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Standard Practice for
Statistical Analysis of Linear or Linearized Stress-Life (S-N)
and Strain-Life (ε-N) Fatigue Data1

This standard is issued under the fixed designation E739; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers only S-N and ε-N relationships that
may be reasonably approximated by a straight line (on appro-
priate coordinates) for a specific interval of stress or strain. It
presents elementary procedures that presently reflect good
practice in modeling and analysis. However, because the actual
S-N or ε-N relationship is approximated by a straight line only
within a specific interval of stress or strain, and because the
actual fatigue life distribution is unknown, it is not recom-
mended that (a) the S-N or ε-N curve be extrapolated outside
the interval of testing, or (b) the fatigue life at a specific stress
or strain amplitude be estimated below approximately the fifth
percentile (P . 0.05). As alternative fatigue models and
statistical analyses are continually being developed, later
revisions of this practice may subsequently present analyses
that permit more complete interpretation of S-N and ε-N data.

2. Referenced Documents

2.1 ASTM Standards:2

E206 Definitions of Terms Relating to Fatigue Testing and
the Statistical Analysis of Fatigue Data; Replaced by
E 1150 (Withdrawn 1988)3

E468 Practice for Presentation of Constant Amplitude Fa-
tigue Test Results for Metallic Materials

E513 Definitions of Terms Relating to Constant-Amplitude,
Low-Cycle Fatigue Testing; Replaced by E 1150 (With-
drawn 1988)3

E606/E606M Test Method for Strain-Controlled Fatigue
Testing

3. Terminology

3.1 The terms used in this practice shall be used as defined
in Definitions E206 and E513. In addition, the following
terminology is used:

3.1.1 dependent variable—the fatigue life N (or the loga-
rithm of the fatigue life).

3.1.1.1 Discussion—Log (N) is denoted Y in this practice.
3.1.2 independent variable—the selected and controlled

variable (namely, stress or strain). It is denoted X in this
practice when plotted on appropriate coordinates.

3.1.3 log-normal distribution—the distribution of N when
log (N) is normally distributed. (Accordingly, it is convenient
to analyze log (N) using methods based on the normal
distribution.)

3.1.4 replicate (repeat) tests—nominally identical tests on
different randomly selected test specimens conducted at the
same nominal value of the independent variable X. Such
replicate or repeat tests should be conducted independently; for
example, each replicate test should involve a separate set of the
test machine and its settings.

3.1.5 run out—no failure at a specified number of load
cycles (Practice E468).

3.1.5.1 Discussion—The analyses illustrated in this practice
do not apply when the data include either run-outs (or
suspended tests). Moreover, the straight-line approximation of
the S-N or ε-N relationship may not be appropriate at long lives
when run-outs are likely.

3.1.5.2 Discussion—For purposes of statistical analysis, a
run-out may be viewed as a test specimen that has either been
removed from the test or is still running at the time of the data
analysis.

4. Significance and Use

4.1 Materials scientists and engineers are making increased
use of statistical analyses in interpreting S-N and ε-N fatigue
data. Statistical analysis applies when the given data can be
reasonably assumed to be a random sample of (or representa-
tion of) some specific defined population or universe of
material of interest (under specific test conditions), and it is
desired either to characterize the material or to predict the
performance of future random samples of the material (under
similar test conditions), or both.

1 This practice is under the jurisdiction of ASTM Committee E08 on Fatigue and
Fracture and is the direct responsibility of Subcommittee E08.04 on Structural
Applications.
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5. Types of S-N and ε-N Curves Considered

5.1 It is well known that the shape of S-N and ε-N curves
can depend markedly on the material and test conditions. This
practice is restricted to linear or linearized S-N and ε-N
relationships, for example,

log N 5 A1B ~S! or (1)

log N 5 A1B ~ε! or

log N 5 A1B ~logS! or (2)

log N 5 A1B ~logε!
in which S and ε may refer to (a) the maximum value of
constant-amplitude cyclic stress or strain, given a specific
value of the stress or strain ratio, or of the minimum cyclic
stress or strain, (b) the amplitude or the range of the
constant-amplitude cyclic stress or strain, given a specific
value of the mean stress or strain, or (c) analogous informa-
tion stated in terms of some appropriate independent (con-
trolled) variable.

NOTE 1—In certain cases, the amplitude of the stress or strain is not
constant during the entire test for a given specimen. In such cases some
effective (equivalent) value of S or ε must be established for use in
analysis.

5.1.1 The fatigue life N is the dependent (random) variable
in S-N and ε-N tests, whereas S or ε is the independent
(controlled) variable.

NOTE 2—In certain cases, the independent variable used in analysis is
not literally the variable controlled during testing. For example, it is
common practice to analyze low-cycle fatigue data treating the range of
plastic strain as the controlled variable, when in fact the range of total
strain was actually controlled during testing. Although there may be some
question regarding the exact nature of the controlled variable in certain
S-N and ε-N tests, there is never any doubt that the fatigue life is the
dependent variable.

NOTE 3—In plotting S-N and ε-N curves, the independent variables S
and ε are plotted along the ordinate, with life (the dependent variable)
plotted along the abscissa. Refer, for example, to Fig. 1.

5.1.2 The distribution of fatigue life (in any test) is unknown
(and indeed may be quite complex in certain situations). For
the purposes of simplifying the analysis (while maintaining
sound statistical procedures), it is assumed in this practice that
the logarithms of the fatigue lives are normally distributed, that
is, the fatigue life is log-normally distributed, and that the
variance of log life is constant over the entire range of the
independent variable used in testing (that is, the scatter in log

NOTE 1—The 95 % confidence band for the ε-N curve as a whole is based on Eq 10. (Note that the dependent variable, fatigue life, is plotted here along
the abscissa to conform to engineering convention.)

FIG. 1 Fitted Relationship Between the Fatigue Life N (Y) and the Plastic Strain Amplitude ∆εp/2 (X) for the Example Data Given
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N is assumed to be the same at low S and ε levels as at high
levels of S or ε). Accordingly, log N is used as the dependent
(random) variable in analysis. It is denoted Y. The independent
variable is denoted X. It may be either S or ε, or log S or log ε,
respectively, depending on which appears to produce a straight
line plot for the interval of S or ε of interest. Thus Eq 1 and Eq
2 may be re-expressed as

Y 5 A1BX (3)

Eq 3 is used in subsequent analysis. It may be stated more
precisely as µY ? X5A1BX, where µY ? X is the expected value of Y
given X.

NOTE 4—For testing the adequacy of the linear model, see 8.2.
NOTE 5—The expected value is the mean of the conceptual population

of all Y’s given a specific level of X. (The median and mean are identical
for the symmetrical normal distribution assumed in this practice for Y.)

6. Test Planning

6.1 Test planning for S-N and ε-N test programs is discussed
in Chapter 3 of Ref (1).4 Planned grouping (blocking) and
randomization are essential features of a well-planned test
program. In particular, good test methodology involves use of
planned grouping to (a) balance potentially spurious effects of
nuisance variables (for example, laboratory humidity) and (b)
allow for possible test equipment malfunction during the test
program.

7. Sampling

7.1 It is vital that sampling procedures be adopted that
assure a random sample of the material being tested. A random
sample is required to state that the test specimens are repre-
sentative of the conceptual universe about which both statisti-
cal and engineering inference will be made.

NOTE 6—A random sampling procedure provides each specimen that
conceivably could be selected (tested) an equal (or known) opportunity of
actually being selected at each stage of the sampling process. Thus, it is
poor practice to use specimens from a single source (plate, heat, supplier)
when seeking a random sample of the material being tested unless that
particular source is of specific interest.

NOTE 7—Procedures for using random numbers to obtain random
samples and to assign stress or strain amplitudes to specimens (and to
establish the time order of testing) are given in Chapter 4 of Ref (2).

7.1.1 Sample Size—The minimum number of specimens
required in S-N (and ε-N) testing depends on the type of test
program conducted. The following guidelines given in Chapter
3 of Ref (1) appear reasonable.

Type of Test
Minimum Number

of SpecimensA

Preliminary and exploratory (exploratory research and
development tests)

6 to 12

Research and development testing of components and
specimens

6 to 12

Design allowables data 12 to 24
Reliability data 12 to 24

A If the variability is large, a wide confidence band will be obtained unless a large
number of specimens are tested (See 8.1.1).

7.1.2 Replication—The replication guidelines given in
Chapter 3 of Ref (1) are based on the following definition:

% replication = 100 [1 − (total number of different stress or strain levels used
in testing/total number of specimens tested)]

Type of Test Percent ReplicationA

Preliminary and exploratory (research and development
tests)

17 to 33 min

Research and development testing of components and
specimens

33 to 50 min

Design allowables data 50 to 75 min
Reliability data 75 to 88 min

A Note that percent replication indicates the portion of the total number of
specimens tested that may be used for obtaining an estimate of the variability of
replicate tests.

7.1.2.1 Replication Examples—Good replication: Suppose
that ten specimens are used in research and development for
the testing of a component. If two specimens are tested at each
of five stress or strain amplitudes, the test program involves
50 % replications. This percent replication is considered ad-
equate for most research and development applications. Poor
replication: Suppose eight different stress or strain amplitudes
are used in testing, with two replicates at each of two stress or
strain amplitudes (and no replication at the other six stress or
strain amplitudes). This test program involves only 20 %
replication, which is not generally considered adequate.

8. Statistical Analysis (Linear Model Y = A + BX, Log-
Normal Fatigue Life Distribution with Constant
Variance Along the Entire Interval of X Used in
Testing, No Runouts or Suspended Tests or Both,
Completely Randomized Design Test Program)

8.1 For the case where (a) the fatigue life data pertain to a
random sample (all Y i are independent), (b) there are neither
run-outs nor suspended tests and where, for the entire interval
of X used in testing, (c) the S-N or ε-N relationship is described
by the linear model Y = A + BX (more precisely by µY ? X5

A + BX), (d) the (two parameter) log-normal distribution
describes the fatigue life N, and (e) the variance of the
log-normal distribution is constant, the maximum likelihood
estimators of A and B are as follows:

Â 5 Ȳ 2 B̂X̄ (4)

B̂ 5
(

i51

k

~Xi 2 X̄! ~Yi 2 Ȳ!

(
i51

k

~Xi 2 X̄! 2
(5)

where the symbol “caret” ( ^ ) denotes estimate (estimator),
4 The boldface numbers in parentheses refer to the list of references appended to

this standard.
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the symbol “overbar” (–) denotes average (for example, Ȳ

5 (
i51

k

Yi/k and X̄5 (
i51

k

Xi/k), Yi = log Ni, Xi = Si or εi, or log Si or

log εi (refer to Eq 1 and Eq 2), and k is the total number of test
specimens (the total sample size). The recommended expres-
sion for estimating the variance of the normal distribution for
log N is

σ̂2 5
(

i51

k

~Yi 2 Ŷ i!
2

k 2 2
(6)

in which Ŷi = Â + B̂Xi and the (k − 2) term in the denomi-
nator is used instead of k to make σ̂2 an unbiased estimator of
the normal population variance σˆ2.

NOTE 8—An assumption of constant variance is usually reasonable for
notched and joint specimens up to about 106 cycles to failure. The variance
of unnotched specimens generally increases with decreasing stress (strain)
level (see Section 9). If the assumption of constant variance appears to be
dubious, the reader is referred to Ref (3) for the appropriate statistical test.

8.1.1 Confidence Intervals for Parameters A and B—The
estimators Â and B̂ are normally distributed with expected
values A and B, respectively, (regardless of total sample size k)
when conditions (a) through (e) in 8.1 are met. Accordingly,
confidence intervals for parameters A and B can be established
using the t distribution, Table 1. The confidence interval for A
is given by Â 6 tpσ̂Â, or

Â6tp σ̂3 1
k

1
X̄ 2

(
i51

k

~Xi 2 X̄! 24
½

, (7)

and for B is given by B̂ˆ 6 tpσ̂B̂, or

B̂6tpσ̂F (
i51

k

~Xi 2 X̄! 2G 2½

(8)

in which the value of tp is read from Table 1 for the desired
value of P, the confidence level associated with the confi-

dence interval. This table has one entry parameter (the statis-
tical degrees of freedom, n, for t ). For Eq 7 and Eq 8, n =
k − 2.

NOTE 9—The confidence intervals for A and B are exact if conditions
(a) through (e) in 8.1 are met exactly. However, these intervals are still
reasonably accurate when the actual life distribution differs slightly from
the (two-parameter) log-normal distribution, that is, when only condition
(d) is not met exactly, due to the robustness of the t statistic.

NOTE 10—Because the actual median S-N or ε-N relationship is only
approximated by a straight line within a specific interval of stress or strain,
confidence intervals for A and B that pertain to confidence levels greater
than approximately 0.95 are not recommended.

8.1.1.1 The meaning of the confidence interval associated
with, say, Eq 8 is as follows (Note 11). If the values of tp given
in Table 1 for, say, P = 95 % are used in a series of analyses
involving the estimation of B from independent data sets, then
in the long run we may expect 95 % of the computed intervals
to include the value B. If in each instance we were to assert that
B lies within the interval computed, we should expect to be
correct 95 times in 100 and in error 5 times in 100: that is, the
statement “B lies within the computed interval” has a 95 %
probability of being correct. But there would be no operational
meaning in the following statement made in any one instance:
“The probability is 95 % that B falls within the computed
interval in this case” since B either does or does not fall within
the interval. It should also be emphasized that even in
independent samples from the same universe, the intervals
given by Eq 8 will vary both in width and position from sample
to sample. (This variation will be particularly noticeable for
small samples.) It is this series of (random) intervals “fluctu-
ating” in size and position that will include, ideally, the value
B 95 times out of 100 for P = 95 %. Similar interpretations
hold for confidence intervals associated with other confidence
levels. For a given total sample size k, it is evident that the
width of the confidence interval for B will be a minimum
whenever

(
i51

k

~Xi 2 X̄! 2
(9)

is a maximum. Since the Xi levels are selected by the
investigator, the width of confidence interval for B may be
reduced by appropriate test planning. For example, the width
of the interval will be minimized when, for a fixed number
of available test specimens, k, half are tested at each of the
extreme levels Xmin and X max. However, this allocation
should be used only when there is strong a priori knowledge
that the S-N or ε-N curve is indeed linear—because this allo-
cation precludes a statistical test for linearity (8.2). See
Chapter 3 of Ref (1) for a further discussion of efficient se-
lection of stress (or strain) levels and the related specimen
allocations to these stress (or strain) levels.

NOTE 11—This explanation is similar to that of STP 313 (4).

8.1.2 Confidence Band for the Entire Median S-N or ε-N
Curve (that is, for the Median S-N or ε-N Curve as a Whole)—
If conditions (a) through (e) in 8.1 are met, an exact confidence
band for the entire median S-N or ε-N curve (that is, all points
on the linear or linearized median S-N or ε-N curve considered
simultaneously) may be computed using the following equa-
tion:

TABLE 1 Values of tp (Abstracted from STP 313 (4))

nA
P, %B

90 95

4 2.1318 2.7764
5 2.0150 2.5706
6 1.9432 2.4469
7 1.8946 2.3646
8 1.8595 2.3060
9 1.8331 2.2622

10 1.8125 2.2281
11 1.7959 2.2010
12 1.7823 2.1788
13 1.7709 2.1604
14 1.7613 2.1448
15 1.7530 2.1315
16 1.7459 2.1199
17 1.7396 2.1098
18 1.7341 2.1009
19 1.7291 2.0930
20 1.7247 2.0860
21 1.7207 2.0796
22 1.7171 2.0739

A n is not sample size, but the degrees of freedom of t, that is, n = k − 2.
B P is the probability in percent that the random variable t lies in the interval
from −tp to +tp.
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Â1B̂X6=2Fpσ̂3 1
k

1
~X 2 X̄! 2

(
i51

k

~X i 2 X̄!
24

½

(10)

in which Fp is given in Table 2. This table involves two en-
try parameters (the statistical degrees of freedom n1 and n2
for F). For Eq 9, n1 = 2 and n2 = (k − 2). For example, when
k = 7, F0.95 = 5.7861.

8.1.2.1 A 95 % confidence band computed using Eq 10 is
plotted in Fig. 1 for the example data of 8.3.1. The interpreta-
tion of this band is similar to that for a confidence interval
(8.1.1). Namely, if conditions (a) through (e) are met, and if the
values of Fp given in Table 2 for, say, P = 95 % are used in a
series of analyses involving the construction of confidence
bands using Eq 10 for the entire range of X used in testing; then
in the long run we may expect 95 % of the computed
hyperbolic bands to include the straight line µY ? X5A1BX
everywhere along the entire range of X used in testing.

NOTE 12—Because the actual median S-N or ε-N relationship is only
approximated by a straight line within a specific interval of stress of strain,
confidence bands which pertain to confidence levels greater than approxi-
mately 0.95 are not recommended.

8.1.2.2 While the hyperbolic confidence bands generated by
Eq 9 and plotted in Fig. 1 are statistically correct, straight-line
confidence and tolerance bands parallel to the fitted line µ̂Y ? X

5Â1B̂ are sometimes used. These bands are described in
Chapter 5 of Ref (2).

8.2 Testing the Adequacy of the Linear Model—In 8.1, it
was assumed that a linear model is valid, namely that µY ? X

5A1BX. If the test program is planned such that there is more
than one observed value of Y at some of the Xi levels where i
≥ 3, then a statistical test for linearity can be made based on the
F distribution, Table 2. The log life of the jth replicate
specimen tested in the ith level of X is subsequently denoted
Yij.

8.2.1 Suppose that fatigue tests are conducted at l different
levels of X and that mi replicate values of Y are observed at
each Xi. Then the hypothesis of linearity (that µY | X5A1BX) is
rejected when the computed value of

(
i51

l

mi ~ Ŷ i 2 Ȳ i!
2
/~l 2 2!

(
i51

l

(
j51

mi

~Yij 2 Ȳ i!
2
/~k 2 l!

(11)

exceeds Fp, where the value of Fp is read from Table 2 for
the desired significance level. (The significance level is defined
as the probability in percent of incorrectly rejecting the
hypothesis of linearity when there is indeed a linear relation-
ship between X and µY | X.) The total number of specimens
tested, k, is computed using

k 5 (
i51

l

mi (12)

TABLE 2 Values of FP
A (Abstracted from STP 313 (4))

Degrees of Freedom, n1

1 2 3 4

1 h 161.45 199.50 215.71 224.58
4052.2 4999.5 5403.3 5624.6

2 h 18.513 19.000 19.164 19.247
8.503 99.000 99.166 99.249

3 h 10.128 9.5521 9.2766 9.1172
34.116 30.817 29.457 28.710

4 h 7.7086 6.9443 6.5914 6.3883
21.198 18.000 16.694 15.977

5 h 6.6079 5.7861 5.4095 5.1922
16.258 13.274 12.060 11.392

6 h 5.9874 5.1433 4.7571 4.5337
13.745 10.925 9.7795 9.1483

7 h 5.5914 4.7374 4.3468 4.1203
12.246 9.5466 8.4513 7.8467

8 h 5.3177 4.4590 4.0662 3.8378
Degrees of Freedom, n2 11.259 8.6491 7.5910 7.0060

9 h 5.1174 4.2565 3.8626 3.6331
10.561 8.0215 6.9919 6.4221

10 h 4.9646 4.1028 3.7083 3.4780
10.044 7.5594 6.5523 5.9943

11 h 4.8443 3.9823 3.5874 3.3567
9.6460 7.2057 6.2167 5.6683

12 h 4.7472 3.8853 3.4903 3.2592
9.3302 6.9266 5.9526 5.4119

13 h 4.6672 3.8056 3.4105 3.1791
9.0738 6.7010 5.7394 5.2053

14 h 4.6001 3.7389 3.3439 3.1122
8.8616 6.5149 5.5639 5.0354
4.5431 3.6823 3.2874 3.0556

15 h 8.6831 6.3589 5.4170 4.8932

A In each row, the top figures are values of F corresponding to P = 95 %, the bottom figures correspond to P = 99 %. Thus, the top figures pertain to the 5 % significance
level, whereas the bottom figures pertain to the 1 % significance level. (The bottom figures are not recommended for use in Eq 10.)
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8.2.2 Table 2 involves two entry parameters (the statistical
degrees of freedom n1 and n2 for F). For Eq 11, n1 = (l − 2),
and n2 = ( k − l). For example, F0.95 = 6.9443 when k = 8 and
l = 4.

8.2.3 The F test (Eq 11) compares the variability of average
value about the fitted straight line, as measured by their mean
square (Note 14) (the numerator in Eq 11) to the variability
among replicates, as measured by their mean square (the
denominator in Eq 11). The latter mean square is independent
of the form of the model assumed for the S-N or ε-N
relationship. If the relationship between µY ? X and X is indeed
linear, Eq 11 follows the F distribution with degrees of
freedom, (l − 2) and (k − l ). Otherwise Eq 11 is larger on the
average than would be expected by random sampling from this
F distribution. Thus the hypothesis of a linear model is rejected
if the observed value of F (Eq 11) exceeds the tabulated value
Fp. If the linear model is rejected, it is recommended that a
nonlinear model be considered, for example:

µY ? X A1BX1CX 2 (13)
NOTE 13—Some readers may be tempted to use existing digital

computer software which calculates a value of r, the so-called correlation
coefficient, or r2, the coefficient of determination, to ascertain the
suitability of the linear model. This approach is not recommended. (For
example, r = 0.993 with F = 3.62 for the example of 8.3.1, whereas
r = 0.988 and F = 21.5 for similar data set generated during the 1976
E09.08 low-cycle fatigue round robin.)

NOTE 14—A mean square value is a specific sum of squares divided by
its statistical degrees of freedom.

8.3 Numerical Examples:
8.3.1 Example 1: Consider the following low-cycle fatigue

data (taken from a 1976 E09.08 round-robin test program
(laboratory 43):

∆ε p/2 N
Plastic Strain Amplitude—

Unitless
Fatigue Life

Cycles
0.01636 168
0.01609 200
0.00675 1 000
0.00682 1 180
0.00179 4 730
0.00160 8 035
0.00165 5 254
0.00053 28 617
0.00054 32 650

8.3.1.1 Estimate parameters A and B and the respective
95 % confidence intervals.

8.3.1.2 First, restate (transform) the data in terms of loga-
rithms (base 10 used in this practice due to its wide use in
practice).

Xi = log (∆εpi ⁄ 2) Y i = log N i

(Independent Variable) (Dependent Variable)
−1.78622 2.22531
−1.79344 2.30103
−2.17070 3.00000
−2.16622 3.07188
−2.74715 3.67486
−2.79588 3.90499
−2.78252 3.72049
−3.27572 4.45662
−3.26761 4.51388

8.3.1.3 Then, from Eq 4 and Eq 5:
Â = −0.24474 B̂ = −1.45144

Or, as expressed in the form of Eq 2b:
logN̂ = −0.24474 − 1.45144 log (∆εp/2)

Also, from Eq 6:

σ̂ 2 5 0.07837/7 5 0.011195 (14)

or,

σ̂ 5 0.1058 (15)

8.3.1.4 Accordingly, using Eq 7, the 95 % confidence inter-
val for A is (tp = 2.3646) [−0.6435, 0.1540], and, using Eq 8,
the 95 % confidence interval for B is [−1.6054, − 1.2974].

8.3.1.5 The fitted line Ŷ = log N = −0.24474 − 1.45144 log
(∆εp/2) = −0.24474 − 1.45144X is displayed in Fig. 1, where
the 95 % confidence band computed using Eq 10 is also
plotted. (For example, when ∆εp/2 = 0.01, X = −2.000, Ŷ
= 2.65814, Ŷlower band = 2.65814 − 0.15215 = 2.50599, and Ŷup-

per band = 2.65814 + 0.15215 = 2.81029.)
8.3.1.6 The fitted line can be transformed to the form given

in Appendix X1 of Practice E606/E606M as follows:

logN 5 20.24474 2 1.45144log~∆εp/2! (16)

log~∆εp/2! 5 20.16862 2 0.68897logN

∆εp/2 5 0.67823 ~N!20.68897

Substituting cycles (N) to reversals (2Nf) gives

∆ε p/2 5 0.67823 S 2 N̂ f

2
D 20.68897

(17)

∆εp/2 5 0.67823 ~1/2!20.68897 ~2Nˆ f!
20.68897

∆εp/2 5 1.09340 ~2N̂ f!
20.68897

The above alternative equation is shown on Fig. 1.
8.3.1.7 Ancillary Calculations:

X̄ 5 22.53172 Ȳ 5 3.42990 (18)

(
i51

9

~Xi 2 X!2 5 2.63892 (19)

(
i51

9

~Xi 2 X̄! ~Yi 2 Ȳ! 5 23.83023 (20)

σ̂ Â 5 σ̂F 1
9

1
~22.53172!2

2.63892 G 1
2

5 0.1686 (21)

σ̂ B̂ 5 σ@2.63892#2
1
2 5 0.06513 (22)

8.3.1.8 Test for linearity at the 5 % significance level.
8.3.1.9 We shall ignore the slight differences among the

amplitudes of plastic strain and assume that l = 4 and k= 9.
Then, at each of the four Xi levels, we shall compute Ŷ i using
Ŷi = −0.24414 − 1.45144X̄i and Ȳi using Ȳi = ∑Yij/mi.
Accordingly, F0.95 = 5.79, whereas F computed (using Eq
11) = 3.62. Hence, we do not reject the linear model in this
example.

8.3.1.10 Ancillary Calculations:

Numerator ~F! 5 0.0532/2 (23)

Denominator ~F! 5 0.0368/5

8.3.2 Example 2: Consider the following low-cycle fatigue
data (also taken from a 1976 E09.08 round-robin test program
(laboratory 34)):
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∆ε p/2 N
Plastic Strain Amplitude—

Unitless
Fatigue Life

Cycles
0.0164 153
0.0164 153
0.0069 563
0.0069 694
0.00185 3 515
0.00175 3 860
0.00054 17 500
0.00058 20 330
0.000006 60 350
0.000006 121 500

8.3.2.1 The F test (Eq 11) in this case indicates that the
linear model should be rejected at the 5 % significance level
(that is, F calculated = 39.36, where F3,5,0.95 = 5.41). Hence
estimation of A and B for the linear model is not recommended.
Rather, a nonlinear model should be considered in analysis.

9. Other Statistical Analyses

9.1 When the Weibull distribution is assumed to describe
the distribution of fatigue life at a given stress or strain
amplitude, or when the fatigue data include either run-outs or
suspended tests (or when the variance of log life increases
noticeably as life increases), the appropriate statistical analyses
are more complicated than illustrated in this practice. The
reader is referred to Ref (5) for an example of relevant digital
computer software.

NOTE 15—It is not good practice either to ignore run-outs or to treat
them as if they were failures. Rather, maximum likelihood analyses of the
type illustrated in Ref (5) are recommended.
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