and degrees of freedom in Table X3.1 to ©-3-1.

calculatev, in Eq 11 X3.3 Estimation of Standard Deviation Using Single De-

vo = \/[194.14° + 10(4.927 + 153.80°)/(19 + 10 + 15) terminations of Similar SpecimengJse the measurement data
(X3.1)  in Columns A and B of Table X1.1 as if they were two different
= \/(325.6524+ 242.0640+ 216.6000/44 specimens run on five different days or in five different
laboratories. Furthermore, in order that Specimen B be some-
= \V/17.8254=4.22% what different than Specimen A, let the values under Column B

be reduced by 2 to repredenp of 48.Show these as specimen
X3.2 Estimation of Standard Deviation from Rargeook  readings in Table X3.3. Show the difference between readings
at the measurement data in Table X1.1 in various ways to apply the column unded and the square of these values under the
columnd?. Obtain the sum of the values fdrandd? which are

TABLE X3.1 Calculation from Variance 24.0 and 149.54 respectively. Estimatéom Eq 9:
D f
Method s s v oo s=\/[149.54— (24.075)/2(5 — 1) (X3.2)
Eq 2 or Eq 3 4.235 2.06 4.14 19 =1/(149.54— 115.20/2(4)
Eq 4 6.008 2.45 4.92 10
Eq5or Eq 6 3.581 1.89 3.80 15 =/34.34/8=/4.29=2.07

10
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TABLE X3.2 Estimation Standard Deviation from Range

2

Set Case Range, w S, S/ Sp
First Set. 1 50.3-47.4=29 1.45 2.1025 31.8550 6.3710
= = 6.
n=4 2 51.2-47.4=38 1.90 3.6100 s, = \/6.3710 = 2.52
P

\/n =2.000 3 52.2-46.0=6.2 3.10 9.6100

4 52.4-46.7 = 5.7 2.85 8.1225

5 53.0-47.2=5.8 2.90 8.4100

Sum 31.8550
Second Set: A 53.0-49.7=3.3 1.48 2.1904 15.8850 3.9713
v = 3.

n=5 B 50.9-46.0 = 4.9 2.19 4.7961 s, = \/39713 = 1.99
\/n =2.236 C 51.1-46.7= 4.4 1.97 3.8809

D 52.4-47.4=50 2.24 5.0176

Sum 15.8850
) _ 8.1341

Third Set: A B 53.0-46.0=7.0 2.21 4.8841 > - 40621
n=10 C, D 52.4-46.7=5.7 1.80 3.2400
\/n =3.162 Sum 8.1241 s, = \/40621 = 2.02
Fourth Set.
n=20 53.0-46.0=7.0 1.57
\/N =4.472

TABLE X3.3 Estimation of Standard Deviation from Pairs of
Similar Specimens

Case Specimen A Specimen B d P
1 49.7 47.5 2.2 4.84
2 51.2 48.9 2.3 5.29
3 52.1 44.0 8.1 65.61
4 51.4 47.8 3.6 12.96
5 53.0 45.2 7.8 60.84
Sums 24.0 149.54

X4. CONFIDENCE FOR ESTIMATION OF MU

X4.1 Interval Around x Including p—The estimate o  that a value ok must be found which is within 2 divisions of
from the determination of duplicate determinations in X2.1.4u with a 95 % confidence level. If the measurement of
was 2.45 at a degrees of freedom of 10. To determine, at therecision of the method, as determined in the case of duplicate
95 % confidence level, what range of values around theeadings of X2.1.4, is=2.45 based on a degrees of freedom
duplicate average will encompass y, refer to Table 1 and notef 10, and thet multiplier found in Table 1, as discussed in
that thet multiplier for the 95 % confidence level and a degreeX4.1, is 2.228,Eq 14 states:

of freedom of 10 is 2.228. Use Eq 13 to determine that p will 2 228= 2\ /iV2.45 —1/2(2.928(2.45 = 2.73
be included in the range: ' V245 o/ =1/2(2228(245 = 2 (X4.2)
X+ 2.2282.45/\/2 = X * 3.86 (X4.1)

Now n = (2.73y = 7.45 which indicates that a minimim of 8
When applied to the first duplicate reading of Table X2.2, thereadings should be taken. If only a 90 % confidence level is
confidence interval that will include the p of the population isneeded for p to fall withint=2 divisions ofx under the same
49.6+ 3.86. In other words, there is a confidence level of 95 %conditions, thet multiplier from Table 1 is now found to be
that p will fall within the interval of 45.74 to 53.46. only 1.812 and, from Eq 14:

X4.2 Determination of Minimum Number of Measurements 1.812=2\/n2.45 0r\/n = 1/2(1812(2.45 = 2.22
to Achieve Some Limited Confidence Intervhlse Eq 14 to
determine the minimum number of readings needed to have g Now n=(2.22f = 4.93, indicating that only 5 readings
fall within some acceptable limits of For example, consider would be needed.

(X4.3)

11
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X5. TESTING FOR BIAS

X5.1 Letthe measurement data in Table X1.1 represent five =~ TABLE X5.2 Summations for Comparison of Variance
samples (1-5) analyzed in four different laboratories (A-D). Laboratory Differences, r
Furthermore, in order that the readings might represent differsample A B c D
ent samples, let the readings for Sample 2 be two divisions

Totals

! i : ' i 1 -03  -05 -0.3 -2.6

higher than shown in the list of basic values. Similarly, let 2 12 0.9 -0.5 -2.6

Sample 3 read two divisions lower, let Sample 4 read four i ii ‘g-g ;é 3421

divisions higher, and let Sample 5 read four divisions lower. 5 30 28 11 14
The revised series of readings appears in Table X5.1 which also Sx 24 oo Y 50 w47 =G
shows the assumed correct values. (X2 5476 4356  12.25 400 11457=8B
S(x®) 16.90 24.94 13.65 26.08 8157=W

X5.2 Revise the data as described in 6.1.1.1 to be a display
of “r” values, remainders, which are differences to the assumed
values (see Table X5.2 and Note X5.1). Following the direc- TABLE X5.3 Final Values for Variance

tions of the equations designated in Table 4, add the columns o Degrees of Sum of .
. Source of Variation Variance
for the =x values and show their total as —4.7@=Square the Freedom Squares
>x values and show their total as 114.5B~or each column,  Total 19 80.47 4.24=s?
00 — 2
square eachr” value and show the sum of these squares asBetween sets 3 2181 727 =5,
Within samples 16 58.66 3.67=s,7

>(x?), followed by the total of these as 81.5W%

Note X5.1—The same list of " values would have been obtained if

the original measurement data had not been changed and all sampleswhere the degrees of freedom of the numerator are 3 and the
assumed to have correct readings of 50.0. degrees of freedom of the denominator are 16. For these

X5.3 Set up a comparison of variances as described iflegrees of freedom, tieratio for 0.05 probability from Table
6.1.1.2 after making the calculations labeled in Table 5. Noté is 3.24. Since thé& ratio that was calculated is well below

that for the four laboratoriesy = 4, and with each running five 3.24, there is a 95% confidence level that there was no
samplesn =5. significant bias among laboratories. It may also be noted that

the variance for the total system, 4.24, agrees well with

X5.3.1 The calculations for degrees of freedom values WI||O_2 _ 4.0 for the random numbers used.

be:
mn—1=4(5) —1=19 (X5.1) X5.5 Retest for bias after altering the data to have Labo-
m—1=4—1= 3 ratory D read 2 divisions low:
min— 1) = 45 — 1) = 16 X5.5.1 The column marked D in Table X5.4 would then
X5.3.2 The calculations for the sums of squares will be: appear as. |
Sample r
W — G¥mn=81.57— (—4.7)%4(5) (X5.2)

1 -4.6

=81.57— 1.10 = 80.47 5 46

B/n — G ¥mn= 114.57/5— 1.10= 21.81 : o2

By difference, W — B/n = 58.66 5 -34

X5.3.3 The final values for variance will be each sum of X5.5.2 The sums from Column D and the totals calculated
squares divided by its respective degrees of freedom. See Tal#g shown in Table X5.2 would now appear as:

X5.3. D Totals
X5.4 Test the significance of the comparisorsgfands,? (EEX)z Lﬁ-g ;éj-éfg
. . . X) . . =
by calculating theF ratio of Eq 16: $00) 54.08 Progin
F=727/3.67=1.98 (X5.3) X5.5.3 The calculations for the sums of squares then be-
come:
TABLE X5.1 Single Readings of a Suite of Samples W — G Zmn= 109.57— (—14.7%20 (X5.4)
Laboratory Assumed
A B ¢ D Correct TABLE X5.4 Comparison of Variances
Sample Value
1 49.7 49.5 50.3 47.4 50.0 Source of Variation D';arger:(;ejn?f Ssuun;rgg Variance
2 532 529 515 494 52.0 9
3 50.1 44.0 49.1 50.2 48.0 Total 19 98.77 5.20 = 57
4 554 538 50.7 56.4 54.0 Between sets 3 40.11 13.37 =52
5 49.0 43.2 44.9 44.6 46.0 Within samples 16 58.66 3.67=5s,7
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= 109.57— 10.80= 98.77 the unbiased readings of Laboratory A. A misleading conclu-
B/n — G 2mn= 254.57/5— 10.80= 40.11 sion is made because the test used a standard deviation based
W Bin 5866 on only 4 df. See the following section.

) ) . . X5.6.2 The test for bias between paired observations is
X5.5.4 The comparison of variances is shown in Tablejmproved if a pooling is made with the standard deviations of

X5.4. _ _ differences calculated for all four laboratories involved. The
X5.5.5 The calculation of the ratio then becomes: individual values forsare 1.219, 2.014, 1.673, and 2.514. The
F = 13.37/3.67= 3.64 (X5.5)  pooled estimate of standard deviation at 16 df becomes

S =1.915. When this is used for the biased readings of

This exceeds the 0.05 probability fBrwhich, as previously ~Laboratory D,
determined, is 3.24, indicating, at the 95 % confidence level, t = |-2.4|(/5)/1.915= 2.802 (X5.8)

that there is a bias among laboratories. . _— — .
g This now does not indicate a significant bias when compared

X5.6 Using data from Table X5.1, test for bias betweento thet value of 2.120 from Table 1 for 16 df. Using the pooled
readings for Laboratory A and the assumed values by applyingstimate of standard deviation, Laboratory A still does not
the procedure described in 6.1.2. Differences are listed in Tablghow a bias since it§ value now calculates as being only
X5.2. For Laboratory A, the average difference is 1.48 and Ed.728.

3 can be used with the sums shown to determine the standard

deviation at 4 df as being 1.219. The calculatiort &m Eq X5.7 Table X5.5 shows a series of average readings of
14 is: reference materials employed for the calibration of copper in
aluminum alloys. Since matrix dilution was used, the values for

t = 1.48+/5)/1.219= 2.714 (X5.6)

the copper content are in terms of relative percent copper. The
calibration equation appears at the bottom of the table as a

Since this is less than the 2.776 value fan Table 1 for 4 fynction of a second degree equation, withrepresenting
df and the probability level of 0.05, there is a 95 % confidencgeagings.

that there is no bias. The calculations for other laboratories

show even lower calculations for namely 1.465, 0.935, and X5.7.1 From the original data, calculations of apparent

0.356 respectively for B, C, and D, supporting the test of X5_4relativ¢ concentrations are compareq to assumed correct val-
P y PP g ues. Differences and the squares of differences are shown. The

which showed no significant bias among laboratories. . S .
X5.6.1 Ifthe previous test is applied to the case of X5.5.1 inSd4are of the standard error of the fit to the calibration curve is

which the readings of Laboratory D were given a - 2.0 biasPPtained by summing the squares of the differences and

the average difference becomes -2.4 while the standard devigi—v.iding’ in this case, by 12, the degrees of freedqm of ?5 data
tion remains high at 2.514, and the calculationtois as points reduced by 3 for the number of coefficients in the
follows: ' calibration equation. Using Eq 12, as shown in Table X5.5, the

resulting standard error of the fit is 0.0679 relative percent

t= |—24[\/§)/2514: 2.315 (X57) Copper_
This does not indicate any bias at the 95 % confidence level. X5.7.2 At a later date, the same suite of reference materials
Although its readings were biased, the crititalalue calcu- was analyzed as if they were unknown specimens. The
lated for Laboratory D is lower than thevalue calculated for resulting readings are shown in the column headed “New

TABLE X5.5 Calibration of Copper in Aluminum

Original Relative Calculation Difference Difference New Reading Calculation Difference Difference
Reading % Cu Value Squared Value Squared
4459 7.81 7.797 -0.013 0.000171 4448 7.775 -0.035 0.001250
2815 4.59 4.573 -0.017 0.000283 2839 4.619 0.029 0.000826
2692 4.34 4.340 0.000 0.000000 2763 4.475 0.135 0.018124
2722 4.34 4.397 0.057 0.003257 2717 4.388 0.048 0.002268
2678 4.42 4.314 -0.106 0.011240 2713 4.380 -0.040 0.001595
2655 4.22 4.271 0.051 0.002561 2681 4.320 0.100 0.009928
2635 4.13 4.233 0.103 0.010593 2645 4.252 0.122 0.014826
2495 4.01 3.970 -0.040 0.001599 2504 3.987 -0.023 0.000535
2566 4.00 4.103 0.103 0.010641 2457 3.899 -0.101 0.010219
2410 3.91 3.811 -0.099 0.009775 2394 3.781 -0.129 0.016568
2305 3.61 3.616 0.006 0.000032 2318 3.640 0.030 0.000887
2321 3.70 3.645 -0.055 0.002985 2295 3.597 -0.103 0.010597
2344 3.66 3.688 0.028 0.000792 2294 3.595 -0.065 0.004199
1617 2.39 2.356 -0.034 0.001171 1657 2.428 0.038 0.001446
282 0.00 0.016 0.016 0.000245 273 0.000 0.000 0.000000
sum 0.055347 sum 0.093267
SE = SE= - — > 1/0.093267715
— — > 1/0.055347/(15 — 3)
=0.0679 =0.0789
where:

Relative % Cu = -0.461 + 0.0016794x + 0.0000000387 x>
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Reading” in Table X5.5. As in X5.7.1, comparisons are madehigher and leads to a standard error of 0.0789. Since there is
between apparent and assumed concentrations. In this ca$igle difference between this standard error and the one

although the sum of the squares of differences is higher, thealculated in X5.7.1, the existing calibration remains valid.
degrees of freedom, the full number of 15 data points, is also

X6. ESTABLISHING DETECTION LIMIT

X6.1 Using a Linear Plot—Revise the measurement data in ¢ =0.0021611.746(1.91) = 0.007 % (X6.4)
Table X1.1 to have it represent readings for four different tpg s the detection limit of a single excitation of a sample.

samples (A-D) having concentrations of 0.010, 0.020, 0.030rhg getection limit would be lower for replicate analyses. For

and 0.040. For each successive sample, have the readingsepjication of fivec is divided by~/5 , yielding a detection
increase 5.0 for each increase in concentration of 0.010. Thigyit of 0.003 %.

will make the display shown in Table X6.1.

X6.1.1 From the summations in Table X6.1, calculate a X6.2 Using a Logarithmic Plet-Relist the values from
pooled estimate of standard deviation by first estimatingrable X6.1 by showing their logarithmic values in Table X6.2.

variance, using Eq 6: To make the reading values realistic, divide them by 100 before
§2 = {66165.57— [(257.4% + (268.47 + (296.57 taking logarithms.
+ (323.0%)/5}/(20 — 4) (X6.1) X6.2.1 Using Eq 6:
= 3.666 s, = {1.22323548- [(—1.4422% + (—-1.3521°
Now: + (—1.1355? + (—0.9500%)/5}/(20 — 4) (X6.5)
s, = 1.91 (X6.2) = 0.00020252

X6.1.2 If the four analyzed samples are used to define the Now:

analytical curve for the low-level concentrations, a linear s, = 0.0142 (X6.6)

regression to determine the curve would yield: X6.2.2 A straight line working curve can be made for this

%c = 0.002161reading — 0.0988 (X6.3)  data by making a background correction in the form of Eq 18:
X6.1.3 Refer to Table 1. The pooled estimate of standard
deviation, 1.91, was made with a total degrees of freedom of ) ]
16. To make a determination of detection limit at the 95 % WhereR s the log reading.
confidence level, refer to the column under the probability of X6.2.3 As was done in X6.1.3, usé &alue of 1.746. Since
0.100 and read avalue of 1.746 for 16 df. Since the slope of S=§,=0.0142, the produds = 0.0248. Use this in Eq 19 with
the analytical curve is 0.002161 % per division, the detectiorihe average lowest reading= —-0.2884. The detection limit is
limit is determined from Eq 17: calculated as a change in concentration:

Ac = 0.21251(/ 02884+ 00248 _ 1()-0.2884 (X6.8)
= 0.2125%0.54500— 0.51475 = 0.006 %

c=0.212510F — 0.45% (X6.7)

TABLE X6.1 Suite of Samples in Linear Readout

Concentration 0.010 0.020 0.030 0.040 . i L i L
. This is the detection limit of a single excitation when the

Readings: 49.7 54.5 60.3 62.4 . . .
51.2 55.9 505 62.4 procedure includes a background correction. For replicate
52.1 51.0 61.1 67.2 analyses, such as the replication of five used in X6.1.3, the
51.4 54.8 56.7 67.4 i H Wi
230 295 250 A prodgct, ts, in the exponent of Eq 19 is divided by/5 ,

yielding:

Sums 257.4 268.4 296.5 323.0

Average 51.5 53.7 59.3 64.6 Ac = o_2:]_25]_0“02834+ 0.0113 _ 10*0-288{] (X6.9)

S (Reading)? 13256.90 1442394  17593.65  20891.08

Overall = (Reading)? 66165.57 = 0.21250.52808— 0.51475 = 0.003 %

14
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TABLE X6.2 Suite of Samples in Logarithm Readout

Log concentration —2.0000 -1.6990 -1.5229 -1.3979

Log Readings: -0.3036 -0.2636 -0.2197 -0.2048
-0.2907 -0.2526 -0.2255 -0.2048
-0.2832 -0.2924 -0.2140 -0.1726
-0.2890 -0.2612 -0.2464 -0.1713
-0.2757 -0.2823 -0.2299 -0.1965

Sums -1.4422 -1.3521 -1.1355 -0.9500

Average -0.2884 -0.2704 -0.2271 -0.1900

> (Reading)? 0.41641318 0.36670821 0.25848131 0.18163278

Overall = (Reading)? 1.22323548

X7. ESTABLISHING DETERMINATION LIMIT

X7.1 Determination Limi—If a determination has signifi- used in X6.1.3 will be needed since the concern is now for
cance only if the confidence interval containing the apparentleviations on either side of the apparent concentration. At a
concentration is half of that concentration, Eq 21 can be useds % confidence level for 16 df , Table 1 shows that the factor
wherg is equal to 0.5. The standard deviation of measuremernt. 120 should be used. The determination limit for a replication
in X6.1 converts to a standard deviation of concentration byf five burns then becomes:
multiplying by the slope of the calibration line in X6.1.2, or R
s. = 1.91(0.00216) = 0.00413. A different value fothan that § = 2(2.120(0.00413/0.5/5 = 0.016 % (X7.1)

X8. TESTING FOR DRIFT

X8.1 Detection After a Time LapseConsider that the TABLE X8.2 Detection of Drift in a Sequence, First Data
measurements in Table X2.3 represent reanalyses of the same sequence, x Reading, y X2 Xy A A?
specimen at some time intervals to detect drift. Obtain the 1 497 1 49.7 _15 2.05

average of each set of measurements and relist in Table X8.1, 2 51.2 4 102.4 -0.9 0.81
including a second column to list the number of measurements i gij 12 ;gg-g _f-g ‘2’-‘5‘2
in each average. Show the differences between averages in the 5 53.0 25 265.0 35 1225

6

7

8

third column, labeled Obg\|. In the final column, labeled 49.5 36 297.0 -1.4 1.96

Critical JA|, show the calculation for the critical difference as o - SooO S S
designated in Eq 22a and Eq 22b. In none of the cases shown 9 49.8 81 448.2 26 6.76
does the observed difference exceed the critical difference, and 10 47.2 100 472.0 -3.1 9.61
: [P : 11 50.3 121 553.3 0.8 0.64
therefor_e, mfers_ _that there was no significant drift. For the » 295 141 2040 16 256
calculation of critical 4|, the value fors was taken as 2.0. 13 51.1 169 664.3 4.4 19.36
. i s . . 14 46.7 196 653.8 -2.2 4.84
X8.2 Detection of Drift in a Sequence, First Me_thedLlst 15 48.9 205 7335 15 295
the series of measurement data from Table X1.1, including the 16 47.4 256 758.4 0.0 0.00
number of the sequence positionxaand showing the reading ig g;-‘z" ggi ggg-g :g’-g 23’-82
asy, as shown in Table X8.2. Follow with columns labebed _ 1o 524 361 995.6 38 1444
andxy and determine the sums of all four columns for use in 20 48.6 400 972.0
Eq 23. In this casen is 20. Calculate the slope as follows: Sums 210 995.3 2870  10390.8 142.31

m = [20(10390.8 — 210(995.3][20(2870 — (210)%]

TABLE X8.1 Detection of Drift After a Time Lapse = (207816.0— 209013.0/(57400— 44100 (X8.1)
Meﬁgﬁ;:gmee 0 obsiy Critcal |A| _ = _—_1197.0/13300= —0.0900 (X8.1)-
Determine the critical value for the slope from Eq 24, using
51.1 4 .
0.0 2(2.0) —4+3:4O\/W=306 sas 20
511 3 ' 4(3) ' ' Im| = 2(2.0\/2/(20 — 1) = 0.30 (X8.2)
22 520 % = 40/F15 = 2.92 Since the actual slope is less than the critical slope, there is
48.6 5 2 no significant drift indicated.
o1 520 % — 4.0+/9720 = 268 X8.2.1 As discussed in 6.4.2.1, an estimatesfoould have
48.5 4 165 2(20)~/Z8 =40~/0F =283 been made from the sequence that would not be affected by
50.15 4 ' (@0 /2 =4 R drift by observing the differences between successive readings.

Expand Table X8.2 by adding a column to show the differences
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between readings), and another for the square of these m = [20(9858.9 — 210957.3]/[20(2870 — (210 ?]
differencesA?. Obtain the sum of Columa?, and apply Eq 26 = (197176.0- 201033.0/(57400— 44100
whereP is 19 for the number of pairs used: = —3857.0/13306= —0.2900 (X8.4)

& = \/14231/219— 112 = \/14231/37- 1.96  (X8.3) This barely meets the no drift criterion, calculated previously

X8.2.2 The test can be repeated for a case in which drift i%‘or Eq 24, that the criticahi| = 0.30.

known to be present by having each successive reading in xg 3 petection of Drift in a Sequence, Second Method

Table X8.2 reduced 0.2 divisions progressively, that is, NOrne data in Table X8.2 and Table X8.3 can be used to

change in reading 1, - 0.2 in reading 2, - 0.4 in reading 3, etGjetermine the average square of successive differepgest
This list appears in Table X8.3. Proceed with the listingcof Eq 27:

xy, A, andA? as was done for Table X8.2. Calculate the slope
from Eq 23 as follows: 8% = 142.31(20 — 1) = 7.490 from Tablex8.2, and  (X8.5)

3% = 143.51/19= 7.553 from Tablex8.3

TABLE X8.3 Detection of Drift in a Sequence, Second Data Comparison must also be made with an estimate of standard
Sequence, X Reading, y ¥ xy A A2 deviation done by using either Eq 2 or Eq 3. This was

1 49.7 1 49.7 -1.3 1.69 demonstrated in X2.1.2 and X2.1.3 on the same data used for
g 21‘7’ ‘9‘ 12;2 ‘%-79 8-;‘? Table X8.2 with the calculation thaf = 4.235. For the case in

4 50:8 16 203:2 _1_'4 1:96 Table X8.2, calculate the ratiq, from Eq 28:

5 52.2 25 261.0 3.7 13.69 _

S P P o o n = 7.490/4.235= 1.77 (X8.6)

7 49.7 49 347.9 5.1 26.01

g jg-g g‘l‘ igg-g ‘z-"; 13-22 Observe that the critical value in Table 6 for a sample size of
10 454 100 4540 29 8.41 20 and a probability 0_f_95 % is 1.30. Sin_ce the c_alculatiom, of_

1 48.3 121 531.3 1.0 1.00 is greater than the critical value, there is no evidence of drift.
12 473 144 567.6 -4 1.96 In the case in Table X8.3, calculate tsfeby either Eq 2 or Eq

13 48.7 169 633.1 4.6 21.16 i

14 44.1 196 617.4 -2.0 4.00 3 as 6.895. Now:

15 46.1 225 691.5 1.7 2.89 _

16 44.4 256 710.4 0.2 0.04 n = 7.553/6.895= 1.095 (X8.7)

17 44.2 289 751.4 -4.6 21.16 Since this is less than the critical value of 1.30, there is
b O o oo o e evidence at the 95 % probability level that there was drift. Note
20 448 400 896.0 that Table 6 shows the critical value of 1.04 for a sample size

Sums 210 9573 2870 98588 143.51 of 20 at the 99 % probability level, therefore, the test does not

quite show evidence of drift at that confidence level.
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